Pre- and Postselected Measurements, and Uncertainty Relations [HBNI Th258]
Sahil
Advisor:
Sibasish Ghosh
Degree:
Ph.D
Main Subject:
Physics
Institution:
HBNI
Year:
2025-02-28
Pages:
190p.
Date:
2025
xmlui.dri2xhtml.METS-1.0.item-relation-isbasedon:
[1] Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys. Rev. B 134, 1410 (1964).
[2] Y. Aharonov and L. Vaidman, “The Two-State Vector Formalism: An Updated Re-
view”, Lect. Notes Phys. 734, 399–447 (2008).
[3] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988).
[4] H. P. Robertson, Phys. Rev. 34, 163 (1929).
[5] W. Heisenberg, Z. Phys. 43, 172 (1927).
[6] E.P. Wigner and M.M. Yanase, roc. Natl. Acad. Sci. USA 49 (1963) 910–918.
[7] Kurt Jacobs, “Quantum measurement theory and its applications”, (Cambridge Uni-
versity Press, 2014).
[8] Nielsen, Michael A., and Isaac L. Chuang, “Quantum computation and quantum in-
formation”, (Cambridge university press, 2010).
[9] Todd A. Brun, Am. J. Phys. 70, 719–737 (2002).
[10] A.G. Kofman, Sahel Ashhab, and Franco Nori, Physics Reports 520 (2012) 43–133.
[11] Jacobs, K., Steck D. A., Contemporary Physics, 47(5), 279–303 (2006).
[12] Jonathan A. Gross et al., Quantum Sci. Technol. 3 024005 (2018).
[13] Hans Maassen and J. B. M. Uffink, Phys.Rev.Lett.60, 1103 (1988).
181182
Bibliography
[14] O. Cohen, Phys. Rev. A 51, 4373 (1995).
[15] W. D. Sharp and N. Shanks, Phil. Sci. 60, 488 (1993).
[16] R. E. Kastner, Stud. Hist. Phil. Mod. Phys. 30 B, 237 (1999).
[17] R. E. Kastner, Foundations of Physics 29, 851–863 (1999).
[18] J.S. Lundeen and K.J. Resch, Physics Letters A 334 (2005) 337–344.
[19] Richard Jozsa, Phys. Rev. A 76, 044103 (2007).
[20] Y. Aharonov, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen, Phys. Lett. A 301
(2001) 130.
[21] J. S. Lundeen and A. M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009); K. Yokota,
T. Yamamoto, M. Koashi, and N. Imoto, New J. Phys. 11, 033011 (2009).
[22] Y. Aharonov, D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Per-
plexed, Wiley–VCH; Y. Aharonov et al., Phys. Rev. A 87 (2012) 014105.
[23] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature 474,
188–191(2011); Jeff S. Lundeen and Charles Bamber, Phys. Rev. Lett. 108, 070402
(2012); G. S. Thekkadath, et al., Phys. Rev. Lett. 117, 120401 (2016).
[24] Wei-Wei Pan et al., Phys. Rev. Lett. 123, 150402(2019); Yusuf Turek 2020 J. Phys.
Commun. 4 075007.
[25] D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, Phys.
Rev. Lett. 92 (2004) 043601.
[26] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg,
Phys. Rev. Lett. 109, 100404 (2012).
[27] Omar S. Magana Loaiza et al., Phys. Rev. Lett. 112, 200401 (2014).
[28] O. Hosten and P. Kwiat, Science 319, 787 (2008).Bibliography
183
[29] Arun Kumar Pati, Uttam Singh, and Urbasi Sinha Phys. Rev. A 92, 052120 (2015).
[30] G. Nirala, S. N. Sahoo, A. K. Pati, and U. Sinha, Phys. Rev. A 99, 022111 (2019).
[31] A. K. Pati, C. Mukhopadhyay, S. Chakraborty, and S. Ghosh, Phys. Rev. A 102,
012204 (2020).
[32] S. Goswami, S. Chakraborty, S. Ghosh, and A. S. Majumdar, Phys. Rev. A 99,
012327 (2019).
[33] Y. Aharonov, S. Popescu, D. Rohrlich, and P. Skrzypczyk, 2013 New J. Phys. 15
113015.
[34] T. Denkmayr, H. Geppert, S. Sponar, H. Lemmel, A. Matzkin, J. Tollaksen, and Y.
Hasegawa, 10.1038/ncomms5492.
[35] Debmalya Das and Arun Kumar Pati, New J. Phys. 22 063032 (2020).
[36] B. L. Higgins, M. S. Palsson, G. Y. Xiang, H. M. Wiseman, and G. J. Pryde, Phys.
Rev. A 91, 012113 (2015).
[37] S. Marcovitch and B. Reznik, arXiv:1005.3236.
[38] Y. Aharonov, E. Cohen, A. C. Elitzur, Annals of Physics 355(2015)258–268.
[39] Y. Aharonov, and E. Cohen, arXiv:1504.03797.
[40] A. P. Lund and H. M. Wiseman, New J. Phys. 12 093011 (2010).
[41] Michael J. W. Hall, Arun Kumar Pati, and Junde Wu, Phys. Rev. A 93, 052118
(2016).
[42] K.J. Resch, J.S. Lundeen, and A.M. Steinberg, Physics Letters A 324 (2004)
125–131.
[43] M. O. Scully, B. G. Englert, and H. Walther, Nature 351, 111–116 (1991).184
Bibliography
[44] H. M. Wiseman, Phys. Lett. A 311, 285 (2003).
[45] R. Mir, J. S. Lundeen, M. W. Mitchell, A. M. Steinberg, J. L. Garretson, and H. M.
Wiseman, New J. Phys. 9, 287 (2007).
[46] Kazuhisa Ogawa, Natsuki Abe, Hirokazu Kobayashi, and Akihisa Tomita, Phys.
Rev. Research 3, 033077 (2021).
[47] Le Bin Ho, Nobuyuki Imoto, Physics Letters A 380 (2016) 2129–2135.
[48] Y. Kedem and L. Vaidman, Phys. Rev. Lett. 105, 230401 (2010).
[49] P. Busch, T. Heinonen and P. Lahti, Phys.Rep.452,155(2007).
[50] P. J. Lahti and M. J. Maczynski, J. Math. Phys. (N.Y.) 28, 1764 (1987).
[51] Holger F. Hofmann and Shigeki Takeuchi, Phys. Rev. A 68, 032103 (2003).
[52] O. Guhne, Phys. Rev. Lett. 92, 117903 (2004).
[53] C. A. Fuchs and A. Peres, Phys. Rev. A 53, 2038 (1996).
[54] Michael J. W. Hall, Gen. Relativ. Gravit. 37, 1505 (2005).
[55] Luo, S. Theor Math Phys 151, 693–699 (2007); Shunlong Luo, Phys. Rev. A 72,
042110 (2005).
[56] Alain Connes and Erling Størmer, J. Funct. Anal. 28, 187 (1978).
[57] Shunlong Luo, Phys. Rev. Lett. 91, 180403 (2003).
[58] Davide Girolami, Phys. Rev. Lett. 113, 170401 (2014); Shunlong Luo, Yuan Sun,
Phys. Rev. A 96, 022130 (2017).
[59] I. Marvian and R. W. Spekkens, Nat. Commun. 5, 3821 (2014); Iman Marvian,
Robert W. Spekkens, and Paolo Zanardi, Phys. Rev. A 93, 052331 (2016).
[60] S. Luo and Q. Zhang, EEE Trans. Inform. Theory 50 (2004) 1778–1782.Bibliography
185
[61] Bin Chen, Shao-Ming Fei, and Gui-Lu Long, Quantum Inf. Process. 15, 2639
(2016).
[62] K. Yanagi, S. Furuichi, and K. Kuriyama, EEE Trans. Inform. Theory 51 (2005)
4401–4404.
[63] S. Furuichi et al., J. Math. Anal. Appl. 356 (2009) 179–185.
[64] Kenjiro Yanagi, 2010 J. Phys.: Conf. Ser. 201 012015; Kenjiro Yanagi, J. Math.
Anal. Appl. 365 (2010) 12–18.
[65] Shunlong Luo and Yuan Sun, Phys. Rev. A 98, 012113 (2018).
[66] Ma-Cheng Yang and Cong-Feng Qiao, Phys. Rev. A 106, 052401 (2022).
[67] Daniel A. Lidar, arXiv:1902.00967v2.
[68] M. M. Wolf, Quantum Channels and Operations Guided Tour (2012).
[69] Søren Gammelmark, Brian Julsgaard, and Klaus Mølmer, Phys. Rev. Lett. 111,
160401 (2013).
[70] Lior Goldenberg and Lev Vaidman, American of Physics 64, 1059 (1996).
[71] Leifer, M.S, Quantum Stud.: Math. Found. (2023).
[72] Paul Busch, Pekka Lahti, and Reinhard F. Werner, Phys. Rev. A 89, 012129 (2014).
[73] Shrobona Bagchi and Arun Kumar Pati, Phys. Rev. A 94, 042104 (2016).
[74] Debasis Mondal, Shrobona Bagchi, and Arun Kumar Pati, Phys. Rev. A 95, 052117
(2017).
[75] Yichen Huang, Phys. Rev. A 86, 024101 (2012).
[76] Hubert de Guise, Lorenzo Maccone, Barry C. Sanders, and Namrata Shukla, Phys.
Rev. A 98, 042121 (2018).186
Bibliography
[77] A. A. Abbott, P. L. Alzieu, M. J. Hall, and C. Branciard, Mathematics 4, 8 (2016).
[78] L. Dammeier, R. Schwonnek, and R. F. Werner, New J. Phys. 17, 093046 (2015).
[79] René Schwonnek, Lars Dammeier, and Reinhard F. Werner, Phys. Rev. Lett. 119,
170404 (2017).
[80] Konrad Szymański and Karol Życzkowski, J. Phys. A: Math. Theor. 53 015302
(2020).
[81] E. H. Lieb, Adv. Math. 11, 267 (1973).
[82] R. Bhatia, C. Davis, SIAM J. Matrix Anal. Appl. 14 (1993) 132–136; Fuad Kittaneh
and Yousef Manasrah, J. Math. Anal. Appl. 361 (2010) 262–269.
[83] J.-M. Levy-Leblond, Ann. Phys. NY 101, 319 (1976).
[84] Michael J. W. Hall, Arun Kumar Pati, and Junde Wu, Phys. Rev. A 93, 052118
(2016).
[85] L. Cai, Quantum Inf. Process. 20, 72 (2021).
[86] Shunlong Luo, Phys. Rev. A 72, 042110 (2005).
[87] K. Resch and A. Steinberg, Phys. Rev. Lett. 92, 130402, 443(2004).
[88] K.J. Resch, J. Opt. B 6 (2004) 482.
[89] G. Puentes, N. Hermosa, and J. P. Torres, Phys. Rev. Lett. 109, 040401 (2012).
[90] Arun Kumar Pati and Junde Wu, arXiv:1410.5221.
[91] A. K. Pan and P. K. Panigrahi, Phys. Rev. Lett. 111, 028901 (2013).
[92] G. Puentes, N. Hermosa, and J. P. Torres Phys. Rev. Lett. 111, 028902 (2013).
[93] Hirokazu Kobayashi, Graciana Puentes and Yutaka Shikano, Phys. Rev. A 86,
053805 (2012).Bibliography
187
[94] Shengjun Wu, Scientific Reports volume 3, 1193 (2013).
[95] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki,
Rev. Mod. Phys. 81, 865 (2009).
[96] O. Gühne and G. Tóth, Physics Reports 474 (2009) 1–75.
[97] O. Gühne and M. Lewenstein, Phys. Rev. A 70, 022316 (2004).
[98] S. M. Roy, Phys. Rev. Lett. 94, 010402 (2005).
[99] J. Uffink, M. Seevinck, Physics Letters A 372 (2008) 1205–1212.
[100] Reinhard F. Werner, Phys. Rev. A 40, 4277 (1989).
[101] M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206 (1999).
[102] Yakir Aharonov and Lev Vaidman, Phys. Rev. A 41, 11 (1990).
[103] Q. Duprey and A. Matzkin, Phys. Rev. A 95, 032110 (2017).
[104] G. Bié Alves, B. M. Escher, R. L. de Matos Filho, N. Zagury, and L. Davidovich,
Phys. Rev. A 91, 062107 (2015).
[105] D.R.M.A. Shukur, N. Y. Halpern, H. V. Lepage, A. A. Lasek, C. H. W. Barnes, and
S. Lloyd, Nat. Commun. 11, 3775 (2020).
[106] Michael J. W. Hall, Phys. Rev. A 69, 052113 (2004).
[107] Arun Kumar Pati and Junde Wu, arXiv:1411.7218v1.
[108] H Bao, S. Jin, J. Duan, S. Jia, K. Mølmer, H. Shen, and Y. Xiao, Nat. Commun. 11,
5658 (2020).
[109] Maryam Khanahmadi and Klaus Mølmer, Phys. Rev. A 104, 022204 (2021).
[110] Lev Vaidman, Phys. Rev. Lett. 70, 3369 (1993).188
Bibliography
[111] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone, Phys. Rev. Lett. 96,
010401 (2006).
[112] Luca Pezzè, Augusto Smerzi, M. K. Oberthaler, Roman Schmied, and Philipp
Treutlein, Rev. Mod. Phys. 90, 035005 (2018).
[113] M. Kitagawa and M. Ueda, Phys. Rev. A 47 (1993) 5138.
[114] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen,
Phys.Rev.A46(1992) R6797.
[115] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50
(1994) 67.
[116] Jian Ma, Xiaoguang Wang, C.P. Sun, and Franco Nori, Physics Reports 509 (2011)
89–165.
[117] C. Aragone, G. Guerri, S. Salamo, and J. L. Tani, J. Phys. A 7, L149 (1974).
[118] C. Aragone, E. Chalbaud, and S. Salamo, J. Math. Phys. 17, 1963 (1976).
[119] D. A. Trifonov, J. Math. Phys. 35, 2297 (1994).
[120] Mark Hillery and Leonard Mlodinow, Phys. Rev. A 48, 1548 (1993).
[121] Yao Yao, Xing Xiao, Xiaoguang Wang, and C. P. Sun, Phys. Rev. A 91, 062113
(2015).
[122] Lorenzo Maccone and Pati K. Arun, Phys. Rev. Lett. 113, 260401 (2014).
[123] S. Mal, T. Pramanik, and A. S. Majumdar, Phys. Rev. A 87, 012105 (2013).
[124] D. Li, X. Li, F. Wang, H. Huang, X. Li, and L. C. Kwek, Phys. Rev. A 79, 052106
(2009).
[125] Qiu-Cheng Song and Cong-Feng Qiao, Physics Letters A 380 (2016) 2925–2930.Bibliography
189
[126] KW. Bong, N. Tischler, R. B. Patel, S. Wollmann, G. J. Pryde, and M. J. W. Hall,
Phys. Rev. Lett. 120, 230402 (2018).
[127] Brian Swingle, Nature Physics volume 14, pages 988–990 (2018).
[128] Brian Swingle, Gregory Bentsen, Monika Schleier-Smith, and Patrick Hayden,
Phys. Rev. A 94, 040302(R) (2016).
[129] N. Y. Halpern, A. Bartolotta, and J. Pollack, Commun. Phys. 2, 92 (2019).
[130] Yasuhiro Sekino and L. Susskind, JHEP10(2008)065.
[131] Lashkari, N., Stanford, D., Hastings, M., Osborne T., and Hayden P., J. High Energ.
Phys. 2013, 22 (2013).
[132] Maldacena, J., Shenker, S.H., and Stanford, D., J. High Energ. Phys. 2016, 106
(2016).
[133] Hosur P., Qi XL., Roberts D.A., and Yoshida B., J. High Energy Phys. 02 (2016) 4.
[134] Serge Massar and Philippe Spindel, Phys. Rev. Lett. 100, 190401 (2008).
[135] Bing Yu, Naihuan Jing, and Xianqing Li-Jost, Phys. Rev. A 100, 022116 (2019).
[136] Xinzhi Zhao, Xinglei Yu, Wenting Zhou, Chengjie Zhang, Jin-Shi Xu, Chuan-Feng
Li, and Guang-Can Guo, Phys. Rev. Lett. 132, 070203 (2024).
[137] Shrobona Bagchi, Dimpi Thakuria, and Arun K. Pati, Entropy 2023, 25(7), 1046.
[138] Arun K. Pati, Brij Mohan, Sahil, and Samuel L. Braunstein, arXiv:2305.03839v2.
[139] Michael J. W. Hall, Phys. Rev. A 64, 052103 (2001).
[140] V. V. Dodonov, Phys. Rev. A 97, 022105 (2018).
[141] H.-H. Qin, S.-M. Fei, and X. Li-Jost, Sci Rep 6, 31192 (2016).
[142] Leonid Mandelstam and IG Tamm, J. Phys. (USSR) 9, 249 (1945).190
Bibliography
[143] Sebastian Deffner and Steve Campbell, J. Phys. A: Math. Theor. 50 453001 (2017).
[144] Brij Mohan and Arun Kumar Pati, Phys. Rev. A 106, 042436 (2022).
[145] Paolo Giorda, Lorenzo Maccone, and Alberto Riccardi, Phys. Rev. A 99, 052121
(2019).
[146] Zdzisław Otachel, J. Math. Anal. Appl. 458 (2018) 1409–1426.
[147] Shunlong Luo and Yuan Sun, Phys. Rev. A 96, 022136 (2017).
[148] Shunlong Luo and Yuan Sun, Phys. Rev. A 98, 012113 (2018).
[149] U. Singh, A. K. Pati, and M. N. Bera, Mathematics 4, 47 (2016).
[150] Fu, S., Sun, Y. Luo, S., Quantum Inf Process 18, 258 (2019).
[151] Samuel L. Braunstein and Carlton M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
[152] Geza Toth and Iagoba Apellaniz, J. Phys. A: Math. Theor. 47 424006 (2014).
[153] Shao-Hen Chiew and Manuel Gessner, Phys. Rev. Research 4, 013076 (2022).
[154] Sixia Yu, arXiv:1302.5311v1.
[155] Géza Tóth and Dénes Petz, Phys. Rev. A 87, 032324 (2013).
[156] Geza Toth, arXiv:1701.07461v5.
[157] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402 (2007);
Roope Uola, Ana C.S. Costa, H. Chau Nguyen, and Otfried Guhne, Rev. Mod. Phys.
92, 015001 (2020).
[158] Luca Pezzé and Augusto Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
[159] Géza Tóth, Phys. Rev. A 85, 022322 (2012).
[160] Philipp Hyllus et al., Phys. Rev. A 85, 022321 (2012).
Abstract:
In this thesis, we focus on two well-connected topics: quantum measurement and quan-
tum uncertainty relation. The first topic is the well-known “pre- and postselected mea-
surements”. Aharonov, Bergmann, and Lebowitz (ABL) [1, 2] coined the term “pre- and
postselections” to address the issue of temporal asymmetry in quantum mechanics. In the later years, Aharonov, Albert, and Vaidman (AAV) [3] introduced the notion of “weak
value” of an observable and it is considered to be one of the strangest findings in a pre-
and postselected (PPS) system for being a complex number and it can take values outside the max-min range of the eigenvalues of the observable when the overlap between the pre-and postselections is very small. Although the construction of the PPS system (includ-ing ABL and AAV) remained under controversies because of its unusual and contrasting behaviour compared to the standard quantum system, the discovery of weak values, the weak values of tensor product observables and higher moment weak values have provided immense practical applications, to resolve some paradoxes and some unthinkable stuffs.
One of the main studies in this thesis is to derive and show applications of product and
higher moment weak values.
The second topic of this thesis is uncertainty relation. The Robertson-Heisenberg uncer-
tainty relation (RHUR) [4] is one of the most important uncertainty relations in quantum
mechanics after the discovery of the uncertainty principle due to Heisenberg [5]. The
RHUR describes the difficulty of jointly sharp preparation of a quantum state for incom-
patible observables. It is needless to mention how important uncertainty relations are
fundamentally and practically in quantum systems. There are three types of uncertainty
relations in three different contexts which we derive and study here. The first uncertainty
relation is derived in PPS system. The second uncertainty relation (or more precisely
uncertainty equality), is based on standard deviation for mixed states and along with, we derive our third uncertainty relation based on skew information (which was introduced by Wigner and Yanase [6] to quantify the quantum uncertainty in measurements under conservation laws) and its extended versions by Dyson and others. Following are the themes
of this thesis. We demonstrate that pairwise orthogonal postselections can be used to obtain higher moment weak values. By measuring only local weak values (defined as single system weak values in a multipartite scenario), product weak values can be obtained. As applications, we use product and higher moment weak values to reconstruct quantum states showing advantages over previous works in terms of number of required measurement operators and experimental feasibility. Additionally, a necessary separability criteria is given using
product weak values to detect entanglement. For some classes of entangled states, posi-
tive partial transpose (PPT) criteria is achieved by cleverly choosing product observables
and postselections.
As PPS systems are useful practically as well as fundamentally, then an immediate ques-
tion can be asked whether there exists any uncertainty relation which can give the limita-
tions on joint sharp preparation of the given pre- and post-selected states when noncom-
muting observables are measured. We confirm the existance of Robertson-Heisenberg like
uncertainty relation for two incompatible observables in a PPS system. The newly defined
standard deviation and the uncertainty relation in the PPS system have physical meanings
which we present here. We demonstrate two unusual properties in the PPS system using
our uncertainty relation. First, commuting observables can disturb each other’s measure-
ment results in a PPS system which is in fully contrast with the RHUR. Second, unlike
the standard quantum system, the PPS system makes it feasible to prepare a quantum state
(preselection) sharply for noncommuting observables. Some applications of uncertainty
and uncertainty relation in the PPS system are provided.
We derive uncertainty equalities for skew informations of two arbitrary incompatible op-
erators which contains the commutator of the two incompatible operators. For the first
time, we derive state-independent uncertainty relations based on the skew information for a collection of arbitrary operators. We derive standard deviation based sum and product uncertainty equalities for mixed states, a generalization of the previous works where only pure states were considered. As the Wigner-Yanase skew information of a quantum channel can be considered as a measure of quantum coherence of a density operator with respect to that channel, we show that there exists a state-independent uncertainty relation for the coherence measures of the density operator with respect to a collection of different channels. We show that state-dependent and state-independent uncertainty relations based on a more general version of skew information called generalized skew information which includes the Wigner-Yanase-Dyson skew information and the Fisher information as special cases hold. Finally, we provide a scheme to determine the Wigner-Yanase-Dyson skew information of an unknown observable which can be performed in experiment using the notion of weak values.
Show full item record