COMBINATORICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 11/01/2011

(1) Let C(G;k) denote the space of all function $G \to k$. Define $\Phi: C(G;k) \to k[G]$ by

$$\Phi(f) = \sum_{g \in G} f(g) \mathbf{1}_g.$$

Note that Φ is an isomorphism of vector spaces. Let $f_1 * f_2$ denote the unique element of C(G; k) for which

$$\Phi(f_1 * f_2) = \Phi(f_1)\Phi(f_2).$$

Show that

$$f_1 * f_2(g) = \sum_{xy=g} f_1(x) f_2(y)$$
 for all $g \in G$.

- (2) Let $G = \mathbf{Z}/n\mathbf{Z}$, V = C(G;k). Define $(\rho(g)f)(x) = f(x-g)$ for all $f \in C(G;k)$, $x, g \in G$. Determine the one-dimensional invariant subspaces for the representation (ρ, V) .
- (3) Let X be any collection of $n \times n$ matrices which commute pairwise and have complex entries. Show that \mathbb{C}^n has a basis with respect to which every matrix in X is upper triangular, and every diagonalizable matrix in X is diagonal. [Hint: Assume the result to be true for all m < n. If X consists only of scalar matrices, then there is nothing to prove. Otherwise there exists $A \in X$ which has a non-trivial proper eigenspace.]
- (4) Show that any irreducible representation of an abelian group in a finite dimensional complex vector space is one-dimensional. For a finite abelian group, show that every indecomposable representation of this type is one-dimensional. Give an example of a indecomposable representation of a (necessarily infinite) abelian group which is not one-dimensional.
- (5) Write down the character table for the symmetric group S_3 consisting of permutations of three objects.