VARIATIONAL FORMULAE FOR FUCHSIAN
GROUPS OVER FAMILIES OF ALGEBRAIC
CURVES

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philesophy

by
DAKSHINI BHATTACHARYYA

THE INSTITUTE OF MATHEMATICAL SCILNCES,
C.L.T. CAMPUS, THARAMANI,
MADRAS 600 113, INDIA

May 1998



CERTIFICATE

I'his is to certily that the Ph, Dy thesis submitted by DAKSHINI BHATTACHARYYA.
to the Dniversity of Madras, entitled VARIATIONAL FORMULAE FOR FUCHSIAN
GROUPS OVER FAMILIES OF ALGEBRAIC CURVES . is a record of bonafide work
done by her during 1991-1998 under myv supervision. The research work present ed
in this thesis has not formed the basis for the award to the candidate of any degree,
diploma, associateship. fellowship or other similar title. 1t is further certified that the
thesis represents independent work on the part of the candidate, aud collaboration

was necessiated by the nature and scope of the problems dealt witl.

May 1008

PROF. SUBHASHISH NAG

The Institute of Mathematical Sciences,
C.LT. Campus. Tharamani.

Madras 600 113,



ACKNOWLEDGEMENTS

First and foremost, [ take the pri village of acknowledging my sincere gratitude to
my teacher Prol. 5. Nag. for his suidence, He gave me my thesis problem and helped
me to solve the problem.

Ithank Prof R. Ramchandran. Director, IMSC. for financial support and research
facility.

I thank Prof. H. Balasubramanian for his kind cooperation,

Fowe gratitude to Dr 1).S. Nagaraj for helping me to solve my problen,

Iam grateful to Mr, Surva Ramana for suggesting appropriate reference to solve
my problem.

I should thank Dr. R. Radha for her conperation in all aspects,

[ would like to thank Mr Vinodehandran, Mr Swarup Mahalik, and Mr Topobrata
Sarkar for their help regarding coriputer opperation.

I'thank Mrs. Usha Otheeswaran for her kind cooperation,

Lastly T would like to thank Library members and office staffs for their COOpDEration.

11




Contents

Introduction

Invariance of sheet monodromy over families of curves
2.1 The family of polvnomials:

22 Monodromy Invariance Lemma:

Construction of quasiconformal marking maps

3.0 The Xy as members of the Teichmiiller space T Xaoh

4.2 Construction of a piecewise-atfine mapping ¢y : CPY -« QP! which

carrics ramification points of vlr.y) to the ramification points of
G e T

#d Liftingof @, 2 CPY — CP! 16 ¢y 1 Xy — X

Variational formulae for the Fuchsian groups of varying curve
L1 The fundamental variational term:
L2 The Beltrami coelficient g, of @0 0 . .0 . .
14 The variational lormula for @,

34 Variational formula for Fuchsian group elenents;

Lo Computational aspects of our formulae and remarks on Poinearé theta

SETICRL L, L L.,

Variation from the Fermat curves i + 37 = 1

([
it

a7
37
11
4

el 1
152

53



2.6

[
[ 2

Consideration of family of curves: |,

[rreducibality of Fermat Curve:

Determination of ramification points and [unction germs of Py{z. y):

Determination of Fuchsian group Gy of the Fermat curve Fi{z.y) =

WPy =l=0 , ..,
Calenlation of genus of X

Caleulation of viz) ;

Determination of elements of the triangle group Alp.p.pl:

Determination of elements of the commutator subgroup |4,

triangle-group & = Alp, p, p):



Chapter 1

Introduction

A student of the theory of compact Riemann surfaces ean scarce fail to be deeply
intrigued by the mystery of the relationship between what s theoretically known to be
two equivalent descriptions of Riemann surfaces: namely the description as a complex
algebraic enrve. and the description via a Fuchsian group. The lirst 1s the classical
husiness of complex algebraic geometry, whereas the second is intimately concerned
with potential theory an the surface, (since the identification of 1e universal covering
surface as the hyvperbolic plane entails the solution ol appropriate Dirichlet boundary-
value problems for harmonic objécts), These two aspects are not easy to relate. an
consequently. as is well-known to all practitioners in this field, there is no known
passage from the algebraic curve description o the corresponding Fuchsian group.
In this thesis we make a contribution to the problem of understanding the uni-
formizing Fuclisian groups for a family of plane algebraic curves by determining ex-
plicit first variational formulae for the generators of the Fuchsian groups, say (i,
associated to a {-parameter family of compact Riemann surfaces X, where the X,
are the Qiemann surfaces for the complex algebraic curves arising from a t-parameter
family of irreducible polvnomials. The main idea of our work is to utilize explicit qua-
siconformal mappings between algebraic curves. caleulate the Beltrami coefficients.
and hence utilize the Ahlfors-Bers variational formulae when apphied to quasiconfor

mal conjugates of Fuchsian groups.



Let us set up the prablem in some detail.
Indeed let P(r, y) be irreducible polynamials in ¢ and y whose coeflicients depend
real or complex analytically on the real or complex variable {, (where suppose that {

aries in the open set 1] < ¢). Thus

Pz y) = p.\-{.r'.!}y'«. + pw_q [, F]_!;“':_l T+ polay i) (1.1)

where we have expressed [ as a polvonomial in Y owith coefficients pile.t) — each
pola.t) being a polynomial in i« depending analvtically on t. To fix ideas we Assume
that { is a complex parameter in the t-disc, and that the dependence of the roeff-
cients p, oo f is complex analvtic. (That s the situation for holomorphically varying
families of compact Riemann surlaces which form the subject matter of the important
“Iodaira-Spencer families™,)

We set up conditions which guarantee that the Riemann surface, X, corresponding
to the plane algebraic curve Pi(r.y) = 0 has a fixed genus, say g > |, for every choice
of Lin the e-dise above. Of course, and this is the main point. the compler structure
af N will, i general, vary with + — indeed whenever the polynomials P, are not
birationally equivalent to P, (We shall give several examples in our work — some
drawn from Belvi theory of arithmetic algebraic curves. )

Consequently, we know that by the classteal Poincare-Klein- Koebe uniformization
theorem, the holomorphic universal covering of each X, is the Poincare upper half-
plane 5 thus X, will be obtained as the quotient of {7 by the holomorphic action of
the deck-transformation group. say (v, Each (7 is thereforé a discrete and fixed-point
free subgraup of the holomorphic automorphism group of {': namely, G,(C Aut(l/] =
PSL(2,R)) is a Fuchsian group. 1t is well-knowr. (see for instance Farkas-Kra[FK)
or Nag[N]}, that the Fuchsian group for a Riemann surface is uniquely determined by
the Riemann surface up to a conjugacy in PSL{2. R),

Our fundamental query is then o determine the group (7r. at least approximately,



[i.e., give variational formulae for generators of these groups), when we are supplied
with such a family of polynomials /%, as well as with the initial (reference) Puchsian
group Gy The method worked out in this thesis is outlined in the following steps:

Step 1. Consider the nonconstant meromorphic function given by the complex in-
determinate » = r, on each X,. (When thinking of the transcendental # as a mero-

morphic funection on X, we call  r,, in arder Lo emphasize the dependence on #):

ryt Xy — Reemiann sphere CP1 (1.2)

Froni the theory of algebraic curves and algebraic function fields (see, for example,
Siegel 51, or [FK]). we recall that any nonconstant meromorphic function on any
compact Riemann surface, X, is nothing other than a holomorphic mapping onte
CP! that exhibits Xy as a branched covering of CPY of degree N, with ramification
[=branch) points located on some finite set of the sphere, Note that Vs the degree
ol the polynomial £ in the y variable.

Step 2. We next demonstrate that the branch points on the Riemann sphere will
vary comples analytically with ¢ as the Riemann surlace Xy varies. Also, by placing
mild restrictions on the dependent polynomniial Prle. i, ). we can guarantee that the
monodvomy permutations of the N sheets, as we cirenit the branch points on the
sphere, vemuin the same for all smatl t reart = 0. Thus the topological structure of
the branched covering is guaranteed to be exactly the same for each small value of 1.
as it was at the fidueial point 1 = 0.

To be explicit. let {Gy(#).-++ . {g(f)} dencte the positions on tlhe Riemann sphere
of the & branch points for F. For convenience assume, (and this entails no loss of
generality ). that oc is not in the hranch peint set (for any 1 in |t] < €. Then the
[emann surface X, mayv be constructed by the classical process of taking N copies
ol the “cut-sphere”™ and appropriately gluing along the cuts. Namely, take N copies

of the Riemann sphere and cut each copy along A disjoint lines that connect the A



branch points to the point at infinity: nexi adjoin these N “sheets” to each other
along the lips of the cuts according to the permutations that are dictated by the
monodromy around the branch points. See. for instance. Siegel [S], or Knopp [K]. for
details as well as examples.

Step 3. We now construct a piecewise-atfine (and hence guasiconformal) homeomor-

phism:
¢ : P! — P! (1.3)

that carries the A branch points for £ to the K branch points for Py, and also carries
2¢ Lo 2c. dince the sheet-joining permutations are invariant while constructing X, as
i construeting Ny, we can demonstrate that the guasiconformal homeomorphism o,

will ift 1o a quastconformal ."mmr-umrjr'ph;.-:m af Xy onfo X, Let us call this 1ift:
'-'er = .1"|.r|_| —¥ .?{r {1‘:1

The upshot is that o, is a quasiconformal marking map from the reference Riemann
surface Ay onto the variable surface X - thus representing X, as a point of the
Teichmiillerspace I = T(Xy) by the marked triple [Ny, X, Indeed, the map that
associates 1o each ! othe point shown above ol Trichmiiller space is a holomorphic
classifytng map for the kodaira-Spencer family of holomorphically varying Riemann
sutfaces X,

Step 4. We now assume that the Fuchsian group €7, = I (say) corresponding to the
hase surface Xg is supplied to us — e, Xg = 7/ The fundamental facts in the
Ahlfors-Bers theory of Teichmiiller spaces tell us now {see Chapters | and 2 of Nag

[N]) that;

X =T, where &y =0 Goowy

[L.5]

Here wp denotes the lifting to the universal lr‘v.:u'-.‘f_'ring (" of the mapping o, which we

abtained above. The upshot is that (7, is obtained. clement for element, by conjugatinng



the Fuchsian group Gy by the quasiconformal mapping we s U — 7. And, as we sce,
this quasiconformal sell-mapping of {7 descends on the level of the Riemann surfaces

to the quasiconformal homeomorphism e,

Step 5. It is crucial to note now that since each map @, on the Riemann sphere
level was a piecewise affine construction, the Beltrami coefficient (i.e., the complex
dilatation). say v, of ¢ is simply a constant (of modulus less than one) when restricted
to the domains of the affine pieces. These pieces are simply a finite set of triangles
triangulating a certain rectangle # in the complex plane, (where } is chosen large
enaugh so that the interior of K contains all the K branch points). Moreover. ¢, is
the identity map outside that rectangle, so that v, vanishes identically outside 7, For

small 1,

by = tir + ol i) (1.6

with v being also piecewise constant on these triangles, and (0 outside R.

We are then inoa position ta compute directlv the Beltrami coefficient on the
surfuce Vo, of the lilted quasiconformal mapping o, — and hence compute the complex
dilatation. say g, ol the quasiconformal map w, obtained from @, by lifting all the
way to the universal covering, Since ¢ is piccewise constant as explained, we find
a rather simple explicit formula for the complex dilatation p; as a F-automorphic

Beltrami coefficient on the upper half plane (7.
chey [y, = py € L= T) (1:7)

Step 6: Final Formulae: The variational lormulae associated to quasiconformal
solutions of the Beltrami cquations (see Ahlfors[A] or Sections 12,12 and 1.2.14 of
Nag[N]) will now provide us with integral formulas (as integrals over {7) CXPressing
the fiest varsation ol the mappings w, in terms of the Beltrami coefficient w,. It is this

formula that we will transform and manipulate into a very convenient form. Reeall
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here that we varies only real analviically with ¢, even if the original familv of Rieman
surfaces varied complex analytically with ¢ (see Section 1.2.11 Nag [N]).
Thus we are secking the t-derivatives w, = (@/@1){w) and wy = (&/dhw) at

t =0 so that we get the first order expansion:
wils) =2+ tun(z) + fuf(z) +oft),z € U (1.8)

Let us state here briefly the chief formula for the variation of the quasiconformal

maps & that we obtain in this thesis after saitable manipulations:
ez —1 fl > . } .
wy{z) = S/t = = j W) Vi (. =)dw A dii (1.9)
Er Rr‘C-Pl )

(= — 1)
wil{z) = duyfof = e S Z//{._C‘Pl )V r (30, 2 dw A du (1.10}

k=1
Here the N “kernel” functions Vip are close cousins unto each other, thor K =
L2 N and each one is determined as a holomorphic function (of twe ATLL-
ments) via summation over the group elements g € U, [Recall that N denotes the
highest power of y appearing in the polvnomials I,.] The exact nature of these kernel
functions is determined explicitly in the latter part of the thesis,

Let us note the interesting fact that the above variational formulae involves in-
tegrating over the Riemann sphere (CP1) - this sphere being actually the Riemann
sphere (= extended complex plane) which serves as the range of values for the mero-
morphic lunction & on Xy, Also, the Belirami coefficient # appearing in these formu-
lae arises from the piecewise-attine quasiconformal mappings o, - as we deseribed in
equation (1.6) above, Consequently, v s sunply piecewise constan! on the milegration
sphere. and the integration s supported on just the finite reetangle B (which contained

the ramification points|.



We would like to point out that direct practical implementation of the variational
formlae that we have determined in the thesis is quite feasible. We shall explain
in the thesis how certain classical Poincaré theta series with respect to the initial
Fuchsian group I can be hrought 10 bear on this problem of applyving these variational
formulae in a computer package.

OF course, the knowledge of wy{z} and wi(z) now allows us to determine the

desired tderivatives of the Fuchsian gronp elements, 5, € (7., where

e a 5 =k
Te = wi B Dy

{111

with 5 being an arbitrary element of the initial Fuchsian group Gy = 1. In other

words, we swceessfully find the sought-after variational formula:
=5+t +17 +oll) (1.12)

Tle final formulae [or the terms aliove are:

Y =i eH ‘,-frf'| (L.13}

=0 =5y (1.14)

Fhat completes the chicf goal of thiz theses. See the main theorems in the body of the

work for more details about, and for analysis of. the actual expressions that we get.

femark: Aihongh we have dealt with compact Riemann surfaces and the torsion-ree
parabolic-free Fuchsian uniformizing group in the introduction above, the theory ol
Teiclmiiller spaces works exactly the same for Riemann surlaces of Hnite conformal
type — namely we can allow distinguished points or punctures on the compact Rie-
mani surfaces and correspondingly allow elliptic or parabolic elements in the Fuchsian
croups wider serutiny. hose results are exactly parallel and nothing new needs 1o

hie said.



Cerfamn Eramples: We may choose certain interesting special cases as the base Hie-
mann surface {rom which to deform and apply our variational formnlas. We may
Lake:

(1) the case of the Fermat curves #% + y" = I

(2) certain well known “moduolar curves™ arising [rom quotients of the upper half-
plane by the congruence subgroups of the elliptic modular group;

(41 Klein's quartic curve of genus 3; ete..

For these algebraic curves we do know the wniformizing Fuehsian groups U, {with
parabolic cusps in the modular curves case). Thus, wtilizing these special iemann
surfaces as the fiducial (reference) point. we can make some nice examples and applica-
tions for our formulas whenever we perturb the corresponding polynomial equations.
Some explicit caleulations in especially interesting families are worked out by us in
the Latter part of 1he thesis.

In fact. we utilize methods from the modern Belyi theory for anthmetic algebraie
curves in the Fermat case. In case of the Fermat curve " + 4" = 1 for n = 4 we are
able to determine an explicit and complete presentation of its uniformizing Fuchsian
sroup utilizing exactly 2g generating Mobius transformations, (where g is the genus
of the Fermat enrve), This is done by using the theory of the Schreier transversal in
the matter of inding generators and relations for subgroups of given finitely presented
groups. For exact detail and a tabulation of generators and relations, consult Chapter
V' oof this werk, We can apply therefore the whole theory of Chapter [ to IV quite

explicitly by perturbing the Fermat curve in a parametrized family,



Chapter 2

Invariance of sheet monodromy over families of curves

2.1 The family of polynomials:
Let

NoOooM
Prleoy) = Playt) = 30 Y apalt)z™y" (2:1)

A==
be a one-parameter family of polynomials in twe complex variables & and y. where
the coetlicients a.. () are assumed to be analvtic functions of ¢, { being within a
small disk: &, = {|1] |+ |2 ¢}. We will require that for cach  the corresponding
polynomial £ is an ireeducible member of the polynoriial ring Cle.y]. (In the results
of this Chapter we shall give sufficient conditions that suarantee that P is irreducible
th the base polynomial £ is s0.)

The theory of complex algebraie enrves now tells us that each Py = 0 determines a
connccted compact Biemann surface, denoted by X, which is the desingularized model
of the projective algebraic curve that is defined by the solutions of the (homogenized )
potynomial £ in CP? Asis standard. there is a surjective holomorphic morphism of
Xy anto that projective plane curve, and Lhe variables & and 4 become interpreted as
two nonconstant meromorphic functions on the Riemann surface X, which toget her
generate (over C) the field of meromorphic functious on X,

Recall furthermore that this field of meramorphic linctions on X, denotei

Mer( X, is an “"algebraic function field in one independent variable”™. (That “inde-



iy

pendent variable” . which is transcendental over C, may be chosen to be any noncon-
stant meromorphic lunetion on the surface — for instance x itsell.] Indeed this means
that Mer( N is a finite algebraic extension (by y) of the rational function field C{xr ),
hecause y satisfies the algebraic equation Fy{zr,p) = U (whose coefficients are now
considered 1o belong to Clx)).

These facts constitute fundamental material from the theory of complex alge-
braic curves amd their algebraic function fields; good references are: Siegel[S], Farkas-
Ira[FR] or Chevalley[C].

The chiel study here will concern these compact Riemann surfaces X, and their
uniformizing Fuehsian groups (. We consider the (7, as discrete groups of real-

coefficient Mobius transformations; namely
7, c PSL(2, R) = Aut{Upper half — plane U)

(7, acts as a properly discontinuous group of biholomorphic automeorphims of the

upper half-plane:

F={sel: lmzs 0)

and the quotient U] G, is bikolomorphically equivalent to the compact Ricmann surfuce
Xk

Remark: As is well- known, the Fuchsian group corresponding to o compact Riemann
surfare varies only real analytically with the compler analytic moduli of the surface.
{seo Section 2.5 and also Section 1.3 of Nag[N]). It is therefore rather irrelevant for our
stiely in this work whether { 1s a real or complex parameter; the main point is that
thie coefficients of the varying polynomial are real or complex analytic functions of
near § = 0. We shall assume, in order to fix ideas. that { is a complex parameter in
come suitable t-dise as stated, and that the coefficient functions ay,, are holomorphic

TN

Remark: As explained in Chapter 1. it is not necessary that the Fuchsian groups
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we consider be torsion free or that they have no {parabolic) cusps. Indeed, if the
IFuchsian groups we are dealing with contain elliptic elements (torsion). and/or have
parabolic elements (which correspond to punctures), we shall still be able to have the
samte formulas valid as long as the uniformized Riemann surface is of finite conformal
tvpe, (namely a compact surface minus a finite number of points). In fact, the theory
ol quasiconformal deformation that we will utilize in this work will go through (see

Nag[N]] just the same for such Fuchsian groups.

2.2 Monodromy Invariance Lemma:

We have already explained our method of attack in Chapter . Note that 1t is essential
to guarantee that the topological stracture of the branched covering of the r-sphere.
that desevibes the compact surfaee X, 15 tnvariant for varying values of 1.
Preliminary notations : Given any irreducible polvnomial Ple. y) = 0 which de-
fines a compact Riemann surface, X. we consider the holomorphic branched covering

mafs;

XN —= v —aphere

defined by this meromorphic function r on X', The mapping r is branched (= rami-
ied ) over a certain finite set of puints on the image sphere - see Siegel[S] or Knopp| k|
lor details. The complement of these brauch points will be called the ordinary points;
above each ordinary point there are N distinet solutions for y (where N is the desree
of 7 when considered as a polvoomial i y with coelhicients from Clz]).

Lo solve our problems we have to find a correspondence between the ramification
(brapnch) points of Pley) = 0 Iving on the r-sphere [or different values of £, Also we
will need to make a correspondence between the algebraic funetions yr) = yle.t)
satisfving Plaeople t)) = 0 for different values of 1, so that the monodromy remains

invariant at the 1"1_‘11‘1‘:‘:«']“:u|1n:'|-|n_r_-; litanch 1‘::'}i1|l5. That will Elitarantee hat the |<Jpn]ﬂginﬂ|
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structure of the branched covering is kept invariant as t changes.
In order 1o do this we assuine certain restrictions on Filriy)
Assume degP{r,y. 1) = D for all t. Assume also that there exists r.s such that

r+s=0Dwhere 0<r<m, 0<s< N and a,,(0) # 0 ie degree Fy(z.y)= D

Assume:
(1) Fole.y) is irreducible in the polynomial ring Clz, y] .
(2) If degree Py, y) = £ then degree Pylr,y) = D).

(3] Suppose P, is of degree N in the y variable for all small £

Play) = Pule )y + Py )y™ 4+ Pl t)

where Pyir.t) = m\.[f].:"l“'+...—‘_-rrul;f]|

Let (1) denote the discriminant of Py(z.t). Then assurne that D{0) # 0 and
() # 0.

(11Let Dir.t) be the discriminant of B, y) = 0. Then D{x.t) = Pyl ) 2. t)

where
Qlet] = Qolt)e™ + ...+ Q1)

We assume that Qu(0) # 0 and D(0) + 0 where I:Ji_.!_h:cli:s:_'rirninant of (M, t).

(3 The resultant of et} and Py{r.t) does not vanish at ¢ = 0.
Lemma: { Monodromy Invariance Lemma ) Consider the parameirized family of
polvoonials

Flry) = Pleayt)=0

as given in equation (2.1) above. The polynemials P (i, ) are subjected to the five
conditions already listed above.

Asgsime

Fle.y.o)= Plr.y)



L3
15 an irreducible polynomial such that » = 0 and r = ~ are ordinary points, and the

sel of ramilication points on the x-plane are sav located at:

1hen

(1) For all t sufficiently ¢lose to 0. the polynomial Bl y) is irreducible and 0 0
are ardinary points.

(i1 The ramilication points on the rsphere for File,y) are holomorphically de.
pendent on ! oand are given by k holomorphic functions: {Cult), .., Celt)} such that
el 0 = L'j_' for 0 < 3 <k and ¢(t) £ Gi(t) Tor t # 5 and all 1 small enough.

(iit] Assume N is the degree of P, in the y variable (this follows from the sta-
bility conditions mentioned ahove.) Then there exists holomorplic function germs

f,l,fl{.f'..“:l.....H,-.-[.r.lf]} aronmnil Lz t) = 10: 0} £.C2 such (hat
Plrogild )y =10

for all (x.4) sulliciently close to (0.0) and suel that N roots of the y equation
Pla,y.t) =10 are siven by Yyl t):

(] Analytic continuation of (e, ) for every fixed 1, | ¢ [< ¢ in the r-sphere
along the same ronte (avoiding the branch points) produces the same permutation of

fintedt oo yatles )} - e the monodromy permutations are independent of ¢,

Gl
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(1) Le
NoOM
1“{_»['.,”1 i) = Z Z Ly ” :I"rmyn
r={1m=il

Lev Deg Filr.y) = D then by stability condition (2) above degree Fylr,y) = 1.
Henee there exists ris such that 0 < r < M, 0 < s < N, r4s=1} and (0] # 1. So

tor t small enough ., (1) 2 0. Let
Plrog.s )= Bile gy, 2)
denote the homogeneons polvnomial corresponding to the polynomial
Flr.y 1) = Blx. i)

We elaim that Pile.y) s irreducible .'_l";nnrf only of Pole g, 2) is dreducible,

Lev ey, =) be reducible, Then
Fle.g: 2l =@z ) Bl 2. 5. 3)
where (e, y, 2 ) and B (e, y.3) are homogeneous polynomials in x.v.z. Denote

(ol y. 1) = Ghley)
and Firoy )= Hlzr.y)

= Fr.y) = Bleg ) =0 ey VRt y 1) = Gz, y)Blr.oy)

For deliniteness snppose

(hlr.y) = constant
= oy z) = es® for some constant ¢ and some integer &
= Flraies) is divisible by z*



But this is not true as a,,(1) # 0 for t small. So (e, . =) s reduetble implies Pl y)

is also reducible.

Coneevsely : Let B, p) be reducible. Then
Pl y) = Qile.y) Bl y)
where (o) and B, y) are nonconstant polvoomials in & and ¥
= Flr,y. ) =iy, 2 By, 2)

where Q[ y. 2} is the homogeneous polynomial corresponding 1o (e, y) and simi-

larly for Bileoy. 2). So Bi{e. y, =) is reducible.

By stability condition (1) we have already assumed that Folaroy) s irreducible. Then

[by the above claim ) Pyla,y. =) is irveducible. Consider

Qheige) = Z byt =¥

I ph=p

and  Hirig.z) = Z r',J,J_,r"..'.f":"‘

i+ iTA=g

! Wy =+

lhem Nip) = :H’u_.a- ) = -!'{e”—)]
[or 4= 3

Nlg) = fleqe)= q'_rjl.ll_—l

beand Roare any two homogeneous polynomials of depree poand q respectively,

Dishine a miap

ey PPl e pitil=t oy pNIET-
[ = |r.l'|_|.k P i =) — o< {f:_l.j,- =

g — QR

where p+ ¢ = D and QR = ¥4 e diee' gt 2



I

: . ¥ _

(CY — {0}y =[OV — )y i =GB — {0}
[y % Ty i
r v ! 'jw y
pYpl=1 . pNl=1 L pND)-1
where
ﬁl"s'HhJ_l‘-'.l* [‘“I‘Jk};‘l =T f”ru.l':j

(Q.8) — QR

Now since oy, 05 continuous, 7.w,.m, are open and continuous, Imaged,, is a
cotnpact subset of the Hausdorll space PYYI-1 0 Hence [miaged,, is a closed subset

of PYHIL D i F.lr.y.z) is irreduable < aill) >¢  Imagedy, for any p, q

with p+ ¢ = I} where Filr.y.z) = Lid b age(etytzte Bo = t(0) =€ [

.:E; —
PYEI=N g oz Now by continuity for small values of €

< IIJ‘J“.‘-I:IIHI] ::'[: |r.-.|-|.1-|

when £ € O = {t ¢ 1 [< ¢, }. We do this operation [ur all tuples (p.q) where

e
prg = I 5o the number of such 4., is finite, Let us denote them by 4,
Then there exists € = ) such that < digk(f) >€ MG when t €:by; = {t:]¢|<el.
Henee P, p.o2) is irreducible whenever § & A,
= Filooy) isarreducible whenever + & A
(i) Let
Placgat) = Prlead)y™ + Poo (e )y™ 4+ 0+ Byl t)

The ramification points are given by Py(e ) = 0 and M t) = 0 where D{x 1) =
B h

the diseriminant of My, 1), Now

Parlo ) = ag(the™ + i NS g o tip{t)



L7

Denote D(t) = diseriminant of Pyxlr.t). Assume ap(l) £ 0 and D(0) # 0. So for
\ tsmall enough ag(f) # 0 and D(1) £ 0. Hence FPrlr.t) = 0 has k distinet roots for

each such t. Thus

\ PI\'[,E'.IJ = r_:{..i‘l..rg,fh'l’;rll + flffl:.]'l._;rz.h..!g]
where =y +ixy and t = £, + it5,

a6, H)

- = {7, H., — G, H.,
ﬂ':i'h'u"z) ' o

Let " be a root of Py(r,0) = 0 where 2% = x] + 2%, So

| Glal,ag.0,0) = 0

Hixl. 20.0.0) = 0
I. Now if ;JI-"L% # 0at r = 1" and t = 0 then by implicit function theorem there exists
| :

a neighborhood A, = {t ]t |< €} of t = 0 and two ' Tunctions xi(t) and ry(4)

‘ defined on M. soch that

(rr{,'f'l[!‘}*.?‘_:_{f},Jrj.l.'j_l] = U
H{zy(f).za{t), ty,12) =0
| for |t]<e and ry(0) = oY 2.(0) = 0y

| Le Pulr(l)y8)=0 for|t|<€e and a0} =z
Sinee for t = 0. Py(r.f) is an analytic function of 2. So by Cauchy Riemann Equation

(i [y, 22.0,0) = Ho iy, xe,0,0)

GoalT1:22.0,0) = —H,, (712 22.0,0)

So Ge Hey — Hy G (2800 = GF, + HE = | Pya (2%.0) P £ 0
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as 7" is a simple zero of Py(r,0). Hence there exists ¢ > ( and ¢ [unclions

r(f). et} such that

FPalz(t)t) =0 for | |< e where x(t) = oy (t) + irqlt)

&Py
- - iy - '11""..1'"-.'[ + Pt
Py
n' = — M — I—’I\rJ_,rh - ij.'r_!.
f}!‘j .

= Pulx(th )y, +iz,) =1
Sinece D) # 0 all roots of Py (1), 4) are distinet

Py lz(tit)#0

I}

= Ay tay =0
= w(f) s an analytic funetion of ¢ for { small enough.

So we can vonclude that for ¢ > 0 sufficiently small, there exists & holomorphie

functions Cpif).. ... Ck(t) such that

PadCdt)ty = OQfor |t|€e 1<
anel () # O{2) for i #

Simlarly Die t) = Pyle. )Qx.t) and we can find r holomorphic functions
|

Crgr(thivves Craelt) such that

UCHT) ) = Dlar|t|€e, r4l<i<bk+r

Glt) # ot for i £

asswiming the facts that Qu{0) £ 0 and £(0) # 0 where (1) is the leading coeflicient
of Q. t)and D(#) is the discriminant of Mz 1), Also assume that the resullant of
Py(a.t) and Q(r.t) does not vanish at £ = 0 so (1) £ () for § £ J and for| f |< ¢
Sinee = 0 and » = oc are ordivary points of Fyla. g} and (1) are holamorphic

funcrions of 1 so for § small. » =0 and » = % are ordinary points of Pz, y) = 0.
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fiit)Assume for £ = 0. r =0 is an ordinary point. Let
Playot) = Pyle g™ + Py y(e 0™ 4 oo+ Pofaat)

So Py(0.0) £ 0, Set D{r,f) = discriminant of Plr.y.t) #0for (w.t) = (0,0). Then
we can find ¢ > 0 small enough such that Py(a,0) # 0 and D{z,t) # 0 for | = |< ¢,
|t |< 1. Hence all the roots of P(r,y) = 0 are distinet for | z |< e, ] ] ¢ Let

al. .. ..a” be distinel roots of Fo(O.y) = 0.

L FEJ"THTf]=r;(.?‘hJ"'_r.yhyg.ihfgj+E.JIJF[T],J'-J.!;:.H],i;.?‘j:l
Then G0 0.0y, 0).0,0) =0
and HEU.U.Q:.:‘};,U.U] =)

i L
where o = n: + 101,

O

If we can [prone that T B

# 0 Jor & =0, t = 0. then by implicit function theorem

there exists ¢ = 0 and O functions yy(z. 1), yolz1) such that 0 < ¢ < 1 and

Glrvzaanled)oyaled) tytz) =0
Hiry ez (et palat) b b)) =0
for |a|<e |t|<e wherer=r; 4+ trp and t =1 45

and (0,0) = nt, ya(0,0) = n.ﬁ

Let us denote yle.t) = gy{a,d) + ayg(r.t). Po(0,y) is an holomorphic function of y.
N

I'r;y: = H#:
(_i._.!? _ J’]r:“

at =10, f=10
a7 H) o .
L — L = {7 ¢ 4
e Slasezi) s = = I
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= | Py (0g.0) [*
# 0 since all the roots of Py(0.y) = 0) are

all simple and distinet.

We want to show that y{r,f) is a holomorphic funetion of & and t separately. Hence

gl tis & holomorphic function of (&, 1),

Pleglet).th=0 for|zl<e |t]|<e

ar )
= 0= ;EH: = Lyl = Ir
P F
l=—= P,l,lllrf..+?|'.tn:g
ity e

= Pl ylet), O, + ipe] =0

But  Flroplet), 1) #0 for | e |<e [ |< e since Py, 8) = 0 has
all 1ts roots distinet for | & |< ¢, |1 |< ¢

SOy, o2y, =0

= yle.t) is a holomorphic funetion of  for | = < e [t < ¢

Again Plre.gletit) =0

il "
= =g =hy + 5
W8 o 0o
arid 0= :}—” = P, +1F;

S5 Pyl i) = 0

Now  Polaeogled)t) #0for [z |<e [t

= ey e, =10

So pla. ) is a holomorphic lunction of o for | o [< e |1 |< e
Henee gl ) is a holomorphic function of (1) when | » l<¢e, |t e,

(iv) Follow the canstruction. as in SiegellS]. for each (,(0) we consider a circle €, with

center at G (0] such that any two of them does not intersect and we join the origin to



1‘}]

G(0) by a simple curve §; so that if we cut CP? along these curves it remains simply
connected. Since (s are holomorphic lunction of t we can find a neighborhood of t = ()
say, N = {t | ¢ |< ¢} such that (N)...., Cel N lies inside 7, .. ., (") respectively
and each G;( V) is an open connected subset lving in the interior of (7, 1 <
Now for each peint 2y on €, 1 €1 < n we can find mutually disjoint neighborhood
Witrg), ooy Wlap) of ¢z, 01 1 <0< N (where Plaoodxg. 0),0) =0 and o,(x.0)
15 an analytic function of x 1 <7 < N) and an open disc {/{a0) of rp and an open disc
Virg)of t = 0 such that ¥z € U(wg), Wi Virg), edz.t) € W(xg) and the function
germs are analytic on U{xq) and U(ae)NG(N) = o for all 1. Again sinee the points on
C; 1 <1< nform a compact set D) = U*_ (", the open cover {U/{z): 2 € D} has a
finite subcover. Hence [} U D), Set V= 0, Vi) NN, Note that ¢,(z.0) =
titwg. 0) for some 3, 1 < 3 < N, Let us consider the monodromy permutation around
1(0). For simplicity let gy (o0, 0) — yala, 0) — Yl 0) — gy (2.0). We shall prove

that for each t € V., yy(awd) — yalart) — yal ) —s milx, i),

Figure 2.1: This illustrates that {/{xy) = Urlieg) U T p)

Let [7(irp) is & neighborhood of rp such that {/{zg) = {7 {xa) U Ualrg) (See ligure



[ ]
)

(2.1) ]
Then Vre i), YIEV, yi(x.t) e Wi(xy)
Yr & {'-‘glll.?."u,'l, ¥ie V. patae, ) € W [.i‘u}
As alr ) — o, 0) in the neighborhood of r = xy,
J l.';"a.f' = E-‘rlifu}. Vi = I". y;[.rf] = l'I"—"r{IUJ
Ve Uslag), YHeV, yla.t) € Walxg)
A as yi(,0) — (e, 0),
anl Ve e Ui(xg), YIEV. wmilrt)e Walzq)
Vi & f'.-'LQ{.J"U}. vie V. j,l']l:.l'..f.] = H_J,I:J‘[_]:I
as palag) — yaleg).
Figure 2.2: This illustrates the following
By construction we can find finite number of points zg,....xp on Oy and their
neighborhood {7(rp)..... 07 (0 ) (see figure (2.2) ) and disjoint open set Wi(x,), ...

Wi(z] for each fixed . 0 < 7 < ¥ around g, (#,.0).1 < 1= N (see figure (2.3) ) such
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that Ve € U{ri), t €V pladt) e Wila;) 1 < j < N, Sinee yy(r,0) analytically
continues 1o yy(z,0),  Wiley) (ie the neighborhood of yi (2. 0)) intersects Wil zy)

(which iz the neighborhood of ya(rg. 0}).

s

% ()

NS

n

'W_-_;(Ku]

Figure 2.3 This illustrates the above

Vo e Uiylep). mle ) € Walag)

Choose F e [(ew) Mfl(rg)

= i (r.0) e Walry)

= lat) € Wil for ¢ small (by continuity of y; in f)

as only ey &.0) € Wylry) Y eV

= (o ) = (1) for ¢ small




iy

= op{b, ) =y (B 4) Y1 eV (as p and o are analytic function of 1 )
= {E ) € Walap) W € V WE & [yfae) N U {ey)
= il 1) € Walwg) VI eV z € (yfag)

(as for { fixed  yy(rot) = op(d,8) Yoe Uylrn) 0 U ()

= lr ) = dple ) Yo e Uslrg) by analyticity in o)

S0 if we continue y, (i, 1) along {; we get go(2.t), Again ouly yalx, 1) € Walag) Yre
Uian). Let us fix ¢ € V. I we continue Yoy t) across ly the function we get say

gle.t) which is a solution of P(r.y.t) = 0 (for fixed ) and hence belong to eithe
W]{Tn]‘ or 1'1";;{-1'[1] oar H'r;;(.r'n}

Sinee (e, t) € Walay) Vi € Uslirg)

and Walxe) MW {ze) = 2, Walze) N Wileg) =

HD _‘;flz.ri_ f]' = Hgfi‘u] Yr (= f-_-'r1 f;l"n}

—_— _{}{If] = [J'g[.i.i:l I":".,i = l{.r}[rr;}

asonly yalx.t) € Waleg) Yo € I{ag) Wt €V

Since t € V7 is arbitrary s (204) cominues to Yol ) and thus monedromy remains
invariant. O



Chapter 3

Construction of quasiconformal marking maps

3.1 The A, as members of the Teichmiiller space 1(Xy):

We assume that we are working within the set up of the previous Chapter. Namely,
we are scrutinizing the family of compact Riemann surfaces X, which are the non-
singular models of the family of complex algebraic curves, P, y) = 0. Recall that
the ramification points on the Riemann sphere for the covering surface X,, {i.e., the
critical value set for the branched covering map r on X, |, are assumed to be located

at precisely N points (for each #3:

E.':;J{Ir']'."'?_{-;\.{f]]‘

Each ;1) was shown to be an analytic function of t around ¢ = 0. As imphed by the
monadromy invariance Lenima, we will assume that the mmmdrmn}-’ permutation for
the N sheets of X, around the ramification point ¢, (1) may depend on J but neton t.
Let ¢ denote the genus of each of the Riemann surfaces X,
The aim now is to consider Xy as the hase point for the Teichmiiller space
T(Xo) = T,. and consequently realize each X, as a point of this Teichmiiller sprace

by constructing an erplicat quasiconformal {g.c.) marking homeomorphism from X,

anto X

Fis Ko—s K (3.1}
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We shall have @ as the identity mapping.

Definttion of the Teichmiller spaee T Xy): Hecall that given any reference Riemann
surface Xq, the Teichmiller space consists of the “Teichmiiller equivalence classes”
of triples of the form [ Xy, 0. Y], where Y is another Riemann surface and t is an
orientation preserving quasiconformal homeomorphism of Xy onto Y. ¢ is called the
“marking homeomorphism”™ for such a triple.

The Teichmiller equivalence relation demands that two such triples. [Xa, vy, ¥1]
and [ Xy, v15. Y5, are equivalent if there exists a hilwlomorphic map, say H : ¥, — Y.
such that the quasiconformal sell-map ¢, ™" o H oy of Xy is homotopic to the identity
mapping on Xg. (Since we are interested onlv in Riemann surfaces that are either
compact, or at worst of finite conformal tvpe, we avoid the standard business of
“homotopy rel ideal boundary”. For these and allied matters, see Nag|[N].)

The set of Trichwaller equivalence classes of triples whose first member (s Xy is,
by defimition, the Tewchmuller space 1'( X)),

It is well-known (see Ahlfors{A], Nag[N]) that if X, is a compact Riemann surface
of genus g, then T(Ny) 15, in a natural wav, a complex analytic manifold of complex
dimension 1 if ¢ = 1. and of complex dimension (3g — 3) if g = 1.

The fundamental umiversal property for the Teicliniller space asserts that this
complex manifold. T(Xy) = T, w5 the wniversal target space for the holomorphic
elassifying wap from the base space of any arbitrary holomorphic family of marked
Riemann surfaces of genus g. This result is very relevant for the families X, that we
are dealing with. as we will explain in a moment. See Chapter V of Nag[N| for details
and proofs for this universal property of the Teichmiller space, and for information
regarding the universal family of Riemann surfaces that lives as a holomorphic fiber
space over T X,

The upshot therefore is the following: Having obtained the marking homeomor-

phisims r_:r,. i Xa — Xy, we have for each {, a point of the Teichmiiller space, T( Xy).
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given by the equivalence class of the triple: [Xo.o,. X))o In fact we have thereby

constructed a “classifving map™:
s e [ Xy 66 X (3.2)

mapping the f-dise {|f| < €} into Ilhr' Teichmiller space,

Indeed. if the coefficients of the polvnomial P vary holomorphically with ¢, we
obtain a holomorphic classifying map 5. (in the sense explained in Chapter V of [N],
as cited ).

Recall furthermore that the Teichmiiller space can be described as a quotient of

the space of Beltrami differentials on the reference Riemann surface Xo. In fact, the

basic Bers projection:
.'Jl: BI‘I[_.’{n} =p Tf“uu:l |:']3]

is known to be a holomarphic submersion of the L™ unit ball of Beltrami coefficients
on Xy onto the complex manifold that is Teichmiililer space. The connection with
the previous definition of Teichmiiller space above is to associate to a Teichmiiller
triple [Ny, 00 Y| the complex dilatation (=Beltrami coeflicient ) of the marking home-
omorphism v (We refer 1o the book Nag[N] for all this basic material and their
proofs. )

Consequently. the computation of the complex dilatation of the marking map o,
will will give us a {ifting of the classifying map 510 2 map of the t-disc into the ball

of Beltrani coelficients:
7 {lt| < e} —s Bel{Xy) (3.4)

This computation. and its cansequences for thie variational formulae that we seek.

will be shown in Chapter TV,




3.2 Construction of a piecewise-affine mapping ¢, : CP! —. CP! which
carries ramification points of Fylr.y) to the ramification points of

Py

The marking homeomorphism between the compaet Riemann surfaces Xg and X; will
be obtained by lifting a mapping ¢; between the Riemann spheres that carries cor-
responding ramification points to ramification points. Coustruction of ¢y is detailed
below:

Recall that oo was set up as an ordinary point for the meromorphic function
x on each X;. Hence all the ramification points, (t) 1 < i < k lie in the linite
z-plane. Restrict the parameter ¢ in a relatively compact sub-disc around ¢ = 0:
e Oy = {t:] 1< e} (To save on notation we still call the radius ol the sub-dise as
€.

Siee the functions ¢, are analyvtic in {, we can find a rectangle f containing in its
interior all of the points &5 = {Cilt): 1€ ¢ K, te AL} Outside R we will define
¢, to be the identity mapping.

To define o, inside B we take the first (domain) copy of CPY and triangulate
It as follows: we divide It into won-degenervate Iriangular regions such thal each of
the points C (0} are used as vertices. Thus the triangulation utilizes a set of vertices
contaiming all the A points (0}, as well as some extra pronnts O, for some index set
s=HK+1.- K+ L (The four vertices of the rectangle i are certainly included
amongst these last L vertices, Also note that each triangle utilized is, by requirement .
non-degencrate — namely the vertices are always three non-collinear points.

Now consider another copy of CPY {which will serve as the range of the map
¢¢) and divide the region inside the rectanale B in this second copy into triangular
regions in the natural “corresponding”™ lashion, as detailed next: namely the vertices

of the triangles of this second copy of B consist of the new ramification paints (1) s
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m place of the G0, 1 <0 < K, - together with the same extra sef of potuts ¢, (for
ider sef s = N+ Lo K + L) that were used before. Note: these last L vertices
are left undisturbed, Of course, the edges of the two triangulations correspond ex-
actly since the vertices have the above correspondence. That is, if (£,(0), (0), Ge(0))
form vertices of a triangle in the first copy then{{(#). G4, Gelt)) form vertices of the
corresponding triangle in the second copy; similatly, if (G(0), Gy §y) are vertices of a
triangle in the first copy then (il Gy ) will be the vertices of the corresponding,

in the second copy. ete..

Remark: Since the initial triangulation is non-degenerate, namely the vertices of any

triangle that was utilized were non-collinear, then. by continuity of the functions Gt

that non-degeneracy of the corresponding triangulation {on the range copy} remains

alid for all small values of ¢ near ¢ = 0.
Affine mapping of one triaugle onto another: 1f (=1, 22. 23) are any three nen-collinear

points in the plane. then recall that their efosed conver hull. (smallest closed convex set

in the plane containing these points). is precisely the triangle T {includes the interior

and the edges) with the given points as vertices. From elementary linear geometry
one knows that erery powt of T has a unique representation as a conver combinalion
af the verter vectors: namely, each point of 1 is representable as Az +pz4 vzy. where
Ao g and v oare real numbers in the closed unit interval [0, 1] sueh that X4 p 40 = |
Clearly then. given any other set of three non-collinear vertices (wy, g, wy) for
a second triangle 17, there is a natural affine mapping of the first triangle onto the

second which simply sends the point A=y + fizgtwzg of T 1o the point My + pws + v,

of T

4

Definition of oy: We therefore define the desired homeomorphism ¢, inside the rect-
angle A by taking the triangles of the lirst trianzulation, by the above affine mappings.
onto the corresponding triangles of the second triangulation. Notice that if two tri-

angles share a common edge. then the affine mappings defined on the two abutting
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triangles will coincide in their definition along the common edge. That is crucial.
Consequently we clearly get a well defined homeomarphism o, of the rectangle 1 on
itself, and outside £ we simply extend ¢ by the identity map to the whole Riemanmn
sphere,

It 1s elear that o, 15 a O™ -diffeomorphism when restvicted to the interiors of the
triangles used in triangulating R, and also, of course. on the exterior of R.

We shall now show some explicit computations for these piecewise-affine homeo-
morphisms ¢, Throughout this thesis we make some explicit computations of formu-
lae as far as possible in order to facilitate later explicit work, and also in order to he
able to program our variational results with no effort into a computer computational
package to calenlate the changing Fuchsian groups (which is our poal).

Let G(1) = (&t) (8} Vi=1,... K

= {0.(0)) . =1{al{0)

VB = (aua))

Let (o (U) = PG (0) = Q,0(0) = 5 form one of the triangles in the triangulation
of R in the domain plane. Then, as we said above. any point z € APQS can he

written as follows (with 0 < A p < L)

z+iy=1: = AGLOD) + pGulO)+ (1 = X = ) (D)

Mg (00, ga (01 4+ plam (Db g (01) 4 (L= (A 4 ) ) (e (0}, e (0))

= = M0} — aef0)) + plan(0) = 2e(0)) 4+ 2x(0)
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And gy = AMpad0) — g O)) 4 pl e 10) — wel0)) + yx(0)
r—zi(0) = Alra(0) —xu(0)) + plan(0) — 2e(0))

= :l0) = Alyat0) — ped0)) + ped o (B) — ye(0))

)
oy = M= a0 (pn(0) — wi(0)) ~ (n — pa(0) )2 (0) = 24(0))
- '[-f'n[[J H{I}]Hym[u o ".Irk['n} . {yu “] .'.n’k[_D”['rm“” = -I'ch}]
= W l0) — 0a(0)) — plem(0) — 24(0)) — 24(0)5(0) + pi(0)rn(0)
gl 0)(a(0) — 24 (0)] = g 0)( (0) = 24(0)) + ga(0) (20 (0) — 2 (0])
oy = — =IO (0) = pel0D) = (y — vl 0)) (24 (0) — 24(0))
{rm (O0) = (0N (aa (0) = e (0)) = (4 (0) =y 0) )2 (0) — 24(0))
o wlgndU) = 3 {0)) — pleaf0) = 24(0)) — ax(0)ya(0) + gl 0)z.(0)
w0 (0) = 24(0)) — g 0) (i (0) = 2(0)) + wa (D) (20 (0) — £ (0))
Define eff) = (e (t) — weltalt) = welt)) = (gall) = yelE)Menl(l) — z4(2))

U+iv=w = oz

— hl{"rﬂ[”f:"fn{r]} + ;I{.F,,,“ILH",“]} =t {l .- {}' 5 ﬂ”[-{'k{

=t = Maalt) —2ull)) 4 glam(t) — o)) + relt]
and v = Muyalt) — yelt)) + @lyn(t) — wel£)) + yilt)

o= Maa(d) = 2(t) )+ () — 2elt)) + 2olt)

%[_J'[Hrn[ﬂ} = ¥l0)) + y(20m(0) — 2i{0)) + 2 {0}y (0)

= a0 f0) () — () + Jj[r{ﬁﬁn{l'il — us(0)) — i (D)
= el = ey (0) + g0 (O3 (rw () = zp(t]) + oyt

voo= Myl — el el () — el )] + welt)

= %i’.—-rt.umfm — 4l 0)) + gl 0) — 2 (0)) + rp(0)um(0)

— Db (0] (s (1) — wel 1)) + }T[J‘(Hniu} = YD)} =yl (0)

= 2al0)) = 20y (Q) 4 2 (D) (0)] (it ) — wa()) + el 1)

Thus we have now shown the explicit tvpe of formulae ( “piecewise™ ) for the piecewise-

affine mappings o,
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Lemma 1: Each homeomorphism o is orlentation preserving,

Proof: We may do this by explicit computation of the Jacohian determinant of the

mapping. We observe that:

i
gyl = EI_{HH:(D}_ﬂk([]]](-rn”]_~r.‘u“”+fur )=yl O (Tt} — zi())]

1
uy\Eig) = IHl’m{U] = 2l 0D (t) = el ) — (2a{0) = 2e(0))(rm (1) — 2 (1))

]
iz} = ;Itrx.l[{ll = WelON e (8) — ye(t)) = (an (03 — il 01}y (1) — 2e(8))]

1
”F{'r"y] = E[“ﬂln“} = I.H.J:”]li-f'mfﬂ} = TU:D” - (In{n” = 'nk{u”[.ﬂrn{f] _Hk{”}J

ety = L) = 2 f))em(0) = 201 (ya(t) = yelt))(gal0) — pel(0))
(s (0] = waf0) Hza () = wal ) (wm(0) — wal0)) (gl t) — welt))
(5(0) = 24(0))(em (1) = 2x(E))(#a(0) — we (D)) (ymlt) — walt))
W (0) = 2 (0))Cen () = 2elE))(ml0) — wl0))(ymlt) — yalt))]
Uylty = ;.,;Iirm{ﬂ]—-«rk{ﬂ]}{r.r(f}l—rk{ﬂ}}{ym(ﬂ—yaif}liyn{UJ—yk{ﬂ}}
= (a0 =g (O)) (o (1) — g (1)) (gl 0) = w0 Mg () — yad1))
= ({0 = e 0 rn (1) — (0 ) (0 (0) — 9 D))y (1) — wald))
(a0} = (0P (1) — k) (0 (0) = wel0))(wn (1) — walt))]
p = Uiz = -"[il (00 = OV Myl 0) — we 0)) { {2t

Uyt )= xel BN (yall) = welt))

= () = w2l ) — 2l t))} = (20 (0) = 26{0) ) 11 (0) — e 0))1{ (£, (1)

HUJ'”!hU'J —yelt)) = (eall) — () (e () — wa () }]
= —{[i' (0) = 22 l0)){ya(0) = 40)} = (2(0) — 200Ny () — 3:(0)))
Ham () = on {0 Wl t) = il t)) = (2a(t) — aul ) Myl — wel D))

= 0

This last inequality follows since the expressions: (o, (f) —

2e(EN)walt) = yelt)) —
{.ym{” "“.Uk["] :'{-i"u':.”_-rk“]} ﬂ["l i-?'m“]']_-rk“”[yniu]_ykiﬂj]_{mle[u] '-!Hc'[U:l}'[iEn[{H—
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T4(0)) have the same sign for § small encongh,

Thus the piecewise afline mappings that fit together 1o produce &, are all orjen-
tation preserving. and clearly then ¢, is an orientation preserving homeomorphism

of the Riemann sphere to itself. with the desired action at the ramification points,

Hence the proof of the lermma follows. O

Lemma 2: ¢, is quasiconformal for each ¢ in the ¢ dise. The Beltrami coetficient of
@r. is & complex constant {of modulus less than unity ] when restricted to the interior

of each triangle in the initial triangulation of the rectangle B, Of course. the Beltrami

eoefficient is identically zero in the exteriar of K.

Proof: Indeed. the complex dilatation of any mapping that is affine {on a region) is
obviously a constant on that region. Since the map restricted to each triangle wis

seen to be orientation preserving. that complex dilatation constant. for each trianale,

15 necessarily less than | in abselute value.

We note here the following useful algehraic formula for the modulus squrare of any

Beltrami coefficient (lo any map = 5)):

s & W4 ii e+ )
| = |_:l i

1

- (e —ty) + ¢, + r*_..;l .

(e + by ) {0 = uy)

I r';,JI'I + {ty + vy
)

+ (i — ity )

(=28 —Jﬁ“ll + rir]

i ;
by

) 2" oty A S v = Bty — Ry
= - 7 5 ' y
¥+ et 4o 4 2, — wgug)

We typically compute over = € APQS (notation as before). setting w = oz ).

and we get:
F.\ 3
5 : ; . .
| ~q5—*- | = constant [since. by affine-ness, u.. . e, vy tlepend only on t and not
bt

on = =0+ iyl

Las {n,r,

— gty > 0} over APOS
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Outside the rectangle f, the mapping is the identity — hence ;%- = 1 outside
R. Since there are only & linite number of decompaosing triangles inside R, and the
“above computation applies to any of them, the map ¢, is seen to be a quasiconformal

homeomorphism (for each t € A,) with the properties stated. This completes the

- F ﬁrﬂ of. =

3.3 Lifting of ¢, : CP! — GPY to ¢, : Xy — X

.-'ﬂ;ipsider the following diagram of Riemann surfaces with the vertical arrows heing,

~as we know, holomorphic branched COVETInES:

3 ,
']‘U———l- -]\t

Ty

EPl oy CPI

jli-:’l:‘.'.‘-l-"-ﬂpﬂﬁitiﬂﬂ i There exists a quasiconformal, orientation preserving homeomor
phisms

GE-': :-xﬂ —t X:
Iﬁgfﬁmg the map @, : CP' — CP' and making the above diagram commute. {Nott
ﬁlﬂt &g 15 the identiny;

Proof: In fact, in order to deal with unbranched coverig spaces, we define the fol
P L

wing punctured Hiemann surfaces:

\[{ = -1"_1{':31:'1 — all eritieal values of )

‘{f dTHCPY — il eritieal values of 2}



L the theory of covering spaces lo demonstrate that o, lifts. Consequently, at the
i_':fundaménta[ groups we need 1o look at the image of the action on =y of (é,0x)
ompared with that of r,, (See. for instance, Theorem 3.1, pg 128, of Massey[M]

‘the statement of the usual lilting criterion. |

mul oo a)m( Xfwy) = 7 (zdm( XL, Bo)

A & HJD-'E }‘-Elllf _a.i.]{i .I'[“.'ﬂ]' =Ty a_‘“.d._lj['j = ;rh.r; Erl]{'h. thﬂ.t J?L{.HDJ = éﬂr(fuj }.

rly then the lifting criterion is satisfed. and hence the homeomorphism o,

lical mappings are holomorphic. This completes the proof of the proposition.

o

h,]]:,-r then, for cur applications to the variation of Fuchsian groups we may {iff
'-':'a"'-.i.f{. e way to the wwversal covering upper half-planes and obtain the quasiconlormal
omorphism ®(z) = ${=.4) from [ 1o . obtained by lifting the mapping 1o
n— X

Thus we have determined @402) so that the following diagram commutes:
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@il =0z t)

ze U t
T e
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Chapter 4

Variational formulae for the Fuchsian groups of varying curve

4.1 The fundamental variational term:

Let pi( =) denote a one-parameter family of Beltrami coeflicients on the upper half
plane depending real or complex analvtically on the (real or complex) parameter !

near { = 0. Suppose also that po(z) = 0. Thus the situation is set up to be the

following:
delz) = plztyy el tedlt] <« (4.1)

We assume that each o belongs to L1171, (which denotes the £ open unil ball of
essentially bounded complex measurable functions on (1),

For our context - arising from families of algebraic curves whose coefficients were
assumed to depend holomorphicallv on t we may as well assume that the map { — u,
of the f-domain inte L={I7); is comples-analytic (i.e.. this map is holomaorphic as a
map into a complex Banach space).

By the classic Ahlfors-Bers generalized Kiemann mapping theorem, we recall that
for every given plz) in L=(07 )y, there s a quasiconformal homeomorphism, w = 1w,
U — U, whose compler dilatation (= Beltramq cocflicient = w. fw. ), is equal to
a:e. ‘on LT,

Moreover. this quasiconformal self-homeomorphism of {7 is uniquely determined hy

ft up to post-composition by an arbitrarvy Mhius transformation (from PSL(2. R) =

37




]

: ;ﬁﬂi[ﬂ]] that preserves [', Remember also that every quasiconformal homeomor-
mof U extends continuously to the boundary of 7 {in the Riemann sphere) as a
'symmel.ric.humcnnmrphism of 7. Thus we may uniquely normalize the soln.
1y, so that it fixes each of the following three boundary points of {7 {0105},
his material one may see the books Ahlfors[A]. Lehto-Virtanen[LV].

ke It is important to cmphasize thet even if g varies holomorphically with
eters £, the corvesponding quasiconformal self-mapping of the wpper half-plane
;;-bnfy vary real analytically. Indeed. then w,,(z) is a real analytic function of
revery fixed = € 7. See 1.2,14 in Nag[N] for this matter. The fact that the

on 15 only real analytic is fundamentally relevant to our work here  since we

 going to deal with the variation of the Fuchsian garoup (equivalently, the Fuchsian

clive siructure ). for the varving Riemann surface,

e

erturbation formula for quasiconformal mappings: We come now to the main

wla that we shall apply. I gy = 0, and if for small ¢ the Beltrami coeflicient is

i

doy:
=) = ti{z) 4 o(t). where &2 L7, (4.2}
ien one has an important integral formula expressing the solutions of the family of

mi equations, as a perturbation of the identity homeomorphism:
wuls) =z4tuylz) +olt)ze U,

e crucial first variation tern, wy = . for real t is piven by:
the crucial first variation tern f Itisg )

l e .
wi(2) = —— [ [ QR 2) + TR =) ldedy
=z

. z = 1) X .
Zi|'= . n’ =)
Ric.z) A =it —3) and (= £ + 1y

perturbation formula. (see Ahlfors[A]. or Section 1.2.13, 1.2.14, as well as

ion (1.21) of Nag[N]), will be fundamental for us. We shall apply it to

[ quasiconformal mappings @, (Chapter [11) standing for the family w,_ .



49

'_h_:'ne_in our set up { is a compler parameter we may as well deduce the form of
variational terms for general ¢ complex — which follows by simply applying the
real ¢ formula above appropriately. We show this:

tis complex write in polar form: ¢ = |t}e™ then put = = ¢=1 = |1|. Then we

apply the real parameter formula to the 7 variable, In fact, set:

plz) = €"iz)

wy(z) = =4 vdy(z) +o(r)
= =+ e i) 4 ofl)

= z+twg(2)+oft)

wilz) = & an(2)
() = ——f TPCIRIC. =) + FICIRIE, = ldédy
w(z) = ";ffb,[e"“ﬁmﬁ{{ + BQ)RIC, 2))dgdy

_ —%ffﬁfa?{i]fﬁ&:] +e 2 BICTR(C, =) dedy

where o= arg(t}. But /672" is the conjugate of 1, Therefore, this last formula SaVs

complex t we have the final important formulae:

wp{z) =2 + tan(z) + firj () +o(t), =€ 7 (4.3

. | gl s L —
i) = (— [ [ ORCNdedn. ~— [ [ FORE. )dedn) (4.4
£44} will be manipulated to produce the chief formnlae of Chapter 1V,

then the following main commutative diagram lifting successively the ¢,

compact surfaces. and then to the respective universal coverings:




H

{ L [
.

m m
' d; L 4
Xg —2 L X;

Py i
T ,::}L:

@GPt P

Let T = Gy PSL(2.R) denote the uniformizing Fuchsian group acting as deck

No =17y (4.5)

ows from the standard Ahlfors-Bers deformation theory of Fuchsian groups (sec
that the quasiconformal homeomorphism &, is compatible with the Fuchsian
Go, in the sense that g, = &, o g o, is again a Mébius transformation in
R} for every g € (V. and the new Fuchsian group (which evidently remains

y isomorphic to Giy) is the Fuchsian group:
G by Gyodi! (1.6)

s the group of deck transformations for the covering 7. so that X, is bhiholo-
orphically equivalent to {//(7,. We shall write

i :'¢r0g0¢;_1 E(;g {‘1?“]

rany fixed g € (7, = I,
In this notation, the central problem of our work is to determine ceplicst and ap-

e formulae for the variation of g — or, equivalently, to compute the t-derivative:
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= 0. As g varics over any generating set of elemenis Sor the group Gy, we
then obtain, up to first order approxrimation. a corresponding sel of generating
ments for the deformed groups G,

rl e shall naturally assume that all the informiation regarding the case for Xy =

= namely knowledge concerning the left vertical edge in the above commuting

- 15 given Lo us.

:ff.‘he Beltrami coefficient i, of ®,:

tional set up: Let us, for notational convenience. denote as . the meromorphic
nction on {7 given by o7 . {this is. of cotrse. a holomorphic branched covering of
tiemann sphere by the upper half plane). Clearly, . is automorphic with respect
Fuchsian group [, since ». descends onto the surface Ny as the meromorphic
ion x thereon. In pariiculur. let us note the well-known fact that this function,
Cbe expressed in terms of the standard Poineare theta-series on U7 with respect
s group . See Hemarks in IV.5 below,

v recall from the previous Chapter that the mapping &, was. by our very
tion. a piecewise afline quasiconformal mapping. So the Beltrami coefficient
was a complex constant on each triangle of the triangulation of the domain
le . (The Beltrami coefficient need only be specified almost evervwhere
re we will ignore it on the edges and vertices of the triangulation. )

reover we know that the vertices of the triangulation (in the image plane)
holomorphically on ¢ - since the ramification points ¢,(t) were holomarphic
['t. Here is the main proposition we require:

ey

sition : The Beltrami coefficient of @, is;

pls) =to(z) oll). 2 € U p(=) e L*(17),




EAES u[m}%:%. where w = (row)(z) = x.(z) € CP! (1.8)

1__2'_1"; the Beltrami coefficient for the piecewise-affine mappings ¢, on the Riemann
ELcl

w-sphere has been expanded up to first order in { as helow:

ol 1)

O] te(w) + o(t).r € L¥(CP!) (4.9)

* Further note that vlwr) is a constant on each triangle of the first (domain) trian-

"a"liiun of K, and it is zero for all 1 outside R.
Note: The T invariant Beltrami coefficient & above, represents the tangent vecfor
he one parameter family of Beltrami coefficients g, which arise from the one

parameter famnily of quasiconformal mappings ®,.

: From the above commutative diagram for the liltings we have:
(rpemjod, =g, 0(rom) (4.10)

g the @ and @ derivatives in (4.10). and remembering that all the vertjcal maps

holomorphic coverings (possibly branched as we know). we obtain the Beltrami
~coefficient of $, on [
. ovelw) (xor)(z)

' 4 lz) = . = & o) [EomE) el (4.11)

\ Clearly then the statements in the Proposition [ollow hecause the ¢(w) are a
family of piecewise afline quasiconformal homeomorphisms on the w-sphere which
olomorphically in {. Thus. remembering that ¢y is the identity. we see that the
trami coefficients of the family 6, indeed must have an expression as in ( 4.9) with

() being piecewise-ronstant. O

temark on the holomorphic dependence on t of the Beltrami cocflicient of 6,0 Our

is that the Beltrami coefficient of &, is & holomorphic function of the parameter
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] :__"l:l'tﬁ._ghbuurhﬂt}d of t = 0. Note that the map

bus
et
eE"E'!.:.'

values in the complex Banach space L¥(CPY), - and the holomorphy is as
nto this Banach space. (In what follows. it is well to remember that [™
mi differentials need only be defined almost everywhere.,)

ow. the Beltrami coefficient of ¢ is identical Iy zero hecause thatl quasiconformal
the identity mapping: consequently, we will have the following basie lirst order

msion of these Beltrami coefficients in the ¢ parameter:

& = tr{z) +oft)

e
he known piecewise-affine structure of each of the maps & we are further guar-
hat v is a picccwise constant function on the Ricmann sphere, - a complex
con (the interiot of | cach triangle of the triangulation of (1he “domain copy
) the rectangle . and is zero outside f2,

- The above assertions will elearly all follow from the fundamental observation that
‘of the mappings

e

In’fnmm'ph:'c! functions of t, for each fixed = in CPL. That follows easily since
f the ramification points Gl g = Looe- W, is a holomorphic function of 1.
-_,' if = lies, sav. in a typical triangle of the triangulation of R, with vertices
triangle being at : P = (,(0},Q = C.(0).5 = ¢(0). as before, and if the
convex combination coeflicients determining the location of = are given so that:

AP+ 5@} + vS. A+ pu+v =1 then
¢t[:} = }‘I;m{” + }I’L-nr...” -+ U{:.ﬁ,l:”

Iiﬁ"ﬁf course holomorphic in ¢ If the triangle (or edge) containing = has vertices
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that are among the extra ones that do not move with ¢, then clearly also the assertion
of holomorphy for o, ) remains valid.

‘Beltrami coefficients automorphic with respect to I': We must remember from

the general theory (see Section 1.3.3 of Nag[N]) one further fundamental fact: Since
the quasiconformal maps @, are compatible with ' their Beltrami coefficients are
(=1,1) forms on {7 w.rt, I'. (We called them T- invariant Beltrami coefficients. )

Indeed. if ¢ is the complex dilatation of a quasiconformal mapping that conjugates

[ into any group of Mébins translormations, then
(woglg'/y') = poae. forallgel (4.12)
We denote the Banach space of complex valued L™ functions on 7 that satisfy equa-
tion (4.12) for every g € T, by the notation: L=({/,1'). See page 49 of [N]. Thus, u,

belongs to the open unit ball of this Banach space for all small t | and also therefore

b belongs to this Banach space of automo rphie objects.
The variational formula for @,:

We come Lo the chief application of the perturbation formula {equation (4.4)) in our
specific conlext of varving algebraic curves.

Let F denote a closed fundamental domain, with boundary of two-dimensional
measure zero, for the action of I' on 71 (for instance. we may choose as F' any
standard Dirichlet fundamental polygon for the Fuchsian group I'). Thus = maps F

onto Xy, and 7 is one-to-one when restricted to the interior of F.

Recall that « was itsell & meromorphic function of degree N on the compact
!

1
|

Riemann surface Ny, (see Chapters [T and 111, Consequently, when restricted to the
terior of F the mapping r. is & N-to-1 branched holomorphic COVETINE Map onta
Riemann sphere — missing only a set of areal measure zero. Since this is a finite

covering space situation (aside from a measure zero set of branch points which we
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may discard to start with). we may choose a decomposition of £ into N regions:

4 F=DuDyy-U Dy (1.13)
here the D; are mutually disjoint domains, {excepl for boundary contact, as usual in
ce of fundamental regions), partitioning F. with the basic property that each [,
5, via 2., in a one-to-one fashion onto the entire Riemann sphere (missing atmost
‘ameasure zero subset ). {Recall that the compact Riemann surface X, was deseribed

san N-sheeted branched cover of the sphere by the degree N meromorphic funetion

Kernel function associated to I': We introduce as an useful matter of notation. the

fol .:-- function of two variables: = € [/, 7 € C (not lying on the I” orbit of =)

/(=)
Kilz. 1) = " 1.1
L § (=)gl=)—1)(g(z) — 1) e

We are now iu a position to state a main result:

corem: On Variation of ®,: fhe lifted quasiconformal maps ©, on | Tsalisfy the

owing first ovder expansion for small t:

Pifz) =z +twlz)+ Twj(z)+olt).c € I (4.15)

where:

B3 —-l
a(z) = L——lzfjl:',' (ol ) K (eTi(iv), = D b A diw
- #h k l

wie) = S Eff (K (P2 ) 2o oo

Here we have denoted by w.y the rvestriction of the projection #. = ro 7w (twhich

weromarphic and U-awlomorphic function on 7], to the region [ C F, k=
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WN. Here v denotes the function on the w-sphere appearing in formula (4.9) of

= Proposition in Section IV.2 above. {Recall that v is sumply @ constant assigned

ich triangle in the triangulation of R, with v being identically zero outside R.)

i -;gtg_furtfaﬁrrwaui~e, that since x. is a meromorphic function on U/, we may replaee

wthe above formula the devivative of its inverse by the reciprocal of its own derivalive,
oun below:

dd.n{]' w=ua.z), z € D

e derivatives can therefore be caleulated from the expression for r. which will be

le in terms of the standard Poincare theta series on 17 with respect to [,

aring in sight are absalutely convergent. For facts regarding Poincare theta series

heir utilization in expressing meromorphic functions on UJL, see Kra[Kr], and

marks in IV.4 after the proof.

We shall have to manipulate the variational formula ( 4.4) which said:

wy{z) =

S [/ [IJ{W .r‘? [ ::I - U':,”'}'R LLI.,.: ]fftb.-'"'-.du.-

“R[w.,::] = H=—1}

wfw-1j{a—z)

"_”j j (= —‘}L(}:Jz St

L+ o0 | S o [

dxdy

[ i kddy, [ f 42

that by passing to polar coordinates, for example]. We have therefore proved that

-f_] dedy are each absolutely convergent




I7

quired type of integral over {7, namelv: [ _L.L___::_f*] ﬁ:_,,tin:dy is indeed absolutely

gent, as desired.)

To obtain the final result for w, and wi. there are several chiel ideas wlhich we

“explain in words:

2) above), and making a change of variables by w = gz}, we can transform the
al over g( ') to an integral again over F itself.

msequently. the original expression for w, becomes simply an integration over
a certain expression on P, after interchanging summation and integration. {The
ty of the interchange is guaranteed by the absolute convergence of the result.
with the dominated convergence theorem. The main details of t1his eritical
ange of sum and integral are spelled out in the remarks attached at the end of
roof. )

:3"1'1&11}' we decompose F itself into the N pieces I, .., Dy (as explained with
‘tlﬂn (4.13) above) — and hence we may eliminate & by replacing it with oceur
ces of v itsell, and thus express the final result as integrations over the Riemann
CPL, as desired.

et us now get down to the main business of showing the exact nature of how

transformations come about in the expression for w,. First of all note:

[ L
o w—l M — 7]

- z [j S ——— - dw A dw, ' =fundamental

e (F) e — 1 W —7)

region of 1" in {7
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___l a change of variables on g{ £') byw = u + v = g(z)

(=) | g/(z) | )
gezrffp otz - gl =) M
_ IZ o' (2))* s
%f]r EERTE ]_T}d¢ﬁch.

.....

| 2l | gi(z) |2
: lsr’{]I £
since drd
%fflj Jllq{ ) =1(lglz)—7] ¥
B | ——
serd datky fw [ w =1 || w—7|

demonstrates that the series:

jj; gl= r;:: —[j{iizji}—r SRS Eff Blejazpdz  (1.14)

vel
is ahs hit'el}f convergent. Note that, for convenience, we have writien ', here for the
ing frequently recurring expression:
IR L)
gl=Mg(=) — L)g(z) = 7)

ill show by a measure-theoretic Lemimna in the remarks appended to the bot-
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_ iz-) 0
T m [ e —E_ N

_3[:—1] — F'[{:]'[J ¢ / ]
=—om L fqu () — ljgic) =26 M e

.S =1 e (O dE NdE
= I L imno - o=
=l ek SRt A

T

wifz) = 2 ﬁ”]ﬁﬁffrti:wndﬂ

mpletes the manipulation of the formula to a point that already has points of

we have carried out steps i, ii. iil,  and now we are integrating over F (i.e.,

(x o)) = CPY. and denote r o Tloe =ity

ht= 1,0+ N, Setting (xom)(() = w, { € 7 and w € CPY, and using the

un(z) =

- " HaH w2
-_j" 1] 7 L‘{ i'_l'_‘}",;""'[g‘ £y TJ'.‘”] l'fi.i.’.l'"n_ffﬂ_?
S0 S ”mﬂ = ole T (w)) (g{e mn—nuu-‘{m; 1” | g |2

Sle—1) . plu)g’ (e () }H T {1 ] ol s
e ffcm[q;;{.v Tw)glamtw)) — gla ) =y o
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= [f [r:{w}fnfi.,{ﬂ'l.’l[ - {ml]dwﬂrﬂﬂ

[m}] } diw A dw

last is exactly the expression desired and claimed in the Theorem. We are

O

Some remarks about He above arguments: When we interchanged summation and

ion above in the series 1.16). we needed some straightforward facts from the

[ measure and integration. For INSLALICE, OUT PlUTposes are adequately served

b Lféﬂpwing result I:SEE R‘UCHIJEH”:

: Suppose { f, | is a sequence of complex measurable functions defined almost

ere on a complete measure space (X, ¢} such that

iﬂjﬁ,h{p{m

the series f(r) =T f.(« | vonverges absolutely for almost all x, and FE£ L u):

et the summation and integration can he interchanged, namely:

fjfcfﬂ =$]; fadp

]

5 apply this Lemma with f, = V. 85 ¢ ranges over the countable group I,

saw in the argument preceding equation (1.16) that the series (116} was

. ﬁf convergent. Hence if we set () = 2 yer Uy(2) then this series CONVErges

y almost everywhere on {7 by the above Lemma, and indeed o will belong to
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(where p denotes two-dimensional Lebesgue measure). Moreover the Lemma
t that we are justified in interchanging sum and integral, as we have done
‘course of the manipulations in the proof.

ﬂ;g'r small point concerns the measurability of the various functions we have
integrands. 1t is sufficient again to consider the case of the iy, and prove that
is defined a.e. on U, and is measurable. That is very simple. In fact, it is very
i tosee that ¢y is measurable on theset £ = ' — (2. )~ {union of the edges in Hhe
ulation and oc}; but " differs from {7 only by a set of null (areal) measure.

se, 2. is a holomorphic mapping of {7 onto the Riemann sphere.) That suffices.

 Variational formula for Fuchsian group elements:

e arrived at the desired Main Theorem:

em: On Variation of (/2 Let Xy be as before the varying family of compact

nn surfoces corvesponding to the family of algebraic curves P = 0. Let Gy =
ofe o Fuchsion group umiformizing Xy, avd consequently, with notalions as
out aborve, €y s the corresponding Fuchsian group for the Riemann surface

(hen, for any 5 € 1. the variational formula for

N d}! o "||-' ] q)r_]

+ olt) (4.17)




t and wi being as stated in the main Theorem of Section IV.3 above.

of: This is a simple matter of applying the chain rules in order to calculate the ¢
— bar-derivatives of ~, at { = 0. A direct computation for complex ¢ (see also

tance formula (1.8), p. 170, in Section 3.1.1 of '."«Eﬂg[bﬁ"} for the real ¢ situation)

i_he- result as stated. |

ftemark on generators of Gy; If we choose a set of generators for the initial Fuchsiag

Gy, then the above Theorem lets us determine, up to first order in t. a cor.

nding set of generators for the deformed Fuchsian groups ;. That is exact]y

the sort of result we desire in any explicit caleulation with a given family of alge-

curves. Note that a standard set of generators {Arie sl By oen, B,} for the
nental group of a compact Riemann surface of genus g will produce, by de
ation again just such a standard set of generators for the new Fu chsian groups.

ations are obviously preserved under conjugation b @, |

Computational aspects of our formulae and remarks on Poincaré

‘theta series:

We would like to make some remarks on 1 he practical implementation of the varia-

{mmulac that we have deterniined in the theorems of Sections V.3 and [V .4,

+

The chief formulae for the variation of the quasiconformal maps $, were written

i Theorem of Section IV.3. The basic nature of this formula is more easily
d by giving separate names to the N kernel funetionis that multiply the piece-

stant Beltrami differential, v, In fact. we may rewrite the main formulae we

derived for wy and w] as follows:

¥

-

[E=T)-&

i) = 800l = ,-L.z,f Jocpr Ve 2o e (1)




{ fj¢" f{}f Z-/j;? C,P] h—l {Ll!’ *]lcfu*hdu' I:lu-”
iz

Here the NV “kernel” functions Vi are close cousins unto each other. (for k& =
“+, V), and each one is determined as a holomorphic function {of two argiments)
mmation over the group elements g € I'. [Recall that N was the degree of the

momials £y as polynomials in the y variable.] In fact.

-1
Vi, =) = Ki(aThuo), o) 22 )2 (4.20)

i

m:r formula (4.14) for Kp(w.z))

But we know further that the function r. is itself computable as the ratio of
care theta series — which are again sumimations over the same Fuchsian group [’
is given to vs. We take a moment to recall this basic material and indicate the
ance to our situation:

_._'-P;}incart* theta series of weight g acting on [ is:

Bl S W= = 0,0 (F)=) = 3 Flgl=nig' (=), e, (4.21)

gl

g 2 2 is an integer, and fis a meromorphie function (e.g.. a rational function)

fact, by the standard completeness theorems for theta series (see Kra [Kr], and
fion 1.4 of Nag[N]) we know that as f ranges over rational functions on [T we can
5 mantfacture all possible meromarphic ¢-forms on L7/ But any meromorpliie
: on ot Xg = '/ is expressible as the ratio of suitable n‘:m'nnmrpliit‘ q-forms (in
e may sé'mpl}' take ¢ = 2} - consequently, knowing the zeros and poles of the
on . we can manufacture explicit expression lor it as a ratio of two Poincare
| series

iR
Tl




[ or actual ways to set up theta series with preseribed singularities on the Rie-
mn surface, see the hook by Behnke and Thullen *Complex Analysis™,  where
d a proof of the classical Riemann-Roch theorem for compact Riemann surfaces
ained using completeness results for these theta series.

wgrefore, the upshot is, that a computer calculation of the variational farmulae

¢ 15 not unfeasibile.



hapter 5

“f:'gn from the Fermat curves i + 4 = |

Consideration of family of curves:
"f_ﬂiar the following ene parameter family of curves namely
Flryg)=a"+y" +1a o it — (1l —t) =0 (5.1

e £ lies in a small disc around the origin of the complex plane C and p is any
even or odd (p need not be prime) such that p >4,

that By(woy) = Pla.yg.0) = & 4 y* — 1 = 0 that is the well-known Fermat

mal: The polynomial £ {2, y) given above can also he represented by

dm

ey =y (= (L=t — €7 oo (& — e 7= (5.2)
f: Observe that
=1 =(r—r—eF ) (n—ertl) (5.3
bing coefficients of 77" of (5.3).
p_l 2L P_I Fry
Yt l=0=Y 7= |
k=1 A=l




ety 2. S

k=1 {ralegs 1<e<in—1) 120%(p-1)

=3 ¥ >, Rt _ (—1)?

{rshrigs 1<rip—1) | <x5ip-1]

se by induction we have by equating coefficients of 7%

Im
Z ET[T:+---+1‘L5 =y {_l]k

riFETy 1Sk 1<n<(p-1) (rp s}

{r1,. ... v} denote unordered pair.
I

Ak [
. Z ¢ p rrtatrig) LS Z E?—;r.'ﬁ"l'!'-ufil =
1) ridry 1I0<ERL) 1€7 < (p-1) Irteeri) mr 1 <iggk
Z E?Er;+...+r|‘+” - {_1 }k.+1

{rrp il ridr 1Sr €{p-1) 144 j<k+1

. -!.T'[J'1+...+rn} s [_l}k 1< L_ 2 I:p ~1) (5.4)
L{T‘p....r;._] .l-,#r.l J_E'[S,L- 15"|5h“1,

i

(2= (It —eF). . [z — e Blo-tl)

=1 FLea I
(z—7)e—6r )oafr— e Il Putting r =1—1
Pl

il 2= ksl
J.'p_{'r - ZETE}I;_I—-i + {T ZE:T*.'_F Z t_z_;':'l‘tf‘l'.'s]JI-p-]
k=1 k=1 irap o rEe | €rss(p=1]
e (= )3 eI o
Pramemimy brose, 1<ri(p—1)

il §

e vebenklyaeh
{riearu} mdry 1€ ste=1|




=

iy}

; T 1 F 2 L%
¢ -ET Z i (rriobrazz) - (144 ”]:’-T-‘i‘
{riarp_z) e, 190, <ip=1)
, — 2El
Skt

e e e e e e e 1 Ll 8 1 R (o 1
ot (1P (= 0P e 4 r(—1)M(—1)P" using (5.4)
2P {1 =) =) L (L= T)E R
et (L=7)r =71
2P b P e 4 L+t — (1 — 1) [putling T = 1 —{]

Fiz.y)

s the lemma follows. O

and the allied matter see Lang[L.].)

Theorem 1: (Eisenstein’s eriterion) Let 7 be a Principal Ideal Domain. Let
F=y"+taw "™ .+ ay+uag

ynomial { with leading coetlicient 1 | of degree v in y with coefficients from
ely fis in Ry])

pin R be a prime element, Assume

) pdivides ¢; ¥j < n — |

does not divide ay

is irreducible in Fy] and hence in f[y] where F' = Q(R) where (K] is the
t field of A. i

“applying this theorem in the case of Fermat curve.



i

Let B = Cls] is a Principal Ideal Domain, f & R[y] is irreducible if one can find
a prime p in Clr] as is needed in the theorem. For fla,y) = y* + " — 1 we have
aj=0fory=1...;n—1 and gg = " — 1. Take p = 2 — | is primie in B. Then It
divides ap but p* does not divide ay, since 1 is sfmplc root of ag. Henee Fermat curve

y* + o — 1 is irreducible for all p.

Hence Fi(x.y) is irreducible for small values of ¢ (which follows from momnedre my

invariance lemma as degree of Polr.y) is pin y). Also 0 and 2 are ordinary points.

5.3 Determination of ramification points and function germs of F(r.y):
Observe that

Fole.y) = P+ 2" =1

Foyle ) = m?

Discriminant of Fylr,y)

10 0 0 0 (=1 0 )

15 L U s SR | N 5 ( (2P —1) 0
o -0 0 10 0 0 (a7 —1)
.I:}:Ipf. 00 00 1 0 0
"n-u’ p o0 00 0 ( 0
| oy :
o 0 0 0 p ( ] (0




01 00 (eF—1) 0 0
0 0 0 0 (2r—1) 0
| 00 ... 1 0 9 | S |
= (1) | 2
o oo l [l i
¢ p . 0 0 1] U (!
00 ... 0 p 0 0 e 8

[expanding with respect w (p + 1th column |

poo0L D
= {—!]I“'_H”F‘_]}{IF — J)tp=H] 0 p )
0 0 n

[the p = p matrix]

= (=1 'If'”"'“'fll—l]l_l,hf- = ljr-—l P

i
= ("= 1P as either [ =11 or(p+2)is even
which vanishes only ar the pth roots of unity,
Similarly the discriminant of Pie,y)
= [Pt et e b — (1 = HpEp

= (==Y - r_l'_:j”" i fla s t%“"”}i‘"pr‘ (5.5]

Let Xy denote the Riemann Surlace corresponding to the polvnomial equation

Foleoy) = 0 and Xy corresponds to F(r, ) = (.




il
Here the ramification points are given by p holomorphic funetions of t vamely
Qi) = 1=t (5.6)
Geaalt) = «FF 1hepo (5.7)

and the function germs are given by

BlE = F=lr—(l <t))(z—eF Jilla— SN B (5.8
0 < p=1
such that
Pla.ylet) ) =0 (5.9

Also it is obvions that monodromy remains invariant at the corresponding ramification
point.

One thing is needed o mention all conditions needed 1o prove monodromy in-
vartance lemma is satisfied excepting the fact that the ramification points are not
multiple points of the discriminant of Fitroy) but that is needed only to show tha
ramification point are holomorphic functions of £, as we have used tmplictt funetion
theoriii to <how the Jacobian does nol vanish. But here it is s0 obvious thal we
need not wse omplicit function theorem, Hence the whole theory established hefore is
applicable in this case ouce we can find out the Fuchsian group of Pyle, y).

5.4  Determination of Fuchsian group /) of the Fermat curve Fole,y) =

PSP = =
Ao order 1o find out the Fuchsian gronp Gy of the polynomial Fyla.y) = 0. we have
to do the following

Lemma2: A compact Riemann surface X is defined over il and onlv if ¥ = ['/H

tl:lr some sithgroup £ of finite fndex in [12). (See Jones and Singerman [J52])




fil

Proofl: Let X be defined over €2, Then there is a Belyi lunetion

8: X — P! (that is a Belyi function ramified only over 0, 1, oc). Let X,
AHPY —{0.1,5c}} and & = ¥ %,

Xo

3y

¥
A ~ P —{0.1,00}

Let U = {z:5mz > 0}=upper hall plane. Now the well known A-function
D’ A ph_ {0, L2} is a universal covering projection of P — {0,1, 00} having
T(2) as the deck transformation group. So I'(2) = 7 {P' —{0.1. 20} } where 7 is the

fundamental group of P — {(, 1, o }.

v k‘ n

Ay

3
- P —{0.1, %)

o g5 . v . § ! ; :
Since X has (7 as its universal covering space we have a unjversal covering map

@2 U — Xj such that the adju;[iling diagram commute and X, = 7/ H where H i
a finite index subgroup of T'(2). In fact [1'2) - Hl =N =drgiy, Leti: U//H — X,

!i:ean somorphism, Then it extends 1o an isomorphism 1 - U'fH — X Also

A Uﬂ'{’i} — Pt — 0.1, ¢} s an isomorphism which also extends to an isomor-
..ixl..
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phism X : {7/T(2) — P!

such that the (ollowing diagram commute

U/ H { X

]

U/T(3) p

Conversely: Let X =

U/H where H is a finite index subgroup of I'(2). Then
the natural projection map (unramified covering projection) can
be extended to 7 : T/H — TJT(2). Let ¥ —¢ UTH and TJT(2] —¥ P be
isomorphism. Then X —+ P! given by 3

UJH — U/T(2)

= "0 P o ¢ is ramified only over {0, 1. ac}
and hence a Belvi function, a
Given a Belyi function 3 : X — P! we can determine the corresponding suh-
group ff of I'(2) such that X = U/H and [T(2): H] = N = degi3. Choose a point
PEP — {0.1.0c). Let 1 = 37 p) s0 Q] = V. Let

¥ = dgpmguaas N (510}
Let 7 = my

P! — {0:1. 00}, p), the first. fundaineiital group of P — {0, 1.0¢} based
ab p.

. . . LR CF, (Y
Now we have a permutation re wesentation #1x — SV where SV is the permu-
|

j_:g_lii_oﬁ group of the set 0 given by

l .
ol = g4 (5.11)
where g () = ¢, where g, is the end point of the lifting 3 (of +) beginning at g;.
ﬁhvinusly

el =

Gid) = monodromy gronp of (5.12)
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and acts transitively on Q. since X is connected.

o s Xo — PT— {0, 1i00} (8x, = Ao and X; =87 (P* - {0, 1.0} p))
Hence
35 i m{ Xowg) — = (PT = {0, 1,50}, p)

18 & monomorphism (where ¢ = ¢, 1 < ¢ < N} and
H = g5(mi(Xa.q)) (5.13)
' Soit suffices to find out 35(x( Xo, ¢))) and H50mi[ Xy. ¢)) consists of all those elements

of =7 (P! — {0.1,2c}.p) whose image under 0 carries g to itself.

Now H is the image 35(7(Xo.q)) under the isomorphism

7 =m (P — {0,130}, p) —" I'(2).
Note that 7 is generated by classes o, = [1.] of suitably chosen loops 4, around
0.1, 0¢ respectively such that apeyo. = 1 and

[(2) =< S, S0, 5] 55180 = 1 » Bl

Alsor — (2] 4(o,) =8 i=0,1,5 is an isomorphism.

. Letusrecall # - 7 — 8% and denote #q,) = gio Letgh =1, = 0.1, ¢,

Construct the Zroup

A=Ay i) =< To, T, T[T = Th = Pl== LT =1 (5.15)

that is the usual triangle gronp.

»
If
1 i | 3 I |
—t+ — 4 —
EIJ ‘rl Irx.
then U7/ A —— P1 there is an isomorphism and 2 is a diserete subgroup acting dis-

mtinuonsly on




fi-d

| |

/ Jr‘ b= |
"rl .'x
then & acts on C (iisc‘.urﬂ{nlmusi}’.'
| l
If —|— !, + razte-
1 '.'-:

then 2 acts on P discontinuously.

Lemma 3: A compact Riemann surface is defined over 7 if and only if X = /K
. where N is a finite indexed subgroup of A and \ = P! or C ar [/

Singerman [JS2] )

- See Jones and

Proof: Let X is defined over . Let 3+ X — P Lo a HBelyi function. Then

X = U/H wheve H s a finite indexed subgroup of T(2). Let 8 : 5 — SV hLe
a permmtlation representation where [[(2) @ H] = degd = N, f(e)) = ¢ (=
Oilioe. = = (P —{0,1,50}) = [(2). Let g = | where i = 0,1,50, Construet
i =< Tl Tlly = T Tl = T = 1 3 Theiis —® A b the

(epimorphism such that a; —* T, Let the | image of i under ¢ be &', Assume

I 1 1
pt+E 2l
We claim that
l'fh =X
One can show that if
PiZ) = H UgeH UL e H

then

D= K U (g )R UL U (g )




(IR — 7 YHeertices) i o AL JH
m 3
b I T
U A —g™1{0. 1. ) 2 o P1—{0.1,5¢)

(ooxlm /N —x " Heertices}) = (do)m (0 H)
~Hence o lifts to an isomorphism @ above and which can be extended to an isomorphisi

VK — T7H

jRECE.” that

and

P2y =gl Ug HU..UgyH. gy =1
Let T = £ then T = w(g) g € T(2). Also g = @b ke i for some i. So

,:T: el = ey Jeth)and o(h) € o H) = K, Again Kere © KNerb © H,

g wig )N N ) K
= =gk = gl )k
Now' dy=ab(hi)e ky =olhy): hih, € B
= gihdgh, )7 € Kerw o H
= ghH=4hH
aH =g H

—
= yl e .!_If
=

i) =g, )



fifi

Conversely ; The natural map
Uil — 7]/

is ramified only over the vertices. Also recall that

= P!
Hence the result follows.
Consider the Fernmat curve ;

=]

Let X = X be the Riemann surface of the curve, Consider the function

ﬁ-: X — P where d(r,y) = «".

1 P v . 3 2 mrg
The adjoining diagram commutes, Now ¢ is ramified over e » " where b =0,....p—1
d ¢ is ramifed over (l and >

=

ale 7 ")=1

Hence 7 is ramified over 1), 1. 20, Henee J 15 a Belyi function. Note that o is p

leeted and & is psheeted. Hence

n.' Eg J'j = p‘i
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Now we shall determine monodromy around 0,

I, 2¢ under the map 3. Choose a

small circle around 0. Points on the cirele C are given by z = re*™ ) <t <1, Now

lift of " hy @ are p curves ). ..

Ey= {rwr pHE)

So via ¢ monodromy around 0 is given by

2=

L3 b §
(re.ree v 2

1
TFE
By r.

.ﬂ'u lifts tu a curve {‘-'u which begins at (7
€y lifts to a curve () which begins at (r

and so on.

RS

L
R
L"'
Py

0, where

<1} k=0, ...p—1

Al 2me
JFRET b

Hy (5.16)

IH’J

y 1 =) and ends at [rrr Pl —r)
W1 =7} and ends at {T‘Pﬁ‘_?", W17

_ﬂ,,_ lifts to a curve €', which hegins at [;rf-'t R v — 1) and ends at

rp, V1l —=r

Giving rise to a monodromy

thyp = ‘{.[T'JF"- V1 - T'}f[i'll‘fl_?._ 9l —r)e

.','I * *
Similarly

Hy =

o (rre NPT ) (5.17)
(5.18)
YT =) (rre¥ et o o )
monodromy around 0 of 4
Lo P (3.14)

ilnt is prochuct of p disjoint cyeles each of length p.




fin

Next we shall determine monodromy around 1, Then ¢ = {14re”® 02 £ o)
determines a circle around 1, Via ¢, € lias plifts €Y,

vCpoy where (' is a curve
. oy
aronrd £ 7

U< &k < (p=1). Firstly consider Cy. it consists ol pnlnts'{(l-i—rf*”j 0<
B <27} Viaz. Cy has plilts. Consider the function germ (. 0) = ¢1 — r# and

continue it along () that is equivalent to continue the function gerim oy = {/1

dm
calong " which carries ¥/—r to er §/—r.

Hence (g has a lilt €' via 2 which starts at 101+ r]:j?. ¢ —r} and ends at {{1+
r]r e'r [ —r}.

. i z 2rr|
Again if we continue the function germ sz, 0) =

# ¢l —.r? and continue it

‘along Cly that is equivalent to continue ¢ 7 i along ' which carries ¢ » ¥/=F to

ewaﬁ”_:

Thus we have a lift of € say (5 which begins at ((1 +r) :I' - ¢/ =) and ends
at (1 + r'li. ¢ %{f'—F}.

i
Proceeding in this way we continue the function germ (e, 0) = ¢ e ”{}“ i
along 'y that 1= u_qulmtent to continue ¢ ¢ T 7 along € which carries
e L{k ”1.-' 1o o G {.-"r iy

Thus we have a lilt of say ('wo which he gins at ((L +r) J?? S ”{f r)and
lends at ({1 + )5 v FY=F) 1< k<
Giving rise to a monodromy

belo = {(() + 1 =) (L #)5 e 00 + P e TP (50)

= {((1+ )R T T+ e B R YT (1 )b (0 e a
which is true for 0 < 4 < (p— 1}

Thus monodromy around 1 is given hy

o= Fah . 3



il

that is the product of p disjoint cycles each of length p.

In {act

ire
[

wlzy) = (ee.y) (5.22)

niley) = (rc5y) (5.23)

Since gogi g~ = 1 which follows from the permutation representation

0:7 — S where 0]+] = g. and the fact that

T =< 0n, Tl 2000 1T = | >
we have

£ irs
B

Gocldyy) = (ze” #  ye 7 ) (5.24)

Note that

fody = o

guuila u) = (r.y)

zmi Pl

= (€7 "ae T Y) = (2,9)
= m=ip k=sp

== gl

The above may not be trueif e =0ory =0 thatisr =0ore=¢7 " 0 <hk<p-1
l‘mt because ol the choice of the point P & PY — [0,1,0¢} this possibility will not
oceur. Henee gl gl keeps a point g, above any point £ € PY — 10,1, oo} fixed implies
ger = 1.

Now we apply the above theory with X = X, corresponds to the compact Riernann

surface of % + 4" = L. 3 : X — P s given by 4 = o7, Choose a point P £

PL — {0. 1.2} then £} = 34 ) = S g2} (recall equation (5.10)). Also ¢, =




T

(i) = oy 20 and e # eFE 0 < k< p— 1 for otherwise 3{g;) = 0 or 1. Recall

that 8 ; T'(2) = 7(P! — {0.1.0¢}) — 57", the permutation group of 0 given by
B(5) = g where [(2) =< 5.5, 5+ 1 505,55, = 1 >, Here we have identified ['(2)
with = = m (P~ {0, 1.o¢}) (compare with (5,14) where the identification is done by
an isomorphism m —' ['(2)), Since 555, 5. = 1 we have ot = L. We have just
observed g = ¢ = g7 = 1. H (thal isa subgroup of I'(2) reeall the equation (5.14])
consists of all those elements 5 of 1(2) such that 0(S) keeps some g, fixed. Hence
by the discussion of previous paragraph #(S) = 1. Conversely #{S) = | implies #.5)
keeps that ¢, hxed, henee S € H,

Thus S e H 68(5)=1 (5.23)
Again recall the epimorphism ¢ ¢ [(2) — Slpop,pl given by w(S) = T, where
BN = Ddpipop] =« Ty T T =l = PP =TT, =1 . S viH) = ik
ff{r_eca]] Lemma (3) X =U/K ).

_;;T]lenren; L2 Let N = Xy represent the Riemann Surface corresponding to the poly-

'_'_::Fmiai equation r” + y* = 1. Then
X = Xo = L[y 4] (5.26)

roof: We follow the theory developed ahove. By Lemma 3 we have X = U/ K where
( i5 a finite indexed subgroup of /. Also recall by Lemma 2 X = {'/H (where

H is a finite indexed subgroup of T02)) and the mappings 0 1 T'(2) — 87 and

2 T(2) — Afp.pop] of the above paragraph. We claim that & = [£ 4.
e K =% T'= (%)

or some 5 € H. Hence by (5.25) we have (&) = 1.

e can write

T = TP Te T Tv T
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where 0 < 5 < p, 0< ¥y < p. Hence
S =9 =gd'e™ a5 o™ ... gt g7

since

@ =§) = ¢ = Gugiges = |

Hence

R

a5 gog1 = gigo. Now by (5.25) we have #(5) = | as § € H. Hence
£ k
E Zr.l.:ﬂ__ Zmlzﬂ
1=1 1=1
Thus
T = TRIPTRTme, T
miss [‘T“‘!T!nqj"ﬂ—ri TI--m: :]T]m1?;-1+r; . Tng;nk
= ‘f“TI‘.’”:T[;ﬁ -I—"v-Trm - TD’J;TI"#
= TTPMIP:, T

S0 the numbier of 17 and T has reduced with Y n, = 0. Ypi=0and T e [ A

‘Hence by induction 7' ¢ [&%, A] as Tr; = 0 and 5oy = 0.

Henee T 2 |4, ay

K C |4, 4)
Conversely : 1' & |4, 4] shows that T = I, ABAT B where A, B: e A | <
j'k.- Hence if T is in 1" then fr",-_J"" 15 in the word T'. Hence

gt!
T=T0ams. . Brpm



P2

where 375, r, = sp and YTeymy = np for some mtegers s and n. Now T = (S

where

L Oy Om T TR L
-:" —-qu "'.}I 'bl-.l .-.t'..||:|'k5|

:'Henr;e
#=0(5) = gilerah - -a5k gy

L] &
= .{f&lﬂ.:l m q.lzlnl file

i P TR
= futh

= 1
Hence S € A giving 1'= (S) € I,
Hence [ A] C K.

hus W = [A, Al and this completes our proof, O

We claim that [, A is the uniformizing Fuchsian group (that is [A.AN] is lorsion
) o X = x,

_1;-“ = I['lll"llﬂ_ ﬂ]

LA

Take a branch 4y of 4 and continne 47" o 7 analvtically. Since 7 is simply
connected that can be done uniquely. So let @ he the lift. Then as 4 s = — = above
each point over 0. [, > and 7 is also so. we have o as unramified COVeTIng projection

and hence universal covering projection. So [A, A] is the deck transformation group

ofithe map ' o @ where ¢ : Xg — U/[A,A] is an isomorphism. Hence (&, A is



3.5 Claleulation of genus of

We clatie that the genus g of Xy, that s the Ricmann surface corvesponding to the

pelynawial cquation o 4y = |, i qrven by

! .
g=Slp—1)p-2) (7

Crt
T
=]

We can calenlate the genns of Xy with the help of 3. Consider a triangulation of

P! which cansists of three vertices {0, Loac ) three edges namely the seements of R

joining 0 to 1. 1 to oc and oo to 0 and 1wo faces namely . L (that is the upper and

lower half plane). Then Lt this triangulation by 4, We have

nuarther of vertices = 3p

{since the number of points over () i< p. the number of points over | is poand the

number of points over x is p).
nurher of edges = 3p°

(as 3 is of degree p* and J i ramified aver ), 1. x)

32
fumber of faces = 2p

as A0 pf sheeted |

Let ¢ e the genus of X = Xy, Then

2= = Bp=Up* 4 AT
- dp— p?
=g = p'—dp+2

[ .
=4 = Flp—Llip-2)
‘"'iis easy to verify 1l

tal Xy, the Riemann surface corresponding to (e y) = (0, is

) biholomorplically equivalent to Nu. that is the Riem

ann surface corresponding




B!

to Pyl y) = 0. for small values of t. There does not exists an atomorphism of P1

carrying the branch points of P(r.y) to the branch points of Fy(x. y). Indeed the

cross ratio N
A am LT
Bzt A2y gme | =t —¢s po— e
{]_—L;_!'_'(:P‘(p.]:I[ m]I” 25]
N =t=<%% [ g7rr = 0 ]
depends on 1.
5.6 Calculation of w(=) :
Wﬁ'rfﬂfm. that
[—1 4 7 cat %] o . .
Wizy) = T inside the triangular region with vertices origin. 1,
2 =
and e v .
[l +icot 2(p—1)] . .
= — = ! inside the triangular region with vertices

origin. 1 and ¢ 571

2 —cos 22

= 3[1 Hi—————] linside the triangular region with vertices
3 sin 5
B

Tt
L2 anidiar

—1inside the triangular region with

a _L ol
vertices 1. 2. and e P11

Let us consider a teiangulation of P with only four triangles with vertex | namel ¥

Imr

; - ot It i E i 2l -
‘triangle with vertices nrigin, 1 .7 : the triangle with vertices origin, |, ¢ P71




=T
[y |

v , - 5. g . W = ATk = %
the triangle with vertices 1, o v . 2 and the triangle with vertices 1. e #7192, We
shall caleulate p(z) (Recall IV.2) in these four triangles. Obviously (2] is zero putside

these four trianegular repion as the map o 15 identity there.
g Pt 3

2

The triangle with vertices origin, G (0) = | and G&(0) = £7 s mapped by o
linearly to the triangle with vertices origin, ¢;(1) = 1 — ¢ and Ca(t) = e, Any point

{a.y) i the fiest triangle can be represented as

.t'-l--i"y=::,\.th:_. tp {1 =A—=pu)l0

where 0<A< 1l 02p<l. 0<A+p<]

2% ;2w
= r=Adcos— 4 g, y=Asin—
P i
i
= A= — (5.28)
sin =2
210 )
TSI '-‘-’F-;_- — jeos =
arl  p = = L (5.29)
51111—;'

Again any point {w.r) in the second triangle can be represented as

n-l-:'t':ﬁnt_l% ol =+l =X —pu)

where 0= A<T. O=p<sl. 0€A+pu<l

o

= = Xcos — + p(l —t) (5.30)
» '
o 2
and = Asin — — pfy where 't = ) + ily (5.3}
p

Hence af (. u)) will be mapped 1o ulae.y) + el y) where

i 2%  lasin ‘% — yeos 22
W), = Sgpeos— + BT L) —1y) {3:32)
S P sin =
i 2
i o f.r si1 J‘F: — Jj cos .i_—:l
elriy) = oogpsi— — T Iy {3.33)
Ty I sin =% :

S0 we have

wela ) = 1=




6

Qir 2

wylaay) = vot — — ot —(1 — ]
i
I
= Tyeol —
L
J"I{'r1 Eer} = -l
2=
vplaay) = 1+ tacot —
»

Pre (p—vy) + g+ ) B(1)
Ore e+ vy + e — ) = ol l)

whers
EW. ) T
At) = L=ty — (1 +tzcot —) + it mtz—r — 4]
P L
2 ) 2%
— —[h +t2fﬂ1.—}+r-{I]CD1.—'—t2} {53”
p o
P 2
alt) = 1=t 41+ tagot — 4 i(~lz — £, tot —)
P P
. = 2
= P —t+lacot = 4 i{—ty — tycol 21} (5.35)
P
(Observe that
(ve—ayly = =l={uy+u}y,
r
(e—ny )y = —CGLF = —[iyy + vy,

Hence 3£ 1s holomarphic as (. — v, )+ t{it, + v, ) satisfies Cauchy Riemann equation,

Also Ji0) = 0.

Again

1-”1' + r'Iif]fl =-1= {?‘.r. = “;.-]ltz
o)
|:H_:_- + E‘y:l;_‘., = F = —{'HJ_ — ”.‘-':If'_.:
Henee (e = 1,0 and (v — uy,) satisly Canchy Riemann Equation. Hence a(t) is
holomorphic, Also a(0) = 2.

AL BV By s
I e

all] ol




= r’{;;:l"'{ﬂ] +oft) as H) =10

a{ 013710} - 3(0)al(0)

where {g}’f[[}}

af ()
A
— _':'l =
ol0) as #(0) =
B = Qe = Byley FilHg + 00
2T
= =1 4reet—
¥
q —1+icot s
Tls {'—','l"’fU]l = ————F asall)=2
o 7
So
A1) f[—1 +icot 2|
- L oft) = (=) + o)
Henee
[=1 41 €0t 25|
viz) = 5 (5.36)
inside the triangle with vertices origin, 1 and eF
Simiiarly
[—1 4 icot E(p—1)
ul=) = - | (5.37)
mside the triangle with vertices origin, ¢1(0) = 1 and ¢,(0) = e T gince it s

mapped linearly to the triangle with vertices origin, ¢ ({) = | —t and Lalb)= gl

Consider the triangle with vertices ((0) = 1, {(0) = e and Copr(l) = 2 and

@ carties it linearly to the triangle with vertices G(t) = 1 — ¢, G(t) = e and
3

Copr (1) = 20 Any point in the brest triangle is represented as

im

A= S ML ERR L=
where AZ0, 420, 0<A+u%1

A

= o =A+2u+ (L= [A+ p))eos —
E

a.}_r
= qul—l—p}éﬁnh—




>

Henee
:?TL' .‘:‘rr 2;\.
T—cos— = Ml —cos—]+ p(2—cos =)
p o b
PT' En j‘T
y—sin— = —XAsin — — psin —
4 P M
e [r—:u-.—jmu——#-[:;—mn il {I—LD"-":F:I
(I — t.:'lh?}ﬂjll T —sin —(2 ~ CO8 ET]
—ursin i—_ — {2 —cos &2 ,'| 4 2sin 2 ?
snlf
(@ — cos 2 J s L5y (4 — sin —]{i — €05 év’i
e [J‘—Lu 'jk]u——%;n%fl—whi} :
et i _ dey s
B s = 4+ 4l — vos F] SiTH =
sin 22
ST
Il
wtw=gfz) =Ml =)+ p2 41 - A —_u]r:_%
where =1/ + iy
Henee

d—

o 97
i o= Al —fl—cm—ﬁ+_ul| ’—Lm—}+m~.—
i n P
—wsin 22 — g2 — cos £2) 4+ 25in 2] I
iy 4 — " B =1y = ok —J
HI[IT p
lrsin == + y(l — cos 22) — sin 42 : i
1 el e 22(% — cos T2 4 ooy 2T
M| j_l F .I”
Similarly
zﬂ-
ro= —My+(l = N— p)sin —
il

o i e U
= A -t —sin—) — pusin — 4 sin ==
L i i
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[—,a-gin%—,r;f?—cnﬁ-z—lr]+25iu ‘!—:] 9
= e L {—ts —sin —| —
Sin = »
bl
(A o R Sy F
[ s = + yil cd.:ra--;l-}—bm—t] P D
o —=== Bl — 51—
BV —
P B g
So
|—sin22(1 — {; — cos 22) + sin 1_1—’[.2 —vos 0]
i, = L . Il_ i F
B —
el
= —| 4ty
= | -i'h
[—(2—cos Z)(1 — 1) —cos 27) + {1 — cos 22)(2 — cos 2]
I e I Ko r o
" —e
B =
P
|f| 2
= ———[? —ros
in ==
b ] p !l']
{ = i
(2 —cos 22|
{1r‘l — J_ !‘-! — F
sl ==
r11hu5
[2— cos z_—]
”.I' = |“|,| — #1 == .f:_—,l_’
511 =
i P
(2 — cos 22
Uy + 8 = bitti————at—
I =
P
(e =gy, = (ugtue)y
(e—ty)ia = =[tg + By,
Hence A0t = (ue — oy) + tluy, + v2) 15 a holomorphic function of 1.
[2 —eds *F]
“J'-I- J'I|,l — —'}+i| +f2 i }t—‘
§ITL =
»
(2 — cos =)
iTJ_”h. = i-:-;l_‘l—,j_il
T B
p

Similarly o(#) = {u,; + ) + i{e, — w,) isa holomarphic Tunection of (.

ﬁi o |:”.r o fry} + Il.l:f-fy -+ f'r.:| B |'If|'+

G- L by e —uw) all)




Observe that 3(0) = 0 and ¢(0) = 2. Hence I*_[fl

i) 15 @ holomorphic function of ¢ in the

neighborhood of ¢ = (0.

o _ Bl _ B,
Grs all] B fl'r'n} le=o + oft)

i3 ;':-r"lr”_}]
¥ e = Sk = !
!fr] — fﬂ} JI:E] = —aqﬂ.}
1
= i“”r — Wy }:] + I-I::HJ‘. -+ t}i.]r]]
] ,(?—cm‘i—;’} N
- E[J i sin 22 ) (5.38)
Fl
Similarly
1 (2—cosZ{p—1)) N
Uf“—,ll "—Eéil"'f ‘Siﬂz?_l:;ﬂ‘—]] ] [.'_!qu

mside the triangular region with vertices | L EP tp=4) and 2.

iﬁ-'.’i" Determination of elements of the triangle group Alp. p, pl:

o T et |
g | M ¥ g BB ¥
0 }; 2 i—;x ;Ip—ﬁ

iz T : -
where A = ¢ % and g = ¢ ¥ and p is the positive root of

| pA |
Pz'[.f1+—+'t—+—]=,u+—+’£
poooX T op It

Let 57, 77 be respectively the Mobius transformations with matrices 8. T. Then

Alpppl =< 87T (S = (T = (817 = 1 >




(=
h—

Feal line

Figure 5.1: This illustrates the following

FPurthermere p is the exact order of 57, 1'* and S5°7".

Proof:

Let us consider a circle centered at O and radius R. Then OC is the straight line
Joining the origin that is the center of the unit circle and €, Let the distance between
€ and origin be (1 4+ /). We claim that the cirele centered at ' is orthogonal to the

unit cicele if and only if 1 = ({4 2H) and ([ + K)=1.

1 = I{{+2R)
&1 = (00— PONOC + PC)
el o= OO0 - Pt

where ' 4z a point on the cirele centered at (7,

Suppose | = (I + 28) then | < | as { + 2K = 1. Then the two circles must

intersect at the points I and 0 sav. lence | = ONF = (D)2, Now by last

equation | = 0% — 2. Sp we have OD° = O — DC? giving the AODC s

right-angled at £ and similarly A0/ 0C is right-angled at D/, Hence the two circles




are orthogonal to each other,

Conversely if the two triangles are orthogonal to cach other then there is a point
D an both the circles such that AODC s vight-angled at D. So the center € must he
outside the unit disk (for OC and DC' are perpendienlar) and | = Q02 = ¢ e
Thus by above | = ({1 + 2R) and {4+ B> 1,

Let the line O makes an angle —a with the positive direction of tle real axis,

Hence the equation of the eircle is
Lz— {1+ R)e ™ |*= g2 (5.40)

In order to find the equation of an orthogonal circle we need to know three unknown
real constants. The unknown constants are [, H. o So we can find a c¢ircle orthogonal
to the unit circle which passes through (5,0) and fe™'F and whose tangent at (g, 0)
makes an angle > with the positive direction of %-axis where g have to be determined
afterwards as we have the constraint | — (I + 28). Next that is alter determining
I, R, o0, p we shall find ont the tangent at je ' makes an angle = with the ray joining

the origin and the point pe

1= {14 2R) (5.11)

|2 =+ By e |'= g2

= A=+ ez~ (l + R)e*)= R

= = =+ Rz — 214 R)e™ 4 (14 1) = 2
= |z =k R) (26" Lz ) 1 +2HR=10
= 4yt i Brcosn — ysina)+1 =0 by (5.41) (5.12)

i /
= 2e4+2y-" 21+ R)jcoso — Psina) = 0
e i

dy (1l + R)cosa —

Il

dr y+ (14 KH)sina (5.43)




=i

Real line

Figure 5.2: This illustrates the following

In order that the orthogonal circle passes through P = (5,0) we have from (5.42)

pt— (1 + R}p(2cosa) +1 =10

= CuFo = Eﬁﬁﬂ': i’?] (5.44)
In order that the arthogonal circle passes through @ = jpe™'F we have
# = (I R peF e 5 petE e 41 =
= P =+ W 4 ] =0
= 4= 2ol + R)cosla — ;}I +1=0
= - 2504 Bessacosl 4 sinasn :] +1=10 (5:43)

n lil'fl'
In order that the tangent at (j.0) makes an angle i with the positive direction of «
axis we have from (5.43)

T

. ({+ Rleosa—p
tan — =

n (4 B sina




on
[ees)

= (4 H)sinatan T (I + Rjcosa—p
L

T o+
= ({+ K)sinatan — = £ :._ — by (544
po 2
. I =
= ({4 R)sinatan ;— = I)_,P (5:16)
) 2

From (5.45) we have

P =1 + 1) cos ::a + (1 = p*)cos ;] +1=0hy (5.44) and (5.46)

= ﬁz—‘lmsi—i—l:f]

p
-3 il =
= p=-—1+2c0s— {(5147)
P '
So 0 < p* < 1 for p >4, Hencesuch a p exists (that is {5,0) lies inside the unit disk ).
r 1 -p°
tan atan — = fj by (5.44) and (5.46)
po 14 p
] —vos T T
tani oy = ———— ol —
COE ; I
l —cosZ
== fano = 1—_F
st =
I.l
7
= tandé =lan -
2p
= e 7.-+£ 5.13
2p Ip e

For convenience we take i > 0. Now (5.48) gives a is - or # 4 2. But o in thied

quadrant gives coso negative, Henee by (5.44] pis negative which is a contradiction.

™

Sowe have chosen @ to be positive and o to he =

(The other choice could be g to he
negative and o to be 7+ i that is a symmetrically opposite thing).

§o we have determined g and o, Now (f + R) can be determined from (5.46),
Using /(14 28/) = | we can determine ! and R

Denate ({+ K1 by d lor convenience.

d=(l+ R = % = (asp>0and a= fﬂ} {519
2 co5




=0

S>d =i+ B = =P 1

?acos =
i cos 5

1 cos® % ;
TRN S W . L
4p¢ cos? 'F y (547)

I-||1

g
VL
S B
32 cos? 2
pocos? o

We claim that o = 1 .For atherwise

5 T - o T
cost — *—'_i'p'-:‘n::szr

P <p
T r 7
= [(2cos® %— — 112 < (2e08 = — 1) cos? —
2p i 2p
?T w
= 4 {1054; + 1 —dcos” =S [ZtZt.GS?T — 1) = 1] cos® —
2 2p 2 2
v . T T T
= deos! — + 1 —deos? — < [1cos” — — 3] cos® —
2 2p 2p 2
= 1 —4eos® — < —Feos? -
2p ' n

a W
= tos” =2 |

which is a contradiction, Henee d = 1 (as d > 0 and 42 =10

(1 +2R) =1
= 1200+ R)—{] =1

%

I

P—2fl+R)+1=0

= FP=2d4+1=0 ast+R=4d by (5.49)

Let = and .7 be twe roats of the dbove coualion,

348 = 2




i

= Al = 1)>0 asd > |

G0 9 —3 = £IWd2 -1 =real asd>1
S0
g =d 4+ vdt— |
anel

,'_‘f:f.f— \fd2—1

Il we take | = v > d then as [+ R = d we have ® < 0. On the other hand if we
choose { = 3 < d then i > ().

So with the choiceof [ =d —d* = 1. K=V — 1, 0 = 75 and pis the positive
square-root of 2eos = — 1 where d = %‘.—L? we can obtain an orthogonal circle which
prasses through the points (4, 0) and ﬁr*'f and whose tangent at {.0) makes an angle
= with the positive direction of the » axis.

We claim that the tangent w the orthogonal cirele at je "7 makes an angle = — ET_
with the positive direction of the x-axis that is the same as the ray joining the origin

and pe ' with the tangent at ge ™% makes an anegle T,
.Il:-II g = ) i

! (I + H)cosea — peos =
2T VIS L TP g (5a)
o 'pe T —psin - + [ + #)sina

ﬁ.%‘l — pros I

e 1=
—psing + 5

= ——— by (5.44) and (5.6}
oty

(57 + 1 —2p% cos )
—24%sin i + {1 — e r%

(4 + 1 —20% cos =}sin 2

— 25 sin” i + 11— p*) msi

rﬂ+ﬁﬂ1—2m5ﬂhhf

—ji*{cos a1 2s5in* .':] + ros =

o
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R:__:u.] line

Figure 5.3: This illustrates the lollowing

[1— (1 —2¢o8 Z)*sin

{1 — 2608 T (2 +cos 5 —"2cos? 2} + cos ]

Al

[—4 cos? ++dcossin -

B TP s iy e I e R
(1 _r.mp}[_ Zcos™ 5 4 cnsp]+{_ﬂsp

2sin ’Z—;H —gos )

il

2 _Zros £ — frost =41 cos T:

b=

Dsin (1 — cos =)
i n

. "Tl-l-

ST =
- ab -
| —Zeopst L
P

e B
b e
b1}

— s 1=
P
ar
— — |_a_|'|_ e
P
2w 27
lane: = —tlan—=tan(z — —)
h& I
s

5
I
1

il



where @ is the angle which the tangent at je™7 makes with the positive direction of

the raxis.

2q

= = ==

P

inplies the tangent makes at je™'F an anele o with the ray joining 0 to pe s,

Su there is an orthogonal circle which passes through (5, 0) and ge™'F and whose
tangent at {4, 0) makes an angle % with the part of real axis joining the origin ani
{p A also its tangent at ﬁf'irl makes an angle o with the ray joining origin with ﬁc"ﬁ.
5o we have a non-euclidean triangle whose vertices are the origin , (j,0) and je™'7
ated edges are part of the real axis joining origin with (4.0}, the part of the radiis
of the unit circle joining origin and je™% and the arc of the orthogonal circle joining
(o 00 and ﬁr"il- (which fies inside the unit disk). So each angle of the non-euclidean
triangle is =

Hence the triangle group Alp, p.p| is generated by elliptic element §° with fived
pornts U and o¢ of order p o 7= with fixed points p and :—J of order p, (ST')" with fixed

pints e "Iirrmféf_fi of arder p. That is
Alpipipl =< 8 T 8P =T = (§T1" =1 >

Lhe elliptic transformation S* of order p with fixed points (0 and 2o is obviously

372
n

W = £

A =
= 1= where A=¢e""2 (5.50)
A

Hence the matrix assoctated with the transformation is

AD
= (5.51)

=
e
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Certainly S7 = |

The elliptic transformation 7 of order p with fixed points o and 1;: is given by the

follow 'l'n-g

w— L o
A 7
w—p 1 z—p : _ =
= Bl Eﬁ;_l where @ = &5
= i —p)(pz - 1) = (pw - 1)(z — 7)
= iz — 1) = plz = p)l = wplpz— 1) - (= — )
= W= a1+ (5~ 1]
[p = pl + [p* — p?)
L Am S =

o=+ [£ - 4]
HAgg—nol+ -+

= A= :{:-I _#] " [% - 5] (5.52)

Observe that

1 sl o Lo
(= =il = &) 4 (- )
goop g

i
1 2 | -2 2 1
== _— EES e N
7 I #2—{-;:- +|u-|~#,‘! i
N G
= [p— =)
il

Setting r=p—

| -

wee have the matrix T associated with 7

- -

1 - 1
il A

1
:F: "-




Also observe that

4L

|
where p = —
i1
Hence r = l—-p
I
’ | A 1
ot + —+"-‘~—|——]=,u—|——+1-1
pooA i

gz - Fixs i 4 T o .
& e d e TR FeE 4 J"']:ﬁlw-i-f E g

5
as o jp=er A=¢e'w

3 W dr T
e P’I2c05;+2cm5—1=gm5_+g
f -
| +eus=
:
= =L'usi+cn:3£
r #
1 +cos=
S L e 5 5
u‘-'-'ﬂ-'"-‘-;-i-tm-F—l
| Lepsl
f—71 Fz_—.. 1 == E o -
{ +EDH*p—H fn:-.;—]_}
2 | |

2 L= g%
Jeos 2 1 I

—
o
o
-

—

(5.58)

i 5 ) ) ; ! . : . (= o E ‘B
Phe elliptic transtormation of order p with fived points YeTr = pe'F and pe ' =

Vo= i i
2 L - AT ;
se~ v 1s given by

I}

—

| L i —y
t— ;f_,-: _ - —:_;
=g . 2 = .
_ I . 4
[2—pe™"8 Jww— =€ '3 ) = jitle——e™% ) iv— e
.- = ;_ 5 JLaer— ge T E)
L T — pHf) - i"'?{l — 1)
Al —pt) =T o (p =)
ML = p*) + Mu — Ly
=

Fel=ml g =500
1 "

ag Jo= A=«""%
)



1

A2 = )4 My = 1)

= zb=1 i (5.59)
el =)+ slpn = L)
Lhe last equality holds because we claim that
2
I
i _'FE.IHI = ;—r — i ['jﬁ{_l}
; a
and 1 — };2;}% = Iu,_c_}z — ; {5.61)
From (5.57) we have
: 1 A 1
ol +—+£+-]2,u.+ e
" A " i
2 2
i, I L LT R
= jip +,e_i+'u o +}F_p+;+2asy—-i
o 2.3 I o
= ——p={l-p e e = =
ﬁ#{ 1ot 5 pp’ i
(5.60) will be proved if we can show that
1+——;p’—#2=n (5.62)
4 —— ,.'.ejr;'-‘:I —~ P—j
H i
= s he= pre'n —p‘!f:_?'_r
9
= [l 4vos v P o T+ cos —]] = r[—sm — — p*(sin T _sin i}]
7 P # B "

= [ +icos E — 2 cos? % + ros ;—} = 1)] + i[—sin “E + sin —lh}r (5.58)
i
= [[1+cosZ)— Iﬂl”l::}lm::us--iri —1)(1 -+ L’D‘Ei}]
n by I
= [(1+cos 1) — (L +cosZ)| by (5.58)
! &

= 1

Henee (560 15 proved.




Again from (5.57) we have

M

i I
ool 4 ."_f+ |

X -
+=]=u+—+2
i i
Lo 1, 2.2 T
= p'[;:+;+;r +H:‘”+E+2

I 5 . ”
= b = o= (=X bt L= )

So (G5.61) will be proved if we can show that

1
1+.H—F1Uf2+;}=ﬂ

1
I+t — pflp® + =)
7

1 ] -
1+ 7l ﬂ"{ﬁ—g +p)] as g =e's

1

1 o
= [1+=—pp*— =
i i

0 hy (5.62)

Hence (5.61) is proved.

Now [ron [3.39) the matrix associated with the elliptic transformation of order P

' = e ey S —E= H
with Axed points ‘{: o= and peT'v = %r v isgiven by

T I VI
e = L:' ) 1”‘ “1] (5:63)
[;‘!‘]‘ TUJ’P—;;‘.I

1
¥
= pNi SedetV =rasdetS =detT = 1




R

Y rl — = My %I

]

T 2 1
— ] e =0

,_
e

II |1‘f':1'1‘

S0
A= Alpppl =< §F08T =T =(ST)"=12> (5.64)

where 9= and 77 are the translormations associated with the matrices 5.7 (miven

helow ) respectively. where

B R L

[T

= ; ft =t T V= 'y |:..:-F'|.I:':|I“| i

arnel jrs the Im-—']li'.r* rosl ol

i x = [ 3.0

or equivalently g7 |p + — +

e [E 0 e o= ' {56

| 4

5.8 Determination of elements of the commutator subgroup [£. 4 of the

triangle-group & = Afp.p, pl

W elaim that S TIST S8 where 0 <t <{p—2)and I < p<(p— 2} gen-
crales [, 0] that is the commutator subgroup of A = Mlp. p.pl,

Let us recall some basic lacts of Algebra (For these and allied matiers see Johnson

1)




R

The Sehreivr transversal

Let ff denote a fixed subgroup ol a free group I = F(X) where X = {r;} is the
set of free generators of £, Recall that a right coset of H in Fisa subset of F of the
form Hew = {hw : h e [} for fixed w € F and that any two cosets are either equal
or disjoint:given w, ¢ € F then Hu= Heor Hu He = ¢,

The cosets of I thus partitions 7 into digjoint sets and by choosing one element
from each coset.we obtain a (right) transversal {7 for H in F. Forany w € F, Hwnl’
thus consists of a single element which will be denoted by @,

Definition: A subset S of F has Schreter propertyif it contains all initial segments of

all its elements that is

where [ W) =Ty ik

A Schreter transversal for ff in F s a (right) transversal for H with Schreier
Jrroperty,

Note that every Sehreter subset and thus every Schreier transversal, contains the
Canp word ¢,

The pext step s to find the generators for H.

Tlis is done in terms of Schreier transversal 7 lor ff in & and the function

o o— I

defined by Hwn (" = {Ww}.

Alsonolethat T =w . Hwwe = Hiv Yw e F.

Lemma 4: The elements of 1the sel

|:= {.!.'.J'W_] el vE ."L'i}




senerates H.(For proof see Johnson [1]) =

Lemma 5:

B = {wwr 'ruell re X, wr @ U}
B = (urmrt:uel, oe X7 ur g U}
B = {b7':be B}
Then B' = B and A — ley=8BU B!, (Far proof see Johnson[J]) O

Lemma 6: Civen a subgroup N ol a free group F. Let i be a subset of F whose

normal closure B in F lies in &, Then & is the normal closure in & of the sel
jl";‘ — {ru'.‘r—] rnefll re R}
where {7 is any transversal for K in F.(For prool see Johnson [1]) O

Proposition 1: Let # be a subgroup of ¢ =< X

R >. Then H =< B|S > where
B = {uruz' uw € U, 2 € X} and S is the element of B={urut:uel, re R}
expressed in terms of elements of B. {715 the Schrejer transversal of f in G

Proof: Consider (¢ =< N|R > and H is a subgroup of G. Let F'= F(X) that is the

free group penerated by the set X
pr=mut: FIX) — {7

with & = p='(H). Let [7 be the Schreier transversal for A in . Then the set
B (ol Lemma 5) freely generates i (by the above results). Let ft be the normal

closure of B in £ Then K is .E_;r‘nf.‘rillc*i.i by wrw~t, w € F, But pli_'r_r!rr:_'_i] =1, 5

1

prw=! € K. Hence ® © K. Henee by lemma 6. R is the normal closure in K of
= {uruvtsuellre it} Let & denote the set of elements of B written as words

in Bt where B = {wewz! s uw € U € X}, Hence < B|S > is a representation of
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Iy /T which is isomorphic to [l Now il we can show that pull back of a transversal

is a transversal then the proposition is proved. Let
(= HgyU...U Hg,
where g; = o) ...07 is a reduced word in X%, Then we claim that

F=hgU...Uhg,

rel = pz)=gel forsomeye G
= g=hg forsomeheH 1<i1<n

I

= pleg™") = vlaele)” =gy =hefll

,t':r,rr'1 = N

I

= Nr=~Ny,

Hence r € g, Again

KeNikyg #¢ = g9, €K
= vigig, VEH
= qu, €H

= Hg, = Hy;

which is a contradiction.
Hence if {g1..-.g.} = " form a Schreier transversal for H in (¢ that is all initial
words of elements of U s in 7 and & = U™, Hyg, is a complete coset representation

of H in (¢ then [7 will suffice our purpose. Recall that
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fuenr™ t v e 7 € X} = B generates K as »(R) = . Also it does not differ

whether we calculate @ in (7 or in F. Indeed
Hur= Hg, = KNur = Ky,

a5 :x{u.'r_(_.rr'l] e M. m|

We need the following

(1) A Schreier transversal U7 for I in (0 =< X|R >.
(17) Generators £ in /.

(7] Detining relators 2 = R(X) for 1.

(12) Delining relators S =5 B) for {1,

Onee (1) i found out
B={uwrtwx'iuel, re X}

B={uu"nel. re i)

S is the elements of B expressed in terms of elements of 8. Then < BIS = is a
presentation of £,

Recall some algebra of finitely generated abelian groups, Let &7 or [, ) denote
the derived subgroup or the commutator subgroup of € that is the subgroup generated

by the set {ghg™'h™" = [g.h] | g.h & G}. Then i/ is a normal subgroup of (' and

iy = G0 15 abelian in fact this is the largest abelian factor group of 6.

Proposition 2: II G =< X|H > then Gy =< X|R.C > where X = T

C = {lrium|l <2<y <r} reZiFor prool see Johnson [J]) 0

In case of & = Alpp. p] given by

A=< S T8 =T = (ST =1>
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B = & 8. F|8.TH(BTF ST+ %

= < &T|5% TP, 5P ST >

Let us denote the free abelian group on X by 4 = A(X) and continue to write it

additively.

Proposition 3: I[ X generates an abelian group (¢ then there is an epimaorphism

iy AN} — 6 lixing X element-wise. Every abelian group is a homomorphic image
af some free abelian group.(For proof see Johnson [1]) O
Proposition 4: [l A = A{X) is free abelian group of rank v and £ is a subgroup of
A then B is free abelian of rank atmaost ».(For proof see Johnsen [J]) O
Erample: In case of & = Alp.p.p] Hap = E! where A = A(S.7) is a free abelian
group of rank P and B =< pSopl ps + pl' =

Let 4 = A{X) s a free abehan group of rank r and B is finitely generated by a set
== e yo} of Z -linear combination of elements of X, Let

i = Z Mg, 1<t k<5
1=1

['hen M =1, s the voeflicien! matrix.

Proposition 5: The subgroup X =< Y = of AN is determined by the s = » coef-

ficient matrix M = {my) given above. Changing generators of X and Y corresponds
1o post and pre multiplication of M respectively by invertible matrices over Z,

Conpersely: 1T and 71 are nnimodnlar, the coeflicient matrix TMQ ™! determines
the same subgronp B ol A(N) as does M(and thus the same factor sroup iiE;-I-J- I For

proof see Johnson [J]} rl
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In case of A the coethicient matrix is

po U
i p
|” Ifi

fovariont f{r;‘fﬁ." theare i fm‘ mifrices

Just as in ordinary linear algebra, pre and post multiplication by invertible ma-
trices corresponds to perlorming elementary row and column operations.
P: Permuting rows.
M Muluplying a row by a unit (£1),

A: Adding to a row a scalar multiple of another row and similarly for columns.

We now describe an algorithm for reducing any r « s matrix M over Z to canonical
form
1= diag(d,.. ... di)  k=rmn(r, s)

dieZUuf}l = € hdifdign 1 =< k=1

L. Pick an entry o of M of minimal positive modulus (if no such exists, then M s
the zero matrix which is already in canonical form) and remove 11 to (1,1) place by
I* uperations.

2 Use an M operation to ensure d > ().

3. Use an A operation to replace the (2.1) entry by b1 < b < o (If 5 = 1 go at once
Lo step Th

LI 6 =0, go to step 6, and if not transpose rows | and 2 and revert to step d.with
bin place of d.

5. Repeat steps 3 and 4 until the (2.1) eutry 15 zero (whereupon the new o in (1. 1)
th place will be the highest common factor of (1.1) and (2. 1)th entries at the start

of step 31,
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. Perlorm steps 3 — 5 on the remaining rows until the only nonzero entry in the first
colutmn 1s the d in (1, 1) place.

T Perform steps 3 — 6 on columns unt]] every entry in the first row is zero except for
d inthe (1.1) place.

8. Hd divides every entey in the matrix, go to step 1L I not use a P operation and
at A operation to get b into (2. 1) place with d does not divide b,

1. Repeat steps 3 — 5 until the only nonzero entry in the first columm is d in the place
(L 1), then return to step T with new o,

10 Repeat steps 8 and 9 the (1,1) entry d = dy divides every other entrv in the
matrix.

LI Apply steps 1 — 10 to the matrix obtained by removing the first row and column
to obtain a dy in the place (1.1) that divides every other entry | and is divisible by
i )

L2.Repeat steps 11 until either rows or colummns or noizero euiries run out.

_ Al
A ez
Erf,.rt.rh.rg_...rf'L.r,-_. -

i -‘Czu'_. a . de .-\ZA....Z

I
[

(where r — k copies of Z).

Now apply the above algorithm to

pro
Step | I p
P



101

p 0
Hh‘[l 1] U p
0 p

[obtained by subtracting first row from the third row.

U
Atep 1L U p
0 0

(obtained by subtracting 2nd row from the 3rd row.]

Thus we have

.'i{lc','! T1}
ﬂq.{. = ﬂf[&&| = < Pff IJII -
P (5.69)

Mote that
U={8T":0<igsp-1, 0£j<p~1}

15 & complete cosel representation of (4, Al in A

[ndeed any element in [2, A s generated by ABA™'B™" where A B e Xand
P T
B =Smru Qe

Suin ABATIBTY the sum of powers of S{similarly sum of powers of T')is zero. Hence

if We [A, A then

IV = SFiTa:  Qreis

where 327, po = kp and 30, ¢; = np (as the only cancelation done contains 57

e = (857 =1 all involves p-th power of S and T').



H

COrhserve that
.5”'?"‘(."'-'*"1"!)_] N g [, .’i\.]

as neither 1 —k=mpnor j —{ =npfor 0 <1 k <p=L D<€ l<p-1,

. . s 2 I -
No 7 contains p? elenients no two of which denote the same coset representation of

[A.A]iIn AL Also | AJ[A, A |= p* by (5.69).

Henee 17 gives a complete coset representation of [ALA]in AL Also any initial
word of any element of I7 is in {7, Hence {7 represent a Schreier Transversal of FAYWAY
i £,

Hence {wawz! tw e !, »

m

X = {5 T} } generates [A, 4] and {ury™ 1 u €
U re H= {5 Tr (ST)P}} pives relations of [A, A

Observe that
ST = Sy mod[ 8, A

because il we write A = 87 and B = & then the above is the SATNE as

AB=HA mod[ L, A

and thatl is trueas ABAY B~ € [AL A

Henee
SIS =5+ = ST f0<i<p—2,0<j<p—1
= ST ili=p=1 . 0<j<p—1
STIT=FTH = ST (0<i<p-T.0<f<p~2

= ST G0 <i<p—1. j=p-1
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TABLE {: Observe the [ollowing table where rows are indicated by elements of {7

and columns are indicated by elements of X' = {5, 7'} and the (u, o) entry is wrir !

with nell re X,

TABLE 1

he
i |
g l
St !
g1 o
T TST-18-1
ST STST-18-2
I‘-"I-J'j-l Si}'ﬁ:]{'—tﬁ“]—l
Sr-2] SP-2pST-rg-nt
I'H'r:—l T qu—] ]”.qf'_l
-J! ._! T-‘z_{;.—! _ '2 IE-'I.. 1
5T+ ST 8T-3g5*
Sipe ST -g-1-
Gu=¥rd L B M A g
Se=ige e L
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74 TIST 5 |
ST STIST15-* L
Sep SIS T3 G- 1
.'_'.'IT' __....llil_,rI Lq?_'_::I.J.\Il.-lllr-__]:'_;_.,-+1 I.
§r1y §r-VTIST ) 1
To=2 Pr2GT P g 1
Sy STP25THr g1 !
h‘="r'rl—2 .H"T;'""'.'H'T!_"’.‘;f_'_l |
e SIATP-R ST P g1~ |
e R L 1
el Te=tgTi=-pg=1 TF
§pe= STr-18T1-pg-2 STrg-t
§ipe-1 §iTe=1 gPI=p 5= Sies-
o 2 "‘r'j'."" | II.:I'J.I—.-!"I p—1 L{:"j’ 1 —.I.'II.;—.l'.l—J h‘;r'—'.' "r;:-b""a'- r
Iq;._].f.r___l -I:'l'p_lr.lrul_l-':"r.}rr-l_;ll ;"Tp_li!“"'hrj_p

Tahly

END OF TABLE I

2: In the following table the rows are indicated by elements of {7 and the

calumns are indicated by element of f = {57, 77 (ST} and the (w.r) entry is

prn” ! where w € 07 and r e fi.
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TABLE 2

St |
Tre

(ST}

5
T.‘J

(ST)r

59
STFG

S(STps!

[
S
s
| -
S Trg
§(s
G(ST)PG

E ) TR
;| "}' ! II 'I
i )

gr-
HST et

sy
e

sy

-
st S
Sres
= -1

(ST

SR8
Eis

GG
T{ETyPP-tgs

op-2
P .Jllh.ll'rfr
¥ .!r_] " J
.l'll“::_'l"
| op=
® } 2 J-II‘SIE_p.

Gl
T(STpFT-15%7

e
T
L
gl
t ‘r‘l
Sp17
- ;'.qi_"

SP-1T(S
T(ST T8
- _p

PR
|

T ST)FT-2

h.-.j!,,.__.b.;l,-jrn_'_l
e -

I-.. ST el
i |:. I.jll:lpl:f‘_.! ;
4 1

e
on '.:I!.-.I"—I |
5T f Svye =y

ST
FHST T35

Se=1]
1

w27
el B ol T
i I _.dr_'\lz—"‘l
IE;_”-'-:: .
I[lll_;'.d—;)

L i
THST P75

S L

ey
el
op
ST _':.L"II -p
.":F_ -
begi=p

I'.:I.-p_‘l.- 1% L
I(STPT-2S!
[ =F

I

Tigep=y
e

A STPT—

&7

STISP =15
i _]
STeS!

5 P - -
.r{ .--r.:ll.,rﬂ_r i
[t .! i i :




L0
S SIS G g S STPr—5~
SPEP | SEETISPT SIS | Qe=dTegiop | QeelTu( TR Q2w
Qp-1T Sse=trigep-igt-p He-lrpgl—p K-l jl",;'.[ IF."]F'JT-‘T =1 gl=p
T Tr=2Qp2=p e TIJ—E[ ST\ TP
| 5=t STr-25p2-p5-1 STrS-! STr STy *r5-1
SipEL | St iegpe FEprg SITP-3(STPT?rS-

Sp=2TP=2 | Qp=TPp-tGnTRepgiop | Gro3T0SE-E | Gr-2Te-2( )P E-r G203

SPE=2 | SpIT-RgRi=rgi=p | Ge-tyngi-p | Ge-pe-2( TRTE-0 Q1=

s Tt gepi=p il ey &ryrioe
STet | sprierTivs=t | oSres=t | STeeSTETIRG—l
I"1.|.-I'.r-'_] IH"IIJI_II"?PTI - II_,IL;I-._l I-HII-}--,PIL.‘I_I- IH.I-_TJ-\.__ ]{IL-‘-_Iv]J-_,.-Fw]_;:,S\-_'

‘-\'F'—z"f'l'—l 5 '2]'";?—!;.‘,';";'1—r-_;;'-!—;' l _H',';'—'J"r"ﬂ‘u_.;"ﬂ—?-' b'r-'—ETp--1[I-;|-:r:|p"r'l—p5-:£—;-.-

K1Pr-b | Ge=lpe=tgpTi-pgt—p I[ Spolpeglop | Gp=lpe=1( Ty l-pgt=p

END OF TABLE 2

Fable 32 We denote the generators of [ Al by b;'s that is the elements in the last
two columns of the first lable and express uru™ w € {/ and » € B that is elements
in the second third and lourth columns in the second table in terms of by's: Denote
by by = 5" and by = STVPRTIST ISR where 1 € < pand U<k < p—2 and
bigptp-1) = STITPE where | € § < p. Observe that in each st of P EeneTators

that is {2 L < ¢ < p} for any fixed & the exponent of T is & 4+ 1. We can write



the first table in terms of b,'s
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TABLE 3

5
]
&
51
Se by
T I'fF|I
ST by
el by
St s
Sty h,
T? bt
Ok B
:‘.-|-r2 '!I’F|+|+1
Sy boons
L bytp
4 by =1yt




[
| STV bij—1)p42 )
|
|
ST . biitip it i
| l
St TP —
5',!;—['}'_1 hf_,u—l}p+.p 5
it Bp—yp1 -
S

Bip—ayn+e

II;I_‘..E-.F!_E

1‘-‘:lip—.'i];|'+1-l-l

HI_.._:.:!;-J_._;J_

'ﬂ"ﬁr—-'ﬂa-'ﬂ-'—l

ST

f"’{ p=Alprr

'f‘I‘—I

bip-2pp=1 bip—1)pst
il ok hn{.—---'ﬂlp_—z h[p—l]p-l—'l
i i : IEI."[1-—'..'],*' fr -1 '-i}llp—1]p+|+1

qu—'}’;'; —1

"I’f,u—'_':lr-+rl 1

Motiptp-i

qe=1yp=1

'lef.l"'ff':'-""'i'

bp-11p4

Table 4:

END OF TABLE 3

We shall determine how we can express the elements in the column
indicated by S in the second table in terms of bs.

The element T7SPT'= has started with 775 and only b that starts with 798 is
TIST-48-1 that is bi;—yyper- and there is no other element which starts with 794

(as exponent of T'is j only among the group {b, 10k | < k < pt and each is
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obtained from the previous one by conjugating with 5). The nest element, we need
must start with 5745 and only such element is b yyppe = Sb,oyp 8™ Their
product is by, o1yl —1ypez = T25*T4187 and adjoining one b, yy,4p successively

i the product we inerease power of S by 1.
. rop=1t—ped—p
hi.-“”.l”" ...JIJL,_|'||,_+I.__|_ ’FI_H;I" f e

f;“_”rl_i_l s |"]| Py = T 'L'-JI_]._LI"F_"I — PIGPT

Similarly we have

'E‘I‘IIJ'H'I i IJ'I:_.'— Thn+14 1"]"'!:_,-—] I e o R f"’{_}—] T

I<i<p—-1

We could have determined this also by observing b,y 440 = Sy, ripssS ™ with
by sp-tadl €02 p—L by = Shycagpri=S Yoo bmipey =
by S iyt and STTVSPTSI 8- = 9 ToSE=2y5=r,

Lhus we have expressed the relations in the column indicated by 8% in the secon

table in terms of bs.

The relations nethe column indicated hiv 17 in the second table, are nothing bt
bio-tws; 1= 0 = po Since they are both generators and relations we can treat them

as identity or we can discard them.

Lastly we shall express the words in the columm indicated by (ST in the second
i f K

table 1n terms of s,

Consider 19 ST VT4, This starts with 7987, So the only element which starts
with T8 18 b gy = T28T7957 The nest element we need must starl with

STHS so that its product with biioyipst will give TVST'S, Since the exponential of
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Fin STHIS s j 41 the element must be among {bipe t L < & < p} and the element

18 bppe = STH ST 82 giving
by <typribypgr = TH(ST)ST 71572

The next element we need must start with §277429 so that the sroduct with
|

bi-vypriBpee Will start with T9(STYHST)S and the element mnst he Brisrypen =

SEPIFEQETTTILS, gy
— Ao g == =3
bu=tpprrbipsabiypnpee = THSTPST 728

So each time we need an element whose exponential in T increases by 1 from the
previous one and exponential in & also increases by 1 from the previous one and

addition of such an appropriate &; in the product will give rise to an (ST, Thus
Lo = e e S —
i perbipsz. sell ey = TS IGE 128t~
and the next element we need must be i = SEIFIISTI= B,

bs-tptBipis b —sipppat U aipry = T(ST)P1 ST
= ST G-y

= FIETYYL™

Proceeding in the above way we et the following table by writing the second table

in terms of bs,

TABLE 1

5 e (ST J

'rJU ‘;JJ-“-—J 1+1 ﬁ'ls‘; A= e "Ii',-.-l: p—2] I-;l.:-hp|.'.-—| b+1 |
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5 v|.rJ|_,, E’;.[;;v.1]+2 EP_H IEI'I_.,+_; Vo d"pl.'p—ﬂj—!-lhp“-—]} 17 |
& by Dpgp=1)4i+1 beyabpyiga. .. E'IP{P—H}+=!JIJ{F‘—1]+-1+]
--IF_] bﬂ Lli"" p=1)4p bUb[bp+l 4.5 E-]pl:;|'|v--:.":|+;.l—l lll‘I;rJ[;rl—l.] b
II IIJ! hz A Ir.l'I. b},“,___] 11 !‘.‘l hp_,._z e bP{P—1]+P'1bPI:P— | J+p
l.,'j' Jr,'l-_. f_?;i e |'|!p£lil bp,:p_”*_g b;;:_!l?_;,+.3 ¥k hp{p—E}éybrr[.p- [ES |
|
& bisibipa, . biby bogp-tytint | bisibpria. . Bofpayseabngporyas |
5P B-1bp oo by—abip bptp-1pp=1 | bpabpip o bogonyep-abyipotjap-s
SR | Boby by -2l E”pin—1|+p bl - “"’Ptp—?]ﬂ -2p(p—1)+p-1
24 ""L’rf+ihp+? vl "-"rn+p E’n[;ﬂ- L+1 hp +I'r‘2p+2 =i b!—‘l#‘—”'i'.i*—lbl' |
| ST! |r};1-|—:‘-hp;-'¢ s lll-".r'-{-l E];:l[;:-— 142 ‘1‘1;:-+2b'£p+.'j v IE’]u[;rl- ]:|+pr
| SV hrﬂ I 1-I'r"p+|+! s 'r—lp 1 I- 6pl:lrl--|.'|+l-+] II-':"j-:r-l-:+lE"211+:+',E - rhpw—ib+r~--lh: |
- |
_L'-,-;—;Zr}""d 'fl’r' fp=1 IIJJ_.+I_- - hly IrJJ-. yp=2 Ir}I,”,_ L+p—1 IIJI.+P_1 !‘IHF“FP i E"I'ii'l' ”+]J—3b;=l.rrl ~1}4p=3 |
i 1 'l|||".:.' hp-é—}-‘lh.'-+| v !!J‘I.._|_F_|_ hmp_ L4 b;r-{-ph?p-{—l _— bpl:p—] 4 = -JII]:,{F,_] H?'-'_l
I biityper o= B —rppep bytp—1y 41 bi-tppribipen < B2y
ST b—tiprn s - Bpy—ippe bitp—1y42 bi—typaebips - o by
l A !J':J—”F"i Tl = hl:.-'—l:'l"‘fl '!r";r—hi—lil+u|-1 bi;—l?p4-l+ihjp+'+3 ficy be—'JJFIﬂ
|
‘ ‘HI'I‘_ET"‘ EF;_“, 1 ]bp=1

lll':rl_‘l =1hpAp—] b EJ[J'— =2

i"':..'—l bptp—1 b_'l""?»" 2oy E*[; Fip+p—2
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S | ‘;"L'—l:'.'"i B hi_l—lh'i-p—l

Bpp-1140

h{.l—l]p+:1hﬂ"‘-'1 co {][J'—ZHJHJ—l

butp=2)41 - Pptp-3)45

|I.I-'J-|[:|-|. 1141

*r’.v'ip—~'5]+| botp=ayrz - bpip-ay44

e i
ST® Butp—s)2 - - Dafp-3p

Brip-1i42

Botp—a)+2byip-2p4a - Byipay

Ry

Cofrpn )
.‘_"' ! Ilr P |r.:';|l..|'r.;__'3].;|+] AN J}pﬂli._q'l.}_l'

hr'fp— 1)1

E’.r'lr*-”-l'+t+ih-ﬁ'[r'—1:l+=+2 LS bpﬁn—'le

g a 32
A L;-i;r—ﬂb-i-rl- Triisy h}"p—.':l}‘.-p—'-!

bI’[F' Lj4p—1

f’rip—3P+r—If’F[;'—2]+rJ ¥y i’.'.:-!J'J~I Hp—i

cp— =
e bpin—3]+:- Bt 'r’pip—ﬁiﬂ-—l

f

plp—t]+p 'F’P[P—M-l-vh:'[ﬂ—?]H S br'[r—ﬂ-l-p—l
Fro—1
i E‘nlr-irﬂ R br*hm'—’]ﬂ? 'i’pip—1]+1 hNP—E]"i'IbF'fP‘-]H?" 4 é’ntr—-’*]ﬂ*
ST byp-2y32- - b4 botp—1142 boip-2142batp-1)43 - - By

I'-:':-FJ'"'.[ I'f-’tr'[}.-'—'..':I+I:-i |REREE: hp[}.:—if-i-l'

b

plp—1)rad]

E’r1[r—'d:l+l+I hp[p—lj---l'+l’.‘ v '!’pl:p—.'S]+:

Sn—2rpn—1
BE e 'br?iﬂ 2=t 'r*r'l;n—!Hp—-’

b!-".!-'— Li+p—1

'r‘m:-»—l?}ﬂ:'— L 'r’Pip—1]+p w hpin—ii}-w—'ﬂ

1 g _I
SPTTP | Bpnpeps - Biipajapny

Botn—1)45

bpf;’:—'l:l-}-ph_r.ll:p—l}'!'l Eip b?-'[il"_a]'f =1

EXND OF TABLE 4

O bserve that

b vgppatidypsigs - ~bpay SELTECIE

& E'I[.J---':|P+!hi.?—|:|1'+f+|-h.r]'-’+‘+: oo by mmyptior = 1

2L P~

(5.70)

For example consider the two sets of relations in the column indicated by (ST)7

namely {hh, .,

PR {J.I'b.'"l'[ S '!I}r'[,”--l}-r-p—l ! el {br..| [l!l.‘gp_i_‘_l .

~h;.~+.+1h:p-4—.+: e "I-"ul:].'u—!f-i-l.—1fjl.~ s

vation the second set s equivalent 1o {hsbysibasesich

el l!l?J-.[I.- Thdpe {ijl‘J‘f,.,.H - Irlj.[,,_]]+| T !FL+| IEJF.Q.,'.p.u SR l!)

Hlp—1]+i-

« Dgtp1jps 100 bpabapes oo botp-ryepbi.

sl pbay by sasaba 1 b By the above obser-

plp=1)+p-1-
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"I‘Illl}]'|+.f'll'1'.l.|.l-|-:i = ~fi'.;p_1”.-+,~r- CRI hrbp+i+ 1'!1":.';\-4-:'4-'2 ‘o 'bpl:p—l}+l—l' =iy

Byt by plipiy oo Ututy5p-2 ) Which is nothing but the first set.

Similarly for the relations in the column indicated by 87 we ohserve that for a

fixed j.

EI{J_1];~+.1 I e 'r-"[,|—l]:n-.f-l—lti’i_;—l}nﬂ =1 (3.

(e}
=]

= III"{J —] :Ip-l-lh[_l—l_l;ll-i—l-i-'l '!’ij—l bpdo42 + - hli_.-— pdi=1 = I

( obtained by conjugating both sides by by;_,40 of (30) ).
Hence we have by Proposition 1

[Ned] =<l DL £ mp—11+p by by 1 <0< p, I.I:J=I|!I’.?P+’ 0=y

[/

h— = {igllJJ..g.--. s rtq,.. ,2]J.+I._-,..EJ,,“._] Y4 1s '!I.ijl,lij'l-,{ 4y lil‘j_.”_.,_31+1 E}NP N

tmam 'r’|"1’;'--|-| 1 SURC "I’;-|p-'.£}+|—2h.~>l:,ll—1 J =Ty serey I'I}.'I'r”ﬂ'i 1!’2P+2 L bPEP—l]+;'—3{‘II'[F— T)spp=11

hlhr'+2 CELC 'll}plll'—.!:l-o-_rl—'l l!I‘I;'Iil"- Li#+p =
- |rl_||:l+l | = l'. E P— |. LU E‘"_,Il {E.:: Jo— :_{ | llr-_-]"l}_”.--f: U 1-_'- g E: {'!.:' = :G-:]-
f'l_”;'rf:+.$_ e 'll"rll,.l'—.!:I-l HE h:ihp+-! i 'F‘Ip{;lr—'ﬂ+1' I 'll‘ll.'l'lj}i-+=+t A '!I"i"-'|:]'.'—-?-:|+l—'_l'|

LTIy Ill"‘r-'ll-‘l';|+'- poe o IHi-l.l‘- -2 = li-"l]|r‘l.|'-hi' e, Ir‘l;l."i;'—.”-‘-r.l—l =

S0 the generators of [&, 4] are

I,_;.,-_]{T_J-J_l.._.".-{-__]—lH—! }.\-—: 1 I!I.l

it

with | <2< p—land 0= 3 < p—13 or equivalently
SST s~

where 0 £ i< p—-2and 1 <7< p-2
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Cur finad result regarding the Fuchsian group for X, is :

Thus Xy which is the compact Riemann Surface corresponding to the polynominl
cqguation Foleay) = o + y* — 1 = 0 is biholomorphically cquivalent to LA FAREAY
where Lo = Dfpipop] =< ST : SP = 1% = (ST =1 > and [, A] (which is the
commutator subgrowp of 2 1s genevated by 2 = (p—1)p—2) generators (wheve g4 is
the gewns of the Hiemann Surface Xy). The gencrators are SHTIST2E- 150 )2

tEp=2 =i sp—2and S and T are given by the following two matrices

i 1
I o I
n 1 "l owp—L

wliere ¢ = 1|_| g oand pois the positive square root of

AT [
P+ —+
'

e S

A 1
+=]=p+ =42
f f

and p=¢% and A =e"%. The tables | 1o 4 give explicit and complete set of genrr-

ators and velations for [4, A

[t 35 now clear that one can directly apply the theorems developed in Chapter 1V
ta the present case. in order to obtain the actual generators fup to first order in 1)

of the deformed Fuchsian groups that represent the deformations of the Fermat curves,
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