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Preface

We consider some problems in the homogenization of partial differential equations.
The subject of homogenization deals with the process of obtaining the macroscopic
or effective properties of materials having heterogeneities on a scale much smaller
compared to the material dimensions. The following discussion, from the intro-
duction of Bensoussan, Lions and Papanicolaou [6], is illustrative of the theory
of homogenization. Consider a generic, well-posed boundary value problem, hav-
ing coeflicients which are rapidly oscillating (periodically), depending on a small

parameter g,
iy = f infd (0.0.1)

subject to appropriate boundary conditions. The presence of high frequency oscil-
lations is troublesome. For example, in the numerical solution of this problem a
very fine mesh has to be used, leading to costly numerical computations. Thus, the
need arises for an asymptotic expansion of the solution. One such expansion is the
two-scale asymptotic expansion,

T = uu—i-Eul[:!?,i]—kEzuE{I,{]+... (0.0.2)
= £

which is modelled on two separate scales, the macroscopic scale =, and the micro-
scopic scale x/2 capturing the high frequency periodic oscillations. One, now. hopes
that the u"'s in the asymptotic expansion can be obtained by solving some numeri-
cally friendly equations where these high frequency oscillations are absent, Usually,

it is seen that u” satisfies a homogenized eguation
Au” = fin (0.0.3)

with appropriate boundary conditions. The most important aspect of the passage
from (0.0.1) to (0.0.3) is the explicit analytical construction of A and not merely

the assertion that it exists '. The construction requires, typically, the solution

'However, in problems which lack a periodic structure, it is not always possible to construct 4
explicitly. In this case, one is satisfied with showing the existence of a homogenized operatar and

with obtaining bounds for coefficients of this operator.




of a bonndary value problem within a single period cell, usually called the el
problem. The problem of computing A from the cell problem and also the problem of
caleulating u° from (0.0.3) are, usually, numerically stable and cheap. The solution of
the cell problem is also used Lo obtain the second term in the asymptotic expansion of
ug. Thus, for example, if it is now shown that u.(z)—u"(z) or u.(z)—u(x)—eu'(x, %)
converges to zero in an appropriate sense, we will have obtained an approximation of
u. by the terms in its asymptotic expansion. Also, this approximation is numerically
cheap to compute,

To sum up, problems in homogenization are of the nature of obtaining the global
behaviour of solutions of problems in partial differential equations having rapidly
oscillating coefficients. The aim is always to identify a suitable homogenized prob-
lem whose solution approximates the solution of the original problem, for small
oscillations.

The theory of homogenization has developed over the last three decades and
is used systematically in solving many problems coming from Mechanics of Solids
and Fluids, Geology, Engineering, and many other branches of Physics and Chem-
istry, The books by Bensoussan, Lions and Papanicolaou [6], Sanchez-Palencia [35],
Bakhvalov and Panasenko [4] are classical treatises and treat a broad range of prob-
lems having a periodic structure, while that of Jikov, Kozlov and Oleinik [22] is a
recent, comprehensive monograph on problems and methods in homogenization. Dal
Maso [16] gives a detailed introduction to - convergence. The appendix of his book
is a comprehensive guide to the literature on homogenization. Oleinik, Shamaev and
Yosifian [32] treat homogenization problems in elasticity theory, Hornung(ed.) [21]
treats problems on fHow and transport through porous media, and Conea, Plan-
chard and Vanninathan [15] treat spectral problems in the asvmptotic analysis of
fluid-solid structures and also give an extensive bibliography on homogenization.

This thesis consists of two parts: the first, concerns the homogenization of a
class of optimal control problems; in the second, we justify the second term in the

asymptotic expansion for a flow in a partially fissured medium.
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Chapter 1

Introduction

1.1 Introduction

We study the homogenization of a class of optimal control problems, under several
situations, in this part of the thesis. To begin with, we introduce the class of optimal
control problems and briefly review the existing literature on the homogenization of
such problems. Following this, we list the various contexts in which we study these
problems in the thesis and give an overview of the results obtained.

Let € be a bounded open set in B*. Let 0 <a < b, 0 < ¢c < d, N > 0 be given
constants. We denote by M{a, b, Q) the set of all n x n matrices, 4 = (ai;), whose

entries are functions on £2 such that,
alE* < A{x)E£ < b I£|* a.e.

forall £ = (&) e B, Let A € M(a,b,0Q) and 8 € M{e, d, Q) with B svmmetric.
Let Uyg be a closed convex subset of L*{(2) and let f € L?(Q) be a given function.

The basic optimal control problem is the following: Find #* € {/,; such that,
J0") = m 1.1.
(P) (0%) Jnin J(8), (1.1.1)
where the cost functional, J(#), is defined by

1 N [,
J(8) = - [B'Fu.‘?u:ix+ —/ 0% dx | (1.1.2)

¥
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and the state u = u(f) is the weak solution in Hj(£2) of the boundary value problem,

—div(AVu) = f+6 inQ,
% =0 on dil.

(1.1.3)

It can be shown (cf. Lions [28]) by direct methods in the calculus of variations that
there is a unique optimal control, 8* € Uy, minimizing J over [/ .

We will consider situations where the coefficients of this problem or the domain
begin to vary rapidly with a parameter, £ > 0, which tends to zero. For example,
let A, € M(a,b, Q) and B. € M(e,d,Q) be two sequences of matrices, where the
B.'s are assumed to be symmetric. For each £, the optimal control problem whose
coefficients are A, and B, has a unique optimal control 8. From the assumptions
on A and B, it can be shown that # is a bounded sequence in L*(Q) and so, for a
subsequence, #; — §* weakly in L?(£2) for some #* € U,,. The question of interest is,
can 6° be shown to be the optimal control of a homegenized problem, i.e. an optimal
control problem of the same type, say, with coefficients 4* and B* ? If the answer is
ves, then identify the homogenized problem by an appropriate limiting procedure.

Kesavan and Vanninathan [27] consider the periodic case where the coefficients
A, and B, oscillate periodically and obtain explicit expressions for the coefficients A*
and B* of the homogenized problem. For the general case, i.e. when A, € M(a, b, )
and B, € M(c,d,£2), with B. symmetric, are arbitrary sequences, Kesavan and
Saint Jean Paulin [24] obtain the homogenized problem in the framework of H-
convergence. The extension of this problem, in the case of perforated domains and
where the states satisly a Neumann condition on the boundary of holes, was solved by
Kesavan and Saint Jean Paulin [25] in the framework of Hy-convergence. Here, one
also needs to identify the correct space of controls U}, for the hamogenized problem,
as for each £ the space of admissible controls U, is different, being dependent on

the domain €.
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1.2 Thesis Summary

Chapter 2 and Chapter 3 are devoted to the study of the problems considered in
[24] and [25], and [27] respectively, but from new points of view which allow us to
obtain some generalizations of the existing results. Chapters 4 and 5 are devoted
to the study of the homogenization of the class of optimal control problems in two
new situations, viz. those governed by elliptic systems and Dirichlet boundary value
problems in perforated domains, respectively.

[n Chapter 2, we first try to get to the essence of the two seemingly different
homogenization procedures adopted in the papers [24] and [25] for a domain without
holes and with holes, respeetively. Essentially, we have a sequence of functionals J,
cach having a minimizer 2} in a set K, C L*(Q) and 27 — &* weakly in L), Is
7" the minimizer of a functional J over a set K L*(£2), where J and K can be
chosen in a natural way? The question, in this generality, forms the subject of study
of the theory of I'- convergence. However, for the problems in question, the special
nature of the J,'s and K,’s allows us to formulate and prove a lemma, which is in
the spirit of [-convergence, giving an answer to this question. Then, the problems
considered in  [24] and [25] can be homogenized, again, in the framework of this
lemma. Subsequently, the same lemma will be used as the framework in which to
homogenize the optimal control problems considered in Chapters 3, 4 and 5.

A erucial step in the verification of the hypotheses of the lemma is the charac-
terization of the limit of some energies associated with the state cquations, This
question of characterization was taken up by Kesavan and Saint Jean Paulin in [24]
and [25], as a matter of independent interest. This is solved by first introducing an
adjoint state equation, which is coupled to the state equation, and then homogeniz-
ing the resulting system. The characterization of the limit of energies is obtainable
from a knowledge of the homogenized state-adjoint state system of equations, We
ask the question, “can we, from a characterization of the limits of such energies,
say what the homogenized state-adjoint system of equations is going to be 7 We

show that this is possible and interestingly, the uniqueness of the coefficient B* in
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the homogenized cost follows from this, with the knowledge that it is symmetric.
Next, we give another expression for the matrix B* obtained by Kesavan and Saint
Jean Paulin [25]. In fact, we show that B* is the distribution limit of M!B.M.,
where the matrices M, are the corrector matrices of Murat [29] corresponding to the
matrices A,. This has the advantage that it gives an upper bound for the matrix
B*, a question left open in [24]. Also, the symmetry of B* is got for free, while,
previously, it needed a careful proof. This new deseription is also simple as it does
not involve too many test functions.

In Chapter 3, we recover the results of Kesavan and Vanninathan [27] in the
periodic case, directly, using two-scale convergence. We show that the adjoint for-
mulation can be bypassed by using a corrector result, which allows us to use the first
two terms in the asymptotic expansion of the states instead of the states themselves
in the computation of the limits of energies. This reduces the computation to one
of taking limits of integrals of the form fﬂ glz, %) dx for functions, g, periodic in the
second variable. This is easily done and an explicit formula for B* is obtained, which
agrees with the formula of Kesavan and Vanninathan [27] in the non-perforated case.
Going further, we consider the case of a domain which is periodically perforated on
several microscopic scales and having coefficients which have periodic oscillations on
all these scales. The homogenized problem is identified, and explicit formulas for 5°
and A* are found using the method of multi-scale convergence introduced by Allaire
and Briane [2].

In Chapter 4, we study the homogenization of optimal control problems governed
by elliptic systems in perforated domains. The principal difficulty is to pass to the
limits in the state equation which is now an elliptic system. Hy-convergence cannot
handle this. To the best of our knowledge, the little literature on this problem that
is available deals with the periodic case and that too, for non perforated domains
{cf. [6]). The problem is resolved by developing the theory of Hy-convergence for
block matrices, whose order exceeds the space dimension, in analogy with the usual

H-convergence and Hy-convergence. Then, using the framewaork of Hy-convergence,
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the homogenization of the optimal control problem can be completed, by following
the procedure outlined by Kesavan and Saint Jean Paulin [25] in the scalar case.
In Chapter 5, we obtain some results for the homogenization of the optimal
control problem governed by Dirichlet boundary value problems in perforated do-
mains. The nature of this problem is different from the one considered in [25],
since we require the states to satisfy the homogeneous Dirichlet condition on the
boundary of the holes. As a result, while dealing with the states during the process
of homogenization it is enough to extend them by zero in the holes. However, the
requirement that the states vanish on the boundary of the holes contributes to a
lower order term, with a measure p as coefficient, in the operator corresponding to
the homogenized state equation, when the holes have a critical size and distribution,
as was discovered by Cioranescu and Murat [12]. Under the same assumptions on
the domain and with the assumption that the coefficients appearing in the state
equation and cost functional are independent of £, we show that the cost functional
of the homogenized optimal control problem also picks up a lower order term which

corresponds to a different measure. This measure is identified.




Chapter 2

(General Results

2.1 Introduction

In this chapter, we first discuss the results of Kesavan and Saint Jean Paulin con-
cerning the homogenization of some optimal control problems considered in [24],
25]. An analysis of the steps involved in homogenizing the problems provides us the
inspiration for Lemma 2.1.1 which deals with the limits of minimizers of a sequence
of flunctions. The role of the lemma is to identify erucial steps in the homogenization
procedure. By using the framework of this lemma and by verifying the hypothe-
ses involved, the homogenized problem can be found. This applies to the other
cases/problems considered in the subsequent chapters as well. Next, we consider a
question concerning the limit of energies which is of independent interest. Solving
this question also leads to a proof of the uniqueness of the coefficients appearing in
the cost functional of the limit problem. Finally, some properties of the coefficients
appearing in the cost functional of the homogenized problem are discussed.

We now discuss the results of Kesavan and Saint Jean Paulin [24] concerning
the homogenization of the optimal control problem over non perforated domains.
Let £2 be a bounded domain in B*. Let £ be a parameter which tends to zero.
A: € M(a,0,Q), B, € M(e,d, ) are two sequences of matrices and it is assumed

that B.'s are symmetric. Uy, the space of admissible controls, is a riven closed
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convex subset of L2(€2), Let f e L*() be a given function and let N be a positive
constant. For £ > 0 fixed, let # be the optimal control minimizing the functional,

1

N f,
[ L Je(8) = = / B.Vu, Nu.dr + — / = dr
2 Ja 2 Jn

over Uyq, where u, = u,(f) is the solution of the state equation,
—diviA. Vi) = f+8 inf,
(A V) (2.1.1)
iy = 0 on €.
It can be shown that (up to a subsequence) 8 — 8* weakly in L*(Q2). Now, is 0"

the optimal control of a homogenized optimal control problem? It was shown that

" minimizes the functional,

1 N ;
L) J(8) = —/B‘?u.?mﬁm + —/ﬁ'z dx

0

over § € Uyq, where u = u(f) 15 the solution of,
—div(A*Vu) = f+8 inQ,
u = 0 on 91,
where A® is the H-limit of the sequence A, and B* is given by (2.1.7) below. The H-
convergence method introduced by Murat [30] and Tartar [36] is discussed briefly,

and following it, a full description of the A* and B" are given.

Definition 2.1.1 A sequence of matrices, A. € M{a.b, (1), s said to H-converge to

a matriz, A € M(a,b,Q), if for every g € H=YQ), the solution v. of

—div(A:Vv.) = ¢ infl

(2.1.2)
v = 0 andil
satisfies the weak convergences,
e — v weakly in HLQ),
B ¥ .u[ ): (2.1.3)
ANy, = AVv  weakly in L*()",
where v is the solution of,
—div(AVy) = i 0,
(AVv) = g (2.1.4)

v = 0 ondfd

We write A, —+ A. B
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This definition along with the following compactness theorem is tailor-made for

passing to the limit in the equation (2.1.1).

Theorem 2.1.1 Fvery sequence, A, € M(a,b,Q), has a H-convergent subsequence.

The H-limit for the subsequence belongs to M(a, z—u, (1) W

The following are some known facts about H-convergence: a sequence of matrices
which H-converges, has a unique H-limit; H-convergence is local, i.e. if F. LB
and G. 5 G and Fo =0, onsomew CC Q for all £ > 0, then F = G on w; lastly,
let A, L A, let g. — g strongly in H~Y(Q) and let v, solve (2.1.2) with right
hand side g. - in this case also. the convergences (2.1.3) hold and v solves (2.1.4).

By Theorem 2.1.1, we may assume that the sequence (if necessary, by restricting
to a subsequence) of matrices A, has a H-limit. Then, this limit, by the discussion
above, 15 the desired A*.

The description of B in the article [24] involves a few test functions. The first,

are the sequences X, k = 1,2, ..., m, with the following properties (ef. Murat [29]),

X:‘ -y weakly in Hl{ﬂ],
AVXE o Ate weakly in L2(Q)", (2.1.5)
div(A.VXF) cc H YD)
The symbol CC denotes precompactness; here, the precompactness of the sequence
div(A,VXE) in H~Y€). The existence of such XF can be deduced from the H-
convergence of A, to the limit A*. One also defines the sequences, v* ¢ H}(Q),

b= 1.2 ... n which solve
-—¢iiv|[.~lf?1,-‘-‘f‘ +B.VXY = 0 inQ,
3 = (2.1.8)
¥ = 0 on 90

For each k. the sequence ¥ is bounded in H1{Q) and it is assumed, without loss of
generality, that ¢* converges weakly to some ¢* in H; () and that A'VyF 4+ B, VXFE

converges weakly in L*(2)". B* is, then, defined (through its transpose ) as follows,

(B )er = 11::;{.45%5 4+ BNXE) — (AY)WE (2.1.7)

! B. need not be symmetric for this approach.
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The results in the perforated case obtained by Kesavan and Saint Jean Paulin
in [25] are now discussed. For each ¢ > 0, the perforated domain (1, is given to be
24 5., having characteristic function y,; 5. is assumed to be a closed subset of
with smooth boundary. The space of admissible controls also depends on = and for
each £ > 0, U, is a closed convex subset of L*(€,.). For given £ > 0, the optimal

control problem consists of minimizing the functional,

(P, 1.(0) = & / B.Vu, Vuuds + f 02 dx
L9 2 i

2

{4

over Up,, where u, = u,(#), is the solution of the state equation,

—divi4.Vu,) = f+0 inQ,,
AVu.n, = 0 on S, (2.1.8)
ity = 4} on dtl.

This problem has a unique minimizer #7 in UZ,. It can be seen that if these mini-

mizers are extended by zero in S, then the extensions #* form a bounded sequence
in L*(£2). It may be assumed (for a subsequence) that 8 — 8 weakly in LA(£2). In

this case, it was shown that the 0* minimizes the functional

a2

-

; 1 . N [ 8
(P*) J(@) == [ B'VuVudr + — dx
] 2 Jq x
over a suitable U7, (see the discussion below), where u = u(#) is the solution of,

—div(A* V)

xf+8 inQ,

i { on 657,

A" is the “Hy-limit” of the sequences A, and, B* is given by (2.1.18) below: y is the
weak® limit of x. in L=(1). Notice the second term in the cost functional of the
homogenized problem is different in the two cases, [24] and [25], considered.
Since, the space of admissible controls varies with &, it is also required to prescribe
the limiting space of admissible controls. One guesses that U,y is the, so called,
Kuratowski limit of the sequences U7, in the weak topology of L?(€}). This guess

seems to be verified in the examples of U7, considered in [25]. When UZ, is one of

.
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the following,

ad = L*(9.),
Uy = {0e L300 = ¢ in 2.},
Uy = {0€ L3Oty <0 <vginQ},
{0 € L=(52,] ff‘:; B dr < 1}

> (2.1.9)

rE
od p

the corresponding Uy was shown to be the U,,’s given below, in the same order,

U = L}, i
Ui = {0 L*{Q)]|# = xb in Q},
¢ = {0 LA 2 xbin ) > (2.1.10)
Ua = {0 € LYQ)|xvn <0 < xibn in 0},
Uy = {HELE{smrﬂi—?m- < 1}. J

[t is assumed that the characteristic functions y, satisfy

.=y weak * in L=(Q),
Xe = X (£2) (2.1.11)
x~t e L=(Q).

We now give a full description of the A* and B* after introducing the notion of
Hy-convergence proposed by Briane, Damlamian and Donato [7].

The framework of Hg-convergence imposes some restriction on the peometry
of the perforated domain £, by presupposing the existence of suitable extension
operators. Let V, = {u € HYQ.)|u = 0 on dQ}. It is assumed that there exist
extension operators, P. : V. — Hj(Q) which are bounded uniformly with respect to

£, Lo

BAF.u) = u,

for all uw € 17, (2.1.12)
|IVPaulpn < CilVulga.

where the symbol K. denotes the operator which restricts a function given on Q to
fl. and, Cy is a constant independent of =. A sequence of holes S, for which the
characteristic funetions of €1, satisfy (2.1.11) and there exist extension operators

satisfying (2.1.12), is said to be an admissible sequence of holes for .
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Definition 2.1.2 Let A, € M(a, b, Q) and 5, be admissible in Q. The par (A, 5,)

15 said to Hy-converge to a matriz A € M{a',b,8) if for every g € H-Y(Q) the

solution v, m V. of,

—div(A.Vv.) = P'g in (.,

AVv.n. = 0 on 5, (2.1.13)
0 on {02,

U,

satisfies the weak convergences,

Pou. — v weakly in Hi(Q),
, (2.1.14)
Qe(AVu.) — AVy  weakly in LEa™
where v is the solution of
—div(AVy) = in £2,
Y = (2.1.15)
v =0 ondl) W

where (). denotes the operator yielding the extension by zero over the holes. This
definition and the following compactness theorem are exactly what are required to

pass to the limit in the equations (2.1.8).

Theorem 2.1.2 For every sequence, A, € M{a,b.Q). the sequence (A,,S.)

has a Hp-convergent subsequence. The Hy-limit for the subsequence belongs to

M(eCy? 2 0). ®

Hy-convergence has all the properties of H-convergence, in a suitable form. One
also has the independence of the Hy-limit on the actual choice of extension oper-
ators satisfying (2.1.12). Further, suppose that (A,.5,) Ho, A and let Yelle — 0
weakly in L2(£2), and let v, solve (2.1.13) with right hand side q.. The convergences
(2.1.14) still hold and v solves (2.1.15). These properties of Hy-convergence are
worth remembering. H-convergence is, really, a special case of Hy-convergence, but
the assumptions involved are few.

Now, if A, is the sequence appearing in the problem (P.), the conclusion is that
ey Je) van b asauiad o lave o Jfg-liail, uuder the assuinptivie. made v 5.

concerning its admissibility, This limit is the desired A*.



CHARTER 2 (GENERAL REsULTS 12

=

The description of the matrix B* involves a few test functions, The analogue of
XE that was seen in the non perforated case is defined through the following means.

Let ' be a bounded open subset of R* such that 2 cc . Extension operators
for €2, can be obtained by first extending by P. to §2 and then by zero in Q'\Q. With
these extension operators, S, are admissible for @ also. As a function, the matrix
A. is extended to @' by defining it to be a I in 9\ Q. The extension is also denoted
by A. and they clearly belong to M(a,b, Q). It may be assumed that (A., S,) has
a Hy-limit A" in Q. By the local nature of Hy-convergence, A restricted to Q has
to be the A* above. Let ¢ € D(Q) with ¢ = 1 in €. Then, the test functions X5

k=1,2,...,n are defined to be the the solutions of

~div(A.VXFE) = —Prdiv(A'V(gz)) in 2,
AVXEin, = 0 on 95, (2.1.16)
XF =1 on A9,

By Hy-convergence, P, XF converges weakly in H} (Q') to ¢z, and hence to z; when
restricted to €2, The test functions ¥, k = 1,2, ..., n are, by definition, the solutions

of

~div(A'VYE + B,VXE) = 0 in 9,

(ALVyr + B.VXFn, = 0 on 95 (2.1.17)
£ E £
:,I'Jf = 0 ondil.

For each k. it can be seen that P.yof is a bounded sequence in H () and therefore,
it may be assumed that F.yf converges weakly to some #* in HY(Q2) and that

Q(AVYE + B.VXE) converges weakly in L2(Q)". Then B* is given by
(B*)'er = lim Q. (A; VUi + B.VXY) — (A")' Wy~ (2.1.18)

The above problems on homogenization boil down to essentially the following
question: let F. be functionals defined on sets K, © L*(Q), having a minimizer
r: € K. and, suppose that @7 — z* weakly in L*(Q2). Is z* the minimizer of a
I tional & delined over a ael v o LILEEJ, whete £ and A can b chiosen inoa

natural way? A question of this generality is the subject of study of the theory of
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L= convergence, But, for the problems in gquestion, because of soine properties il
1 Jo's and UZ,'s have, the answer is provided by the lemma below which is in the spirit
of [-convergence. We need to place the following assumptions on F. and K.: there
exists a K C L*(Q) such that,

(P1) z. € K., z. — z weakly in L*(Q) implies = € K,

(P2) For every = € K, there exists a sequence, z. € K., such that z, — = weakly in
LA ().

F, admits the decomposition, ¥, = F! + F? and there exist functionals £', F? on
K such that:

(P3) For any z. € K., x, — = weakly in L*(Q) implies

1iI_lé.E';.L{IE} = F'z) and, (2.1.19)

lim. oFP(z.) > F(a). (2.1.20)

(Pd) For any » & K, there exist a sequence z, € K. such that z, — 7 and

‘ lim,_y F2(z,) = F?(z).

Lemma 2.1.1 Under the assumptions made above, x* is a minimizer in K for the

function, F = F' + F?.

Proof: For any r € K, choose a sequence, 2. € K. so that (P4) holds. Then, by

‘ (2.1.19) and (P4},

| e = ) + g Fie)
= Flz)+ Fiz), (2.1.21)
On the other hand,
lim, 0 Fi(z}) = lim FHx?) + lim g 2 (22)
E—k
> Fa)+Fix), (2.1.22)

Sinee we have, Fo(e!) < Foa), taking lin g and using (2.1.21), (2.1.22). we get.

F(z™) = Fi(z*) + F2(z*) < F'(2)+ F*z) = Flz).

B
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This is true for any re K. Thas o minimizes Foover K. W

Though for a general sequence x. in i, converging weakly to r, only (2.1.20)

holds, we show that we have equality in (2.1.20) for the sequence of minimizers.

Proposition 2.1.1 Let K,, I, F}, F', F2, F'? be as above, satisfying the conditions
(P1)-(P4). Let x7 be the mintmizer of F, in K, and let x° converge weakly to z° in
L3(). Then,

]ringI Fizt) = F*(z).

Proof:  Choose a sequence, x. € K. such that z, — z* weakly in L%*(Q2) and

lim, o FZ(z.) = F*(z*). Taking lim sup on either side of the inequality,
FMal) + F2w2) < Fiae) + F(x).
It follows from (2.1.19) and the choice of =¥ that,
FUaz®) + Tim o F2{22) < F'(2") + F3{z*)

e, lim,._oF2(x2) € F%(z*). On the other hand, by (2.1.20), limeoF2(z2) =
F?(x*). Therefore, lim, 4 FAe)=F4z"). 1

We now show an application of Lemma 2.1.1 by using it to the homogenization
problem considered in  [25], again, in the {ramework of this lemma, with the help
of some facts from [25]. K. is chosen to be one of the U5, given in (2.1.9). For
this, we note that any of these U2, may be thought of as a closed convex subset
of L2(0)) by imbedding L*(0.) in L3(02). which is done by extending a function
given on £, by zero in the holes. K is taken as the corresponding U,4 (ef. (2.1.10) ).
Also, take F. to be the cost functional J. and note that it is the sum of the functionals
F':' () = %fﬂr B Nu, Vi, dr and Ff{ﬁ'} = ¥ 6% dz, where u, = u-f) 15 the

9o,

solution of,

—div(A,Vu,) = f+8 inf,,
A Nu-gi: = 1) un s

. = 0 on dfi.
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5[:1.,
1 1 .
) == | B'Vu.Vudz,
2 Jq
where u = u(f) solves,

—diviA*Vu) = xf+6 inf,
w = 0 on €2,
where A* is the Hy-limit of the sequence (A, S.) and B* is given by (2.1.18). And

set,

o 1 B
F2(g) = ifHde'

It is now verified that for these choices of K, F'!' and F? the hypotheses (P1)-(P4)
are satisfied. (P1] is trivial except in the last example for K, in (2.1.9) and for this

example (P1) is a consequence of the following lemma (cf. Proposition 2.2 [25]).

Lemma 2.1.2 Iff, € L*(%) and f}; — # weakly in L*(), then

@e—m[ E?dIEfﬁﬂfI-.
0, n X

To verify (P2), given any # € K, the choice . = (x,/x)# belongs to K. and 8, — ¢
weakly in L*(2). Thus, (P2) is also verified. Again from Lemma 2.1.2 it follows
that F'* defined above verifies (2.1.20) of (P3). To verify (P4), for any § € K we
take fI. as above and by the idempotence of y., we get,

e :
X odr = f Xe— dx
G A no Xt

52
—— — .
n X

This shows that F#7 satisfies (P4). It remains to show that £ satisfies (2.1.19) of
(P3), but, this is a consequence of the following fact about B*, proved in [25].
Let g, € L*(f2) be any sequence such that y.g, — g weakly in L#(}) and let v,
be the solution of,
—div(4.Vv.) = g inf€),
4.¥rv.n. = 00 onds

g, = 0 ondil
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l-lll.‘lj wee Dave Lhe j—uj:u'."p'lljl.ﬁ L;l._l]_l_‘.l!:';:'rl,'[il._{' uf i‘lii‘l'5i~.!-1.
el
/ B.Vvu. Vu. dr — f B*'Vu.Vudr
f1c 0

where © 1s the solution of

—div(A*V¥) = g inQ,
v = 0 ondfL

Note that, to verify (2.1.19) using the above it is enough to take g. = f + 6 for
all sequences 8. in K. such that 8, — § weakly in L*(Q). Now, Lemma 2.1.1 shows
that #°, which is the limit of the optimal controls 87, is the optimal control of the
functional F' + F?, where F' and F? are defined above.

The results in the non perforated case are a special case of the above: however,

we are allowed to choose any closed convex set i we like, provided, we take all the

K, 's equal to K.

Remark 2.1.1 In the subsequent chapters, the choice of K. will remain the same,
viz. one of the spaces listed in (2.1.9). Also, the form of F? will be similar to the one
we have just considered. For these reasons, we will only need lo identify a suitable

F' and verify (2.1.19) for that function as the other hypotheses have already been

verified for these choices of K. and F?. B

2.2 Convergence of Energies

We found, in the last part of the previous section, that the convergence of the energies
associated with the state equations played a crucial role in the homogenization
process, chiefly in identifying the function F' of Lemma 2.1.1. We shall address this
question in some more detail now and we restrict ourselves to the non perforated
case to convey our ideas better. The results, in the perforated case, are only stated
as the proofs go through, mutatis mutandis.

As beluie, Ap s e sequence of atices i Ay by 42 and D ds a SUHVEUL i

symmetric matrices in Mc,d,2). It is assumed that the sequence A, has as its
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H-limit the matrix A" We wish to compute the limit of
[stvf,?trﬂdm
it

where v, solves,

—div(AVy.}] = g. in 0,
v = 0 on dl.

and g. is a sequence in L*(Q) such that g. — g weakly in L2(Q). We know that
vy, — v weakly in Hj () and v solves,

—div(A'Vv) = g inQ,
0 on dil.

U

It is desirable to express this limit in the form _.rn BVv.Vudx for a suitable symmetric
matrix B and this should be independent of the sequences g, one may consider. To
calculate these limits is not so easy as the integrand is a product of weakly convergent
sequences. In the case when B, = A, for all £, we can compute the limit using the

equations that v, and v solve. Indeed,

/ Ay, Vi dr = f -
11 g 0
= f gudr
£

- f A*Vv.Vodz.
0

We have only done some integration by parts and used the strong convergence of v,
to v in L2(92), which follows from the compact inclusion of HY(Q) in L2(Q)(Rellich’s
compactness theorem).

When B, # A., there is. usually, no direct way of obtaining the limit
lin, g J['ﬂ BVu. V. dr. In this case, introducing the adjoint problem can be of

help and this is as follows. Let p, € H}(£2) solve

div{A'Vp. — B.Ve) = 0 ot ]
p. = { on EJ'SI.I
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Then, p; 15 known as the adjoint state cotreaponding to the state o, [t can be seon

that p. is a bounded in sequence in H}(£2), One can suppose that,

p. — pweakly in Hj(Q),

ze = AlVp, — B.Vu. — z weakly in Z*()™

Kesavan and Saint Jean Paulin [25] have shown that z = (4°)*Vp — B*Vu for the
B* they have defined through (2.1.7) (¢f. Theorem 2.2.3). Using this, they show
that (cf. Remark 3.3 [25] or Theorem 2.2.1 below)

Iim-/ B, V.. Vu. ri:r=j B'Vu.Vudx.
il

=+l 0

The upshot is, if you know how to homogenize the state-adjoint state system of
equations then it is possible to identify the limit of energies. There are still a few
interesting questions which need to be answered.
(Juestion I: Is the matrix 5* given by (2.1.7) the unique matrix which appears in
the limit of energies?
Questron 2:  Is there a converse to the statement, “if you know how to homoge-
nize the state-adjoint state system of equations then yvou can identify the limit of
energies” 7

The answer to the second question is provided by the following theorem. First,
we write two statements concerning a matrix, B not necessarily symmetric, and the
theorem will be about the equivalence of these two statements.
Statement-1 Let g. be any sequence in H'(Q) such that g, —» g strongly in

H7'(2). Let v be the solution of,

—div(A. V) = g inQ,
v, = [ on dtl

Let v, — v weakly in Hj(§). Then

Fmn J( R Ve dr — f R T el {9 )
-'--rIPJIH 0
B.Vu.Vu. — BVu.Vvin D'(). (2.2.2)

-
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Statement-2 Let g he any sequence in H7'(Q) such that ¢ — g strongly iy

H=H8). Let (v.,p:) € Hy(Q)? solve the state-adjoint state equations,

—div(4.Vv.,) = g inf,
—div(AiVp, — B.Vu,) = 0 in €,
v- =0= p. on &l

Since (v., p.) is bounded in Hd ()2, let

v, — v weakly in H} (),

pe — p weakly in Hy(2),
z. = Al'Vp. — B,.Vu. — z weakly in LZ(Q)",

Then
z=(A")Vp—- BVu. 1

Remark 2.2.1 [f Statemeni-2 is true for some B then it is to be noted that (v, p)

solve the system,
—div(A*Vy) = ¢ in§,
—div((A*)Vp—-BVe) = 0 i, (2.2.3)
p =0= v ondQ). M

The div-curl lemma (cf. Murat  [30]) will be used to prove many of our results

including Theorem 2.2.1 and hence, it is stated here.

Lemma 2.2.1 (The div-curl lemma) Let £, 5, € L*{)" be such that £ — £ and
ne = i weakly in L*(Q)". Further, assume that the sequences divE, and enrl 5. are

precompact in H~'(£2). Then,

Em. —Eqnin D'(Q). M (2.2:4)

TF‘II""I'\T‘F‘TT'I '2 21 ff M qe.n rertreer far sphaek Sltatermente® qe Frapin Hhorr Steitoververbo |

18 true for B. The couverse is true if B is also given to be symmetric.
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Proof: Buppuse that B 15 a matrix for which Statement-2 is trae. Let the Liv-
potheses in Statement-1 hold. Let p. € H}(Q) solve the adjoini-state equation,
~div(A!Vp, — B.Vu.) = 0 inQ,
e = 0 on giL
The uniform coercivity of 4. implies that p, is bounded in H}(f). For any subse-
quence, £ of = there is a further subsequence £ such that,
pr» — p weakly in Hi(5),
2o = ALVpo — BaVu,y — 2 weakly in LA(a)™.
By Statement-2, it follows that = = A*'Vp" — BV, By Remark 2.2.1 and unique-
ness of solution to (2.2.3), it follows that p" is independent of the su bsequence and

we denote it by p, the solution of (2.2.3). Now, by an integration by parts and using

equation (2.2.5),
f BF_“ VT.-'EJ' ."'?L‘Err il - f ."i:_.u "FLHF.“ .vT.I'er dx
Hi it

= f A Nue Npo dr

0
= =8P Z -y ain)
— S 4P 2 H-vn)Hi0)

= [A'vv.?pd:':
fi

Il

f BVv . Nvdz
0

where the last equality follows from (2.2.3) after an integration by parts. As every
subsequence has a further subsequence converging to the same limit, [ BVv.Vudr,
this proves (2.2.1).

Rewriting

BuNv,e Nuu = —[.—1;» Vpo = Ba V). Vo 4+ A Ve Vpo. (2.2.6)

Note that,

dis( - - BV, ) = 0
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and hence are precompact sequences in H (). So, we may apply the div-curl

lemma in (2.2.6) to conclude,

B.#Vuy Ny — —(A%Vp— BVv).Vu+ A'Vu.Vp in D' (Q)
= BVu.Vu

As the limit is independent of the subsequence, we conclude that,
B.Vu. Vv, — BVu.Vuvin D'(Q).

Thus, we have shown that if B satisfies Statement-2. then it satisfies Statement-1

along with (2.2.2).
Conversely, suppose that B is symmetric and satisfies Statement-1. Now, let the

hypotheses in Statement-2 hold. Let w CC © and let 7 € D(Q) be a cut-off function

such that 7 = 1 on w. We define test functions nf € H} (), k =1,2,...,n, as solving
—div(4.V9¥) = —div(A"V(nz)) in Q.
By'the H-convergence of the matrices 4., we obtain,

nt = may weakly in H)(Q),

AV = A*V(nzy) weakly in LA™,
By superposition of the equations for v, and 5%,
~div(A.V(v. £18) = g. £ (—div(4"Vnyz,)) in Q.
Therefore, by Statement-1,

BV, £ V1ii).(Voe £ Vif) = B(Vo £ V(nzi)).(Ve £ V(i) in D'(Q).

Hence, using the polarization identity and the symmetry of B,

B.Vu. V! — BVu.V(nzy) in D(Q). (2.2.7)
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Now, we obtain the distribution limit of z, = A!Vp, — B, V. in two ways. By the
div-curl lemma applied to z..Vn, we get,

2.Vt = 2.¥(nz,) in D'(Q) (2.2.8)
On the other hand,

z.Vnf = A.Vnt.Vp. — B.Vy, NVt

; (2.2.9)
= A*V(nzi).Vp— BVu.V(nz;) in D' (),

using (2.2.7) and applying the div-curl lemma to pass to the limit in the first term

of the sum. So, from (2.2.8) and (2.2.9), we get,
z.ep = A"'Vp.er — BVu.e, in Dllfm]

Since this is true for all w CcC Q, we have the desired conclusion. Thus B has been

shown to satisfy Statement-2, W

| The answer to our first question is given by the following theorem.

| Theorem 2.2.2 Any symmetric B satisfying Statement-1 or, equivalently,

Statement-2 is unigue.

Proof: Suppose B, B’ are two symmetric matrices for which Statement-1 with

2.2.2) is true. For 7f defined in the proof of previous theorem, we have for any
e P

I J1k = {1!25--'? ?’1},

| B-Vnl.Nnf — BV(nz;).V(nzy) in D'(9) and,
B.Nq.Vyf — B'V(nz;).V(nz:) in D'(Q).

Therefore, B = B’ for all w CC (2, and this proves the result.

Another proof would be to use (2.2.1) and the desired result follows directly from
Lemma 22.5 of Dal Maso [16]. W

Now, is there is a matrix B satisfying Statement-2 ? which of course implies B
satisfies Statement-1. It was shown by Kesavan and Saint Jean Paulin in [24] that
B* defined through (2.1.7) satisfies Statement-2. We prove this, now, for the sake of

completeness; also, our proof turns out to be much shorter than the original proofl

in [24].

B
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Theorem 2.2.3 B* defined by (2.1.7) satisfies Statement-2.
Proof: Let g, be any sequence in H~(Q) such that g. — g strongly in H=1(0).
Let (ve,pe) € Hg(2)* solve the state-adjoint state system of equations,

div(4.Vv,) = ¢ inQ,
div(A!Vp. —B,Vv.) = 0 inQ,
v. =0= p. ondf

Since (v;, p.) is bounded in H}(Q2)?, we may suppose that,
ve — v weakly in H}(Q),

p. — p weakly in H}(8),
ze = A;Vp. — B.Vv. — z weakly in L2(()".

Let B* be given by (2.1.7). We need to show that z = (4")'Vp— B*Vu. Let X* be
the test sequences having the properties (2.1.5). Then,

z2.VX} = Vp.A.VXF - B.VXF Ty

= Vp. A VX — {(B.VXE + ALVYE). Vo, — A Vo, Vyt),

We may apply the div-curl lemma, use the convergence properties of Xk v, p.

ete. and (2.1.7) to conclude that,
2. VXE — A%e,. . Vp — (B )'er. Vv in D'(Q).
On the other hand, directly from the div-curl lemma,
2. VX! = 2. in D'(Q).

So, we conclude that z = (A*)'Vp—B*Vv in D'(Q). However, they are both LA
functions and the sequence z is bounded in L?(Q2)". Therefore, they are equal as

LA™ functions as well. W

~ Remark 2.2.2 The symmetry of B* follows from Theorem 2.3.1 in the next section.
So, by the theorems we have just proved, the malriz appearing in the cost functional

of the homogenized problem can only be the B* which is defined by (2.1.7). &
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Remark 2.2.3 Though, in [25] it is observed that B satisfies Statement-2, they do
not observe that B* has the convergence property (2.2.2) while still observing (2.2.1).
We have seen now that these fwo convergences characterize the homogenized state-

adjoint system of equations. W

The versions of Theorem 2.2.1, Theorem 2.2.2, and Theorem 2.2.3 for the perfo-
rated case are now stated. Let (A,,.5.) Hy converge to A*. In the perforated case,
Statement-1 and Statement-2 concerning a matrix B are to be replaced by,
Statement-3: Let g. be any sequence in #=(Q) such that g. —+ ¢ strongly in

H='(2). Let v, be the solution of,

~div(4.Vv.) = Prg. in Q,,
ANv.n: = 0 on d5,,
e = 0 on dtl.

Let Fov, — v weakly in Hg(2). Then

c—=+0

limf B Vv. . Vu dz = ./B?tr,?u dz
0, 0
XeB:VFv. .VPu. — BVv.Vvin D (Q).
Statement-4: Let g. be any sequence in H~'(Q) such that g, — g strongly in

H7H). Let (ve,p.) € H}(€2)? solve the state-adjoint state equations,

b

—div(4,Vv.) = Fg. inQ,

—A: Vo = 0 on &5,
div(AiVp. — B.Vv,) = 0 inf), ¢
(4iVp, — B.Vv)n, = 0 on d8S,,

e =0= b on ofl.

Since (P.v., Pop;) is bounded in H}(02)? let

Peve — v weakly in H}(0),
Fope — p weakly in H}(Q),
ze = Qe(AVp. — B.Vu.) — z weakly in L}{(Q)"
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Then
z=(A")'Vp— BVu.1
The following theorems are true.

Theorem 2.2.4 If B is a matriz for which Statement-4 is true then Statement-3

15 true for B. The converse is {rue if B is also given to be symmetric. W

Theorem 2.2.5 Any symmetric B satisfying Statement-3 or, equivalently,

Statement-4 15 unique. W
Theorem 2.2.6 B* defined by (2.1.18) satisfies Statement-{. W

A similar remark (cf. Remark:2.2.2) can be made about the uniqueness of B* after
showing that it is symmetric. The symmetry and some other properties of B* are
shown in [25] but with much difficulty as the expression (2.1.18) is not convenient.

The next section deals with these problems.

2.3 Properties of B*

The properties of B* that are of interest to us are its symmetry, ellipticity and upper
bound. We now reformulate B*, given by (2.1.18), in a natural way as to give us
some properties of B* like symmetry and upper bound, easily; the question on the
upper bound was left open in [24], [25]. The ellipticity of B* was shown in [25]in a
certain sense, but not of the matrix itself. So, we will also prove the ellipticity of B*.

We recall the test functions, X¥, which were defined through (2.1.16). Define,

the corrector matrices, M, by,
M,ey = VP.XE, fork=1,2,..,n. (2.3.1)
It is known (cf. Proposition 1.14 [7]) that they have the following properties,
M. — I weakly in L2(02)"",
XeA M, —  A® weakly in L2(0)"7,
div(x.A.M.) cc H'Y(Q).
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The proof of Theorem 2.3.1, below, will use the following lemma.
Lemma 2.3.1 (c¢f. Proposition 1.15 [7]) Let €&, € L*(Q)" be a sequence of vector

fields such that the sequence, Q.(£.), is bounded in L*(Q)" and satisfies

—div(&) = FIfeinQ., } (2.3.2)

r . = 0 on 85.

and the sequence, f., isin a compact subset of H='(2). Then, the sequence div(Q,£,)

is in a compact subset of H-1(Q2). W

Theorem 2.3.1 Let B* be defined through (2.1.18). Then, B* is the limit, in the

distribution sense, of the sequence of matrices x. M!B. M,
Proof: It is enough to show, for any j, k € {1,2, ..., n}, that,

XeM{B.M.epe; — B'epe; in D(Q).
We first rewrite the left hand side as follows

XeM!B:M.ex.e; = x.B,VP.XFVP.XJ

Xe( ALV PAE + B.VP.XF) VP.X] — x, A.VP.X! VP!
= QAA{VYf + B.VXY).VP.X? — x, A M.e; V Pk,

We are in a position to apply div-eurl lemma provided we show that
divQ.(ALVyE + B.VX}) is precompact in H='(Q). But this follows by taking
£ = (ALVYE + B.VXF) and f, = 0 in the previous lemma. Therefore, we get

XeM{B:Meere; — limQ(AVYL + B,V X).e; — A'e;. V¢ in D'(€2)

= Ble.e

from the delinition of 5*. B

As an immediate consequence we have,

Corollary 2.3.1 B* 1s symmetric. B

)} s
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We now obtain bounds for the matrix B*.
Corollary 2.3.2 B* € M(cCy?, db?/a? Q).

Proof: First we prove the upper bound. Let ¢ € D(Q), ¢ > 0 and let £ € B*. We
have, using the bounds on A, and B,,

/ XeBM.EMEddr < dfa / e A MEMEddr. (2.3.3)

0 0

It can be shown, using the div-curl lemma and the properties of M., that
XeMIAM, — A*in D'().

We know from Theorem 2.3.1 that x, M!B.M. converges in D' () to B*. Therefore,

we may pass to the limit as € — 0 in (2.3.3) and obtain

fﬂ'{.&tﬁd’cﬂd{n/ﬂffﬁﬁdz.
0 n

As this holds for any ¢ > 0 in D(Q), we conclude that B*(z)€.£ < (d/a) At (z)EE
for almost every z in £2. Since it is known that A*(z)E.€ < b*/a|€]? ae. 7 € Q, we

conclude that
B*(z)E.& <db*fa?|f|? ae. €D (2.3.4)

and for all £ € R*. This proves the upper bound.
A lower bound already exists (cf. Theorem 3.3 [25]) for the quadratic functional

defined by B* viz. ,
c(?g?'f [Vo[Pdr < / B*'Vu.Vudz for all v € H (). (2.3.5)
n ft

| Then, it follows from Proposition 2.3.1 below, proved by Juan Casado Diaz [9], that

the matrix B* is itself elliptic and indeed
cCyPlEl* < B (z)E.£ ae. z € Q.

This gives the lower bound. W '
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‘Proposition 2.3.1 Let 1 = (a,,) be a symmetric matric whose enbries belong to

L>(Q1). Then,
/ AVeNoda 2 0 for all ve Hy(0) (2.3.6)
0
mmplies that A(z)£.£ > 0 a.e. in Q and for all £ € R*.

Proof: Let £ € R" and let ¢ > 0 be any function in 3 (2). Consider the sequence
Ve, given by v, = £ cos(e'E.x)é. It is clear that for each £ > 0, the function v,

belongs to Hj(f2). Rewriting (2.3.6) with v. we get,
D < ¢ fs; AV Vo cos®(E.xfe) dx — 2 /ﬂ AV¢.Eeos(E.x/e) sin(E.x/e)d dr
+ fﬂ A&.Esin*(E.x/e) o dr.
Similarly, starting with & sin(s~'€.2)¢ one gets
D = £ /ﬂ.-i?qﬁ.?q‘; sin® (€.z/g) dx + 25[} AV @.£ cos(€.x/e) sin(€.x/e)d dx
= ];1 AL Ecos®(Ea/e)d® da.
Adding these two inequalities gives
0<e? : AVp.Vdr + A AE.Ld* dx.
We may let £ — 0 to obtain
0< j;; AEddx

for all ¢ € Cj(R2). From this it follows, by standard arguments from measure theory,

that A(z).E >0ae z20. N
Remark 2.3.1 The original proof of Juan Casado Diaz uses the test sequence 1,
defined by, v. = eb(e~'E.2)¢ where 1 is the roof function,

t if tel0,1/2],
1—t df te(1/2,1].

wit) =

We have modified it to resemble the proof of a result due to Dal Maso (ef. Lemma
22.5 [16]) where it is essentially shown that if (2.9.6) changed to an equality then

A 1s the zero matriz in the almost everywhere sense. W




Chapter 3

Periodic Case

3.1 Introduction

In this chapter, we study the homogenization of the optimal control problem with
periodically oscillating coefficients and posed over periodically perforated domains.
We obtain formulae for the homogenized coeflicients, directly, employing a corrector
result, using the method of two-scale convergence. This recovers the formulae of
Kesavan and Vanninathan [27] in the non perforated case. In Section 3.4, gener-
alizations of these formulae are obtained by considering the situation where there
are several(well separated) scales, using the method of multi-scale convergence pro-
posed by Allaire and Briane [2]. The results of this chapter appeared in Kesavan
and Rajesh [23].

First, some notations and definitions.
o Periodic function spaces on B with the unit cell, Y, as period will be denoted by
the subscript #. For e.g., C(, Cx(Y)) will denote the space of continuous functions
on £ x R" which are Y-periodic in the second variable,
¢ The optimal control problem will have as coelficients, A_(z) = A(x, ), Bilw) =
Bz, £), where A(z,y) € M(a,b,Q x R*), B{x,y) € M(e,d,Q x R"), with A, B &
(0, LE(Y)).

o A periodically perforated domain, €2, is obtained from © by removing a set 7},
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comsisting of holes, where,

T.= | ek +7)
kezn

for some T, closed, C V" with Lipschitz boundary. It is assumed that ). is connected.

The boundary of €2, has two parts -the interior boundary given by,

Ot = | {9e(k+ 1)k +T) c Q).
k ez»
and the ezterior boundary, 9, Q. = 90, \ 8,10, The material part in the unit
cell is ¥* = V' \ T and is assumed to have non-zero Lebesgue measure, m°, Note
that m* is also the L™ weak" limit of the sequence y..
o . or will be used to denote the operator which extends a function given on 2,
by zero in the holes.

For £ > 0 fixed, the optimal control problem consists of minimizing the cost

funetional

1 N .
(P.) J.(8) = —/ B.Vu, Vu.dr + —/ 0% dx
2 Jo, T Jo
over f € Uz, where u. = u, (#) is the solution of the state equation,

—div(4.Vu,) = f+0 in(,,
ANVu . = 0 on i,
Uy = 0 on ﬁulﬂf-

Uz, is taken to be one of (2.1.9). Set,
FUe) = l/ B.Vu.Vu, dr and,
: 2
Fiil

FX6) = 5 [ 0z
FATE

The homogenization of (P.) is performed in the framework of Lemma 2.1.1. As
‘already remarked (cf. Remark 2.1.1), the limiting space of controls is the corre-

sponding Uyg given by (2.1.10) and £ is the function defined in Section 2.1, We
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need to identify F' which will satisfy (2.1.19). This involves two things-first, to pass

to the limit in the following equations,

—div(A,Vv.) = f in (.,
-Asvvs-n's = 0 on ﬂin!ﬂsa {311]

v = 0 on a{':l:tnE'

for any sequence f, € L3(Q), with x.f, — m" f weakly in L?(9); and second, to

obtain the limit of the energies,

f B.Vu. Vv, dz.
.

This will be done using the method of two-scale convergence which is described in

J the next section.

3.2 The Two-Scale Method

In this section, we shall discuss the formal two-scale method and its counterpart,
the two-scale convergence method. We shall, mostly, recall various results found in
the literature or small modifications of these, without proof. For the proofs, Allaire
[1] or Conca, Planchard and Vanninathan [13] is a suitable reference.

In the homogenization of problems with a periodic micro structure, the solution
i, usually, assumed to have a two-scale asymptotic expansion,

u&_{g] = Hu[-?.-'. %J -+ ET11{$1 g:] o Ezug{:ﬂ?, i] +..

E

. (3.2.1)

where each w;(x,y) is assumed Y — periodic. By formal expansion of the differential
equation and by equating the coefficients of various powers of ¢, it is possible to
obtain the homogenized equation that wg solves. The coefficients of this equation
and the next term wy in the asymptotic expansion are obtained by solving some cell
problems. The formal calculations are made rigorous by proving the convergence of
Uz 10 g in a suitable topology (usually weak). Previously, the convergence results

were proved by the energy method which consists of some clever manipulations of

B
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the equations and carefully chosen test functions. A recent method, which is very
suitable to handle convergences in the homogenization of periodic micro-structures,
is the method of two-scale convergence, proposed by Nguetseng [31] and refined
by Allaire [1]. At the basis of this method is the following averaging principle (ef.
Lemma 5.2 [1] or Lemma 5.3, Ch. III [15])

Lemma 3.2.1 If ¢(z,y) € C(Q, Cu(Y)), then

fﬂ ¢(z,§}dx = fﬂ /Y é(z,y) dy dz. W (3.2.2)

Remark 3.2.1 It is easy to see thal if u. has the asymptotic erpansion (3.2.1)

where the w;' s are smooth, then

.Ltasqé(m,g]dmﬂfnfruu[x, y)o(z,y) dy dx (3.2.3)

for all ¢ € C(Q, Cx(Y)). Thus we obtain the first term in the asymptotic expansion
of u,. W

This leads to the following definition,

Definition 3.2.1 A sequence u. of functions which satisfies (9.2.8) is said to two-

. 2-
scale converge to uy and we write u, —> ug(z,y). W

The following compactness result helps us to obtain the first term in the asymptotic

expansion of u. whenever the sequence, wu,, is bounded in L*().

Theorem 3.2.1 For each bounded sequence u. in L?(Q) one can extract a subse-

quence and, there exists a function ug(x,y) € L*(Q x ) such that this subsequence

two-scale converges to ug.

A few properties of two-scale convergence are listed below. Let u, be a sequence in
L*(Q2).

L. For any two-scale convergent sequence its two-scale limit is unique.

2. If u, — u strongly in LA(Q), then u, 25 (),

3. If u. 225 wo(z,y), then u, — [y wo(z, ) dy weakly in L2(Q2). Then it follows
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from the uniform boundedness principle that any two-scale convergent sequence, .
is bounded in L*(€2).

Property 3 above shows that two-scale convergence yields something weak and
is not quite enough to pass to the limit in integrals involving the product of two
weakly convergent sequences in L?(2). To handle this situation we need to have a

stronger two-scale convergence. This leads to the following definition.

Definition 3.2.2 A measurable function ¢ : } x B — R which is Y-periodie in

the variable y is said to be admissible if

/n?ﬁ»' (*T1 g)ﬂ dr — Lﬁwfm,y}zdydm, (3.2.4)

More generally, let u. be a sequence in L*(Q2) which two-scale converges to uy(z, y).

It 15 said to be admissible if

fufd:c—-}f[un{:n, ) dydz. ® (3.2.5)
0 aJy

Remark 3.2.2 Though the most general condition under which Pz, y) is admissible
is not known, it is known that if ¥ belongs to one of the spaces L*(Q, Cu(Y)),
Ce(Q, LF(Y)) or G’[ﬁ,L:ﬂY}] then it is admissible (cf. Allaire [1]). Moreover,
bz, 2) 25 g(z,y). W

We, then, have the following strong convergences,

Theorem 3.2.2 (Allaire [1]) Let u. -5 ug(r, y) and assume that u. is an admis-

sible sequence. If v, is any sequence such that v, Z=3% 4, (z,y) then,

'{;Evﬁ—kfun[ﬂ:,y}vg{z, yldy in D'(9) and, (3.2.6)
‘n“

lim [ wu,v, dz:/[uﬂ[z,-y}vu(:r,y}dyd:c. (3.2.7)
e=0 0 nJy

Further, if ug(z, %) =1 ug(z,y) and uy is an admissible function then

lim ”u ~ gz, E}”n =1, 5 (3.2.8)
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‘Remark 3.2.3 We observe that, due to Remark 5.2.2 and Theorem 3.2.2, any ¢
from the spaces L*(Q, Cx(Y)), C.(Q, LF(Y)) or C(&, LE(Y)) can be used in the
.deﬁmtmn of two-scale convergence. Besides, as these spaces are dense in L1 x V)
the compactness result, Theorem 3.2.1, is also valid if in the definition of two-scale

convergence we substitute one of the admissible spaces for C(§, Cx(Y)). ®

To obtain more terms in the asymptotic expansion of u., we need higher regularity
‘of u. than L%(02). In fact,

‘Theorem 3.2.3 Let v, be a bounded sequence in H'(Q) converging weakly to o
Junction w € H'Y(Y) . Then, there ezists u;(z,y) € L*(Q, Hy(Y)/R) such that, up

to a subsequence, Vu, two-scale converges to Vou(x) + Vyu(z,y). W

‘We, thus, obtain the second term, u; in the asymptotic expansion of u.. Now, we

prove a result which turns out to be quite useful in several proofs in the next section.

‘Theorem 3.2.4 Let u. be a bounded sequence in L*(Q) sueh that u,
cand let ¢ € C(, LE(Y)). Then,

E} Hﬂ{:ﬂ::y]

ued(z, =) 23 uo(z, 4)é(z,v). (3.29)

‘Proof: Let v € C(Q Cy(Y)). We note that ¢y € C(TQ, LZ(Y)) and so, by

‘Remark 3.2.2, ¢(z, £)u(m, £) 3y oz, y)p(z,y) and ¢ is an admissible function.

Therefore, by (3.2.7) of Theorem 3.2.2, we get,

i [ b, 000 D e = [ [ wnte)bto,v)(o,) ey m

Corollary 3.2.1 Let u.,ug and ¢ be as in the previous theorem. Let v. be an

admissible sequence which two-scale converges to vy(x,y). Then,

fufqi{ LEdI—}f/uuqﬂ’UudﬂtEii (3.2.10)

’roof: By the previous theorem, u.¢ (z e up(z, ¥)é(z,y). Also, we are

ﬁ_i_vml. that v, =% volx, y) and that v. is an admissible sequence. Therefore, (3.2.10)
ollows from Theorem 3.2.2, B
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3.3 Homogenization-Two Scales

We now resume the discussion from where we left off in Section 3.1. The homogeniza-

tion of the equation, (3.1.1), was done by Allaire [1], using two-scale convergence.
This is recallod.

Let f. be a sequence in L*(2) such that x,f. — m* f weakly in L?(Q) and let
v: be the solution of (3.1.1) in,

Ve = {u € H'()|u = 0 on 8.0, }

equipped with the inner product, < u,u >y, = fﬂr |Vul?dz. It can be shown, using

the ellipticity, that Sup, ||“r”v. < 0C. Ii‘urther, a uniform Poincaré inequality,
|velog, <C llwelly,

holds for some C independent of £ (¢f. Lemma A.4, Allaire and Murat [3]). Thus,

% and V. are bounded in L?(Q) and leads to the following theorem which is similar
to Theorem 3.2.3.

Theorem 3.3.1 [1] For some v € H}(Q) and v, € L?(%, Hi(Y)/R),
7 2 Xy,
Voe 23 x(y)(Vav + Vyui(z,y))
up to a subsequence, where x(y) is the characteristic function of V*. W
Remark 3.3.1 Note that v, — m"v weakly in L*()). W

Further,

Theorem 3.3.2 [1] The v,v; solve the two-scale homogenized problem,

—divy (A(z, y)(Vzv + Vyuibr,y)) = 0 in Qx YY",
Ale,9)(Vav + Vyui(z,y))my = 0onQx8Y*\ Y,
_aiv, ( [ %@ )20 + Yy (2,0) dy) = mfinom
¥

(3.3.1)
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‘Remark 3.3.2 In fact, v, € L*(Q, Gj#(lf} /R), the extra regularity coming from the
 smoothness of the coefficients ay;(z,y). W
It is possible to decouple the equations (3.3.1) for v and v, by setting

v

iy {I, y} B 5—2?3{"(2:, y}1 {332]

where, X*(z,y) solve the following periodic boundary value problem in V= :

—divy(Alz, y)(e: + Vo X(z,1)) = 0 inY*aesz, ‘
Alz,y)e; + V Xz, y))n, = 0 on 0 x @Y\ 8y,
(z,9)( v (. y))-my \ L (333)
Jy. Xz, 9)dy = 0 a.e. I,
y = X'z,y) is Y-periodic.

Defining the matrix 4* by,
. dx7
Ailz) = ./1; x(y)(asi(z, ) + ﬂﬂ:{%yjfw‘(?«‘r!ﬁ” dy , (3.3.4)

it can be verified that v solves the homogenized problem,

—div,(A*(z)Vv) = m'f inQ, } (3.3.5)

v = 0 on gl

It is now to be shown that, there exists a B*, independent of the sequence f., such
that the limit, lim._g fn. BK?UE,‘FHE_ dr, can be written as o B*'Vu.Vudzr., Tor

this, we use a corrector result which will be proved immediately alter the following
lemma.

Lemma 3.3.1 Let v, be the solution of (8.1.1) and (v,v,) be as in Theorems 3.3.1
ond 8.3.2. Then y, (Viu(z) + Vo (z, Z)) is an admissible sequence.

Proof: Note that by Remark 3.3.2, V,u(z) 4 Vv, (2, y) € L3(Q,C4(Y)). Hence,
]_;'ry.REma,rk 3.2.2, it is admissible and further,

£(x, ?]. = V.o(r) + V,u(z, ;E} £ Vev(z) + Vo (e y) = ). (3.3.6)
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‘Now, since x € LF(Y), by applying Theorem 3.2.4, we get,

Xe (Veo@) + Vyn(e, ) 55 x(0) (Vavla) + Vym(ew)). (33

Since y. is idempotent, to prove the theorem it is enough to show that

lim xsi‘? u{:r.}—l—‘{?yul[m, )2 dz—/f (W) |IVv(z) + Vv (x, v)|* dy da.

0

hwhmh readily follows from Theorem 3.2.2 using (3.3.7)and the admissibility of
:ﬂ[$] =+ vyﬂl [E7 y} |

The corrector result is as follows,
‘Theorem 3.3.3 Let v,,v,v; and & be as in the previous lemma. Then,
lim [V, — xc (Vav(a) + V,ui(z, —}) i, (3.3.8)
Proof: Set r. = Vv, — x.€ (r, ), where £ is as in (3.3.6). Then,
alrel g
< [ A(vue(n0)) . (vo-t(n2)) s
’ Foupdn — LA (z, f) V.6 (:1: g) dz
o fﬂ A (z f-) £ (z, f) Vo, dz + fﬂ Xe A (z ;) 3 (s: g) £ (1: g) dz.(3.3.9)

'Hém we have used the idempotency of y. = x(%) and (3.1.1). Note that from
eamm 3.3.1, Vo, =% — x(¥)é(z.y); A e CQ, LY F(Y)) and; as already observed,
-_,{;:, ;} is an admissible sequence. Using these as inputs in Corollary 3.2.1 we get

P

the following convergences as € — 0,

[A6D Tl

ﬂA(I, ;) £ (:1:, %) .%dm y — [ ./1’ E(x,y).E(z, y) dydr

) i

£x
il
oS
T
| &2
e
Iy
—
1
L =
R
'
P
=
-
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Taking lim .p in (3.3.9) we get,

Es4nﬂ!ﬁ|§,n = mf—}ﬂ' feve dz — [ / x(y}A{:f:, y}f(’-‘-‘: y}*fimr y} !fy!f:’ﬂ.
a2, nJy
(3.3.10)
We note, using (3.3.1)-(3.3.5), that
| [ x4, e, )€ 0) dyds = [mppda @an)
nJy 0

- We still need to compute lim,_q . feve, but it was shown by Allaire, Murat and

Nandakumar (cf. Lemma A.3 [3]) that, if

Sup, I|uE|IVE < o0
v: — m" v weakly in L*(()

fo = m f weakly in L*(Q2),
then,

f fsvsdr——rfm'fvdx, (3.3.12)
2, 0

Therefore, it follows from (3.3.10), (3.3.11) and (3.3.12) that |r.jon — O as e — 0

completing the proof. H

Remark 3.3.3 It is casy to see that the sum of an admissible sequence with some-
thing which converges strongly to zero in L?(Q2) is admissible. Therefore, it follows

ﬁ-crm Lemma 3.3.1 and Theorem 3.3.3 that Vv, is also an admissible sequence. l
We, finally, prove the convergence of energies to a suitable ENergy.

Theorem 3.3.4 Let v, v be as before solving (9.1.1) and (3.8.5) respectively. Then

lim f B.Vv,.Vu, dz = [ B*Vu(z).Vo(z) dr (3.3.13)
L3 n

e=+0

uhere,

Bjj(z) = f} X B, )V i + X¥(z,1)).V,(y; + X (z,9)) d. (3.3.14)
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of: As a consequence of Theorem 3.3.3 we may write

V..V, do = _/; B.V,.Vu,dz

= LXEBE{?:H(:::] + Vv (z, g}},{vz@r(z} + Vi (z, E)} dr + o(1).
n arguing as in Theorem 3.3.3 it can be shown that,

lim | B.Vu. Vv dr

ff (z, ¥)(Vzu(z) + Vyui(z, ). (Vev(z) + Vv (2, v) dx dy.(3.3.15)

-14) we recover the formula of Kesavan and Vanninathan [27]. W
From Theorem 3.3.4, it follows by taking
o) =5 [ BVevude
2 Ja
where v = v(f) solves

—div(A*Vy) = m*'f+0 inQ,
v = 0 on dfl.

F! verifies (2.1.19) of Lemma 2.1.1. For this, it suffices to take f. to be equal
to f+ (x:/m*)8, for some # € U,y in Theorem 3.3.4, Thus, by Lemma 2.1.1, the

hiomogenized problem is the following; minimize the cost functional,

—div(A*Vu) = m*f+8@ inQ,
u = |l on df).

e A* and B* are given by (3.3.4) and (3.3.14) respectively.
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3.4 The Case of Multiple Scales

'-Wé now consider optimal control problems on multi-scale periodically perforated
“domains and whose coefficients have oscillations on several microscopic scales.

Let ay(g),as(g), ..., am(e) be m microscopic scales and assumed to be well-

‘separated i.e. there exists r > 0 such that for i € 1,2, ..., m,

3 ], = 642
‘and the macroscopic scale ag(e) = 1.
Example: a;(z) =k where 0 < by < hy < ... < k.. W

For any function ¢(z, 1, .., ym), which is Y-periodic in y; for all 7, the scaled
function ¢ (I1 et ﬂ:ﬁ) is denoted by [¢]..

Let A€ M(a,b,2xY™) and B € M(e,d, 2 x ¥™) with B symmetric. Assume,
further, that 4,8 € LR, Cy(Y™)). We consider the optimal control problem
‘having coefficients [A].,[B]. on a multi-scale periodically perforated domain, £,

which is defined as follows.

Let T3, i = 1,2,...m, be closed subsets of the unit cell, Y and having smooth
boundary. Set,

I* = U Uu;(E]{k—i-T.']

k czni=l

which is the region occupied by the holes. Then, ©Q, = Q\ T and is assumed
to be connected. The interior boundary of Q. comprises of the boundary of holes

strictly contained in 0 and is denoted by dinifle. The exterior boundary is the set,

ﬂﬂgﬁt — Bﬂg \ 3i,“ﬂg.

Following Lemma 2.1.1, it is enough to homogenize the state equation and to
ﬁud the limit of associated energies. We accomplish this using the multi-scale con-
ence method introduced by Allaire and Briane [2]. To begin with we recall the

notion of multi-scale convergence and a few results from their paper.
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_-_i_gﬁnitinn 3.4.1 A sequence u, € L*(Q) is said to (m + 1) -scale converge to g
function u € L3(Q x Yoy af

Lug[é]cdr—}fH/Y...‘/;[ur,f:]{x,yh,-,ym}dy,,,..dylds: (3.4.2)

Jorall ¢ € LEQ, Cu(Y™)). We write u, ey w(Z, 1, ey Yy ). W
‘The definition makes sense because of the following compactness theorem.

Theorem 3.4.1 (cf. Theorem 1.4 [2]) From each bounded sequence in L2(Q) one
]

can extract a subsequence which (m+1)—scale converges to a limit in L2(QxY™). W

T]m proof of the theorem uses the fact(cf. Donato [19]) that if ¢ is any function in
(0, C4(Y™) then

]imf[q.’:]ﬁ dm:/f f (T, Uiy ooy Y ) Yy iy d T (3.4.3)
e3dn aly  Jy

Also one knows(cf. Allaire and Briane [2]) that [¢]. (m+1)-scale converges to
‘“'(z, Y1, Ym). Such functions are said to be admissible functions. One can intro-
"uca. like in the two-scale case, the notion of an admissible sequence and obtain the
following version of Theorem 3.2.2 for the product of two (m+1)-scale convergent

sequences at least one of which is an admissible sequence (cf. Theorem 1.5 [2]).

Theorem 3.4.2 Let u, be a sequence of functions in L*(92) which (m+1)-scale con-

verges o u(z, i, .., Ym) and satisfies

lim ufd$=/[/ Wz, y1, -1 V) AU dyidez,
=000 aly Jy

Then for any sequence v, which (m+1)-scale converges to U(Z, Y1y 0, Um); one has

lim/ ugvgdm=‘// / (T, Y1y e Y JU(2, Y1y oo Yrn) AW dipy dz. B
0 aly Jy

Remark 3.4.1 A sequence like u. in the above theorem is said to be an admissible
sequence. Clearly a sequence of functions which converges strongly in L*? is an admis-
Sible sequence. Also by the above theorem, the sum of two (141 )-scale convergend

sequences which are admissible is also an admissible sequence. W
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One proves a version of Theorem 3.2.4 as follows.

Theorem 3.4.3 Let u. be a bounded sequence in L*(Q2) such that u. it e
u(z, gy, ym). Let ¢ € L%(Q, Cu(Y™). Then wu[d). s g (W), Yy oy Yom )
Proof: Let 1) be any function in L*(2, C4(Y™)). Then ¢y also belongs to this

space. Hence, by the definition of (m+1)-scale convergence,

/ﬂ u @l de = [;1 ue [y dz

—* /[ f 'U-(IJ, Yy ym} (65'{!'—‘] fI: L P ym} Idglrfr?l"i.'!,ﬂllr:'f:L
Y 1

= -/-f [ (“qil"){xayh -*:yﬂl] 1'5'[17: Wiy ym} E'fym-*dyld:r-
gy ¥

This completes the proof. B

3.5 Homogenization-Multiple Scales

‘To obtain the homogenized coefficients, A* and B*, in the limiting optimal contral
problem we follow the same steps as in the two-scale case. Let f. be a sequence in
L*(9) such that x.f. — m’f, where m" is the material part of Y. Let u, be the

weak solution of the following elliptic boundary value problem,

—div([4],Vu.) = [, in Q.
[4]).Vu.m, = 0on &,%0,,

v = 0on 8...80,.

It is required to homogenize these equations and to find the limit of the sequence
fﬂt[B]Equ.qu dr. The homogenization of the equations (3.5.1) was done by Allaire

and Briane [2] and it is summarized in the following theorem (cf. Theorem 3.4 [2]).

Theorem 3.5.1 Denote by~ the extension by zero in the holes Q\ (). Then

~  (m+l)=s
i, — ul[St-‘Jx{y;, ey ?;l’m]H

m (3.5.1)
THE I 41‘ (?I'T.I 4+ Z ‘Fykuk) __'I:_{"!._‘I'h g ym}

k=1
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where x(y1, ., ¥m) = [[i2, x:(v:) and x; is the characteristic function of the set ¥,

Also, (u,uy, ..., Up) is the unique solution in

V= HY(Q) x ﬁ[zﬁgn x V&L HYP)

=}

of the (m+1)-scale homogenized problem:

—divy, (A(Veu4+ 30 Vou)) = 0in Y,
AVeu4 300 Vyu)n = 0 on 8T,
Jo Xom(Uor )t Ay = 0,
—divy Foi [y ) A(Vau + 30 Vo u)dyn.dyse = 0 in Y7,
Sy by T xe (e ) A(Vau + 5 Vo, up)dipmedyze)n = 0 on aTy, ¢
Jy, x5(ws)usdy; = 0
for j=1, 2, ..., m-1 and finally,
~divs [y fy [1T e (we) A(Vau + S0, Vou)dym. dyn, = m*f in Q,
u = 0 ondqQ.

(3.5.2)
m*, here, is [ [, T17 xe(ve)dym.dy,. B

Remark 3.5.1 It is possible to decouple the (m+1)-scale homogenized problem by
setting

-
L B i
ﬂj{za Yoy ym = .- 5 a_ jrt[I: Wiy-eey yﬂ'l} (3'-]3}
k=

‘:j'urj =m,m—1,...,1 successively. For all | € {1,2,..., n}, the wj; are obtained

successively for 3 = m,m —1,...,1 by solving the periodic boundary value problems

in the cells with holes, Y,

—divy, (47 (e, + Vwh) 0 inY;,
Ale+Vuw)n = 0 on 8Ty, (3.5.4)
v (e o) dyy, = 0,
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forwh' € LH(Qx Y=Y, HL(Y})) and the A7 s are obtained successively in conjunction
with (8.5.4) as follows,

A" = 4
ATlg = fr xi () A (e + "'Tr'_._,}w“'f}dy_,- for all [, (3.5.5)
2

The homogenized problem that u solves is,

—div(A*Vu) = m" f in §,
w = 0 ondfl

where A* = A° given by (8.5.5) for j=1. &

‘We now wish to compute the limit of the energies fﬂ: [B]:Vu..Vu.dz. Note that

this can be written as fn[B}Eﬁ.ﬁ dr, From Theorem 3.4.3 and Theorem 3.4.2
it follows that

e+l

1 T
= f f f B (Vau+ Y V). (Vau+ 3 Vi ta)dym. dyndz (3.5.6)
ady  Jy =

k=1

lim f (B). V..V, dr
Lt

provided we can show that ﬂg i3 an admissible sequence. To prove this we re-
quire the solutions ug of the cell equations to be more regular, i.e. they belong to
L, CL(YF)) and we can assume this provided the coefficient matrix A is suffi-
ciently smooth (cf. Allaire and Briane [2]). Under these assumptions we show that

ﬁe 15 an admissible sequence.
Lemma 3.5.1 x.(Vau(x) + 37 [V, uele) is an admissible sequence.

Proof:  The regularity assumptions on uy 's imply that V,ou + Y ey Vy e is-an

admissible function. We also note that

m m
(Vo4 D (Vo) "N vy ) (Ve + 3 9y 0.
k=1 k=1
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Therefore, by Theorem 3.4.2

= [ Xe(Vzu(z) + Z[vl‘k uile). IR{I + Z{vyt U

— ff f b 1 pym zu+zvyguk} :J"'H'I'Zvyku.H d?m dyydx,

This completes the proof. W

Under the same regularity assumptions one can prove, as in the case of two-scales
(cf. Theorem 3.3.3 ), the following corrector result:

o ¥ (Vau(z) + Z[“G’m ugle) converges strongly in L2(§2) to 0.
k=1

From Lemma 3.5.1, the corrector result and Remark 3.4.1 it follows that ﬁ.s is an
admissible sequence. This justifies (3.5.6), The left hand side of (3.5.6) may be now

be written as [, B*Vu.Vudz using (3.5.3) and the following iterative formulae,

B™ = B,

Bk-lef'ﬂi = f Xk (yx) B*(es + vmwk'i}'iﬂj + vytwkj]dl"k*
¥

for k=m,m—1,..,1 and we set B* = B obtained by this process.

Thus, the homogenized optimal control problem, (P*), is as given at the end of
the Section 3.3 with m*, A® and B" obtained in this section.



Chapter 4

Elliptic Systems

4.1 Introduction

In this chapter, we study the homogenization of an optimal control problem governed
by elliptic systems on perforated domains. We need some notations in order to state
the problem and we do this first by recording all the notations that will be used in
this chapter.

Let {2 be a bounded domain in B". Let 0 < a < b be constants. We define
M (a, b, ) to be the class of nm x nm block matrices, C = ((Cy;)) 4,7 =1,2,...,m,
where each block C;; € L™(£3)™*™ and for a.e. = € {1 we have,

al§]* < C(z)€.£ and |[C(2)¢| < bl€| for all § € R™™. (4.1.1)

In the sequel, the Greek indices, @, § will take values in {1,2,...,n} and the Latin
indices, 1, j will take values in {1,2,... m}. Thus the (a,3)" element of (i,j)t"
block in C will be denoted by C{. Let u = (uy, ug, ..., um), ¥ = (11, V3, ..., ) be

E™ valued vector fields on £2. Then, we set,

©
=
Il

{?u], vﬂz: #4 vum] H.HC[,

u Z?uf.?ui.
1=1

©
=
S
=
Il
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For an K" valued vector field on 2, n = (n*, 7, ..., 7"), we recall that,

mn aﬂ&
rm Oge’

- ((32-2).

For an (R")™ valued vector field on Q, ¢ = (C1sCay - Gy )y Where each C,(z) € R,

we define,

dl‘.’ﬂ —

div¢ = (div{,,dive,, ..., div,.),

curl{ = (curl(y,curlly, ..., curl(,,).

The product C¢ will be written in the block form ((C¢);), where (C¢); =
(Cr, CiC;),i=1,2,...m.

For € > 0, the perforated domain {2, is defined to be Q\ S,, where S, is a closed
subset of £ with smooth boundary. ¥, is the characteristic function of ©,. Let
A, be a sequence in M)"(a,b,{1) and let B, be a sequence of symmetric matrices
in M(c,d, () for some constants 0 < ¢ < d. Let K € M{*(a,b,Q) and let N ¢
MP(c,d, §2) be symmetric. The space of admissible controls is taken to be Uy =
LA(Q,)™ or some analogue of those defined in (2.1.9). Let f € L*HQ)™ be a given
function.

For each £ > 0, the optimal contral problem consists of minimizing the cost
if;i_mctiunal

(R:) T i8] = %[ B.Du, . Du, dr + %L Nf.fddx,

over § € UZ, and where the state, u, = u_(8), is the solution of the elliptic system,

—div(A.Du, )+ Ku, = f+8in 9.,
(A:Du );m. = 0on dS.,
u, = 0on o

here exists a unique optimal control 07 Tor this problem. It can Le assumed that 1

nverges weakly in L*(€)™ to some 8° and it is required to identify the homogenized
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problem for which 8" is the minimizer. We once again work in the framework of

Lemma 2.1.1 (or an appropriate modification) and set,

FiE) = 1 B.Du,.Du,_dz and,
F0) = f NO.Odz.

As before, it is easy to identily U,q as an analogue of those given in (2.1.10). The
F* which verifies (2.1.20) and (P4) of the lemma is,

NGL dix

where x is the L™ weak” limit of the sequence y, (= is assumed to be in L=((2)).

This follows, as in the scalar case, from Lemma 4.1.1 below.

Lemma 4.1.1 Let 8° be a sequence in L* (0. )m such thatﬁ-‘? — 8 weakly in L*(02)™.

Let N be the symmetric matriz mentioned above, Then

Ni.g
n X
Proof: By the hypotheses on x, (x./x) # € L*(Q)™. Since, N is a positive matrix
the functional ®( :;5] fn N ¢. q.‘rdﬂ: is convex. Therefore,

o@)-0(X) > [NLG X,

= fN |[|'5'JE ﬂ}dz. (4.1.3)
1l X

The right hand side in (4.1.3) tends to 0 as € — 0, since §° — § weakly in L3(Q)™,

Further,
o NE.
gl - / i
X 1 x:
f

He———
NG.
e f dr.
o0 X

It remains to identify a F' verifying (2.1.19). This shall be done in the next

hm mff NE ¢ dz > dz. (4.1.2)

¢

From these one concludes (4.1.2). m

section by developing a notion of H-convergence for block matrices and then we can

proceed along the lines of the scalar case to obtain the homogenized problem.
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4.2  Hjy-convergence

Continuing our discussion, we need to homogenize the equations,

—div(A,Duy,) = £, in Q,

(A:Dy,)in, = 0ondS,, i=1,2,..,m, (4.2.1)
u, = 0on g

for any sequence, F. e L2(Q)™, such that Xef, — [ weakly in LA™ And, we
need to obtain the limits of associated energies,
. B.Du,.Du, dz. (4,2.2)
To the best of our knowledge, the homogenization of problem (4.2.1) has not been
studied except in the periodic case and that too only in non perforated domains (cf.
Besoussan, Lions and Papanicolaou [6]). In order to homogenize (4.2.1) we need to
-{.';ii'welop a notion of Hy-convergence for block matrices on perforated domains. This
is done now and we shall call this Hb—cunvergeuc-;; the subscript, b stands for block.
Certain additional hypotheses are required on the geometry of the domains, as in
the case of Hy-convergence (cf. Briane, Damlamian and Donato [7]).
The holes S. are said to be admissible if,

{I—L]] Whenever x, — x weakly® in L*(02), we have x > 0 almost everywhere.
(H2) Let V7 = {u € H'(Q,)|u = 0 on 92} be equipped with the norm,

lully, = |Vulog,. There exists a sequence of extension operators £ : V. — Hi(62)

and a constant Cy independent of £ such that,
-

|?Pgﬂ|n1n = Cu|vu.|ulnr forall u e V.,

ark 4.2.1 Examples of such holes are spherical holes of size & periodically dis-

tributed in space with period 2 (cf. [13]). Therefore, we have extension operators,
B = Hl} (§)™ which are sumply the extension operators P. applied to each
component. Note that,

\Dp.ulon < ColDulog, for all u e (V). W (4.2.3)
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Remark 4.2.2 The operators p. have the following interesting property which will
be used in the next section. If v € HHQ)™, then

Er':"ff{ﬁlnr.:]' — v weakly in Hy (Q)™ (4.2.4)

A proof of this ean be found in the paper of Briane, Damlamian and Donato (ef.
Lemma 2.1 [7]). W

In what follows, pf : H=1{Q)™ — (V)" will denote the adjoint operator of .. For
fe H Q)™ let u, € V™ be the solution of the boundary value problem,

—div(A.Du.) = prfin Q,,
(A-Du)in. = 0ondS,, i=1,2..m
u, = 0 on gl

(4.2.5)

where n. is the outward normal on 45.. We have the following definition:

- Definition 4.2.1 Let A, be a sequence . MT'a, b, Q) and {S.} be an admissi-
ble family of holes. The pair (A.,S.) is said to H, converge to a mairic A €
M@M(a', b, Q) for some constants 0 < a' < b if the following holds:

For any f € H- ()™, the sequence of solutions u, of the boundary value problems
(4.2.5), satisfies,

ell, — u weakly in HI{(Q)™,
F e - ¥ EI( } [4.215}
Q:(A;Du.) — ADuy weakly in L2($2)"™
as e — 0, where u is the solution in H} ()™ of
—div(ADu) = in 2,
By =1 (4.2.7)
u = 0 on df.

We write (A.,5.) 2% A. m

Remark 4.2.3 For m = 1, this coincides with the Hy-convergence of Briane,

Damlamian and Donato [7]. &
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Our main theorem is the following and this directly leads to the homogenization

of the state equation.

Theorem 4.2.1 (Compactness) Let A, be a sequence in M™a,b,Q) and let 5, be
an admissible sequence of holes. Then there exists a subsequence indezed by £ and

A e M a/Cy,b°/a,Q) such that the pair (AL, 5.) oA m

E

‘The next section is devoted to proving the theorem.

4.3 Proof of the Main Theorem

The following propositions are required in proving the Main Theorem.

‘Proposition 4.3.1 Let u, be the solution of ({.2.5). Then the following estimates
hold:

L

1 [[£1] ;-1 gy
|Q(A:Du)on < ¢ ”i”H"‘l{ﬂ}"‘

“where ¢; = Cj/e and ¢; = Cyb/a. )

||Psﬁe||rf,}[n]m (4.3.1)

Proof: Note that, by Poincaré's inequality, | V. |gn is a norm equivalent to the

original norm on Hj(Q). So we assume that H} () is equipped with this equivalent

norm. Then,

||F'sﬂ¢||ném}m = |[Dpeulon

(4.3.2)
< ColDu,lon,

Now, using ellipticity and (4.3.2), we get,

E|D“_g|g,m

A

A_Du, Du_dz
i,

= Pl u >

I

< fipen, >

||:£” H— I[H]m HE’]:& ” H,ﬁl:ﬂ}"'
Ca ||i||ﬁ'—l{n}m IDEEEGJL.

I
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Therefore, we get,

|Du.gn, < Cha™ ||i”H_1[n}.,,-

From this and (4.3.2), the first estimate follows. By using the estimate for | Du_|g.q,
we get,

|Q£{AEDE5}[U,H = |AEDEE|1},H¢

bl Du,foz.

< Chba™ ||i||H-1|:ﬂ}"‘ .

14

The proofs of the following propesitions are straightforward adaptations of those

found in Briane, Damlamian and Donato [7] for the case m = 1.

Proposition 4.3.2 Let £, € L*(0.)™™ be a sequence of vector fields such that the

sequence, Q. (€,), s bounded in L2(Q)™ and satisfies
—div(€.) = pif mil,,

&) = g/, (4.3.3)
(€.)ime = 0 onBS: fori=1,2-...m,
ond the sequence, f_, is in a compact subset of H™'(Q)™. Then, the sequence

div(Q-£.) 15 in a compact subset of H71(Q)™. W

Proposition 4.3.3 (div-curl lemma) Let ¢, and €. be two sequences of vector fields
Jin L*(Q)™™ such that dive, is in a compact set in H™'(Q)™ and curlé, is in a
-compact set in HHQ)™. Furthermore, suppose that ¢, — ¢ and £, — £ weakly in
Q). Then,

¢.£ — (L in D'(Q). M

'.:ThE'fD].lD‘.".fiﬂg abstract theorem will be used in the proof of the main theorem (cf.

Murat 29]).

Proposition 4.3.4 Let V' be a separable Banach space and let W be a reflexive
Banach space. Let T, be a sequence of linear operators T. : V. — W such that
."|T£|||L[V.W} < d for a constant d. Then, there ezxists a subsequence indezed by &

and a linear operator T .V — W sueh thal Ty — Tv weakly in W for oll v e V.0
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We now prove our main theorem. Our arguments are along the lines of those of
Murat( [29], [30]) and Briane, Damlamian and Donato ( [7]) for the cases of H—

and Hg— convergences respectively.

Proof of Theorem 1.1: It is done in several steps.
Step 1: Let 2 €C Q. Note that the sequence S. is admissible for the domain @'
also. Just observe that the extension operators P. ean be extended by zero on § \Q
and (H.2) holds for the new extension with Q2 replaced by ', Extend A, by af on
@'\ 22 and we denote the extension by A, again. Note that A, € M™(a,b, Q). Let
Q=0'\S, and,
Z.={ve H(2,)™:u=00n8Q'}.

;Je'ﬁne a sequence of operators T, : HYQ)™ o HYQ)™ by
T.g = p.v, for g € H(Q')™, where v, is the solution in Z, of the equations
~div(A'Dy,) = gigin ),

(A'Dy)in. = OondS., i=1,2,.,m, (4.3.4)

" w, = 0Oondf.

"_;-* Proposition 4.3.1, we have the estimate,

Hngﬂﬂgm“}m <a”'Cp "E”H-l{ﬂ'}m :

'_'-:"'erefare, by Proposition 4.3.4, we can extract a subsequence indexed by ¢ and

ind an operator 7' : 1) — HL(Q')™ such that
T,rg — Tg weakly in Hj(Q')™ (4.3.5)

orall g € H-1(Q)™,

."__'p 2: We show that T is coercive. Define subspaces W, of Z. by,
W, ={v € Z|(A.Dv);.n. = 0 on 85,,i = 1,2,...,m}.
- 15 a closed subspace of Z.. Define the operators C. : W. — Z* by,

C.v = —div(ALDuy) for v € W,.
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Then, for u € W, v € Z,, we have,

|"::G£Hn£:"|

I

A!Du.Dydx
i,

|A.D 1_’|u,n.; | Dl-.*.lu.n‘,
bl Dul, o | Duly o

A A

fl

bllally, llzlz, -

; herefore, we have the following bound for the operator norms of the sequence €.

HCellewn,zzy < b (4.3.6)

Let R. be the restriction operators, R,u = yy from H&(Q’]m to Z.. For any u €
o

H(Q)™,

”RzE”z, = I-DEID,EL < |DE|H,E'*

||R:||L{Hg[n*]m_3,} <L (4.3.7)

‘Let g€ H'(2')™ and let v, be the solution of (4.3.4). Then,

(Ceo R0 T.)g = (CecoR)(pev,)
= Ci(u.)
= _p; g
‘Therefore, using the estimates (4.3.6)-(4.3.7),
lesal, = (CeoReoTgl,
< o

(4.3.8)
E.“Hé{n’}m ’

Let w be any function in H} ()™ be such that ||g||H&{ﬂr}m < 1. Then, by (4.3.7),

"

e,

" E I|@|Hﬂﬂ‘jm ﬂ 1.

otall,, > |<oig, >|

= [<gpely ) >|
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Letting € —+ 0 and using (4.2.4), we get,

lim o [le2gl];, 2 | < gw>|
As this holds for every w € H}{$)')™ whose norm is less than 1, we conclude that

tim o gl > ol porrye (439)

Now,

< TEE’E }H&[ﬂl’}mrﬂ'—l{ﬂf.’m — D PEEE?E }Hﬂ.{ﬂ'}'“.H—I[ﬂ’}m
= <Y, P >z
f A.Dy,.Dy, d
nf

a|Dy,

Il

I

2
|u,ﬂ;

I

i)
aCy | Dy, Ig,ﬁ’

I

a'gﬂ_z ”T}EHiﬁ“ﬂ’jm ’

. N i
Therefore, passing to the limit for the subsequence indexed by £ and using (4.3.8)-

(4.3.9), we get,

<Tg,g>> aCy?b™? ||£||if—=~:n“}"‘ ; (4.3.10)

Thus, the operator T° has been shown to be coercive.

Step 3: Construction of test functions and computation of Hy limit.

:fif:'::ince T is coercive, by the Lax-Milgram theorem,

T HUQ)™ = H Q)™

exists.  Define vector fields P : @ — R™ for ¢+ = 1,2,...m and
a=1,2,..,n by, P{(z) to be the vector in ™ whose only non-vanishing component
isthe i th component and is £ Then note that, € = DP? = (0, ..., ¢",...,0) where

is the ath standard basis vector in B™.
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Let ¢ € D()') be such that ¢ =1 on Q. Define the sequence of test functions,

=T8T HPr). (4.3.11)

Note that, by (4.3.5),
(oF S ToT(P2¢) = P2¢ weakly in H}(Q)™.
Therefore, restricting to (2,
g?*‘i = P? weakly in H'(Q)™. (4.3.12)

Since @, (AL DC™ ) is bounded in L2(Q2)"™, there exists functions 7% and a further
subsequence £” such that,

Qo (AL DY) = 12 weakly in LA(Q)™™ (4.3.13)
for all i and .

By definition of gE and from Proposition 4.3.2, we conclude that
divQ:(A; D7) is in a compact set in H~'(€)™, Consequently, when restricted to
)

—div(Q.A.D(?) is in a compact set in H~1(Q)™, (4.3.14)

Define A through the relation,

Alef =2 (4.3.15)

Step 4: We shall now show that (4., 5.) — A. For convenience we denote & by

Define the operators, G, : H~HQ)™ — HH(Q)™ and H, : H{(Q)™ — LA(Q)"™ by,
inz peu, and H, = Q.(A.Du.) where w, is the solution of

—div(4,Dw,) = p.finQ,,
(A.Du}yn. = 0OondS. fori=,1,2,..,m.

u, = 0on df.
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By Proposition 4.3.1, the operator sequences G, and H, are bounded and hence, by

Proposition 4.3.4, there exists a subsequence £ of £ and operators G and H such
that,

Gof — G weakly in H}(Q)™,

Hof — Hf weakly in L*(02)"™,

forall f € H~'(§2)™. Set u = Gf and £ = Hf. Restating the above, we get,

pous — wweakly in H)(Q)™,
> PR (4.3.16)

Qo(AsDu,s) — € weakly in Lz(ﬂ:}’“,

We now show that £ = ADu where A was defined in Step 3. Let ¥ € D().

| @A, Du).DG pas = [ A,DusDE v
f & ¢

= | Dw.ALDC* vz

e
e f DPE:EEJ,QEJ [:A:_rﬂ'g'zr]'lfﬂ d:{:
0
By applying Proposition 4.3.2, we conclude that —div(Q,(A.Duw,)) is in a compact
set in H1(£2)™. Therefore, by this and (4.3.14) and applying div-curl lemma we
can pass to the limit as £ — 0 in the above, and we get,

fﬁ.eﬁbdx=[ﬂg.fl‘e?¢c£&:.
0 0

As this holds for all ¥ € D(Q) we conclude that & = ADu. Now, we show that u

satisfies the equations

—div(ADy) = finQ } (4.3.17)

u = 0 on dtd

t €, = (A:Du,} and let ¥ € D(Q)™. We have,
< —divé,, ¥, > = [ A.Du_DV dx
o

jﬂ Q.(€,).DV dx.
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Passing to the limit for the subsequence £ using div-curl lemma and (4.3.16), we
. get,

g' =0

lim < —divg,., ¥, }:[f.ﬂ@d:ﬁ
e 0

On the other hand

< —divg,, ¥, > = <pf, ¥, >
= % i: pE{.'Ijlng} =

Note however that p. (W, ) — ¥ weakly in H}(R2)™. Thus the limit of the above
sequence is also equal to < f, ¥ >.

Thus we get, [, DY dz =< f,¥ > for all ¥ € D(R)™. From this we conclude that
—divg = f i.e. —div(ADy)=

_:The argument of this step can be applied to any subsequence of £ and by uniqueness

of the solution to (4.3.17) we conclude that (4.3.16) holds not only for the sequence

-1 "
£ but also for the entire sequence £,

;-Etep 5: Bounds for A.
‘We can show, as in Step 2, that the operator G is coercive and its inverse,

G™' = —div(AD(.)). For any ¢ € D(1),
[ﬂ A Dy Dut*ds > | Du, >4 dx
> b—ﬂf |A. Du,[?0? dz
That is,
[Qr w).Dp.(w)p? dz > ab™? f[cgf (A, Du)[*? dz.

Passing to the limit as £ — 0 and observing that the left hand side has a limit while

the right hand side can be handled using weak lower semi-continuity of norm, we
ohtain,

f ADu.Dut? dz > ab™2 f | ADu|?y? dz.
1] n
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We can choose f and hence u such that u = P? on the support of 1. Then we
conclude, using Cauchy-Schwarz inequality, that,
|Aefylyq < ba1hel|onl Aet il q.

Therefore,

|Aefdlon < ba”'[gellon
] = ba o
for all v € D(Q) (and by density for all ¥ € L*(2) ) and i = 1,2,...,m and

a=1,2,...,n. By duality, we conclude that A € L*(Q)™ and ||A||, < b%a "

Again starting from,

A.Du, . Du_dz > ﬂf | D, ? dz
01, .

Z GCE?|DF€He|E,n

and taking limits we find,

[ ADu.Dudzs > a{?,;zf | Du|* dz
y 0

faso [16]).

Thus, A € M™(aCy? b%a", Q). This concludes the proof of Theorem 4.2.1. W

Remark 4.3.1 Note that we have assumed |A.(z)A| < bA| a.e. z € Q, following

ng and not AZ'(x) > b7'I a.e. x € 2, which would have been the analogue of the

milar to Briane, Damlamian and Donato [7], the proof of the coercivity of T needs
different arguments from those of [7], as can be seen in Step 2. A

Remark 4.3.2 Hy— convergence cannol be obtained Jrom Hy— convergence because
of the presence of coupling in the highest order terms. Thus, we need to construct
test functions (¢f. Step 3). Similar sequences have been constructed in the

M

periodic case by Bensoussan, Lions and Papanicolaou [6]. W
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Remark 4.3.3 It can be shown that Hy—convergence enjoys properties similar to
fHu—c_aﬂﬂergemc (¢f. [7]). In particular, it is independent of the choice of extension
operators, is local in nature, and the Hy limit of the transpose of a sequence of ma-
Arices is equal to the transpose of the Hy, limit. Also, the existence of local correctors
can be proved. As the statements and proofs of these results are only minor modifi-

‘cations of the corresponding ones for Hy— convergence (cf. [7]), we omit them. W

Remark 4.3.4 Let (A.,5.) —% A. Let f, € L™, such that x. fe = xf weakly
in L3 (Q)™. Then, the solutions w, of (4.2.1), corresponding to right hand side £
‘converge to the solution u of (4.2.7), corresponding to the right hand side xS, and
the convergences (4.2.6) hold. The proof is along the lines of Theorem 1.5 [7]. B

~dV(C.DE) = i (~div(CD(P?) n 9,
C.D{"n. = 0onds,, i=12,..m, (d.4.1)
= 0 ondf.

U,
_‘_;;'_'itr. follows from H, convergence that,
pe(° —  Pf weakly in H'(Q)™

Q.(A.DC™) —  A'ef weakly in L2{Q)™™ (4.4.2)
divQ.(AL™) cc H-Y(@Q)™.
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for i = 1,2,«;m-and @ =1,2; ., n:

The corrector matrices, M., are defined as follows,

M.ef = Dpz[g?lfj' (4.4.3)

Then, B* is given by the formula
B* = lim YeM!B. M, in D'(Q). (4.4.4)
3

Let F'(f) be defined as follows.

1
FY(6) = 5 f B*Dy. Dudz
0
where 1 = u(#) is the solution of

—div(A*Du) + Ku = xf+0inQ,

(4.4.5)
u = 0ondfd

It can be verified, as in the scalar case, by first introducing and homogenizing the
state-adjoint state systems of equations that A" and B" defined above are the
coefficients for the homogenized system. This implies, as in the scalar case, that the
_energies converge to an appropriate energy in which the matrices A* and B* appear
naturally. All these show that I defined above will satisfy (2.1.19) for a suitably
modified Lemma 2.1.1. So, this and the discussion in Section 4.1, where F? and [/,
have been defined, show that #* is the minimizer of the functional F! +— F? gver the
domain Uy.

In the periodic case, it is possible to give an explicit formula for A" and B".
Let 5 be a closed subset Y with Lipschitz boundary. We then define a periodically
perforated domain as in Chapter 3 and we assume that 2, is a connected set. Let
A€ MMa,b,R") and B € M (c,d,®B*) be Y-periodically defined block matrices

~and B is assumed to be symmetric. Define the sequences A, and B, as follows:
- T
A fz) = A{E)s B.(z) =8(-).

We consider the homogenization of the problem (P.) defined with these coeflicients

on periodically perforated domains. To obtain the homogenized coefficients we need

42460
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to define test functions, g, which solve the following periodic boundary value prob-
lem in the basic perforated cell:

—div(A'D(Pf + (7)) = 0inY\S,
(A'D(P?+¢%));n = 0ondS,j=1,2..m, (4.4.6)

y = (M(y) Y-periodic

or i=12.,mand o = 1,2,..,n. It can be shown by calculations similar to
those in Kesavan and Rajesh [23] or in Section 3.3 - 3.4 of the thesis, that the

homogenized coefficients A* and B* are those given below

Avefe] = [  A@)D(PHy) + ()DL ) + P (y)) dy,
Y\5 J

Brere] = [ BODEG)+CO)DEL + )y

fori,j=1,2,..,mand @, f=1,2,....m.



Chapter 5

The Dirichlet Problem

5.1 Introduction

Iu this chapter, we consider the homogenization of optimal control problems gov-
~emned by Dirichlet boundary value problems on periodically perforated domains. The
definition of the periodically perforated domain €. differs from the one in Chapter
‘3 in that the size of the holes bear a ratio, a, : €, to the length of the scaled cell
£Y We do not consider the situation where the coefficients appearing in the state
‘equation and in the cost functional oscillate. This is a problem still open to investi-
‘gation. The optimal control problem that we want to homogenize is the following:
Let B € M(c,d, () be symmetric, N be a given positive constant and g € L2(Q) be
a given function. We take the space of udmlissibiﬂ controls, UZ,, to be one of (2.1.9).
For e > 0 fixed, we find 87 which minimizes the cost functional

(P.) J.(0) = % / Bvu:.?usd:l.'—i-g fﬂ 6 dz (5.1.1)

over § € Ug, and where the state u. = u.(0) is the solution of the Dirichlet problem,

_ﬂn.uE = y+ﬂlﬂﬁ“} {512]

Ue 0 on §2,.
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Once again, the homogenization is performed in the framework of Lemma 2.1.1 by

o

—
o

il
|

= 1[ BYVu, Vu,dr and,

2 Ja,
ﬁm::%ﬁﬁm

‘The corresponding F? and U,y are as before (cf. Section 2.1). Tt is required to
Adentify the F' which satisfies the lemma. This can be split into two parts-one, to
jjpmngenize the following Dirichlet boundary value problems:

Let fo € L*(92) such that x.f. — f weakly in L*(Q) or f. € H~'(£2) be such that
fe — [ strongly in H™1(2). Let u. € H(5) solve,

B Bl }

(5.1.3)
u, = 0Dond,.

;‘]_‘wo, to obtain the limit, im._g Jrﬂ: BVu, Vu, dr in a suitable form.

The homogenization of (5.1.3) has been studied by Cioranescu and Murat [11],
_j_l’i}. It was shown that the asymptotic behaviour of the solutions of (5.1.3) depends
qn the size of the holes. A critical size c. is found so that:

a) if ac >> ¢, i.e. the hole size tends to zero slower than c., then @, —s 0 strongly
in H)(€).

b} if a. = Ofc.), then there exists a measure g such that @, — u weakly in H} ()

and u solves the following Dirichlet boundary value problem having an extra lower

(5.1.4)

—Audpu = fin(l,
u = 0 on dfL

o) if a, << c., i.e. the hole size tends to zero faster than c., then 7, — u weakly in

;'{ﬂ} and u solves the equation

—Au = fin (. .
(5.1.3)
u = 0ondf. }
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In the above,” denotes the extension by zero onto the holes. Since, the u, vanish on
the boundary of €1, the extension u, also belongs to H}(9).

In cases b) and ¢) above, these results are proved in [12] by constructing a

sequence of test functions, w, € H'(12), with the following properties:

CM1) w. =0in O\ Q.,

CM2) w, — 1 weakly in H(£2) and,

- CM3) For any sequence v, € HY(Q) with v, = 0 in Q\ ). and such that v. — v
weakly in H'(2) and for any ¢ € D(£)), we have,

4 V.. V(dv.)dr —< pu,dv > .

for some constant g (g = 0 in the case ¢ ). We will, henceforth, refer to these
conditions jointly as [CM] conditions.

In fact, the homogenized equations corresponding to (5.1.3) can be shown to be
(5.1.4) with just the assumptions that a sequence w, € H'(Q1) and a distribution
p € W=ho(Q) exist satisfying [CM], or just CM1 and CM2; as it has been shown
by Juan Casado Diaz [9] that CM1 and CM2 together imply CM3. There are more
‘general geometries than those considered by us in the thesis which satisfy [CM], as
‘can be seen from numerous examples in [12].

We also have the fact that p is a positive measure from,

S i f Vaw, [26 da.
e—+0 ln

This gives the existence and uniqueness of solution to (5.1.4).

Now, we would like to characterize the limit of the encrgies [oBVu, Vu, dr as
e =+ 0. We observe that if e, = o(a.), i.e ¢, << a,, then fﬂz BVu, Vu.dr = 0
~which follows from the fact that @, — 0 strongly in H}(£2). We, therefore, look
‘at hole sizes which are much smaller or comparable to the eritical size, Then, we
can work under the general hypotheses of the existence of a sequence w, as above.
Under these assumptions, we shall obtain a characterization of the limits of energies
in Section 5.2 and derive conclusions for the optimal control problem in Section 5.3

We end this section with the following remark.
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Remark 5.1.1 If B = I, then the limit of the energies take the following form

f |?u5f2dm£ﬂf|?u|2dz+[u2dp.
0, 0 ¥

This can be proved (cf. [30]) by a simple integration by parts and by using equations
(5.1.8) and (5.1.4). A

5.2 Strange Term for the Energy

Let €2, be a general perforated domain. Assume that there exists a SE(UENnce, 1w,
satisfying the [CM] conditions. We show that there exists a subsequence £ of &

and a distribution pip such that, for u, as given by (5.1.3) we have the following

CONVErgence,

BVu s Nug dr — f BVuNudr+ < pug,u® >
) fi

where u solves the Dirichlet problem (5.1.4). Further, we show that
BV Vig — BYw.Vu+ wlup in D' ().

To define up we need to define a sequence of test functions, which we do in the

following lemma.
Lemma 5.2.1 Let ), € Hy () be the solution of the boundary velue problem,

=A, = —div(BVw,) in §L.
e ( e) } (5.2.1)

. = 0 on 89,.
Then, the sequence, @:, 1% bounded in H&(ﬂ} A

:fEPrnﬂF: Multiplying (5.2.1) by . and integrating by parts we gel,

I

| Ve |* dz

0,

f BVw Vi, dx

“: ﬂT |v1f_’; |._|I;}=:"\_’i',"‘s|u,u,_-
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Therefore, since w, is a bounded sequence in H'(2),

Wﬁlu,n = [Vielon, < d|Vufpa <C

where C is a generic constant. This completes the proof. B
So, by the lemma, H' boundedness of w, and the bound for B in L®(Q), we also
deduce that the sequence, Vi, — BV, is bounded in L*(2). Hence, there exists a

subsequence £ of £ and a function ¥ € H}(Q) such that,

b — 1 weakly in H1(Q .
. Ve P i HolE) (5.2.2)
Vi — BVuw, — Vi weakly in Lz(ﬂ)".
Define, ug € D'(02) by,
e = —A + (5.2.3)

Note that the definition of pg depends only on w, and B.

Proposition 5.2.1 Lef up be grven by (5.2.3). Let u, be the solution of the Dirich-
let problem (5.1.8) in 1, such that u, — u weakly in H} (). Let p,o € HY(Q) be

the solution of:

_ﬁp.l = —div(BVu.) in ﬂE:T
E { _; ] {5.214}
P = 0 on aﬂfr.
Then, po — p weakly in Hy(Q)) and p is the solution of,
—Ap+pp = —div(BVu) +upp in 0,
! ( ) Hi (5.2.5)
p = 0 on L

Proof: It can be shown, as in Lemma 5.2.1, that p; is bounded in H}(€). So
there is a subsequence £ of &' and p € H{Q) such that,
B — pweakly in H}(Q),
N =Vpy — BVun — Vp— BVu = n weakly in L?(Q)".
We need to show that

—divy + pu = upp.
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Let ¢ € D(§2). We note that ¢w,« vanishes on #2,». So using this as a test function
in the equation, —divy,» =0, which holds in Q.+ we get

[ e -V gpdr = —[ N N w dz.
0 n L

Therefore, since w, — 1 strongly in L*(2) and 5.+ — 5 weakly in L2(Q)",

lim,»_, e Nwe ddr = — [ n.Vd
o Ja LR T’} (5.2.6)

= << div,p>.

ﬁgajn,

f I]Eu.?wsfr ¢d$ = f ?pcu.vwsrr ﬁ)ﬂ[’m -] Bvﬂeu.?wgﬂ ¢Ef$
0w H 1l

ar
[ 3

= 'ITE" + JEH :

Now,
IEJJ = [ vpsr' _‘G’wﬂu ¢ dx
51w

= f Vuw, V(pad)dr — poVwa Nodr
0w 1w
Therefore, using properties CM2 and CM3 of w,«, the weak convergence of P in

H3(€) and its strong convergence in L*(Q), we get,

lim Iv =< p,dp > . (5.2.7)
e —0
an,
.ffu = —f Bqun.th.u pdx
n e

— mf BVw,« Nu,» ¢dz
i w

= f (Vipor — BV ). Vus ddr — f Vg Vur ddz
11 0 LI
= KEJ.I -+ Lt”'
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0 = <div(Viyr — BVw.u), du, >

== n(vllﬁe“ = vaﬂ.ﬂ].v{ﬁ U dr — f (T:-’:,e';ﬂn — vae”]*?us" ddx

i
f 4

1o _[ {th_” - vag':]-v‘?& L dr — I{Err.
n"

lim Ko = - lim [ (Vi — BVwas).Vé i ds

£ =0 ' =0 Jo
== —f?w.?aﬁ wdzx.
0
Therefore,
lim K» = f VuVy ¢dr+ < uldh, ¢ > . (5.2.8)
el 7l

Ly = — f Vi Nuy ¢dz
ﬂn

= - f ?HEH .v{wfn ¢} dr - vut’“ vgﬁ ".',EJEM i
1y LR

L4

- —fﬂxsﬂ for B ddu+ fﬂv-a;:.w i
Therefore, using (5.2.2), we have,

lim L« = —ffcﬁ'z,.’xdr+[‘?u.?¢ Y dz,
o £

e =0

fhich, using (5.1.4), gives,

e = e

(5.2.9)
. = — [aVu Vi ddz— <up, ¢t >

limo_, Lo = {ﬂ.u—up?ﬂi¢}+fﬂ?u,v¢¢idz}

after an integration by parts. From (5.2.6)- (5.2.9), we get,

<divnd> = <pu.d>+ <ulhd>— <upd>

= <p¢>—<upg¢>.
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Since the above holds for all ¢ € D(R2), we have —Ap+pu = —div(BVu) +uppg, i.e.
p satisfies (5.2.5). Since p is a positive measure, the solution to (5.2.5) is unique,
and therefore, it follows that the entire sequence p — p weakly in H}(Q2). This
completes the proof of the proposition. B

We now prove our main theorem.

Theorem 5.2.1 Let £ be the subsequence of € chosen prior to Proposition 5.2.1.

u, be the solution of the Dirichlet problem (5.1.8). Let pg be given by (5.2.3). Then,

J

BVu Vu.dr — f BVu.Vudr+ < pg,u® > (5.2.10)
' ft

arnd,

BVu,.Vuy — BVuVu+ulpg in D'(Q). (5.2.11)

Proof: Define p, € Hj(£2,) to be the solution of (5.2.4). We write,

BVu, Nudr = Vp, NVu_dz - /[?psa — BVu,).Vu, dr
a, n, n,
= ?pﬁa ‘vut'l dm = [ XE' JIFE‘ j}:; dj,'
AL L

where we have used the fact that u and p, are solutions of (5.1.3) and (5.2.4)

respectively. Therefore, by integration by parts and using Proposition 5.2.1,

lﬂim[ BVu  Nu,dr = ffpcf:':
£=0J0 , 0
= < —-Autupp>
= <u,—Ap+pp>

= <u,—div(BVu) + uug > .

From this, we get (5.2.10), after an integration by parts.
Let ¢ € D(Q). Set 5, as in Proposition 5.2.1, then

/ B‘?uer.ﬁ?u,. fﬁ!f,'_!,‘ = / ?pca,vusn [ﬁ;di‘ - / nEa,qu.« tj}rf,‘}'
" ﬂ_l ﬂ_l . E?_:

— e
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On one hand, it can be shown that (cf. arguments for convergence of L.« in Propo-
sition 5.2.1 )

lim I, = lim Vpo Vuy ¢dz

E-+Iﬂ =0 n',
= {—ﬁu—i-up,pcf:}—[?u.?qépdr
n
= f?u.?pédm—l—{up,p:ﬁ:}.
n

On the other hand, using the fact that p_ solves (5.2.4) and using Proposition 5-.2:1,

we get,

limJ;, = lim - ne Vi, ¢dr

' =0 £ =40 0,
[ 3

= lim N .V uodr

0 X
= ]m‘?qﬁ udx
01
- —fn.?u¢dm+-c: —divy, ug =
!

= —fﬂ-‘?u ¢dr+ < upp —pu,ug >,
1

Therefore,

lim BVuy Vuy ¢pdr = lim (I + J,)

a0 n, £ =0
£

= fvu.vp pdr+ < up,pd >
L]

—f n.Vu ddr+ < upp — ppug >
1]

fﬂ(‘?p —).Vu dda+ < w’pg ¢ >
s ﬁﬂ?u.?u ddr+ < ulpg, >

This holds for all € D(£2). This proves (5.2.11). W

Theorem 5.2.2 Let up be as defined in (5.2.8). Then,

£ =l

< pfp.h >= Iaimf BV w, Nw. ddr for all ¢ € D(Q), (5.2.12)
0

i
L3
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Proof: Let ¢ € D(f1). We have,

1
1 4

fﬁwsuvwg $dr = [ Viby Vuw ddz — f (Vi — BV, ).V, ddz
) 3

- _.f Vi, Vo 1, dot < —Aw,, hod >
514

L

+ f (Vi — BVw, ).V wy dz.
L1 )
Passing to the limit is easy now and we get,

lim V/‘B?w{,r.?wrl r,lﬁd:f: = {#,yﬁqﬁb—l—f‘ﬁ'ﬁl.vcﬁdz
£ —+l nr, 11

= <utd>+< A o>

= < g, Q5 = .
This completes the proof. W
Corollary 5.2.1 up is a positive measure, W

Proof: Theorem 5.2.2 implies that pp is a positive distribution. Hence, by Riesz
Representation Theorem it is a positive measure, B

We now prove a result on the partial uniqueness of jup.

Theorem 5.2.3 Suppose that py and py are measures. Let f € H™Y(Q) and let
ue solve the Dirichlet problem (5.1.3) and let u solve (5.1.4) for this data. Then,
u: — u weakly in Hg(Q) (cf. [12]). Suppose that for every f € H™Y(),

BVu, . Vu. — BVuVu+u’yy in D'(Q) and,
BVu,.Vu. — BVuVu+uy in D'(Q).
Then pg = 1y in D'(Q).

Proof: Let v € Hj(R) be arbitrary. Then Av € H-Y(Q). Since, p € W-12(Q),
we also have vy € H'(Q2). Thus we are allowed to take f = —Av + vy in the

hypothesis. Now, let we be the solution of (3.1.3) with right hand side Q2 f. Then
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i, — u weakly in H}(€) where u solves

—Au+4up = —Av+opin 2,

v = 0 on Jfl.

Since u is a positive measure, the solution to the above equation is unique and

therefore, u = v. Now, from the hypothesis of the theorem, we conclude that,
viug = v?py in D(Q).

But v € Hy(Q) was arbitrary. For any w CC €, we choose v € D(Q) such that v = 1
on w. Then, uo(¢) = w1 (@) for any ¢ € D(2) with supp¢ C w. That is, Hoj, = ft1),
or y1g = fy in D'(w). As this holds, for all w CC ©, we have pp = iy in D'(€). This
ends the proof. W

The proof of Theorem 5.2.1 becomes simpler, when a strong corrector result of

Cioranescu and Murat (cf. [12]) holds. The corrector result is as follows:

Proposition 5.2.2 Let f € L*(Q) and let u, be the solution of (5.1.8) and let u be
the solution of (5.1.4). Then, i, — u weakly in H}(Q). Further assume that u is
CA{Q), then

i, — uw. — 0 strongly in H; (0)).0 (5.2.13)

When this holds we can give a proof of Theorem 5.2.1 using Theorem 5.2.2 as follows.
Alternate Proof of Theorem 5.2.1: Set r« = iy —uw,. By Proposition 5.2.2,
T, —+ 0 strongly in Hg (). Therefore,

I E[ BVu, NVu,dzx = fB‘FzTETFEETd:::
0 0

+
E

I

f BV (vw. ).V (vw, ) dz + o(1).

0

Now, since Viw,« — 0 weakly in Hj(2) and B and u are bounded functions on 2,
[ BV(uw,).Viuw,)dr = f BVuw, Vuu®dz
Ja n

+ f BVu.Vuw? dz + o(1)
n )
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Note that, in Theorem 5.2.2, it is possible to take ¢ = u and the same proof works.
Therefore, using Theorem 5.2.2 and the strong convergence of w to 1 in L*(Q), we
conclude that,

lim Iy =< pg,u* > + f BVu.Vudz.
n

£ —D

This proves (5.2.10). The proof of (5.2.11) is similar. W

5.3 The Homogenized Problem

Casea, = O(e.) : As remarked in Section 2.1, the function F? defined there and
the space U, which corresponds to the particular choice of Uf, satisfy the hypotheses
of Lemma 2.1.1. We also remark that, by Rellich's compactness theorem, w, —s 1
strongly in L*(£1); so, passing to the limit in the identity, y.w. = w, we conclude
that x is the constant function which takes value the 1 in 2. From Theorem 5.2.1
it is possible to conclude that the function F* defined below satisfies the remaining
hypothesis of Lemma 2.1.1.

FUi) = é]ﬁ?u.?udﬁ—i—[uzd;m,
i 0

where u = u(#) solves the Dirichlet problem,

-Audpu = g+48in 8,
uw = 0on df.

Thus, the limiting optimal control problem is: minimize the cost funectional

1 . N :
J(0) = —fﬂvu.?udx—l— f w dpg + —/ﬂzdzz
2Ja n 2 Jq
over f in Uyq, where u = u(f) is as given above.
Casea. << ¢ : The same conclusions as in the previous case but both p and iy

are identically zero.

Casea, >> ¢, : We liave seen that fnc BVu, Nu.de — 0. Thus, F'is the
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identically zero function. So, the limiting optimal control problem is: minimize the
functional

J(0) =% fn H;zdx (5.3.1)

over § € Uyg where Uy is one of (2.1.10), provided we assume that y~! € L®. That

is, the limiting optimal control is the projection of 0 onto U,y in the space L2(5), %}
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Chapter 6

Correctors for a flow in a partially

fissured medium

6.1 Introduction

A fissured medium consists of a porous and permeable matriz interlaced, on a fine
scale, by a system of highly permeable fissures. Fluid flow in such a medium takes
place, primarily, through the fissures. The fissured medium is said to be totally
fissured if the matrix is broken up into disjoint cells by the fssures. In this case,
there is no direct flow through the matrix but only an exchange of fluids between
the cells and the surrounding fissures. If, on the other hand, the matrix is connected
there is a global flow through the matrix as well, This is the partially fissured case
and this is the one we will consider.

The exact microscopic model for flow in a fissured medium, written as a classical
interface problem, is both analytically and numerically intractable. But, by mod-
elling the flow on two separate scales, one microscopic and the other macroscopic,
the approximate global behaviour of the flow can be obtained from a knowledge of
the flow in a typical cell and the flow in a homogenized problem. Such a moadel
for flow in a partially fissured medium was considered by Douglas, Peszyrivska and

Showalter [20] assuming the diffusion operator to be linear; and later, by Clark and
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Showalter [14], assuming the diffusion operator to be quasi-linear. The models were
homogenized in the framework of two-scale convergence, while assuming weak mono-
tonicity conditions on the gquasi-linear operator. Though, by this, it was shown that
the first two terms in the asymptotic expansion of the flow approximate the flow of
the exact micro-model, the approximation was only in a weak sense. By ASSUTNING
that the quasi-linear operator is strongly monotone, we show that the approximation
is strong. This is a eorrector result.

Such a corrector result is proved for the homogenization of quasi-linear equations

— diy (a G ?us)) wif (6.1.1)

by Dal Maso and Defranceschi [17] under some strong monotonicity conditions on
the function a. Later, the proof of the corrector result was greatly simplified using
the two-scale convergence method by Allaire [1]. The results of these papers provide
the inspiration for the result proved in this chapter.

The plan of this chapter is as follows. In Section 6.2, we describe the micro-
model for flow in a partially fissured medium as considered in [14]. In Section 6.3,
we recall the results on the homogenization of this model, obtained by Clark and
Showalter in [14], under weak monotonicity of the diffusion operator. In Section 6.4,
we obtain corrector results, under strong monotonicity conditions,

The results of this chapter appeared in Rajesh [33].

6.2 The Micro-Model

The flow domain §2 is a bounded open set in B®. It is made up of fissures {2 and a
matrix {15, both having a periodic micro structure. The micro structure is obtained
by tesellating R" with the cells £} where ¥ = [0, 1]"; the region occupied by the
fissure and the matrix in the cell ¥ are denoted by ¥ and Y?, respectively. The
micro-structure on ! is obtained by restriction of the micro-structure on B® ta (0.

It is assumed that QF and €27 are connected.
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xj(y) will denote the characteristic function of Y; (j=1, 2) extended Y-
periodically to all of R. Then, xi(Z) is clearly the characteristic function of §)2;
this will simply be denoted by x2. I'f, = 805 (805 (N Q will denote the interface
of 2§ with £25 which is interior to @ and, I'yp = 9Y;(9Y2 (Y will denote the
corresponding interface in the reference cell. We also set Q5 = 5, Y3 = Y5, and
¥a = X2, to be used to simplify notation at times.

Let p; : RY x RN — RY (7 =1,2,3) be Carathéodory functions Y-periodic in
the s@bé;;d variable for which there exist positive constants k,C,cp and 1 < p < oo

such that for every £, 7€ RV and ae. ye ¥V

iy, )l < CleP~ +k (6.2.1)
(v, &) = pily. m)-(E-m) = 0 (6.2.2)
wily, .6 > ool —k. (6.2.3)

Let ¢; € Cy(Y) (j = 1,2,3) be continuous Y-periodic functions on B such that
D<e<ey <C. (6.2.4)

The exact microseopic model for diffusion in a partially fissured medium is given by

the system

z, Ouj , T : : B
ﬂl[g} 5‘; — div jy (E ; ?Hi) = § infl (6.2.5)

T, Oub X T s pos
ﬂzfg}ﬂ—f — div py (E ; "f"ﬂ-%) = 0 ing (6.2.6)
a(2)52 —edive (Z,6Ve5) = 0 ingg (6.2.7)
aus; + fuz = uj on Ty, (6.2.8)

ol £ & x E

ol (E' ?ul) R (E, ‘Fuz) N (6.2.9)

l

Fpy (LEF ! ?u'{) cB) = By (g : T-“'Eug) o7 (6.2.10)

where the last two conditions hold on I'f ;. We have the homogeneous Neumann
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condition on the external boundary

T (ET?'U,E) v = 0 on a0 Nan
pg(g,?u;) vo= 0 on @05 Nan

s (;,E‘?’ug) v = 0 on d%5NaQ

where v denotes the outward normal on 8.

The system is completed by the initial conditions

w(0,.) =l e L3(Q), 1<j<3.

80

(6.2.11)
(6.2.12)

(6.2.13)

(6.2.14)

uj(x,t) is the flow in the fissures (5 with the flux given by —pu, (%£,Vui). The flow

in the matrix has two components: u§(z,t) with the flux —pu, (f, 'i?ug:], is the usual

flow through the matrix and; the slow scale flow u5(z, t) with flux —euq (fTE*{?uﬂ,

leading to local storage in the matrix. The “total flow ™ in the matrix is aul + Guj,

where o+ § =1 with & > 0,8 > 0. (6.2.8) represents the continuity of flow across

the interface and (6.2.9), (6.2.10) determine the partition of flux across the interface.

We now describe the variational formulation needed to study the well posedness

of the Cauchy problem. The state space is the Hilbert space
H, = L*(9) x L(03) x L}(5) (= L*(Q5) x L*(95)?)

equipped with the inner product

3

([, w, us), (81, b2 s, = 3 fﬂ 5(Z) us(a) 65() da.

=1 3
Define the energy space

B, = H. n{[@] € W"P(Q) x W'(Q5)? : u; = oy + Bus on [}

where @ = (u;,u,us). B is a Banach space with the norm

] )
[ [y, wz, wallls, = Z x5ty ey + Z x5 Vo ey
i=1 F=1
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Define the operator A, : B. — B, (where B, denotes the dual of B.) by,

A ([ur, vz, ug))([ @1, d2,d3]) = E§=1 fnj 1i(%, Vu; ).V, dx
+_rﬂ__; pa( %, eVug ) . eVes dr
for [uy, us, ug), [¢1, ¢, ¢3] € B..
Let V. = {u_é € L*([0,TY); B,) : {Eé] € L9([0,T]; B])}, g being p/(p — 1).
For £ > (0, the Cauchy problem is equivalent to finding a solution P V. to the

problem

,_?
%+AE? = 0in L0, TY; B) (6.2.15)
#(0) = o inH, (6.2.16)

and this problem is well-posed, thanks to the conditions (6.2.1)-(6.2.3) (cf. Showal-
ter [34]). We end with an identity(cf. [14]),

s [#@, -3

H,

e

: +fTAE{?}[?)dt=n. (6.2.17)
1]

6.3 Homogenization
|

The micro-model presented in the previous section was homogenized in [14], using
two-scale convergence; we recall the main results.

In this case, the definition of two-scale convergence (cf. [1], [14]) is the following.
Definition 6.3.1 A function, ¥(t,z,y) € LI([0,T] x 2, Cy(Y)), which is Y-periodic

iy and satisfies
cl TN T
lim[ /':;’J (t,a’:, —) n!:t:dtzf [ Yit, z,y) dy da dt
e—l 0 0 E o ady
15 called an admissible test function, B

Definition 6.3.2 A sequence f* in LF([0, T]|x Q)) two-scale converges to a function
ftz,y) € L2([0,T] x Q x Y) if for any admissible test function ¥(t, z,y),

i [ [ sty (6n.2) awai= [ [ [ 1000020 dydoa

We write f° 23 F. W
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Remark 6.3.1 The space of admissible functions used in the definition of two-
scale convergence differs from the one used in Chapter 3. But this is justified by

ftemark 3.2.3. Two-scale convergence is also obtainable for sequences in LP spaces,

1 < p < oo (cf Allaire [1]). W

Prﬁpusitinn 6.3.1 [14] Let ¥ be the solution of the Cauchy problem (6.2.5)-
(6.2.14). The following estimate holds

2 C 3
2 x5Vl g, + IEeVaslpg, < 53 Sl M (63.)
i=l j=1

Proposition 6.3.2 [14] Let @ be the solution of the Cauchy problem (6.2.5)-
(6.2.14). There exist functions u; in LP([0,T); Wh(Q)), § = 1,2 aend functions
Us; in LP([0,T] > W;“”{Yj}fﬂj, J=1,2,3 such that, for a subsequence of ?J (to
be indezed by £ again) the following hold:

(=]

xut = xute), §=1,2
Xaus — xaly)Us(t,z,y),
6VYE 5 x()(Va(t, ) + VUt 5, p), 5=1,2,
Vs T Xa(y)VyUalt, z,y),
Xiu(Z Vi) 5 g ly, Ve + V1), =12,
Xata(Z, V) 23 xa(wdm(y, V,Us),
xouy(T, x) =3 yi(wu (T, z), §=1,2,
X5us(T, z) - = x2{y)Us (T, z, y) and,
u(t,z) = oult,x)+ BUs(t,z,y) forallye D, W

Proposition 6.3.3 [14] The functions uy, ua, Uy, Uy, Uy satisfy the homogenized sys-
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tem
T
—Z[ f/ eil(y)u —= ql‘J‘Ttig,u'r::frm:n:'t f[j c;,{y]l[&%dydzdt
J'—'] V 0 ¥} 4 ai
—Eff & y]u @3 (0 z}dyda:—f/ ca(y)u§ ©3(0, z, v) dy dzx
=i v (6.3.2)

+Z/ .[nfr pi(ys Vouy + YV U5) (Ved; + V,8;) dy dx dt
i=1 o i

T
+ f f f 13(y, VoUa) (Y, ®s) dy dax dt = 0
0 14 Y,

for all
¢i(t,x) € LP([0,T]; W'™P(Q), 1=1,2
®;(t,z,y) € LP([0,T] x W, "(¥5)), j=1,2,3
satisfying
% e L0, T)wW(8), j=1,2
O,

T € LTI X% W), 5=1,2,3
B®3(t, x,y) = di(t, z) — ags(t, z) for all y € Ty and,

o1(T,z) = (T, z) = B3(T,z,y) =0. WA
The strong form of the homogenized problem has the following deseription. The

state space is H = L*(Q) x L*(Q) x L*(Q % Y2) equipped with the scalar product
= > [ [ cwvese v
F=1 14y

t [ et n)®ste,v) dyde
ndv,

- — |
for every ¥ = [1hy, 12, 3], ¢ = [¢1, ¢, P3] € H. Define the energy space,
B = {[¢1,¢2,%5] € HNW'W(Q) x Whe(Q) x LA(Q; W,"(Y,)/R)

B3z, y) = di(x) — agy(z,y) for all y € Iy 5}

and the corresponding evolution space V' = L?([0, T]; B).
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Proposition 6.3.4 [1}] @ = [uy,uy,Us] € V and is the solution of the sirong

homogenized system,

B'H]
(, aaFren + 5[ a6t

= d-iv;:(f .""1{% 1|T"-"F::'MI vy 1';"T"‘!.I'I:Jl'l:] dy}
¥

(-/;’: ci{y}dy]a—;f[t,:u} = %%[L ca(y)Us(t, z, ) dy)

= divr(/ #-2{3)'1 Vg + vaZ} dyj
T

ally(t, z, Y
cﬂ(ﬂ]% - dlvll' “3(!"? vUE[t: £, y}] =0

where Us(t, z,y) and ps(y, V,Us(t, z,y)).v are Y-periodic and,
BUL(t, 2, y) = wy(t, 7) — au(t,z) fory € Tys
with boundary conditions
.[r iy, Vour + VUi ) dyy = 0 on 80
i
/}: ta(y, Vaus + Vo) dy.v = 0 on 602
s
and initial conditions
u;(0,z) = u?[:i:} 7=1,2; U3(0, z,y) = ul(x).
The functions U,(t, z,y) solve the cell problems,

divy gt (y, Vous(t, 2) + V, Uit 2,1)) =0 for y € Y

15(y, Vo (t, ) + VyUs(t, z,9))w =0 on Ty and

(6.3.3)

(6.3.4)

(6.3.5)

(6.3.6)

(6.3.7)

(6.3.8)

(6.3.9)

(6.3.10)

(6.3.11)

Y-periodic on Uyy, for j =1,2. In the above, t, 2 are treated as parameters and the

cell equations are solved. W
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For £ € RY| define the following functions;

Ai(€) = fﬂ iy, E+ VyVi(y)dy, 5=1,2 (6.3.12)
where 1—}5 is the Y-periodic solution of

divy sy, €+ VyViy)) = 0inY; (6.3.13)
iy, €+ VyVi())y = OonTyy, (6.3.14)

Then, because of (6.3.10), (6.3.11), the right hand sides in (6.3.3), (6.3.4) can be re-
placed by the functions div: A (Vowi(t, ) and div, Ao (V us(t, ) respectively. Also
the left hand sides of (6.3.7), (6.3.8) can be replaced by Ay (Vou;).v and Ay(Vaus).v

respectively.

Remark 6.3.2 We note that the functions A; can be interpreted as the integrands

in the I' — limit of the functionals
x
Fe(0) = [ i, 9v) do.

In fact, I'=lim F;,(Vv) = [, \;(Ve)dz (¢f. Dal Maso [16]). Further, the functions
Az, 7= 1,2 satisfy conditions (6.2.1)-(6.2.3) for the same p but maybe for different
constants k,C, & (cf. [17], [10]).

Proposition 6.3.5 [14] The following energy identity holds

5 fo e; ()| (T, 2)* dy dz + —f-/}; es()|Us(T, z, v) |2 dy dz

1
o 2 ] 2
—— eily)|u;lx dyd:c-——ffcyuz dy dx
EELLJ{}|JtJ| [ et
2 T
+) fﬂ fn fy w5y, Vot + VyU;) (Vs + V,U;) dy dz dt
=1 i

T
-+ [ f / #-3{3}, ?yU;;}.vag dy drdt =0 H
400001
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6.4 Correctors

We now prove corrector results for the gradient of flows under stronger hypotheses

on f;'s than (6.2.1)-(6.2.3). Let ki, k; > 0 be constants and assume now that the

L5 )

i;'s are Carathéodory functions, Y-periodic in the sét;:nd variable, satisfying for
£,n € RY with ||+ || > 0 and ae. y € ¥:

1i(p,0) = 0, (6.4.1)
15 (0, &) — (v, m)] < Ka(l€] + Inl)2|E —nl, (6.4.2)
(3w, &) — ps(y, ) (E—m) = Ka(|€] + Inl)* %1€ — (6.4.3)

Remark 6.4.1 Note that (6.4.1) and (6.4.2) imply

i (y, €)| < Kalg)P? (6.4.4)

and, (6.4.1) and (6.4.3) imply

pi(y, €).€ = kal€]P. (6.4.5)

Thus, the new hypotheses are indeed stronger than the original hypotheses on 0%

Moreover,

(3w, €) — iy, m))-(E—n) = klf—nf ifp>2 (6.4.6)

5w, &) = wi(ym)| < Rilé—nftifl<p<2. (6.4.7)
These inequalities follow from (6.4.3) and (6.4.2) and triangle inequality in 2. W

Remark 6.4.2 An example of p; satisfying (6.4.1)- (6.4.3) is p; = |E[P2%€, i.e. the
corresponding diffusion operator is the p-Laplacian. Let T',+y be positive constants.
The following class of functions, f € CO(QAx BN; RN)NC (2 x RY\ {0}; RY), which
satisfy condition (6.4.1) and

% E I

jg=1

> (2wt 2 ol

J.a=1



CHAPTER 6 Frow v Porous MEDIA 87

for all z € Q,m € RV \ {0} and € € R™, also satisfy (6.4.1)-(6.4.3) (¢f. Damas-
celli [18]). A

Let uf, uj, u be the solution of the Cauchy problem (6.2.5)- (6.2.14) and let
[1, g, Uy, U, Us] be as in Section 6.3. We will denote [0, T] x §2 by €. Define the

sequence of functions

&Gtz y) = xW(Vauy(t,z) + YV, Uit z,y), 1=1,2, (6.4.8)
&(tz,y) = x0)V,Us(t, z,y) (6.4.9)

and let,
£5(t,z) = &(t, =, g), §=1,23. (6.4.10)

The main theorems of this Chapter are the following:

Theorem 6.4.1 Let £ 's be as above and assume that the functions Vil 4=1,2,3
are admissible (cf. Definition 6.5.1), then

lim =D

xi(2) (Vus(t,2) - a;(:,anmﬂT — 0, j=1,2,

lim £=0

) Vit z) - )| — o.m

Theorem 6.4.2 Under the same assumptions as in Theorem 6.4.1

T [(3) (1 (2 95) - s (.650,)))

lim ”xﬂg} (.ﬂa (E.EV“E) — H3 @,55{5@}))

— 0, j=1,2,

g0

—+ (.1

gt

Remark 6.4.3 Theorem 6.4.1 shows that x;(£)Vz(u;(t, x) + eUj(t, z, £)) strongly
approzimates x(£)Vu5(t, z) for j = 1,2 in LP([0,T] % Q2), whereas Proposition 6.5.2
only implies that these two sequences have the same two-scale limit and hence, the
same weak limit in LT, Simalarly, for the third component of the flow. Theorem 6.4.2

is about a strong approzimation for the flux terms. The utility of the corrector results
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lie in the fact that the approzimations involve the homogenized Cauchy problem and
cell problems which are computationally simpler compared to the original Cauchy
problem. In this context, it is desirable to get order of £ estimates for the corrector

results and, this is still open. A

We first prove a few lemmas yielding some limits and estimates required in proving

Theorems 6.4.1 and 6.4.2.
Henceforth, M will denote a generic constant which does not depend on &, but
probably on p, ky, ks, €5, C, and the L? norm of the initial vector ;5. Let 0 <k <1

be a constant and ®;(, 7, y) be admissible test functions such that
3
2 IV = &5l o sy, < K
i=1
Note that,

j(t,z, =) 5 0t 7,y)

for j=1,2,3. Define the functions:

o) = GENVaylthe) + (6 5,0), =12 (6411)
mtz) = Xzig}@a{f-,wrz—}- (6.4.12)

Then we note that the functions #3(t, z) and u5( 2, m5(t, x)) arise from admissible

test functions and we have the following two-scale convergence (cf. [14]),

T?;' 2_-5:' xj{y]{?muj{i-,m}+@j{t,r,yjjﬁmit,$,yj1 i=1,2,
7 3 xely)®alt, =, y) = ns(t, 2, y),
TS e X
=) = x0) wly, niltzy), §=1,2,3.

'3

Lemma 6.4.1 (c¢f Lemma 3.1 [17]) Let 1 < p <2 and ¢y, ¢y € L'(Qp)V. Then

3

T g
61— el < U il |¢'i—¢2|2(1¢1|+|¢2|}“_2ded1]

x U:fﬂ{|¢;|+r¢z|}wmt]¥
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where x denotes the characteristic function of the set

{(t,z) € [0,T] x Q= |¢4|(t, z) + |62](2, z) > 0}
Proof: Multiply and divide the integrand in left hand side by (|¢| + |¢,|)2-Pr/2
and apply Hélder’s inequality to get the result. B

Lemma E 4.2

Z”X} (W) (Vau; + VUL + llxe(y) Vy U7 < 2 z” ngn

i=1

Proof: Follows from the energy identity (Proposition 6.3.5) and (6.4.5). B
Lemma 6.4.3 Let &, 1, &, 75,1 =1,2,3 be functions as defined above. Then,
! :
T x d £
e [ (G vu0) = () (90 = )
T
< Ej:l Iu fﬂfy_,- '[n“i[ih &) - Ju'j(i-": ’T.?']) A& —my) dydz di
for 1=1,2 and
i
T £ (- E £
lun,_,n[ f (p:;(—TE?u;] - ;_;3[—,?}3}) (eVus — n3) dz dt
o Jog € £

i o Joly, (150, &) — miwamy) (& — ;) dy dadt.

Proof: Denote the integrals appearing in the left hand sides of the above relations

by {5, and {5 respectively. Then for i=1,2,3, using (6.2.17), we obtain,

£ <

H

g

M-

l
3

L
Il

1
2

f }|u”{z [Ed:n——-Zf o Fu (T, z)|* dx
—Zf f‘,ﬂg = 05).(Vu§ — iff) dw dlt

- f‘ﬁsi-mél-(ﬂ?ui-ﬂé}drdf

—Zj f,“i , Vut) r;rj:fzdi—/ /‘;.:3 L eVus).75 dr dt
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We now use the two-scale convergence properties of various functions diseussed so

far to pass to the limit. We get,

3 3
= 1 .
oYt = 53 [ [ ool dyas
J=1 7=1 Yy
i T
_li_me—}ﬂﬁz-/. Cj{:””;(TTIHEdLE
=19
3 T
[ [ ] witwn) i ) dyaz
j=1 70 JadY;
3 T
—Z[ // 15y, &5).n; dy dz dt
F=1 o i P}

The right hand side can be written as

_ij C_?{EJ' |1r, |2dyd3: llInE4u_2f LJ{ }Iu {:4: T}|‘J'£Lc
¥ ;fu j;f-,J (i, &) — pi(yamy)) (&5 — m) dy dx di

—Z[ f/ 15(y, &5).&5 dy dz di

=1

which, using Proposition 6.3.5 to replace the last expression, is nothing but,

—Z// c; (1) |u; (T, )| dy dx + —/[ ea( )|\ Us(T, z, 4) | dy dx
Y
. 1 x 9
_@E—‘UGZ c_f{gﬂuj[.r,T]] dx
= g=1 nj
3 T
w0 [ ] 0006) = v, ) 65~ m) dy e
=1 0 1 YJ

However, by standard arguments,

2
Eff c;(y)|u; (T, z)|? dz,rrh+ff (WU, 2, y) | dy dz
_1:1 n o Ty
Ll [ st o
F=1" ”j }

This completes the proof. H

.
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Lemma 6.4.4 Let &, n;, & be as before. Then,

3 s
Z[ f/ (13 (s 65) — iy, m5)) (€5 — my) dy dez dt < MxSP)
j=1 40 JRIY;

where

5{;}}:{1 ifl <p<2,

o ifpz2.
Proof: Let the left hand side of the estimate be denoted by S.

Case 1: 1 < p < 2. Using (6.4.7) we get,

3T
J;/; ./:J; | (5 (s &) — i (s ) 1165 = my)| dy dx di

3 T
< k //f & — ;" dy da dt
lj;l e g ‘r;-]J ki
Mgk

<

g

(P4

Case 2: 2 < p. Using (6.4.2) and Hélder's inequality we get,

3 a7
S < fo 3w €5) — w3y, ) 115 — 5] dy dz dit
_-;|'='|I a n }TF

3 T
s ‘“12_[3 /!;/_: &5 — nil*(16] + [ny])7~* dy dz dt
=1 E )

3 T 5
< 1Y lE -l ( [ tel+ ]m[}"dydmdt)
= 0 Jnly
3
< kY llg- willy, (1€, + 72511,
j=1
3 % oo e
<k (E II€; — ﬂj||§) (E{H&'HF ‘2 ||??;f||,,l"’)
d=1 i=1
3 2 ra ek
< (E €5 — Ii'j||i:) (Z{? €511, + 11€; — ?Ij”,,}p)
i=1 i=1

o fea

i=1

3
p=2ifp=1
o gl (z Iiﬁj—mllﬁ)
j=1

(E (2 Nl + 1l — m-u;)) P

91

Therefore, by the estimate for the second term proved in Lemma 6.4.2, we get the

result.l
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Theorem 6.4.3

B

- €T .
lim g |[x;5(=) (‘Fuj(t,:ﬂ} - nj{t,m]} < My
E pilr
AL T
lim g ||xe(=) (eVus(t, z) — 1;§{t,mj]Hp < My
E pilr
where
L fl<p<?2,
A= 3 f P
E ifp=2.

Proof: Case 1: 1 < p < 2. We use Lemma 6.4.1 with the functions
x; Vi and 75, 7= 1,2 to get,
£ e ||
”X;vuj - ﬂj”p.ﬂT

< [IDTIE;. |vu'§ - n_’;'[ﬂﬂ'i?uﬂ + I?i'}f-l}”_zdﬂfﬂf(f;fn; (]"Fujﬁ =+ Iﬁ'ﬂjp dzdt}t_;:ﬂ

Therefore, using strong monotonicity (6.4.3), we get,

T i
||x§-?uj- — r}j”im <k (/ﬂ fﬂ. (,u.j{; Vu3) — ;zjl[g_.ﬂ;-}) : (?uj — f.qr;) dx dt)
i =
X (x|l + |ng |12) "

(p=iiiZ-pi
3

where k = 2577 / L:.E. Similarly,

E
2

o
£ £ & £ T
IS vag - 1B, < U L, (12290 = ioEo00)) (938 — 1) o 'ﬂ)
= e £ 2
x(l1x5e V|2 + [Im]1E) ="

Let,
2
e I e||P £ E £
55 = D IxVus —uill o + IX5eVes — 112,
=1
* T T o v
Si = 2 [ [ () - (E) (a5 — ) dwat
=1 J - =
T xr I
t [ (o) = (7)) eV — ) o and,
0 Jng

z
55 = DIVl + [l + lixgeTuslt + 1l
=1
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Then, from the estimates for the individual terms in S§ and a simple application of
Holder’s inequality in B3, Sf < k(S5)% x (55)*F.

Note that n} arise from admissible test functions. Therefore,

3 3
EI_E%ZI: ||?I§||': = zl 195115 jo,71x v
F= I

1 3

< D PG oareasy + 2105 — &1 pagxaxy)
j=1 3=1

< M

where the last estimate follows from Lemma 6.4.2. Also by (6.2.17) and (6.4.5), we
get,

e I T
S Vas|? + lxgevas| < = ‘?”m <M

=1
From this we conclude that, TiEE_m.S’E < M. Therefore, taking limsup as £ — 0

and using Lemmas 6.4.3 and 6.4.4, we get
lim 087 < MxE.

This concludes the proof in this case.

Case 2: 2 < p. From (6.4.6), we get,
Ve =il < & (5, V) — (%, 79)) (Vs — )
Therefore, by integrating with respect to ¢ in [0, 7] and z in {8, we get,
X595 = 1517 0 2 S5 o (i (2, V05) = (2, 75))( Vi — ) v it
Similarly,
X570 — 512 0, < & fi fos (a2, €VUE) — pia(Z, 7). (Vg — 75) dix it

We note that if ST and Sj are defined as in the previous case, then §¢ < 55,

Passing to the limit, as before, we reach our conclusions. W
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Theorem 6.4.4

im0 ”Xg-#ij'[fp Vug) — #j{fﬂ?ﬂ C < Mes)
lim .q Xz#3|: yEVu3) — pal- ,7;3 qu < M)
where
sl = ,,2 1?{1{;:{2,
== ifpz2

=1

Proof: We will prove only the first of these estimates; the other is proved similarly.

If 1 <p<2 by (6.4.2) and triangle inequality in RY, we get,

T
£ F e T : =
fu | (2 V) — (o)t et <y [ |V — 5|0 de dt
: e

Since q(p — 1) = p, using the Theorem 6.4.3, the estimate follows easily. Let 2 < p.

Then,
Lk T .
f / |J£f(g:vﬂj} — 1 ,njjli dz dt
0 Jor
T e e sy (=2
<k fu fn; [Vu5 — n5]? {|?uj| +I??3|) 9 da dt

The right hand side, by Hélder's inequality,

< ky2rt (fu fﬂr |Vui — njf? dz dt) Bt (fﬂ fn_{Wusip + |05 P) da ﬂrt)

< M ||x5vus — g7

pfir

So, again using Theorem 6.4.3, we get the desired result, W

Proof of Theorems 6.4.1 and 6.4.2: Since, V,U,’s are assumed to be admissible

test functions, we can take ®; = V,U;. Thus, & can be taken arhitrarily small and

therefore, Theorem 6.4.1 follows from Theorem 6.4.3. Similarly, Theorem 6.4.2

follows from Theorem 6.4.4. W

Remark 6.4.4 The functions V,U;(t, z,y) will be admissible if we have C' regular-

ity of U; in the variable y. Even if the functions VU, are not admissible, Theorems

0.4.8 and 6.4.4 are corrector resulls in their oun right. W
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