| dc.description.tableofcontents |
1. Introduction – 15
1.1 AI in the Healthcare Sector – 16
1.2 Designing Machine Learning Models – 19
• 1.2.1 Data Preprocessing – 19
• 1.2.2 Model Development – 23
• 1.2.3 Evaluation Metrics – 23
1.3 Progress, Challenges, and Opportunities for AI in Healthcare – 28
• 1.3.1 Challenges for AI in Healthcare – 28
• 1.3.2 Opportunities for AI in Healthcare – 31
2. Machine Learning Algorithms – 33
2.1 Supervised Learning – 34
• 2.1.1 k-Nearest Neighbors (k-NN) – 34
• 2.1.2 Linear Regression – 35
• 2.1.3 Logistic Regression – 35
• 2.1.4 Naive Bayes – 36
• 2.1.5 Decision Tree – 38
• 2.1.6 Support Vector Machine – 39
2.2 Unsupervised Learning – 39
• 2.2.1 K-Means – 40
• 2.2.2 Hierarchical Clustering – 41
• 2.2.3 DBSCAN – 42
• 2.2.4 Gaussian Mixture Model (GMM) – 43
• 2.2.5 Principal Component Analysis (PCA) – 44
• 2.2.6 Other Dimensionality Reduction Techniques – 45
2.3 Ensemble Models – 45
• 2.3.1 Boosting – 46
• 2.3.2 Bagging – 47
2.4 Neural Networks – 48
2.5 Reinforcement Learning – 49
2.6 Clinical Study Design and Evaluation Metrics – 50
3. A Predictive Model of a Growing Fetus: The Gompertz Model – 52
3.1 Introduction – 52
3.2 Materials and Methods – 56
• 3.2.1 Study Design and Participants – 56
• 3.2.2 Published Growth Standards for Fetal Biometry – 58
• 3.2.3 Gompertz Growth Model – 59
• 3.2.4 Quality of Fit – 61
• 3.2.5 Predicting Birth Weight of Fetus – 61
• 3.2.6 Validation Cohort – 63
3.3 Results – 64
• 3.3.1 Gompertz Formula Fits Biometry Measurements (Seethapathy Cohort) – 64
• 3.3.2 Neonatal Complications and Deviations from Gompertz Growth – 65
• 3.3.3 Predicting Final Biometry and Individual Birth Weights – 66
• 3.3.4 Model Performance on Validation Cohort – 70
• 3.3.5 Gompertz Equation and Fetal Growth Standards – 71
3.4 Conclusion – 76
4. MMM and MMMSynth: Clustering and Synthetic Data Generation – 79
4.1 Introduction – 79
• 4.1.1 Existing Clustering Methods – 80
• 4.1.2 Overview of the MMM Algorithm – 81
• 4.1.3 MMMSynth: Generating Synthetic Tabular Data – 82
4.2 Methods – 83
• 4.2.1 MMM: Clustering of Heterogeneous Data – 83
• 4.2.2 Discrete Data, Dirichlet Prior – 83
• 4.2.3 Continuous Data, Normal-Gamma Prior – 85
• 4.2.4 Optimizing Clustering Likelihood (Expectation Maximization) – 87
• 4.2.5 Identifying the Correct K: Marginal Likelihood – 89
• 4.2.6 Assessment of Benchmarking – 95
• 4.2.7 MMMSynth: Generating Synthetic Data with MMM – 96
• 4.2.8 Benchmarks: Real Datasets Used – 97
4.3 Results – 99
• 4.3.1 Clustering Algorithm Performance – 99
4.4 Conclusion – 106
5. Other Machine Learning Projects – 109
5.1 Assessing Vasoplegia Grouping using ML – 109
5.2 DREAM Preterm Birth Prediction Challenge (Transcriptomics) – 116
5.3 RSNA-MICCAI Brain Tumor Radiogenomic Classification – 117
6. Conclusion – 119 |
en_US |