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SUMMARY

The focal point of this thesis is to study the arithmetic nature of Dirichlet L values

at positive integers. While non-vanishing of these values was established in 1837,

it took about 130 years to settle the nature of these numbers. Thanks to Dirichlet

and Baker, Dirichlet L values corresponding to non-trivial Dirichlet characters at 1

are transcendental. It is an open question of Baker whether the Dirichlet L values at

1 corresponding to non-trivial Dirichlet characters with fixed modulus are linearly

independent over the rational numbers. The best-known result is due to Baker, Birch

and Wirsing, which affirms this when the modulus of the associated Dirichlet charac-

ter is co-prime to its Euler’s phi value. In this thesis, we discuss an extension of this

result to any arbitrary family of moduli. The interplay between the resulting ambient

number fields brings new technical issues and complications hitherto absent in the

context of a fixed modulus. For k greater than 1, the study of linear independence

of Dirichlet L values at k, corresponding to non-trivial Dirichlet characters depends

critically on the parity of k and the Dirichlet characters. This has been investigated

by a number of authors for Dirichlet characters of a fixed modulus and having the

same parity as k. We extend this investigation to families of Dirichlet characters

modulo distinct pairwise co-prime natural numbers. The product of these Dirichlet L

values gives the Dedekind zeta values associated with abelian number fields.
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The main results that make up this thesis are as follows.

• There are at most finitely many abelian number fields for which the derivative

of their associated Dedekind zeta value at 1/2 is zero, whenever their associated

Dedekind zeta value at 1/2 is non-zero. All such number fields (if exist) have

degree less than 46369. This result refines a result of Murty and Tanabe, both

qualitatively and quantitatively. We also extend our investigation to Galois

as well as arbitrary number fields, borrowing tools from algebraic as well as

transcendental number theory.

• Let t and q be co-prime integers such that tq is co-prime to (t°1)(q°1). Then

the set of all Dirichlet L values at 1 corresponding to non-trivial Dirichlet

characters modulo t and q, is linearly independent over the rational numbers.

In the process, we also extend a result of Okada about linear independence of

the cotangent values over the rational numbers. We also prove that the set of all

Dirichlet L values at 1 corresponding to non-trivial even Dirichlet characters is

linearly independent over the algebraic numbers, conditional on co-primality of

their moduli. This extends a result of Murty-Murty.

• Let k be a positive integer greater than 1, and t and q be co-prime integers

such that tq is co-prime to (t°1)(q°1). Then the set of all Dirichlet L values at

k, corresponding to non-trivial Dirichlet characters modulo t and q and having

the same parity as k, is linearly independent over the rational numbers. We

connect the spaces generated by such L values with the spaces generated by

Hurwitz zeta values. Here, we also compute the lower bounds of dimensions of

finite sum of generalized Chowla-Milnor spaces over linearly disjoint number

fields.



NOTATIONS

Symbol Description

; The empty set.

N The set of all natural numbers.

Z The ring of rational integers.

Q The field of rational numbers.

C The field of complex numbers.

<(s) The real part of the complex number s.

K A number field.

OK The ring of integers associated to K.

Gal(K/Q) Galois group of K over Q.

dK Discriminant of K over Q.

r1 Number of real embeddings of K.

r2 Number of non-conjugate complex embeddings of K.

n = r1 +2r2 Degree of K over Q.

° Gamma function.

∞ Euler’s constant º 0.577 · · ·

≥n An n-th primitive root of unity in C.

Q(≥n) The n-th cyclotomic field.
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'(n) The Euler-totient function.

µ(n) The Möbius function.

N(a) The absolute norm of an ideal a.

Li(x) The logarithmic integral from 2 to x.

§(n) The von Mangoldt function.

p prime number.

≥n primitive nth root of unity.

Ĝ character group of G.
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1
INTRODUCTION

This chapter is devoted to describe various lower bounds for discriminants of number

fields relevant to our work. The primary goal is to give a complete proof of an elegant

result of Ram Murty which shall be applied in due course.

We first begin with a brief account of the Conductor-Discriminant formula for

abelian number fields.

1.1 Discriminant

Definition 1.1.1. (Discriminant of a basis) Let K be any finite field extension of Q

and let W = (w1, . . .wn) be a basis of K over Q. We define the discriminant of the basis

W in the following manner:

DK(W)= det((æiwj)i, j)2

25



CHAPTER 1. INTRODUCTION

where æi ranges over the distinct embeddings of K into C (i.e. injective ring homomor-

phisms from K!C).

Definition 1.1.2. (Discriminant of an algebraic number field) Let K be an algebraic

number field (i.e. a finite extension of Q ). Also, let W = (w1, . . .wn) be an integral basis

of K, i.e., W is a Z-basis for the ring of integers OK. Then the discriminant of K is the

following integer

dK = det((æiwj)i, j)2

where æi ranges over the distinct embeddings of K into C.

We recall that OK is a free Z-module of rank n (degree of K over Q) and thus such

an integral basis of OK exists. Let us show that the discriminant of a number field is

well defined, that is, if V = (v1, . . .vn) is another integral basis of OK, then

DK(W)= DK(V ).

We have vk =
nX

j=1
ak, jwj for some ak, j 2Z and 1∑ k, j ∑ n. So, we obtain

DK(V )= det((æivk)i,k)2

= det((
nX

j=1
ak, jæiwj)i,k)2

= det((ak, j)k, j)2 det((ækwj)k, j)2

= det(T)2 DK(W),

where T is the transition matrix (ak, j)k, j. By reversing the roles of bases, we see that

inverse of T has entries also in Z. It implies that det(T) is a unit in Z, so det(T)=±1.

Hence, DK(W)= DK(V ) as desired. In other words, dK is independent of the choice of

the integral basis W of K over Q.

26



1.1. DISCRIMINANT

Example 1.1.3. Let K be a quadratic number field. Then there exists a non-zero

square free integer d such that K=Q(
p

d ). One can show that

dK =

8
>><
>>:

d if d ¥ 1 mod 4;

4d if d ¥ 2,3 mod 4.

Another useful example is the following.

Example 1.1.4. For a cyclotomic field K=Q(≥n), its discriminant is given by

dK = (°1)'(n)/2 n'(n)
Y

p|n
p'(n)/(p°1) ,

where ' is Euler’s totient function.

Example 1.1.5. Let us now consider a more involved number field. For an odd prime

number p, let K =Q(p1/p). Its ring of integers OK is the ring Z[p1/p]. A proof of this

can be seen in Proposition 7.3 [47, pg. 110].

To find the discriminant of K, we recall a recipe to find discriminant of basis

which is of special type. Let Æ be a root of the irreducible polynomial f (x) 2Q[x] and

let L=Q(Æ). Then the discriminant of the basis {1,Æ, · · · ,Æn°1} is given by

DL(1,Æ, ...,Æn°1)= (°1)
n(n°1)

2 NL/Q( f 0(Æ))

where f 0(x) is the derivative of f (x) (see [63, pg 41]).
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CHAPTER 1. INTRODUCTION

We give a quick proof of it. Denote by Æ1,Æ2, · · · ,Æn the roots of f (x). Then

DL(1,Æ,Æ2, ...,Æn°1)= det((æiÆ
j)i, j)2

= det(Æ j
i )

2

= (
Y

i< j
(Æi °Æ j))2

= (°1)
n(n°1)

2
Y

i 6= j
(Æi °Æ j)

= (°1)
n(n°1)

2
Y

i

Y

j 6=i
(Æi °Æ j)

= (°1)
n(n°1)

2
Y

i
f 0(Æi)

= (°1)
n(n°1)

2 NL/Q( f 0(Æ)).

We want to find out the discriminant of the basis 1, p1/p, · · · , p(p°1)/p. Since Z[p1/p] is

the ring of integers of K =Q(p1/p) and p1/p is the root of the irreducible polynomial

xp ° p, we have

dK = (°1)
p(p°1)

2 NK/Q(p(2p°1)/p)= (°1)
p(p°1)

2 p2p°1.

Definition 1.1.6. Let K and F be algebraic extensions of a field L. The fields K,F

are said to be linearly disjoint over L if every finite subset of K that is L linearly

independent is also F linearly independent. See §1.4 for more details.

Very often, a number field is expressible as compositum of two number fields

each of which is easier to understand. The following result allows us to compute

discriminant of compositums of special type.

Proposition 1.1.7. [42, pg 68] Let K,L be two number fields. Assume that their

discriminants are relatively prime and that the fields are linearly disjoint and therefore

28



1.1. DISCRIMINANT

deg(KL/Q)= deg(K/Q) deg(L/Q). Then

OKL =OKOL

and

dKL = (dK)deg(L/Q) (dL)deg(K/Q).

Example 1.1.8. Let K =Q(21/3,≥3). We have OQ(≥3) =Z[≥3] and OQ(21/3) =Z[21/3] (see

Proposition 7.3 in [47, pg. 110] for more details). So OK the ring of integers of K is

Z[21/3,≥3] by Proposition 1.1.7 stated above. By 1.1.4 and [63, pg 41], dK = 1082 (°3)3 =

°314928. Note that Gal(K/Q) is S3, permutation group of order 6 and Q(21/3,≥3) is an

example of a non abelian Galois extension.

We now state the following classical lower bound for discriminant of a number

field K in terms of its degree.

Theorem 1.1.9. (Minkowski’s Bound) Let K be a number field of degree n. Then

|dK|1/2 ∏ nn

n!

≥º
4

¥n/2
.

An immediate but important corollary of this theorem is the following.

Theorem 1.1.10. [63, §4.3, Thm 1] For any number field K 6=Q , |dK| > 1.

In general, Minkowski’s Bound is not optimal. For instance, if K is a quadratic

field, |dK|∏ 2.46 by Minkowski’s Bound. But as we vary over all quadratic fields K,

the absolute discriminant |dK| evidently goes to infinity.

Now let us take a cubic field K =Q(21/3) whose ring of integers is Z[21/3]. From

[63, pg 41], |dK| = 108 but Minkowski’s bound provides |dK| > 17.44 · · · . Thus |dK|

of Q(21/3) is much larger than lower bound of |dK| which one derives by applying

Theorem 1.1.9.
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CHAPTER 1. INTRODUCTION

Of course, these are not the most illuminating examples as the degree is bounded.

Now let us consider a family where the degrees are unbounded. For a prime p, let

K=Q(≥p). Its discriminant |dK| = pp°2 as mentioned earlier (see example 1.1.4). By

Minkowski’s Bound,

|dK|1/2 ∏ (p°1)p°1

(p°1)!

≥º
4

¥(p°1)/2

where the bound is much smaller as compared to the actual value of |dK|.

As observed by Hermite, there are only finitely many number fields with bounded

degree and discriminant. But bounded discriminant ensures bounded degree and

therefore one has the following fundamental theorem.

Theorem 1.1.11. [63, ch 4] There exist only finitely many number fields with bounded

discriminant.

Now we slowly proceed towards the conductor-discriminant formula. We begin

with some group theoretic results.

1.2 Character group

For a finite abelian group, let Ĝ be the group of all homomorphisms from G to C£. We

shall refer this as the character group or the dual group of G. Since G is finite, any

such homomorphism actually maps into the unit circle S1.

Lemma 1.2.1. Let G be a finite abelian group. Then G ª= Ĝ.

Proof. By Fundamental theorem of abelian groups,

G ª=
M

m2I
Z/mZ,
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1.2. CHARACTER GROUP

where I is a finite indexed set of prime powers. So, any element of

·M

m2I
Z/mZ

looks like the product of elements of the groups ÉZ/mZ,m 2 I. Hence,

Ĝ ª=
M

m2I

ÉZ/mZ.

So, it is enough to show that ÉZ/mZª=Z/mZ for prime power m. We define a map

f :Z/mZ! ÉZ/mZ

by f (i+mZ) := ¬i where ¬i(x+mZ) := ≥ix
m for 0∑ i, x ∑ m°1 and ¬i 2 ÉZ/mZ.

Clearly, K er( f )= 0. Since, ÉZ/mZ is nothing but the collection of all ¬0is defined above.

Hence, f is an isomorphism. ⌅

Let us now study a bit more carefully the character group of quotients.

Lemma 1.2.2. Let G be a finite abelian group and H be a subgroup of G. We define

H? =
©
¬| H Ω ker¬

™
. Then

H? ª= ÅG/H.

Proof. For a subgroup H of G, the natural surjection G !G/H induces a map

ÅG/H ! Ĝ

which is evidently injective. The image is indeed the group H? and hence

H? ª= ÅG/H.

⌅

On the other hand, the dual group Ĥ of H is linked to the group H?.
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CHAPTER 1. INTRODUCTION

Proposition 1.2.3. Let G be a finite abelian group and H be a subgroup of G. Then

Ĥ ª= Ĝ/H?.

Proof. Let f : Ĝ ! Ĥ defined by f (¬) := ¬, be a homomorphism. Clearly, its kernel

is H?. So, Ĝ/H? injects inside Ĥ. Both Ĝ/H? and Ĥ have the same cardinality by

previous lemma. So, the proposition follows. ⌅

We note that for any subgroup H of G, the groups H? and H?? are subgroups of

Ĝ and ˆ̂G respectively and consequently

|H||H?| = |G|, |H| = |H??|.

We note that for any finite abelian group G, G is isomorphic to its dual Ĝ and

consequently G is isomorphic to its double dual ˆ̂G. However, there exists a direct

natural isomorphism between these two groups which we highlight below.

Lemma 1.2.4. Let G be a finite abelian group. The map f : G ! ˆ̂G defined by f (g) :=ºg

where ºg(¬) := ¬(g) for ¬ 2 Ĝ is an isomorphism between G and ˆ̂G.

Proof. Let f : G ! ˆ̂G defined by f (g) :=ºg where ºg(¬) := ¬(g) for ¬ 2 Ĝ.

We have

H := ker( f )=
©
g 2G|¬(g)= 1 8¬ 2 Ĝ

™
.

Clearly H? = Ĝ and hence |H| = 1. On the other hand, any injective map from G to ˆ̂G

is surjective as they have the same finite order. Therefore, f is an isomorphism. ⌅

Thus the double dual is explicitly given by ˆ̂G = {ºg|g 2G}.
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1.2. CHARACTER GROUP

Proposition 1.2.5. Let G be a finite abelian group and H be a subgroup of G. We

define

(H?)? := {ºg 2 ˆ̂G :ºg(¬) := ¬(g)= 1,8¬ 2 H?}.

Then

H ª= (H?)?.

Proof. Let f : H ! (H?)? defined by, f (h) := ºh be a homomorphism. Clearly, f is

1-1. We have the following natural isomorphisms

(H?)? ª= {g 2G|¬(g)= 1,8¬ 2 H?}ª= char(Ĝ/H?).

This implies that |(H?)?| = |G|
|H?| . By lemma proved above, we have |H| = |G|

|H?| . So,

|H| = |(H?)?| implying the surjectivity of f . ⌅

Let us now specialise our discussion to abelian groups which are Galois groups.

For an abelian number field K, let G denote the Galois group Gal(K/Q). We shall call

the dual group Ĝ to be the character group of the field K. When K=Q(≥n), then clearly

the character group of K can be identified with the set of all Dirichlet characters mod

n. By Galois theory, the sub extensions QΩLΩK are in bijection with subgroups of G.

The association H $ H? gives a bijection between subgroups of G and Ĝ. The inverse

of this bijection is given as follows: for any X Ω Ĝ, the corresponding subgroup H of

G is simply given by

H =
\

¬2X
K er(¬).

Thus, we have a bijection between the subgroups of the character group of K and

its subextensions over Q. The following theorem gives the precise description of this

bijection.
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CHAPTER 1. INTRODUCTION

Proposition 1.2.6. Let X be the character group of the field Q(≥n), i.e., the dual of the

group Gal(Q(≥n)/Q)ª= (Z/nZ)£. Then there is a bijection

©
Y | Y subgroup of X

™
√!

©
L |QΩLΩQ(≥n)

™

given by the correspondences

Y °! fixed field of
\

¬2Y
K er(¬) and

Gal(Q(≥n)/L)? √°L,

which are inverse to each other.

Furthermore, let Xi corresponds to Ki. Then under this correspondence,

(1)

X1 Ω X2 () K1 ΩK2.

(2) hX1, X2i corresponds to the compositum K1K2.

Proof. Denote the fixed field of G by f ix(G).

Let f : S1 °! S2 and g : S2 °! S1 be two maps between given sets. If f og = gof = id,

then they are bijective maps and inverse to each other. Using Fundamental Theorem

of Galois Theory, we have

Y? =\¬2Y K er(¬)

= {g 2Gal(Q(≥n)/Q)|¬(g)= 18¬ 2Y }

=Gal(Q(≥n)/L),

where L is the fixed field of
\

¬2Y
K er(¬). By previous proposition, (Y?)? = Y . So,

Gal(Q(≥n)/L)? =Y . Conversely, we start with L subfield of Gal(Q(≥n)/Q).

We have

f ix(Gal(Q(≥n)/L)?)? = f ix(Gal(Q(≥n)/L))=L.
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1.2. CHARACTER GROUP

(1) We have

X1 Ω X2

()
\

¬2X2

K er(¬) Ω
\

¬2X1

K er(¬)

() f ix(
\

¬2X1

K er(¬)) Ω f ix(
\

¬2X2

K er(¬))

() K1 ΩK2.

(2) We have the following obvious equality.

\

¬2hX1,X2i
K er(¬)= (

\

¬2X1

K er(¬))
\

(
\

¬2X2

K er(¬))

f ix(
\

¬2hX1,X2i
K er(¬))= f ix((

\

¬2X1

K er(¬))
\

(
\

¬2X2

K er(¬)))

=K1K2.

The last equality follows from Fundamental Theorem of Galois Theory.

⌅

Remark 1.2.7. As indicated before, the character group of Q(≥n) is isomorphic to the

group of all Dirichlet characters modulo n. So if L is a subfield of Q(≥n), its character

group Y is identified with a subset of the set of all Dirichlet characters modulo n

which determines L uniquely.

Example 1.2.8. Let us determine the character group of the maximal real subfield

L=Q(≥n+≥°1
n ) of K=Q(≥n). Note that the Galois group of the extension K/L is given by

complex conjugation and thus identified with the group {±1}. So the character group

of L consists of all Dirichlet characters ¬ mod n such that ¬(°1)= 1. In other words,

the character group of L is precisely the set of all even Dirichlet characters mod n.
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Conversely, let us start with some character groups and determine the associated

fields.

Example 1.2.9. Let p be an odd prime number and K=Q(≥p). The character group

X of K has a unique element of order two. This quadratic character

¬ : (Z/pZ)§ °!C§

is given by ¬(a) :=
≥

a
p

¥
, where

° .
.
¢

denotes the Legendre symbol.

Let us determine the associated quadratic number field L. Since p is the only prime

which ramifies in Q(≥p), we have only two possibilities, namely Q(pp ) or Q(p°p ). The

above character is even if and only if p ¥ 1 (mod 4) and hence the associated quadratic

field L is real if and only if p ¥ 1(mod4). Hence the quadratic field associated to the

Legendre character is Q(pp ) if p ¥ 1(mod4). On the other hand, p ¥ 3(mod4), then

the corresponding field of given character is complex and hence equal to Q(p°p ).

1.3 Conductor

Definition 1.3.1. The conductor f¬ of a Dirichlet character ¬ : (Z/nZ)§ °!C is the

smallest positive integer f such that ¬ factors through (Z/ fZ)§.

We now come to the final piece needed to define the conductor of an abelian

extension K of Q. The celebrated Kronecker-Weber theorem asserts that any such K

is contained in a cyclotomic extension Q(≥n). Evidently, such a cyclotomic extension is

not unique as Q(≥n)ΩQ(≥m) if n divides m.

Definition 1.3.2. The conductor of an abelian extension K is the smallest positive

integer f such that KΩQ(≥ f ).
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Example 1.3.3. Since 2 and 3 ramify in Q(
p

3 ) [63, ch 5, §5.4], they ramify in all

extensions of Q(
p

3 ) [42, ch 1]. By Prop. 2.3 [72], the possible cyclotomic extensions

are Q(≥6) , Q(≥12) etc. We have Q(≥3)=Q(≥6)=Q(
p
°3 ) which does not contain Q(

p
3 ).

Also, Q(≥12)=Q(≥3)Q(≥4) which clearly contains Q(
p

3 ). So the conductor of Q(
p

3 ) is

12. Note that 12 is also its discriminant.

We are now all set to state the Conductor-Discriminant formula. For any natural

number ±, we set

m(±) := [K\Q(≥±) :Q],

where ≥± denotes a primitive ±th root of unity. Let f be the conductor of K.

Theorem 1.3.4. [69](Conductor-Discriminant Formula) Let K/Q be any finite abelian

extension. Then

|dK| =
Y

¬2X
f¬

where X denotes the group of Dirichlet characters associated to K, that is, the character

group of K.

Example 1.3.5. Let ¬ be an even character mod 12 such that ¬(5)= ¬(7)=°1. We now

determine its conductor by appealing to above. Its corresponding field is Q(≥12+≥°1
12 )=

Q(
p

3 ). The discriminant of Q(
p

3 ) is 12. So, conductor of ¬ is 12 by the Conductor-

Discriminant Formula.

Remark 1.3.6. The character group of the field Q(≥p + ≥°1
p ) is precisely the group

of all even characters mod p. Other than the trivial character, all the other even

characters have conductor p. Thus the Conductor-Discriminant Formula implies that

discriminant of Q(≥p +≥°1
p ) is p(p°3)/2.
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Now we come to the main point of the chapter. As indicated before, the lower

bound given by Minkowski is not always optimal. In this connection, Ram Murty

proved an elegant result which improves the Minkowski bound for abelian extensions.

We shall give a complete proof of this pretty result describing all the intermediate

steps. This result of Ram Murty will be pivotal to one of our works. We begin with

the classical Mobius-Inversion formula.

Theorem 1.3.7. (Möbius-Inversion formula) Let g and f be arithmetic functions then

g(n)=
X

d|n
f (d) for every integer n ∏ 1,

if and only if

f (n)=
X

d|n
µ

≥ n
d

¥
g(d) for every integer n ∏ 1

where µ is the Möbius function.

Definition 1.3.8. The Von Mangoldt function, denoted by §(n), is defined as

§(n)=

8
>><
>>:

log p if n = pm f or some prime p and integer m ∏ 1;

0 otherwise.

Lemma 1.3.9. Let K/Q be an abelian extension. Then we have

log |dK| = m( f ) log f °
X

±| f
m

µ
f
±

∂
§(±).

Proof. Let s(e) be the number of characters of Gal(K/Q) which have conductor e. It

is easy to see that for any g,

X

e|g
s(e)= m(g)=: [K\Q(≥g) :Q] (1.3.1)

since the left hand side is nothing but the total number of Dirichlet characters of

Galois group of K\Q(≥g) over Q.
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1.3. CONDUCTOR

Using Möbius-Inversion formula on (1.3.1), we have

s(e)=
X

±|e
µ

≥ e
±

¥
m(±),

where µ denotes the Möbius function.

For an abelian extension K, Theorem 1.3.4 can be rewritten as

|dK| =
Y

e| f
es(e),

where s(e) is the number of Dirichlet characters of Gal(K/Q) which have conductor e.

On the other hand, by taking log on both sides of above identity we have

log |dK| =
X

e| f
s(e) log(e),

=
X

e| f
log(e)

X

±|e
µ

≥ e
±

¥
m(±),

=
X

±| f
m(±)

X

e| f
µ

≥ e
±

¥
log(e).

(1.3.2)

Since
X

t|v
µ(t) log(t)=°§(v), we have

X

e| f
µ

≥ e
±

¥
log(e)=

X

t|( f /±)
µ(t) log(±t)

= log(±)
X

t|( f /±)
µ(t)+

X

t|( f /±)
µ(t) log(t)

= log(±)
X

t|( f /±)
µ(t)°§

µ
f
±

∂
.

(1.3.3)

We know that

X

d|n
µ(n)=

8
>><
>>:

1 if n = 1;

0 else .

Therefore, we obtain using (1.3.3) and (1.3.2)

log |dK| = m( f ) log( f )°
X

±| f
m

µ
f
±

∂
§(±).

⌅
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Corollary 1.3.10. For any abelian extension K/Q of degree n, discriminant dK, and

conductor f , we have
1
2

log f ∑ log |dK|
n

∑ log f .

Proof. As m
≥

f
±

¥
= [K\Q(≥ f

±
) :Q], so m

≥
f
±

¥
divides n.

Also, m( f )= n since f is the conductor of the extension K/Q.

Hence for ± 6= n, we obtain

m
µ

f
±

∂
∑ m( f )

2
= n

2
.

So by Lemma 1.3.9, we have

log |dK| = m( f ) log( f )°
X

±| f
m

µ
f
±

∂
§(±)

∏ m( f ) log( f )° m( f )
2

X

±| f
§(±)

∏ m( f )
2

log f ,

as log(n)=
X

d|n
§(d).

So, we have the first inequality of our corollary

1
2

log f ∑ log |dK|
n

.

From (1.3.2), we obtain

log |dK| =
X

e| f
s(e) log(e)∑ log( f )

X

e| f
s(e)= n log( f ).

⌅

In 1984, Ram Murty [49, Cor 2] proved the following elegant result on lower

bounds of discriminants of abelian number fields in terms of their degrees. More

precisely,
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1.3. CONDUCTOR

Theorem 1.3.11. Let K be an abelian extension of Q of degree n. Then,

log |dK|∏
n logn

2
.

Proof. As n divides ¡( f ) and ¡( f )< f , so f can not be less than n.

Hence, log f ∏ logn. From Corollary 1.3.10, we have our desired result. ⌅

Remark 1.3.12. The discriminant of abelian extension Q(≥p) is pp°2. So

|dK|
nn/2 > pp°2

p(p°1)/2 = p
p°3

2

which goes to 1 as p !1. It indicates that the bound of |dK| in above theorem is not

optimal.

Example 1.3.13. Theorem 1.3.11 can hold for certain number fields which are not

even Galois. For instance, let us consider the field K=Q(p1/p), where p is an odd prime

number. We see that this extension is not normal as no primitive p-th root of unity is

in K. In example 1.1.5, we computed its discriminant |dK| = p(2p°1). So

|dK|
nn/2 = p(2p°1)

pp/2 !1,

as p !1.

Now let us consider a non-abelian Galois extension of Q, namely K=Q(p1/p,≥p),

where p is a prime number. This extension is Galois with Galois group isomorphic to

the following group of matrices

n°a b
0 1

¢
, a,b 2Fp,a 6= 0

o
.

This can be seen by sending æa,b to
°a b

0 1
¢

where æa,b(p1/p) := p1/p≥b
p, æa,b(≥p) := ≥b

p.

Thus, it is not an abelian extension. Its ring of integers is given by OK =Z[p1/p,≥p] . The
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discriminant of K is given by dK = (p2p°1)(p°1) · (p(p°2))p = p3p2°5p+1 by Proposition

1.1.7. Therefore,
|dK|
nn/2 = p(3p2°5p+1)

(p(p°1))(p(p°1))/2 !1,

as p !1.

1.4 Linearly disjoint fields

Definition 1.4.1. Let K and F be algebraic extensions of a field L. The fields K,F

are said to be linearly disjoint over L if every finite subset of K that is L linearly

independent is also F linearly independent.

A family of examples of linearly disjoint fields is the following. Take any two

co-prime integers, then the cyclotomic fields generated by their primitive roots of

unity are linearly disjoint over the field of rational numbers. Well, it is not a miracle.

The following theorem provides us the proof of their linearly disjointness.

Theorem 1.4.2. [14, Ch 5, Thm 5.5] Let K and F be algebraic extensions of a field L.

Also let at least one of K,F is separable and one (possibly the same) is normal. Then K

and F are linearly disjoint over L if and only if K\F=L.

If we remove the normality condition from hypothesis, does the above theorem

hold? The answer of this question is false. We provide a famous counterexample for

this. Take L=Q, K=Q(!Æ), F=Q(Æ), where Æ= 21/3 and ! is a primitive third root

of unity. Since degree of K\F is either 1 or 3, it can not be 3 as K is not real but F is a

real field. So K\F=L. Also, 1, !Æ, !2Æ2 the elements of K, are linearly independent

over Q but are linearly dependent over F as

1+ 1
Æ

(!Æ)+ 1
Æ2 (!2Æ2)= 0.
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Let us also record the following equivalent criterion for linearly disjoint fields.

Proposition 1.4.3. [14, Ch 5, Prop 5.2] Let L Ω K and L Ω E Ω F be algebraic

extensions of a field L. Then K and F are linearly disjoint over L if and only if K and

E are linearly disjoint over L and KE and F are linearly disjoint over E.

1.5 Organisation of the thesis

The next chapter is devoted to Hurwitz zeta function. The third chapter will deal

with some preliminaries from transcendental number theory required for our work.

In fourth chapter, we will survey the generalisations and extensions of a question

of Baker ([3]) regarding linear independence of Dirichlet characters.

In fifth chapter, we will talk about the extension of his question and will inves-

tigate it to the families of Dirichlet characters modulo distinct natural numbers.

The sixth chapter extends the results of Okada and Murty-Murty ([50]). Finally, in

chapter seven, we will study the relation between the non-vanishing of Dedekind

zeta function and its derivative at 1/2.
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2
HURWITZ ZETA FUNCTION

2.1 Definition

Hurwitz zeta function is defined as

≥(s, x)=
1X

n=0

1
(n+ x)s ,

where x is a real number with 0< x6 1 and s is a complex number with <(s)> 1. This

series is absolutely and uniformly convergent in the domain <(s) > 1+±, for every

±∏ 0. It therefore represents an analytic function in the half- plane <(s)> 1. Further,

it has the analytic continuation to whole complex plane except s = 1 where it has a

simple pole of residue 1. The Hurwitz zeta function is named after Adolf Hurwitz

who introduced it in 1882. The Riemann zeta function is ≥(s,1). Now we state the

functional equation of ≥(s, x) when x is rational.
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Theorem 2.1.1. [1] If h and k are integers, 1∑ h ∑ k, then for all s 2C, we have

≥(1° s,
h
k

)= 2°(s)
(2ºk)s

kX

r=1
cos

µ
ºs
2

° 2ºrh
k

∂
≥(s,

r
k

).

2.2 Zeroes

We have Euler product for Riemann zeta function, i.e,

≥(s)=
Y
p

1
1° p°s ,

where p runs through prime numbers. It implies that Riemann zeta function has no

zeroes for <(s) > 1. The gamma function °(s) is nowhere 0 and has simple poles at

non-positive integers. The functional equation therefore shows that the only zeroes of

≥(s) in the domain <(s)< 0 are at s =°2n, n 2N. These are called the trivial zeroes

of ≥(s) and the non-trivial zeroes lie in critical strip 0∑<(s)∑ 1.

Conjecture 2.2.1. (Riemann Hypothesis) All non-trivial zeroes of ≥(s) lie on the line

<(s)= 1
2 .

However, if 0< x < 1 and x 6= 1/2, then there are zeros of Hurwitz’s zeta function in

the strip 1<<(s)< 1+≤ for any positive real number ≤. This was proved by Davenport

and Heilbronn for rational or transcendental irrational x and by Cassels for algebraic

irrational x. Therefore, there is no Euler product for Hurwitz zeta function. For more

information, please see [9, 16].

2.3 Specific Values

The values of ≥(s, x) at s = 0,°1,°2, · · · are related to the Bernoulli polynomials:

≥(°n,a)=°Bn+1(a)
n+1

.
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Now put s = 2n, h = k = 1 in the functional equation of Hurwitz zeta function which

is Theorem 2.1.1 to get

≥(1°2n)= 2(2º)°2n°(2n)cos(ºn)≥(2n).

It implies that

°B2n

2n
= 2(2º)°2n(2n°1)!(°1)n≥(2n).

Hence for any positive even integer 2n, we obtain

≥(2n)= (°1)n+1(2º)2n

2(2n)!
B2n,

where B2n is the 2nth Bernoulli number. This implies that ≥(2n)/º2n is a rational

number.

If we put s = 2n+ 1 in the functional equation then we see that right hand

side vanishes and we get no information about ≥(2n+1). As yet no simple formula

analogous to above derived formula is known for ≥(2n+1). Similarly, this technique

does not work for other values of Hurwitz Zeta Function.

Also, we have (see Ch. 22 ,[53])

lim
s!1

µ
≥(s,a)° 1

s°1

∂
= °°0(a)

°(a)
=°√(a),

where √ is the digamma function, i.e, logarithmic derivative of gamma function.

2.4 Relation to periodic Dirichlet series

For periodic arithmetic functions f with period q > 1 and consider the associated L

function

L(s, f )=
1X

n=1

f (n)
ns
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for s 2C with <(s)> 1. It is easy to see that when k > 1, we have

L(k, f )= q°k
qX

a=1
f (a)≥(k,a/q) (2.4.1)

and hence in particular

≥(k)
Y

p|q
(1° p°k)= L(k,¬0)= q°k X

1∑a<q
(a,q)=1

≥(k,a/q). (2.4.2)

The Dirichlet series L(s, f ) converges absolutely for <(s)> 1 and has meromorphic

continuation to whole complex plane except possibly at s = 1 where it has a simple

pole with residue q°1 Pq
a=1 f (a). So, when

Pq
a=1 f (a)= 0, we have

L(1, f )=
1X

n=1

f (n)
n

.

Now we record the functional equation of L(s, f ).

Theorem 2.4.1. [44] Let f be an arithmetic function with period q and f̂ be its

Fourier transform. Define f̂ °(n) := f̂ (°n) for n 2Z. For s 2 C, we have the following

expression

L(s, f )= 1
2ºi

µ
2º
q

∂s
°(1° s)

h
L(1° s, f̂ °)eiºs/2 °L(1° s, f̂ )e°iºs/2

i
.

Theorem 2.4.2. [54] Let f be a periodic function with period q. If k and f have the

same parity, and k > 1, then

2L(k, f )= (°1)k°1 (2ºi)k

k!

qX

a=1
f̂ (a)Bk(a/q).

Thus, if f takes algebraic values, then it is an algebraic multiple of ºk. If in addition

L(k, f ) is non-zero, then it is transcendental.
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Proof. Define the Fourier transform of f by

f̂ (n)= q°1
qX

a=1
f (a)e2ºian/q.

By orthogonality, this implies that

f (n)=
qX

a=1
f̂ (a)e°2ºian/q.

Thus, we may write

L(k, f )=
1X

n=1
n°k

qX

a=1
f̂ (a)e°2ºian/q =

qX

a=1
f̂ (a)Lik(e°2ºia/q),

where polylogarithm function Lik(z) is defined by
P1

n=1
zn

nk . It implies that

2L(k, f )=
qX

a=1
f̂ (a)

≥
Lik(e°2ºia/q) + (°1)kLik(e2ºia/q)

¥
(2.4.3)

It is well known that for 0< x < 1, the kth Bernoulli polynomial, Bk(x) has the Fourier

series expression

Bk(x)= °k!
(2ºi)k

1X
n=°1

n 6=0

e2ºinx

nk .

This means that

Bk(x)= °k!
(2ºi)k

≥
Lik(e2ºix)+ (°1)kLik(e°2ºix)

¥
.

Hence plugging the above expreesion in (2.4.3), we get the desired result. The other

parts of the theorem are obvious now.

⌅

Theorem 2.4.3. Let ¬ be a Dirichlet character mod q and let k > 1. If k and ¬ have

the same parity, then

L(k,¬)= (°q)k°1(2ºi)k

2k!
ø(¬)

qX

b=1
¬(b)Bk(b/q).
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Proof. For a co-prime to q, we consider the following function of period q

±a(n)=

8
>>>>>>><
>>>>>>>:

1 n = a

(°1)k n = q - a

0 otherwise.

Then

2L(k,±a)= (°1)k°1 (2ºi)k

k!

qX

b=1
±̂a(b)Bk(b/q)

= (°1)k°1 (2ºi)k

q.k!

qX

b=1
(≥ab

q + (°1)k≥°ab
q )Bk(b/q).

(2.4.4)

On the other hand,

L(k,±a)= q°k
qX

b=1
±a(b)≥(k,b/q)

= q°k[≥(k,a/q)+ (°1)k≥(k,1°a/q].

(2.4.5)

From (2.4.4) and (2.4.5), we have

q°k[≥(k,a/q)+ (°1)k≥(k,1°a/q]= (°1)k°1 (2ºi)k

2q.k!

qX

b=1
(≥ab

q + (°1)k≥°ab
q )Bk(b/q). (2.4.6)

For any character ¬ mod q, the associated Gauss sum ø(¬) is given by

ø(¬)=
qX

a=1
¬(a)≥a

q.

Multiplying both sides of above equation by ¬(b), we have

ø(¬)¬(b)=
qX

a=1
¬(a)¬(b)≥a

q

=
qX

a=1
¬(a)≥ab

q

=
q/2X

a=1
¬(a)(≥ab

q + (°1)k≥°ab
q ).

(2.4.7)
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Multiplying both sides of above equation by Bk(b/q) and sum over b = 1 to q to get

ø(¬)
qX

b=1
¬(b)Bk(b/q)=

q/2X

a=1
¬(a)

qX

b=1
(≥ab

q + (°1)k≥°ab
q )Bk(b/q)

= 2k!
(°q)k°1(2ºi)k

q/2X

a=1
¬(a)[≥(k,a/q)+ (°1)k≥(k,1°a/q]

= 2k!
(°q)k°1(2ºi)k L(k,¬),

(2.4.8)

where ¬(1)= (°1)k. Therefore, if k and ¬ are of same parity then

L(k,¬)= (°q)k°1(2ºi)k

2k!
ø(¬)

qX

b=1
¬(b)Bk(b/q).

⌅
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3
TRANSCENDENTAL PRE-REQUISITES

Definition 3.0.1. A transcendental number is a number that is not the root of a non-

zero polynomial with rational coefficients. The best known transcendental numbers

are e and º.

3.1 Lindemann-Weierstrass theorem

In 1882, Lindemann published the first complete proof of the transcendence of º. We

record here the following application of Lindemann-Weierstrass theorem [57].

Lemma 3.1.1. [57, Cor 1.3] If Æ is an algebraic number different from 0 and 1,

then logÆ is a transcendental number where log denotes any branch of logarithmic

function.
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3.2 Gelfond-Schneider Theorem

Lindemann-Weierstrass theorem does not give us any information about the nature

of eº. It is Gelfond–Schneider theorem which establishes the transcendence of this

number. More precisely,

Theorem 3.2.1. [21, 57] If Æ and Ø are non-zero algebraic numbers with Ø 6= 1 and

logÆ/ logØ ›Q, then logÆ/ logØ is transcendental.

3.3 Baker’s Theorem

Basically, the previous theorem says that if Æ1,Æ2 are non-zero algebraic numbers

such that logÆ1, logÆ2 are linearly independent over the rationals, then logÆ1, logÆ2

are linearly independent over the field of algebraic numbers. But does the same thing

hold if we talk about more than two numbers? To answer this question, we state the

Baker’s seminal theorem on linear forms in logarithms of algebraic numbers.

Theorem 3.3.1. [3, Thm 2.1] If Æ1,Æ2, · · · ,Æn are non-zero algebraic numbers such that

logÆ1, logÆ2, · · · , logÆn are linearly independent over the rationals, then 1,logÆ1, logÆ2,

· · · , logÆn are linearly independent over the field of algebraic numbers.

Now, we also record a useful corollary of Theorem 3.3.1.

Lemma 3.3.2. [3, Thm 2.2] If Æ1,Æ2, · · · ,Æn 2Q\{0} and Ø1,Ø2, · · · ,Øn 2Q, then

nX

j=1
Ø j logÆ j

is either zero or transcendental. The latter case arises if Æ1,Æ2, · · · ,Æn are linearly

independent over Q and Ø1,Ø2, · · · ,Øn are not all zero.
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Now we state and prove the following important application of the above theorems

which will be used multiple times in next chapters.

Lemma 3.3.3. [53, p. 154, Lemma 25.4] Let Æ1,Æ2, · · · ,Æn be positive algebraic num-

bers. If c0, c1, · · · , cn are algebraic numbers with c0 6= 0, then

c0º+
nX

j=1
c j logÆ j

is a transcendental number.

Proof. Let S be such that {logÆ j : j 2 S} be a maximal Q-linearly independent subset

of

logÆ1, logÆ2, · · · , logÆn.

We write º=°i log(°1). We can re-write our linear form as

°ic0 log(°1)+
X

j2S
d j logÆ j,

for algebraic numbers d j . By Theorem 3.3.2, this is either zero or transcendental. The

former case cannot arise if we show that log(°1), logÆ j, j 2 S are linearly independent

over Q. But this is indeed the case since

b0 log(°1)+
X

j2S
b j logÆ j = 0

for integers b0,b j, j 2 S implies that

Y

j2S
Æ

2b j
j = 1,

which in turn implies b j = 0 for all j 2 S since Æ j, for j 2 S are multiplicatively

independent. Consequently, b0 = 0. ⌅

55





C
H

A
P

T
E

R

4
DIRICHLET CHARACTERS

4.1 Introduction

The central theme of this chapter is the Dirichlet characters. These are one dimen-

sional Galois representations of Cyclotomic extensions. More concretely, for an integer

n > 1, a Dirichlet character ¬ is simply a homomorphism from the group (Z/nZ)£ of

co-prime residue classes mod n to the multiplicative group C£. By assigning the value

zero at the other classes mod n, we can extend ¬ to a function from Z to C which is

completely multiplicative and periodic with period n.

Each such character ¬ gives rise to a Dirichlet series

L(s,¬)=
1X

n=1

¬(n)
ns ,

where the series is absolutely convergent in the region <(s)> 1. Furthermore, since ¬

57



CHAPTER 4. DIRICHLET CHARACTERS

is completely multiplicative, one has the Euler product representation

1X

n=1

¬(n)
ns =

Y

p prime

°
1°¬(p)p°s¢°1

which is a consequence of prime factorisation of integers. When ¬ is a non-trivial

character, we know that L(s,¬) extends to an entire function and we have

L(1,¬)=
1X

n=1

¬(n)
n

and it is these complex numbers which are the centre of our focus. From now on, the

Dirichlet characters are assumed to be non-trivial, unless stated otherwise.

A celebrated result of Dirichlet asserts that L(1,¬) is non-zero. This work of

Dirichlet laid the foundation of Analytic Number theory. This also ushered in the

application of Character theory into the realms of Number theory, a theme which has

now spectacularly morphed into the enigmatic interplay between Harmonic Analysis

and Arithmetic of Galois representations. Furthermore, these special values have

deep arithmetic . For instance, for any quadratic number field K , one has a quadratic

Dirichlet character ¬ associated to K and L(1,¬) subsumes deep arithmetic data like

the class number and Regulator of K .

Let us now come to the focal point of this note. Since the L(1,¬)’s are non-zero,

it is natural to ask about the algebraic nature of these complex numbers. While the

non-vanishing was established in 1837, it took about 130 years more to settle the

nature of these numbers. The seminal work of Baker in mid 1960’s established that

these numbers are transcendental.

For a positive integer q ∏ 3, each of the '(q)°1 non-trivial Dirichlet characters

give rise to seemingly unrelated transcendental numbers. But these numbers do not

quite live in complete isolation from each other. Let K =Q(≥q) be the q-th Cyclotomic
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field and ≥K (s) be its Dedekind zeta function. The product of these L(1,¬) values gives

the residue of ≥K (s) at s = 1. So it is natural to wonder about any relation, linear or

algebraic, existing between these mysterious numbers.

In 1973, Baker, Birch and Wirsing [4] in a beautiful work proved that for a

prime p, the numbers L(1,¬) where ¬ runs over the non-trivial characters mod p,

are linearly independent over Q. Baker, in his book Transcendental number Theory

([3], p.48), stated that it would be of interest to know if this is true for an arbitrary

modulus q. This remains unanswered till now and is the raison d’etre of our note.

We attempt to give a broad account of the history and the state-of-the-art of

this question of Baker. We highlight the mathematical tools and techniques that

enter into this circle of questions. We also describe a number of generalisations

and extensions of this question, namely extensions to Number fields, to class group

L-functions as well as specialisations at larger integers. There are some essential

ingredients common to each of the above themes, viz, Galois action on linear forms of

certain periods, Transcendence theory of linear forms in logarithms, non-vanishing of

L-values from Arithmetic and finally Dedekind-Frobenius determinants from Linear

algebra. We shall try to illustrate the commonality in the above circle of questions as

well as the issues intrinsic to each of these separate themes.

Let us end this section by noting that the complex numbers L(1,¬)’s are examples

of Periods. A period as defined by Kontsevich and Zagier [38] is a complex number

whose real and imaginary parts are values of absolutely convergent integrals of

rational functions with rational coefficients over domains in Rn given by polynomial

inequalities with rational coefficients. Clearly, all algebraic numbers are periods.

An important class of periods is supplied by the special values of the Riemann zeta
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function. For example, we have for k ∏ 2

≥(k)=
Z

1>t1>···>tk>0

dt1

t1
· · · dtk°1

tk°1

dtk

1° tk
,

as is easily verified by direct integration. Also º is a period, it is expected that e is

not a period.

The set of periods is countable and a Q̄-algebra of infinite dimension. Since

logarithms of algebraic numbers are periods, we shall see that each L(1,¬) is indeed

a period. We recommend the original delightful article of Kontsevich and Zagier

[38] as well as the account of Waldschmidt [70] for further details. We also heartily

recommend the comprehensive book by Huber and Müller-Stach [32].

4.2 A question of Chowla and the remarkable result

of Baker, Birch and Wirsing

In a lecture at the Stony Brook conference on number theory in 1969, Sarvadaman

Chowla posed the question whether there exists a non-zero rational-valued arithmetic

function f , periodic with prime period p such that
P1

n=1
f (n)

n = 0.

In 1973, Baker, Birch and Wirsing [4] answered this question in the following

theorem:

Theorem 4.2.1. If f is a non-zero function defined on the integers with algebraic

values and period q such that f (n)= 0 whenever 1< (n, q)< q and the q-th cyclotomic

polynomial is irreducible over the field F =Q( f (1), ..., f (q)), then

1X

n=1

f (n)
n

6= 0.
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4.2. A QUESTION OF CHOWLA AND THE REMARKABLE RESULT
OF BAKER, BIRCH AND WIRSING

In particular, if f is rational valued, the second condition holds trivially. If q

is prime, then the first condition is vacuous. Thus, the theorem resolves Chowla’s

question.

The above theorem of Baker, Birch and Wirsing is remarkable as it brought out

a new aspect of Transcendence theory hitherto undiscovered. More often than not,

non-vanishing is a major obstacle in Transcendence and typically non-vanishing

follows from Arithmetic considerations. For instance, transcendence of L(1,¬) follows

only when its non-vanishing is ensured. But the ideas in the proof of Baker-Birch-

Wirsing indicated that the tables can be turned and transcendence can ensure

non-vanishing. This perspective has been exploited quite fruitfully in recent times.

For instance, Kumar Murty and Ram Murty [50] have used Transcendence theory to

prove the non-vanishing of L(1,¬)(¬ 6= 1) for even characters, an illustrative instance

of Transcendence theory returning the favours to Arithmetic. Recall that a character

¬ is even or odd according as ¬(°1) is 1 or °1.

Let us now highlight the main ingredients in the proof of Baker-Birch-Wirsing

Theorem.

1. The series
P1

n=1
f (n)

n converges if and only if
Pq

a=1 f (a) = 0. Once this is ensured,

one derives that

L(1, f )=
1X

n=1

f (n)
n

= °1
q

X

(a,q)=1
f (a)(√(a/q)+∞).

Here √ is the digamma function which shows up since it is the constant term of the

Hurwitz zeta function around s = 1. We will need to come back to the Hurwitz zeta

function in the last section. But the digamma function regrettably is a rather difficult

function to handle, for instance, °√(1) is the enigmatic Euler’s constant ∞.
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2. Since f is periodic, we can Fourier analyse and go to the dual set up. Let

f̂ (n)= 1
q

qX

m=1
f (m)e°2ºimn/q

be the Fourier transform of f . By inverse Fourier transform and some functional

manipulation, one is led to the following new identity

L(1, f )=°
q°1X

a=1

bf (a) log(1°≥a
q).

While we no longer have the digamma function, the caveat now is the added com-

plexity of the sequence of Fourier coefficients { f̂ (n)} as they need not lie in the field

generated by the original sequence { f (n)}. But the redeeming feature is that the

digamma function is replaced by logarithms of algebraic numbers, setting the tone

for the entry of Baker’s seminal theory. Without further ado, let us state Baker’s

theorem (see [3], for instance) which is a pivotal ingredient in our context.

Theorem 4.2.2. (Baker) If Æ1, ...,Æm are non-zero algebraic numbers such that

logÆ1, ..., logÆm are linearly independent over Q, then 1,logÆ1, ..., logÆm are linearly

independent over Q.

3. Baker’s theorem allows one to show that vanishing of L(1, f ) ensures the vanishing

of the "conjugate" L-values L(1, f æ) for æ in the Galois group G of the extension

F(≥q)/F. Let us be more concrete. We note that G is isomorphic to the group (Z/qZ)£.

For (h, q) = 1, let æh 2 G be such that æh(≥q) = ≥h
q. Define f æh = fh(n) := f (nh°1) for

(h, q)= 1. Then, Baker, Birch and Wirsing beautifully exploited Baker’s theorem to

show that the vanishing of L(1, f ) results in

L(1, fh)=
1X

n=1

fh(n)
n

= 0

for all (h, q)= 1.
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4. We then reverse the Fourier process and come back to the original set up

L(1, fh)= °1
q

X

(a,q)=1
fh(a)(√(a/q)+∞)= 0

leading to the following system of identities (for each h co-prime to q)

X

(a,q)=1
f (a)(√(ah/q)+∞)= 0.

5. We now notice that the matrix A :=
°
√(ah/q)+∞

¢
(ah,q)=1 associated to the system of

identities obtained in the previous step is a Dedekind-Frobenius matrix on the group

H = (Z/qZ)£ and its determinant (up to a sign) is given by

Y

¬2bH

√
X

h2H
¬(h)(√(h/q)+∞)

!
.

If we show that the matrix A is invertible, then f vanishes everywhere and we are

done.

6. This is where "Arithmetic" enters the picture. The non-vanishing of determinant of

A is ensured by the non-vanishing of L(1,¬) for non-trivial ¬ while the monotonicity

of √ takes care of the trivial character. This completes the proof of the theorem.

We mention in passing that in [27], a generalization of the above theorem has been

derived.

Remark 4.2.3. In 1966, Lang [41] proved a multi-dimensional generalisation of

the classical theorem of Schneider, motivated by a question of Cartier about the

analogue of transcendence of eÆ,Æ 2 Q̄£ for arbitrary group varieties. Lang did answer

this question in affirmative. In retrospect, as evinced by a later work of Bertrand

and Masser, we see that Baker’s Theorem in the form stated above could have been

proved by Lang in 1966 building on the Galois conjugate idea in Baker-Birch-Wirsing

63



CHAPTER 4. DIRICHLET CHARACTERS

Theorem and his generalisation of Schneider’s theorem. But perhaps it is fortuitous

that Lang did not prove this theorem. It is because the approach of Baker is different

who not only proved the above theorem, but also obtained lower bounds for linear forms

in logarithms of algebraic numbers. These lower bounds are of seminal importance

in the study of diophantine equations and form a subject of its own. For instance,

these lower bounds allowed Baker to classify all imaginary quadratic fields with class

number one, a venerable theme in Number theory set in motion by Gauss.

As indicated above, Bertrand and Masser [7] gave a new proof of Baker’s theorem

by Galois action on linear forms. They also exploited these ideas to prove an elliptic

analog of Baker’s theorem. Let us state this result. For a Weierstrass }-function

with algebraic invariants g2 and g3 and field of endomorphisms k, the set L =

{Æ 2C : }(Æ) 2Q[ {1}} is the two-dimensional analogue of logarithms of algebraic

numbers. Bertrand and Masser proved that if u1, · · · ,un 2L are linearly independent

over Q, then 1,u1, · · · ,un are linearly independent over Q.

4.3 Settling for prime modulus and over Q

Let us begin by noting that the above theorem of Baker, Birch and Wirsing settles the

question of Baker for prime modulus. It is because the values taken by the Dirichlet

characters mod p lie in the field Q(≥(p°1)) which is linearly disjoint with the p-th

cyclotomic field. So all the hypotheses of Baker-Birch-Wirsing theorem are satisfied

and hence for an odd prime p, the numbers L(1,¬) where ¬ runs over the non-trivial

characters mod p, are indeed linearly independent over Q. In a recent work [23], the

above result has been extended to any arbitrary family of moduli.
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Let us now consider the possible Q̄-linear relations between these values of L(1,¬)

as ¬ ranges over all non-trivial Dirichlet characters mod q with q > 2. It is remarkable

that over Q̄, we have a complete answer for all moduli q. This follows from a natural

extension of the works of Ram and Kumar Murty [50]. Let us give a summary of their

work. One of the crucial results in their work is the following:

Theorem 4.3.1. For any integer q > 2, the numbers L(1,¬) as ¬ ranges over non-trivial

even characters mod q are linearly independent over Q̄.

Remark 4.3.2. This in particular furnishes a new proof of non vanishing of L(1,¬)

for even non-trivial characters by transcendental means. The possibility of such an

approach could not have been envisaged, but for the work of Baker-Birch-Wirsing.

Furthermore this result shows that the dimension of space generated by L(1,¬) for

even characters remains the same over any number field. As we shall see a little later,

this is a luxury which is not at all afforded to us for L(k,¬) with k > 1.

Let us briefly indicate the main points in the proof of this result. The new ingredi-

ent in the proof of the above theorem is the properties of a set of real multiplicatively

independent units in the cyclotomic field discovered by K. Ramachandra (see Theo-

rem 8.3 on page 147 of [72] as well as [61]). These marvellous units allowed Ram and

Kumar Murty to work with new expressions of L(1,¬) for even characters in terms

the logarithms of positive real numbers. Thereafter, they appeal to Baker’s theorem

and its variants leading to a system of equations involving characters of finite groups.

Finally, they prove a variant of Artin’s theorem on linear independence of irreducible

characters which establishes the desired linear independence over Q̄. Let us state

this elegant group theoretic result for the sake of completion. Let G be a finite group.
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Suppose that
P
¬6=1¬(g)u¬ = 0 for all g 6= 1 and all irreducible characters ¬ 6= 1 of G.

Then u¬ = 0 for all ¬ 6= 1.

So the space generated by the even characters is now well and truly done. Let

us now consider the odd L(1,¬) values. We note that for any odd Dirichlet character

¬, L(1,¬) is a non-zero algebraic multiple of º. This follows from the expressions we

indicated in the previous section for L(1, f ) after applying Fourier transform of f .

Therefore, the space generated by the odd L(1,¬) values is one dimensional over Q̄.

But do these subspaces intersect? Here we come to the following pretty application

of Baker’s theory which has been proved in Chapter 3 and has a large number of

applications in various different set ups.

Lemma 4.3.3. Let Æ1,Æ2, ...,Æn be positive algebraic numbers. If c0, c1, ..., cn are

algebraic numbers with c0 6= 0, then

c0º+
nX

j=1
c j logÆ j

is a transcendental number and hence non-zero.

The above lemma leads to the following result since for an even character ¬ 6= 1,

the number L(1,¬) is a linear form in logarithms of positive real algebraic numbers.

Theorem 4.3.4. The Q-space generated by the values L(1,¬) with ¬ non-trivial even

character is linearly disjoint from the space generated by the values L(1,¬) with ¬ odd

character.

Consequently, one has the following satisfying result.

Theorem 4.3.5. For any integer q > 2, the Q̄-vector space generated by the values

L(1,¬) as ¬ ranges over the non-trivial Dirichlet characters (mod q) has dimension

'(q)/2.
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Let us end this section with specifying what exactly is the issue which hinders

us from settling Baker’s question for an arbitrary modulus. As we noted in the proof

of Baker-Birch-Wirsing theorem, the central part of the proof was to show that the

vanishing of L(1, f ) ensues the vanishing of the Galois conjugates L(1, f æ). A careful

look in the proof of this part reveals that it was important that the Galois elements

æ kept the coefficients { f (n)} unchanged. Let us give some more indication why and

when this comes up. In the course of the proof, Baker’s theory eventually leads to a

family of expressions (indexed by b) of the form
q°1X

a=1

bf (a)rab = 0,

where the numbers rab lie in the field of definition F of f . Then for any automorphism

æ 2 Gal(F(≥q)/F), we need to act æ on each of these identities. The condition of

irreducibility of the q-th cyclotomic polynomial over F ensures that
q°1X

a=1
æ( bf (a))rab = 0,

which then leads to
q°1X

a=1
æ( bf (a)) log(1°≥a

q)= 0

which is what we desire. In general, if the automorphisms do act nontrivially on the

sequence { f (n)}, the issue becomes involved, some instances of which we shall see in

the next section.

On the other hand, the space generated by the even L(1,¬) values present no

problem, thanks to the result of Ram and Kumar Murty described in this section.

So it is only the linear independence of odd L(1,¬) values which remain unresolved

for an arbitrary modulus. But since these are algebraic multiples of º, perhaps

transcendence theory has no more role to play. This parity conundrum will show up

again a bit later when we work with L(k,¬) with k > 1.
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4.4 Extension to Number fields

In this section, we consider the extension of Baker’s question to arbitrary number

fields. Since the question is open for arbitrary modulus over Q, it is prudent to

consider the number field extension only for prime modulus for now. This constitutes

the ethos of a recent work [8].

Let K be a number field and p be an odd prime. Let us consider the K-vector

space in C generated by the L(1,¬) values for non-trivial characters ¬ modulo p. Let

d(K , p) denote its dimension. In view of the discussions in the previous section, we

have the following bounds:

p°1
2

∑ d(K , p)∑ p°2.

When K =Q, the upper bound is attained. On the other hand, when K =Q(≥p,≥p°1),

the lower bound is attained. Therefore, one can ask the following question: Which

numbers in the interval
µ

p°1
2

, p°2
∂

can be equal to d(K , p) as K runs over all number fields? This is not known. From

now onwards all primes are at least 7.

The next question is to ask whether for any prime p > 5, there is a number field

such that
p°1

2
< d(K , p)< p°2.

This question is answered in the affirmative in [8]. The initial strategy in [8] is

to look for primes of specific type which may be more amenable to work with. The

family of primes which seem more tractable in this context are the Sophie Germain

Primes. A prime p is called a Sophie Germain prime if 2p+1 is also a prime. It is a
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folklore conjecture that there are infinitely many Sophie Germain primes. Following

theorem is proved in [8].

Theorem 4.4.1. Let p > 5 be an odd prime. Then there exists a number field K such

that
p°1

2
< d(K , p)< p°2.

This theorem is proved in two steps. In the first step, one considers primes

that are not Sophie Germain where one investigates arithmetic of number fields K

with Q(≥p°1) Ω K ΩQ(≥p°1,≥p). In the second step, one proves the result for Sophie

Germain primes by working with fields K such that Q(≥p)Ω K ΩQ(≥p°1,≥p).

Consequently for any p > 7, at least one number in the interval

µ
p°1

2
, p°2

∂

is realised as the dimension of space of L(1,¬) values over some number field. Let b(p)

count the numbers in the above interval that can be realised as this. More precisely,

for a prime p > 5, let

b(p) :=
ØØØØ
Ω

n
ØØØ

p°1
2

< n < p°2 and d(K , p)= n for some number f ield K
æØØØØ .

The above theorem implies that b(p)> 0 for every prime p > 5 and hence we have,

1∑ b(p)∑ p°3
2

.

Then in [8], the following is proved.

Theorem 4.4.2. The sequence {b(p)} satisfies

limsup
p!1

b(p)=1.
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Thus the sequence {b(p)} is unbounded. One can ask about its growth. In [8], the

following Omega result is established.

Theorem 4.4.3. There exists a constant c > 0 such that

b(p)> exp
µ

c log p
loglog p

∂

for infinitely many primes p.

For the proof of these results, one has to work with families of number fields

for which the methods and approaches of the earlier sections no longer work and

therefore we shall not dwell further. We shall just indicate one of the ingredients, a

folklore result of Linnik ([45], [46]) which constitutes a celebrated theme in Analytic

number theory with far-reaching implications.

Theorem 4.4.4. Let a,n be two positive integers with (a,n) = 1,n ∏ 2. Let p(a,n)

denote the least prime p such that p ¥ a (mod n). There exists absolute positive

constants C and L such that

p(a,n)< CnL.

The constant L is known as ”Linnik’s constant”. It is conjectured that p(a,n)< n2.

The best known value for L is due to Xylouris [73] who proves that L can be taken to

be 5.18. On the other hand, Lamzouri, Li and Soundararajan [66] have shown, under

Generalised Riemann Hypothesis, that p(a,n)∑'(n)2 log2 n for all n > 3.

4.5 Analogous question for class group L-functions

In this section, we consider the analog of the question of Baker for class group

L-functions. This has been carried out by Ram and Kumar Murty [51].
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Let K be a number field. Let OK be its ring of integers and HK be its ideal class

group. It is this finite group on which our functions will act.

Let f be a complex-valued function of the ideal class group HK of K . For such an

f , we consider the Dirichlet series for <(s)> 1

L(s, f ) :=
X
a

f (a)
N(a)s ,

where the summation is over non-zero ideals a of OK . If f ¥ 1, L(s, f ) is simply the

Dedekind zeta function of K . We hope to study the numbers L(1, f ) as and when they

exist. A necessary and sufficient condition of existence is given by the following (see

[53] as well as [42]):

Theorem 4.5.1. L(s, f ) extends analytically for all s 2C except possibly at s = 1 where

it may have a simple pole with residue a non-zero multiple of

Ω f :=
X

a2HK

f (a).

Consequently, the series
P

a
f (a)
N(a) converges and equal to L(1, f ) if and only if Ω f = 0.

We want to investigate the values L(1, f ) when K is imaginary quadratic and

when f takes algebraic values, in particular the values L(1,¬) when ¬ runs over ideal

class characters. We note that complex conjugation acts on the group of ideal class

characters and L(1,¬)= L(1,¬) for any ideal class character ¬. Let H §
K denote a set

of orbit representatives under this action. Here is a pretty result proved in [51].

Theorem 4.5.2. Let K be an imaginary quadratic field and HK its ideal class group.

The values L(1,¬) as ¬ ranges over the non-trivial characters of H §
K and º are linearly

independent over Q.
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We add that unlike the case of Dirichlet characters, the above does not prove the

transcendence of L(1,¬). However it does prove that at most one of the values L(1,¬),

as ¬ ranges over the non-trivial characters of H §
K , can be algebraic.

Recall that Baker’s question for primes is a consequence of the Baker-Birch-

Wirsing Theorem. Here is the analogue of Baker-Birch-Wirsing of which the above

theorem is an immediate consequence.

Theorem 4.5.3. Let K be an imaginary quadratic field and f : HK ! Q̄ be not

identically zero. Suppose that Ω f = 0. Then, L(1, f ) 6= 0 unless f (C)+ f (C°1) = 0 for

every ideal class C 2HK.

So we need to prove the above theorem. Let us indicate the salient features in the

proof of the above, indicating the commonality with that of Baker-Birch-Wirsing as

well as the new ingredients intrinsic to this set up. One needs to use Kronecker’s limit

formula as discussed in the works of Siegel [64], Ramachandra [60] and Lang [43].

We shall need Baker’s theorem from Transcendence theory as well as Chebotarev

density theorem from Algebraic number theory. Finally, we shall need a few results

from Theory of Complex Multiplication. However, we can only take a cursory glance

into this delightful realm and shall enthusiastically direct the interested reader to

the original work [51] (and to [15] and [43]).

We begin with the celebrated discriminant functions ¢(z):

¢(z)= (2º)12 q
1Y

n=1
(1° qn)24 = (2º)12¥(z)24, q = e2ºiz

where ¥24 is the ubiquitous Ramanujan cusp form. As before, let K be an imaginary

quadratic field and b be an ideal of OK . If [Ø1,Ø2] is an integral basis (i.e. a basis as a
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Z-module) of b with =(Ø2/Ø1)> 0, we define

g(b)= (2º)°12(N(b))6|¢(Ø1,Ø2)|,

where

¢(!1,!2) :=!°12
1 ¢

µ
!2

!1

∂
.

One can verify that g(b) is well-defined and furthermore depends only on the ideal

class [b] belonging to in the ideal class group (see [60] and [43]). Let us now describe

the main steps in the proof of the above theorem.

1. In the first step, we need to get an expression for L(1, f ). For this we need Kro-

necker’s limit formula. For an ideal class C, by Kronecker’s limit formula we have

≥(s,C)=
X

a2C

1
N(a)s = 2º

w
p
|dK |

µ
1

s°1
+2∞° log |dK |° 1

6
log |g(C°1)|

∂
+O(s°1),

as s ! 1+. Here dK is the discriminant of K and w is the number of roots of unity in

OK

2. In the above expression apart from ∞, one has the mysterious number |g(C°1)|. But

by CM theory, we know that if C1 and C2 are ideal classes, then g(C1)/g(C2) is an

algebraic number lying in the Hilbert class field of K .

3. Kronecker’s limit formula gives rise to the following expression for L(1, f )

L(1, f )
º

= °1
3w

p
|dK |

X

C2HK

f (C) log |g(C°1)|.

Since g(C°1)/g(C0) is algebraic for the identity class C0 and Ω f = 0, we rewrite the

above as
L(1, f )
º

= °1
3w

p
|dK |

X

C2HK

f (C) log |g(C°1)/g(C0)|,

and hence L(1, f )/º is a linear form in logarithms of algebraic numbers.
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4. Now we come to the Galois conjugation step. In particular, one shows that L(1, f )= 0

implies that L(1, f æ)= 0 for any Galois automorphism æ of Gal(Q̄/Q). This is using

Baker’s theory similar to the approach adopted in the Baker-Birch-Wirsing Theorem.

5. In the next step, one uses the above lemma to reduce it to the case when f is

actually rational valued. More precisely, one proves the following: Let M be the

number field of degree r generated by the values of f . Then for any basis Ø1, ...,Ør

of M over Q and f (C)=Pr
i=1 f i(C)Øi with f i(C) 2Q, we have L(1, f )= 0 if and only if

L(1, f i) = 0 for i = 1, ..., r. Thus we may assume without loss of generality that our

function f is actually rational valued.

6. In the penultimate step, it is shown that if f is a rational-valued function and

L(1, f )= 0, then f (C)+ f (C°1)= 0 for every ideal class C. For this one needs to appeal

to the Chebotarev density theorem.

7. Finally as before, one views these equations as a matrix equation DV = 0 where V is

the transpose of the row vector ( f (C)+ f (C°1))C2HK and D is the “Dedekind-Frobenius”

matrix whose (i, j)-th entry is given by log g(C°1
i C j)/g(C°1

i ) with Ci,C j running over

the elements of the ideal class group. The non-vanishing of this determinant is a

consequence of non-vanishing of each L(1,¬),¬ 6= 1 and consequently f (C)+ f (C°1)= 0

for all C 6=C0. However since the sum
P

f (C)= 0, we have f (C0)= 0 as well, completing

the proof of Theorem 4.5.3.

4.6 Linear Independence of L(k,¬) values with k > 1

In this final section, let us consider the analogous question for L(k,¬), when k > 1.

Here we can also include the principal character in our list.
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As we saw earlier, the parity of ¬ plays a crucial role in the context of L(1,¬),

a phenomenon which continues for k > 1. For values in the domain of absolute

convergence, it is worthwhile to introduce Hurwitz zeta values as these form a

natural generating set for the study of special values of Dirichlet series associated to

periodic arithmetic functions.

For a real number x with 0 < x ∑ 1 and s 2 C with <(s) > 1, the Hurwitz zeta

function is defined by

≥(s, x) :=
1X

n=0

1
(n+ x)s .

This can be analytically extended to the entire complex plane except at s = 1 where it

has a simple pole with residue one. Note that ≥(s,1)= ≥(s). For any Dirichlet character

mod q, running over arithmetic progressions mod q, one immediately deduces that

L(k,¬)= q°k
qX

a=1
¬(a)≥(k,a/q).

For q > 1, let Kq be the '(q)-th cyclotomic field. Suppose that k and ¬ have the

same parity, that is ¬(°1)= (°1)k. Then the above identity yields that L(k,¬) in this

case is a Kq-linear combination of elements of the following set

X := {∏a : 1∑ a ∑ q/2, (a, q)= 1} where ∏a := ≥(k,a/q)+ (°1)k≥(k,1°a/q).

Now differentiating the series expansion of ºcotºz for z ›Z, one has

∏a = ≥(k,a/q)+ (°1)k≥(k,1°a/q)= (°1)k°1

(k°1)!
dk°1

dzk°1 (ºcotºz)|(z=a/q).

On the other hand for z ›Z, we have

dk°1

dzk°1 (ºcotºz)=ºk X
r,s∏0

r+2s=k

Ø(k)
r,s cotrºz (1+cot2ºz)s,

where Ø(k)
r,s 2Z. Since i cot ºa

q 2Q(≥q), we see that

≥(k,a/q)+ (°1)k≥(k,1°a/q)= (iº)kÆa,q,
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where Æa,q 2Q(≥q). Thus when k and ¬ have the same parity, we deduce that L(k,¬) is

an algebraic multiple of ºk reminiscent of the fact that L(1,¬) is an algebraic multiple

of º. This also generalises Euler’s classical result that ≥(2n) is a rational multiple of

º2n.

The following theorem now allows us to settle the dimension of the same-parity

space for prime modulus, namely that its dimension over Q is p°1
2 . Let cot(k°1)(z0)

denote the (k°1)-th derivative dk°1

dzk°1 (cot z)|z=z0.

Theorem 4.6.1. Let k > 1 and q > 2 be positive integers and K be a number field such

that K \Q(≥q)=Q. Then the set of real numbers

cot(k°1)(ºa/q), 1∑ a ∑ q/2, (a, q)= 1

is linearly independent over K.

The above result does seem to be in the spirit of the Baker-Birch-Wirsing theorem

and was proved by Okada [59]. But as noted by Girstmair [22], it is a much simpler

result and we indicate his proof which is short and elegant. The first point to note is

that the numbers

ik dk°1

dzk°1 (cot z)|(z=ºa/q), 1∑ a ∑ q/2, (a, q)= 1

are Galois conjugates. Now consider any non-trivial Q-linear combination of the form

X
a

ra cot(k°1)(ºa/q)=
X
a

ra

0
B@(°1)(k°1)(k°1)!

qk

ºk

X
n2Z

n¥amod(q)

n°k

1
CA .

The Galois conjugacy observation allows us to assume that the first coefficient r1 has

the largest modulus. Thus, for k ∏ 2, modulus of the sum in the right hand side of the

above identity is at least

(k°1)!qk

ºk |r1|
√
1°

1X

n=2
n°k

!
> 0
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and we are done. Note that when k = 1, the matter is indeed more delicate as it is

linked to the non-vanishing of L(1,¬).

What about the case when k and ¬ have opposite parity? Recall for s = 1, the

L(1,¬) values for even characters ¬ are linearly independent over Q̄ for all moduli.

However for larger integers, the situation is rather bleak with almost no information.

Let us indicate the issue here. When s = 1, the Fourier transform approach allowed us

to express L(1,¬) as a linear form in logarithms of algebraic numbers and thereafter

Baker’s theory took over. An analogous course of action for larger k leads us to linear

forms in polylogarithms.

For an integer k > 2 and complex numbers z 2C with |z|6 1, the polylogarithm

function Lik(z) is defined as

Lik(z) :=
1X

n=1

zn

nk .

Then we can deduce the following:

L(k,¬)=
pX

a=1
b¬(a)Lik(≥a

p).

However we do not have an analogue of Baker’s theorem for polylogarithms and

hence have no information when k and ¬ have different parity. We also do not know

whether the space generated by the even and odd L(k,¬) values intersect trivially.

Presumably, we need deeper results in transcendence to make any further progress.

Finally, there is a conjecture of P. Chowla and S. Chowla [13] on non-vanishing of

certain L(k, f ) which was later generalised by Milnor [48]. These are deep conjectures

which are linked to the irrationality of numbers of the form ≥(2n+1)/º2n+1 as well as

to a folklore conjecture of Zagier on linear independence of Multiple zeta values (see

[25], [10] for more details, generalisations and partial results in this direction).
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5
EXTENSION OF A QUESTION OF

BAKER

5.1 Introduction

For an integer q > 1 and a Dirichlet character ¬ with period q, consider the Dirichlet

L function

L(s,¬)=
1X

n=1

¬(n)
ns , <(s)> 1.

When ¬ is non-trivial, we know that L(s,¬) extends to an entire function, L(1,¬) is

non-zero and is equal to
P1

n=1
¬(n)

n . For q as before, consider the set

Xq = {L(1,¬) | ¬mod q,¬ 6= ¬0},

where ¬0 is the trivial Dirichlet character with period q. In [3, p. 48], Baker asked

whether the numbers in Xq are linearly independent over Q. In 1973, Baker, Birch
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and Wirsing [4] in an elegant work proved that the numbers in the set {L(1,¬) 2

Xq | (q,'(q))= 1} are linearly independent over Q (see [37] for an exposition on this

topic). In this context, we prove the following theorem.

Theorem 5.1.1. Let q j > 2 for 1∑ j ∑ ` be pairwise co-prime natural numbers such

that the number q1 · · ·q` is co-prime to '(q1) · · ·'(q`). Then the numbers in the set

Xq1 [ · · ·[ Xq` are linearly independent over Q(≥'(q1)···'(q`)).

More generally, we derive the following theorem.

Theorem 5.1.2. Let q j > 2 for 1∑ j ∑ ` be pairwise co-prime natural numbers. Also let

K be a number field with K(≥'(q1)···'(q`))\Q(≥q1···q`)=Q, where ≥q denotes a primitive

qth root of unity. Then the numbers in the set Xq1 [ · · ·[ Xq` are linearly independent

over K(≥'(q1)···'(q`)).

Note that Xq = Xq,e [ Xq,o, where

Xq,e = {L(1,¬) | ¬mod q, ¬(°1)= 1,¬ 6= ¬0}

and Xq,o = {L(1,¬) | ¬mod q, ¬(°1)=°1}.

In 2011, Murty-Murty refined Baker-Birch-Wirsing result to show that

Theorem 5.1.3. (Murty-Murty [50]) Let q > 2 be a natural number. Then the numbers

in the set Xq,e are linearly independent over Q.

In this chapter, we prove the following theorem.

Theorem 5.1.4. Let q j > 2 for 1∑ j ∑ ` be pairwise co-prime natural numbers. Then

the numbers in the set Xq1,e [ · · ·[ Xq`,e are linearly independent over Q.

In 1981, Okada [59] (see also [54, 71]) proved that
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Theorem 5.1.5. (Okada [59]) Let q > 2 be a natural number and K be a number

field with the property that K(≥'(q))\Q(≥q)=Q. Then the numbers in the set Xq,o are

linearly independent over K(≥'(q)).

Here we prove the following theorem.

Theorem 5.1.6. For 1∑ j ∑ `, let q j > 2 be pairwise co-prime natural numbers. If K

is a number field such that K(≥'(q1)···'(q`))\Q(≥q1···q`)=Q, then the numbers in the set

Xq1,o [ · · ·[ Xq`,o are linearly independent over K(≥'(q1)···'(q`)).

Remark 5.1.7. In Theorem 5.1.2 and Theorem 5.1.6, '(q1) · · ·'(q`) in K(≥'(q1)···'(q`))

and q1 · · ·q` in the Q(≥q1···q`) can be replaced by their respective least common multi-

ples.

As consequences to Theorem 5.1.2, Theorem 5.1.4 and Theorem 5.1.6, we derive

the following corollaries. Before we state the corollaries, let us introduce the notion

of Dirichlet type functions as defined by Murty and Saradha (see [54]).

Definition 5.1.8. An arithmetical function f with period q > 1 with values in Q is

called Dirichlet type if f (a)= 0 whenever (a, q) 6= 1.

Definition 5.1.9. A periodic function f with period q > 1 is called an Erdösian

function if f (a)=±1 for all 1∑ a < q and f (q)= 0.

For an arithmetical function f with period q, consider the series L(s, f )=P1
n=1

f (n)
ns

for <(s)> 1. This series has a meromorphic continuation to C with a possible simple

pole at s = 1 of residue q°1 Pq
a=1 f (a) (see [53, Ch 22] for further details). From now

onwards, we assume that
Pq

a=1 f (a)= 0.
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For a natural number q > 2 and a number field K, let Yq(K) be K linearly inde-

pendent set of Dirichlet type functions of period q. Define

Xq(K) = {L(1, f ) | f 2Yq(K)}

and Xq,e(K) = {L(1, f ) | f 2Yq(K), f (°a)= f (a) for 1∑ a < q}.

In this set-up, we have the following corollaries.

Corollary 5.1.10. For 1 ∑ j ∑ `, let q j > 2 be pairwise co-prime natural numbers.

Then the numbers in the set Xq1,e(Q)[ · · ·[ Xq`,e (Q) are Q linearly independent.

Corollary 5.1.11. For any odd prime p, choose an Erdösian function fp with period

p which is not an odd function. Then the numbers in the set {L(1, f p) | p odd} are

linearly independent over Q.

Corollary 5.1.12. Let q j > 2,1 ∑ j ∑ ` be pairwise co-prime natural numbers. Also

let f j 2Yq j (K) with values in a number field K. If K(≥'(q1)···'(q`))\Q(≥q1···q`)=Q, then

the elements in Xq1(K)[ · · ·[ Xq`(K) are K linearly independent. In particular, choose

Erdösian functions fpi with odd prime periods pi, then the numbers L(1, f pi ) for

1∑ i ∑ ` are linearly independent over a number field K which satisfies the condition

K(≥'(p1···p`))\Q(≥p1···p`)=Q.

Remark 5.1.13. Consider the sets

A =
n

pairs
µ

p°1
2

, p
∂ ØØØ both

p°1
2

and p are primes
o

and B =
n

p
ØØØ
µ

p°1
2

, p
∂
2 A

o
.

Any prime pair in the set A is called a Sophie-Germain prime pair. Dickson’s conjecture

(see preliminaries for precise statement) implies the existence of infinitely many Sophie-

Germain prime pairs (see [17]). Let

C =
n

pi

ØØØ i ∏ 1, pi 2 B, pi+1 > 2pi +1
o
.
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Since by Dickson’s conjecture A is an infinite set, so is B and hence C is an infinite set.

Choose Erdösian functions fp for p 2 C. Then the numbers in the set {L(1, f p) | p 2 C}

are linearly independent over any Galois number field K whose discriminant dK is

co-prime to {p'(p) | p 2 C}. Note that K(≥'(q))\Q(≥q)=Q if and only if K\Q(≥q)=Q

and K(≥'(q))\K(≥q) = K (see Proposition 1.4.3 in preliminaries), where q > 2 is a

natural number. Further, the property K(≥'(q))\K(≥q)=K is not necessarily true for

(q,'(q))= 1. But when K is Galois number field whose discriminant dK is co-prime to

q'(q), where (q,'(q))= 1, then K(≥'(q))\K(≥q)=K (see Theorem 1.8 in [25]).

5.2 Preliminaries

In this section, we state the results which will play an important role in proving our

main theorems. We start with the following non-vanishing result of Baker, Birch and

Wirsing [4] (see also chapter 23 of [53]).

Theorem 5.2.1. (Baker, Birch and Wirsing). Let f be a non-zero algebraic valued

periodic function with period q. Also let f (n)= 0 whenever 1< (n, q)< q and the q-th

cyclotomic polynomial ©q(X ) be irreducible over Q( f (1), · · · , f (q)), then

1X

n=1

f (n)
n

6= 0.

Chowla [12] proved that if p is an odd prime, then the numbers

cot(2ºa/p), 1∑ a ∑ (p°1)/2

are linearly independent over the field of rational numbers. This result was reproved

by various authors (see, for instance, [30, 34]). In 1981, Okada [59] (see also Wang
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[71]) extended Chowla’s theorem to natural number q > 2 which are not necessarily

primes. In the same theorem he also considered derivatives of higher orders of cot x.

Both Okada and Wang made use of the fact that L(k,¬) 6= 0 though their proofs were

different. More precisely, Okada [59] proved the following theorem.

Theorem 5.2.2. Let k and q be positive integers with k > 0 and q > 2. Let T be a

set of '(q)/2 representatives mod q such that the union T [ (°T) is a complete set of

co-prime residues modulo q. Then the set of real numbers

dk°1

dzk°1 (cotºz)|(z=a/q), a 2 T

is linearly independent over Q.

Five years later, Girstmair [22] gave a much simpler proof of this result of Okada

using Galois Theory in the case when order of the derivative of cot x is at least 1. In

2009, Murty and Saradha [54] extended the work of Okada to show the following

theorem.

Theorem 5.2.3. Let k and q be positive integers with k > 0 and q > 2. Let T be a

set of '(q)/2 representatives mod q such that the union T [ (°T) is a complete set of

co-prime residues modulo q. Let K be an algebraic number field over which the qth

cyclotomic polynomial is irreducible. Then the set of real numbers

dk°1

dzk°1 (cotºz)|(z=a/q), a 2 T

is linearly independent over K.

See the recent work of Hamahata [29] for a multi-dimensional generalization of

Theorem 6.2.1. We deduce another generalization of Theorem 6.2.1 required for our

work.
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For an integer q > 4, Ramachandra [61] discovered a set of multiplicatively

independent units in the cyclotomic field Q(≥q), where ≥q is a primitive qth root of

unity. For 1< a < q/2 and (a, q)= 1, define

ªa = ≥da
q ¥a 2Q(≥q +≥°1

q ),

where

da =
1
2

(1°a)
X

d|q, d 6=q
(d, q

d )=1

d, ¥a =
Y

d|q, d 6=q
(d, q

d )=1

1°≥ad
q

1°≥d
q

.

It is easy to see that ªa is a unit in Q(≥q+≥°1
q ) for 1< a < q/2 and (a, q)= 1. Ramachan-

dra proved the following important theorem about these units.

Theorem 5.2.4. [61, 72] The set of real units {ªa | 1< a < q/2, (a, q)= 1} is multiplica-

tively independent.

These units are now known as Ramachandra units. Using these units, one can

express L(1,¬) when ¬ is an even non-trivial character with period q as follows.

Lemma 5.2.5. [72, p. 149] For a natural number q > 4, let ¬ be an even non-trivial

character with period q. Then we have

L(1,¬)= ±¬
X

1<a<q/2
(a,q)=1

¬(a) logªa,

where ±¬ is a non-zero algebraic number. Further, L(1,¬) can also be written as

algebraic linear combination of logarithms of positive algebraic numbers.

Using Lemma 5.2.5, Ram Murty and Kumar Murty [50] proved the following

theorem.

Theorem 5.2.6. [50, Thm 8] Let q > 2 be a natural number and f be a non-zero

Dirichlet type function with period q. Write f = fe + fo, where fe is an even function
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and fo is an odd function. Let K be the field generated by the values of fo over Q. If

K\Q(≥q)=Q, then L(1, f ) 6= 0.

We end this section by recalling a group theoretic pre-requisite [50] as well as a

conjecture of Dickson [18].

Lemma 5.2.7. Let G be a finite group. Suppose that for all g 2G, g 6= 1, we have

X
¬6=1,

¬ irreducible

µ¬¬(g)= 0, µ¬ 2C,

where the summation varies over all non-trivial irreducible characters of G. Then

µ¬ = 0 for all ¬ 6= 1.

Conjecture 5.2.8 (Dickson’s conjecture). Let s be a positive integer and F1,F2, . . . ,Fs

be s linear polynomials with integral coefficients and positive leading coefficient such

that their product has no fixed prime divisor 1. Then there exist infinitely many positive

integers t such that F1(t),F2(t), . . . ,Fs(t) are all primes.

5.3 Proofs of the Main Theorems

For 1∑ j ∑ ` and q j > 2, consider the sets

S j = {1< a j < q j/2 | (a j, q j)= 1} and T j = {1∑ a j < q j/2 | (a j, q j)= 1}.

Throughout this section, we shall be using these notations.

1We say that the prime number p is a fixed prime divisor of a polynomial G if we have: 8t 2Z :
p|G(t).
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5.3.1 Proof of Theorem 5.1.4

We first show that the set of Ramachandra units

[

1∑ j∑`
{ªa j | a j 2 S j}

is multiplicatively independent. For `= 1, it follows from the work of Ramachandra

(see Theorem 5.2.4). Now suppose that

[

1∑ j<`
{ªa j | a j 2 S j}

is multiplicatively independent. If there exist Æa j 2Z for a j 2 S j, 1∑ j ∑ ` such that

Y

1∑ j∑`

Y

a j2S j

ª
Æa j
a j = 1,

then
Y

1∑ j<`

Y

a j2S j

ª
Æa j
a j =

Y

a`2S`

ª
°Æa`
a` . (5.3.1)

Note that
Y

1∑ j<`

Y

a j2S j

ª
Æa j
a j =

Y

a`2S`

ª
°Æa`
a` 2 Q(≥q1···q`°1)\Q(≥q`) = Q. (5.3.2)

Let us call this rational number Ø. If F=Q(≥q1···q`) and NF/Q(Æ) denotes the norm of

Æ of F over Q, then taking NF/Q of the quantities on both sides of (5.3.1), we get that

Ø'(q1···q`) = 1 as '(q1 · · ·q`) is even. This implies that Ø=±1. Thus

Y

1∑ j<`

Y

a j2S j

ª
2Æa j
a j =

Y

a`2S`

ª
°2Æa`
a` = 1.

Applying induction hypothesis, we obtain Æa j = 0 for all a j 2 S j,1∑ j ∑ `. This implies

that the set of real numbers
S

1∑ j∑`{ªa j | a j 2 S j} is multiplicatively independent.

We now apply the above observation to complete the proof of Theorem 5.1.4. Let

C j = {¬ j mod q j | ¬ j(°1)= 1,¬ j 6= 1}
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be the set of non-trivial even characters with periods q j for 1∑ j ∑ `. Suppose that

there exist algebraic numbers Æ¬ j for ¬ j 2 C j,1∑ j ∑ ` such that

X

1∑ j∑`

X

¬ j2C j

Æ¬ j L(1,¬ j)= 0. (5.3.3)

Substituting (see Lemma 5.2.5)

L(1,¬ j)= ±¬ j

X

a j2S j

¬ j(a j) logªa j

for ¬ j 2 C j,1∑ j ∑ ` in (5.3.3), we obtain

X

1∑ j∑`

X

a j2S j

√
X

¬ j2C j

Æ¬ j±¬ j¬ j(a j)

!
logªa j = 0.

Applying Baker’s theorem (Theorem 3.3.1) and our observation about linear indepen-

dence of Ramachandra units for q1, · · · , q`, we get

X

¬ j2C j

Æ¬ j±¬ j¬ j(a j)= 0,

for a j 2 S j,1∑ j ∑ `. Since ±¬ j 6= 0 (see Lemma 5.2.5), the even characters of (Z/q jZ)£

can be viewed as characters of the quotient group (Z/q jZ)£/{±1}. As these characters

are of dimension one and hence irreducible, applying Lemma 5.2.7, we have Æ¬ j = 0

for ¬ j 2 C j,1∑ j ∑ `. This completes the proof of Theorem 5.1.4.

5.3.2 Proof of Theorem 5.1.6

We first show that the set of real numbers

[

1∑ j∑`
{cot(

ºa j

q j
) | a j 2 T j}

is linearly independent over Q. For ` = 1, it follows from the work of Okada (see

Theorem 5.2.2). Suppose that the set of real numbers

[

1∑ j<`
{cot(

ºa j

q j
) | a j 2 T j}
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is linearly independent over Q. If there exist rational numbers Æa j for a j 2 T j,1∑ j ∑ `

such that

X

1∑ j∑`

X

a j2T j

Æa j cot(
ºa j

q j
)= 0,

then

X

1∑ j<`

X

a j2T j

Æa j cot(
ºa j

q j
)=°

X

a`2T`

Æa` cot(
ºa`
q`

). (5.3.4)

Since

°i cot
ºa j

q j
=

≥
a j
q j +1

≥
a j
q j °1

2Q(≥q j ),

where i =
p
°1 , it follows that

i
X

1∑ j<`

X

a j2T j

Æa j cot(
ºa j

q j
) = °i

X

a`2T`

Æa` cot(
ºa`
q`

) 2 Q(≥q1···q`°1)\Q(≥q`) = Q.

Since a purely imaginary number is a rational number if and only if it is 0, we have

X

1∑ j<`

X

a j2T j

Æa j cot(
ºa j

q j
)=°

X

a`2T`

Æa` cot(
ºa`
q`

)= 0.

Applying induction hypothesis, we get that Æa j = 0 for all a j 2 T j,1∑ j ∑ `. Hence the

set of real numbers
[

1∑ j∑`
{cot(

ºa j

q j
) | a j 2 T j}

is linearly independent over Q.

We now apply the above observation to complete the proof of Theorem 5.1.6. Let

D j = {¬ j mod q j | ¬ j(°1)=°1}

be the set of odd characters with periods q j for 1∑ j ∑ `. Let K be as in Theorem 5.1.6.

Suppose that there exist Æ¬ j 2K(≥'(q1)···'(q`)) for ¬ j 2 D j,1∑ j ∑ ` such that

X

1∑ j∑`

X

¬ j2D j

Æ¬ j L(1,¬ j)= 0. (5.3.5)
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Substituting (see [37, 59])

L(1,¬ j)=
º

q j

X

a j2T j

¬ j(a j)cot(
ºa j

q j
), (5.3.6)

for ¬ j 2 D j,1∑ j ∑ ` in (6.4.2), we obtain

X

1∑ j∑`

X

a j2T j

√
X

¬ j2D j

Æ¬ j

q j
¬ j(a j)

!
cot(

ºa j

q j
)= 0. (5.3.7)

By given hypothesis and Theorem 1.4.2, the number fields K(≥'(q1)···'(q`)) andQ(≥q1···q`)

are linearly disjoint over Q. Therefore Q-linearly independent elements i cot(ºa j
q j

) in

(6.4.3) which belong to Q(≥q1···q`) are also linearly independent over K(≥'(q1)···'(q`)).

Since the coefficients of cot(ºa j
q j

) in (6.4.3) belong to K(≥'(q1)···'(q`)), we have

X

¬ j2D j

Æ¬ j

q j
¬ j(a j)= 0

for a j 2 T j,1∑ j ∑ `. Since all the characters in the set D j,1∑ j ∑ ` are of same parity,

it follows that
X

¬ j2D j

Æ¬ j

q j
¬ j(a j)= 0

for a j 2 (Z/q jZ)£,1 ∑ j ∑ `. It then follows from linear independence of characters

that Æ¬ j = 0 for ¬ j 2 D j,1∑ j ∑ `. This completes the proof of Theorem 5.1.6.

5.3.3 Proofs of Theorem 5.1.1 and Theorem 5.1.2

Note that Theorem 5.1.1 follows by considering K =Q in Theorem 5.1.2. Hence it

is sufficient to prove Theorem 5.1.2. It follows from Lemma 5.2.5 that for an even

non-trivial Dirichlet character ¬, the number L(1,¬) is a linear form in logarithms

of positive real algebraic numbers. We know from (5.3.6) that for an odd character

¬, the number L(1,¬) is an algebraic multiple of º. Then Lemma 4.2.2 implies that

the space generated by L(1,¬) for non-trivial even ¬ do not intersect with the space
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generated by L(1,¬) for odd ¬. Theorem 5.1.2 now follows by applying Theorem 5.1.4

and Theorem 5.1.6.

5.3.4 Proof of Corollary 6.1.10

Let us denote by Yj,e = { f 2 Yq j (Q) | f (°a) = f (a) for 1 ∑ a < q}. Suppose that there

exist Æ f j 2Q for f j 2Yj,e,1∑ j ∑ ` such that

X

1∑ j∑`

X

f j2Yj,e

Æ f j L(1, f j) = 0.

Then

X

1∑ j∑`
L(1,Fj) = 0, (5.3.8)

where Fj =
P

f j2Yj,e Æ f j f j. For 1∑ j ∑ `, f j 2Yj,e and hence Fj ’s are even Dirichlet type

functions with periods q j. Therefore we can write Fj as a linear combination of ¬ j,

where ¬ j belong to the set C j = {¬mod q j | ¬(°1)= 1,¬ 6= 1}. This implies that

L(1,Fj)=
X

¬ j2C j

Ø¬ j L(1,¬ j),

where Ø¬ j are algebraic numbers. Substituting this expression in (5.3.8), we get

X

1∑ j∑`

X

¬ j2C j

Ø¬ j L(1,¬ j)= 0.

Applying Theorem 5.1.4, we obtain Ø¬ j = 0 for ¬ j 2 C j, 1∑ j ∑ `. Thus L(1,Fj)= 0 for

1∑ j ∑ `. Using Theorem 5.2.6 (see also [50, Th. 6]), we then have Fj = 0 for 1∑ j ∑ `.

Since by hypothesis, the elements of Yj,e are Q linearly independent, we have Æ f j = 0

for f j 2Yj,e, 1∑ j ∑ `. This completes the proof of Corollary 6.1.10.
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5.3.5 Proof of Corollary 7.1.3

Let { f p | p odd prime} be as in Corollary 7.1.3. Note that we can write f p as a sum of

an even function and an odd function, i.e., f p = f p,e + f p,o, where

f p,e(a) =
f p(a)+ f p(°a)

2
and f p,o(a) =

f p(a)° f p(°a)
2

for 1∑ a ∑ q. If the corollary is not true, then there exist a finite subset P of prime

numbers and algebraic numbers Æp (not all zero) for p 2P such that

X

p2P

ÆpL(1, f p) = 0. (5.3.9)

This implies that
X

p2P

ÆpL(1, f p,e) +
X

p2P

ÆpL(1, f p,o) = 0.

Since each L(1, f p,e) for p 2 P can be written as algebraic linear combination of

L(1,¬)’s for non-trivial even Dirichlet characters ¬ with period p, it follows from

Lemma 5.2.5 that the summation
P

p2P ÆpL(1, f p,e) is an algebraic linear combination

of logarithms of positive algebraic numbers. Similarly each L(1, f p,o) for p 2P can

be written as algebraic linear combination of L(1,¬)’s for odd Dirichlet characters ¬

with period p, we see that
P

p2P ÆpL(1, f p,o) is an algebraic multiple of º by identity

(5.3.6). Now by applying Lemma 4.2.2, we have

X

p2P

ÆpL(1, f p,e) = °
X

p2P

ÆpL(1, f p,o) = 0.

Since f p,e are non-zero even Dirichlet type functions with distinct prime periods

p 2 P , we have L(1, f p,e) are non-zero for p 2 P . Now applying Corollary 6.1.10,

we have Æp = 0 for p 2 P , a contradiction to (5.3.9). This completes the proof of

Corollary 7.1.3.
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5.3.6 Proof of Corollary 5.1.12

Let K be as in Corollary 5.1.12 and for 1∑ j ∑ `, Yj(K) denotes Yq j (K) for the sake of

brevity. As in Corollary 7.1.3, let us write f j = f j,e + f j,o, where

f j,e(a) =
f j(a)+ f j(°a)

2
and f j,o(a) =

f j(a)° f j(°a)
2

for 1 ∑ a ∑ q and 1 ∑ j ∑ `. Suppose that there exist Æ f j 2 K for f j 2 Yj(K),1 ∑ j ∑ `

such that
X

1∑ j∑`

X

f j2Yj(K)
Æ f j L(1, f j) = 0.

This implies that

X

1∑ j∑`

X

f j2Yj(K)
Æ f j L(1, f j,e) +

X

1∑ j∑`

X

f j2Yj(K)
Æ f j L(1, f j,o) = 0. (5.3.10)

Proceeding as in Corollary 7.1.3, we note that the first term in (5.3.10) is an algebraic

linear combination of logarithms of positive algebraic numbers by Lemma 5.2.5 and

the second term of (5.3.10) is an algebraic multiple of º by identity (5.3.6). Applying

Lemma 4.2.2, we have

X

1∑ j∑`

X

f j2Yj(K)
Æ f j L(1, f j,e) = 0 and

X

1∑ j∑`

X

f j2Yj(K)
Æ f j L(1, f j,o) = 0.

This implies that

X

1∑ j∑`
L(1,Fj,e) = 0 and

X

1∑ j∑`
L(1,Fj,o) = 0, (5.3.11)

where

Fj,e =
X

f j2Yj(K)
Æ f j f j,e and Fj,o =

X

f j2Yj(K)
Æ f j f j,o. (5.3.12)

Since Fj,e’s are even Dirichlet type functions with distinct periods q j for 1 ∑ j ∑ `,

applying Corollary 6.1.10, we have

Fj,e = 0 for 1∑ j ∑ `. (5.3.13)
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Note that Fj,o’s are odd Dirichlet type functions with periods q j for 1 ∑ j ∑ ` with

values in K. Let Vj be the K(≥'(q j)) vector space of functions from (Z/q jZ)£ to K(≥'(q j)).

Dirichlet characters with periods q j are contained in Vj and they form a basis of Vj

over K(≥'(q j)). Let D j be the set of all odd Dirichlet characters with periods q j. Since

Fj,o can be written as

Fj,o =
X

¬ j2D j

Ø¬ j¬ j

where Ø¬ j 2 K(≥'(q j)) for ¬ j 2 D j,1 ∑ j ∑ `, we have L(1,Fj,o) = P
¬ j2D j Ø¬ j L(1,¬ j).

Substituting this expression in (5.3.11), we have

X

1∑ j∑`

X

¬ j2D j

Ø¬ j L(1,¬ j)= 0.

Since by hypothesis, K(≥'(q1)···'(q`))\Q(≥q1···q`)=Q, applying Theorem 5.1.6, we get

Ø¬ j = 0 for ¬ j 2 D j, 1∑ j ∑ `. This implies that

L(1,Fj,o)= 0

for 1∑ j ∑ `. Theorem 5.2.6 then implies that

Fj,o = 0 for 1∑ j ∑ `. (5.3.14)

Then for 1∑ j ∑ `, we have

X

f j2Yj(K)
Æ f j f j =

X

f j2Yj(K)
Æ f j ( f j,e + f j,o) = Fj,e +Fj,o = 0.

Since by hypothesis, elements of Yj(K) are K linearly independent, we have Æ f j = 0

for any f j 2Yj(K),1∑ j ∑ `. This completes the proof of Corollary 5.1.12.
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6
LINEAR INDEPENDENCE OF

DIRICHLET L VALUES

6.1 Introduction and statements of Theorems

For a Dirichlet character ¬ modulo q > 1 and s 2C, consider the Dirichlet L-function

L(s,¬)=
1X

n=1

¬(n)
ns

which converges absolutely for <(s)> 1. Further, it is holomorphic in this region. The

study of irrationality of L(k,¬) for natural numbers k > 1 has an intriguing history

starting from the work of Euler. He found a closed formula for L(k,¬0) when ¬0 is

the trivial character modulo q ∏ 1 and k is even. When k is odd, it follows from

the work of Ball and Rivoal [6] (see also [20, 39]) that there are infinitely many

irrational numbers as k > 1 varies over odd natural numbers. When ¬ is the non-

trivial character modulo 4, similar results were established by Rivoal and Zudilin
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[62]. For arbitrary non-trivial character ¬ modulo q, infinitude of irrationality of

L(k,¬) when ¬(°1) = (°1)k+1 follows from the recent work of Fischler [19]. When

¬(°1) = (°1)k, infinitude of irrationality of L(k,¬) is well known (see [58, Ch. VII,

§2]).

In this article, we study linear independence of L(k,¬) when k is fixed and ¬ varies

over Dirichlet characters modulo pairwise co-prime natural numbers. If we fix k > 1

and vary ¬ modulo a natural number q > 2, the question of linear independence of

L(k,¬)’s over Q was first investigated by Okada [59]. As noted by Murty-Saradha [54],

this result can be extended over number fields which are disjoint to the qth cyclotomic

field. To proceed further, we need to introduce some notations. For a natural number

k > 1, let us set

Xq,k = {L(k,¬) | ¬ mod q, ¬ 6= ¬0}.

We can write Xq,k = Xq,k,e [ Xq,k,o, where

Xq,k,e = {L(k,¬) | ¬ mod q, ¬(°1)= 1,¬ 6= ¬0}

and Xq,k,o = {L(k,¬) | ¬ mod q, ¬(°1)=°1}. (6.1.1)

In this set-up, Okada [59] (see also Murty-Saradha [54]) proved the following theo-

rems.

Theorem 6.1.1. (Okada [59]) Let k ∏ 1, q > 2 be natural numbers and K be a number

field with K(≥'(q))\Q(≥q) = Q. Then the numbers in the set Xq,2k+1,o are linearly

independent over K(≥'(q)).

Theorem 6.1.2. (Okada [59]) Let k ∏ 1, q > 2 be natural numbers and K be a number

field with K(≥'(q))\Q(≥q)=Q. Then the numbers in the set {≥(2k)}[Xq,2k,e are linearly

independent over K(≥'(q)).
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From now on, for an integer q > 2, we shall denote the maximal real subfield of

Q(≥q) by Q(≥q)+. In this set-up, we have the following theorems.

Theorem 6.1.3. For 1∑ j ∑ `, let q j > 2 be pairwise co-prime natural numbers and

k ∏ 1 be an integer. If K is a number field such that K(≥'(q1)···'(q`))\Q(≥q1···q`)
+ =Q,

then the numbers in the set

Xq1,2k+1,o [ · · ·[ Xq`,2k+1,o

are linearly independent over K(≥'(q1)···'(q`)).

Theorem 6.1.4. For 1∑ j ∑ `, let q j > 2 be pairwise co-prime natural numbers and

k ∏ 1 be an integer. If K is a number field such that K(≥'(q1)···'(q`))\Q(≥q1···q`)
+ =Q,

then the numbers in the set

{≥(2k)}[ Xq1,2k,e [ · · ·[ Xq`,2k,e

are linearly independent over K(≥'(q1)···'(q`)).

If one replace Dirichlet characters by arbitrary periodic arithmetic functions f

with period q > 1 and consider the associated L-function

L(s, f )=
1X

n=1

f (n)
ns

for s 2 C with <(s) > 1, then non-vanishing of L(k, f ) is intricately related to a

conjecture of Chowla-Milnor [25]. For describing this conjecture, we need to introduce

Hurwitz zeta function

≥(s, x)=
1X

n=0

1
(n+ x)s ,

where x is a real number with 0< x6 1 and s is a complex number with <(s)> 1. It

is easy to see that when k > 1, we have

L(k, f )= q°k
qX

a=1
f (a)≥(k,a/q) (6.1.2)
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and hence in particular, when ¬0 is the trivial character modulo q ∏ 2,

≥(k)
Y

p|q
p prime

(1° p°k)= L(k,¬0)= q°k X
1∑a<q
(a,q)=1

≥(k,a/q). (6.1.3)

For example, ≥(k,1/2)= (2k °1)≥(k) 6= 0, for all k > 1.

Remark 6.1.5. Since ≥(s, x) extends analytically to the entire complex plane, apart

from s = 1, where it has a simple pole with residue 1, we have by (6.1.2) that L(s, f ),

for a periodic function f modulo q, extends meromorphically to the complex plane

with a possible simple pole at s = 1 with residue q°1 Pq
a=1 f (a). Thus when f = ¬, a

non-trivial Dirichlet character modulo q, the number L(1,¬) makes sense. See the

articles [4, 23, 37, 50, 59] for linear independence of such values.

P. Chowla and S. Chowla [13] were the first to study non-vanishing of L(2, f ) for

arbitrary periodic functions f and made the following conjecture.

Conjecture 6.1.6. (Chowla-Chowla) Let p be any prime and f be any rational valued

periodic function with period p. Then L(2, f ) 6= 0 except in the case when

f (1)= f (2)= ·· · = f (p°1)= f (p)
1° p2 .

Milnor [48] reformulated the conjecture of Chowla-Chowla as follows;

Conjecture 6.1.7. (Milnor). For any integer k > 1 and prime p, the real numbers

≥
°
k,1/p

¢
, ≥

°
k,2/p

¢
, · · · ,≥

°
k, (p°1)/p

¢

are all linearly independent over Q.

When q is not necessarily prime, Milnor suggested the following generalization of

the Chowla conjecture.
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Conjecture 6.1.8. (Chowla-Milnor) Let k > 1, q > 2 be integers. Then the following

'(q) real numbers

≥(k,a/q) with (a, q)= 1, 1 ∑ a < q

are linearly independent over Q.

In relation to the Chowla-Milnor conjecture, we define the following linear spaces

(see [25]).

Definition 6.1.9. For a number field K Ω C and integers k > 1, q ∏ 1, the K-vector

space

VK,k(q)=K°span of {≥(k,a/q) : 1∑ a ∑ q, (a, q)= 1}

is defined to be the Chowla-Milnor space for K and q. In particular, VK,k(1)=K≥(k,1)=

K≥(k) and VK,k(2)=K≥(k,1/2)=K≥(k).

Conjecture 6.1.8 is equivalent to dimQ(VQ,k(q))='(q) for q > 2. We observe that
P

d|q VK,k(d)=Pq
a=1 K≥(k,a/q).

For q ∏ 1, we can write the space VK,k(q) as VK,k(q)=V+
K,k(q)+V°

K,k(q), where for

q > 2

V±
K,k(q) =

X
1∑a<q/2
(a,q)=1

K
≥
≥(k,a/q)± (°1)k≥(k,1°a/q)

¥

and V±
K,k(2) = K≥(k,1/2)(1± (°1)k), V±

K,k(1)=K≥(k,1)(1± (°1)k).

For q = 1,2, we have dimK(V±
K,k(1))= dimK(V±

K,k(2))= 1
2(1± (°1)k).

For q > 2, it results from Okada’s theorem 6.2.1 that dimQ(V+
Q,k(q))='(q)/2.

Since dimQ(V°
Q,k(q))∑'(q)/2, Conjecture 6.1.8 is equivalent to V+

Q,k(q)\V°
Q,k(q)= 0

and dimQ(V°
Q,k(q))='(q)/2. In this set-up, we have the following theorem.
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Theorem 6.1.10. For 1∑ j ∑ `, let q j ∏ 1 be pairwise co-prime natural numbers and

k > 1 be an integer. If K is a number field such that K\Q(≥q1···q`)
+ =Q, then

dimK
≥X`

j=1V+
K,k(q j)

¥
=

X`
j=1 dimK(V+

K,k(q j))° (`°1)dimK(V+
K,k(1)).

In particular,

dimK
≥X`

j=1V+
K,k(q j)

¥
=

8
>>><
>>>:

P`
j=1

'(q j)
2 ° `°1

2 (1+ (°1)k) if 2< q1, · · · , q`,

P`
j=2

'(q j)
2 ° `°2

2 (1+ (°1)k) if 2= q1 < q2, · · · , qr.

When K = Q, Chowla-Milnor conjecture predicts that the dimension of VQ,k(q)

over Q is equal to '(q). Here we have the following corollary.

Corollary 6.1.11. For 1∑ j ∑ `, let q j > 2 be pairwise co-prime natural numbers and

k > 1 be an integer. If K is a number field such that K\Q(≥q1···q`)
+ =Q, then

1
2

X̀

j=1
'(q j)°

`°1
2

(1+ (°1)k) ∑ dimK
≥X`

j=1VK,k(q j)
¥
∑

X̀

j=1
'(q j)° (`°1).

Remark 6.1.12. Let k, q > 1 be integers and ¬b, b 2 (Z/qZ)£, the Dirichlet characters

modulo q. For a,b running over (Z/qZ)£, we have

qkL(k,¬b)=
X

(a,q)=1
¬b(a)≥(k,a/q). (6.1.4)

By the orthogonality relations satisfied by Dirichlet characters, the matrix
°
¬b(a)

¢
a,b

has inverse
1

'(q)
°
¬b(a°1)

¢
b,a .

Let KΩC be a number field containing the '(q)-th roots of unity, the K-vector spaces

X

(b,q)=1
KL(k,¬b) and

X

(a,q)=1
K≥(k,a/q)=VK,k(q)
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are equal. Furthermore, it follows from (6.1.4) that

X

¬(°1)=±(°1)k
KL(k,¬)=V±

K,k(q). (6.1.5)

Definition 6.1.13. Let K be a number field, V and W be two K-vector spaces in C. We

define the product VW as the K-span of the set of numbers vw with v 2V and w 2W.

Following Hamahata [29], we consider generalized Chowla-Milnor spaces.

Definition 6.1.14. Let k1, · · · ,kr > 1 and q1, · · · , qr ∏ 1 be integers. Set~k = (k1, · · · ,kr)

and ~q = (q1, · · · , qr). For a number field KΩC, the generalized Chowla-Milnor space is

defined by

VK,~k(~q)=K°span of {≥(k1,a1/q1) · · ·≥(kr,ar/qr) : 1∑ ai ∑ qi, (ai, qi)= 1,1∑ i ∑ r} .

We observe that VK,~k(~q)=Qr
i=1 VK,ki (qi) and we define V+

K,~k
(~q)=Qr

i=1 V+
K,ki

(qi).

In 2020, Hamahata proved the following theorem.

Theorem 6.1.15. (Hamahata [29]) Let q1, · · · , qr be pairwise co-prime integers, k1, · · · ,kr >

1 be positive integers and~k, ~q be as in Definition 6.1.14. If K is a number field such

that K\Q(≥q1,··· ,qr )
+ =Q, then

dimK VK,~k(~q) ∏ 2°r
rY

i=1
'(qi).

Here we have the following extensions of Hamahata’s theorem.

Theorem 6.1.16. Let qt, j ∏ 1 be inegers for 1∑ j ∑ ` and 1∑ t ∑ r. Set qt =
Q`

j=1 qt, j

and ~q j = (q1, j, · · · , qr, j). Assume q1, · · · , qr are pairwise co-prime integers, k1, · · · ,kr > 1

be positive integers and~k, ~q be as in Definition 6.1.14. If K is a number field such that
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K\Q(≥q1,··· ,qr )
+ =Q, then

dimK
≥X`

j=1V+
K,~k

(~q j)
¥
=

8
>>><
>>>:

2°r P`
j=1

Qr
t=1'(qt, j) when at least one kt is odd,

2°r P`
j=1

Qr
t=1'(qt, j)°`+1 when all kt are even.

Theorem 6.1.17. Let r,`1, . . . ,`r and qt, j ∏ 1 be positive integers for 1 ∑ j ∑ `t and

1 ∑ t ∑ r. Set qt =
Q`t

j=1 qt, j and ~q j = (q1, j, · · · , qr, j). Assume q1, · · · , qr are pairwise

co-prime integers, k1, · · · ,kr > 1 be positive integers and~k be as in Definition 6.1.14. If

K is a number field such that K\Q(≥q1,··· ,qr )
+ =Q, then

dimK

√
rY

t=1

X`t
j=1V+

K,kt
(qt, j)

!
= 2°r

rY

t=1

√
`tX

j=1
'(qt, j)° (`t °1)(1+ (°1)kt)

!
.

Remark 6.1.18. Let [q1, · · · , q`] denote the least common multiple of q1, · · · , q`. The

number fields K(≥'(q1)···'(q`)) and Q(≥q1···q`)
+ can be replaced by K(≥['(q1),··· ,'(q`)]) and

Q(≥[q1,··· ,q`])+ respectively in Theorems 7.1.1, 7.1.2, 6.1.10, 6.1.16 and Corollary 7.1.3.

The article is organized as follows: in §2 we list required results needed for

our proofs, in §3 we derive main propositions and a corollary which are extensions

of Okada’s theorem (as well as extensions of Murty-Saradha) and a theorem of

Hamahata. Finally in the last section, we complete the proofs of Theorems 7.1.1,

7.1.2, 6.1.10, 6.1.16, 6.1.17 and Corollary 7.1.3.

6.2 Preliminaries

In this section, we fix some notations and state the results which will be used in the

proofs of the main theorems. When p is an odd prime number, it is a result of Chowla
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[12] that the set of numbers

{cot(2ºa/p) | 1∑ a ∑ (p°1)/2}

are linearly independent over Q. This result was reproved by various authors (see

for instance [30, 34]). In 1981, Okada [59] (see also Wang [71]) extended Chowla’s

theorem to natural numbers q > 2. In the same article, he also considered higher order

derivatives of cotangent function. More precisely, Okada [59] proved the following

theorem. In order to state the theorem, let us denote dk°1

dzk°1 (cot z)|z=z0 by cot(k°1)(z0).

Theorem 6.2.1. Let k and q be positive integers with k > 0 and q > 2. Let T be a set

of '(q)/2 representatives modulo q such that T [ (°T) is a complete set of co-prime

residues modulo q. Then the set of real numbers {cot(k°1)(ºa/q) | a 2 T} is linearly

independent over Q.

Using Galois theory, Girstmair [22] gave an alternate proof for Q linear indepen-

dence of derivatives of cotangent function. Murty-Saradha [54] noticed that Okada’s

result can be extended to any number field K provided K\Q(≥q)=Q. We note that the

condition K\Q(≥q)=Q in Murty-Saradha’s result can be replaced by K\Q(≥q)+ =Q.

Recently Hamahata [29] derived the following multi-dimensional generalization of

the above result.

Theorem 6.2.2. Let k1, · · · ,kr ∏ 1 be natural numbers and q1, · · · , qr > 2 be pairwise

co-prime natural numbers. For 1 ∑ i ∑ r, let Ti be a set of '(qi)/2 representatives

modulo qi such that Ti [ (°Ti) is a complete set of co-prime residues modulo qi. Set

q = q1 · · ·qr. If K is a number field with K\Q(≥q)=Q, then the '(q)/2r numbers

rY

i=1
cot(ki°1)(ºai/qi), ai 2 Ti, i = 1, · · · , r,

are linearly independent over K.

103



CHAPTER 6. LINEAR INDEPENDENCE OF DIRICHLET L VALUES

In the next section, we extend Theorems 6.2.1, 6.2.2 for a finite set of pairwise

co-prime natural numbers q1, · · · , q` > 2.

6.3 Requisite Propositions

We first relate the vector spaces V+
Q,k(q) to Q-vector subspaces of cyclotomic fields, via

the cotangent values mentioned in the previous section.

Indeed, since ºcot(ºz) is the logarithmic derivative of sin(ºz)= z
Q1

m=1(1° z2/m2),

one checks for k > 1 that

ºk cot(k°1)(ºz)= (°1)k°1(k°1)!

√
1
zk +

1X

m=1

µ
1

(z+m)k + 1
(z°m)k

∂!

and, evaluating at z = a/q with a/q ›Z[ {1}, it follows

≥(k,a/q)+ (°1)k≥(k,1°a/q)= ºk(°1)k°1

(k°1)!
cot(k°1)(ºa/q). (6.3.1)

Note that for z ›Z, we have (see [37])

cot(k°1)(ºz)=
X

a,b∏0
a+2b=k

Ø(k)
a,b cotaºz (1+cot2ºz)b, (6.3.2)

where Ø(k)
a,b 2Z and also

° i cot
ºa
q

=
≥a

q +1
≥a

q °1
2 Q(≥q), (6.3.3)

where i =
p
°1 . We then observe that

(iº)°kV+
Q,k(q) =

X

1∑a∑q/2
(a,q)=1

Q(ik cot(k°1)(ºa/q)) ΩQ(≥q)\ (ikR)

and (≥q °≥°1
q )k ik cot(k°1)(ºa/q) 2Q(≥q)+.

Since the dimension of the Q-vector space Q(≥q)\ (ikR) is '(q)/2, and dimQV+
Q,k(q)=

'(q)/2 by Okada’s theorem 6.2.1, we have

Q(≥q)\ (ikR)= (iº)°kV+
Q,k(q) (6.3.4)
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for q > 2. It is easy to see that the above relation also holds for q = 1,2.

Lemma 6.3.1. If k > 1, q, q1, q2 ∏ 1 are positive integers and d = (q1, q2), then

(iº)°kV+
Q,k(q)=Q(≥q)\(ikR), V+

Q,k(q)ΩV+
Q,k(q1) if q|q1 and V+

Q,k(q1)\V+
Q,k(q2)=V+

Q,k(d).

Proof. Identity (6.3.4) asserts precisely the first statement

Q(≥q)\ (ikR)= (iº)°kV+
Q,k(q).

If q|q1, we have Q(≥q)ΩQ(≥q1). We also know from Galois theory that

Q(≥q1)\Q(≥q2)=Q(≥d). (6.3.5)

Then the second and the third results follow by intersecting both sides of the inclusion

and Equation (6.3.5) with ikR and applying (6.3.4). ⌅

Proposition 6.3.2. For an integer k > 1 and pairwise co-prime positive integers

q1, · · · , q`, the kernel of the surjective map

©`
j=1V+

Q,k(q j) °! P`
j=1 V+

Q,k(q j)

(x1, · · · , x`) 7°! x1 +·· ·+ x`

is 0 if k is odd. When k is even, the kernel of the above map is the Q-vector space

V+
Q,k(1)`°1 of dimension `°1 which is parametrised as

(z1, · · · , z`°1) 2Q`°1 7°! (z1≥(k,1), · · · , z`°1≥(k,1),°(z1+·· ·+z`°1)≥(k,1)) 2©`
j=1V+

Q,k(q j).

Proof. The kernel of the map consists of elements (x1, · · · , x`) where xj 2V+
Q,k(q j)\

P
t 6= j V+

Q,k(qt) for all j = 1, · · · ,`. By Lemma 6.3.1,
P

t 6= j V+
Q,k(qt) Ω V+

Q,k(
Q

t 6= j qt) and,

since q j is co-prime to
Q

t 6= j qt, it also implies xj 2V+
Q,k(1) for j = 1, · · · ,`. ⌅
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We will need a multivariate extension of this result. To do this, we first prove

another lemma.

Lemma 6.3.3. Let k1, · · · ,kr > 1 be integers and q1,1, · · · , qr,1, q1,2, · · · , qr,2 be positive

integers which are pairwise co-prime. Set ~k = (k1, · · · ,kr) and ~q j = (q1, j, · · · , qr, j) for

j = 1,2, then

V+
Q,~k

(~q1)\V+
Q,~k

(~q2)=V+
Q,~k

(~1).

Proof. Applying Lemma 6.3.1, it is easy to see that

V+
Q,~k

(~1)µV+
Q,~k

(~q1)\V+
Q,~k

(~q2).

Set q j =
Qr

t=1 qt, j and k = Pr
t=1 kt. Again Lemma 6.3.1 shows that (iº)°kV+

Q,~k
(~q j) Ω

Q(≥q j ) for j = 1,2 and, since q1 and q2 are relatively prime, the intersection is

contained in Q. Now for j = 1 or 2, if some rational number Æ belongs to (iº)°kV+
Q,~k

(~q j),

we have for each t = 1, · · · , r, a linear relation over Q(≥Q
h 6=t qh, j ) between Æ and the

elements of a basis (over Q) of (iº)°ktV+
Q,kt

(qt, j). The field Q(≥Q
h 6=t qh, j ) is linearly

disjoint from Q(≥qt, j ) because qt, j is co-prime to
Q

h 6=t qh, j. Thus the above linear

relation over Q(≥Q
h 6=t qh, j ) implies a linear relation over Q, which involves Æ, since

the elements of a basis of (iº)°ktV+
Q,kt

(qt, j) are linearly independent over Q. Hence

Æ 2 (iº)°ktV+
Q,kt

(qt, j) for all t = 1, · · · , r and j = 1,2. Applying Lemma 6.3.1, we see

that Æ 2 (iº)°ktV+
Q,kt

(1). Note that (iº)°ktV+
Q,kt

(1) is 0 if kt is odd and Q if kt is even.

Therefore, if Æ 6= 0 then all kt must be even and

V+
Q,~k

(~q1)\V+
Q,~k

(~q2)µ
rY

t=1
V+
Q,kt

(1)=

8
>>><
>>>:

0 when at least one kt is odd,

Q
Qr

t=1 ≥(kt,1) when all kt are even,

which is equal to V+
Q,~k

(~1). ⌅
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6.3. REQUISITE PROPOSITIONS

Proposition 6.3.4. For integers k1, · · · ,kr > 1 and pairwise co-prime positive integers

qt, j, t = 1, · · · , r, j = 1, · · · ,`, we define~k = (k1, · · · ,kr) and ~q j = (q1, j, · · · , qr, j). Then the

kernel of the surjective map

©`
j=1V+

Q,~k
(~q j) °! P`

j=1 V+
Q,~k

(~q j)

(x1, · · · , x`) 7°! x1 +·· ·+ x`

is 0 if at least one kt is odd and is the Q-vector space
≥
V+
Q,~k

(~1)
¥`°1

of dimension `°1

parametrised as

Q`°1 °! ©`
j=1V+

Q,~k
(~q j)

(z1, · · · , z`°1) 7°!
°
z1

Qr
t=1 ≥(kt,1), · · · , z`°1

Qr
t=1 ≥(kt,1),°(z1 +·· ·+ z`°1)

Qr
t=1 ≥(kt,1)

¢

if all k1, · · · ,kr are even.

Proof. The kernel of the map consists of elements (x1, · · · , x`), where

xj 2V+
Q,~k

(~q j)\
X

h 6= j
V+
Q,~k

(~qh)

for j = 1, · · · ,`. By Lemma 6.3.1, we have
P

h 6= j V+
Q,~k

(~qh)ΩV+
Q,~k

(~Q), where ~Q = (Q1, · · · ,Qr)

with Qt =
Q

h 6= j qt,h. Since q1, j, · · · , qr, j,Q1, · · · ,Qr are pairwise co-prime, Lemma 6.3.3

implies that xj = 0 if at least one kt is odd and xj 2
Qr

t=1 V+
Q,kt

(1)=QQr
t=1 ≥(kt,1) if all

k1, · · · ,kr are even, for j = 1, · · · ,`. ⌅

For 1∑ j ∑ ` and q j > 2, consider the sets

Sq j = {1< a j < q j/2 : (a j, q j)= 1} and Tq j = {1∑ a j < q j/2 : (a j, q j)= 1},

Uj(k) =

8
>>>>>>><
>>>>>>>:

Tq j when k is odd,

Tq1 when j = 1 and k is even,

Sq j when j 6= 1 and k is even.

(6.3.6)
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We have the following proposition about linear independence of derivatives of cotan-

gent function evaluated at certain rational points. It forms a basis for the space
P`

j=1 V+
K,k(q j).

Proposition 6.3.5. For 1 ∑ j ∑ `, let q j > 2 be pairwise co-prime natural numbers

and k > 1 be an integer. If K is a number field such that K\Q(≥q1···q`)
+ =Q, then the

set of real numbers
[

1∑ j∑`

Ω
cot(k°1)

µ
ºa j

q j

∂
: a j 2Uj(k)

æ

is linearly independent over K.

Proof. By (6.3.1), the numbers
S

1∑ j∑`
n
ºk cot(k°1)

≥
ºa j
q j

¥
: a j 2 Tq j

o
span

P`
j=1 V+

K,k(q j).

When k is even and q > 2 is any integer, using (6.1.3) and replacing k by 2k, we have

≥(2k,1) = Æ
X

1∑a<q/2
(a,q)=1

(≥(2k,a/q)+≥(2k,1°a/q)) = Æ
X

1∑a<q/2
(a,q)=1

º2k cot(2k°1)
µ
ºa
q

∂
,

where Æ is some non zero rational number. It implies that, removing one arbitrary

element from any `°1 sets of the form
n
º2k cot(2k°1)

≥
ºa j
q j

¥
: a j 2 Tq j

o
in the union

[

1∑ j∑`

Ω
º2k cot(2k°1)

µ
ºa j

q j

∂
: a j 2 Tq j

æ

does not change the space they span, that is
P`

j=1 V+
K,2k(q j). Whatever the value of

k > 1 is, the number of generators left is equal to the dimension of this span. Thus

these generators must be linearly independent. ⌅

We have the following corollary of Proposition 6.3.5 which gives a basis of the K

vector space
P`

j=1 V+
K,~k

(~q j).
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Corollary 6.3.6. Let qt, j > 2,Tqt, j be defined as before Proposition 6.3.5 and qt =
Q`

j=1 qt, j. Assume q1, · · · , qr are pairwise co-prime and k1, · · · ,kr be positive integers.

Suppose that

Uj(~k)=

8
>>>>>>><
>>>>>>>:

Qr
t=1 Tqt, j when one of the kh is odd,

Qr
t=1 Tqt,1 when j = 1 and all the kh are even,

Qr
t=1 Tqt, j \{(1, · · · ,1)} when j 6= 1 and all the kh are even.

If K is a number field such that K\Q(≥q1···qr )
+ =Q, then the set of real numbers

[̀

j=1

(
rY

t=1
cot(kt°1)

µ
ºat

qt, j

∂
: (a1, · · · ,ar) 2Uj(~k)

)

is linearly independent over K.

Proof. We will use induction on r to complete the proof. When r = 1 and k1 = 1, the

result follows from the work of the first and second author [23]. If r = 1 and k1 > 1,

result follows from Proposition 6.3.5. Now assume that the corollary is true for any

natural number strictly less than r. Set q = q1 · · ·qr. Suppose that there exist rational

numbers Æ j,a1,··· ,ar such that

X̀

j=1

X
a1

· · ·
X
ar

Æ j,a1,··· ,ar

rY

t=1
ikt cot(kt°1)

µ
ºat

qt, j

∂
= 0,

where (a1, · · · ,ar) runs over the elements of Uj(~k). This implies that

X̀

j=1

X
ar

√
X
a1

· · ·
X

ar°1

Æ j,a1,··· ,ar

r°1Y

t=1
ikt cot(kt°1)

µ
ºat

qt, j

∂!
ikr cot(kr°1)

µ
ºar

qr, j

∂
= 0.

Since Q(≥q1···qr°1)\Q(≥qr )=Q, Proposition 6.3.5 implies

X
a1

· · ·
X

ar°1

Æ j,a1,··· ,ar

r°1Y

t=1
ikt cot(kt°1)

µ
ºat

qt, j

∂
= 0,
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for 1 ∑ j ∑ ` and (a1, · · · ,ar) 2 Uj(~k). By induction hypothesis, Æ j,a1,··· ,ar = 0 for all

1∑ j ∑ ` and (a1, · · · ,ar) 2Uj(~k). Therefore, the set of real numbers

[̀

j=1

(
rY

t=1
ikt cot(kt°1)

µ
ºat

qt, j

∂
: (a1, · · · ,ar) 2Uj(~k)

)

is linearly independent over Q. It implies that

[̀

j=1

(
rY

t=1
ikt(≥q °≥°1

q )kt cot(kt°1)
µ
ºat

qt, j

∂
: (a1, · · · ,ar) 2Uj(~k)

)

is linearly independent over Q. As in Proposition 6.3.5, the numbers inside the

products belong to Q(≥q)+ and by given hypothesis, K and Q(≥q)+ are linearly disjoint.

Hence the numbers in the union are linearly independent over K as well. It implies

that
[̀

j=1

(
rY

t=1
cot(kt°1)

µ
ºat

qt, j

∂
: (a1, · · · ,ar) 2Uj(~k)

)

is linearly independent over K. ⌅

Remark 6.3.7. Let ¬ be a character modulo q. If ¬ has the same parity as k (i.e.

¬(°1)= (°1)k), then

ºk(°1)k°1

qk(k°1)!
X

1∑a<q/2,
(a,q)=1

¬(a)cot(k°1)(ºa/q)= q°k X

(a,q)=1
¬(a)≥(k,a/q)= L(k,¬).

If ¬ and k have different parity (i.e. ¬(°1)= (°1)k°1), then

X
1∑a<q,
(a,q)=1

¬(a)cot(k°1)(ºa/q)= 0

since cot(k°1)(°ºa/q)= (°1)k cot(k°1)(ºa/q).
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6.4 Proofs of the Main Theorems

6.4.1 Proof of Theorem 6.1.10

Since, by hypothesis, the fields K and Q(≥q1···q`)
+ are linearly disjoint, it suffices to

determine the dimension of the Q-vector space
P`

j=1(iº)°kV+
Q,k(q j). But, this is the

dimension of ©`
j=1(iº)°kV+

Q,k(q j) minus the dimension of the kernel of the map shown

in Proposition 6.3.2. This gives the first equality, the remaining ones coming from

dimQ(V+
Q,k(q j))='(q j)/2 and dimQ(V+

Q,k(1))= dimQ(V+
Q,k(2))= 1

2
(1+ (°1)k).

6.4.2 Proof of Corollary 7.1.3

The lower bounds follow directly from Theorem 6.1.10. Recall that for k > 1 and q > 2,

we have

≥(k)
Y
p|q

p prime

(1° p°k)= 1
qk

X
1∑a<q
(a,q)=1

≥(k,a/q) (6.4.1)

and

VK,k(q)=K°span of {≥(k,a/q) : 1∑ a < q, (a, q)= 1}.

The number of generators of
P`

j=1 VK,k(q j) is
P`

j=1'(q j). But, by (6.4.1), there are at

least `°1 independent linear relations between them. Hence

dimK

√
X̀

j=1
VK,k(q j)

!
∑

X̀

j=1
'(q j)° (`°1).
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6.4.3 Proof of Theorem 7.1.1

Let F=K(≥'(q1)···'(q`)). By (6.1.5), the dimension of the F vector space generated by

the elements of Xq1,2k+1,o[· · ·[Xq`,2k+1,o is equal to the dimension of
P`

j=1 V+
F,2k+1(q j).

Since, by hypothesis, F\Q(≥q1···q`)
+ =Q, Theorem 6.1.10 shows that this dimension is

equal to the number of elements of Xq1,2k+1,o [ · · ·[ Xq`,2k+1,o, which must therefore

be linearly independent over F.

Alternatively we can argue as follows. For 1∑ j ∑ `, let D j = {¬ j mod q j | ¬ j(°1)=

°1} be the set of odd characters modulo q j. Suppose that there exist Æ¬ j 2K(≥'(q1)···'(q`))

for ¬ j 2 D j,1∑ j ∑ ` such that

X

1∑ j∑`

X

¬ j2D j

Æ¬ j L(2k+1,¬ j)= 0. (6.4.2)

Substituting (see [37])

L(2k+1,¬ j)=
º2k+1

(2k)! q2k+1
j

X

a j2Tq j

¬ j(a j)cot(2k)(
ºa j

q j
),

for ¬ j 2 D j,1∑ j ∑ ` in (6.4.2), we obtain

X

1∑ j∑`

X

a j2Tq j

1
q2k+1

j

√
X

¬ j2D j

Æ¬ j¬ j(a j)

!
cot(2k)(

ºa j

q j
)= 0. (6.4.3)

Here Tq j is as defined in (6.3). By given hypothesis, we have K(≥'(q1)···'(q`))\Q(≥q1···q`)
+ =

Q. It then follows from Proposition 1.4.2 that K(≥'(q1)···'(q`)) and Q(≥q1···q`)
+ are lin-

early disjoint over Q. Note that the coefficients of cot(2k)(ºa j
q j

)’s in (6.4.3) belong to

K(≥'(q1)···'(q`)) and hence Proposition 6.3.5 implies that

X

¬ j2D j

Æ¬ j¬ j(a j) = 0

for a j 2 Tq j ,1 ∑ j ∑ `. Since all the characters in the set D j,1 ∑ j ∑ ` are of same

parity, it follows that
X

¬ j2D j

Æ¬ j¬ j(a j)= 0

112



6.4. PROOFS OF THE MAIN THEOREMS

for a j 2 (Z/q jZ)£,1 ∑ j ∑ `. It then follows from linear independence of characters

that Æ¬ j = 0 for ¬ j 2 D j,1∑ j ∑ `. This completes the proof of Theorem 7.1.1.

6.4.4 Proof of Theorem 7.1.2

Let F=K(≥'(q1)···'(q`)). By (6.1.5), the dimension of the F vector space generated by

the elements of {≥(2k)}[Xq1,2k,e[· · ·[Xq`,2k,e is equal to the dimension of
P`

j=1 V+
F,2k(q j).

Since, by hypothesis, F\Q(≥q1···q`)
+ =Q, it follows from Theorem 6.1.10 that the di-

mension of
P`

j=1 V+
F,2k(q j) is equal to the number of elements of {≥(2k)}[ Xq1,2k,e [

· · ·[ Xq`,2k,e, which must therefore be linearly independent over F.

Alternatively we can argue as follows. Let C1 = {¬1 mod q1 | ¬1(°1)= 1} and for 1<

j ∑ `, let C j = {¬ j mod q j | ¬ j(°1)= 1,¬ j 6= 1} be the set of non-trivial even characters

modulo q j. Suppose that there exist Æ¬ j 2 K(≥'(q1)···'(q`)) for ¬ j 2 C j,1 ∑ j ∑ ` such

that
X

1∑ j∑`

X

¬ j2C j

Æ¬ j L(2k,¬ j)= 0. (6.4.4)

Substituting (see [37])

L(2k,¬ j)=
°º2k

(2k°1)! q2k
j

X

a j2Tq j

¬ j(a j)cot(2k°1)(
ºa j

q j
), (6.4.5)

for ¬ j 2 C j,1∑ j ∑ ` in (6.4.4), we obtain

X

1∑ j∑`

X

a j2Tq j

1
q2k

j

√
X

¬ j2C j

Æ¬ j¬ j(a j)

!
cot(2k°1)(

ºa j

q j
)= 0, (6.4.6)

where Tq j is as in (6.3). For a j 2 Tq j ,1∑ j ∑ `, let us denote

A j(a j)=
1

q2k
j

X

¬ j2C j

Æ¬ j¬ j(a j).

From (6.4.6), we have

X

1∑ j∑`

X

a j2Tq j

A j(a j)cot(2k°1)(
ºa j

q j
) = 0. (6.4.7)
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This implies that

X

a12Tq1

A1(a1)cot(2k°1)(
ºa1

q1
) +

X

1< j∑`
A j(1)

X

a j2Tq j

cot(2k°1)(
ºa j

q j
)

+
X

1< j∑`

X

a j2Sq j

(A j(a j)° A j(1))cot(2k°1)(
ºa j

q j
)= 0,

where Sq j = {1 < a j < q j/2 | (a j, q j) = 1}. As in the previous section, for 1 < j ∑ `,

recalling
X

a j2Tq j

cot(2k°1)(
ºa j

q j
)=

tr j

tr1

X

a12Tq1

cot(2k°1)(
ºa1

q1
),

we have

X

a12Tq1

(A1(a1)+
X

1< j∑`

A j(1)tr j

tr1
)cot(2k°1)(

ºa1

q1
)+

X

1< j∑`

X

a j2Sq j

°
A j(a j)° A j(1)

¢
cot(2k°1)(

ºa j

q j
)= 0.

(6.4.8)

As in Theorem 7.1.1, given hypothesis implies that the fields K(≥'(q1)···'(q`)) and

Q(≥q1···q`)
+ are linearly disjoint. Since the coefficients of cot(2k°1)(ºa j

q j
)’s in (6.4.8)

belong to K(≥'(q1)···'(q`)), using Proposition 6.3.5, we obtain

A1(a1)+
X

1< j∑`

A j(1)tr j

tr1
= 0 and A j(a j)= A j(1), (6.4.9)

where a1 2 Tq1 and a j 2 Sq j for 1< j ∑ `. The second equality implies that

1
q2k

j

X

¬ j2C j

Æ¬ j¬ j(a j) = A j(1)¬0(a j),

where ¬0 is the trivial character modulo q j and a j 2 Tq j . Since all the characters in

the set C j,1∑ j ∑ ` are even, it follows that

1
q2k

j

X

¬ j2C j

Æ¬ j¬ j(a j) = A j(1)¬0(a j),

where a j 2 (Z/q jZ)£,1< j ∑ `. Linear independence of characters implies that A j(1)=

0 and Æ¬ j = 0 for ¬ j 2 C j,1< j ∑ `. Replacing A j(1)= 0 in the first equality of (6.4.9),

we get A1(a1)= 0 for a1 2 T1. Arguing as above, we get that Æ¬1 = 0 for ¬1 2 C1. This

completes the proof of Theorem 7.1.2.
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6.4.5 Proof of Theorem 6.1.16

Set k = Pr
t=1 kt. As in the proof of Theorem 6.1.10, by hypothesis, the fields K and

Q(≥q1···q`)
+ are linearly disjoint, thus it suffices to determine the dimension of the

Q-vector space
P`

j=1(iº)°kV+
Q,~k

(~q j). But, this is the dimension of ©`
j=1(iº)°kV+

Q,~k
(~q j)

minus the dimension of the kernel of the map shown in Proposition 6.3.4. Since

dimQ

≥
©`

j=1(iº)°kV+
Q,~k

(~q j)
¥
= 2°r X̀

j=1

rY

t=1
'(qt, j),

the result follows from the same Proposition 6.3.4.

6.4.6 Proof of Theorem 6.1.17

The map

≠r
t=1

P`t
j=1(iº)°ktV+

Q,kt
(qt, j) °! Qr

t=1
P`t

j=1(iº)°ktV+
Q,kt

(qt, j)

x1 ≠ · · ·≠ xr 7°! x1 · · ·xr

is a bijection. Indeed, a nonzero element in the kernel gives a non trivial relation, over

the field Q(≥Q
t 6=r qt), between the elements of a Q-basis of

P`t
j=1(iº)°krV+

Q,kr
(qr, j). But

this contradicts the linear disjointness of the fields Q(≥Q
t 6=r qt) and Q(≥qr ). Thus, the di-

mension of theQ vector space on the right is the product
Qr

t=1 dimQ

≥P`t
j=1(iº)°ktV+

Q,kt
(qt, j)

¥

which is equal to 2°r Qr
t=1

≥P`t
j=1'(qt, j)° (`t °1)(1+ (°1)kt)

¥
by Theorem 6.1.10.
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6.5 Appendix: alternative proof of Proposition

6.3.5.

6.5.1 The case when k is odd

Proof. Set q = q1 · · ·q`. Thus, applying (6.3.2) and (6.3.3), we have

°i2k+1(≥q °≥°1
q )cot(2k)(ºa j/q j)

= (≥q °≥°1
q )

X
a,b∏0

a+2b=2k+1

Ø(2k+1)
a,b (°i)a(°1)b(cot

ºa j

q j
)a (1+ (cot

ºa j

q j
)2)b

= (≥q °≥°1
q )

X
a,b∏0

a+2b=2k+1

(°1)bØ(2k+1)
a,b

µ
°i cot

ºa j

q j

∂a µ
1° (°i cot

ºa j

q j
)2

∂b

= (≥q °≥°1
q )

X
a,b∏0

a+2b=2k+1

(°1)bØ(2k+1)
a,b

√
≥

a j
q j +1

≥
a j
q j °1

!a √
1° (

≥
a j
q j +1

≥
a j
q j °1

)2

!b

.

This implies that i(≥q°≥°1
q )cot(2k)(ºa j

q j
) 2Q(≥q)+ for a j 2 Tq j , 1∑ j ∑ `. The proposition

then follows for ` = 1 along the lines of the proof of Okada and Murty-Saradha.

Suppose that the proposition is true for any natural number 1∑ n < `. We want to

show that

[

1∑ j∑`
{cot(2k)(

ºa j

q j
) : a j 2 Tq j } (6.5.1)

is linearly independent over K. By the given hypothesis, we have K\Q(≥q1···q`)
+ =Q.

Appealing to Theorem 1.4.2, it is now sufficient to show that the numbers in the set

(6.5.1) are Q linearly independent. There exist rational numbers Æa j for a j 2 Tq j ,1∑

j ∑ ` such that

X

1∑ j∑`

X

a j2Tq j

Æa j cot(2k)(
ºa j

q j
) = 0.
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This implies that

X

1∑ j<`

X

a j2Tq j

Æa j cot(2k)(
ºa j

q j
) = °

X

a`2Tq`

Æa` cot(2k)(
ºa`
q`

).

Alternative to the identity (6.3.2), one can write

cot(h°1)(z)= ih
µ
2X

d
dX

∂h°1 µ
X +1
X °1

∂
|X=e2iz

for all h since cot(z)= i e2iz+1
e2iz°1 . Evaluating the above expression at z =ºa j/q j, one gets

ih cot(h°1)(ºa j/q j) 2Q(≥q j )\ ihR. Since h = 2k+1 is an odd integer, it then follows that

i
X

1∑ j<`

X

a j2Tq j

Æa j cot(2k)(
ºa j

q j
) = °i

X

a`2Tq`

Æa` cot(2k)(
ºa`
q`

) 2 Q(≥q1···q`°1)\Q(≥q`) = Q.

Since a purely imaginary number is a rational number if and only if it is 0, we have

X

1∑ j<`

X

a j2Tq j

Æa j cot(2k)(
ºa j

q j
) = °

X

a`2Tq`

Æa` cot(2k)(
ºa`
q`

) = 0.

Applying induction hypothesis, we get that Æa j = 0 for all a j 2 Tq j ,1 ∑ j ∑ `. This

completes the proof of the proposition. ⌅

6.5.2 The case when k is even

Proof. Applying (6.3.2), we see that cot(2k°1)(ºa j
q j

) 2 Q(≥q j )
+ for a j 2 Tq j , 1 ∑ j ∑ `.

The proposition then follows for `= 1 from the works of Okada and Murty-Saradha.

Suppose that the proposition is true for any 1 ∑ n < `. We want to show that the

numbers

{cot(2k°1)(
ºa1

q1
) : a1 2 Tq1}

[

1< j∑`
{cot(2k°1)(

ºa j

q j
) : a j 2 Sq j } (6.5.2)

are linearly independent over K. Since K\Q(≥q1···q`)
+ =Q, applying Theorem 1.4.2,

we see that it is sufficient to prove that the numbers in the set (6.5.2) are Q linearly
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independent. There exist rational numbers Æa j for a1 2 Tq1,a j 2 Sq j ,1 < j ∑ ` such

that
X

a12Tq1

Æa1 cot(2k°1)(
ºa1

q1
) +

X

1< j∑`

X

a j2Sq j

Æa j cot(2k°1)(
ºa j

q j
) = 0.

Then

X

a12Tq1

Æa1 cot(2k°1)(
ºa1

q1
) +

X

1< j<`

X

a j2Sq j

Æa j cot(2k°1)(
ºa j

q j
)

=
X

a`2Sq`

Æa` cot(2k°1)(
ºa`
q`

) 2 Q(≥q1···q`°1)\Q(≥q`) = Q.

Let us call this rational number Ø. If Ø 6= 0, then without loss of generality, we may

assume that Ø=°1. So

X

a`2Sq`

Æa` cot(2k°1)(
ºa`
q`

) = 1. (6.5.3)

Let us denote Q(≥ j) by F j. Let TrF j /Q(Æ) denotes the trace of Æ over Q for Æ 2F j. For

any a j 2 T j, using identities (6.3.2) and (6.3.3), we get

tr j = TrF j /Q

µ
cot(2k°1)(

ºa j

q j
)
∂

=
X

1∑a j∑q j
(a j ,q j )=1

cot(2k°1)(
ºa j

q j
) = 2

X

a j2Tq j

cot(2k°1)(
ºa j

q j
). (6.5.4)

It now follows from (6.5.3) and (6.5.4) that

X

a`2Sq`

Æa` cot(2k°1)(
ºa`
q`

)= 2
tr`

0
@ X

a`2Tq`

cot(2k°1)(
ºa`
q`

)

1
A .

Hence we have

°2
tr`

cot(2k°1)(
ºa1

q1
)+

X

a`2Sq`

(Æa` °
2

tr`
)cot(2k°1)(

ºa`
q`

)= 0,

a contradiction to Theorem 6.2.1. This implies that Ø= 0. Applying induction hypoth-

esis, we then obtain Æa j = 0 for a1 2 Tq1, a j 2 Sq j ,1< j ∑ `. ⌅
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7
DEDEKIND ZETA VALUES AT 1/2

7.1 Introduction

For a number field K, let ≥K be the Dedekind zeta function associated to K. The

non-vanishing of ≥K(s) at s = 1/2 is a deep arithmetic question. Armitage [2] gave

examples of number fields K for which ≥K(1/2)= 0. On the other hand, it is believed

that ≥K(1/2) 6= 0 when K is an Sn - number field, that is, a number field of degree n

whose normal closure has Galois group Sn over Q. Furthermore, very little is known

about the transcendental nature of the non-zero values of ≥K(1/2). For instance, one

has

≥(1/2)= 1
1°

p
2

1X

n=1

(°1)n°1
p

n
º°1.46035450880 · · · ,

where ≥ is the Riemann zeta function.

In this connection, one has a classical conjecture of Dedekind which asserts that

if L/K is an extension of number fields, then ≥K(s) divides ≥L(s), in other words, the
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function ≥L(s)/≥K(s) is entire. This conjecture is open in general, but holds when L/K

is Galois, thanks to the works of Aramata and Brauer. Also the celebrated Artin’s

conjecture for holomorphicity of his L-functions will establish Dedekind’s conjecture.

If L/Q is a Galois number field with Galois group Sn, then L contains a quadratic

subfield K. Dedekind’s conjecture ensures that vanishing of ≥K(1/2) will ensure

vanishing of ≥L(1/2).

In this note, we study various aspects of the derivative ≥0K(s) at s = 1/2. As dis-

cussed above, study of these circle of questions for quadratic fields merits special

attention. We note that for quadratic fields K, the non vanishing of ≥K(1/2) is equiv-

alent to the non vanishing of L(1/2,¬) for quadratic character ¬. Non vanishing of

such L(1/2,¬) has been conjectured by Chowla. We begin with the following theorem

for quadratic fields.

Theorem 7.1.1. Let K and L be distinct quadratic fields such that ≥K(1/2)≥L(1/2) 6= 0.

Then
≥0K(1/2)
≥K(1/2)

6=
≥0L(1/2)
≥L(1/2)

.

The above theorem in particular shows that there is at most one quadratic field

K for which ≥K(1/2) 6= 0 while the derivative ≥0K(1/2)= 0. We then prove the following

quantitative theorem where the existence of the fictitious exception alluded to above

is ruled out for both quadratic and cubic number fields.

Theorem 7.1.2. Let K be an algebraic number field with degree ∑ 3. Then

≥K(1/2)= 0 () ≥0K(1/2)= 0.

As a corollary, we have the following courtesy of the seminal work by K. Soundarara-

jan [65].
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Corollary 7.1.3. For at least 87.5% of quadratic number fields K with discriminant

8d with odd positive square-free integers d, one has ≥0K(1/2) 6= 0.

Let us very briefly describe the context as well as content of the work of Soundarara-

jan indicated above. The Generalised Riemann Hypothesis (GRH) does not preclude

the possibility that L(1/2,¬) = 0 for some primitive Dirichlet character ¬. But it is

believed that there is no rational linear relation between the ordinates of the non-

trivial zeros of the Dirichlet L-functions and consequently, L(1/2,¬) is expected to be

non-zero for any primitive Dirichlet character ¬. In particular when ¬ is a quadratic

character, this seems to have been conjectured first by Chowla [12] as indicated

earlier. In his outstanding work [65], Soundararajan showed that for at least 87.5%

of the odd square-free integers d ∏ 0, L(1/2,¬8d) 6= 0. Here for a fundamental discrimi-

nant (discriminant of some quadratic number field) d, ¬d(n) :=
°d

n
¢

where
°d

n
¢

denotes

the Kronecker-Legendre symbol. Results along this direction were obtained earlier in

[5], [33] and [35].

We now have the following theorem for higher degree number fields.

Theorem 7.1.4. Let K be an algebraic number field of degree n > 3 such that the

absolute value of its discriminant |dK| 2R\[(44.763)n, (215.333)n]. Then

≥K(1/2)= 0 () ≥0K(1/2)= 0.

We now consider the analogous question for Galois number fields.

Theorem 7.1.5. Consider the following sets.

X = {K Galois : KΩR, ≥K(1/2) 6= 0, ≥0K(1/2)= 0}

Y = {K Galois : K 6ΩR, ≥K(1/2) 6= 0, ≥0K(1/2)= 0}.
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Then at least one of the sets X and Y is empty. Furthermore, there are at most finitely

many abelian number fields for which ≥0K(1/2)= 0 but ≥K(1/2) 6= 0. All such number

fields (if exist) have degree less than 46369.

Remark 7.1.6. Suppose ≥K(1/2) 6= 0 and ≥0K(1/2)= 0, then degree of K/Q is precisely

log |dK|
º/2+ log8º+∞

and
log |dK|

log8º+∞

in case of totally real and totally complex Galois number fields respectively, where

|dK| denotes the absolute discriminant of K and ∞ is the ubiquitous Euler’s constant.

The above theorem refines a result of Ram Murty and Tanabe [56, Cor 3.9].

Investigations similar to ours for Elliptic curves over Q as well as Modular forms

were initiated by Gun, Murty and Rath [25]. Furthermore in [56], it has been proved

that there are only finitely many abelian totally real number fields K for which

≥K(1/2) 6= 0 while the derivative ≥0K(1/2)= 0. One of our objectives in this note was to

further this line of investigation to arbitrary number fields, obtain some quantitative

results and finally study transcendental nature of these deeply mysterious numbers.

In particular, we use Baker’s seminal theorem (see [25], [28], [51] and [52] for some

other applications of Baker’s theorem). In this context, we have the following theorem.

Theorem 7.1.7. Let K and L be distinct algebraic number fields of degree n and m

respectively and ≥K(1/2)≥L(1/2) 6= 0 . If one of the two following conditions

1.

|dK|m 6= |dL|n;
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2.

m
≥0K(1/2)
≥K(1/2)

6= n
≥0L(1/2)
≥L(1/2)

,

hold then at least one of the following two numbers

≥0K(1/2)
≥K(1/2)

and
≥0L(1/2)
≥L(1/2)

is transcendental.

Now, we obtain the following interesting corollaries from Theorem 7.1.7.

Corollary 7.1.8. Let n be a positive integer. Then the set
Ω
≥0K(1/2)
≥K(1/2)

: ≥K(1/2) 6= 0,[K :Q]= n
æ

has at most one algebraic number. Furthermore,

≥0K(1/2)
≥K(1/2)

° n
2

(log8º+∞)

is a transcendental number.

Two non-zero integers u and v are said to be multiplicatively independent if for

integers n and m, un = vm implies n = m = 0. In this context, we deduce the following

corollary for arbitrary degree number fields.

Corollary 7.1.9. Let F be a family of number fields with pairwise multiplicatively

independent discriminants. If ≥K(1/2) 6= 0 for every K 2F , then the set
Ω
≥0K(1/2)
≥K(1/2)

: K 2F

æ

has at most one algebraic number.

We refer to [51] and [52] for investigations related to the non-vanishing of deriva-

tives of ≥K(s) and L(s, f ) at s = 1, where f is a periodic arithmetic function.
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7.2 Preliminaries

We recall some relevant facts about the Dedekind zeta function ≥K(s) associated to a

number field K. ≥K(s) initially given by the following Dirichlet series

≥K(s)=
X

I 6=0

1
N(I )s

for <(s)> 1 has a meromorphic continuation to the complex plane with a simple pole

at s = 1. Furthermore, the function

ZK(s) :=°C(s)r2°R(s)r1≥K(s)

extends meromorphically to the complex plane with simple poles at s = 0 and

s = 1 and satisfies the functional equation ZK(s) = |dK|1/2°s ZK(1° s). Also °C(s) =

(2º)°s°(s),°R(s)=º°s/2°(s/2). But we shall use the following version of the functional

equation which is amenable for our purpose, namely

≥K(1° s)= AK(s)≥K(s)

for s 2C\{1} (see [58, p. 467], for instance) with the factor

AK(s) := |dK|s°1/2
≥
cos

ºs
2

¥r1+r2 ≥
sin

ºs
2

¥r2 °
2(2º)°s°(s)

¢n .

Now we quickly recall the discriminant of a quadratic number field K. Let d be a

square-free integer, then the discriminant dK of the field K=Q(
p

d ) is

dK =

8
>><
>>:

d if d ¥ 1 (mod 4)

4d if d ¥ 2, 3 (mod 4).

Now, we state the following deep theorem of Soundararajan which we shall need

to prove Corollary 7.1.3.
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Theorem 7.2.1. [65, Thm 1] For at least 87.5% of the odd square-free integers d ∏ 0,

L(1/2,¬8d) 6= 0.

7.3 Proofs of the Main Theorems

As indicated in the earlier section, we shall work with the following functional

equation of ≥K(s) for s 2C\{1} [58, p. 467]

≥K(1° s)= AK(s)≥K(s) (7.3.1)

with the factor AK(s) := |dK|s°1/2 °
cos ºs

2
¢r1+r2

°
sin ºs

2
¢r2 (2(2º)°s°(s))n .

Let us begin with an easy, but important observation that AK(1/2) = 1.

We now differentiate (7.3.1) w.r.t s and substitute at s = 1/2 to obtain

≥0K (1/2)=°(1/2)A0
K (1/2)≥K (1/2) . (7.3.2)

On the other hand, taking the logarithmic derivative of AK(s) we obtain

A0
K(s)

AK(s)
= log |dK|°

º

2
(r1 + r2)tan

ºs
2

+ r2
º

2
cot

ºs
2

°n log2º+n
°0(s)
°(s)

,

where log is the natural logarithm.

Since the value of digamma function °0(s)
°(s) at s = 1/2 is °∞°2log2 (see [68], p. 427), we

have

A0
K(1/2)= log |dK|° r1

º

2
°n(log8º+∞). (7.3.3)

3.1. Proof of Theorem 7.1.1

Let K=Q(
p

d1 ) and L=Q(
p

d2 ), where d1 and d2 are distinct square-free integers.

Since K and L are distinct quadratic fields, we have dK 6= dL.
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Using (7.3.2) and (7.3.3), we obtain

°2
µ
≥0K(1/2)
≥K(1/2)

°
≥0L(1/2)
≥L(1/2)

∂
= log

|dK|
|dL|

+ º

2
(r(L)

1 ° r(K)
1 ),

where r(L)
1 and r(K)

1 denote the number of real embeddings of L and K respectively.

It follows from Theorem 3.2.1 that eº is a transcendental number. So if r(L)
1 ° r(K)

1 6= 0,

then the right hand side of the above equation is non-zero by Theorem 3.2.1. On the

other hand if r(L)
1 ° r(K)

1 = 0, then the right hand side of the above equation is actually

transcendental by Lemma 3.1.1.

Thus,
≥0K(1/2)
≥K(1/2)

°
≥0L(1/2)
≥L(1/2)

is non-zero.

We note that our proof along with lemma 4.2.2 gives a stronger assertion, namely

the number
≥0K(1/2)
≥K(1/2)

°
≥0L(1/2)
≥L(1/2)

is actually transcendental.

3.2. Proof of Theorem 7.1.2

By (7.3.2), it is enough to show that A0
K (1/2) 6= 0. We have

A0
K (1/2)= 0 () |dK| = exp(r1

º

2
+n(log8º+∞)). (7.3.4)

A0
K (1/2) is evidently non-zero for K=Q. In fact, we have ≥0(1/2)=°3.922 · · · .

So we have the following two cases.

Case (i). Assume K is a quadratic field. So r1 could be either 0 or 2.

At r1 = 0, we have

2003< exp(r1
º

2
+2(log8º+∞))< 2004.

126



7.3. PROOFS OF THE MAIN THEOREMS

At r1 = 2, we have

46368< exp(r1
º

2
+2(log8º+∞))< 46369.

Since dK is always an integer, A0
K(1/2) can never be zero in case of quadratic fields.

Case (ii). Now we consider K a cubic field. So r1 is either 1 or 3.

At r1 = 1, we have

431471< exp(r1
º

2
+3(log8º+∞))< 431472.

At r1 = 3, we have

9984558< exp(r1
º

2
+3(log8º+∞))< 9984559.

Since dK is always an integer, A0
K(1/2) can not be zero in case of cubic fields also.

3.3. Proof of Corollary 7.1.3

For a quadratic number field K, we have

≥K(s)= ≥(s)L(s,¬dK), <(s)> 1,

where

L(s,¬dK) :=
1X

n=1

¬dK(n)
ns .

We refer the reader to [31, Ch. VII] and [58] for further details. We recall that

this generalization of Riemann zeta function also has the analytic continuation to

whole complex plane except s = 1. By uniqueness of analytic continuation of complex

functions, one could get the same identity for s 2C\{1}.

Now, we let K=Q(
p

2d ), where d is a square-free positive odd integer. It is easy to

see that discriminant of K is 8d (for instance, see §5.3, [63]). Hence,

≥K(1/2)= ≥(1/2)L(1/2,¬8d).
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Using Theorem 7.2.1, we have our desired result.

3.4. Proof of Theorem 7.1.4

We show that in the given interval of dK,

A0
K(1/2)= log |dK|° r1

º

2
°n(log8º+∞) 6= 0.

Using hypothesis, we have

A0
K(1/2)< n(log(44.763)° log8º°∞)< 0.

Similarly,

A0
K(1/2)> n(log(215.333)° º

2
° log8º°∞)> 0.

So our result follows from (7.3.2).

3.5. Proof of Theorem 7.1.5

If possible, let us assume that there exist Galois number fields K 2 X and L 2 Y of

degree n and m respectively. From (7.3.2), we have

A0
K(1/2)= A0

L(1/2)= 0.

From (7.3.3), we have

nA0
K(1/2)= log |dK|1/n ° r(K)

1
º

2n
° log8º°∞ (7.3.5)

and

mA0
L(1/2)= log |dL|1/m ° r(L)

1
º

2m
° log8º°∞, (7.3.6)

where r(K)
1 and r(L)

1 denote the number of real embeddings of K and L respectively.

From (7.3.5) and (7.3.6), we obtain

log |dK|1/n ° r(K)
1

º

2n
° log |dL|1/m + r(L)

1
º

2m
= 0.
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Since Galois fields are the normal extensions of their base fields, so there does

not exist any complex embedding in real Galois fields. Similarly, there are no real

embeddings in non-real Galois fields. Therefore, r(K)
1 = n and r(L)

1 = 0. Hence,

log
|dK|1/n

|dL|1/m ° º

2
= 0,

which is a contradiction as eº is transcendental by Theorem 3.2.1. This completes

the first part.

We now proceed with the second part of Theorem 7.1.5. From (7.3.3), we have

A0
K(1/2)= log |dK|° r1

º

2
°n(log8º+∞).

Using Theorem 1.3.11, we obtain

A0
K(1/2)∏ n(log(n)/2°º/2° log8º°∞)> 0, 8n ∏ 46369.

This implies that for all n ∏ 46369, ≥0K(1/2)= 0 if and only if ≥K(1/2)= 0.

Now we aim to prove that the set

S := {K : ≥0K(1/2)= 0, ≥K(1/2) 6= 0, n < 46369}

has finite cardinality. By (7.3.2), we see that

S µ S0 := {K : A0
K(1/2)= 0, n < 46369} .

So it is enough to show that the set S0 has finite cardinality. By (7.3.4), we have

A0
K (1/2)= 0 () |dK| = exp(r1

º

2
+n(log8º+∞)).

Since n and r1 are bounded in the latter set, the discriminant dK is also bounded.

So S0 is a set of number fields with bounded discriminant. Hence, we conclude our

result by Theorem 1.1.11.
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3.6. Proof of Theorem 7.1.7

From (7.3.2) and (7.3.3), we obtain

°2
µ
m
≥0K(1/2)
≥K(1/2)

°n
≥0L(1/2)
≥L(1/2)

∂
= log

|dK|m
|dL|n

+ º

2
(nr(L)

1 °mr(K)
1 ),

where r(L)
1 and r(K)

1 denote the number of real embeddings of L and K respectively.

If nr(L)
1 °mr(K)

1 6= 0, then the right hand side of the above equation is a transcendental

number by Lemma 4.2.2. On the other hand, if nr(L)
1 °mr(K)

1 = 0, then the right hand

side of the above equation is a transcendental number by Lemma 3.1.1. So both real

numbers
≥0K(1/2)
≥K(1/2)

and
≥0L(1/2)
≥L(1/2)

can not be algebraic.

3.7. Proof of Corollary 7.1.8 and 7.1.9

If there exist two distinct numbers from the set given in Corollary 7.1.8, then it would

be a contradiction to Theorem 7.1.7. So the first statement is a direct consequence of

Theorem 7.1.7. Now we prove the second part of Corollary 7.1.8. Combining (7.3.2)

and (7.3.3), we obtain

≥0K(1/2)
≥K(1/2)

° n
2

(log8º+∞)= r1
º

4
° (1/2)log |dK|.

If K=Q , then the right hand side of above equation is º
4 . By Theorem 1.1.10, |dK| > 1

for all K different from Q. So

≥0K(1/2)
≥K(1/2)

° n
2

(log8º+∞)

is a transcendental number by Lemma 4.2.2 and 3.1.1.
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For the proof of Corollary 7.1.9, note that the hypothesis given on discriminants

ensures that the first condition of Theorem 7.1.7 is satisfied. Consequently, it follows

from Theorem 7.1.7.

7.4 Concluding remarks

We believe that for any number field K, one should have

≥K(1/2) 6= 0 =) ≥0K(1/2) 6= 0.

Such results hold for Elliptic curves over Q as well as Modular forms [25]. The

nature of the functional equation in these set ups are amenable to deduce the above

supposition. The classical bounds between degree and discriminant in our context do

not seem to be strong enough to prove the above supposition, at least through our

approach.

Furthermore, if there does exist a number field K such that ≥K(1/2) 6= 0 while

≥0K(1/2) = 0, we shall have logº+ ∞ being equal to a linear form in logarithm of

algebraic numbers, an unlikely possibility from a transcendental perspective since

neither logº nor ∞ is expected to be a Baker period, that is, a Q - linear combination

of logarithms of algebraic numbers (see [53] for details on Baker periods).
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