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SYNOPSIS

Quantum Chromodynamics (QCD) is s.uppﬂsnd.tu be the correct theory
for strong interactions. 50 one should be able to get a complete description
of all strong interaction phenomeng. from it. QCD is an asymptotically free
theory. This means that at high energies the coupling of the theory is small.
This energy regime can be handled by perturbation theory. On the other
hand, at lower energies, the coupling becomes strong and the perturbation
theory breaks down. Several other approaches have been tried to tackle
the low energy regime of QCD. Among them lattice QCD seems to be very
promising. However none of themn have been able to explain one of the most
fundamental problems of strong interactions, which is confinement of quarks,
starting from QCD.

One of the most appealing physical pictures for quark confinement is dual
superconductivity. Here the analogy is to type 11 superconductors. In normal
type 11 superconductors, Meissner effect takes place in the bulk of the su-
perconductor. Some of the magnetic flux which penetrates into the material
is squeezed into thin tubes. In the dual superconductor scenario, the QCD
vacunm behaves like a dual superconductor. Under similar circumstances,
instead of magnetic flux tubes, one would now get electric flux tubes. These
fux tubes would begin at a quark and end at an antiquark implying a lin-
early rising potential between them. This would give a physical picture of
confinement. It would then be impossible to separate them into a pair of free
quark and antiquark, as that would require infinite energy.

Duality transformation typically maps the strongly coupled region of one



theory to the weakly coupled one of another, making it amenable to a pertur-
bative expansion. This has proved very useful for several statistical mechanics
systems. For example, 2-dimensional Ising model is self dual and undergoes
a second order phase transition. The self duality of the model completely
fixes its transition temperature. Also in 2-dimensional XY model, which
undergoes a defect driven phase transition, the structure of the defects is re-
vealed by a duality transformation. For field theories, the simplest example
is electrodynamics. In this case, duality transformation maps the theory to
itself by interchanging the role of electric and magnetic fields. With matter
present, usual electrodynamics is not sell dual, but with magnetic monopole
degrees of freedom put in, it can become self dual again. Many statistical
mechanics and field theory systems are topologically non-trivial and have
solitons. In these cases, duality transformation generally interchanges the
fundamental degrees of freedom with the topological degrees of freedom of
either the same or some other model. This way the non-perturbative de-
grees of freedom get exposed. Non-Abelian gauge theories are topologically
non-trivial, and they are believed to have monopole kind of configurations.
Therefore if one is able to perform a duality transformation, one hopes to
bring out these topological degrees of freedom and identify correctly the rel-
evant degrees of freedom for describing low energy phenomenon in QCD. All
these bring out the importanece of being able to do a duality transformation
in QCD.

The basic difference between electrodynamiecs and QCD is that the former
is an Abelian theory while the latter is non-Abelian. So far all the successes of

duality transformation has been for either discrete or U(1) groups, but none
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for non-Abelian groups. It is believed that once one understands how to deal
with the basic non-Abelian theory, dealing with QCD will not be too dtlfﬁcult.
Hence in this thesis we look al the problem of duality transformation of the
simplest non-Abelian theory which is SU(2) Yang-Mills theory in 241 and
341 dimensions respectively,

In 2+1 dimensions, a curious analogy exists between SU(2) Yang-Mills
theory and the Einstein-Cartan formulation of gravity. Using an auxiliary
field one can rewrite the Yang-Mills action so that it is linear in the field
strength. Now one can interpret the auxiliary field as the driebein and the
field strength as the curvature. The gauge potential plays the role of spin
connection. The resulting action now looks like the three dimensional grav-
ity action with an added term that breaks general coordinate invariance.
Gauge invariance however is retained. Thus dynamics in 241 Yang-Mills is
mapped to morphisms of 3-manifolds. In three dimensions pure gravity does
not have any local degrees of freedom. In contrast, for Yang-Mills theory,
the general coordinate invariance breaking term results in local degrees of
freedom. We are now able to identify the dual gluons as local coordinates
on the 3-manifold. These are three scalar degrees of freedom as expected
for 24 1-dimensional Yang-Mills theory. We identily the monopoles too in
a manifestly gauge ivariant manner. They are located at points where the
Ricei principal axes become degenerate. Thus both the dual variables and the
topological degrees of freedom, have nice geometric interpretations in terms
of coordinates and coordinate singularities respectively. When we rewrite
the action in terms of the new variables, we get an interaction term which

couples the dual gluons with the monopoles naturally.
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In 341 dimensions, we first try to identify the physical phase space. For
that we find a local solution to the non-Abelian Gauss law. Apart from being
local, the solution has the additional advantage that it is parametrized by a
gauge invariant symmetric matrix. The usual Abelian Hodge decomposition
of the potential is extremely useful in handling the Gauss law constraint in
electrodynamics. Here we develop techniques to decompose the non-Abelian
potential into parts useful for handling the non-Abelian Gauss law and per-
form duality transformation. This can be thought of as non-Abelian general-
ization of the usual Hodge decomposition. We show that there are two useful
decompositions. One of them is to decompose into the covariant gradient and
the covariant curl part. The other one is to rewrite in terms of a magnetic
field of some other potential.

In spite of all this, it is not clear that we get all possible solutions of the
Gauss law. The reason for this is the existence of Wu - Yang ambiguities.
This is a special feature of non-Abelian gauge theories where two gauge
inequivalent potentials give rise to the same field strength. Since this affects
our parametrization of the solution to the Gauss law, we are forced to analyze
this effect. However we find that this is not a peneric phenomenon. For most
cases only some global solutions exist. So this does not affect our local
parametrization very much.

After resolving these issues, we proceed to do duality transformation for
the theory. We realize duality transformation as a canonical transformation
on the phase space variables of the Yang-Mills theory. We use generating
functions for the canonical transformation. This has some distinet advan-

tages. Firstly, since the Jacobian of the transformation is one, we do not
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pick up any undesirable extra factor in the functional measure. Secondly,
the new variables obey their own Gauss law which follows naturally if one
uses a gauge invariant generating functional. The dual theory gives the dy-
namics of the dual gluon. It is however non-local.

Another related but alternative approach is to work in the axial gauge.
We note that the dual field is the lagrangian multiplier for the Bianchi iden-
tity. For 241 dimensions we use axial gauge to completely integrate out the
original gauge fields and get the action for the dual gluon. This is non-loeal.
Using auxiliary fields, we restore locality and gauge invariance. The dual

gluon is a scalar isotriplet and its topology gives the monopole configura-

tions. We repeat the analysis for 341 dimensions.

We conclude with the possible uses of our techniques.
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Chapter 1

Introduction

Quantum Chromodynamics is supposed to be the theory for strong inter-
actions. So one should be able to get a complete description of all strong
interaction phenomena from Quantum Chromodynamics (QCD). QCD is an
asymptotically free theory. This means that at high energies the coupling
of the theory is small. This energy regime can be handled by perturbation
theory. On the other hand, at lower energies, the coupling becomes strong
and perturbation theory breaks down. Several approaches have been tried
to tackle the low energy regime of QCD. Among them lattice QCD seems to
be very promising. However gaps remain in our understanding of the mecha-
nism of one of the most fundamental problems of strong interactions, which
is confinement of quarks. Reliable techniques of computation of confinement
effects have also not yvet been developed.

One of the most appealing physical pictures for quark confinement is dual

superconductivity. Here the analogy is to type II superconductors. In su-




perconductors, Meissner effect takes place in the bulk of the superconductor.
However the magnetic field can penetrate the substrate material by forming
tubes of normal conductor within the bulk superconductor. This magnetic
flux which penetrates into the material is squeezed into thin tubes. In the
dual superconductor scenario, the QCD vacuum behaves like a dual super-
conductor. Under similar circumstances, instead of magnetic flux tubes, one
would now get electric flux tubes. These flux tubes would begin at a quark
and end at an antiquark implying an asymptotically linearly rising potential
between them. It would then be impossible to separate them into a pair of
free quark and antiquark, as that would require infinite energy. This would
be a physical picture of confinement.

Duality transformation typically maps the strongly coupled region of one
theory to the weakly coupled one of another, making it possible for one to
investigate the strongly coupled region of a theory by a perturbative expan-
sion of the dual theory. This has proved very useful for several statistical
mechanics systems. For example, 2-dimensional Ising model is self dual and
undergoes a second order phase transition. The self duality of the model
completely fixes its transition temperature. Also in 2-dimensional XY model,
which undergoes a defect driven phase transition, the nature and relevance of
the defects is revealed by a duality transformation. For gauge field theories,
the simplest example is Maxwell electrodynamics. In this case, duality trans-
formation maps the theory to itself by interchanging the role of electric and
magnetic fields. With matter present, usual electrodynamics is not self dual,
but with magnetic monopole degrees of freedom put in, it can becomes self

dual again. Many statistical mechanics and field theory systems are topo-

2




logically non-trivial and have solitens. In these cases, duality transformation
generally interchanges the fundamental degrees of freedom with the topolog-
ical degrees of freedom of either the same or some other model. This way, the
non-perturbative degrees of freedom get exposed. Non-Abelian gauge the-
ories are topologically non-trivial, and they are believed to have monopole
kind of configurations. Therefore if one is able to perform a duality trans-
formation, one hopes to bring out these topological degrees of freedom and
identify correctly the relevant degrees of freedom for describing low energy
phenomena in QCD. All these bring out the importance of being able to do
a duality transformation in QCD.

So far we have pointed out the role of duality transformation in 2-dimensional
Ising model, the 2-d XY model and electrodynamics., Other well known
systems include the duality between the Sine-Gordon model and massive
Thirring model in 1+1 dimensions, 2+1-dimensional U(1) lattice gauge the-
ory and Georgi-Glashow model are related to the couloumb gas problem in 3
dimensions. Duality also plays very important roles in supersymmetric gauge
theories and string theories.

Duality transformations have already played crucial roles for understand-
ing many aspects of gauge theories. Indeed the first examples of lattice
gauge theories appeared as dual theories of Ising models [1]. Since confine-
ment effects occur in the low energy regime of non-Abelian theories, which
are beyond the reach of perturbation theory, duality transformation is espe-
cially important for understanding the confinement aspects of gauge theories

[2]. Tt is expected, and in some cases checked, that monopoles play a crucial

role for this property.



Quark confinement is well understood in 2+1-dimensional compact U(1)
gauge theory. It is a consequence of the existence of a monopole plasma [3][4].
Duality transformation [5] turned out to be very useful in this context. It
is of interest to know how far these ideas can be extended to non-Abelian
gauge theories. For this reason, duality transformation for 241-dimensional
lattice Yang-Mills theory was obtained in both hamiltonian [6] and partition
function [7] formulations. After duality transformation, SU(2) lattice gauge
theory gets related to Ponzano Regge formulation of 3-dimensional gravity.

Duality transformation of an Abelian gauge theory gives the dual po-
tential [8], one which couples minimally to magnetic matter. Therefore it
exposes the monopole degrees of freedom. This is brought out in a powerful
way in four-dimensional super symmetric gauge theories [9]. Deser and Teit-
elboim [10] analyzed the possibility of duality invariance of 3+1-dimensional
Yang-Mills theory in close analogy to Maxwell theory and concluded that
invariance is not realized.

In this thesis we develop techniques for performing duality transformation
of 241 and 341-dimensional Yang-Mills theories. The contents of the thesis
is as follows.

In chapter two we review an analogy that exists between gravity and
gauge theory. This analogy plays a very important role for SU(2) gauge
theory in three dimensions. Since the number of generators of the gauge
group and the number of space-time dimensions match, techniques from one
can be used in the other almost without any modification.

In the third chapter, we consider duality transformation for 24 1-dimensional

(continuum) Yang-Mills theory in close analogy to the case of compact U(1)
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lattice gauge theory [5]. We reinterpret the Yang-Mills theory as a theory of
3-manifolds, as in gravity, but without diffeomorphism invariance. We use
this relation for identifying the dual gluons and their interactions. The dual
gluons are related to diffeomorphisms of the 3-manifold. We also identify the
monopoles in the dual theory. 't Hooft [11] has advocated the use of a com-
posite Higgs to locate the monopoles. Here we propose to use the ortliogonal
set of eigenfunctions of a gauge invariant, (symmetric) local, matrix-valued
field for this purpose. Isolated points where the eigenvalues are triply degen-
erate have topological significance and they locate the monopoles. We use the
Ricei tensor to construct a new coordinate system for the 3-manifold. The
monopoles are located at the singular points of this coordinate system and
they have the expected interactions with the dual gluons. We expect that
these interactions lead to a mass for the dual gluons and result in confinement
as in the U(1) case.

In chapter four, we deal with the problem of gauge field copies. Wu and
Yang [14] gave an explicit example of two (gauge inequivalent) Yang-Mills
potentials A;(zr) = {A%(z),a = 1,2,3} generating the same non-Abelian
magnetic field

i 5 e g
BiA](z) = (@A + 54 % Ag). (1.1)

Since then there has been a wide discussion of the phenomenon in the lit-
erature [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. We may refer
fo gauge potentials giving the same non-Abelian magnetic field, as gauge
field copies in contrast to gauge equivalent potentials which generate mag-

netic fields related by a homogeneous gauge transformation. If we require




all higher covariant derivatives of Bf also match then there are effectively
no gauge copies [24]. In each of the space dimensions d = 1,2, 3 this phe-
nomenon has a different manifestation. At present the phenomenon is not
understood in its generality for in 3 space-time dimensions. Recently Freed-
man and Khuri [28] have exhibited several examples of continuous families
of gauge field copies in 3 space-time dimensions. Their technique was to use
a local map of the gauge field system into a spatial geometry with a sec-
ond rank symmetric tensor G;; = BEBf detB and a connection with torsion
constructed from it. We tackle the global version of the problem directly
and appeal to the Cauchy-Kowalevsky existence theorems on systems of first
order partial differential equations. We conclude that the phenomenon is not
generic. We show that for every given magnetic field there corresponds a
vector potential and there exists one gauge field copy which is unique upto
boundary conditions.

The fifth chapter discusses the solution of the non-Abelian Gauss law and
non-Abelian analogs of the Hodge decomposition. Yang-Mills theory has a
first class constraint, the non-Abelian Gauss law. This particular constraint
is also present in Ashtekar formulation of gravity [29], Usually this con-
straint is handled by “fixing a gauge”. However it is of interest to abtain
a parametrization of the "physical phase space”, i.e. the part of the phase
space which satisfies the constraint. This would give the physical degrees of
freedom. We are interested in a general solution of the Gauss law in terms
of local fields. This is of relevance for duality transformation of Yang-Mills
theory [30][31][32]. For other approaches to handle the Gauss law, see ref,
[33].
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In the sixth chapter we consider duality transformation of four-dimensional
Yang-Mills theory. The first work to address duality transformation of 3+41-
dimensional Yang-Mills theory retaining all the non-Abelian features was by
Halpern [34]. Using complete axial gauge fixing, he brought out the crucial
role played by the Bianchi identity. The dual theory was a gauge theory
with a new gauge potential, though the action was non-local. Another is-
sue closely related to duality transformation is reformulation of the gauge
theory dynamics using gauge invariant degrees of freedom. Several authors
[35] consider rewriting the functional integral using a pauge covariant second
rank tensor. Using the relation of SO(3) lattice gauge theory in 241 dimen-
sions with gravity we can formulate the dynamies using local gauge invariant

degrees of freedom [37]. Similar situation is true in 3+1 dimensions also

38].

In the previous chapters, gauge invariance was explicitly maintained.
However in chapter seven we fix the axial gauge and carry out the dual-
ity transformation of Yang-Mills theory in three and four dimensions. The
three-dimensional case provides further insight into the duality transforma-
tion which we had performed formally in a gauge invariant way in chapter
three. The four-dimensional case however is not so clean and we are left with
extra auxiliary fields.

Chapter eight contains our conclusions and future directions of work.



Chapter 2

Analogy with gravity

A formulation of gravity which allows one to incorporate spinors is the
Einstein-Cartan formulation. In this formulation of gravity, one uses a set
of smooth vector fields (vielbeins), as frames for describing things. These
frames are parallel transported using the spin connection, which play the
role of potentials of gauge theories. The dynamics of the local coordinate
and the spin connection is determined by the two Cartan structure equa-
tions. In this language, there is a striking similarity between gravity and
Yang Mills theory in 241 dimensions. Let us now look at this connection a
little more closely.

Vielbeins are an orthonormal (with respect to the metric) set of smooth
vector fields with one index belonging to the tangent space at that point and
the other one being the ordinary space-time index. They obey the following

equation.

Eﬂﬂguuﬂﬁ 2 ;5a£-_ {21}




Note that we are in Euclidean space because we want the holonomy to be in

SU(2) and not SU(1,1).

b

Next we define the spin connections ws” as

wh = e*(D,e,)". (2.2)

The e}’s form a set of basis vectors. Any tensor can be expanded in terms
of these. For example the expansion coefficients w®™® of wﬁ*’, called the Ricei

rotation coeflicients are given by,
wr_-.::ﬂ — ghcphn [Dpﬂp]ﬁ- (2‘3}

Thus we can use the vielbeins or tetrads as they are also called to interchange
indices between the tangent space and our ordinary space.

Since the €} are orthonormal (2.1), and

Dy guw =0 (2.4)
we have
w;b = e"“DFef',
= —¢"'D, et (2.5)
= _Mbﬂ

I

Thus the spin connections are antisymmetric and have only 24 components in
4 dimensions whereas the Christoffel symbols have 40. Finally the curvature

tensor can be written in terms of the tetrads as follows.

Rebed' = Ry e €' €5 %, (2.6)

= e%e’e%(D"D" — D'D*) e™ (2.7)
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or
R — ¢ (DHD” — D'DF) ¢ (2.8)
or

Rﬂd:w =e5%(D,D, - D,D,) efd (2.9)
which using the definition of w’”‘“ can be written as

R, = B,u™, — Bw™, + [w,, w]®. (2.10)

In 341 dimensions, the Einstein action in terms of the vielbein language

is given by
Se= fd*a: et et {3,w™, — 8,0, + (W, , W]} (2.11)

Variation with respect to the tetrads yield the source free Einstein equation

R — % Guit=10 (2.12)
where
R= RY, (2.13)
and
va = ﬂ'mﬂppua {214}
with
i = (&a)° (e )" A% (2.15)

and R",, is as defined in equation (2.10).

In 3 Euclidean dimensions Einstein action is given by

§ = [ P e ret, (B, — O + Hutus (2.16)

10



MNote that here we have written w with one index. We can however convert

it to a 2 indexed notation by
wff‘ _ Eabcw; (2.17)
Now let us look at the Yang Mills action in 3 FEuclidean dimensions.
S= 51? [ & tr(®uF) (2.18)
We can introduce an auxiliary field e, and write this equation as
$= % f &z (g2 e, + it e, FY,,) (2.19)

with an extra integral in the partition function over the auxiliary fields. Note
that now the action is linear in the field strength £°,,.. This is known as the
linearized action. When we try to remove the auxiliary fields by integrating
over them, then we shall have to complete the square and then again we will
have the quadratic term in F%,, apart from an unimportant constant factor.

Thus if we add a general coordinate invariance breaking term in the form
of €% €%, with a summation over @ and p in the 3-(Euclidean) dimensional

Einstein-Cartan action, we get the Yang-Mills action.
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Chapter 3

Dual gluons and monopoles in

2+ 1-dimensional Yang-Mills
theory

This chapter considers duality transformation for 24-1-dimensional (contin-
uum) Yang-Mills theory. Since we are in 3 dimensions and the gauge group
is SU(2), we have a situation analogus to 3-dimensional gravity. We use this
analogy extensively throughout the chapter. Lunev [39] too has suggested a
relationship of 24+1-dimensional Yang-Mills theory with gravity. He uses a
gauge invariant composite BY B} as a metric, and rewrites the classical Yang-
Mills dynamics for it. The corresponding formulation of the quantum theory
is somewhat involved. Our metric is in a sense dual of Lunev’s choice. As we
make formal transformations in the functional integral, the quantum theory

is simpler and has a nicer interpretation. There are also approaches that try
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to relate 3+1-dimensional Yang-Mills theory to a theory of a metric [12]. On
the other hand, the dual theory in 3+1-dimensions can also be related to a
new SO(3) gauge theory [13].

This chapter is organized as follows. In section 1 we briefly review dual-
ity transformation and confinement in 2+1-dimensional compact U(1) lattice
gauge theory. In section 2 we obtain the dual description of 2+1-dimensional
Yang-Mills theory in close analogy to section 1. We point out the close re-

lationship to gravity and identify the dual gluons and their interactions. In

section 3 we provide a new characterization of monopoles using eigenfunc-
| tions of the symmetric matrix B*B?. In section 4 we use the Ricei tensor

to construct a preferred coordinate system for 3-manifolds. We relate the
\ monopoles to singularities of this coordinate system. We also identify their

| interactions with the dual gluons. Section 5 contains our conclusions.

3.1 Review of confinement in 241-dimensional

compact U(1) Lattice Gauge Theory

In this section we briefly review duality transformation [5] and confinement
[3] in 2+41-dimensional compact U(1) lattice gauge theory. This provides a
paradigm for our analysis of 2+1-dimensional Yang-Mills case.

The motivation for U(L) lattice gauge theory comes from the planar spin
models. This model has a nearest neighbor interaction between spins which
is given by 3 ;- 8i-s;. In terms of the angles of the spins, it can be written

as V(#; — ;) = —K[1 — cos(f; — ;)] where i and j are nearest neighbor

13
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sites. Since the interaction term is a periodic function, we can expand it in

a fourier series.

o

exp [V(0)] = 3 explist + V(s)], (3.1)

=—c

where the fourier coefficients V(s) are given by

exnl?(s)] = | 2" %eﬂ:p{—isﬂ-i-vm}]. (3.2)

In this case exp[V(s)] are related to Bessel functions. However the sum

(3.1) converges rather slowly for large arguments of the Bessel functions. To

improve their convergence, one can use the Poisson summation formula
o
Z gls Z f de g(¢)exp[—2mimdg). (3.3)
l A== TH==00

\ Hence eq(3.1) can be written as

exp[V(0)] = ) exp[Vo(f — 2rm)] (3.4)

Now the sum over m enforces the periodicity of V(#). Therefore V; itself
\ may be a non-periodic function.
Villain considered a modified Hamiltonian (expected to be in the same

universality class as the original one) which has

; A
exp[Vo(6)] = —EH f°. (3.5)
This is known in the literature as the Villain approximation.
In contrast to the spin model, U(1) lattice gauge theory has the degrees
of freedom on the links and to maintain gauge invariance, the action is taken
along a closed plaquette. Thus the partitinn function is

Z = ]‘[ f d8;(n)ezp|— 2{1 cosli; (n))] (3.6)

L

14




where 6;(n) is the angle on the directed link n — n 41 and
H{jI:TLj] — ﬂigj{:ﬂ} == &Jﬂl{?’l} 1:3?}

However the Villain approximation can be performed as in the planar spin
model, and we get the Euclidean partition function in the Villain formulation
as

Z=YTI [ dAi(n) exp (— 7 Z[a Ai(n) — D A(R) + hi ()]P). (3.8)

hij ni niz
Here A;(n) € (—oo,00) are non-compact link variables on links joining the
sites n and n +1. hy(n) = 0,41,%2... are integer variables corresponding
to the monopole degrees of freedom and are associated with the plaquette
I[m_;;] Oy is the difference operator, &qé(n) = d(n + E] — ¢(n). We may
introduce an auxiliary variable e;(n) to rewrite 2 as

z = Eﬂf_ dA;(n f:def(ﬂ] exp ("};[ﬂi(ﬂ)]z

hi; ni

+ m Z eijr ex(n)[Didi(n) + h,ﬂn]]) (3.9)

nij

Integration over A;(n) gives the & function constraint
ik &J‘ Ek'[:ﬂ,:} ={J [:31[])

for each n and . The solution is e;(n) = A;¢(n). Thus we get the dual form

of the partition function

z=¥11/" —dg(n) eap 3 (~A6() + 5 o), (@11)

hij mi

15



where p(n) = Le;x £;ihye(n). This has the following interpretation. The field
¢ describes the dual photon. (In 241 dimensions, the photon has only one
transverse degree of freedom and this is captured by the scalar field ¢(n)).
The monopole number at site n is given by p(n). It takes integer values and
the dual photon couples locally to it with strength 1/x.

If we sum over the monopole degrees of freedom, we get a mass term for
¢(n) [3](5]. The reason for this is that the monopole plasma is screening the
long range interactions between the monopoles. A Wilson loop for the electric
charges in this system would correspond to a dipole sheet in this plasma.
This gives an area law and hence a linear confining potential between static
electric charges.

The advantage of this formal duality transformation is that it gives a
precise separation of the ‘spin wave' and the ‘topological’ degrees of free-
dom. Therefore it provides a stepping stone for going beyond semi-classical
approximations.

We use this approach for 24-1-dimensional Yang-Mills theory in the next

section.

3.2 Dual gluons in 2+1-dimensional Yang-Mills
theory

In this section we point out the close relationship between Yang-Mills theory
and Einstein-Cartan formulation of gravity in 3-dimensional Euclidean space.

We use this analogy extensively throughout the chapter.
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The BEuclidean partition function of 2+1-dimensional Yang-Mills theory
1

is
1 3 a a LI T
7= [ DA z) exp (—ﬁ [ &2B2(2)B; {z]) (3.12)
where {A?(z), (i,a =1,2,3)} is the Yang-Mills potential and
1
B = Seun(B47 — 0445 + oAb AL) (3.13)

is the field strength. As in section 1, we rewrite Z as [7)

2= [D4:(a) Des(a) eap { [ dn(—gles @ + Zes@Bi@)} . (314)

The second term in the exponent is precisely the Einstein-Cartan action for
gravity in 3-(Euclidean) dimensions. e?(x) is the driebein and wi® = 2= A¢
the connection 1-form.

In contrast to section 1, we do not get a & function constraint on inte-
grating over A7 in this case. Since A appears at most quadratically in the
exponent, the integration over A may be explicitly performed. This inte-
gration is equivalent to solving the classical equations of motion for A as a

functional of e and replacing A by this solution :
€i1(050°° + Emﬂg{e]}ei[;’;] = (3.15)

Now (3.13) is precisely the condition for a driebein e to be torsion free with
respect to the connection 1-form Af,
If we assume the 3 x 3 matrix ef to be non-singular, then this solution A[e]

can be explicitly given [40]. In this case, no information is lost by multiplying

'Note that in this chapter we use k and not g to denote the coupling constant in order

to avoid confusion with the determinant of the metric
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(3.15) by ef and summing over a. We get,

€ij1€ Oj€f + |E|(€_1}?Emmﬁijk-“-?{€] =0. (3.16)
Defining
A e )om = Ajm, (3.17)
we pet,
Ajile] — dAmmle] = e lEijkE?ajﬂE. (3.18)
Taking the trace on both sides,
Finally we obtain
el
Allel = 7% (E,-jkeraje; ikl Ek) (3.20)

By a shift of A, A = A[e] + A', the integration over 4 reduces to

[ 1 1
Dﬂ: ! (i f A; F £ ) = = g
[ erp " ia® JbAJE-' detli? (Eiu,jb} det3/2(e?)’ (3.21)

b
where ;4,50 = €0 €}

B is related to the Ricci tensor Ry as follows:
Ry = Flef(e™')] (3.22)
where F ab — Euk‘fﬂbﬂﬂg Thus an integration over A gives,

o f Dgexp (—%gu + %ﬁR) (3.23)
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where the metric g;; = efef and R = Rig™. Note that Dg = De det3/%(e?),
as required. The configurations where e is singular is naively a set of measure
zero, so that the assumption |e| # 0 is reasonable.

Equation (3.23) provides a reformulation of 2+1-dimensional Yang-Mills
theory (classical or quantum) in terms of gauge invariant degrees of freedom.
It is now a theory of metrics on 3-manifolds which however is not diffeomor-
phism invariant because of the term g;; in the action. As a result, not only
the geometry of the 3-manifold, but also the metric g;; of any coordinate
system chosen on the manifold is relevant.

For 3-dimensional (Euclidean) gravity, an integration over e (3.14) would
give the d-function constraint Bf = 0, resulting in a topological field theory
[41]. There are no massless gravitons as a consequence. Now however, the
diffeomorphisms provide massless degrees of freedom corresponding to glu-
ons. They may be described as follows. The 3-manifolds are described by
the metric g;; in the coordinate system x. We may choose a new coordinate
system ¢(z) (A = 1,2,3), with a standard form of the metric G 45[¢]. We

have

il

a i
gij(z) = Tl .;b

(3.24)

This gives the form of the action as,

5= [ds [ (a¢ﬂCAB{¢]a¢B) zi N H[tﬁ] (3.25)

where |—‘L = det ( ) We identify ¢*(z) (4 = 1,2,3) as the dual gluons.

A ¢,zl

A simple way of seeing this is as follows. Note that the second term comes

with a factor i = +/—1, whereas the first term does not. In this sense it is
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analogous to the f-term in QCD which continues to have the factor i = V=1
in the Euclidean version. Consider a random phase approximation to Z.
The extrema of the phase factor correspond to solutions of the the vacuum
Einstein equations. In this case (3 dimensions), this means that the space is
flat. Now we may choose the standard form Gap = dag. ¢ now represent
arbitrary curvilinear coordinates for that manifold. Then the first term in
(3.25) is just (V¢*)?. This describes three massless scalars. As in section 1
they represent the one transverse degree of freedom for each color. Thus the
gluons are now described in terms of gauge invariant, local, scalar degrees of
freedom.

In the general case i # 0, consider normal coordinates ¢*(z) at a given

point. The metric has the standard form,

G apld] = 048 + Rancolo) 696" + ... (3.26)

@* represents the dual gluons and R the geometric aspects of the manifold.
Both are degrees of freedom of 2+1-dimensional Yang-Mills theory. ¢* are
invariant under the Yang-Mills gauge transformations. Thus equation (3.25)

deseribes Yang-Mills dynamics in terms of gauge invariant degrees of freedom.

3.3 Monopoles

We now identify the monopoles of Yang-Mills theory in terms of the dual
variables. Monopoles are related to Yang-Mills configurations {Af(z)} with
a non-trivial U(1) fiber bundle structure [14]. In such configurations, the

monopoles are characterized by points with the following property [42]. Con-
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sider a surface enclosing a point and a set of based loops spanning it. Con-
sider eigenvalues of the corresponding Wilson loop operator. As one spans
the sphere, the eigenvalue changes continuously from zero to 27 instead of
coming back to zero. Thus such points have topological meaning. Moreover
a small change in their position can produce a large change in the expec-
tation value of the Wilson loop. Therefore we may expect that such points
are relevant for confinement, even though a semi-classical or dilute gas ap-
proximation may not be available. Therefore it is important to provide a
characterization of these monopoles and their interactions with the dual glu-
OlS.

In case of 'tHooft-Polyakov monopole, the location of the monopoles is
given by the zeroes of the Higgs field [43]. In pure gauge theory we do not
have such an explicit Higgs field. 'tHooft [11] has proposed use of a composite
Higgs for this case.

We follow a different procedure here. Consider the eigenvalue equation

of the positive symmetric matrix B?(z)Bb(z) = I®*(z) for each z.
I*(z)x(z) = M(z)x (z). (3.27)

The eigenvalues A*(z), (A = 1,2,3) are real and the corresponding three
eigenfunctions v (z), (A = 1,2, 3) form an orthonormal set. The monopoles
in any Yang-Mills configuration A%(x) can be located in terms of x/{z). We
will illustrate this explicitly in case of the Prasad-Sommerfield solution [44].

For this J** has the tensorial form,
I"*(z) = P(r)d™ + Q(r)z2* (3.28)
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with P(0} # 0 and finite. At r = 0, the eigenvalues are triply degenerate.
Away from r = 0, two eigenvalues are still degenerate, but the third one is
distinct from them. The corresponding eigenfunction (labeled A=1, say) is
xL(2) = £%. This precisely has the required behavior for the composite Higgs
at the center of the monopole [11].

We may regard x(z) as providing three independent triplets of (normal-
ized) Higgs ficlds. "tHooft [45] had used the Higgs field of the Georgi-Glashow
model to define an Abelian field strength, using which he characterized the
magnetic monopole. In this case, drawing the same analogy, we may con-

struct three Abelian gauge fields,
1
E‘?EI] = Xf(m}ﬂf{l'} = Efijkfﬂbc){fﬂjx,;lﬂk}(f (3.29)

We have

b z) = eediap — %Efjkf“"“xfﬁjxfﬂkxf (3.30)
where the three Abelian gauge potentials are given by af*(z) = y (z)A%(z).
For each A = 1,2, 3, the second part of the right hand side is the topological
current for the Poincare-Hopf index [43]. It is the contribution of the mag-
netic fields due to the monopoles. These monopoles are located at points
where this index is non-zero.

Since, xi = sepeelixg xE, we may rewrite our Abelian fields as

b (z) = eie(Biai (z) + E"mccfcf} (3.31)

where ¢ = €489y B5,xC has the form of a ‘pure gauge’ potential, but is not,

because of the singularity in (x?).




Thus for any configuration A?(z) of the Yang-Mills potential, monopoles
are located at the points where the eigenvalues of the symmetric matrix
B} (z)B}(z) become triply degenerate. We may use the corresponding eigen-
functions to construct three Abelian gauge fields with respective monopole
sources. Instead of I**, we may also use the gauge invariant symmetric ten-
sor field B ()07 (x) and its eigenfunctions x{'(x). This provides a gauge
invariant deseription of the monopoles.

We may also use the Ricei tensor R! = Ry(z)g*(z) for this purpose.
The three eigenfunctions x2(z), (4 = 1,2, 3) (Ricei principal directions [46])
provide three orthogonal vector fields for the 3-manifold. In regions where
eigenvalues of B! are degenerate, the choice of the vector fields is not unique.
One can make any choice requiring continuity. However isolated points where
R is triply degenerate are special, and have topological significance. At such
points the vector fields are singular. Thus the monopoles correspond to the
singular points of these vector fields. The index of the singular point is the
monopole number.

We emphasize that the centers have a topological interpretation which is

independent of the way we construct them.

3.4 Interaction of dual gluons with monopoles

Dual gluons are identified with a coordinate system ¢'(z) 4 = 1,2,3 on the
3-manifold eqns.(3.25) (3.26). We now consider special coordinate systems
which are singular at the location of the monopole. In case of the Prasad-

Sommerfield monopole, they correspond to the spherical coordinates (v, 0, ¢)
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with the monopole at the origin. In the general case, we may construct
the coordinate system as follows. At the site of the monopole, one of the
eigenfunctions y;(z) say, has the radial behavior. Then we may construct

the integral curves of this vector field by solving the equations,
dr! B dz? B dz?
xi(@) X)) xi(z)
We may choose these integral curves to be the equivalent of the r-coordinate,

(3.32)

i.e. we identify these curves with @ =constant, ¢ =constant curves of the new
coordinate system. Consider closed surfaces surrounding the monopole which
are nowhere tangential to these integral curves. A simple choice is just the
spherical surfaces. We may identify them with the surfaces r=constant. (We
have not specified the @, ¢ coordinates completely, but this is not required
for our purpose.) We thus have a coordinate system y*(z) whose coordinate

singularities correspond to the monopeles. In this coordinate system,

fda::\fﬁﬂ = [(JEEI (e PCix8;x P ex©) VG (2) R(x) (3.33)
where G;; is the metric in this coordinate system.

Now 9;(e:50;x*0x?) is non-zero at = xp and is related to the monopole

charge at x4 as follows. Let

xz) = 3 (m) = plz)%* () (3.34)
where
) (=) = L. (3.35)

We see that there is a coupling of the field combination \/G(z)R(z)(z) to

the monopole charge density
Fiki(z) = myd® (zp), (3.36)
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where

ki(z) = ere PO %78, xE (3.37)

Thus a certain combination of the dual gluon ¢*(x) and the geometric degree
of freedom R(z) couples to the monopoles. In analogy to the compact U(1)
lattice gauge theory (sec.1), this may be expected to give a mass for the dual
gluon and hence confinement. There are other interactions which are not of

topological origin and these are to be interpreted as self interactions.

3.5 Conclusion

In this chapter we have argued that the duality transformation for 241-
dimensional Yang-Mills theory can be carried out in close analogy to the
Abelian case. The dual theory has geometric interpretation in terms of 3-
manifolds. We identified the dual gluons with the coordinates of the 3-
manifolds and monopoles with the coordinate singularities. We expect that

this will provide a new approach for understanding quark confinement.

25




Chapter 4

Gauge field copies

In this chapter, we deal with the problem of gauge field copies. Wu and
Yang [14] gave an explicit example of two (gauge inequivalent) Yang-Mills
potentials A;(z) = {A%(z),a = 1,2,3} generating the same non-Abelian
magnetic field

s RN
BJA]{&:J = e,-j;:{ﬂ_,-Ak + -E*Aj x Ak::l. (4.1}

Since then there has been a wide discussion of the phenomenon in the lit-
erature [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28). We may refer
to gauge potentials giving the same non-Abelian magnetic field, as gauge
field copies in contrast to gauge equivalent potentials which generate mag-
netic fields related by a homogeneous gauge transformation. If we require all
higher covariant derivatives of Bf also match then there are effectively no
gauge copies [24].

Deser and Wilczek [17] first pointed out the consistency condition for ;i:u

and A", = A4, + A, to generate the same field strength. Using the Bianchi
) # p VO g £ g
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identity, they obtained that ﬂu had to satisfy the equation

[F,. A, =0! (4.2)
where in 2 dimensions,
e _ % e e fab, (4.3)
and in 4 dimensions
fuvab _ :]};E;wp:rfach[':ﬂa _ ppem by (4.4)

Treating this as an eigenvalue equation for A, we have the condition for
existence of non-trivial solutions of A is that the determinant of M is zero.
In 2 dimensions the determinant corresponding to M vanishes identically and
there A necessarily has non-trivial solutions. However in 4 dimensions this
determinant in generically non-zero and there are hardly any gauge copies.
This sort of analysis however exists only in even dimensions. In 3 Eu-
clidean dimensions, we only get the constraint E'l-[A] x A; = 0. This equation
has many solutions, but this is only a consisitency condition. It does not
mean that any A satisfying this equation gives a gauge copy. Recently
Freedman and Khuri [28] have exhibited several examples of continuous fam-
ilies of gauge field copies in d=3. Their technique was to use a local map of
the gauge field system into a spatial geometry with a second rank symmetric
tensor Gy; = Bf B} detB and a connection with torsion constructed from it.
We adopt a different method and directly ask the question as to how

many different solutions (if any), does the system of equations defined by

1Ty the matrix notation




(4.1) have for any specified ﬁ,(z} For that we proceed with the analysis
using the Cauchy - Kowalevsky existence theorems on systems of partial
differential equations. The equations for the gauge field copies are not a priori
in the form where this theorem can be applied. However by reorganizing the
equations a bit they can be brought to the form so that these theorems can

be applied to that system.

4.1 Existence of A for arbitrary B

Let us first state the Cauchy - Kowalevsky existence theorem which we use.

Let a set of partial equations be given in the form

az;- . i g BZJ‘ =
83:1 - j;l ; Gur Eir,. +G1! (4,dj

for values 1 = 1,...,m, being m equations in m dependent variables ; the
coefficients G;jr and the quantities (7; are functions of all the variables,
dependent and independent. Let ¢,...,¢n, 81,...,8, be a set of values of
2y, cuZms T1, ooy T TESpectively, in the vicinity of which all the functions Gy,
and G, are regular ; and let ¢y, ..., ¢, be a be a set of functions of x4, ..., oy,
which acquire values cy, ..., ¢ respectively when zs = ag, ..., z, = a,, , which
are regular in the vicinity of these values of x9, ..., 2, and which are oth-
erwise arbitrary. Then e system of integrals of the eguations can be deter-
mined, which are regular functions of zy,...,x, 1n the vicinity of the values
Ty = @y, Tz = @, ..., Tn = ap, and which acquire the values ¢y,..., by when
T, = ay ; moreover, the system of integrals determined in accordance with

these conditions, is the only system of integrals that can be determined as
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reqular funciions.

Our system of equations is

ng = 32!5.'3 s 83,1_1‘3 + .'d;g X :51'3 {'“16:]
Eg = 83,4-1—51111'34—_51’3 = fi'; {4?)
3‘3 = 3]1‘1'2 == fjg!i-[ -+ .z‘i*1 x ,‘iﬁg {‘18}

where ﬁl,ﬁg and B, are treated as given variables and we want to solve
for .&‘1,.#1‘2 and A;. With this definition of the B's, the bianchi identity
[:B; = 0 follows automatically. However the existence theorem cannot be
applied directly to this set of equations. For that we rewrite the equations

in & different way. Consider

Ay = &Ay+ Ay x Ay — B (4.9)

Ay = Ay~ Ay x A+ B, (4.10)
The existence theorem implies that we have solution for 4, and A, for any
specified E"h ﬁz and f_fs. But A ; and fi'g so obtained have to satisfy equation
(4.8). Is this always possible with some choice of A3, and if ves, is the choice
of A, unique? To address this question, we presume that the initial data on
r3 = () satisfies equations (4.6)-(4.8). This is always possible for any given
Bi(z) as follows from our discussion in the 1+1-dimensional case. Then
equation (4.8) may be equivalently replaced by another equation obtained
by applying d; on it and using (4.6)-(4.7). This is just the Bianchi identity.

We write it in the form
vEgX§3=—33E3*32-§2—£2 x By — & By — A, x B, (4.11)
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Now let us decompose Aj; in directions parallel and perpendicular to B's,
A = aBy+ A3 (4.12)

In the generic case, where |B| # 0, equation (4.11) determines As, entirely.
Taking the cross product of (4.11) with B, we get,

- — 1 — - — — —8 —
Ay = aBs - 3 |233 x [(Ay % By) + (A; x By) + (9:By)] . (4.13)

a

where o can be arbitrarily chosen.
We now address the question whether o can also be determined. Taking

the dot product of (4.11) with B, we get,
By 8:B;+ (Bax By) - Ay + (By x By) - A, = 0. (4.14)

This is a constraint which }1‘1 and Ez have to satisfy. It is satisfied on 3 = 0.

In order that it is satisfied at all =3, we require
— (0143 — A3 x Ay + By) - (By x Bs) — Ay - 85(B, x By)
_'{6'2*'{3 = -':fE * f_l.ﬂ == El} ' {B'z x §3] -— J"i‘g ] ﬂs{ﬁz e B_-3::|
~03(8:B;) - By — (8:5;) - (8:B5) = 0 (4.15)

Now we can substitute the expression for A3 from (4.13). Note that in this
substitution, the derivatives do not act on @ since in that case we get terms
By - B, % ﬁa and By - ﬁg % Hy which vanish. Generically the equation for a
is invertible and this explicitly gives us @ as functions of A'l,ﬁg and f"f,- 2
Thus in the generic case, we can solve for ﬁa as local functions of .éi'i, ffz
and By’s. Substituting this in equations (4.9-10), we can apply the theorem

to get A, A, and hence A, as unique functionals of B, (z).
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Alternately we could consider the system of equations

Ay = Shy+ Ay x As— By (4.16)
A, = 8,A; — Az x Ay + By (4.17)
85(As x By) = —(81ds— Ay x A, + By) x By — A) x 8,8, — 8:(8:5;)
—(By g+ Ay x A3 — By) % By — Ay x 858, (4.18)
8i(As- Bs) = 8s(|Bsla(Ay, Ay, By)). (4.19)

Here in the last equation cr{ffl, ;Tz, ﬁi] is to be replaced by the expression
obtained for « from equation (4.15) and 8sA; and 834, are to be replaced
using (4.16) and (4.17). This system of equations is in the form where the
Cauchy-Kowalevsky theorem can be applied and this system uniguely de-
termines all the unknown variables once the initial data is specified. The
first two equations contain the six unknowns le and f_f-,g, The third one con-
tains the two components of .:1'3 transverse to B; and the fourth one has the
component of A, parallel to B;. Thus all the nine degrees of freedom are

uniquely determined.

4.2 Existence of continuous family of gauge
copies

In this section we address the question if there exists any continuous family

of potentials which generate the same magnetic field. Let A; and A, + eé;

generate the same magnetic field, where ¢ is a small parameter. Then &




satisfies the equa,tic;n

Eij;;_l:ajé'k + .c"Ij » E}:} =0. {42[}]

We also have a consistency condition by taking the covariant derivative of

this equation. That is given by
Be x & =0 (4.21)

Let us rewrite the equations in a more convenient way. We take our system

of equations as

5'352 = 32€;; =4 jg x Ea = .r‘i*:; = (?2 (422)
3351 = 5153 T ffi * By — J'I:; X € {423]

and the consistency condition (4.21). This set is equivalent to the set of
equations (4.20). As in the previous case, we first look at the consistency

condition. Let us decompose €3 as
€y = 3B + €31 (4.24)
Again (4.21) fixes for us &, in terms of the magnetic fields.
E31|Bs| = By x & = —B; % & (4.25)
where I goes over 1,2. Thus €3 is given by

> = L g, =
£y = ﬁﬂﬂ -— ]—B;'—th X ey [-‘126)
3

Now we can substitute this form of &; in the equations (4.22-23). Assuming

that the potentials have already been determined in the previous step, we
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would obtain € and & as unique functions of [ and the magnetic fields.

However this € and & have to satisfy the consistency conditions
By -Brxér=0 (4.27)

where again I goes over 1,2. Taking d; of equation (4.27), we get, using
(4.22) and (4.23)

D3(Bs x By)-& + By - By x D&y =0 (4.28)
Putting in the expression of &, we get an equation for g
i =4 ] — i — — — 1 — o
ﬂs(Ea><Br)*ﬂrﬂﬁf><Ba]"{DrBaJﬁ—(BrXBa}'D![EfBJ x€5)] =0 (4.29)
3

This equation can be generically inverted to solve for £ as a function of
51,52,2‘&'1,/&‘2 and Ei-

Formally we could have also looked at the set of equations

018y = s+ Ay xéy— Ay x & (4.30)
ey = Gi&@+ A x & — Ay x & (4.31)
05(Bs x &) = —(8:By) x & — (855,) x &
—By % (048 + Ay x & — A3 x &)
—By % (818 + Ay x & — A3 x &) (4.32)
0(Bs-&) = 80(6, &, Ay, Ay, B). (4.33)

In the last equation, J has to be replaced by its solution from (4.29) and d;¢;
is to be substituted from (4.30) and (4.31).
Applying the Cauchy-Kowalevsky theorem to this set of equations, we

get a unique smooth solution for €, & and & exactly as in the case for the

33




potentials. If we choose e = 0 on the surface =3 = 0 as the initial data,
then e¢ = 0 everywhere. Thus with the gauge potential specified on a 2-

dimensional surface, there are no gauge field copies (in the generic case).

4.3 An explicit calculation

We now illustrate these results by an explicit calculation for the special case

A% = 62, In momentum space, the equation looks like
ik (—1pi0° + €apcdl)ef (p) = 0 (4.34)

or

(—ieup;0° + 670% — 6705 )ei(p) =0 (4.35)
In three dimensions we can choose three orthogonal vectors. We choose three
‘such vectors as (F,7,7) where 7 coincides with the 7 which appears in the
‘equation and 7 and 7 are unit vectors . We also orient (f, 7, 77%) such that
fxm=|plii and § x fi = —|p]m. Next we write a general solution for ef in

terms of the dyad basis as

Ere = @y Mg + o e + dg Tgpile + Q4 MM,

+ag Pty + Qg Prife + a7 Pt + Qg PrNe + Ga Pepe,  (4.36)

where a;’s are unknown cocfficients to be determined.

‘Substituting the solution in the equation, we get various relations among
the coefficients. as, ag, ay, as and ag turn out to be zero identically. In addi-
tion we get

' —i|play = —i|flas = a3 = | as. (4.37)
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Therefore, we get a non-zero solution only if

=1, (4.38)
in which case,
—ia] = —igs = Q3 =04 = @ (4.39)
Thus the general solution is
ei(a) = f dS2 a Q) (17 + i11); (R — iR (4.40)

Here the integration is over all directions of the vector p. The solutions
have an arbitrary function a(€2). We may fix a(Q) by using initial data on
oy = 0 surface. This may be interpreted as the arbitrary choice of &(z) at
the boundary. However if we require €;(z) vanishes rapidly at infinity, there
may not be any solutions. Thus gauge copies would be absent in this case.

A similar exercise can be carried out for any constant vector potential

and gives an identical result.

4.4 Conclusions

In this chapter we have looked at two problems regarding the existence of
non-Abelian vector potentials. First we asked the question if there exists a
vector potential for any arbitrary magnetic field. We found that there are
many choices of A;(z) on the 3 = 0 surface which reproduces Bi(z) on the
surface. (This is the gauge field ambiguity in 141 dimensions.) For each
such boundary condition on A;(x) we have seen (in the generic case) that

there is a unique potential A;(z) which reproduces the given magnetic field
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everywhere. The non-Abelian Bianchi identity does not constrain the non-
Abelian magnetic fields in contrast to the abelian case. The ambiguity in the
choice of the potentials is (in the generic case) only due to the ambignity in
A; () on the z3 = 0 surface. Thus it is related to the gauge copy problem in

141 dimensions.




Chapter 5

General solution of the
non-Abelian Gauss law and
non-Abelian analogs of the

Hodge decomposition

We need to know the solutions of the constraint equations of a theory for
mapping out its phase space. For Maxwell electrodynamics, the solution of
the constraint equation, which is the Gauss law, leads to a dual description
of the theory with a dual vector potential. The construction of this potential
is facilitated by the Hodge decomposition. However there is no such known
decomposition for the non-Abelian case. In this chapter we address the two
related questions. Solution of the non-Abelian Gauss law and non-Abelian

analogs of the Hodge decomposition.




An important, related question is that given a field strength can one write
down a non-Abelian potential from which the field strength can be derived.

There has been extensive discussion about this in the literature. Halpern [34]

attempted to construct A from F in 1+1, 2+1 and 3+1 dimensions in the

completely fixed axial gauge. Weiss [47] pointed out that in 1+1 dimensions

every field strength tensor can be derived from a potential. In fact if F i 7 O

then there is a huge ambiguity in the choice of potentials as we saw in the
previous chapter. But this result does not generalize to d > 2.

In 141 dimensions, F}w has only one component say F(z, t). With the
definitions

Az 8y =0 (5.1)
and
(v
Az ) = [ dr Uz, 1) EY(z,7) (5.2)
Iy
we get
FiiNa, t) = U B (2, 1) (5.3)

Chnﬁsing U to be identity, we get the potential in the gauge A% = 0 at all ¢
and A7 = 0 at ¢ = 5. This is a complete fixation of the axial gauge in 1+1
dimensions.

In all these cases, the potential was obtained as a non-local integral over
the field strength. In this chapter we will concentrate on local solutions of
the non-Abelian Gauss law and local expressions of the non-Abelian Hodge

decomposition.




5.1 Solution of the non-Abelian Gauss law

Yang-Mills theory has the conjugate variables A;(z) and Ei(z), where A, fE) =
A%(z), (i,a = 1,2,3). A;(z) is the Yang-Mills potential and £(z) is the non-
Abelian electric field. There is a first class constraint, the non-Abelian Gauss
law,

ﬂiE} 5 A_.‘i * E"; = 0. [5,4}

This constraint also appears in Ashtekar formulation of gravity [29] and its
solution is of importance there too.

In this chapter, we are interested in a general solution of (5.4) in terms of
local fields. This is relevant for duality transformation of Yang-Mills theory
[30][31][32]. Note that in the Abelian case the Gauss law constraint d;5; = 0
has the solution E; = €ijx0;Cy. Here Cy turns out to be the dual gauge
potential which couples minimally to magnetic matter.

In analogy to the Abelian case, we consider the ansatz
E; = e;x[D;[A], Ci]. (5.5)

Here it is useful to adopt the matrix notation; 4; = 4, -8 /2 ete., where o® are
the Pauli matrices and D,[A] = 19; + A;. In this notation the non-Abelian
Gauss law becomes [Di[A], £;] = 0. Substituting (5.5)in (5.4) and using the
Jacobi identity, we get,

[B:[A],C] =0 (5.6)
where sum over ¢ is implied. Here

:

B‘I[A]{:L'] = fl-jk(ﬁ_,ﬁk + 5
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is the non-Abelian magnetic field. We consider a generic case where the 3 x 3

matrix B} is invertible in a certain region of space. Then we may use Bf to
“lower” the index a in Cf:

Ci = Cy;Bj. (5.8)
From (5.6), we get,
|BI(B™")k (e Ciy) =0, (5.9)
where
|B| = det(BY). (5.10)

Therefore equation (5.6) is satisfied if and only if Cy; is an arbitrary sym-
metric matrix. Thus we have obtained a class of solutions

Ei = ¢ (Bi[A]d; Cuy + [D;[A], Bi|A]lCi). (5.11)

This presents the solution as a covariant curl in close analogy to the Abelian
case,

The symmetric tensor field Cy; has six degrees of freedom at each z.
Therefore it appears that the solution in terms of the gauge invariant field
f.?,-_,- 15 a general solution. An exception to this case would be when two fields

C and C' give the same solution of the non-Abelian Gauss law. Such a

situation occurs if there is a field e, satisfying
eiik[D;[A], ex] = 0, (5.12)

where e, = (C — C"). This is precisely the equation for a driebein e? to

be torsion free with respect to the connection one form w® = e®4¢. This

situation has been analyzed in detail in chapter 4. For any A? there is
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only one ef fixed by the boundary condition. This does not affect our local
parametrization very much.
Thus the gauge invariant second rank tensor C;, in equation (5.8) effec-

tively describes the physical degrees of freedom of Yang-Mills theory.

5.2 Non-Abelian analog of the Hodge decom-
position

Given an E; satisfying the non-Abelian Gauss law (5.4), construction of C is

as follows. Applying covariant curl on both sides of (5.5), we gat,
&k [D;[A4], Bi] = —[D;[A), [D;]A4], &) + [D;[A], [Di]A], &) (5.13)

Thus we get a second order equation for ¢ in terms of E. The solution
involves inversion of the covariant laplacian in analogy to the Abelian case.

~ Therefore we may expect the solution to exist,

9.2.1 Covariant gradient and curl

'We may use the above results for obtaining the non-Abelian analogs of the
Hodge decomposition. Consider any isotriplet vector field V*(z). We first
consider a decomposition of 1; as a sum of a covariant curl and a covariant

gradient with respect to any specified Yang-Mills potential A#(z). Consider

—

£ =V, — D AID™[A)(D;[A]V}). (5.14)

Here we are presuming that the covariant laplacian D? [A] has no zero eigen-

| values and is therefore invertible. This would be true for fields vanishing
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rapidly at infinity on R®. Thus any V* has a unique decomposition
V.= DAl + & (5.15)
~where

Fgr &; we have a general decomposition as in (5.5). Thus we have a decom-
position of V; into covariant curl and covariant gradient.

‘The above procedure may also be generalized when the covariant laplacian
Eg‘[..d] has null eigen-vectors, for example on compact manifolds. In this case
a %nnic form” is also required for the decomposition. We may expect

'%iﬁc_;{h‘mnunic part to have a cohomological interpretation.

. .2.2 Interpolation

Next we consider a different non-Abelian analog of the Hodge decomposition.

- We seek a decomposition,

Vi, = BJC] + D;[C)$ (5.17)

Vi — Bi[A] = e [D;[A], AC,] + D[ A]¢ (5.18)
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‘where AC, = G — Ay. Thus the previous decomposition may be regarded
as a special case of this when the given vector field V; is “close” to B;[A] for
the specified Yang-Mills potential A;.

We first note that B;|C] and D;[C]¢ represent independent degrees of
;fmedum of V; just as curl and gradient. As a consequence of the bianchi

identity, the inner product
f PzB[C]- Di{C)é = f dS: ¢ - B; (5.19)

e gives the first Chern class. For fields vanishing rapidly at infinity, this

is zero. Moreover the equation

Bi[C] = D{[Clé (5.20)

L

:i‘&_,\.pree-isefjr the Bogomolnyi equation. All solutions of this are known by
ADHM construction and are labeled by positions and (isospin) orientations of
iﬁpﬁb}n:g-;}nnpnies. In case we require fields vanish faster than = at infinity,
.ﬂmn there are effectively no solutions. Thus B;[C] and D;[Clé represent
distinet degrees of freedom.

In order to construct C and ¢, we consider an interpolation procedure.

AV; = B{C(A)] + DC(MN)](\) (5.21)

Z MG and ¢(A) = Z AR () (5.22)

n= n=1

1'_".-{ = e,-jkii‘jtff,'f.” + 3;':';{1}, {5-23]
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ich is just the usual Hodge decomposition of V;. We know the decom-
ition exists and is unique. C,En and G,En + A, both give the same

osition. Terms quadratic in X gives
E{jkajéj[;ﬂ +ﬁ;5{2} == —ffjk@}ﬂ AP {i",{rﬂ _ G*:!;l} = qﬁ“}. (5.24)

anii_é{‘} are already known. Hence ¢ and C® are determined. Again
adient part of C is arbitrary. This way all the C™'s and ¢™)’s are

determined successively. If we impose a “gauge condition” such as
8,c™ =, (5.25)

and ¢(*) are unique at each stage. This interpolation procedure makes
mnection to the usual Hodge decomposition explicit and provides a
ble technique for reconstructing €' and ¢. We do not address the

on of convergence in (5.22), but provide an alternate procedure for

truction of C' and ¢ below.
y@m}r of avoiding interpolation is as follows. Consider,

£[C] = Vi~ Di{CID*(C|Ds(CYY (5.26)
which satisfies D;[C]&[C] = 0. We have to choose C, such that
&[C, 0] x E[C) =0 (5.27)

ry driebein e;[C, ] which is torsion free with respect to the connection
€. Then, &[C] is the non-Abelian magnetic field B;|C] and we
he decomposition (5.17).
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| 5.3 Remark

We have shown in chapter 4 that any non-Abelian vector field E_;;(:r:} may be

solved in terms of the non-Abelian vector potential
]

bi(z) = Bi[Cl(2). (5.28)

| Thus the covariant gradient term in equation (5.17) is not necessary. This is
in stark contrast to the abelian case.

5.4 Conclusion

?Ve have obtained a general solution of the non-Abelian Gauss law in close
ana.logy to the Poincare lemma. We have used it to address the non-Abelian

analog of the Hodge decomposition. These are useful for duality transforma-
%ﬁg of Yang-Mills theory [30][31][32].




Chapter 6

Duality transformation for
3+1-dimensional Yang-Mills
theory

' In 1977 Montonen and Olive [51] conjectured that just like Maxwell electro-
<uéf_13_rna.uﬁcs, Yang-Mills theories might also have a duality symmetry. This was
first investigated by Deser and Teitelboim [10]. Maxwell’s equations

8, ™ =0 (6.1)

and
8. =0 (6.2)

are invariant under the transformations

SE(x) = BB(z) (6.3)
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§B(z) = —pE(x) (6.4)
The action is also invariant under this infinitesimal transformation.
However in the formally analogus Yang-Mills case, duality transformation
‘cannot even be consistently implemented. No transformation of the variables
exist which leave the action invariant and reduces to a duality rotation on

shell. If one demands the existence of a set of variations dA,, which on the
mass shell should give

= e
6P = gF (6.5)
and
=y 4
0F = —pF (6.6)
one obtains the equations
15‘«&'# x Fr — (6.7)
an R
dA, x F =0 (6.8)

‘For non-trivial solutions of §A,, one should have the consistency condition

detM = 0 where M is given by

ﬂiruy..bv = EHIN:F;.LU e

(6.9)

Butwe have already seen this equation in the context of gauge field copies
|g:|_1€i'-we-knuw that this determinant is generically non-zero in 341 dimensions.
Thus Deser and Teitelboim concluded that duality in the sense of Maxwell

electrodynamics is not present for Yang-Mills theory.
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Another significant contribution was made in this area by M.B.Halpern
[34]. His definition for the dual potential, at least for QED was

L Fr(A) = F*(4) (6.10)

.:- here F'#* is the dual field strength tensor. He obtained the dual gauge
tentia.l by inverting the dual field strength. Working in the axial gauge
_':‘_ﬂi-.-'nﬂ residual degrees of freedom he used the Bianchi identities crucially
_"@nsiatency conditions. The dual potentials had Higgs type couplings and
¢ ed to the monopole currents. However his analysis was non-local and

the dual potentials were functionals of the field strength.

In this chapter we bring in new techniques which are useful for duality
ﬂ:"'.ﬁﬁdrmatian of non-Abelian gauge theories. Though we use the language
of functional ntegrals, our procedure can be stated directly for classical Yang-
Mills theory. We adopt the Hamiltonian formalism. This is the most direct
method for duality transformation in Maxwell’s theory as reviewed in the
section. This brings out the crucial role played by the Gauss law and
e"-ﬁnge decomposition in dﬁality transformation which we developed in
E,_fpreﬁuus chapter. This approach automatically gives the dual theory as
‘2 50(3) gauge theory, with a non-Abelian dual gauge field.

- We also use a generating function of a canonical transformation to per-
: m the duality transformation (6.2.2). We find that it is an extremely
ful technique for handling non-Abelian theories. It is very helpful for
ning the implication of the non-Abelian Gauss law for the dual theory.
s out that it is natural to treat the dual gauge field as a background

ige field of the Yang-Mills theory and vice-versa. (We use rescaled fields
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such that the gauge transformations do not involve the coupling constants.)

Choosing the generating function to be invariant under a common gauge
tran sformation, the Gauss law constraint simply goes over to a similar con-

straint in the dual theory (section 6.2.3). Another important issue is the

ge copy problem [50, 28], i.e. gauge inequivalent potentials which give
the same non-Abelian magnetic field. In analogy to the Abelian case, we
uld like to replace E;, the non-Abelian electric field by B{[€], the non-
Abelian magnetic field of the dual gauge potential ¢'. But if gauge copies
"_j_present, then this naive replacement runs into problems. We have argued

"lth_apt,er 4 that there is only boundary degrees of freedom for the gauge

' copies. Asa conséquﬂn{:e the number of degrees of freedom provided by

5[C] are sufficient.

I We explore the possibility of self duality of 3+1-dimensional Yang-Mills
theory in section 3 and conclude that it is absent. All the canonical trans-

formations that we consider lead to a dual theory which is non-local.
- We summarize our results in sec 4.

6.1 Gauss law and duality transformation in

Maxwell’s theory

sider the free Maxwell theory. The extended phase space has the canoni-
variables, the vector potential A; and the electric field E,, i = 1, 2,3 with

the Poisson bracket
|

[Ai(x), Ei(y)]pa = 658(z — y). (6.11)
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e Hamiltonian density is,
H(@) = Y(B20) + BLAL) o

e the magnetic field B[A]; = e;:0;4;. A and A; + G;A give rise to
e B[A];. The physical phase space is the subspace given by the Gauss
constraint,

8E: = 0. (6.13)

&very easy way of obtaining the dual theory is to solve the Gauss law
constraint. We have the general solution,

E-.' — qjkﬂj C_J; {5.14)

can compute the Poisson bracket of the new variable € with the ald

ables as follows. We have the Poisson bracket

[Bilz), Bi(y)lps = —€i10:6(z — y). (6.15)

[E,‘,[:’E], Uj{y]}pg = 15,'_7-5(2: - y}. fﬁ.lﬁ]

s we have the new canonical pair (C, £ = B[A]) in contrast to the old

E). In terms of this new pair the Hamiltonian takes the form
1
H(z) = 3(€X(=) + BC|(@)). (617

‘we have made a canonical transformation from the pair (4, E) to (C, B)

f}lﬁiﬁ&mﬂtqniu has the same form in terms the new variables, The
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analogy is complete since C is also a gauge field (the dual gauge field), with
Ci(x) and Ci(x) + d;A(z) giving rise to the same B[C]. This is the dual

!i.‘ | gauge transformation. Also the new extended phase space has the dual
Gauss law constraint

&&= 0. (6.18)
The old vector potential A couples minimally to the electric currents. In con-
. the new vector potential couples minimally to the magnetic current as
be verified by introducing sources. Thus the dual symmetry is complete.
~ The duality transformation can be viewed as a canonical transformation

induced by the generating function
S(A,C) = (C|BA]) = f ik Cii Ay (6.19)

o8
of the old and the new coordinates A and C respectively. We have the

(C|B[A]) = —(A|B[C]). (6.20)
is a very convenient technique for obtaining the new momentum and

omputing the Poisson brackets of the old and the the new variables. We

2t the old and new momenta to be,

i)
E,' — 5__.4 = f{jkﬂjﬁk — H[C], (5.21}
45
£ = 6= B[A]; (6.22)

ively. The generating function is invariant under the old gauge trans-

n. This gives the identity, that for any A

58
/ 05y =0 (6.23)
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As A is arbitrary, it follows

as
g =0, (6.24)

which is the Gauss law constraint. This is a very convenient way of making
the duality transformation preserving the Gauss law constraints. The gen-

erating function is also invariant under the new gauge transformation which

implies the new Gauss law 8,&; = 0.

We extend and generalize these techniques for non-Abelian gauge theories.

6.2 Techniques for duality transformation

In this section we introduce various techniques useful for the duality trans-

formation of non-Abelian gauge theories.

6.2.1 Functional integral with phase space variables

The Euclidean functional integral for 3+1-dimensional Yang-Mills theory is
formally
1 w m=
Z= f DAL exp{~7 5 f Fo - Fu) (6.25)

where
F_-j.u.- — a;.:fa;u = au-"_fp + Ji;: x .r"I,_,. [ﬁ;?ﬁ}

With this choice the gauge transformation does not involve the coupling
constant. We could as well have started with the Minkowski space functional

Jintegral. However the Euclidean version makes the role of the non-Abelian

ﬁauss law even more transparent.




Introducing an auxiliary field E?, (6.25) becomes
7= f DADADE? exp f {{iE"--E‘-——l-ﬁ-[ﬂ]-ﬁ-[A]}+£E--[an£i‘-—ﬂ-[A]fi' )}
{ H 1 2 1 t 21?2 T t 1 1 1 ]
(6.27)
where

Dl[A] = E.‘l- =+ fi';x

(6.28)
is the covariant derivative and
BAA = en(0,4 — 0K, + A, x Ay) (6.29)
| is the non-Abelian magnetic field. Integration over Ag gives
Z= [ DAIDE; §(DJAIE:) exp [(H+iBe a4} (6.30)

Using the Feynman time slicing procedure, it is clear that A, E; are the
conjugate variables of the phase space and

1 1
M= 5@*52 + _FBEJ (6.31)

15 the hamiltonian density. There are also three first class constraints, the
non-Abelian Gauss law : -

=

D;[A)E; =0, (6.32)

.2.2 Duality transformation via a canonical transfor-
mation

close analogy to the Abelian case, we consider a change of variables from

E.i — E,'jk.Dj[A]é.kl (533)




Naively C:‘ is the canonical conjugate of the non-Abelian electric field E2.

This can be checked directly. Note that
[Enm(2), B (y)lre = jm(6%0; + € A%)5(z — y). (6.34)
Using (6.33), the left hand side is
€ijm(67°0; + * A7) [Cr (), B ()] pa. (6.35)
This is consistent with
(% (@), B (0 = §=6md & — 9). (6.36)
An easy way to see this is by using the generator of canonical transformations
S(A,C) = [ CoBE[A] (6.37)

Then Ef = % = €5,(D;[A]Ck)" and the new momentum conjugate to the

new variable CF is
a5
£l = —
: aC¢
The great advantage of realizing duality transformation via a canonical

= —B?[A]. (6.38)

transformation is that the phase space measure in the functional integral is

DADE = DCDE (6.30)
Yomigi = P (G.40)
HI{P: Q) = H{P[:P: Q),q(P,Q)) (6.41)

aunder a canonical transformation (g,p) —+ (@, P). Therefore it is easy to

‘express the exponent in equation (6.30) also in terms of the new variables.
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6.2.3 New Gauss law from the old Gauss law

In order to satisfy the Gauss law constraint (6.32), we need

Bi[A] x C; =0,

(6.42)
'g'ri;ere sum over 7 is implied. Here we have used

e D[ AlD[A]C; = By|A] % C. (6.43)
Now

Di{Cl& = —(C — A); x Bj|A] (6.44)

D;[C] = D;[A] + (€ — A);x (6.45)
and we have the Bianchi identity

D;[A]B;[A] = 0. (6.46)

his immediately indicates that it is better to change the ansatz (6.33) to

E,' = Eijkﬂj[ﬂ](é = .ﬁf};‘ {ﬁd:?}

corresponds to the generating function

m¢m=[@—ﬁﬁw (6.48)

this choice the old Gauss law (6.32) simply goes over ta the new Gauss

Dy[C)E; = . (6.49)
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Such a feature is very useful for the duality transformation. It can be easily
realized in general as shown below.

In ansatz (6.33), C' transforms homogencously (as an isotriplet vector
field) under the A-gauge transformation, whereas A transforms inhomoge-
neously.

64; = D;[A]JA (6.50)

In contrast, in ansatz (6.47) C transforms as a gauge field under A-gauge
transformations. Note that if C' and A both transform as gauge fields, aC +
(1 — a)A also transforms like a gauge field for any choice of a real parameter
. Also (C — A) transforms homogeneously, i.e. as a matter field in the
~adjoint representation. Consider a canonical transformation S(A, C) which
IS gauge inva.rila.nt under these common gauge transformations as in equation

(6.48). Some choices of terms in S(4,C) are

[:ﬂ) E:jkr:-"a;:' 2 ajA# = % _*i J Ja:j - E};} = ES[A}
() elCi- 0,0+ 1Ci-C;x Cy)  =cS[C]
(¢) (C — A); - Bi[A]

(d} f;jk-é{{:'" == .'d-tr]. . (E— E]J * (5 = .F_f)k = dEfI:G — J‘l]. (&51}

Here CS is the Chern-Simons density. Since

6CS[A] _

oA, Bi[4], (6.52)

it contributes a piece which is independent of C to E;. Note that the func-
ional integral (6.30) is insensitive to shifts

E; — E; + aBi{A) (6.53)
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‘where a is an arbitrary real parameter. First of all, the Gauss law condition

3 DAJE; =0 (6.54)

‘does not change as a consequence of the Bianchi identity (6.46). Next, the
term E;A; changes by

aBi{A)4; = Q%CS[A]. (6.55)

s being a total derivative, does not matter. (This conclusion is not correct
when instanton number [52] is non-zero.) This invariance is reflected in the

sible addition of CS[A] (6.51 a) to the generating function S[A, C]
Eﬁinvariance of S(A,C) under simultaneous gauge transformation of A
(6.50) and C, where,

6C: = DC]A

(6.56)
L85 N N
[ { @y 5+ i =0 (6:57)
As this is true for any arbitrary choice of A, we get,
- D{A)E; = D;[C)E; (6.58)
A

at the old Gauss law constraint implies the new Gauss law constraint.
Ano "fer advantage of such a c:'hc-ice of S(A, C) is that the dual field C appears
as a background gauge field for A and vice-versa.

new gauss law may be realized through an auxiliary field €y which

lay the role played by Ag in (6.27). This naturally leads to the action
m;al formulation of the dual theory, once we integrate over £;:
7 = f DCyDCDE; exp j {-H'C.€] +i(aC — DCICy) - )

t a7




= f DCyDC; exp (—8[Co, C) (6.59)

ere S[Cy, Oy is gauge invariant under the full gange transformation, r?(i",, —

6.2.4 Degrees of freedom

The constraint equation (6.42) can be handled in a different way. In the
eric case where det B = |B|, the determinant of the 3 x 3 matrix
ia= 1,2, 3) is non-zero, it is easy to solve this constraint on ¢ [40]. Use

B to “lower” the color index in C®.
Ci = CyB;. 8

ion (6.42) is satisfied if and only if C; is a symmetric tensor. This

ponds to the choice

5(4,0) = [ by (6.61)

Cy; would be the new coordinates and by; = B[A] - Bj|A], the new
ugate momenta.

Thus the “physical” phase space of Yang-Mills theory may be described
{ _' of the conjugate pair C;, b; which are gauge invariant symmetric
ond rank tensors. Bach of these have six degrees of freedom at each r
ppears to match the required degrees of freedom. The situation could
en more involved because of the Wu-Yang ambiguities [50]. But as

.- yzed in chapter 4, this is not a generic phenomenon. The equation

El'jkD_f [ﬂ] e =0, [ﬁﬁ?:}
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essentially has a unique solution. Therefore we can write

E; = e D;[A](C — Ay) (6.63)

Alternately we can use the decomposition of the form [40]

el

.= B[] (6.64)

This seems to be closest to the choice in the Abelian case which had duality
invariance. Note that

- s - 1 — - —

B,{C] = Bl[.ﬂ] .- £;jkﬂj{;4.]{:(:' = Aﬂ}k + Eﬁ;ﬁ;{c‘ == A:]j ® {C — zi.jk (5.55}
‘which corresponds to an expansion of B;[C] about a “background gauge field”
A with (€ — A) as the quantum Auctuation. If E; satisfies the Gauss law
(6.32), so does E; — B;[A]. Therefore the ansatz (6.47) and (6.64) essentially
differ through the last term on the right hand side of (6.65). This is obtained

by including the term det(C4) (6.51 d) in the generating functional of the
canonical transformation.

The choice (6.64) is appealing for many reasons. We have, '

J ot~ (st

08 . = 488 _ =
—& A,‘ — C,' = S,
i s+ 5Gi3n dy

a total derivative, so that,

(6.67)

EdA; = | & -8,C; (6.68)
/ /

Therefore the exponent in (6.27) can be expressed easily in terms of the new
ariables as before.



6.3 Duality Transformation

In Maxwell theory we had duality invariance because E; = B;[C] and &; =
—B;[A]. Such a simple interchange does not work for the non-Abelian case as
seen from equations (6.38) and (6.47). Note that if we add CS[A], equation
(6.51) to the generating function (6.48), we can make

E; = Bi[A] + e D;{A)(C — A)s. (6.69)

As seen from (6.65) the quadratic term in (C' — A) is missing.

We now weaken our requirement. It is sufficient if,
apa 1 o 2 2 L.
g°E -]-Q—E'B [A]=g B [U]"rEEE {ﬁ?ﬂ:]
If we use a generating function 5(A4,C'), we require

6s\* 1 [fes\? 1
- e 1 i S L op2
g (Mi) + (&G,-) ¢*B {G’}-J—HEB [A]. (6.71)

Consider the g = 1 case. Now equation (6.71) can be rewritten as
65 oS ) D[A-I—G'] (,&Lé’) {B’ [A+C}
- = = &)y "1 Bi
8(#45),6(%%), et 2

2
1 A=C A-C
+§ﬁfjj; (T) ‘ X ( 5 )L} {572]
j :

using equation (6.65) for the background gauge field [CEL‘*} It is amusing to

note that the generating function

S(452459) = (159) 49 +au(£59) @

2 ' 2 2
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gives the right hand side of the above equation, but with the opposite sign.
Self duality is achieved in the Abelian case by using

s=cs (G *2' ‘4) —cs (51") . (6.74)

2
The non-Abelian case should have something similar and not (6.73). Unfor-
tunately there is no S satisfying (6.72). As a consequence self duality is ruled
out.

We consider generating functions

S(A,C) = 0,CS(A) + a,CS(C) + as(A — C); - Bi[A]
+%e,-jk(ﬁ£ — C); - D;[Al(A — C)i + asdet(A — C).(6.75)

where aq,...as are arbitrary real parameters for the present. Now we get

E; = B Bi[A] + Baesje D[A(A — C)i + %Efjk{-‘f— C); x (A—C) (6.76)

& = mBi[A] + ne D;[C)(A - O + %Eijk("‘f— C); x (A= C) (6.77)
where i =1 +ag; fa=ag+ oy fi=as+as and 1y = -y +ag; 12 =
ct4; 73 = as. For no choice of the parameters oy,...05 do we get a local
Hamiltonian in the dual variables. We illustrate this for a specific choice,
ay, o, 05 = 0 and a3 = 1. We get & = Bi[A] but E; = Bj[C] — %E,—ik{ﬁ—
#)) ;% (A — €)y. Therefore the dual action becomes

1 = - — =4 P I :
gz{Bt{f_?] = ifijk(A = G‘Jj > {A — G}k}‘! + FEJ {E?S}

(4 — C) may be regarded as a non-local functional of the dual variables

(C, £); solution of

- - 1 - o — — - =
€ D;[C)(A = Ch+ sein(Ad = C); x (A= Cle =& = B[C]  (6.79)




We consider the specific choice
S[A,C] = f (A - &Y - Bilc) (6.80)
‘in some detail. Here & is a real parameter. Now

E, Bi[C) (6.81)

-& = BlC]+ lfﬁkﬂjicl'[ﬂ— O (6.82)

—&; can also be writien as Bi[A]- El,k(A U} % (A —C)g. The hamiltonian

is
H.= f (%QEE? L:: {A]) (6.83)
2 2 = 1 - = e o
= _[‘9 Bi 292 (£f+ k(A —C); x (A G}k) (6.84)
= [ 39BHC]
= = s o 2
435 (B + el - Oy x (4= C) (6.5

Where we have used D{[C)(Legu(A — C); x (A - 8)) = (& — BilC] -
; (431'-— GV x (A= C)) x (A—C)e = (€ — Bi[C)) x (4 = C)x. Equation
@‘EE} gives the Hamiltonian in the dual variables. (Note that the new gauge
plmg is g~'). Since (A — C); is a non-local functional of dual variables,
& ﬁ-}i_’amiltnnia.n is also non-local.

Consider a modified Yang-Mills Hamiltonian
S
H= f (EQEE._:‘* 5 25,) (6.86)

- re it is presumed that £; = —{{% is expressed in terms of (A, E). This
ry would be self dual, if the generating function S(A,C) is symmetric
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under the interchange A +» C. A simple way of realizing this is to have S
(regarded as a functional of (A + C) and (4 — C)), even in (A —C). For all

choices of § we have considered, the theory is non-local.

6.4 Conclusion

In this chapter we have constructed a dual form of the 341 Yang-Mills theory.
We have argued that the functional integral using phase space variables is
best suited for the purpose. Now the duality transformation can be realized
as a canonical transformation, This provides a powerful tool, because the
action and the measure in the dual variables as also the implications of the
Gauss law constraint for the dual theory are easily written. The dual theory is
also a SO(3) gauge theory. The dual theory, though a SO(3) gauge theory, is
a non-local theory, However Yang-Mills theory with a non-local action is self

dual Our techniques for obtaining the dual theory may provide a firm hasis

for the computations of the confining properties in the dual QCD approach
of Baker, Ball and Zachariasen [53].




Chapter 7
In the axial gauge

Axial gauges are often used in non-Abelian gauge theories as they are more
ical than covariant gauges. Quite often this simplifies caleulations. Also
is gauge, the Faddeev-Popov ghosts decouple from the theory. However

-are problems too, as spurious poles appear in the gauge boson propa-

| this gauge and it is not yet clear what is the correct prescription to
ndle these poles.

3 =0 (i.e. nf =0,0,0,1) and iii) lightcone gauges n% = 0. In this

ill work in the spacelike axial gauge which is 43 = 0. Deser and

as in Makwell's electrodynamics does not exist for Yang-Mills




theories. We look at a new way of doing duality transformation, which is by
using delta function constraints. We integrate out the vector potentials .‘1‘#
and rewrite the partition function in terms of some other fields which can be

regarded as dual fields. However, unlike electrodynamics, the theory is not

“self-dual.
In section one, we look at the Abelian case. Sections two and three deal

with the non-Abelian case in 3 and 4 Euclidean dimensions respectively.

7.1 Abelian case

Let us first look at the Abelian case in three dimensions. The partition

function can be written as,

Z= [ Db DA, 5(b: - BJA)) exp l—ziqz / b,?] . (7.1)

ntegrating over the delta function, we recover the usual partition function.

f Now let us introduce one more auxiliary field C; and raise the delta function

to the exponent. Then we get,

7 j DC, Db; DA; exp [f f cibi] di [—i f £ Cid; Ay

ol 3]
(7.2)

w we are in a position to integrate out A;. As it oceurs linearly in the

‘exponent, we get a delta function constraint after the integration.

| 2= [ DC Db 6(eid,Ci) eap [z' / cm.-] exp [—% / bf]. (7.3)

n now solve the constraint by putting ¢; = &;¢. Rewriting the partition

tion in terms of ¢, we pick up an extra jacobian and the resulting form
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of the partition function is

Z = [ D¢ Dbidetfa] exp [:‘. j {a,-q&}b,-] i [—% il b‘:.‘] . (4

To get the dual form of the partition function, we just have to integrate out
b; which is easy to do since the integration is a gaussian one. Thus finally we

get the dual form of the partition function as

7~ [Dpdetio] ezp |3 [ (0] (17.5)

Duality transformation for the Abelian theory can be carried out much more
pasily than above. But the above procedure has the advantage that it can

‘be directly generalized to the non-Abelian case.

7.2 Non-Abelian case : 3 dimensions

Let us now come to the non-Abelian case. We first consider three dimensions
and the axial gauge: Ay = 0. This gauge in some sense makes the theory
closest to the Abelian case. The term non-linear in the potential is present

in only one component of the magnetic field:

B, = -4, (7.6)
Eg - 33&1 (?T)
ﬁg = 5'1131‘-2 — 321'?1 -+ .('31‘1 s .r‘i:g. (T‘E}

In exact analogy to the Abelian case, we now write the partition function

;[uptﬂ an unimportant constant) as

z = [ Db Db Dh; f DA, DAy 6(8sbs — Ba[A]) 6(b + 8:4s) 6(B2 — Bs A1)
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5 3 229

X exp [_E fb;- 2] ; (7.9)
Again introducing the auxiliary fields &, & and q?; to exponentiate the con-
straints, we get

— i — — - l — . g - pLF!

. f Db; D&, D& Dé DA, DA, exp [-5 f B ?] exp [: f & (5, +33A2}]

w—— [z’ [& G- a-,,j'l)] e:cp.[‘.!i [ (@ - Eg{A]]] , (7.10)
gf_-N{:ita here that due to the asymmetry in the expression for the magnetic
fields, introduced by the gauge conditions, we use a different auxiliary field

for By, Next after expanding the exponent and doing some integrations by
parts, we get,
7z = [ enpi [(~0D) B+ @) Ao (@) A -F- A x A,

. & - o - = i 1 ol
+El * bl — (33121} . .-‘12 + s 52 + {33(.‘2] ¥ Al}] ETD [—E fb. {| : (T.ll]

w we are ready to do the integral over b;'s. Carrying out the gaussian

ral, we get, apart from some normalization factors,

LM exp [—% / [(0d)+5 7+ 5 2}} (7.12)
(e [tj{fau}g}ﬁz ~ (B:8)- A, — (6x A;)- Ay — (8s81) Ay + {3352)_§1]] ,

“we integrate over A to get a delta function constraint.

[
7 1 Y | o2 "2]

_;_.-’.I' e —_—— ?.15
Z= [, |3 [{@drrarea) (713)
 xemp [i [{~@d - A+ @) - fi'l}] 50,6 - & x &, — aisy).
onstraint equation can be handled in many ways. We want to get a

orm of the partition function by integrating out A. So we can solve for
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A, in terms of the other fields from this constraint equation. The equation

can be written as
0,6 — i = g x A, (7.14)
Taking the cross product of the constraint equation with qg, we get,

— — - P

Bxhb— x 881 = ¢ x (¢ x Ay). (7.15)

Now let us decompose A, along the direction of & and perpendicular to it as

A, = ad + A,. Plugging back this decomposition in the above equation, we

get,
$x 16— ¢ x 5351=H$|§5]2—¢5:1 Iq'g’lz (7.16)
Thus we get ;5141 as L
. 1 . R - .
Ay = W(—q‘; x 16+ ¢ x 03 +ad |g] ). (7.17)

Putting this back in the partition function, we finally get the form of the

partition function as
= : u_l_ st 2
Z = j;#_ ﬁ:r:p[ 2_[{3395} +&°+& ] (7.18)

g (£,

Note that a topological term ¢ 315 % -:5‘245 comes out automatically.

So far & and & have been completely unspecified. But we can express
 as a sum of derivative of ¢ and another vector which can be expressed in
terms of -:E; itself. We can choose ¢; as am}' + f':li Similarly we can choose

& to be &g + Aa. Since ¢ provides a coordinate basis at every point in
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the space, A, and A, can be expressed in terms of the components of .
Then we have a field theory for :f; with a kinetic term and complicated self
interactions. This can be thought of as a gauge fixed version of what is carried
out geometrically in chapter 3. A difference of course is here the variables are
not gauge invariant, but transform as vectors under gauge transformations.
This case however gives us some flavor of how the interaction terms, which

were not determined in chapter 3, may look like.

7.3 Non-Abelian case : 3+1 dimensions

Let us now look at the 3+1-dimensional case in the axial gauge. Our starting

point is the usual partition funetion

7= f DA, exp [_4%;# f P"ik[fi]] (7.19)

where F, is defined as F,, = 8,4, — 8,A, + A, x A,. Introducing an
auxiliary field E; (not as a function of 4) to linearize the Ay factors, we can

rewrite the functional integral as
— -y - — — — — — 1 p—y ]_ —s
7= f DEDADA; exp f [i(&uﬂi — o+ Ao x &) B - 5(6°E2 + Eﬂf)]
(7.20)

where B; is now given by B; = %Eijkﬁ;'j_- (3,7, = 1,2,3). Doing the Ag
integral, we get,

e T S ~ o = 1 g 1 =
AT ‘[DE{DA,'L £{D;[A]El} Ei:pf [s.(ﬁuA,} 2 E.* = E{HEEE 5y EEBE]] . {?21}




From here we proceed exactly as in the 3-dimensional case. Introducing the

auxiliary fields b;, we write the partition funetion as

-

i f DE, DA, DA; 6(Di[AIE) 6(b; — B[A])

xexp[f{ (B A;) - By — 2( 2E*+gﬁﬁ]”. (7.22)

Again raising the delta function constraints to the exponent by introducing

further auxiliary fields qg and 13:& we get

2 = -/;A.m.vﬁﬂp [i.[{-ﬁ Ei+6- (DIAIE) +4: - 5~ Bil4) H
xe&:pl f { B+ .!? H (7.23)

anding the exponent and recalling that Ay = 0, we get the exponent as
iJ(A- B+ Ao - By) + [ H(g"B? + 5B) +i [ § - (BE))

+i [ @+ (A x By + Ay x Bo) +i [ - b;

—i [(=y - (BsAp) + U - (A1) + s - () A — By Ay + A x A3))

 is to integrate out A -and rewrite the theory in terms of the other

For that purpose, let us write the terms containing A. After doing a

By A= Bae A= x (B A+ By B - (o) - A
+(Bsta) - Ay + (014) - Ay — (Ba3) - Ay — Uy x A -;i}] .

: fi; integral, we get the constraint equation,
—Ey— ¢ x By — sty + 013 — s x Ay =0 (7.24)
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Again we are interested in getting rid of A;. So we will use the constraint

equation to solve for ,-itq_. Let us rewrite the constraint equation as
—y By — t}g x By — 859y + 819 = tha x 4, (7.25)
Taking the cross product with 1 , we have
- s e - - ——— - - = | =2
s X BBy — s x (% Fig) — s x Bty + s x Outhy = (- Ay) — A ||
(7.26)
Again decomposing Ay as parallel to ¥y and L to it, we write f_f; as f_lil =
mﬁs + A 1. Then we get
s % (Do) — s x (Bythy — By3li) = [al*(enhs — A1) (7.27)
where Dy is given by &y + t;};)(_ Thus we get A 1 to be

Ao 3 X (DoBh) - Py % (Dahy — B 1)
[faf? |3
Plugging this back, we get the partition function to be

— oy, (7.28)

i 1 L* T R
= j;g 1, EP f [ (PE: 2+ 55 %) +i($ - BB + % - &) (7.20)

: = - = s x (Doly) | s X (8431 — O19s) -
- - : - ;
+1 { DyEy + 9310 5:!".!’3} { e s AT aiy
Now if we want, we can integrate out b to get, the partition function in terms
of E; and ¢, as

= _1 g, 2 T T B
Z = [ e[ [-50E 45N +id- OF) i50)
+ {—Dufi + Bstp — Oty } - {"53 TéfrzuEz) B {ﬁg,lz— avs) mﬂs}] |
4 3

Tl



Note that here again the topological term 15 - 1153 % Bo1f3 appears au-
tomatically with 13;3 playing the role of 5 of the 3-dimensional case. Here
again we have too many degrees of freedom left over. All of them cannot be

independent.

7.4 Conclusion

In this chapter we have seen how one integrate out the gauge fields and
re-express the theory in terms of other fields in 241 and 3+1 dimensions.
In addition the process has naturally led to the appearance of underlying
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Chapter 8

Discussion and future work

In this thesis we have developed techniques to perform duality transforma-
tions of non-Abelian gauge theories,

In 241 dimensions, exploiting the analogy that exists between SU(2)
Yang-Mills theory and Binstein-Cartan formulation of gravity, we interpret
the auxiliary field as the driebein and the field strength as the curvature. The
gauge potential plays the role of spin connection. The resulting action looks
like the three dimensional gravity action with an added term that breaks
general coordinate invariance. Gauge invariance however is retained. Dual
gluons are identified as local coordinates on the 3-manifold. Monopoles are
iJm:aI;ed at points where the Ricci principal axes become degenerate. In terms
of the new variables, we get an interaction term which couples the dual gluons
yith the monopoles naturally.

We have proposed a gauge invariant way of identifying monopoles in 24-1

U(2) Yang-Mills theory. This geometric picture is rederived and further



substantiated when we perform the duality transformation in the axial gauge.
That gives us explicit form of the interactions in terms of the auxiliary fields.
It is of interest to use this in numerical simulations and then comparing it
with the existing ways of detecting monopoles using the Abelian projection.

In 341 dimensions, we first identified the physical phase space. For that
we found a local solution to the non-Abelian Gauss law. The solution was
parametrized by a gauge invariant symmetric matrix. Then we developed
techniques to decompose the non-Abelian potential into parts useful for han-
dling the non-Abelian Gauss law and perform duality transformation. An
important conclusion from this exercise is that any generic non-Abelian field
can be written as the magnetic field of a dual vector potential.

We also looked at the Wu-Yang ambiguities in three dimensions. We
have found that there are many choices of the vector potential on a surface
which reproduces the magnetic field on the surface. (This ig the gauge field
ambiguity in 141 dimensions.) For each such boundary condition, (in the
generic case) there is a unique potential which reproduces the given magnetic
field everywhere. The non-Abelian Bianchi identity does not constrain the
non-Abelian magnetic fields in contrast to the Abelian case. The ambiguity in
the choice of the potentials is (in the generic case) only due to the ambiguity
in the potential on a surface. Thus it is related to the gauge copy problem
in 1+1 dimensions.

The duality transformation in 3+1 dimensions is realized as a canonical
transformation on the phase space variables of the Yang-Mills theory. Using
generating functions for the canonical transformation has some distinet ad-

vantages. Firstly, since the Jacobian of the transformation is one, one does
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not pick up any undesirable extra factor in the functional measure. Secondly,
the new variables obey their own Gauss law which follow naturally if one uses
a gauge invariant generating functional. The dual theory gives the dynamics
of the dual gluon,

Even though we have been able to write down a dual version of 341-
dimensional 5U(2) Yang-Mills theory, the resulting hamiltonian has turned
out to be non-local and is difficult to handle. Quite possibly, this is bound to
happen if we use local quantities as the transformed variables. On the other
hand it is quite probable that with a suitable choice of non-local variables,

one might obtain a tractable dual theory.
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