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Summary

In this thesis, we study the proof complexity of two proof systems: (i) Merge

Resolution proof system for Quantified Boolean Formulas (QBFs), and (ii) MaxSAT

Resolution proof system for certifying unsatisfiability.

Merge Resolution

Merge Resolution (M-Res) is a proof system for Quantified Boolean Formulas

(QBFs), proposed in [18]. The original motivation was to overcome the limitations

encountered in long-distance Q-Resolution proof system (LD-Q-Res), where the

syntactic side-conditions, while prohibiting all unsound resolutions, also end up

prohibiting some sound resolutions. However, while the advantage of M-Res over

many other resolution-based QBF proof systems was already demonstrated, a

comparison with LD-Q-Res itself had remained open. Here, we settle this question.

We show that M-Res has an exponential advantage over not only LD-Q-Res, but

even over LQU+-Res and IRM, the most powerful among currently known

resolution-based QBF proof systems.

We also show the first exponential lower bound for M-Res, thereby uncovering its

limitations. Combining this lower bound with upper bounds for M-Res in [18] (for

QU-Res and CP+ ∀Red) and those in this thesis (for LQU-Res and LQU+-Res), we

conclude that these four proof systems are incomparable with M-Res.

Our proof method reveals two additional and curious features about M-Res:
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(i) M-Res is not closed under restrictions, and is hence not a natural proof system,

and (ii) weakening axiom clauses with existential variables provably yields an

exponential advantage over M-Res without weakening. We further show that in the

context of regular derivations, weakening axiom clauses with universal variables

provably yields an exponential advantage over M-Res without weakening. These

results suggest that M-Res is better used with weakening, though whether M-Res

with weakening is closed under restrictions remains open. We note that even with

weakening, M-Res continues to be simulated by eFrege + ∀red (the simulation of

ordinary M-Res was shown recently in [30]).

MaxSAT Resolution

MaxSAT Resolution (MaxRes) is a proof system for the MaxSAT problem,

proposed in [28,53]. We study the proof complexity of this system. In particular, we

compare it with standard proof systems. To have a fair comparison with proof

systems which only certify unsatisfiability (instead of the MaxSAT value), we use

MaxRes for certifying unsatisfiability.

We show that MaxRes can be exponentially more powerful than tree-like resolution,

and when augmented with weakening (the system MaxResW), p-simulates tree-like

resolution. In devising a lower bound technique specific to MaxRes (and not merely

inheriting lower bounds from Res), we define a new proof system called the

SubCubeSums proof system. This system, which p-simulates MaxResW, can be

viewed as a special case of the semialgebraic Sherali–Adams proof system. We show

that it is not simulated by Res. Using a proof technique qualitatively different from

the lower bounds that MaxResW inherits from Res, we show that Tseitin

contradictions on expander graphs are hard to refute in SubCubeSums. We also

establish a lower bound technique via lifting: for formulas requiring large degree in

SubCubeSums, their XOR-ification requires large size in SubCubeSums.
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Chapter 1

Introduction

Computational complexity theory aims to classify computational problems by their

intrinsic difficulty. Computational problems are placed into buckets, called

complexity classes, and the goal is to find the relationships among these classes. The

most well-known are the classes P and NP. Class P is the set of problems solvable

by deterministic Turing machines in polynomial time. On the other hand, class NP

is the set of problems solvable by non-deterministic Turing machines in polynomial

time. The question about their relationship — whether P is a proper subset of NP —

is the most important question in the field. In other words, the question asks

whether there exists a problem in NP which requires super-polynomial time on

deterministic Turing machines. To solve this question, we will have to prove a

super-polynomial ‘lower bound’ on the worst-case runtime of every deterministic

Turing machine which solves the problem.

Despite continued effort for nearly half a century, such a lower bound remains

elusive. This failure has led to a less ambitious but more realistic goal — to prove

lower bounds on computational models weaker than Turing machines. To be precise,

given a weak computational model, the goal is show that some problem in NP

requires super-polynomial resources when solved on this computational model.
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Examples of such models include branching programs and various restrictions of

uniform circuits, for example (uniform versions of) Boolean formulas, monotone

circuits, depth-restricted circuits and arithmetic circuits.

Since this sub-area of complexity theory focuses on ‘concrete’ computational models

in contrast to the all-encompassing Turing machine model, it is called concrete

complexity theory. There has been some progress, for instance exponential size lower

bounds have been proven for monotone [1, 66] and constant depth circuits [45, 76],

even if they are non-uniform. However, most questions still remain open — the best

lower bound for Boolean formulas is Ω(n3) [44] and for arithmetic circuits is

Ω(n log n) [9].

1.1 Proof complexity

One area within concrete complexity is proof complexity. The objects of study are

proof systems and the relevant measures of complexity are size, width, space, etc.

required for proving (or refuting) statements in these proof systems.

A proof system consists of a set of formulas (called axioms) assumed to be true and

a set of rules (called inference rules) that can be used to derive new formulas from

the axioms and the formulas already derived. Traditionally, mathematicians have

asked whether every true statement has a proof, in a suitably general proof system.

If this is true, can such a proof be discovered by a mechanical process (i.e. a Turing

machine) in a finite amount of time? The answer to both of these questions is ‘No’ —

the first is from the famous incompleteness theorem proven by Kurt Gödel, and the

second is from the construction by Alan Turing of undecidable and non-enumerable

sets.

But both these results rely on the fact that the variables in the formulas take values

from an infinite domain, for example the set of real numbers or integers. However,
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we can restrict the domain to be finite, for example a bounded set of integers or the

Boolean set {True,False}. With this restriction, the answer to both of the above

questions becomes ‘Yes’ — we can check all possible assignments to the variables to

decide whether the formula is True. In addition, the evaluation of the formula for all

possible assignments forms (a very long) proof that the formula is true/false.

Historically, mathematicians have viewed the finite case as trivial. On the advent of

computers, people wanted to solve such formulas using computers. It was soon

realized that the above proof is impractical. For instance, for formulas in

propositional logic, the variables take values in {True,False}. Even though there

exists a proof (list out the evaluation of all combinations of variable assignments),

such a proof is not very useful — it is of length 2n, which is very large even for

n = 50.

This led to the following question: does every unsatisfiable propositional formula

have polynomial-size proofs of unsatisfiability? (Note that satisfiable propositional

formulas have a linear-size proof of satisfiability i.e. the satisfying assignment.) This

is the NP vs coNP question.

Like the P vs NP question, the NP vs coNP question has also proven difficult to

answer. Like the P vs NP question, this has also led to a less ambitious program —

for concrete proof systems, prove that there exists a true (resp. false) formula family

which requires super-polynomial size proofs (resp. refutations) in that proof system.

Many refutational systems have been studied in the literature — for example,

Resolution, Cutting Planes and the Frege system etc. Exponential lower bounds

have been proven for Resolution [43] and Cutting Planes [64]. But the Frege system

has resisted all such attempts.
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1.1.1 Relation to solving

In the last two decades, many heuristic-based solvers have been built for testing

whether a propositional formula is satisfiable (which is called the SAT problem).

Even though this problem is NP-complete, these solvers perform extremely well on

industrial SAT instances. Since many of these solvers can be modeled by the proof

system resolution, lower bounds on the size of resolution refutations imply runtime

lower bounds on the solvers.

In fact, one reason that proof complexity is interesting is that most standard proof

systems capture some natural approach of solving SAT. Because of this, lower

bounds for concrete proof systems are also very useful. This is in contrast to lower

bounds for other restricted models like restricted circuits where they are just

stepping stones, and may not be interesting results in themselves.

Since many proof systems capture natural ways of solving SAT, it is useful to

compare the powers and limitations of different proof systems. This, in turn, tells us

about the powers and limitations of different ways of solving SAT.

1.1.2 Beyond SAT

With SAT solvers performing so well, the community has set sights on solving

harder problems. These include Quantified Boolean formulas (QBFs) and the

Maximum Satisfiability problem (MaxSAT).

Quantified Boolean formulas

Quantified Boolean Formulas (QBFs) are a generalization of propositional formulas,

in the sense that some of the variables are quantified universally. This allows a more

natural and succinct encoding of many constraints. As a result, QBF solving has
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many more practical applications. However, it is PSPACE-complete [70] and hence

believed to be much harder to solve than SAT.

Many QBF solvers are built by adapting the resolution-based SAT solvers to make

them work for QBFs. As a result, many of the QBF solvers can be modeled by some

modification of resolution. This has led to a variety of resolution-based proof

systems for QBFs. QBF proof complexity mainly focuses on comparing the powers

and limitations of these QBF proof systems.

Maximum Satisfiability

The Maximum Satisfiability problem asks for the maximum number of clauses of a

CNF that can be satisfied simultaneously (i.e. given a CNF formula, the problem

asks for a number k such that k clauses can be simultaneously satisfied but k + 1

clauses cannot be satisfied). While deciding satisfiability of a propositional formula

is NP-complete, the MaxSAT question is an optimization question, and deciding

whether its value is as given is potentially harder since it is hard for both NP and

coNP.

Many MaxSAT solvers work by making repeated queries to SAT solvers. In this

thesis, we will study a different approach — a proof system for MaxSAT, called

MaxSAT Resolution [28,53].

1.1.3 Formal definitions

A literal is a variable or its negation. A clause is the disjunction of a set of literals

(hence, without repetitions). In particular, if A and B are clauses, then A ∨B

denotes the clause that is the disjunction of the literals in A and in B without

repetitions. A clause is non-tautologous if it has no pair of contradictory literals (x

and ¬x).
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For set Z of variables, let ⟨Z⟩ denote the set of all total assignments to variables in

Z. For a (multi-) set F of clauses, violF : ⟨Z⟩ → {0} ∪ N is the function mapping α

to the number of clauses in F (counted with multiplicity) falsified by α. A

(sub)cube is the set of assignments falsifying a clause, or equivalently, the set of

assignments satisfying a conjunction of literals. (We refer to clauses and cubes

interchangeably, given the natural bijection between them.) The width of a clause is

the number of literals in it, and the width of a (multi-) set F of clauses is the

maximum width of the clauses it contains.

For a formula Φ and a partial assignment ρ to some of its variables, Φ↾ρ denotes the

restricted formula resulting from setting the specified variables according to ρ.

Quantified Boolean Formulas

A Quantified Boolean Formula (QBF) in prenex conjunctive normal form (p-cnf),

denoted Φ = Q.ϕ, consists of two parts: (i) a quantifier prefix

Q = Q1Z1, Q2Z2, . . . , QnZn where the Zi are pairwise disjoint sets of variables, each

Qi ∈ {∃,∀}, and Qi ̸= Qi+1; and (ii) a conjunction of clauses ϕ with variables in

Z = Z1 ∪ · · · ∪ Zn. In this thesis, when we say QBF, we mean a p-cnf QBF.

The set of existential (resp. universal) variables of Φ, denoted X (resp. U), is the

union of Zi for which Qi = ∃ (resp. Qi = ∀). The quantifier prefix defines a

left/right ordering relation on the set of variables. This relation, denoted z <Q z
′, is

defined as follows: z <Q z
′ holds if z ∈ Zi, z′ ∈ Zj, and i < j. For u ∈ U , the set of

existential variables left of u is LQ(u) := {x ∈ X | x <Q u}.

A strategy h for a QBF Φ is a set {hu | u ∈ U} of functions hu : ⟨LQ(u)⟩ → {0, 1}

(for each α ∈ ⟨X⟩, hu(α↾LQ(u)) and h(α) should be interpreted as a Boolean

assignment to the variable u and the variable set U respectively). The strategy h is

called a winning strategy (also called a countermodel) if, for each α ∈ ⟨X⟩, the
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restriction of ϕ by the assignment (α, h(α)) is false. A QBF is false if it has a

countermodel, and otherwise it is true [23, Sec. 31.2].

The semantics of QBFs is also explained by a two-player evaluation game played on

a QBF. In a run of the game, two players, the existential and the universal player,

assign values to the variables in the order of quantification in the prefix. The

existential player wins if the assignment so constructed satisfies all the clauses of ϕ;

otherwise the universal player wins. Assigning values according to a countermodel

guarantees that the universal player wins no matter how the existential player plays;

hence the term “winning strategy” [23, Sec. 31.2].

Proof systems

We will now define proof systems and proof complexity concepts more formally.

An alphabet Σ is a finite set of symbols. A language over alphabet Σ is a subset of

Σ∗ (here Σ∗ is the set of strings of any length over alphabet Σ).

Definition 1.1.1 ([52, Def. 1.5.1]). A proof system P for a language L over

alphabet Σ is a binary relation P ⊆ L× Σ∗ satisfying the following:

1. P is computable in polynomial-time.

2. Soundness: For any α, π ∈ Σ∗, if P (α, π) holds, then α ∈ L.

3. Completeness: For any α ∈ L, there is π ∈ Σ∗ such that P (α, π) holds.

If P (α, π) holds, we call π a P -proof of α.

As an example, for propositional formulas, L can be the set of satisfiable (or

unsatisfiable) formulas. For quantified Boolean formulas (QBFs), L can be the set of

true (or false) QBFs. If L is the set of unsatisfiable or false formulas, then π is called

a refutation, and such a proof system is sometimes also called a refutational system.
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For α ∈ L, the size of the smallest P -proof, denoted sizeP (α), is defined as follows:

sizeP (α) = min {|π| | P (α, π) holds}[52, Sec. 1.5]. A proof system P is called

polynomially bounded (p-bounded) if every α ∈ L has a polynomial-size P -proof

[52, Sec. 1.5].

Theorem 1.1.2 (The Cook–Reckhow theorem [33],[52, Thm. 1.5.2]). A p-bounded

proof system exists for unsatisfiable propositional formulas if and only if NP = coNP.

So, if we can prove that no p-bounded proof system for unsatisfiable propositional

formulas exists, then NP ̸= coNP. This gives an approach for solving the NP vs

coNP problem.

We will also be interested in comparing different proof systems. The next definition

is motivated by this.

Definition 1.1.3 ([52, Def. 1.5.4].). Let P and P ′ be proof systems for language L.

We say that proof system P ′ simulates proof system P if there is a computable

function f satisfying the following two properties: (i) for all α, π ∈ Σ∗, if P (α, π)

holds then P ′(α, f(π)) also holds; and (ii) for all π ∈ Σ∗, |f(π)| is polynomial in |π|.

If, furthermore, f is computable in polynomial-time, then we say that P ′

polynomially simulates (p-simulates) P

Let us now discuss a concrete proof system for unsatisfiable propositional formulas

This proof system, called resolution [34,35], is the most well-studied proof system.

We first define the resolution rule:

x ∨ A x ∨B
A ∨B

Here variable x is called the resolution pivot.

A resolution refutation of a false CNF formula F is a sequence of clauses C1, . . . , Ct

such that Ct = □ (i.e. the empty clause), and each Ci satisfies one of the following:
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• Ci is in F

• there exist j, k < i, and there exist clauses A,B such that Cj = x ∨ A,

Ck = x ∨B, and Ci = A ∨B.

Notice that a resolution refutation is a sequence of clauses. Such systems are called

line-based systems. Many proof systems that we will encounter in this thesis will be

line-based systems (however the lines may be more complex than clauses).

A proof in a line-based system can be viewed as a directed acyclic graph which has

lines as nodes, and directed edge from line Li to Lj if Li is used in the step deriving

Lj. Tree-like resolution (TreeRes) is the fragment of resolution which only allows

those refutations in which the underlying graph is a tree [50, Sec. 18.1]. Regular

resolution is the fragment of resolution with the following restriction: on every

source-to-sink path, each variable can be used as pivot at most once [50, Sec. 18.2].

For a formula Φ and a partial assignment ρ to some of its variables, Φ↾ρ denotes the

restricted formula resulting from setting the specified variables according to ρ.

Definition 1.1.4. A propositional (resp. QBF) proof system P is closed under

restrictions if for every unsatisfiable formula (resp. false QBF) Φ and every partial

assignment ρ to some variables (resp. existential variables), the size of the smallest

P -refutation of Φ↾ρ is at most polynomial in the size of the smallest P -refutation of

Φ.

Definition 1.1.5 ([10]). A proof system is natural if it is closed under restrictions.

1.2 Merge Resolution: A proof system for QBFs

Many of the currently known QBF proof systems are built on the resolution proof

system [24,67]. Broadly speaking, resolution has been adapted to handle the
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universal variables in QBFs in two intrinsically different ways. The first is an

expansion-based approach: universal variables are eliminated at the outset by

implicitly expanding the universal quantifiers into conjunctions, creating annotated

copies of existential variables. The systems ∀Exp + Res, IR, and IRM [21,49] are of

this type. The second is a reduction-rule approach: under certain conditions,

resolution may be blocked, and also under certain conditions, universal variables can

be deleted from clauses. The conditions are formulated to preserve soundness,

ensuring that if a QBF is true, then so is the QBF resulting from adding a derived

clause. The systems Q-Res, QU-Res, CP + ∀Red [22,51,74] are of this type.

A central role in QBF proof complexity is played by the two-player evaluation game

on QBFs, and the existence of winning strategies for the universal player in false

QBFs. For many QBF resolution systems, such strategies were used to construct

proofs and demonstrate completeness, and soundness was demonstrated by

extracting such strategies from proofs [7, 21, 36]. The strategy extraction procedures

build partial strategies at each line of the proof, with the strategies at the final line

forming a complete countermodel. These extraction procedures are based on the

fact that in each application of a rule in the proof system, any winning strategies of

the existential player are not destroyed.

In the systems Q-Res [51] and QU-Res [74], the soundness of the resolution rule is

ensured by enforcing a very simple side-condition: variables other than the pivot

cannot appear in both polarities in the antecedents. It was observed early on that

this is often too restrictive. The long-distance resolution proof system LD-Q-Res

[7, 77] arose from efforts to have less restrictive but still sound rules. In this system,

a universal variable could appear in both polarities, provided it was to the right of

the pivot in the quantifier prefix. Conventionally, u ∨ u is abbreviated as u∗ and

called a merged literal. The following is an LD-Q-Res refutation of the QBF

∃x∀u.(x ∨ u) ∧ (x ∨ u):
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x ∨ u x ∨ u
u∗

□

On the other hand, for the QBF ∀u,∃x.(u ∨ x) ∧ (u ∨ x), the following is not a valid

LD-Q-Res refutation:

u ∨ x u ∨ x
u∗

□

The system LD-Q-Res, while provably better than Q-Res [36], is still needlessly

restrictive in some situations. In particular, by checking a very simple syntactic

prefix-ordering condition, it fails to exploit the fact that soundness is not lost even if

universal variables to the left of the pivot are merged in both antecedents, provided

the partial strategies built for them in both antecedents are identical. For example,

for the QBF ∃x∀u,∃t.(x∨ u∨ t)∧ (x∨ u∨ t)∧ (x∨ u∨ t)∧ (x∨ u∨ t), the following

refutation is not allowed in LD-Q-Res even though it would be sound in this case:

x ∨ u ∨ t x ∨ u ∨ t
u∗ ∨ t

x ∨ u ∨ t x ∨ u ∨ t
u∗ ∨ t

u∗

□

A new system Merge Resolution (M-Res) was introduced three year ago precisely to

address this point [18]. In M-Res, partial strategies are explicitly represented within

the proof, in a particular representation format called merge maps – these are

essentially deterministic branching programs (DBPs). In this format, isomorphism

checking can be done efficiently, and this opens the way for enabling sound

applications of resolution that would have been blocked in LD-Q-Res (and Q-Res).

Returning to our previous example

∃x∀u,∃t.(x ∨ u ∨ t) ∧ (x ∨ u ∨ t) ∧ (x ∨ u ∨ t) ∧ (x ∨ u ∨ t), following is an M-Res

refutation.

x ∨ t, {u = 0} x ∨ t, {u = 1}
t, {u = if x is 0 then 0 else 1}

x ∨ t, {u = 0} x ∨ t, {u = 1}
t, {u = if x is 0 then 0 else 1}

□, {u = if x is 0 then 0 else 1}

11



We explicitly represent a partial strategy for u in each line. In contrast to the

disallowed LD-Q-Res refutation, here we can resolve the line

“t, {u = if x is 0 then 0 else 1}” with the line “t, {u = if x is 0 then 0 else 1}”

because these partial strategies are isomorphic.

In [18], it was shown that M-Res brought a rich pay-off: there is a family of

formulas, the SquaredEquality formulas, with short (linear-size) proofs in M-Res,

even in its tree-like and regular versions, but requiring exponential size in Q-Res,

QU-Res, CP + ∀Red, ∀Exp + Res, and IR. It is notable that the hardness of

SquaredEquality in these systems stems from a certain semantic cost associated

with these formulas and a corresponding lower bound [16,17]. Thus the results of

[18] show that such semantic costs are not a barrier for M-Res.

Our contributions

The authors of [18] did not show any advantage over LD-Q-Res — the system that

M-Res was designed to improve. They only showed advantage over a restricted

version of LD-Q-Res, the system reductionless LD-Q-Res. We show that M-Res is

indeed quite powerful, answering one of the main questions left open in [18]. We

show that there are formula families which have polynomial-size refutations in

M-Res but require exponential-size refutationsin LD-Q-Res. In fact, we show that

there are formula families having polynomial-size refutations in M-Res but requiring

exponential-size refutations in the most powerful resolution-based QBF proof

systems: reduction-based system LQU+-Res and expansion-based system IRM.

We then show the limitations of M-Res. In particular, we show that KBKF-lq

formula family requires exponential size refutations in M-Res. Combining this with

results from [18], we conclude that M-Res is incomparable with QU-Res and

CP + ∀Red. In addition, we show lower bounds for tree-like and regular M-Res
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∀Exp + Res

IR

IRM

M-Res

M-ResW∃ M-ResW∀

M-ResW∃∀

LD-Q-Res

Q-Res

QU-Res

LQU-Res

LQU+-Res

eFrege + ∀red

MM Natural

NN Unnatural

MM Unknown

A B A p-simulates B

A B A p-simulates B;
B doesn’t simulate A

A B B doesn’t simulate A

Figure 1.1: Relations among resolution-based QBF proof systems, with new results
and observations highlighted using thicker lines. In addition, regular M-ResW∀
strictly p-simulates regular M-Res. (i) Lines from a big grey box mean that the line
is from every proof system within the box. (ii) The missing relations follow from
transitivity, otherwise the systems are incomparable.

which show that these systems are incomparable with Q-Res, QU-Res, CP + ∀Red,

∀Exp + Res and IR.

We then look at the role of the weakening rule when used with M-Res. Weakening is

a rule that is sometimes augmented to resolution. This rule allows the derivation of

A ∨ x from A, provided that A does not contain the literal x. The weakening rule is

mainly used to make resolution refutations more readable — it does not make them

shorter [3]. The same holds for all other known resolution-based QBF proof systems.

Here, we observe that weakening adds power to M-Res i.e. allowing weakening can

make M-Res refutations exponentially shorter. We distinguish between two types of

weakenings, namely existential clause weakening and strategy weakening. Both
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these weakenings were defined in the original paper [18] in which M-Res was

introduced. However, these weakenings were used only for Dependency-QBFs

(DQBFs); in that setting they are necessary for completeness. The potential use of

weakening for QBFs was not explicitly addressed. Here, we show that existential

clause weakening adds exponential power to M-Res. We do not know whether

strategy weakening adds power to M-Res. However, we show that it does add

exponential power to regular M-Res. At the same time, weakening of any or both

types does not make M-Res unduly powerful; we show that eFrege + ∀red

polynomially simulates (p-simulates) M-Res even with both types of weakenings

added. This is proven by observing that the p-simulation of M-Res by eFrege+ ∀red

shown in [30] can very easily be extended to handle weakenings.

Another observation is that M-Res is not closed under restrictions. Closure under

restrictions is a very important property of proof systems. For a (QBF) proof

system, it means that restricting a false formula by a partial assignment to some of

the (existential) variables does not make the formula much harder to refute. Note

that a refutation of satisfiability of a formula implicitly encodes a refutation of

satisfiability of all its restrictions, and it is reasonable to expect that such

refutations can be extracted without paying too large a price. This is indeed the

case for virtually all known proof systems to date. Many solvers work by setting

some variables and simplifying the formula [59]. Without closure under restrictions,

setting a bad variable may make the job of refuting the formula exponentially

harder. Because of this reason, proofs systems which are closed under restrictions

have been called natural proof systems [10]. We show that M-Res, with and without

strategy weakening, is unnatural. We believe this would mean that it is hard to

build QBF solvers based on it. On the other hand, we do not yet know whether it

remains unnatural if existential clause weakening or both types of weakenings are

added. We believe that this is the most important open question about M-Res — a

negative answer can salvage it.
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Our results are summarized in Figure 1.1.

1.3 MaxSAT Resolution

The MaxSAT Resolution proof system or more briefly MaxRes, was proposed as a

proof system for the Maximum Satisfiability (MaxSAT problem) in [28,53]. It

operates on multi-sets of clauses, and uses the multi-output MaxSAT resolution

(MaxRes) rule [28], defined as follows:

x ∨ a1 ∨ . . . ∨ as (x ∨ A)

x ∨ b1 ∨ . . . ∨ bt (x ∨B)

a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt (the “standard resolvent”)

x ∨ A ∨ b1

x ∨ A ∨ b1 ∨ b2
...

x ∨ A ∨ b1 ∨ . . . ∨ bt−1 ∨ bt


(weakenings of x ∨ A)

x ∨B ∨ a1

x ∨B ∨ a1 ∨ a2
...

x ∨B ∨ a1 ∨ . . . ∨ as−1 ∨ as


(weakenings of x ∨B)

At each step, two clauses from the multi-set are resolved and removed. The

resolvent, as well as certain “disjoint” weakenings of the two clauses, are added to

the multiset. The invariant maintained is that for each assignment ρ, the number of

clauses in the multi-set falsified by ρ remains unchanged. The process stops when

the multi-set has a satisfiable instance along with k copies of the empty clause; k is

exactly the minimum number of clauses of the initial multi-set that must be falsified
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by every assignment. [28]

Since MaxRes maintains multi-sets of clauses and replaces used clauses, this

suggests a “read-once”-like constraint [28]. However, this is not the case; read-once

resolution is not even complete [47], whereas MaxRes is a complete system for

certifying the MaxSAT value (and in particular, for certifying unsatisfiability). One

could use the MaxRes system to certify unsatisfiability, by stopping the derivation

as soon as one empty clause is produced. Such a proof of unsatisfiability, by the very

definition of the system, can be p-simulated by Resolution. (The MaxRes proof is

itself a proof with resolution and weakening, and weakening can be eliminated at no

cost.) Thus, lower bounds for Resolution automatically apply to MaxRes and to

MaxResW (the augmenting of MaxRes with an appropriate weakening rule) as well.

However, since MaxRes needs to maintain a stronger invariant than merely

satisfiability, it seems reasonable that for certifying unsatisfiability, MaxRes is

weaker than Resolution. (This would explain why, in practice, MaxSAT solvers do

not seem to use MaxRes – possibly with the exception of [61], but they instead

directly call SAT solvers, which use standard resolution.) Proving this would require

a lower bound technique specific to MaxRes.

Associating with each clause the subcube of assignments that falsify it, each MaxRes

step manipulates and rearranges multi-sets of subcubes. This naturally leads us to

the formulation of a static proof system that we call the SubCubeSums proof

system. This system, by its very definition, p-simulates MaxResW. Associating with

each subcube the minimal conjunction of literals (called terms) that is satisfied by

all assignments in the subcube, SubCubeSums can be viewed as a special case of the

semi-algebraic Sherali–Adams proof system (see for instance [4,6,14,38]). Given this

position in the ecosystem of simple proof systems, understanding its capabilities and

limitations seems an interesting question.
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Our contributions

1. We observe that for certifying unsatisfiability, the proof system MaxResW

p-simulates the tree-like fragment of Res, TreeRes (Lemma 6.2.1). This

simulation seems to make essential use of the weakening rule. On the other

hand, we show that even MaxRes without weakening is not simulated by

TreeRes (Theorem 6.2.8). We exhibit a formula, which is a variant of the

pebbling contradiction [13] on a pyramid graph, with short refutations in

MaxRes (Lemma 6.2.2), and show that it requires exponential size in TreeRes

(Lemma 6.2.7).

2. We initiate a formal study of the newly-defined proof system SubCubeSums.

We discuss how it is a natural degree-preserving restriction of the

Sherali–Adams proof system and touch upon subtleties while defining size. We

show that the system SubCubeSums is not simulated by Res, by showing that

the Subset Cardinality Formulas, known to be hard for Res, have short

SubCubeSums refutations (Theorem 7.3.1). We also give a direct

combinatorial proof that the pigeon-hole principle formulas have short

SubCubeSums refutations (Theorem 7.3.5); this fact is implicit in a recent

result from [54].

3. We show that the Tseitin contradiction on an odd-charged expander graph is

hard for SubCubeSums (Theorem 7.4.2) and hence also hard for MaxResW.

While this already follows from the fact that these formulas are hard for

Sherali–Adams [4], our lower-bound technique is qualitatively different; it

crucially uses the fact that a stricter invariant is maintained in MaxResW and

SubCubeSums refutations.

4. Abstracting the ideas from the lower bound for Tseitin contradictions, we

devise a lower-bound technique for SubCubeSums based on lifting
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TreeRes MaxRes

MaxResW

Res SubCubeSums

Sherali–Adams

DRMaxSAT

MaxResE

(∗)
• A B denotes that A simulates B and B

does not simulate A.

• A B denotes that A simulates B.
(∗) with caveats.

• A B denotes that B does not simulate A.

Figure 1.2: Relation of MaxRes and MaxResW with other proof systems, with our
results highlighted using black lines.

(Theorem 7.5.1). Namely, we show that if every SubCubeSums refutation of a

formula F must have at least one wide clause, then every SubCubeSums

refutation of the formula F ◦ ⊕ must have many cubes.

Recently, one of the open problems raised by us has been resolved in [37]; a lower

bound for SubCubeSums size is shown for a formula that has short refutations in

resolution. Also, in [39], a very close variant of MaxResW called reversible

resolution is studied and separated from resolution. This system has the weakening

rule and its reverse; that is, resolution is permitted only when the antecedent clauses

differ in only one variable, which they have in opposing polarities.

The relations among these proof systems are summarized in Figure 1.2, which also

includes two proof systems discussed in Related Work.

Related work

One reason why studying MaxRes is interesting is that it displays unexpected power

after some preprocessing. As described in [46] (see also [58]), the PHP formulas that

are hard for Resolution can be encoded into MaxHornSAT, and then polynomially

many weighted MaxRes steps suffice to expose the contradiction. The underlying

proof system, weighted DRMaxSAT, has been studied further in [26], where it is
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shown to p-simulate general Resolution. While weighted DRMaxSAT gains power

from the encoding, the basic steps are MaxRes steps. Thus, to understand how

unweighted or weighted DRMaxSAT operates, a better understanding of MaxRes

could be quite useful. Since SubCubeSums can easily refute some formulas hard for

Resolution, it would be interesting to see how DRMaxSAT relates to SubCubeSums.

Some recent papers [27,54,55,68] study a generalization of the weighted version of

MaxRes, under the names MaxResE and MaxResSV. This system allows negative

weights in the intermediate steps, as long as all the clauses have positive weights at

the end. The system is used for certifying the MaxSAT value in [54,55,68] and for

certifying unsatisfiability in [27]. This difference allows the system to be used in a

slightly different way in these papers. Since the satisfiability of a CNF does not

change if we assign arbitrary positive weights to the axioms, [27] allows doing this.

On the other hand, this is not allowed in [54,55,68] because this would make the

system unsound for MaxSAT. With this added power the system in [27] is

p-equivalent to another recently defined proof system called Circular Resolution [5];

hence by the results in [5], it is also p-equivalent to Sherali–Adams. Though most

results in [54,68] are for general MaxSAT, there is one result for a special case of

MaxSAT where all axioms have infinite weight. Because of infinite weights, we get a

result similar to that in [27]: the system is p-equivalent to Circular Resolution and

Sherali–Adams. As can be seen from [27], the restriction of Circular Resolution

where axioms can be used only once is precisely MaxResW; the further restriction of

disallowing weakening of axioms is MaxRes.

It is also worth noting that MaxResW appears in [55,68] as MaxRes with a split

rule, or ResS. It is shown in [54,55,68] that for certifying the MaxSAT value (that is,

the optimization version), weakening provably adds power to MaxRes. However,

whether weakening adds power when MaxRes is used only to certify unsatisfiability

remains unclear.
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In the setting of communication complexity and of extension complexity of

polytopes, non-negative rank is an important and useful measure. As discussed in

[42], the query-complexity analogue is conical juntas; these are non-negative

combinations of subcubes. Our SubCubeSums refutations are a restriction of conical

juntas to non-negative integral combinations. Not surprisingly, our lower bound for

Tseitin contradictions is similar to the conical junta degree lower bound established

in [41].

1.4 Organisation of the thesis

This thesis is divided into two parts:

Part 1 (Merge Resolution) We describe the Merge Resolution proof system in

Chapter 2. In Chapter 3, we prove lower bounds for M-Res, thereby

separating it from QU-Res and CP + ∀Red. In Chapter 4, we show the

advantage of M-Res over other resolution-based QBF proof systems. Finally,

in Chapter 5, we show that weakening adds power to M-Res. In the same

chapter, we also show that M-Res is unnatural.

Part 2 (MaxSAT Resolution) In Chapter 6, we define the MaxRes proof

system and compare it with Tree-like Resolution. In Chapter 7, we define the

SubCubeSums proof system combinatorially, and formulate it as a restriction

of the Sherali-Adams proof sytem. We then show its separation from

Resolution, show that Tseitin contradictions are hard for it, and establish a

lifting technique for proving lower bounds.
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Part I

The Merge Resolution proof system
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Chapter 2

Merge Resolution

2.1 Defining the proof system

The formal definition of the Merge Resolution proof system, denoted M-Res, is

rather technical and can be found in [18]. Here we present a somewhat informal

description.

First, we describe the idea behind the proof system. M-Res is a line-based proof

system. Each line L has a clause C with only existential literals, and a partial

strategy hu for each universal variable u. The idea is to maintain the invariant that

for each existential assignment α, if α falsifies C, then α extended by the partial

universal assignment setting each u to hu(α) falsifies at least one of the clauses used

to derive L. Thus the set of functions {hu} gives a partial strategy that wins

whenever the existential player plays from the set of assignments falsifying C. The

goal is to derive a line with the empty clause; the corresponding strategy at that line

will be a complete winning strategy, a countermodel. Along the way, resolution is

used on the clauses. If the pivot is x, then for universal variables u right of x, the

partial strategies can be combined with a branching decision on x. However, for u

left of x, in the evaluation game, the value of u is already set when x is to be
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assigned. Thus already existing non-trivial partial strategies for u cannot be

combined with a branching decision, and so this resolution step is blocked. However,

if both the strategies are identical, or if one of them is trivial (unspecified), then the

non-trivial strategy can be carried forward while maintaining the desired invariant.

Checking whether strategies are identical can itself be hard, making verification of

the proof difficult. In M-Res, this is handled by choosing a particular representation

called merge maps, where isomorphism checks are easy.

Now we can describe the proof system itself. First we describe merge maps.

Syntactically, these are deterministic branching programs, specified by a sequence of

instructions of one of the following two forms:

• ⟨line ℓ⟩ : b where b ∈ {∗, 0, 1}.1

Merge maps containing a single such instruction are called simple. In

particular, if b = ∗, then they are called trivial.

• ⟨line ℓ⟩ : If x = 0 then go to ⟨line ℓ1⟩ else go to ⟨line ℓ2⟩, for some ℓ1, ℓ2 < ℓ.

In a merge map M for u, all queried variables x must precede u in the

quantifier prefix.

Merge maps with such instructions are called complex.

(All line numbers are natural numbers.) The merge map Mu computes a partial

strategy for the universal variable u starting at the largest line number (the leading

instruction) and following the instructions in the natural way. The value ∗ denotes

an undefined value.

Two merge maps M1,M2 are said to be consistent, denoted M1 ▷◁ M2, if for every

line number i appearing in both M1,M2, the instructions with line number i are

identical. Two merge maps M1,M2 are said to be isomorphic, denoted M1 ≃M2, if

there is a bijection between the line numbers in M1 and M2 that transforms M1 to
1In [18], the notation used is b ∈ {∗, u, u}; u, u, ∗ denote u = 1, u = 0, undefined respectively.
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M2 in the natural way.

For the remainder of this chapter let Φ = Q · ϕ be a QBF with existential variables

X and universal variables U . The proof system M-Res has the following rules:

1. Axiom: For a clause A in the matrix ϕ, let C be the existential part of A. For

each universal variable u, let bu be the value u must take to falsify A; if

u ̸∈ var(A), then bu = ∗. For any natural number i, the line (C, {Mu : u ∈ U})

where each Mu is the simple merge map ⟨i⟩ : bu can be derived in M-Res.

2. Resolution: From lines La = (Ca, {Mu
a : u ∈ U}) for a ∈ {0, 1}, in M-Res, the

line L = (C, {Mu : u ∈ U}) can be derived, where for some x ∈ X,

• C = Res(C0, C1, x), and

• for each u ∈ U ,

– either Mu
a is trivial and Mu =Mu

1−a for some a, or

– Mu =Mu
0 ≃Mu

1 , or

– x precedes u and Mu has a leading instruction that builds the

complex merge map If x = 0 then ⟨Mu
0 ⟩ else ⟨Mu

1 ⟩.

A refutation is a derivation using these rules and ending in a line with the empty

existential clause. The size of the refutation is the number of lines. We will denote

refutations by the Greek letter Π.

2.2 An illustrative example

We reproduce from [18] a small example to illustrate how M-Res operates. The

formulas to be refuted are the Equality formulas from [17], defined as follows: The

Equality family is the QBF family whose nth instance has the prefix
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∃x1, . . . , xn,∀u1, . . . , un,∃t1, . . . , tn and the following set of clauses

{xi, ui, ti}, {xi, ui, ti} for i ∈ [n], and {t1, . . . , tn}.

In [18] (Example 3), linear-size reductionless LD-Q-Res refutations are described for

these formulas, and later, M-Res is shown to simulate reductionless LD-Q-Res.

Here, we directly present the implied linear-size M-Res refutations.

First, we download the axioms. Line 0 downloads the long clause {t1, . . . , tn}, with

all trivial merge maps. The next 2n lines download the short axiom clauses. Letting

i ∈ [n], we define these lines as follows:

Line 2i− 1 is the clause {xi, ti} with merge map 0 for ui and all other merge maps

are trivial.

Line 2i is the clause {xi, ti} with merge map 1 for ui and all other merge maps are

trivial.

For i ∈ [n], line 2n+ i is obtained by applying the merge resolution rule on lines

2i− 1 and 2i. This gives the clause {ti}; the merge maps for j ̸= i are trivial, and

the merge map for ui has the instruction:

If xi = 0 then go to ⟨line 2i− 1⟩ else go to ⟨line 2i⟩.

At line 3n+ 1, applying merge resolution on lines 0 and 2n+ 1, we obtain the clause

{t2, . . . , tn}. The merge map for u1 is taken from line 2n+ 1, since at line 0 it is

trivial.

Now for i ∈ [2, n], line 3n+ i is obtained by applying merge resolution on lines

2n+ i and 3n+ i− 1. This gives the clause {ti+1, . . . , tn}. The merge map for ui is

taken from line 2n+ i since at line 3n+ i− 1 it is trivial. For j < i, the merge map

for uj is taken from line 3n+ i− 1 since at line 2n+ i it is trivial. Effectively, at

this line, for all j ≤ i, the merge map for uj is from line 2n+ j, and for all j > i, the

merge map for uj is trivial.

Line 4n derives the empty clause and the strategy computing, for each i ∈ [n],
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ui = xi. This completes the refutation and the example.

2.3 Properties

As shown in [18], the merge maps at the final line of a refutation compute a

countermodel for the QBF. To establish this, some stronger properties of the

derivation are established and will be useful to us. We restate the relevant

properties here.

Lemma 2.3.1 (Extracted/adapted from [18] Section 4.3, (Proof of Lemma 21)).

Let Φ = Q · ϕ be a QBF with existential variables X and universal variables U . Let

Π
def
= L1, . . . , Lm be an M-Res refutation of Φ, where each Li = (Ci, {Mu

i | u ∈ U}).

Further, for each i ∈ [m],

• let αi be the minimal partial assignment falsifying Ci,

• let Ai be the set of assignments to X consistent with αi,

• for each u ∈ U , let hui be the function computed by Mu
i ,

• for each α ∈ Ai, let hi(α) be the partial assignment which sets variable u to

hui (α↾LQ(u)) if hui (α↾LQ(u)) ̸= ∗, and leaves it unset otherwise.

Then for each α ∈ Ai, the (partial) assignment (α, hi(α)) falsifies at least one clause

of ϕ used in the sub-derivation of Li.

Let GΠ be the derivation graph corresponding to Π (with edges directed from the

antecedents to the consequent, hence from the axioms to the final line).

Proposition 2.3.2 ([18]). Let Φ = Q · ϕ be a QBF with existential variables X and

universal variables U . Let Π def
= L1, . . . , Lm be an M-Res refutation of Φ, where each

Li = (Ci, {Mu
i | u ∈ U}). Then, for all u ∈ U , Mu

m is isomorphic to a subgraph of

GΠ (up to path contraction).
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Let S be a subset of the existential variables X of Φ. We say that an M-Res

refutation of Φ is S-regular if for each x ∈ S, there is no leaf-to-root path that uses

x as pivot more than once. An X-regular proof is simply called a regular proof. If

GΠ is a tree, then we say that Π is a tree-like proof. Note that the refutation in

Section 2.2 is both tree-like and regular.
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Chapter 3

Lower bounds

In this chapter, we show lower bounds for M-Res, thereby uncovering its limitations.

The lower bounds are either transferred from bounds from circuit complexity (for

restricted versions of M-Res) or directly obtained by combinatorial arguments (for

full M-Res). Our results imply that the M-Res approach is largely orthogonal to

other QBF resolution models such as the QCDCL resolution systems QRes and

QURes and the expansion systems ∀Exp + Res and IR.

(A) Lower bounds from circuit complexity for restricted versions of

M-Res. Since the strategies are explicitly represented inside the proofs,

computational hardness of strategies immediately translates to proof size lower

bounds. While computational hardness of strategies is a known source of hardness

in all reduction-based proof systems admitting efficient strategy extraction [19,21],

the computational model relevant for M-Res is one for which no unconditional lower

bounds are known. For tree-like and regular M-Res, the relevant models are decision

trees and read-once DBPs, where lower bounds are known. Using this approach, we

show:

1. Tree-like M-Res is exponentially weaker than M-Res.
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The QParity formulas witness the separation (Theorem 3.2.3) as their unique

countermodel is the parity function which requires large decision trees.

2. Tree-like M-Res is incomparable with the dag-like and tree-like versions of

Q-Res, QU-Res, CP + ∀Red, ∀Exp + Res and IR.

One direction was shown in [18] via the Equality formulas: these formulas are

easy for tree-like M-Res but hard for dag-like Q-Res, QU-Res, CP + ∀Red,

∀Exp + Res, IR. The other direction is witnessed by the Completion Principle

formulas, easy in tree-like versions of Q-Res and ∀Exp + Res [48,49], but

exponentially hard for tree-like M-Res (Theorem 3.2.6). Unlike the QParity

formulas, these formulas do not have unique countermodels. However, we show

that every countermodel requires large decision-tree size, and hence obtain the

lower bound for tree-like M-Res.

(B) Combinatorial lower bounds for full M-Res. Even when winning

strategies are unique and easy to compute by DBPs, the formulas can be hard for

M-Res. We establish such hardness in three cases, obtaining more incomparabilities.

1. The LQParity formulas, easy in ∀Exp + Res [21], are exponentially hard for

regular M-Res (Theorem 3.3.1). Hence regular M-Res is incomparable with

∀Exp + Res and IR.

2. The Completion Principle formulas, easy in tree-like versions of Q-Res and

∀Exp + Res [48,49], are exponentially hard for regular M-Res (Theorem 3.3.6).

Hence regular M-Res is incomparable with the dag-like and tree-like versions

of Q-Res, QU-Res, CP + ∀Red, ∀Exp + Res and IR.

3. The KBKF-lq formulas, easy in QU-Res [8], are exponentially hard for M-Res

(Theorem 3.4.1). Hence M-Res is incomparable with QU-Res and CP + ∀Red.

The third hardness result above for the KBKF-lq formulas provides the first lower
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bound for the full system of M-Res, for which previously no lower bounds were

known.

3.1 The formulas

We describe the formulas we will use throughout this chapter.

The QParity and LQParity formulas [21]. Let parityc(y1, y2, . . . , yk) be a

shorthand for the following conjunction of clauses:∧
S⊆[k], |S|≡1(mod 2) ((∨i∈Syi) ∨ (∨i ̸∈Syi)). Thus parityc(y1, y2, . . . , yk) is equal to 1 iff

y1 + y2 + · · ·+ yk ≡ 0 (mod 2). QParityn is the QBF

∃x1, . . . , xn,∀z, ∃t1, . . . , tn.
(∧

i∈[n+1] ϕ
i
n

)
where

ϕ1
n = parityc(x1, t1)

ϕi
n = parityc(ti−1, xi, ti), ∀i ∈ [2, n]

ϕn+1
n = (tn ∨ z) ∧

(
tn ∨ z

)
Intuitively, ϕ1

n ∧ · · · ∧ ϕi
n, for i ∈ [n], enforces that the constraint x1 + · · ·+ xi ≡ ti

(mod 2). Similarly, ϕ1
n ∧ · · · ∧ ϕn+1

n enforces the constraint x1 + · · ·+ xi ̸≡ z

(mod 2). Since the value of z is set by the universal player after the existential

player sets the values of x1, x2, . . . , xn, the universal player has a winning strategy.

This means that the formula is false. Note that the only winning strategy for the

universal player is to play z satisfying z ≡ x1 + · · ·+ xn (mod 2).

Similarly, let p̂arityc(y1, y2, . . . , yk; z) abbreviate∧
C∈parityc(y1,y2,...,yk)

(
(C ∨ z) ∧ (C ∨ z)

)
. LQParityn is the QBF
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∃x1, . . . , xn,∀z, ∃t1, . . . , tn.
(∧

i∈[n+1] ϕ
i
n

)
where

ϕ1
n = p̂arityc(x1, t1; z)

ϕi
n = p̂arityc(ti−1, xi, ti; z), ∀i ∈ [2, n]

ϕn+1
n = (tn ∨ z) ∧

(
tn ∨ z

)
.

For both QParityn and LQParityn, for i, j ∈ [n+ 1], i ≤ j, we let ϕ[i,j]
n denote∧

k∈[i,j] ϕ
k
n. Also, X = {x1, . . . , xn} and T = {t1, . . . , tn}.

Observation 3.1.1. For both QParityn and LQParityn: (a) for each i ∈ [n], and

each C ∈ ϕi
n, {xi, ti} ⊆ var(C); and (b) for each i ∈ [n+ 1] \ {1}, and each C ∈ ϕi

n,

{ti−1} ⊆ var(C).

The Completion Principle formulas CRn [49]. The QBF CRn is defined as

follows:

CRn = ∃
i,j∈[n]

xij,∀ z, ∃
i∈[n]

ai, ∃
j∈[n]

bj.

(
∧

i,j∈[n]
(Aij ∧Bij)

)
∧ LA ∧ LB

where Aij = xij ∨ z ∨ ai, Bij = xij ∨ z ∨ bj, LA = a1 ∨ · · · ∨ an, and

LB = b1 ∨ · · · ∨ bn. Let X,A,B denote the variable sets {xij : i, j ∈ [n]},

{ai : i ∈ [n]}, and {bj : j ∈ [n]}. It is convenient to think of the X variables as

arranged in an n× n matrix.

Intuitively, the formulas describe a completion game, played on a 2× n2 dimensional

matrix whose (i− 1)n+ j-th column (for 1 ≤ i, j ≤ n) is
(
ai
bj

)
. Explicitly, the matrix

is the following:

 a1 . . . a1 a2 . . . a2 . . . . . . an . . . an

b1 . . . bn b1 . . . bn . . . . . . b1 . . . bn


The ∃-player first deletes exactly one cell per column and the ∀-player then chooses
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one row. The ∀-player wins if his row contains all of A or all of B (cf. [49]).

The KBKF-lq[n] formulas [8]. Our last QBFs are a variant of the formulas

introduced by Kleine Büning et al. [51], which in various versions appear

prominently throughout the QBF literature [8, 17,21,36,74]. For n > 1, the nth

member of the KBKF-lq[n] family consists of the prefix

∃d1, e1,∀x1, ∃d2, e2,∀x2, . . . ,∃dn, en,∀xn, ∃f1, f2, . . . , fn and clauses

A0 = {d1, e1, f1, . . . , fn}

Ad
i = {di, xi, di+1, ei+1, f1, . . . , fn} Ae

i = {ei, xi, di+1, ei+1, f1, . . . , fn} ∀i ∈ [n− 1]

Ad
n = {dn, xn, f1, . . . , fn} Ae

n = {en, xn, f1, . . . , fn}

B0
i = {xi, fi, fi+1, . . . fn} B1

i = {xi, fi, fi+1, . . . fn} ∀i ∈ [n− 1]

B0
n = {xn, fn} B1

n = {xn, fn}

Note that the existential part of each clause in KBKF-lq[n] is a Horn clause (at most

one positive literal), and except A0, is even strict Horn (exactly one positive literal).

We use the following shorthand notation. Sets of variables: D = {d1, . . . , dn},

E = {e1, . . . , en}, F = {f1, . . . , fn}, and X = {x1, . . . , xn}. Sets of literals: For

Y ∈ {D,E,X, F}, set Y 1 = {u | u ∈ Y } and Y 0 = {u | u ∈ Y }. Sets of clauses:

A0 = {A0}

Ai = {Ad
i , A

e
i} ∀i ∈ [n] Bi = {B0

i , B
1
i } ∀i ∈ [n]

A[i,j] = ∪k∈[i,j]Ak ∀i, j ∈ [0, n], i ≤ j B[i,j] = ∪k∈[i,j]Bk ∀i, j ∈ [n], i ≤ j

A = A[0,n] B = B[1,n]

We use the following property of these formulas:

Proposition 3.1.2. Let h be any countermodel for KBKF-lq[n]. Let α be any

assignment to D, and β be any assignment to E.
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For each i ∈ [n], if αj ̸= βj for all 1 ≤ j ≤ i, then hxi
(
(α, β)↾LQ(xi)

)
= αi.

In particular, if αj ̸= βj for all j ∈ [n], then the countermodel computes h(α, β) = α.

Proof. Let h be any countermodel for KBKF-lq[n]. For i ∈ [n], let αi be an

assignment to {d1, . . . , di}, and βi be an assignment to {e1, . . . , ei}. For j ≤ i, let αi
j

(resp. βi
j) be the assignment to dj (resp. ej) set by the assignment αi

j (resp. βi
j). We

will show that for each i ∈ [n], if αi
j ̸= βi

j for all 1 ≤ j ≤ i, then hxi(αi, βi) = αi
i.

This implies the claimed result.

Fix some i ∈ [n]. Assume to the contrary that αi
j ̸= βi

j for all 1 ≤ j ≤ i and

hxi(αi, βi) ̸= αi
i. We will give a winning strategy for the existential player. Note

that all clauses in A[0, i− 1] are satisfied by the partial assignment (αi, βi). The

existential player sets dj = ej = 1 for all j > i and sets fj = 1 for all j ∈ [n]. This

satisfies all the remaining clauses, irrespective of the strategy of the universal player.

Therefore the existential player wins. This contradicts the assumption that h is a

countermodel for KBKF-lq[n].

3.2 Transferring branching program lower bounds

The following lemma allows us to transfer lower bounds for decision trees

(resp. read-once branching programs) to lower bounds for tree-like (resp. regular)

Merge Resolution.

Lemma 3.2.1. Let Φ = Q · ϕ be a QBF with existential variables X and universal

variables U . Let Π def
= L1, . . . , Lm be an M-Res refutation of Φ, where each

Li = (Ci, {Mu
i | u ∈ U}). If Π is tree-like (resp. regular), then for all u ∈ U , Mu

m is

a decision tree (resp. read-once branching program) with {Mu
m | u ∈ U} computing a

countermodel of Φ. Moreover, the size of Π is lower bounded by the size of Mu
m.
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Proof. It is an immediate consequence of Proposition 2.3.2.

Tree-like Merge Resolution

For QParityn and LQParityn, the only winning strategy for the universal player is

to set z such that z ≡ x1 + x2 + · · ·+ xn (mod 2).

Proposition 3.2.2 (Folklore). The decision-tree size complexity of the parity

function is 2n.

From Lemma 2.3.1, Lemma 3.2.1, and Proposition 3.2.2, we obtain the desired lower

bound.

Theorem 3.2.3. sizeM-ResTree(QParityn) = 2Ω(n) and

sizeM-ResTree(LQParityn) = 2Ω(n).

Corollary 3.2.4. Tree-like M-Res does not simulate regular M-Res and general

M-Res.

Proof. Theorem 3.2.3 shows that QParity requires exponential-size refutations in

tree-like M-Res. It has polynomial-size refutations in reductionless LD-Q-Res [63]

(in fact the refutation in [63] is regular). Since (regular) M-Res p-simulates (regular)

reductionless LD-Q-Res, these formulas have polynomial-size refutations in regular

M-Res also. The result follows.

For the QBF CRn, the winning strategy for the universal player (countermodel) is

not unique. However, we show that all countermodels require large decision trees.

Lemma 3.2.5. Every countermodel for CRn has decision tree size complexity at

least 2n.
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Proof. We prove the size bound by showing that in every decision tree for every

countermodel, all root-to-leaf paths query at least n variables, and hence the

decision tree has at least 2n nodes.

Assume to the contrary that some countermodel h is computed by a decision tree M

that has a root-to-leaf path p querying less than n variables. Then there exist

k, ℓ ∈ [n] such that no variable from Row k and no variable from Column ℓ is on

this path. Let ρp be the minimal partial assignment that takes this path in M , and

let ρ′ be an arbitrary extension of ρp to variables in {xij | i ̸= k, j ̸= ℓ}. Consider

the following extension of ρ′ to variables in (X \ {xkℓ}) ∪ T , giving assignment σ:

Set all variables in row k (other than xk,ℓ) to 1.

Set all variables in column ℓ (other than xk,ℓ) to 0.

Set ak and bℓ to 0 and all other ai, bj variables to 1.

For n ≥ 2, σ satisfies all the clauses of CRn except Akℓ and Bkℓ, which get restricted

to xkℓ ∨ z and xkℓ ∨ z respectively.

Let α0 = σ ∪ {xkℓ = 0} and α1 = σ ∪ {xkℓ = 1}. Since both α0 and α1 extend ρp,

they follow path p, therefore h(α0) = h(α1). If h(α0) = h(α1) = 0, then (α1, h(α1))

satisfies all clauses of CRn. On the other hand, if h(α0) = h(α1) = 1, then

(α0, h(α0)) satisfies all clauses of CRn. Thus in either case, h is not a countermodel

for CRn.

From Lemma 2.3.1, Lemma 3.2.1, and Lemma 3.2.5, we obtain the desired lower

bound.

Theorem 3.2.6. sizeM-ResTree(CRn) = 2Ω(n).

Corollary 3.2.7. Tree-Like M-Res is incomparable with the tree-like and general

versions of Q-Res, QU-Res, CP + ∀Red, ∀Exp + Res, and IR.

Proof. We showed in Theorem 3.2.6 that the Completion Principle CRn requires
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exponential-size refutations in tree-like Merge Resolution. It has polynomial-size

refutations in tree-like QRes [48] (and hence also in QU-Res and CP + ∀Red) and

tree-like ∀Exp + Res [49] (and hence also in IR). (While [49] does not explicitly

mention tree-like proofs, the proof provided there for CRn is tree-like.) On the other

hand, the Equality formulas have polynomial-size tree-like M-Res refutations [18]

but require exponential-size refutations in Q-Res, QU-Res, CP + ∀Red [17],

∀Exp+Res, IR [16] (cf. [15] on how to apply the lower bound technique from [16] to

the Equality formulas).

Regular Merge Resolution

We now show how to lift lower bounds for any read-once branching program to

those for regular M-Res. This follows the method used, for instance, in [21] (Section

4.1) and [63] (Section 6). Given a Boolean function f which requires exponential

size read-once branching programs, we will construct a QBF formula such that the

winning strategy for at least one of the universal variables is f . This will give the

desired lower bound. We now describe how to construct such a QBF. Let

f : X → {0, 1} be a Boolean function, and let Cf be some Boolean circuit computing

f . Let u be a variable such that u /∈ X. We can use Tseitin transformation (see [71])

to construct a CNF formula ϕ(X, u, Y ) such that ∃Y.ϕ(X, u, Y ) is logically

equivalent to Cf (X) ̸= u. Using this, we construct the false QBF formula:

Φ := ∃X∀u∃Y.ϕ(X, u, Y ), which has the property that f is the unique winning

strategy. Moreover, the size of Φ is polynomial in the size of Cf . Choosing a

function f that can be computed by polynomial-size Boolean circuits but requires

exponential-size read-once branching programs gives the desired lower bound. There

are many such functions, for example see [25]. This gives us the desired lower bound.
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3.3 Lower bounds for Regular Merge Resolution

In this section, we prove Regular M-Res lower bounds for formulas whose

countermodels can be computed by polynomial-size read-once branching programs.

That is, these lower bounds are not because of computational hardness of

counter-models.

3.3.1 LQParity formulas

Our first result concerns the long-distance versions of the parity formulas [21] (cf.

Section 3.1), which are known to be hard for LD-Q-Res. We establish that they are

hard for regular Merge Resolution as well.

Theorem 3.3.1. sizeM-ResReg(LQParityn) = 2Ω(n).

This follows from a stronger result that we prove below: any T -regular refutation of

LQParityn in M-Res must have size 2Ω(n) (Theorem 3.3.5).

The proof proceeds as follows: Let Π be a T -regular M-Res refutation of LQParityn.

Since every axiom has a variable from T while the final clause in Π is empty, there is

a maximal “component” of the proof leading to and including the final line, where

all clauses are T -free. The clauses in this component involve only the X variables.

We show that the “boundary” of this component is large, by showing in Lemma 3.3.4

that each clause here must be wide. (This idea was used in [63] to show that CR is

hard for reductionless LD-Q-Res.) To establish the width bound, we note that no

lines have trivial strategies. Since the pivots at the boundary are variables from T ,

the merge maps incoming into each boundary resolution must be isomorphic. By

carefully analysing which axiom clauses can and must be used to derive lines just

above the boundary (Lemma 3.3.3), we conclude that the merge maps must be

simple, yielding the lower bound. To fill in all the details, we first describe some
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properties (Lemma 3.3.2) of Π that will be used in obtaining this result.

The lines of Π will be denoted by L,L′, L′′ etc. For lines L and L′ the respective

clause, merge map and the function computed by the merge map will be denoted by

C, M , h and C ′, M ′, h′ respectively. Let GΠ be the derivation graph corresponding

to Π (with edges directed from the antecedents to the consequent, hence from the

axioms to the final line). We will refer to the nodes of this graph by the

corresponding line. For L,L′ ∈ Π, we will say L; L′ if there is a path from L to L′

in GΠ.

For a line L ∈ Π, let ΠL be the minimal sub-derivation of L, and let GΠL
be the

corresponding subgraph of GΠ with sink L. Define

UsedConstraints(ΠL) = {ϕi
n | i ∈ [n+ 1], leaves(GΠL

) ∩ ϕi
n ̸= ∅}, and

Uci(ΠL) = {i ∈ [n+ 1] | ϕi
n ∈ UsedConstraints(ΠL)}. (Uci stands for

UsedConstraintsIndex.) Note that for any leaf L, Uci(ΠL) is a singleton.

Define S ′ to be the set of those lines in Π where the clause part has no T variable

and furthermore there is a path in GΠ from the line to the final empty clause via

lines where all the clauses also have no T variables. Let S denote the set of leaves in

the subgraph of GΠ restricted to S ′; these are lines that are in S ′ but their parents

are not in S ′. Note that no leaf of Π is in S ′ because all leaves of GΠ contain a

variable in T .

Lemma 3.3.2. Let L = (C,M) be a line of Π. Then Uci(ΠL) is an interval [i, j]

for some 1 ≤ i ≤ j ≤ n+ 1. Furthermore, (below i, j refer to the endpoints of this

interval )

1. For all k ∈ [i, j − 1], tk ̸∈ var(C).

2. If i > 1, then ti−1 ∈ var(C).

3. If j ≤ n, then tj ∈ var(C).
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4. |var(C) ∩ T | = 1 iff [i, j] contains exactly one of 1, n+ 1.

var(C) ∩ T = ∅ iff [i, j] = [1, n+ 1].

5. For all k ∈ [i, j] ∩ [1, n], xk ∈ var(C) ∪ var(M).

Proof. Let I = Uci(ΠL). Assume, to the contrary, that I is not an interval; for

some k ∈ [2, n], I contains an index i < k and an index j > k, but does not contain

k. Let L′ be the first line in Π such that Uci(ΠL′) intersects both [1, k − 1] and

[k + 1, n+ 1]. Since leaves have singleton Uci sets, L′ is not a leaf. Say

L′ = Res(L′′, L′′′, v). Assume that Uci(ΠL′′) ⊆ [1, k − 1] and

Uci(ΠL′′′) ⊆ [k + 1, n+ 1]; the argument for the other case is identical. So

v ∈ var∃(UsedConstraints(ΠL′′)) ⊆ var∃(ϕ
[1,k−1]
n ), and

v ∈ var∃(UsedConstraints(ΠL′′′)) ⊆ var∃(ϕ
[k+1,n+1]
n ). But var∃(ϕ

[1,k−1]
n ) and

var∃(ϕ
[k+1,n+1]
n ) are disjoint, a contradiction.

Fixing i, j so that I = Uci(ΠL) = [i, j], we now prove the remaining statements in

the Lemma.

1. Fix any k ∈ [i, j − 1]. Note that {k, k + 1} ⊆ Uci(ΠL). Let L′ be the first line

in ΠL such that {k, k + 1} ⊆ Uci(ΠL′). Say L′ is obtained as Res(L′′, L′′′, v).

Assume that Uci(ΠL′′) contributes k and Uci(ΠL′′) contributes k + 1; the

other case is symmetric. Since Uci(ΠL′′) must also be an interval, and since it

contains k but not k + 1, Uci(ΠL′′) ⊆ [1, k] ∩ Uci(ΠL) = [i, k]. Similarly,

Uci(ΠL′′′) ⊆ [k + 1, j]. The pivot variable v must thus belong to both ϕ[i,k]
n

and ϕ[k+1,j]
n ; the only such existential variable is tk. Hence each tk is used as a

pivot in ΠL.

Since Π is T -regular, and since tk is used as a pivot to derive L′ inside ΠL, it

cannot reappear in any line on any path from (including) L′ to the final clause.

Hence it does not appear in L.

2. Let i > 1. By Observation 3.1.1, ti−1 appears in at least one axiom used in ΠL.
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Assume to the contrary that ti−1 ̸∈ var(C). Let ρC be the minimal partial

assignment falsifying C. By assumption, ρC does not set ti−1, and by Item 1

above, ρC does not set any variable tk with i ≤ k < j. Extend ρC arbitrarily

to all unassigned variables in (X ∪ T ) \ {ti−1, . . . , tj−1} to get ρ1. Since the

merge map M does not depend on variables in T , the partial assignment ρ1 is

sufficient to evaluate M and h. Define the value y as follows:

y =

 ρ1(tj) if j ≤ n

h(ρ1) if j = n+ 1

For b ∈ {0, 1}, let ρb1 denote the extension of ρ1 by ti−1 = b. Exactly one of

ρ01, ρ
1
1 satisfies the equation ti−1 + xi + xi+1 + . . .+ xj + y ≡ 0 mod 2; let this

extension be ρ2. Then there is a unique extension α of ρ2 to X ∪ T such that

• if j ≤ n, then α satisfies the existential part of all clauses in ϕ[i,j]
n ;

• if j = n+ 1, then (α, h(ρ1)) satisfies all clauses in ϕ[i,j]
n . (That is,

assigning X ∪ T according to α and assigning z the value h(ρ1) satisfies

ϕ
[i,j]
n .)

(To find α, work backwards from y to determine the appropriate values of

tj−1, tj−2, . . . , ti to satisfy ϕj
n, ϕ

j−1
n , . . . , ϕi

n.)

Note that h(ρ1) = h(ρ2) = h(α). So (α, h(α)) falsifies C (since it extends ρC)

and satisfies all axiom clauses used to derive L. This contradicts Lemma 2.3.1.

3. Let j ≤ n. Assume to the contrary that tj ̸∈ var(C). The argument is

identical to that in Item 2 (only the indices differ): ρC falsifies C; ρ1 extends it

arbitrarily to all unassigned variables in (X ∪ T ) \ {ti, . . . , tj}; ρ2 is the

extension of ρ1 obtained by setting tj so as to satisfy the equation

ti−1 + xi + xi+1 + . . .+ xj + tj ≡ 0 mod 2; (Here, if i = 1, discard t0 from the

equation; i.e. assume t0 = 0); α is the unique extension of ρ2 to X ∪ T
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satisfying ϕ[i,j]
n (To obtain α, work forwards obtaining ti, ti+1, . . . , tj−1). Now

(α, h(α)) contradicts Lemma 2.3.1.

4. Since Uci(ΠL) = [i, j], variables tk for k ̸∈ [i− 1, j] do not appear in any of

the used axioms (Observation 3.1.1) and hence do not appear in C. By the

preceding three items, var(C) ∩ T does not include any tk with k ∈ [i, j − 1],

includes ti−1 whenever i > 1, and includes tj whenever j < n+ 1. The claim

follows.

5. Assume to the contrary that for some k ∈ [i, j], xk ̸∈ var(C) ∪ var(M). The

argument is similar to that in Item 2: ρC falsifies C; ρ1 extends it arbitrarily

to all unassigned variables in (X \ {xk}) ∪ (T \ {ti, . . . , tj−1}); y is the value of

tj if j ≤ n and the value of h otherwise (since xk ̸∈ var(M), ρ1 is sufficient to

evaluate h); ρ2 is the extension of ρ1 obtained by setting xk so as to satisfy the

equation ti−1 + xi + xi+1 + . . .+ xj + y ≡ 0 mod 2; (Here, if i = 1, discard t0

from the equation; i.e. assume t0 = 0); α is the unique extension of ρ2 to

X ∪ T satisfying ϕ[i,j]
n (To obtain α, work forwards from ti towards tj−1). Now

(α, h(α)) contradicts Lemma 2.3.1.

Lemma 3.3.3. Let L ∈ S be derived in Π as L = Res(L′, L′′, tk). Then

Uci(ΠL) = [1, n+ 1], and Uci(ΠL′),Uci(ΠL′′) partition [1, n+ 1] into

[1, k], [k + 1, n+ 1].

Proof. Since L ∈ S, L has no variable from T . By Lemma 3.3.2(4),

Uci(ΠL) = [1, n+ 1].

Since L = Res(L′, L′′, tk), we have var(C ′) ∩ T = var(C ′′) ∩ T = {tk}. By

Lemma 3.3.2(2,3,4), Uci(ΠL′),Uci(ΠL′′) ∈ {[1, k], [k + 1, n+ 1]}.
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If both Uci(ΠL′),Uci(ΠL′′) equal [k + 1, n+ 1], then Uci(ΠL) = [k + 1, n+ 1],

contradicting Uci(Πl) = [1, n+ 1].

If both Uci(ΠL′),Uci(ΠL′′) equal [1, k], then Uci(ΠL) = [1, k]. Since tk is a pivot

variable, k ≤ n, contradicting Uci(Πl) = [1, n+ 1].

Hence one each of Uci(ΠL′),Uci(ΠL′′) equals [1, k] and [k+ 1, n+ 1] as claimed.

Lemma 3.3.4. For all L ∈ S, width(C) = n.

Proof. Let L ∈ S be derived in Π as L = Res(L′, L′′, tk). Since all axioms create

non-trivial strategies, neither M ′ nor M ′′ equals ∗. By the rules of M-Res,

M ′ =M ′′ =M ̸= ∗. We will show that in fact M must be a constant strategy,

M ∈ {0, 1}.

By definition of S, var(C) ∩ T = ∅, and hence var(C ′) ∩ T = var(C ′′) ∩ T = {tk}.

By Lemma 3.3.3, Uci(ΠL) = [1, n+ 1] is partitioned by Uci(ΠL′) and Uci(ΠL′′)

into [1, k], [k + 1, n+ 1].

Assume Uci(ΠL′) = [1, k], Uci(ΠL′′) = [k + 1, n+ 1]; the argument in the other case

is identical. Then var(M) = var(M ′) ⊆ var(ϕ[1,k]) ∩X = {x1, . . . , xk}, and

var(M) = var(M ′′) ⊆ var(ϕ[k+1,n+1]) ∩X = {xk+1, . . . , xn}. The only way both

these conditions can be satisfied is if var(M) = ∅; that is, M is a constant strategy.

Since Uci(ΠL) = [1, n+ 1] and var(M) = ∅ , Lemma 3.3.2(5) implies that

X ⊆ var(C). Therefore width(C) = n.

Theorem 3.3.5. Every T -regular refutation of LQParityn in M-Res has size 2Ω(n).

Proof. Let Π be a T -regular refutation of LQParityn in M-Res. Let S ′,S be as

defined just before Lemma 3.3.2. By definition, for each L = (C,M) ∈ S ′,

var(C) ⊆ X. Let Π̂ = {C | L = (C,M) ∈ S ′}. Then Π̂ contains a propositional

resolution refutation of C = {C | L = (C,M) ∈ S}. Therefore C is an unsatisfiable
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CNF formula over the n variables in X. By Lemma 3.3.4, each clause in C has

width n and so is falsified by exactly one assignment. Therefore, to ensure that each

of the 2n assignments falsifies some clause, (at least) 2n clauses are required.

Therefore |C| ⩾ 2n. Hence |Π| ⩾ 2n.

3.3.2 Completion Principle formulas

Our second hardness result for regular Merge Resolution is for the completion

principle formulas, introduced in [49] (cf. Section 3.1).

Theorem 3.3.6. Every (A ∪B)-regular refutation of CRn in M-Res has size 2n−1.

The proof proceeds as follows: Let Π be a (A ∪B)-regular M-Res refutation of CRn.

Since every axiom has a variable from A ∪B while the final clause in Π is empty,

there is a maximal “component” of the proof leading to and including the final line,

where all clauses are (A∪B)-free. The clauses in this component involve only the X

variables. We show that the “boundary” of this component is large, by showing in

Lemma 3.3.7 that each clause here must be wide. (This idea was used in [63] to

show that CR is hard for reductionless LD-Q-Res.)

To establish the width bound, we first note that except for the axioms LA, LB, no

lines have trivial strategies. Since the pivots at the boundary are variables from

A ∪B, which are all to the right of z, the merge maps incoming into each boundary

resolution must be isomorphic. By analysing what axiom clauses cannot be used to

derive lines just above the boundary, we show that many variables are absent in the

corresponding merge maps, and invoking soundness of M-Res, we show that they

must then be present in the boundary clause, making it wide.

Proof. (of Theorem 3.3.6) The statement of theorem is trivially true for n = 1. We

prove it for n ≥ 2.
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Let Π be an (A ∪B)-regular refutation of CRn (for n ≥ 2) in M-Res. Define S ′ to

be the set of those lines in Π where the clause part has no variable from A ∪B, and

furthermore there is a path in GΠ from the line to the final empty clause via lines

where all the clauses also have no variables from A ∪B. Let S denote the set of

leaves in the subgraph of GΠ restricted to S ′; these are lines that are in S ′ but their

parents are not in S ′. Note that no leaf of Π is in S ′ because all leaves of GΠ

contain a variable in A ∪B.

By definition, for each L = (C,M z) ∈ S ′, var(C) ⊆ X. The sub-derivation

Π̂ = {C | ∃L = (C,M z) ∈ S ′} contains a propositional resolution refutation of the

conjunction of clauses F = {C | ∃L = (C,M z) ∈ S}. Hence F is an unsatisfiable

CNF formula over the n2 variables in X. We show below, in Lemma 3.3.7, that each

clause in F has width at least n− 1. Hence it is falsified by at most 2n
2−(n−1)

assignments. Therefore, to ensure that each of the 2n
2 assignments falsifies some

clause, at least 2n−1 clauses are required. Therefore |F | ⩾ 2n−1. Hence

|Π| = 2Ω(n).

Lemma 3.3.7. For all L = (C,M z) ∈ S, width(C) ≥ n− 1.

Proof. Since var(C) ∩ (A ∪B) = ∅, L is not a leaf of Π. Say L = Res(L1, L2, v)

where L1 = (C1,M
z
1 ) and L2 = (C2,M

z
2 ). Since var(C1) ∩ (A ∪B) ̸= ∅ and

var(C2) ∩ (A ∪B) ̸= ∅, we have v ∈ A ∪B. Consider the case when v ∈ A; the

argument for the case when v ∈ B is symmetrically identical. Without loss of

generality, assume that v = an; and an ∈ C1 and an ∈ C2.

Since Π is (A ∪B)-regular, an does not occur as a pivot in the sub-derivation ΠL1 .

Therefore LA ̸∈ leaves(GΠL1
) (otherwise an ∈ C1, and therefore C1 would be

tautological clause, a contradiction). This implies that the sub-derivation ΠL1

cannot use any axiom that contains a positive A literal other than an, since such a

literal would have to be eliminated by resolution before reaching C1, requiring the

corresponding negated literal, and LA is the only axiom with negated literals from
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A. That is, ΠL1 does not use any of the axioms Aij for i ∈ [n− 1]. The positive

literal xij appears only in Aij . Hence for i ∈ [n− 1], j ∈ [n], xij is not a pivot in ΠL1

and hence does not appear in M z
1 . On the other hand, M z

1 is not trivial since some

Anj clause is used.

C2 contains an, but no other ai. So C2 is not the axiom LA. Hence M z
2 is not trivial.

Since the pivot an at the step obtaining line L is to the right of z, by the rules of

M-Res, M z
1 and M z

2 are isomorphic. Hence for each i ∈ [n− 1], and each j ∈ [n],

xij ̸∈ var(M z
2 ). We claim the following:

Claim 3.3.8. Either for all i ∈ [n− 1], C2 has a variable of the form xi∗, or for all

j ∈ [n], C2 has a variable of the form x∗j.

In either case, C2 has at least n− 1 variables.

It remains to prove the claim.

Proof. (of Claim) We know that an ∈ C2, and for all i ∈ [n− 1], for all j ∈ [n],

xij ̸∈ var(M z
2 ). Aiming for contradiction, suppose that there exist i ∈ [n− 1] and

j ∈ [n] such that for all ℓ ∈ [n], xiℓ ̸∈ var(C2), and for all k ∈ [n], var(xkj) ̸∈ C2. Fix

such an i, j.

Let ρ be the minimum partial assignment falsifying C2. Then

• ρ sets an = 1, leaves all other variables in A ∪B unset.

• ρ does not set any xiℓ or xkj.

For c ∈ {0, 1}, extend ρ to αc as follows: Set ai = 0, bj = 0, set all other unset

variables from A ∪B to 1. Set xij = c. All xiℓ other than xij set to 1. All xkj other

than xij set to 0. Set remaining variables arbitrarily (but in the same way in α0 and

α1).
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The common part of α0 and α1 satisfies all axiom clauses except Aij and Bij, and

does not falsify any axiom. The extensions αc satisfy one more axiom, and still do

not falsify the remaining axiom (it has a universal literal z or z). They both falsify

C2, since they extend ρ.

Since α0 and α1 agree everywhere except on xij, and since xij ̸∈ var(M z
2 ), it follows

that M z
2 (α0) =M z

2 (α1) = d, say.

By Lemma 2.3.1, both (α0, d) and (α1, d) should falsify some axiom. However,

(αd̄, d) actually satisfies all axioms, a contradiction.

With the claim established, the proof of the lemma is complete.

Corollary 3.3.9. Regular M-Res is incomparable with the tree-like and general

versions of Q-Res, QU-Res, CP + ∀Red, ∀Exp + Res, and IR.

Proof. Let S ∈ {Q-Res,QU-Res,CP + ∀Red,∀Exp + Res, IR}.

The CRn formulas have polynomial-size refutations in tree-like S [48, 49] but require

exponential-size refutations in regular M-Res (Theorem 3.3.6), so regular M-Res

does not simulate tree-like or general versions of S.

The Equality formulas require exponential-size refutations in S [15, 16] but have

polynomial-size refutations in regular M-Res [18], so S (and hence also tree-like S)

does not simulate regular M-Res.

3.4 A lower bound for Merge Resolution

In this section we turn towards the full system of Merge Resolution and consider the

KBKF-lq formulas (cf. Section 3.1). Similarly as the LQParity formulas, these

formulas were originally introduced as hard principles for LD-Q-Res [8]. Here we
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show that they are hard for the full system of Merge Resolution. This constitutes

the first lower bound for unrestricted M-Res in the literature.

Theorem 3.4.1. sizeM-Res(KBKF-lq[n]) = 2Ω(n).

Proof idea We will show that, in any M-Res refutation of the KBKF-lq formulas,

the literals over the variables in F = {f1, f2, . . . , fn} must be removed before the

strategies become ‘very complex’. From this we conclude that there must be

exponentially many lines.

To argue that literals over F must be removed before the strategies become ‘very

complex’, we look at the form of the lines containing literals over F . If any such line

has a ‘very complex’ strategy (by which we mean that for some i ∈ [n], ui depends

on either di or ei), then the literals over F cannot be removed from the clause.

Elaborating on the roadmap of the argument: Let Π be an M-Res refutation of

KBKF-lq[n]. Each line in Π has the form L = (C,Mx1 , . . . ,Mxn) where C is a

clause over D,E, F , and each Mxi is a merge map computing a strategy for xi.

Define S ′ to be the set of those lines in Π where the clause part has no F variable

and furthermore the line has a path in GΠ to the final empty clause via lines where

all the clauses also have no F variables. Let S denote the set of leaves in the

subgraph of GΠ restricted to S ′; these are lines that are in S ′ but their parents are

not in S ′. Note that by definition, for each L = (C, {Mxi | i ∈ [n]}) ∈ S ′,

var(C) ⊆ D ∪ E. No line in S ′ (and in particular, no line in S) is an axiom since all

axiom clauses have variables from F .

Recall that the variables of KBKF-lq[n] can be naturally grouped based on the

quantifier prefix: for i ∈ [n], the ith group has di, ei, xi, and the (n+ 1)th group has

the F variables. By construction, the merge map for xi does not depend on

variables in later groups, as is indeed required for a countermodel. We say that a
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merge map for xi has self-dependence if it does depend on di and/or ei.

We show that every merge map at every line in S ′ is non-trivial (Lemma 3.4.6).

Further, we show that at every line on the boundary of S ′, i.e. in S, no merge map

has self-dependence (Lemma 3.4.7). Using this, we conclude that S must be

exponentially large, since in every countermodel the strategy of each variable must

have self-dependence (Proposition 3.1.2).

In order to show that lines in S do not have self-dependence, we first establish

several properties of the sets of axiom clauses used in a sub-derivation

(Lemma 3.4.2, Lemma 3.4.3, Lemma 3.4.4, Lemma 3.4.5).

Detailed proof For a line L ∈ Π, let ΠL be the minimal sub-derivation of L, and

let GΠL
be the corresponding subgraph of GΠ with sink L. Let

Uci(ΠL) = {i ∈ [0, n] | leaves(GΠL
) ∩ Ai ̸= ∅}. (Uci stands for

UsedConstraintsIndex). Note that we are only looking at the clauses in A to define

Uci.

Lemma 3.4.2. For every line L = (C, {Mxi | i ∈ [n]}) of Π,

1. Uci(ΠL) = ∅ if and only if C ∩ F 1 ̸= ∅ if and only if |C ∩ F 1| = 1.

2. Uci(ΠL) ̸= ∅ if and only if C ∩ F 1 = ∅.

Proof. Since the existential part of each clause in KBKF-lq[n] is a Horn clause, and

since the resolvent of Horn clauses is also Horn, |C ∩ F 1| ≤ 1 for each line of Π. It

thus suffices to prove that ∀L ∈ Π, Uci(ΠL) = ∅ ⇐⇒ C ∩ F 1 ̸= ∅.

(⇒): For an arbitrary line L ∈ Π, suppose Uci(ΠL) = ∅, so L is derived from B.

Since var∃(B) = F , var(C) ⊆ F . The existential part of these clauses is strict Horn,

and the resolvent of strict Horn clauses is also strict Horn, so C is strict Horn. So

C ∩ F 1 ̸= ∅.
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(⇐): The statement C ∩ F 1 ̸= ∅ ⇒ Uci(ΠL) = ∅ holds at all axioms. Assume to the

contrary that it does not hold everywhere in Π. Pick a highest L (closest to the

axioms) for which this statement fails. That is, C ∩ F 1 ̸= ∅, and Uci(ΠL) ̸= ∅. Let

L′, L′′ be the parents of L in Π; by choice of L, both L′ and L′′ satisfy the statement.

Let fj be the positive literal in C (unique, because C is Horn). Without loss of

generality, fj ∈ C ′. Since L′ satisfies the statement, Uci(ΠL′) = ∅. So var(C ′) ⊆ F ,

and since C ′ is Horn, C ′ \ {fj} ⊆ F 0. Since fj ∈ C, the pivot at this step is not fj,

so it must be an fk for some fk ∈ C ′. So fk ∈ C ′′. Since L′′ satisfies the statement,

Uci(ΠL′′) = ∅. But then Uci(ΠL) = Uci(ΠL′) ∪ Uci(ΠL′′) = ∅, contradicting our

choice of L. Hence our assumption was wrong, and the statement holds for all L in

Π.

Lemma 3.4.3. A line L = (C, {Mxi | i ∈ [n]}) of Π with Uci(ΠL) = ∅ has these

properties:

1. var(C) ⊆ F ; for all i ∈ [n], Mxi ∈ {∗, 0, 1};

2. For some j ∈ [n], fj ∈ C and Mxj ∈ {0, 1};

3. For 1 ≤ i < j, fi ̸∈ var(C) and Mxi = ∗;

4. For j < i ≤ n, if fi ̸∈ var(C), then Mxj ∈ {0, 1}.

Proof. 1. Since Uci(ΠL) = ∅, var(C) ⊆ var∃(B) = F .

All pivots in ΠL are from F , and all universal variables are left of F in the

quantifier prefix. So no step in ΠL can use the merge operation to update

merge maps; all steps in ΠL use only the select operation, which does not

create any branching.

2. By Lemma 3.4.2, |C ∩ F 1| = 1, so there is a unique j with the literal fj ∈ C.

This literal appears only in the clauses of Bj , both of which create a non-trivial

strategy for xj. So Mxj ̸= ∗. By (Item 1) proven above, Mxj ∈ {0, 1}.
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3. Let k be the least index such that ΠL uses an axiom from Bk. Since the

positive literal fj is in C and appears only in Bj, k ≤ j. Assume k < j. The

axiom from Bk introduces the positive literal fk into ΠL, and by choice of k,

no axiom in ΠL has the literal fk. Hence fk cannot be removed by resolution,

and so fk ∈ C, contradicting the fact that C is Horn. So in fact k = j. This

means that no axiom introduces the variables fi, i < j, into ΠL, so

fi ̸∈ var(C). Furthermore, amongst all the axioms in B, only the axioms in Bi

have a non-trivial merge map for xi. Hence for i < j, no non-trivial merge

map for xi is created.

4. Since fj ∈ C, ΠL uses an axiom from Bj . This axiom introduces the literals fi,

for j < i ≤ n, into ΠL.

If fi is removed (by resolution) in ΠL, then an axiom from Bi must be used to

introduce the positive literal fi. This axiom created a non-trivial merge map

for xi, so the merge map for xi at L is also non-trivial.

Lemma 3.4.4. Let L = (C, {Mxi | i ∈ [n]}) be a line of Π with Uci(ΠL) ̸= ∅. Then

Uci(ΠL) is an interval [a, b] for some 0 ≤ a ≤ b ≤ n. Furthermore, (in the items

below, a, b refer to the endpoints of this interval ), it has the following properties:

1. For k ∈ [n] ∩ [a, b], Mxk ̸= ∗.

2. If a ≥ 1, then |{da, ea} ∩ C| = 1. If a = 0, then C does not have any positive

literal.

3. If b < n, then db+1, eb+1 ∈ C.

4. For all k ∈ [n] \ [a, b], (i) dk, ek ̸∈ var(Mxk), and (ii) if Mxk = ∗ then fk ∈ C.

Proof. Assume to the contrary that Uci(ΠL) is not an interval. Then there exist

0 ≤ a < c < b ≤ n such that a, b ∈ Uci(ΠL) but c ̸∈ Uci(ΠL). Let L1 be the first
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line in ΠL such that Uci(ΠL1) intersects both [0, c− 1] and [c+ 1, n] (note that L1

exists). Since leaves have singleton Uci sets, L1 is not a leaf. Say

L1 = Res(L2, L3, v). By our choice of L1, exactly one each of Uci(ΠL2) and

Uci(ΠL3) is a non-empty subset of [0, c− 1] and of [c+ 1, n]. So v ∈ var∃(A[0,c−1])

and v ∈ var∃(A[c+1,n]). But var∃(A[0,c−1]) ∩ var∃(A[c+1,n]) = F , and by Lemma 3.4.2,

both C2 and C3 contain variables of F only in negated form. So no variable from F

can be a resolution pivot, a contradiction. It follows that Uci(ΠL) is an interval.

1. For k ∈ [n]∩ [a, b], some axiom from Ak has been used to derive L. Both these

axioms create non-trivial strategies for xk. Subsequent M-Res steps cannot

make a non-trivial strategy trivial.

2. Consider first the case a ≥ 1. Since C is a Horn clause, C can contain at most

one of the literals da, ea.

Since a ∈ Uci(ΠL), at least one of Ad
a, A

e
a appears in leaves(ΠL), so at least

one of the literals da, ea is introduced into ΠL. Since Ad
a−1 and Ae

a−1 are the

only axioms that contain da or da, and since neither of these is used in ΠL,

therefore the positive literals da, ea, if introduced, cannot be removed through

resolution. Hence at least one of them is in C. It follows that C has exactly

one of da, ea.

If a = 0, ΠL uses the clause A0 which has only negative literals. The resolvent

of such a clause and a Horn clause also has only negative literals. Following

the sequence of resolutions on the path from a leaf using A0 to C shows that

C has only negative literals.

3. Since b < n and b ∈ Uci(ΠL), some clause from Ab is used in ΠL and

introduces the literals db+1, eb+1 into ΠL. Since b+ 1 ̸∈ Uci(ΠL), no leaf of ΠL

contains the positive literals db+1, eb+1. So db+1 and eb+1 cannot be removed

through resolution.
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4. For k > b, no leaf in ΠL contains the positive literals dk, ek. For k < a, no leaf

in ΠL contains the negative literals dk, ek. Thus, for k ̸∈ [a, b], the variables

dk, ek are not used as resolution pivots anywhere in ΠL, and hence are not

queried in any of the merge maps.

Each negative literal fk is present in every clause of A, and hence is

introduced into ΠL. If Mxk = ∗, then B0
k, B

1
k ̸∈ leaves(ΠL) (both of them have

non-trivial merge maps for xk). Since these are the only clauses with the

positive literal fk, the literal fk cannot be removed in ΠL; hence fk ∈ C.

Lemma 3.4.5. For any line L = (C, {Mxi | i ∈ [n]}) in Π, and any k ∈ [n], if

{dk, ek} ∩ var(Mxk) ̸= ∅, then Uci(ΠL) = [a, n] for some a ≤ k − 1.

Proof. Since {dk, ek} ∩ var(Mxk) ̸= ∅, either dk or ek must be used as a pivot in ΠL,

and hence must appear in both polarities in ΠL. The variables dk, ek appear

positively only in Ak, and negatively only in Ak−1. Hence a ≤ k − 1.

Suppose b < n. By Lemma 3.4.4 (3), both db+1 and eb+1 are in C. Consider any

path ρ in Π from L to the final line L2. At every line on this path, the merge map

for xk queries at least one of dk, ek since it is at least as complex as the merge map

Mxk . Along this path, both db+1 and eb+1 must appear as pivots, since the negated

literals are eventually removed. Pick the first such step on ρ, and assume without

loss of generality that the pivot is db+1 (the other case is symmetric). So db+1 is

present in the line, say L1, on ρ, and db+1 is present in the clause L2 with which it is

resolved to obtain L3 = Res(L2, L1, db+1) on ρ. By Lemma 3.4.4 (2),

Uci(ΠL2) = [b+ 1, b′] for some b′ ≥ b+ 1. Hence by Lemma 3.4.4 (4),

dk, ek ̸∈ var((M2)
xk). However, {dk, ek} ∩ var((M1)

xk) ̸= ∅. Since this resolution on

db+1 is not blocked, it must be the case that (M2)
xk = ∗. Hence, by Lemma 3.4.4 (4),

fk ∈ C2 and so fk ∈ C3. To remove this literal, at some later point along ρ, fk must
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appear as pivot. However, at that point, the line from ρ has a complex merge map

for xk, while the line with the positive literal fk has a non-trivial constant merge

map (by Lemma 3.4.3 (2)). Hence the resolution on fk is blocked, a contradiction.

It follows that b = n.

Lemma 3.4.6. For all L ∈ S ′, for all k ∈ [n], Mxk ̸= ∗.

Proof. Consider a line L = (C, {Mxi | i ∈ [n]}) ∈ S ′. Since L ∈ S ′, var(C) ∩ F = ∅,

so C ∩ F 1 = ∅. By Lemma 3.4.2, Uci(ΠL) ̸= ∅. Since every clause in A contains all

literals in F 0, for each k ∈ [n], ΠL has a leaf where the clause contains fk. This

literal is removed in deriving L, so ΠL also has a leaf where the clause contains the

positive literal fk. That is, it uses an axiom from Bk; this leaf has a non-trivial

merge map for xk. Since a step in M-Res cannot make a non-trivial merge map

trivial, the merge map for xk at L is non-trivial.

Lemma 3.4.7. For all L ∈ S, for all k ∈ [n], dk, ek ̸∈ var(Mxk).

Proof. Consider a line L ∈ S; L = (C, {Mxi | i ∈ [n]}). Assume to the contrary that

for some k ∈ [n], {dk, ek} ∩ var(Mxk) ̸= ∅.

Line L is obtained by performing resolution on two non-S ′ clauses with a pivot from

F . Let L = Res(L′, L′′, fℓ) for some ℓ ∈ [n]; fℓ ∈ C ′ and fℓ ∈ C ′′. Since L has no

variable in F , fℓ is the only variable from F in var(C ′) and var(C ′′).

Since C ′ has the literal fℓ ∈ F 1, by Lemma 3.4.2, Uci(ΠL′) = ∅ and L′ is derived

exclusively from B. Since D ∪ E and var(B) are disjoint, all the merge maps in L′

have no variable from D ∪ E. So Mxk gets its D ∪ E variables from (M ′′)xk . Since

this does not block the resolution step, (M ′)xk must be trivial and Mxk = (M ′′)xk .

Since var(C ′) ∩ F = fℓ, by Lemma 3.4.3 (2),(3),(4), k < ℓ.

The line L′′ has no literal from F 1, so by Lemma 3.4.2, Uci(ΠL′′) ̸= ∅. It has a

merge map for xk involving at least one of dk, ek, so by Lemma 3.4.5,
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Uci(ΠL′′) = [a, n] for some a ≤ k − 1. Thus we have a ≤ k − 1 < k < ℓ ≤ n.

Consider the resolution of L′ with L′′. By Lemma 3.4.3 (2), (M ′)xℓ ∈ {0, 1}, and by

Lemma 3.4.4 (1), (M ′′)xℓ ̸= ∗. To enable this resolution, (M ′′)xℓ = (M ′)xℓ . The

clauses Ad
ℓ and Ae

ℓ give rise to different constant strategies for xℓ. So the derivation

of L′′ uses exactly one of these two clauses. Assume it uses Ad
ℓ ; the other case is

symmetric. Since a < ℓ, the derivation of L′′ uses a clause from Aℓ−1, introducing

literals dℓ and eℓ. Since the only clause containing positive literal eℓ is not used, eℓ

survives in C ′′. Going from L′′ to L removes only fℓ, so eℓ ∈ C.

To summarize, at this stage we know that L ∈ S, eℓ ∈ C, {dk, ek} ∩ var(Mxk) ̸= ∅,

Mxℓ ∈ {0, 1} and 1 ≤ k < ℓ ≤ n.

Fix any path ρ in GΠ from L to L2. Along this path, eℓ appears as the pivot

somewhere, since the literal eℓ is eventually removed. Consider the resolution step at

that point, say C1 = Res(C2, C3, eℓ), with C3 being the clause at the line on ρ. At

the corresponding line L3, the strategies are at least as complex as those at L.

Hence var(Mxk
3 ) ∩ {dk, ek} ≠ ∅. On the other hand, C2 has the positive literal eℓ.

By Lemma 3.4.4, for the corresponding line L2, Uci(ΠL2) = [ℓ, c] for some c ≥ ℓ.

Since k < ℓ, by Lemma 3.4.4, {dk, ek} ∩ var(Mxk
2 ) = ∅. However, the path from L2

to L1 and thence to L2 along ρ witnesses that L2 ∈ S ′, so by Lemma 3.4.6,

(M2)
xk ̸= ∗. Thus Mxk

2 and Mxk
3 are non-trivial but not isomorphic, and this blocks

the resolution on eℓ.

Thus our assumption that {dk, ek} ∩ var(Mxk) ̸= ∅ must be false. The lemma is

proved.

Proof. (of Theorem 3.4.1) Let Π be a refutation of KBKF-lq[n] in M-Res. Let S ′,S

be as defined in the beginning of this section. Let the final line of Π be

L2 = (2, {sxi | i ∈ [n]}), and for i ∈ [n], let hi be the functions computed by the

merge map sxi . By soundness of M-Res, the functions {hi}i∈[n] form a countermodel
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for KBKF-lq[n].

For each a ∈ {0, 1}n, consider the assignment α to the variables of D ∪ E where

di = ai, ei = ai. Call such an assignment an anti-symmetric assignment. Given such

an assignment, walk from L2 towards the leaves of Π as far as is possible while

maintaining the following invariant at each line L = (C, {Mxi | i ∈ [n]}) along the

way:

1. α falsifies C, and

2. for each i ∈ [n], hi(α) =Mxi(α).

Clearly this invariant is initially true at L2, which is in S ′. If we are currently at a

line L ∈ S ′ where the invariant is true, and if L ̸∈ S, then L is obtained from lines

L′, L′′. The resolution pivot in this step is not in F , since that would put L in S.

So both L′ and L′′ are in S ′, and the pivot is in D ∪ E. Let the pivot be in {dℓ, eℓ}

for some ℓ ∈ [n]. Depending on the pivot value, exactly one of C ′, C ′′ is falsified by

α; say C ′ is falsified. By Lemma 3.4.6, for each i ∈ [n], both (M ′)xi and (M ′′)xi are

non-trivial. By definition of the M-Res rule,

• For i < ℓ, (M ′)xi and (M ′′)xi are isomorphic (otherwise the resolution is

blocked), and Mxi = (M ′)xi = (M ′′)xi .

• For i ≥ ℓ, there are two possibilities:

(1) (M ′)xi and (M ′′)xi are isomorphic, and Mxi = (M ′)xi .

(2) Mxi is a merge of (M ′)xi and (M ′′)xi with the pivot variable queried. By

definition of the merge operation, since C ′ is falsified by α,

Mxi(α) = (M ′)xi(α).

Thus in all cases, for each i, hi(α) =Mxi(α) = (M ′)xi(α). Hence L′ satisfies the

invariant.
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We have shown that as long as we have not encountered a line in S, we can move

further. We continue the walk until a line in S is reached. We denote the line so

reached by P (α). Thus P defines a map from anti-symmetric assignments to S.

Suppose P (α) = P (β) = (C, {Mxi | i ∈ [n]}) for two distinct anti-symmetric

assignments obtained from a, b ∈ {0, 1}n respectively. Let j be the least index in [n]

where aj ̸= bj. By Lemma 3.4.7, Mxj depends only on {di, ei | i < j}, and α, β

agree on these variables. Thus we get the equalities

aj = hj(α) =Mxj(α) =Mxj(β) = hj(β) = bj, where the first and last equalities

follow from Proposition 3.1.2, the third equality from Lemma 3.4.7 and choice of j,

and the second and fourth equalities by the invariant satisfied at P (α) and P (β)

respectively. This contradicts aj ̸= bj.

We have established that the map P is one-to-one. Hence, S has at least as many

lines as anti-symmetric assignments, so |Π| ≥ |S| ≥ 2n.

Corollary 3.4.8. M-Res is incomparable with QU-Res and CP + ∀Red.

Proof. Theorem 3.4.1 shows that the KBKF-lq[n] formula requires exponential-size

refutations in M-Res. It has polynomial-size refutations in QU-Res [8], and also in

CP + ∀Red (since CP + ∀Red simulates QU-Res [22]). The other direction follows

from the Equality formulas, as already mentioned in the proofs of

Corollary 3.2.7, Corollary 3.3.9.
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Chapter 4

Power of Merge Resolution

In this chapter, we will show that M-Res has exponential advantage over the two

most powerful resolution-based QBF proof systems, reduction-based system

LQU+-Res and expansion-based system IRM. This is shown using modifications of

two well-known formula families: KBKF-lq [8] which was shown hard for M-Res in

the previous chapter, and QUParity [21] which we believe is also hard. The main

observation is that the reason making these formulas hard for M-Res is the

mismatch of partial strategies at some point in the refutation. This mismatch can

be eliminated if the formulas are modified appropriately. The resultant formulas,

called KBKF-lq-split and MParity, have polynomial-size refutations in M-Res but

require exponential-size refutations in IRM and LQU+-Res respectively.

4.1 Advantage over IRM

To show that M-Res is not simulated by IRM, we use the KBKF-lq formula family

from the previous chapter. We reproduce the definition of this family below and

then define two further variants that will be useful for our purpose.

KBKF-lq[n] is the QBF with the quantifier prefix ∃d1, e1,∀x1, . . . ,∃dn, en,∀xn,
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∃f1, . . . , fn and with the following clauses:

A0 =
{
d1, e1, f1, . . . , fn

}
Ad

i =
{
di, xi, di+1, ei+1, f1, . . . , fn

}
Ae

i =
{
ei, xi, di+1, ei+1, f1, . . . , fn

}
∀i ∈ [n− 1]

Ad
n =

{
dn, xn, f1, . . . , fn

}
Ae

n =
{
en, xn, f1, . . . , fn

}
B0

i =
{
xi, fi, fi+1, . . . fn

}
B1

i =
{
xi, fi, fi+1, . . . fn

}
∀i ∈ [n− 1]

B0
n = {xn, fn} B1

n = {xn, fn}

We now define two new formula families: KBKF-lq-weak and KBKF-lq-split.

KBKF-lq-weak[n] has the same quantifier prefix as KBKF, and all the A-clauses of

KBKF-lq, but it has the following clauses instead of B0
i and B1

i :

weak-B0
i = di ∨B0

i

weak-B1
i = di ∨B1

i

 ∀i ∈ [n]

KBKF-lq-split[n] has all variables of KBKF-lq and one new variable t quantified

existentially in the first block, so the quantifier prefix for this formula is

∃t,∃d1, e1,∀x1, . . . ,∃dn, en,∀xn,∃f1, . . . , fn. It has all the A-clauses of KBKF-lq,

but the following clauses instead of B0
i and B1

i :

split-B0
i = t ∨B0

i

split-B1
i = t ∨B1

i

T 0
i =

{
t, di

}
T 1
i =

{
t, di

}


∀i ∈ [n]

Lemma 4.1.1. KBKF-lq-weak has polynomial-size M-Res refutations.

Proof. Let L′′
i denote the M-Res-resolvent of weak-B0

i and weak-B1
i . It has only one
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non-trivial merge-map, setting xi = di. Starting with A0, resolve in sequence with

Ae
1, Ad

1, Ae
2, Ad

2, and so on up to Ae
n, Ad

n to derive the line with all negated f literals

and merge-maps computing xi = di for each i. Now sequentially resolve this with

L′′
1, L′′

2, up to L′′
n to obtain the empty clause. It can be verified that none of these

resolutions are blocked, and the final merge-maps compute the winning strategy

xi = di for each i.

The refutation is pictorially depicted below. The abbreviations A0, A
d
i ,weak-B0

i

etc. will denote the clause, merge-map pair corresponding to the respective axioms.

A0 Ae
1

Le
1 Ad

1

Ld
1

Ld
n−1 Ae

n

Le
n Ad

n

L′
1

weak-B0
1 weak-B1

1

L′′
1

L′
2

L′
n

weak-B0
n weak-B0

n

L′′
n

(2, {x1 = d1, . . . , xn = dn})

Here Le
i , L

d
i , L

′
i, L

′′
i , for all i ∈ [n], are the following lines, with only non-trivial

merge-maps written explicitly:

• Le
1 =

({
d1, d2, e2, f1, . . . , fn

}
, {x1 = 1}

)
• Le

i =
({
di, di+1, ei+1, f1, . . . , fn

}
, {x1 = d1, . . . , xi−1 = di−1, xi = 1}

)
for all

i ∈ [2, n− 1]

• Le
n =

({
dn, f1, . . . , fn

}
, {x1 = d1, . . . , xn−1 = dn−1, xn = 1}

)
• Ld

i =
({
di+1, ei+1, f1, . . . , fn

}
, {x1 = d1, . . . , xi = di}

)
for all i ∈ [n− 1]

• L′
i =

({
fi, . . . , fn

}
, {x1 = d1, . . . , xn = dn}

)
for all i ∈ [n]
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• L′′
i =

({
fi, fi+1, . . . fn

}
, {xi = di}

)
for all i ∈ [n− 1]

• L′′
n = ({fn} , {xn = dn})

Lemma 4.1.2. KBKF-lq-split has polynomial-size M-Res refutations.

Proof. For each i ∈ [n] and k ∈ {0, 1}, resolving split-Bk
i and T k

i yields weak-Bk
i .

This gives us the KBKF-lq-weak formula family which, as shown in Lemma 4.1.1,

has polynomial-size M-Res refutations.

Theorem 4.1.3. IRM does not simulate M-Res.

Proof. The KBKF-lq-split formula family witnesses the separation. By

Lemma 4.1.2, it has polynomial size M-Res refutations. Restricting it by setting

t = 0 gives the family KBKF-lq, which requires exponential size to refute in IRM,

[21]. Since IRM is closed under restrictions (Lemma 11 in [21]), KBKF-lq-split also

requires exponential size to refute in IRM.

4.2 Advantage over LQU+-Res

To show that LQU+-Res does not simulate M-Res, we define a new formula family

called MParity. This family is a modification of the QUParity formula family [21],

which is a variant of the QParity and LQParity families from the previous chapter.

We reproduce the definition of LQParity from the previous chapter, informally

describe the variant QUParity, and then define our new variant MParity. Let

p̂arityc(y1, y2, . . . , yk, z) abbreviate
∧

C∈parityc(y1,y2,...,yk)

(
(C ∨ z) ∧ (C ∨ z)

)
.
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LQParityn is the QBF ∃x1, . . . , xn,∀z,∃t1, . . . , tn.
(∧

i∈[n+1] ϕ
i
n

)
where

ϕ1
n = p̂arityc(x1, t1, z)

ϕi
n = p̂arityc(ti−1, xi, ti, z), ∀i ∈ [2, n]

ϕn+1
n = (tn ∨ z) ∧

(
tn ∨ z

)
.

QUParity is obtained from LQParity by duplicating the universal variable. That is,

the block ∀z is replaced with the block ∀z1, z2. Each clause of the form C ∪ {z} in

LQParity is replaced with the clause C ∪ {z1, z2}, and each clause of the form

C ∪ {z} is replaced with the clause C ∪ {z1, z2}.

We will be inspired by the short LD-Q-Res refutation of QParity (from [31, p. 54]).

This refutation relies on the fact that most axioms of QParity do not have universal

variable z. This enables steps in which a merged literal z∗ is present in one

antecedent but there is no literal over z in the other antecedent. LQParity is

created from QParity by replacing each clause C not containing z by two clauses

C ∨ z and C ∨ z. Since, every axiom of LQParity (and hence also each derived

clause) now has a literal over z, we can no longer resolve clauses containing the

merged literal z∗ with any other clause. This forbids the creation of merged literals,

which in turn, forbids all possible short refutations. The same problem seems to

occur in M-Res also — though M-Res allows resolution steps if the merge-maps are

isomorphic, we do not know of any way of making them isomorphic. This leads us

to define the new variant MParity. We notice that if the formula family is modified

appropriately, we can indeed make the merge-maps isomorphic, and additionally

throwing in the modifications of LQParity and QUParity does not destroy this

feature. This leads us to define the modified family MParity.
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Definition 4.2.1. MParityn is the following QBF:

∃
i,j∈[n]

ai,j,∃x1, . . . , xn, ∀z1, z2,∃t1, . . . , tn.

 ∧
i∈[n+1]

ψi


where each ψi contains the following clauses:

• For i = 1, for all C ∈ parityc (x1, t1), the clauses

A0
1,C = C ∪ {z1, z2, a1,n} and A1

1,C = C ∪ {z1, z2, a1,n}

• For all i ∈ [2, n− 1], for all C ∈ parityc (ti−1, xi, ti), the clauses

A0
i,C = C ∪ {z1, z2, ai,n} and A1

i,C = C ∪ {z1, z2, ai,n}.

• For i = n, for all C ∈ parityc (tn−1, xn, tn), the clauses

A0
i,C = C ∪ {z1, z2} and A1

i,C = C ∪ {z1, z2}.

• For i = n+ 1, the clauses {tn, z1, z2} and
{
tn, z1, z2

}
.

• For all i ∈ [n− 1], the following clauses:

B0
i,j = {ai,j, xj, ai,j−1} , B1

i,j = {ai,j, xj, ai,j−1} ∀j ∈ {n, n− 1, . . . , i+ 2}

B0
i,i+1 = {ai,i+1, xi+1} , B1

i,i+1 = {ai,i+1, xi+1}

We can adapt the LD-Q-Res refutation of QParity to an M-Res refutation of

MParity. We describe below exactly how this is achieved. The proof has two stages.

In the first stage, the a variables are eliminated. The role of these ai,j variables and

the B-clauses is to build up complex merge-maps meeting the isomorphism

condition, so that subsequent resolution steps are enabled. In the second phase, the

LD-Q-Res refutation of QParity is mimicked, eliminating the t variables.

(In the proofs below, notice that each line contains a single merge-map. This is done

because the merge-maps for z1 and z2 in every line are same. So, we write them only

once to save space.)
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For i ∈ [n+ 1], let gi be the function ⊕j≥ixj, and let hi denote its complement.

(The parity of an empty set of variables is 0; thus gn+1 = 0 and hn+1 = 1.) Let M1
i

(resp. M0
i ) be the smallest merge-map which queries variables in the order xi, . . . , xn

and computes the function gi (resp. hi). Note that both these branching programs

have 2(n− i) + 1 internal nodes and two leaf nodes labelled 0 and 1.

The main idea is to replace the constant merge-maps in the axioms of A0
i,C and A1

i,C

by the merge-maps M0
i+1 and M1

i+1 — the clause, merge-map pairs so generated will

be denoted by ψ̃i (and are defined below). These merge-maps will allow us to pass

the isomorphism checks later in the proofs.

For i ∈ [n], let ψ̃i be the following sets of clause, merge-map pairs:

ψ̃i =
{(
C,M b

i+1

)
| C ∈ parityc

n(ti−1, xi, ti), b ∈ {0, 1}
}

∀i ∈ [2, n]

ψ̃1 =
{(
C,M b

2

)
| C ∈ parityc

n(x1, t1), b ∈ {0, 1}
}

Lemma 4.2.2. For all i ∈ [n], ψi ⊢M-Res ψ̃i. Moreover the size of these derivations

is polynomial in n.

Proof. At i = n, ψ̃n is the same as ψn so there is nothing to prove.

Consider now an i ∈ [n− 1]. For each b ∈ {0, 1} and each C ∈ parityc (ti−1, xi, ti) (if

i = 1, omit ti−1), the clause Ab
i,C ∈ ψi yields the line (C ∪ {ai,n},M1−b

n+1). Resolving

each of these with each of Bd
i,n for d ∈ {0, 1}, we obtain four clauses that can be

resolved in two pairs to produce the lines (C ∪ {ai,n−1},M b
n). Repeating this process

successively for j = n, n− 1, . . . , i+ 2, using the clause pairs Bd
i,j with the previously

derived clauses, we can obtain each (C ∪ {ai,j},M b
j+1). In each stage, the index j of

the variable ai,j present in the clause decreases, while the merge-map accounts for

one more variable. Finally, when we use the clause pairs Bd
i,i+1, the ai,i+1 variable is

eliminated, variables xi+1, . . . , xn are accounted for in the merge-map, and we

obtain the lines (C,M b
i+1), corresponding to the clauses in ψ̃i.
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The derivation at one stage is as shown below.

(
C ∪ {ai,j} ,M1

j+1

) B0
i,j︷ ︸︸ ︷

({ai,j , xj , ai,j−1} , ∗)(
C ∪ {xj , ai,j−1} ,M1

j+1

) (
C ∪ {ai,j} ,M0

j+1

) B1
i,j︷ ︸︸ ︷

({ai,j , xj , ai,j−1} , ∗)(
C ∪ {xj , ai,j−1} ,M0

j+1

)(
C ∪ {ai,j−1} ,M1

j

)

(
C ∪ {ai,j} ,M1

j+1

) B1
i,j︷ ︸︸ ︷

({ai,j , xj , ai,j−1} , ∗)(
C ∪ {xj , ai,j−1} ,M1

j+1

) (
C ∪ {ai,j} ,M0

j+1

) B0
i,j︷ ︸︸ ︷

({ai,j , xj , ai,j−1} , ∗)(
C ∪ {xj , ai,j−1} ,M0

j+1

)(
C ∪ {ai,j−1} ,M0

j

)

In the second phase, we successively eliminate the t variables in stages.

Lemma 4.2.3. The following derivations can be done in M-Res in size polynomial

in n:

1. For i = n, n− 1, . . . , 2, the following:(
{ti} ,M1

i+1

)
,
({
ti
}
,M0

i+1

)
, ψ̃i ⊢ ({ti−1} ,M1

i ) ,
({
ti−1

}
,M0

i

)
.

2. ({t1} ,M1
2 ) ,
({
t1
}
,M0

2

)
, ψ̃1 ⊢ (□,M1

1 ).

Proof. For i ≥ 2, the derivation is as follows:

({
ti−1, xi, ti

}
,M1

i+1

) (
{ti} ,M1

i+1

)(
{ti−1, xi} ,M1

i+1

) (
{ti−1, xi, ti} ,M0

i+1

) ({
ti
}
,M0

i+1

)(
{ti−1xi} ,M0

i+1

)(
{ti−1} ,M1

i

)
({

ti−1, xi, ti
}
,M1

i+1

) (
{ti} ,M1

i+1

)({
ti−1, xi

}
,M1

i+1

) ({
ti−1, xi, ti

}
,M0

i+1

) ({
ti
}
,M0

i+1

)({
ti−1, xi

}
,M0

i+1

)({
ti−1

}
,M0

i

)
The derivation at the last stage is as follows:

({
x1, t1

}
,M1

2

) (
{t1} ,M1

2

)(
{x1} ,M1

2

) (
{x1, t1} ,M0

2

) ({
t1
}
,M0

2

)(
{x1} ,M0

2

)(
□,M1

1

)
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We can now conclude the following:

Lemma 4.2.4. MParity has polynomial size M-Res refutations.

Proof. We first use Lemma 4.2.2 to derive all the ψ̃i. Next, we start with(
{tn} ,M1

n+1

)
and

({
tn
}
,M0

n+1

)
, the lines corresponding to the clauses in ψn+1.

From these lines and ψ̃n, we derive ({tn−1} ,M1
n) and

({
tn−1

}
,M0

n

)
, using

Lemma 4.2.3. We continue in this manner deriving
(
{ti} ,M1

i+1

)
and

({
ti
}
,M0

i+1

)
for i = n− 2, n− 3, . . . , 1. From ({t1} ,M1

2 ) and
({
t1
}
,M0

2

)
, we derive (□,M1

1 )

using ψ̃1 using Lemma 4.2.3.

Theorem 4.2.5. LD-Q-Res does not p-simulate M-Res. Moreover, LQU-Res and

LQU+-Res are incomparable with M-Res.

Proof. We showed in Lemma 4.2.4 that the MParity formulas have polynomial size

M-Res refutations. We will now show that MParity requires exponential size

LQU+-Res refutations. We first note that QUParity requires exponential size

LQU+-Res refutations [21]. We further note that LQU+-Res is closed under

restrictions (Proposition 2 in [8]). Since restricting the MParity formulas by setting

ai,j = 0, for all i, j ∈ [n], gives the QUParity formulas, we conclude that MParity

requires exponential size LQU+-Res refutations. Therefore LQU+-Res does not

simulate M-Res. Since LQU+-Res p-simulates LD-Q-Res and LQU-Res, these two

systems also do not simulate M-Res.

In Theorem 3.4.1, it is shown that M-Res does not simulate QU-Res. (The

separating formula is in fact KBKF-lq.) Since LQU-Res and LQU+-Res p-simulate

QU-Res [8] and the simulation order is transitive, it follows that M-Res does not

simulate LQU-Res and LQU+-Res.

Hence LQU-Res and LQU+-Res are incomparable with M-Res.
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Remark 4.2.6. In these proofs, note that the hardness for LQU+-Res and IRM was

proven using restrictions. But the same did not apply to M-Res — a restricted

formula being hard for M-Res does not mean that the original formula is also hard.

This means that M-Res is not closed under restrictions, and is hence unnatural.

Remark 4.2.7. Another observation is that the clauses of the KBKF-lq-weak

formula family are weakenings of the clauses of KBKF-lq. Since KBKF-lq requires

exponential-size M-Res refutations but KBKF-lq-weak has polynomial-size M-Res

refutations, we conclude that weakening adds power to M-Res.

The next chapter further explores weakenings and restrictions in M-Res.
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Chapter 5

Role of weakenings, and

unnaturalness

At the end of the last chapter, we saw how weakening can add power to M-Res. We

also saw that M-Res is an unnatural proof system. In this chapter, we will study

these two aspects in detail.

5.1 Weakenings

Let (C, {Mu | u ∈ U}) be a line. Then it can be weakened in two different ways [18]:

• Existential clause weakening: C ∨ x can be derived from C, provided it does

not contain the literal x. The merge-maps remain the same. Similarly, C ∨ x

can be derived if x ̸∈ C.

• Strategy weakening: A trivial merge-map (∗) can be replaced by a constant

merge-map (0 or 1). The existential clause remains the same.

Adding these weakenings to M-Res gives the following three proof systems:

69



• M-Res with existential clause weakening (M-ResW∃),

• M-Res with strategy weakening (M-ResW∀), and

• M-Res with both existential clause and strategy weakening (M-ResW∃∀).

In the remainder of this section, we will study the relation among these systems.

First, we note that existential clause weakening adds exponential power.

Theorem 5.1.1. M-ResW∃ is strictly stronger than M-Res.

Proof. Since M-ResW∃ is a generalization of M-Res, M-ResW∃ p-simulates M-Res.

The KBKF-lq formulas can be transformed into the KBKF-lq-weak formulas in

M-ResW∃ using a linear number of applications of the existential weakening rule.

The transformed KBKF-lq-weak formulas have polynomial size M-Res (and hence

M-ResW∃) refutations, Lemma 4.1.1. Thus the KBKF-lq formulas have polynomial

size M-ResW∃ refutations. Since the KBKF-lq formulas require exponential size

M-Res refutations (Theorem 3.4.1), we get the desired separation.

Next we observe that a lower bound for M-Res in Theorem 3.4.1 can be lifted to

M-ResW∀.

Lemma 5.1.2. KBKF-lq requires exponential size refutations in M-ResW∀.

Proof. We observe that the M-Res lower bound for KBKF-lq in Theorem 3.4.1

works with a minor modification. In Lemma 3.4.3, item 3 says that Mxi = ∗.

However a weaker condition Mxi ∈ {∗, 0, 1} is sufficient for the lower bound. With

this modification, we observe that the remaining argument carries over, and hence

the lower bound also works for M-ResW∀.

This tells us that strategy weakening is not as powerful as existential weakening.
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Theorem 5.1.3. M-ResW∀ does not simulate M-ResW∃; and M-ResW∃∀ is strictly

stronger than M-ResW∀.

Proof. We showed that the KBKF-lq formulas require exponential size refutations

in M-ResW∀ (Lemma 5.1.2) but have polynomial size refutations in M-ResW∃ and

M-ResW∃∀ (proof of Theorem 5.1.1). Therefore M-ResW∀ does not simulate

M-ResW∃ and M-ResW∃∀. Since M-ResW∃∀ p-simulates M-ResW∀, M-ResW∃∀ is

strictly stronger than M-ResW∀.

The next logical question is whether strategy weakening adds power to M-Res. We

do not know the answer. However, we can answer this for the regular versions of

these systems.

Theorem 5.1.4. Regular M-ResW∀ is strictly stronger than regular M-Res.

To prove this theorem, we will use a variant of the Squared-Equality (Eq2) formula

family, called Squared-Equality-with-Holes (H-Eq2(n)). Squared-Equality, defined in

[18], is a two-dimensional version of the Equality formula family [17], and has short

regular tree-like M-Res refutations. It was used to show that the systems Q-Res,

QU-Res, reductionless LD-Q-Res, ∀Exp + Res, IR and CP + ∀Red do not

p-simulate M-Res. We recall its definition below:

Definition 5.1.5. Squared-Equality (Eq2(n)) is the following QBF family:

∃
i∈[n]

xi, yi, ∀
j∈[n]

uj, vj, ∃
i,j∈[n]

ti,j.

(
∧

i,j∈[n]
Ai,j

)
∧B

where

• B = ∨i,j∈[n]ti,j,
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• For i, j ∈ [n], Ai,j contains the following four clauses:

xi ∨ yj ∨ ui ∨ vj ∨ ti,j, xi ∨ yj ∨ ui ∨ vj ∨ ti,j,

xi ∨ yj ∨ ui ∨ vj ∨ ti,j, xi ∨ yj ∨ ui ∨ vj ∨ ti,j

Inspired by the lower bound for Eq2 for reductionless LD-Q-Res (Theorem 28 in

[18]), we now define the variant, H-Eq2(n), and show that it is hard for regular

M-Res (using somewhat similar arguments) but becomes easy for regular M-ResW∀.

The variant identifies regions in the [n]× [n] grid, and changes the clause sets Ai,j

depending on the region that (i, j) belongs to. We can use any partition of [n]× [n]

into two regions R0, R1 such that each region has at least one position in each row

and at least one position in each column; call such a partition a covering partition.

One possible choice for R0 and R1 is the following:

R0 = ([1, n/2]× [1, n/2]) ∪ ([n/2 + 1, n]× [n/2 + 1, n]) and

R1 = ([1, n/2]× [n/2 + 1, n]) ∪ ([n/2 + 1, n]× [1, n/2]). We will call R0 and R1 two

regions of the matrix.

Definition 5.1.6. Let R0, R1 be a covering partition of [n]× [n].

Squared-Equality-with-Holes (H-Eq2(n)(R0, R1)) is the following QBF family:

∃
i∈[n]

xi, yi, ∀
j∈[n]

uj, vj, ∃
i,j∈[n]

ti,j.

(
∧

i,j∈[n]
Ai,j

)
∧B

where

• B = ∨i,j∈[n]ti,j,

• For (i, j) ∈ R0, Ai,j contains the following four clauses:

xi ∨ yj ∨ ui ∨ vj ∨ ti,j, xi ∨ yj ∨ ui ∨ ti,j,

xi ∨ yj ∨ vj ∨ ti,j, xi ∨ yj ∨ ti,j
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• For (i, j) ∈ R1, Ai,j contains the following four clauses:

xi ∨ yj ∨ ti,j, xi ∨ yj ∨ vj ∨ ti,j,

xi ∨ yj ∨ ui ∨ ti,j, xi ∨ yj ∨ ui ∨ vj ∨ ti,j

(We do not always specify the regions explicitly but merely say H-Eq2.)

Lemma 5.1.7. H-Eq2(n) requires exponential size refutations in regular M-Res.

Before proving this, we show how to obtain Theorem 5.1.4.

Proof of Theorem 5.1.4. Since regular M-ResW∀ is a generalization of regular

M-Res, it p-simulates regular M-Res.

Using strategy weakening, we can get Eq2 from H-Eq2 in linear number of steps.

Since Eq2 has polynomial-size refutations in regular M-Res, we get polynomial-size

refutations for H-Eq2 in regular M-ResW∀. On the other hand, Lemma 5.1.7 gives

an exponential lower bound for H-Eq2 in regular M-Res. Therefore regular

M-ResW∀ is strictly stronger than regular M-Res.

It remains to prove Lemma 5.1.7. This is a fairly involved proof, but in broad

outline and in many details it is similar to the lower bound for Eq2 in reductionless

LD-Q-Res ([18]).

The size bound is trivially true for n = 1, so we assume that n > 1. Let Π be a

Regular M-Res refutation of H-Eq2(n). Since a tautological clause cannot occur in a

regular M-Res refutation, we assume that Π does not have a line whose clause part

is tautological.

Let us first fix some notation. Let X = {x1, . . . , xn}, Y = {y1, . . . , yn},

U = {u1, . . . , un}, V = {v1, . . . , vn}, and T = {ti,j | i, j ∈ [n]}. For lines L1, L2, etc.,

the respective clauses and merge-maps will be denoted by C1, C2 and M1, M2 etc.
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For a line L in Π, ΠL denotes the sub-derivation of Π ending in L. Viewing Π as a

directed acyclic graph, we can talk of leaves and paths in Π. For a line L of Π, let

Uci(L) = {(i, j) | Ai,j ∩ leaves(ΠL) ̸= ∅}.

We first show some structural properties about Π. The first property excludes using

many axioms in certain derivations.

Lemma 5.1.8. For line L = (C,M) of Π, and i, j ∈ [n], if ti,j ∈ C, then

Uci(L) = {(i, j)}.

Proof. Since the literal ti,j only occurs in clauses in Ai,j, so leaves(L) ∩ Ai,j ̸= ∅,

hence Uci(L) ⊇ {(i, j)}.

Now suppose |Uci(L)| > 1. Let (i′, j′) be an arbitrary element of Uci(L) distinct

from (i, j). Pick a leaf of ΠL using a clause in Ai′,j′ , and let ρ be a path from this

leaf to L and then to the final line of Π. Both ti,j and ti′,j′ are necessarily used as

pivots on this path. Assume that ti,j is used as a pivot later (closer to the final line)

than ti′,j′ ; the other case is symmetric. Let Lc = Res(La, Lb, ti′,j′) and

Lf = Res(Ld, Le, ti,j) respectively be the positions where ti′,j′ and ti,j are used as

resolution pivots on this path (here La and Ld are the lines of path p, hence

ti′,j′ ∈ Ca and ti,j ∈ Cd). Then Cb has the negated literal ti′,j′ ; hence B ∈ leaves(Lb).

Since ti,j ∈ B but ti,j /∈ Ld, ti,j is used as a resolution pivot in the derivation ΠLd
.

This contradicts the fact that Π is regular.

The next property is the heart of the proof, and shows that paths with B at the leaf

must have a suitable wide clause.

Lemma 5.1.9. On every path from
(
∨i,j∈[n]ti,j, {∗, · · · , ∗}

)
(the line for axiom

clause B) to the final line, there exists a line L = (C,M) such that either

X ⊆ var(C) or Y ⊆ var(C).

Proof. With each line Ll = (Cl,Ml) in Π, we associate an n× n matrix Nl in which
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Nl[i, j] = 1 if ti,j ∈ Cl and Nl[i, j] = 0 otherwise.

Let p = L1, . . . , Lk be a path from
(
∨i,j∈[n]ti,j, {∗, · · · , ∗}

)
to the final line in Π.

Since Π is regular, each ti,j is resolved away exactly once, so no clause on p has any

positive ti,j literal. Let l be the least integer such that Nl has a 0 in each row or a 0

in each column. Note that l ≥ 2 since N1 has no zeros. Consider the case that Nl

has a 0 in each row; the argument for the other case is identical. We will show in

this case that X ⊆ var(Cl). We will use the following claim:

Claim 5.1.10. In each row of Nl, there is a 0 and a 1 such that the 0 and 1 are in

different regions (i.e. one is in R0 and the other in R1).

We proceed assuming the claim. We want to prove that X ⊆ var(Cl). Suppose, to

the contrary, there exists i ∈ [n] such that xi /∈ var(Cl). We know that there exist

j1, j2 ∈ [n] such that Nl[i, j1] = 0 and Nl[i, j2] = 1; and either (i, j1) ∈ R0 and

(i, j2) ∈ R1, or (i, j1) ∈ R1 and (i, j2) ∈ R0. Without loss of generality, we may

assume that (i, j1) ∈ R0 and (i, j2) ∈ R1.

We know that on path p, there is a resolution with pivot ti,j1 before Ll and a

resolution with pivot ti,j2 after Ll. Let the former resolution be

Lc = Res(La, Lb, ti,j1) where Lb is on path p, and let the latter resolution be

Lf = Res(Ld, Le, ti,j2) where Le is on path p. Since Π is a regular refutation,

ti,j1 ∈ Ca, ti,j1 ∈ Cb and ti,j2 ∈ Cd, ti,j2 ∈ Ce. Thus along path p these lines appear

in the relative order B,Lb, Lc, Ll, Le, Lf ,2.

Claim 5.1.11. xi ∈ Cc.

Proof. By Lemma 5.1.8, Uci(Ld) = {(i, j2)}, or equivalently leaves(Ld) ⊆ Ai,j2 .

Since (i, j2) ∈ R1, no clause in Ai,j2 has literal ui. Hence Mui
d ∈ {∗, 1}. Furthermore,

if Mui
d = ∗, then xi ∈ Cd. Since the pivot for resolving Ld and Le is ti,j2 , this would

imply that xi ∈ Cf .
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By a similar argument, we can conclude that (i) leaves(La) ⊆ Ai,j1 , (ii)

Mui
a ∈ {∗, 0}, and (iii) if Mui

a = ∗, then xi ∈ Cc.

If Mui
d = ∗ and Mui

a = ∗, then xi ∈ Cf and xi ∈ Cc. So xi must be used twice as

pivot, contradicting regularity.

If Mui
d = ∗ and Mui

a = 0, then xi ∈ Cf and ΠLa uses some clause containing xi to

make the merge-map for ui non-trivial. Thus xi ∈ ΠLa , xi ̸∈ Ll by assumption,

xi ∈ Lf . Hence xi is used twice as pivot, contradicting regularity.

Hence Mui
d = 1. Since the resolution at line Lf is not blocked, Mui

e ∈ {∗, 1}. But Le

is derived after, and using, La. Since merge-maps don’t get simpler along a path,

Mui
a ∈ {∗, 1}. It follows that Mui

a = ∗. Hence xi ∈ Cc.

Since xi /∈ Cl, xi has been used as a resolution pivot between Lc and Ll on path p.

Let Lw = Res(Lu, Lv, xi) be the position on path p where xi is used as pivot (since

the refutation is regular, such a position is unique). Let Lv be the line on path p.

By regularity of the refutation, xi ∈ Lu and xi ∈ Lv.

As observed at the outset, Lw is on path p and so does not contain a positive t

literal. Since Cw is obtained via pivot xi, this implies that Cu also does not contain

a positive t literal. Since all axioms contain at least one t variable but only B

contains negated t literals, so B ∈ leaves(Lu).

Let q be a path thats starts from a leaf using B, passes through Lu to Lw, and then

continues along path p to the final clause. Since the refutation is regular,

Nv = Nu = Nw. Hence Nv[i, j1] = 0 i.e. ti,j1 /∈ Cv. This implies that ti,j1 is used as

resolution pivot before Lv on path q.

We already know that ti,j2 is used as a pivot after line Ll on path p, and hence on

path q. Arguing analogous to Claim 5.1.11 for path p but with respect to path q, we

observe that xi belongs to at least one leaf of Lu. Since xi ∈ Cu and since the
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refutation is regular, xi is not used as a resolution pivot before Cu on path q. This

implies that xu ∈ Cu. We already know that xi ∈ Cu, since it contributed the pivot

at Lw. This means that Cu is a tautological clause, a contradiction.

It remains to prove Claim 5.1.10.

Proof of Claim 5.1.10. We already know that Nl has a 0 in each row. We will first

prove that Nl also has a 1 in each row. Aiming for contradiction, suppose that Nl

has a full 0 row r. Since l ≥ 2, Nl−1 exists. Note that, by definition of resolution,

there can be at most one element that changes from 1 in Nl−1 to 0 in Nl. Since Nl−1

does not have a 0 in every column, it does not contain a full 0 row. Hence, the

unique element that changed from 1 in Nl−1 to 0 in Nl must be in row r. Thus all

other rows of Nl−1 already contain the one 0 of that row in Nl. Since n ≥ 2, Nl−1

also has at least one 0 in row r; thus Nl−1 has a 0 in each row, contradicting the

minimality of l.

Since R0 and R1 form a covering partition, it cannot be the case that all the 0s and

1s of any row are in the same region Rb; that would imply that R1−b does not cover

the row.

With the claim proven, the proof of Lemma 5.1.9 is now complete.

We can finally prove Lemma 5.1.7. This part is identical to the corresponding part

of the proof of Theorem 28 in [18]; we include it here for completeness.

Proof of Lemma 5.1.7. For each a = (a1, . . . , an) ∈ {0, 1}n, consider the assignment

σa to the existential variables which sets xi = yi = ai for all i ∈ [n], and ti,j = 1 for

all i, j ∈ [n]. Call such an assignment a symmetric assignment. Given a symmetric

assignment σa, walk from the final line of Π towards the leaves maintaining the

following invariant: for each line L = (C, {Mu | u ∈ U ∪ V }), σa falsifies C. Let pa

be the path followed. By Lemma 5.1.9, this path will contain a line
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L = (C, {Mu | u ∈ U ∪ V }) such that either X ⊆ var(C) or Y ⊆ var(C). Let us

define a function f from symmetric assignments to the lines of Π as follows:

f(a) = (C, {Mu | u ∈ U ∪ V }) is the last line (i.e. nearest to the leaves) on pa such

that either X ⊆ var(C) or Y ⊆ var(C). Note that, for any line L of Π, there can be

at most one symmetric assignment a such that f(a) = L. This means that there are

at least 2n lines in Π. This gives the desired lower bound.

5.2 Simulation by eFrege + ∀red

It was recently shown that eFrege + ∀red p-simulates all known resolution-based

QBF proof systems; in particular, it p-simulates M-Res [30]. We observe that this

p-simulation can be extended in a straightforward manner to handle both the

weakenings in M-Res. Hence we obtain a p-simulation of M-ResW∃, M-ResW∀ and

M-ResW∃∀ by eFrege + ∀red.

Theorem 5.2.1. eFrege + ∀red strictly p-simulates the proof systems M-ResW∃,

M-ResW∀ and M-ResW∃∀.

Proof. The separation follows from the separation of the propositional proof systems

resolution and eFrege [72]. We prove the p-simulation below.

It suffices to prove that eFrege + ∀red p-simulates M-ResW∃∀. The proof is

essentially same as that of the p-simulation of M-Res in [30], but with two

additional cases for the two weakenings. So, we will briefly describe that proof and

then describe the required modifications.

Let Π be an M-ResW∃∀ refutation Π of a QBF Φ. The last line of this refutation

gives a winning strategy for the universal player; let us call this strategy S. We will

first prove that there is a short eFrege derivation Φ ⊢ ¬S. Then, as mentioned in

[30], the technique of [20, 29] can be used to derive the empty clause from ¬S using
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universal reduction.

We will now describe an eFrege derivation Φ ⊢ ¬S. Let Li = (Ci, {Mu
i | u ∈ U}) be

the ith line of Π. We create new extension variables: sui,j is the variable for the jth

node of Mu
i . If node j is a leaf of Mu

i labeled by constant c, then sui,j is defined to be

c. Otherwise, if Mu
i (j) = (x, a, b), then sui,j is defined as sui,j ≜

(
x ∧ sui,a

)
∨
(
x ∧ sui,b

)
.

The extension variables for u will be to its left in the quantifier prefix.

We will prove that for each line Li of Π, we can derive the formula

Fi ≜ ∧u∈Ui
(u↔ sui,r(u,i)) → Ci; where r(u, i) is the index of the root of merge-map

Mu
i , and Ui is the set of universal variables for which Mu

i is non-trivial.

Our proof will proceed by induction on the lines of the refutation.

The base case is when Li is an axiom; and the inductive step will have three cases

depending on which rule is used to derive Li: (i) resolution, (ii) existential clause

weakening, or (iii) strategy weakening. The proof for the base case and the

resolution step case is as given in [30]. We give proofs for the other two cases below:

• Existential clause weakening: Let line Lb = (Cb, {Mu
b | u ∈ U}) be derived

from line La = (Ca, {Mu
a | u ∈ U}) using existential clause weakening. Then

Cb = Ca ∨ x for some existential literal x such that x /∈ Ca, and Mu
b =Mu

a for

all u ∈ U . By the induction hypothesis, we have derived the formula

Fa ≜ ∧u∈Ua(u↔ sua,r(u,a)) → Ca. We have to derive the formula

Fb ≜ ∧u∈Ub
(u↔ sub,r(u,b)) → Cb = ∧u∈Ub

(u↔ sub,r(u,b)) → Ca ∨ x. Since

Mu
b =Mu

a for each u, there is a short eFrege + ∀red derivation of the formula

sua,j ↔ sub,j for each u ∈ Ui, and each node j of Mu
a . This allows us to replace

variable sua,j by sub,j in Fa. As a result, we get the formula

F ′
b ≜ ∧u∈Ub

(u↔ sub,r(u,b)) → Ca. Now, using an inference of the form

p→ q ⊢ p→ q ∨ r, we obtain the formula Fb.

• Strategy weakening: Let line Lb = (Cb, {Mu
b | u ∈ U}) be derived from line
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La = (Ca, {Mu
a | u ∈ U}) using strategy weakening for a variable v. Then

Cb = Ca, Mu
b =Mu

a for all u ∈ U \ {v}, and M v
a = ∗, M v

b is a constant, say d.

Similar to the above case, we start with the inductively obtained Fa and

replace each sua,j with sub,j to obtain a formula

F ′
b ≜ ∧u∈Ub\{v}(u↔ sub,r(u,b)) → Cb. With a final inference of the form

p→ q ⊢ p ∧ r → q, we can then add (v ↔ svb,r(v,b)) to the conjunction to

obtain Fb.

5.3 Unnaturalness

In this section, we observe that M-Res and M-ResW∀ are unnatural proof systems,

i.e. they are not closed under restrictions.

Theorem 5.3.1. M-Res and M-ResW∀ are unnatural proof systems.

Proof. The KBKF-lq-split formula family has polynomial-size refutations in M-Res

(and M-ResW∀), as seen in Lemma 4.1.2. The restriction of this family obtained by

setting t = 0 is exactly the KBKF-lq formula family, which, as shown in

Lemma 5.1.2, is exponentially hard for M-ResW∀ and hence also for M-Res.

We believe that the unnaturalness of M-Res would have significant consequence on

its practicality. Most SAT solvers work by setting some variables and simplifying

the formula. If a simplified formula is harder to refute than the original formula, it

would make the job of such solvers harder. So, a solver based on an unnatural proof

system like M-Res would not perform very-well in practice.
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Part II

The MaxSAT Resolution proof system
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Chapter 6

The MaxRes proof system

6.1 Defining the proof system

The MaxSAT resolution (MaxRes) proof system operates on multi-sets of clauses,

and uses the multi-output MaxSAT resolution (MaxRes) rule [28], defined as follows:

x ∨ a1 ∨ . . . ∨ as (x ∨ A)

x ∨ b1 ∨ . . . ∨ bt (x ∨B)

a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt (the “standard resolvent”)

x ∨ A ∨ b1

x ∨ A ∨ b1 ∨ b2
...

x ∨ A ∨ b1 ∨ . . . ∨ bt−1 ∨ bt


(weakenings of x ∨ A)

x ∨B ∨ a1

x ∨B ∨ a1 ∨ a2
...

x ∨B ∨ a1 ∨ . . . ∨ as−1 ∨ as


(weakenings of x ∨B)
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The weakening rule for MaxSAT resolution replaces a clause A by the two clauses

A ∨ x and A ∨ x. While applying either of these rules, the antecedents are removed

from the multi-set and the non-tautologous consequents are added. The point of the

MaxSAT resolution rule is that if F ′ is obtained from F by applying these rules,

then violF and violF ′ are the same function.

In the proof system MaxRes, a refutation of F is a sequence F = F0, F1, . . . , Fs

where each Fi is a multi-set of clauses, each Fi is obtained from Fi−1 by an

application of the MaxSAT resolution rule, and Fs contains the empty clause 2. In

the proof system MaxResW, Fi may also be obtained from Fi−1 by using the

weakening rule. The size of the proof is the number of steps, s. In [28,53], MaxRes

is shown to be complete for MaxSAT; i.e. if any assignment must falsify at least k

clauses, then at least k copies of the empty clause can be derived using MaxRes.

Hence MaxRes is also complete for unsatisfiability. Since the proof system MaxRes

we consider here is a refutation system rather than a system for MaxSAT, we can

stop as soon as a single 2 is derived.

6.2 Comparison of MaxSAT resolution and

Tree-like resolution

Since TreeRes allows reuse only of input clauses, while MaxRes does not allow any

reuse of clauses but produces multiple clauses at each step, the relative power of

these fragments of Res is intriguing. In this chapter, we show that MaxRes with the

weakening rule, MaxResW, p-simulates TreeRes, is exponentially separated from it,

and even MaxRes (without weakening) is not simulated by TreeRes.
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6.2.1 Simulation

Lemma 6.2.1. For every unsatisfiable CNF F , sizeMaxResW(F ) ≤ 2 · sizeTreeRes(F ).

Proof. Let T be a tree-like derivation of 2 from F of size s. Without loss of

generality, we may assume that T is regular [73]; i.e. no variable is used as pivot

twice on the same path.

Since a MaxSAT resolution step always adds the standard resolvent, each step in a

tree-like resolution proof can be performed in MaxResW as well, provided the

antecedents are available. However, a tree-like proof may use an axiom (a clause in

F ) multiple times, whereas after it is used once in MaxResW it is no longer

available, although some weakenings are available. So we need to work with weaker

antecedents. We describe below how to obtain sufficient weakenings.

For each axiom A ∈ F , consider the subtree TA of T defined by retaining only the

paths from leaves labeled A to the final empty clause. We will produce multiple

disjoint weakenings of A, one for each leaf labelled A. Start with A at the final node

(where TA has the empty clause) and walk up the tree TA towards the leaves. If we

reach a branching node v with clause A′, and the pivot at v is x, weaken A′ to

A′ ∨ x and A′ ∨ x. Proceed along the edge contributing x with A′ ∨ x, and along the

other edge with A′ ∨ x. Since T is regular, no tautologies are created in this process,

which ends with multiple “disjoint” weakenings of A.

After doing this for each axiom, we have as many clauses as leaves in T . Now we

simply perform all the steps in T .

Since each weakening step increases the number of clauses by one, and since we

finally produce at most s clauses for the leaves, the number of weakening steps

required is at most s.

As an illustration, consider the tree-like resolution proof in Figure 6.1. Following the
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2

f f

e ∨ f

d d ∨ e ∨ f e

b ∨ d c ∨ e

a a ∨ b ∨ d b b b ∨ c ∨ e c

Figure 6.1: A tree-like resolution proof

procedure in the proof of the Lemma, the axiom b is weakened to b ∨ e and b ∨ ¬e,

since e is the pivot variable at the branching point where b is used in both

sub-derivations.

6.2.2 Separation

We now show that even without weakening, MaxRes has short proofs of formulas

exponentially hard for TreeRes. We denote the literals x and x by x0 and x1

respectively. The formulas that exhibit the separation are composed formulas of the

form F ◦ g, where F is a CNF formula, g : {0, 1}ℓ → {0, 1} is a Boolean function,

there are ℓ new variables x1, . . . , xℓ for each original variable x of F , and there is a

block of clauses C ◦ g, a CNF expansion of the expression
∨

xb∈C(g(x1, . . . xℓ) = b),

for each original clause C ∈ F . We use the pebbling formulas on single-sink directed

acyclic graphs: there is a variable for each node, variables at sources must be true,

the variable at the sink must be false, and at each node v, if variables at origins of

incoming edges are true, then the variable at v must also be true.

We denote by PebHint(G) the standard pebbling formula with additional hints u∨ v

for each pair of siblings (u, v)—that is, two incomparable vertices with a common

predecessor—, and we prove the separation for PebHint(G) composed with the OR
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function.1 More formally, if G is a DAG with a single sink z, we define

PebHint(G) ◦OR as follows. For each vertex v ∈ G there are variables v1 and v2.

The clauses are

• For each source v, the clause v1 ∨ v2.

• For each internal vertex w with predecessors u, v, the expression

((u1 ∨ u2) ∧ (v1 ∨ v2)) → (w1 ∨ w2), expanded into 4 clauses.

• The clauses z1 and z2 for the sink z.

• For each pair of siblings (u, v), the clause u1 ∨ u2 ∨ v1 ∨ v2.

Note that the first three types of clauses are also present in standard composed

pebbling formulas, while the last type are the hints.

We prove a MaxRes upper bound for the particular case of pyramid graphs. Let Ph

be a pyramid graph of height h and n = Θ(h2) vertices.

Lemma 6.2.2. The PebHint(Ph) ◦OR formulas have Θ(n) size MaxRes refutations.

Proof. We derive the clause s1 ∨ s2 for each vertex s ∈ Pn in layered order, and

left-to-right within one layer. If s is a source, then s1 ∨ s2 is readily available as an

axiom. Otherwise assume that for a vertex s with predecessors u and v and siblings

r and t – in this order – we have clauses u1 ∨ u2 ∨ s1 ∨ s2 and v1 ∨ v2, and let us see

how to derive s1 ∨ s2. (Except at the boundary, we don’t have the clause u1 ∨ u2

itself, since it has been used to obtain the sibling r and doesn’t exist anymore.) We

also make sure that the clause v1 ∨ v2 ∨ t1 ∨ t2 becomes available to be used in the

next step.

In the following derivation we skip ∨ symbols, and we colour-code clauses so that

green clauses are available by induction, axioms are blue, and red clauses, on the
1The hints are added to make the Pebbling formulas easier to refute in MaxRes. We believe

that, without the hints, these formulas require exponential size MaxRes refutations.
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right side in steps with multiple consequents, are additional clauses that are

obtained by the MaxRes rule but not with the usual resolution rule.

u1v1s1s2 u1u2s1s2
u2v1s1s2

u2v1s1s2
v1s1s2

u1u2v1s1s2 u1v2s1s2
u2v1v2s1s2 u2v2s1s2

v1v2s1s2 v1v2
v1s1s2

s1s2

v1v2s1 v1v2s1s2 s1s2t1t2
v1v2s1t1t2

v1v2t1t2

The case where some of the siblings are missing is similar: if r is missing then we

use the axiom u1 ∨ u2 instead of the clause u1 ∨ u2 ∨ s1 ∨ s2 that would be available

by induction, and if t is missing then we skip the steps that use s1 ∨ s2 ∨ t1 ∨ t2 and

lead to deriving v1 ∨ v2 ∨ t1 ∨ t2.

Finally, once we derive the clause z1 ∨ z2 for the sink, we resolve it with axiom

clauses z1 and z2 to obtain a contradiction.

A constant number of steps suffice for each vertex, for a total of Θ(n).

We can prove a tree-like lower bound along the lines of [12], but with some extra

care to respect the hints. As in [12] we derive the hardness of the formula from the

pebble game, a game where the single player starts with a DAG and a set of pebbles,

the allowed moves are to place a pebble on a vertex if all its predecessors have

pebbles or to remove a pebble at any time, and the goal is to place a pebble on the

sink using the minimum number of pebbles. Denote by bpeb(P → w) the cost of

placing a pebble on a vertex w assuming there are free pebbles on a set of vertices

P ⊆ V – in other words, the number of pebbles used outside of P when the starting

position has pebbles in P . For a DAG G with a single sink z, bpeb(G) denotes

bpeb(∅ → z). For U ⊆ V and v ∈ V , the subgraph of v modulo U is the set of

vertices u such that there exists a path from u to v avoiding U .

Lemma 6.2.3 ([32]). bpeb(Ph) = h+ 1.
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Lemma 6.2.4 ([12]). For all P, v, w, we have

bpeb(P → v) ≤ max(bpeb(P → w), bpeb(P ∪ {w} → v) + 1).

We deviate slightly from [12] and, instead of directly translating a proof to a

pebbling strategy, we go through query complexity as an intermediate step. The

canonical search problem of a formula F is the relation Search(F ) where inputs are

variable assignments α ∈ {0, 1}n and the valid outputs for α are the clauses C ∈ F

that α falsifies. Given a relation f , we denote by DT1(f) the 1-query complexity of

f [57], that is the minimum over all decision trees computing f of the maximum of

1-answers that the decision tree receives.2

Lemma 6.2.5. For all G we have DT1(Search(PebHint(G))) ≥ bpeb(G)− 1.

Proof. We give an adversarial strategy. Let Ri be the set of variables that are

assigned to 1 at round i. We initially set w0 = z, and maintain the invariant that

1. there is a distinguished variable wi and a path πi from wi to the sink z such

that a queried variable v is 0 iff v ∈ πi; and

2. after each query the number of 1 answers so far is at least

bpeb(G)− bpeb(Ri → wi).

Assume that a variable v is queried. If v is not in the subgraph of wi modulo Ri

then we answer 0 if v ∈ πi and 1 otherwise. Otherwise we consider

p0 = bpeb(Ri → v) and p1 = bpeb(Ri ∪ {v} → wi). By Lemma 6.2.4,

bpeb(Ri → wi) ≤ max(p0, p1 + 1). If p0 ≥ p1 then we answer 0, set wi+1 = v, and

extend πi with a path from wi+1 to wi that does not contain any 1 variables (which

exists by definition of subgraph modulo Ri). This preserves Item 1 of the invariant,

and since p0 ≥ bpeb(Ri → wi), Item 2 is also preserved. Otherwise we answer 1 and

since p1 ≥ bpeb(Ri → wi)− 1 the invariant is also preserved.
2Essentially the same notion of one-sided query complexity is used in [62] under the name

positive depth.
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This strategy does not falsify any hint clause, because all 0 variables lie on a path,

or the sink axiom, because the sink is assigned 0 if at all. Therefore the decision tree

ends at a vertex wt that is set to 0 and all its predecessors are set to 1, hence

bpeb(Rt → wt) = 1. By Item 2 of the invariant the number of 1 answers is at least

bpeb(G)− 1.

To complete the lower bound we use the Pudlák–Impagliazzo Prover–Delayer

game [65] where Prover points to a variable, Delayer may answer 0, 1, or ∗, in which

case Delayer obtains a point in exchange for letting Prover choose the answer, and

the game ends when a clause is falsified.

Lemma 6.2.6 ([65]). If Delayer can win p points, then all TreeRes proofs require

size at least 2p.

Lemma 6.2.7. F ◦OR requires size exp(Ω(DT1(Search(F )))) in tree-like resolution.

Proof. We use a strategy for the 1-query game of Search(F ) to ensure that Delayer

gets DT1(F ) points in the Prover–Delayer game. If Prover queries a variable xi then

• If x is already queried we answer accordingly.

• Otherwise we query x. If the answer is 0 we answer 0, otherwise we answer ∗.

Our strategy ensures that if both x1 and x2 are assigned then x1 ∨ x2 = x.

Therefore the game only finishes at a leaf of the decision tree, at which point

Delayer earns as many points as 1s are present in the path leading to the leaf. The

lemma follows by Lemma 6.2.6.

The formulas PebHint(Pn) ◦OR are easy to refute in MaxRes (Lemma 6.2.2), but

from Lemmas 6.2.3, 6.2.5 and 6.2.7, they are exponentially hard for TreeRes. Hence,

Theorem 6.2.8. TreeRes does not simulate MaxResW and MaxRes.

90



Note that DT1(f) ≤ DT(f) for any relation f , therefore Lemma 6.2.5 also holds for

the standard measure of query complexity. The reason behind using one-sided query

complexity is Lemma 6.2.7, which is false if we replace DT1 by DT. A

counterexample is the standard pebbling formula where the signs of all literals have

been flipped, which we denote by Peb′(G): on the one hand we have that

DT(Search(Peb′(G))) = Ω(n/ log n), and on the other hand there is a tree-like proof

of Peb′(G) ◦OR of length O(n).

Alternatively we could use standard query complexity in Lemma 6.2.7 if we

composed our formula with ⊕ instead of OR, but that would make the upper bound

in Lemma 6.2.2 more intricate.
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Chapter 7

The SubCubeSums proof system

7.1 Defining the proof system

With each application of the MaxRes rule, the number of clauses falsified by every

assignment remains the same. This stronger invariant (compared to resolution) can

be used to prove lower bounds for MaxRes and separate it from resolution. This is

the motivation behind the new proof system called SubCubeSums.

We define the system first combinatorially, then through an algebraic framework,

and define various measures in both settings. Then we show how it relates to

MaxRes.

We then explore the power and limitations of the SubCubeSums proof system. On

the one hand we show (Theorem 7.3.1) that it has short proofs of the subset

cardinality formulas, known to be hard for resolution but easy for Sherali–Adams.

We also give a direct combinatorial argument to show that the pigeonhole principle

formulas, known to be hard for resolution but easy in MaxRes with extension, are

easy for SubCubeSums. On the other hand we show a lower bound for

SubCubeSums for the Tseitin formulas on odd-charged expander graphs
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(Theorem 7.4.2). Finally, we establish a technique for obtaining lower bounds on

SubCubeSums size: a degree lower bound in SubCubeSums for F translates to a size

lower bound in SubCubeSums for F ◦ ⊕ (Theorem 7.5.1).

SubCubeSums: Combinatorial view

The SubCubeSums proof system is a static proof system. For an unsatisfiable CNF

formula F (over variable set X), a SubCubeSums proof is a multi-set G of clauses

(or subcubes) over X satisfying violF (α) = 1 + violG(α) for all assignments α ∈ ⟨X⟩.

The combinatorial size of the proof is the number of clauses in G (counting with

multiplicity), and the width of the proof is the width of G.

Stated in this form, SubCubeSums may not be a proof system in the sense of

Cook-Reckhow [33], since proofs may not be polynomial-time verifiable. However,

proofs in SubCubeSums can be verified in randomized polynomial time. To see this,

we consider an arithmetization of SubCubeSums proofs.

Let F be a CNF formula with m clauses in variables x1, . . . , xn. Each clause Ci,

i ∈ [m], is translated into a polynomial equation fi = 0. A Boolean assignment

either satisfies clause Ci and equation fi = 0, or falsifies clause Ci and satisfies

equation fi = 1. (Encoding e: e(xj) = (1− xj); e(¬xj) = xj; e(
∨

r ℓr) =
∏

r e(ℓr).

So, e.g., clause x ∨ ¬y ∨ z translates to the equation (1− x)y(1− z) = 0. Note that

for any non-tautologous clause, each such polynomial fi is multilinear and has the

form pA,B ≜
∏

i∈A xi
∏

j∈B(1− xj) for disjoint A,B ⊆ [n].)

Given an alleged SubCubeSums proof G of an F that we wish to verify, define the

polynomial

p0(x) =
∑

A,B⊆[n]:A∩B=∅

αA,B

∏
i∈A

xi
∏
j∈B

(1− xj)

where the coefficient αA,B is the number of copies in G of the clause whose encoding
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is pA.B. Define the polynomial Q(x) = −
∑

i∈[m] fi(x) + p0(x) + 1. That is,

Q(x) = −

∑
i∈[m]

fi(x)

+

 ∑
A,B⊆[n]:A∩B=∅

αA,B

∏
i∈A

xi
∏
j∈B

(1− xj)

+ 1

Note that for any Boolean assignment α to the variables,

Q(α) = −violF (α) + violG(α) + 1. Thus G is a SubCubeSums proof for F if and

only if Q(x) vanishes on all Boolean assignments.

Now note that Q(x) has two nice properties with useful consequences for us:

1. Q(x) is multilinear.

Hence, Q(x) vanishes on all Boolean assignments if and only if Q(x) vanishes

everywhere; i.e. Q(x) = 0 is a polynomial identity. (See for instance

[50, Ex. 2.23 on p. 76])

2. Q(x) can be computed by an algebraic circuit that has O(n(|F |+ |G|)) binary

operations, and has variables or the constants −1,+1 at the leaves. (O(n)

operations to encode each copy of each clause, and then O(|F |+ |G|)

operations to add them all up.)

Hence, whether Q(x) is identically 0 can be tested by a randomized algorithm

in time polynomial in n, |F |, |G|. (Polynomial identity testing can be done,

using randomization, in time polynomial in the size of the circuit

representation; see for instance [2].)

SubCubeSums as a subsystem of the Sherali–Adams proof

system

The arithmetization of SubCubeSums proofs discussed above naturally recalls to

mind the semi-algebraic Sherali–Adams proof system over the reals, typically with
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integer coefficients. We recapitulate below the definition of the proof system and

observe that SubCubeSums is a subsystem of a specific type.

A Sherali–Adams proof of unsatisfiability of a CNF formula F is a sequence of

polynomials gi, i ∈ [m]; qj, j ∈ [n]; and a polynomial p0 of the form

p0 =
∑

A,B⊆[n]:A∩B=∅

αA,BpA,B =
∑

A,B⊆[n]:A∩B=∅

αA,B

∏
j∈A

xj
∏
j∈B

(1− xj)

where each αA,B ≥ 0, such that the following polynomial identity holds:

(∑
i∈[m]

gifi

)
+

(∑
j∈[n]

qj(x
2
j − xj)

)
+ p0 + 1 = 0

(As before, the polynomials fi encode the clauses of F . The axioms x2j − xj = 0 for

j ∈ [n], called the Boolean axioms, are used to restrict the set of assignments to

Boolean values.)

Note that each pA,B, and hence p0, is multilinear. The degree or rank of the proof is

the maximum degree of any gifi, qj(x2j − xj), and pA,B.

The polynomials fi corresponding to the clauses of F , as well as the polynomials

pA,B in p0, are conjunctions of literals, thus special kinds of d-juntas (Boolean

functions depending on at most d variables). So p0 is a non-negative linear

combination of non-negative juntas, that is, in the nomenclature of [42], a conical

junta.

Consider the following restriction of Sherali–Adams:

1. Each gi = −1.

2. Each αA,B ∈ Z≥0 (non-negative integers).

3. Each qj = 0.
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Hence, for some non-negative integral αA,B, a proof as restricted above is the

following polynomial identity:

−
∑
i∈[m]

fi +

( ∑
A,B⊆[n]:A∩B=∅

αA,B

∏
j∈A

xj
∏
j∈B

(1− xj)

)
+ 1 = 0

This is exactly the form of the arithmetization of SubCubeSums proofs discussed in

the previous subsection. That is, any SubCubeSums proof gives rise to such a

restricted Sherali–Adams proof. The converse is also true – each such restricted

Sherali–Adams proof corresponds in a natural way to a SubCubeSums proof as

follows: each pA,B in p0 encodes a clause (equivalently, the subcube of assignments

falsifying the clause). For each disjoint pair A,B ⊆ [n], the SubCubeSums proof has

αA,B copies of the corresponding clause/sub-cube.

It is worth noting that in this equivalence, when we translate a SubCubeSums proof

G of a formula F into a restricted Sherali–Adams proof, the resulting degree is the

maximum of the width of F and the width of G. Conversely, when we translate a

restricted Sherali–Adams proof into a SubCubeSums proof, the width of the

resulting SubCubeSums proof is no more than the original degree.

SubCubeSums: The algebraic view with twinned variables

A Sherali–Adams system may require large number of monomials for some formulas

simply because a clause C with w unnegated literals gives rise to a polynomial f

with 2w monomials. The standard approach to handle this is to use twinned

variables, one variable for each literal (i.e. x is a new variable), and include in the

set of Boolean axioms the equations 1− xi − xi = 0. This makes no difference to the

degree of the proof. (The encoding e is modified to e(xj) = xj; e(¬xj) = xj;

e(
∨

r ℓr) =
∏

r e(ℓr). So, e.g., clause x ∨ ¬y ∨ z translates to the equation xyz = 0.)

Thus a Sherali–Adams proof is now a sequence of polynomials gi, i ∈ [m]; qj, rj,

97



j ∈ [n]; and a polynomial p0 of the form

p0 =
∑

A,B⊆[n]:A∩B=∅

αA,B

∏
j∈A

xj
∏
j∈B

xj

where each αA,B ≥ 0, such that

(∑
i∈[m]

gifi

)
+

(∑
j∈[n]

qj(x
2
j − xj)

)
+

(∑
j∈[n]

rj(1− xj − xj)

)
+ p0 + 1 = 0

We will use this formulation with twinned variables.

The unary size of a Sherali–Adams proof is the sum of (the absolute values of) the

coefficients of the polynomials occurring in the proof. We can also define unary

reduced size which excludes the Boolean axioms and the polynomials qj and rj

above. (We can also define binary size, accounting for coefficient bit-sizes when

represented in binary, or monomial size, ignoring coefficient sizes altogether and only

counting distinct monomials. All these measures have been considered in the

literature in different papers and different contexts; see for instance [4, 6, 38,40,56].

For our purpose, unary and unary reduced size are most relevant.) The degree or

rank of the proof is the maximum degree of any gifi, qj(x2j − xj), rjxj and pA,B.

Now, the restriction where each gi = −1, each αA,B ∈ Z≥0 (non-negative integers),

and each qj = 0, gives the SubCubeSums proof system; an algebraic SubCubeSums

proof is a polynomial identity of the form

−
(∑

i∈[m]

fi

)
+

(∑
j∈[n]

rj(1− xj − xj)

)
+

( ∑
A,B⊆[n]

αA,B

∏
j∈A

xj
∏
j∈B

xj

)
+ 1 = 0.

(To be precise, a SubCubeSums proof corresponds to an equivalence class of

Sherali–Adams proofs modulo Boolean axioms).

With this algebraic view of SubCubeSums in mind, we can define the algebraic size
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of a SubCubeSums proof to be the unary size of the smallest corresponding

Sherali–Adams proof (note that this includes the Boolean axioms and rj). We can

also define the algebraic reduced size of a SubCubeSums proof to be unary reduced

size of the smallest corresponding Sherali–Adams proof. With these definitions, the

following relations are immediate:

For any SubCubeSums proof G of a formula |F |,

(combinatorial size of G)+|F | = (algebraic reduced size of G) ≤ (algebraic size of G).

max{width(G),width(F )} = (algebraic degree of G).

7.2 Relating various measures for SubCubeSums

and MaxResW

In the combinatorial view of SubCubeSums, the natural complexity measures are

combinatorial size (number of subcubes) and width. In the algebraic view, there are

two measures for size depending on whether or not we count the monomials from

the Boolean axioms (the contributions from rj(1− xk − xj)): algebraic size, and

algebraic reduced size.

In the algebraic view, there are also two measures for degree: (1) the usual degree of

the Sherali-Adams restriction, and (2) the conical junta degree, or the degree of the

polynomial p0 alone. As discussed above, the degree equals the maximum of the

initial formula width and the SubCubeSums proof width, while the

conical-junta-degree equals the SubCubeSums width.

width(G) = (conical-junta-degree of G).
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It is worth noting that the combinatorial measures can be significantly smaller than

the algebraic measures. If F is the negation of the complete tautology on n

variables, then the SubCubeSums proof is the empty set, of combinatorial size and

width 0. However, the algebraic degree is n, and the algebraic size and algebraic

reduced size are 2n, simply because of the contribution from the initial formula.

Strictly speaking we do not know if unary Sherali–Adams (or even Sherali–Adams

with size measured as the sum of the binary bit-sizes of all coefficients, that is, the

usual Sherali–Adams) simulates SubCubeSums with respect to combinatorial size;

hence the caveat in Figure 1.2. (The simulation holds with respect to algebraic size,

as well as with respect to degree.) However, upper bounds on SubCubeSums

algebraic size imply upper bounds on Sherali–Adams unary size, while known lower

bounds on Sherali–Adams unary reduced size imply lower bounds on SubCubeSums

algebraic reduced size. Hence for all practical purposes we can think as if it did.

The following proposition shows why the proposed restriction of Sherali–Adams to

SubCubeSums remains complete, and gives combinatorial and algebraic size bounds

in terms of MaxResW refutation size.

Proposition 7.2.1. SubCubeSums p-simulates MaxResW.

For any unsatisfiable formula with n variables and m clauses, a MaxResW refutation

of size s can be converted (in polynomial time) to a SubCubeSums proof of both

combinatorial size and algebraic size O(m+ ns).

Proof. If an unsatisfiable CNF formula F with m clauses and n ≥ 3 variables has a

MaxResW refutation with s steps, then this derivation produces {2} ∪G where the

number of clauses in G is at most m+ (n− 2)s− 1. (A weakening step increases the

number of clauses by 1, without creating an empty clause. A MaxRes step increases

it by at most n− 2, and creates at most one empty clause.) The subcubes falsifying

the clauses in G give a SubCubeSums proof.
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The simulation still holds if we measure algebraic size. To see that, observe that we

can simulate a weakening step by introducing at most 5 new monomials; deriving

clauses A ∨ x and A ∨ ¬x from A corresponds to rewriting the monomial m

encoding A as mx+mx+m(1− x− x). More generally, given a monomial m and a

set of literals A = a1, . . . , as, the polynomial

W (m,A)
def
= ma1 +m(1− a1 − a1)

+ma1a2 +ma1(1− a2 − a2)

+ · · ·

+ma1 · · · as−1as +ma1 · · · as−1(1− as − as)

+ma1 · · · as

is identically equal to m. It describes the weakening of m by the literals of A using

the twinning axioms, and has algebraic size 4s+ 1 ≤ 5s. Further, given monomials

mA = x · e(A) and mB = x · e(B) encoding clauses x ∨ A and x ∨B, we can

simulate the MaxRes resolution rule by writing

mA +mB = W (mA, B \ A)−mA · e(B \ A)

+W (mB, A \B)−mB · e(A \B)

+ e(A ∪B)

− e(A ∪B) · (1− x− x).

The algebraic size of this expression is (4|B \ A|+ 1) + (4|A \B|+ 1) + 6 ≤ 8n.

Hence we can simulate a weakening step with 5 monomials and a resolution step

with at most 8n monomials.

In Section 7.3 we establish combinatorial size upper bounds in SubCubeSums for

certain formulas. To show that these upper bounds also apply to algebraic size, we
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observe that the measures are equivalent in proofs of constant positive or negative

degree. More formally, defining the positive (negative) degree of a proof as the

degree counting only xi variables (resp. xi) in fi and p0, the following holds.

Proposition 7.2.2. A SubCubeSums proof of combinatorial size s and positive

(negative) degree d has algebraic size O(2d(|F |+ s)).

Proof. We use the following claim.

Claim 7.2.3. Let p be a polynomial with integer coefficients that

1. is multilinear, on 2n variables {xi, xi | j ∈ [n]},

2. has #mon(p) = s monomials (with repetition, i.e when written with

coefficients ±1),

3. has positive (negative) degree d, and

4. vanishes on all Boolean assignments to the variables.

Then there is a polynomial q of the form
∑

j∈[n] rj(1− xj − xj), with∑
j∈[n] #mon(rj(1− xj − xj)) ≤ 3 · (2d − 1) · s, such that p+ q = 0 (here we count

the monomials with repetition).

To see why the proposition follows from the claim, consider a SubCubeSums proof

of size s = |p0| and positive (negative) degree d. It has the form
∑

i∈[m] fi = p0 + 1

modulo Boolean (twinning) axioms. Applying the claim to the polynomial

p = −
∑

i∈[m] fi + p0 + 1, which has |F |+ |p0|+ 1 monomials, we obtain a

polynomial q such that −
∑

i∈[m] fi + p0 + 1 + q is a a Sherali–Adams representative

of size at most
(
1 + 3 · (2d − 1)

)
· (|F |+ |p0|+ 1).

Proof. (of Claim) We prove the claim for positive degree; the negative degree

argument is identical. We proceed by induction on d.
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Base case: d = 0. Then p is multilinear on the n variables {xi | i ∈ [n]}, and

vanishes at all 2n Boolean assignments to its variables. Since the multilinear

polynomial interpolating Boolean values on the Boolean hypercube is unique, and

since the zero polynomial is such an interpolating polynomial, we already have p = 0

and can choose q = 0.

Inductive Step: For each monomial in p with positive degree d, pick a positive

variable x in the monomial arbitrarily, and rewrite the monomial mx as

m−mx−m(1− x− x). So p is rewritten as p′ + q′′, where q′′ collects the parts

m(1− x− x) introduced above and p′ collects the remaining monomials.

Note that the monomials m, mx have positive degree d− 1, so p′ is a multilinear

polynomial with positive degree at most d− 1. Also, it has at most 2s monomials.

Since p and q′′ vanish on all Boolean assignments, so does p′. The inductive claim

applied to p′ yields q′ =
∑

j∈[n] r
′
j(1− xj − xj) such that p′ + q′ = 0. Hence for

q = q′ − q′′, p+ q = 0. The polynomial q is of the desired form∑
j∈[n] rj(1− xj − xj). Counting monomials, q′′ contributes at most 3s monomials

by construction, and the number of monomials contributed by q′ is bounded by

induction, so
∑

j∈[n] #mon(rj(1− xj − xj)) ≤ 3s+ 3 · (2d−1 − 1) · 2s = 3 · (2d − 1) · s.

SubCubeSums is also implicationally complete in the following sense. We say that

f ≥ g if for every truth assignment x, f(x) ≥ g(x).

Proposition 7.2.4. If f and g are polynomials with f ≥ g, then there are subcubes

hj and non-negative numbers cj such that on the Boolean hypercube,

f − g =
∑

j cjhj. Further, if f, g are integral on the Boolean hypercube, so are the cj.

Proof. A brute-force way to see this is to consider subcubes of degree n, i.e. a single

point/assignment. For each β ∈ {0, 1}n, define cβ = (f − g)(β) ∈ R≥0.
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7.3 Res does not simulate SubCubeSums

We now show that Res does not simulate SubCubeSums. We will give two

independent proofs using two different formulas: Subset cardinality formulas and

the PHP formulas. The result for PHP formulas is implicit in [54], but we provide a

new combinatorial proof.

7.3.1 The Subset Cardinality formulas

The first separation is achieved using subset cardinality formulas [60, 69,75]. These

are defined as follows: we have a bipartite graph G(U ∪ V,E), with |U | = |V | = n.

The degree of G is 4, except for two vertices that have degree 5. There is one

variable for each edge. For each left vertex u ∈ U we have a constraint∑
e∋u xe ≥ ⌈d(u)/2⌉, while for each right vertex v ∈ V we have a constraint∑
e∋v xe ≤ ⌊d(v)/2⌋, both expressed as a CNF. In other words, for each vertex

u ∈ U we have the clauses
∨

i∈I xi for I ∈
(

E(u)
⌊d(u)/2⌋+1

)
, while for each vertex v ∈ V

we have the clauses
∨

i∈I xi for I ∈
(

E(v)
⌊d(v)/2⌋+1

)
.

Theorem 7.3.1. Subset cardinality formulas have SubCubeSums proofs of

combinatorial and algebraic size O(n) but require resolution length exp(Ω(n)).

The lower bound requires G to be an expander, and is proven in [60, Theorem 6].

The upper bound is the following lemma.

Lemma 7.3.2. Subset cardinality formulas have SubCubeSums proofs of

combinatorial and algebraic size O(n).

To obtain the size upper bound, it is convenient to use the algebraic formulation of

SubCubeSums. Our proof below is presented in this framework. For completeness,
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we also describe, after this proof, the direct presentation of the subcubes and a

combinatorial argument of correctness. The combinatorial proof is simply an

unravelling of the algebraic proof, but can be read independently.

Proof. Our plan is to reconstruct each constraint independently, so that for each

vertex we obtain the original constraints
∑

e∋u xe ≥ ⌈d(u)/2⌉ and∑
e∋v xe ≥ ⌈d(v)/2⌉, and then add all of these constraints together.

Formally, if Fu is the set of polynomials that encode the constraint corresponding to

vertex u, we want to find suitable subcubes hj and write

(7.1)
∑
f∈Fu

f −
(
⌈d(u)/2⌉ −

∑
e∋u

xe

)
=
∑
j

cu,jhj

and

(7.2)
∑
f∈Fv

f −
(
⌈d(v)/2⌉ −

∑
e∋v

xe

)
=
∑
j

cv,jhj

with cu,j, cv,j ≥ 0 and
∑

j cu,j = O(1), so that

∑
f∈F

f =
∑
u∈U

∑
f∈Fu

f +
∑
v∈V

∑
f∈Fv

f

=
∑
u∈U

(
⌈d(u)/2⌉ −

∑
e∋u

xe +
∑
j

cu,jhj

)
+
∑
v∈V

(
⌈d(v)/2⌉ −

∑
e∋v

xe +
∑
j

cv,jhj

)
=
∑
u∈U

⌈d(u)/2⌉+
∑
v∈V

⌈d(v)/2⌉ −
∑
e∈E

(xe + xe) +
∑
j

cjhj

=

(
1 +

∑
u∈U

2

)
+

(
1 +

∑
v∈V

2

)
−
∑
e∈E

1 +
∑
j

cjhj

= (2n+ 1) + (2n+ 1)− (4n+ 1) +
∑
j

cjhj = 1 +
∑
j

cjhj

where cj =
∑

v∈U∪V cv,j ≥ 0. Hence we can write
∑

f∈F f − 1 =
∑

j cjhj with∑
j cj = O(n).
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It remains to show how to derive equations (7.1) and (7.2). The easiest way is to

appeal to the implicational completeness of SubCubeSums, Proposition 7.2.4. We

continue deriving equation (7.1), assuming for simplicity a vertex of degree d and

incident edges [d]. Let xI =
∏

i∈I xi, and let
{
xI : I ∈

(
[d]

d−k+1

)}
represent a

constraint
∑

i∈[d] xi ≥ k. Let f =
∑

I∈( [d]
d−k+1)

xI and g = k −
∑

i∈[d] xi. For each

point x ∈ {0, 1}d we have that either x satisfies the constraint, in which case

f(x) ≥ 0 ≥ g(x), or it falsifies it, in which case we have on the one hand

g(x) = s > 0, and on the other hand f(x) =
(
d−k+s
d−k+1

)
= (d−k+s)·····s

(d−k+1)·····1 ≥ s.

We proved that f ≥ g, therefore by Proposition 7.2.4 we can write f − g as a sum of

subcubes of size at most 2d = O(1).

Equation (7.2) can be derived analogously, completing the proof for SubCubeSums

algebraic reduced size, which is the same as combinatorial size.

Since the proof has constant degree, Proposition 7.2.2 implies that combinatorial

and algebraic size are at most a constant factor apart, hence the proof also has

algebraic size O(n).

In proving the upper bound in Lemma 7.3.2, we invoked implicational completeness

from Proposition 7.2.4. However, in our case the numbers are small enough that we

can show how to derive equation (7.1) explicitly, by solving the appropriate LP, and

without relying on Proposition 7.2.4. As a curiosity, and in preparation for the

combinatorial proof, we display them next. We have

x1,2,3 + x1,2,4 + x1,3,4 + x2,3,4 − (2− x1 − x2 − x3 − x4) =(7.3)

2x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + 2x1x2x3x4
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and

x1,2,3 + x1,2,4 + x1,2,5 + x1,3,4 + x1,3,5 + x1,4,5 + x2,3,4 + x2,3,5 + x2,4,5

+ x3,4,5 − (3− x1 − x2 − x3 − x4 − x5) =(7.4)

2x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5

+ x1x2x3x4x5 + 2x1x2x3x4x5 + 2x1x2x3x4x5

+ 2x1x2x3x4x5 + 2x1x2x3x4x5 + 2x1x2x3x4x5 + 7x1x2x3x4x5

We now give the direct combinatorial proof for the Subset Cardinality Formulas.

The Subset Cardinality Formula SCF says that G has a spanning subgraph where

each u ∈ U has degree at least 2, the degree-5 vertex in U has degree at least 3, but

each v ∈ V has degree at most 2.

For w ∈ W = U ∪ V , Ew ⊆ E(G) denotes the set of edges incident on w.

For a vertex w, fw is the set of clauses enforcing the condition at vertex w, and F is

the union of these sets. A SubCubeSums proof should give a clause multiset H such

that

(7.5) ∀α ∈ {0, 1}|E(G)| : violF (α) = 1 + violH(α).

In short, violF = 1 + violH .

We describe such an H whose clauses are also naturally associated with vertices, so

H is the union of clause multisets hw for each w ∈ W . The clause sets fw and hw

are described in Table 7.1.

Towards proving Equation (7.5), we introduce clause multisets f ′
w and h′w, described

in Table 7.2. (They are not part of the SubCubeSums proof.) Note that h′w has only

empty clauses, so every assignment falsifies all clauses in all the h′w put together,

totalling 4n+ 2. The f ′
w clauses together have two clauses per edge e = (u, v): the
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Clause
Vertex Type w ∈ U and

deg(w) = 4
w ∈ U and
deg(w) = 5

w ∈ V and
deg(w) = 4

w ∈ V and
deg(w) = 5

For A ∈
(
Ew

3

)
:
∨

e∈A xe 1 in fw 1 in fw
For A ∈

(
Ew

3

)
:
∨

e∈A xe 1 in fw 1 in fw∨
e∈Ew

xe 2 in hw 7 in hw 2 in hw 2 in hw∨
e∈Ew

xe 2 in hw 2 in hw 2 in hw 7 in hw
For e ∈ Ew:
xe ∨

∨
f∈Ew\{e} xf

1 in hw 1 in hw 2 in hw

For e ∈ Ew:
xe ∨

∨
f∈Ew\{e} xf

2 in hw 1 in hw 1 in hw

Table 7.1: The sets fw and hw: The entries give the multiplicity of the clause in the
clause sets depending on the type of vertex w.

Clause
Vertex Type w ∈ U and

deg(w) = 4
w ∈ U and
deg(w) = 5

w ∈ V and
deg(w) = 4

w ∈ V and
deg(w) = 5

For e ∋ w : xe 1 in f ′
w 1 in f ′

w

For e ∋ w : xe 1 in f ′
w 1 in f ′

w

2 2 in h′w 3 in h′w 2 in h′w 3 in h′w

Table 7.2: The sets f ′
w and h′w: The entries give the multiplicity of the clause in the

clause sets depending on the type of vertex w.

unit clause xe in f ′
u and the unit clause xe in f ′

v. Thus every assignment falsifies

exactly |E| = 4n+ 1 of the clauses in all the f ′
w sets put together.

The multisets f ′
w and h′w are related to the multisets fw and hw by Equation (7.6)

below, which can be verified by inspection (see Equation (7.3) and Equation (7.4)

for an example).

(7.6) ∀α ∈ {0, 1}E(G);∀w ∈ W : violfw(α) + violf ′
w
(α) = violhw(α) + violh′

w
(α).

Hence
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violF =
∑
w∈W

violfw =
∑
w∈W

(
violhw + violh′

w
− violf ′

w

)
=

(∑
w∈W

violhw

)
+

(∑
w∈W

violh′
w

)
−

(∑
w∈W

violf ′
w

)

= violH + (2|U |+ 1) + (2|V |+ 1)−
∑

e∈E(G)

(violxe + violxe)

= violH + (4n+ 2)− (4n+ 1) = violH + 1

7.3.2 The Pigeonhole Principle formulas

Recall the definition of the Pigeonhole Principle (PHP) formulas:

Definition 7.3.3 (PHPm). The clauses of PHPm are defined as follows:

• Pigeon axioms – For each i ∈ [m+ 1], Pi is the clause
∨m

j=1 xi,j

• Hole axioms – For each j ∈ [m], Hj is the collection of clauses

Hi,i′,j : ¬xi,j ∨ ¬xi′,j for 1 ≤ i < i′ ≤ m+ 1.

These formulas are known to be hard for Resolution ([43]).

In [54] the authors show that these formulas are easy to refute in MaxResE, an

extended version of MaxRes. This extended version allows intermediate clauses with

negative weights, and, interpreting viol as the sum of the weights of the falsified

clauses, rather than merely the number of falsified clauses, all rules preserve viol.

The system allows introducing certain clauses “out of nowhere” preserving this

invariant; in particular, it allows the introduction of triples of weighted clauses of

the form (2,−1), (x, 1), (¬x, 1). Consider the following set of clauses, called the

“residual” of PHP and denoted PHPδ:

Definition 7.3.4 (PHPδ from Theorem 5 of [54]). The clause set PHPδ is the set

⋃
i∈[m+1]

P δ
i ∪

⋃
j∈[m]

Hδ
j
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where P δ
i and Hδ

j are defined as follows:

• The clause set P δ
i encodes that pigeon i goes into at most one hole. It is the set

P δ
i =

{
¬xi,j ∨

( ∨
j<ℓ<k

xi,ℓ

)
∨ ¬xi,k

∣∣∣∣∣ 1 ≤ j < k ≤ m

}
.

• The clause set Hδ
j says that hole j has at least one and at most two pigeons.

It is defined as H1δj ∪H2δj , where

– H1δj has a single clause encoding that hole j is not empty.

H1δj =

{
m+1∨
i=1

xi,j

}
.

– H2δj is a set of clauses encoding that no hole has more than two pigeons.

It is the set

H2δj =

{
¬xi,j ∨

( ∨
i<ℓ<k

xℓ,j

)
∨ ¬xk,j ∨ ¬xi′,j

∣∣∣∣∣ 1 ≤ i < k < i′ ≤ m+ 1

}
.

Theorem 7.3.5 (implicit in [54] Theorem 5). violPHPδ = violPHP − 1.

In the proof of Theorem 5 in [54], a MaxResE derivation transforming PHP to

PHPδ ∪ {2} is described. Each step in the derivation preserves the weighted sum of

violations. (At intermediate stages, some clauses have negative weight, hence

weighted sum.)

More precisely, the three weighted clauses (2,−1), (x, 1), (¬x, 1) have weighted

viol = 0: Every assignment falsifies one of the unit clauses with weight +1 and

falsifies the empty clause with weight −1, so the total weight of falsified clauses is 0.

The derivation in [54] adds m such triples. It uses the weighted-viol-preserving rules

of MaxResE to transform PHPm ∪ {(2,−m)} ∪ {x1,j,¬x1,j | j ∈ [m]} to
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PHPδ ∪ {2}. Here all clauses of PHPm initially have weight 1, and all clauses of

PHPδ finally have weight 1. Thus the proof establishes the following statement:

Corollary 7.3.6. PHPm has a SubCubeSums refutation of combinatorial size

polynomial in m.

Proof. The cubes falsifying the O(m4) clauses of PHPδ are the SubCubeSums

refutation of PHPm.

In [54] the authors say (just before Theorem 5 and in the footnote) that it is not

obvious that the refutation is complete though we know this because PHPm is

minimally unsat. Actually the fact that PHPδ is satisfiable is obvious: the

assignment that sets xi,i = 1 for i ∈ [m] and all other variables to 0 satisfies PHPδ.

(Any matching of size m satisfies PHPδ.) Thus, since PHP is minimally

unsatisfiable, the MaxSAT value of PHP and {2} ∪ PHPδ is the same. However, it

is not obvious why violPHPδ = violPHP − 1. We show how to prove this directly

without using the MaxResE derivation route. For every assignment A to the

variables of PHP, we show below that violPHP(A) = violPHPδ(A).

1. Let A ∈ {0, 1}(m+1)×m be an assignment to the variables of PHPm.

2. Denote the column-sums by cj =
∑

i∈[m+1]Ai,j for j ∈ [m].

3. Denote the row-sums by ri =
∑

j∈[m]Ai,j for i ∈ [m+ 1].

4. Denote the total sum by M ; M =
∑

i ri =
∑

j cj.

It is straightforward to see that

violPHP(A) = #{i ∈ [m+ 1] : ri = 0}+
∑
j∈[m]

(
cj
2

)
.

To describe violPHPδ(A), consider the three sets of clauses separately.

111



1. For pigeon i, if ri = 0 or ri = 1, then there are no violations in P δ
i since each

clause has two negated literals.

If ri ≥ 2, let the positions of the 1s in the ith row be j1, j2, . . . , jri in

increasing order. Then the only clauses falsified are of the form

¬xi,jp ∨

jp+1−1∨
ℓ=jp+1

xi,ℓ

 ∨ ¬xi,jp+1

for p ∈ [ri − 1], and all these clauses are falsified. So violP δ
i
(A) = ri − 1.

2. The clause in H1δj is falsified iff cj = 0.

3. For hole j, if cj ≤ 2, then there are no violations in H2δj since each clause has

three negated literals.

If cj ≥ 3, then suppose the 1s are in positions i1, i2, . . . , icj in increasing order.

Then the clauses violated are exactly those of the form

¬xiq ,j ∨

iq+1−1∨
i=iq+1

xi,j

 ∨ ¬xiq+1,j ∨ ¬xiq+1+k,j

for q, k ≥ 1 and q + 1 + k ≤ cj. So the number of violations is

(cj − 2) + (cj − 3) + . . .+ 1 =
(
cj−1
2

)
.

Putting this together, we have

violPHPδ(A) =
∑

i∈[m+1]:ri≥2

(ri − 1) + #{j ∈ [m] : cj = 0}+
∑

j∈[m]:cj≥3

(
cj − 1

2

)
.
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Consider the following manipulations:

∑
i∈[m+1]:ri≥2

(ri − 1) =
∑

i∈[m+1]

(ri − 1)−
∑

i∈[m+1]:ri=0

(ri − 1)

=

 ∑
i∈[m+1]

ri −
∑

i∈[m+1]

1

−

(
(−1)× number of 0-rows

)
= M − (m+ 1) + number of 0-rows

∑
j∈[m]:cj≥3

(
cj − 1

2

)
=

∑
j∈[m]:cj≥1

(
cj − 1

2

)
=

∑
j∈[m]:cj≥1

[(
cj
2

)
− (cj − 1)

]

=
∑

j∈[m]:cj≥1

(
cj
2

)
−

∑
j∈[m]:cj≥1

(cj − 1)

=
∑
j∈[m]

(
cj
2

)
−
∑
j∈[m]

cj +
∑

j∈[m]:cj≥1

1

=
∑
j∈[m]

(
cj
2

)
−M + (m− number of 0-columns)

Putting this together, we obtain

violPHPδ =
∑

i∈[m+1]:ri≥2

(ri − 1) + #{j ∈ [m] : cj = 0}+
∑

j∈[m]:cj≥3

(
cj − 1

2

)
= M − (m+ 1) + number of 0-rows

+number of 0-columns

+
∑
j∈[m]

(
cj
2

)
−M + (m− number of 0-columns)

= number of 0-rows +
∑
j∈[m]

(
cj
2

)
− 1

= violPHP − 1

as claimed.

In particular, we have the identity:
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Proposition 7.3.7. For any A ∈ {0, 1}(m+1)×m, with row sums ri =
∑

j Ai,j and

column sums cj =
∑

iAi,j,

#{i ∈ [m+ 1] : ri = 0}+
∑
j∈[m]

(
cj
2

)

= 1 +#{j ∈ [m] : cj = 0}+
∑

i∈[m+1]:ri≥2

(ri − 1) +
∑

j∈[m]:cj≥3

(
cj − 1

2

)

We can improve Corollary 7.3.6 to a stronger claim about algebraic size.

Corollary 7.3.8. PHPm has a refutation in SubCubeSums with algebraic size

polynomial in m.

Proof. Viewing the SubCubeSums proof in Corollary 7.3.6 from the algebraic

viewpoint, the degree of the proof is linear. However, the negative degree is 3. So we

can still use Proposition 7.2.2 to conclude that there is a refutation with algebraic

size O(m4).

7.4 A lower bound for SubCubeSums

Fix any graph G with n nodes and m edges, and let I be the node-edge incidence

matrix. Assign a variable xe for each edge e. Let b be a vector in {0, 1}n with∑
i bi ≡ 1 mod 2. The Tseitin contradiction asserts that the system IX = b has a

solution over F2. The CNF formulation has, for each vertex u in G, with degree du,

a set Su of 2du−1 clauses expressing that the parity of the set of variables

{xe | e is incident on u} equals bu.

For these formulas, Res refutations require exponential size [72], and hence

MaxResW refutations also require exponential size. We now show that

SubCubeSums refutations also require exponential combinatorial size (and hence
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also algebraic size). By Theorem 7.3.1, this lower bound cannot be inferred from

hardness for Res.

We will use these standard facts:

Fact 7.4.1. For connected graph G, over F2,

1. if
∑

i bi ≡ 1 mod 2, then the equations IX = b have no solution.

2. If
∑

i bi ≡ 0 mod 2, then IX = b has exactly 2m−n+1 solutions.

3. Furthermore, for any assignment a, and any vertex u, a falsifies at most one

clause in Su.

A graph is a c-expander if for all V ′ ⊆ V with |V ′| ≤ |V |/2, |δ(V ′)| ≥ c|V ′|, where

δ(V ′) = {(u, v) ∈ E | u ∈ V ′, v ∈ V \ V ′}.

Theorem 7.4.2. Let G be a d-regular c-expander on n vertices where n is odd, and

c, d be constants with c > 10. Let b be the all-1s vector. All SubCubeSums

refutations of the Tseitin contradiction corresponding to G, b require combinatorial

size exponential in n.

We prove this using the combinatorial view of SubCubeSums. At a high level, the

proof proceeds as follows. The Tseitin contradiction F has m = dn/2 variables and

n2d−1 clauses. The assignments can be partitioned into disjoint sets Xi, where Xi

consists of assignments falsifying exactly i clauses of F . By Fact 7.4.1, Xi is empty

for even i. We focus on X1, X3, and X5 for the lower bound.

Let C be a SubCubeSums refutation of F , that is, violC = violF − 1 = g. Define a

matrix M with rows indexed by assignments to variables and columns indexed by

clauses/cubes of C, and entries as follows.

M(a, C) =

 1 if a falsifies C

0 otherwise
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For each a ∈ Xi, row a of M has exactly (i− 1) 1s. Thus the submatrix X3 × C has

2|X3| 1s, and the submatrix X5 × C has 4|X5| 1s. We say that a clause is heavy if it

contributes many more 1s in the X5 rows than in the X3 rows; otherwise it is light.

The proof idea is to show that a significant fraction of the 1s in X3 × C come from

light clauses (Lemma 7.4.3 below), and that a light clause can contribute only an

exponentially small fraction of the 1s in X3 × C (Lemma 7.4.4 below). It then

follows that C must have exponentially many light clauses.

For a clause C ∈ C, let Ni(C) denote the number of 1s it contributes to M in the

rows corresponding to Xi. That is viewing C as the cube of its falsifying

assignments, Ni(C) = |C ∩Xi|. Define the relative density of a clause C, denoted

rel-density(C), to be the ratio N5(C)/N3(C). Say that a clause is light if

rel-density(C) ≤ n2/9. That is, for a light C,

rel-density(C) ≜
number of 1s in X5 × {C}
number of 1s in X3 × {C}

≤ n2

9
.

In particular, if C is light, |C ∩X3| is not zero; hence there is at least one

assignment a ∈ X3 that falsifies C. This fact will be significant.

Lemma 7.4.3.

number of 1s in X3 × C contributed by light clauses
number of 1s in X3 × C

≥ 1

10

Lemma 7.4.4. For a light clause C ∈ C,

N3(C) ≜ |C ∩X3| ≤
3|X3|

2n(0.1c−1)

Before proving these lemmas, we show why they imply the theorem.

Proof. (of Theorem 7.4.2, assuming Lemma 7.4.3, Lemma 7.4.4)
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2|X3| = (number of 1s in X3 × C)

≤ 10× (number of 1s in X3 × C contributed by light

clauses) (by Lemma 7.4.3)

≤ 10× (number of light clauses)

×(max number of 1s contributed by a light clause)

≤ 10× |C| × 3|X3|
2n(0.1c−1)

(by Lemma 7.4.4)

Hence |C| ≥ 2n(0.1c−1)

15
= 2Ω(n).

Here is a simple proposition that will be used in proving both Lemmas.

Proposition 7.4.5. For each odd i, |Xi| =
(
n
i

)
2m−n+1.

Proof. An assignment in Xi lies in i cubes of f . Each cube corresponds to a distinct

vertex because the 2d−1 cubes corresponding to any single vertex are disjoint. Once

the i vertices are fixed and b flipped in those coordinates to get b′, there are 2m−n+1

0-1 solutions to Ix = b′ (Fact 7.4.1(2)).

Now we prove that many 1s in X3 × C are contributed by light clauses.

Proof. (of Lemma 7.4.3) Consider the following probability distribution µ on C:

µ(C) ≜
|C ∩X3|

number of 1s in X3 × C
=

|C ∩X3|
2|X3|

.

This distribution is useful because it can be used to neatly express the quantity we
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want to bound from below, as follows.

number of 1s in X3 × C contributed by light clauses
number of 1s in X3 × C

=

∑
C∈C;C light |C ∩X3|

2|X3|
=

∑
C∈C;C light

µ(C)

= Pr
C∼µ

[C is light]

= 1− Pr
C∼µ

[rel-density(C) >
n2

9
]

≥ 1− EC∼µ[rel-density(C)]
n2/9

(by Markov’s inequality)

So it suffices to show that if a clause C is sampled from C according to µ, its

expected rel-density(C) is small.

Claim 7.4.6.

EC∼µ[rel-density(C)] ≤ n2

10
.

Proof. (of claim)

EC∼µ[rel-density(C)]

=
∑

C∈C:µ(C )̸=0

µ(C)
|C ∩X5|
|C ∩X3|

=
∑

C∈C:µ(C )̸=0

|C ∩X5|
2|X3|

(each row in X3 × C has exactly 2 1s)

=
1

2|X3|
∑

C∈C:µ(C )̸=0

|C ∩X5| ≤
4|X5|
2|X3|

(each row in X5 × C has exactly 4 1s)

=
2
(
n
5

)(
n
3

) (by Proposition 7.4.5)

≤ n2

10
.

With this claim established, the proof of the Lemma is complete.
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Now we need to show that light clauses cannot contribute many 1s, Lemma 7.4.4.

We will first obtain, for any C ∈ C, estimates for |C ∩X3| and |C ∩X5| in terms of

the width w(C) of C; Lemma 7.4.7 below. Then we will show that if C is light, then

it is wide; Lemma 7.4.8. Putting these together will prove Lemma 7.4.4.

To state Lemma 7.4.7,Lemma 7.4.8 we first need to discuss a suitable subgraph of G.

Consider a clause C ∈ C with non-empty C ∩X3. Since violC = violF − 1, no

assignment in X1 falsifies C. We rewrite the system IX = b as I ′X ′ + ICXC = b,

where XC are the variables fixed in cube C (to aC , say). So I ′X ′ = b+ ICaC . An

assignment a is in C ∩Xr iff it is of the form a′aC , and a′ falsifies exactly r

equations in I ′X ′ = b′ where b′ = b+ ICaC . This is a system for the subgraph GC

where the edges in XC have been deleted. This subgraph may not be connected, so

we cannot use our size expressions from Proposition 7.4.5 directly. Consider the

vertex sets V1, V2, . . . of the components of GC . The system I ′X ′ = b′ can be broken

up into independent systems; I ′(i)X ′(i) = b′(i) for the ith connected component.

Say a component is odd-charged if
∑

j∈Vi
b′(i)j ≡ 1 mod 2, even-charged otherwise.

Let |Vi| = ni and |Ei| = mi. Any a′ falsifies an odd/even number of equations in an

odd-charged/even-charged component.

Pick any a′ ∈ C ∩X3; at least one such assignment exists by assumption. It must

falsify three equations overall, so GC must have either one or three odd-charged

components. If it has only one odd-charged component, then there is another

assignment in C falsifying just one equation (from this odd-charged component), so

C ∩X1 ̸= ∅, a contradiction. Hence GC has exactly three odd-charged components,

with vertex sets V1, V2, V3 of sizes n1, n2, n3 respectively, and overall k ≥ 3

components.

We now estimate |C ∩X3| and |C ∩X5| in terms of these parameters n1, n2, n3, k,

w(C), where w(C) denotes the width of the clause C. Recall that m = nd/2 is the

number of edges in G and hence the number of variables in F .
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Lemma 7.4.7. If a clause C ∈ C has |C ∩X3| ≠ 0, then

|C ∩X3| = n1n2n32
m−w(C)−n+k and

|C ∩X5| ≥ n1n2n32
m−w(C)−n+k

(
1

3

k∑
i=1

(
ni − 1

2

))
.

Proof. An a ∈ C ∩X3 falsifies exactly one equation in the subsystems

I(1), I(2), I(3) corresponding to the odd-charged components of GC . We thus arrive

at the expression

|C ∩X3| =

(
3∏

i=1

ni2
mi−ni+1

)(∏
i≥4

2mi−ni+1

)
= n1n2n32

m−w(C)−n+k.

Similarly, an a ∈ C ∩X5 must falsify five equations overall. One each must be from

V1, V2, V3. The remaining 2 must be from the same component. Hence

|C ∩X5| =
((

n1

3

)
n2n3 + n1

(
n2

3

)
n3 + n1n2

(
n3

3

))
2m−w(C)−n+k

+ n1n2n3

k∑
i=4

(
ni

2

)
2m−w(C)−n+k

≥ n1n2n32
m−w(C)−n+k

(
1

3

k∑
i=1

(
ni − 1

2

))

Now we use the structure and parameters of GC to show that light clauses must be

wide.

Lemma 7.4.8. For any clause C ∈ C, if rel-density(C) = |C∩X5|
|C∩X3| ≤

n2

9
, then

w(C) ≥ cn
10

.

Proof. Each literal in C removes one edge from G while constructing GC . Counting

the sizes of the cuts that isolate components of GC , we count each deleted edge
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twice. So

2w(C) =
k∑

i=1

|δ(Vi, V \ Vi)| =
∑

i:ni≤n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q1

+
∑

i:ni>n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q2

By the c-expansion property of G, Q1 ≥ cni.

If ni > n/2, it still cannot be too large because C is light. Recall

n2

9
≥ |C ∩X5|

|C ∩X3|
≥ 1

3

k∑
i=1

(
ni − 1

2

)

If any ni is very large, say larger than 5n/6, then the contribution from that

component alone, 1
3

(
ni−1
2

)
, will exceed n2

9
. So each ni ≤ 5n/6. Thus even when

ni > n/2, we can conclude that ni/5 ≤ n/6 ≤ n− ni < n/2. By expansion of V \ Vi,

we have Q2 ≥ c(n− ni) ≥ cni/5.

2w(C) =
∑

i:ni≤n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q1

+
∑

i:ni>n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q2

≥
∑

i:ni≤n/2

cni +
∑

i:ni>n/2

cni

5
≥ cn/5

Hence w(C) ≥ cn/10 as claimed.

Now we have all that is needed to prove Lemma 7.4.4.

Proof. (of Lemma 7.4.4) Let C be a light clause. As discussed above, let GC be the

subgraph of G where edges whose variables are set by C are deleted, let k be the

number of components of GC , and let n1, n2, n3 be the number of vertices in the
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three odd-charged components.

|C ∩X3| = n1n2n32
m−w(C)−n+k (by Lemma 7.4.7)

=
n1n2n32

m−w(C)−n+k(
n
3

)
2m−n+1

× |X3| (by Proposition 7.4.5)

=
n1n2n3(

n
3

) 2k−w(C)−1 × |X3|

≤ 6× 2n−w(C)−1 × |X3| = 3 · 2n−w(C) · |X3|

≤ 3 · 2n−cn/10 · |X3| (by Lemma 7.4.8)

=
3|X3|

2n(0.1c−1)
as claimed.

This completes the proof of Theorem 7.4.2.

Remark As mentioned earlier, the SubCubeSums proof system can be viewed

algebraically as a subsystem of Sherali-Adams, for which this lower bound is already

known. However, our proof is specific to the SubCubeSums proof system, where all

the multipliers for the axiom polynomials are −1. This is implicit in our proof; we

use the equation violC = violF − 1, and thus we assume that the axiom polynomials

from F are multiplied only by −1.

7.5 Lifting degree lower bounds to size

We describe a general technique to lift lower bounds on width, or conical junta

degree, to lower bounds on combinatorial size for SubCubeSums. This is an

adaptation of the well-known xorification technique of Alekhnovich and Razborov

(see [11]), which also consists of applying a random restriction to a formula

composed with parity.
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Theorem 7.5.1. Let d be the minimum width, or conical junta degree, of a

SubCubeSums refutation of an unsatisfiable CNF formula F . Then every

SubCubeSums refutation of F ◦ ⊕ has combinatorial size exp(Ω(d)).

Before proving this theorem, we establish two lemmas. For a function h :

{0, 1}n → R, define the function h ◦⊕ : {0, 1}2n → R as (h ◦⊕)(α1, α2) = h(α1 ⊕α2),

where α1, α2 ∈ {0, 1}n and the ⊕ in α1 ⊕ α2 is taken bitwise.

Lemma 7.5.2. violF (α1 ⊕ α2) = violF◦⊕(α1, α2).

Proof. Fix assignments α1, α2 and let α = α1 ⊕ α2. We claim that for each clause

C ∈ F falsified by α there is exactly one clause D ∈ F ◦ ⊕ that is falsified by α1α2.

Indeed, by the definition of composed formula the assignment α1α2 falsifies C ◦ ⊕,

hence the assignment falsifies some clause D ∈ C ◦ ⊕. However, the clauses in the

CNF expansion of C ◦ ⊕ have disjoint subcubes, hence α1α2 falsifies at most one

clause from the same block. Observing that if α does not falsify C, then α1α2 does

not falsify any clause in C ◦ ⊕ completes the proof.

Note that Lemma 7.5.2 may not be true for gadgets other than ⊕.

Corollary 7.5.3. violF◦⊕ − 1 = ((violF ) ◦ ⊕)− 1 = (violF − 1) ◦ ⊕.

Proof. ((violF − 1) ◦ ⊕)(α1, α2) = (violF − 1)(α1 ⊕ α2) = (violF )(α1 ⊕ α2)− 1 =

(violF◦⊕)(α1, α2)− 1.

Lemma 7.5.4. If f ◦ ⊕ has a (integral) conical junta of size s, then f has a

(integral) conical junta of degree d = O(log s).

Proof. Let J be a conical junta of size s that computes f ◦⊕. Let ρ be the following

random restriction: for each original variable x of f , pick i ∈ {0, 1} and b ∈ {0, 1}

uniformly and set xi = b. Consider a term C of J of degree at least d > log4/3 s.

The probability that C is not zeroed out by ρ is at most (3/4)d < 1/s, hence by a
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union bound the probability that the junta J↾ρ has degree larger than d is at most

s · (3/4)d < 1. Hence there is a restriction ρ such that J↾ρ is a junta of degree at

most d, although not one that computes f . Since for each original variable x, ρ sets

exactly one of the variables x0, x1, flipping the appropriate surviving

variables—those where xi is set to 1—gives a junta of degree at most d for f .

Now we can prove Theorem 7.5.1.

Proof. We prove the contrapositive: if F ◦ ⊕ has a SubCubeSums proof of

combinatorial size s, then there is an integral conical junta for g = violF − 1 of

degree O(log s).

Let H be the collection of cubes in the SubCubeSums proof for F ◦ ⊕. So

violF◦⊕ − 1 = violH . By Corollary 7.5.3, there is an integral conical junta for

(violF − 1) ◦ ⊕ of size s. By Lemma 7.5.4 there is an integral conical junta for

violF − 1 of degree O(log s).

Recovering the Tseitin lower bound: This theorem, along with the Ω(n)

conical junta degree lower bound of [41], yields an exponential lower bound for the

SubCubeSums and MaxResW refutation size for Tseitin contradictions. However,

this construction duplicates every edge of the original graph and therefore does not

give a lower bound for all expanders.
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Chapter 8

Conclusion

We studied two proof systems: (i) Merge Resolution (M-Res) for QBFs, and

(ii) MaxSAT resolution (MaxRes) for certifying unsatisfiability.

Merge Resolution

M-Res was introduced in [18] to overcome the weakness of LD-Q-Res. It was shown

that M-Res has advantages over many proof systems, but the advantage over

LD-Q-Res was not demonstrated. We have filled this gap — we have shown that

M-Res has advantages over not only LD-Q-Res, but also over more powerful

systems, LQU+-Res and IRM. We have also looked at the role of weakening — that

it adds power to M-Res.

We then proved some lower bounds for M-Res, highlighting its limitations. We then

showed a more fundamental limitation of M-Res, that M-Res with and without

strategy weakening is unnatural. We believe that this makes it useless in practice.

For the system to still be useful in practice, one will have to prove that it can be

made natural by adding existential weakening or both weakenings. This, in our

opinion, is the most important open question about M-Res.
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MaxSAT Resolution

We placed MaxRes and MaxResW in a propositional proof complexity frame and

compared it to more standard proof systems, showing that MaxResW is between

tree-like resolution (strictly) and resolution. With the goal of also separating

MaxRes and resolution we devised a new lower bound technique, captured by

SubCubeSums, and proved lower bounds for MaxRes without relying on Res lower

bounds.

Perhaps the most conspicuous problem left open in this thesis is whether our

conjecture that pebbling contradictions composed with XOR separate Res and

SubCubeSums holds. (Very recently, in [37], this has been resolved by showing

precisely such a separation.) It remains open to show that MaxRes simulates

TreeRes – or even MaxResW – or that they are incomparable instead.
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