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INTRODUCTION \ehsr- g0

The Riemann zeta-function ((s) (where s = o+it is a complex variable) is ex-

Lr
pressed by the Dirichlel series ) — which is absolutely convergent for o > 1. It is
n’

n=]

uniformly convergent in the region o > 1 4 ¢ and hence defines an analytic function
in o > 1. It can be analytically continued to the whole of complex plane but for a
simple pole at s = 1. The location of complex zeros of ((s) plays an important role
in the distribution of prime numbers. If m(x) denotes the number of primes upto x

and il © is the upper bound of the real parts of the zeros of ((s), then
m(r) = liz+ O(x"logs)

Riemann conjectured that all the complex zeros of ((5) lic on the line o = I Thisis

the well known ‘fiemann hypothesis’. By the Euler product representation
; 1.
((s) = H“ el
7 F

for o = 1, where the product runs over all the primes, one knows that ((s) = 0 in the
half plane to the right of 1. Il was proved by de la Valléde Poussin that £(1 + it) £ 10

for any t. This is equivalent to the prime nnmber theorem, viz.,

I

m(x) ~ 180 — 00

logx
It is not known even il ((s) is zero free to the right of @ = 1 —¢ for some ¢ > ().

A slightly weaker hypothesis than that of Riemann is the hypothesis of Lindeldf

which is expressed by the equation

t;(% +1it) = O (|t]")



b

for every positive €. An immediate consequence of this hypothesis is the hound

& ! a2k 114
fl GG +it*dt = O (1) (1)

for every positive integer k. In fact (1) is equivalent to the Lindelsf hypothesis. The

Lindelof hypothesis is also equivalent to

di(n) 7 2)

”‘.'.‘.1'

f.?l (o + i) dt = (1 +o(1)) 3

n=1

for e > % and k = 1,2, ... where

defn) = > |

ooy =
is the number of ways n can be written as a product of & factors. (1) is not known
to hold for k > 2 and the sharpest results on the lower bound of [§7 |((a + it)|®* dt
are known for all & > 1, see [B-R] and Theorem 6.5 of [Iv].

A much weaker conjecture than that of Lindelof is the ‘density hypothesis’. If
N(o,T) denotes the number of zeros p = 3 + iy of ((s) in the reclangle § ¢ > 0,

|¥| < T, then the density hypothesis says that
N(e,T) < T logT)"

oar

Nfo,T) & T ¥+ (3)

uniformlyin 1 < o <1, where C' > 0, and any upper bound of N(o,T)is known as a
zero density estimate. The zero density estimates have a large number of applications
in number theory. It turns out that in some problems like the estimation of the
dilference between consecutive primes, results obtainable from the Lindeldf (or even

Riemann) hypothesis follow in almost the same degree of sharpness [rom the density



hypothesis. It can be proved that (1) implies (3). In fact, any mean value theorem
can be used to give a zero density estimate.
Using their approximate functional equation for {(s), G.II. Hardy and J.E. Little-

wood [H-L1] obtained the result
Y s 1
— —+it)Pdt ~ T
T./i ]C[E-I-IH i logl

and

fT, Ir;‘Ll +it)|"dt = O(T(log1)")
=T 2

so that (1) is true for k=1 and 2.
Hardy and Littlewood [H-L2| further showed that C*(s) has an approximate funec-

tional equation and this was used by Ingham [In] to prove that

AT L i 3
[ 166G +inldt = —(logT)" + O(T(logT')?) (4)
J1 2 2n?
Now we will explain what an approximate functional equation is. We know that the

Riemann zeta-function ((s) has the representation

in o > | and by the functional equation of ((s), namely,

'FI'_"'-"rI2 ]1{5} (:[:q] = ,T_{]:‘;J:' I'[ ! ; 4 }| ,:f' — ,r::],'
one has the representation
L5 =
¢(s) = o2 1UT) 3 1]_., (6)

il ¢ < 0. When 0 < o < 1, neither (5) nor (6) is valid and one can only give an

approximate representation combining the two, namely,

l—s

I'(=* ]
{(s) = Z iﬁ 4 7o -u Z _]I: +0(z7") + (}{y”“f{|§‘”} (7)

g 1L ITT;} iy 1



where z > H > 0,y > H > 0, 2zxy = |{| and the constants implied by the O's
depend only on I. The equation (T) is an approximate functional equation of ¢(s)
and is due to Hardy and Littlewood [H-L1],

K. Chandrasekharan and Raghavan Narasimhan in their classical paper [C-N]
obtained an approximate functional equation for a wide class of zeta functions.

These approximate functional equations have a disadvantage when one tries to
estimate the averages of the powers of the moduli of zeta-functions in the critical
strip, namely, the lengths of the sums over nt depend on f. So it would be nice to have
an approximate functional equation which avoids this difficulty. In this connection,
there is a resull due to K. Ramachandra [Ram1] who obtained a new smoothed
approximate functional equation for (*(s) and gave a simple proof of (5) using this
and a theorem of H.L. Montgomery and R.C. Vaughan [M-V] which is a generalized
Hilbert’s inequality.

In this thesis, we have proved mean value theorems for a class of Dirichlet se-
ries following Ramachandra’s method. This method gives a simple proof of known
results such as the mean value theorem for (- (s) due to K. Chandrasekharan and
R. Narasimhan [C-N] where (x(s) is the Dedekind zeta function of an algebraic

r{n)

number field K and the mean value theorem for L.(s) = 3 ——= due to A. Good
=1
[G3] where r(n) is the Ramanujan's -function. Our nn'_t1.ilm:!, in fact, gives an im-
provement of Good’s resull.
This thesis consists of two chapters. Chapterl is divided into five sections.
In Seetionl, we derive an approximate lunctional equation for a class of Dirichlet

series. In Section2, we give Ramachandra’s prool of the theorem of Montgomery

and Vaughan. In Section3, we prove our main theorem (Theorem 3.3) and derive



the results mentioned above. In Section4, we prove mean value theorems for the

derivatives of ((s), namely,
& i) 1 . {ari) 1 ey i3 rept 4 Tm4 ' 242m 43
f. (¢ +it) ¢ (5 + it) P dt = CT (logT) + O(T(logT) |

and

T 1 .
[ KOG +infa = fwl—l;ﬂog“’fw' + O(Tlog™T),

where £ and m = 0 are integers and C is a constant depending on £ and m.

Here again the proof is similar to that of Theorem3.3. In Section5, we prove mean
value theorems concerning L-functions L(s, x) (where y is a character modulo q)
which are uniform in both q and 7. For example,the result of Hinz [Hi] on the mean
square of the zeta function of a quadratic number field falls in as a special case of
Theorem 5.2.

In Chapter2, we give a briel survey of zero density estimales.



CHAPTER 1

MEAN VALUE THEOREMS

Secfion 1. An approximate functional equation

The zeta- function {(s) (where s = & +1t) of Riemann is represented by the series
o 1

is) = Z —  fore >1 (1.1)
n*

It satisfies the funetional equation

» b=z | — .
rr—frfgyr;[s] e I‘{——z—qjﬂ{l ~ §)

using which one oblains the representation

I'(132)

I'(

When 0 < o < 1, the representation (1.1) or (1.2) is not valid and ene can only give

—

¢(s) = =%

‘E':I (1l —s8) foro<D (1.2)
2

an approximate representation combining the two, and one such is given hy

I
N — 4+ 0(x™) 4+ O |t °)

ni—:

(o) = 3 & 4 aomd ICE)

age I3 =
where z > H > 0,2rzy = |t] and the constants implied by the (s depend only on
. The formula written above is due to Hardy and Littlewood [H-L1] and is known
as the approximate functional equation of ((s). Hardy and Littlewood applied their

approximate functional equation to estimate the order of the magnitude of the mean

square and the mean fourth power of (s) on the “critical line” and proved the results

s R
[ 105 + i dt ~ Tlog?
|



and
o
[1 IC(5 +i)I"dt = O(T'(logT)")

They [H-L2] further showed that the square of the zeta-lunetion C*(s) which obviously

salislies Lthe functional equation
el l — 5.
]11[;‘:'(2[5} = i ]‘2'[_‘—.2 *3“;1“ —s)

also has an approximale functional equation, namely

C!{qj — z M + ﬂ.?!—l E.l{]i Z i{.ﬂ + () (J”?—Hiu ;Hfl _I_J'})
St n* FR(2) ftl—2 BUH T <
:15&% 2 rii'-%l—,rl

where d(n) denotes the number of divisors of n. A.E. Ingham [In] used this result to

prove that

AT o T R :
j! <G+l dt = —(logT)" + O(T(log1)") (1.3)

K. Chandrasekaran and Raghavan Narasimhan in their paper [C-N] obtained an
approximate functional equation for a wide class of zeta-functions, a typical instance
is the Dedekind zeta-function (x(s) of an algebraic number field K, and used it to
prove results on the mean square of (g (s).

The approximate [unctional equations of these types have a disadvantage when
one tries to estimate the averages of the powers of moduli of zeta-functions in the
critical strip, the disadvantage being the lengths of the sums over n depend on t and
henee it would be nice to have an approximate functional equation which avoids this
difliculty.

In this connection, there is a result due to K. Ramachandra [Ram1] who obtained
a new approximate functional equation for (*(s) and used it to give a simple proof of

Ingham’s result on the mean fourth power of (), namely (1.3). His proof essentially



uses the fact Lthat (*(s) satisfies a functional equation. Following his method, we have

obtained an approximate functional equation, namely (1.7), for a class of Dirichlet

series which satisfy a functional equation.

Before stating the result, we will introduce the notation and Turnish the conditions

required.
MNotation.
We write

s=o4il, w=u+1v,

nfioo adtT
j = f , and = f
{a} a—ios (o, 1) A=l

Assumptions .

Let {A,} and {A} be two sequences of real numbers such that
D<M <ch<...€ ), = 0

D<A <A <. €A, — 0o,

[= =)

Let the Dirichlet series Fi(s) = )" % and F*(s) = Z%‘v and have abscissae of
n=1 n=] ik

absolute convergence 1. Assume that £(s) and F*(s) satisly a lunctional equation of

the form
F(s)=(s)FF*(1 —3) (1.4)

wliere the function i(s) is analytic and
W(s) = O(lsI™ + 1) (1.5)
whenever oy < o < oy, Also suppose that F(s) is of finite order, i.e.,

F(s) = O((]s| + 2)") (1.6)



in every fixed vertical infinite strip where A; is a constant depending only on the

strip. Let F(s) have al most a pole at s = | with residue H;. Then we have,

Theorem 1.1 Lel 1 <o <landh=1or2 ThenwithO< g <1, h> I

lf}lﬂ
to be Sllitﬂh] (‘.IIDEEH, EITI(I 2<w i < T we have
T = L]

1 =, My _dnyh ﬂ:
Jrr ['l;} = L Ve (& ( T } + Tll'ifI:S} Z ——}L_]_#
n=1 "'n 'll:l.:.:y "

I — an
o ——— II'.I B e : ;
2rih .[{-1,] s +u) (‘2—;_')[ 1—a— ‘) r': }' f

l —_ (s _!”
= -/t’ﬁ'] (s + w) ( Vi ;\;IHJHW) F[T]r dew + O(T™'), (1.7)

ARy

where Lhe last term appears only when F(s) has a pole at s = |
Note. When we calculate the mean value estimates on the critical line, we usually

split the first sum in (1.7) and write it as follows:

yoe oy

Xgg ' Apn<zr

n:‘r ‘
Proof. By the Mellin inversion of the gamma function, we have

1 L ":' a o
s (2 ) —Jz%dw = ) D) (— ) dw
7= -[WII F(s+ w) {h}.r du 2ﬂ_?—/[.] P> ”Jn el

iy | 1 A i
= i [ ey g
A zmifm': e )

n=1

[ =]

— IFZ ’11, _|:'I”|||r ]J

n=1 il

where the inl.nrrimuge of the order of integration and summation is justified, as

s o ./,, CF TG < Y J'SI,, RO

n=] n=]




1o

2
L A

since the series is absolutely convergent and the gamma function is absolutely in-
tegrable. Applying the residue theorem to the rectangle with vertices 2 — iy, 2+

vy, =+ 10y and — 5 — 41, we get,

| LT
S _lh" ; i i ;‘_""'f
i ./r_z.’f':} w5 )a"du

= sum of the residues of F(s 4 w)z" I*{T—} at w=10
)

and (possibly) at w=1—s

l 41T =11y
i e f +f —f F{q—i-u;}r“l[ Jedw
2w (=113} 4Ty =7=iT) h

The last two integrals on the right-hand side are
< (T + T1)" e T2 floga

and tend to 0 as 7} tends to co. Here we have used the Stirling’s formula for the

gamma function and (1.6).
Residue of F(s+w)a"I'(%) at (w=0) = hi'(s) and
the residue of F'(s+ w)a"T(¥) al (w=1-3s) = O(T"'9)

again by Stirling's formula. Henee we have

211“,]{. {';—i—n}.n"lli ]dm = hF(s) [ rg+w}r"*r( ].ﬂrw

+O(T~ “’j (1.8)

where the last ferm appears only when £7(s) has a pole at s = |,

By the functional equation (1.4) of F(s), we have

f"‘{.'; -+ U.J} = s+ n"}ﬁ"“ — 5 —w)



which can be written as

= /(s 4+ w) L

by choosing h > n > o+ 2=, Using this, we can write

']L-lau:

1 " Wy
P ./:—u} s+ tL]F{—}rr dw

|
= — |":|‘_ 1 wf
o g ¥ '”“‘“Z;,] s (e

n=1
| f al
p=—t = o & + | i-,
21 Jiew) (s + w) (J.%y—iq_q-“) { }r i
: , a .
+E f—(u} (s + ) ,\;Z}y ,'h, i }r‘ du, “,9}

Now we will move the line of integration of the first integral on the right hand side

of (1.9) to u = A. Then, by applying the residue theorem, we pel

1 a, w
e 15 I" =y H;
2rr STy s+ a) ;! Arl-a—w {h JRie
| AbiTy B—iTs A4iTy
- g ([ L
wile) Zﬂ A‘T 2o N ( S =Ty s

(1'," (s + w) Z ‘.L-Iv-.ruw Iw{%j;i.'“'ffu) {1.10)
Aby ¢ 1

Arguing as before, we can show that the integrals

A4iTs A-iT,
j and f
=417y ]

~n=iT;

tend to 0 as 75 tends to co. Combining (1.8), (1.9) and (1.10), we get (1.7).
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Section 2. Mean Value Theorem for Dirichlet polynomials

The mean value theorem for Dirichlet polynomials is a very useful tool in analytic
number theory, The approximate functional equation we obtained in Seclion 1 com-
bined with this gives a simple proof of the mean value theorems of the powers of the
Riemann zeta-function, Dedekind zeta-function, L-series and so on.

Of the mean value theorems for Dirichlet polynomials, the oldest states that, lor

any I' > 0 and ay,...ay arbitrary complex numbers,

f | X EIdt = (T + O(NlogN)) (3 faul?)

L<‘.’."u n< N

This result was sharpened by Montgomery (Theorem 6.1, [M3]) as follows.

f ¥ = M2y = (f +-~—EJN) > Jagl?

< N

where || < 1.
This was further sharpened by Montgomery and Vaughan [M-V] as

| Z |Il“ > |an (T + O(n) (2.1)

n<V na
One can take here N = oo also, provided that both sides are convergent. This result
1s a particular case of the generalized Hilbert’s inequality they proved, namely, if
Aty... Ay are arbilrary complex numbers and 6, = My [Ay — A, then

Tl “l 3“’ L |

] Z E P ZI“HF {h'l'l: {2‘2]

nm :"' 2 n
The case A, = n is known as the Hilbert's inequality . The mequality (2.2) is closely
connected with the large sieve-type inequalities. We don’t need this result in this

most general set-up; A, = log (n+ a), where ) < o < 1, is sullicient for our purpose.
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K. Ramachandra [Ram2] has given a simple proof of (2.2) in this case and the

underlying idea of his proof is to reduce to the classical case A, = n.

Theorem 2.1. Suppose ¥ > 2, L, = log{n + 0),0 < & < 1 is fixed and n =

1,2,...N. Let ay,...an, by, ...by be arbitrary complex numbers. Then we have

mn
mFEn

where C is an absolute numerical constant which is eflective.

2 g /2 12

We need the following,

Lemma 2.1. If {g,} is a sequence of distinct integers, a, and b, are complex numbers,

Lhen

e My e Z |ﬂn|2 (2.3)

e S L Rl n<N

nm< N

ani

' ﬂni’rﬂ. 2 e o 2 4 ;
0w (o) (o
Ti-}é”?
Proof of (i).

Let

B = E Gyl

nEm ‘?:n. = f.lr:'ﬂi
s iV

Clearly I is purely imaginary, i.e., E/i is real. Starting with

1 Y 2
0 =< fn fn |Zﬂ,1f_‘.|:qu:]','}l dxdy




- 5 Z FU«HFE +_[ Zﬂn”m —m)y) — 1 dy

ﬂ<N 'zm{r,rr 'Tml]

E
-_:_Z|,, =

n<N 2ri’ &2)

where e(x) = €*™* and we have used

1L =0
1
- s f: =
L e{ma)dr ; (2.6)
0 if m#£0,med

we have

I 1
— < s T’ (2.7)

) Lo ; oo 7
When T',:a-{i_. (2.5) gives (2.3). It —-::H then starting with the sum

2 age(—gyx), we can prove the same,
Proof of (ii).

Starting with

1 1 =
.[ﬂ fv ZTI”!".(I?”;T:JEIIJHE[:—PI”I]JI "fy
== Zm.bn in _/ VP b — ({9 — gm)y) — | diy

n#Em Zﬂifr}'“ i }

and using (2.6) we get

'Ilj-l'll
Er:z,g;; 1.’:—Jrfm Z“ﬂh“ j [ L"”f{q" 2 bue(—gne)dedy  (2.8)

L

Applying Hélder's inequality twice and using (2.5) and (2.7) we gel

X 1/2 172
|f / Lu,tr{qﬂr} 3 bwe(—qumr) dedy| < (Z|n,,|1) (ZM,,JZ) . (2.9

i T




Also,

1/2 1/2
D anh, < (Z Ia,,l") (Zlhnli) (2.10)

n

by Cauchy - Schwarz inequality. Now (2.4) follows from (2.8), (2.9) and (2.10).

Proof of Theorem 2.1. Divide the range [1,N 4 1] into subintervals
N+1 N+1
l; = %1:2_]-—:},_}' = 1,2,... Denote i + by m' and let

”-rn. no
Z L !JT" IJ T

mn

Starting with

/ j (Z nmc{Lmr) (E by — Lﬂ,}) dic iy

T

_ € [ "-fm

B Jrrl}.f
= —zﬂmhm = .__ )'ﬂ'i /r zﬁm ||rm Ln d

T ET? LEN-H]

we have the inequality

&
2m

LT I|I:I'r| r rr: s Jr-"n }H
Z [ L’rrl. = 'IF"'I't dy

(et jely w0y

: 172
& (.LI _/:J” I z I f.’l[ Lyi :f'] |2ﬂl;!.' rij)
i 1/2
(_[ f | Z by, e(— Ln:i'}lsz:n rflr_;)
0ty

2L O M. (2.11)
1 2 3 4

e = 1
| E ElL”—mhml +ﬂ Z

k1

— for 0 # t real, for |k —£| > 2, we have

Since |f 1t

Z j AL 1i-':: C{ Lm !{J"}J f

(! ' elpwdy 'rrl.
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1
‘:g: z |I'Im||h‘"| IIlﬂ.-:':tmI_mr] ---—2
{"r'.ﬂi}ti’;‘-xff el xly [:Lm et 'Lﬂ}

1
< =g, 2 ol

(st )edp iy

i 1/2 1/2
< =7 (5 (L5.)
(m! n' el xly [T T P
1/2 1/2
| N+1 ( oy
< Z |n.,,jz) (L |h |2)
== . T !_1._].: ¥ 1
“' = F}E 273 m'efy n'ely
< 1 1/2 12
(k-2 % ~f
where §;, = (z:nu,‘ H.|uu|2) and Ty = 320, m|b,|? Here we have used the Canchy-

Schwarz inequality and

|Lw — La| = |logm' — logn'|
> logHE — log i

= (log2)(f —k—1)

= ll{f - k), ffl—Fk>2
Similarly one can prove this when k — £ > 2 . Applying Cauchy-Schwarz inequality,

we gel

1/2 1/2
1 /2 /2 S S |
Z (k= 1) P I = (Z 7% — f}?) (L Tr—“r = f}?)

[k—i]=2 kst Rt

< (o) (Somr)”

T fL
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since Y ————— converges, so that the contribution of > to (2.11) is of the
ki (k-2 "ﬁ Pe—t|>2
desired magnitude. The terms in ¥, for which |k — | < 1 may be written as

1 Z L I FIHE{Lm — 1’-':1:'.‘:"

b

o (! n' el xdy

e 1f f] z ”mbﬂ I
i ML, — ML, ¥

i'lr1.",1||’:|r1‘j| w iy
m=n

where'al, = gue(Lwi)iV, = b€ Ly )y and M = (N +1)25% and it will be sufficient
to majorize the last sum. The reason for introducing M is that if |k — €] < 1, then

for m > n and (m' n') el x I,

(ML, —[ML,] > M(Ly, —L,)—2

—F H.} A
25KV + 1)(m — n)

= Mlog(l + i

R 10 VT
> E(m —n)—
2 m—1
sincem —n>1,0< ”’;: : < Jandlog(l 4+ x) = %I'nrﬂ' < 1 < 3. Therelore we have
for |k =1{] <1,
al b

M Z L |

{”i‘.n']cf.,.:-cffm
ﬂ.ﬂ 1:'

- II,I.I mTn
)3 WMLy — ML,

(! el =ty

@ B [{M L — [M L)} = (ML — [ML]}]
MY T = ML) ([M o] — [ML,])
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o ¥ T
— ﬂ.f e LE] n
Lo tO M X

)2
f{m n)

Ifrn'r.ﬂ']dkxl

mEn
The O term in (2.12) is
1/2 1/2
F
- I by |?
<« M Z I'Tnl | "
(rll’,i:r_lszxlf {?H b :1}2 Im".1:%:’lk!.l; {I” s }2
myn miEn
and
g , I
T Tt e Z Iﬂm“Z_‘_ < Z |t [*
{roe! " el e By {?” il ”'}4 rae dy mief, {T” . }2 m'efy &
mEn
! S - 1
as for a fixed m, L e €1
:a;:];{

Alsa,

; 2F

Z lam|* < —— m' |ay,|*
m'elg N + 1 mi'edy
Hence the O-term in (2.12) is
Ler
W12 el f2
< Mo L iy

N+
& S

The first term in (2.12) by Lemma 2.1 (ii) is

<) (gme)”

mlely n'cly

hic
< M-—N = el P

- .‘?,1"'2'!}”2

(2.12)
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Therefore, the sum of the terms in 33, corresponding to [k — =1 is

1/2 1/2
& X Emr e | 'To5 > T
k. Ef k£
lk—tl<1 k~il<1 lk—fl<1

< 3(ps) ()"

1/2 Lfz
P (Z”'”“'z) (Znﬂ.‘rﬂfg)

1

The method of estimation of T, shows that

z < Z|r1!,,,|2 + ZT?.|H“|2 = Zn|r1.,[2. and
3 o1 1 i
Z <& anlr,,fz
4 n
By Cauchy - Schwarz inequality
T S (Xlaa®' (S 1baf2)?

< (Salaa?)' (Salba )
This completes the proof of Theorem (2.1).
Remark.  The proofl of Theorem 2.1. remains the same when N = oo, only we
define I; = (277, 27) this time.
The following theorem is immediate from Theorem 2.1,

Theorem 2.2. If ay,...ay are complex numbers, 0 < o < 1 is fixed, then

LIS e Pt = 7F a0 znw)
ne N {”' + naiN ne v

Proof. Squaring and integrating, we get

f|z

|?'I'.{1. =
n<N H,-f— }u:
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nEN nsEn log{m + a) — log(n + a)

T Jaf+ 3 i {("””‘)Tr = 1}

n+ o
Now apply Theorem 2.1, with b, = a,, to the 2nd term onece directly and once
; fy
with a, replaced by ————.
e & (n + a)iT

As an application of Theorem 2.1, Ramachandra has proved the following results

also. These results will be frequently used in Section 5.

Corollary 2.3. Let ¢ = | be an integer. Then, for | < j < i, we have,

1/2
5 2 rpy '!_I'"ﬂ ¢ 2
_enb_ i

I']I' n= i maodag)
nixgq

D
n#m A = A I“E':?%'IJ

n =m = j(modq)

1/2
b, [* l 2
— 4+ — 3 nlb]
I
IDE;{ !L_T'l T nE:-E:I::I:;flq]

where [}y is an ellective numerical constant.,

Corollary 2.4 Let ¢ = | be an integer and E

afmoeln)

denote summalion over all

Dirichlet characters modulo . Then we have

5 (),

ymodg Y\ m#En i A“

12
|u_,-|2 | &
< Dadlq) CicitilogE T > nla
3 nxg
{n.g)=1
1/2

> L L s e
1G4 08T 0 5
fi)=1

where 1Dy is an effective numerical constant.
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Proof of Corollary 2.3 The contribution from the terms for which either m =

or n = j can be estimated thus : we have

T oy - : .
f ajem™t 3 bt dt = B(T) — E(0)
1]

nEnedg)
nig

where

iT{An—);)

by e
B 35 A
nZp{medg) I[}'” = A'.i‘lll

nxq

Integrating from 0 to 1 with respect to T we have

Fﬂr}bnl ' ! - bjeltnt
0003 B L e ' we' ™| dt,
| {[]'” = Z “ng,{f }2 + L il ./:T |ﬂ,]' ”:Em” b.e | il

nxng

which by Hélder’s inequality is

L] Lo /2 & R T HE "
Z {I;E:;?If_ﬂz + !”—jj .[:I {21{ ]' _/_lelr]“ g | il 4T
j2
[ b 1 T = 1 1
2 W +leil fu ol /_.,.iz"’nf“ W) dT

20

| 1/2
4 |ﬂ_1'| (E ZTEHIHIE 4 — Z n[f!,f)
ff

Z _ |ﬂ:j4‘:1n

(logn/j)?

I T a ;
f dT f | Z b, '*nt | ddt
] =T

= | P

n=glmodea)
e ]
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1 Bnﬁnlﬁi‘ln—ﬁm:l? F}“;}"te_i[’\”_)"ﬂl]q‘
+L dT{ 2 ;'(J.." — ,I,m} - Z (A — }'m} }

n=mi{modg)

L]

2D .
< > alb? + 5T nlbd%
=g modn) n=pimodqg)
T T

by noting that n > ¢, and by Theorem 2.1,

12 1/2
2 . D .
Lﬂh %= > nfanf? 3 n|b)?
n=n = j(modq) A = Ay q ny wy
n=ilmadaq) u=jlmadn)
m,n > q

as can be seen by writing A, — logq in the place of A,.
Next

iL‘u
(log?)

o] 32

1/2
< (a2 (D nfb )2 (1, ‘-T)

n.{lugnl.r'} 4

2 I'IIIE o0 1/2
|a;] alh [2y12 i !
(L) oy (5% )

log = q =y n(logn

;]2 ue I MR
*’:{’:: 4 BT n l""'lll #
log 1 (f}r 2 I)

Similar argument applies to ZE:_T- anft{An — Aj).

Fis

This completes the prool of Corollary 2.3,

Proof of Corollary 2.4 . Corollaty 2.4 now follows casily from Corollary 2.3,

In view of the relation

$lq) I n=m{modq) and (nu,q) = 1
2. x(n)x(m) = : (2.13)

w{mody) .
] otherwise
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Zzum ,lxl[mji({n} —— Z @b

X mz#En mo mBEnlmady) T J":u

mEn

7

= S T Bk

i=l mEn@j{madyg) I T )i"
mEn

and apply the Corollary 2.3 to the inner sum above.

Corollary 2.5 . If 3=° (uouq denotes summation over primitive characters modulo

q, then

Pivaai B
m#n

aln)al(m)y(n)y(m)
lt}g%

Kl

= Z lilq/ k)| { (k) Z |t'ig|::;3r| r,ﬁ{}:ﬁ} Z” |a? (1} }

<2 {mﬁ.:{kh (k E ]ES;E:I,’E!] -+ ZFI la*(n)] }

nﬁ:%
Proof. We have
aln)alm)x(n)i(m)

m

log =

Zx[mﬂdctll LL
m#n

R afn)a(m) <

- 1 51‘_1 H Iﬂgﬂifﬂ Z‘t,[:nnrlqi \{” X{”?)

(m.q) = (r,q) =1




4

T
Now, if we write g = [] p;’; then by the well known properties of primitive characters,
i=1

. I
> xtmgm) = TI[ X x(n)itm)

Henedy e l\.‘i{n:nrﬂp:‘j ]

= ]I Z.“'[.“;JLTJ] Z x(n)x(m)

‘;‘{]‘Hf}r]p;‘r }

= Y ele/k) 3 x(n)w(m)

ke x(modk)

In view of the relation (2.13), we gel

i X% afn)alm)x(n)i(m)

wlmode) mn iﬂg '”J"IIT”'

=Sk ule/k) | X M
By ton ogn/m
m=n[modk)

(r,k)1=1

The proof now follows by appealing to Corollary 2.3.
Corollary 2.6

I} Z [r lz ﬂ-{ﬂ)"ﬁ_ ”} At = T Z ,-,[[.[*}Q"J{qfk} Z ]ﬂ{n”-}.

wimadg) ner kg n<e

+ 0 marg, k
( kg ";”4 log & I.f'n)
+0 (T ¥ ?1]:?.{11“?)

n<r

T aln)yin).. :
i) T [ 1n %X Wey oy S e

wlmadeg) T n<r ; n<y

+0 ’“E{G‘JZ |”Ii r,ﬂ{q} Z nla,?

J{I ,J ng
(mn)=1
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Section 3. Mean Value Theorems of Dirichlet Series

In this section, we prove our main results. Qur aim is to prove mean value theorems
for a certain class of Dirichlet series using the approximate functional equation of
Section | and the mean value theorem for Dirichlet polynomials stated in Section 2.
These results give, lor specific choices of the Dirichlet series. already known mean

d{n ,
value results. For example, when the Dirichlet series is Z ) = (*(s), we get

n=1 ne

Ingham’s result, namely,(1.3).

For this purpose, we need an asymptotic formula for a class of arithmetic functions
which we present below.
Theorem 3.1. Lel o = | be an iul.cger aned € = 0 be given, Let a, be an arithmetic
function such that a, = O(nf). If E s ::Iz C(s)7G(s) in Re.s > 1 where G(s) is

n=]

absolutely convergent in Re.s > 2,and h =1 or 2, then we have

G{lfykr{lﬂgﬁ "N+ O(X(log X)), if & > 2

GINX 4+ O(X'" %), ifa=1.

i) el o G vy 0(gog X))




26

G1}

— X'(log X)*!
fa—1l 1" \egA)
| |2 | |
L Py = +0, (X' (log X)*72)
(X'~ (log X)) if o<1
v X I“" = O(X'"(log X)*") if o>1+:L
n>X
v) Z':—Lr{ﬂ‘“%”—l) = O(X'""(log X)* 1) il o<2
n<Xx
Vi:] Z 1‘::; 2[%!"‘ = (;l{‘l"l—ﬂl:lﬂg X]n-IJ il o> -1+ mr
n=X

|
Proof. Let § = T L+6 and e <8 We have the inversion formula (see

41
page 376, [P]),

T lodl* = o [ G

( Xe
T'(e—1)~

.‘_,-:|+I
+0 ( % log ‘2.’1") + O(X")

By moving the line of inlegration to the line o = | — 6, we get

.

1

s

il - N
%i—i?‘ Cle)Cle) 5
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= Residue of ¢ (s)"G(s) A7 at s =1

3
| il I=HT  peniT ) -
T {.[1-E+1T+-/;aﬁhﬁ _j;-a—ﬁ"} (=) Q{S}*s_ig

f:ﬁ-ﬁpg the estimate (see [P])

((s) < |tl’, if a>1-6 |t|=2,

“we see that the first and the third integrals on the right hand side are bounded by
X812 where we have chosen T = X2

To estimate the second integral, we use the estimate, see [Rad],

= T -

=g g Pt s WiE
2_1?”:[_:_-:@“%]%& @:( /:+ f:) <)l IfIS'EI X

T
'ﬁ‘rl—ﬁ_i_xl—ﬁf 13nﬁ_lfff

2

& Xiu—ﬁf!

X= - X
o ear s = 1, we see that the residue of ((s)*G(s) =
b ﬁﬁiﬁf-at s =1, is equal to

Expanding ({s)"G/(s)

al the

GIX , if a=1 and

G(1)
(e — 1)1

X(log X)*™' + 0 (X(log X)*°?) | if a>2.
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Thus we have proved (i).
Now (i) - (vi) can be easily deduced from (i) by partial summation.

i)yl o —d(Zlﬂ |*)

n<X n<i

Eu{t Iﬂrii

= X7 ) laal +O(1) + | =S

n<X

Gl X (log ¢)!
= {wﬂﬂf‘ (fj dt+ O((log X)*~") by (i)

&
. cE:}“UgX)“ + O((log X))

W ¥ ol _ L (Ziﬂ |‘)

n<f

. G(1) X1 (log X}~ + G(1)e j‘-"t' (log ¢)™—! i

(o —11)° (a— 1A B
+O(X'7 (log X)"2)
= c::—-'i]i)r }:[ "“{E 1‘]:1 1 i (-}u[“ll_”“{}g] "h.]l""z]

= QX" (logX)* ™V if o<1— #

v)fe>=1+4+ %}, Lhen

5 lnf f:ﬁ.d( 5 |nﬂP)

X n? Xengt

= G_‘/:-: ( Z |r1ﬂf2) v

X an<t
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where we have used (i) which makes (Z: Jayn[*)t'=7 tend to 0 as t — co. Therefore
... ngt

5 7 i o—1

o o
nsx M t

= O(X'""(log X)*")
by integrating by parts repeatedly. This proves (iv).

v) To prove (v), we first use the inequality 1 — e=2%)" < | when ¢ < 0.9 and get

I“"l'll2 —2(5 )" ; I—r ~yov—1
3 (1—e ) = O(X'""(log X)*)
azx 7

by (iii).

When 0.9 <o <2, weuse | — e~ Az = E(F—;]" to get

2
E If:::rl {[ . E-—-‘l{%}h] 0 X—h E IHHEEHJ-—-P

n<X neX

& e E ]”n[i

neX

< (X'""(log XYY
by (i).

vi) Using e 2(3)" « f%)" and (iv) we get (vi).




a0

Corollary 3.2. Let the conditions of the Theorem 3.1 be satisfied. Then

i) Y |al = 0 (X(log X)*)

n<X

i) Z% = U([Iugﬁ[]ln_j_’)

n<X

£ . i . |

121) Zg = U(Ai (log X) 21) il :rgi—ﬁ}?
neX

; ]“Hl — o(x'{ X ol £ -~ |

iv) ;ﬁ_ = ( {log . ]:) if ,,:;r_|j:F

) Wl () _emtorxm = 0 (X108 X)) it o <2
g

F
nox M

i) Y Mﬂ_[ﬂfﬂn _ 0 (Xl—qlug }f}”:;’) SN, U 28

T
n>X B

Proof.
Apply Holder’s inequality and use Theorem 3.1 (i) to get (i). Then (ii) to (vi)

follow from (i) by partial summation,

e’ o0

Iy i i) » e
i e) = : "g) = - : orem 1. | = 4L
Let I(s) ::2 (Cn)? and F*(s) ﬂz;] (O be as in Theorem 1.1 and |a,,| e |

Assume that the Theorem 3.1 and its Corollary 3.2 hold for the arithmetic functions

ay and hence for a;. Also assume that the function 1¥(s) in the functional equation

(1.4) of F(s) salisfies

TAN-20) o 4h(s) < TAN-20) (3.1)
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"

s

moy <o =<ogand T < <27 where A is a positive constant and

G +inl = 1 (32)

Let us write Fi(s) = C*F(s), F{(s) = C*F*(s) and a(s) = C**p(s). Then
|

Fi(s) = () P (1 = )

and we have the

Theorem 3.3.

£, z o :
Let s, = e, + it where 5 < o, <1 is fixed, Then

' %%L]T[Iag X))+ 0T + X)(log ) L)
! . |
if o= 5 (3.3)
.uT I TiM 1) T X)X %0(op X )1
I..:L |Fi(a, + it)|2dt = 4 s T (T +X)2 (log X)),
if é- - i (3.4)
o 5 2 J B
i r g II:IEI' T G{I —;- (log X)°), il o,=1.(3.5)

iThE constant A depends on the number of gamma factors appearing in the

Mfunctional equation of F(s).

gﬁ"iﬁ_'(};ﬂnatmt depends on o, and o and also on parameters (if any) appearing
- inG(s).
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,: i o
i e

vof of Theorem 3.3. The approximate functional equation of F(s) can be got
by Theorem 1.1 where we choose r = y = T4 ) = 2,p=8/5and g = 1/4. Then
~with the noatation introduced above, the approximate functional equation of Fi(s,)

is gl m_'by

Fifs,) = insa Rt Y

e} ﬂ{x 11 1 —da
g brlsetw) | T =2 ) () X
o (-%) 1 Xn]_‘-"_‘" 2 v
|
- gb,{ ++ w) Zx lﬂ'ﬂ_ [-jX“’dw+G{T““)
s

= Ji(sa) + ...+ Js(s,)  (say)

‘where the O-term appears only when /7(s) has a pole at s = |

E ) 4 :
ff |Fy(ap 4 it)2dl = g _[T W]Jk{s,jﬁdf. ¥ 5T f Je(50)Te(55)d

'I"Ck IIC-!.

+O(1) (3.6)

[ et Tyt

T
= ‘-[r Jk{ﬁp}Jf{'sﬂ](H!'l

it is enough to estimate one of the inlegrals, To estimate each one of the integrals in

@fﬁ], we appeal to Theorem 2.2, Henceforth, we shall apply this theorem to all the
), T F
(integrals of the t}rpe ’Z r—f:{‘[

dt without referring to il each time.




Proof.

L e =
k= 150 T

T 2
jﬁ_ [ a(s,)Pdt = ¢

( G’{l]
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T(log X)* + O((T + X)(log X)* ")
|

lf aﬂ:ﬁ

Z 2l 4 0 (1 + X)x122(10g X)) (3.7)

il l-=:: il |
1 e T,
2 Ei]

r-|

2
T Z |““| s G‘[—-—{lng X)* ) + O((log X))

n=1

il o,=1

S (log X ) 4+ O((1 + X)(log X))
I

if oy==

2 (3.8)

[F st = L %

mz Z!mnl TR

e
n=1| Lt

mw+xm%mmﬂif%>%

Z IIH. e~ WXV gy

nr:rn-l-lf

= 3P r(r 4 o)) (39)

s TZ+U{ZJ
and 3 = Z lon o~ AR)

e p— -‘]
| n=1 L




um
B {: e Z ]ﬂ;ﬂ E Iﬂn} Lrlle -z{g.yn Ry g |2 _z{yl
1 e

2
X nere

I“nlz

=l

ﬂﬁ'.ax

-+ O(X" ¥ (log X))

by Theorem 3.1 (v) and (vi)
Again by Theorem 3.1 (ii) and (iv) we have

C[Ijtlugl’}“-l-ﬂ{(lng)f}“‘ ), il cr"—-;:;

Jata ]
o jouf? i
E:r 0 (X' =(log X)*1), i 0, > 2.
v =1

EF ng cUF < | and Theorem 3.1 (ii),(iit) and (vi), we have the sum

= T by 3w el
niveT

Qemp—
2 naX e

fly -y o=
<z el | x-30n(10g X))
Op (X2 o(log X )™~} if :
5 L 2
=% nive=! =
O((log X)*) if o, =1
Now (3.7) follows from (3.9) to (3.13).

<o, <

Fiom (3.1) and (3.2) we note that*

(g +it)] = 1

X175 (o + i) < X'

(3.10)

(3.11)

(3.12)

(3.13)



| 57 lan* "' Eul (v +0(m) it g%

neX

f 4 | T2(s,)[*dt = 4

Q) his) = Y Tetwxryy I n o~/ X)?

| -_1-{1 +it) < (lug}{] i by Corollary 3.2 (ii) and (iii).

k G(X’“‘"’""‘)ﬂ% ,Jff:f, (T+n) if i <o, <1
Now (3.8) follows by Theorem 3.1 (ii).
a 3.2.
Let s= o + it. Then
@) D) = 0 (X'7(0gX)), i~ o So<op<

. N y 1—er i 2.2"& . i_ | E |
D) As) = 0 (X(legX)F), il g - g S0 S S 4
. _ " ' .'[—y “T_l : 'i;_ ] § l
o) Js) = 0 (X'7(logX)T), it~ o ST WS
) difsy = 0 (X egX)TF )il sk g By b
' ' RO Y g N i

n<X nt n>X
< z EL]_‘_XQ. E [rt,,]
- nex 17 sl
1-o iF g el i 1 I.
‘gg-u X [IOEX}T Ifi_ﬁ "-'_:g E g <1




g (3.2) and Corollary 3.2 (iii), we get

JE{-*] & Xl—ia : Iﬂnl

o v
nex M

< X' (logX)F

.We.n‘qt_e that the integral in Js(s) can be broken at |v]| < log” X with a small error

| . g
I _/I:flﬂtgﬂx 1,5[[6-'-111} Z n]_f}_'mrii)xmdiu

4widi s s /s beg
1

= — i ur
i (-/;us’-fcl#sx -/I.ul‘.‘.r){) (s + w) Z e { ]X dw

€ X (0gX) T [onguen P50+ X7 (logX) 5

u-—S

' i 1w
(_['_'E’:,s ivll Tad16/5 IP{E)HU)

g X9

ising (3.2) , Corollary 3.2 (iv), and |I(w)| < eIt

; o L “" w —20 :
Jols) = — fl_% oy P+ 0) T BTN £ OX7) (314)
h]uh by using Corollary 3.2 (iv) again, is

< X' (logX) T

ﬂﬂrﬂj’ (d] can be proved.
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Lemma3.3. Let § — & <o <34 -L Then

2 100
.y 1 27 X . i 1 1
) [P = o((T+ X)X (logx)™) L T
i) fﬂ'ﬂ | Ja(s)[*dt = ﬂ({T+X}X’-“ [lng]“‘I) ife> - +—1-
AR 2 St 107

Y Iﬂ_T -
i) j; We()dt = O ((T + X)X (logX)™") for k = 3, 4.

Proof. We have

9T oo Iﬂ IZ_ 2 j e
B 18al" () 2R

’[F [y ()] dt T,é 3 +0 (Z] S b )

hl:ﬁakmg the sums at X and using Theorem 3.1, as was done in Lemma 3.1, we

of of (i1) is straight forward with the use of (3.2) and Theorem 3.1 5
Using (3.14), we have

 ar 21
Jp WsEera < [ s

1
el lﬂd‘ Qd
(=% log” X) npx ]ﬂ_m ot 2 S

4 XK=

whi t_,’,}._bjf applying Holder's inequality and then interchanging the order of integra-

< X ([ U0 5 S a )

n:r.l'"
U - |Fm]rhr) Lm0
(~gog’x) 2

< X"(logX)"!,
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ing (3.2), Theorem (3.1) (iv) and noting that f g [P'(0)] dv is bounded.
' u==8/5

Similarly one proves (iii) for k = 4.

Completion of the proof of Theorem 3.3,

~ We have to only estimate the cross terms. For k #* T

2T o LL 2T
SACATACAL fT Ti(s0)Jeldn) di (+)
2T
= [ D) dul20, — 5,)
| i " . " | I - .
By moving the line of integration lo the line o = = ——lr, and il we write

: 2 10
f:' o+ 11" or o 4 2iT", then we have,

oy T L)
= [ nenee. - o[ (o2, ~ ') do )

1+t

= Dﬂu ((T + __'!f]xn‘hn} “DEX}D_I)

pjymg Hélder’s inequality and using Lemma 3.3 and Lemma3.2. The estimalion
other cross terms is also similarly done. Thus (3.6) along with Lemma 3.1.
nma 3.2 and the above estimations prove Theorem 3.2 for the integral f77.

g the integral -[I 5 i -[5 T-+ f; +... and using the above estimations, we get
{3*4} and (3.5). This completes the proof of Theorem 3.3.

. In (*) we have written Ji(8) for the convenience of notation. If should be
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‘1. {(s), the Riemann-zeta function and its square.
C ﬂrﬂuar}r 3.4. We have,
II] was first proved by Hardy and Littlewood [H-L1] using their approximate

is modelled along this proof.

ﬁi—.-‘Titc‘ﬂmarsh [T] proved the weaker [ormula

f Il:[l + i)' dt = (1 +0(1)) s (logT)" (T — o) (3.15)
0 2 - PR R '

Tl

s

.
E

.‘:?[é_l]m-.rs- [rom the investigation of the integrals

1y = [ 1o+ iy,

J(8) = j:u [C(o 4 7t)|*F e~ i,

. § . . 1 . i
e k2 1 s a fixed integer, 7' — oo and § — 0+ 5 <o < 1is fixed. A simple
Tauberian argument shows that, for ¢, 0D > 0, [(T) ~ CTog™T is equivalent to

J(6) ~ C67" (logd™" )P and Titchmarsh deduces (3.15) from

j:“ IC’[%+ it eftdt = (1 +o{1)}2]?5-'[lugf;—'}* (5 = 04)
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Proof of Corollary 3.4.

Let Fi(s) = (*(s), F{(s) = (*(s). The [unctional equation of C*(s) is given by
¢i(s) = () C*(1 — s)

where ¥(s) = 72~ I?(152)/T?(s/2).
We note that hﬁr{é +1t)] = I and by Stirling’s formula, (3.1) is satisfied with A = 1

L = d ;
Since (*(s) = ) —::i:—} il o > 1, we have a, = d(n) in Theorem 3.3 and hence
n=1

o

(

i@ _ iu’z{n} -

S8 s
= n £(2%)

This can be easily checked by writing the Euler product of 3 E;{ff-l

n=|

and X =T in Theorem (3.3) which

S0 we have oy = %,n:rl.d= 1 Gls) =

((2s)
EIVes
T l A1
j; [Q‘[E + )| dt = E%:E—}T{lng'f]ld + O(T (logT)™)
But we know that G(1) = (¢(2))™' = %— and Lhis proves 2) of Corollary 3.4
T

D.R. Heath-Brown [HB2] has improved this result substantially by showing that

4
/:- |C[% +it)[*dt = TS exllogT)' =k O(17/5+)

k=0

I .
where ¢y, = o and the other constants are computable. As is to be expected, the

kL
proof of this is long and diffieult. With the method we have adopted here, we can

not hope to get a result of the type above, as at most a factor of log T ouly can be

saved as one uses the theorem of Montgomery and Vaughan.
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2. Higher powers of ((s).
|
Corollary 3.5. 1f 1 — A <op <1, where k > 2, then

ff}i{u]

f I¢(o + it)|* dt = TZ +0 (TH1-29) (1ogT)¥ 1)

Proof. Take ["(s) = ((s)* in Theorem 3.3. Then F*(s) = F(s), and the functional

equation of ((s)* is given by

Cs) = w(s)(C(l —s))

where h(s) = miC PH=2) k()

We know that

s = 3 '{‘;L{:"} ife > 1
n=1
aned
3 ”%r] = ((s)¥G(s) ifo> 1

where (G(s) is absolutely convergent for o > %

We note that o = &* A = k/2 (by Stirling’s formula) and hence X = T in Theorem
3.3.

Now Corollary 3.5 follows [rom (3.4)

3. The Dedekind-zeta function.

The Dedekind zeta-Tunction Cie(s) over a number field K of degree s defined to

Le

: | ,
{,;{l{ﬁ] — W il =1
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> the summation runs over all the integral ideals of . We can also wrile it as

(r(s) = i Bi{i)

ml

: ﬁﬁﬁaﬁoﬁ. '

Crl(s) = tp(s)Cr(l —s), (3.15)
h(s) = 31-?*1“*1{1—;_3}1"'2{1 . s}f[‘”{gjr"(s] with

222 (d(IC))~2, where vy and 2ry are the number of real and complex embed-

i

- I, T
dra—2rpmi{1=2m,)41 ag(m)
W - e Z:i_'_"mﬂ_—inu
m=

FO(T™ =Rl (log Y1) i 0 < o< -

G{_’T““_“"]{Iog Ty 3E l sl l

oo 3
T Z “HE”") + G[T"{I_"“}[lng )" 1),
n=t M

T

Gz 1
L T

Proof. K.Chandrasekaran and R.Narasimhan [C-N] proved that

Y aj(m) = O(x(logz)™").

men

il the field IC is Galois, then there exists a constant (' = (7 (i) such that

> ag(m) ~ Cx(logz)"?

mEr
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have o = n, A = .E and X = T"?% in Theorem 3.3 and thus

2
i oo 2
7y Gl omi-aiog Ty,
n=i
if 11— :—t'f::_crn ] (3.16)

e
[ I;‘H(a‘a + l-ﬂ”i!ﬂ = J , ]
G[Tﬂ“—un]ﬂﬂgff")“*I} if § <O, =] - “"{311:"}
n
| |
I L U{T*Ij’?“ag T}n} T — E

ing the functional equation of (i (s), we can find the mean value of |Cr(5,)]* when
P

The functional equation (3.15) of (i (s) gives
. i . . l ;
el + )] = CLBY==1072000 1 4 O(2))Cie (1 = 00 + i) %t > 0,
e (xc(s) assumes conjugate values at conjugate points). If we write
. T :
J(T) = j; a1 = o, + it) P,

then from (3.16) and (3.17), we have

TS 58 + 0T (log ") if 0<o, <L

e

O(T™=)(log T)*") if L<a,<

1 1
n 2

7T d
[ lektoa+ivfa = o [T 0=t 1 g, 4 ity

(3.18)
T \
+0 ( f; fl=20a)=1)e (] — gy 4 ii]]zrii)
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first term on the right hand side of (3.18)

O(T"=22) (log T')*") %E o) {:%
(3.19)
| ji}l'e-:-the second term is
= Q{Tu[i-zm}-l_rr(*p} + (1 4 2ne, o ,1]‘/: f“}ylﬂ—?;nu}-zrﬂ_
(3.20)

=O(T""="Nlog TY* 1) if 0< o< %
Thus (3.16) to (3.20) prove Corollary 3.6.

Y

- K.Chandrasekaran and Raghavan Narasimhan [C-N| obtained the mean square of

Dedekind zeta-function using their approximate functional equation and their result

¢ o= 21 =2m0) 41 i ﬂ}s{m}

foorari ] ekt
_ )
+O(T -2 4 3 (1og TYM?), il g, > | T
[ nto+ i
. k(0o + il )[dl = <
h (TN log™ T, i :? S
H‘

sl 2
T z E:IEI::} + D(Tl%ﬂ.tl—ﬂnj'r'% bgﬂf.‘! T}1

m=1}

, 1
T sl
! n
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thal our result gives a better error term when 0, > | — — and when 7, < l
ki

2 of Hecke [He] with the Fourier series

flz) = Zane&'ﬁn Amz >0,

==

‘a Lj[.s} = Z %ﬂ_ where s = o +il, 0 > i

denole the corresponding L-series.

n=I|

(

2AKT log T+ O(T) it a=§

| R bl
f}L;{rr+n‘}[2rﬂ—f TZJ | + QP2 g TEO< ——

ZI“|2+G(iﬂgT] if cr——z—

n=1

12
Jfﬁ);ﬁ?l: [ 1)/ [ G+ vt 2dudy

D is the fundamental domain of

the principal inhomogencous congruence sub-

Li(s) = wa(s) Lo(k — s) (3.21)
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[ 2‘!? E,“kl_‘[k = 5}

define ul(n} = ﬂ_ Let Ly (s) denote the corresponding L-series. Then we
Fl

know from (3.21) that Ly, (s) satisfies the function equation

Ly(s) = yu(s) Ly(l =)

- 2_"7 2p—- [-‘-‘-ﬂ—s]
Pi(s) = ( ]' 1m (3.22)

zeuse the asymptotic formula due to Rankin [R]
D |aa]? = Ak 4 O(2*215) (3.23)
n<s

which gives by partial summation,

3 lar(n)|? = Ake + O(z¥%)

n<r

Hence we have o = 1 in Theorem 3.1 (i) and the error term is much smaller than the

1
main term, I'rom (3.22), we note that |1,|"JI{§ +it)l=1and A =1, and hence X =T

in Theorem 3.3. Henee we have

[ 24T log T+ O(T) i o, =

2
i 2 Ti aln) | oepati-eny g ] I
S Venloatit)Pde =3 T35+ O, il 2 <oy <

73 “‘(”'J +O(logT) il o, =1

n=1

Jo—

o 1
By noting that Ly(s) = Ly (s — -2—}, we see that the Corollary 3.7 is proved.
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- This result was first proved by A.Good [G3]. When o = &—_zl_—l, he obtained the
following, namely,
- ST P 1) &
[ Iisto + i)t = 1 2. o+ Ollog™ ).
Note that we could save a factor of log 7" in the error term.
Remark 2.
As a special case of Lhis result, we can take a, = r(n), the Ramannjan’'s r-function.

We"have N =1, k=12 in this case, and we gel

UATlog T+ O(T) if o =6,

T o () cawy g 1
./: |L.,[g+it}{2,ﬂ=J TH =7 + O(T%)),  if E::are;ﬁﬁ,

n=1

o0 2
| 1
75 T 4 0(lgT) it a=65.

=1 n




function.

g(s). Let £, > 0 be integers and fixed through out this section.

For A, B, P > 0 integers, we define

a(n, A;:B) = (=1)"B Z log™ 1, IogH:-a__g

nyna=n
a(n) = a(n,f,m)
ilrl Tn
3 - | t mo
(n,T) n,nz,zn Of y log =
Bi(mT) = 37 log"(Tny)log™ (T'n,)

nyng=n

s B
biimt,p) = S (=1)Fky (F; ) log? ™" 1 log" ¢

ky=0 3

Define for a,b > 0 integers,

[(z,a,b) = 29(1—a2) +ab(1 —2)"

= Er Ur,,n.b:rr
We know that

oo i
(0(s) = (_1}’):'“3,“ it Res> |

n=t1 T
Rl

k=0

¢(s) = 2!2{—13‘-*‘ (i) ()¢ M1 - s)

In this section, we prove mean value theorems for the derivaiives of the zeta-

‘For k = 0 an integer, let ¢')(s) denote the k-th derivative of g(s) where gl°)(s) =

‘and can be analytically continued to the whole complex plane but for a pole at s = 1.

From the functional equation( ) of ¢(s) we see that ¢!(s) satisfies the functional
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ky=0 kg =0

1 m f .
{E!}{S]C{m"'(&] o i E{_l}€+m—k: —hy (k ) (.:? ) Tﬁl{ﬁllig]ﬁ;{h][a}

x ((EM(1 — s)glR)(1 — )

this, we obtain an approximate functional equation for ('9(s)¢™)(s) of the

fype (1.7) and since the proof is similar, we omii the prool and state only the result.

e 1
i !_I iy ' ['I'l't-} —_ i =
,_,_,;.__I. _(_2.+ )¢ (2 + i)

T 2 Bewenes () () s v

ngT N2 Ey=0 k=0 ka

[fpt*ﬂ{% + it}f,‘”‘*"}(% - it}(‘““*”[% —it))

(Z a.[n,f—-kh.m ) + Z }_:’:1‘ (e —y — 1)

=l
ned ni n<T 1

) k=0 k=0

m F m
Il—m—l':—kz
+‘§n,+lt ifrz./_i Z E[ (.‘c;) (kg)_

—ky = ky)

H%—il—u.l

Kw{kn( +it +w}v’:“‘"( vit+u)(n &

n=T

V()T duw)

e F
2«1./ E 2o (-1 '*'"'*‘“’“‘( ) (” )vﬁ”‘”{ +it +w)

(4) £, =0 k=0 ke




a0

.. a(n, € —ky,m— o
?,f’“’}[E-l-tf-I- (zﬁ; nuzlu—m J]I“(w]l du

+ U(T'_m]
g
= E Jk[% +1t) (say) (4.2)

For the proof of Theorem 4.1, we use

(
“|l,,-'!-—_tr+r:,

ka}.[ﬂ- +1t) < ¢ IiIUE{I—dJ-f-:’

Ll if. w2
and Yo +it) < [tV logk [t] for || >2 and k>0

Using Theorem 4.1 and theorems in Section 2, we prove

the following
Theorem 4.2.

[ 1606 + it e =

where (' = Gl m) = Oy 4. Cyanid

o | U; (6003 6 (-9} o w0

2
and

= A [f{ ) (-1 = yms

(1_%”:) ( —i[l——})} :rrfsy.ﬂ

CTlog™ ™™ T | O(T Jog?+2m+3 1) (4.3)

(4.5)
Using (1.2), we get

J KOG e siopa = [Tap 4 e




5l

6§ or N -
+ 30 [ i+ B
k=T

i T St
2 2.} 2
k2

& 1
Y f Jedudt + O(1) (4.6)
k=g 4T

where we have used the notation Jy = Ji(4 + it). As in the case of Theorem 3.3, we
2
expect the integrals [77 |;|2dt and J27 2|2t to contribute to the main term and

all the other inlegrals go to the error term. We need various lemmas to prove this,

¥¥(s) = 1(s) { (— log ﬁ)k + 0 (E@H)}

where |t| > 1 and |o| < 1.

Proof.

Lemma 4.1.

We follow the proof of Gonek [G2].
The proof is by induction on k. The case k = 0 is obviously true. Now suppose

the lemma is proved for k=0,1,..., #— 1. We differentiate the identity
)

i(s)
1 s)

W(s) = wls)

“and obiain

=1 = X (re=1=Kk)
P = T (” )w“{s} (“’T) (s) (4.7)

k=0 II:

ji,}r Cauchy’s estimate for the derivatives of an analytic hunetion applied to a small
dise centered at s, we find that

Ll It]

gl = —lagot U(m) (4.8)

i
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(%) ICE o) (19)

=1, l0] < 1 and k> 1.

Yl —s)=0(t]™7) for |t| =1 (4.10)

i a4.2.
3 @(ﬂ-) k | Iﬂgk“ﬂm
E;; e B = @ kxl T Oflog" x).
~loghn _ log"t's .
E S e Olaghie)

~¢n) 1
24 - Lo+ o

4.3.

.t!"'_l_]A+B+G+D Tecra(n, A, Bla(n,C, D) = 4T log*tB+e+D43

+O(T log M B+O+D42 oy




o

E’3=E—§(?Jj:{j:f ABda:}{j:f Cﬂdx} (4.11)

(_,I)A+B+C—'+D E a(n, A, Bla(n, ', 1)
n<T n
[ ]
A+B+C+D+4

A4 B4+ O4 044 T

-f—ﬂ[}lﬂg'd'i‘ﬁ O 043 T:}

Eﬁiﬁipmv&' Lemina 4.3, we need the following result.,

na 4.4. If L, M, N, P are non-negative integers, then

S logh dy log™ % log" dy log” ;i

HET gzl 1 2
) ﬂi,dﬂ.<1f-
=T 3 log™ d; ]ﬂg El::ng da log™ #1
[‘11:‘: {ﬁ [d] 1 d'z] dl
+ O(T log=+M+N+P+2 ) (4.12)

f The sum

Z S loghd logh —-Iug da log”
dy lfg

niT  djdyin
iy oy <
= > log"dilog" ¢y > |ug'” : log” %
dy da <VT n =01y ) 1 :
= max{d? d3}<ngT
= 2 logh d, logN da z — Z Iug !{ l i En—
n=of[dy, =0 dy, 1 2
ST act ngr:igfd?,%} )

= 51 —8; say.
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1l first show that S, = O(T logE+M+N+7+2 1)
By taking trivial estimates, we get

S, < E lﬂgL+M+N+Pd1 E Z 1

di VT dy <oy n=0([dy,dz})
ned;
d}
ogiarenery 37 3 {d +1}
dy /T d2 <y [ 13 2]

. did; .
't]].'[g [dl:. ti:} (d] [fz and (ff;[ 3 dz} Ejf:‘ !ﬁfj}, W E\EL
1 Flda

32 < IDE-L+M'+N+PT Z‘ ¢[:IJ z ﬁ + TIﬂgL-Fﬂf+N+FI1
.;":ﬁ ﬂ'.I :\!!{ﬂ c

& T}ﬂgHM+H+P+1T Z d’{J}
igVT j*

- \'ing z < logz and 3 n < 2% and thus

n<r I n<r

5;2 < lugﬂ+ﬂ~r+N+P+2 T,
@ "#-EJ} < logT.
‘write d = [dy, d;] and n = dn'. Then,

» lug‘”;—tlﬂgp = = 3 ]-:}g‘" d“ g Liid

heﬂ.’g:;d dy 1 d‘l nt <;~— dz
P d d
= logM " — logt* =
£5(: J(J o
®( 3 log™ ')
n'<l
by using

E lc-gu I.'f = z]ug“'a: 1l G[T !Ugn—l .‘I.'}

d<r




is equal to
TAE (MY (P d d T '
=2 log™" - 1og”~* - {log™** = + O(log"+*~ 11}
dEg =2\ w | Vi d dy d d

T M s By o] PP o W
- E{; ( F ) IGE d_llﬂg E ; " Tﬂg d—?}ﬂlg -E .

e G{% IUgM+F‘—! T]

_ T M 1 P I r % S L
= g log" g-log” 5+ 0(5 log 1)

: d
where for the error term, we have used simply the estimates IngI <log T and
i

lug% < log T'. Hence,

S =T Z

T T
2 ok togh s {]qg” - log” == + O(log"+"-" T]}
di-dzfﬁ g e

d f

iz and (dy,dy) = Er,b[j}, we have the error term is
{dhdz} 1y

itz

Now, writing again d =

equal to

I

O(T log MIN+P=1p 3TN @ > T
1115

3 x
1SVT 4y oty
<TYy

- G{T lngL+ﬂ-f+N+F+3 ?w}.

Thus we have proved Lemma 4.4.

Proof of Lemma 4.3. We write

e it > aln, A, B)a(n,C, D)

n<T




a6

—_*Ens?" J z Iog"‘m IDgBI—Zi + IUgB 1y ln‘.:-g:"‘ﬂi
nyln 1 1

SV

i

RER ]-::gc.ﬂ."h:ngJIJH + EnngIDgCE
dln d o

| d<ym

= TEdnnlfﬁﬁa {Iu}g“i Ty IDEB ;?’_ + IUEH o tﬂ‘gd %}

{lng'c dlog” &4 logPdlog” Tﬁ}
+O(T log"+B+0+D+2 1y (4.13)

by Lemma 4.4, Writing

Iy e

7 :
log™ ny log? — 4 log® ny log” -

ny Ty
log n -
= o7 Tlog™ m(L— 1207 + log Tlog" (1 - oy
r IUE n’l ].Ug 1"-1 IUE ”.1 Iug ”1
gt 1 A+H i - T | — e & N 4
og ‘F{ElugT} ( __logT} [—-IEET} (1 _—lug'f'}
log n
=— A+-B T ] g Tyg
]UP,' : zr: rr-rl,-'l_lﬂ( ]GgT }

= ZC:‘AH log" 1y log*+ 8-
and from (4.13), we have,

(=1)MHBECED N o0 A, B)a(n, O, D)
n<T

Al T 4 ..,-_F.' & l o =
= T3 Crap5CncploghtBre+Dd T ( > g log" ny log nT)
et mi gt M15]

HOT log M ETEED A2 (4.14)
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We will now estimate the sum

1 log” ny log™ d
log" nylog™ d = E o - o
g §v’i [ l'd} = ﬂg LIRSV I‘l]d {nhd:l

5 qsru 5 log" (n47) log” (dj)
1T '? dny < nld

By Lemma 4.2 (ii), we have

1051' ”-]j T T lugk‘;'l ﬂ
ik~ B, = log™ ¥ (o3 Ollos™ T
“E%E o 2|, o8 i) + Ollog' T)
e | _ ,';""
= log™ ¥ 7 log*+! Oflog™ T
g(h”) g™ " 7 log + O(log™ T')
1
= 7 {log™ VT ~log* j} + O(log’ T)
Hence

1
) ind ]Iug ny log™ d
-

ny df:v"_
. 1 ‘f’[JJ , T Jog'*! " .
R Z {log™! VT — log™*" j} {log™** VT ~ log™*" }
= I JTrEd o 1 | |
C[Z](‘:‘-kl:lu:r"—i—l]h:“”h ﬁ{l r+2_r’—|—2+r—|—r’+li}

+U(]ﬂgr+rf+2 ’1'"} {415}
by Lemma 4.2(i) Thus from (4.13), (4.14) and (4.15) we have

(—1HFFHEED S a(n, A, Bla(n, C, D)

n<T
T (! i
- 2 lo A+ B+C+D43 T rAd BV 0
8((2) Z (r+ D) + N2+
1 1 !
- . g A+ B+C4 D42 4
V57 Fri ey O s £
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We can write the above double sum as

r.-'.BCr-'GD r+II ot
Z |:T'+1 ], _|_ l]lz-r-!-r j El :]“ 1." }Jy

T'l'

- [ () (s eetsrm)
= _/: (_/yl Z Cr.A.E(g}rdI) (fyt Z Cirep f%}# rI.:.') dy
fnl (/y] I(%,A,B}dz) U,,I f{-;f,c,ujdx) iy

Thus we have proved (i). (ii) follows now from (1) by partial smmmation. Now we are

ready to evaluate the main terms in Theorem 4.9

Lemma 4.5.
2T |
i) ji.,. [1]2dt = T log?tom+tp tj{?‘{lung-’-ﬂrn-i'-ﬁ T)

T
I1:i L IJ',z[?dt (‘szfuJ‘zf+2rn+4Tn RS D[: {Engz!-l-Zm-l—.’j T:]

where Cy and €y are given by (4.4) and (4.5) respectively |
Proof. By Theorem 2.2, we have

'/:T ]Jﬂzfﬂ sas Z F n! {r‘,1+0{””

n<T

o GI T ]:Gg'z£+2:n+_:t T + U{T Iﬂg‘2£+2m+3 T:]'

by taking A = C = and B= D = m in Lemma 4.3,

Nexl, to prove ii), we use Lemma 4.1 to write

i T
fﬂ-‘ |""r'2|2 dt = Z zﬂ [ ]]-‘:1+k?+k;-|-j.—; £ { m 1
T fey k] =Dka ki =0 .]'..I R; kg_ IL;

5 al(n, €= kiym — ky)a(n', £ — K k)

1
e LT {:111"}2




{

f“T (loggz)hrtkathivh +0 (Jag™ttrthcthe=l o 5 (4.16)
r @ |

The terms corresponding to n = ' give

i it ¢ m 4 m
h§=ukzz':= (ki) (k2) (ki) (F)

afn, 6 = ky,m—kya(n, £ — K m — ki)
B

= n

{T{lngh+k:r+k§+k‘5 i ™ U{T“Dg-‘-'|+kz+k1+k;—i T:l}

_ Zf: i {_Uk,+k;+k:+k5 i m f mh
by ki =0 ky k4 =0 ky ks k) )

E-'{:i'—kl,n:-,—.l';g,f—ﬂf{,m—f:;} T |
[}
204 2m—ky —ky — K, — K +4 8c(2) P

24 2m 44 7

+O(T(log*+*m+2 1) (4.17)

Now we will show that the 4-sum in (4.17) is equal to 8¢(2)Cy.
1 ! o,
it Htdm—fy —ks =L k! 4.3 1 A e
Wi mg?f-i—?m—k,—ﬂ:;—-k;—k;+4 as—[}t TR Lhe 4-sum i

equal to
Leaf [ {E e (! )igre g o () -
ol g il
k=0 ky =
) [f"i {*iiﬂ{_”k; (I:; ) [%I}Hr 'i“ ( ¥, ) (1 = 5=

£ (-1 ( ) (e = ) > (-4 ( ) E[ )k ] de dy
Kt =0 k=0 5
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= Lttdtfy [ {0-9)-ta—5)m

HO =5 (1 =10 - 2)) } o] ay

= B((2)C,
~ When n # n', we have

f‘.T (log t)* b log" 27" 1 log® T
AT ()T leg T i (B)Tlog &

. f“" log*1 ¢
”: 1 ].t I[lg o

Thus, when ¢t =T or 2T, by Theorem 2.1, the sum

(4.18)

i i Ea{n,f—-k;,m—kﬂn{n"f ki, m— &)
k=0 ks b=

k1 k=0 &y ot {nn'P[ }u log & 5
i

3 oo
: f m f L Ingh +ﬁ':+ki +J=£ {
fey ky ky ky
I

Jn’

_ E bin, t]h{?t t)

i
gt niHityi=it |y 2
' <7

n

< E bzfn,i},

n<T

< v lugﬂ-i-itﬂt-f-ﬂ T
by the trivial estimate.

Again when n # 2’ the sums in (4.16) corresponding lo the integral in (4.18) can be
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wrilten as

3 . by 8, )1
L B {z; (. ,0) g™ 12

nmz=n
naf <t
5 log! M ogn 4 b o
og™ —= 4 similar Lerms R ST
n;n;:w 0 (57 ) log &

& T‘Iﬂgif+21r:+2 _rlp

by Theorem 2.1 and the inequality [by(n, £, )] < €6 (n, ) I we take the trivial estimate

for the O-term in (4.16), we get
d(n)

2
Ing?f-l-zm-l :!r'l (z T ) = -""1 Iugif-{-ﬂln-il -'IH

ngt 132

Thus we have shown that
2F
DIt dt = CyTlog™™* ™ 4 7 4 O(T log?+2m+3 7
5 £

To estimate the remaining terms in (4.6) we need the following results,
bf Lemma 4.6. Lel s = o + it and lo — 3| < w5 and T <t < 21 then Ji(s) =
O(T* log™™ ' T) fork =1, ..., 6

;:JI_?-r_{suf.
fﬂn[
5 <
I'—‘FI{"]! = E ne
z t‘+mj Z d{n
B n<T n?
{ J}'It‘-'-ﬂ' ]Ugf+ln|] 31
bn,T)
< (s
el < el S L

d(n)

Ty ?

< TI -2 [0 fm r.; Z

el '




fid

:-é]ég,t.'liemma 4.1 and taking trivial estimate for b{n',T), and thus,

| J2(s)] < TV log™™+ T

Jafs} and Jy(s) can be similarly estimated. For estimaling J5(s) and Jg(s) see Lemma

e
T

T ()P dt = O(TH1-0) jog2tmm43 oy ip o o

T ()P dt = O(TX1=7) Jogtamsa ) iy > L

L
1

i) 7 e(s) Pt = O(T20-9) Jog?™ 5 1) [ork — 3106
Proof. We sketch the proof of (ii). For proving (i) and (i), look at the proof of
Lemma 3.3

e > 3+ 55, then

a7 C A S .
fr iJ-z(ﬂ}l?“'isz 25 DD (IyvkeEg

ky k=0 kz ki=0

( f ) (m) ( 4 ) (”1) a,e’-tk:F[ﬂ.r}v’dh’}{sw’“’}{s]m
k| ki k; k;

E afn, £ —ky,m — ky)a(n', £ — klom — k) "
il

1=z 4,01=3
STy nl-*n

vhich by observing that p®(s) = »®)(5) = (20 — 5) and by applying Lemma

; m i m { m
HRANINIMIW

a(n, £ — ky,m— ko) a(n',f — ki, m — &)

e (nn')i-o

|




i3

(2920 — s)(log L Ytk
|

X E:ﬂ',}il

1 o by ky 4k, 4K
+ G(fﬂhhiwmi )}di (4.19)

i

'n = n' the first integral on the right hand side becomes

2T ! o
2 2 = B .
[ #6020~ s)(log-) di

T
_— -/2 iﬂ{l—?a’] [Iuglljkrl-kzi"k; kg {fi.,
T
%i_ig‘s formula and thus
—0 (Ti['l—‘.!a}-i-‘l loghi Hha bk +4) Tj

ice by Lemma 4.3 and Theorem 3.1 we have the first integral combined with all

the sums in (4.19)

-0 (Tzfl—ﬂj Ing““'"”'T)

when n # n', we proceed as in Lemma 4.5 and obtain O (TE“‘” ) log2tam+3 T)

the proof of Theorem 4.2, follow the prool of Theorem 3.3 and use Lemmas 4.5,
and 4.7,
Jorollary 4.3,

a) I +it)dt = s log' T+ O(T log T)

B [T KG+OCG+itdt = 7T 108 T + O(T log® 1)

o) S G+ dt = BT log® T + O(T log” T)

d) 5k + )3+ it dl = 25T 1og® T + O(T log™ T)




tid

By the same method, one can also prove

Theorem 4.4,

20 4 1

F
J |C{”i‘;'+ir‘.}|“tﬁ - log®™ ! 7"+ O(T' log™ T')
1

This resull was first proved by Ingham [In]. He proved a more general result, namely,

T | |
lfl TL ‘E E'"l} o ‘i I o F41r-1 r‘ri
./;C [2+IK {_‘2 ks F—F—m—l—llng '

Proof.
Let X = /T a(n, k) = (—1)*log* n and a, = a(n,f)

Then, by using the functional equation (4.1) of ¢)(s), we get

l+"+z[ t—k( ) llrJ{k]{:_} +it) Z _#

(O +in = ¥

n<X na2

n< ¥ =z
—n,."}f Iy _ﬂlu
+Z Tl 1}+n§E e
¢ 1 a(n, f — k)
“_,} — ] Sk, i il |_" w
“ B _'}g{ l (k) i (2 + i + tu}g; g e (1) X" dw
¢ (k)
[k] ‘J ﬂ{” li : #..-1|,-I
=] /1] (L) { +2 +w}n%r—__rﬁ‘”—‘ (1) N " idw
-!-U{T'm

=k (say)
k=1
Then
2T 1 2T 6 v _
(2rr— 2 == 2 2
L OG+iora = [T (np+ 1) i+ [ (h

+j .|f' f : J‘Z .-,_ + .IF ji; (“

Lt fl Lt -] L L2 -

| k) i + kE_! -/ { 2k 2 }
k#32

- E -{ Jk.jkrdf, -+ UU]

k=




fi5

We will only evalnate the main term. We have, by Theorem 2.2,

T log*'n .
o WhPd = 3 2E ey o))
“Eﬁ i

| 241 fre 21
SN L
Q7 | ”Tlug + O(T log™*+)

by Lemma 4.2 (i)

Using Lemma 4.1, we get,

2T [ £ ! a(n, f — ky)a(n', ¢ — ky

by =0 ko=t 'I-'-".é nn'<yT [””F]T}{%}“

T i [ngkr‘i-h . ]ﬂg’ct-l-kz—l f
_..1 by kg ki
x(fT {( ] L +fJ( : )}(ﬂ)

The terms corresponding to n = n’ contribule to the main term. Using Lemma 4.2

(i1), we get

t e\t log?—ti—k1
z: Z (_1 }'ﬁ':l‘H-‘: E T Ingk1+h T4 U{T 1Ug'2f. .:'n]
wedT

by =0 ky=0 ky "
{ i
.I-T: E’-’g

o
= Tlog®™*' T 3" 3" (—1)lith

N o e e
+O(T log* T')
v ¢t . f i Ty =y
: lrr Iﬂgifal-I T‘j Z z {__1]Jc:|+k‘q (:T_') ! i
2 0 f=0 k=0 by ky ) N2

+O(T log? T)
_ [ e } 241 oy 3 opi
= {2_/;{! 2] dr o Tlog™ "' T + O(T log* T')
1 1

} Tlog”™*' 7'+ O(T lag® T)

N {:Ef-l-i T PRI 4 1)




itH

ng as in Lemma 4.5, one can show that the terms corresponding to n # n'
ibute O(T log™ T).

s, [ET (|0 + [ Jaf?)dt = 57 log™™ M T+ O(T log 1),

In [C], J.B. Conrey proved that

T
1 fj A;Azf[% +il) ;1;,,44(1 ~it)dt ~ C(Py, Py, Py, P)T L (x2/6) (4.20)

_-‘H_;[s] = F(-; dﬂ}{{s}Ti =1 <4, with polynomials £ and T, =g 21- He used

shi's method to obtain approximate finctional equations for A; and applied

ham’s method to prove this result.

Theorem 4.2 and Theorem 4.4 are special cases of this result and we have used

chandra’s approximate functional equation and the theorem of Montgomery

| Vaughan. Our method can give only mean square estimates. We cannol gel a
of the type (4.20) using this method,
;ZI]J C{Pl, Pg., P;], Pq} is gi\"ﬂ]’] h_'p'

s (P4 B)Pa(y -+ )Pl + )P +6)

-.-f-Pl'(l —o—=B)Pl —y = 8)Ps(1l —a — 4)Pi(1 — B — 6)) da difdydé
=514 5 (say). (4.21)

)= Pafx) = 2 and Py(z) = Pi(=) = 2™, we gel Theorem 4.2, To prove

ve to show thal C} + Cj = 5 + 8, where Ci={(2)C47 = 1,2, In fact,

tove that Cf = Sy and €} = S,. By making the change of variable

atf=ua2ly+8=zt,a4+f49+65=1 and 8=yt

[ Sy, we find that the Jacobian of the transformation is * and the conditions

._*.yfﬂ' < 1 imply that

I
LSyt K14




1
1

i_g EH"FIEL
D<t<1.

D<y+: Sland <y 4+ 5 < 1.

e two condilions imply that

rTty+z £ 22—y

< I+1
<t<1 and y > 0.
we have
1 sl
a2 fu fn f f:fi!étﬂ,,m PR G ) )™ ddedydt
L

1 4 1 rl minfl=r,1—z)
= -/u gAleding3 (f f ‘U —z)m (1 —z)" { ; dyrfzd:r) dl
; max{,]—=x—=
= f t'ﬂf—l-‘lm-l—.? (f f I 2= ."..' {l = z}m

min(e, z, 1 —r, 1 — 2)dedz) d (4.22)
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7l e T Lifewe 1-3
= E f ettt fﬂ (/ wi(] = m}mda:) (j; 2 21 — z}'“dz) dydt
T .I 2

¥
1. it " 12
= ,ﬁ_ A tﬂf—i—ﬂ +3 -/D L {zz}’[l . m]m[] _z}m

1]

Zmin{z,2,1-x1-2)
rfy) drdzdt

Also, when A; = A; = 1 and Pi(z) = Pafr) = (—1)"2", we get

T 1 .
|60 +ifd ~ o PTI0g T

(P, By) = /ﬂl Py{x) Pa(z)dx
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n 5. Mean value Theorems for L-functions

a positive integer and y is a character modulo 4, then the function L{s, y) is

B =}
be):-“ﬂf—’] for Re.s > 1. We know that Lhis series js absolutely convergent
. n=1 n
> 1 and is uniformly convergent in Re.s > 1+ € and hence defines an analytic

the half-plane to the right of 1. If ¥ 18 not a principal character modulo

his series is convergent for Re.s > 0 and can be continued analytically to

vhole complex plane. If y is a principal character modulo q, then L{s, x) can

nued analytically everywhere except for a simple pole at s = 1. Further we

hat if y is a primitive character modulo g, then L{s, x) satisfies the functional

Lis,x) = (s, x)L(1 — s, 7),

g\"7  fl—s4a Lfs+ta

o= (&) (1220 (2
a = 0ande(x) = r(x)/q'% il yi=1)=1

a = Land e(x) = 7(x)/ig"?, if x(—1) = 1,

section, we want to prove mean-value results concerning L(s, v ) which are

in Theorem 3.1 and its derivatives explicitly in terms of qgand T.

1 and y, be primilive characters modulo g1 and gz respectively. We write




70

Usix)L(s,xa) =Y =% if o> 1
n=1

o = Exldal(3)
din

Lisyx1)L(s, x2) = w(s)L(1 — 8, X1 ) L(1 — 3, %a)

Y(s) = (s, Xi)(s, xz).

ling's formula, we have

(0192)T77T' % & () < (quga)d =727

oz and T' < £ < 27, If we choose ), = AL = en where ¢ = (q1q2) =12,
& B8] = A“,T_y—'}"h—lq—uaudﬁ—~|nlheoremll

ultlpI;-,rmg through out by ¢* we get the approximate functional equation of

(s, v2) and we write it as

i) = T+ o) S 4 3 e )

5 -
ncx M neX nex

n>X 21

i Z :: e—nX _!__ff‘i}r,fl(3+m}(z fn )F{w}){‘*’dw




7l

= 2 Jls,x1,x2) (say) (5.1)

k=1

i X =17 = V@g21" and the last term appears only when §1 or qa is equal to

L. i}_w, let ¢ = [41, g, the l.c.m. of ¢ and gz and vy, denote the principal character

ulo g. Then we prove the following results.
Theorem 5.1. If y, i, = Xo(modg), then
fTIL(]—-j-ii L{l+ ity xa)|Pdl =
) 7 TJU} 9 ety Xa)|"dl =
I loarr 1o L = 1
E.EH{I_;] [ +-) Hf1+;} IT {1—;5
rle pla rls rllar.a2)

(708" (Vi) + 0 (VarmT o™ (araT)

Theorem 5.2. If X1X2 # Yo(modqg), then
e SRR A 5
S B+ it X)L G + it xa) Pt =
i I 1 o
S+ 1 (1= DL x1X2) T log?(v/GrgaT)

rlz pligriaz)

410 (mj" log(MT]lL(l.xlfzuz) ¢

he following Corollary is immediate from Theorem 5.1,

vorollary 5.3. If x is a primitive character modulo d, then

i i | 1 I :
Liz +it,x)l'dt = —TT(1 = <)) + =)' log 4T
[ G +it ) g 110 = D0+ 27 Tog
+U(dT|ugﬂdTJ.

the proofs of Theorems 3.1 and 3.3, we know that it is sullicient to prove the
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Lemma 5.1. I x5, = Xo(modg), then

gy ran[i = O(y IDESL"]

. a..[? 2 L. - 1
TH T L H{]——] MO+ T+ 1 0-=)
n<x 7 4 ”2 el plm plea pll7s.92) Pt
(T'log X) + O (log® X log log 3q)

emma 5.2. 11 x, %2 # y,(modq), then

)Y lan* = O(yllogn)IL(1, 1 %))

! 2
E Sl = —ijl‘l'E]'hl IT & —%HL“;X!.‘?:HE log® X

rirez)
+G [\fqtijl'z lﬂg X}

Since a,'s are multiplicative, we have

21? = [0+ |"| '—‘;;'QQ...; it o>
= I;J:{l - — ?_}12_3”] = 1’1':“;[1’] JHl - JEIT;{F}}—i
pia
|
[]EE ! } ruﬂrz}(l p) (5:2)
(s }Lf*'-* xiXz)L(s, ‘t’m::*}H 1+—}_
{( ] 7l P
H{I H “ . J'Is

plaa pllgyarz)




(£}

of Lemma 5.1, (i) is trivial by noting that |a,| < d(n). Since yv,¥ = v,
10d q), we have by (5.2) that

= lef  ¢'s)
Z o = )

Ghi(s) if o>1

Gi(s) = TI0 - TI0+0)" [+ Ly 7 -4

A
plg P mm laa I pliwima) r

R,
By Perron’s formula, we have

X |an|2

0>

nite| log X |
n=1 1 I1| ]ﬂg "

— |a]? " _j_f.:+m CYs+1)

x>
n 2 Jomim, mﬂ'lfﬁ-f- I}Tds+0{

)

-a,-ud Tl = ,’f%_

log X

\ log p log p log p
Gi(s) = Gi(s) {22'—- i 3 g FT
rls P 4 rl7 r+1 pllmra) 77 I

G (1) < loglog 3q .

iffere: :f'*:é'.l_;iu_g G (s) suecessively, we can show that

G‘Ek}(l} < (loglog3q)* for k=234,




(&

2 2 ¢, the error term in (5.3) is equal to O(log? X log log 3¢). This completes
of Lemma 5.1.

.. of Lemma 5.2, If y1%2 # v, (mod g), then from (5.2), we have

g C) Vil ixdCots), i Ress1
e T ) RIS R, #

II{1+ el 1'[{—

rla rlaa P pllayg2)

L(s, x1X2) L(s, Xax2)Ga(s)C(25)™" = ib_(:ﬂ

ind this series is convergent in Re.s > 1. Hence,

2 lanl® = 37 d(t)b(m)

n<y fm<y
= 2 b(m) 3 d()
mey !-v:-i'-
= ylogy 2 m] b{::] log m
mey m{y
.'
=ty (m] + oy Mm ,,2
my Mmey i

y to see [rom the Euler product of Z } that [b(n)] < d(n) and hence the
n=I|

rm becomes U{y lng __,F}
nce the series Z

15 convergent, we have

m=1
b{m) :'.ﬂ[m} i
e L %i %
| e ,,?;1 —| < 1L, xi%))

3 b(m) log m

= < (log )|L(1, xi%2)]?

n<y




ation.

n<y

nd use the estimate
L xe)l < (ql)’ i o> 16 and |1 > 2.

l-:t.']ie integrand at the pole at s = 0 is equal to

#0(1og X1L(1, x:X2) *log log 3¢) + O(IL"(1, xa a)lIL(1, Txa)])

+O(IL(1, x1%2)]*(log log 3¢)?)

Qb+ L +it, iR L +it, Taxa) Ga(S+it) o,
Fi] + ] = _"X "'+ dl
((§+2:t} [ﬁ+:i}

"FEXTT: exp(C(log ..”I.hu]
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eorem 5.1 and 5.2

y we have

: fTiL(lJr‘z JL{I i,y )2t = 2 me
. o 9 iy X1 2+11x2j -_— -[F I 5| f

i = 6 T 3
+ug£[r (Ji + Ja)Jedt) + u%/; [ Je[2dt) + O(1)

t.]iagp_rdi_;uf of Theorem 3.3 and using (i} of Lernmas 5.1 and 9.2, we can easily

il each error term =

AVGHT log® VarzT) if X132 = xa(modq)

! _E-'x.r’ﬁ'i*?zTHL(LJ{ifﬂﬁ il XiXz2 # xa(modyq).

aT. 2 ]“uP 2
2]; |J1IJE=EZT+DEZ|“n|}

na X ne X
ve appeal to (ii) of Lemmas 5.1 and 5.2. This completes the proof of

9.1 and 5.2,

ecial case of Theorem 5.2, we arrive at the followin g asymplotic formula

ean square of the Dedekind-zeta function of a ruadratic number field.

a quadratic number field with discriminant Dy and il (x(s) denotes the

tion of IV, then

T —
J G + 0t = —E}H{l+1J“Ifﬁx|"?‘1ng*h/|nlﬂ
) 2 T pin P




(K

+ O(/IDIT10g(\/1DT)| Ric|?)

where Ry is the residue of (5 (s) at the pole at s = 1.

Proof . If K is a quadratic field, we know that (p(s) has the representation

Ck(s) = ((s)L(s,x)

where L(s, x) is the L-series for the character y with modulus |D|. (See for example
[B-5]). Further, we know that x is primitive mod |D]. Also (i (s) has a pole at s = |
with the residue Ry = L(1, x).

Now the Corollary follows by appealing to Theorem 5.2,

Deriving Corollary 5.4 as a special case of Theorem 5.2 has improved the result
of Hinz [Hi] who also used Ramachandra's method to gel an asymptotic formula for
IF 1Ck (R + it)|2dt, and his result is given below,

T l i | ) .
f] E(_‘“ﬁ—[:;é + it x)[2dt = W_E};J;{l -+ ;}“WR;;]*T log* T+ O(D'"**T'log T)
for any € > 0.

Influenced by D.R. Heath-Brown’s result on the mean fourth power of the zeta-

function, Wollgang Miller [M1ii] has substantially improved this result by showing

that
T
j |{R-{%+£e}|?rzt = qTlog’T + a\TlogT + agT + Og(|d|*>/1C+ET7/E4E)
1

where ag, a; and a; can be calculated explicitly.
Theorems 5.1 and 5.2 were stated in a slightly weaker form in K.Ramachandra

[Ram1], as follows :
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If x,

and x; are any two characters modulo ¢, and ¢, then

[ C\T(ogTy + O(T(log T)?)

.' T ; Ix1X2 = yolmody)
S IEG + it x)LG + it )P =

Cof'(log T2+ O(T(log TY)

‘ ify1y2 # Yolmody)

'.'f.':.:;;i the constants ¢7 1 and €5 and those implied the O's depend on gy and qz.

In the remaining part of this section; we want {o discuss {he averages

i_ odg) 15 |L(3 + it, x)|*dt and ity bl |L(3 + i, x)|*dt where 2% mot ¢ denotes

summation over primitive characters modulo ¢ and denotes the sum-
P q W mad g

mation over all characters modulo q. An asymptotic formula for the former sum las

een obtained V.V.Rane [R], the proof of which is based on the method of Ramachan-

lence we state this result and give only a sketch of the proof. For the details,

i¢ is referred to Rane’s paper. Regarding the latter sum, we obtain only an upper

, see Theorem 5.7. We derive this casily by establishing an upper hound for

[L(3 +1t, x)|"dL, i.e., we prove that

- T 1 ) 1
¥ f. IL(5 +it, )"t = O($(d)T log" ar)
x{modd)

ult has already been proved by Montgomery [M3]. Montgomery’s proofl makes
of Lavik’s approximate functional equation of L(s, v) while we will he using that

chandra to prove the same.

e stating the resulls, we introduce the notation.
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N denotes the number of primitive characters modulo 9. We assume N > 1. It

I:';n‘hnuld be noted that NV > 1 if and only if either q is odd or 4|q. We write q=

=p oopl
where pls are primes and r = number of distinet prime factors of .
=]
| L ) [or f,' £
O(p') = J
_nf“ 2{ i—2), for ¢ =3
the mu.ltlph::aiw:!.y property of the primitive characters we can show that N —
|
Y j 1L(~ +n,~f|‘.ﬂ Hu-- P+ = } T log! ¢
x(mod q) rly P ‘
+0 (‘quT log” ¢7' log log 3:])

"The proof of this theorem depends heavily on Corollary 2.6 (1) which is jin turn,
a consequence of Theorem 2.1.

Takmg ft=q=qand x; = xa = x in (5.1), we gel the approximate functional
equation of L%(s, v) and

L2[51X} = Z Ji(s,x)
k=1

> X = qT, a, = d(n)x(n) and Ji(s,x) appears only when ¢ = 1. We write
%;i:"i' thx) = Ji(x). Squaring and integrating |L2(3 + it,x)], and then summing




&0

over all the primitive characters y (mod q), we get

Sy LA ity = 285 BT | (x))d
+O(57 137 I (x) (X )dt)
FO(SL FE (I X) + 200N D8y Telx))de)

+O(T} 17 Ties [l x)Pdt) + O(1)
The main term is calenlated in the following lemma.

Lemma 5.3,

Zfl.ff[x”rfﬂ = NT E + 27 qT log” X log log 3q)
2 ne X
. {ma)=1

= gﬂ.zl-[{ St ) e ] "Tlog* X

+0(27qT lug, X log log 3¢)

Proof . Using Corollary 2.6 (1), we get

o? [n

- 2T
> [ ol = NT X

g

r;umx
(n,q)=1 e

y 3
p Llug

+0(2" Y d*(n))

Con<X
The second error term is easily seen to he (27 X log® X)

We now prove
d*(n)

= <& log” kloglog 3k .
nlog =

2

ng%




51

This will give the first error term to be

< 2qlog” g loglog 3k .

]
Writing K = {]EA] we have
d*(n) d*(n)
E n log 1-{‘: usmgf—l (E,H{_:ngﬁ n lﬂg%
1
= R T d*(n))
ﬂfrgk—l E’“[lug L'Jl'rzm-l-] } im,_.‘-"_zgzuwl
« ¥ m?
DEmal ];_:E:L; —m
< log” klog log 3k .
By Lemma 5.1 (ii), we have
d*(n) 1
= . ,'I (L4+-)""log' X
HSE)‘ n 4t E[ P P J .
(mag)=1

+ O(log® X log log 34)

This completes the proof of Lemma 5.3.
Using Corollary 2.4, we can prove the following

Lemma 5.4.

il % TR, x)|dt < 27 X2 Jog® X il lo—1/2| < 35 , for
k=31t06.

i) T s x)ld € X log? X if o <i- L and

i) T34 [B(sld € X og® X i o> Ly L

1107
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Proof. We will prove only (ii).

By Corollary 2.4 (i), we have
d*(n)

Zf |J1f“11 )t -—NTEJ{”}+ Utir!tllixLZT}

f!‘
+02 Y ‘zi’_’

n<X

The first and third terms are respectively,

ONTX'""log’ X) and O(ZX" ¥ log® X) if

and the second term is

. |
T d=3 a
< 7¢? “log”q as u'*i_i:?- T

Thus Lemma 5.4 (ii) is proved.

For the proof of the other parts, see [R].

Lemma 5.5. Let s=oa+ it with t =T or 27. Then

(5,x)] <€ 27X log® X loglog 3q

i) [

where o,= ]

T

w3 =

i) D de ¥y (s x| e Xt op® X log log 3q

where o = AT E

i) Ty 0] < 2 Xlog? X

for %——:ﬁo"i'-{—ﬁf

and 3< k<6,

iv) fi da 305 [ (s, x) k(s x)| € 27X log” X log log g

v) [itdo oy 25, x) (s, x)| < 27X log” X log log 3¢

for 32 k=<6,

-
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Proof . See [R].
Proof of Theorem 5.5 . The last error term in (5.3) is equal to O(27¢T'log” X) by
Lemma 5.4(1).

By moving the line of integration to o, = - s the first O-term

= i[ﬂrr[-jj )di
= — Jz Ji(x ) x)

0 (Zf: Jr(s, x)Ja(1 — ,q,;.;;;u)

=g

+ 0 (E [ ns o -, .{}!H)

x o

= O(2"X log” X log log 3q)

Il

by Lemma 5.4 (ii), (iii) and Lemma 5.5 (iv). The second error term is also similarly
calculated. We move the line of integration to the left of 1/2 whenever the integrand
has Ji(x) in it and we move to the right of 1/2 whenever Ja2(x) is present in the
mtegrand.

This completes the proof of Theorem 5.5.

Next, we prove

Theorem 5.6.

—. ¥ 1 S
> [ [ILG +it )l = O(#(a)T log' gT)

ymody

Proof .

Since we want only an upper bound, we use the inequalily

T 27
> f [()Pde < f | (x) )t

x{modg) wimadg)

and then apply Corollary 2.6 (ii).
Also, we don’l have to worry about moving the line of integration away lrom & = 1/2.

In fact, we can prove the following :
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i) Ty J7 R (x)ldE < ¢(g)T (log qT)*
i) Ty 7 13001 < $()T(logqT)*  and

i) ¥, 77 T2 (x)ldt < ¢(q)T log® qT for k = 3 Lo 6.
We prove (i), and (iii) lor k = 5.
Proof of (i). By Corollary 2.4 (ii),

- G ’ d*(n) - “F[J}_
;]T I < dlar T = 4 di:lgﬂuﬁ
-;-@ Y. d*(n)

q nig
[n,7)=1

The first and the third terms are respectively
O(¢(q)T'log" qT) and  O(d(q)T log® ¢1")

where as the second term is = O(¢(q) log” ¢ log log 3g) (see the proof of Lemma 5.3).

Proof of (iii) for k = 5. We can break the integral

Jel
Eir:f wis+w, X}{Z EE:!_:{:? M {w) X" dw
n>X
al |v| < log® X with a small error.

Hence,if s = + it = % + 11, then

T |J5[X}|2dz
din)y(n . =

fl 2 log® X) kAl ;c ;—ZT;L“.}} Plw) X" dw

which, by app]ylng Hélder’s inequality and interchanging the order of integration is

— f.fl[r.'.]l,‘],:'{ﬂ.j :

‘ 2T
< Xﬁ[1-2a]+'5j[' o |F{uJ}[fiaJZ[ l
—= lngd '} .

i ¥ d‘l i
= AH” {é{ :” z - 2H+"1 I‘ {Eal nl- Ea+3f}}}
n>
< ¢(q)7 log® r;_T.

il

ypl—g-w
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We can now easily derive an upper bound for E o) 6 |L(3 + it, x)|'dt from

Theorem 5.6.
Theorem 5.7.

B ./ |L(~ 5 +itX)'di = O(qTlog! ¢T exp(cy/logg))

w{modg)

where ¢ is an absolute constant.

Proof . If x (mod q) is a character induced by a primitive character x" (mod d) for

some d dividing g, then we can write the L-series L(s, v) in terms of L(s,x") as

Lo, x) = TT0 = X864y,

Hence,

i
ZL/M%+mﬂwr

oy

= 2 Z fll'[ }L +r‘,\}|'rfﬁ

dlg x*(madd) "1 plg

! I =
< Hl:l + —l}dz Z IL{G +if, v }|¢n"r‘
T'iq n: I‘”IJ x'[l'l'll::-qlzf} =
|
< JI0 4 =)' $(d)T log" dT
ply P2 g

< qT log* T exp(ey/logq)

where we have applied Theorem 5.6 to the sum 2 v+(modsy and used the identity

Edh; #(d) = q
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CHAPTER 2

ZERO-DENSITY ESTIMATES

In this Chapter, we give a survey of results concerning the zero-density estimates

of a certain class of Dirichlet series.

Section 1. Main Theorems

Notation and assumptions.

Let F'(s) = Z atn) yi(1) # 0 be a Dirichlet series that converges absolutely for
amy

Re.(s) > 1 and thal can be continued to a function analylic on Re(s) > —1, except
for a finite number of poles in the strip 0 < Re(s) < 1. Lel N{e.T'}) be the number

of zeros, p, of F'(s) with 1 = Re(p) 2 o and |Im(p)| < T, where ¢ > % and T = 1.

Let G(s) = ib{ﬂ]

n=1

— be a Dirichlet series that also converges absolutely for
n

N
fle(s) = 1. Let A(s) = H (e + 3;), where &; = Dand 3; are complex, 1 <7 < N.

i=1
We assume that there exist real numbers €' and 0, with €' > 0 and a complex number

6 such that F'(s) and (7(s) satisfy the functional equation

A(s)F(s) = CPHA(l — 5)G(1 — s) (1.1)

We shall assume the following estimates on the co-efficients of () and G(s).

> la(n)]? < = log"" & (1.2)
i

and
ST o) < wlog" x (1.3)
nsr .
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Let a*~'(n) be the Dirichlet convolution inverse of a(n), i.e.,

& I: I if =]
(axa)(n) = Ya(da (L) =
tf :
dfn 0 il n>1
This exists since a(1) # 0. We assume
zlog" z <« Y a7 n}| < zlog™ x (1.4)

nLr
Note that if a(n) = 0, then |a*='(n)| < a(n), and so the upper estimate [ollows [rom

(1.2) with My = M, . Let W =1 and

Cn) = Cn,W) = ¥ a(d)a"' (%)

djn d
d<W

Then C(1L,W)=1and C'(n,W)=0for 1 <n < W. We assume

Yo |C(n)|? < xlog x (1.5)

ner
Don Redmond [Red| obtained the following density results,
: 1
Theorem 1.1. Let 5 <o <1 andlet &> 2 be an integer. Il we assume (1.4), (1.5)

and that there exist constants p(k) and (k) such that
3 | AL vl k) vk} e
LHF§+nnﬂﬁf logt) 7", (1.6)
as T' — oo, then, as T' — oo,
N(o,T) <= (712[1-53 + T:z{a-n,:[m{|_~;;qk+.l_.1n]) Ing’”‘{H y
where

Mi(k) = max(Ms+ 10,3 + (2u(k) + (My +5)k)/(k +2)).



88
Theorem 1.2. If we assume (1.4), (1.5) and (1.6), then for
o > (Bu(k) + 3k —4)/(8p(k) + 4k —4)
we have

N{ﬂ'.l T] < T{-I#[-‘:]+k]{l—a}f[-!-k+pj_-_.ﬂg} Iugmltk} T

as T' — oo, where Ma(k) = max( M, + 6, v(k) + 3, My + 6).

1
Corollary 1.3. Uniformly on 5 < g <1 we have,as T — oo,

N{ﬂ',T} & (rf-lk+‘hltk}]{.ﬂF-f_k}+.'.l:-4}{1—r'r‘lll."{.liky{kl+2k1} lughf_g{k] T) :

where

Ma(k) = max(M;(k), (Ma(k))

In the proofs of Theorems 1.1 and 1.2, Redmond adapted the method of Mont-
gomery [M1]. In [S], Sokolovskii used Ingham’s method of convexity theorems to
give estimates for N(e,T) for the same class of Dirichlet series. He assumes (1.2),
(1.4) and (1.5) and the essential tool for him is an estimate for /(1 +1t). In his proof,
Don Redomend has replaced this estimate by (1.6).

Since the method of proving Theorems 1.1 and 1.2 is a standard one, we give the
proof of Theorem 1.1. For the proof of Theorem 1.2, we refer the reader to Redmond'’s
paper. We need the [ollowing lemma.

Lemma 1.1. Let M be given and {a,},1 < n < M be complex numbers. For

1 <r <R, let s, = o, + il, be arbitrary complex numbers. Let
7 o= min{t,—tp:1<a<b=< 7},

S = l+max{t,:1<r<R} — min{t,:1 <r < R}

w = min{o 1 <r< R}
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Then

P M 2
< (S+ M)(1 4 77 og® M) log® ‘H‘L'LI

M
D aun™

R
2.
r=1

This is a version of Theorem 2 of [M1].
Proof of Theorem 1.1.

Let M(s) = M(s,W) = a*”'(n)

5
R e

Then

Ps)M(s) = 3 (--{?:-;1'1*'3

Ifry > 1, then by a standard integration formula, we have, if I > L

Iy p=nfLl oo —tiflt
e 5 Cin, W)e = & Cln)e

-l n

a
n=l] i

= L Fls4z)M(s 4 2)UT(z)dZ .
2wt Jiry

We assume W < I < T,

Let s = o + 1f, where é < o = 1, and move the contour to Re(z) = ;i —a. Then
we pick up the poles of the integrand, by the residue theorem, which are the poles
of Fls+4z)in0 <o <1 and the pole at z = 0 of I'(z). Since I(s) satisfies the
functional equation, and both F(s) and G(s) are absolutely convergent for o < 1, it

follows by a standard Phragman-Lindelsf argument that, if ¢ is sufficiently small,

,; Eiii o A ‘211r f__w Fls4+ z)M(s + 2)UT(2)dz
+F(s)M(s) + Fs+ 2)M(s+ )77 2)d= 1.7
()M (s) ;ﬂérjl_“ﬂm{ )M (s + 2)UT(2) (1.7)

where the sum over A denotes a sum over the poles of the integrand.
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Using the properties of the gamma function, it is easy to show that

1

— ~/|:—:-\—.~}|=a F(s+ 2)M(s + 2)UT(z)dz = o(l), (1.8)
as T — oo.
It is shown in Theorem.10 of [B] that 7(s) has < Tlog T' zeros in the rectangle
0 < Re(s) < 1,|lm(s)| < T. Thus there are < log® T' zeros with |y| < log? T'. Thus,

il we add to the final estimate an O(log® T') term to account for the neglected zeros,

we can assume || > log? 7', Thus, by (1.7) and (1.8), we have

n?

"i:; ('J‘[H]ﬂ—rl..-"U - %j;: f‘r{é -} Il:i - n”ﬂf{% o8 J‘{.I' +1£}Il]f_-'-%""‘i"
(F(é - o+ iu]lrfn) + F(s)M(s) + of1) (1.9)

Since F'(s) satisfies the functional equation (1.1) and is absolutely convergent for
Re(s) > 1, we know that F(s) is of finite order, and by (1.5) we know that [C(n)| <

cq.n. Hence, we can show that

wo | l s
f - f"{§ + :f[t—i—u}]ﬂff{i + it + T:J}U'Tlr_”"'"'!‘{% —o+iu)de = o(l) (1.10)

glog ' T
and
3. wg-“f” = o(1) (1.11)
nspz W '

as T'— oo, if U tends to oo with 7.

Thus by (1.9) - (1.11), we have

C_% G'{"HJE"".I"U
Wengtz Y
|
— F(s\M —-f F(s+ 2)M(s + 2)UT(2)dz
F(s)M(s) 4 27 Moo T2 (s +z)M(s + 2)L7T(z)

+o(1) (1.12)
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as T — oo,

Let p = 3+ 17 be a zero of F(s). Then, from 1.12, we have either

| Z E‘Zﬂ E—J:ﬂ.-’

1.1:
]V{HEU? ”_.ﬂ | } ]1 { ]--j}
-

or both.
Of the zeros p with # > ¢ and |y] < T, we take a subset R of them so that il 1, P2

are bwo zeros, then

Iy — 72| = 2log*T (1.15)
Also, by Theorem 3 of [B], we have

N’{l

5 f+l}—i"-r’|,f— t) < logT'

for |¢| <T. Thus we may choose the subset R of zeros so that
N(a,T) < (It + 1) log™T

Finally, let #2; and 13 be the number of zeros such that (1.13) and (1.14), respectively,
hold. Then R < R, + R,.

Estimation of f,

If (1.13) holds, then there is a Y such that W < ¥ < {72 and

13 8 ) (10g)

=Y
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for 3> Ri(log U)~" zeros for which (1.13) holds. If pj,1 < j < R, are the zeros under

consideration, then by Lemma 1.1,

Ry 2 =
Ri(logU)™ < Y |3 Sl e/t
=1 n=Y
2 G
& (T+2V)(1 + 7" log?2V) (log'2v) Y 18WIE —F
n=X;

where 7 = min|y; — ;| = 2log®T, by (1.15). Thus by (1.5), we have

Ry < (T+Y)e TV y1-2(jog )Mt (1.16)

ITf(YV) = Y?e ¥V [or ¥ > 0, then it is easy Lo show that J{Y) attains its maximum

at ¥ = pU. Thus, from (1.16), we have
Ry < (TW'2 4 %) (log T)M+7 (1.17)

Estimation of [y

Suppose (1.14) holds and let p;,1 < j < R, be the zeros under consideration.
=

For these values, let {; be such that |t; — 4,

| < log?T/2 and [F(5 + it )M (3 + it;)|

is maximal. Assume that 7 > % + ﬁ. Then

fm |r(% —B+iu)du <logT

=

Thus

1 !
IP(5+ity) M(5 +its)] > U™ (log 1) (1.18)

If p. and p, are zeros with | < a < b < f, and 1, and t; are the corresponding
values of t, then, by the triangle inequality, the definition of ¢; and (1.15). We have

[ty — ts] = log* T.
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For any integer & > 2, we have

iy

Zm it }|u.a:j +=mwr
Then, by Lemma 1.1, [l.fI] and (1.18), we have

k

" — s .1. ; 3
Ry 7432 Y (log T')~ s P Z (FP{E I 11'._;]:'1!{% —|—a£_,-]])

I=i
which by Hélder’s inequality,

2 r

< (ZU +n)|) .(}:w + 7t ]|)H2

&
& (Tz“{k;,rkﬂ [Ing T:]zrz{kj,.ka!) {{T' + W) H'Jg ”_.-}.u,-m}m

Thus

R, < TRelk) k42 {T 4 H;}kﬂr+2 Utkﬁ“"z"} “l‘}g T}['.!:rqJ::|+{.-'ll‘.1.+!-:|k]fk+2
Thus by (1.17) and (1.19), we have

N(e,T) < (R4 1log’?
& [R|+Rg+l}|ng3’f'
= {"J"].i,'l—'ln' + “‘2—20} Hng ']r"]."lh+l{r
+ (T 1.«;;}kfi:+2 Tratk) [ (k42) (1 =20 )k kt2

(log T "*+[Mk]+{1"fa+*!'kllfl‘-+i']

If we choose W = T and {7 = T2tk (Bd=de) i fiave

N(o,T) < T=e) | p2Ukt2u(k])(1-a)/(k+4-da) (log T}MIEH_

This completes the proof of Theorem 1.1.

ko2

(1.19)
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Section 2. Examples

We now give a few examples of Dirichlet series to which the theorems mentioned

in Section 1 can be applied.

1. The Riemann-zeta function.

Here F(s) = G(s) = ¢(s),a(n) = b(n) = 1,a"" (n) = p(n), the Mébius function,
Afs) = I'(s/2),0 = 7,0 =1 and § = —L. Thus we can take My = My = My = 0
and My =3 as |C'(n)] < d(n). By Corollary 3.4 of Chapter 1, we have ji(2) = u(4) =
v(2) = 1 and v(4) = 4.

Thus for & = 2, we have from Theorem 1.1,
N(o,T) < 1T0-7)(3-20) )y, 13 (2.1)
and for k = 4, we have
N(o,T) = T31-0)/(2~7) log! 1

The first result is due to Titchmarsh and the second is due to Ingham .

By the Corollary 1.3, these results may be improved to
N(e,T) = Rl=i] log™ T

and

N(a,T) < T -7W2 |ge3 T

respectively, for + < & < 1. The second result is due to Mont omery [M2].
¥ 3 ) ]

Using the “large values” method of Halasz, Huxley [Hu] proved that
N(a,T) < TP -20@e=1) jgutd (2.2)

uniformly in % i



This, along with Ingham’s estimate (2.1) gives
N(o,T) « T3U-") jog¥ T, (2.3)

uniformly in 1/2 < e < 1.

Also, the result (2.2) implies that
N(o,T) < T logh T, (2.3)

= o =1, i.e., the density hypothesis holds in the range f<a<l.

for

SafEn

We know that the zero density estimates of ¢(s) have a number of applications
to prime number theory, and one such is the estimation of the difference between

consecutive primes. It is well known that any result
N(o,T) < T2 geB 7',
uniform in 1/2 < ¢ < 1 implies

F
Pagr — Pa <,

for all sufliciently large n, whenever

|
F5 - i,
S

B . y ; b &
From (2.2), we have é > L.

The Dedekind-zeta function.

Let & be an algebraic number field of degree n and g (s) denote the Dedekind-zeota
)

funclion of I, Then (j(s) = Z ”I:"[

—= for fle.s > 1 where ag(m) is the number of
n

m=]

integral ideals of norm m. Then ax(m) < d,(m) and by Corollary (3.6) of Chapter

I, we have

T |
[ K + i)t < 77 log 7
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Also, since ag(m) = 0, we see that laz " (m)| < ap(m) and we have

|C(m)| = Eﬁglw{fﬂllﬂk_w%”

=< dy,(m)
Thus

Y lem)P< Y &, (m) < zlog™ '

mer me<r

Thus we have here My = My =My =n—1, My =4n® — 1, 1(2) = n/2 and 3 2) =ip

Thus by Theorem 1.1 and Corollary 1.3 we have
Nie, T) <= Tind2f1—a)/{1-27) I::.g'l!g! 0 oo

anil

N(o,T) < TH=0) |ggin*+o o

respectively, for % <o<l.
D.R.Heath-Brown has improved these results by showing that if n > 3, then, for
any £ > (),

N(e, T) < prinde)(1—a)

When n = 2, he showed that then exists a constant C for any ¢ > 0 such that

plaseei-s) for J<o<lte, il0<cct
TH=)B-2N1og T)°, for L+e<o<?

N(e,T') < «
THI=)e(log T)C, for $<o<1—c¢,

1n
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The proofs of these results depend on the techniques of Montgomery together
with the later developments of Jutila. In addition, he uses the mean-value theorem
for |Ck(s)]* at o =1 — :—? (see Corollary 3.6 of Chapter 1).

These results can be used to give an asymptotic formula for the number of prime

ideals whose norms lie in interval :

Suppose that 1 2 a>1—-1ifn>3and 1 2 a > 2ifn=2. Il mg(x) denotes

the number of prime ideals with norm < =, then

v
mr(z+Y)—mr(z) ~ logg ST

uniformly for #* <y < z. In particular, when 2 > x(a), there exists a prime ideal of

K with z < Np < 2+ 17,

3. Cusp forms of weight £ with Euler product.
IJEL

LI{S} — i M

]
yii=1 n

be a cusp form of weight & with Euler product. We know that L(s) satisfies the

function equation (3.21) of Chapter 1.

Let fi(n) = ni{_—r:i@ and Ly (s) =" IE:E%]

n=1
Then we know that Ly (s) satisfies the [unctional equation (3.22). Here we have
a(n) = b{n) = fi(n), Als) =T'(s + i'.‘iz'_'l],(_'." =2r,d=2and §=—1.

Also, by (3.23) of Chapter 1, we have

;'1’1'1 = JHI;! = [



A

Goldstein[G1] has shown that, for every prime p,

i . Ji=0
—fip) 5 =1
)=
IJR 1 ng
i O

.

and is defined on integers by multiplicalivity. From this, it is easy to show that

&y la* " (n)]* < «*

ner

Thus M; = 1.

By the Ramanujan - Petersson conjecture (which was proved by Deligne)
[fin)] < fI(n.]ln_% :

From this, it is easy to show that

Z I(;'I[n]r'} & g ]Dglﬁ .
ner
By Corollary 3.7 of Chapter 1, we have p(2) = »(2) = 1. This gives, by Theorem 1.1,
N(o,T) < T-7)/(3~20) 25

By Corollary 1.3, we have

N(o,T) < 1M ge® T (2.4)

b | =
(FaY
o
|
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If we translate (2.4) back to the Cusp form L;(s), we have

N(o,T) < TH*0/2=0) 1,25

4. L-functions.
Suppose that ¢ 2 1, 32, (med 4) denotes the summation over all characters modulo
q, and N(e, T, x} denotes the number of zeros p = g+ v of L(s, x) in the rectangle
o< fA<1and|y] <7, then
ll—m) "
> N(o,T,x) < (¢T) 5= (log qT)°
x
for % <o <4/5, and
1—
>N, T,x) < (¢7) "= (log qT)"
Y
f ] e |
or — <@ .
5 SO
The proof of this can be found in [M3].Redmond’s proof of Theorem 1.1 and

Theorem 1.2 is modelled along the proof of this result,
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