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CHAPTER 1

Preliminaries

0.1. Algebraic cycles. In this section we collect certain defini-
tions and facts about algebraic cyeles that will be used in the following

chapters.

Let X be an algebraic variety (i.e., irreducible, reduced, algebraic

scheme) defined over k. an algebraically closed field.

DEFINITION 1.1. A p-eyele on X is a finite formal sum

Zn,‘.]

where the 1} are p-dimensional irreducible subvarieties of X. and the

N, are integers.

DEFINITION 1.2, The group of p-eycles on X, denoted by Z,(N),

15 the free abelian group on the p-dimensional subvarieties of .\

For any (p+1)-dimensional subvariety W of X, and any r € R(11")",

define a p-cycle [div(r)] by

[diu(r)] = thh-fr].
the sum over all codimension one subvarieties 17 of 117 here R(1V) is
the field of rational functions of W and ordy-[r] is the order of vanishing
of r along 1" and is well-defined even when 117 has singularities along
1 (see [13]).

DEFINITION 1.3. A p-cvcle a is said to be rationally equivalent to

0, written o ~.4 0, if there are a finite number of (p + 1)-dimensional
1
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subvarieties W of X', and r, € R(W,)*. such that
a=Y[div(r,)].

Since [div(r,)] = —[dw(r]!)], the evcles rationally equivalent to

zero form a subgroup Rat,(X) of Z,(X).

DeFNITION 1.4, The Chow group of p-dimensional cycle classes is

the group of p-cyeles modulo rational equivalence on X,

CH,(X) = Z,(X)/Rat,(X).

We denote by CHP(X), the group of codimension p cvele classes.
i.e., CH?(X) := CHgimx—p(X).

0.1.1. Flat Pull-backs and Proper Push-forwards. For a flat maor-
phism f : X — Y of varieties. there exists a well-defined functorial

map
f*+CHPY) = CH?(X)
called the pull-back morphism which is defined as follows.

For an irreducible subvariety V' € Y of codimension p. let 5 be
a generic point. Then the generic points {p;} of ="V} are all of
codimension p (by flatness). Thus the coordinate ring of f'(n) 1s an

Artin ring A4 supported at the points {p,}. Hence we may define,

(V) = 1A 7]
where | denotes the length function associated o modules.

We then extend the above map to a map of ZP(X) by linearity.
One can then check that this map descends to a map of Chow groups
(see [13]).
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For a proper morphism f : X — Y there exists a well-defined
functorial map f. : CHy(X) — CH,(Y') called the push-forward which

15 defined as follows.

For a subvariety 1" C X, let W = f(17). We define the map at the
level of cycles and refer to [13] to say that the map descends to a map
of Chow groups.

Vs deg(fIV).W if dim(W) = dim(1")
- 0 if dim(W) <dim(V)
As above, the map is extended by linearity to a map f, : Z,(\) —
Za(Y).

0.2. Hodge Theory. In this section we state some facts about

Hodge theory that will be used in later chapters.

DEeFINITION 1.5. (see [11]) A pure Hodge structure of weight n is

a pair (Vz, F®) where (a) Vz is a finitely generated abelian group.

(b) if Ve = 1z @ C, then {F? V¢},cz is a finite decreasing filtration

of complex subspaces such that for all p € Z,

FP Ve NFP*1 Ve = (0)

and
F* Ve @ F 7 Ve = Vi
Here, if W C 1% is a complex subspace then 1V .= (@] w € 11"}

Equivalently, (b) can be written as
(¢) if VP9 = FP Ve N F9 Ve where p + g = n, then
Vo = Bprgan VM
and,

V7 = 1o



1. PRELIMINARIES i

l

We can recover F” V¢ from V#9 by setting FF V- = By, VPP

ExaMmPLE 1.6. Let X be a smooth complex projective variety. Then
the singular cohomology groups V3 := H*(X; Z) come equipped with
a pure Hodge structure of weight n. Here the complexification 1 =
H™{X;C), is the cohomology with C-coefficients. The filtration is such

that 179 is naturally isomorphie to HY(X, 0%, ) where the latter are the

Hodge cohomology groups.

DEFINITION 1.7. A morphism f : (Vz. F*) — (Vg F *) of pure
Hodge structures of weight 2n is a homomorphism f : 1z — V5 of
abelian groups such that if fe : Ve — V. is the induced C-map, then
Fe(FPVe) € FP*" V. for all p € Z.

EXAMPLE 1.8. Suppose ¥ = X is an inclusion of smooth projec-
tive varieties. Then the Gysin morphisms f, : H'(Y;Z) = H"*( X Z)
where d is the codimension of ¥ in X, is a morphism of pure Hodge

structures of weight 2d.

LEmMMA 1.9 (Deligne, [11]). Pure Hodge structures with morphisms
as described above form an additive category. Moreover pure Hodge

structures of a given weight n form an abelian category.

DEFINITION 1.10. A mixed Hodge structure is a triple V' =
(Va, W,, F*) which consists of

(a) a finitely generated abelian group Vi,

(b) a finite increasing filtration W,V on 15 = 12 @ Q, by ¢

subspaces,
(c) a finite decreasing filtration F*V¢ = 15 @ C by C-subspaces,

such that, for all n, F* induces a pure G-Hodge structure of weight
non Gry Vg = W,Vo/W,_1Vg.
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A morphism of mixed Hodge structures is a homomorphism f :

Vz — V3 of abelian groups such that if fo: Vo — 13 and fr :

Ve — Vg are the induced Q-linear and C-linear maps respectively,

then fo(Wilg) € Wil for all k € Z and fe(FPVy) © FPUL for all
peEZ.

EXAMPLE 1.11. Consider the following long exact sequence for co-
homology for a pair ¥ € X where X is a variety and Y is any subva-

riety,
-+ H(X,Y;Z) 2 H(X.Z) 5> H(Y:Z) > ...
This is a sequence of mixed Hodge structures (see [11] for more details).

DEFINITION 1.12. The p-th Intermediate Jacobian of a Hodge struc-
ture K, J*{H) is

H
GRSy

LEMMA 1.13. The 0-th intermediate Jacobian of a pure Hodge struc-

ture H of weight —1 admits the following identification:

JU(Hz ® Q) = Extyys(Q Hz ® Q)

where MHS stands for the category of mixed Hodge structures,

0.3. Cycle Class map. For a smooth variety X over C, one can
define a cycle class map [13]

CHP(X) & H?(X:Z)

where the group on the right is the singular cohomology group with
coefficients in Z. For a subvariety V' C X of codimension p, el(1') is
its cohomology class. The map is extended by linearity, That the map

factors through rational equivalence is checked in [13].
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It has been shown [13] that the cycle class map defined above 1s
functorial for pullbacks under flat morphisms and push-forward under
proper morphism. More precisely, if f : X — Y is a flat morphism of

smooth varieties, then the following diagram commutes:

CHF(Y) =% H®(Y.Z)
LI ¥
CH?(X) 2% H¥(X,Z)

and the vertical morphism on the right is a morphism of Hodge struc-

tures,

Similarly one has a diagram for f, for a proper morphism of smooth
varieties f : X = Y with d = dim(X) — dim(Y"),
CH(X) 25 H™(X,Z)
i NN =
CHPH(Y) <Xy H¥+M(Y, Z)

where the vertical morphism on the right is the Gysin morphism which

is a morphsim in the (see example 1.8) category of Hodge structures.

The eycle class map is not injective in general. For instance if C' is
a smooth projective irreducible curve, then the difference of anv two
distinct points p — g, is a O-cycle whose image under the cvele ¢lass

map goes to zero. However p — ¢ # 0 in CHg(C) unless O = P!

Now define, CH?(X)pom := Ker(c!). Though H*(X.C) fails to
capture the cycles in this group, there is an Abel-Jacobi map(see [15])

into the p-th intermediate Jacobian :

CHP(X ) hom — JP(HZ1(X))
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For a cycle o € CH?(X)pom, let Z denote the support of a. Consider
the diagram:
0 = H* 1 (X) = H*Y(X \ Z) - HP(X) — H¥(X)
Il U Ta
D — H* (X)) = E = Zla] - 0
Here the top exact sequence is a part of the long exact sequence for
cohomology with supports. By purity, H? (X)) = 0. The bottom se-

quence is just the pull-back. Thus e gives an element in Ext!(Z, H¥=1(X)).
CUne can also define the above map by integration.

By definition, there exists a cycle T of real codimension 2p — 1 such
that [a] is the boundary of I'. This gives a map
ZP(X))iom = B2 X, O)"
Z = (we f1)

It has been checked in [13] that this induces a well defined map

i I CHF[J{ }Hmn —t JP{HEF_’LT}]

The Abel-Jacobi map too is not injective in general. In fact in [24].
Mumford proves that for a smooth complex projective surface § with

1y # 0, the kernel of the Abel-Jacobi map is infinite-dimensional in a

certaln sense,

0.4. Algebraic de Rham cohomology. Let X be a smooth va-
riety of dimension n over a field k. Let 51:‘,:“_ be the sheal of Kahler

differentials. Consider the de Rham complex, denoted by D% at

0= Ox = Q= oo = QY = 0
The hypercohomology H* (X, 22} ) of the above complex is referred 10

as algebraic de Rham cohomology (18] and is denoted by Hj, ,(.X/k).

Far each 1, ﬂ:\'LH- = (0 @ L, when L is a field containing & and X
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is the base change to L. It follows that the hypercohomology too has

this base change property, namely Hya( Xy /L) = Hyn(X/k) @ L.
There exists cycle class maps (see [18])
CH!(X) ® Q — HE (X /k)

which map into the i-th filtered pieces F* HE (X /k) := E% (%) The

cycle class map above is functorial with respect to base change. That

is to say that the following diagram is commutative.
CHP(X) — HPE,(X/K)

I} !
CHP(X.) — HZ.(X./L)

0.5. Deligne-Beilinson cohomology. Let X be a smooth vari-

ety over C. The 2p Deligne-Beilinson cohomology (see [12]) is
HEL(X) = B?((2mi)°Z — OFF)
LEMMA 1.14. There is a natural exact sequence
0 — JP(X) = HE(X) = Hdg?(X) — 0

where HdgP(X) = H?(X,Z) n HP?(X).

Proor. There is an exact sequence of complexes
0= 0[] 2 (Z—= Q)= Z -0

The long exact sequence for hypercohomolgy gives

H#-YX,C) i " H*(X,C)
WX, 2 d % (X) — HP?(X. el
il LA g Ho(X) = HAX.Z) - = H?(X.C)
The desired sequence now follows. |

There exists a cyele class map

CH?(X) — HE,(X)
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which combines the usual cycle class map with the Abel-Jacobi map.
See [12] for more details,

0.6. Variations of Hodge structures. One wav to studv the
relations between algebraic cycles and Hodge theory is to look at their
variation when X varies in a family. Suppose f : ¥ — § is a smooth
family of complex projective varieties parametrised by a smooth com-
plex variety S. In such a situation one can define a structure on the

cohomology groups as they vary in the family.

Let H¢ denote the local system whose stalk at any point s € § is the
cohomology group H*(X,,C) for. Let F* denote the Hodge subbundle
of the vector bundle H* = HE ® Oy whose fibre at any point s € § is

FP =@y, HF o 6.5
{F?} then defines a filtration on H*. Moreover the quotient
PKF-“E — -Hp.i:—p

where the term on the right is the vector bundle with fibre at any point
5 € 8 is equal to HP*P(A,).

THEOREM 1.15 (Griffiths). With notation as above,

1. HE is a local system and hence H* comes equipped with a flat
holomorphic connection ¥V which is called the Gauss-Manin con-

nection. Thus we have a complex of bundles:

E]—+HkLQIEH"EL..EQ‘““'{EH*—}{]

The complex above is referred to as the de Rham complex of the
bundle H*.
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2

. The subbundles 7* are holomorphic subbundles and satisfy the

following transversality with respect to the Gauss-Manin connec-

tion
V(F?) c 0l @ 77!

Moreover the following is a subcomplex of the de Rham complex
of H*

0= FPa Q@ F = ...
We denote this subcomplex as FP(H*® @ Q%).
3. The Og-linear map V
774 5, L @ (57 77)
obtained from V¥ by passing to the quotient, gives for any s € §
4 map:
T.S — Hom(H*?(%0%, ), H* 7"/ (47 1))
which can be identified with the composite
T,S = H'(TA,) = Hom(H*P(0F, ), H***1 (05 )
where & is the Kodaira-Spencer map [23] and the last map is

given by cup product.

REMARK 1.16. Any local system which satisfies the conditions in

the theorem above defines what is called a Variation of Hodge struc-

Lures.

Let f: A — S be a smooth family as above. Denote by J?( A, ), the
intermediate Jacobian JP(H*'(X,,Q)). The family of intermediate

Jacobians (JP(X,)),e¢ has a natural complex structure, for which the

sheaf of holomorphic sections is

J? = HP PP Hy
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Let Z C A’ be a codimension p-cycle, whose support is flat over S
and such that Z, C A, is homologous to zero for each s € S. The cycle

Z then defines a normal function vz € J? defined by

vz(s) =®4,(Z,)

There is an analog of Griffiths transversality for the normal function

Lz,

LEMMA 1.17. The normal function defined above is a holomorphic
section of the Jacobian bundle. Moreover if 7z is a lift of vz to a section

of H*~1, then it satisfies Viiz € -1 @ QL

DEFINITION 1.18. The intermediate Jacobian bundle as defined above

sits in a short exact sequence
(VB T L, TR < N, SR
The long exact sequence of cohomology then gives a coboundary map
8 -
HY(S.7) S HY(S,HP ™)

The image of any normal function v under @ is called the cohomology

class or the obstruction class of the normal function v,

0.7. Some spectral sequences. In this section we describe some

generalities regarding spectral sequences.

Let (K, d) be filtered complex (of abelian groups) filtered by a

decreasing sequence of complexes
K*=F'K*3 F'K* 3.2 F'K* > F*"'K* = (0)
PROPOSITION 1.19. [17] Let K* be a filtered complex. Then there

exists a spectral sequence {E,} with

EPO = {a € FPK?¥3| d(a) € FP+rKPrari)
e d{Fp'r"']HP“—U—l} + lt'.:"p---]I ﬁ-'p_:.u
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b

MNote that,

E?® = (H*™(Gr” K))
and

78 = G (HP™(K"))

EXAMPLE 1.20. The de Rham complex of H* with its filtration by

FP(H*-1 @ Q%) is an example of a filtered complex.

In this thesis we shall be interested in two types of spectral se-

quences.

DEFINITION 1.21. Let f : X — S be a smooth family of projective
varieties with S smooth. Let F be any sheaf on X. Define the g-th

direct image sheal of F, R? f,F , which is the sheaf associated to the

presheaf
U= H(f(U), F)
The Leray spectral sequence is a spectral sequence {E,} with
E}? = HP(Y,RY f.F) = HPY(X. F)
DEFINITION 1.22. Let (K*,d) be a complex of sheaves on X. The

hypercohomology H*(X,K*) has two spectral sequences E and "E
abutting to it with

B =H(X,HUK)  TERT = HY(HP(X,K")

Here H7(X*) is the g-th cohomology of the complex of sheaves (K*, d)
and H{(H?(X, K*)) is the g-th cohomology of the complex

HP(X, K% SHP(X, KN ...



CHAPTER 2

Statement of the Problem

1. The process of spreading out

We fix once and for all an embedding of Q@ in C.

Let X' be a smooth complex projective variety. Then X has an
embedding in a projective space P¥ for some N. Let K be the subfield
of C generated over Q by the coefficients of the defining polynomials
of X. This is a field of finite transcendence degree over §. Let X he
the subvariety of P} defined by the same polvnomials as X. Then we
have a Cartesian diagram

X =+ Xg
1] i
SpecC — Speck

We shall refer to such a diagram as a model for X,

One can similarly find a model for a given cvcle € € CHP(X) . Let
Y- n;Z; be a representative for the cyele £. Let K now stand for the
field generated by the coefficients of the defining polvnomials for X
and the various Z;'s. Then one obtains a Cartesian diagram as above.
We let Z, y denote the subvarieties of Xy defined by the polynomials
which define the Z;'s. Then £x = 3" n;Z, x gives a model for £.

The two varieties X' and X are (naturally) quite closely related
both cyele theoretically as well as cohomologically. Since singular coho-
mology only makes sense for complex varieties we shall use the formal-

ism of cycle class maps into algebraic de Rham cohomology. Of course

13
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for smooth complex varieties there is a comparison theorem which iden-
tifies the singular cohomology with the algebraic de Rham cohomolagy

[18]. These relations are given by the following lemmas:

LeEmMmA 2.1. Let Xy be a variety defined over an algebraically
closed field K and let L be an algebraically closed field containing
K. Define X := Xy X505 SpecL. Let f denote the map X; — Xj
Then the map f* : CH*{X ) — CHP(X_) is is an injection.

PROOF. (see [7]) O

CoROLLARY 2.2. Let X be defined over C. Then
lim CH‘*[}{ 1)= CHY(X)

where the limit is over all models of X over algebraically closed subfields

of finite transcendence degree in C.

Proor. We note that

1. Injectivity follows since each of the maps are injective by previous
lemma.

2. Surjectivity follows from the fact that any algebraie cvele in X
has a representative which is defined over a field of finite tran-

scendence degree and hence it lives in X, for some L as explained

abowve.
[

Recall from the previous section that there is a commutative diagram
CHP(X k) = HER(Xk/K)

(1) { !

CH?(X) — HF.(X/C) = H®(X,C)
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This is a statement about the functoriality of the cycle class map into de

Rham cohomology and its compatibility with the comparison theorem

for singular and de Rham cohomology.

Diagram (1) and Corollary 2.2 imply that one can think of the evele
class map for a complex projective variety X as a limit of cvcle class
maps over its various models. Thus a cycle £ and its image under
the cycle class map cl(€) should be thought of as the image £x and
cly(Ex) respectively where the subscript K implies that evervthing is
happening in some model Xy of X.

As mentioned in the previous chapter, one way to study algebraic
cycles and their relation with cohomology theories is to look at their
variation as the variety varies in a family. One wav to do this is the

following.

Let X be the variety that we wish to study. Let R be the Q-algebra,
generated by the coefficients of the polynomials which define X, One
can define a Qevariety X C Py by considering the zero locus of the
defining polynomials of X. The map X — SpecQ then factors throngh
S := SpecR and we have a family X — S. Since the quotient field of
R is K, we get that X' x5 SpecK = Xy by definition. Thus we have

the following diagram.

"- K = P 4

1 )
SpecK —» S
il
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The variety X — SpecC, now maps to this family yielding a Cartesian

diagram
X = X
+ +
SpecC— §
+
SpecQ

Here the lower horizontal map factors through SpecK where K is the
field over which X is defined. This process of constructing a family is
called spreading out the variety. Note that by shrinking $ if necessary,
we can assume that the family A — S is a smooth family over a smooth

base.

One can similarly spread out cycles along with the variety so that
as the variety deforms in the family, so does the cvcle. Let £ be the
element of the Chow group that we wish to spread out. Let & = Yo &
be a representative of £. Suppose that Z = UZ, is the support of the

. Then we have a diagram:

X = X
1 !
(2) SpecC — S

In this case let R be the Q-algebra generated by the coefficients of
the defining polynomials of X and the subvarieties Z, and the lower
horizontal map factors through Speck where K is the field over which
X and Z are defined.

The entire exercise can be carried out for finitely many pairs (X &)
fori=1...n where X; is a variety and & a cycle on it. We give a brief

description.
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Let & — S be a spreadout diagram for X as above. For each 1 we

have a diagram

;"I:l' —3 3.".
(3) + \}
SpecC — S,

Let 8" 1= § x5+ xg 5, and A™ be the pullback of X under
the map 5" — 5. The spread ocut cycles =; via the pullback of the
projection morphisms lift to cycles in the family A" — §™ which is
thus a spreading out for this finite collection of varieties and cycles.
The idea here is essentially that these different cycles are defined (a
priori) over distinct fields and therefore can be captured in a bigger
field containing these fields as subfields.

The well definedness of various objects is checked as explained

abiove

In what follows we shall assume that by shrinking S if necessary,

the family A — S is a smooth family over a smooth base.

An analog of Corollary 2.2 is the following

LEmma 2.3, For any smooth projective variety X,

lim CHY(X)= CHY(X)

where the limit is taken over all diagrams (+) as above.

PROOF. Surjectivity is obvious. To prove injectivity, note that if
a eycle = € CHY(X) maps to zero in the direct limit then it means
that in particular = restricts to zero in the generic fibre of the familv

A" — §. This in turn implies that = is supported in the inverse image

of a proper closed subset W of S. .Let §* = §\ W and X* be the
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pullback of A — S over §*. Then X* — S* also gives a diagram and

= is zero as a cycle in A, O

1.1. Cycle class maps. As earlier. we need to show the compat-
ibility of the process of spreading out with the formalism of the cvele
class map. Note that since we view X' as a Q-variety. there is a evcle

class map

CH?(X) — HER(X/Q)

Let £ € CH?(X) and suppose that by Lemma 2.3, it is the image
of a cycle = in some family X. Now for the family X' — 5 there is a
spectral sequence whose E; terms are EJ? = HP(S.Qt @ HL,(X/S))
and which abuts to H} (X /Q). Since S is affine this spectral sequence

degenerates at Ey. Thus we have a projection map

HEx(X/Q) = E* < HEL(X/S)

"Efﬁ{;'t’/'.?} is a module over R whose localisation at the generic point

of § namely Speck is Hgﬂt.‘fﬁ;}h’} where X is the generic fibre of

the family X — S. There is a commutative diagram:
CHP(X) — H¥(x/S)
4 l
CHP(X k) = H®( Xk /K)

Using the embeddding Q@ — C. we have a comparison isomorphism

H¥n(X/Q) ® C = H¥,(Xc/C) = HZ, (X(C),C)

sng
Consider all diagrams such as

X =X
(4) ! !

-

SpecC — S
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For each such diagram we have a cycle class map into the Deligne-

Beilinson cohomology, since we have chosen an embedding Q — C.
CHP(X) 2 HE,(¥(C). Q(p))
Taking limits over all diagrams such as (4), we have a cvcle class map
CHP(X) =224 HE,, (X, Q) := lim HE,(X(C). Q(p))

We refer to the latter cohomology group as the Absolute Deligne Beilin-

son cohomology.

Moreover one has the following commutative diagrams.
CHP(¥) =2  HZ(X(C),Q)

(5) N E:Is:'r;y v
H”(X(C).Q)

CHP(X) =24 H%(X(C),C)
(6] Lelpg i
HF:(X¥/Q)®C = HI, (X(C),C)

2. The Conjecture

We now describe a conjecture for detecting nullhomologons cycles

on any smooth projective variety X over C.

As explained earlier, the cycle class map is not injective in general.
For cycles in the kernel of this map one can associate an invariant in the
intermediate Jacobian via the Abel-Jacobi map. However, Mumford
showed that for a smooth projective complex surface with p, # 0 there
are non-trivial elements in the kernel of the Abel-Jacobi map. In fact he
proved that this kernel 1s “infinite-dimensional” in a certain sense. So
far there is no satisfactory “cohomological” construet which can detect
cycles in the kernel of the Abel-Jacobi map. However conjecturally,

at least for varieties defined over number fields, it is believed that the
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Abel-Jacobi map is enough to detect all eveles which are in the kernel

of the cyele class map. The precise conjecture in this context, is the

following:

CONJECTURE 2.4 (Bloch-Beilinson). Let X be a smooth projective
variety over a number field, Then the Abel Jacobi map

H?~'(X(C); C)

CH (X hom ®Q = JHX(C) = 5% (0 2)

is injective.

More generally,

ConiECTURE 2.5. The cycle class map into Deligne-Beilinson co-

homology is injective for a smooth variety defined over a number field
(see for eg. [29]).

There are examples [32] of non-trivial nullhomologous cveles in a
surface defined over a field of transcendence degree one which show

that the conjecture above is tight.

By results of the preceding section one can lift any given evele to a
cyele in a variety defined over Q. The conjecture of Bloch and Beilinson

then can be used to formulate the following

CONJECTURE 2.6 (Asakura-Paranjape-M.Saito). (2, 3, 30] The cxv-

cle map el 4pp into Absolute Deligne Beilinson cohomolegy is injective,

REMARK 2.7. Notice that the above conjecture is true if the Bloch-
Beilinson conjecture stated above is true. Conjecture 2.5 implies that
any given cycle lifts to a cohomologically detectable evele in some @
variety X'. Since for every diagram the cvcle class map into Deligne
Beilinson cohomology is injective, this implies that the limiting map is

injective.
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3. Motivation

The principal motivation for the above conjecture comes from the

Beilinson-Bloch conjectures on the filtrations on Chow groups.

Consider a smooth projective curve C over C. Then the Chow
groups of C are well-understood. It is well-known that CH?(C) =
Pic"(C) where Pic®(X) is an abelian varietv. Similar results do not
hold true for surfaces as shown by Mumford. Moreover in the case of

a curve the isomorphisms
Pic’(C) = J(C) = Ext}»s(Q(—p), H'(C. Q)

meant that H'(C, @) (more precisely a quotient of its complexification)
captured the nullhomologous cycles. It was therefore expected that for
higher dimensional varieties, cyvcles in CH?(X') which are not detected
by either the cycle class map or the Abel-Jacobi map would be detected
in the cohomology groups H'(X, Q) for 1 = 0...2p — 2 in & similar
fashion as above. However the absence of non-trivial higher Ext's in
the category of mixed Hodge structures meant that one could not detect

all eycles by just using Hodge theory.

This led to the following :

CONIECTURE 2.8 (Beilinson-Bloch). There exists a category of mixed
motives MM containing the category M, of Grothendieck motives
such that for X smooth projective over k — C, there is a filtration on

the Chow groups satisfying the following:

1. FTCHP(X)g e F*CHP(X)g — F"* CH?(X)q under the inter-

section product e.

2. F* is respected by f* and f, for morphisms f: X — Y
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3. (assuming the algebraicity of the Kunneth components of the

diagonal)
Gry CHP(X)q = Ext'y v, (1, h*(X)(p)),

where 1 = h(speck) is the trivial motive and A*~“(X) is the
Grothendieck motive corresponding to the (Weil) cohomology
group H®¥(X).

Moreover the isomorphisms in 3 above are compatible via the vari-
ous comparison theorems with those in the category of mixed Hodge

structures and the category of l-adic representations.

M.5aito has constructed a category MHM(S), for any variety S,
whose objects are mixed Hodge modules which can be described as
follows. To each @ family X — S there exists an object R'(X/S) in
MHM(S) such that its pull back via the map SpecC — S is the natural
mixed Hodge structure on the cohomology H'(.X, Q) of X. In addition
he has shown that this category has higher Ext’s: for instance if § is

a curve then Ext® is non-trivial. Furthermore, there exists a spectral

sequence
B} = Exthyyas)(Qle). RY(X/S)) = Ext} /a0 (Qle). Q)

One of the most important feature of this category from our point
of view is that when a = 2p— k, b = k and ¢ = —p, the term on the
right hand side can be identified with HE, (X, Q(p)). It follows from
the following lemma of Jannsen that Conjecture 2.8 is equivalent to the
conjecture about the injectivity of the cyvele class map into Absolute-

Deligne cohomology.

LEMmA 2.9. If the cycle class map into the Deligne-Beilinson co-

homaology is injective, then the filtration on the Chow groups obtained
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by restricting the Hochschild-Serre filtration on the cohomology groups

is the conjectural Bloch-Beilinson filtration.

PROOF. (see [22]) O

4. Statement of Problem

The objective of this thesis is twofold. The first is to give a sim-
pler, more unified treatment for all the diverse examples of non-trivial
nullhomologous cycles. This then would allow us to construct new ex-
amples of such cycles. In fact the assumptions we make have been
checked in the various papers in specific examples. The second is that
we have been able to employ the method of detection explained above
to detect various of these nullhomologous cyeles. More precisely we

lLiave checked with the exception of cyvcles over arithmetic varieties

For every known nullhomologous cycle on varieties over C
there exists a spread out diagram such as 4 above such
that the cycle spreads out to a homologically non-trivial

cycle under the map ely;,, in diagram (5).

4.1. Examples of nullhomologous cycles. \We now list various

examples of non-trivial nullhomologous eveles that we have studied,

. The ezample of Griffiths [15]: Let X be a general quintic hvper-
surface in P'. Then the difference of any two lines I, and l» is a

non-trivial nullhomologous eycle.

[

. The example of Nori [25]: Let X be a smooth projective variety
and Y a smooth complete intersection of sufficiently high degree
in X. Then if £ € CH?(X) is not homologically trivial, its restric-

tion to Y is not algebraically equivalent to zero. In particular, if
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cl(€) is in the kernel of the map H*(X, Q) — H*(Y, Q). then £

restricted to Y gives a homologically trivial cvcle.

. The examples of Clemens [10]: Let X be a quintic hypersurface

in P'. Then X contains countably many non-trivial cveles whose
image in the Griffiths group generates a subgroup of infinite rank
over (3. This result has been extended for arbitrary K-trivial
complete intersection threefolds (see [27]).

. The ezamples of Voisin [33]: Let X be a general quintic hy-

persurface in P*. Then there exists a countably infinite number

of cycles which are linearly independent in the Griffiths group

tensor Q.

The examples of Bardelli-Mueller-Stach [5]: Let ¥ be a smooth

Fano fourfold and X a general member of the linear system | —
(y|. If G*(X) is the Griffiths group of codimension 2 cvcles.

then G*(X) ® @ is not a finitely generated group.

The example of Albano-Colline [1] : For a general cubic threefold

the Griffiths group of codimension 3 eycles is infinitely generated,

. The example of Ceresa [8]: Let C be a general curve of genus

g = 3. If C~ denotes the image of C in the Jacobian J(C) under
multiplication by —1, then C'=C~ is not algebraically equivalent
to zero.

The example of Nori [26]: Let B be a generic threefold abelian
variety. Then G*(B) ® Q is an infinite dimensional vector Space

over Q. The same result was proved by Bardelli [4].

The above results merely are representatives of the general method
used in the detection of such cycles. We now give a broad classifica-
tion based on the general methods used in constructing these cycles,

Detailed descriptions follow in the subsequent chapters.
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1. The method of Connectivity: The main step involved in this is
to prove a statement about connectivity between a variety and
a certain family of subvarieties. This then implies that if a cvele
on the variety is homologically non-trivial then its restriction to
a generic subvariety in the family is non-trivial. This has been
used by Griffiths [15] and Nori [25] to show the non-triviality of
the nullhomologous cvcles.

. The method of Degeneration: The cvcles of Clemens and Paran-
jape are detected using this method. It is shown that if a degree
zero cycle deforms in a family in such a way that it passes through
an ordinary double point singularity of the degenerate fibre then
it is actually non-trivial in a neighbourhood of this degeneration.
- The infinitestmal method: The non-triviality of cycles is estab-
lished by showing that the infinitesimal invariant of the normal
functions defined by these cyecles as they vary in the universal
family containing X is not identically zero. The cvcles in ([4].

[5]. [33], [1]) are detected using this method.
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The method of Connectivity

The first instance of cohomology being used directly to detect cycles

appears in a paper of M.Nori ([25]). The following is based on this
work.

1. The basic setup

Let X be a smooth projective variety, and suppose that dimension
of X is n+ h. Let S be a smooth scheme parametrising subvarieties of
A" of codimension h ice., let A:= X x § and B be a closed subvariety
of A such that B — S is flat. Let s € S be the geometric generic point
of S and ¥ = B, be the fibre over it.

Let § be a cycle on X. By flat pull back this gives a cvele on A.
By restricting this cycle to B and then to ¥ we obtain a cvele i on ¥

In particular, we have the following

PROPOSITION 3.1. In the above situation, suppose H'(A, B: Q) = 0
for 1 = 2p—1,2p. For any codimenion p homologically non-trivial cyele

£ on X its restriction to Y is not rationally equivalent to zero.

PrOOF. The Kunneth decomposition

H'(X x S) = @; H/(X) @ H(S)

gives an injection

H?(X) < H?(As)
26
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Consider the following composition:

H?(X;Q) — H¥(45Q) = H¥(Bs;Q)
gl = by = [7]
where the first map is an injection by Kunneth decompesition and the
second one is an isomorphism by hypothesis. Since 7 spreads out to 7

this implies that 5 is not rationally equivalent to zero. O

There are examples due to Nori [25] and Griffiths [15] among oth-
ers where certain stronger results about the non-triviality of 5 can be

deduced from additional connectivity hypothesis over 4 and B. In this

chapter we will explore these examples.

2. Detecting nullhomologous cvcles

For any smooth morphism T' — S, we denote by Ay and By, the
base change of A and B respectively. Then the principal connectivity
hypothesis is

AssumpPTiOoN 3.2. With notation as above,

FFH™ (Ar, BrC) =0  for k<n

where F* is the Hodge filtration on the cohomology groups of the pair
as introduced in [11] (see also Chapterl).

Following [25], we define % g as the kernel of the map
3= Q=0
The long exact sequence of hypercohomology groups

(7) ... H (A0 5) & H(A,0%) - H(B,0}) - B (4,07 ,) ..
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can be identified with the long exact sequence for singular cohomology

with coefficients in C.
(8) ...HY(A,B) - H'(4) = H(B) = H*(4.B).. ..

via the comparison theorem between singular and de Rham cohomal-
ogy.

The spectral sequence EJ¥ = HP(A4,0Q% ;) induces a filtration on
H* (4,9 5), which we denote by GFH"(A4.B,C). This filtration in
turn contains the Hodge filtration defined by Deligne [11]

GPH"(A,B;C) > FPH*(A, B;:C)
Thus Assumption 3.2 follows from

ASSUMPTION 3.3. G*H" ™ (A1, Br) =0 vwk<n

By using the Leray spectral sequence the above assumption follows
if

ASSUMPTION 3.4. HP(Ap, Q% 5 ) vanish for p < k and p+ g4 <
n+ k.

From the Leray spectral sequence, it then suffices to check that the

following is true.

ASSUMPTION 3.5. Let pr be the projection from 44 — 7. Then

R? P’r-ﬂfa,-iﬁr =0

Assumption 3.2 implies the following vanishing of cohomology of

pairs.

LEMMmA 3.6. H (A7, Br; Q) =0 for 1<2n
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PROOF. (see [25]) Let IV denote the weight filtration on the coho-
mology of the pair. Suppose gr!¥ H***( Ay, Br) is non-zero for sonie i,
then this implies it has a non-vanishing H*¥. Assumption 3.2 implies
that p < & —1 and therefore using the fact that H*? = H%", we have
¢ < k—1. Consequently i € 2(n—1). Since A and By are smooth va-
rieties, we have gr}' H"™* (A7) = 0if1 < n+1and g/ H"*Y(Br = 0
ifi<n+k-1. Thus

gry H**(Ar,Br)=0 if i<n+k—1

Thus we see that 2(k— 1) > n+ k — 1 or equivalently k > n+ 1. In
particular H***( A+, B, Q) # 0 implies n + k > 2n + 1. O

Lemma 3.6 has the following stronger implications for algebraic cycles.

THEOREM 3.7 (Nori). Let X and Y be as above. Let £ be a codi-
mension d algebraic cycle on X, whose cohomology class [£] lies in
P*(X.V:Q) := Ker(H¥(X.Q) — H*(Y:Q)). Also assume d < n,
Then if [€] is a non-zero element, then its restriction to " is homologi-

cally trivial but not algebraically equivalent to zero.

PROOF. (see [25]) We prove the contrapositive of the above state-
ment. So we assume that the restriction of £ to Y is algebraically

equivalent to zero. This then by definition means
n=ul(C;,a,5,) = py(a,.pg, (3,))

where C, is a smooth projective curve defined over k, where £ is the
algebraic closure of the function field of S, 4, € CHg(C,)ham and a, €
CH*(C, x Y) and py and pe, are the two projections from C, x Y to
the two factors ¥ and C, respectively. As mentioned in the previous
chapter, all this data lives in a field L of finite degree over k. Let T he

the variety with generic point SpecL such that the map T — S is etale
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and corresponds to the field extension & € L at the generic points.
This procedure then gives the following:

1. T — § ewale.

2. a smooth projective morphism C = T

3. an algebraic cvele 3 € CH{(C)om for t = dimT, and

4. a correspondence a € CHY(B¢)

Moreover eny€ = u.(8.v"a) in CH%(B;) where 7y : Br — X, u :
Be — Br (this is checked by looking at the fibres on either side and

noting that they are equal) and v : Br — C are the “spreadout” of the
given morphisms.

From Lemma 3.6, we have that
H(A¢; Q) — H/(B:, Q)

is an isomorphism for j < 2n — 1 and because d < n. we obtain
8 & H*(A:, Q) whose ima-gr: in H*¥(B., Q) is the cohomology class
associated to 7. As above, we have

epx[€] = (1x x f).(8"pla])

where as usual py : Ay — X and pe : Ac — C are the spreading out of
the given maps.

Since for any t € T(C), X embeds into Ay via X — X x {t}, we
get by checking at the fibres that

el§] = (p)(('1X x £ (t).p3([allf (1))

Since (3] f~1(t) = 0 by assumption, £ is homologically trivial. O




CHAPTER 4

The method of Degeneration

1. The Setup and Notation

Let X' be a smooth projective variety of dimension 2d — 1 and let
C be a codimension d subvariety of X. Let f : ¥ — S be a flat family
where &', S are smooth with X as the geometric generic fibre. Further
suppose that § is a curve and the family has special fibre X, over
sy € S containing only ordinary double points {p;} as singularities.
Let C — T be a smooth family with geometric generic fibre C such

that there exists a diagram:

C— X
(9) | !

-

45

Assume that the map T — S is a finite cover with simple ramification
at tg € T where 6(tg) = sg.

We consider the following two cases,

I. The special fibre Cy of the family C passes through exactly one
of the double points, denoted py, in the fibre X,

2. The special fibre Cy of the family € misses the double points in
the fibre X,.

Let Xy be the blow up of the double point pg and let E denote the
exceptional fibre over the point pg.

31
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Let XA := A x5 7T be the pull back of X to a family over T. Then
there is a lifting € 5 A, Now define X as the normalisation of A,
This normalisation still contains singularities at the ordinary double

points in the fibre over ¢;.

Let ¥ — Xr be the blowing up at the ordinary double point py. The
special fibre of ¥ — T at tg is the union of X; and a smooth quadric
@ such that X, meets @ transversally along E. Let € be the strict
transform under the blow up map. If C; passes through the double

point py then C intersects X; in a projective space P4~! ¢ E.

We make the following assumption in order to simplify our argi-

ments.

AssuMPTION 4.1. For a general fibre X in ¥ — §, H¥(\.Z)= &

so that the cycle class map CHY(X) — H*(X.Z) is the degree map.

Let A be a relatively ample class on X — S. Let H be 4Y Then
= = C—deg(C).H is a cyele on X whose restriction £ := C'—deg(C) H
is a nullhomologous cycle. Let € be the strict transform of C under
the map Y — Xp, where the latter is the normalisation of X and let
= :=C — deg(C).H.

We shall now show that the cycle = can be detected in the coho-

mology of the total space V.

2. Detecting nullhomologous cycles

We shall now show that the cyvele £ is non-trivial. Our method
here is entirely topological and avoids any use of Hodge theory. We
shall work locally over a disc A around the point 0 € § in the base
locus. We denote by A the component of the inverse image of A in T

containing ty. Having reduced the situation to such a neighbourhood,
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we note that the special fibre Xy is a deformation retract of the family
A x5 A — A, Without loss of generality, we can assume that X
contains exactly one ordinary double point. We then have that in the

blow up family Y x¢+A — A, JE'.JUQ is a deformation retract of Y x+ A,

THEOREM 4.2. We work with notation as above. Let N := ()
:‘?gj = .':E'L

1. Suppose that the special fibre Cy passes through the ordinary
double point py, then = := € — (deg(C’).H is non-trivial 2-torsion
in the cohomology of N.

]

. If Cy does not pass through py in X, then = is trivial in the
cohomology of A.

ProoOF. (1) Consider the following diagram:

H¥*Y(E,Z)=0
1
- = HH"2(X,2)) & H*(Y3, Z) Ly HA(NGZ) — ..
+ (85"

H*(Q; Z) & H*(X,, Z)
|

-
H*(E; Z)
where the horizontal sequence is the Gysin sequence and the vertical

one 1s the Mayer-Vietoris sequence. The composite 1* o4, in the diagram
H*~%( X, Z) = H¥(Y3,2Z) 5 HY(X,, Z)

is Ueyr(Ng, ). the cup product with the first Chern class of the nor-
mal bundle of Xy in Y. Assumption 4.1 then implies that this is just
multiplication by the degree of Ny .

The degree of the normal bundle Ny, ,y for the fibre over any point

t € T is just the degree of the fibre X,. By the adjunction formula this
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is just Oy, (Xi¢))x,. Note for t € A this is trivial. Thus at t = tg, we
have -""f'-‘-'nuw}‘i is trivial. This implies that (again by the adjunction
formula) Gy‘i{.-‘::u} @ Oy, (Q) is trivial. Since @ has degree —2, X has
degree +2. Thus we conclude that Ny, has degree 2 and therefore

the composite i* o {,= multiplication by 2.

We use the identification H¥(Xy:Z) = Z.H © E.L' where H is
the codimension d linear section and L is the push-forward of the
codimension d class coming from the exceptional fibre with generator
P#=! which can be identified with € N Xj.

Sinee degree = is zero and C intersects Xg in a P4~! whose class is L,
=+ (0,1) under the restriction map (ig,1*). This implies that = does
not lie in the image of i, and hence belongs to Coker(i.) — H* (N Z).
On the other hand, since the composition 1* o1, = x2 this implies that

2= € Im(i.) and hence = is 2-torsion in H¥(\; Z).

(2) Suppose on the other hand that Cy does not pass through the
ordinary double point. Since = does not pass through the double point
of the singular fibre, it is isomorphic to its pullback in Y. Therefore its

support has empty intersection with the exceptional fibre ). Hence its
restriction to A is zero, O

COROLLARY 4.3. In the case where 'y passes through the ordi-

nary double point of the degenerate fibre, the cvele € is a non-trivial

nullhomologous cyele.

ProoF. The cycle £ spreads out to a cycle = on the family X — A,
The cycle = pulls back to a cycle = in Y which is homologically non-

trivial. Since = has non-zero image under the cvele class map it is

non-zero. This implies that = is non-trivial and hence so is £, C




2 DETECTING NULLHOMOLOGOUS CYCLES 3
2.1. More cycles. We wish now to generalise the above situation
to one where there are finitely many cycles on a varietv X, the generic

fibre of a fat family X — S with only ordinary double points occurring

as singularities. For this we assume that for 1 = 1...[, there are
diagrams:

C.‘ - X
(10] i +

T, 5% 8

Here d; is finite map of smooth varieties such that its branch locus
is contained in the singular locus of the family X — S. Moreover,
C; = T, is a smooth family with generic fibre C; which is a codimension
d subvariety of X. Let B, (respectively R,) be the branch loci (resp.
the ramification loci) of the maps 4. We denote by S, (resp. 17} the
complement of B, in S (resp. R, in T,). We further assume that

ASSUMPTION 4.4. The branch loci for the maps 4, in Diagram 10

are distinct, Moreover for each i, C; misses the singularities in the fibres

outside its branch locus.

We now wish to detect the cycles {C;} in the general fibre X of the
family A’ — S.

For any integer 1 < ¢ < [, one can now construct finitely many
diagrams in the following manner: Since X — S is a flat family with
generic fibre smooth, this implies that over a Zariski dense set the
family X — S restricts to a smooth family. We choose a curve S,
which passes through exactly one of the points of the branch locus of

d; and which misses the branch loci of 4; for j # 1.
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We then have the following diagrams:

C, —+ A

1 +
T, = S,
and for j #1,

CJ.E — A
+ {
S = 8,
Here the families C;;, C;, &; are the restrictions of the families in dia-

gram (10) to the curve 5;.

Thus we have the following situation.

1. For j # 1 the family C;; completely misses the singular locus of
X,

2. The map T; — S, is a double cover which is ramified at one
point.

3. For the family of cycles C;, there exists a point 0 € S, such
that the special fibre Cy at 0 passes through one of the ordinary
double points of the (singular) fibre of X, —+ S,.

On a general member X of the family X; — S, we then have finitely
many codimension d cycles §; = C; — deg(C,).H where C, is a general
member of the family C;, and H is a codimension d linear section in

X. We shall now study the relations between these cveles.

2.2. Relations between cycles. We now wish to study the rela-

tions between the cycles Z; defined by & in X as it varies in the family
A= 5.

THEOREM 4.5. The cyeles Z; are linearly independent modulo 2 in
CHY(X), the Chow group of codimension d cycles.
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PROOF. Suppose there exists a relation

ZHEE. =0

For 1 = 1, consider the restriction of the above sum to Ai,- Consider
its image in the cohomology of A,,. By Theorem 4.2 we know that
=; vanishes for 1 # i; since these do not intersect the singularities in
the special fibre of A;; — A,,. This implies that n;,.=;, = 0. Since
its image is 2-torsion, this implies that n,, is divisible by 2. Similarly
arguing, we see that 2 divides n; for all 7. Hence the cycles are linearly

independent module 2. O

3. Torsion in chow groups

We shall now make some remarks about the rank of CHY(X'). We

make note of the following useful lemma.

LEMMA 4.6. If G is an abelian group such that its torsion subgroup

(Fior 15 & subgroup of (Q/Z)", then we have

rankg(G @ Q) +r > rankz (G ® Z/2Z)

PROOF. (see [10]) =

According to above lemma, we need to show that CHY(X),,,.. the tor-
sion subgroup is a subgroup of (Q/Z)" for some r. We shall now briefly
describe certain results of Colliot-Thelene et al [9] which were inspired
by Bloch’s construction of a cycle c¢lass map on the torsion algebraie
cycles into cohomology with finite coefficients, We start by collecting

some basic results.

Let X be a smooth projective variety defined over an algebraically
closed field k and let | be a prime different from k.
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Let H9(pi") denote the Zariski sheaf associated to the presheaf
U e HEI(LF1- #ﬁr]

where U < X is a Zariski open set, g, v, r are integers. and ;" denote

the etale sheaf of the I-th roots of unity on X. tensored with itself r
times, Note that

B = ZfI"L r=10
= Homx(Z/I'Z,uZ™™) r<0
The Leray spectral sequence associated to the morphism of sites X,, —
Xzar — Speck gives a spectral sequence

E£1q = HP[X, H ':#grr}:' = Hit+q{-¥= Fgur]

Let X“ denote the set of codimension ¢ points of X. The following
then is a flasque resolution of the sheaf H9(u¥"):

0= H(ud) —» [ (co) HO(k(z). pE") = ...
e X?

= [I () H (k@)™ = T () HOk(2), %) — 0

TEXI-] rEXW
where (1;).(A) for an abelian group A denotes the constant sheaf A

denotes the constant sheaf A supported on the Zariski closure of the
point x. It then immediately follows that

LEmMMA 4.7 (Bloch-Ogus). With notation as above, H?( X, HY(uE")) =

0 for p < q. In particular, for 1 > 1, there is a boundary map
H'-I{."':. H'(”Ei” 1} HT’“I[.\'.;J?,E’]
Let
@ /Zi(r) == lim "
Then one has a long exact sequence of cohomology:

= HHX, Q@ /Zi(m) = H" (X, Zi(m)) - H*(X,Qy(m)) = H"(X, Q/Zi(m)) — ...
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Bloch [6] has constructed the following cycle class map.
M CHUX) (1) — HY(X, Q/Zd(d)
where
CHA(X)(D) := lim o CH{X)

and
HYH(X, @ /Zy(d)) = lim HE(X, i)

LeEmma 4.8 (Colliot-Thelene et al.). (see [9]) Let &k be a field, | a
prime different from the characteristic of the field k£ and X be a smooth
algebraic k-variety. One then has the following diagram which is com-
mutative upto a sign:

w CH'(X) ey H"HI[X;;LT:I
Ta AL 1A
Hi_l{}fe?{'{,&iﬁi}] . ]__I?i—llzl-”u}.\-_‘,:r']
where the map p is the cycle class map, 3 is the Bockstein morphism
which is defined as the boundary map of the long exact sequence cor-

responding to theé sequence

r

1= p& = p® 02 51

and 7 is the map obtained from the Bloch-Ogus spectral sequence
E3? = H* (X;ud) where ED? := HP(X, H9(127)), the map o is

defined and is onto via the Merkurjev -Suslin theorem.

In what follows we suppose k = C.

Taking direct limits over v and inverse limit over ¢ the above dia-
gram reads as follows:
CH' (X)) L, H*(X;Z)
Ta N A T8
HTH X HAQ/Z()) = HY (X, Q/Z4(3))
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We note the following obvious corollary:

CoroLLaRY 4.9. For X smooth projective variety over C, we have

CH'(X )tars C (Q/Z)"

for some r.

Proor. Since H* Y (X, Q/Z,(i)) is a free Q2 /Z(1)-module, this
implies that it is isomorphic to a direct sum of copies of @ JE (1),
Therefore the statement is true for any . By identifving Q /Z,(i) with
Q/Z, we conclude by taking union over all {, that the torsion subgroup
is contained in (Q/Z)", [

We now apply Lemma 4.6 to conclude that rankg(CHY(X) ® Q) is
bounded from below. We can use this result for instance to produce

varieties with large Chow groups.

COROLLARY 4.10. Suppose there exists a countable number of di-
agrams as in 9 satisfying the assumptions above. Then the cyeles {=,

generate a subgroup whose rank when tensored with Q is infinite.




CHAPTER 5

The Infinitesimal method

1. Some invariants

Let f : X — § be a smooth family of projective varieties with
S smooth defined over the field of complex number €. We assume
that S is affine. Let CHY(X/S)pom C CHY(X) be the Chow group
of (relative) algebraic cycles which are fibrewise homologically trivial,
We are interested in the various cohomological invariants associated to

such a cycle, say Z.

Consider the cycle class map
CHY(X) <48 | (x: 0%) = HY(X;C)

Here the isomorphism is given by the comparison theorem.

Let [Z] = clyr(Z) denote the cohomology class of the cycle Z.
By Grothendieck, [Z] maps into the d-th filtered piece FYH™ (A" Q%)

where F* stands for the Hodge filtration.

The Leray spectral sequence gives a filtration whose graded pieces
are E&?d‘P, Since § is affine, we have E; = E.. where the E; terms

are
EPY = HP(S, H2)

Here H is the local system which has stalk H(&,.C) at any point

s € §. Since Z is fibrewise homologically trivial, e/{Z) maps to zero in
HY(S, H#). It then defines the obstruction class dvz € HY(S, HZ').
11
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We shall be interested in an infinitesimal invariant associated to dvz

which we shall denote by 6,rz.

Since the projection maps into various graded pieces respects the

Hodge filtration, we have the following:

FAHE (X, Q%) — FYHY(S, HE)
Cfdg[z:} —r 31-’3

-Since S is affine, we have
FYHY(S,HE) =H'(S, FI(HE ' @ Q%))

where FU(HZ! @ (%) is defined as follows:

Consider the de Rham complex associated to the local system H2 '

L i
L™

0= H¥ ) S OLeHM ! . 5 QS @Mt 0

Then the &-th piece in the filtration of the above complex is the
complex F*{H* ! ® Q*) defined by

0 Y S QLM 0 @ PR
— Qgimﬁ' ® Fk—dimﬁ?{?d—l =0
The graded pieces of this are the complexes K S**~1(x/S):

0 — HEU-I-k _ qk-12-1=k @ QL _, .. _ gk-dimS2-1+dimS—k @ qdimS _,

The short exact sequence of complexes
0— Fk-'rl{—;{'ﬂd-ﬂ ®ﬂ§) — Fkl:?{'zd—] @ﬂ;’} =3 I{'Bk,ﬁ!l‘f—l —5.0

gives a map

H (S, FF(H* ' @ 0F)) — HY(S, KSk-1)
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We define 4,1z as the image of Ovz under the map
H' (S, FI(H ' @ QF)) — H (S, K§4%¢-1y

By shrinking 5 if necessary we may assume that the complex K S%%-1( ¥ /§)
is a complex of vector bundles and thus §,vz is a section of a vector
bundle H* (S, K §424-1),

2. Detecting cycles

Let X be a smooth projective variety over €. Assume that there
exists a smooth family f : X — S with X as a general member.
Assume further that the base S is also smooth, On a general member
such as X, we wish to detect cycles that are nullhomologous by showing

that they spread out to the family & and have non-zero images in the

cohomology of &'

To do this we consider diagrams such as the following;

A
(11) 1 4

T & 5

where

. Z — Sis a flat family of varieties with Z as generic fibre.
2. The map T — S is quasi-finite and etale onto its image and for
eachteT, Z, € CH™( Xge) ) hiom-

Let Xy = X xsT. Then Z € CH (X/T)hom.

The additional assumption required to prove the non-triviality of
£ is

ASSUMPTION 5.1. The infinitesimal invariant 6,2 associated to

the cycle Z is non-zero,
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CoROLLARY 5.2. Under the above assumptions the cvele Z is non-

trivial as an element of CH" (X )4, the Chow group of homologically

trivial cyele classes.

Proor. Consider the diagram below.

X =4
4 1
SpecC — T

The cycle Z defines 2 € CH™( &7 /T )pom. Since by assumption, the
infinitesimal invariant is non-zero, this implies that the obstruction

class dvz and hence the cohomology class [Z] are non- zero. O

More eycles. Assume now there exists a finite number of diagrams

such as (11) ie, fori=1.../

Z = &

2 1

T; &8
Here T; — § is quasi-finite and etale onto its image, Z, — T} is a flat
family of subvarieties with generic fibre Z; such that for anv ¢ € T},
Z.,(1) 15 a codimension n homologically trivial cyele in X, (), the fibre
of X = 5 over ¢,(1).

Let Ty =11 x5+ x5 T; and Ajy be the pullback of & under the
etale map Ty i= T} xg -+ xg T, — 5. The cycles 2, pull back via
projection maps from Ajyy. We shall refer to the pull-back cycles by Z,.

We shall now show that for the collection of cycles Z;, we can study

the relations between them.

Denote by K& the function field of S and by L; the function field of T}.
Since T; — S is etale, L; is a finite extension of K. The infinitesimal in-

variant 6; vz, is a section of the vector bundle H! (5, KS4*-1 (X /5))®p.
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Or, on T;. By localising at the generic point, this defines an element
6104 € H' (Speck, K S (X)) ®x L,

We now make the following
ASSUMPTION 5.3. With notation as above

1. The fields L; are linearly disjoint over K,
2. The infinitesimal invariants d;vz, for i = 1...] do not descend

to sections over S.

The above assumption then immediately implies that

PROPOSITION 5.4. Given ahy I, and diagrams as in (11) for i =

1,....1 the cycles {Z;} in the Chow group of a general member X of

the family &} — T}y are linearly independent,

PROOF. Suppose there exists a relation
Z H;Z,' =1
1

This then spreads out to a relation Efﬂ.;‘é,' = 0. Under the ¢v-
cle class map the image 3", niclyr(Z;) = 0. This then implies that
2imdivz = 0. The generic point of the variety Ty is SpecL where
L is the compositum of the fields L;. The stalk at SpecL of the above
relation is

Z ﬂﬁ.’glb‘, =1

Suppose ny, # 0. Then &1, depends on the remaining d,44°s. This
means that 4,14, is defined over the intersection of L, and the composi-
tum of the fields {L; };2,. Since L; are linearly disjoint this intersection
is just K. Thus ;1 is defined over X which contradicts our assump-

tion. Hence we have n; = 0 for all i. O
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3. Another example

Let X — S and Y — T be two smooth families over smooth vari-
eties 5 and T respectively. We denote by X and Y the generic varieties
of the families ¥ — S and Y — T respectively. Let [/ <3 § x T be
the subvariety parametrising pairs of varieties (X . 1) such that there
exists an algebraic correspondence I' € CH"(X x ) which induces a

functorial diagram:

GHm{y‘] =y H‘Em{}/'; E:]
+ T 1T,
CH™X') — H™ (X", Z)
where the vertical arrows are the maps induced by the correspondence

' and the horizontal ones are the cycle class maps,

3.0.1. Defining the Noether-Lefschetz locus. Suppose we have a di-

agram

Z =V
(12) TR

GST
Here o is a quasi finite map of smooth varieties, £ —  is a flat family
with generic fibre Z, a subvariety of codimension m of ¥. Further

assume that the image of Z under the composition
CH™(Y) £ CH (X) <& H¥(X: Z)

is zero. Then Z defines a homolagically trivial evele on X via the
correspondence I'. We shall also refer to €' as the Noether-Lefschetz
locus of Z. The reason for this is that one can understand the variety Z
by studying its cohomology class £. This is because in the deformation
locus of Z, £ tao deforms and since £ is the cohomology class of Z this

means that £ remains of type (m, m). We make this precise.
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Let H be the vector bundle on T whose fibre at any point t € T
is the cohomology group HE’“I[}L':CJ. We denote by 7* the Hodge
subbundles of #. Then the locus of deformation of £ = ¢l(Z), which

we shall denote by T; has the following description.

Let V denote the Gauss-Manin connection on the flat bundle .
Griffiths transversality (cf. Preliminaries) implies that V(&™) ﬂil".; &
Fm=1, To say that £ € F™ H*™(Y;;C) ¥t e Te. implies that if we
consider the induced map V on F™/F™+! then contracting V(£ ) with
any tangent vector v is zero. In other words T} is in the kernel of the

composite map
FrFE S Q) @ FtfFm By et g

It is then clear that T; is defined by the vanishing of A7+t —

dirne H" V41 analvtic equations,

Let &y € T¢ be a point, The tangent space of T: at ty admits the

following cohomelogical description:
Too(Te) = Ker(T,,(T) 2 H(Y, Ty) 225 grm-tm+1(yy)

where the map « is the Kodaira-Spencer map and £ as defined is the
cup product with the class £&. Since Ty, (1¢) is locally given by Am-1m+1
equations, it is clear then that T¢ is smooth at any point Y iff the

composite £ o & is surjective.
At this point, we shall need the following
ASSUMPTION 5.5. With notation as above,

L. T¢ is smooth.

2. The map of tangent spaces

?;:{C} = ?;n [TE}

is a surjection for ¢ € C such that a(e) = t,.
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Assumption 5.5 (2) implies that T is in fact given by the vanishing
of polynomials and hence is algebraic. This holds for instance if the

Hodge (m, m)-conjecture is true.

3.0.2. Nullhomologous cycles on X. Define Ve := Y x7 T¢, the pull-
back family on T;. Let p and g be the projection maps from U — S
and U — T respectively. Define M, := ¢7'(T}). Let pe denote the

restriction of p to the subspace M.

ASSUMPTION 5.6. The projection map pg : Mg — 5 is etale.

The map pe then induces a cyvele Z' on the family X via the cor-
respondence ['. This implies that on the generic fibre X we get a ho-
mologically trivial cycle Z' which is the image of Z under I'. Since the
cvele Z deforms along every direction in T, so does Z' in the variety
S¢. Thus we are in the situation of diagram (11) i.e.,

A
L 1
Mg — 8§

3.0.3.  Consider the family (& x V) xy M. We then have

H*™ (Y xp, Mg) — H™ (X x5 M)
Z e 5=

Since I'.( 2] is fibrewise homologically trivial, it maps to its obstruction
class, dvr,(z; in Hl{.ﬂufg,?{?"“]l. Mareover, since M; — S is etale. the

infinitesimal invariant

Sivr.(z) € HY(S, KS™ " 1 (x/8) @ O,

3.1. Linear Independence. The assumptions 5.5 and 5.6 can be

seen to be open conditions on the cycle £ if we assume the Hodge
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(m, m)-conjecture holds for ¥, We wish to understand how the infini-

tesimal invariant dyvr_z varies with the cycle £

We further specialise to the case where ¥ is a smooth hyperplane
section of X and that [' is the correspondence induced by the inclusion

Y = X, Thus n = m + 1 in the notation of preceding sections.

We waork over a point o := (#g, 5p) € U, and X and Y denotes the
fibres over the point s and ty in S and T respectively, Consider the

short exact sequence
{13) 0= Q4 — Qi(logy) = Q7 =0
We have the following diagram:

H™(X, %) 5 0, @ H (X, p)

| ).
H™(X, Q2+ (log¥)) % 0}, ® H™ (X, Q% (logY'))
(14) L res Lres
™0y S oL @ ™y, ap
L l

HPH (X 0ty S gL @ H™X, 0

Here the vertical sequence is the long exact sequence associated to the
short exact sequence (13) above and the horizontal maps are the differ-

entials occuring in the Kodaira-Spencer complex at a point (1, sq) € [,

The cycle £ = el(Z) is primitive by definition. Hence it belongs
to K = Ker(H™(Y, QF) — H™ (X, Q%t")). Choose a splitting K —
H™ (X, Q% (logY')) and let £ be the image of € in H™(X, 027 (log) ).
Let n be a cohomology class in a neighbourhood of £ in K. Then d(7)

gives an element of 0, , ® H™ (X, Q% (logY’)) or equivalently a map

T,U 22 HH (X, Q% (log) )
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We consider the following diagram:

Ty
!
(15) TM - TU 2% gmi(x an(egy))

=Ny 4 NUn lres
ToaS H™H Y, Q8 )

Here by assumption. the map Upy is surjective and T,0{ is its kernel,
Ty is such that the vertical sequence is exact. This then induces a map
g TS — H™ (X, Q% (logY’)) which when composed with the map
res is zero. This implies that g lifts to a map g : T,,§ — H™ (X, Q)
and hence gives an element in Q). , ® H™'(X, 0%). This by section

3.0.3 is the infinitesimal invariant associated to the cvele Z°.

We wish to understand how this map g depends on the cyele . We

now translate the above into a question in linear algebra.

Consider the following diagram of vector spaces over C:
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where as above, f is a linear map.
0=+B—W3H=0 0=V Wo 40
are short exact sequences,

The map 0 3V — H is an isomorphism. Define
dimi’-1
& = det(ovo :"ﬂ_][ /\ o .f]’}f H =1
Composing with 3 gives a splitting Foa : H — W, This in turn gives
a splitting of ¢ : A — W as follows:
A= i
a — w— 3aHa(w)))

Hence we get a map g: 4 — G by defining g(a) := f o u(a).

In the situation of diagram (13), assume that Y is fixed and that
A Is varying in its parameter space. Then d(7) depends linearly on the
coordinates of 7 € K and the parameters defining X', From the linear
algebra above, we have a map g : T,,§ — H™ (X, Q% (logY')) which is
a rational function in the coefficients of the evele i and the coordinates

of the variety X in its parameter space.

ASSUMPTION 5.7. Suppose the denominator of the rational func-
tion ¢ depends non-trivially on the coordinates of the cvele 5 and the

parameters defining X',

LEMMa 5.8, Let ry € @, 1y € @ be r and s tuples of rational
numbers and let A be a transcendental number, Let g(r;:7..A) bea
rational function such that the denominator depends non-trivially on
A, ry and r; . Then the Qvector space generated by g as r, and r,

vary in @ and {FF respectively is of infinite dimension over Q.

PROOF. (see [33]) O
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invariants of the corresponding cycles defined by them on the family

A — S are linearly independent.,

ProoF. Let Z; denote the cycles on & defined by the primitive Cy-
cles 7; in a neighbourhood of € in K, Let Ly ¢ H'(S, K$™#-1(X/S))&
O be the Q-vector space generated by divz, over Qand L ¢ H™( X, e I(Euy}"}]

be the (-vector space generated by the ¢;. From above there is an eval-

uation map

ev:L; = L
which maps 6, vz, to g; for each 1. Since g, satisfy the assumption above.
this means that L is infinite dimensional. This then implies that L; is

infinite dimensional, This proves the statement of the proposition. [

REMARK 5.10. Corollary above actually proves that the cycles {2}

are linearly independent in A, The proof is the same as in the proof

of Proposition 5.4.
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CORRIGENDUM

1. PRELIMINARIES

Example 1. Let X be a smooth complex projective varietv. Then for
each n, the singular cohomology groups V' := H"(X; Z) come equipped
with a pure Hodge structure of weight n. Here the complexification
Vet = H(X; C), 1s the eohomology with C-coefficients. The fltration
is such that V7 is naturally isomorphic to H'( X, Q%) where the latter

are the Hodge cohomology groups.

Definition 1. A morphism of weight 2n of pure Hodge stroctures [
(Va; F*) = (Vg F' *)isa homomorphism f : Vg — V. of abelian groups
such that if fo: Vo — Lé is the induced C-map, then [o(F*Vp) ©
FPH Y for all p € Z.

Example 2. Suppose ¥ — X is an inclusion of smooth projective
varieties. Then for each ¢, the Gysin morphism f. : HY{Y:Z) —
H'***(X;Z) where d is the codimension of ¥ in X, is a morphism

of pure Hodge structures of weight 2d.

Definition 2. The p-th Infermediate Jacobian of a pure Hodge strue-

ture H, JP(H) is
!fl'ﬂ
JHH) o= ———
LA Frifg + H
Lemma 1. The 0-th intermediate Jacobian of a pure Hodge structure

Il of weight —1 admits the following identification:
J%(Hz) ® Q = Extyys(Q, Hz © Q)
where MHS stands for the category of mixed Hodge structures,

Definition 3. Let X be a smooth projective variety over C. The 2p
Deligne-Beilinson cohomology (see [13]) is

HE(X) = B?((27iV'Z — QF)
1



i CORRIGENDUM

Remark 1. We refer the reader to [13] for the case when X is not

[H'Ulji'('l ive,

2, THE METHOD OF DEGENERATION

2.1. The Setup and Notation. Let X bea smooth projective variety
of dimension 2d — | and let C be a codimension d subvariely of X, Let
A = 5 be a flat family where A, 5 are smooth with X as the
geometric generic fibre. urther suppose that 5 is a curve and the
family has special fibre Xy over sy € S containing only ordinary double
points {p;} as singularities. Let ¢ — T be a smooth family with

geametric generic fibre O such that there exists a diagram:

C—=
(1) 1l
T il‘f IS

Assume that the map 7' — 5 is a finite cover with simple ramification
al ty € T where 6(tg) = 50.

We consider the following two cases.

l. T'he special fibre Cy of the family C passes through exactly one of

the double points, denoted pq, in the fibre Xj.

2, The special fibre (g of the family € misses the double points in

the fibre Xy.

Let Xg be the blow up of the double point py and let E denote the
exceptional {ibre over the point py.

Let Ar := & x5 T be the pull back of A" to a family over T. A
then picks up ordinary double point singularities at the singular points
of Xg. By the universal property ol fibre products there is a lifting
‘ 0 — A,

Let V — A be the blowing up at the ordinary double point py. The
special fibre of ¥ — T at t; i1s the union of T"*u and a smooth quadric
) such that Xy meets (} transversally along F. Let C be the strict
transform under the blow up map. I )y passes through the double

point py then C intersects @ in a projective space P! C E.
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We make the following assumption in order to simplify our argu-

menks,

Assumption 1. For the generic fibre X in the family A’ — §. the
cohomology group IIM{X.E} = Z so thal the composite map (for the

given embedding X « PN)
CHY(X) = H*(X,Z) = Hpy_o(X,Z) = Hyy o(P¥,2) = Z
is the degree map.

Let A be a relatively ample class on X' — 5. Let H be A¢ and
denote by H its restriction to a general fibre of the family &' — 5.
Assume that the degree of H denoted by deg(H) is odd. Then = =
deg(Hl).C — deg(C).H is a cycle on Xy whose restriction to the generic
fibre £ := deg(H).C' — deg(C).H is a nullhomologous cyele. Let €
be the strict transform of C under the map ¥ — Xr and let = =
deq( H)C — deg(C).H.

2.2. Detecting nullhomologous cycles. We shall now show that the
cycle = can be detected in the cohomology of the total space ) in the
case when (y passes through exactly one ordinary double point. Our
method here is entirely topological and aveids any use of Hodge Ltheory.
We shall work locally over a disc A around the point 0 € § in the base
locus. We denote by A the component of the inverse image of A in 1’
confaining fy. Having reduced the situation to such a neighbourhood.
we note that the special fibre Xy is a deformation retract of the family
A xs A - A Without loss of generalily, we can assume that X,
contains exactly one ordinary double point. We then have thal in the
blow up family Y x4 A — A, XoUQ is a deformation retract of Y xpA.

Theorem 1. We work with notation as above. Let A := (P\NQ) xpA.

L. Suppose that the special fibre Cy passes through the ordinary
double point pg, then the image of = := deg( H).C — (degC' ). H is

non-trivial 2-torsion in the cohomology of A,
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2. Il 7y does not pass through py in Xy then the class of = is trivial

in the cohomology of .
Proof. (1) Consider the following diagram:

H2-Y(E, Z) =0
)

.o — HE-2(Q, 7)) 29 H2(Y;,2) I gAY >
4 i)
H*(Q; Z) & H*( X5, Z)
+

H (1 Z)

where the horizontal sequence is the Gysin sequence and the vertical
one is the Mayer-Vietoris sequence. The composite i 01g. in the

diagram
H*-2(Q, ) 2% H™ (Y3, 2) -5 H*(Q.Z)

15 Uey (Ngyy), the cup product with the first Chern class of the normal
bundle of @ in Y. Now, Ngjy = Og(—1) for the natural embedding
() — P Since ¢;(Og(1)) generates H*(Q, Z), the first Chern class of
this normal bundle can be identified with the class —[F] where [F] is
the class of the exceptional fibre in X

Furthermore,as (@ occurs naturally as a smooth odd-dimensional
quadric hypersurface of P24, all its even cohomology groups are iso-
morphic to Z.

Let L C C be the exceptional fibre. This is contained in € as a P!
and therefore [1] generates H*/(Q, Z). Thus the class of =, denoted by
[Z], restricts to the class deg( H).[L] in H**(Q, Z). Moreover its image
under the isomorphism H*(Y;) = H* (XU Q) is the class deg( H).[L].
On the other hand, since the composition iy, 0 ig . = U (Og(—1) one

has by the projection formula,

i) 'Jiar.‘l(mpzd[—l }= f&[iq,,{?ﬂ U ep(Opza(—1)))
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ordinary double point on each of the singular fibres over the points in
the branch locus.

For any integer 1 < 1 < [, one can now construct finitely many
diagrams in the following manner:

We choose a small open disc A; C S containing exactly one branch
point of & contained in 5. Since the various branch loci are disjoint,
A; can be so chosen such that it does not contain branch points of §;

for j # i. We then have the following diagrams:
C; — A
Lo
ot A ¢

and for j # 1,

I[j_;i..' — A

+ i

Ay 2 A
Here the families Cj;, Ci. A are the restrictions of the lamilies in di-
agram (2) to the disc A;. As earlier, we may assume without loss of
generality that the singular fibres have exactly one ordinary double
point.

Thus we have the following situation.

1. For j # i the family C;; completely misses the singular locus of
the special fibre of the family A; — A,
9. The map A; — A; is a double cover which is ramified at one
point.
3. For the family of cveles C;, there exists a point 0 € A; such that
the special fibre C at 0 passes through the ordinary double point
of the (singular) fibre of &7 — A
On a general member X of the family A7 — A, we then have finitely
many codimension d cycles £ = deg(H).C; — deg(C;). H where C; is
a general member of the family C;; and H is a codimension d lincar

section in N
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2.4, Relations between cycles. We now wish to study the relations
between the cycles Z; defined by & in X as it varics in the family
Y= T.

Theorem 2. The cyeles é; are linearly independent modulo 2 in ('.'IIJI.’}‘L

the Chow group of codimension d cyeles.

Proof. Suppose there exists a relation

Z ﬂ‘-,‘é,‘ =1

Ifp:T — 5 denotes the morphism between T' and S, then one notes

that for any 1, p7'(A;) = A, For i = iy, consider the restriction

of the above sum to ), := yip—lm Note that ), is isomorphic

to X; xa, A; blown up at the Drd'lna.]ry double point oceuring in the
special fibre of A; = A,. Then one has a relation Y n,—{é;] = & in
H*(),,Z). Consider its image in the cohomology of A, under the
map H*(Y,,Z) — ngi{ﬁ."'.-g,z}. By Theorem 1 we know that [Z)]
vanishes for 1 # ip since these do not intersect the exceptional divisors
over the singularities in the special fibre of X;, — A, . This implies
that rqu.[:ﬁ;ﬁ] = 0. Since [Z;,] is a non-trivial 2-torsion class, this implies
that ny, is divisible by 2. Similarly arguing, we see that 2 divides n,

for all 1. Hence the cycles are linearly independent modulo 2. O

2.5. Torsion in Chow groups. We shall now make some remarks

about the rank of CHY()). We make note of the following useful lemma.

Lemma 2. If & is an abelian group such that its forsion subgroup
(o 1s & subgroup of (Q/Z)", then we have

rankg(G @ Q) 4 r = ranky z(G @ Z/2Z)

Proof. (see [10]) O
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According to above lemma, we need lo show that CII"‘[;T}W ss Lhe tor-
sion subgroup is a subgroup of (Q/Z )" lor some r. By results of Colliot-

Thelene et al [9] one has the following commutative diagram:

CHY(X)(]) it HY(X: 7))
ta A 18
=YX HA(Q/Za(i))) = HY Y X, Q[ Zu(i)

We note the following obvious corollary;

Corollary 1. TFor X smooth projective variety over €, we have
CHE('!{}Enrﬁ I (Q;E}"

for some r.

Proof. The map ~ is an inclusion in this case since E7"" of the Bloch-
Ogus spetral sequence vanishes. This implies that o is actually an
isomorphism and therefore A} is an inclusion. This in turn implies that
the eyele class map p is an injection. Since HY(X,Z;) = HY(X,Z)®
Zy, we get that the usual cycle class map into singular cohomology
is injective on [-primary torsion cycles. Now HY{X,Z) = T & Z™ for
some m where 7' is the torsion subgroup of the cohomology. Since
Q/Z = | ) Z/nZ one has CH*(X)({) — (Q/Z)" for some r which is
independent of [. The statement now follows by noting that the images
of [ and ' torsion cycles for | £ " are distinet in (Q/Z)", and then by
taking union over all [. O

We now apply Lemma 2 to conclude that in the situation in the

preceding section rankqg(CH?(Y) @ @) is bounded from below.

Corollary 2. Suppose there exist countably infinite number of dia-
grams as in | satisfying the assumptions above. Further assume d = 2.
Then the cycles {=;} generate a subgroup whose rank when tensored
with () is infinite. In particular, the cycles of Clemens and Paranjape

can be detected along with their relations after spreading ont.
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Proof. Let G € CH*(Y) be the group generated by the eycles =,. Since

G Z/2Z has infinite rank we conclude from Lemmas 2 and-1 that G ..

has infinite rank. |

3. THE INFINITESIMAL METHOD

3.1. Some mvariants. Let [: X — 8 be a smooth [amily of projec-
tive varieties with 5 smooth defined over the field of complex numbers
C. We further assume that S is projective. Let CHY(A'/8)hm C
CHY(A) be the Chow group of (relative) algebraic cycles which are
fibrewise homologically trivial. We are interested in the various coho-
mological invariants associated to such a cycle, say 2

Consider the cycle class map
CHY(X) 255 124 0%) = HH(Y; ©)

Here the isomorphism is given by the comparison theorem.

Let [2] = elyp( Z) denote the cohomology class of the cycle 2, which
lies in the d-th filtered piece FYH™(X;(}%). Here F'* stands [or the
Hodge filiration.

The Leray spectral sequence
Byt = HP(S, HE) = HPPY X, C)

Deligne (see [11]) has proved in this case that this sequence degen-
erates at By, Here HZ is the local system which has stalk H*( A, C) at
any point s € S. One has an isomorphism H”( S, H%) = HP (S, Q% @ HT)
where the complex in the right hand side is the de Rham complex as-
sociated to the local system M.

Since Z is fibrewise homologically trivial, e/(£) maps to zero in
H°(S,HA). 1t then defines the cohomology class dvs € H'(S, He )
which we shall refer to as the cohomalogy class of the normal function
associated to the cycle Z. We shall be interested in an infinitesimal
invariant associated to dvz which we shall denote by §,vz.

The Hodge filtration on the cohomology of &' induces a filtration on
each of the graded pieces in the Leray filtration.

—
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Deligne (see [37]) has proved that the Hodge filtration is the same
s the filtration induced by a filtration on the complex 0% @ HI which
we descibe below:

(Clonsider the de Rham complex associated to the local system HEL
(0 _}H‘jd—l s !H; EHZ:\‘.—] T . ﬂ%imﬁ' @ HZd—t ()

Then the k-th piece in the filtration of the above complex is the
complex F* (H*-1a0*) defined by

0— :FkHZJ-J — ﬂ}! & ‘-Fk—i?{ld—l s ni @f‘k—iﬂ‘jd—l -

— ﬂr:‘fsiﬂl.S & ‘:Fk—dirrl.S Hﬂd—-] D
The graded pieces of this arc the complexes KSEH-HA[S):
0 — -}{k.id—i—k — Hk—l,ﬂrf—l—k @ n]é .
The spectral sequence associated to this filiration has
B = W (S, K24 (X))

Lemma 3 (Deligne,([37])). The above spectral sequence degenerales
al E] 2

We define &,vz as the image of dvz under the projection map
HY(S, H2T) - B (S, KM
We now state an obvious lemma.

Lemma 4. The non-iriviality of the §,v= implies that Z has non-zero

image under the cycle class map.

Zucker (see [37]) has proved analogous results when the base S is

quasi-projective.

Remark 2. The conclusion of the above lemma follows [rom results

in (137]).
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