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PREFACE

This +thesis embodies the research work done by me on
"Studies in Kaluza-Klein approach to unificatien " during the
years 1987-90 at the Institute of Mathematical Sciences, Madras
under the guidance of Dr. R.Parthasarathy with financial
assistance from the Institute of Mathematical Sciences,
Collaboration with my thesis supervisor Dr. R.Parthasarathy was
necessitated by the nature and range of the problems dealt with.
Three research papers were published and one more has been
acceplted for publication. These references have been cited in
appropriate places.

This research work is presented in five chapters preceded by
an introduction. There are appendices at the end of the chapter 2,
4 and 5 containing some mathematical details used in various
places and a list of references at the end of each chapter and the
introduction. Eaiay
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In the general theory of relativity, in order to
characterize world evenkts, the electromagnetic four-potential
Ag has te be introduced separately along with the fundamental
metriec bLensor ggu of the 4-dimensional world manifeld which 1is
regarded as the tensor potential of gravitation. The dualistic
nature of gravitation and electricity still remaining here does
not actually destroy the ensnaring beauty of the theory but rather
affords a new challenge towards its triumph through the entirely
unified picture of the world" [1].

In a remarkable paper Th.Kaluza [2] advanced the idea to
unify the then known basic forces of Nature, namely,
electromagnetism and gravity. According to Kaluza if one starts
from pure gravity in 5-dimensions and make a special ansatz for
the metric, then the resulting classical equations of motion have
both four dimensional gravity and electromagnetism contained in
it The metric contains the electromagnetic wvector potential A
and so acgquires a Reametrical nature. In order to reconcile with
the observed (3+1) physical dimensions, Kaluza assumed that the
fifth dimension is compactified te a circle of very small radius.
{(Cylinder condition). KElein [31] reformulated Kaluza's
S-dimensional theory on the basis of the action principle and
investigated the 5-dimensional wave equation in the hope of

obtaining the ordinary quantum theory in 4-dimensions,




The Kaluza-Klein rhilosoaphy of unifying gravitation with
electromagnetism has been revived in the rast few years with great
enthusiasm and hope. In its original form, the S-dimensional
world has been taken to be the product of two spaces Hq x 51 where
M is the usual 4-dimensional Minkowslki space and S is a compact
space (with no time) of smaller dimensions - a circle of small
radius. The U(1) gauge symmetry pertinent tao electromagnetism is
& consequence of transformations of the extra coordinate {xﬁ}. In
this way the extra dimension provides internal symmetry of the
elementary rarticles. Te accommodate other known interactions,
the internal manifold has to be enlarged, so that the non-abelian
gauge lields become part of the metrie, This generalization of
Dewitt [4] has been elahorated by Rayski [5], Kerner [6], Trautman
(7], Cho [8], Cho and Freund [9]) Luciani [10], Tanaka {11], along
with the coset space approach by Witten [12] and Salam and
Strathdee [13]. In Kaluza-Klein point of view, one attributes all

interactions other than gravity and the spectrum of elementary

particles to the structure of the internal manifold. The process

of compactifying the M''" dimensional manifold to the product
| . .

M x B" is called spontaneous compactification. Following the

I process of spontaneous compactification one obtains an effective
theory in 4-dimensional space time governed by general covariance
and a compact internal symmetry group G. The group of isometry

of the internal space B" corresponds to the symmetry group G. For

instance B" could be taken to be the group space G itself. This
is not an economical choice though. A more convenient choice is
2




| to realize B" as a cosget space G/H where H is the maximal closed
I subgroup of a. As an example, to accommodate iso-spin symmetry,
for which the appropriate group is SU(2) having 3 generators, the

' group space approach [11] B" has to be a 3-dimensional su{z2)

manifold so that the Kaluza-Klein space(K-K space is T
dimensional MY x SU(2), while 1in the coset space approach
[12,13] B" = sufz2)/u{1) = Szand s0 the K-k space is six
dimensional M' x s§2, A direct way to obtain the theory in

4-dimensions is to expand all fields in the theory in a complete
set of harmonics on G/H. The coefficients in this expansion will
be the d-dimensional fields which carry a sequence of
representations of the group a. The action in 4-dimensions is
then obtained by integrating out the extra n co-ordinates
parametrizing G/H, using the orthonormality of the harmonics.
This involved procedure requires a knowledge of the properties of
the coset spaces and an understanding of the method of harmonic
expansion on coset spaces, see Salam and Strathdee [13] and
Viswanathan [14]. To trigger spontanecus compactification, one
needs additional fields to be inecluded in the (4+n) dimensional
theoary, For instance Randjbar - Daemi, Salam and Strathdee [15]
demonstrated spontanecus compactification in a 6-dimensional M' x
g° model with a monopole configuration in SE. Omero and Percacei
[16] and Gell-Mann and Zwiebach [17] demonstrated a non-linear
sigma field induced compactification whieh was Beneralized by
Parthasarathy [18] to a general non-linear sigma Tield induced

compactification in which the Kaluza-Klein gauge bosons were made
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to remain massless at the classical level.

In the original 5-dimensional K-K theory, the U(1l) coupling

constant (electric charge) e is quantized i e = K/R where
K® = 16nG and 2rnR is the circumference of the compact i
dimension. Weinberg [19] (See Mann [20] also) generalized this

relation to (4+n) dimensional Kaluza-Klein theory.
The HKaluza-Klein approach provides a geomeirical meaning to

the gauge fields, as part of the metric in higher dimensional

Eravity. In fact, a class of co.ordinate transformations gives
rise Lo gauge transformations. In the & -dimensional theory,
*H <t = x and xﬁ S %+ f {x“] leads +to

Ap{xj _ ﬂ;{x} = ay{x}—&giﬁ, which is the familiar U({1)
gauge transformation, In more than 5-dimensions, the class of

u

. : i
transformations, x© — x Ho - #

P i i
® g y — ¥ o= oy 8%(x) K (¥),

where K’ (¥) are the killing vectors, leads to

o v o o B ¥ o

A x) — = A + f ) - a8

y () Ay (x) " (x) By (%) A (x) B (%)

which is the familiar non-Abelian Eauge transformation. These

results indicate that although the extra co—ordinates (other than
4) are introduced at a more formal/mathematical level and are
Finally dintegrated out in obtaining an effective action in
4-dimensions, they play very important role in determining the
interaction (gauge fields) and couplings and hence cannot be
classified as unphysical.

Quite apart from attempts to construet a realistic theory of

elementary particle interactions, Kaluza-Klein theory has been




explored in the context of describing the early universe. This

goes under the name ‘Kaluza-Klein Cosmology’. In this approach,
it is assumed that at the beginning of the universe, the space was
higher dimensional (>4). In the radiation dominated universe the
space time Geomelry is Hd+n. Due Lo some reasons, after the
inflation, the physical three spatial dimensions expand while the
(internal) extra space B" contract so that they (B"}) are
undetectable at present. This ‘dynamical compactification’ has
been first studied by Chodos and Detweiler [21] using Kasner
metric [22] without matter field. They were able to demonstrate
the above mentioned asymmetrical expansion. This approach has
been used by Freund [23] for a higher dimensiocnal
Jordon-Brans-Dicke theory, by Kerner [24] for a G-dimensional
theory with a monopole and a Higgs scalar on S2 (in MY x Szl and
by Kolb [25] for a 6-dimensional monopole induced compactified
Kaluza-Klein theory. The other approach to Kaluza-Klein Cosmology
is based on thermodynamical arguments. Here the energy momentum
tensor is usually taken to correspond to a perfect fluid in all
spatial dimensions with an assumption that this is appropriate for
a radiation dominated era. Then the dynamical compactification is
achieved by conservation of entropy as shared between M* and B".
This approach has been studied by Alvarez and Gavela [26], Abbott,
Barr and Ellis [27] Sahdev [28] and Kolb [29].

In spontaneous and dynamical compactification schemes, the
size of the extra space B" have been either assumed to be small or

taken to shrink in size. In a remarkable paper Appelguist and
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Chodos [30] offered a plausible explanation for this. This is
based on the Casimir [31] effect : as a consequence of quantum
mechanical wvacuum fluctuations of the electromagnetic field, an
attractive force exists between two uncharged conducting plates.
The presence of the plates separated by a distance s imposes a
boundary condition on the field, as a result the wave mades

perpendicular to the ©plane of the plates Eet restricted

to KL: Eg, n =0, £ 1,£ 2, cou Computing the zero point energy
2
per unit volume of the field, one finds [32] it to be - gzﬂ EE:.

If instead of photon, a free massless scalar field ¢ in a space
in which one of the dimensions, say the z-direction, is not of

infinite extent but a ecircle of radius a/n is considered, then the

appropriate boundary condition ¢ (t,x,yv,z + 2a} = o (tix,vsz)
! Ia

and the allowed frequencies are ®© { E,n O [ki+k:+n? nzfazfl?The

chservahble finite part of the zero Foint energy is -

{ﬂthTzﬂ} 53.0h0d05 [33] shows that the one loop effective

3
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potential for such a theory is again - {HEﬁKTEO} a
demonstrating that the Casimir energy can be found either by
summing the =zero point energy or by evaluating the one loop
effective potential, ohbtained by expanding the acticon about a
suitable background field ¢u and keeping only the quadratic terms
in the fluctuations. When applied to b-dimensional Kaluza-Klein
theory with no electromagnetic field in the background metric the

one loop effective potential becomes [30]

" 15
elfl 4]_{3

¢ (6} / {EnH}ri




where R is the radius of the Ethdimension. The interpretation a

la Casimir effect is: there is an attractive force causing the

| distance 2nR to shrink. This gquantum explanation for the
| shrinking of the extra dimensions loses its wvalidity when 2nR
| becomes lower than planck length similar to the situation when ‘'a’

becomes comparable to the interatomic distance in the original
I Casimir effect, beyond which the idealigzed plates must be replaced
by assembly of atoms and the treatment becomes involwved, This
Appelquist-Chodos mechanism has been extended by Rubin and HRoth
[34] to include finite temperature effects, Rubin and Roth [358]
and Tsokos [36] to include massive fermions. Generalization to
the background manifold M* x (50" Fous 4-dimensional Euclidean
space X d-dimensional torus has been made [37]. One result
emerging from the inclusion of fermions [35,36] is the
stabilization of Casimir energy i.e. The effective potential has
a minimum, Candelas and Weinberg [38] Presented a detailed study
of the guantum one loop effects in Kaluza-Klein theory including
matter fields in the form of scalars, spinors and vector fields.
In their approach, one starts from Einstein equations in (4+n)
dimensions with the energy momentum tensor arising from the
quantum fluctuations of matter fields. Candelas and Weinberg [38]
find the effect of a single matter field is extremely small for
both scalar and Dirac fields and need large number of them to have
an appropriate wvalue for the Eauge coupling constant. Candelas
and Weinberg [38] find that for 44p = 7,11,15,19 and 23 the theory

with a flat background metric (classical solution) is stable and
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with suitably large number of scalars and fermions, the theory
with 44n = 9,13,17,21,27,31 and 35 are stable. Kato and Saito

[39] introduced additional Abelian gauge fields to examine the

above scenario. Nevertheless it 1is important to examine the
gquantum effects in a specific model with spontaneous
compactification. An attempt in this direction was made by

Castaldini [40] who evaluated the quantum one-loop potential for

the monopole induced compactification of ' x S2 six dimensional
theory due to Ranjdbar-Daemi, Salam and Strathdee [15]: however
they restricted the physical manifold to ME.

The Kaluza-Klein philosophy provides a geometrical origin to
the gauge fields as part of metric in a higher dimensional
gravity, It is remarkable that the gauge transformations (both
Abelian and non-Abelian) are nothing but a class of coordinate
transformations in an enlarged gravity theory {base point
preserving automorphisms). This initiated many [41] to formulate
Kaluza-Klein theory from fibre bundle point of view. Dolan and
Duff [42] have shown if one keeps m # 0 modes in the TFourier
expansion of the fields then one finds a Kac-Moody extension of
Poincare algebra. Weinberg [43] proposed a quasi-Riemannian
structure for the Kaluza-Klein space which was studied in further
detail by Viswanathan and Wong [44].

. While the Kaluza-Klein methodology is very attractive as far
as the description of gauge fields and possible unificatien with
gravity (neglecting any propagation on B" as this requires planck

energies) are concerned, it poses serious difficulties once

R




fermions are intreduced. Compactification of the extra dimensions
triggers a scale, planck mass, rendering fermions to acguire
planck mass(Lichenorowicz theorem [45] ). The (physical) ohserved

fermions are very light and so to obtain chiral fermions in

Kaluzra-Klein theory after spontanecus compactification is
exceedingly difficult. However in some specific models it is
possible te obtain chiral fermions. For example in M' «x Sz,
monoepole induced compactification scheme, the gauge invariant

coupling of fermions with the Sz monopole field allows us to
realize chiral fermions. One may well consider introducing
parallelizable torsion [46] in B" to ebtain chiral fermions, since
torsion in B" will net affect the equivalence principle in Hq.

In view of this many attempts have been made to construct a
phenomenologically viable unification scheme, While it may be
feasible to construct a unified picture of electroweak theory with
Bravitation with MY x B3 where 33 = 52 by S1 representing
SU(2)/U(1) and U(1) groups relevant for electroweak theory of
Salam [47] and Weinberg [48], the introduction of guarks poses a

more serious problem. The strong interaction is now accepted to

be described by SU(3) symmetry and so following Witten [12] the
]

appropriate manifold is M' x SU(3) x SU(2) x U(1) which can be
realized in the coset space approach as M' x Cp° x 8% x g! where
cP? = SU(3), /U(2) and 5% = SU(2)/U(1) and §' = U(1). The

manifold Cp° does not admit spin structure [50] and so we cannot
introduce quarks! However it is possible to circumvent this

problem by appealing to ‘generalized spin structure’ [51]




according to which, such manifolds as CP° can admit spin structure
provided the spinor is coupled to a topologically non-trivial
1-form, In fact CpP? naturally admits an U(l) instanteon which can
be exploited to define spinors consistently on cpZ,

The revival of the Kaluza-Klein theory with added features
essentially occupies a major part in supergravity and super string
theories which are higher dimensional theories. The technigque of
Kaluza-Klein spontaneous compactification could be useful feor
dimensional reduction of higher dimensional theories. The
incorporation of fermions and possible realization of chiral
fermions provide deep insight into the geometrical structure of
the theory.

In this thesis, four important aspects of the Kaluza-Klein
theory are studied. They are

(i) Quantum effects in Kaluza-Klein theory with spontaneous

compactification induced by a non-linear ¢-model,

(ii) Asymmetric expansion of space in a model in

which the extra space has a non-linear o-model field.
(iii) Spontaneous compactification of M' x Cp° induced by
instantons in CPE. and fermions.
and
(iv) Generalized spin structure on cpe.
Our results are published [51, 52, 53, 54] in various journals.
We summarize our results below.
(I) We have evaluated the 1-loop potential fer the scalar

fields in the form of a non-linear o-model coupled to gravity in

10




Kaluza-Klein theory proposed by Gell-Mann and Zwiebach | ] For

the product manifold bﬁ x E:3 it is shown that the classical

l solutions are stable against quantum fluctuations.

(I.1) The quantum fluctuations of the scalar fields with
‘ respect to the classical solutions are vectors in the =calar
‘ manifold and are treated as divergenceless and gradient of a

scalar guantity.

(I.2) The l1-loop effective potential for H4 x Egis found to

be

gl-loop  _ { :4 {132 c:?}+ﬁc(51+%nzc{3}}
2n) dm

where r is the radius of S° and L is the Riemann T function.

Parametrizing the l-loop potential as Cn / rq. wWe find Gn=

2.54 x 10! and the teotal potential VvV = VE]+ Vq becomes

unr“+%where a = na/A"a® 0. (see chapter 2 for details).
r

Varying with respect to r, the only parameter, the minimum occurs
1

AC :'\2 29 4+n
when r = rmi;:E_LE_JEJ +50 to have a stable minimum Cn> 0.
n- oo

Thus the system with classical scolutions is stable against quantum
fluctuations.(i.3) By demanding spontaneous compactification with
energy momentum tensor coming from the one-loop effective
potential, we obtain an algebraic constraint on the size r of the

8n Gu{n+4}c

internal manifeld as "= AlE=1] =, indicating that Cn has to be

positive as r%> 0. Our 1l-loop calculations give Gn} 0 and so is

consistent with this analysis as well.(See chapter 2 for details.)

11
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(II) A Kaluza-Klein theory based on the sigma model induced
\ compactification scheme is shown to admit dynamical solution with

| the usual space expanding and the extra space contracting.

| (II.1) The action for (4+n) dimensional gravity coupled to a

non—-linear o-mode]l is

S = d**" z /G —%R+—l- ¢ m (¢) a8 ¢ a @
32 ij M N

where 2" = {x”,yl} with x“ as the usual space-time coordinates

L

and yl the extra space, GHH (44n) dimensional metric, R = R GHH

HH L
mui¢} the scalar manifold metric and @' are the n-scalars.The
classical field equations for this action are examined with
respect to generalised Friedmann - Robertson metric

ds® = dt® - R? (t) g dx" dx" - R? () g dy' dy!
3 mi I ij .
The scale Tactors are given respectively by Hj{t} and H[{t}. We

assume r{t+tu]“and R[t+tﬂ}ﬁ respectively, where tuis the time at

which all space dimensions have comparable size., It is found then

« - 3% /6n+3an® and p = B =76n+ 3n’

3(3+n) = n(3+n) showing the usual

dimensions expand while the extra dimensions contract.

(IT.2) The classical field equations further give a new

constraint 2/2% a? = K, where K is the constant curvature of the
compacl extra space and gij = - a mij'
12

N T




(I1.3) The classical field equations in the monopole induced
compactification scheme do not admit such solutions. This is

found to be due to the presence of cosmological constant term in

this model.

{II1) We propose an instanton induced compactification scheme
for I~i4 X EPa Kaluza-Klein theory. The instanton configuration is
in cp® which triggers spontaneous compactification. Much in the

spirit mentioned above, we show that it is possible to obtain

chiral fermions.

(IV). The manifold cPp? as such does not admit spinors. An
explanation based on the concept of parallel transport of vectors

(spinors) is given to demonstrate this result.

(IV.1) The manifold CP° naturally admits an U(l)}) instanton.

This is then coupled te fermions and using the concept of parallel

2 ) ; 5
transport, we show that CP" can admit generalized spin structure.

The thesis is organised as below.

Chapter.I: Provides a brief review of 5-dimensional Kaluza-Klein
theory and its generalization to (44n) dimensions. Here we

demonstrate how gauge transformations beoth Abelian and non-Abelian
can be obtained from a class of co-ordinate transformations. Alse

the result that the Dirac operator in the internal space is the

13




essentially the mass operator will be derived. Notation followed

subsequently is established.

Chapter.II: Provides an explicit spontaneous compactification

scheme proposed by Gell-Mann and Zwiebach [17] and the action is
expanded in the background field method. Assuming a flat
background the eigenvalues and degeneracies of the fluctuation
operator for the scalar field f{luctuations are obtained and the
regularized 1-loop potential is calculated. Stability is

discussed.

Chapter.III: Contains an analysis of the model in Chapter.Il with

a view to obtain the asymmetric expansion in Kaluza-Klein theory.

Chapter.,IV: Provides a spontanecous compactification scheme

induced by instantons for M' x CDP° Kaluza-Klein theory. Chiral

fermions are discussed.

Chapter.,Vv: Contains the study of CPE space for generalised spin
structure using 'parallel transport' concept and coupling fermions

to instantons.

The contents of Chapters II, I1I and IV have been published
respectively in
(1) Quantum effects in Kaluza-Klein theory in the spontaneous

compactification induced by a non-linear sigma model,

14




(2)

(3)

(4)

(B, Chakraborty and R. Parthasarathy)

Classical and Quantum Gravity 6 (1989) 1455,

Dynamical compactification in Kaluza-Klein Cosmology
(B. Chakraborty and R. Parthasarathy)

FPhysics Letters A 142 (1989) 75.

Instanton induced compactification and chiral fermions
(B, Chakraborty and R. Parthasarathy)

Classical and Quantum Gravity 7 (1990) 1217.

On generalired spin structure on cP® manifold

(B. Chakraborty and R. Parthasarathy)

Classical and Quantum Gravity (Accepted for publication)
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CHAPTER I

REVIEW OF FIVE AND HIGHER DIMENSIONAL KALUZA-KLEIN THEORY

Section 1

Here we are going to review briefly the five dimensional
original Kaluza-Klein theory[1] where it incorporates four
dimensional Maxwell's electromagnetism, along with four -
dimensional general relativity, Later in section 2 we shall
discuss about its higher dimensional generalizationl2] to include
non-abelian gauge theories,.

Consider pure gravity in a five (4+1) dimensional space time,
where the additional dimension is taken to be a compact circle

1

S° of very small size to render it inaccessible to present day

accelerators. Let ZH = { x”.y } refer to the co-ordinates of

this five dimensional manifold. The most general co-ordinate

transformation is

¥ #

AR, L

B (1.1)

But Kaluza's ansatz is to consider the restricted co-ordinate

transformation
1-:1'I — x s X - fxu}

Yy —— ¥ = v + f{x#} (1.2}

With this ansatz certain consequences are immediate. If p is a

five dimensional contravariant vector, then the components

pp transform as a four-dimensional contravariant vector. Similarly

L ;
the components p” of & contravariant second rank tensor P

HH

13




transform like a 2nd rank tensor in four-dimension. P5 and F5
behaves as scalars in four dimension. On the other hand p5 and
p“ do not have well defined translormation property in
four-dimensions. But one can define a covariant counterpart ﬂuuf

u

P in 4-dimensions as
(1.3)

with GHHiS the metric for the five dimensional space~-time where

it can be shown that ﬂptransfnrms like a covariant vector in four

dimensions.

Defining four - dimensional melric tensor ggu as the one

which gives ﬂh from p“ as

P (1.4)

we get

£ = G 5 s B =G”u (1.5)

Now let us write Lorentz force equation in four dimension in a

general covariant form , which is

= _d dx” _ 1 agcp dx”  dxP F dx” (1.6)
o dt gpu dt g axH dt dr 4 o dt '

where muis the mass and q is the charge of the particle and T is

20




the proper time.Now one can ask whether this equation can be

obtained by considering the five - dimensional geodesic equation
2 .M p Q
d Z H dZ dZ ~
2 i FPﬂ dt dt = U
dr™

or equivalently

d (5 4z _1 9%q  ag® gz (.
drt MN  dT = AR M dt dt '
d Z
Following Kaluza, let us assume that the coefficients GHH be
independent of ¥ and GE a constant. Then for M = 5, equation
5

(1.7) gives a constraint

GEH qr- ~ 8 [ a constant)

Using this constraint, the M = g part of the eguation (1.7) becomes

d [g dx“] _1%Bop ax® axP s [a""us T ] dx”
dt po dr p axH dt dt GE5 axH A dr
(1.8)

This equation (1.8) when compared to (1.6) suggests that the

metric components Gp5can be identified with the electromagnetic

vector potential.
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_H5 = A = AL (1.9)
- : = ;
Cgs H My
with this identification, the d-dimensional part of the

f-dimensional geodesic equaltion yields the Lorentz force equation.
This can be Laken to be the first hint that a 5-dimensional theory
with Kaluza's ansatz (1.2) unifies electromagnetism with gravity
in the sense that both the d4-dimensional ®gravitation and
electromagnetic fields are components of the metric in five
dimensions. The constant 'a’ in (1.9) depends upon the specific
particle under consideration.

The metric GHH can then be specifically written || putting

G = 1 ) using egquations (1.5) and (1.9)

o [ A G

So considering pure gravity action in five dimensions

S= - I a* x dy y @ P (1.11)

and integrating over the v co-ordinate we get the four dimensional

effective action

S = -[a'xv@g r - $[a" xv/4 B B (1.12)

22




where the first and second term correspond Lo 4-dimensional

gravity and 4-dimensional electromagnetism respectively., From the

Einstein's equation that follow from the above action {1.11) is
EHH

- % ¢"™ R = o0 (1.13)

The M = p, B = v components of this equation is
R -2 g -1 S L gz el (1.14)
2 2 4 o

If the matter fields are present, they are taken into account by
putting the corresponding energy-momentum tensor Tpuun the right

hand side of the Einstein's equations. While the left hand side
describes geometry, the right hand side deseribes matter. In
contrast to this, the pure gravity in 5 - dimensions 1in
Kaluza-Klein yields the left hand side which naturally contains
matter fields. Transferring to the right hand side we have the

standard equation for gravity and electromagnetism.

Now consider a sub class of co-ordinate transformations in

f-dimensions

*H — xH o= and y— ¥ = v + f{x”] (1.158)
Using the transformation law of metric GHH under the above
co-ordinate transformation (taking Gqs = 1 again), we find
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# 1 o ; 8]

using (1.9) it follows that the vector potential A“ transform as

H v
= - il .
A# —_— A# A” a,l-l (%) (1.17)

which is the familiar gauge transformation for electromagnetic
vector potential. If fermions are introduced in the action {1.11)
then one obtains the usual minimal coupling with A

It is to be noted that the momentum conjugate to the fifth
co-ordinate gives the charge of the particle and the vanishing of
the divergence of (| ﬁ" = % G: ﬁ ) for M = §5 gives +the
conservation of charge. Here we note that the metric as it stands
in (1.10) have all the components of GHH independent of v¥. This

corresponds to the n = 0 terms of the fourier series expansion of

the wvarious metric components as they must be periodie in the

co-ordinates {( ¥y = @, r being the radius of the 51}
+m
s {“} infd
g (00 =) glt) () e
-
Z aln) (x) etn® (1.18)
i
{=n)
w ete.
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The vacuum being characterized by the ground state metric GHH in

(1.10), is given by

T | O
S p
€ B B 3 [ o 1 J (1.19)

which implies that the symmetry of the wvacuum is four dimensional
Poincare group © R. Note that the gauge group is R rather than
U(l) because this truncated n = 0 theory has lost all memory of
the periodicity in 8 [3].
At last we are going to relate the charge to the size given
1

by the radius 'r' of 5, For this we consider a complex scalar

field ¢ in five dimension being described by the action[4]
4 T MH
S = j d'x dy /G [ (8,9) (8,9)" G ] (1.20)

The assumption of compactification means that P can be expanded in

a Fourier series in y { i.e.8) like (1.18)

B = 2: ¢“ﬂ {x”} exp ([ in8@ ) (1.21)

Inserting this (1.21) into the action (1.20) gives on integration

over y
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(1.22)

showing that the charge is quantized in discrete units (1/r) where
e is given by (n/r). If we put the known values of the electronic
charge as e we indeed get r to be of the order of Planck length.
Section I1

Here we discuss briefly the generalization of this five
dimensional theory +to still higher dimension in oeorder tao
accommodate non-abelian gauge theory. This generalization
is due to B. deWitt, Salam and Strathdee, Cho, Che and Freund
and several others[Z2]..

Because of dimensional economy one generally takes the extra
space to be a coset space B" = G/H. Te this end we start by
giving a brief outline of the mathematical formalisms of coset

space as discussed by Salam and Strathdee[2].

Let ZH: { xﬁ, yi] be the co-ordinates of the entire (d44n)
dimensional space-time manifold with x“,yi parametrizing the base
four dimensional Minkowski space M*and B"= G/H respectively. Thus
yl corresponds to the cosets of @ with respect to H. Let there be
a chosen representative element Ly E G from each coset.

Multiplication from the left by an arbitrary element g € G will

generally carry L into another coset, one for whieh +the
¥

26




representative element is L

e

g L = L., h with h e 1 (1.23)

o . ; ; ; i
Both ¥ and h are determined by this equation as functien of ¥

and g.
To define a covariant basis consider the left invariant
I1-form

=1

ely) = Ly d L (1.24)

¥

¢
This object belongs to the infinitesimal Lie aldebra G of G and

therefore can be expressed as a linear combination of the

generators Q. , satisfying [Q., Q.] = P Q. as
a a b ab (al
i
ely) = e% (y) Q. = dy ET' (v) Q- (1.25)
a a
The generators . falls into two categories : The set @ which
a a
generates the subgroup H and the remainder set Qa a = 1, ..n

associated with the cosets G/H. Correspondingly one writes

ely) = e%(y) q, +e® q_ (1.26)

a

0f special interest are the 1-form wvalued coefficients ea{yj =

e dyl provide the orthonormal basis on the cotangent space. And

e? are the n-beins. The adjoint representation D(g) of the group
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G is defined

g Q. g = D. (g) Q. (1.27)

e

Under an infinitesimal left translation by 2 = (1 + Ega @. ) we

87
have from (1.23)
b = b = L = i e B (1.28)
¥ v’ y+8y ¥ ’
Writing h =1 + & h® @_ , we get
a
sy" = 82" K.l (¥) (1.29)
=8
where
k.2 = p.P () ebl (v) (1.30)
a ¥

defines the components of the killing vector K. = KL ai and E;{y}
a a

being the inverse of Efiy}. It is easy to show that the killing

vectors also satisfy G Lie algebral[f]

Ead

[BaiBa] = = £.9 g8 (1.30a)
a b ab ¢
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Now coming back to this higher dimensional theory, we make

the ansatz for (4+n) bein E: (x,%) as

Chad)

from which the (4+n) dimensional metrie GHH is ecalculated a=z

GHH = EH EH r'l.iEI
{ £,,(%) + A 2(X) A0 (%) & "(y) K,2"(y) g () ‘ AL (X) B (y)
a
A K (y) ‘ g (y)

(1.32)

As in the five dimensional case this metric corresponds to
the lowest order term of the series obtained by harmonic expansion
on G/H.In the low energy sector only the leading term will be
relevant. This ansatz (1.32) is compatible with a subgroup of
{44n) dimensional symmetries: the d-dimensional general

co-ordinate transformation

and x dependent left translation

v — vy Hix,y) (1.33)
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with associated frame rotation Dab{h}. This in turn implies the

following transformation Law for E a

a a ax” b Byi b a 1
E,u (x,7) — Eﬁ (x",¥") = [ m E,” (x,¥) ¢+ e (¥) ] Dy (h )
ax’ dax’
In particular,from the ansatz (1.31) we get
a b o> . b c ay' c b 1
- A,:I (x")D. (L }=[— i Ay /g 4 et ) PR B Yﬂ e [(¥) ]D (h )
a ¥ dx’ b J dx’
From this it can be shown that
ax” = -1
A° [x")] = [EA{:-:} g -89, 6 g ] (1.34)
H ax'H ¥ 4
where AP: AE Q. and g € Q. This is precisely the rule of
7
transformation for a Yang - HMills potential under gauge
transformation. Thus we get gauge transformation in 4-dimensional

space as a manifestation of co-ordinate transformations in the
extra space B"., In view of the relation {L.30a) this identifies
the four dimensional gauge group with the group of isometry of the

coset space B,

Assuming torsion to be zero, we get the spin connection one

form w as

=dE" + w A E i
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From where the various components of the curvature twe form can be

computed using

{1.35a)

Finally computing the scalar curvature R for the entire [4+n)

space one gets

ES ~

a g b po (L) D,_“[Ly} + R (1.36)
a

R=R+%F
b

L
Here R is the usual 4-dimensional curvature scalar and Rn Lhe
constant curvature of G/H. On integrating over the internal
co-ordinates yi one gets usual four dimensional effective actieon
consisting of 4 dimensional gravity with 4-dimensional Newton's
constant G4= Gi+nfﬂn {G4+“ being the (4+n) dimensional Newton's

constant) along with 4-dimensional Yang - Mills field described by

the gauge group G. We use the orthonormality relation

—(1} jd"y det e{¥) D.% (L ) D.% (L ) = k .- (1.37)
n a y b ¥ ab

Ei%fﬁgéﬁl and Q is the volume of B"and det[E{Y}}=det[E“l}.

where k=
We note tLhat Rn iz effective cosmological constant in four
dimension. This term was absent in five dimensional case as
curvature of §' is zero. Now we shall show that Hn or rather Riecci

curvature tensor must be non zero in order to realize Yang-Mills

fields with non-abelian gauge group G.
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Y

As we know the killing vectors Kaimust satisfy by

definiticon

y (138

Multiplying (1.38) by &Y ;. one finde that +the covariant

divergence of the killing fields must wvanish

| {1.39)

Again applying ?k on (1.38) and then multiplying by g!k, we get

using (1.39)

(1.40)

{(1.41)

(1.42)




Now from this equation 1.43}) il fellows +that if +the Ricci
curvature R“J vanishes, then we must have ?i ka= 0, which in turn
m

implies that the group must be abelian (see eguation (1.30)).

[u-.ﬁn} = RE W, - xS vV, K. =0 (E Ay
=8

Thus we see Lhalt Lo realize non-abelian symmetries we must have
non-Riceci flat extra space B". To balance this curvature in B"
one has to put additional matter term on the right hand side of
the Einstein equation.

the relation between charge and the size of circle 5! in the
five dimensional case was generalized by Weinbergl[4,68] for this
non—-abelian ©¢ase also where +the relation between the gauge
coupling to the appropriate root mean square circumference of the
extra space is established.

The ground state geometry of the whole (44n) dimensional

; ; q 0 .
space time 1is taken to bhe M x B" with the corresponding wvacuum

expectation value of the metric GHH being

(1.45)

To balance the curvature of B" in the ground state the wvacuum

expectation value of the energy momentum tensor THH also must be

non vanishing.
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We have seen that the gauge group G in the effective four
dimensional theory is given by the isometry group of B". However
this statement requires modification if the matter fields ® with
non zero vacuum expectalbtion value transform non trivially under G

that is

£ <b> 3 0 (1.46)

in which case the unbroken gauge group corresponding to the
massless gauge bosons is given by some sub group of G. For
example in the Gell-Mann and Zwiebach [7] model we consider (see
Chapter 2) the o - model fields <¢'> # 0 break all the symmetries
leaving no massless gauge bosons at all in the d = 4 theory.

Though Kaluza-Klein methodology is very attractive as far as
the gauge fields are concerned it poses serious difficulties in
getting chiral fermions (See Witten [2]).

To wunderstand the basiec idea of getting massless chiral
fermions let us consider a massless spin 1/2 particle in (4+n)

dimensional theory satisfying Dirac equation

DY =0 (1.47)
Famury F"'Eh"‘?ﬂ'{f’ =0 (1.48)

where D= TAEﬁH?H is the (4+n) dimensional Dirac operator. o

are the generalised Dirac matrices satisfying (44n) dimensional

Clifford algebra {I', 1%} = 21*® ana V= 9, * W, .with © being

AB
S0(1,3+4n) Lie algebra valued spin connection ( =1/8 w

H[ﬁ,E]E )
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The wave function ¥ is treated as a world scalar and a 30(1,34n)
: A 2+[n/21

spinor having 2 ([n/2]=n/2 for n even and (n-1)/2for n

odd Jcompenents. This Dirac operator can be written as a sum of

the Dirac operators corresponding to the 4 and n dimensional

spaces respectively enabling us to rewrite the equation (1.47) as

DM}'F + D ¥ a0 {1.49)

The expression (1.49) immediately shows us that the eigen value of
the Dirac operator in the n dimensional internal space D{"}will be

observed in practice as thed-dimensional mass. Thus to get chiral

fermions we must get hold of the zeroc modes of D{"}= Fae;?i. But
a
it can be shown that the square of p‘! ig {—?a? + 1/4 REH}L
a

Since (- ?a? ) is a positive operator (eigenvalues on compact B"
space are positive) and R“”>D for a compact B" we can not have
zero eigenvalues far Dh” and hence no chiral fermions . This is
the famous Lichnerowicz theorem[8]. To circumvent this difficulty
one generally puts topologically non trivial gauge fields, like
monopoles in Sz, which besides Lriggering spontaneocus
compactification, will couple to fermions and the mass operator
will become Faeai [?i+ ﬁi} whose sguare may admit zero
eigenvalues, Alternatively one may put torsion on B". Wu and
Zee.Destri,Orzalazi and Rossi[9] have analysed the zero maodes on
compact group manifolds with parallelizable torsion and have found

many such modes. However, they find that these solutions are

parity invariant thus belonging to the real representations of G,




By considering B" to be 54.Neville[10] demonstrated that S' has
zero modes if the gravitational field is endowed with torsion
where the spin connection corresponds to
.?elavin-Pnlyakuv-schwarz—Tyupkin. {BPST} S5U(Z) dinstanton. Later

‘Tchrakian[11] generalized it for s'P.
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CHAPTER II

QUANTUM EFFECTS IN HALUZA-KLEIN THEORY WITH SPONTANEOQUS
COMPACTIFICATION INDUCED BY NON-LINEAR SIGMA HDDELl

In this Chapter, we study the quantum effects in Kaluzma-Klein

theory with spontaneous compactification induced by a non-linear
sigma model proposed by Gell-Mann and Zwiebach [1]. This study is
of two fold interest. It can be used to trigger a dynamical
compactification in which the energy momentum tensor arises from
the guantum fluctuations of the various matter fields or it can be
used to examine the stability of a given classical solution (in
which the energy momentum tensor is due to some topologically
nen-trivial classical field configuration) against the quantum
fluctuations. In higher dimensional theories, the extra
dimensions are usually assumed to form a compact space of size of
the order of Planck length, undetectable at present. This
assumption thus far has no natural explanation as to its origin.
Appelguist and Chodos[2] showed that the guantum fluctuations in
the original 5-dimensional Kaluza-Klein theory may be responsible
for the smallness of the 5th dimension - Casimir effect mentioned
in the Introduction. However parametrising the gquantum one loop
potential, when all the fields are massless in (4+n) dimensions,

by Cfr4where r is the size of the manifold of extra dimensions, C

1B. Chakraborty and R. Parthasarathy, Class. and Quantum

Grav.6 (1989) 1455,
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is found to be negative in [2]. While this provides an attractive
force, similar to the attractive force between the parallel plates
in the original Casimir effect, responsible for shrinking the
extra space to Planck length, poses problems of stability of the

theory against guantum fluctuations with respect to the classical

background field assumed. In fact inclusion of matter fields [3]
render the +theory =stahle. The s=tability argument need to be
understood in the following manner : +the effective potential when

varied with respect to the size of the extra space r has to have a
non—-trivial minimum and this happens when C » 0. 1In fact Candelas
and Weinberg[4] have evaluated the guantum l-loop potential due to
scalars and fermions assuming flat background metric for
gravitation. Using the positivity argument for C, they conclude

that a Kaluza-Klein theory with 4+n = 7,11,15,1% and 23, with
their ansatz for classical fields, is stable against quantum
fluctuations. With suitably large number of scalars and fermions,
Candelas and Weinberg[4] obtain the result that for 44n =
9,13,17,21,27,31 and 33 the Kaluza-Klein theory could be made
stable. Thus it appears that the matter fields play a dominant
role in governing the stability of the theory. Following [4],
Kato and Saito [5] evaluated the contribution to the 1-loop
effective potential due to Abelian gauge fields in (4+n)
dimensions. Although the introduetion of gauge fields is against
the very spirit of Kaluza-Klein theory in which they arise as part
of metric, their [5] results indicate that 44n = 7 te 17, C 1is

positive and hence the theory is stable. It is to be noted that
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the quantum effects evaluated in references [4] and [5] are for

wmﬁﬁtrar? number of extra matter fields, arbitrary number of

nynnlars and fermiens in [4] and Abelian gauge fields in [5]. Thus

it is important to examine the quantum effects in smecific modefs
ik eponlaneows  compaciificalion. Specific

model s such as

‘monopole induced compactification of Randjbar-Daemi, Salam and

-:-',ﬁzﬁrat.'hdce [61] and eigma-model induced compactification af

‘Gell-Mann and Zwiebach [1] are proposed for possible unification

of gravity with gauge fields and so their =stability against

guantum fluctuations should be examined. Secondly, in these

models one has to consider the fluctuations of various fields with

respect to the solution of classical Einstein equations for

Hﬁ %« B"™ and these fluctuations are of different nature from those

gtudies in [4] and [5]. An attempt in this direction was made by

Castaldini [7] who examined the monopole induced compactification

model [6]. To avoid conformal anomalies arising in even

dimensions [4], Castaldini [7] retained the magnetic monopole

classical solution on 52 but considered the dimensieons of the

usual space time to be 3,5,7 and 9 which is in contradiction with

ihe reality of +the physical werld. As the monopole induced

compactification [6] is for Mtz s?

in 52, Castalidini [7] is

with monopole configuration

forced to consider M3 X SZ,M5 x 52

iﬁ x Sz and Hg x 52_ On the other hand the non-linear Sigma

14 detined an MY = 8% a&ud =0

model induced compactification [1]
e need not choose odd dimensions feor Lhe physical spacetime. To

our knowledge this study has not been made in the literature.




Although Gell-Mann and Zwiebach [8] themselves discuss the

fluctuations they did not evaluate the l1-loop potential.

§ 1 Sigma model induced compactification :-

In this scheme the spontanecus compactification is triggered
by a scalar sector in the form of a non-linear sigma model.
Dimensional reduction induced by non-linear sigma model has been
studied earlier by Omero and Percacci [9].

This model is based on Einstein gravity in (D+n) dimensions
(D can be eventually taken to be 4) coupled to a non-linear
g-model with scalars ¢i, i = D+1,...D+n, as coordinates of an
n-dimensional compact scalar manifold, of metric m, .(®}). The

1J
action is

s= [a"™ 27 q iR+ "™ (e) a0 8, ¢ (2.1)
3 2 ij M "
where 2" = {X“.Yl}, g=1,24y.,..D 3 i = D+l,... D+n
xH the co-ordinates of (non-compact) D-dimensional
space
vyt the co-ordinates of +the compact n dimensional

extra space

GHche metric in (D+n) dimensions of signature (+ - ...-]

A M

R is I G the scalar curvature in {D+n)

MK’
dimensions and X a constant.

The classical equations of motion are obtained by the variation of

the action (2.1) with respect to the metric ¢" and ¢, They are




espectively,

-~ g £

RM-? n; ;(#) 8,870,0 (2.2)
VG [_a s {¢1} "™ aslagel = 23 [,r’s' m () a”qu‘j] (2.3)
i 3P ij H N M P

Gell-Mann and Zwiebach [1] made the ansatz,
i 1 i
(X, Y) = ¢(Y) = ¥, (2.4)
i.e. the scalar fields ¢~jare assumed independent of x and further
identified with the coordinates yv' of the manifold B". 1In fact
 this ansatz for g" = g? corresponds to monopole configuration in

Sa [10]. With this ansatz, (2.2) readily gives,

R = 0

[TT)
R 1) (2.5)
ij 12 ij *

" = i3 (2.6)

iz used. The result R 0 (2.5) allows us to take M' to be

™
Minkowskian flat. 1In Bn. one obtains a very interesting relation

ﬁﬁ}. Thus the problem of scalar induced compactification is




reduced to finding a metric gi.j for B" whose Ricei curvature

equals Lo the scalar manifeld metric miJ.I{Y}. For positively
curved compact B, if gij = -azmij, then a solution exists if xZ =
_—25 where Rij{m} & Ezmij. Hers the extra dimensions roll up Lo

form a manifold of the same shape as that of the scalar manifold.

‘With the solution (2.4) and (2.6) the other classical field

'agu‘atiun {(2.3) is satisfied identically. Eaqn.(2.3) gives no new
_:]_._nif.‘urmatinn. The essential features of this scheme are (i) the
‘usual four dimensional space M' is flat {R.uu = 0) and so can be
taken to be Minkowskian flat. (ii) there is no need to introduce

a cosmological constant (to be compared with the monopole induced
compactification [6] where a cosmological constant has to be
introduced) (iii) the scalar fields are defined on the exina
space ondy and (iv] the m g metric must be Einsteinian. Harmonic
expansion can be made for s™ for example. However when the
background metric GHH in (2.6) is replaced by the Kaluza-Klein

metric with gauge fields, namely

e = i
g -aF2(xy g1 (v)
¥ a
G"H L] FS - —
AP (x) K (1) g 4 ARx) PP xy kB vy k2(Y)
. a a b -

(2.7)

where A'ua{x:l are the Kaluza-Klein gauge fields belonging to the




._algebra of G{Bn= G/H) and KE{Y} are the Killing vectors,and is
a

‘substituted in the action (2.1), the first term gives gravity in
imensions and a Yang-Mills Kinetic energy term for AE{X} after

-agrgting over v while the second term gives rise to a mass term

rﬁA:Ix}, namely

: Cl a'x /7 A%(x) APP(x) a™v /.. KE(Y) K ~(Y).
2a”2? H g ib

has a coefficient ~ L Since a is the size of B" which is
:Fsumed to be small = Planck length, the Kaluza-Klein gauge bosons
;ﬁgﬂira Planck mass. To wunderstand precisely about what goes
ff@hg-it is worthwhile here to examine the symmetry properties of
the action (2.1). It is invariant under the general co-ordinate

transformation, which for infinitesimal transformations are

g 5 e gl g %M
5GHH: G'H"{Z} - GHH{Z] = - {EH;H + EH;H} {2.8)
5¢i g ik an ¢i

It is also invariant under "internal symmetry" transformation

5G = 0 , 6¢ = n. KX (¢*) (2.9)
HH a a

iE'KfE¢k] are the Killing vectors in the scalar manifold with
a

,ffging the group index and n.' s are constants.
a
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Now in order to have mass less gauge bosons the isometries
must be invariances of the full background configuration, that is
not only the gravity but alsoc the scalars. As we have seen in
chapter 1 +that the gauge +transformations correspond to xH
dependent co-ordinate transformations in the extra dimensions

along the Killing vectors yio— vt vy &A[Ku} K}{yk}- For such

a a

transformations the metric tensor is obwvicusly invariant but the

secalars are not and yield {(equation (2.4)) Bpt = -dﬁ{K“} Hhiyk}.
a a
One can use the internal symmetry of the o - model given in (2.9)
to cancel this provided that we choose w.= f., a constant. But if
a a

) o . . .
. depends aon x we cannct have an invariant scalar field
a

background., We therefore have a background invariant under global
G transformations only and this iz the symmetry of the
dimensionally reduced theory. Az we do not have local G
invariance in d = 4 theory we have no mass less gauge bosons left.
This difficulty can be circumvented in a compactification scheme
using a general non - linear g-model [10].

In this chapter we examine the stability of the theory
described by (2.1) with the classical sclutions (2.4) and (2.6)
with guu in H4 as a flat metric against guantum fluctuations.
Therefore the afore mentioned issue of Planck mass for

Kaluza-Klein gauge bosons is not relevant here.

§.2. Fluctuation analysis :-

The action (2.1) contains two kinds of fields namely, GHH and




Let GHH and ©®% denote the solutions to the classical

':'_B':;tfl_.tins af motion, which are

G = B = o ) (2.10)
MH 0 —a mij{Y‘.l
13

o
m |

ot = ¥ (2.11)

The fluctuations around the classical solutions are defined by

Qo = Qg 6 hyy (2.12)
‘and ot = Y 4z (X,Y) (2.13)
where h“ and 51{}{,‘{} are the fluctuations. It is to be noted

Rl .
>L3|'.‘-h':_ﬂ_:. while the elassical solution ¢'i E yl not depending upon K“,

Ibhe fluctuation zi{}{,‘f} may have x-dependence as well., We use the

fiefd empansion and treat the fluctuations to be small
when compared to their classical counterparts so that terms of
order more than quadratic in h“ and ziin the expanded action are
neglected. This standard procedure essentially linearises the

IfJ.ﬂld equations for the fluctuations. [In the functional integral
I

iﬁgprm'alism, this allows Gaussian integration over the guantum
fields]. Substituting (2.12) and (2.13) in (2.1)and using the

.ﬁir;_pansion for R, gt and y G , we obtain
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+ 5 + 5 (2.14)

iz the classical action involving E'Hnand ot
is the part guadratic in hHH
is the part quadratic in 7"

Shz is the part guadratic in the combined fluctuations

i

i.e terms involving hHH =

-

iﬁ??detalled expressions of Shh, Szz and ShE are given below

hHF hﬂq] (2.15)

g Pd W D j]~ﬁ . ztgd ] 2.186
+ g { mij { ﬁp z J [ a Z — 28 { }
e 2 4+n /= - pg - R | pa = }
s = —— Dh™ =< D h)-h D AP
hz 12Id R [g 25(Dhy ~ 3 Dgh) p%q ¢ )
.ﬁ;ira the covariant derivatives D and D are taken with

o H P




‘background metric EHH and with the scalar field manifold metric

e

@Eﬂ respectively. ia the Riemann tensor for the scalar

R. .
1pJqa

B : _ J
‘manifold. Finally 2y my g B

ﬁiﬁ 1-loop operator :-

We examine the fluctuations in the matter field ¢1. This is
|

ﬁﬂ the spirit of Candelas and Weinberg [4]. Then the expression

{2.12) involves Szz only, besides Sﬂ. [we derive the expression

Bfor S given in (2.16) in the appendix I to this chapter]. By
ZE

. ; ; == 2 i
using the classical equation Eij = —-a mij’ it follows

R _,. =R . . {(2.18)

The extra space B is taken to be s™. This choice had been made

by Gell-Mann and Zwiebach [B]. The line element is then given by

ds® = p° Koq dyP dy? (2.19)

where r is the radius of s and so the metric

R (2.20)

using g = -a‘m__. S becomes after an integration by parts
i P4 Pa br

e _1_2.J al*tz /@ zi[ 2 L {vi + {n—ll}] 2zt (z.21)




Ol = 2 i Du Du‘ the d"Alembertian in M *space

~and ?z = Fe DP Dq' the Laplacian in s" modulo r.

The operator in the square bracket in {2.21) is the desired

one-loop operator for the gquantum fluctuations of ¢1 in the

Ehecry. A few comments are in order. First of all the integral

in (2.21) is guadratic in z' and so in the generating function

L = I [dzile- 2% the functional integral hecomes Gaussian. This
is the result of keeping terms up to quadratic in z:.L in the
expansion. The terms linear in zi drop out by virtue of eguations
of motion. Secondly although o in (2.21) is in M', it still

i :

. i 1 i y .
‘acts on i since 2 = z (X,¥Y) will have in general some

x-dependence.

'§,4 FEigenvalues and Degeneracy of the 1-loop ocperator :-

As remarked above the one-loop operator acts on zl{X,Y} which
are components of the contravariant vector 2z on the acafaa

. : - _ .z =y o .
manifolfd . By the classical equation gij = -a mij{gij = T kij is

‘the metric on the scalar manifold and both these are same except
for a scaling factor) we understand that both the scalar manifold

and s” have same topology. With the product manifold structure M4
o n ; ; : = p _ 4,
x s in mind, the eigenvalues of I:] =g DFDu—r[p a.uap (M is

.
‘other hand, to find the eigenvalues of ?z which is the Laplacian

2 n . . 2 ;
on S5 we have to do harmonic analysis on En. This is carried




out in the dnpnendiz 11.
As z''s are contravariant vectors on S we decompose it into

a divergenceless part and a gradient of a scalar part. We need

eigenvalues and degeneracies of v for both the cases which are

‘distinctively different. Let us denote the eigenvalues of vi by

.E@,ﬁ} and degeneracy by d(n,£{} where the indices (n,{)

are due
to harmonic expansion in 5" (see appendix IIL}.
). 2 i
Case.l: v 5 i
Case.l When 2 acts on z considered as divergenceless
ED [n,£) = £{L+n-1) - 1 (2.22)

im0y = e { (7] 0 (M52 ) 0 e |- ()

- . 2 i : .
Case.2: When ?a acts on z considered as gradient of a scalar

A, (n,2) = B4 =1 fn-l) (2.24)

d.(n,t) = [nf] - [“E{‘f ] 6 (£-2) (2.25)

‘Where, the suffixes D and G stand for divergenceless and gradient

ugﬁ a scalar respectively, £ = 1,2, ... ® (n same as in R T

'§ 5., Evaluation of 1-loop potential

The 1-leoop effective action SL for the model is given by




i = ils +8__ )
=] = I [ dzi] e 97 (2.26)

‘where S is given in (2.21). With the eigenvalues and

zTZ

. degeneracies known from (2.22 to 2.25) the functional integral 1in

(2.26) can be evaluated. The l1-loop potential is just due to S

Tz

;Eihce the degeneracy d(n,%f) is different for cases 1 and 2 (2.23

‘and 2.25) we have to sum the contributions separately,
At this stage let us recall +that the +total effective

potential V, is defined through the total effective action 5, as

e

= - J‘d‘xvl. This V = V_ + ¥R e sgEin the sun 6T tWe

cl

L

terms V ,~ the classical potential coming from S, and Froteol: g
1~1uup quantum correction coming from S . Now using the general

I

‘result that

J[d¢] E-J¢[nJA@hﬂ&x ® (det A }—1fz . OHE S

% 4 1] da{n"t}
w_ﬂl—]oup = - %}: J d k 7 ¥ &n {— k® + r_zl:l (n,£€) + n-1) }
a (27)° Ly ?
(2.27)
where the summation over & stands fnr the um over the

contributions from Case 1 and Case 2, and E and I stand for

(2m)
trace, Eqn.(2.27) gives the 1-locop potential for the specific

model (2.1) with specific classical solutiens {2.5 and 2.6) and
disdifferent from the results obtained in [4,5,7]. 1In particular,

jithis different from the contribution of scalais considered by




‘Candelas and Weinberg [4] in the sense that here z' are taken as
components of contravariant vector in §". In the study of 1-loop
‘potential due to gauge fields {vector fields) Kato and Saito [5]
find that the contribution from the

‘gradient of a scalar’ part
%Br vectors is cancelled by the Faddeev -

Popov ghost term arising
from the gauge fixing and so effectively, the divergenceless part
alone contributes to the effective potential.

A similar situation
is encountered by Castaldini [7]

In our case there are no gauge

fixing term and hence the contributions from both the cases need
+to be taken inte account,

We now evaluate (2.27) for some particular cases of interest.

Case,l: The extra space as §°

The motivation here is to compare our results for the 1-loop

potential with that of Castaldini [7] who has evaluated the

i:laup potential for monopole induced compactification scheme of

ﬁﬁﬂﬁhﬂr - Daemi, Salam and Strathdee [6], in which the coset
space is s®. At first it may appear strange to compare these as
we have a non-linear o

- model induced compactification.

is =ame Sz and for this the two

chemes may be related by appealing to a general non-linear o -

?, we have from (2.22) to (2.25)

A, (2,8) =2, (2,8) = €2+ 2 -1, (2.28)




9 (2,€) = d. (2,8) = 2£ 4+ 1 (2.29)

nsequently the sum over 'a’ in (2.27) is just a multiplication

The integral over k2 in {(2.89% i=s obviously divergent and

we use dimenzional regularization,

]
[ X _ o (-k%a?) = - L (-D/2) o2 (.30

{2m) (dm)P/2
|
ploying this, we find

1
: - I (= =599 o
{411-1 . o e 4
A s

an  arbitrary constant U of mass dimension has been

introduced. The summation over £ can be performed for D - odd and

50 we restrict to D = 3, Parameterising the l-loop potential as
5 =" - 9.6 x lﬂ-4. The negativeness of the constant ©C

ignals the instability of the classical sclution against

Tluctuations. This will be discussed in the next section.

Base.2: The extra space as S

‘The usual space time is taken to be M® which is realistic.

50 the Kaluza-Klein space is M' x g°.

fluctuations as divergenceless vectors :-




‘The eigenvalues and degeneracies in this case are given by

« (2.22) and (2.23) for n = 3. They are

R, (3,8) = & (L +2Y -1, (2.32)

dn (3,£) = 28 (£ + 2). (2.33)

. 0
g - - 1 J" d'k (2m)”' ¥ 24(4+42) £n { ~k4r A (L(42)+1) }
L=1

(2.34)

ﬁ?I— integration is done using (2.30) to obtain
®
o l=loop —{D—4} r{“DfE} i
- = —p Lo (£+2)(L£41) (2.35)
=S idﬂlnfzrn £a1 D=4
ni B(£+2) = (£+1)%-1,
e get

o] o
t; £(e+2) (£41)" = {; {{£+1}”+2 - <c+1af}
=1 =1

o aa
E {{+1}U+E _ E mﬂ+2 - Z mﬂ+2 = g v E {“D—E} = q
=1 me 2 m=10

o w0

L&+1)” = T(m® = § o -1=2¢(-D) - 1.

1 m=32 m=l
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‘inally substituting in (2.35) yields

B - e Do) { ¢ (-p-2) - ¢ (-D) } .
; (4m) r D=4
(2.36)
:"‘1 re { is Riemann [ - function. We make use of the following
nula for the { - function [12],
T (z) T % Yom R g gl p % (1-2) ), 12.37)

to express C (-D-2) and C (-D) in terms of C (D+3) and € (D+1)

respectively. i.e,
CD) T (=p/2) = #7720 (De1) T (% (D41) ), (2.38)

¢ (-p-2) T ( - g -~ 1) ="V e ey T % (D+3) ).

ring ZT{Z) = TI'(Z+1), we have

_1] = I {"D'IEJ

r( -
(- 2 - 1)

o

T(-D-2) T(-D/2) = ( - 3 - 1) "% ¢(p+a) I (& (D+3))  (2.39)

The crucial point is, the divergent part coming from C(-D/2) when

@
D=4 is removed i.e. the podiucd  T(-D/2) ) £(£+2) {{+1}n allows
'E-_l‘l

us to write down the finite result. Taking the limit D — 4 is




ible now and the result is, using (2.38) and {2.39),

vi:éoop = @ }2 3 [ 212 E{7) +.5(5) J . (2.40)
T T m

Fluctuations as gradient of a scalar :-

The eigenvalues and degeneracy of the 1-loop operator when

i i .
ting upon z considered as gradient of a scalar for n = 3, can

'myaﬁ#ainad from (2.24) and (2.25). For ?: y we have

TR T |

: £% 4 2(8-1), (2.41)

dG (3,4)

(£+1)2. (2.42)

Then egn.(2.27) gives

=4 I d*k (2m)”™" ¥ (£+1)2 &n {;k24r-z{£2+2£]} (2.43)
Le1

?Eﬁ?— integration is done using the dimensiocnal regularization

11t (2.30) to give

P e
yi-leep _ _ % 'u—'l.'h—*l} I (-b/2) _ b (L#1) % {£2+2{.}WE
i Lui

2.44
tdnjufz ru : }

D=4

sum over £ is performed by writing £ 2£={£+1}2- 1 and
etting D = 4. We observe that we have to regularize
w®

r(-z) ¥ { (£+41)° + (£+41)2 - 2(£+1)" }.

£e
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mally this is egual to
I'{~-2) {C{—EJ' + C(-2) -20(-4) }

ﬁéing (2.37),and the procedure illustrated in the divergenceless

ase we get

. A-loop 1 1 45 2
v = = : C(7) + 6 C(B) + n° r(3) } (2.45)
‘n=3 2 {EH}E r4 { 2“2

Combining the two cases for +the fluctuations, the final

result for the 1-loop potential for the model (2.1) with the

product manifold as M! 3 S3 is

B - {—}—;—4— { 2201+ 6 Ty + Lo g(a } (2.46)
2n r An

We summarize this section by giving the conclusion based upon

f;ﬁ#ﬁj and (2.31)., The 1-loop potential for the extra space tLaken

ﬁe and the wusual space time to be odd dimensional can he

f}%ﬁiued from (2.31). The choice of odd dimensions for the usual

e time is unrealistic, Further, in this case, the 1-loop

potential becomes (with ordinary space taken as HE,HE.M?.HE} Ca,fr3

c /7, ¢,/r’ with C, = - 9.6 x 107, ¢ ~ 2.3 % 102

1 5 = 1

1.2 x 1D_?and Cg = -0.5 x 1077 respectively. The effect

: . ; p M D B .
eases with increase of dimensions for M. More crucial is
in all the cases C is negative. Such a model is not stable

nst the fluctuations (next section).
In the case when the coset space is taken to he Sa. the usual
time can be taken as M’ and the Kaluza-Klein manifold is

The effective 1-loop potential is given by (2.46).
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trising it as C/r', € = 2.54 x 107%, posibive. So the

with classical solutions is stable

against the
1iations. The one loop potential due to fluctuations in the

ckground gravity (with no matter fields) in 5-dimensional

Juza-Klein theory has been obtained by Appelquist and Chodos [2]

4@5 {2“}_55{5};"r4 where r is the radius of E‘.This may be taken

‘be 1-loop potential due to fluctuations of the background

ty assuming the absence of fluctuations of the metric for 53.
. they involve large energy. When added to (2.46) it still
mains positive. In the next section, we analyse the stability

inst quantum fluctuations and obtain new results for the

hraic constraint relating r with %, a , the parameters of the

]l and for A cosmolegical constant as well.

.~ Stability Analysis

As is evident from the action (2.1) we have considered, we
have taken the Newton's gravitational constant @ in {4+n)

dimensionz to be (1/8m)

so that Einstein's eguatien in (4+n)

-~

1 %
Rywy ~ 3 G B = T, (2.47)
i@ﬂ'the ground state ansatg ¢i = yl. we have from (2.5}
R = 0
Lo
R = _-2_ m
Pg 12 Pq
e 3 _ MH -Zn
From these it follows that R = g R = —




g = -am_ . Thus the various components of T can be read
qu Pq HMHN

easily as

AoAa 2

2=-n
T = i
- [ 12] imp';l (2.48)

In particular we note that Tnn= 2 5aS the energy density in
A a

1) dimensional space-time. This is the classical contribution
the energy density. To get the 4-dimensional energy density
ve just multiply Tnc by the wvolume ’Qn’ﬂf the extra space

taken to be S™. Thus

v = = (2.49)

can get it from the classical matter action also, as can be

n easily from

S

matter

I
ey
ju i
F4
5
=]
-3
-
9
ol

o i 3
T ml et (o' ]

o I dtx v, (2.50)

This way of identifying effective potential is same as that
andelas and Weinberg.

‘Now with the ansatz ¢' = v and using gpq=—a2mpq and the fact

* i{s Ricci flat the corresponding metric can be taken as

il
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:.mmand hence ¥ G can be written as y g where g = Idet gmn

S . [d4x (2.51)
matter lzaa '
no
vql = 7.5 agreeing with (2.49).

We have already calculated the one-loop effective potential
" (henceforth written simply as V ) coming from the quantum
J_aiions of the matter fields, This when added to the

cal contribution will give the total effective potential ?t

V, =V + Vv {2.52)

St = - f gty Ve B = J atx (Vo ,+ V) (2.53)

the volume of the n-sphere S" is O = « r" for some

nt o we have

n l:F:Il
Vt = un - # 3
r
« = 2“3 (2.54)
roa

for M' x s™ with odd n we have seen that Gn> 0 and since o
dy positive, we see that vthas a non-trivial minimum thus

ing stability. Naively varying vt with respect to r, one
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min 2 (2.55)
n“o

[ 40 32a2 ]lf{n+4}
n
r = e

L]

i for stability we must have C,> 0, which we have for wt x g®
L not for HB'E’T'9 X 52.

Here we note that Ucl term {cuming from matter term only)was
ely absent in the Candelas and Weinberg [4)] case as they did
have spontaneous compactification at the classical level.
niTﬁad compactification at the quantum level enly, where +the
gy momentum tensor comes from the one loop effective potential
iined by integrating out the scalar fields. Thus it was a
pactification of dynamical nature. On the other hand we have
taneous compactification at the classical level itself. Now
grating out the fluctuations of the fields around the
ical background seolutions we get an additional contribution
antum 1-loop effective potential over and above the classical
Now demanding that the energy-momentum tensor comes from the

1 effective potential vt and implement the conditions of

i

spontaneous compactification even at this quantum level. we get a
algebraic constraint on the size of the internal manifold

. to be 5™ in our case different from equation (2.55). This

ained below.

We sitart with Einsteins equation in (4+n) dimensions (2.47)

1
Ry = 3 Cpy(RHA) = T (2.56)

‘Here the energy-momentum tensor THH arises from the total
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matter action § {i.e. both classical and quantum) of equation

(
Rli2.53). We have included a cosmological constant A into the
Einstein's equation, because we do not know a priori whether with
this modified energy-momentum tensor we can have compactification
wWithout cosmeolegical term or net. However we note +that its

absence was a wvirtue in the classical theory.

Thus we have the energy-momentum tensor "I‘HH given bw

™™ - - & (2.56a)

B =

We seek a wvacuum solution with Poincare invariance in four

dimensions, That is the metric is taken to have the components

o1
I
-
i
L
L
LR

1w iy jn e W Emn{Y] {(2.57)

The Ricei tensor and the curvature scalar appearing in

Einstein's equations are then

]
1]
o
Ll
=

i i Emn = Hmn{?} ; R = R(y) (2.58)

urvature scalar respectively. Poincare invariance gives the

.. = Bi¥) M 3 T, . =0 ; T =T (¥) (2.59)
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Then the field equations reduce to

-3 (R4 A] = B

-

.. ¥} « % i ) [ Riy) + A ] A (2.60)

In calculating, Tmn{y}. using (2.56), we must evaluate a
tional derivative of Stin {2.53) with respect to B for

ich we can fix %) and g at their eclassical values. The

E%ﬂ L = J atx v, [ g, (%) ]

Sy J d4x { Vcl[ Emn{x,yi} + V[ Emn{x:r] } } (2.61)

Then using equations (2.56) and (2.61) we get

. 55
i J

agmnlx‘ﬂ

Ean X ¥ )=g__(¥)

i 5 4 i L}
i SEmn(an] J d’x Vi [Emn{x ¥ ) }

E.mn':xr 1 ¥) = Emn{y]

______ - leads to
1omn _ avg[gmniril (56
2 g (v)

The extra space we are considering is 8" which iz a
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Rmn = - 2 Emn (2.63)

Tmn = A CH. {2.64)

......

all tensors Emn formed by the wvariational derivatives of

v functionals F[g] with respect to the metric has all the

etries of the metric

1 o 6F [g]

2 g (v) \Z.88)

: mn 1 mn ; 3 n
-Jqﬂ F is Vt and for (R - 38 R} it is J d v gR(¥). Thus
in be taken proportional to the metrie. Also the homogeneity
he space S" implies that the constant of proporticnality B(y)

=Biy) npu is actually independent of vy. In fact this can be

from equations (2.60) and (2.63) for instance. Equation

nin-1)

2
! o4

so from the equation (2.60) it feollows that

Ez-%[n—rﬂx—l—}+h}

a
r

R(y) = -

Now coming to the calculation of A, we go back to the
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tion (2.62).

o 8V, (8 (¥)]
og__(v)

o] Fo
—
|

Multiplying both sides by gmnfg{y} and using (2.64), we get

cp s oV, g

(y)1]
3 A AZY) = 4RV g (v) aa

5Emn{r}

Integrating both sides with respect to ¥, one gets

ﬁVt[g (¥)]

1 = n m
'2'. na Qﬂ = J‘ d'y 45{}’] Emn{y} agmn:}r}

{(2.66)

To evaluate the right hand side, we consider a function

'?,.,xn] of several wvariables X Let us denote this by
Then
ﬂf{KJ] i df{xj} dxk i} df . s - dar
nx11 de d{lnli} ka i “ik i dxl
(2.66a)

In this expression in the right hand side of (2.66), g __
the role of X and Y plays the role of the index i, the only
ence being is that the index i is discrete and is summed
‘here, whereas the index ¥ in {2.66) is continuous and is

3{5195 over with respect to the invariant measure fg{y}dny.
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‘we have from (2.66).

ov . [g ]
1 - t “mn
E rna ﬂn = 5{]_ngmn} {E-ET}

In this case the change Egmn in %o is coming from the overall

change, as the shape of gh is not changed even under

. 2 i
We can write g = r k.  where k is the
mn mr mr

350 we can instead parametrize

by the radius r and write Vt[r]. Also since

8(ing ) = 8(ln(r’k_ )) = 8(1lnr?),

_ is a constant metrie in the functionalspace, we can rewrite

dv. {r) dv, (r)
%nﬂnﬁ = —L—E = I'E'_t—z— [E-SE}
d{1lnr")

To calculate B in equation (2.60), we note B is the energy

(classical + 1 loop quantum correction) in (4+n), whereas

the corresponding energy density in 4-dimensions, we must
= Bﬂn, as we have done earlier.
is obtained

W the 4-dimensional gravitational constant GD

ding the (4+n) dimensional gravitational constant (1/8n) by

of Sn slue.,
n

—_— (2.69)
n




from the field equations (2,.60), we get using (2.63) and

= % [ _ntn-1) o A ] = 8uG_ v

2 t
T
B {n—i} __é_ [_ ngn;f&l . h] R, (2.70)
: r
Bt fion equation (2.68) and (2.69) it follows that
8nG av, (r)

1 nin-1) —
=i [ = A ] = BnG Vo
r
8nG dv, (1)
(n-1) | ni{n-1 _ o t
- rE - E [—- —{L;E—-—l + h] = A r dr . {2-?2}

get
Bng dV, (r)
n-1 _ o L
= = bOBNG Vi(r) = —f o — (2.73)
n cn
From the equation (2.54) we had "u't= o using this
1

0 the above equation, we get

BHGD{4+n}Cn
S 0=T) : (2.74)

Thus we see that the size of the extra space given by the
us r in equation (2.74) makes sense if and only if Gn> 0.

relation is the desired algebraic constraint on the size of
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e extra space in the theory. Incidentally we note that this

ation is the same as that of Candelas and Weinberg[4d].

Now let us consider the cosmological constant A . The

tirst of the equations (2.72) gives a value of A, according to

_ nin-1})
A = __;E__ L6nG_ v, . (2.75)
Using (2.54) for Ut and substituting for o as D% and
i1l 322
—%E = G = Gn ﬂn = Gﬂ o rn, we obtain

1 lﬁHGDCn 9
N I (2.76)

T r ATa

Now doing a fine tuning on A by employing the algebraic

istraint (2.74) for r°, we finally get

) _— n®(n-1)% (n+2) _ 2n
ang {n+4}z C I
o n

The first term is the same as that of Candelas and Weinberg
' the second term is the new term in our case is the classical
berm. Incidentally we note that the parameter 'a’ has been a

parameter so far. We can again fine tune it to a value given

16nG_(n+d4)° ¢
] n

G
lzn{n—1}3{n+2}

50 @hat the cosmological constant 'A' vanishes even at this

ntum level.




Now we =shall discuss about the stability of +Lthe system

containing both gravity and scalars. In this case it is encugh to
consider total action under the constraint of Poincare invariance

las we have done earlier) which allows it te be written as

_ 4
Stctal - I d % veff’

where

Varfg = %" J d"y {8(7) [ Riy) + .u"\} + vV 2], (2.78)

As is well known a potential Veff constructed in this way is
equal to the minimum energy of any state in which the expectation
jalue of the fields has the value indicated by the argument of the

potential in our case gmn{yj.

.'I
Therefore provided that there are no negative energy
perturbations, a stable solution is one associated with a minimum

OF Vo pp

Since during perturbations the shape of S™ is not supposed

change veff can be parameterized by r only and thus can be

rewritten as (using ﬁn = 1/8n Gn}.

ﬂn nin=1)
vEff{r} = = [ ] ‘“7— + J'"\} + VL{r]
. 15%@ [— “{“;1’ + A ] + V. (r) (2.79)
o r
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We can also easily see that

_ Yerr [_ n(n-1) , h} ., _n(n-1) Mgl

= e + T —, (2.80)
dr lﬁnGD I_z BHGDrE dr

Using the field equation (2.72) and the equation (2.80) we
.see that veff is stationary in r. The other field equation (2.79)

just says that A takes a value that makes V vanish at its

eff

stationary point. Since we know that the (4+n) dimensional
gravitational constants G is r independent not Gu -the 4
dimensional one, we can rewrite veff using (2.79) and ﬁn = ar’
1 n{n-1) n, °n
i h Tt Lt 1 3 =]
Voggir) = 5 ar [ : + A } te T+ — (2.81)
r r
From this we szee that veff{r} —+ @ as r — 0 and r — ®

provided that [% a N+ Hn] > 0 and Cn is positive in our case
showing that it must have a minimum at some finite r. In fact if
we choose 'a' as given by (2.77), we can have A=0 and @ is always
‘positive and thus the econdition [ % a N+ EﬂJ > 0 is always
satisfied. We have already found one stationary point and it must
‘therefore correspond to the minimum of the whole system of matter

and gravitation whereas the stationary point given in (2.55)

corresponds to matter only.

F;E. Summary

In this chapter we have analysed a specific model for
spontaneous compactification - the one proposed by Gell-Mann and

Zwiebach [1] in which the compactification is triggered by scalars
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ﬁﬁmm of non-linear o-model coupled to gravity in (4+n}
The classical equalions of motion require, for M' to
Ehﬁ scalars to live on the extra space only. Upon
{ the scalars ¢ to the co-ordinates Y' of B" themselves,

manifold is found to have the same topology as B'. We

ethod. Here in the action (2.1}, the scalars are expanded

heir classical configuration. Keeping terms up to

he classical equations of motion), the effective 1-locop
is evaluated, taking inte account the fact that the
tions of the scalars, =z could be taken as either
nceless or gradient of a scalar. This result shows that
op potential has the form c/r' where r is the radius of
rﬂﬁﬁﬁﬁ the constant C being positive. We have examined the
of the system in § 7. Two new results are obtained.
11, a new algebraic constraint relating r, the size of
is derived. It is, for D = 4 {2.74)

8m Gu (n+d)C
nin=1)

T =

ghat. the size of extra space, r above makes sense iff

Indeed we have C positive. The stability analysis further

@hﬂ-tuned value for the cosmological constant A as

5 g nin-1) (n+2) o 2n

1‘2 {n+4d) laaz

ter 'a’ can be chosen (2.77) so that A vanishes even at

T2




guantum level,. The wvanishing of A is suppodded by

ervations.Thus we see that the compactification at the
ssical level can be maintained at the gquantum level also (with
energy-momentum tensor coming from the effective action, which
includes the classical part) by putting a cosmological constant —
shich can be made to vanish by proper choice of ‘'a' the free

parameter of the theory.
APPENDIX I

Here we derive the expression for Szz appearing in (2.16).

The matter action is given by

g = lE I a7 G gP m (9) (8, p') (8, o') (2.83)

fluctuating the scalars ¢l around their classical background

A1), o = ¢+ zltx,y}, we get (we do not fluctuate the metric)

= [ " z2/T ¢ n, (v + 2% 8.(y" + 2') a (3! + 29)
. i A B

(2.84)
LITE
i by i i
E'Al:y +3}-{6.ﬁ.+2,ﬁ.:’
ko k k 1 kL
mij (¥ % =27) = mlJ[y 1 + =z mjj, + 5T & Z mij,kl,
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Qsing Taylor's expansion and collecting terms up to guadratic in
EE@134} fluctuation z', we get, noting that term linear in =

‘vanishes by eguation of motion,

‘where

[a; 2?4+ 8l 5 ] + —12- 2! st sl ] (2.85)

Here GAB corresponds to the classical solution given in equation

(2.8) which can be used to further simplify this as

s Dity L i ] Pa i i
S‘E! = 12 .[ g % G [ g miJ W H P * g i Zif-' Z:q
ip R 1 1y ko1
+ 2 g mij,k Z Z:P t 58 mlj,ki S ] {2.86)

Now we note that the fluctuations z  are scalars with respect to
the ordinary space-time manifold but are treated as the components
of a contravariant vector with respect te the scalar manifold.

Thus in the first term within the parenthesis of (2.86) we can

replace the ordinary derivatives {zl#} by the covariant
1 ¥

derivatives {D“zl} where Dp is the covariant derivative operater
calculated with respect to the metric Epu whereas in the second

I within the parenthesis of equation (2.86), we can replace
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%j-[DPZLJ}; zq] where D and I' are calculated with respecl to

etric. With these substitutions we get

~ o~ i
poz }{Dq %)

A b
ip ko X i LI Pq i r
mij,h z z,p + 5 mij,kl -3 2 g mlJ Dpz qu z o+
g'lm 1t opd gt e ] (2.87)
1] pr qe
write D =z =2' & r z"°
P P pE
and
i o oir [ N ]
P4 2 rp,q ra,p Pq,r

i the third and fifth term in the integrand of (2.87),

getting
some simplification
1. P R o ip T
z g mjj{ Dpz ) Tqr z + 2 g mij,k z le
=2 ™ m r z" z' -2 g™ m ;j ri ,r z" (2.88)
Jg ir VP il ps qr :
define
T J g"tn Zvy G gP%m ri gr z (2.89)
Ja ir PP
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—Jdn+"2f G g™ m ri 27 gl (2.90)
ig ir “yp

note that the last term in (2.90) in T itself. Bringing it to

e _ 1 D+n P ] T Py =3 r] i
= z“d Z [@ G g mM] Tr z + G gjanpI}r]z]z

(2.91)

But the factor (yG gpq qu J,p appearing in the first term of the
ation (2.91) appears in the right hand side of the equation of

on (2.3) and hence with ansatz {2.4) can simply be written as

¥
2 ay'j
s getting
1 D4n 1 pg i r P =g r] i
- = G - + d
5 J d Z oy [ 5 8 mqui i Z g qu{ ; Ti lz |z
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So we can rewrite Ezz using (2.87), (2.88), (2.92) a=
;s | D+n | i i i Pq = SRR
Szz = 12 [ d L4 G [g mijl:DIu z ][D“ z°) + g mithp 2 }{qu )
= i_ Pq hJ r g (25| iJ T8 _ o.PO =4 Tj -8
5 f mpqu an G g qutﬁp IrH} 22 2E mlj Fps !qrz Z
l I | k 1 P g &j r s
+ 5 & miJ*kl 2 2 + g mi_1 Fpr an - }. (2.93)

Barring the first two terms within the parenthesis in {2.93) the

rest of the terms can be written in a compact form as

1 D+n pg 1 B F | 1 pe]|
— A = & Mo & [ =
3 2 [ & . G e [ 2 Mg, rs M rpr q6 2 "pa,i ar Mg
(8 1) ] s’ B, (2.94)
P re

Now wusing the fact +that the metriec is covariantly constant

{m 0), we get

=1 S

. & g
mPQ:j = rPJ m&q i3 IqJ m{p * (2.8958)

Using this one gets after some manipulation

m = (m Y,
Pd,Ts Pa,r
_ et i it
= mp [ﬂE Fpr} + omy {au Iqu + maq Fpr i
B 3 a - = T.a
bt e T tmy, IO Ty emy T T

(2.96)

Substituting (2.96) in (2.94) the expression in the
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parenthesis of (2.94) becomes '

L L

- g HprqB E EZ (2.87)

Thus we finally get from {2.93) using (2.94) and (2.97)

Tz J

g =_i ‘-dnhzf‘c [g”"ml IDp zi]IDU z1)

+ g"°m b 2z' Dzl - R a2t 2] ,
£i 2] q iplg

which is the same expression appearing in (2.16).

APPENDIX - 11

, ; n
Harmonic analysis on 8§

Since the one-loop operator containing ?j Juxtaposed between
vectors zi in 8" in (2.21), we have to find the eigenvalues and
degeneracy of this operator acting in vectors. As any vector in
s" can be decomposed into a gradient of a scalar and a

divergenceless vector, we have to consider bot!li of these cases
separately.

Though in our cases ?f act on vectors, but the knowledge of
its eigenvalues and degeneracy for the scalar case will he useful
for the determination of the vector case as well. Hence we start
with scalars. Here we closely follow Chodos and Myers 2 i D

(i) Scalars

To obtain the eigenvalues A of the eguation
Ve o= A (2.98)

on Sn, let us consider the set of all homogeneous harmonic
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polynomials & of degree £ in (n+l) dimensional Euclidean space

En+1 where the s can be thought of being embedded.Any homogeneous

polynomial of degree '£' in (n+1) variables may be written as
P {xi, Xy eee xn+‘} = Eﬂi.-.a{ xaj... x“{ (2.99)

where is a constant symmetric tensor with £-indices each

F.l-1 .n,ﬂ{

of whieh takes (n+l1) values. The number of indeperndent components

of C is evidently equal to the number of terms in the expansion

{K1+X?+....+Xn+1}t. It can be easily seen by induction that the

number of terms in the above expansion and hence the number of

i £
independent components of the tensor C is [ HE ].
Now the condition that ¢ be harmonie in R" s V: ¢ =0
or equivalently,
) e, & =0 (2.100)

which represents [ nEf;E ] independent conditions for £ 2 2,

The eigenvalues of ?zcan be obtained by going to polar

co-ordinates

ds® = dx® + dx® 4+ ... 4+ dx®,. = dr® + 2 £ g6’ g0’ (2.101)
1 a n+1 ij

where tij is metriec on the unit Sn.

Thus ‘U"Eii' = 1 E?‘ (r =— ) + — 95 & = 0. (2.102)

n
r I
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Since 7 is homogeneous function of degree £ we must have
b = rt D o(a). (2.163)
Substituting this in (2.102), we get

2

v i (8) = = £(£ + n-1) {6). (2.104)
Thus the eigenvalue 15 = ~&{£+n-1) and the degeneracy dq{n,{J is
Eiven by
B n + £ n +£ - 2
d (n,£) = [ : ] = [ s J 6 (£ - 2. (2.105)

Let us now come to the case of vectors.

tid) Vectors

Proceeding as above, we have the equation

vs V. = o0, (2.106)
|
"~ E'I H!
with Vi = Q. 1 T ] . The teotal number of
a a 3 a s+ s B
1 1
such entities is clearly
n + £ n +£ - 2
(n+1) [ [ £ ] - [ £ - 2 ] }. (2.107)
When we go to the polar co-ordinates, V. will decompose inta a
a

- -~

scalar which is the r-th component Urz P and a vector Vinn ol

-

Vi in turn can be decomposed into twa parts, one being the

-~ -

gradient of some scalar oand the other a divergenceless vector Wi

- -~ o~

Vv = W + Vv o, (2.108)

i i i
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{2.109)

the metric

Before we go for the calculation of vzwi, let us write

corresponding to the line element (2.101) as

. — (2.110)
0 i r {11
Here p,» takes wvalues from 1 to {(n+l) and i,] takes walues from 1
ta n. It is easy to calculate the wvarious components of affine
connection
rr =1 = r = o,
rr ir rr
I =-rpd ;T8 =L 5‘;r1=l{,’P[{_+J; - £ J
i | rj r o} 1k 2 pigk Py § Jkyp
(2.111)
Then one can easily see that
z . L
?E Vl = D_u Du V}.
2 o
a” v 5]
L A (8 1 L o
= g v gﬂ iu Vot g ﬁl R
Bx# ax dx Y
[TTE o " pe o e op
+ g II-“-" [1p vﬂ 28 Plf-l ""IH" £ qu vl.p
{2.112)
Putting » = i1, we calculate the above expression (2.112)

term by

B1



term to get after some simplification using (2.111)

i ag Ui Ik ﬁz vi
lst term g Wi gm, oF sk g —— {2.113)
d dr ax ' dx
are
2nd term - gHU —F .y
(8 o
dx
¥ 1 s ar.
= ‘“E s _I: {mn m i v - grnn _ mi v (2.114)
T ax" ; ax" ¢
3rd term g”u N AR
vi opg o
T | J mn | p "
= = FI“ V +g I‘mII l“jn Vp {2,115}
12 L 1 i
4th term g 10 15 v, = - = ; [f’g gpﬁJ > Ve
Y E dx
s - B w5 1 i[ﬂ{i”]{”v
r rq axm I_] r
! = 21 am [,"ZL’”} P (2.116)
r I E ax ] P
: _n MY
bth term 2g wi Vau
av av
=2 oy 2 £ L2 ey (2.117)
ax’ r L & b
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av

) e op , _ _n i 1 o jm
Bth Lerm g ﬂﬂjljjp = 3o * o) [ vy £ g ] Ui,m
(2.118)
Adding all the terms from {(2.113) to {(2.118), we get
2 2
g Vo v ay a” v
Sy - o™ ey el o BEEL ol a L B :
dar’” r T % 3 i axPax"
af ar?
+ ‘_'_:.: £mn mi oL _1 gmn mi_ oy 1 L v
ax"” E r ax" A v £ ox' %
N AR e S Ny Ve O P
) mi in P = axm i] r
ay
- a [ﬂt”'j]r’,’v 2
vy R A iiop T ax
iz BPT Ty El A (g‘ 7 J:.*'“‘] v, (2.119)
# pi moy q r #I— ij iym

Now wribing Vr= pooand sz W, +

1

: and substituting in (2.119)
ax

and after a long but straight-forward calculation one finds that

W s=satisfies
1

ad W aw
ap? T ar e i z © W s 04 (2.120)
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Now putting X = r in (2.112), gives

¥
2 alr
0=v2 v = gV 2P ﬁ s =g —t— g rﬁr rg“ g Fﬁu“
r
dx" ax dx
o y e e o dp v
rEr V, - 28 lpr vu.u - g l"Im aﬂu. {(2.121)

Proceeding as before we calculate term by term to get the

First term

2 2 @ 2
g _3p _ - d E " _% g1d __%_E_T (8. 18E)

Second term vanishes and the third term becomes

prr g o _ _ _n _ 1 d mr
B Fur rﬂp Vo T 2 P 2 oy [ /e £ ] 1I'Jm 2515379

The fourth term becomes

gl rf: rg Vo= - _; = ‘;’ [{Z{”J V. 0 -
H 5 r Ngi i d
The fifth term gives
v 2 si5 Wy
—'EEIJ r& '\-’u " = = —3 f.-lJ —— [2:125}
Hr ! r ax

while the sixth term gives

3 1 3
s o aﬂ [ﬁguﬂ]_ezl_;.gg+
; ax" Yz ox

! —i{ﬂ‘aijj—f“% (1.126)
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Adding all Lhe terms from {2.122) ta (2.128) and

making some simplifications vields

. .. {W.+3.0
a_g‘FEg‘E_‘_?F}‘}‘"}'va__j&lJ {J_L11-| __E_l_
oar i re re i ax r- YL
ij [ﬂ'{”] (W +3 0)=0 (2.127)
ox

Using £t viwf = 0 this furLher reduces to a pair of coupled

; i
equations for p and o

ap n 3 __n B - ;
= = = % - Voo 5 oo = 0 (2.128)
dr r T r
a0 -2 da 1 2 2
+ [ nD=e ] = + == ¥ g+ =p = 0 (2.129)
2 T dr 2
dr T
Now we note that V. is homogeneous of degree £ : V. « r{ then
a a
p = r£ piBYy, v = r£+l o (8) and Wi=r{+1 W (8) {the extra factor aof

r comes from the transformation te polar co-ordinates ).

Putting this into the equation (2.120) we can easily gelb the

eigenvalues as
i

VS OW = - [ £ (£ + n-1) - 1 } W ({2.130)

In order to compute the degeneracy, however,we must also know what

is happening to p and o¢.For that we again substitute p = ré plB),
L4177 £+1 =
r J

g = (8) and Wl= r W(@) into the equation (2.128) and
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(2.129),getting after some simplificatien

- -
2

(£-1)(&+n)p + Vp = 2 v (2:181)

(£41) (n48-2) ¢ + 9% o = =2 p (2.132)

At this stage to simplify matters let us write

a = (£4-1) (£+n)
and b = (£+1) (£4n-2) (2.133)
With that we can rewrite the pair of equations (2.131) and (2.132)

after substituting the wvalue of ve g from (2.132) into the right

hand side of (2.131) giving an eigenvalue equation in matrix form

as

2 - {a+d4) -2b i

92 o = ¢ (2.134)
* -2 ~b -
g a

The eigenvalues A of this matrix can be easily determined to be

A= % [— {a+b+4) + /I[a-b}z + 8(a+b) + 16 } {2.1435)

Substituting the wvalues of a and b from (2.133) one gets the

eigenvalues

A= =(£-1) (£4n-2) ar —(£+1) (£4n) (2.136)
i.e.;d = -L(L+n-1) with L = (£-1) and (£+1) respectively.

To get the number of W's which we call dv{n.ﬂj, we must

subtract the number of these scalar eigenfunctions from the total
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number of V. 'g:

-

d {n,£) = (n+1) d _(n,4) - d_(n,4+1) - d_(n,4£-1)

_ n+1 n+f-2 n+f+1 n+£-3
o (1] - (357 wen] - () - (5] e
This is the same expression which appeared in (2.23). We
note that d (n,0) = 0,

y ; . n
Now coming to the gradient case where the vectaor li on 5 can

be written as Xi= ?i¢, we can see using the rules for commuting

covariant derivatives that

vz{vi¢} = vi{v3¢] + (n-1) 9.9 {5h 187)

The eigenvalues of the Laplacian v® can beeasily read out

from {(2.137) to be

-£(£+n-1} + [(n-1}) = —[ﬂ2+{{—1l{n—l}1 2 S R (2.138)
i
With degeneracy dn[n,ﬂ}. We omit £ = 0 case as the
corresponding scalar ¢ gsatisfies v* ff = 0 and any such function on
s" also satislies ?i¢ = ) and hence Ki = 0 in this case.

As the signature of +the metric used in this Chapter is

(+y=y++4+,3,=), the metric kpq defined in {2.19} is the negative of
£, defined in (2.101) i.e., kK = -£ . Thus,
Pq P4 F4a
v = k"™pp = £"9pDp = -v°
8 [ Poa

and hence the eigen walues of v°  will carry an additional
a8

negative sign (see equations (2.22) and (2.24),
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CHAPTER III

DYNAMICAL COMPACTIFICATION IN KALUZA-KLEIN CDSHDLDGYl

Introduction

If the extra dimensions really exist, then can one see
classically how in the course of time these extra dimensions
shrunk te such a small size, to render it practically inaccessible
to present day accelerators 7 Thus the guestion that naturally
arises 1is that whether it is possible to get an asymmetrical
solution of Einstein's equation at the classical level itself
where ordinary space-time go on expanding and extra dimensions go
on contracting with time.

The first attempt in these directions was made by Chodos and

Detweiler[1] using Kasner[2] metric for 5 dimensions.

4 Zp. s
- T (t/t ) 'oldx') {3:1)

im1i

ds® = dt®

where the time 't' can be chosen as a continuous real parameter
( -w< t < +4®) and the spatial four co-ordinates x! to be periodice
0 < x'¢ L in a suitable co-ordinate system. They find that this
metric solves matter free Einstein's equatiaon RHH = 0 provided

that

e

p, =X p =1 (3.2)

ok
n
o
e
L]
[

IB. Chakraborty and R. Parthasarathy, Phys. Lett. A142 (1989) 75.
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Te get an isotropie three-dimensional space, they put
P 7P,"R,
and solve equation (3.2) to get
P, = P, = p_ = - p_= 1/2 ({3.3)

Substituting this back in equaticon (3.1) the metric takes the farm

ds’= - dt.z-l-{Lfln]l[{dx11|2+ldxz}2+ Idxj}?':|+ttnft}{d:i5}? (3.4)

which has the desirable feature of 3d=-space expanding and the
additional one-dimension contracting with Lime.

Later the same approach was btaken by (i) Freund [3] for a
higher dimensional Jordan-Brans-Dicke (JBD)theorv. He starts with
(44n) dimensional JBD action without matter fields to find Kasner

Lype solutions where the ordinary 3 spatial dimensions go on

expanding and the additional n - dimensions go on shrinking in
size. In their analysis they assume that both the 3 and n
dimensional subspaces are essentially flat 1i.e., the ecurvature

constants of these spaces wvanish, thus in their case the extra
space is mnon-compact, Later {(ii) Kerner [4] considered a =six
dimensional theory with a monopole and a Higgs field on sand
(iii) Kolb[5] considered a six dimensional theory with a monopale
nlbne on 5° towards obtaining asymmetric expansion.

The other approach is based on thermodynamical arguments.
Here the energy momentum tensor is invariably taken to correspond
to a perfect fluid in all spatial dimensions wilth an assumption

that this is appropriate for a radiation dominated era. This

a0



approach has been used by Alvarez and Gavelal6]; Abott, Barr and
Ellis[7]: Sahdev and Kolb[{8] and others. There have been attempts
to use Gauss—Bonnet type of action for higher dimensional gravity
as well, to obtain asymmetric expansion and inflation{eg.Shafi and

Wetterich[9]).

Compactification with the g-model

Here in this Chapter we consider the same compactification
scheme discussed in Chapter 2, and study the same Gell-Mann
Zwiebach model for its possible cosmological implications. We

attempt to solve the field eguations (2.5)

2
= e = )k . 9
Rpp 0 and Rla 2/ m1J
assuming that the line element is given by
2 2 3 m n 2 i J
dg” = dt™ - [ Rﬂ{t}} B dx dx - [ HI{t}] gij dy™ dy {3.5)

which is a generalirzation of the Friedmann-Robertson Walker metric
where Hﬂit] and Hl{t} are the scale factors of the three ordinary

and extra dimensions respectively. The three dimensiconal subspace

n

is assumed to be flat and the internal space is taken to bhe 5§
Thus R (t) can be taken as the radius of s" at time t.
The varicous components of RH" corresponding to the above line

element are given by

3R_(t) nik (t)
foo = T TRTI T TRE) 1990
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-4 éagt} ﬁﬂit} 2 éj{tJ ﬁI{t} o
“mn T |7dT [ Rty F O [ R_TE) ] PR TE) R (T ]Ra{L} Ban 3+ 7)
[ K R (t) Ra(t) R (t) \R.(£)] .
" ! L - ! 1 3 1 1 3
Byt = ! dt[HI{t}}+ [BREEL} LT }Rlit}]Rllt}giJ (FnBid
LR, (t)

where KI is the constant curvature of the compact extra space,

taken teo be 87, Fer the scale factors Rj{t} and Hll:t]lwe AESume

R, (t) = r(t +t )% , R(t) = R(t+t )P (3.9)

3 o 1 o
where o and f are constants and t = tu is the time at which all
space dimensions have comparable size. r and R are the actual
common sizes of these dimensions. Substituting this ansatz (3.8)
into the equations of motion given by (2.5) and using equations
{3.6) and (3.7), we obtain
Jox(e-1) + np(p-1) = 0,

3¢ + nf = 1 (3.10)
which vield

& - 3 £ 4 Bn + Enz B e n ¥y 6n + Enz

3(3+n) ? n(3+n)

(3.11)

At this stage we would like to have the (physical) three

spatial dimensions expanding and the extra n dimensions

contracting. So the appropriate solutions is
3+ 6n + 3n° 1 -¢ Bn % 3n°
= 3(3+n) o PoE n(3+n) ta. 12

Incidentally these solutions for a and f have the same form
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for the generalized Kasner metric of Chodos and Detweiler([1,2].
We are able to obtain solutions to the cosmological model based on
a non-linear sigma model interacting with gravity in which the
usual space dimensions expand and the extra dimensions contract,
However the expansion is not exponential . Now let us
consider(3.8). We observe (see eqn.3.5) that with the time
dependence of the metric for the extra space coming through the
scale factor RILt},the extra space in no longer Einsteinian as is
clear from the expression for R‘J in (3.8) unless the second and
third term within the parenthesis vanishes. Further,unless it is
Einsteinian we will not have the kind of solution as we have
described in the last chapter. But fortunately for us with the
ansatz (3.9) and the relations (3.10) we find that the second and
third term vanishes identically making the Ricci tensor

proportional to the metric

Rij = KI gij {3.13)

and hence Einsteinian. Now instead of taking Gij = R?{t! gij as

proportional to the scalar manifold metriec mij,we take g.., =
1.0

negative sign here).

a’m, .thus mij like gij is time independent (Note that there is no

Thus we take

R.. = K a m,. (3.14)
ij I ij
2
But from (2.5), we also have Ri. B ol mij , thus we must have
A
KI & o 884 mew constraint on the parameters of the model of
LT a
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Gell-Mann and Zwiebach[10], when the classical eguations are
zsolved for Friedmann-Robertson-Walker geomeblry. It may appear
that this new constraint is a direct consequence of the specific
ansatz (3.9) and the relations (3.10). We now show that this is
not the case, just by assuming a monotonic decrease for RI{t} and
ﬁl{L} with time. This makes the seconds and the third term within
the parenthesis of equation (3.8) vanish at large time t giving us
the above constraint invelving the constant parameters aof the
theory. Since this constraint involving constants is true for
asymptotically large time, we must have this constraint satisfied
at all times. Thus from equation (3.8) and (2.5) we get

s [ R R,(t) R, (t) R (t) ,
dt ert} + a—r_ﬂg t} + 1N TIW T]T = 'D {3-1:}}

Then defining the Hubble constants for the ordinary space and that

of the extra space respectively

R (t) R (t)
Hait}l = Ratt} i HItt} = W‘ {3-15}

and BHatt} + nHl{t} = Tt (3.17)
equations Rmn = 0 and (3.15) imply

‘ 3 .

H3 + 3H3 + nHaHI = 0

; -

III + 3]-1!3HI + nHI = 0 (3.18)
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which gives

”3 H!
= = = _ (3.19)
Il,3 H1 = fit)
Differentiating and using (3.17) we get
; .2
f = ~f (3.20)
which on integrating yields f = —E—%—E*, where t, iz a constant

o

of integration. Substituting in (3.19), we get on integration

L

. 5 g
Hg(t} = TE—:—E—T and Hl{t} = Tt + tnl {3-21}

il

where o and B being another pairs of constant of integration,
which agree with ocur ansatz (3.9). A monotonic increase for Rzitj
with t can be obtained with @« > 0 and a monotonic decrease for
RI{t} with B < 0. We mention that our this solutien resembles
very closely to the above mentioned Freund's solutiom [3].

Thus it is possible to have an asymmetric expansion in
Kanluza-Klein cosmology with the Gell-Mann and Zwiebach model[10].
We are unable to obtain such an asymmetric expansion with the
monopole induced compactification scheme of Randjbar-Daemi, Salam
and Strathdee[11]. This is due to the presence of the cosmological
constant term in the model, The radiation dominated era can be
easily accommodated in this model by introducing a stress tensor
corresponding to a perfect fluid in (4+n) dimensions. As the
treatment of this has been carried out by Alvarez and Gavela[§]
and Sahdev[8] we will not repeat it here except for the remark

that the model presented above along with the stress tensor for a

g5



perfect fluid allow us to realise inflation and non-abelian gauge

symmetries eventually.
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CHAPTER IV

ON INSTANTON INDUCED SPONTANEQOUS COMPACTIFICATION 1IN quﬂPE AND
1

CHIRAL FERMIONS

It may happen that in some interesting models of spontaneous
compactification the internal space gR does not admit spin
structure. In such cases normally one cannoct even expect te have
any ferminns, let alone chiral fermions, as spinors cannot he
defined in such spaces. As we have seen in Chapter I that for a
compact coset space G/H the Dirac operator does not have any zero
modes [(Lichnerowicz theorem[l]) but has massive { Planck mass)
modes. Thus in these cases one can still define spinors. To get
zero modes one generally puls additional gauge fields (with
non-trivial topolegy) coupled to fermions so that, besides
triggering compactification, one can have zero modes corresponding
to the modified Dirac operator. Alternately one can put torsion
in the internal manifold B". But if the spin structure is not
allowed then no fermions (massless or massive) can be obtained in
general . We now briefly ocutline some of the succeszssful models for
spontaneous compactification admitting chiral fermions.

% Rand jbar-Daemi, Salam and Strathdee[ 2] considered six
dimensional gravity in the product space M'xs? with a monopole

. i 2 :
configuration on S only. The same monopole triggers sponlaneous

1E.Ghakrnburty and R.Parthasarathy,Class.Quant.Grav.7(1990)1217.
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compactification and ensures fermion chirality.

Randjbar-Daemi et all3] provided another example of this
mechanism,an eight dimensional Egravity based on M* x 8% in which
gravity is coupled to a SU(2) Yang-Mills field which takes the
form of a one-instanton configuration in &Y. The idea of
introducing elementary gauge fields which trigger spontaneocus
compactification and ensures fermion chirality i perhaps
reasonable as they might naturally arise in supergravity theory in
still higher dimensions.

Here we attempl a spontaneous compactification of an eight
dimensional gravity based on M* x cP® where gravity is coupled to
U(1) instanton on CP°. Although it is known that CP°does not admit
spin structure[4] but we shall see that by coupling fermions of
definite charges to these instantons we can have generalized spin
structure, folleowing Hawking and Popel5] and thus getting chiral

fermions.

Instanton induced compactification M*' x cp®

We first give a brief account of the cp? instanton{details of

the construction of +this instanton have been given in the

1

appendix). The set of three complex wvariables (Z .22,23} not all

zero, with the identification (2',2%,2%) ~ (22',22%,22%) for any

non-zero complex number A is said to define CPE. By imposing the
. 12 2 . g
constraint |Z |d+f2 |z+|£3[2=1, we get rid of the scale factor.
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e ———— e e ______.__ -

One can define

: —Hg
A = 2% 8, 2%(1) (o= 152;3) (4.1)
*
with the above constraint 2% z%=1. This Aﬂ{Y] has all +the

desirable features of a vector potential under U(l) group (Gava,

et all&]). We obtain the usual projective co-vrdinales flor cp®

in the chart 2° 2 0 by forming the ratios

p = — and P = == ., with Z# 0 (4.2}

Setting p‘ = {y1 + iyz} and pz {FB + iyq} we can introduce a

U{1l) covariant derivative

%
d
i

p,z% = (3, + % 7P zBy 7@ (4.3)

This allows us to form the squared invariant distance
* %
3 1

ds = 2 dyi dyj [ {Diz“} {Djz“} + {Dqu} nniz“] } (4.4)

from which the GP2 metric can be found to be

. VI
o mo k- = B ivj « Sl
g.. = = {aij P } (4.5)
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(4.6)

f= e B B
[l = B e
o= oOQ

0

-1

i ij *J 0
0

It has been shown by Gava et al[6] that the gauge field A(y)
defined by (4.1) happens to be the same which solves the

Einstein-Maxwell equations for the cp® space. In terms of the

internal space coordinates, we have

-~

¥, Gi, ¥
Alg) = —— = — 3 (4.7)
(1+y7) (1+y7)
This 1is the GPZinstanton. We now introduce angular

co—ordinates (x ,8, ¢ ,¢ ) as

= g 1
y, = tan x Cos 3z ] Cos 5 (@ + p)
. = t C ( 8 5i % (b + w)
¥z T an 3% oS5 L Z n 5 L
= ta Sin -8 C £ (o - w)
¥y = n ¥ L2 os 3 !
¥ = +tan ¥ Sin ( 4 Sin 1 (&b — w} (4.8)
A W 2 J

with the ranges 0 s % < % , 058 <m, 0<¢<2m, 0<y< 4n,

The M'g X CPZ manifold is an eight-dimensional space and for

the spontanecus compactification we propose the following action

F,. PN A ] (4.9)

o |

s = —Jd‘xd"yﬁr[i :

KE

Here A is the cosmological constant in eight dimensions and
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EHH= EHAH - EHAH where we take AH to live on the internal space
cp? only with its instanton eonfiguration given in (4.7). Thus our
proposed model for spontaneous compactification of an eight
dimensional gravity in M'xcp® is very similar to that of the
six-dimensional gravity in }ﬂ % SE by Randjbar-Daemi,Salam and
Strathdeel[2] in the sense that the role of the monopole
configuration in g® is plaved by the U(1) instanton canfiguration

in CP®. In (4.9) the matter field is due to the CP° instanton.

The Einstein field equation that follow from (4.9) are

2
. K 1 A u
T 2 [ Yaomg Ny P 3 L’m«] (4.10)
where THH is the energy-momentum tensor for the CP2 instanton
(non-gravitational) and T = GHHT We are interested in those

MH’

solution of (4.10) which admit a product structure of the form H4
x CP® with M* being Minkowskian flat. We follow the procedure of
Randjbar-Daemi et al[3] which is that instead of explicitly
solving the field equations, we impose the requirement that H4
should be Minkowskian flat and obtain algebraic constraints which
are checked for consistency. Using the orthonormal basis (we use

@,f, to denote Mt and a,b, to denote CPZ} we seb Ricecl curvature

in M7, Ryg = 0 so that M' can be taken as Minkowskian flat. This

gives,

|_3

I
T3 =
=
=]
o
-+

" Mg = O (4.11)
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Egquation {(4.11) can hg rewritten as

o

Taﬁ B naﬂ (4.12)
K
with
i 1 J
_EI = 3 {T-2M) (4.13)

This structure of TQE is5 expected from the four—-dimensicnal
: i ; 3 2 s
Poincare invariance, with © as a constant. Now CP is an

Einsteinian manifold which implies

-
Tab = & (4.14)

The algebraic condition for spontanecus compactification is

¢ » €, By explicit calculation starting from (4.11) - (4.14)using

L 1
Taw = By By — 7 Gy T

2

and noting that the instanton is defined only in GPE. we arrive at

the following relatians

poo Aletc) g
K
A = (2¢ -¢) /K
(4.15)

w86 = G)
Rab - ok 2 aab

R 2
Teg = 7 Ty F
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A consistent solution is found to be

c’ =0 c = - % g ¢t (4.16)

which shows <'>c and so CF2 instanton induced compactification
with M4 Minkowskian flat is possible.(This is ensured by the

negativity ef the Riceci tensor Hab}' However the appropriate

solution feor the instanton in the internal space CP® must have
constant FE, which is directly verified below, In terms of
the angular co-ordinates introduced in(4.8) the non-vanishing

components of the field tensor are found to be

P1¢ = = 8in % Cos %
F. = = Sin® X Sin 6 (4.17)
By 2 '
= - i b =
wa Sin % Cos Y% Cos

5 i j ; 2
and the wvarious non-vanishing metric components for CP° are

) A ; it
EIK =1 588 =T 51“21 i E = % [lwﬂlnzx Goszﬁ]51n?1

Lo 2 2 o . B 2
EW¢ = % S8in"y Cos"yx Cos 8, g¢¢ = Sin j Cos'g (4.18)

and after a lengthy but straightforward calculation we find
F° = 16, thus ensuring the constancy of Fe, Thus we have

demonstrated the existence of ground state solution for eight
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¥ . i F 2
dimensional gravity with the geomebry Hq x CP where the
. 2 ¥ .
internal space of CP~ supports a U(l} instantoen. We call this
cp? induced compactification. One can induce spaontaneous

compactification by the SU(3) invariant SU(Z) =U{(1) non-abelian
connection alsoc as has been shown in general by Randjbar-Daemi et
al.[8] where they considered the spontaneocus compactification of

Mt x G/H induced by the G-invariant H gauge field.

. . . -
Generalised spin structure in CP

The mathematical conditions wunder which an orientable
simply-connected manifold allows spin structure is the wvanishing
of the second BStiefel-Whitney eclass[4]. For CP° the second
Stiefel-Whitney does neot wvanish showing that it does not allow
spin structure. A comparabively simple explanation of why spin
structure cannot be defined on an arbitrary manifold has heen
given by Hawking and Pope[5]. Accordingly the crucial guantity of
interest here is the index of +the Diraec operator. Detailed
considerations (Eguchi et all4] , Hawking and Pope[5], Delbourgo
and Salam[T7]) give the following index theorem for

. s F
four-dimensional CP space

¥ 3
n, - n = -1—21 piiab Risp v 8 dly (4.19)
384n J
o ijmn
* * =
where L is the dual, ngah_lc R ab{Enbcd = +1 (-1)if abed

2 {E mn

is an even(lodd) permutation ofl234 and 0 otherwise) and nR and nL

are the number of zero modes with right handed (y = Tsm} and left
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handed (g = —rﬁwi helicity. The CPE manifold has its natural
Fubini-Study metric using which the above expression can be
calculated. From this it turns out that e = |y, == %, which 1is
not an integer and so one cannot define spinors consistently on

cpe. Nevertheless one can still define a generalized spin

structure[5] by consistently coupling fermions to some
topologically non-trivial gauge field. We now give the procedure.

Consider a closed 2-surface ‘Z' homeomorphic to S2 being
spanned by a one-parameter family of loops A(v) with *(0) and A(1)
being the trivial loops - the point itself (see Chapter 5 for
details). Now parallel transporting a scalar field ¢ of charge
'e'coupled to a gauge field ﬁiaround Av), we gZet the new field

¢ given by

" (v) = exp (iefl(v))d (4.20)
where
1
F(v) = _[ A, dy’ (4.21)
o

As f(0) and f(1l) corresponds to the trivial loops, we must have

¢ (0) = o' (1) (4.22)

which gives

e[f{0)}-£f(1)] = 2mnn (4.23)

It can be shown that(for details see chapter 5)
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£(0) - £(1) = [ F (4.24)
5

where F = % F..dy- A dy’ = dA is the field 2-form for A. We take

L]
this U(l) gauge potential to be the instanton configuration (4.7)
for which +the non-vanishing components have been given in
(4.17).For computational convenience we consider (%,8,a,8), where
o and B are linear combinations of # and % as o = %{m + @) and

B = %{w - ), as new co-ordinates with 0 < o, g < 2rn, Then,

, . 2(8
qu = - 8in 2% Cos [ ) ]
; a
F.g = Sin 2x Slnz[ 3 ] (4.25)
F.. & = Sin° ¥ 868 =
e = 7 Sin X 8in0 = 68
are the non-vanishing components of Fi.., As HE[CPzi = ¥ and E'E"l

is the generator i.e. belongs to the first homotopy class, we take
Y to be cp' itself. Now two different embeddings of CP'in CP%can
be obtained by setting 6 = 0 or 8 = w. We take 8 = 7. Then the

only non-vanishing component of F is F g = Sin 2%. Then

‘ F = J Sin 2x dx A dB = 2n {4.26)
cp’
If we consider the integration of F over a surface Zn

belonging to the n-th homotopy elass then the above integral will

107



get an additional factor of n as cp' is the generator. (In

particular if we consider Sz defined by y: + yz + yz = 1 and ¥

2 3 4
= 0 in CPE. then we wverify +that the above surface integral
vanishes, as expected, as the surface is contractible},.

Thus for an arbitrary surface En belonging tothe n-th

homotopy class we have

[ F = 2mn (4.27)

Mow btaking the surface to be CP1 itself we get from (4.23)
and (4.26) e = n. If we consider the parallel +transport of

spinors § with charge &' then we have as has again been shown in

Chapter 5 in detail
p(0) = -=¢'(1) (4.28)

{Compare this with (4.22) for a scalar field) and this in

turn implies
e [£(0) - £{1)] = zn{maf%j (4.29)

Considering the surface to be EPlitself and using (4.26) we obtain
the allowed wvalues of &' as e’'= (m + %}. The index theorem now

incorporates the contribution from an instanton coupled to =a

fermion besides the usual one given in (4.19) and the final form

iz given by[5].
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/2 d'y  (4.30)

2 5 ¢ oa
* *
n_-n =—E——EJ FlJFijf Ed4Y = 4 j Rldabﬂ

R g 384n” i
. *
For GP2 instanton the field two form F is sell dual [F = F (we
% E
choose 518¢w +1 }). One can also readily verify thus i Fij =
FlJFij = 16, as we have seen earlier. The volume of cp? given by

IfEd4y can be easily calculated with respect te the metric given
2
in (4.18) to be —%— ., The second term in (4.30) is same as (4.19)

and is = % , as have been seen. So with the allowed values of e’

= (m +%}, we get from (4.30)

n, -n = % m{m+1) (4.31)

which is always an integer, showing that though ordinarily spin
structure do not exist on CPZ, one may define a generalized spin
structure by coupling the instanton to fermions of definite
charges. Thus in our case the internal Dirac-operator has zero
modes with chiral asymmetry showing that in d=4 theory we will

have chiral fermions.

4. CONCLUSION

We have presented a spontaneous compactification scheme
f;r eight-dimensional gravity based on H4xCP2. As the internal
space CPE can be considered to be the homogeneous gpace
SU(3)/8U(2) x U(1l) the internal symmetry will correspond to SU(3).
GP2 admits topologically non-trivial gauge fields, the U(1)

instanton and this triggers spontaneocus compactification. The
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algebraic conditions for this have been derived and wverified in
section 2. This mechanism of spontanecus ceompactification by
introducing topologically non-trivial gauge fields in the internal
space is very similar to the monopole induced compactification
scheme for M4x52 or te G invariant H- gauge field induced
compactification scheme for M1 x G/H for a symmetric G/H [B] -
which in this case corresponds SU(3) invariant SU(2) x U(1l) gauge
field induced compactification for M'x cP%?. One of the problems
with CPZ internal space is that it does not admit =spin structure.
This is briefly explained in section 3 using index theorem. This
aspect has been studied previously by Hawking and Pope (1978)
without recourse to spontaneocus compactification. We have here
shown how one can possibly define a spin structure by coupling
fermions to the CPzinstantun field., Usually classical backgrounds
can be topologically non-trivial and are expected to induce chiral
fermion spectra. If the internal space is even dimensional then
it can be said that there will be a set of fermionie chiral modes.
The number of such modes or more precisely the difference in the
number of left and right chiral modes is governed by the index
theorem. We have explicitly evaluated the index of the Dirac
operator in the internal space CPZ and found it to be an integer.
This is due to the contribution from the instanton. In this way
the GPEinstantcn here plays two roles : it triggers the

spontaneous compactification with H4 Minkowskian flat and it makes

nﬂ— nL an integer so that spinors may be consistently defined on
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the internal space as well, Once again the analogy with monopole
induced compactification of MY x 8% is striking as in $°, a
2-sphere, the index of the Dirac operator is solely due to the
monopole contribution (the first term in (4.30) were now A as a
monopole in Sz iz the sole contributor) which turns out to be an
integer.

In such higher dimensional theories it has been known (see
Chapter 1) that the mass operator for fermions is the Dirac
operator in the internal space. This operator will have zero
modes as diectated by the index theorem. In contrast to the above
mechanism of introducing topologically non-itrivial gauge fields in
the internal space to obtain chiral fermions, there have been
attempts to distort the internal space by introducing tersion. In
the Dirac operator for the internal space, instead of the minimal
coupling term, the spin connection will now have the torsion
contribution as well, In particular Neville[8] has constructed
fermions with chiral asymmetry in the presence of torsion on S4and
this idea has been generalised to qu by Tehrakian[10] with a
suggestion of application to Kaluza-Klein theories. Nevertheless,
the action will now contain a torsion Lagrangian as well and under
dimensional reduction to four-dimensional theory one obtains the
usual Einstein-Hilbert action and additional problems due to the
higher derivative nature of the residual Lagrangian. Therefore it
igs desirable to introduce additional gauge fields which do not

have such problems.
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Appendix

Here we are going to elaborate the construction of cp®

instanton., We start by outlining the general methods of
construction of instanton as given by Atiyah [11] and then apply
it to the CP° case.

Let us recall that a vector bundle E over a space M consists
aof a family of wvector =spaces E"r parametrized (continuously or
differentiably) by ¥y € M. E can bhe said to be a sub bundle of the
trivial bundle M x R" if each E? ics embedded as a vector sub space
in HH, the embedding varying continuously (or differentially) with
i Thus for example if M is embedded as a manifold in r" its
tangent space (translated to the origin) gets identified with
subspaces of R". When E is a sub bundle of M x E",&ny section of

E,namely a function f(y) taking its values in E can be thought of
¥

as a funection taking wvalues in rRY, If we now take partial

derivatives of f, then this will not in general take values in E
.Thus projecting this ordinary derivatives 1into E defines the
¥

co—-variant derivative on E.

vf = P df (4.32)

where P is the projection operator. For example if E be the
tangent bundle over M and if P be the orthogonal projection then
we get the ordinary Levi-Civita connection of Riemannian geometry.

Choosing a orthogonal gauge or local frame for the bundle E
{here we assume E is given canonical inner product or a metric

induced from the bundle M = RH ) will give rise teo linear maps
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R Ey{if Eyﬁ En} which are in fact iscmorphisms preserving
orthogonality. Now composing tLhese isomorphisms with. the

continuous (or differentiable) embedding of E]r in RH, we can write

U? : R"—— R and image of UY = Ey ywe note that U: U? = 1 and

U u = P is the projection operator projecting orthogonally
¥y ¥ ¥
elements in R" onte E .Te compute the covariant derivative V in
Y

the gauge 'II' we put ¥ = U A where A is now a function on M taking

values in Rn and find

-1-

V(UA) = P d{UX) uu d{uxr) = U[dh = i{iUTdUIA] {4.33)

Showing that the gauge potential is given by
- '
A = iU dU (4.34)
The same formalism goes through if the wvector bundles are over O
rather than over R. Indeed the manifold we are interested in is
CP® which is a complex manifold of dimension 2 i.e. real

d=-dimensional manifold.

To determine the U(l) instanton connection over GPz we

consider the tautological line bundle over cp?, It may be
recalled that CP% is the space of all complex triplets {EE.ZE,ZB}

not all zero with the identification {21.22,23} -

for a non-zero complex number X. Thus it is the space of all
complex lines through the origin in €°. To find a representative

point in this line we can initially get rid of the scale factor by

imposing the constraint |z‘]3+[zz|”+|zaiz=1 which defines S°. But

we =still have a U(l) freedom left corresponding to the

transformation Z — Elszlli = Ly 23, Further gquotienting out
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this U(l) transformation we gel cp®= 55f51 (Hopf fibration of
SEJ.Thus s® is the principal bundle over cP® with gauge group
U({1l)., Alternatively in the neighbourhood 772 0 {say) we can give

a projective co-ordinate to cP? as

1 253 Z’ 7?
[z ] z ,E ] [ ?_3 ] 'é.'; [ 1] = [p'l! PE! lj {4135}
where i y1+ iyz and p,= y3+ iyq are two complex numbers.

These v = [y1,yz,y3,y4} define CP° co-ordinates.

At this stage we note that the point {pfpz,l} is a point
where the complex line through ¥y intersects go= 4 plane and hence
does not represent a peint con SE. To get a corresponding point on

SS, we scale it by a factor

1

, 20 that the point

/e 12+ lp,l% + 1

P, P

/1o 1% + 1o, 1% ¢ 1 1012 + 1o 1% + 1

(4.36)

/e, l% + lp,l% 4 1

now belongs to s”. We note that the last entity
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1

in (4.38) igs  real and positive.

2 2
AN TN

Alternatively one can get (4.36) in the fellowing way. Since
12" %+|2%|%+ |2%|* = 1 defines 8°, all of 2',2%,2% cannot be
paramebtrized by y = {y1,y2,y3,y4]. But by making use of the

; i i9.4 5 ; j
residual U(l) symmetry 7 o 7> in 8 , mentioned earlier, we can
choose Z:EI to be real and positive, (which corresponds to choosing

a gauge in U(l) and thereby can now be parametrized by PP, i.e.

by ¥ as given in (4.,36)

Py P
2‘1 i 2 2 i 2 i
AT

2

2 2
/e 0+ oI + 1

1
2'3: {413?]‘

/e I+ 1p, 1% + 1

We alsc note that this is a unit wvector in c? and multiplication
by all non-zero complex numbers A generates the whole complex line
through this point in GPZ and thereby defining a section or gauge
in this tautolegical line bundle over cp?, This line bundle is

tautological because the line parametrized by a point y € GPE is

just the line in c? through the origin represented by the point ¥

S CP2 when CP2 is considered as the manifold of complex lines
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through the origin in c,

Now coming back to the calculation of instanton we note that
the section we have chosen gives rise to a linear map Uy: &' —a

3 ; i
L7, where l.]}r is given by

¢ . ~ \
; ¥y ¥ A¥,
Z —

2 3 2 2

u = = Y1 +y, 45, +7y, +7%

W 1 4

3

Yq 1Y,

which takes any % € €' to U, A€ c’,

. . : - T
At this point one can easily wverify that Uyuy:l and

projection cperator P = U U+ indeed satisfies P° = P .
¥ ¥r ¥ ¥

Substituting the walue of UF from (4.38) in (4.34) one gets

after a straightforward calculatian

.1.-
A = iU du
¥ ¥

y.dy, -y . dy_ + v, dy -y d¥
= 2 1 1 2 4 3 3 4 14'39}

2 P z 2
(L * 3, + 9, + 7, * %)

agreeing with (4.7), This is the U(1l) instanton on cp?, Actually

116




the first deRham Cohomology class H1[¢P2,E} of cr® vanishes
showing that all U(l) connections are actually gauge equivalent.
But it will not be true in general and this method givesa general

method of construction of instanton having self dual field

strength.
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CHAPTER V

., ON GENERALIZED SPIN STRUCTURE ON cp” HANIFGLD1

We have seen in Chapter 4 that CP2 does not admit spin
structure. 4 topological argument for this runs as: All cp”
manifolds are orientable as their first Stiefel-Whitney class
vaniches. However the second Stiefel-Whitney class wvanishes for
CP" manifolds with odd n only. To realize spin structure, the
necessary and sufficient condition is the vanishing of the second
Stiefel-Whitnevy class [1]. Therefore, CP% does not admit spin
structure, Nevertheless it has been pointed out by Hawking and
Pope [2] that on CPZ, one may be able to define a generalized spin
structure by which it is meant that the spinors can be defined on
the manifold only when they are minimally coupled to a non-trivial
one-form, in the form of a gauge field(see chapter 4).

In this Chapter we use the important and familiar concept of
‘parallel transport’ to show how cP® does not admit spin-structure
but admits generalized spin-structure. This is possible as there
is a non-trivial U(1l) connection in the form of an instanton for
EPR{see the appendix of Chapter 4 ). In [2], the index of the
Dirac operator has been used to demonstrate the above result,

along with a subtle mention of the parallel transport, which we

elaborate here.

1B. Chakraborty and R. Parthasarathy, Class.Quant.Grav.{toc appear)
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The result that one can consistently define a generalized
spin structure on cP? manifold is also important for HKaluza-Klein
unification of the basie interactions. In this approach [3],
general relativity in an enlarged space—-time, say {d+n)
dimen;ional space, with a product structure H‘ x B" is considered.
M4 is the wusual (3+1) dimensional Minkowski space and B" is
usually taken to be a compact extra space of wvery small size
undetectable at present day available energies. The symmetries of
B" are taken to represent the internal symmetries of elementary
particles. The original idea of Kaluza [4] and Klein [5] to unify
gravity with electromagnetism is Lo consider a 5-dimensional world
as M x S‘, thereby realising the U{l) symmetry of electromagnetic
interactions(see chapter 1}. It has been reali%ed [6] that to
include weak and strong interactions the B" space should be
identified with the coset space G/H with G = SU(3) = sSuU(2) = U{(1l)
and H = SU(2) x U(1) x U(1) so that G/H becomes CP° x 8% x s' |,
Setting aside the question of obtaining right guantum numbers for
fermions after compactification, one cannot even include fermions
at the beginning as cP® does not allow spinors. However CPE
admits instanton configuration in the form of a U{l) gauge field
which then can be used to define generalized spin-structure. In
the last chapter we [7] have shown that the same non-trivial
topological U(1) instanton field in CP® can be used to trigger
spontaneous compactification of M* x CP® Kaluza-Klein theory with

M' as Minkowskian flat space. The present study allows to
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introduce fermions in M' x CP2 by coupling them with the same

instanton field. Here in the following we discuss the
spin-structure in c¢P' ~ s in section I and that of cP® i section

1T, along with the generalized spin structure.

I. Parallel transport on Sz

Before discussing the spin structure of CPZ, as an illustration we
consider cp! case. It is well known that cp! is homeomorphic to
SE, the two sphere. Consider a wvector referred to a orthonormal
basis, after being parallel transported around a-closed test loop
¢ [(Fig.l) of constant latitude, the transported vector is rotated
with respect to the initial wvector at Pl{say) with rotation matrix
being an element of S0(2).

The infinitesimal change 1in the wvector under infinitesimal

parallel transport is given by

a; - _.a& b [F] _ .3 b
& V' = mph Vo odx = = bv {5.1)
where ufhis the spin connection 1-form. Assuming torsion-free

case, we have the spin connectionexplicitly as :

2 _ _1
R Cos 8 dp ; w j = {5.2)

and so equation (5.1) upen integration around C yields

final initial
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with

Cos(2n Cos @) Sin(2n Cos 8)
g (8) = £ S0(2) (5:3)

-Sin{2n Cos B} Cosl2m Cos 8)

At north pole (8 = 0) the vector just rotates by 2m, at equator
the vector undergoes no rotation on being parallel transported
along the geodesic (as expected) and at the south pole (8 = m) the
vector again undergoes a rotation by an angle 2m but in the
opposite sense, Similarly when a spinor ¥ (Z2-component) is

parallel transported, we have

Y Frnan - Sz O ¥ InrrIAL (5.4)
where the matrix Bivs (8) is given by
explin Cosfd) 0
g, (0) = (5.5)
§] expl—in Cosf)
We have used
1 ab - : .

Dp §p o= a“ Vi W“ah rr“Y¢+ = 0 for parallel +transport with
e % [, 1, (M, r® 3} = 25°® and in2-dimensions I’s are

nothing but the Pauli matrices ¢°. At north pole 8 = 0, we have

4 (0) = ["1 GJ and at the south pole Hifziﬁh :[—1 D]. A

0-1 D=4

few remarks are in order from this simple observation. At north

1/2

and south pole the spinor Y changes sign after completing one
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revolution. This iz a defining property of a spinor. Further

glrz {Q) = glxztn}. We have considered circular loops
parallel to the equateorial plane forconvenience. The matrices

51{9} and gtizﬂﬁ} are independent of the DFiEntation cf the loop
but depends only on the angle 0 specifying each loop.

AS ] varies from 0 to m we get & set of closed loops on
EENhUSE planes are parallel to the equatorial plane. Mow these
loops can be brought into one-to-one correspondence with =a
l-parameter family of loops all based on some point on SE. This
is because the rotation matrix fs independent of the orientation
of the loop so we can conveniently slide them on 5° so that they

originate and terminate =8t a single point N say. These

one-parameter family of loops originating and terminating at north

pole will span the whole surface gt (Fig.2). The above
considerations show that a Z-vector on parallel transport
produces elements belonging to S0(2) and since g1{D} = gI{n} = ol

we have closed loop in S0O(2). The Z-compecient spinors also give
closed loop in the corresponding spin group. We now present an
alternative description by keeping the loops without sliding.
Consider the two representative loops of cone angle Bt and BE

(Fig.3). The loops each lie in a plane intersecting the XY-plane

in a line Y = A and passes through the N-pole. Thus the loops can
also be parameterized by A §; -» < A < @ , If we now integrate a
one-form @ along the loops parameterized by 51 and ﬂz » then

[ @ - I w o= J dw (5.6)

& a8 0

2 1
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where 0 is the surface enclosed by EI and Hz loops on s%. Under
stereographic projection, the loops 61 and Bz correspond ta the
lines ¥ = 11 and Y = 12 and § corresponds to the rectangular strip
bounded between Y = ll and Y = 12' Taking the limit El — 0
{11 — + @ } and Ez — {12 — -® ), © becomes the entire g%
projected on the XY plane. Thus the difference between the loop

integrals between N and 8 pole is the surface integral over s?

So

For the parallel transport of wvector, we have from (5.1)

g1{}.}:exp[ [_':1} é] [ cosad¢] (5.8)
A
and so
g _(-m) Edi () = exp [ [ 24 ] I d cos 8 A d o }
1 1 -10 &
s

[l

oo [ an [ 25 ] |

_ cos (-4n) sin (-4m)
B [ -sin [(-4m) cos [ =-4m) J L (5.9)
which agrees with (5.8}, Equivalently using the polar

co-ordinates (r,x) for the xy-plane, obtained by sterecgraphic

T -1

projection and noting that W, = [ Jda, we have

r +1

g, W =en [ [ 30] [ e, ] (5.8a)
A
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and so

=1 _ _ 01 K
g, [—@) £, (m) = exp [ [ -1 0 ] J dm12 ] (5.9a)
z
s
= 2
Since Idm = 2n I d|E =1 = 4an , we get back (5.9).
2 12 rz+1
s

Similarly for the parallel transport of spinors, we have

-1 _ . L .3
By2l~®) 8., (®) = exp [ z T J 49z ]

1]

exp |-2m i 03 )

_ [ exp(=-2mi) 0O ] I (5.10)

0 expl 2ni )

agreeing with (5.5). The above example of 5 shows that to define
spinors consistently on a manifold we must have

g152{+m} =g  (-»}) so that we get a closed loop in the

i/2
corresponding spin group alsc providing a double cover [ In
the next section we examine the CP2 case. Before proceeding to

GP2 we realize that in the case of 52, the one parameter family of
loops span the same 52. When we calculate the parallel transport
of a wector or spinor on GPZ, the loops will span a 2Z-surface
homeomarphic to SE, embedded in cp®. Since HE(CPZJ = 7 and CP' is
the generator of this group we take cp! itself as the 2-surface on

which the vectors and spinors will be propagating.
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2.Parallel Transport in I.TZP-'g

Since CP° is defined as the space of all triplets {21.22,331
: . : A : 1 2 3 i 1 2 3
not all zero with the identification (z ;2,87 ) (hz A2 ;22" )
with A # 0, New in the neighbourhousd where 23 2 0, we can take
1 2
d= 13. Thus ﬁzi, 321 g7y | ZB ,Eﬁ. 1. 3 = pi, pz, 1) where
Z z z"

2
pl and pz are any two complex numbers. Thus CP™ is two-complex and

hence four real dimensional manifeold. Similarly two more, three
in total, charts are necessary to cover the whole manifold
corresponding to zI £ 0 and 22 # 0. Now a canonical embedding of
cP' inside CP‘2 in the chart %here z3 # 0 can be obtained by
setting 22 = 0 and similarly in other charts. HNow we can

parametrize {Pi, 92} of the CPZ co—ordinates as

4] = y 4 iy = 1 Cos ¢ ei
Pz =y o+ 1'.-r4 = r Sin ¢ Elﬁ (5.11)
with the ranges 0 = r ¢ @; 0 < p < g; 0 = o, B £ 21 where r© = 1

defines S§° ~ SU(2) topologically. We get the above mentioned
embedding of cp! in CcP° by putting ¢ = 0, where z” # 0.

Now let us consider the parallel transport of a wvector v
(a = 0,1,2,3) and a spinor Y in CP2 around a closed loop lying in

this CPi. Loops of this type will span the whole of CPI.

Now as before the infinitesimal change of the wvector is given by

o —w“bvh (5.12)
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a s
where A , are the connection one form referred totheorthonormal

basis defined by the wvielbein 1-forms Eu on CPE. From the Fubini

study metric on CPE [1] we have

% drz + rz ef rz {Ef + Ez }
ds® = e + = 4 (5.13)
(1+1r7) {1+

where e , & and e are the left invariant one-forms defined as
% ¥ z

g dg = i{ e o + e o + e o.) (6.14)

where ¢ is an arbitrary element af 5U{2) and parametrized as

Cos ¢ e'” === g e_iﬁ
g = - (6.15)

Sin p EIB Cos ¢ e e

the explicit expressions of e , ey and & are given by
o =

e = -5ing Cosyp Cos(a+f) do + Sing Cosp Cos(uw+p) df + Sin{(a+f) dp
Ey = -5inp Cosyp Sin(ao+f) du + Sing Cosp Sin{a+f) df - Cos(u+f) dp
e, = Cos” ¢ du + Sin’p df (5.16)

with 0 £ «, B < 2 , 05 ¢ < %, we have the vielbeins E*

(¢=0,1,2,3) defined agds® = ¥ E|E & are given by

af
o dr 1 - - 2 re | il
E:.—z_;E T R E S — . 1 oo & {5.1?]‘
(1+x7) Y(1412) Y(1+r?) 1472
From the cartan's equation dE" + w“hh Y = 0, we obtain the

127



: 2
connection one-forms on CP  as

e e 2
muiz g0 mnz: a—— "“.'D'_l = [ rz_l ] €y
¥ 1+ra 1+r2 ok
e (=] 2
m23= —_— . {._131: P - 5 m'? = [“2]; ] e (5.18)
) ox?
J/ 1+r° 1+r° thr

As the loops lie on CP1, we get by setting ¢ = 0, e

= dee;
&
e = 0 and e = D. Thus the only non vanishing spin connections
® ¥
are
2 2
W, = [ ”2"1 ] de  and 0, = [%] da (5.19)
r +1 1+r
The infinitesimal change of the vector is given by
' N
( qv? 0 =6, 5 vl
2 0 2
oy = 12 V. (5.20)
dv ‘ ~m30 LY
av® 0 0 v?
h 30 J

parallel transporting along %, we get the matrix element for this,

as we have done before,

¢ +1 ‘

B (M) = exp [( "L_ Y12 _J‘ mau] = 0\ 0 +1 (8.21)
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Thus it follows that

+1 ! 0
=4 I _ ] <3 0
E,'{—m'.l g, (+®) = exp [ Idm1z J‘dmau} 5 l S
GPi GP1 -1 0
(5.22)
But it is trivial to see that
1 ;B
j 1 do,, = 3 I do, = 3 x 4n = 2m (5.23)
cP
Ll y
0 +1 ‘
-1 =1 0 U
g (-=) g (+®) = exp |(-21 4m) =1 (5.24)
0 \ 0 41
-1 4]

thus getting a closed loop in the S80(4) space as expected. The

loop can be written more precisely as

cos(-8) sin(-6) I "
-sin(-8) cos(-8)
0 cos(20) sin(20) 0 <8< 2n (5.25)
-s5in(20) cos(26)

Though e¢losed, +this loop is non-trivial i.e., can't be
continuously shrunk Lo a point. (We prove this in the appendix).
And hence the lift of the loop in S0{(4) to the corresponding
double cover Spin{(4} has to be open, as follows from the theory of
the covering =spaces. We wverify this belew by parallel

" . . 1
transporting spinors instead of vectors over CP°, But for the
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spin structure to exist we must have closed loop even in Spini4).
Thus showing that spin structure do not exist 1in cP®. At this
stage one can make the following general statement that for any
differentiable manifold M" in »3 ), if we parallel transport a
vector along a family of closed loops spanning any Z2-surface,
belonging to HE{H] and get a non-trivial loop in S0(n) then MW"
does not allow spin structure as ‘J'LI{SD{TIIJ:' = ?.z for all n > 3 and
lift of the non-trivial loops in 50(n) to Spinin) has to be

. . . 2 . .
cpen.Now coming to spinors in CP , we note that the Dirac matrices

in this S0{(4) case are

-
el 9 and T' = ﬂi 1o (5.26)
0 -1 —ig 0
where they =satisfy the anticommutation relation
{r“.rb} = 2.&8"4
Define
P = % [r", r“} (5.27)

The infinitesimal change in the spinor ¢ when parallel transported

ig given by

dp = - % o ™ (5.28)
MNow
1 ab  _ 1 03 12
7 YU T -z (g, T # e, T )
From (5.27)
|
r*? . [ “E i ] and Tz 48 1. (5.29)
i 0
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We note that [I'"®, 1'%] = 0.

Integrating along a loop 'A' as before

o

>

1

[

b

o
1

1
pa =

{ J" o, 1*'5'3+m12 r”‘}}. (5.30)

A

The fact that ngi—ml # g”z{ﬂﬂl shows that we do not have a

closed loop in the spin group, implying that there is no spin

structure on CPZ.
Now we introduce the instanton U(1l) 1-form ‘A’ admitted by
cP? and couple it to the spinor ¢ of charge e'. Then wunder

infinitesimal parallel transformation along any loop will result

in the infinitesimal change in the spinor wave function Y given by

w - | -

where the 1-form A is given in Chapter 4

] =

ahb .
th I + i’ A } y (5.32)

(see equations
(4.7),(4.39))

- + 8 -
FE I:l}r‘l Y‘l dFE }1 dya Y:] d?4

(5.33)
] 2 2 2
I FFH T, vy vy
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Integrating over a loop A as before we get the effective matrix

element

el

8,2 (A) = exp [ = % J W AP L jef I A ] {5.34)

implying that

=
el f ofl
g1;2{":”} [ 5112{+m}]

[Eirz{_m} g;:z{+m}][exP{iE: j 1dA]

CF

= -—eXp [ie' I 1FJ (5.35)

CP

using equation (5.31). Here F=dA is the field two-form. So with

¥

a ={m+é}and I 1F = &n (see chapter 4 equation 4.26),we have
cp

aell {_m} 4 ef I

172 Bz (#o0) (5.36)

Showing that we can have a generalized spin structure on CP2
where fermions of definite charges are coupled to the instanton

field configuration.

Appendix
Here we shall prove that the 50(4) element obtained by
parallel transporting a four-vector in CPZ, around CP' Eiven in
(5.25) is a non-trivial loop i.e. this loop cannot be continuously
shrunk to a point.
As we know that n1{53{4}}=12 the group containing two

elements (0,1) with the binary operation being the addition modulo
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AR Thus all the loops in 50(4) space can be brought intoc two
equivalent classes, where in one class all the loop can be shrunk
to a point and corresponds to the element 0 of the fundamental
group and in the other class none of the loeps are contractible
and corresponds to the element 1 of the group.

In order to prove that the 350(4) loop given in (5.25) is
really non contractible, let us consider a more general loop given
by the one parameter family of matrices A(m,n) (characterized by

arbitrary integers m and n) is

( Cos(m8) -S5in{mpP) D )
Sin(m8) Cos(md)
Alm,n) = 0 =8 < 2n
Cos(n@) -Sin{nB8)
L U Sin(nd) Cos({nd)

B

{(b.3T)
and try to find out in which eclass this matrix element belongs to.

Before proceeding further let us recall that for a principal
bundle P over a base B with structure group H, one can write the

following exact segquence.
— 0 (H) — 0 (P) — 0_(B) — 0 _ (H) — n._,(P) —0__ (B)

— ., — HG{H}

{5.38)
with HU{H} being the number of connected components in H, where

the kernel of any one map in the sequence is the image of the
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Preceding mAap. More Precisely considering the map
Hn{B} — Hn_iiH}, we take the element zero £= nn—itH} and its
pre-image % c ﬂn{E}. Now the exact sequence means that the image

of ﬂnIP} under this map is Precisely the Pre-image % - called the
kernel.
In particular this hoelds for =a homogeneous coset space

M = G/H which is a H Principal-bundle over M, The exact sequence

for this case then becomes
—_ I'En{H,'I =% ]'Inl:G} — Hﬂ{M,‘I — ”n—-i{HJ —_—F . — ]']G{H}

Now in our case we can see that the matrix Alm,n) consists of
two S0(2)’s in the form of S0(2) x 50(2) embedded in 50(4). S0 we
consider the coset space M = S0(4)/ 50(2)xS0(2). The Justification
that this is well defined manifeold followe from the fact that
S0(2) x s50(2) is & closed subgroup of SO(4). This manifold is a
well known oriented Grassmanian manifold which is the space. of
oriented 2 - planes in R® through origin,which is known to be
simply connected, Naw writing the exact Segquence for

M = 80(4)/s0(2)xs0(2)

ce. — EEEM} —%-HI {SO{E} X'SD{EJJ — ﬂ1{SD{4]} — Hiiﬂ} —+ HG{M}

(5.40)

As we have seen earlier H1{M} = 0 and hence the whole of H1{50{4}J
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= Ezis the Kernel and the mapping

ﬂ1 [SD{EJ x SD{E}] = I'[‘1 [SG[Z}] ¢ 1'11 [50{2}] Z x 7

—_ H1 [80{4}] = F

must be onto.

The group of homomorphism Hom (7 x Z, Ez} has four elements
given by (i) (m,n) — 0 (ii) (m,n) — [m] (iii) (m,n) — [n] (iv)
(myn) — [m+n] where the square bracket means "modulo 2". We
reject the first one as the map in our case should be "onto" as we
have seen, the second and third are rejected on the basis of
symmetry. Thus we are left with the fourth one, which shows that
the loop defined by A(m,n) will be contractible if {m+n) is even
and non-contractible if (m+n) is odd.

Our loop given in (5.25) was aof (=1,2) type and hence
non-contractible.

Here we would like to give a justification for the remark we
have made earlier in this chapter that if all homotopy class of
maps f: §% — 3 M give rise to a non-trivial loop in S0(n) given
by parallel transporting along the one parameter family of loaps
Gﬂ{t} spanning s (here t is the parameter along the loop and v is
the parameter parameteriging the family of loops, earlier
parameterized by @ or X (see fig 3.) with ranges 0 = £, + £ 1)
discussed earlier, then the manifold M does not admit a spin

structure.

To prove this we recall a general result from Obstruction
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Theory [8] which says that +the second Stiefel-Whitney Class
completely determines the primary obstruction class - which is the
obstruction to constructing (n-1) linearly independent sections of
the tangent bundle over the 2-Skeleton of M., But as M is
orientable, if the tangent bundle admits (n-1) linearly
independent sections, it is trivial. This can also be recast as

M admits a spin structure iff the pulled back tangent .bundle

®

f TH iz trivial aver SE for all smooth maps Frolf™ —s M. T |

Here we would like to mention that parallel transport along
loops Uv{t} can be thought of as horizontal 1ifts ;v{t} in the
principal SO(n) bundle f* P where P is the principal 50(n) bundle
associated to +the tangent bundle TM of M (M is taken to be
oriented, so the structure group of TH can be reduced to S0O(n) ).
Also the loop in SO(n) obtained by parallel transporting, as
above, is just the loop formed by the end points ;v 1) @ £ v % 1
of the horizontal lifts in the fibre above the point N- which can
be identified with S0(n). (N is the fixed point where all the
loops are originating and terminating at.)

Now suppose that M admits a spin structure then by (*) we can
assume that f* F i=s trivial over Sz. That 1is ,f*P is homeomorphic
to the product s? x 50{mn). Notice that ;v{t} 0 < v <1 as t
tends to zero gives a homotopy of ;vil} 0 < v £ 1 to the constant
loop based at identity in SO(n). This is a homotopy in the total

*
space of the principal bundle f P . But this is not serious.

Writing the long exact homotopy sequence for the principal bundle
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f* P over S° 3
m,(s%) —il, (80(n)) —» N (£ P) — N(s%) —...
and noting that 0 (s%) = 0 and N (£'p) = 1 (5% so(n)) =
ﬂi{SD{n}}, we see
ﬂi{SD{n}} ——4H1{f* P) is an isomorphism.

This means that any loop in S50(n), embedded azs a fibre in f* P,
which can be shrunk in f* P can be shrunk in S0(n).

The point here is that hoeriszontal lifts of Ug{t} D € ¢ <€ 1
and 0 < v < 1 actually give rise teo a section of the bundle f:k P
over S°- N, To extend this section to N also one has to know
whether the loop ;vfli in the fibre above N can be shrunk in the
fibre above N or not. So, by (*) this knowledge determines
whether M admits s=pin structure or not. The obstruction to
existence of spin structure on the manifold M is given by the
homotopy class of +this loop in the fibre above N which is
identified with S0(n) (notice that this loop depends on the

homotopy class of maps f: Sz-—ﬂHJ.
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