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Synopsis

0.1 Introduction

This thesis is concerned with a study of symmetries in classical and quantum gravitational

scattering in d ≥ 4 dimensions. More in detail, the goal of the thesis is to contribute to-

wards an understanding of the symmetry algebra whose corresponding conservation laws

constrain the S-matrix of a gravitational theory. In a non-gravitational field theory such

as massive scalar field theory, the symmetries of scattering are simply the isometries of

underlying spacetime. In a theory of gravity (and in general in any gauge theory) the

group of symmetries is typically infinite-dimensional. Several examples are well under-

stood now. In three spacetime dimensions with a negative cosmological constant, the

symmetry group that preserves the space of solutions of Einstein’s equations is generated

by the infinite-dimensional Virasoro algebra whose central charge is 3l
2G . Since the early

60s, it has been known that the group of symmetries that preserve solutions to Einstein’s

equations in four dimensions with vanishing cosmological constant is an infinite dimen-

sional group, where the asymptotic spacetime translations are enhanced to so-called angle

dependent Supertranslations. This symmetry group is the celebrated BMS group. The ac-

tion of this symmetry group on space of solutions can be represented by its action on the

gauge invariant “free data" which are parametrized by fields at the boundary of spacetime

known as Null Infinity. As the symmetry is represented by its action on the boundary of a

spacetime, such gravitational symmetries are known as Asymptotic Symmetries.
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In the last decade or so, the understanding of asymptotic symmetries in four dimensions

has been significantly enhanced due to its relationship with gravitational observables in

classical theory and factorization theorems in perturbative quantum gravity (PQG). These

factorization theorems of the PQG S-matrix are known in the literature as Soft Theorems.

Although the complete “tower" of possible asymptotic symmetries that includes the clas-

sical BMS group is still being discovered, we now understand fairly well that in addition

to the infinite-dimensional extension of spacetime translations captured by supertransla-

tions, the symmetry group of gravitational scattering in four dimensions also includes an

infinite dimensional extension of the Lorentz group, known as Superrotations. For real so-

lutions to Einstein’s equations, these superrotations are parametrized by diffeomorphisms

of the celestial sphere metric. However in the case of quantum scattering, when external

states are definite helicity states (and hence correspond to complexified solutions to lin-

earised equations), superrotations can also be parametrized in terms of the so-called loop

group. In this thesis, we will focus on the former definition of superrotations as in d > 4

dimensions no definition of loop group is known in the literature. This group of symme-

tries containing both supertranslation and superrotation shall be called Generalised-BMS

(GBMS) in d > 4.

Inspired by the equivalence between asymptotic symmetries and Soft Theorems in d = 4,

this thesis aims to contribute towards the understanding of the existence of similar equiva-

lence in higher dimensions focusing on d = 6. In particular, we have identified the correct

radiative degrees of freedom in d = 6 that are compatible with both Supertranslation and

Superrotation action. We proposed conserved Superrotation charges, whose correctness

is checked by the fact that they reproduce the correct action on “free data". Then elevating

this symmetry as the conjectured symmetry of the S-matrix in PQG, we establish their

relation to Soft Theorems in d = 6.

In the following, in section-0.2, we first discuss some necessary preliminaries for study-

ing asymptotic symmetries in d ≥ 4 dimensions. Then in section-0.3, we state some
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universal factorization properties of the PQG S-matrix in generic dimensions and their

known equivalence with asymptotic symmetries in d = 4. In section-0.4 we discuss how

extending the above program in higher even dimensions relation between conservation

law corresponding to supertranslation symmetry of PQG S-matrix and one of its factor-

ization was built. In relation to this, we discuss the BMS Symmetries in d = 6. This

serves as the background for Section-0.5, 0.6, and 0.7, which discuss new results of the

thesis. We conclude with section-0.8, where the primary content of the thesis is very

briefly summarized.

0.2 Preliminaries

In this thesis, we only consider massless fields. That is, we either consider the vacuum

Einstein’s equations or where the source is a massless stress-energy tensor. In either of

these two cases, the field equations can be recast as an initial value problem with the

characteristic “initial data" specified at the future of past null infinity of the manifold.

Spacetimes we consider will have two disjoint Null infinities, one at the past and one

at the future. Both past and future null infinity in general d-dimension has a topology

S(d−2) × R.

A particularly suitable coordinate system for studying asymptotic symmetries at future

null infinity is the retarded Bondi coordinates (u, r, za), where r is the radial distance from

the origin, u = t − r is the retarded time, and (za) co-orodinatize the celestial sphere

S(d−2). All the solutions to Eintein’s equation with normalisable sources and vanishing

cosmological constant asymptote to the flat metric, which in these co-ordinates take the

form

ds2 = −du2 − 2dudr + r2γabdzadzb. (1)

Such a parametrization of the space of solutions can be made explicit in the Bondi gauge
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as follows. Consider

ds2 = Me2βdu2 − 2e2βdudr + gab(dza − Uadu)(dzb − Ubdu), (2)

where the Bondi gauge condition is given by

grr = 0 gra = 0 det
(gab

r2

)
= det(γab). (3)

Here, M(u, r, za), Ua(u, r, za), β(u, r, za) and gab(u, r, za) are hitherto un-determined. Asymp-

totic flatness is ensured by demanding that the Weyl tensor “peels" off suitably fast at large

r. However, these fall-off conditions on the Weyl tensor do not uniquely fix the fall-off

conditions on the metric components, and exploring this freedom leads to a sufficiently

large class of asymptotically flat solutions. Weakening the fall-off conditions typically

leads to the enlargement of asymptotic symmetry algebra.

In this thesis, we explore these subtleties in Six dimensions. In the following, we shall dis-

cuss the fall-off conditions and physical considerations that led to the proposal of asymp-

totic symmetries in d = 6 to be BMS. Then we explain our results regarding the attempt to

extend this to GBMS in d = 6. But, before doing that, we first briefly mention the factori-

sation theorems of the PQG S-matrix named Soft Theorems and their known connections

to the conservation laws corresponding to the asymptotic symmetries in d = 4.

0.3 Soft Theorems & Asymptotic Symmetries in d = 4

In any spacetime dimension, consider any scattering amplitude (An+1) containing i =

1, · · · , n finite energy particles of any mass, spin, and one soft (energyω→ 0) graviton. In

the expansion of the soft energy, the amplitude can be factorized in terms of the amplitude

containing solely these other n finite energy particles (An) and some factors which depend

4



upon the data of the external states only. We can write this factorization as follows [1]:

An+1 =

[
1
ω

S (0) + S (1) + ωS (2)
]
An + O(ω2) (4)

Note that, the above expression is written in a manner that the factors S (0), S (1), and S (2)

are independent of soft energy ω. These are called the Soft Factors. These factorizations

hold for any arbitrary theory of quantum gravity that behaves like PQG on a background

spacetime in the low-energy. The first two soft factors S (0) and S (1) are universal in the

sense that they don’t depend on the details of the particular interaction term of the theory.

In d = 4 due to the presence of infrared divergence coming from loops, one is forced

to make the mathematical statement (4) in tree level only. However, in d > 4, this is an

all-loop statement.

Let, |in⟩ and ⟨Out| denote the “in" and “Out" states of a scattering process. Then one can

write the amplitude An+1 and An in terms of the matrix elements of the S-matrix. Let,

pµ and ϵµν be the momentum and polarisation tensor of the soft graviton with polarisation

label λ. Let, aλ(ω, ẑ) be the operator that creates a soft graviton with energy ω in the “Out"

state whose direction on the celestial sphere can be denoted using ẑ. Let, ki
µ and J i

µν be

the momentum and angular momentum of the i-th finite energy particle respectively.

Now, using the explicit expression of the Leading Soft Factor S (0) and picking 1/ω con-

tribution inAn+1, one can write the Leading Single Soft Graviton Theorem [2] as follows:

lim
ω→0

ω ⟨Out| aλ(ω, ẑ)S |in⟩ =
√

8πGN

(∑
i

ϵ
µν
λ ki

µk
i
ν

(p/ω) · ki

)
⟨out| S |in⟩ (5)

Similarly, using the explicit expression of the Subleading Soft Factor S (1) and picking

O(1) in ω contribution in An+1, one can write the Subleading Single Soft Graviton Theo-
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rem [1] as follows:

lim
ω→0

(1 + ω∂ω) ⟨Out| aλ(ω, ẑ)S |in⟩ = −i
√

8πGN

(∑
i

ϵ
µν
λ ki

νpρJ i
µρ

p · ki

)
⟨out| S |in⟩ . (6)

Note that, in the equation-(5) and equation-(6) in the LHS the operator aλ(ω, ẑ) creates

an additional graviton in the outgoing state compared to RHS. The energy of the graviton

is given by ω and ẑ denotes its direction. The specific limits on ω used in (5) and (6)

respectively ensure the leading and the subleading limits.

Universal behaviour of the above factorization property of PQG S-matrix prompts one to

ask if there is a “symmetry origin" of them. One finds that, indeed in d = 4 these fac-

torization theorems can be rederived if the known asymptotic symmetries of the classical

gravity are elevated as the symmetries of the PQG S-matrix.

Let us briefly mention the asymptotic symmetry algebras which are of interest here. In

the seminal works [3, 4], in d = 4, the asymptotic symmetry algebra was obtained to be

the celebrated BMS algebra, which is a semidirect product of Supertranslation (ST) and

the Six-dimensional conformal algebra on the celestial sphere. The super-translations are

parametrized by smooth functions f (za) on the celestial sphere at I±. In terms of basis

spherical harmonics, linear combinations of Ylm(za)| l ≤ 1 correspond to global trans-

lations. In d = 4, there are at least two distinct infinite dimensional extensions of this

six-dimensional conformal algebra. Since, local conformal transformations on S2 are in-

finite dimensional, extending the global conformal algebra to the local conformal algebra,

one gets an infinite dimensional extension of BMS algebra known as extended BMS. In-

stead, if one extends this global conformal algebra to all smooth diffeomorphisms on S2,

the corresponding infinite-dimensional extension is known as Generalised BMS (GBMS)

algebra. Thus superrotations are parametrized by smooth vector fields Va(za) on the ce-

lestial sphere at I±. This definition of Superrotation in d = 4 will be of particular interest

to us, as we shall attempt to generalize it to higher even dimensions. It is important to
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note that, Supertranslation (ST) algebra is a subalgebra of both BMS and GBMS. Super-

rotation algebra is subalgebra of GBMS.

In d = 4 leading (5) and subleading (6) soft graviton theorem can be shown to be equiv-

alent to the Supertranslation and Superrotation symmetry of the PQG S-matrix [5, 6]

respectively. A key input from the classical gravity in establishing this connection is as

follows. One can obtain conserved Noether charges corresponding to Supertranslation

(Qd=4
ST ) and Superrotation (Qd=4

SR ). Then, conjecturing them as the symmetry of the PQG S-

matrix, these conservation laws in the quantum theory can be cast as the following Ward

identities:

⟨Out| [Qd=4
ST ,S] |in⟩ = 0 ⟨Out| [Qd=4

SR ,S] |in⟩ = 0 (7)

Then, (5) and (6) imply (and is also implied by) the first and the second Ward identity in

(7) respectively.

Since due to the lack of IR divergence coming from loops soft theorems are even more

robust in higher dimensions, a natural question arises as follows. Does there exist an anal-

ogous relation between soft theorems and asymptotic symmetries in higher dimensions?

0.4 BMS Symmetries in d = 6

Early works regarding the asymptotic symmetries concluded about a trivial asymptotic

symmetry (Poincare) in higher dimensions [7]. Since, the Soft Theorems (5) and (6) hold

in any dimensions, this prompted recent works to revisit these works. This corresponds

to the revision of stricter large-r fall-off chosen in earlier works. The argument behind

this revision is as follows. In any general d dimension, radiation contribution comes from

the O(r(d/2−3)) term of the large-r expansion of the angular part (gab) of the metric. How-

ever, in any dimension in linearized gravity, supertranslation changes O(r) of this angular
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metric. In d = 4, it’s a coincidence that these two orders match. Thus, in d = 4 disallow-

ing supertranslation, will automatically exclude all radiative solutions from the solution

space. This makes the enlargement of the Poincare symmetry to include Supertranslation

a physical necessity. Such necessities are not present in d > 4. In higher even d it is

possible to consistently set O(r) of this angular metric to be zero, and still get radiative

solutions. Since setting O(r) term to be zero is not a supertranslation invariant condi-

tion, this effectively reduces the asymptotic symmetry group to Poincare. Since in higher

dimensions there is no phenomena to dictate the “correct choice" of the large-r fall-off,

inspired by asymptotic symmetries and Soft theorems connection in d = 4, one wishes to

seek whether there is a BMS compatible fall-off by weakening the earlier stricter fall-offs.

In [8], starting from the Leading Soft Theorem (5) a Ward identity of the form

⟨Out| [Qd=2m+2
ST ,S] |in⟩ = 0 (8)

was derived and the Supertranslation charge (Qd=2m+2
ST ) was read-off from it. This charge

was then derived at the classical level in linearized gravity in [9]. The authors introduced

some additional u fall-off conditions for the dynamical mode, which leads to the vanishing

of the divergence coming from the boundaries of I+.

In [10], the above result was generalized for non-linear gravity focusing on d = 6. The

BMS-compatible fall-off conditions for d = 6 can be written as:

M = −1 +
∞∑

n=1

M(n)(u, z)
rn , β =

∞∑
n=2

β(n)(u, z)
rn , Ua =

∞∑
n=0

U (n)
a (u, z)

rn

gab = r2γab(z) + rCab(z) + Dab(u, z) +
∞∑

n=1

g(n)
ab (u, z)

rn , (9)

where Dab(u, z) is the dynamical mode in d = 6. From the physical consideration, it

should scale as 1/|u|(2+ϵ). Supertranslation action violates this u fall-off of the dynamical

mode due to the presence of Cab (which was absent in the linear analysis of [9]). However,
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physical news tensor ∂uDab remains invariant under any redefinition of dynamical mode

by the addition of a pure function of Cab. Exploiting this fact, in [10] it was identified

that the following redefinition of the dynamical mode keeps the u fall-off invariant under

supertranslation action.

D̃ST
ab = Dab −

1
4
γcdCacCbd −

1
16
γabCcdCcd (10)

The Noether charge for Supertranslation (Qd=6
ST ) was found to be the same as in [9], except

for the replacement Dab → D̃ST
ab . From the above results, it is natural to claim that, for

BMS compatible solution space of the classical theory, the correct classical degree of

freedom to quantize for obtaining the graviton in quantum theory is not Dab but D̃ST
ab .

Corresponding Ward identity

⟨Out| [Qd=6
ST ,S] |in⟩ = 0 (11)

correctly reproduces the leading soft graviton theorem (5).

Since in d = 4 there is a generalization from BMS to GBMS by including Superrotations,

a natural question is, whether the same holds for d = 6 at the classical level. And if yes, at

the quantum level, can we obtain the Subleading Single Soft graviton theorems (6) from

the Ward identities constructed of the Noether charges corresponding to such asymptotic

symmetries in d = 6? This is the question which we explore in this thesis.

0.5 GBMS Symmetries in d = 6

Inspired by the generalization of symmetry algebra from BMS to GBMS in the d = 4

case, we start with the generalization of the fall-off conditions chosen for studying the
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BMS algebra. Let us start with the following fall-off conditions [11]:

M =
∞∑

n=0

M(n)(u, z)
rn , β =

∞∑
n=2

β(n)(u, z)
rn , Ua =

∞∑
n=0

U (n)
a (u, z)

rn

gab = r2qab(z) + rCab(u, z) + Dab(u, z) +
∞∑

n=1

g(n)
ab (u, z)

rn (12)

Here, qab(z) is obtained from any area preserving (
√

q =
√
γ) smooth diffeomorphisms of

unit round sphere metric γab(z). From Einstein’s equation, we get ∂uCab = −R̄
T F
ab , where

R̄T F
ab is the trace-free part of the Ricci tensor corresponding to qab metric. This implies,

Cab(u, z) = C̄ab(z)+uTab(z), where, Tab = −R̄
T F
ab . Given qab(z), C̄ab(z) and Dab(u, z); metric

can be solved at all order in r. Dab(u, z) is the dynamical mode.

Connection with the fall-off conditions (9) chosen for studying BMS algebra must be

stressed here. If one restricts to the unit round metric γab on the S4 i.e. qab = γab,

then Tab = 0, and M(0) = −1, i.e. one essentially recovers (9), and the corresponding

symmetry algebra is BMS. Demanding preservation of the fall-off conditions (12), one

obtains an infinite dimensional extension of the Lorentz subalgebra of original BMS al-

gebra, parametrized by any smooth vector field Va on S4. Correspondingly, one gets

Generalised-BMS (GBMS) algebra in d = 6. GBMS is a semi-direct product of ST and

Diff(S4). Henceforth, by Superrotation in d = 6, we shall mean this extension of Lorentz

algebra. Superrotation vector fields are given by:

ξu
SR = uα(z)

ξa
SR = Va(z) − uDbα(z)

∫ ∞

r
e2β(u,r′,z)gab(u, r′, z)dr′

ξr
SR = −

r
4
[
Daξ

a
V(u, r, z) − uUa(u, r, z)Daα(z)

]
. (13)

Here, α = 1
4DaVa. Action of the superrotation on C̄ab, Tab, and Dab can be written as:

δSRC̄ab = LVC̄ab − αC̄ab

10



δSRTab = LVTab − 2
(
DaDbα

)T F

δSRDab = uα∂uDab +LV Dab

+ u
{

1
4
D2αCab − U (0)

(a Db)α +
1
2

qc(aDb)
(
CcdDdα

)
−Cc(aDb)D

cα

−DcαDcCab +
1
2

qabU (0)cDcα −
1
4

qabDc(CcdDdα)
}

(14)

Similar to [10], we shall work on the decompactified sphere (R4). Borrowing from the

terminology used in d = 4, we call the case of qab = γab metric on S4 (or δab metric on R4)

as Bondi frame. In the Bondi frame, Tab = 0 and Cab = C̄ab; and hence, the superrotation

action (14) takes a simpler form. Now, superrotation action takes away from the Bondi

frame i.e. δSRTab , 0, even starting from Bondi frame where Tab = 0.

Due to the generalization r fall-off condition from (9) to (12), there arises a need for

further field redefinition of radiative degrees of freedom, such that the u fall-off at the

boundaries of the I+ is maintained. This generalisation should capture the information

of non-zero Tab, but should smoothly reproduce the redefinition (2.28) in the Bondi case

(Tab = 0, Cab = C̄ab). We shall look at the effect of going linearly away from the Bondi

frame. In this case, a natural generalization of field redefinition becomes:

D̃ab = Dab −
1
4

qmnC̄amC̄bn −
1

16
qabC̄mnC̄mn

− u
[1
4

qmn(C̄amTbn + TamC̄bn) +
1
8

qabTmnC̄mn
]
+ O(T 2). (15)

Note that supertranslation and superrotation action on this redefined radiative field can be

written as:

δSTD̃ab = f∂uD̃ab (16)

δSRD̃ab = LV D̃ab + uα∂uD̃ab (17)

Thus, the u fall-offs are not violated by supertranslation or superrotation action starting
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from a Bondi frame.

0.6 Conserved Superrotation Charge

In [11], we obtained the conserved charge corresponding to superrotation symmetry in

the Bondi frame. Similar to the d = 4 case, the charge can be split into two kinds of

terms. Borrowing from the terminology used in d = 4, we refer to the terms linear in

dynamical mode D̃ab as the Soft charge and terms quadratic in D̃ab as the Hard charge.

Hard superrotation charge in d = 6 can be written as:

QHard
SR =

1
8πGN

∫
I+

[
uα(z)T (4)

uu (u, z) + Va(z)T (4)
ua (u, z)

]
. (18)

Here, T (4)
uu (u, z) and T (4)

ua (u, z) are uu and ua components of the O(r−4) terms in the large r

expansion of the stress-energy tensor Tµν respectively. Using the stress-energy tensor for

pure gravity, Hard superrotation charge for pure gravity was obtained to be:

QHard
SR =

1
32πGN

∫
I+

Nab
(
LV D̃ab + uαNab

)
. (19)

where, Nab = ∂uD̃ab is the news tensor.

An independent derivation of the Hard Superrotation Charge was also given starting from

the Symplectic structure defined on the Hard Phase Space. Hard Phase space consists of

the canonical pair (D̃ab, Nab). A symplectic structure can be defined in this Phase space

as follows:

ΩHard(δ, δ
′

) = −
1

32πGN

∫
I+
δD̃ab ∧ δ

′

Nab. (20)
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Hard Superrotation charge is obtained from this symplectic structure as follows:

ΩHard(δ0, δS R) = δ0Q
Hard
SR . (21)

The charge thus obtained matches the Hard superrotation charge for pure gravity(19) ob-

tained from the stress-energy tensor. In [11], the following superrotation soft charge was

proposed for any generic Bondi frame (C̄ab , 0):

QSoft
SR =

1
128πGN

∫
I+

uVb(x)
[
∂4∂aD̃ab −

4
3
∂b∂

2∂e f D̃e f

]
+

1
96πGN

∫
I+

(LVC̄ab − αC̄ab)∂a∂mD̃b
m (22)

The correctness of the soft charge is tested by the fact that they produce correct action on

the Kinametic data (C̄ab,Tab) in the Bondi frame.

{QSoft
SR , C̄ab} = δSRC̄ab

{QSoft
SR ,Tab} = δSRTab. (23)

Here, the right-hand side of (23) is obtained from the spacetime action (14) after putting

Tab = 0 for the Bondi case. This soft charge (22) is further justified by the fact that they

reproduce the correct subleading soft graviton theorem in the quantum theory, as shall be

discussed in the next section.

Finally, we have the total Superrotation charge in pure gravity in d = 6 given as:

QSR = Q
Soft
SR + Q

Hard
SR

=
1

128πGN

∫
I+

uVb(x)
[
∂4∂aD̃ab −

4
3
∂b∂

2∂e f D̃e f

]
+

1
96πGN

∫
I+

(LVC̄ab − αC̄ab)∂a∂mD̃b
m +

1
32πGN

∫
I+

Nab
(
LV D̃ab + uαNab

)
.

(24)
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This charge produces the correct action on the dynamical data, namely:

{QSR, D̃ab} = δSRD̃ab, (25)

where δSRD̃ab is the spacetime action of superrotation given in (16).

0.7 Implication to the S-matrix

As we already mentioned one of the primary motivations for choosing boundary condi-

tions such that one gets a non-trivial asymptotic symmetry algebra is the possible impli-

cation of this symmetry to the quantum gravity S-matrix. Specifically, we ask how the

GBMS symmetry of the S-matrix is related to the soft graviton theorems mentioned in

(5) and (6).

At this point, an important conceptual aspect needs to be mentioned here. apriori there are

two independent GBMS algebras: (1) GBMS+ acting on I+, labelled by ( f +(z),Va
+(z)) and

(2) GBMS− acting on I−, labelled by ( f −(z),Va
−(z)). Inspired from [12], we can identify

a diagonal subalgebra GBMS0 of GBMS+ × GBMS− can be identified as the symmetry

of the gravitational scattering problem. This is done through the following matching

conditions:

f +(z) = f −(−z) Va
+(z) = Va

−(−z) (26)

The vacua are degenerate because the GBMS action on a vacuum state creates a new

vacuum. Motivated from [10], a convenient choice for labeling the vacua is to choose

them to be the eigenstates of the operators C̄ab and Tcd. One studies the soft theorems in

the ordinary Fock vacuum and we choose this vacuum as |0⟩ = |C̄ab = 0,Tcd = 0⟩. One

can construct the finite energy “in" and “out" states from this vacuum.
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In our case, we consider the scenario of a massless scalar field coupled to gravity and

consider a scattering process in which all finite energy particles except the soft graviton

are scalar particles. One has the following Superrotation charge in this case. The Soft

charge is given by (22) and the Hard charge is obtained from (18) using the energy-

momentum tensor for the scalar field. Finally, for the GBMS symmetry of the S-matrix,

we can write a Ward identity of the form:

⟨Out| [Qd=6
SR ,S] |in⟩ = 0 (27)

In [11], we showed that, starting from the subleading soft graviton theorem (6) in d = 6

and specializing to the case where in the external states finite energy particles are only

scalars, one can derive the Ward identity (27).

0.8 Conclusion

We now summarise the primary content of the thesis. The primary goal of this thesis is

to draw the lessons from the recent discovery of symmetry algebra that constrains grav-

itational scattering in Four dimensions and generalize it to higher even dimensions. In

particular, in d = 6 we identified the radiative degrees of freedom in the Bondi frame

that preserve correct early and late time behaviour (|u| → ∞) upon Supertranslation and

Superrotation action.

The main result of this thesis is a proposal for the Superrotation charge in the Bondi frame

beyond linearised gravity. We proved that this charge has correct action on the Dynamical

and Kinematic data. In the case of a scalar field coupled to gravity, by promoting the

superrotation symmetry to the symmetry of Quantum Gravity S-matrix, we established

the connection with the Subleading Soft Graviton Theorem.
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Outline of the thesis

In this thesis, we explore the asymptotic symmetries of gravity in higher dimensions and

their implications both at the classical as well as quantum level.

• Chapter 1 will introduce the basic background and motivation for studying asymp-

totic symmetries.

• Chapter 2 will motivate the study of Asymptotic Symmetries in higher dimensions,

and survey the works done in the literature that will be relevant for our work.

• Chapter 3 will introduce GBMS symmetries in d = 6.

• Chapter 4 will discuss the consequence of these symmetries to classical gravity and

the conserved charges they lead to.

• Chapter 5 will discuss the consequence of these symmetries to quantum gravity, in

particular to the perturbative quantum gravity S-matrix. Connection of the GBMS

symmetries with a particular type of factorization theorems of S-matrix, namely

subleading soft graviton theorem is established.

• Chapter 6 summarises the key results, points out the open issues, and tries to chart

a pathway to how to solve them.
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2.1 Penrose diagram for Asymptotically Flat Spacetime. Violet lines repre-
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Chapter 1

Introduction

The subject matter of study in this thesis is certain symmetries in classical and quantum

gravitational scattering in d ≥ 4 spacetime dimensions. More in detail, the goal of the

thesis is to contribute towards an understanding of the symmetry algebra whose corre-

sponding conservation laws constrain the S-matrix of a gravitational theory. The obvious

symmetries of any scattering are the isometries of the underlying spacetime i.e. Poincare

symmetry for the case when underlying spacetime is Minkowski. However, for gauge

theories and gravity, there are further non-trivial symmetries of the scattering and typi-

cally they are infinite-dimensional. For gauge theories, these symmetries correspond to

so-called large gauge transformation symmetries, which are infinite-dimensional exten-

sions of the global internal symmetries (see [13–17] and references therein). For grav-

itational theories, they correspond to infinite-dimensional extensions of the isometries.

In this thesis, we shall study the implication of such infinite-dimensional symmetries in

gravitational theories, both in classical and quantum setups.

In [12], it was identified that the symmetries of the flat spacetimeS-matrix of gravitational

theories in d = 4 are encoded in the celebrated Bondi-Metzner-Sachs (BMS) algebra

[3, 4]. The isometries of the flat spacetimes are given by the Poincare algebra, which is

a semi-direct product of the Translation and Lorentz algebra. BMS algebra is an infinite
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dimensional extension of this Poincare algebra, where the Translation subalgebra of the

Poincare algebra gets an infinite dimensional extension in the form of so-called angle-

dependent Supertranslations. Hence BMS is a semi-direct product of Supertranslation

and Lorentz algebra.

Although the application of the BMS symmetries to the understanding of the Quantum

Gravity S-matrix is relatively new, at the classical level, the role of these symmetries has

been explored since the early works by Bondi, Metzner, Vanderburg, and Sachs [3,4]. All

solutions to Einstein’s equation with vanishing cosmological constant and normalizable

sources asymptotes to Flat Spacetime. This solution space is known in the literature as

Asymptotically Flat Spacetimes. The role of the BMS symmetries when looked at from

the perspective of this asymptotic behaviour of spacetime is as follows. The action of

the BMS symmetries preserves this solution space of Einstein’s equation. The action

of these symmetries on the space of solutions can be represented by their action on the

gauge invariant “free data”, which are parametrized by fields at the boundary of spacetime

known as Null Infinity [18]. As the symmetry is represented by its action on the boundary

of a spacetime, such gravitational symmetries are known as Asymptotic Symmetries.

In the case of gravitational scattering, one has some incoming data at the past boundary

and outgoing data at the future boundary and the scattering process relates them. Cor-

responding to each of these boundaries one has an independent asymptotic symmetry

algebra. In [12], from the product of these two asymptotic symmetry algebras, symmetry

of the gravitational scattering was identified through certain prescription called antipodal

matching conditions.

The supertranslation symmetries of the gravitational scattering are related to certain ob-

servable effects in classical gravity [19]. Consider a pair of test masses placed at a certain

initial distance in the “far zone” of gravitational radiation. As a burst gravitational wave

passes through them the distance between them oscillates. If one observes them a long

time after the burst gravitational wave has passed one sees a small permanent change in

20



the distance between them [20]. This observable effect is called the Displacement Mem-

ory Effect. This memory effect can be understood as a consequence of infinitely many

conservation laws in a gravitational scattering corresponding to energy conservation at

each angle.

This displacement memory effect is a position space effect, which is related to the large-

time behaviour of the metric fluctuations of the asymptotically flat class. Corresponding

low-frequency behaviour of these metric fluctuations obtained via Fourier transform is

intricately linked to certain important factorization properties of the Quantum Gravity

S-matrix [19]. Consider, a scattering amplitude containing gravitons and other particles

with any mass and spin. In the limit when the energy 1 of one of the gravitons goes zero

the amplitude factorizes in terms of a universal (process and theory independent) factor

depending only on the data of the external states. A graviton of vanishing energy in the

limiting sense is called a Soft Graviton. The particular factorization of Quantum Gravity

S-matrix discussed here is called the Weinberg’s Soft Graviton Theorem, based on the

seminal work [2] where it was studied first.

Since at the classical level, Supertranslation Symmetries are related to the displacement

memory effects, and on the other hand displacement memory effects are also related to

Weinberg’s Soft Graviton Theorem corresponding to scattering in Quantum Gravity, one

can ask if the Weinberg’s Soft Graviton Theorems are related to Supertranslation sym-

metries of the quantum scattering. Indeed, in seminal work [5], it was shown that the

Weingberg’s Soft Graviton Theorem is equivalent to the conservation laws corresponding

to Supertranslation Symmetries of the Quantum Gravity S-matrix.

Thus, one has an interesting triality of relations among the following: memory effects, soft

graviton theorems, and asymptotic symmetries. Since they correspond to the Infrared or

low energy behaviour of the theory, such a triality of relations is called Infrared Triangle.

In fact, there are similar triality of relations in any gauge theory [21], but since this thesis is

1Since we shall be working throughout with the unit ℏ= c =1, we shall use the term energy and frequency
interchangeably.
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concerned with gravitational scattering, we shall restrict our discussion to the gravitational

Infrared Triangle only.

This triality however is not the only triality that exists in the infrared sector of gravity in

d = 4.

In deriving Weinberg’s Soft Theorem one does an expansion in the energy of the soft

graviton and Winberg’s Soft Theorem corresponds to factorization of the amplitude in

the leading order (pole term) of the soft graviton energy. However, there exists universal

factorization at the subleading order in the energy of the soft graviton as well. Such a

factorization corresponds to the celebrated Cachazo-Strominger Soft Graviton Theorem

[1], named after the authors who conjectured them first.

Just like the Weinberg’s Soft Graviton Theorem is related to an observable effect in classi-

cal gravity called displacement memory, the Cachazo-Strominger Soft Graviton Theorem

can also be related to a classical observable effect called Spin Memory Effect [22]. In the

“far zone” of gravitational radiation, this memory effect can be measured from the rel-

ative time delays between beams on clockwise and counterclockwise orbits of particles,

induced by radiative angular momentum flux. This memory effect can be understood as

a consequence of infinitely many conservation laws in a gravitational scattering corre-

sponding to angular momentum conservation at each angle.

Motivated by Ads/CFT correspondence [23], in d = 4, the asymptotic symmetries were

further extended by introducing infinite dimensional extensions [24, 25] of the Lorentz

subalgebra 2 of the BMS algebra. Such infinite dimensional extensions of Lorentz algebra

are called Superrotations.

In [26], it was shown that the Cachazo-Strominger Soft Theorem implies the conservation

laws corresponding to the Superrotation symmetries of the Quantum Gravity S-matrix.

Thus, together with the results of [22], one gets a Subleading Infrared Triangle in d = 4,

2In d = 4, there are different definitions of Superrotations corresponding to different infinite dimensional
extensions of the Lorentz algebra. We shall discuss these subtleties in detail in Chapter-2.
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which encapsulates the triality among the following: Cachazo-Strominger Soft Graviton

Theorem, Extended BMS Symmetries, and Spin Memory Effect.

Now, motivated by the development of String theory and other theories with extra di-

mensions, there has been a flurry of research in understanding the classical gravity in

higher dimensions. This motivates one to ask questions regarding the solution space of

Einstein’s equation with vanishing cosmological constant in d > 4 and correspondingly

asymptotic symmetries in those spacetime dimensions. Furthermore, due to works by

Sen and his collaborators [27–30], it is now well-established that Weinberg’s Soft Theo-

rem and Cachazo-Strominger Soft Theorems are true universal statements for any generic

theories of quantum gravity in generic dimensions. In d = 4 due to Infrared divergence

coming from the loops, one is forced to make the Weinberg’s and Cachazo-Stromiger’s

soft theorems as statements at the tree level. In d > 4 due to the lack of any IR divergences

coming from the loops, the soft theorems are even more robust. Hence, if there exists a

connection between symmetries of the scattering and the Soft Theorems in d > 4, that is

a stronger constraint on the S-matrix. Hence, it is natural to ask if there is a “symmetry

origin” of these soft theorems in generic dimensions. Moreover, In d = 4, there exists a

conjectured duality between the gravity theory in the bulk and a proposed Celestial Con-

formal Field Theory on the celestial sphere at Infinity. This goes by the name Celestial

Holography [31,32], and is supposed to be the flat space analogue of the famous Ads/CFT

correspondence for spacetimes with a negative cosmological constant. The infrared trian-

gle was a crucial hint for such a conjectured holography. Since Ads/CFT correspondence

is conjectured to be true in any spacetime dimensions, it is natural to ask if there is evi-

dence of an Infrared Triangle in d > 4 as well. Thus, there is a multitude of motivations

to explore the asymptotic symmetries of gravity in higher spacetime dimensions and cor-

respondingly, the symmetries of gravitational scattering in those dimensions.

Early works [7, 33] on asymptotic symmetries in classical gravity in d > 4 before the

discovery of the Infrared Triangle in d = 4 concluded that asymptotic symmetries in
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d > 4 are trivial, i.e. the symmetry algebra is simply the Poincare algebra. This was

based on the fact that classical gravity in higher dimensions has no displacement memory

in the way it is defined in four dimensions. The same reasoning can be also used to

argue that there can be no spin memory effect in higher dimensions. However, with the

knowledge of Infrared triangles (both Leading and the Subleading) in d = 4, this gives

rise to an interesting puzzle in higher dimensions. The universality of soft theorems in

generic dimensions suggests that the S-matrix is constrained by an infinite dimensional

symmetry, but a lack of the memory effects are seemingly at odd with infinitely many

conservation laws that these symmetries will imply.

This motivated a series of recent works [8–10, 34] to critically re-examine these earlier

works, and exploiting the room for choosing less restrictive conditions than the earlier

works, strong evidence for the Infrered Triangle corresponding to Weinberg’s Soft Gravi-

ton Theorem was obtained even in higher dimensions.

Since the Cachazo-Strominger Soft Graviton Theorem is also a universal constraint on

the S-matrix, it is natural to ask whether there is also a Subleading Infrared Triangle in

higher dimensions. This thesis aims to contribute to the understanding of this question.

Due to certain conceptual reasons that will be discussed in Chapter-2, it is difficult to

make progress in higher odd dimensions and we are forced to restrict ourselves to higher

even dimensions. Furthermore, for analytical computability, our concrete calculations are

in the lowest d > 4 even dimension, i.e. d=6.

The rest of this thesis is organized as follows. In Chapter-2 we discuss the basic notion

of asymptotic symmetries corresponding to the class of solutions of Einstein’s equations

called Asymptotically Flat Spacetimes. We discuss early works in this direction in d ≥ 4.

We discuss how to elevate these asymptotic symmetries to the symmetry of the gravita-

tional scattering. We introduce Soft Graviton Theorems and discuss how in d = 4 they are

equivalent to the conservation laws corresponding to the symmetries of the S-matrix. We

discuss how this motivated some recent works to critically re-examine these earlier works
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related to asymptotic symmetries in d > 4 and summarize certain key results in them.

This serves as a background for the new contributions in the thesis starting from Chapter-

3. In section 3.1, we discuss the boundary conditions that are adopted in our study of

asymptotically flat spacetimes in d = 6. In section 3.2, we show that the corresponding

asymptotic symmetry algebra is the GBMS (which is a semidirect product of supertrans-

lations and superrotations) and evaluate the spacetime action of it. We also identify the

correct radiative modes around the so-called Bondi frame, which will be defined in this

chapter. In Chapter-4, we propose the conserved superrotation charges in the Bondi frame

that generates the corresponding Superrotation symmetries. In Chapter-5, we show that

the Ward identities corresponding to the Superrotation charges, which are statements of

the conservation laws corresponding to Superrotation symmetries of the S-matrix, fol-

low from the Cachazo-Strominger soft graviton theorem. We summarize our results and

address the future directions in Chapter-6.
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Chapter 2

Asymptotic Symmetries of Gravity and

Soft Graviton Theorems

In Chapter-1 we qualitatively discussed the known triality of relations in d = 4 among the

following three: Asymptotic Symmetries, Soft Theorems, and Memory effects. Together

they form the Infrared Triangles. In this chapter, we shall first explain these notions in

detail. Then we shall review the important results in the literature which attempt to ex-

tend such a triality in higher dimensions. Our particular focus will be on the relationship

between Soft Theorems and Asymptotic Symmetries. As already mentioned, these sym-

metries corresponding to the solution space of classical gravity can be elevated to the

symmetries of classical and quantum gravitational scattering and Soft Graviton Theorems

are essentially statements about the conservation laws corresponding to the symmetries

of Quantum Gravity S-matrix. In the following, we start with the basic preliminaries

regarding the study of Asymptotic Symmetries.
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2.1 Preliminaries

We are interested in the Asymptotically Flat Spacetimes (AFS) near Null Infinity [35, 36]

in d spacetime dimensions. In the geometric framework of Conformal Infinity developed

by Penrose, these spacetimes can be described using a manifoldM equipped with a metric

gµν such that they satisfy certain properties: (1) There should exist a conformal embedding

fromM to an unphysical manifold M̃with boundary I = I+∪I−. Here I± has a topology

R × S(d−2); (2) under the conformal embedding, gµν = Ω−2g̃µν, where Ω is smooth upto

and including the boundary I and on I, Ω = 0, nµ ≡ ∇µΩ , 0; (3) metric gµν satisfies

Einstein’s equation (with vanishing cosmological constant) with a smooth limit to I. It

can be shown that the I is a null surface.

I− is called the Past Null Infinity and I+ is called the Future Null Infinity. In this the-

sis, we only consider massless fields. That is, we either consider the vacuum Einstein’s

equations or the source is a massless stress-energy tensor. In either of these two cases,

the field equations can be recast as an initial value problem with the characteristic “initial

data" specified at the future of past null infinity of the manifold. In the case of quantum

scattering problem, we shall have “in” and “out” data localized at I− and I+ respectively.

Asymptotic symmetries keep the structure of Null infinity preserved. They can be thought

of as the symmetries of the solution space of Einstein’s Equation with vanishing cos-

mological constant. Although the asymptotic symmetries in a classical theory can be

understood by focusing on one of the Null boundaries, we shall see later that to define

them to be the symmetry of the S-matrix one needs to define the symmetry algebra on

I+ ∪ I−.

A particularly suitable coordinate system for studying asymptotic symmetries at Future

Null Infinity I+ is the retarded Bondi coordinates (u, r, za), where r is the radial distance

from the origin, u = t − r is the retarded time, and (za) co-orodinatize the celestial sphere

S(d−2). All the solutions to Eintein’s equation with normalizable sources and vanishing
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cosmological constant asymptote to the flat metric, which in these co-ordinates takes the

form

ds2 = −du2 − 2dudr + r2γabdzadzb. (2.1)

Here, γab is the unit-sphere metric on S(d−2). Parametrization of the space of solutions can

be made explicit in the Bondi gauge. We shall call the metric in this parametrized form

as Bondi Metric, using which line element can be written as:

ds2 = Me2βdu2 − 2e2βdudr + gab(dza − Uadu)(dzb − Ubdu). (2.2)

Here, the Bondi gauge condition is given by

grr = 0 gra = 0 det
(gab

r2

)
= det(γab). (2.3)

Here, M(u, r, za), Ua(u, r, za), β(u, r, za), and gab(u, r, za) are hitherto undetermined func-

tions of Bondi coordinates. Asymptotic flatness can be ensured by demanding that the

Weyl tensor “peels" off suitably fast at large r. However, these fall-off conditions on the

Weyl tensor do not uniquely fix the fall-off conditions on the metric components, and

hence, correspondingly on the undermined functions. Exploring this freedom leads to a

sufficiently large class of asymptotically flat solutions. Weakening the fall-off conditions

typically leads to the enlargement of asymptotic symmetry algebra (ASA).

The discussion in this section implicitly assumes the spacetime dimensions to be even and

in [37] it was shown that in odd dimensions there is no useful notion of Null Infinity. Also,

in the case when there are massive sources, to define Asymptotically Flat Spacetimes we

need to include Timelike Infinities (i− and i+). These issues are beyond the scope of this

thesis and we shall throughout work in even dimensions with massless sources.

We end this section by illustrating Asymptotically Flat Spacetime using a Penrose dia-
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Figure 2.1: Penrose diagram for Asymptotically Flat Spacetime. Violet lines represent
a Null geodesic and Red lines represent a Timelike geodesic. I± are Future and Past
Null boundaries respectively and the subscript ± denotes their Future and the past end.
i± denotes the Future and Past Timelike boundaries respectively. i0 denotes the spacelike
boundary.

gram (2.1) and explaining the topology of different boundaries. Null geodesics start at the

Past Null boundary I− and end at the Future Null Boundary I+. Since, I± has topology

R×S(d−2), each point in the I± lines in the Penrose diagram denotes a (d−2) dimensional

sphere. Hence, the past and future ends (denoted by − and + subscripts respectively) of

the Null boundaries, represented by points in the Penrose diagram have topology S(d−2).

Timelike geodesics start at the Past Timelike boundary i− and end at the Future Timelike

Boundary i+. i± are points.
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2.2 Early Works on Asymptotic Symmetries of Gravity

in d ≥ 4

The study of asymptotic symmetries can be traced back to as early as the sixties. In the

seminal works [3, 4], in d = 4, the ASA was obtained to be the celebrated BMS algebra,

which is a semidirect product of Supertranslation (ST) and Lorentz. ST itself is an infinite

dimensional enlargement of the Translation subalgebra of the Poincare algebra (which is

the semi-direct product of Translation and Lorentz). ST vector fields are parametrized

by a free function f (za) on S2. In d = 4, this BMS algebra was further extended in later

works. In d = 4, there are different proposals for infinite dimensional extension of the

BMS algebra, using different infinite-dimensional extensions of the Lorentz subalgebra of

the BMS (ST⋊Lorentz) algebra. In d = 4, Lorentz transformation induces the global con-

formal transformations on S2. Inspired by an attempt to build a proposed BMS-CFT cor-

respondence (in analogy to Ads/CFT), in the Extended BMS (EBMS) proposal [24, 25],

the Lorentz algebra was extended to include local conformal transformations on S2. Later,

inspired by an attempt to build an improved understanding of the Infrared Triangle 1, in

the Generalised BMS (GBMS) proposal [38], the Lorentz algebra was extended to include

vector fields with generate smooth diffeomorphisms of S2. Both of these infinite dimen-

sional extensions of the Lorentz algebra are called Superrotation in d = 4. In the EBMS

case, Superrotation vector fields are parametrized by holomorphic vector fields Va(zb) on

S2. On the contrary, in the GBMS case, Superrotation vector fields are parametrized by

smooth vector fields Va(zb) on S2. It is important to keep in mind that, ST algebra is a

subalgebra of all three proposed ASA in d = 4, namely BMS, EBMS, and GBMS.

In [7], the ASA corresponding to AFS of even d ≥ 4 was studied in their connection to

(displacement) memory effect. In [7], it was argued that in d = 4 the Supertranslations are

tied to the displacement memory effect, and if one uses a strict fall-off such that the ASA

1We shall return to this point in a bit more detail in the section-2.4.
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is Poincare and thus disallows Supertranslations, generic radiative solutions are automat-

ically excluded. Hence, allowing Supertranslation is essential in d = 4. In contrast, in

d > 4, while the memory effects are seen corresponding to O(r) at the r-expansion of the

angular part of the metric (gab), radiation corresponds to O(r−(d/2−3)). Hence, enlargement

of the Poincare algebra to include Supertranslation doesn’t become a physical necessity.

Furthermore, allowing for Supertranslation leads to divergent physical quantities. In this

logic, it was argued that the Supertranslation doesn’t exist in d > 4.

However, new insights from the Infrared Triangle in d = 4 have led to revisiting the ASA

in higher d in recent works [8–10] and the authors could consistently weaken the fall-

off conditions to get a non-trivial asymptotic symmetry bypassing the no-go conditions

of [7]. We shall discuss the motivations for this revisit in section-2.4. These new insights

in d = 4 hinges on the following facts. The asymptotic symmetries in the classical theory

can be elevated to the symmetry of the Quantum Gravity S-matrix, and as a consequence

of these symmetries of the S-matrix one reproduces the already established results of the

Soft Graviton Theorems. So, to proceed further in the next section we review the Soft

Graviton Theorems.

2.3 Soft Graviton Theorems

Due to decades of research starting from the early sixties [2] we now understand very

robustly that the scattering amplitudes in gravitational theories show the following inter-

esting factorization properties [1, 27–29, 39–44].

In any spacetime dimension, consider a scattering amplitude (An+1) containing i = 1, · · · , n

finite energy particles of any mass, spin, and one soft (energy ω → 0) graviton. In the

expansion of the soft energy, the amplitude can be written in terms of the amplitude con-

taining solely these other n finite energy particles (An) and some factors which depend
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upon the information of the external states only. We can write this factorization as follows:

An+1 =

[
1
ω

S (0) + S (1) + ωS (2)
]
An + O(ω2). (2.4)

Note that, the above expression is written in a manner that the factors S (0), S (1), and S (2)

are independent of soft energy ω. These are called the Soft Factors.

These factorizations hold for any arbitrary theory of quantum gravity and in any arbitrary

dimensions [27–29] and the soft factors are exactly known. We shall write the detailed

expressions of the soft factors later. But, before going to the details of the soft factors a

few important pieces of information must be stated here. The first two soft factors S (0)

and S (1) are universal in the sense that they are not only process-independent but also

don’t depend on the details of the interaction terms present in theory. The Soft factor S (2)

contains a universal piece that is present in any theory of Quantum Gravity and a non-

universal piece that depends upon the non-minimal coupling of fields with the Riemann

Tensor.

At this point, a few comments about the UV and IR divergence of An+1 and An must

be mentioned. Since the derivation in [27–29] was done using 1-PI effective action of a

UV finite theory, the statement (2.4) is well-defined in the UV sense. In d ≥ 5 due to

the absence of infrared divergence coming from the loop momentum, these factorizations

are true for all-loop amplitudes. In d = 4 infrared divergences force one to restrict these

statements at the tree-level, i.e. in d = 4,An+1 andAn in (2.4) should meanATree,d=4
n+1 and

A
Tree,d=4
n . There are additional logarithmic in ω corrections [45] to the soft factors once

the loop effects are taken into account.

Let, |in⟩ and |Out⟩ denote the “ingoing" and “Outgoing" external states of a scattering

process containing the finite energy particles only. Using them, one can write the ampli-

tude An+1 and An in terms of the matrix elements of the S-matrix. Let, pµ and ϵµν be

the momentum and polarisation tensor of the soft graviton with polarisation label λ. Let,
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aλ(ω, ẑ) be the operator that creates an additional soft graviton with energy ω to the ⟨Out|

state, whose direction on the celestial sphere can be denoted using ẑ. Let, ki
µ and J i

µν be

the momentum and angular momentum of the i-th finite energy particle respectively.

Now, using the explicit expression of the Leading Soft Factor S (0) and picking 1/ω con-

tribution inAn+1, one can write the Leading Soft Graviton Theorem [2] as follows:

lim
ω→0

ω ⟨Out| aλ(ω, ẑ)S |in⟩ =
√

8πGN

(∑
i

ϵ
µν
λ ki

µk
i
ν

(p/ω) · ki

)
⟨out| S |in⟩ (2.5)

This soft theorem is also called Weinberg’s Soft Graviton Theorem. Here, GN is the New-

ton’s gravitational constant. Note that, the soft factor is gauge invariant, which can be

checked from the fact that when polarisation tensors are taken to be the pure gauge the

Soft factor vanishes by momentum conservation.

Similarly, using the explicit expression of the Subleading Soft Factor S (1) and picking

O(1) in ω contribution in An+1, one can write the Subleading Single Soft Graviton Theo-

rem [1] as follows:

lim
ω→0

(1 + ω∂ω) ⟨Out| aλ(ω, ẑ)S |in⟩ = −i
√

8πGN

(∑
i

ϵ
µν
λ ki

νpρJ i
µρ

p · ki

)
⟨out| S |in⟩ . (2.6)

This soft theorem is also called the Cachazo-Strominger’s Soft Graviton Theorem. Note

that, the soft factor is gauge invariant, which can be checked from the fact that when

the polarisation tensor is taken to be the pure gauge the Soft factor vanishes by angular-

momentum conservation.

It is important to note here that we now know the existence and the exact formula for

the soft factorization for an arbitrary number of soft gravitons in any generic theory of

quantum gravity in a generic dimension, where the finite energy particles can have any

mass and spin. Such soft graviton theorems are called Multi-Soft Graviton Theorems

[30, 46]. But, for the purpose of this thesis, it is sufficient to focus on the Single Soft
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Graviton Theorems.

Since the factorization at the leading and the subleading order in the energy of the soft

gravitons in (2.4) are universal, they serve as a consistency condition for the S-matrix of

quantum gravity. One might ask if there are generic symmetries of quantum gravity from

which they follow. This is one of the questions the Infrared Triangle program wants to

address.

To avoid confusion, it must be stressed here that the Soft Graviton Thorems are theorems

in the sense that they are statements about the factorization properties of the quantum

gravity S-matrix, which can be derived from the amplitude calculations using Feynman

diagrammatic or various other modern techniques. Their derivation apriori doesn’t need

any reference to the infinite-dimensional asymptotic symmetries. The beauty of the In-

frared Triangle program lies in the fact that one gets an independent confirmation of them

from the “symmetry origin”.

2.4 New Insights from Infrared Triangle

So far we have talked about asymptotic symmetries only in classical theory. One can

ask what are the implications of these symmetries at the level of quantum gravity. More

specifically, can we say anything about the properties of perturbative quantum gravity

S-matrix? Starting with [5], a program was initiated in which certain already known

factorization theorems of quantum gravity S-matrix have been found to be a consequence

of elevating the asymptotic symmetries of the classical theory as a conjectured symmetry

of the S-matrix of the corresponding quantum theory. These factorization theorems are

the Soft graviton theorems discussed in the previous section.

In this section, we first discuss how in d = 4 Leading and Subleading Soft graviton

theorems are related to the asymptotic symmetries. Then, we discuss the early works that

hinted similar relations might hold in higher even dimensions as well.
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2.4.1 Leading Soft Graviton Theorem & Supertranslation Symme-

tries in d = 4

We want to briefly review how the Leading Soft Graviton Theorem (2.5) is related to the

conjectured Supertranslation Symmetry of the quantum gravity S-matrix.

Although, the connection between soft theorem and asymptotic symmetry can be built for

finite energy particles with any mass and spins, let us now restrict to perturbative gravity

coupled to a massless field for simplicity. In this case, it was shown in [5] that the leading

soft theorem (2.5) is a consequence of the conjectured Supertranslation symmetry of the

S matrix.

One can derive the equivalence in two ways, which will be stated below. One can start

from the Soft theorem and then derive a Ward identity of Supertranslation for the S-

matrix. In this way, one obtains a Ward identity of the form

⟨Out| [Qd=4
ST ,S] |in⟩ = 0, (2.7)

where, Qd=4
ST is the quantized version of the Supertranslation charge in d = 4. Now, since

the charge obtained from the Soft theorem matches with the charge obtained from classi-

cal gravity this proves that the Soft theorem (2.5) implies Supertranslation Symmetry.

Another way is to start from the classical symmetry and obtain a conserved charge (Qd=4
ST ).

The charges are parametrized by free function f (z) on S2. Then one can elevate this

classical symmetry to the symmetry of the quantum gravity S-matrix by writing a Ward

identity of Supertransaltion (2.7). Finally, from this one derives the soft theorem (2.5) as

a consequence of the Ward identity (2.7).

A few conceptual points need to be stated here. Apriori there are two independent BMS

algebras: (1) BMS+ acting on I+, labelled by free function f +(z) and (2) BMS− acting

on I−, labelled by free function f −(z). In [12], a diagonal subalgebra BMS0 of BMS+ ×
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BMS− was identified as the symmetry of the gravitational scattering problem. This is

done through the antipodal matching f +(z) = f −(−z).

It is also important to note that while going from the Ward identity (2.7) to the soft the-

orem (2.5) one needs to choose the free function f (z) such that it localizes on the partic-

ular direction on the celestial sphere corresponding to the direction of the soft graviton.

Hence, the Leading Soft Theorem can be thought of as a consequence of Spontaneous

Supertranslation Symmetry Breaking from BMS to Poincare.

Another important conceptual point needs to be mentioned here. In d = 4, to define

the scattering problem certain additional condition called the Christodoulou-Klainerman

(CK) condition [12, 47] was required. This condition dictates how the radiative mode

should behave at the boundaries of I+. It is interesting to see how this condition plays a

role in the equivalence between the Supertranslation Ward identity (2.7) and the Leading

Soft Graviton Theorem (2.5). There are two independent helicity (λ = ±) of the soft

graviton in d = 4. Hence, apriori there are two sets of independent leading soft theorems.

But the CK condition relates the positive helicity leading soft theorem with the negative

helicity leading soft theorem, and hence there is only one set of independent leading soft

theorem. This is consistent with the Ward identities due to the following reasons. While

going from Ward identity (2.7) to soft theorem (2.5), there is only one free function to

choose from, as the charge is parametrized by a scalar free function f (z) on the celestial

sphere. The choice of this function is such that it localizes on a particular direction on the

celestial sphere, which gives the direction of the soft graviton.

It is also worth mentioning here that the Supertranslation symmetry in d = 4 is related to

classical observable effects called gravitational displacement memory [19].
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2.4.2 Subleading Soft Graviton Theorem & Superrotation Symme-

tries in d = 4

As before, for simplicity let us restrict to gravity coupled to a massless field. One wants

to ask like the leading case, whether in the subleading case also there is an asymptotic

symmetry origin of the soft theorem (2.6). In [26], in d = 4, starting from the Subleaing

Soft Theorem a Ward identity of the form

⟨Out| [Qd=4
SR ,S] |in⟩ = 0 (2.8)

was derived, where,Qd=4
SR is the quantized version of the Superrotation charge in d = 4 cor-

responding to EBMS algebra. However, the singular nature of the vector fields restricted

from proving this equivalence the other way around, namely, Ward identity (2.8) to Soft

theorem (2.6). This prompted the authors of [6] to propose a different definition of Su-

perrotation based on Diff(S2) vector field as mentioned in section-2.2. This corresponds

to the proposal of GBMS algebra as the ASA for AFS in d = 4. In the case of Superro-

tations corresponding to GBMS, one can go both ways: from Ward identity (2.8) to Soft

theorem (2.6) and the reverse. A first principle derivation of the charges corresponding to

the Superrorations of this kind was given in [38].

Like the leading case, a few conceptual points need to be stated here. Apriori there are two

independent GBMS algebras: (1) GBMS+ acting on I+, labelled by free functions ( f +(z),

Va
+(z)), and (2) GBMS− acting on I−, labelled by free function ( f −(z), Va

−(z)). Inspired

from [12], a diagonal subalgebra GBMS0 of GBMS+ × GBMS− can be identified as the

symmetry of the gravitational scattering problem. This is done through the following

antipodal matching

f +(z) = f −(−z) Va
+(z) = Va

−(−z). (2.9)
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It is also worth mentioning that while going from the Ward identity (2.8) to the soft theo-

rem (2.6), one needs to choose the free vector field Va(z) such that it localizes on the par-

ticular direction of the soft graviton. Hence, the Subleading Soft Theorem can be thought

of as a consequence of Spontaneous Superrotation Symmetry breaking in the space of

degenerate vacua. This corresponds to spontaneous symmetry breaking from GBMS to

BMS.

Similar to the leading case a conceptual point about the counting of the independent set

of subleading soft theorems needs to be mentioned here. Unlike the leading case, for the

subleading case in d = 4, CK constraint doesn’t relate the negative and positive helicity

soft theorems and hence, they are independent sets of soft theorems. This is consistent

with the Ward identity because of the following reason. The superrotation charges are

parametrized by the two-dimensional vector fields Va(z) on the celestial sphere. Hence,

while going from Ward identity (2.8) to soft theorem (2.6), one has to choose two free

functions on the celestial sphere corresponding to two components of the vector field

Va(z). The Choice of these two functions is such that they localize on the particular direc-

tions on the celestial sphere corresponding to the directions of the two different helicity

soft gravitons.

It is also worth mentioning here that the Superrotation symmetry in d = 4 is related to

classical observable effects called the gravitational Spin memory [22].

2.4.3 Ward Identities from Soft Theorems in Higher Even Dimen-

sions

In d = 4, the Leading Soft Graviton Theorem follows from the supertranslation symmetry

of the S-matrix [5]. Since the leading soft graviton theorem (2.5) holds in all dimensions,

a natural question is whether supertranslations also exist in all dimensions. Contrary to

the classical result of [7], in [8], based on the factorization properties of the perturbative
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quantum gravity S-matrix, it was argued that the Supertranslation (and correspondingly

BMS) holds even in higher even (d = 2m+2) dimension and a Supertranslation compatible

fall-offs of the Bondi metric (2.2) were proposed. In [8], in all higher even dimensions

a Ward identity for the S-matrix of the following form was derived starting from the

Leading Soft Graviton Theorem (2.5):

⟨Out| [Qd=2m+2
ST ,S] |in⟩ = 0. (2.10)

From this Ward identity, the Supertranslation charge (Qd=2m+2
ST ) can be read-off in generic

higher even dimension. This charge was shown to generate the Supertranslation using

some proposed commutation relation among the radiative degrees of freedom. However,

since there was no first principle derivation of the charge in classical gravity, this created

an apparent contradiction with the results of classical gravity [7], the resolution of which

will be discussed in the next section.

Inspired from [8], in [48], based on an attempted generalization of Diff(S2) Superrotation

in d = 2m+2 dimensions (in terms of Diff(S2m) vector fields), a Ward identity of Superro-

tation of the following form was derived in linearized gravity starting from the Subleading

Soft Graviton Theorem (2.6):

⟨Out| [Qd=2m+2
SR ,S] |in⟩ = 0. (2.11)

However, any result on the GBMS symmetries in linearized gravity in higher even dimen-

sions must be consistent with the known results of BMS symmetries in d = 6 in non-linear

GR [10]. Since in [48] the authors did not allow for Supertranslation modes, it was not

clear from their analysis whether one can indeed generalize superrotations in higher di-

mensions in terms of Diff(S2m) vector fields and whether one can properly realize BMS

algebra as a subalgebra of this GBMS algebra. This issue was addressed in d = 6 in our

work [11], which will be the focal point of this thesis. In a very recent work [49], the
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authors did a much more rigorous analysis which further improved the understanding of

GBMS in d = 6. But before discussing the Superrotations let us review the resolution of

contradictory results regarding BMS in higher dimensions.

2.5 Revisiting the Asymptotic Symmetries in Higher Even

Dimensions

As already mentioned, regarding the non-trivial ASA in higher even dimensions, there

was a contradiction between the results obtained from classical gravity [7] and from the

factorization property of quantum gravity S-matrix [8]. This apparent contradiction was

resolved in [9]. The author made a derivation of Supertranslation charge in linearized

gravity in higher even dimensions using the Covariant Phase Space Formalism [50]. De-

spite having the fall-off conditions that allow for Supertranslations, the author was able to

get a finite charge by adding certain additional boundary conditions at the boundaries of

the I+ and hence, bypassing the no-go conditions of [7]. Interestingly, these additional

conditions also ensure the correct counting for the number of independent soft theorems.

Hence, it established the existence of Supertranslation in the higher even dimensions on a

stronger footing.

The analysis of [9] was further strengthened in favour of the existence of Supertransla-

tion in higher even dimensions in [10], where the authors did the covariant phase space

analysis in non-linear gravity focussing on d = 6.

In the following, we first summarize lessons from the above results in a more concrete

manner. Then we shall discuss the motivations to extend from BMS to GBMS in d = 6,

which shall serve as the background for Chapter-3.
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2.5.1 Supertranslations in Higher Even Dimensions and Conserved

Charges

In [9], the analysis was done in d = 2m+2 spacetime dimensions in the linearized gravity

coupled to matter. Hence, the author worked with the linearized version of the Bondi

metric (2.2), using which line element can be written as:

ds2 = Mdu2 − 2dudr + gabdzadzb − 2Uadzadu. (2.12)

The large-r fall-off conditions chosen for the undetermined parameters of the metric were:

M = −1 +
∞∑

n=1

M(n)(u, z)
rn , Ua =

∞∑
n=0

U (n)
a (u, z)

rn

gab = r2γab(z) +
∞∑

n=−1

C(n)
ab (u, z)

rn (2.13)

In linear theory, the determinant condition in Bondi-gauge (2.3) ensures that γabC(n)
ab =

0 ∀ n, i.e. all C(n)
ab are traceless. Solving Einstein’s equation one can show that ∂uC

(−1)
ab = 0

and C(m−2)
ab is the free radiative data. Supertranslations are generated by the vector fields:

ξST = f (z)∂u − γ
ab(z)Da f (z)∂b +

1
2m
D2 f (z)∂r + · · · (2.14)

Here, f (z) is any smooth function on the celestial sphere S(d−2), and · · · denotes the sub-

leading (in r) orders of the vector fields. Da denotes the covariant derivative compatible

with the metric γab. The action of Supertranslation preserves the fall-off condition (2.13).

This means Supertranslation qualifies as a valid candidate for asymptotic symmetry pro-

vided one gets a finite non-zero Noether charge corresponding to it.

Supertranslation does a shift of the C(−1)
ab as :

δSTC(−1)
ab =

(
− 2DaDb f

)TF
. (2.15)
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Here, the notation
(
− 2DaDb f

)TF
denote the trace-free part of

(
− 2DaDb f

)
, where the

trace has been taken w.r.t. the metric γab. In the linearized theory, δSTC(n)
ab = 0 ∀ n ≥ 0

(including the radiative order m − 2). However, later we shall see that this isn’t true for

non-linear gravity and supertranslation indeed do affect the radiative order as well.

In [9], the Noether charge was calculated for general even dimension d = 2m + 2 using

the covariant-phase space techniques (for review see [50]), . Since the analysis was done

in the linearized gravity the hard 2 charge QHard,Lin
ST =

∫
I+

f (z)TMatter(2m)
uu doesn’t contain

any contribution from the gravitational free data and depends on the matter only. Here,

T
Matter(2m)
uu stands for the term at the r−2m order in the large-r expansion of uu component

of the matter stress-energy tensor.

The soft charge contained finite as well as the divergent term. The divergence could be

cured by putting certain additional 2m − 2 conditions on the behaviour of C(n)
ab s at the

boundaries of the I+. These conditions are [9]:

DaDbC(n)
ab = un+1

[ n∏
j=0

D j,m

]
DaDbC(−1)

ab ∀ 0 ≤ n ≤ m − 3

DaDbC(m−2)
ab

∣∣∣∣∣∣
u=±∞,z

∼ O(|u|−m+1−ϵ) ϵ > 0

DaDbC(m+n−2)
ab

∣∣∣∣∣∣
u=±∞,z

∼ O(|u|−m+1+n−ϵ) ∀ 1 ≤ n ≤ m − 2, ϵ > 0,

(2.16)

where,

D j,m =
j(2m − j − 3)

2( j + 2)(−2m + j + 1)(−m + j + 2)

[
D2 − ( j + 1)(2m − j − 2)

]
. (2.17)

In [9], an aposteriori motivation for putting these conditions was given. It is important to

note that, in the d dimension, there are d(d − 3)/2 leading soft theorems corresponding

2similar to the d = 4 case, the nomenclature soft and hard is used to denote the part of the charge linear
in the gravitational free data and quadratic in the gravity/matter free data respectively.
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to the number of polarisations of the graviton. However, all of them are not independent.

Supertranslation charges are parametrized by one free function f (z) on the celestial sphere

and correspondingly the Ward identity of the form (2.10) has one free function. Using

arguments similar to the d = 4 case (see section-2.4.1), it can be concluded that this

means, there is only one independent soft theorem. This implies one needs d(d − 3)/2− 1

extra conditions. In d = 4, the Christodoulou-Klainerman (CK) conditions [12, 47] gave

the correct counting for the number of independent soft theorems. Hence, in analogy with

d = 4, these conditions are called the Generalised CK conditions in higher dimensions.

Among these d(d−3)/2−1 generalized CK conditions. (d−4) = (2m−2) conditions are the

conditions (2.16) necessary for the finiteness of charge [9]. The remaining (d−2)(d−3)/2

other conditionsDaU (0)
b = DbU (0)

a are obtained from the vanishing of magnetic part of the

Weyl tensor at O(r−1) [8]. Here, U (0)
a is the O(1) term in the large-r expansion of Ua, as

defined in (2.13).

The finite part of the soft charge obtained in [9] matches with [8], where it was derived

from the soft theorems. This finite Soft charge is given by:

Q
Soft,Lin
ST

=
1

8πGN

1
(2m − 1)

2−m

Γ(m)

∫
I+

f (z)
2m−1∏
l=m+1

[
D2 − (2m − l)(l − 1)

]
I(m−2)

(
DaDbC(m−2)

ab

)
, (2.18)

where the operator I(n) stands for n-th antiderivative of the argument with respect to u i.e.

I(n) = [
∫

u
]n. Note that,

∫
I+
=

∫
d2mz
√
γ
∫

u
and the

∫
u

I(m−2)
(
DaDbC(m−2)

ab

)
gives the zero

mode.

Total supertranslation charge in linearized gravity in any general higher even dimension

d = 2m + 2 is thus given by:

QLin
ST =Q

Soft,Lin
ST + QHard,Lin

ST

=
1

8πGN

1
(2m − 1)

2−m

Γ(m)

∫
I+

f (z)
2m−1∏
l=m+1

[
D2 − (2m − l)(l − 1)

]
I(m−2)

(
DaDbC(m−2)

ab

)
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+
1

8πGN

∫
I+

f (z)TMatter(2m)
uu . (2.19)

In d = 4, the supertranslation charge obtained from the covariant phase space analysis

matches with the “electric charge" obtained from the Weyl tensor [38]. In [9], it was

shown that the same is true for higher even dimensions as well, since the charge (2.19) is

the same as the “electric charge" (QElec[ξST]) obtained from the Weyl tensor:

QLin
ST = Q

Elec[ξST] ≡ −
1

8πGN

1
2m − 1

lim
t→∞

∫
Σt

∂µ
[
r
√

gCµt
λrξ

λ
ST

]
, (2.20)

where, ξST is the supertranslation vector field and Cµνρσ is the Weyl tensor.

So far, we have talked about the generic higher even dimensions. Let us now focus on the

results of [9] in d = 6 in particular, as we will discuss this case in detail for non-linear

gravity. For notational ease, in d = 6, we shall denote C(0)
ab as Dab and C(−1)

ab as Cab. Here,

Dab(u, z) is the dynamical mode, and Cab(z) is the pure supertranslation mode. Higher

C(n)
ab ’s will not be important for discussion in d = 6 as they don’t contribute at I+. The

supertranslation soft charge in d = 6 has a finite and a divergent piece. The divergence is

cured by imposing the following u fall-off of the dynamical mode at the boundary of the

I+:

DaDbDab(u = −∞, z) = DaDbDab(u = +∞, z) = O(|u|−1−ϵ), ϵ > 0. (2.21)

Finally, soft supertranslation charge is given by:

Q
Soft,Lin
ST =

1
96πGN

∫
I+

f (z)(D2 − 2)DaDbDab =
1

96πGN

∫
S4

f (z)(D2 − 2)DaDbN
(0)
ab ,

(2.22)

where N (0)
ab =

∫
u

Dab is the leading soft mode.
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Hard supertranslation charge is given by:

Q
Hard,Lin
ST =

1
8πGN

∫
I+

f (z)TMatter(4)
uu . (2.23)

Finally, one can write the total supertranslation charge in linearized gravity in d = 6 as [9]:

QLin
ST =Q

Soft,Lin
ST + QHard,Lin

ST

=
1

96πGN

∫
I+

f (z)(D2 − 2)DaDbDab +
1

8πGN

∫
I+

f (z)TMatter(4)
uu

=
1

96πGN

∫
S4

f (z)(D2 − 2)DaDbN
(0)
ab +

1
8πGN

∫
I+

f (z)TMatter(4)
uu (2.24)

So far, we have talked about asymptotically flat spacetime in linearized gravity. In [10],

the work of [9] was extended to non-linear gravity focusing on d = 6. One starts with the

general metric (2.2) satisfying the Bondi gauge (2.3) and imposes the following fall-off

condition:

M = −1 +
∞∑

n=1

M(n)(u, z)
rn , β =

∞∑
n=2

β(n)(u, z)
rn , Ua =

∞∑
n=0

U (n)
a (u, z)

rn

gab = r2γab(z) + rCab(u, z) + Dab(u, z) +
∞∑

n=1

g(n)
ab (u, z)

rn (2.25)

Consider the r expansion of the angular part of the metric in d = 6 as in (2.25). From

the equation of motion, it can be shown that ∂uCab(u, z) = 0, and given γab(z), Cab(z) and

Dab(u, z) at I+ the metric can be solved at all r-orders in the bulk. Dab corresponds to the

radiative mode.3 The above r fall-off (2.25) is preserved by the BMS vector fields, where

BMS = ST ⋊ Lorentz. The components of Supertranslation (ST) vector fields at all order

in r can be written as:

ξu
ST = f (z)

3In [10], the authors worked on decompactified sphere, i.e. S4 → R4, and so γab → δab. However, upon
covariantization of the results obtained at the end, one can recover the S4 results.
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ξa
ST = −∂b f

∫ ∞

r
e2βgabdr

′

ξr
ST =

r
4
[
Ua∂a f − ∂aξ

a]. (2.26)

The action of supertranslation on Cab and Dab can be written as:

δSTCab = −2
[
∂a∂b f −

1
4
δab∂

2 f
]

δSTDab = f∂uDab +
1
4
δab

[
−

4
3
∂cCcd∂d f −Ccd∂c∂d f

]
+

1
4

Cab∂
2 f − ∂cCab∂

c f

−
1
2

[
Cbc∂a∂

c f +Cac∂b∂
c f

]
+

1
2

[
∂aCbc∂

c f + ∂bCac∂
c f

]
+

1
6

[
∂cCbc∂a f + ∂cCac∂b f

]
.

(2.27)

It is important to note that, from the saddle-point analysis and the finiteness of the sym-

plectic structure one expects that the radiative degrees of freedom should scale as |u|−(2+ϵ)

(ϵ > 0) at the boundaries of I+. However, as is evident from (2.27), supertranslation

action violates this fall-off.

The News tensor associated with the radiative degrees of freedom is given by Nab = ∂uDab.

Since Cab is independent of u, redefinition Dab → Dab + χab, (where χab is any function

constructed purely from Cab) doesn’t change the physical news tensor.

So, one asks whether there exists a redefinition of the radiative degrees of freedom such

that: (1) the redefined field gives same news tensor, (2) u fall-off of this is preserved by

supertranslation. It was identified in [10], the correct variable for the radiative degrees

of freedom in classical theory and hence, correspondingly, the correct graviton mode in

the quantized theory that satisfies the above criteria is not Dab, but a non-linear field

redefinition given by:

D̃ST
ab (u, z) = Dab(u, z) −

1
4
δcdCac(z)Cbd(z) −

1
16
δabCcd(z)Ccd(z). (2.28)
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Equipped with this redefinition one finds that:

δSTD̃ST
ab (u, z) = f (z)∂uD̃ST

ab (u, z). (2.29)

Using this redefinition one finds a finite supertranslation charge in d = 6 for non-linear

gravity. The charges can be split into soft and hard parts. Note that the soft and hard parts

now depend linearly and quadratically on D̃ab respectively.

The hard supertranslation charge is given by:

QHard
ST =

1
8πGN

∫
I+

f (z)T (4)
uu (u, z)

=
1

8πGN

∫
I+

f (z)
[
TMatter(4)

uu (u, z) +
1
4

Nab(u, z)Nab(u, z)
]
, (2.30)

where Nab = ∂uD̃ST
ab is the News tensor in d = 6. Soft Supertranslation Charge is given by:

QSoft
ST =

1
96πGN

∫
I+

f (z)∂2∂abD̃ST
ab (u, z) =

1
96πGN

∫
R4

f (z)∂2∂abN
(0)
ab (z), (2.31)

where N (0)
ab is the leading soft mode given by:

N
(0)
ab (z) =

∫
u

D̃ST
ab (u, z). (2.32)

Hence, we have the following total supertranslation charge:

QST

= QHard
ST + Q

Soft
ST

=
1

8πGN

∫
I+

f (z)T (4)
uu (u, z) +

1
96πGN

∫
R4

f (z)∂2∂abN
(0)
ab (z)

=
1

8πGN

∫
I+

f (z)
[
TMatter(4)

uu (u, z) +
1
4

Nab(u, z)Nab(u, z)
]
+

1
96πGN

∫
I+

f (z)∂2∂abD̃ST
ab (u, z).

(2.33)

It is important to note how from this charge (2.33) one can obtain the linearized gravity
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charge (2.24) in d = 6. In the case of linearized gravity, the contribution to the stress-

energy tensor from the gravitational news is absent. So replacing D̃ST
ab → Dab in (2.33)

and decompactifying the S4 → R4 in (2.24), both the charges match.

In [10], the authors worked in non-linear gravity and derived the charge (2.33). Using this

charge the connection with the leading single soft graviton theorem can be established in

the generic Cab , 0 case through a Ward identity of the following form:

⟨out| [QST,S] |in⟩ = 0⇔ ⟨out| [QSoft
ST ,S] |in⟩ = − ⟨Out| [QHard

ST ,S] |in⟩ . (2.34)

As we discussed previously, the correct graviton mode in this case is not Dab but D̃ST
ab

[10]. It is important to note that, Cab can be obtained from a scalar potential ψ, and

supertranslated vacua are labeled by this scalar potential.

2.5.2 Motivations to Revisit Superrotations in Higher Even Dimen-

sions

So far we have discussed the Supertranslation symmetries in higher even dimensions,

which generalize the Supertranslations in d = 4. As already mentioned before, in d = 4,

there are further infinite dimensional asymptotic symmetries called Superrotations. These

symmetries, when elevated as the symmetries of the Quantum Gravity S-matrix in d = 4,

reproduce the Subleading Soft Graviton Theorems. One might ask if a similar result

holds in higher dimensions as well. This requires a generalization of Superrotations to the

higher even dimensions. In the works mentioned in Section-2.5.1, earlier no-go conditions

disallowing any non-trivial asymptotic symmetry were bypassed and strong evidence for

the existence of a fall-off conditions that allow for Supertranslations (and correspondingly

BMS) was established. In d = 4, by weakening the fall-off conditions that give the asymp-

totic symmetry algebra to be the BMS, one gets the infinite dimensional extensions of the

Lorentz subalgebra of the Poincare algebra, which is called Superrotation. It is natural to

49



ask whether a similar thing can be done in higher dimensions as well and whether a finite

conserved charge can be obtained.

To start with, among the two extensions of the BMS algebra in d = 4 mentioned in section-

2.2, a natural generalization of the EBMS to get Superrotations in higher dimensions is

not possible. This is due to the fact that in d > 4 corresponding d − 2 dimensional local

conformal algebra is finite-dimensional. So, one asks if the GBMS algebra of d = 4

mentioned in section-2.2 (where Lorentz algebra is extended in terms of smooth vector

fields on the celestial sphere) can be generalized to higher dimensions. Henceforth, by

Superrotations we shall mean the infinite-dimensional extension of Lorentz algebra in

terms of smooth vector fields on the celestial sphere.

Superrotations in higher dimensions have been explored in several earlier works, and our

analysis builds upon these results. In [48, 51, 52], the authors studied superrotations in

linearized gravity, and the analysis in [53] focussed on understanding the set of boundary

conditions that admit an action of superrotations. Analysis of [10] showed that the radia-

tive degrees of freedom require a non-linear field redefinition (2.28) by terms quadratic

in Cab. It was not clear whether allowing for Superrotations would require any change in

this redefinition. Since Cab = 0 is not a supertranslation invariant condition, it can’t be put

consistently zero once both Supertranslations and Superrotations are allowed. Since the

analysis in [48] was done in linearized gravity, the charges obtained there didn’t take into

account the effect of Cab , 0 case and it wasn’t apriori clear how the charges obtained

therein will change once this is taken into account. In this thesis, we shall attempt to

answer these puzzles.

In the following chapter, we show that the GBMS admits a natural generalization to six

dimensions in which the Poincaré algebra is enhanced to an infinite dimensional algebra

composed of supertranslations and diffeomorphisms on the celestial plane R4 4 (superro-

tations). We start with the fall-off conditions of Asymptotically Flat Spacetimes that are

4Similar to [10], we shall work on the decompactified version of the celestial sphere S4.
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compatible with these symmetries.
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Chapter 3

Generalised BMS Symmetries in Six

Dimensions

3.1 Asymptotically Flat Spacetime in d = 6

In this section, we review asymptotically flat spacetimes in spacetime dimension d = 6.

We shall analyse the corresponding asymptotic symmetries at null infinity in d = 6 in a

modified version of the Bondi gauge [3, 4], which shall be described below.

Line element for the above class of spacetimes can be written as follows:

ds2 = gµνdxµdxν = Me2βdu2 − 2e2βdudr + gab(dza − Uadu)(dzb − Ubdu) , (3.1)

where u = t − r is the retarded time, r is the radial distance and za coordinatizes the

celestial plane1 R4. Note that the index of Ua is lowered and raised using the metric gab.

The parameters M, β,Ua and gab in (3.1) are functions of the (u, r, za) coordinates and they

1This is equivalent to the decompactified celestial sphere. The coordinate transformation from the Bondi
coordinates to these can be found in [54]. All formulas written in this chapter trivially generalize to the
celestial sphere.
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have the following large-r expansions near I+ [8],

M =
∞∑

n=0

M(n)(u, z)
rn , β =

∞∑
n=2

β(n)(u, z)
rn , Ua =

∞∑
n=0

U (n)
a (u, z)

rn ,

gab = r2qab(z) +
∞∑

n=−1

g(n)
ab (u, z)

rn ≡ r2qab(z) + rCab(u, z) + Dab(u, z) +
Eab(u, z)

r
+

Fab(u, z)
r2 + · · ·

(3.2)

We consider the space of asymptotically flat geometries where the metric on the celestial

plane, qab, is chosen to be independent of u. The interested readers can refer to [53] for

generalizations to u-dependent qab. The indices of the components U (n)
a , g(n)

ab are lowered

and raised using qab. The form of the metric (3.1) ensures that grr = gra = 0. There is

an additional gauge fixing condition, often referred to as the Bondi determinant condition

which is given as

det
(gab

r2

)
= det(qab) = det(δab) , (3.3)

where δab is the metric on R4. We would like to point out a key difference between the

leading order angular metric chosen in this work (denoted by qab) with those chosen in

earlier literature [8–10]. In previous works [8–10], this metric was either fixed to be the

unit sphere metric S4 (γab) or the metric on the plane R4 (δab), and further analysis of

asymptotic symmetries was pursued with this choice. This led to the proposal for the

asymptotic symmetry group as the BMS group in six spacetime dimensions, which is the

semi-direct product of supertranslations and the Lorentz group S O(5, 1).

As will be shown, just as in spacetime dimensions d = 4, relaxing the metric on the

celestial plane to an arbitrary smooth metric (with the determinant condition (3.3)) leads

to an extension of the BMS algebra in six dimensions, that we refer to as the generalized

BMS algebra. In four spacetime dimensions, the choice qab = δab is referred to as the

Bondi frame. However, in six and higher dimensions, the Bondi frame can be understood

54



as the choice for qab which satisfies the four dimensional Einstein’s equation (with or

without a cosmological constant)2. A metric qab in the non-Bondi frame does not satisfy

the four-dimensional Einstein’s equation. However, in spacetime dimensions d = 4, a

similar definition does not apply to the corresponding two-dimensional angular metric qab

on the celestial plane/sphere. For our purposes, the Bondi frame in six dimensions shall

be always referred to as qab = δab.

Using the determinant condition (3.3), it can be shown that the traces of g(n)
ab are fixed in

terms of g(n−1)
ab . For example,

Ca
a = 0,

Da
a =

1
2

CabCab,

Ea
a = CabDab −

1
3

CamCmnCn
a,

Fa
a = CabEab +

1
2

DabDab −CamCmnDn
a +

1
4

CamCmnCnbCba . (3.4)

Having expressed the general form of an asymptotically flat spacetime, we can now solve

the Einstein equations for the above family of metrics. This also requires us to impose the

following fall-off conditions on the Ricci tensor, which are motivated by demanding the

finiteness of energy flux and other physical observables [8],

Ruu = O(r−4), Rur = O(r−5), Rua = O(r−4),

Rrr = O(r−6), Rra = O(r−5), Rab = O(r−4) . (3.5)

Using the equations above, we find that all metric components in (3.2) can be expressed

in terms of qab,Cab and Dab. For example, it can be shown that,

M(0) = −
R̄

12
, U (0)

a = −
1
6
DbCb

a , (3.6)

2For example, the cosmological constant is needed when qab = γab (the metric of the unit sphere) but is
not needed when qab = δab (the metric of the unit plane).
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β(2) = −
1
64

CabCab, β(3) =
1

48

(
CabCbmCm

a − 2CabDab

)
, (3.7)

where R̄ is the Ricci scalar for the leading order angular metric qab andDa denotes the co-

variant derivative w.r.t qab. The Einstein’s equations also imposes the following condition

on Cab(u, z),

∂uCab(u, z) = −R̄TF
ab ≡ −R̄ab +

1
4

qabR̄ , (3.8)

where R̄ab is the Ricci tensor w.r.t qab. This implies that the general solution for Cab can

be written as

Cab(u, z) = C̄ab(z) + uTab(z) , (3.9)

where

Tab = −R̄
TF
ab . (3.10)

We conclude this section with a few remarks.

• Dab(u, z) is the unconstrained dynamical data in six dimensions, i.e, it is not deter-

mined by the equations of motion.

• In the Bondi frame, Tab = 0.

• In d = 4, the physical News tensor (which encodes gravitational radiation) is deter-

mined by subtracting the Schouten Tensor at I+ from the Geroch Tensor, Φab. Φab

is determined by the requirement that in any frame at I+, the News is gauge invari-

ant under the unphysical Weyl rescaling at I+. There is a well-defined relationship

between Φab and the tensor Tab in the spacetime dimension d = 4 [55]. However, in

spacetime dimension d = 6, the analogous relationship between Tab and Φab is not

clear and is beyond the scope of this work. For an earlier discussion of this issue,
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we refer the reader to [53].

3.2 Generalized BMS in six dimensions

In this section, we revisit the asymptotic symmetries at null infinity in six dimensions. The

asymptotic symmetry associated to the class of metrics described in the previous section

are a set of transformations that preserve the form of the metric at I+ (3.1) and also

satisfies the determinant condition (3.3). Generators of such transformations are vector

fields which are divergence free at I+ (3.17).

3.2.1 Generators of supertranslations and superrotation

Consider a smooth vector field ξ of the following form

ξ = ξu(u, r, z)∂u + ξ
r(u, r, z)∂r + ξ

a(u, r, z)∂a . (3.11)

Gauge fixing conditions (3.1) together with (3.3) imply that the vector fields have to sat-

isfy

Lξgrr = 0, Lξgra = 0, gabLξ det gab = 0 . (3.12)

The above conditions fixes the form of the vector fields to be

ξu(u, r, z) = W(u, z) , (3.13)

ξa(u, r, z) = Va(z) −DbW(u, z)
∫ ∞

r
e2β(r′)gab(r′)dr′ , (3.14)

ξr(u, r, z) = −
r
4
[
Daξ

a(u, r, z) − UaDaW(u, z)
]
, (3.15)
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where W(u, z) is an arbitrary function on the celestial plane, and Va(z) is any smooth

vector field on the celestial plane. The vector field ξ can be determined by the fall off

conditions given in (3.2) along with the divergence free condition, which are stated as,

Lξguu = O(1), Lξgur = O(r−1), Lξgab = O(r2) , (3.16)

lim
r→∞
∇µξ

µ = 0 . (3.17)

Here ∇µ denotes the covariant derivative compatible with the metric gµν given in (3.1).

Using the above conditions one can fix W(u, z) as:

W(u, z) = f (z) + uα(z) , (3.18)

where f (z) is an arbitrary smooth function on the celestial plane, and α = 1
4DaVa. Thus, it

is evident that the vector field ξ is parameterized by f (z) and Va(z). The vector fields char-

acterised by f (z) (by setting Va(z) = 0) are called the supertranslation vector fields, while

the vector fields characterised by Va(z) (by setting f (z) = 0) are called the superrotation

vector fields. Therefore, one can write the supertranslation vector field ξ f as [10]:

ξu
f (u, r, z) = f (z) , (3.19)

ξa
f (u, r, z) = −Db f (z)

∫ ∞

r
e2β(u,r′,z)gab(u, r′, z)dr′ , (3.20)

ξr
f (u, r, z) = −

r
4
[
Daξ

a
f (u, r, z) − Ua(u, r, z)Da f (z)

]
. (3.21)

Also, one can write the superrotation vector field ξV as:

ξu
V(u, r, z) = uα(z) , (3.22)

ξa
V(u, r, z) = Va(z) − uDbα(z)

∫ ∞

r
e2β(u,r′,z)gab(u, r′, z)dr′ , (3.23)

ξr
V(u, r, z) = −

r
4
[
Daξ

a
V(u, r, z) − uUa(u, r, z)Daα(z)

]
. (3.24)
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Hence, the GBMS algebra is defined as the asymptotic symmetry algebra generated by

the supertranslation vector field (ξ f ) and the superrotation vector field (ξV). Our primary

focus will be on superrotations.

3.2.2 Spacetime action on radiative phase space

Using (3.11), we can derive the action of supertranslations and superrotations on the vari-

ables parameterizing the phase space. We note that the background metric qab remains

invariant under supertranslations but transforms under the action of superrotations3,

δ̂ f qab = 0 ,

δ̂Vqab = −2αqab +LVqab = −2αqab + 2qc(aDb)Vc , (3.25)

where we have made use of the symmetrization convention X(aYb) =
1
2 (XaYb+XbYa). Using

(3.25), it is easy to see that under the action of superrotation, a Bondi frame (Tab = 0)

generically transforms to a non-Bondi frame (Tab , 0). Upon using a stronger fall off

condition, δ̂Vgab = O(r), we get a constraint on Va, which takes the form of a conformal

Killing vector (CKV) equation,

DaVb +DbVa −
qab

2
DcVc = 0 . (3.26)

The solutions to the CKV equation above are the generators of Lorentz transformations

which are finite dimensional. Hence by imposing less restrictive fall offs, we allow an

infinite dimensional extension of the Lorentz group in six dimensions4.

Let us discuss the action of GBMS transformations on the radiative phase space, i.e,

3We use the notation δ̂ f and δ̂V to denote the variations computed by setting Va = 0 and f = 0 in δ̂ξ
respectively in any general frame.

4This is similar to the four dimensional case. In four spacetime dimensions there are two extensions
possible, which is the extended BMS [25] and generalized BMS [38,56]. Extended BMS group is generated
by Va’s which are local CKV’s in two dimensions. In six dimensions, this extension is not possible as the
solution to the CKV is finite dimensional.
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Cab(u, z) = C̄ab(z) + uTab(z) and Dab(u, z). These can be derived by studying the variation

δ̂ξgab and expanding it in powers of r. The action of supertranslations gives,

δ̂ f C̄ab =
1
2
D2 f qab − 2DaDb f + f Tab,

δ̂ f Tab = 0,

δ̂ f Dab = f∂uDab +
1
4
D2 fCab − U (0)

(a Db) f +
1
2

qabU (0)cDc f −
1
4

qabDc(CcdDd f )

−
1
2

Cc(aDb)D
c f −Dc fDcCab +

1
2
Dc fD(aCb)c . (3.27)

These equations generalize the action of supertranslations on the phase space variables in

a non-Bondi frame. Upon setting Tab = 0 (Bondi frame) we recover the results in [10].

One can see that, Tab is invariant under supertranslations as δ̂ f qab = 0 (see (3.10) and

(3.25)). Similarly, the action of superrotations on the radiative phase space can be derived

to be:

δ̂VC̄ab = LVC̄ab − αC̄ab ,

δ̂VTab = LVTab − 2
(
DaDbα

)TF
,

δ̂V Dab = uα∂uDab +LV Dab

+ u
{

1
4
D2αCab − U (0)

(a Db)α +
1
2

qc(aDb)
(
CcdDdα

)
−Cc(aDb)D

cα

−DcαDcCab +
1
2

qabU (0)cDcα −
1
4

qabDc(CcdDdα)
}
. (3.28)

The second equation above can be independently derived by evaluating the variation

δ̂VR̄ab. Note that the variation of Dab in the equations above are expressed in terms of

Cab = C̄ab + uTab for ease of notation. In the rest of this section and the chapter-4), we

analyze the action of GBMS symmetries on the sector of the radiative phase space where

Tab = 0. It is important to note that, even though this sector is preserved under the action

of infinitesimal supertranslations, under infinitesimal superrotations any configuration in

the Tab = 0 sector is generically mapped to a configuration where Tab , 0. A general
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analysis of GBMS symmetries on the full radiative phase space at I+ is beyond the scope

of this thesis.

The variations (3.28) take a simpler form in the Bondi frame, where we have to set Tab =

05,

δVC̄ab = LVC̄ab − αC̄ab ,

δVTab = −2
(
∂a∂bα

)TF
,

δV Dab = uα∂uDab +LV Dab

+ u
{

1
4
∂2αC̄ab − U (0)

(a ∂b)α +
1
2

qc(a∂b)
(
C̄cd∂dα

)
− C̄c(a∂b)∂

cα

− ∂cα∂cC̄ab +
1
2

qabU (0)c∂cα −
1
4

qab∂
c(C̄cd∂

dα)
}
. (3.29)

From (3.29), it is clear that the dynamical data Dab in the Bondi frame grows as O(|u|1) as

we take |u| → ∞. It is important to note that the expected fall off from the saddle point

analysis and computation of the symplectic form [10] where one gets

lim
|u|→∞

Graviton ∼ O
(

1
|u|2+0+

)
. (3.30)

Therefore, Dab by itself can not represent the graviton mode (in a frame where C̄ab , 0)

since this is in contradiction with the above expected large u fall-off. In [10], it was already

noticed that for the case of supertranslations in the Bondi frame, the supertranslation

compatible graviton mode for C̄ab , 0 is a redefinition of Dab, given by:

Dab → D̃S T
ab = Dab −

1
4

C̄m
a C̄bm −

1
16
δabC̄mnC̄mn . (3.31)

5We would like to draw attention to the notational differences between δ and δ̂. The latter refers to a
variation in any general frame, whereas the former is a variation specifically evaluated in the Bondi frame
(Tab = 0).
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Using the following form for C̄ab in the Bondi frame,

C̄ab = −2
(
∂a∂bψ

)TF
, (3.32)

which follows from the vanishing of the Weyl tensor Curab(u = ±∞, z) at O(r−1) [8,9], the

action of supertranslation on D̃S T
ab can be written as:

δ f D̃S T
ab = f∂uD̃S T

ab . (3.33)

It is interesting to note that, a similar redefinition but with δab → qab and C̄ab → C̄ab+uTab

ensures that for linear deviations from the Bondi frame, we get the expected u fall-offs for

superrotated fields, i.e, we find:

δ f D̃ab = f∂uD̃ab ,

δV D̃ab = LV D̃ab + uα∂uD̃ab , (3.34)

where

D̃ab = Dab −
1
4

qmnC̄amC̄bn −
1

16
qabC̄mnC̄mn

− u
[1
4

qmn(C̄amTbn + TamC̄bn) +
1
8

qabTmnC̄mn
]
+ O(T 2) , (3.35)

with the fall off condition

lim
u→∞

D̃ab = O
( 1
u2+0+

)
. (3.36)

By using the redefined field (3.35) the News tensor ∂uD̃ab = ∂uDab is unchanged in the

Bondi frame as Tab = 0. One might be worried that even though we are finally working in

the Bondi frame, it is necessary to include Tab in the definition above (3.35). The explana-

tion for this is as follows. From (3.28) it is clear that Tab transforms non-homogeneously,
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i.e, even if one starts in the Bondi frame (Tab = 0), under superrotations Tab transforms to

−2
(
DaDbα

)TF. The terms which are linear in the redefinition above will ensure that the

non-homogeneous terms generated from the variation of Dab get appropriately cancelled

with the non-homogeneous terms generated by the variation of Tab, which is essential in

order to respect the fall off condition. In order to derive the generic form for D̃ab with

appropriate fall off conditions in a general non-Bondi frame, we need to take care of the

O(T 2) terms in (3.35) which is beyond the scope of this thesis.

Equations (3.34), (3.35) are among the central results of this chapter as they display the

correct phase space variables to use in the Bondi frame in the presence of both supertrans-

lations and superrotations.

3.2.3 Generalized BMS at I− ∪ I+

The GBMS symmetry algebra at I+ (denoted by G+) is defined as the symmetry alge-

bra generated by supertranslations and superrotations on the radiative phase space at I+.

Similarly, one can independently define the asymptotic symmetry algebra at I− (denoted

by G−). In order to define a gravitational scattering problem that takes the incoming scat-

tering data at I− to outgoing scattering data at I+, one must define a common asymptotic

symmetry algebra at I− ∪ I+. Motivated from [6, 38], where the analysis was performed

in four dimensions, it is natural to propose that in six dimensions, the diagonal subalgebra

of GBMS is the symmetry algebra of the quantum gravity S-matrix. The diagonal sub-

algebra is identified using the antipodal matching conditions on the null generators of G+

and G− which are given as

f+(z) = f−(−z) ,

Va
+(z) = Va

−(−z) . (3.37)
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Here,
(
f+,Va

+

)
,
(
f−,Va

−

)
denote the parameterizations used for supertranslations and super-

rotations at I+ and I− respectively.
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Chapter 4

Superrotation Charge in Bondi Frame

In this chapter, we discuss about the superrotation charge in the Bondi frame that gener-

ates the right spacetime action on the radiative phase space. Similar to d = 4 case, the

superrotation charge consists of two independent terms which we refer to as the soft and

the hard charge respectively1. We remind the readers that the metric at the leading order

in large−r in the Bondi frame is

ds2 = −2dudr + r2δabdzadzb . (4.1)

With this choice, we shall proceed onto computing the charges corresponding to the

asymptotic symmetries2 discussed in section-3.2. Computing the charges using the Noether

procedure requires a thorough understanding of the symplectic structure in a non-Bondi

frame, which is outside the purview of this thesis. However, the same can be used to

compute the hard charge even in this case, but obtaining the total superrotation charge

is difficult. Therefore, we shall adopt an alternative route to obtain the charge where we

exploit the connection between the soft theorem and the Ward identities (corresponding

1The nomenclature is motivated by analysis of these charges in four dimensions where the soft superro-
tation charge is the so-called spin memory [22].

2Even though we are working with the metric on the decompactified sphere, none of the physical out-
comes will change by considering the metric on the unit sphere.
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to the charges).

The charges we obtain by this method can be generalized to gravity coupled to any spin

field. Specifically, we shall consider the special case of the gravity coupled to scalars

and explicitly demonstrate the equivalence of the Ward identity and the subleading soft

theorem in this example. Our work is based on a similar approach by the authors of

[48]. We notice certain subtleties associated with their analysis which are delineated and

improved upon in the upcoming sections.

4.1 Superrotation Soft Charge

Taking inspiration from the structure of the soft superrotation charge in d = 4, we write

down the general tensor structure that is covariant and also generates the correct transfor-

mation of the radiative data (the necessary Poisson brackets can be read from the sym-

plectic structure given in [10]). Keeping this conditions in mind we propose the Soft

Superrotation charge as follows:

QSoft
SR =

64π2

128πGN

∫
I+

uVb(x)DaD̃ab +
1

96πGN

∫
I+

(LVC̄ab − αC̄ab)∂a∂mD̃b
m . (4.2)

Here, the notation
∫
I+
≡

∫ +∞
−∞

du
∫

d4z denote integrals over I+. Explicit expression for

the derivative operator DaD̃ab is given as follows [54]:

DaD̃ab =
1

64π2

[
∂4∂aD̃ab −

4
3
∂b∂

2∂e f D̃e f

]
. (4.3)

in [54], first term in the soft charge (4.2) was derived by relating it to the CFT4 stress

tensor on the boundary and also in [57] with arguments relying on the conformal proper-

ties of such operators. In Chapter-5, we shall demonstrate how this is consistent with the

subleading soft theorem for gravitons coupled to massless scalar particles. Although this

has been derived in a specific frame, C̄ab = 0 (where D̃ab = Dab), based on the knowledge
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from Chapter-3, we know that the correct variable to use in a C̄ab , 0 frame is D̃ab. Thus,

the first term is a generalization of the result in [54] from a special Bondi frame to any

general Bondi frame obtained via Supertranslation action. The second term in (4.2) is

new and this follows by demanding that the superrotation soft charge generates the right

spacetime transformations for C̄ab in the Bondi frame. This requires us to make use of the

following Poisson bracket derived in [8, 10]:

{∫ +∞

−∞

du ∂2∂abD̃ab(u, z), ψ(z′)
}
= 96πGNδ(z, z′) . (4.4)

Note that a derivation of QSoft
SR from a purely asymptotic symmetry perspective requires us

to study the symplectic structure carefully. This has been carried out in four dimensions

[38], and extending to higher dimensions is beyond the scope of this thesis.

Here, let us to point out that the expression for the Superrotation Soft charge in (4.2),

differs from expression of the Superrotation Soft charge given in [48]. For comparing the

two expressions we first set C̄ab = 0 in (4.2), cause the charge in [48] corresponds to this

case. This leaves us with only the first term in (4.2), which after writing the expression

for the derivative operator explicitly takes the following form:

1
128πGN

∫
I+

uVb(z)
[
∂4∂aDab −

4
3
∂b∂

2∂e f De f

]
. (4.5)

After performing an integration by parts, we observe that the second term in (4.5) is

proportional to α, and this matches with the soft charge proposed in [48] upto a propor-

tionality factor. However, as we shall show in Chapter-5, the omission of the first term in

the soft charge leads to inconsistency from the perspective of Cachazo-Strominger Soft

Graviton Theorem3.

3In [48], the commutator of the charge with the radiative data was studied upto a proportionality factor
and hence the extra term might have been missed.
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4.2 Superrotation Hard Charge

In the previous section we proposed a Superrotation Soft Charge. Now, we shall derive

the gravitational superrotation hard charge by two methods. In the first method we make

use of the gravitational stress energy tensor derived in [58] and we shall explain it in this

section. In Appendix-A we show that the same expression for Gravitational Superrotation

Hard charage can also be derived from the symplectic structure defined on the Hard sector

of the radiative phase space.

In terms of the stress energy tensor, the supertranslation [10] and superrotation hard

charge can be written as:

QHard
ST

∣∣∣
C̄=0
=

1
8πGN

∫
I+

fT (4)
uu , (4.6a)

QHard
SR

∣∣∣
C̄=0
=

1
8πGN

∫
I+

uαT (4)
uu + VaT (4)

ua , (4.6b)

Here, T (4)
uu and T (4)

ua are O(r−4) terms in the large r-expansion of the stress-energy tensor.

Their expressions in pure gravity is given by [58]:

T (4)
uu =

1
4

NabNab, (4.7)

T (4)
ua =

1
4

[
Nbc∂aDbc − 2Nbc∂cDab + 2Nca∂bDbc

]
. (4.8)

In the above we have used the notation Q
∣∣∣
C̄=0

to emphasize that the background used for

the above computations is the usual flat metric, without turning on supertranslations.

Making use of (4.7) and (4.8) in (4.6) one can write the Hard charge in pure gravity as

follows:

QHard
ST

∣∣∣
C̄=0
=

1
32πGN

∫
I+

f (z)NabNab, (4.9)

QHard
SR

∣∣∣
C̄=0
=

1
32πGN

∫
I+

Nab
(
LV Dab + uαNab

)
. (4.10)

68



As we demonstrated in Chapter-3, the correct phase space variable to use for the radiative

data in the Bondi frame (with C̄ab , 0) is D̃ab and using the fall off condition (3.36), the

form of the hard charge is unchanged,

QHard
ST =

1
32πGN

∫
I+

f (z)NabNab, (4.11)

QHard
SR =

1
32πGN

∫
I+

Nab
(
LV D̃ab + uαNab

)
. (4.12)

One can also derive the above charge by analyzing the hard sector of the symplectic struc-

ture [59]. The symplectic structure has been derived in [10] by working with δqab = 0,

which is sufficient for the purpose of deriving the hard charge for both supertranslation

and superrotation. In [10], the authors derived the Supertranslation Hard Charge (4.11). In

Appendix-A we explain how one can derive superrotation hard charge can from the sym-

plectic structure. The expression obtained in Appendix-A matches with the expression in

(4.12).

4.3 Total Superrotation Charge

Since, we already have the expression for both Soft Superrotation Charge (4.2) and Hard

Superrotation Charge(4.12), adding them we can write the expression for total Superrota-

tion Charge for pure gravity in Bondi frame as follows:

QSR =
1

32πGN

∫
I+

Nab
(
LV D̃ab + uαNab

)
+

π

2GN

∫
I+

uVb(x)DaD̃ab +
1

96πGN

∫
I+

(LVC̄ab − αC̄ab)∂a∂mD̃b
m . (4.13)

By making use of the symplectic form (A.1), one can shown that the Poisson bracket

between the Hard charge and the radiative data D̃ab(u, z) reproduces the spacetime action

of Superrotation, i.e, δV D̃ab(u, z).
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Chapter 5

Implication to the Quantum Gravity

S-matrix

In six (in general in any d ≥ 5) spacetime dimensions, both the Weinberg’s [2] and

Cachazo-Strominger’s [1] soft graviton theorems are exact constraints on the quantum

gravity S-matrix [27]. In four spacetime dimensions, any statement on the S-matrix has

to be understood with care as the DysonS-matrix is infrared divergent. However in higher

(d ≥ 5) dimensions, soft theorems are precise factorisation statements about the S-matrix

which is infrared finite. This makes a relationship of the asymptotic symmetries with the

soft theorems rather a robust statement on the symmetries of the S-matrix even when loop

effects are taken into account. In this chapter, we shall argue that, in d = 6 for the case

when the external states consists of only massless scalars the Cachazo-Strominger Soft

Graviton Theorem imply the Ward identity for Diff(R4) Superrotation Symmetries. The

similar analysis with finite energy external gravitons (or any other non-zero spin) requires

a careful understanding of quantization of the gravitons in a non-Bondi frame, which we

leave for future work.

We begin with the quantization of the soft charge in the Bondi frame. Using the saddle
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point approximation, the mode expansion of the graviton in the Bondi frame is given as1

(these formulas are derived in great detail in [54, 60], where in order to match with their

conventions we need to replace u→ u
2 in our formulas)

D̃ab(u, ẑ) = −
√

8πGN

(2π)3

∫ ∞

0
dωω

[
ãab(ω, ẑ)e−iωu + ã

†

ab(ω, ẑ)eiωu
]
, (5.2)

where ãab(ω, ẑ) and ã†ab(ω, ẑ) are the annihilation and creation operators for the graviton

in the vacuum labelled by C̄ab, respectively (see section 5.1). They satisfy the following

commutation relation

[ãab(ω1, z1), ã†cd(ω2, z2)] =
2(2π)5

ω3
1

δab,cdδ(ω1, ω2)δ(z1, z2) , (5.3)

with δab,cd =
1
2 (δacδbd + δadδbc) − 1

4δabδcd.

One can now substitute the expansion (5.2) in (4.2) to write the quantized soft charge as2

QSoft
SR =

i
2
√

8πGN

∫
d4z lim

ω→0
VbDa

[
(1 + ω∂ω)ãab − (1 + ω∂ω)ã†ab

]
(5.6)

−
1

96π2
√

8πGN

∫
d4z lim

ω→0
∂a∂m(ãbm + ã

†b
m )(LVC̄ab − αC̄ab) . (5.7)

Note that in order to promote the classical expression for the soft charge (4.2) to the

quantized version above, we have chosen a particular operator ordering for the terms

in the second line. This choice will become clear after defining the vacuum state, as

1There is an analogous mode expansion for a field with spin-s in six dimensions,

X̃m1···ms (u, x̂) ∝
∫ +∞

−∞

dωω
[
ãm1···ms (x̂)e−iωu + ã†m1···ms

(x̂)eiωu
]
. (5.1)

2The leading and the subleading soft mode take the following form in terms of the creation and annihi-
lation operator ∫ +∞

−∞

duD̃ab(u, z) = −
√

8πGN

2(2π)2 lim
ω→0

[
ãab(ω, z) + ã†ab(ω, z)

]
, (5.4)∫ +∞

−∞

duuD̃ab(u, z) =
i
√

8πGN

2(2π)2 lim
ω→0

(1 + ω∂ω)
[
ãab(ω, z) − ã†ab(ω, z)

]
, (5.5)

where the factor of 2 in the denominator comes from the fact that we only deal with ω > 0.
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done in the following section. Subsequently, we will see that the Ward identity of the

superrotation charges on the states built from this vacuum follows from the subleading

soft graviton theorem.

5.1 Construction of States and Action of Superrotation

Soft Charge

Motivated from [10, 59], a convenient choice for labelling the vacua is to choose them

to be the eigenstates of the operators C̄ab and Tcd
3. Soft theorems are usually studied in

the Fock vacuum, which corresponds to choosing the vacuum state with zero eigenvalue

for C̄ab and Tcd, i.e, |vac, C̄ab = 0,Tcd = 0⟩. States with finite energy excitations can be

obtained from the vacuum state by acting with the creation operator on these states. For

example, a generic incoming state |in⟩ can be expressed as

|in⟩ = ã†h1···hs1
(ω1, z1) · · · ã†h1···hsn

(ωn, zn) |vac, C̄ab = 0,Tcd = 0⟩ , (5.8)

where the operator ã†h1···hs
(ω, z) denotes the creation operator for a particle of spin−s with

energy ω and momenta along z. One can similarly define the outgoing states.

For this definition, the reason for the choice of operator ordering in (5.6) is now evident.

The action of the soft charge on states defined in (5.8) will not receive any contribution

from the second term in (5.6),

QSoft
SR |in⟩ =

i
2
√

8πGN

∫ ∞

0
dωVbDa

[
(1 + ω∂ω)ãab − (1 + ω∂ω)ã†ab

]
|in⟩ . (5.9)

There exists a similar decomposition for the hard charge but the exact structure will not

be necessary for our purpose.

3Note that we use the same notation for the operators and also the classical fields.
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5.2 Action of Superrotation Hard Charge

In this section, we consider the special case of scalar field coupled to gravity, and derive

the action of the hard charge on the matter phase space. We will later use this to demon-

strate how the Ward identities associated to the superrotation charges are consistent with

subleading soft graviton theorem when the external states are massless scalars.

By using the saddle point approximation, the quantized scalar field operator in the Bondi

frame is given as

ϕ(2)(u, z) = −
1

(2π)3

∫ ∞

0
dωω

[
ã(ω, z)e−iuω + ã†(ω, z)eiuω

]
, (5.10)

where ϕ(2) denotes the 1
r2 term in the large−r expansion of the field ϕ(u, r, z), which is the

dynamical mode in d = 6. The superrotation action on ϕ(2) can be written as:

δVϕ
(2) = lim

r→∞
r2Lξϕ = LVϕ

(2) + uα∂uϕ
(2) + 2αϕ(2) . (5.11)

From the inverse Fourier transform of the above equation, we obtain the spacetime action

on the creation operator

δV ã
†(ω, zs) = LV ã

†(ω, zs) − αω∂ωã†(ω, zs) = Vc∂cã
†(ω, zs) − αω∂ωã†(ω, zs) ≡ iJV(ω, zs) .

(5.12)

This is equivalent to evaluating the commutator of the hard charge with the creation op-

erator [QHard
SR , ã†(ω, zs)].
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5.3 Cachazo-Strominger Soft Graviton Theorem and Su-

perrotation Ward Identity

We start by evaluating the Ward identity for the superrotation charges for massless ex-

ternal scalars built from the vacuum state described in section 5.1, that we expect to be

implied from the Cachazo-Strominger Soft Graviton Theorem. This can be written as

⟨out| [QSR,S] |in⟩ = 0 =⇒ ⟨out| [QSoft
SR ,S] |in⟩ = − ⟨out| [QHard

SR ,S] |in⟩ , (5.13)

with the incoming and outgoing states being massless scalars. As explained in the pre-

vious section, the charge can be written as a sum of soft and hard charge. Using the

expression of soft charge (5.9) and the action of the hard charge on the external states

(5.12), the Ward identity can be written as4

1
√

8πGN

∫
d4zs D

aVb(zs) lim
ω→0

(1 + ω∂ω) ⟨Out| ãab(ω, zs)S |in⟩

= −i
(∑

Out

Ji
V −

∑
in

Ji
V

)
⟨Out| S |in⟩ , (5.14)

where Ji
V is the operator defined in (5.12) acting on the ith external scalar.

The Cachazo-Strominger subleading soft graviton theorem for the external particles being

scalars can be written as:

1
√

8πGN
lim
ω→0

(1 + ω∂ω) ⟨out| ãab(ω, zs)S |in⟩ = −i
(∑

i

ϵ
µν
abki

νpρ

p · ki J
i
µρ

)
⟨out| S |in⟩ , (5.15)

where ϵµνab denotes the polarization tensor (with the polarization indices denoted by a, b)

of the soft graviton with momenta pµ = ω p̂µ, where p̂µ denotes the unit null momenta

parameterized by the flat coordinates zs, ki denotes the momenta of the external scalar

4Note that in the equation below we have used crossing symmetry to relate the incoming to outgoing
subleading soft graviton mode.
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particle (which is parameterised by energy ωki and zki) and J i
µν denotes the total angular

momenta acting on the ith external particle and the sum runs over all the external particles.

In the flat null coordinates The Cachazo-Strominger Soft Graviton Theorem (5.15) can be

expressed as [54]:

1
√

8πGN
lim
ω→0

(1 + ω∂ω) ⟨out| ãab(ω, zs)S |in⟩

=
∑

i

[
Pc

ab(zs − zki)∂zc
ki
+

1
4
∂cPc

ab(zs − zki)ωki∂ωki

]
⟨out| S |in⟩ ,

(5.16)

where

Pc
ab(x) =

1
2

(
xaδ

c
b + xbδ

c
a +

1
2

xcδab −
4xaxbxc

x2

)
. (5.17)

We will now derive the Ward identity (5.14) from the subleading soft theorem (5.15). As

shall be seen below, the linear terms in Pc
ab(x) will not affect the calculation and therefore

these are an artifact of the gauge choice. In order to derive the Ward identity, we smear

the LHS of the soft theorem with the function
∫

d4zs D
aVb(zs).

This reproduces the LHS of the Ward identity (5.14). Subsequently, by performing the

same operation on the RHS of the soft theorem (5.16), we get the following two terms,

∑
i

∫
d4zsD

aVb(zs)Pc
ab(zs − zki)∂zc

ki
=

∑
i

Vc(zki)∂zc
ki
, (5.18)

∑
i

∫
d4zsD

aVb(zs)
1
4
∂cPc

ab(zs − zki)ωki∂ωki
=

∑
i

α(zki)ωki∂ωki
. (5.19)

In deriving the above equations we have made use of the following identity (for a deriva-

tion of this identity we refer the reader to Appendix-B):

1
64π2

[
∂4∂aPc

ab(x) −
4
3
∂2∂

e f
b Pc

e f (x)
]
= −δc

bδ
(4)(x) . (5.20)
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Now, adding equation (5.18) and equation (5.19), we recover the JV operator in (5.12)

and hence, we get the RHS of the Ward identity (5.14).

This completes the proof of the Superrotation Ward identity (5.14) as a consequence of

Cachazo-Strominger Soft Graviton Theorem (5.15) for the particular case where in the

external sates there are only massless scalar particles.

There are some subtleties in extending this proof to particles of arbitray spin in d > 4,

which we hope to address in a future work.
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Chapter 6

Conclusions

Summary

Let us now summarize what we have discussed so far. The central theme of the thesis was

to study the symmetry algebra that constrains the S-matrix of gravitational scattering in

d ≥ 4 spacetime dimensions. The primary aim was to learn from the existing literature

about the interesting structure called the Gravitational Infrared Triangle in d = 4 and

explore the possibilities to discover similar structures in higher dimensions.

The infrared Triangle in d = 4 is a manifestation of the triality of relations: Soft Gravi-

ton Theorems, Asymptotic Symmetries, and Memory effects. Hence, we started with a

review of it, with a particular emphasis on the duality between Asymptotic Symmetries

and Soft Graviton Theorems. We learned that the Asymptotic Symmetries under con-

sideration preserve the solution space of Einstein’s equation called Asymptotically Flat

Spacetimes and once this asymptotic symmetry is elevated to the symmetry of the Quan-

tum Gravity, corresponding conservation laws are equivalent to the factorization theorems

of the S-matrix called Soft Theorems. We learned how in any generic dimensions there

are two universal soft graviton theorems corresponding to the leading and the subleading

order in the soft graviton and how in d = 4 they are related to the conservation laws cor-
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responding to two sets of infinite dimensional symmetries, namely Supertranslations and

Superrotations. Furthermore, we learned that they are related to the third corner of the In-

frared triangle, which are observable effects namely Gravitational Displacement Memory

and Gravitational Spin Memory respectively. Thus together they form Leading and Sub-

leading Infrared Triangle, corresponding to the Leading and Subleading Soft Theorem

respectively.

The robustness and universality of Soft Graviton Theorems create a natural curiosity about

the existence of Infrared Triangles in higher dimensions. We learned that after an initial

period of conflicting claims about the existence of (or lack of) non-trivial asymptotic

symmetries in higher dimensions, there is now increasing evidence for the existence of

a Leading Infrared Triangle in any generic even dimensions. This drew our curiosity to

explore the existence of a Subleading Infrared Triangle. Among the higher even dimen-

sions, in d = 6 it is most well understood as there exist rigorous calculations of conserved

charges for Supertranslation in nonlinear gravity.

This serves as a motivation to investigate the existence of a Subleading Infrared Trianle in

higher even dimensions, particularly in d = 6. Our new results in the thesis are specifically

in this direction.

In this thesis, we studied the symmetries of the soultion space of Einstein’s equation called

asymptotically flat spacetimes in d = 6. We worked with the special case where we only

have massless fields and therefore we perform our analysis focussing on null infinity. We

started by analyzing the equations of motion and the gauge conditions which enable us to

identify the free data in the theory (section 3.1). In section 3.2, we found the generic set

of transformations that keep the asymptotic form of the metric invariant (thereby defining

fall-off conditions) and also respect the gauge conditions. Such transformations are gen-

erated by two classes of vector fields, namely supertranslations and superrotations, which

are the infinite-dimensional extension of the Poincaré generators. While supertranslations

leave the leading order angular metric at I+ invariant, the action of superrotation vector
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fields is non-trivial.

Having found the generators of the transformations, in Chapter-4, we computed the charges

corresponding to the symmetries by demanding that they generate the correct spacetime

action of the phase space variables. For simplicity, we made an assumption by restricting

ourselves to variations near Bondi frames. The charges could be split up into two pieces,

one the hard piece and the other, the soft piece. Further, we found that the soft charge has

a term depending on the choice of the vacuum state labeled by C̄ab, which is the O(r) term

of the metric component gab. Following the computations in d = 4 [59], we demonstrated

how the hard charge can be obtained using the covariant phase space analysis on the hard

phase space.

Finally in Chapter-5, we demonstrated how the subleading soft theorems can be used to

derive the Ward identities corresponding to the Superrotation symmetry of the S-matrix.

Let us summarise our new contributions in this regard. The primary goal of this thesis

was to draw the lessons from the recent discovery of symmetry algebra that constrains

gravitational scattering in Four dimensions and generalize it to higher even dimensions.

In particular, in d = 6, we identified the radiative degrees of freedom in the Bondi frame

that preserve correct early and late time behaviour (|u| → ∞) upon Supertranslation and

Superrotation action. The main result of this thesis is a proposal for the Superrotation

charge in the Bondi frame beyond linearised gravity. We proved that this charge has

correct action on the Dynamical and Kinametic data. In the case of a scalar field coupled

to gravity, by promoting the superrotation symmetry to the symmetry of Quantum Gravity

S-matrix, we established the connection with the Subleading Soft Graviton Theorem.

Thus, our work gives stronger evidence for the existence of an Infrared Triangle in d = 6,

along with improving the understanding of the GBMS algebra as the asymptotic symme-

tries in d = 6. In a recent work [49], the authors did a rigorous analysis of the phase space

of the six-dimensional gravity, where many of the issues not addressed in our work were

settled.
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Future Directions

To conclude, we point out various issues related to the study of the Infrared Triangle in

higher dimensions that are yet to have a clear resolution in the literature.

While showing that Cachazo-Strominger Soft Graviton Theorem implies Superrotation

Ward identity we have restricted to the special case of a massless scalar field coupled

to gravity and considered the case when in the external states all the finite energy par-

ticles except for the soft graviton are massless scalars. Conceptually it is expected that

there exists a similar relation when the finite energy particles are of any spin-s (including

gravitons which are spin 2). This needs to be shown in future works.

Our entire analysis is based on gravity coupled to massless fields in the classical theory

and in the quantum theory the corresponding scattering amplitudes consist of massless

particles only. However, the soft theorems hold even when the external particles are

massive. The relation between soft theorems and asymptotic symmetries for massive

external states was established in d = 4 in [56]. A similar derivation for higher dimensions

is yet to be done.

Understanding the asymptotic symmetries in higher odd dimensions remains a thorny

issue. See [61], for a recent work in this direction. It would be interesting to explore

whether there exists Infrared Triangle in higher odd dimensions.

Although, throughout the thesis, we have dealt with the Infraed triangle corresponding

to Single Soft Graviton Theorems, in any dimension there exist universal factorization

theorems for amplitudes containing more than one soft graviton as well [30, 46, 62, 63] .

In d = 4, there is increasing evidence that they too have a “symmetry origin” [59, 64, 65].

It will be interesting to explore these questions in higher dimensions.
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Appendix A

Superrotation Hard Charge from

Covariant Phase Space

From the symplectic structure at I+ for hard phase space in non-linear general relativity

[10, 59], we can give a proposal for the derivation of the superrotation hard charge (4.12)

in the Bondi frame. A similar derivation for the supertranslation hard charge is already

given in section-3 of [10]. A rigorous derivation of the charge in any generic frame

requires a more careful analysis of the symplectic structure at I+ which involves a study

of generic variations of the background metric qab. This is beyond the scope of the present

discussion.

The part of the symplectic form in eq.(3.8) of [10] contributing to the hard charge is given

as

ΩHard(δ, δ
′

) = −
1

32πGN

∫
I+
δD̃ab ∧ δ′∂uD̃ab . (A.1)

The superrotation hard charge is defined as

δ0Q
Hard
SR = Ω

Hard(δ0, δV) , (A.2)
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where the variation δ0 is defined such that δ0δab = 0. Upon substituting the variations

given in (3.34) we obtain1

δ0Q
Hard
SR

=
1

32πGN

∫
I+
δ0Nab[2uαNab + 4αD̃ab

]
+

1
32πGN

∫
I+

[
δ0NabLV D̃ab + δ0NabLV D̃ab

]
,

≡
1

32πGN

[
η(1) + η(2)] . (A.4)

Our goal is to express the expression on RHS as a total variation in δ0. The first term in

this can be simplified to give

η(1) =

∫
I+

uαδ0(NabNab) + 4
∫
I+
αδ0NabD̃ab . (A.5)

As we see below, the second term in the expression above gets canceled by a contribution

arising from η(2),

η(2) =

∫
I+
δ0(NabVc∂cD̃ab) +

∫
I+
δ0

[
NabD̃c

b∂aVc + (a↔ b)
]
− 4

∫
I+
αδ0NabD̃ab . (A.6)

Hence, by adding (A.5) and (A.6) we get a total variation in δ0 on the RHS, which then

indicates that we can perform an integration in δ0 to give QHard
SR as:

QHard
SR =

1
32πGN

∫
I+

Nab[uαNab +LV D̃ab
]
, (A.7)

which is the same hard charge derived using different methods in Chapter-4.

1We also need the variation of the inverse δV D̃ab which can be evaluated as

δV D̃ab = δV (qacqadD̃cd) = LV D̃ab + uα∂uD̃ab + 4αD̃ab . (A.3)
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Appendix B

Derivation of the Identity (5.20)

In1 this appendix we prove equation (5.20), i.e,

1
64π2

[
∂4∂aPc

ab(x) −
4
3
∂b∂

2∂e f Pc
e f

]
= −δc

bδ
(4)(x) , (B.1)

where Pc
ab(x) = 1

2

[
xaδ

c
b+xbδ

c
a+

1
2 xcδab−

4
x2 xcxaxb

]
. We first note that the only term in Pc

ab(x)

that contributes to the equation above is the last term, i.e 1
x2 xcxaxb, as the terms which are

linear in xa are annihilated by the derivative operators. In order to carefully handle such

terms and notice the presence of delta functions, it is instructive to deform pole at x = 0 to

a slight imaginary value by x2 → x2+ϵ2 where the limit ϵ → 0 has to be carefully taken in

the last step of the computation, thus giving rise to terms involving delta functions in the

calculation. With this in place we can evaluate the derivatives without worrying about the

appearance of the delta function in the intermediate steps. Therefore we get the following

terms

1
64π2

[
∂4∂aPc

ab(x) −
4
3
∂b∂

2∂e f Pc
e f

]
= lim

ϵ→0

{
1

2π2∂
c
b

( ϵ6

(x2 + ϵ2)4

)
−

12
π2

δc
bϵ

6

(x2 + ϵ2)5

}
. (B.2)

1We thank R. Loganayagam for useful discussions related to this and also for suggesting several refer-
ences on this topic.

85



In order to take the limit we need to keep in mind that these are distributions which are

integrated against test functions and hence we integrate the LHS against a spherically

symmetric test function F (|x|) (which has a sufficiently fast fall off) and obtain

∫
d4xF (|x|)

1
64π2

[
∂4∂aPc

ab(x) −
4
3
∂b∂

2∂e f Pc
e f

]
(B.3)

= lim
ϵ→0

∫
d4xF (|x|)

{
1

2π2∂
c
b

[
ϵ6

(x2 + ϵ2)4

]
−

12
π2

δc
bϵ

6

(x2 + ϵ2)5

}
, (B.4)

= lim
ϵ→0

∫ ∞

0
d|x||x|3|S3|F (|x|)

{
1

2π2∂
c
b

[
ϵ6

(|x|2 + ϵ2)4

]
−

12
π2

δc
bϵ

6

(|x|2 + ϵ2)5

}
. (B.5)

where S3 = 2π2. As shown in [66], such expressions are simplified by expanding F (x) in

a Taylor series and upon performing the integrals and taking the limit ϵ → 0 we obtain

∫
d4xF (|x|)

1
64π2

[
∂4∂aPc

ab(x) −
4
3
∂b∂

2∂e f Pc
e f

]
= −δc

bF (0) . (B.6)

As this is true for any generic test function F (x) we conclude that

1
64π2

[
∂4∂aPc

ab(x) −
4
3
∂b∂

2∂e f Pc
e f

]
= −δc

bδ
(4)(x) , (B.7)

thereby proving the identity (5.20).
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