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Abstract

This thesis presents new results for four problems in the field of algorithmic and
computational number theory,

The first gives an improved analysis of algorithms for testing whetler a given
positive integer n s a perfect power, Bach and Sorenson gave two algorithms for this
problem with average running time O(log® n) under tle assumption that » is chosen
uniformly from an interval of length at least (log n )!98 98ker They conjectured that
the interval length L can be reduced to polvnomial size. We solve their conjectire
by modifying their algorithms to reduce the interval size to L > (log n )™,

The second comes very close to settling a conjecture of A. Granville. He con-
Jectured that the number of Carmichael numbers up to r with three prime factors,
Calx) is O3+ We show that Ca(x) is Oz M+ This gives an improved
upper bound on the worst case numbers for a variant of the strong pseudo-prime
Liest.

The third result is about progress towards a conjecture of S. W. Craham. He
conjectured that Cy(x) is < va. We show that his conjecture is true for x < 108
and & = 2+ 10" improving on his result of 2 < 10'% and 2 > 10'%.

The fourth deals with the problem of finding the least witness win) ol a composite
number n. A number w is a witness for a composite number n il 7 is not a strong
pseudo-prime to the base w. We show except for Carmichael numbers of the form
no= pgr with 1s(p — 1) = (g — 1) = vy(r — 1) (see section 1,3 for the delinition
of vz) we have win) = Q(n/BVEHa) [y every composite 1. For the exceptional
numbers we also conjecture w(n) = (n"/8F )} We present other intleresting

algorithmic results about witnesses.
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Chapter 1

Introduction

This thesis presents new results for four problems in algorithmic and computational

mimber theory.

Number theory has a long history of over two millenia. Tts foeus is on the
properties of the natural numbers and problems that arise in their study. Since 1977,
when Rivest. Shamir and Adleman [35] introduced the RSA public kev eryplosystem
based on the apparently intractable problem of integer factorization, there has been
a lot of research on the algorithmic complexity of problems in number theoary. Some
of these problems like the problem of factoring an integer into its prime [actors have
been well known and studied since the time of Euclid. However a lot of insight into

these problems has been gained only recently [36].

It 15 no surprise that many of the modern encryption techniques used in practice
depend on the present intractability of problems in numbes theory such as integer
factorization and computing discrete logarithms [26]. Hence the study of number-

theoretic algorithms becomes interesting in theory and useful in practice,

several problems in algorithmic number theory that currently have only expo
nential [ sub-exponential time deterministic algorithms have efficient polvnomial
time algorithms when analyzed assuming the as vet unproved Generalized Riemann

Hypothesis (GRH) (see [3]). One result of ours makes use of this hvpothesis.

a4
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CHAPTER 1 INTRODUCTION 2

In this thesis we look at four problems in algorithmic and computational number

theory and present new results for them.

We present

o an improved analysis of two algorithms due to Bach and Sorenson [12] for test-
g whether a given positive integer is a perfect power assuming the General-

1ized Riemann Hypothesis (GRH), thereby solving a conjecture due 1o them.

e an improved upper bound on the number of Carmichael numbers up to r
with three prime factors. thereby making progress towards a conjecture of

A Granville (see [30]).

o progress towards a conjecture of 5. W, Graham [29] on Carmichael numbers

up to x with three prime lactors.

e bounds for the least witness of a composite number without assuming the

GHRH.

1.1  Overview of the thesis

This thesis presents new results related to four problems in algorithmic and compu-

lational number theory.

Cliapter 2 deals with algorithms for testing whether a given paositive integer n is
a perfect power. An integer o is a perfect power if there are integers r, bk = 2 suely
thiat n = #*. Bach and Sorenson [12] gave two algorithms for this prablem. Their
algorithins had an average running time of O{log®n) under the assumption that n
s chosen iniforinly from an interval of length L where L = (log n)*lesloelogn T 0y
conjectured that the interval length can be reduced to palviomial size. We solve
their conjecture by suitably modifving their algorithms to reduce the interval lenst],
:I:_'-LII

to L = (logn Our algorithms assume the Generalized Riemann Hypothesis

(GRIL), These results have appearcd 1 [1:5],

I N



CHAFTER 1 INTRODUCTION 3

Chapter 3 deals with the problem of finding an improved upper bound an the
number Cy(o) of Carmichael numbers up to » with three prime faclors. A positive
mteger nis a Clarniachoel number (see [39] for definitions) if and only if » is square-
free and p—1 properly divides n—1 for every prime factor pol n. Carmichael nunibers
occur in the study of algorithms for determining the prime or composite nature of a
positive integer, A. Granville {see [30]) has conjectured that Ca(x) = O3]y,
We come very close to settling his conjecture by showing () = O3/ 442l for
sufficiently large . These results are presented in [14]. As an application we also
show that our result gives an improved upper bound on the worst case numbers of
a variant of the slvong pseudo-prime lest (see Chapter 5 for definition). The reader
is referred to A, Granville’s review of our paper [14] in [34] and also to his notes in

?_111'1] on our methaod.

Chapter 4 describes progress towards a conjecture of 5, W, Graham [29]. He
conjectured that the number Cs(x) of Carmichael numbers up to & with three prime
factors is < /2. He showed that his conjecture is true for + < 10" and z > 10'2%,
We improve his result by showing that hiz conjecture is true for = < 10" and

2

x 2 2+ 10%, In both cases analytical methods establish the conjecture for large

and tables of Carmichael numbers [48, 49] are used for small .

Chapter 5 deals with the problem of finding the least witness w(n) of a composite
number n (see [7, 22]). A number w is a witness for a composite number n i n is
not a strong pseudo-prime {39] to the base w. We show w(n) = ()(n!/Bv=l+elil)
for all composite numbers n except Carmichael numbers of the form n = pgr with
pap — 1) = valg — 1} = in(r— 1) (see section 1.3 for the definition of 4], For the

exceptional numbers we conjecture w(n) = On! /8oty
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1.2 Background for the thesis

In this thesis we give only important definitions. The reader is referred to survey
articles l:i. 4, 26, 36] and text books || I, 39| for further information about problems

in algorithmic number theory.

For describing our results we make use of terms such as the Generalized Riemann
Hypothesis, Chinese Remainder Theorem, sieve of Eratosthenes, sieve methods,
Carmichael numbers, witness of @ composite number, strong pseudo-prime test.
character sum estimates. Almost all of these can be found in standard text books
[L1. 35, 39, 54] and expository articles [3, 9, 26]. For brevity, we don’t include proafs

of specialized lemmas [ound n original papers,

1.3 Notation

The following notation will be used in the thesis. I () is a prime number then
vgip—1) denates the highest power of @ that divides p—1. The Extended Riemann
Hypothesis (ERH) is the Riemann Hypothesis applied to Dirichlet L-Tunctions [28],
Tl ) denotes the number of primes that are at most * and congruent to 1 mod p.
(GRH denotes the Generalized Riemann Hypothesis. Let [ and g be real-valued
lunetions. We say f = (O{g) if there exists an absolute constant ¢ > 0 suech that
flz) < ecglz)forall e » 2. f=0O(g) il [ = O(g)and g = Of). [ = olg) il
limz e fla)/gla) = 0. HO or oissubscripted by a variable, lor example [ = O, (g).

then the implied constant is a functien of that variable.



Chapter 2

Perfect Power Testing

2.1 Introduction

In this chapter we analyze two algorithms due to Bach and Sorenson [12] for testing
whether a given positive integer is a perfect power and solve a conjecture made by
them. The results presented here have appeared in [13].

A positive integer n is a perfect power il there exist integers # b = 2 such that
n = x* The simplest algarithm for testing whether n is a perfect power involves
irying all possible powers; it has a time complexity of Olog” n loglog ). The time
can be reduced to O(log” nlogloglogn) by trying only prime values of k. Bach
and Sorenson [12] further reduce the time to O(log” n) by using a madification of
Newton's method for finding roots. The average and worst-case running times of
these algorithms are the same. Bach and Sorenson [12] develop an algorithm. They
prove that if i is chiosen uniformly from an interval of length L. L > (log n)?leeloslorn
then the running time of their algorithm averaged over all inputs in L i Oflog® 1)
(given a sieve fable of certain small precomputed primes). Thev alse improve the
average running time to Oflog® n/log® logn) by incorporating trial division. We
modify their algorithms to reduce the interval size to L = (log n )™, while preserving

the average running time.

Ihe sicve table, which requires O(log i) space can he quickly constructed. The
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Extended Riemann Hypothesis is used to bound the largest prime in the table. The
following idea is used in the algorithms. Let p be a prime. If » s not a p' power
mod ¢ for some small prime q, then it cannot be a p™ power. The time needed to
check this condition is much less than the time needed Lo compute a " root of n to
high precision. The disadvantage of this approach is that a p'" power mod ¢ need
not be a p'* power. Hence, tests using more than one g are necessary. Enough tests

are done to ensure thal p'™* rool computations are rare,

2.2 Assumptions

Following Bach and Sorenson [12], we assume that classical methods are nsed for
arithinetic on large numbers and note only that the asymptotic time complexity of
the algorithms gets improved if faster methods sucl as the Schinhage Strassen [506]

algorithm are used. Hence, the complexity of basic arithmetic is;

Computing ab or @ mad I O(log a log b) time

Computing a + b: O(log a 4 logb) time

A . - . P S
Computing ¢ = a®; Oflog= ¢} time

Computing a” mod m: O(log alogm + log blog® m) time

2.3 The sieve idea of Bach and Sorenson

Many numbers are not perfect powers. 50 we must wickly reject non-perfect powers.
S, | J

The following lemma is Lhe basis of this idea.

Lemma 2.3.1 If p and ¢ are primes with ¢ =1 mod p and 1 is a perfeet p* power

and ged(n, q) = 1, then nl=1r = 1 mod g,
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[f =17 2 1 mod g, then n cannot be a perfect p™ power (assuming that all
other conditions of the lemma are satistied). Il n=/" = | mod ¢ then, n need not
be a perfect p™ power, so tests with more than one q are neaded. The number af
these tests must be chosen so that not nany non-perfect powers pass all the tests
and not too many of them are performed. The computation of nt&="" 10d g in the

lemma is called a sieve test, and the prime modulus q 15 called the sieve madulis,

The following algorithm. due to Bach and Sorenson [12], is based on the above

el

Algorithm A
{Bach and Sorenson’s algorithm for testing if n is a perfect power }

For each prime p < log n:
Perform up to B, = [2log logn/log p| different sieve
Lests on n, stopping when n [ails a test:
I n passed all the tests then,
If n = [n'7|" then accept and halt:

RReject and halt

The following results of Bach and Sorenson [12] assume the Extended Riemann

Hypothesis.

Lemma 2.3.2 [ERH] For any input < n to algorithm A | the largest sieve modulus

needed is O(log™ 1 log? log n ).

Lemma 2.3.3 [ERH] Let integer n be chosen uniformly from an interval of length
L and assume, for every such n, L > (logn)3loglosloen ey the probahility that n
passes [2loglogn/ log p| different sieve tests for a fixed p in alzorithm A is bounded

above by O(log log n/log”® n).
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i)

Theorem 2.3.4 [ERH] Let n, L be as in lemma 2.3.3 and assume that a sieve table

is available, Then the running time of algorithm A averaged over all inputs in L is

Oflog* n).

L'he sicve table is a table of the first A, = [2loglogn/ log p| sieve moduli for
each prime p < logn. The number of entries in this table is O(log n/ log log n) and
the total space used 15 O(logn). The sieve of Lratosthenes or its variants may be
used to construct the table in O(log®™ n) time for some small constant ¢« = 0. Since
we will be interested only in the average case analysis under the assmmuption that
Lthe table is available, the computation time for this table is not important. However

we note that it is efficient in practice.

By incorporating trial division in algorithm A, Bach and Sorenson [12] reduce
the average running time to O(log*n/log” logn). We don’t describe this algorithm

here.

2.4 Our algorithm and its analysis

Bach and Sorenson’s proof of lemma 2.3.3 uses the Chinese Remainder Theorem.
We modify algorithm A, nse Montgomery's large sieve estimate [28] instead, giving

algorithm B below. The correctness of Algorithm B follows from Lemima 2.3.1.

Algorithm B
{Our algorithm for testing if 1 is a perfect power}

For each prime p < log n:
I p < loglogn then do up to (log 2} sieve tests on n;
If p> logTogn then do up to R, = [2log logn/ log p] sieve tests on
If n passed all the tests then:
Ifn = n"7|7 then accept and Lialt:

Reject and halt
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Meontgomery's large sieve estimate [28] gives an upper bound on the number of
iegers that remain in an interval of length [ after flg) different residue classes
mod ¢ have been removed for cach prime g, The upper bound 1s (L4 Q%) /5(0)).
where 5(Q) = 3, <0 Ira"[.r]l_[,rh_ Sl lg— flg)) and ;i {e) = 1 il and only il r is

square-Tree. To minimize the bound. €) is usually chosen 1o be aboul i

We now show that the results hold for an interval L of polvnomial size.

Lemma 2.4.1 Let p be a prime < logn. Let B, — (lagwn)¥*if p = vieg log o
and Ry = [2loglogn/logp] il Vioglogn < p<logn. Let L = log™n. Then. the
number of n passing all R, diferent sieve fests is Of Lilog® NY if n is chosen from

an interval af length L.

In the course of proving this lemma, we use the following lemma. It makes use
of known results [25] for a number-theoretic function W(X.Y). Function (ALY ) is
the number of integers < X all of whose prime factors are < V. A good reference

for this function is [38],

Lemma 2.4.2 The number of square-free integers < X having all prime factors

< XY s a positive fraction, esX, of X,

Proof. The number of integers < X having all prime factors < X1 g known [25]
to be WX, Y1) = p4)X where p(4) > 0 is a constant. Funelion 15 called the

Dickman-DeBruijn function [25].

Let f3 be a very large but fixed number. If a number is not souare-Tree Lhen
either it is divisible by a square k2 with | < & < B or k = B. The number of such
nuibers in the second category up to X is bounded by X/E. Choose 3 so that
LB < p(4)/100. For every number & in the first category, the number of numbers
up to A s at most W(XN/k* XTH), This is asymptotic to (p(4)+ O] log X)) XN/E?

[25]. The sum of 1/k* for 1 < k < B is a positive number less than 1. Henee,
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among the integers counted by W(X, X¥*), the fraction that are nof square-{ree iz a
fraction, say cs N, of p(4)X. This leaves a positive fraction, say ex N, of p(4)X that

are squarc-free, 0

We also require the following hound under ERH, on the 1™ prime g, = 1 mod p
for a fixed prime p < logn, where 1 < j < 1.
Lemma 2.4.3 [ERI] Let | < | < R

v The J™ prime ¢; = 1 mod p safisfies

g, = O(p* log® p) i log 7).

Proof. We use a result of Titchmarsh [58], as stated in Bach and Sorenson [12]:
Assume the ERH. Let # be a positive integer and let p be a prime. There is a
constant A > 0 independent of p and + such that
. 5 | T ol
mle) > J_r—_l./.. R Ay lna.

From this result it follows that

l i In?
.|z - U R |
plz) 2 P—Il]'l:r[l D[ﬁ”

if 2 = Cp?log! p, since f7dtfInt = (# —2)/Inaz, e <1/C, Inzflog s < InC” +6.

Let 7' be the set of sieve moduli from the sieve table of a fxed prime p < log n and
let "= Oflogp | 7' | log | T |). Then (" = oc asn — oc. since | T |= Ry = (logn)¥1
il p = Vioglogn and | T |= Ry = [2loglogn/logp] if Vioglogn < p < logn.
Therefore,

2(1 —of1})
plnr

mle) 2

(plogp) | 1] > | T

"

for sulficiently large n. Hence, the largest sieve modulus in 7' is at most = —
Q((p? log” p){| T | log | T )): Since 1 < 7 < R, =| 1" |, the jth prime ¢, = 1 mod p

satisties q, = O((p? log” p) (7 log j)). 2

We now prove lemma 2.4.1,
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Proof of Lemima 2.4.1. We note that flg) =q—(g—1)/p for our problem and

S(Q) = e ‘”
:«w’,r oz 4= 114
= Y s JH” lg—1)/p
vl il lg—1)/p
e 1Y
< E.”[E}Hq (g 1
<yVL il lo=1)/p
= Z Jt {.f:}H[p—l]
t:{v"I iylr
= Z (p— 1]“'{;'-':I
IEV’T

where w(r) denotes the number of different prime factors of r and the = on
the summation sign denotes that we are summing over all the sub-praducts of

'[I]ri,(h._"',fjﬂk} that are < /T

We divide the analysis for S(Q) into two cases: poS Wloglogu and p o=

L4 ing I[j[ﬁ

Case (i) p < loglog n. We show that there are sufficiently many sub-products =

of {gi,q2.+++,qn, } that are < /I, so S(Q) > elog® n, where ¢ is a positive constant.

We know under ERH, from Lemma 2.4.3, that the 3™ prime ¢, = 1 mod p
satisfies q; = O((p® log” p)(jlog ) for 1 < J = Hp. Since the 3 ordinary prime A,

i% asymptotic to jlnj, g is O{p*A;) Tor a fixed prime p < log 1,

Let X = log'n. Suppose Gay ***Gay 15 & sub-product of gy« gp, such that
oy e, < VL. Then Qapreigys T Wy ---J'gn_“;'f"I. Suppose we are choosing
Agp oo Ay such that Ay Ay, < log*n, Then p™ < log " Fg 30 AL = g e v
VL = (logn)"™. Therefore J < 4 log logn. Hence, if we show that there are enough
mumbers less than log” n that have less than log log n different prime factors, then we
can get an estimate for 5{Q)). For this purpose, consider the numbers < X and omil
those having a prime lactor > X', Lemma 2.4.2 states that a positive fraction,

s X, of these numbers are square-free. Hence 5(Q) > ¢4 N = ¢y loe™ .
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Case (ii) p > loglogn. Let m = ¢ +oqr,. Then we know from Lemima 2.4.3
that under ERH ar, = Of(p* Jog" P, log 1))

I moo< IIr..'H,_}h;'

= O({(p* log® pIHE log f1,) }H:-:,
= O((p'R:)™)
= O((p")*") since R, is Op*)

= O(lag™ n) since R, = [2loglog n/ log p].

Since

SQ) > 3 (p—1p@
;r'i'-.""T

= 1 jg=T1j2

J.'Slug“’ n

% 2 (=)

wSqpga, =0log'! n)

= 2 (TI)U’— oa

DEALHY

= {I+{p—-1))"

= p'" = log*n

we get, considering both cases., L/5 =L/ 1log?n). O
g g / e
As a corollary, we obtain the following result, whiech is similar to Lemma 2.3.3.

Corollary 2.4.4 Let n = 0 be chosen uniformly from an interval of length £ and
assuine for every such w, L > log™n. Then the probability that » passes R,
different sieve tests for a fixed exponent p in algorithm B is bounded above by
O(1/ log* n), where Ry = (logn}** 3f p < MogTog n and 1, = [2loglog nf log p] if

Vieglogn < p < logn,

Using this resull we obtain a theorem similar to Theorem 2.3.4. The praol of our

theorem is similar to that for Theorem 4.4 in Bach and Sorenson [12].

B T
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CliaPTen 2 PERFECT POWER TESTING 13

Theorem 2.4.5 |[ERH] Let n. L be as in Corollary 2.4.4 and assume that a sieve

table is available. Then the running time of Algorithm B, averaged over all the

inputs in L, is O(log” n).

Proof. lo get an upper bound on the running time, assume that all possible
sieve tests are performed. From Lemma 2.4.3, it follows that logq = Oflog Jog i)
[or p < yloglogn and j < {logn)¥* and also for loglogn < p < logn and
7= [2loglogn/log p]. Since the sieve table is precomputed, the time to find each
sieve modulus ¢ is O(1). Computing n7~ "7 mod ¢ can be done using ane division
and then one modular exponentiation in time log n log ¢+ log” ¢ = O(log n log log 1),
Ifp < loglog n and all the R, = (log n)*/* sieve tests are perlormed, the total time
spent is at most O((logn)™/* loglogn) for each prime exponent p. If loglogn =
p < logn and all the [t = [2loglogn/log p] sieve tests are performed, the total

time spent is at most Oflog nlog” log n/ log p) for each prime exponent p.

The average time spent in computing the p™ power of an approximate p™ root

of 1t is Oflog® logn], as in the proof of theorem 4.4 of Bach and Sorenson [12].

For each prime exponent p. the average time spent is ((log n)™* log log n) lor

p = yloglogn and Oflognlog” logn/ log p) for Toglogn < p < logn. Hence, the

average running time is

Z O{logn) " log logn) + » O(log n log” log n/ log p)
peaSloglogn o laglog i< plogn
= O((logn)"MH1) L Oflog? n) = Ollog® n).

We have used the fact that 3 ... 1/ logp = Oflogn/ log® log ). 0O

Thus. increasing the f, from [2log logn/ log p] 1o (log u ) for p < og logn
has not affected the running time. This is because many lests ave performed for
small values of p. which are not time consuming. The space used by Algorithm B

can be shown to be the same as for Algorithim A, e, Oflog n).
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Bach and Sorenson [12] improved the average time of algorithm A to

Olog® n/ log® log n) by incorporating trial division by small primes, Their trial divi-
sion bound & satisfies b = O(logn/ log? logn). Our modification to algarithm A. hy
performing H, = (log n)** sieve tests for p < Vioglogn and R, = [2log log 1/ log ]
sieve tests for v/loglogn < p < log n, reducing the interval size L to [ > {Toe e
works even in this case. The proof given by them for the improved algorithm needs
only one change. They use a large sieve estimate of Jurkat and Riclert to get an
upper bound on the probability that no prime below b divides i where nis an integer
chosen [rom an interval of length L. The upper bound obtained on the probability of
escaping trial division is (1, log b). This estimate requires that b, L satisfy the con-
dition logh < (log L)/(2loglog(3L)). This condition is not satisfied for our choice
of L. However, we get the same upper bound of O(1/log b) by a simple application

of the l-dimensional Selberg sieve (see theorem 3.3 in [35]).

Thus, we have succeeded in preserving the average times of the algorithms while

reducing the interval size L to L > (log n)™.

2.5 Discussion

By arguing a bit more carefully it is possible to get a slightly better constant instead
of 30. In this chapter our emphasis has been on solving the conjectire of Bach and
Sorenson rather than improving the runuing time of the algorithms. Bernstein [17]
gives an essentially linear time algorithm ((log n )" as 1 — oo} for the perfect
power testing problem based on ideas in [42]. His method uses theorems on multiple

linear forms in logarithms.




Chapter 3

Density of Carmichael Numbers
with Three Prime Factors

3.1 Introduction

In this chapter we give an improved upper bound on the number of Carmichael
numbers up 1o r with three prime factors; Ca(z). In the process, we come very close
to settling a conjecture due to A. Granville (see [50]). The results described here are
presented in a slightly different form in [14]. The reader is referred to A, Granville's
review of our paper [14] in [34] and to his notes in [33] on our method. Here we
imclude an application not presented in [14].

A Carmichael number is a composite number n which satisfies the condition
a® = a mod n for every integer a. The smallest Carmichael number is 561. 'The
Carmichael numbers have many interesting properties. For example, it is known
that they are square-free and the product of at least three primes [39]. The reader

may consult [30], [47], [30], [54] for more on Carmichael numbers.

The problem of proving the existence of infinitely many Carmichael numbers
was a long-standing open problem until it was solved recently, by Alford, Granville
and Pomerance [5]. They also gave a lower bound for the number of Carmichael

numbers less than a given number . Let ((z) denote the number of Carmichael
B

] =
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numbers up to r. They showed that C(z) > 237 for all sufficiently large .

Let Cy(x) denote the number of Carmichael numbers up to = with & prime

| factors where & > 3. It is an apen problent to show that the function 4(r) is
unbounded. It is not known whether any of the functions Ci{z) is unbounded.
Pomerance et al. [51] proved that Cy(z) = O(x**). Damgard et al.[27] improved

this to Cs(x) < (1/4)2"2(log 2}/ for all = > 1. An estimate of O(2*/5+71)) for

C5(r) was obtained by 5. W. Graham [29]. We show that for sufficiently large

Cy(r) = O(a®M+200) - Granville (see [50]) has conjectured that (p(z) = wi/5teitt)

for & — oo, Qur upper hound for Cs(z) comes very close to his conjectured valie.

3.2 DProof of our bound

We state aur result on the upper hound for Cy{z) and give its proof. We need the

[ollowing lemma.,

Lemma 3.2.1 The equation aXY +bX +¢Y 4+d =0, a.b,e,d € Z and ad # be haos

al mosf U{[rxbcdjl"“}} solutions in a. b, . d.

Proof. The equation can be rewritten as (a X 4 c)llal +b) = be— ad. Hence aX + ¢
(and consequently X') has O((be — ad)*) divisors and once X is fixed, Y is also

fixed, 0

Theorem 3.2.2 Let Ca(x) denote the number of Carmichael numbers up to a with

exactly three prime factors. Then, for all sufficiently lavge # we have (a(r) =

f)[.r”"""““}].
Proof. If n is a Carmichael number with three prime factors py g, mwith 2 < p <
g<rthenn—l=0modp—1,n—=1=0modg—1,n—1=0modr — 1.

let g =ged(p—1,¢— L.r —1) and a, b, ¢ be such that p— 1 = ga, ¢ — 1 = gb,

r—1= ge; thena < b < e. The congruences given above imply ghe+b+4¢ = 0 mod a,
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gac+a+ec = Umodband gab+ o+ b = 0 mod . These three congruences can
be replaced by the single congruence glab + e + be) 4+ a+ b+ ¢ = 0 mod abe by
observing that a, b, ¢ are pair-wise coprime. Henee, if a. b, ¢ are given then g is

determined modulo abe.

Let glab+be+tac)+a+b+e= Aabe. Since gbe < glab+be4ac)+a-+bd o= Aabe.

we get g < Aa. Lel g = Xa — r. Using this value of g and simplifying the equation

for Xabe we gel (Aa® + 1)(b+ ) + a = r{ab + be 4 ac).

We have Aa < 6g since Aabe = glab + be + ac) +a 4+ b+ ¢ < Ggbe. Also
rbe < rlab+ be + ae) = (Xa? + 1){b + €)+a < 5Xha’c and hence +b < 5\a”,

Wi
(abr )P (abX) adr)' = @19 br)BA12
< 5atthi0(hae?)P AN
—  5(ha) PS5
< B(6g) ta"h e
< 5%(ga)’(gb)*(ge)®
= 56%(p -1 (g— 1) (r—1)°
< 567 (pgr)°
< RIS
Consequently for every solution, either abr = O(+%') or ab) — Oz or

adr = Q™) 1 abr = Q%™ then fix a.b.r and look at the equation (Ae® +
H(b+e) +a = r{ab+ e+ be) in the remaining variables A and ¢. This is exactly of
the form considered in the lemma. In fact the equation becomes a*{Ac) + (a*b)h 4
(! =ra—rbje+a+b—rab = 0. Hence [rom the lemma this Lias Q{271 solutions.
Since abr = O{a®'"), the number of choices of (a,b, r) is Q{314+ Hence the
total number of solutions in this case is O(x¥1+901) The other cases are similar.

O

]
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A. Granville remarks in [34] that an approach similar to the one given ahove

might lead to the solution of his conjecture. The reader is also referred to his notes

in [33].

3.3  An application

Damgard et al [27] showed that the worst case numbers for {he strong pseudo-prime
test are numbers of the type

(i) (m 4+ 1)(2m + 1), where m + 1, Zm + 1 are odd primes

() {rm 4+ 1)(3m 4 1), where s+ 1, 3m + 1 dre primes that are 3 mod 4

(111} pypapa. where py, ps, ps are primes, mpzpa is a Carmichael number and there is
some integer & with 2% || p, — 1 for ¢ = 1.2.3,

(iv) 9, 25, 49,

[tis easy to design a variant of the strong pseudo-prime test that detects numbers
of the type (i), (ii) or (iv)., We can detect numbers of the type (i) or (i1) by selving

quadratic equations in m. This can be done in time polynomial in log m.

However, it is an open problem to recognize numbers of the type (iii) in polyno-

mial time.

Damgard et al [27] require an improved upper bound on Cafe). In their analysis
(see p. 190 of [27]) they remark that except for a factor of £200 their bound is hest

possible. That this is true follows from our bound for Cy(x).



Chapter 4

Progress Towards a Conjecture of
S. W. Graham

4.1 Introduction

Let O3 N) denote the number of Carmichael numbers up to X with three prime

lactors. I ois an open problem to shew that the function ("5 X) is unbounded.

Pomerance el al. [51] proved that (3(X) = O(X*7). Damgard et al.|27]
improved this to Cy(X) < (1/4)X V3 {log X PV for all X = 1. An estimate of
O X25400) for C4( X)) was obtained by §. W. Graham [29]. We showed in [14] that
for sufficiently large X, Ca(X) = Q( X300 Granville (see [30]) has conjectured

that Ca(X) = N3l for X — .

S. W, Graham [2Y] conjectured that Ca{X) < VX for all . He proved this for
XN < 10" and X > 10'%%. We prove his conjecture for X < 10" and X = 2410". It
15 easy to see that a brote force computation of Carmichael numbers up to 1079 (or
even 2% 10™) with three distinet prime factors is prohibitive in practice for solving

5. W, Graham's conjecture.
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4.2 The conjecture of S.W.Graham

S. W, Graham in an unpublished manuscript [29] conjectured that (4( X)) < VA
for all X. e showed this for X < 10" and X > 10", He proved this for
N < 10™ by using a table of Carmichael numbers [48] and for X = 10" Ly showing
Cy( X} < 131X (Jog X )16 We improve on 5. W. Graham's result and show that
his conjecture is true for X < 10" and X > 2+ 10", For the range 10'% < X < 10'®
we can verify thal Ca(X) < X by using Pinch's table of Carmichael numbers up

to 10Y with three prime factors [19].

We also require the following results:

Lemma 4.2.1 Leta € R and a > 1 and N =0 then
Z g FIN[I — ll,-"'f.lx:l_]
yE N

FI[H..'I

Z i ¥ < ﬂ_N“ - ]fﬂj_t

yzN

Theorem 4.2.2 leta be A, B O be positive real numbers such that af/A = b/ B

and afA >¢/C. Then

AN Eur-l'-by-l'-c: 2 = 2—::;.'—12r|.“r'j.-1{-| _ zb—uﬁlf.-i]—il:'l . -‘_:f_'—-.'f".".ﬁ :I--l

Ar+Hy+0lzN

Proof. Assume a,b, e, A, B,C satisfy af/A > b/B , afA = ¢/C. Then

Z 2.‘:_"+ﬁ.l,r+|.': = Z Ef.ly+r:: Z gax

Az Byt e N ¥ TS (N -By-0=)/4
< 3 ghwteha(N=By-Cal/A(| _ ga)-)
T
- { B g )—1 EHN.I'I"" Z g{f.-—nlﬁ,l'.'!:ly Z -z{r'—u.l"l.lr.-fl 1=
u =
< [ e E—r:'-ll—lzu_.‘\.llf-,.'[“ s zl_l—-_:ﬁ',.".-i}—! ( = 2.__“-;__1:'_[
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Theorem 4.2.3 Lel a,b.c, A, B, (7 be positive veal numbers such fhal afA < U/ B
and afA < /(. Then

T‘ 2 ar=by=-es o |:'] <o) II} |2 '|-".'I.".|.|:'] _‘_..’_['I'_'”I"“n'l.'”]_lll _1—||'—-:f:'_J'.41]--|

- =

Ar4By4Cz=N

Proof. Assume a,b,e, A, B, O satisfy af/A < 6/ [ afA < ¢/C. Then

Z np—ur—by—cs  __ E"-J oy oz :"‘ q—as

A+ By Oz N W= rFN—By—-Cz)fA
= Z 2—!-y—c.:—n[N—Hy—L'-'1},-‘.-1|: ] —9-F ]_]
y.x
e {1 _a—ay-lag-aNfA S a=th—nB AR —{e—nifA)=
< il -1 ) =19 1 L 9 nl Ay E 7
¥ =
< |:| = ?—u]—l.z—u:."k'll'lﬂl{] - .z—l:ll.l—d.ﬁll".'”"l—lf] _2--[:' -:lf_-'f.'ﬁ:llll—!

[

We now state our main result,

Theorem 4.2.4 Let C4(XN) denote the number of Carmichael numbers up to X with

exactly three prime factors, Then Co{X) < VX for X < 10" and X = 2+ 107

Proof. If n is a Carmichael number with exactly three prime factors p, g, r with

p<g<rvthenn—1=0medp—1.n =0modg—1,n—1=0modr — 1.

Let g =ged(p—1l.g— 1,7 — 1) and a, b, ¢ be such that p - | = ga, g—1 = gh,
r—1= ge, then @ < b < ¢, The congruences given above imply that gbe + b+ ¢ =
0 mod a, gac+a+o =0 mod b and gab+ a+b =0 mod ¢. These three congruences
cant he replaced by the single congruence glab + ae 4+ be) +a + b+ ¢ = 0 mod abe.

Henee, il a, b, ¢ are given then g is determined modulo abe,

Damgard et al. [27] showed that C3(X) < (/)X Y3 (In XY for all X > L

‘ They obiained this result by estimating three sums. We use their estimates.

Let M be the number of quadruples (g, ., b, o) which satisfy the above conditions

| and gtabe < X. Then (Ca(X) < M. Let M = Ny + Na+ Ny, where in Ny we count
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those quadruples with ¢ > abe, in Ny we count those quadruples with & < g < abe
and in Ny we count those quadruples with ¢ < (7 and g < abe. Here (¢ is a parameter

dependent on X. Damgard et al. [27] work with € = X0 (In X )'/1.

It is easy to estimate V.
Estimate for N

If (e, b, ¢) are given then the number of g with ¢?abe < X, g in a particular residue
class modula abe and g > abe is at most {X/abe)'? fabe, which is X172 f(abe)'.
Hence

. XUB - 4[3) X
N < Z {ab{:}“ﬁ < G

a<hse

where { is the Riemann zeta function. Thus N, < [1,#{5‘;{3(4;'33}:”3.
Fstimale for N

For each coprime triple (a,b.¢) there is atl most one g that satisfies the condition
glab4ac+be)+ a4+ b+ e =0 mod abe and g < abe. If g > & and ¢labe < X then
abe < X/G?. Thus N, is at most the number of triples (a,b,c) with @ < b < ¢ and
abec < X /G, Hence,

S > o1

1<0<X UG a<be(X[aGY)T boe<X fabG?

¥ B X M2
L¥am * Lahllay |

L
= k pe alr

X X N X _—
< T (] - l|1( G j) In ( _,""') < ﬁfinfﬁ])

Thus Ny < (1/6){X/G%)(In{ X))?.

i

Damgard et al [27] were able to show that Ny < IXVBREI +1n(3GN(24+1n(2G))2.
Their choice of G = XY6/(In X )/ pives Ny < (1/6)XY3In X )P and Ny <

(3/64) X2 (In X)) We had obtained (see Chapter 3 or [14]) an upper bound
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of Cs(X) = U{.f‘-.'s"rl"""”{”] by choosing ¢ = X and estimating Ny differently
from that in [27]. However, we were not able te obtain an useful explicit bound [or

solving 5. W, Graham's conjecture.

Since glab4actbe)+a+b+e = 0 mod abe assume glab+actbe)+atbde = Aabe
where A > | is an integer. Then it is easy to show that ha < 3.75g. This is true
because (Aa — g)be = glab 4+ ac) + a + b+ ¢ implies (Aa — g)/g9 = (ab + ac)/be +
(a+ b+ ¢)fghe < 2befbc+ 3c/gbe £ 243/4 =275 as ¢ 2 2 and b = 2. Therefore

Aa < 3.79g. A more careful calculation gives 3 + 7/12 instead of 3.75.

To simplify the exposition of our proofs we use Aa < 4g but in the final calculation

we use the sharper estimate de < (3 4+ 7/12)g.

We show (4(X) < VX for X > 7+ 10" by showing Ny < (1/6)¢%(4/3) X' <
VX125 and N+ Ny < (124/125)V' X, Now Ny < (1/6)¢C3(4/3)X13 < /X /125

for X = 10", Hence we can assume g < abe,

Let X = 2%, Consider: (A4;A;z;¢) where 2% < nog 344 28 L Yo 28HL

GALT o f o QARTHL A4y < o o 9t
We have gPabe < 2V | da < 4g so Malbe < 2V40,
We consider various cases in our proof.
I A4z <A
I{a) BEA+H
I(b) Ja>A+n
IT Ad a2z A
1l(a) AZA
[{a) (i) A+ <
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W(a) (i) (1) o < (2A4jy — 2)/2
Hia) (i) (1) 2> (2A 4 jy — 2)/2
L) A< A

II{b) (1) ja > 24

L) (i) J2 <24

H(b) (i) (1) 35 < (24— fo)/2
IT{b) (i) (II) 1> (24 — ju)/2
For proving our n‘:m_ll’r. we use thiree formulas:
(1) abe formula

(i) ade formula

(iii) Aab/e formula

Explanation of the formulas:

(1) abe formula

Since glab 4+ ac 4+ be) + a4 b+ ¢ = 0 mod abe and g < abe; for a given choice
of a, b and ¢, g is unique. Hence, to count the number of quadraples (g, a2, 0,¢)
such that ¢?abe < X, we need to count only the number of triples (a, b, ¢) such that
gabe< X. Since 22 £ a < 38FL 2T S hig PATEHL 94 £ o DAL the

number of triples {a,b. ¢) such that ¢®abe < X 1s < 242447440,
(1) ade formula

glab+ ac+ be)+a+ b+ ¢ = dabe. Lel r = da — g then Aa®(b+¢) — r(bo+ ac+
ab)+a+b+ec=0. Hence rbe — (Aa” + 1 —ra)(b4 ¢) —a = 0. I we fix a, A, r
then viewing this equation modulo r we get —(Aa®* + 1)(b+¢) —a = 0 mod r. The
number of choices for b+ ¢ is less than the number of choices for ¢ which is < 24+¥,

Hence the number of solutions for the congruence —(Aa* + 1)(b+ ¢) —a = 0 mod r
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is < 297 (e a AL rocan be fixed in air ways, ¢ can be fixed in < 2449 [ ways,

So a, A, v, ¢ can be fixed in at most 2aie ways (taking in to account Lhe case when
PAFE =

(111} A%a*h/e formula

Consider the equation rbe — (Aa® + 1 — pa)(b+¢) — @ = 0. This can be rewritten
as (rla+b)— (Aa*+1))e = (Me* 4+ Db —rab+a. Hence r— (Aa*+1)/(a+b) = ((Aa®+
1)b—rab+ta)/(c(atb)). We show ((Aa*+1)b—rab+a)/(c(a+b) < Aa¥fe. a < Aaa
and b < rabimply b+a—rab < Aa%a which implies (Aa®+ 1 )b — rab+a < Autla+b).

This yields the desired result.
Hence

|r = (Ad® + D)f{a+0)| < Ara¥le

< |}."'|.+E+2.-'!+-!—.4.—5| = p}."l.+-’1.—!,r+3

@, A, bean be fixed in adb ways., r can be fixed in at mos! Aa®fc ways, The total num-

ber of ways of fixing a, A, band r is < adbha®/c = A2a®h/e < 242404t 9M b A—ysd _

DIHIAF A+ Ty

We now look at the individual cases:

Case I A+ <A

(AvA,z,y) can be written as (A A+ o + §;, roar+ 7a)
Case I(a): _.l:-z = A+

Use the formula abe

E gAH A+ HA+y] _ Z g3Abzty Z 93442244
At o Ay gz A 3t g0
subject to Y athe < gN+6 - JA+4A (A4 :E} +(ALy) < N +61e A+ 74
J)+H6A+2r 4+ i S N4 61e 94457 +37, 4+ 2 < N +6

Z o¥AtITE ZEIH Z 0z Z o2

Az A <A T N4HE6—8A-37 -2 )/5

8T/
;H S
—
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< E 2."1.;-1 Z 902 [22'][N+G—'JA—HJ:—,r;zh"ﬂlz] o IJ.f'ZZE}I_]

A <44

= [‘1."{3} Z 23’4 Z 2322{2.“»'4-12—13;1—55_7'1—21'2].;5
Ay sreddy

= [sill,l’g} Z 934 Z GUENFI2T8A 65, 4352 )/5
A ALy,

— [4;.'3} Z ?{2;".'4.12_3)1—5;1],-'5 Z 932/5
Ay <A

£ '[“I”} Z Z{ENHQ_'-H_GJ':]J"F'(E;”E'}"H‘Ji e l,n"iﬂ"la}“’
ATy

= {.-1;:”“ - 1;’23;5}'1 Z2[2N+]'£—3.4—ﬁj,]f;‘:-+[-'i;1 +33,1/5

A
= {4/3)(1 - 1;:;3;’5]—12{24'-.’“:;5} Z,z—:ul,.fﬁ

An

=2 E4){3)“ 1 1;2_-51."5:]—I 2{2;\'{-12;’5] Z E—F._T. Fi Z |
b A

(N +6)/9)(4/3)(1 — 1/22/5) 10N 12150 praore 1

LA

(Note j; =1 and A < (N + 6)/9)
Case I{b): Ja> A4 3
(A, A .z, y) can be written as (A, A+ a2+ §, 2,0+ )

Use Me®b/e lormula

Z 3344204 x—y
Aaai.gz

subject to 9A 4+ 52 + 3, + 2 < N + 6 i.e 104 + 5 + 47 < N+ 6

z 9M3A+IA-g Z 93+3A+2 Atz 4 ) -5

Arii.3e Ardaa1a

-= Z ;).'3 +5AL 2o+ =03
At

- z 23+5_—1+‘2r+2j| Z = Ja
Ay Fa> A+

i: Z‘ 23+54+2.r'f"3j|2—[.—1-+j]+'|.}:l_}1
A

= ) 2WURELL (aubject to 104 + Sz +45; < N +6)
Axgy

— 93 Z giA+2r4j)

10A+Ez4d7) <N 4+6G

Let 24 + = = k. Note that 5k + 45, < N + 6 implies & < (N 4 6}/5. Hence the
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above sum 1s

[

2% ( Z ‘2%"”') (k/2) where 5k4+475, <N +6

Skbdip SN +6

< (N +6)/10) T 2%

Rktd); SN+G

2((N +6)/10)(1 — 272)71(1 — 2! -2=4/5)~192(N+6)/5

[

(Note 2/5 > 1/4)

Case 11: A4 e = A

Case Il{a): A=A
(A, A 2, y) can be written as (A + ji, A, z, 2 + j2)
sub-case: A4 <1

(A4 71 A xyx + 72) can be written as (A + A AZA L0+ B ZA 5 a4 )

subject to AMalbe < 2¥16 |
BA+HA+ )+ AR 20+ i+ a4+ A+ +2A 4 s+ S N46

Le 1I3A + 871 + 2 425 < N 46

Use Ma®h/e lormula

z PIIAFIN+T—y o3 z 2A4BA+3
— Z SIAFHAL ) )0
— 98 Z 8+~
(subject 10 134 + 8, + jz +2s < N +6)

= g¥ ZQ?’M]“ ZE_-” (subject to 13A + 85, + 75 = N +6)
A bE]

20 37 (A0 01 (subject to 13A 4 8ir 4 275€ N +6)
Aidras

..II(]. - 2—5)—125(."\" P-G:II-"!-.':I{] - E.'i-—!]ri'ifl.'i}—1

F

[

(Note that 5/13 > 3/8 and 5/13 < 2/5)
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Sub-case: A+ > x

Sub-cases:

(i) o < (2A + 1 — 2)/2

(i) j2 > (24 + 5 — 2)/2

Sub-case: 2 S 2A 44 — )2

(A, A, p) can be written as (A + i, A zox 4+ 72)

Use ahe formula

Z altAbhsaty

subject to Aatbe < 2V je 3N + 4(A I F2A+ )+ 20+ Ja S N 406 e
A+ 65+ 20 + 10 SN L6

o ZQE.'H-A Frdge 9 Z: 2!(-"-+_n]-1 Adrtmn _ 9 z At i ot

subject to YA + 67 + 22+ 2 < N+ 6
We consider two cases
(1) T0A +(13/2)) + (3/2)e < N + 6
(1) 10A 4+ (13/2)5 + (3/2)2 > N +6

(Case (1)

9 Z 12:1.'\ 25 44z

— 9 Z 2:‘.-.'I.+'-5J'I."|'~1'Zg.i"i where _'n‘"z < [BA Y ,}.1 = 'F]r"lz
Aoy Ji
< o Z PR RS R ST P
A
oy ad A (E/2) 5 /2
23 Z 3"1
PR T

subject to 10A 4 (13/2)), + (3/2)r < N + 6

LA

We consider two suli-cases:

FE "
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(i) I3A+8H < N+6
{ii) 1IBA+8) > N+6
Sub-case: IBA+S, = N +06

Use & < 2A + 1

9t Z QAN (5] s 22

Ay
= 22 Z .241.1+{5,|fﬂ}j|l Z 22’,!"2
A3 r<2Asg,
{_: 22 Z -2*1ﬂff5f2}jl-2[2ﬂ+j| ],."Z’I:] = ].'J“z!l'lrz]_l
Ain
< 22{] . ljzl,l"!]—l Z 25."‘1+3_;,
PAALE SN 4E
_S 2'-'5{] Iz lfﬂjfl-j:l--l[]. o E_ﬁ‘)" 125{1’\r+ﬁ}f'|3{] . 23—5x5f|3';|—'|
Sub-case; IBA+ 87, > N+ 6
' BT LOA 4 (13/2) 51 4+ (3/2)c < N+ 6. This gives « < (2/3)(N + 6 — 10A —

(13/2)51)

A

d

2.‘
=
2.’ 2-|A+{h|-'2]_]'| Z arf2

Z ot A+(5/2) 42
1
W RN +E—10A-(13/2)4,)

E 22 Z .2-1.“L+[ﬁ_|lr2]_1:|El:]f?]ﬂfﬂll"3:l{.'\'+ﬁ- IUJ'L—[JSJ-"Z:II“:I(-I o lllrl.a.lf'.f }—l
M
< 921 — U,zl,.f'z}—L Z24A+{5,.-'2},;',+{|;3}(.*v'+ﬁ—1un—[1u,-'!:|m
< jz{l = ]IIIJQI,I"E'J—IE#.""-EE:I,-"H z: 2'-“"-;"'-5-F.rl.n"3
TOA(13/2 €N +6
<241 — 1242 19N | _ 9231 30)(N46) | _ g1/S-2/(15372) 10y
E 22(1 o ]jfgl,‘rz}—!{] o 2—'2;"3}-—!{1 = 2!f3—ﬂ2f3}[13fﬂ:lflﬂj—12'3{.l\’+11]f5-
Case (ii)

|
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Here we use the condition 9A + 65, + 22 4+ 5, < N + 6

=

Aovzags

9 Z 23A+23|. +rdgz

= 9 Z 231"L+'3_.i|+r z O

A

[

Aot

A

SN FE=(9A+6T, +2r)

92 Z IA+ 235 A2 N 46 (98467 +22)

oN+8 Z 9—6A~4j| -z

AT

Fal

Sub-ease;

subject to 10A + (13/2)j1 + (3/2)x = N +6

EN'I"S.{]_ . Q—Ej:l- I(I -5 E—“-—ﬁ[-’l-,."ﬂjfl"}']—llrl - 2—{-1u5{]3f2]f]ﬂ:l}—!2 BN LGN

! < Qii-lt:‘-f’wj,fm“ - 2—{1]—1“ . 2—(1—6(3,-"2],-‘]03}—1“ _2—{-:—1;f13,»'2]flu]:|—1

Note that 6/10 < 8/13 and 6/10 < 2/3.

Je 2 2+ g — )2

(A, Ay, y) can be written as (A + ji A, 2,2+ 72)

Use AMa®h/e formula

Z -23+2-'L+3.4+I—y

S0

subject to A%abe < 2NFF je 3A 4 4(A 4 ) +T2A+n)+ 2+ 72 < N46ie

SA+6(A+ 1)+ 22 4+ (2A 4 7, — £)/2 < N 46 Le 10A+ (L3/2) 5 +3x/2 < N 4 6

[

1A,

]

E AR A gy b

Aoxigis
Z QI4EAA] z a—12
Aoy F2UEA LGy —2) )2
Z 29+5A 425 2= (A0 —x}f2)51
Aoy
Z GAFBAL =N f24x2
Ay
Z A dAH{E 2 fay2
Az
2-1 Z q-'lﬁt-]--rr{_'ulf'i:l-l-rf?

L

(subject to 10A + (13/2)5; + (3/2)x < N +6)
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The sum here is similar to one we encountered earlier. As before we consider
two sub-cases:
() 13ALSj < NG
(1) I13A 8> N46
Corresponding to these sub-cases we get the following estimates:

E 24(] =. IKEIIZ]—I |:I] s .2—5:]— r_.zﬁ{.n"-’+ﬁ},|"[-'1{] o 23—5*3{'13}-'

and

f‘:- 2-1[1 - -Illllu':?‘llf'i‘;—]{-l _ ?—23‘3}—]{1 . Elfﬁ—ffﬂfﬂ}[l:j,lr?:lflﬂ}—i22[N+G:II|"5

Case 1I(b): A< A

Since A4 = A we haver 2 A — A, (A, A, r,y) can be written as (4, 4 +
OOl - T DB s U ol )

Sub-cases:

(1) ju > 24

(i) g2 < 24

sub-case: _']'g = 24

(A ALz, y) can be written as (A, A+ 70,0 4+ 24 + Jau gt + 24 + 55 + 73)

se ,\?aabjc formula

Z GIEIALTA4—y

subject to Mabe < ¥V ie At AA 4+ A4+ A+ y < N+6ie3(A+ ) +6A 4
Ap42A+7)+j SN +6ie 13445 + 2+ 13 S N 46

Z 2$1+2[.—1-+,:11]+3.4- Ja = 2'3 Z 25.-'1-1-'_"3[—13
Aidridaa
<& -23 2‘: 21j| 64 Z 2—,1'3

Aoy Ja
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(subject to 57, + 134 < N 4 )
E 23 E 21_]'1 +5.4.-21
521+ 1A S NG
i‘: El{l ’ 2-.’]—[22[1\!4—“}}"5{] _25—38!3,"5']—1

Sub-case: g L 24

(A Az, y) can be written as (A, A + J1sdt 4 Jas gy + 32+ 74). Two cases can be

considered
(i) ja < (24— ja)/2
(ii) js > (24 — ja)/2
Sub-case:  jy < (24 — j»)/2
Use ade formula

Zgl+d+ﬁ+.-1+y = gzgumw

— 9 Z 2_2.-1.+A+__1:r+ji+.f:r+i1

= 9 Z 23A+2ji+,]':| +Ja

subject to Aathe < 2% Lo BA +AA + A4 ji + ju+ A+ 5 + 3+ < N4Gie
31’1 = EI"I-I— 2_,?1 + .ng -|- Jd E _-""r'l + (M ]!"J{_{ S J-I} -+ {.'I"i + g,h - 2‘]'1 + __j‘l;]_ “:_: N ER ¥ i-f"
9A + a7y + 2}3 + _j';], < N46

9 )__: 234+ T it

AdiT2.da
— 9 Z 23r’1+;:+_|_1 Z :g'ﬂ.l'l
fdads 1 E(NHG=9A- 23~ 1) /5
= 92 FIA g HNHO-94-25,— 13 ) /571 _ a-2y-1
AJZJ (1-27%
< (8/3) Z V5 A+3 3 +5i5+EN+ 12— 1BA— 432~ 253} /5
Adaida
= {gj,f:g] Z S(EN+12-3A4 12430 }/5
Agzida

_ I:Sf:!]ﬂpﬂﬂz]ﬁ z ol =34+ 4350 /5

A |.'|‘-;r l.?.'.l
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= [ngjgiz,wﬂzjfﬁ Z ol=3A412) /5 Z o

A I3 5(2A-52) /2
< [8;3}2[2”*‘:1]1{:* Z 2[—3}11'_1':],I'Iﬁz[{gﬂ—_]q}frZ}{:il.'lE:l}{] = ]f’.-_"-i‘m:l_t
A
] [Hf].’:j:rj{ﬂj\r-l-l_:']fﬁl: |_ == J III,'E."EJII.-I-]-- | Z .2:—:1:1+j:|]_||"5+34J|'5_:'5_ulll'“'|,
Az
= {5;3}'2{21‘-’4.1?”5“ . ];23}'5}—] Zz—jg{lﬂz [
Jz A
E {[_ﬁ. + ﬁ]ﬂ_}]{ﬂf&}f.‘ﬂ,ﬁ,ﬁl—]!]fﬁ{] o IIJ;E&,-"E]—I“I{] . 2_]””)]
< ((N46)/9)(8/3)(1 — 1/2%5)71(1 /(1 — 27110y yalaN+12)ss

Sub-case: Ja > (24 — 3,)/2

(A, A7, y) can be written as (A, A + Ju gt F ot + J2 4 Ja)

Use Ma'bfe formula

Z A+ 2A+3 A b —y

subject to Aatbe < 2¥0 1o (A4 5)) 4+ 644 2(j, +4u) +7a = N+ 6 1694 + Sy +

Ziztis € N4+6ie JA45j1+2+ (24— 52) /2 < N+Gie 10A+55,+35/2 < N+6

ESZEMH’!HLHS-‘FJ; =5 23225A+'23: z 9—aa

Ay Fr{24—3z) /2
= 2‘5 z 25.-1+2j|-2—|:{2;‘1-—_1'2}|"'2}21
-‘i.J-l:
< 91 Z gdAta 2425
"ih];!l.h
(subject to 104 4 3j2/2 + 5j, < N +6)
< 91 Z 24A+2J1+J21'l3

10A+57, 4253 /2SN +6

Let 24 + 5, = E. Then the above sum is

& o4 Z ((22k+.fzf2) [lif,l'r:”)
544312 /2SN +6
< 2((N46)/10) Y 2%an

Bt f2SN i

Note that 5k + 372/2 < N + 6 implies & < (N +6)/5. Also 25 = (1/2)/(3/2).

I T
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Hence the above sum is
< Q‘il:{}"\" T [])’J“-'}“ - E—EJ-—122{|\’+G};’5“ = EI.."Z—[‘.E]{E,"'E'J,.".’:]—I

Adding all the estimates and by solving the resulting inequality by Mathematica we

get oo 2 T 107,

sinee N is aboul 150 the sums in the various sub-cases turn out to be ecasy to
calculate directly. A slightly more careful calculation was done using a high precision
arithmetic software UBASIC on a PC. This leads to a result sharper than 7+ 10%7,

The caleulations yield &« = 2+ 10%°7,

4.3 Discussion

Though we have been able to get a significant improvement on the range proved by
8. W. Graham, establishing his conjecture for the range 10'% < X < 2% 10" is still

apen.



Chapter 5

The Least Witness of a Composite
Number

5.1 Introduction

This chapter deals with the problem of finding the least witness w(n) of a composite
number n (see |7, 22]). A number w is a witness for a composite number n if n
is not a strong pseudo-prime [39] to the base w. We show w(n) = Q(n!/EVEItell))
for all composite numbers » except Carmichael numbers of the form n = pgr with
valp— 1) = (g — 1) = m(r — 1). For the exceptional numbers we conjecture

w(n) = O(n"EVHAN) . The results in this chapter also appear in [15].

The problem of quickly determining the prime or composite nature of a number
n is a very important problem in algorithmic number theory and cryplography
and has been the subject of much research [1, 2, 4, 7, 16, 52]. An O({log n)*+*11}
time deterministic algorithm for this problem is known under the assumption ol
the as yel unresolved Generalized Riemann Hypothesis (GRH) |7, 43]. However the
best known deterministic algorithm for this problem without the assumption of any
unproved hypothesis [4] runs in sub-exponential time having a time complexity of
O((log n)PUesleslosntly 1t has alsa been proved that there is a prohabilistic algorithm
[1] that for prime n leads to a primality proof (proof that the number is actually a

prime) in O{(log n)*) expeeted time for some k> 1.
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st approach to test if a given positive inleger i i & prime, s to choose an
A first app h to test if a g posit L prime, is to choose

integer a such that 1 < @ < n and ged{a,n) = | and n passes the Fermat lest ie.
a* !'=1modn Ifa" ' £ 1 modn then n is not a prime. A composite nuimber n
which passes the Fermat test for a given base a is called a Fermal pseudo-prime to
the base a. There are certain composite numbers n called as Carmichacl numbers
[39] for which "' = 1 mod n for every a for which ged({a,n) = 1, It Las been

b v i G _
proved recently [3] that there are infinitely many Carmichael numbers. Hence a

different approach is required.

A further improvement to the Fermaf test is known which uses the Legendre-
Jacobi symbol (see [39]). If p is an odd prime and ged(a,p) = 1 then o'W =
{%] mod p. This test recognizes composite numbers not recognized as compasite by

the Fermat test.

A composite number n is called an Euler pseudo-prime to the base a il ped{a, n) =
1 and a"-Y/2 = (£) mod n. It is known [39] that no odd compoesite number can be

a BEuler pseudo-prime for all the possible bases a for which ged{a.n) = 1.

An improvement on the Euler pseudo-prime test is the strong pseudo-prime
test also called as the Miller-Rabin test [52]. Let n be a pasitive odd number for
whichn—1=2% wheref isodd. Il 1 < a <n—1 then n is defined to he a strong
pseudo-prime to ihe base a if:

either «' =1 mod n or a®™ = —1 mod n for some ¢ € {0,1,...,5 -1}

Many of the problems we consider have polynomial time algorithms for solv-
ing them if the Generalized Riemann Hypothesis (GRH) 15 true. However, we are

interested in algorithms for these problems. which do not assume the GRH.

Definition 1 (Witness) Let nt be a composile number. We define an integer a for
which 1 < a < n o be @ “wilness” to the compositencss of n if cither ged(a,n) = 1

orn s nol a sltrong pseudo-prime Lo the buse a.

From our definition of “witness” it follows that we can test il a given integer a
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praduces a certificate of compositeness of a given composite number n, in polynomial
time. This property is very helpful in practice when we want to quickly convince

auvoue (or ourselves) that a particular number is in fact composite.

A natural way to find the least witness of a composite number n 15 as {ollows:

Algorithm
{Trivial algorithm for the least witness of a composite number n }

wi=2
while (n is a stroug pseudo-prime to the base w) do
wi= w1l

return w (the least witness w(n) of the composite number n)

In this chapter we analyze this algorithm.

Far a composite number n it is desirable to give a good upper bound on the least
witness w(n) to the compasiteness of n. It is known that win) < 2log? n under the
assumption of the GRH [7]. From this, it is easy to show that the average of w(n)
taken over odd composite numbers < r is asymptotic to 2 as ¥ — oo [22]. Burthe

[22] showed that this is true even without the GRII assumption.

The last result has an interesting algorithmic interpretation:

Theorem 5.1.1 There is a delerministic algorithm which finds a cevlificate of vom-
positeness of o given composite number n, whose average runmng time s polynomial
(asymplotically), withoul the assumption of any unproved hypothesis (suech as the

(reneralized Riemann Hypothesis).

We are not aware ol any such result prior to Burthe's [22]. The average running
time of the basic version of the fastest deterministic primality testing algorithm [4]
is not polynomial as there are essentiallv no good cases for that algorithm. they

are all the same case. There are versions of that algorithm [19] which use partial



CHAPTER 5 LEAST WITNESS 38

[actorizations of n* — 1 etc., but few n's will have a factored portion big enough to

influence the average running time.

The analogue of the above theorem [or primes involves finding certificates of

primality. There is an open problem here:

Open Problem 1 (Give a deterministic algorithm, which does not assume any un-
i !
proved hypothesis, which finds cevtificates of primality for prime numbers, whose

average running lime s polynomial.

In order to solve this epen question one would at least have to show that a positive
prapertion of the primes can be recognized in deterministic polynomial time, The
best result in this direction is that of S. Konyagin and €, Pomerance [40] who showed
that > '™ primes up Lo r can be recognized in deterministic polynomial time for

any ¢ = 0,

The study of w(n) is closely related [22] to G{n), the smallest positive integer
(i such that the subgroup generaled by the integers b for which 1 < b < @ and
ged(byn) = 1 is (Z/nZ)". For odd composite numbers n it is known [22] that

w(n) < G(n). Bach [7] showed that the GRH implies G{n) < 3log” n.

Number-theoretic estimates obtained without assuming the GRH are generally
very weak when compared to those obtained using it. This observation also applies

to estimates for (7(n).

Bach and Huelsbergen [10] offer heuristic arguments and numerical data sup-
porting the idea thal Gn) < (log2)7 ' lognloglog n asvmptotically,. They re-
mark that by the Polva-Vinogradov inequality [28], for odd composite n, G(n) =
Of/nlog nloglogn) hence win) = O(ynlognloglogn). For a composite i we can
show trivially that w(n) < /n by observing that such a n has a non-trivial divisor

less than or equal to /.

Burthe [22] showed that G(n) = O (n® V) for all n € Z+ and il » is cube-free,

.
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then one can replace 3/8 with 1 /4.

Lenstra [41] oblained the following theorems, of independent interest. They give

an algarithm useful for inding witnesses of numbers that are not square-free.

Theorem 5.1.2 [{1] Let n be a posilive inleger, n # 4, and assume thal o™ =
I mod n for cvery prime number a < (logn)*. Then n s the product of distined

prive numbers.

Theorem 5.1.3 [{1] Let p be an odd prime. Then we have o’ # 1 mod p* for

some prime number a < 4(log p)*.

Burthe [22] obtained the following variation of the above results of Lenstra, by a

different technique.

Theorem 5.1.4 [22] If n is un odd composite number that is not square-free then

win) < log* n,
Lenstra’s result has an interesting algorithmic consequence:

Theorem 5.1.5 There s a deterministic algorithm that finds a certificate of com-

positeness of o number n that is not square-free, in polynomial time.

Theorem 5.1.6 There is o O((log n)*™ / loglogn) Hime deterministic algorithm,

or productng a cevlificate of compositeness of a number w el is not sguare-free,
! I

If we are able to improve on the exponent of log n in Lenstra’s theorem then we
improve on the above theorem but this appears to be very difheult [31]. We gel an

apen problem here:

Open Prablem 2 Obtain a of(log" n)/loglogn) time deferministic algorithm for

finding a certificate of compositeness of a number n that s not square-frec.

+r
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Granville [32] showed that we can assume a < (log p)* in Lenstra’s theorem 5.1.3.

Hence we gel win) < (1/4) 1:}gg n 1n theorem 5.1.4.

We note that the algorithm referred 1o in theorem 5, 1.5 may produce a certificate
of compositeness of a composite n that is square-free. Hence it is not useful for
distinguishing between square-free composites and integers that are not square-free.

However we get an interesting result:

Theorem 5.1.7 [f there s a polynomial time algorithon for producing o ceviificale
of compositencss of a square-free composile number n then we can transform that al-
gorithm to a pelynomial time algorithm for establishing the primality of any positive

infeqger 1.

It is interesting {o note that while there is a deterministic polynomial time algo.
rithm for producing certificates of compositeness of numbers that are not square-free,
there is no known deterministic polynomial time algorithm (see [3]) for testing if a

number is square-free.

By using the results of Lenstra and Burthe we get win) = O, (n'/1VI+) for

every odd composite number 7.
By a careful consideration of the number of prime factors of n Burthe [22] ob-

tained:

Theorem 5.1.8 [22] If n is an odd composite number and is not the product of

three distinet primes then w(n) = O, (n" V) for cvery e > 0.

Theorem 5.1.9 [22] If n is an odd composite number with cxactly three prime

Jactors then for cvery ¢ > 0, win) = O,(n*/1BVe+),

1'hus Burthe was able to show that for every odd composite number n, win) =

O, (nM/ 614
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5.2 Improving Burthe’s Theorem

An interesting problem is to improve 1/6 to 1/8 in Burthe’s theorem for odd com
posite numbers with three prime lactors, Burthe [22] requires the following results

for his theorem 5.1.9:

Lemma 5.2.1 [22] [f n is odd and p and ¢ are primes dividing n with vy(p — 1) <
talg — 1] and if (7) = —1 for a € Z% then a is a witness for n. Furthermore if

velp—1) = 1{qg—1) and {,qu = —1 forb e Z* then b is wilness for n.

Lemma 5.2.2 [22] For cvery € > 0 there is some number C, with the following
property: if p and g are primes that divide an odd number n and vo(p—1) < ty{g—1)
then w(n) < f_’.*{rj.‘.-"lw?l-f-tr

Theorem 5.2.3 [22] Let x be a character mod n. For non-principal characters y,
define B(x) to be the least positive infeger a such that x(a) # 1 and x{a) £ 0. Then
Jor every € > 0, we have B(x) = O.(n® &) [f in addition n is cube-free then
foralle =0, Biy) = O, (nl/ e+,

Burthe [22] in his prool of theorem 5.1.9 showed that we need to consider only
the case »a{p — 1) = 1a(q — 1). By using the above results we strengthen this to
va{p —1) = ta{g — 1) = 1a(r — 1) by proving for non-Carmichael numbers n = pgr
the least witness w(n) = O, (n'/"®*). Hence we have to solve our problem just
for Carmichael numbers n = pgr for which va(p — 1) = 12(g — 1) = wa(r — 1). This
particular result also follows by a direct application of following lemmas in Adleman

and Leighton’s paper (see [2]).

Lemma 5.2.4 [2] For any € > 0, there is a constant €' sueh that, for every pair of

primes p and q with q | (p—1), there is a gth non-residue of p less than Cpt/PE+e

Lemma 5.2.5 (2] If p | n and ¢ | n for two primes p and p', vy(p—1) > v, (p'=1) =

0 for some prime q, a is a gth non-residue of p, and A(n) | (n—1)s for some s, then

I
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' == b — ' 3
cither @ or (a5 mod n) — 1 has a nontriviel greatest common divisor with n

for some 1<k <w((n— 1))

These two lemimas also tell us more, namely that if o = pgr is a Carmichacl
number then there exists a prime € such that the condition vg(p— 1) =wgly—1) =
ve(r — 1) fails to hold and there will be an a satislying « = O, (n}1Be)F ) which will
produce a certilicate to the compositeness of n (by producing a nontrivial ged as

guaranteed by the lemma just stated). But it is not clear how we can quickly find

such a Q.

Lemma 5.2.6 [fn = pgr where p < q < v are odd primes and n is not o Carmichael

riumber then win) = 0, (n!/(Be+ely,

Proof. Assume that n satisfies the given condilions but is not a Carmichael number,
If pg <= /n then w(n) = O,((n*/BVI+) by using win) < O ((pg) IV Hence
we assume pg > /n. Then » < /n gives p < ¢ < 7 < y/n. By Burthe [22], we
have for a prime P, G(P) = O, (PHIWER)  This implies that the set of numbers
{1,....1}) where | = UCU’LH"""EH‘) generate (Z/pZ)*. The number n must satisly

; B fade -
a® ' =1 mod n lor every a = O, (n" ~SV‘+'3} otherwise we are done,

Say P = p. Sinee the numbers 1,.. ., ! generale (3, and sinee a"~! = 1 mod n
for all @ in {1...{}, therefore a"™' = 1 mod P for a in . Butl & is cyclic, so
"' = 1 mod P for g a primitive root of P. Hence | G [= P — | divides n — 1,

Similarly, setting P = g. P = r and using the fact that n is square-lree we gel n s
] 5 { £ 1 B

a Carmichael number. This contradiction concludes our proof. ]

Note that in the above proof, we only require the weaker assurnption that n is a

pseuda-prime for the bases under consideration,

We also make use of the following lenma:

Lemma 5.2.7 Assume n = pgr where p < g < v are odd primes. If no1s a

Carmichael number for which va(p — 1) = g — 1) = valr — 1) then if n s @
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strong pseudo-prime to the base a then (a/p) = (a/q) = (a/r).

5.3 Least witnesses for special Carmichaels

Except for the case when the given composite number n is a Carmichael number
with three prime factors with ws(p— 1) = wa(g — 1) = 1alr — 1). we have succeeded
in showing that the least witness w(n) for a composite number n satisfies win) =
@, (n*/#F+4) . These exceptional numbers are in fact, among the worst case numibers
ﬁj‘f'ﬂiﬁf‘ﬁ_ﬁjﬁﬁng"pﬁfﬁudnéptime test [27]. The other numbers are 9, 25, 49 and numbers
of the form (m + 1)(2m + 1) and (m + 1)(3m + 1). While these numbers can be

rmgg;ﬁmd'in deterministic polynomial time we have an open problem for the special

p<g< r-:.m:g.qafﬂ;pﬁmm far which u:(p —1)=w(g— 1) =wa(r—1).

In fact the problem is open for any Carmichael number.

5.3.1 Improved estimate for the special Carmichaels

For the special Carmichaels we improve the Burthe estimate w(n) = O, (n!/(5/5+r)

by using an argument due to Heath-Brown [37] to show w(n) = (O, (n'/153887)4e ),

Theorem 5.3.1 Ifn = pgr is a Carmichael number for which v,(p—1) = (1) =
1’2(" = 1] “L!-Eﬂ U.Z'I:J'I.J — Of{n_l.l'r[ﬁ--r’ﬁ'-qv‘;:l+r}_

Proof. Lel n = pgr be a Carmichael number for which pa(p — 1) = (g — 1) =

va(r— 1),

Let p < g < v, and suppese that (m/p) = (m/q) = (m/r) for m < M. Then

(m/pq) = (m/gr) = (mfpr) = 1 for m < M, except when p or g or r divides m.
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Method (1) we may apply the standard technique of Vinogradov for the least
quadratic non-residue of the character (#/pg). Let K > M and sum (k/pq) for
ko< K. with K = (pg)"/*) By Burgess’ bound (see [21] or p. 2063 of [57])
this is of '), On the other hand we get a contribution 41 excepl when b has a
prime factor al least M (or if p or ¢ divides k). The sum is therefore at leas|

N —K[p—N/g—2K 3 areoen 1[5, where & runs over primes, Hence

o(K)> K (1 — 2log(7" log 1t =) - um)

since p must tend ta infinity as n does. Thus

M < [‘pq}k.l"lﬁ-*u{l}_

Method (ii): This time we consider ¥ i< (f/pg) + (kfpr) + (Efgr) for K =
(gr)'*+el) 50 that Burgess' bound shows the sum to be o ). This time we get
a contribution of +3 unless & has a prime lactor 5 > M (or £ is divisible by p. g,
or r). However, for any k, the summand is al least —1 (this is the key point in the
argument; the summand can never be —2 or —3). It follows that

oK) > K (3—*1,.";;—4;’:?—4,"?"-—4 N l,.f'.s)

M<ach

and hence thal

o) > K (3 — 4 lngiﬂﬁ-} =% )

We dedice that

M < (gry}faciot),

Conclusion: It remains to use the two bounds as efliciently as possible, and this
depends on what information one has as to the relative sizes of p, g and r. We have
r < pg, and g = O(p*) (as well as p < ¢ < 7, of course) but there may be other
constraints, Setting p=n®, g=n’,r=nand M =n", one has 0 < a < b < ¢,

o+b+e=1,c<a+b b=2a+o0(l) and we have to find the maximum of

B rm'u[{a x b} {' |_c_]_] + o]

T/e A
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subject Lo these constraints. This is a linear programming problem: Maximize r so
that @ < (a4 0)/(4/€) oz < (b+c)/(4e¥), 0 fasb L atbte=1c<aetl,
b < 2a +o(1). We solved this using Mathematica to get @ = 1/(6.568+/¢).

This establishes that w(n) = O, (n/(8008E+), O

5.4 Discussion
Finally we are led to the following conjecture:
Conjecture 1 For cvery composite number n we have w(n) = O, (n1/1BVEI ey,

Our conjecture is based on Lemma 5.2.7. Obviously, our conjecture is true if the
GRH holds: due to Bach's result for win) [7]. However it appears difficult Lo prove

this without using the GRIL.

It is easy to see that il our conjecture is true then we get an 1mprovement over
the primality test of Adleman and Leighton [2]. The new primality test will have a

running time of O, (n!/(8F)40),

No deterministic polynomial time algorithm is known for recognizing whether a
number is a Carmichael number, However it is easy to show that these numbers
can actually he factored in random polynomial time [16]. Finally, we note that the
number of special Carmichaels up to 2 is actually O 25144000 since it is known (see
Chapter 3) that the number of Carmichael numbers up to a given nurnber . witls

exactly three prime factors is O(x®/14#ett)),

It will be interesting to make our bounds explicit and explore the connections of

our results to [46],
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