Unique factorization of tensor products for Kac-Moody Algebras [HBNI Th55]

Show simple item record

dc.contributor.author Venkatesh, R.
dc.date.accessioned 2013-08-19T09:24:57Z
dc.date.available 2013-08-19T09:24:57Z
dc.date.issued 2013
dc.date.submitted 2013
dc.identifier.uri https://dspace.imsc.res.in/xmlui/handle/123456789/341
dc.description.abstract In the first part, we address a fundamental question, unique factorization of tensor products, that arises in representation theory. We consider integrable, category O modules of indecomposable symmetrizable Kac-Moody algebras. We prove that unique factorization of tensor products of irreducible modules holds in this category, upto twisting by one dimensional modules. This generalizes a fundamental theorem of Rajan for finite dimensional simple Lie algebras over C. Our proof is new even for the finite dimensional case, and uses an interplay of representation theory and combinatorics to analyze the Kac-Weyl character formula. In the second part, we get a new interpretation of the chromatic polynomials using Kac-Moody theory and derive some of its properties using this new interpretation. en_US
dc.publisher.publisher The Institute of Mathematical Sciences
dc.subject Kac-Moody Algebras en_US
dc.subject Tensor Products en_US
dc.subject HBNI Th55 en_US
dc.title Unique factorization of tensor products for Kac-Moody Algebras [HBNI Th55] en_US
dc.type.degree Ph.D en_US
dc.type.institution HBNI en_US
dc.description.advisor Viswanath, S.
dc.description.pages 38p. en_US
dc.type.mainsub Mathematics en_US
dc.type.hbnibos Mathematical Sciences


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account