
New Directions in Parameterized Deletion Problems

By

Ashwin Jacob

MATH10201604003

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

August, 2022

1

2

3

4

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgement of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgement the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

Ashwin Jacob

5

6

DECLARATION

I hereby declare that the investigation presented in the thesis has been carried out by me.

The work is original and has not been submitted earlier as a whole or in part for a degree /

diploma at this or any other Institution / University.

Ashwin Jacob

7

8

LIST OF PUBLICATIONS ARISING FROM THE THESIS

Journals

1. Fixed-Parameter Tractability of (n− k) List Coloring, Aritra Banik, Ashwin Jacob,

Vijay Kumar Paliwal and Venkatesh Raman, Theory of Computing Systems, 2020, Volume

64 (7) : 1307−1316 .

2. Parameterized Complexity of Conflict-Free Set Cover, Ashwin Jacob, Diptapriyo

Majumdar and Venkatesh Raman, Theory of Computing Systems, 2021, Volume 65(3) :

515−540 .

Conferences

1. Structural Parameterizations of Dominating Set Variants, Dishant Goyal, Ashwin

Jacob, Kaushtubh Kumar, Diptapriyo Majumdar and Venkatesh Raman, Proceedings of the

13th International Computer Science Symposium in Russia, CSR 2018, Moscow, Russia,

June 6-10, 2018, pages 157-168.

2. Deconstructing Parameterized Hardness of Fair Vertex Deletion Problems, Ashwin

Jacob, Venkatesh Raman and Vibha Sahlot, Proceedings of the 25th International Com-

puting and Combinatorics Conference, COCOON 2019, Xi’an, China, July 29-31, 2019,

pages 325-337.

3. Structural Parameterizations with Modulator Oblivion, Ashwin Jacob, Fahad

Panolan, Venkatesh Raman and Vibha Sahlot, Proceedings of the 15th International Sym-

posium on Parameterized and Exact Computation, IPEC 2020, December 14-18, 2020,

Hong Kong, China (Virtual Conference), pages 19:1-19:18.

4. Parameterized Complexity of Deletion to Scattered Graph Classes, Ashwin Jacob,

Diptapriyo Majumdar and Venkatesh Raman, Proceedings of the 15th International Sym-

9

posium on Parameterized and Exact Computation, IPEC 2020, December 14-18, 2020,

Hong Kong, China (Virtual Conference), pages 18:1-18:17.

5. Faster FPT Algorithms for Deletion to Pairs of Graph Classes, Ashwin Jacob, Dip-

tapriyo Majumdar and Venkatesh Raman, Proceedings of Fundamentals of Computation

Theory: 23rd International Symposium, FCT 2021, Athens, Greece, September 12–15,

2021, pages 314-326.

Ashwin Jacob

10

DEDICATIONS

To my parents.

11

12

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis advisor, Dr. Venkatesh Raman, for

his guidance, encouragement, and patience. If it hadn’t been for his invaluable advice, I

would have completely lost track of what to do on numerous occasions. His insightful

remarks have aided me in improving my research, writing, and presentation skills. I am

also grateful for the freedom he gave me to investigate various problems - sometimes for

extended periods with no fruitful results. I consider myself extremely fortunate to have

him as my advisor.

I thank Dr. Saket Saurabh for his encouragement and advice and for providing me with

research opportunities and financial support. I would also like to thank all of the faculty

of IMSc in Theoretical Computer Science for their brilliant courses, which catalyzed my

evolution as a researcher.

I am deeply indebted to Dr. K. Muralikrishnan for introducing me to research during my

undergraduate studies, helping me with admissions and for support throughout my research

career. I thank Dr. Sunil Chandran for hosting me at IISc during my undergraduate years,

helping to blossom my interests in research and considering it a career. I am grateful to

Dr. Shashank K. Mehta for his advice and support during my Masters programme at IIT

Kanpur.

I thank my co-authors Aritra, Dishant, Jari, Kaushtubh, Diptapriyo, Fahad and Vibha for

their insightful comments and discussions. I want to thank my friends Abhranil, Gaurav,

Govind, Niranka, Prateek, Pratibha, Ramit, Sanjukta, and Shivani for their contributions,

discussions, listening ears, suggestions and good times.

I thank every staff member of IMSc for their help with administrative procedures, financial

support, and maintaining a conducive research environment.

13

Finally, I would like to express my gratitude to my parents and my brother for their

unwavering love, support, and understanding.

14

Contents

Synopsis 21

List of Figures 27

1 Introduction 31

1.1 Deletion to Scattered Graph Classes . 37

1.2 Deletion distance parameterizations . 39

1.3 Vertex Deletion with additional constraints 41

1.4 Organization of Thesis . 43

2 Preliminaries 45

2.1 Sets, Numbers and some Notations . 45

2.2 Parameterized Complexity and Kernelization 46

2.3 Graph Theory . 49

2.3.1 Basic Notations and Definitions 49

2.3.2 Graph Separators . 51

2.3.3 Tree Decomposition and Treewidth 53

15

2.4 Second Order Logic . 54

2.5 Matroids . 55

I Deletion to Scattered Graph Classes 57

3 FPT algorithms for general cases 59

3.1 Deletion to scattered classes when each class is individually tractable . . . 63

3.2 Deletion to scattered classes with finite forbidden families 67

3.2.1 Iterative Compression . 69

3.2.2 Finding non-separating solutions 71

3.2.3 Solving general instances . 74

3.3 Conclusion . 100

4 Faster Algorithms for Pairs of Scattered Graph Classes 101

4.1 Preliminaries . 103

4.2 FINITE Π1 OR Π2 DELETION with forbidden paths 104

4.3 Π1 OR Π2 DELETION with a constant number of forbidden pairs 107

4.3.1 Forbidden Characterization for Π1 OR Π2 DELETION 107

4.3.2 The case with forbidden paths 110

4.3.3 Algorithms for Π1 OR Π2 DELETION without forbidden paths . . 119

4.4 Examples of SPECIAL INFINITE-(Π1,Π2)-DELETION 126

4.4.1 Interval or Trees . 127

16

4.4.2 Proper Interval or Trees . 135

4.4.3 Chordal or Bipartite Permutation 138

4.5 Conclusion . 144

II Deletion distance parameterizations 145

5 Structural Parameterizations with Modulator Oblivion 147

5.1 Preliminaries . 153

5.2 Semi Clique Tree Decomposition . 153

5.3 Structural Parameterizations with Chordal Vertex Deletion Set 165

5.3.1 SETH Lower Bounds . 173

5.4 Conclusion . 176

6 Fixed-parameter tractability of (n− k) List Coloring 177

6.1 Introduction . 177

6.2 Preliminaries . 179

6.3 FPT algorithm for (n-k)-REGULAR LIST COLORING 180

6.4 Conclusion . 187

7 Deletion Distance Parameterizations of Dominating Set Variants 189

7.1 Introduction . 189

7.1.1 Motivation . 189

7.1.2 Related Work . 192

17

7.1.3 Problem Definitions . 193

7.2 Dominating Set Variants parameterized by CVD Size 195

7.2.1 Upper Bounds . 195

7.2.2 Lower bounds . 205

7.3 Dominating Set variants parameterized by SVD size 210

7.3.1 EDS and IDS parameterized by SVD size 211

7.3.2 Improved Algorithm for EDS-SVD 212

7.3.3 Lower Bounds for IDS and EDS 217

7.4 Concluding Remarks . 218

III Deletion with additional constraints 219

8 Parameterized Complexity of Conflict-Free Set Cover 221

8.1 Introduction and Previous Work . 221

8.2 Hardness results for Conflict-Free Set Cover 227

8.2.1 1-Intersection Conflict-Free Set Cover parameterized by solution

size k . 227

8.2.2 Conflict-Free Set Cover parameterized by |U| 229

8.3 Algorithms . 234

8.3.1 Conflict-Free Set Cover parameterized by

solution size k . 234

8.3.2 Conflict-Free Set Cover parameterized by |U| when F has duplicates237

18

8.3.3 c-Intersection Conflict-Free Set Cover parameterized by k 242

8.4 Matroidal Conflict-free Set Cover . 247

8.5 Conclusion . 250

9 Fair Vertex Deletion problems 253

9.1 Introduction . 253

9.1.1 Previous Work and Deconstructing Hardness 254

9.1.2 Our Results . 255

9.2 Preliminaries . 258

9.3 Π-FAIR VERTEX DELETION parameterized by treewidth + fairness factor 258

9.4 FAIR q-FORBIDDEN FAMILY VERTEX DELETION parameterized by

solution size . 265

9.4.1 FPT Algorithm . 265

9.4.2 Polynomial Kernel . 266

9.4.3 Improved Kernel for FAIR VERTEX COVER parameterized by

solution size . 271

9.5 Hardness Results . 274

9.5.1 W[1]-Hardness for Fair Set . 274

9.5.2 NP-Hardness Dichotomy of FAIR VERTEX COVER and FAIR

FEEDBACK VERTEX SET . 276

9.6 Conclusion . 281

19

IV Conclusion 283

10 Conclusion and Future Directions 285

Bibliography 287

20

Synopsis

Graphs are one of the most fundamental data structures in computer science because

they can be used to model a wide range of problems. As a result, solving optimization

problems on graphs is a well-studied area in theoretical computer science. Unfortunately,

the majority of such problems are NP-Hard. Hence we do not expect polynomial-time

algorithms for such problems. This motivates research on these problems using frameworks

where there are trade-offs between the running time of the algorithm and the quality of the

solution obtained. One such framework is to restrict the input graph to a well-known graph

class. Many of the optimization problems were found to have polynomial time algorithms

taking advantage of the structure of the graph arising from such a restriction.

The existence of polynomial time algorithms for problems on a particular graph class Π

raises the following question. What if the graph you are looking at does not belong to the

graph class Π, but it is not ‘far away’ from one? Specifically, the graph has a few, say

k vertices whose deletion results in a graph of graph class Π. If we know that the graph

G satisfies such property and also is given the set of vertices S ⊆ V (G) whose deletion

results in the graph class Π, we have a good idea of the structure of most of the graph

G, specifically G− S. Using this structure, fixed parameter tractable (FPT) algorithms

parameterized by deletion distance to graph classes Π were obtained for many problems

including VERTEX COVER, FEEDBACK VERTEX SET and DOMINATING SET.

This also motivates us to look at the problem of finding such a set of k vertices such that

the rest of the graph belongs to some graph class Π. More specifically, the input is of

21

the form (G,k) and we aim to obtain a set S with |S| = k such that G− S belong to the

graph class Π. Such problems are referred to as vertex deletion problems. These problems

are well-studied with examples including VERTEX COVER, FEEDBACK VERTEX SET,

ODD CYCLE TRANSVERSAL, CHORDAL VERTEX DELETION where the graph class Π is

edge-less, forest, bipartite and chordal respectively.

In this thesis we investigate vertex deletion problems in the following directions.

Deletion to Scattered Graph Classes. In the first direction, we initiate the study of a

natural variation of the problem of deletion to scattered graph classes. In this case, we

want to delete at most k vertices so that in the resulting graph, each connected component

belongs to one of a fixed number of graph classes. Suppose it is the case that each

component of a graph belongs to some graph class where a given problem is solvable

in polynomial time. Then for most cases, by combining the solutions from each of the

components, we can find the solution for the entire graph in polynomial time as well.

Finding the vertex deletion set to such collection of components is thus intriguing.

A simple hitting set based approach for this problem is no longer feasible even if each

of the graph classes is characterized by finite forbidden sets. Nonetheless, we show the

following results.

• We show that this problem is non-uniformly FPT when the deletion problem corre-

sponding to each of the finite classes is known to be FPT and the properties that a

graph belongs to any of the classes is expressible in Counting Monodic Second Order

(CMSO) logic. The algorithm is based on a result by Lokshtanov et al. [121] that

essentially allows us to use the technique of recursive understanding in a black-box

manner. Unfortunately, the running time of the algorithm has gargantuan constant

overheads.

• We provide a 2poly(k)nO(1) FPT algorithm when each of the graph classes has a

finite forbidden set. This algorithm uses the well-known techniques of iterative

22

compression and important separators, and follows the approach of Ganian et al [76]

for a similar problem on constraint satisfaction problems (CSPs).

• Later, we do a deep dive on pairs of specific graph classes (Π1,Π2) in which we

would like the connected components of the resulting graph to belong to, and design

simpler and more efficient FPT algorithms. We design a general algorithm for

pairs of graph classes (possibly having infinite forbidden sets) satisfying certain

conditions. Our general method covers pairs of graph classes including (Interval,

Trees), (Chordal, Bipartite Permutation), (Clique, Planar) and (Clique, Bounded

Treewidth) for (Π1, Π2) and runs in 2O(k)nO(1) or kO(k)nO(1) time depending on the

pair of graph classes. Our algorithm makes non-trivial use of the branching technique

and as a black box, FPT algorithms for deletion to individual graph classes. We

also provide efficient approximation algorithms for deletion to these pairs of graph

classes.

Deletion distance parameterizations. In the second direction, we look at the associated

optimization problems where the parameter is the deletion distance to a graph class.

Generally such problems are studied under the assumption that you are given a deletion set

of size k as input. If the problem of finding such a deletion set is known to the FPT, we

can use it to find such a set. The running time would be the sum of the running times for

finding the set and the algorithm where the modulator is assumed to be given. For most

parameterizations, assuming that a modulator is given is reasonable as the corresponding

vertex deletion problem has FPT algorithms whose running time is comparable to the time

taken by the algorithm designed for the problem given the modulator. But there are cases

where the running time for the former is significant enough to pay attention. We examine

one such parameter, deletion distance to chordal graphs. For example, the VERTEX COVER

problem parameterized by deletion distance to chordal graphs k have a simple 2knO(1)

algorithm given the modulator. But the current best running time to find such a modulator

takes kO(k)nO(1) time [35].

23

We develop an algorithmic framework for problems such as VERTEX COVER, FEEDBACK

VERTEX SET and ODD CYCLE TRANSVERSAL that either identifies that there is no

chordal deletion set of size k or give a 2O(k)nO(1) algorithm to solve them. We do so by

constructing a tree decomposition of the given graph in 2O(k)nO(1) time where each bag is

a union of four cliques and O(k) vertices and applying standard dynamic programming

algorithms over this special tree decomposition. This special tree decomposition can be of

independent interest.

We also study deletion distance parameterizations for some other graph problems.

• We look at the (n− k) LIST COLORING problem where we are given a graph with

each vertex having a list of size n− k and ask if there is a coloring corresponding

to the lists. We show that the problem is FPT parameterized by k. We do so by

showing that the problem is FPT if the graph is f (k) vertices away from a clique.

• We give improved FPT algorithms and lower bounds for variants of DOMINATING

SET problem in graphs that are k vertices away from a cluster graph or a split graph.

Vertex Deletion with additional constraints. In the third direction, we investigate vertex

deletion problems where the deletion set is also required to satisfy additional constraints.

• We consider the case where the deletion set is also required to to form an independent

set. Such problems are called conflict-free problems and they have already been

studied for various problems such as CONFLICT-FREE VERTEX COVER, CONFLICT-

FREE FEEDBACK VERTEX SET. We look at the conflict-free version of SET COVER.

where there is also a graph on the sets of the input family and we want the set cover

to form an independent set in the graph. Specifically, we have a universe U , a family

F of subsets of U , a graph GF with vertex set F and an integer k and we check if

there is a subfamily F ′ ⊆F of size at most k such that ∪F∈F ′F = U and F ′ forms

an independent set in GF . Though SET COVER is not a graph problem, it can be

seen as a generalization of various deletion problems such as VERTEX COVER by

24

associating a family of forbidden graphs incident to each vertex. We look at various

parameterizations of CONFLICT-FREE SET COVER under various conditions where

the corresponding SET COVER problem is FPT. Here, we also restrict the input

graph to belong to popular graph classes and provide upper and lower bounds. We

list a few of the results below.

– We give a f (k)|F|o(k) time lower bound for 1-INTERSECTION CONFLICT-

FREE SET COVER assuming the Exponential Time Hypothesis (ETH). The

lower bound holds even when GF is restricted to bipartite graphs where INDE-

PENDENT SET is polynomial-time solvable.

– We give an FPT algorithm for CONFLICT-FREE SET COVER parameterized

by |U| even in presence of duplicates when we restrict GF to chordal graphs

via dynamic programming on the clique tree decomposition of the graph.

– We also study the CONFLICT-FREE SET COVER problem where there is an

underlying (linearly representable) matroid on the family of subsets, and we

want the solution to be an independent set in the matroid. We show that

the problem FPT when parameterized by the universe size, using the idea of

dynamic programming over representative families [71].

• We also study vertex deletion problems where the deletion set is also required to

form a fair set. A d-fair set S⊆V (G) is such that for very v ∈V (G), |N(v)∩S| ≤ d.

– We look at fair vertex deletion problems having a finite forbidden family and

provide simple FPT and polynomial kernel results parameterized by solution

size.

– We then focus on FAIR VERTEX COVER which also a finite forbidden family

which is {K2}. We give a better kernel parameterized by solution size. We also

give an FPT algorithm parameterized by treewidth and the fairness factor d for

this problem.

25

– We look at FAIR FEEDBACK VERTEX SET and show that the problem is FPT

parameterized by solution size as well as the sum of treewidth and fairness

factor.

– Finally, we look at the problem of FAIR SET of whether a d-fair set of size k

exist in the graph. We know that the problem is W [1]-hard parameterized by k

for d = 1 even in 3-degenerate graphs.

26

List of Figures

1.1 A graph hierarchy of inclusions depicting tractability of some vertex dele-

tion problems . 37

3.1 An X−Y tight separator sequence of order two with U = /0. 79

3.2 The case where X is incomparable with P1 86

3.3 Example of a marked forbidden set . 88

3.4 Example showing paths between vertices of a marked forbidden set . . . 89

3.5 Forest F that provides required connectivities of marked forbidden set

vertices. The vertices colored grey correspond to marked vertices and

white correspond to other vertices of F . The forest F has a degree two path

between x1 and x2 with all the internal vertices unmarked. If an unmarked

vertex y in this path has an edge to some marked vertex x3, then the forest

obtained by replacing an edge adjacent to y in the path with (x3,y) also

preserves the connectivities but has an unmarked vertex as a leaf giving a

contradiction. 90

3.6 The graph G′\Knr obtained from gluing the graphs G[R[W1,P1] and Ĝ\Knr

along Pr
1 where Kr is an optimal (Π1,Π2, . . . ,Πd)-modulator 92

27

3.7 A demonstration of how u1,u2 ∈CM are connected in the graph G′ \K′

(denoted by the grey region). We know from the marking procedure that

both C and CM are such that paths between vertices corresponding to u1

and u2 have its first and last vertex of Pr
1 as t1 and t2. We replace the path

between t2 and u′2 with the path between t2 and u2 guaranteed from the

forest F . 97

4.1 An illustration of a shortest path between a closest (claw, triangle) pair. . . 120

4.2 Obstructions for Graph Classes . 128

4.3 An illustration of a shortest path between a closest (long claw, triangle) pair.129

5.1 Reduction from HITTING SET to VERTEX COVER BY CLSVD 174

6.1 Crown Decomposition . 180

6.2 List coloring in clique+ f (k) . 184

7.1 An illustration of the construction described in Theorem 37 209

7.2 Illustration of Branching Rule 7. Note that the number of blue vertices

drop by at least two in each of the branches. 213

7.3 Illustration of Branching Rule 8 for the first case. Note that the number of

blue vertices in S drops by at least two in each of the branches. 216

7.4 Illustration of Branching Rule 8 for the second case. Note that the number

of blue vertices in S drops by two in each of the branches. 216

7.5 In this example, S is a minimum vertex cover of this graph. But there is no

minimal vertex cover that contains only x, but not y from S. 218

28

9.1 Construction of FAIR SET instance with d = 1 from MULTICOLORED

INDEPENDENT SET instance in Theorem 60 275

9.2 Construction of FAIR FEEDBACK VERTEX SET instance with d = 1 from

3-SAT instance in Theorem 64 . 280

29

30

Chapter 1

Introduction

Graphs are one of the most fundamental combinatorial structures in computer science. This

is because a lot of real-world problems can be modeled using graphs. These problems arise

in several areas such as transportation systems, communication networks, bioinformatics,

social network analysis and data organization.

As a result, solving optimization problems on graphs is an active research area in theoretical

computer science. Unfortunately, most of such problems are found to be NP-hard [77].

Assuming the widely held P6=NP conjecture, we do not expect polynomial-time algorithms

for such problems. However, this does not absolve us from the need of solving such

problems as they are essential in real-world applications. This motivates research on these

problems using frameworks where there are trade-offs between the running time of the

algorithm and the quality of the solution obtained. Notable such frameworks include

heuristic algorithms, approximation algorithms, parameterized algorithms, randomized

algorithms, genetic algorithms and restricting the input.

We look at the framework where we restrict the input graph for our problem. It is reasonable

to assume that most input graphs corresponding to real-world problems has some (possibly

hidden) structure manifested in them [92, 64]. For example, suppose we know that the

input graph models an assignment problem where all its edges are between a collection

31

of agents to a set of tasks. We can then infer that such graphs are bipartite. If we identify

some structure in all possible input graphs, we only need to solve problems in which the

input graph satisfies such a structure.

Motivated by this, we study problems where we restrict the input graph to belong to a

well-known graph class. A graph class Π is a collection of graphs satisfying a particular

property. Many of the optimization problems which are NP-hard on general graphs were

found to have polynomial time algorithms when restricting the input to several graph

classes. These algorithms take advantage of the structure of the graph arising from such a

restriction. As an example, let us focus on the famous VERTEX COVER problem which is

NP-hard on general graphs. But the problem can be solved in polynomial time on several

graph classes such as trees, bipartite graphs, chordal graphs, claw-free graphs and bounded

treewidth graphs [80, 131, 45]. The techniques used to solve VERTEX COVER also vary as

we change the underlying graph class. For example, the algorithm for VERTEX COVER on

trees uses dynamic programming in bottom-up order of a rooted tree. The algorithm for

VERTEX COVER on bipartite graphs uses network flow techniques observing that the size

of the maximum matching is equal to the size of the minimum vertex cover in bipartite

graphs. The algorithm for VERTEX COVER on chordal graphs is a greedy algorithm using

the Perfect Elimination Ordering of a chordal graph.

Deletion Distance Parameterizations. The existence of polynomial time algorithms for

problems on a particular graph class Π raises the following question. What if the graph we

are interested in does not belong to the graph class Π, but it is not ‘far away’ from one?

Specifically, the graph has a few, say k vertices whose deletion results in a graph belonging

to graph class Π. In the absence of such vertices, we know that the problem can be solved

in polynomial time. Hence we naturally hesitate to throw the towel on finding efficient

algorithms for the problem just due to the presence of a few vertices.

The fact that the integer k is ‘small’ is vital here. We do not expect algorithms with running

time polynomial in n for problems on graph k vertices away from Π. This is because if

32

k = n, any graph is k vertices away from Π. Hence we are efficiently solving the problem

on general graphs where we know that the problem is NP-hard which is unreasonable.

Thus, we aim to design an algorithm whose running time ‘grows’ with k. Such algorithms

form the basis of parameterized complexity.

In parameterized complexity, an input of size n also comes with a parameter k. The goal

is to design an algorithm with running time f (k) ·nO(1) for the problem for a computable

function f . Such an algorithm is called a fixed-parameter tractable (FPT) algorithm.

Similar to NP, there is a complexity class W [1] such that if a problem is known to be W [1]-

hard, we do not expect an FPT algorithm for the problem. Another notion in parameterized

complexity is kernelization where we aim to get an equivalent instance of a given problem

whose size is bounded by g(k) for a parameter k and a computable function g. We refer to

Section 2.2 of Chapter 2 for formal definitions.

We aim to obtain FPT algorithms for problems parameterized by k when the input graph is k

vertices away from a graph class Π. Let us call such parameterizations as deletion distance

parameterizations. If we know that a graph G satisfies such property and are also given the

set of vertices S⊆V (G) whose deletion results in Π, we have a good idea of the structure

of most of the graph G, specifically G− S. Using this structure, FPT algorithms and

kernels parameterized by deletion distance to several graph classes were obtained for many

problems including VERTEX COVER, FEEDBACK VERTEX SET and DOMINATING SET.

The VERTEX COVER problem was studied with the parameter being deletion distance to

forests, cluster graphs, split graphs, quasi-forests, pseudo-forests, degree at most 1 graphs,

degree at most 2 graphs, bipartite graphs and chordal graphs [72, 124, 93, 64, 122]. The

FEEDBACK VERTEX SET problem was studied with the parameter being deletion distance

to edge-less graphs, cluster graphs, split graphs, mock-forests, pseudo-forests, bipartite

graphs and chordal graphs [123, 97, 122].

Let us look at the example of VERTEX COVER parameterized by the deletion distance

to bipartite graphs (size of odd cycle transversal). We assume that we have a graph G

33

and a subset S ⊆ V (G) with |S| = k such that G− S is bipartite. We give the following

2knO(1) algorithm for VERTEX COVER as follows. We guess a subset S′ ⊆ S such that for

the optimal vertex cover Z of G, we have Z ∩ S = S′. We now look at the graph G− S′.

Note that all the edges with one endpoint in S\S′ have to be covered by the other endpoint

in V (G)\S. Hence all such vertices W have to be in the solution Z. We hence arrive at

the graph G−S−W after adding W to the solution and removing isolated vertices of S.

This graph is bipartite where we can use our known algorithm for VERTEX COVER on

bipartite graphs to solve the problem optimally. Overall, the running time is 2knO(1) with

2k overhead coming from going over all possible subsets of S. Note that the only property

of bipartite graphs we used in the algorithm is the polynomial time algorithm for VERTEX

COVER on such graphs. Hence, we can generalize the above algorithm to any hereditary

graph class where VERTEX COVER is solvable in polynomial time.

Deletion distance parameterizations come under the parameter ecology program of prob-

lems. A parameter of a problem can be many things. The most common parameter studied

in parameterized complexity is the size of the solution itself. Earlier work in parameterized

complexity mostly focused on the solution size parameter. But later, from the realization

that most practical problem inputs have hidden characterizations, the community started to

study problems on a plethora of parameters [62, 25, 97, 64]. Such a parameter ecology

program aims to see how the complexity of a problem changes for each parameter. The

majority of graph parameters studied are deletion distance to graph classes. There are

also other graph parameters such as treewidth, dominating set size, chromatic number,

maximum clique size, bandwidth and leaves of a minimum spanning tree.

One can also obtain a hierarchy of deletion distance parameters based on the following

observation. If a graph class Π1 is a subclass of another class Π2, then the minimum

deletion distance to graph class Π1 is at least as large as the minimum deletion distance to

Π2. For example, forests form a subclass of chordal graphs. Hence the size of a minimum

feedback vertex set is at least the size of a minimum chordal vertex deletion set. Suppose

34

a problem is FPT parameterized by deletion distance to Π2. Then the problem is FPT

parameterized by deletion distance to Π1 since the latter is a larger parameter. Similarly, if

a problem is W [1]-hard parameterized by deletion distance to Π1, then the problem is also

W [1]-hard parameterized by deletion distance to Π2 since the latter is a smaller parameter.

Vertex Deletion Problems. Deletion distance parameterizations also motivate us to look

at another class of problems. In these problems, we aim to find a set of k vertices such that

the rest of the graph belongs to some graph class Π. More specifically, the input is of the

form (G,k), and we aim to obtain a set S with |S|= k such that G−S belongs to the graph

class Π. Such problems are referred to as vertex deletion problems.

Vertex deletion problems come under a more extensive umbrella of well-studied problems

in graphs called graph modification problems. In such problems, we want to modify a

given graph by addition/deletion of vertices or edges to obtain a simpler graph.

Let us try to motivate such problems. The primary motivation stems from situations where

the input graph has changed slightly for some reason, and we want to find the few outlier

vertices or edges whose deletion/addition restores our original graph. This falls under the

category of noise detection problems, which are well-studied in computer science. We have

already seen how problems are efficiently solvable in several graph classes. Identifying the

outliers in the graph helps in designing FPT algorithms parameterized by the size of the

outliers.

A graph class is non-trivial if the class and its complement contain infinitely many graphs.

A graph class is hereditary if it is closed under induced subgraphs. A classical work of

Lewis and Yannakakis [110] (see also [153]) showed that if vertex deletion results in a

graph from a non-trivial hereditary graph class, then the deletion problem is NP-complete.

Since the work of Lewis and Yannakakis, the complexity of vertex deletion problems has

been studied in various algorithmic paradigms including approximation and parameterized

complexity. Vertex deletion problems have been well-studied in parameterized complexity

over the last several years. This has led to the discovery of many powerful techniques

35

such as iterative compression. Examples of such problems include VERTEX COVER

[36], CLUSTER VERTEX DELETION [23], SPLIT VERTEX DELETION [49], FEEDBACK

VERTEX SET [106], ODD CYCLE TRANSVERSAL [117], PROPER INTERVAL VERTEX

DELETION [152], INTERVAL VERTEX DELETION [34], CHORDAL VERTEX DELETION

[35], t-TREEWIDTH VERTEX DELETION [70, 102] and PLANAR VERTEX DELETION

[96].

It is well-known that any hereditary graph class can be described by a forbidden set of

graphs, finite or infinite, that contains all minimal forbidden graphs in the class. It is

known that the deletion problem is FPT as long as the resulting hereditary graph class

has a finite forbidden set [32]. This is shown by an easy reduction to the BOUNDED

HITTING SET problem. A result of Robertson and Seymour [147] showed that if the graph

class has a finite forbidden minor characterization, then the deletion problem is FPT. We

also know FPT algorithms for specific graph classes defined by infinite forbidden sets

such as FEEDBACK VERTEX SET and ODD CYCLE TRANSVERSAL [45]. We still do

not have a precise characterization of the class of graphs for which the deletion problem

is FPT. Nevertheless, we know that there are graph classes for which the problem is

W [1]-hard [113, 84]. The FPT tractability of several vertex deletion problems to graph

classes such as permutation graphs, chordal bipartite graphs, AT-free graphs, comparability

graphs and co-comparability graphs remain open. See Figure 1.1 for a non-exhaustive

hierarchy of inclusions depicting tractability of some vertex deletion problems.

Recently, some stronger versions of deletion problems have also been studied. In these, we

delete vertices so that the resulting graph is ‘almost’ in a graph class. More specifically, we

aim to delete at most k vertices such that every connected component of the resulting graph

is at most ` edges away from being a graph in a graph class Π (see [144, 141, 143]). Some

examples of Π studied in this stronger version include forest, pseudo-forest and bipartite.

In this thesis, we investigate vertex deletion problems in the following directions.

36

proper
interval

bipartite
permutation

forest

interval

permutation

bipartite

chordal

comparability

co-comparability perfect

FPT W[1]-hardOpen FPT
status

Figure 1.1: A graph hierarchy of inclusions depicting tractability of some vertex deletion
problems

1.1 Deletion to Scattered Graph Classes

In the first direction, we initiate the study of a natural variation of the problem of deletion

to scattered graph classes. In this case, we want to delete at most k vertices so that in the

resulting graph, each connected component belongs to one of a fixed number of graph

classes. Suppose each component of a graph belongs to some graph class for which the

problem of interest is solvable in polynomial time. Then for most problems, by combining

the solutions from each of the components, we can find the solution for the entire graph in

polynomial time as well.

Let us get back to the example of the VERTEX COVER problem which is polynomial time

solvable for 2-treewidth graphs, interval graphs or bipartite graphs. Let Π be the class of

graphs whose connected components belong to one of the three graph classes above. Since

the three graph classes above are hereditary, the graph class Π is also hereditary. We can

independently obtain an optimal vertex cover for each component using the polynomial

time VERTEX COVER algorithm for the respective graph class. The union of such solutions

is an optimal solution for the entire graph. Thus VERTEX COVER is polynomial time

solvable for the graph class Π. This implies that there is a 2knO(1) time FPT algorithm for

37

the problem given the set of k vertices whose deletion results in Π. The problem of finding

an optimal vertex deletion set to such scattered graph classes Π is thus intriguing for the

same reasons we saw for vertex deletion problems.

Recall that vertex deletion problems can be reduced to an instance of HITTING SET

problem leading to a simple branching algorithm on the forbidden graphs of the graph class.

Unfortunately, this hitting set idea does not work for the case of deletion to scattered graph

classes. For example, let us look at the case where we want the connected components of

the resulting graph to be a clique or a biclique (a complete bipartite graph). It is known

that cliques forbid exactly P3s, the induced paths of length 2, and bicliques forbid P4 and

triangles. So if we want every connected component to be a clique or every connected

component to be a biclique, then one can find appropriate constant sized subgraphs in

the given graph and branch on them (as one would in a hitting set instance). However, if

we want each connected component to be a clique or a biclique, such a simple approach

by branching over P3, P4, or K3 would not work. Notice that triangles are allowed to be

present in clique components and P3s are allowed in biclique components. It is not even

clear that there will be a finite forbidden set for this resulting graph class.

Nonetheless, we show the following results.

• We show that the deletion problem to scattered graph classes is non-uniformly FPT

if it satisfies the following two conditions. First, the deletion problem for each of the

finite classes is known to be FPT. Second, the properties that a graph belongs to any

of the classes are expressible in Counting Monodic Second Order (CMSO) logic.

Our algorithm is based on a result by Lokshtanov et al. [121] which essentially

allows us to use the technique of recursive understanding in a black-box manner.

Unfortunately, the running time of this algorithm has gargantuan constant overheads.

• We provide a 2poly(k)nO(1) time FPT algorithm when each graph classes has a

finite forbidden set. This algorithm uses the well-known techniques of iterative

38

compression and important separators and follows the approach of Ganian et al [76]

for a similar problem on constraint satisfaction problems (CSPs).

• Later, we do a deep dive on deletion to scattered graph classes when the number

of classes is exactly two. We do so to obtain simpler and more efficient FPT

algorithms. We design a general algorithm for the pairs of graph classes (Π1,Π2)

(possibly having infinite forbidden sets) satisfying certain conditions. Our general

method covers pairs of graph classes including (Interval, Trees), (Chordal, Bipartite

Permutation), (Clique, Planar) and (Clique, Bounded Treewidth) for (Π1, Π2). It

run in 2O(k)nO(1) or kO(k)nO(1) time depending on the pair of graph classes. Our

algorithm makes non-trivial use of the branching technique and as a black box,

FPT algorithms for deletion to individual graph classes. We also provide efficient

approximation algorithms for deletion to these pairs of graph classes.

1.2 Deletion distance parameterizations

In the second direction, we look at optimization problems where the parameter is the dele-

tion distance to a graph class. Generally, such problems are studied under the assumption

that we are given a deletion set of size k as input which we call a modulator. If the problem

of finding such a deletion set is known to the FPT, we can use it to find such a set. The

running time would be the sum of the running times for finding the set and the algorithm

where the modulator is assumed to be given.

For most parameterizations, assuming that a modulator is given is reasonable as the corre-

sponding vertex deletion problem has FPT algorithms whose running time is comparable

to the time taken by the algorithm designed for the problem given the modulator. For

example, let us look at VERTEX COVER parameterized by the size of odd cycle transversal.

We have already seen that the problem has a 2knO(1) algorithm if an odd cycle transversal

set of size k is assumed to be given as input. The current best FPT algorithm for ODD

39

CYCLE TRANSVERSAL has running time 2.314knO(1) [117]. Hence we have an algorithm

with 2.314knO(1) running time if we do not assume that modulator is given as input. This

is not so far from the 2knO(1) running time with the assumption that a modulator is given

as input.

However, there are cases where the running time for finding the modulator is significant

enough to pay attention to. We examine one such parameter, deletion distance to chordal

graphs. The VERTEX COVER problem parameterized by deletion distance to chordal

graphs k has a simple 2knO(1) algorithm given the modulator. But the current best running

time to find such a modulator takes kO(k)nO(1) time [35].

We develop an algorithmic framework for problems such as VERTEX COVER, FEEDBACK

VERTEX SET and ODD CYCLE TRANSVERSAL that either identifies that there is no

chordal deletion set of size k or give a 2O(k)nO(1) algorithm to solve them. We do so by

constructing a tree decomposition of the given graph in 2O(k)nO(1) time where each bag is

a union of four cliques and O(k) vertices and applying standard dynamic programming

algorithms over this special tree decomposition. This special tree decomposition can be of

independent interest.

We also study deletion distance parameterizations for some other graph problems.

• We look at the (n− k) LIST COLORING problem where we are given a graph with

each vertex having a list of size n− k and ask if there is a coloring corresponding

to the lists. We show that the problem is FPT parameterized by k. We do so by

showing that the problem is FPT if the graph is f (k) vertices away from a clique for

a function f .

• We give FPT algorithms and lower bounds for several variants of DOMINATING

SET problem parameterized by deletion distance to cluster graphs and split graphs.

40

1.3 Vertex Deletion with additional constraints

In the third direction, we investigate vertex deletion problems where the deletion set is also

required to satisfy additional constraints.

Such problems were already studied before. Many problems were studied with the ad-

ditional condition being the solution set has to form an independent set such as INDE-

PENDENT FEEDBACK VERTEX SET [132], INDEPENDENT ODD CYCLE TRANSVERSAL

[128, 118] and INDEPENDENT DOMINATING SET [58]. Another set of problems is

where the graph induced by the solution set is connected such as CONNECTED VERTEX

COVER [47], CONNECTED FEEDBACK VERTEX SET [133] , CONNECTED ODD CYCLE

TRANSVERSAL [51] and CONNECTED DOMINATING SET [66]. The problems with inde-

pendent set constraints can be generalized to a set of problems called conflict-free problems

where there is another graph H with the same vertex set and the solution has to form an

independent set in H [90, 1]. This can be further generalized to simultaneous problems

where the solution set in G has to satisfy a property π in H [4].

A common theme for many vertex deletion problems when adding constraints is that the

techniques such as reduction and branching rules that worked for the normal deletion

problem are no longer applicable. We must cleverly devise rules modifying the existing

rules so that the constraint requirement is also satisfied by the reduced instance. We will

see similar rules related to the results in this direction.

• We look at conflict-free problems where the deletion set is also required to form

an independent set in an input graph. We look at the conflict-free version of SET

COVER where there is also a graph on the sets of the input family, and we want the

set cover to form an independent set in the graph. Specifically, we have a universe U ,

a family F of subsets of U , a graph GF with vertex set F and an integer k and we

check if there is a subfamily F ′ ⊆F of size at most k such that ∪F∈F ′F = U and F ′

41

forms an independent set in GF . Though SET COVER is not a problem on graphs,

it can be seen as a generalization of various deletion problems such as VERTEX

COVER by associating a family of forbidden graphs incident to each vertex. We

look at various parameterizations of CONFLICT-FREE SET COVER under various

conditions where the corresponding SET COVER problem is FPT. Here, we also

restrict the input graph to popular graph classes and provide upper and lower bounds.

We list a few of the results below.

– We give a f (k)|F|o(k) time lower bound for 1-INTERSECTION CONFLICT-

FREE SET COVER assuming the Exponential Time Hypothesis (ETH). The

lower bound holds even when GF is restricted to bipartite graphs where INDE-

PENDENT SET is polynomial-time solvable.

– We give an FPT algorithm for CONFLICT-FREE SET COVER parameterized by

|U| even in the presence of duplicates when we restrict GF to chordal graphs

via dynamic programming on the clique tree decomposition of the graph.

– We also study the CONFLICT-FREE SET COVER problem where there is an

underlying (linearly representable) matroid on the family of subsets, and we

want the solution to be an independent set in the matroid. We show that the

problem is FPT when parameterized by the universe size, using the idea of

dynamic programming over representative families [71].

• We also study vertex deletion problems where the deletion set is also required to

form a fair set. A d-fair set S⊆V (G) is such that for every v ∈V (G), |N(v)∩S| ≤ d.

– We look at fair vertex deletion problems having a finite forbidden family and

provide simple FPT and polynomial kernel results parameterized by solution

size.

– We then focus on FAIR VERTEX COVER which also has a finite forbidden

family which is {K2}. We give a better kernel parameterized by solution size.

42

We also give an FPT algorithm parameterized by treewidth and the fairness

factor d for this problem.

– We then look at FAIR FEEDBACK VERTEX SET and show that the problem

is FPT parameterized by solution size as well as the sum of treewidth and

fairness factor.

– We look at the problem of FAIR SET of whether a d-fair set of size k exists

in the graph. We know that the problem is W [1]-hard parameterized by k for

d = 1 even in 3-degenerate graphs.

– Finally, we complete the NP-hardness dichotomy of FAIR VERTEX COVER

and FAIR FEEDBACK VERTEX SET problems for all values of fairness factor

d. We show that FAIR VERTEX COVER is polynomial-time solvable when

d = 1 or d = 2 and NP-hard otherwise. We then show that FAIR FEEDBACK

VERTEX SET is NP-hard for every integer d ≥ 1.

1.4 Organization of Thesis

This thesis is organized into five parts.

1. The first part contains the introduction of the thesis and preliminaries on parameter-

ized complexity, graph theory, second-order logic and matroids. This contains the

first two chapters.

2. In the second part, we look at vertex deletion problems for scattered graph classes.

In Chapter 3, we design FPT algorithms for deletion problems for scattered graph

classes satisfying some general conditions. We also design a faster algorithm for

the case when the forbidden families corresponding to each of the graph classes are

finite. In Chapter 4, we look at the case where there are only pairs of scattered graph

classes and design much faster FPT algorithms and also approximation algorithms

43

for problems satisfying certain conditions.

3. In the third part, we give FPT and kernel results for problems where the parameter

is deletion distance to some graph class. In Chapter 5, we look at deletion distance

parameterizations where we assume that the modulator is not given as input. In

Chapter 6, we give FPT algorithms for n− k LIST COLORING. Finally, in Chapter

7, we look at several variants of the DOMINATING SET problem parameterized by

deletion distance to cluster and split graphs.

4. In the fourth part, we give FPT and kernel results for vertex deletion problems

required to satisfy some additional constraints. This includes CONFLICT-FREE SET

COVER which is covered in Chapter 8 and FAIR VERTEX DELETION problems

covered in Chapter 9.

5. In the fifth part, we state our conclusions from the thesis and associated open

problems.

44

Chapter 2

Preliminaries

2.1 Sets, Numbers and some Notations

We use N to denote the set of natural numbers starting from 0. Given r ∈ N, we use [r] to

denote the set {1, . . . ,r}. Given a finite set A, we use 2A to denote the family of all subsets

of A. For an integer t, we use
(A

t

)
and

(A
≤t

)
to denote the family of all subsets of A size t

and at most t respectively.

We use A]B to denote the set formed from the union of disjoint sets A and B. For a

function w : X → R, we use w(D) = ∑x∈D w(x). We use logk to denote log2 k.

For a function f : N→ N, we use O∗(f (k)) to denote O(f (k)p(n)) where p(n) is some

polynomial in n. This allows us to use O∗ notation to suppress the polynomial factors in

the running time of algorithms.

Throughout the thesis, ω denotes the matrix multiplication exponent.

45

2.2 Parameterized Complexity and Kernelization

A parameterized problem L is a subset of Σ∗×N for some finite alphabet Σ. An instance

of a parameterized problem is denoted by (x,k) where x ∈ Σ∗,k ∈ N. We assume that k is

given in unary and without loss of generality k ≤ |x|.

Definition 2.2.1 (Fixed-Parameter Tractability). A parameterized problem L⊆ Σ∗×N is

said to be fixed-parameter tractable (FPT) if there exists an algorithm A, a computable

function f : N→ N and a constant c independent of f ,k, |x|, such that given input (x,k),

runs in time f (k)|x|c and correctly decides whether (x,k) ∈ L or not.

Definition 2.2.2 (Non-Uniformly FPT). A parameterized problem L⊆ Σ∗×N is said to

be non-uniformly FPT if there exists a fixed integer d such that for every fixed k ∈ N, there

exists an algorithm A that determines whether (x,k) ∈ L in O(|x|d) time (Hence, there is a

different algorithm for each value of k).

A closely related notion to fixed-parameter tractability is the notion of kernelization.

Definition 2.2.3 (Parameterized Reduction). Let P1,P2 ∈ Σ∗×N be two parameterized

languages. Suppose there exists an algorithm B that takes input (I,k) (an instance of P1)

and constructs an instance (I′,k′) of P2 such that the following conditions are satisfied.

• (I,k) is YES-INSTANCE if and only if (I′,k′) is YES-INSTANCE.

• k′ ∈ f (k) for some function depending only on k.

• Algorithm B runs in g(k)|I|O(1) time.

Then we say that there exists a parameterized reduction from P1 to P2.

Definition 2.2.4 (Kernelization). Let L ⊆ ∑
∗×N be a parameterized language. Kernel-

ization is a procedure that replaces the input instance (I,k) by a reduced instance (I′,k′)

such that

46

• k′ ≤ f (k), |I′| ≤ g(k) for some function f ,g depending only on k.

• (I,k) ∈ L if and only if (I′,k′) ∈ L.

• The reduction from (I,k) to (I′,k′) must be computable in poly(|I|+ k) time.

If g(k) = kO(1) then we say that L admits a polynomial kernel.

We now define a notion of reduction rule that is useful in designing kernels.

Definition 2.2.5 (Reduction Rule). Let L ⊆ ∑
∗×N be a parameterized language. A

reduction rule is a procedure computable in poly(|I|+ k) time that replaces the input

instance (I,k) by a reduced instance (I′,k′) such that (I,k) ∈ L if and only if (I′,k′) ∈ L.

The property of the reduction rule that it translates an instance to an equivalent one, i.e

(I,k) ∈ L if and only if (I′,k′) ∈ L is called the safeness of the reduction rule.

W-hierarchy: In order to capture parameterized languages being FPT or not, the W-

hierarchy is defined as FPT ⊆ W[1] ⊆ . . . ⊆ XP. It is believed that this subset relation

is strict. Hence a parameterized language that is hard for some complexity class above

FPT is unlikely to be FPT. If a parameterized language L⊆ Σ∗×N can be solved by an

algorithm running in O(n f (k)) time, then we say L ∈ XP. In such a situation we also say

that L admits an XP algorithm.

Definition 2.2.6 (para-NP-hardness). A parameterized language L ⊆ Σ∗×N is called

para-NP-hard if it is NP-hard for some constant value of the parameter.

It is believed that a para-NP-hard problem is not expected to admit an XP algorithm as

otherwise it will imply P= NP.

Theorem 1. Let there exists a parameterized reduction from parameterized problem

P1 to parameterized problem P2. Then if P2 is fixed-parameter tractable then so is P1.

Equivalently if P1 is W[i]-hard for some i≥ 1, then so is P2.

47

It is well-known [45] that a decidable parameterized problem is fixed-parameter tractable

if and only if it has a kernel. But the kernel size could be exponential (or worse) in the

parameter. There is a hardness theory for problems having a polynomial sized kernel.

Towards that, we define the notion of polynomial parameter transformation.

Definition 2.2.7 (Polynomial parameter transformation (PPT)). Let P1 and P2 be two

parameterized languages. We say that P1 is polynomial parameter reducible to P2 if

there exists a polynomial time computable function (or algorithm) f : ∑
∗×N→ ∑

∗×N, a

polynomial p : N→ N such that (x,k) ∈ P1 if and only if f (x,k) ∈ P2 and k′ ≤ p(k) where

f ((x,k)) = (x′,k′). We call f to be a polynomial parameter transformation from P1 to P2.

The following proposition gives the use of the polynomial parameter transformation for

obtaining kernels for one problem from another.

Proposition 2.2.1 ([17]). Let P,Q⊆ Σ∗×N be two parameterized problems and assume

that there exists a PPT from P to Q. Furthermore, assume that the classical version of P is

NP-hard and Q is in NP. Then if Q has a polynomial kernel, P has a polynomial kernel.

We use the following conjectures and theorems to prove some of our lower bounds.

Conjecture 2.2.1 (Strong Exponential Time Hypothesis (SETH)). ([88]) There is no ε > 0

such that ∀q≥ 3, q-CNFSAT can be solved in O∗((2− ε)n) time where n is the number

of variables in input formula.

Conjecture 2.2.2 (Exponential Time Hypothesis (ETH)). ([88, 87]) 3-CNF-SAT cannot

be solved in O∗(2o(n)) time where the input formula has n variables and m clauses.

Conjecture 2.2.3 (Set Cover Conjecture (SCC)). ([48]) There is no ε > 0 such that SET

COVER can be solved in O∗((2− ε)n) time where n is the size of the universe.

Theorem 2 ([56]). SET COVER parameterized by the universe size does not admit any

polynomial kernel unless NP⊆ coNP/poly.

48

Theorem 3 ([75]). CNF-SAT parameterized by the number of variables admits no

polynomial kernel unless NP⊆ coNP/poly.

For more details of parameterized complexity, we refer to [45].

2.3 Graph Theory

2.3.1 Basic Notations and Definitions

We use standard graph theoretic terminology from Diestel’s book [55]. For a graph

G = (V,E), we denote n = |V (G)| and m = |E(G)|. For a connected component C of G,

we often abuse the notation to denote C as also the vertex set of C. For a set X ⊆ G, we

use G[X] to denote the graph induced on the vertex set X and we use G−X (or G\X) to

denote the graph induced by the vertex set V (G)\X .

For V ′ ⊆V , G[V ′] and G−V ′ denote the graph induced on V ′ and V \V ′, respectively. We

also use G\V ′ to denote the graph induced on vertex set V \V ′. For a vertex v ∈V , G− v

denotes the graph G−{v}.

The complement G of a graph G is the graph on V (G) where two distinct vertices of

G are adjacent if and only if they are not adjacent in G. Two vertices u and v of a

graph G are neighbors (non-neighbors) if and only if (u,v) ∈ E(G) ((u,v) /∈ E(G)). For

any vertex v ∈ V (G), we denote the set of neighbors (non-neighbors) of v by NG(v)

(NG(v)) or briefly by N(v) (N(v)). For any W ⊆V (G) we define NG(W) = {∪v∈W NG(v)}

(NG(W) = {∪v∈W NG(v)}).

For a vertex v ∈V (G), we denote NG(v) = {(u ∈V (G)|(u,v) ∈ E(G)} as the open neigh-

borhood of v. When there is no confusion, we drop the subscript G. By N[v] we de-

note the close neighborhood of v, i.e. N[v] = N(v)∪{v}. For a S ⊆ V (G), we denote

N(S) = {v ∈V (G)|∃u ∈ S such that (u,v) ∈ E(G)}\S. And we denote N[S] = N(S)∪S.

49

By N=2(v), we denote the set of vertices that are at minimum distance exactly two from v.

We say that for vertices u,v ∈V , u dominates v if v ∈ N(u).

A set S⊆V (G) is called an independent set if for all u,v ∈ S,(u,v) /∈ E(G). Similarly for

a subset S ⊆ V (G), G[S] is called a clique if for every u,v ∈ S,(u,v) ∈ E(G). For ` ∈ N,

we use P̀ to denote the path on ` vertices. A vertex t is reachable from a vertex s if there

exists a path in the graph which starts with s and ends with t. A tree is a connected graph

with no cycles. A forest is a graph, every connected component of which is a tree.

A graph G is called a bipartite graph if there exists a partition of V (G) = A]B such

that for every edge uv ∈ E(G), u ∈ A and v ∈ B. A cluster graph is a graph where every

connected component forms a clique. A graph G is called a split graph if its vertex set can

be partitioned into two parts V (G) =C] I such that C is a clique and I is an independent

set. A graph is called a cactus graph if every edge of the graph is contained in at most

one cycle. Let A be a set of three arbitrary vertices of a graph G. Then, A is called an

asteroidal triple (AT) if between every two vertices of A, there is a path avoiding the third

vertex. A graph is called a chordal graph if it has no induced cycle of length at least four.

A graph is called an interval graph if it is chordal and AT-free. Alternatively, any interval

graph has an interval representation. It means that every vertex of an interval graph can

be represented as an interval on the real line and two vertices are adjacent if and only if

the intervals representing the corresponding vertices intersect. A graph is called a proper

interval graph if it is an interval graph with an interval representation such that no interval

properly contains any other interval. A graph is called a bipartite permutation graph if it is

bipartite and AT-free. The arboricity of a graph is the minimum number of forests into

which its edges can be partitioned.

A k-subdivision of a graph G is the graph created from G by subdividing every edge by

exactly k vertices. A graph class is a somewhere dense graph class when there exists a

threshold t such that every complete graph appears as a t-subdivision in a subgraph of a

graph in the class. On the contrary, if such a threshold does not exist, the class is nowhere

50

dense. We refer to [135] for more details on nowhere dense graphs.

We say that a subset Z ⊆V (G) disconnects a subset S⊆V (G) if there exists v,w ∈ S with

v 6= w such that v and w occur in different connected components of the graph G\Z. We

call a path P in a graph G as a degree 2 path if all the internal vertices of the path have

degree 2 in G.

Let u,v ∈V (G). We use dG(u,v) to denote the length of a shortest path from u to v in G.

For P,Q⊆V (G), we define dG(P,Q) = minu∈P,v∈Q{dG(u,v)}.

We say that a graph G is a union of ` cliques if V (G) =V1] . . .]V` and Vi is a clique in G

for all i ∈ {1, . . . , `}.

A graph G is k-colorable if its vertices can be colored in such a way that the endpoints of

every edge of G have two different colors.

A graph G = (V,E) is said to be d′-degenerate if there exists an ordering of V such that

each vertex has at most d neighbors to its right in the ordering. The minimum such possible

d′ a graph can have is called its degeneracy.

2.3.2 Graph Separators

Definition 2.3.1 (Separator and Separation). Given a graph G and vertex subsets A,B⊆

V (G), a subset C ⊆V (G) is called a separator of A and B if every path from a vertex in A

to a vertex in B (we call it A−B path) contains a vertex from C. A pair of vertex subsets

(A,B) is a separation in G if A∪B =V (G) and A∩B is a separator of A\B and B\A.

Definition 2.3.2 (Balanced Separator and Balanced Separation). For a graph G, a weight

function w : V (G)→ R≥0 and 0 < α < 1, a set S⊆V (G) is called an α-balanced separator

of G with respect to w if for any connected component C of G−S, w(V (C))≤ α ·w(V (G)).

A pair of vertex subsets (A,B) is an α-balanced separation in G with respect to w if (A,B)

is a separation in G and w(A\B)≤ α ·w(V (G)) and w(B\A)≤ α ·w(V (G)). Note that

51

the sets A and B could be empty. It could also be that A⊆ B or vice-versa as well.

We borrow the following definitions from [126], [76].

Definition 2.3.3. Let G be a graph and disjoint subsets X ,S ⊆ V (G). We denote by

RG(X ,S) the set of vertices that is reachable from X \ S in the graph G \ S. We denote

RG[X ,S] =RG(X ,S)∪S. Finally we denote NRG(X ,S)=V (G)\RG[X ,S] and NRG[X ,S] =

NRG(X ,S)∪S. We drop the subscript G if it is clear from the context.

Definition 2.3.4. [126] Let G be a graph and X ,Y ⊆V (G).

• A vertex set S disjoint from X and Y is said to disconnect X and Y if RG(X ,S)∩Y = /0.

We say that S is an X−Y separator in the graph G.

• An X−Y separator is minimal if none of its proper subsets is an X−Y separator.

• An X −Y separator S1 is said to cover an X −Y separator S with respect to X if

R(X ,S)⊂ R(X ,S1).

• Two X −Y separators S1 and S2 are said to be incomparable if neither covers the

other.

• In a set H of X −Y separators, a separator S is said to be component-maximal

if there is no separator S′ in H which covers S. Component-minimality is defined

analogously.

• An X−Y separator S1 is said to dominate an X−Y separator S with respect to X if

|S1| ≤ |S| and S1 covers S with respect to X.

• We say that S is an important X−Y separator if it is minimal and there is no X−Y

separator dominating S with respect to X.

52

2.3.3 Tree Decomposition and Treewidth

Definition 2.3.5 (Tree decomposition). Given a graph G = (V,E), a tree decomposition is

a pair (X ,T), where X = {X1, . . . ,Xn} is a family of subsets of V , and T is a tree whose

nodes are the subsets Xi, satisfying the following properties:

•
n⋃

i=1
Xi =V .

• For all edges (u,v) ∈ E, there is a subset Xi that contains both u and v.

• If Xi and X j both contain a vertex v, then all nodes Xk of the tree in the (unique) path

between Xi and X j contain v as well.

The sets Xi are called the bags corresponding to node i.

Definition 2.3.6 (Treewidth). The width of tree decomposition (X ,T)

equals maxt∈V (T) |Xt |−1. The treewidth of a graph G is the minimum possible

width of a tree decomposition of G.

Definition 2.3.7 (Nice Tree decomposition). A nice tree decomposition is a tree decompo-

sition T satisfying the following properties:

• Let us arbitrarily root the tree T . For the root of the tree r, Xr = /0.

• Xl = /0 for all the leaf nodes of the tree.

• Every other node of T are one of three types:

– Introduce Node: A node i with exactly one child j such that Xi = X j∪{v} for

some vertex v /∈ X j.

– Forget Node: A node i with exactly one child j such that Xi = X j \{v} for some

vertex v ∈ X j.

– Join Node: A node i with exactly two children j and j′ such that Xi = X j = X j′ .

53

Lemma 2.3.1 (Lemma 7.4 of [45], Lemma 13.1.3 of [103]). Given a tree decomposition

(X ,T) of a graph G of width at most k, in polynomial time one compute a nice tree decom-

position (X ′,T ′) of G of width at most k that has at most O(k|V (G)|) nodes. Moreover, for

each t ′ ∈V (T ′), there is a t ∈V (T) such that Xt ′ ⊆ Xt .

2.4 Second Order Logic

Definition 2.4.1 (Monadic Second Order logic). Monadic second-order logic (MSO) is a

logic with two types of quantifiers: one can quantify over elements, and one can quantify

over sets of elements.

Counting Monadic Second Order Logic. The syntax of Monadic Second Order Logic

(MSO) of graphs includes the logical connectives ∨,∧,¬,↔, =⇒ , variables for vertices,

edges, sets of vertices and sets of edges, the quantifiers ∀ and ∃, which can be applied to

these variables, and five binary relations:

1. u ∈U , where u is a vertex variable and U is a vertex set variable;

2. d ∈ D, where d is an edge variable and D is an edge set variable;

3. inc(d,u), where d is an edge variable, u is a vertex variable, and the interpretation is

that the edge d is incident to u;

4. ad j(u,v), where u and v are vertex variables, and the interpretation is that u and v

are adjacent;

5. equality of variables representing vertices, edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic

sentences testing whether the cardinality of a set is equal to q modulo r, where q and r

are integers such that 0 ≤ q < r and r ≥ 2. That is, CMSO is MSO with the following

54

atomic sentence: cardq,r(S) = true if and only if |S| ≡ q mod r, where S is a set. We refer

to [44, 9] for a detailed introduction to CMSO.

2.5 Matroids

Definition 2.5.1 (Matroid). A matroid M is a pair (E,I) where E is the ground set and

I is the family of subsets of E (called the independent sets of M) satisfying the following

properties:

• /0 ∈ I.

• If A′ ⊆ A and A ∈ I, then A′ ∈ I.

• If A,B ∈ I and |A|< |B|, then there exists an e ∈ B\A such that A∪{e} ∈ I.

Definition 2.5.2 (Rank of a matroid). For a matroid M =(E,I), an inclusion-wise maximal

set of I is called a basis of the matroid. It can be shown that all the bases of a matroid

have the same size. This size is called the rank of the matroid M.

Definition 2.5.3 (Linear Matroid). Let A be a matrix over a field F and let E be the

set of columns of A. We define a matroid M = (E,I) as follows: A subset X ⊆ E is an

independent set of M if and only if the corresponding columns of A are linearly independent

over F. The matroids that can be defined by such a construction over some field F are

called linear matroids. The matrix A corresponding to the matroid M is called the linear

representation of M.

For more details on matroids, we refer to [137].

55

56

Part I

Deletion to Scattered Graph Classes

57

Chapter 3

FPT algorithms for general cases

In this chapter, we address the complexity of a very natural variation of the graph deletion

problem, where in the resulting graph, each connected component belongs to one of the

finitely many graph classes. In this case, we say that the graph belongs to a scattered graph

class. Let us formalize the definition below.

Definition 3.0.1 ((Π1, . . . ,Πd) scattered graph class). The collection of graphs such that

each of its components belongs to at least one of the graph classes Πi for i ∈ [d] is called

a (Π1, . . . ,Πd) scattered graph class.

For example, if each connected component of a graph is at least one of interval, bipartite or

claw-free graph, we say that the graph belongs to (Interval, Bipartite, Claw-free) scattered

graph class.

Let us now formally define the deletion problem below where we want every connected

component of the resulting graph to belong to at least one of the graph classes Πi with

i ∈ [d] for some finite integer d.

59

(Π1,Π2, . . . ,Πd) VERTEX DELETION

Input: An undirected graph G = (V,E), an integer k, and d graph classes Π1, . . . ,Πd .

Parameter: k

Question: Is there a subset Z ⊆V (G), |Z| ≤ k such that every connected component

of G−Z is in at least one of the graph classes Π1, . . . ,Πd?

We call a set Z a (Π1,Π2, . . . ,Πd)-modulator if every connected component of G\Z is in

one of the graph classes Πi for i ∈ d.

We look at the case when each problem Πi VERTEX DELETION is known to be FPT and the

property that “graph G belongs to Πi" is expressible in CMSO logic (See Section 2.4 for

formal definitions). We call this problem INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd)

VERTEX DELETION. We show that this problem is non-uniformly1 fixed parameter

tractable.

Theorem 4. INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd) VERTEX DELETION is non-

uniformly FPT with respect to solution size k.

The problem INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd) VERTEX DELETION covers

a wide variety of collections of popular graph classes. Unfortunately, the running time

of the algorithm from Theorem 4 has gargantuan constant overheads. Hence we look at

the special case of INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd) VERTEX DELETION

named FINITE (Π1,Π2, . . . ,Πd) VERTEX DELETION where each of the graph classes

is characterized by a finite forbidden set. We get a faster FPT algorithm for FINITE

(Π1,Π2, . . . ,Πd) VERTEX DELETION using the well-known techniques in parameterized

complexity – iterative compression and important separators.

Theorem 5. FINITE (Π1,Π2, . . . ,Πd) VERTEX DELETION can be solved in time

2poly(k)nO(1).

Here, poly(k) denotes a polynomial in k.
1See Definition 2.2.2 in Section 2.2

60

Previous Work: While there has been a lot of work on graph deletion and modification

problems, one work that comes close to ours is the work by Ganian, Ramanujan and

Szeider [76] where they consider the parameterized complexity of finding strong backdoors

to a scattered class of CSP instances. In fact, in their conclusion, they remark that

‘graph modification problems and in particular the study of efficiently computable modula-

tors to various graph classes has been an integral part of parameterized complexity and

has led to the development of several powerful tools and techniques. We believe that the

study of modulators to ‘scattered graph classes’ could prove equally fruitful and, as our

techniques are mostly graph based, our results as well as techniques could provide a useful

starting point towards future research in this direction’.

Our work is a starting point in addressing the parameterized complexity of the problem

they suggest.

Our Techniques: The FPT algorithm for INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd)

VERTEX DELETION in Theorem 4 is based on a result by Lokshtanov et al. [121] that

essentially allows us to use the technique of recursive understanding in a black-box manner.

The result allows one to obtain a non-uniformly FPT algorithm for CMSO-expressible

graph problems by designing an FPT algorithm for the problem on a well-connected class

of graphs called unbreakable graphs. For the latter, using the observation that only one

connected component after deleting the solution is large, which belongs to some particular

class Πi, we use the FPT algorithm for Πi-VERTEX DELETION to obtain a modulator to

the graph class Πi of size s(k) for a function s. Then we use a branching rule to remove

the components in the modulator that are not in Πi, thereby “revealing" the solution to the

problem. For more information, see Section 3.1.

The FPT algorithm of Theorem 5 for the problem FINITE (Π1,Π2, . . . ,Πd) VERTEX

DELETION is now briefly summarized. We can assume that we have a solution W of size

k+1 for our problem using the standard iterative compression technique. Depending on

whether or not the solution disconnects W , the problem can be divided into two cases. If it

61

does not, a simple algorithm based on branching on vertices of the finite forbidden graphs

plus some important separators [126] of the graph solves the problem. Otherwise, we can

assume that the solution contains a “special" important separator. In this case, we develop

a recursive procedure to find a setR of 2poly(k) vertices, at least one of which intersects the

solution. As a result, we devise a branching rule on the vertices ofR to solve the problem.

See Section 3.2 for more details.

In the recursive procedure to generate R, the graph is created by gluing a graph of

poly(k) vertices to an induced subgraph of G along with a set of ‘boundary’ vertices. The

techniques we use here are very similar to those used by Ganian et al. [76], in which

they find backdoors to a collection of easy Constraint Satisfaction Problems (CSPs). FPT

algorithms are developed using similar techniques involving tight separator sequences for

problems such as PARITY MULTIWAY CUT [119], DIRECTED FEEDBACK VERTEX SET

[120], SUBSET ODD CYCLE TRANSVERSAL [116] and SAVING CRITICAL NODES WITH

FIREFIGHTERS [39].

There is a crucial distinction between our algorithm and the problems listed above that

were solved using similar techniques. In the latter, the addition and removal of edges and

vertices in some ways does not disrupt the problem input. This is used to create gadgets

that preserve certain properties in the recursive input graph such as connectivity and parity

of paths between pairs of vertices. In FINITE (Π1,Π2, . . . ,Πd) VERTEX DELETION, we

do not assume any structure for the forbidden graphs corresponding to the graph classes Πi

for i ∈ [d] . As a result, we are not permitted to add or remove edges or vertices as doing so

may create or destroy forbidden graphs corresponding to graph classes, thereby changing

the problem instance. In order to avoid this issue, we only perform contractions of large

degree two paths in the graph up to a certain constant.

62

3.1 Deletion to scattered classes when each class is indi-

vidually tractable

We first formally define the problem.

INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd) VERTEX DELETION

Input: An undirected graph G = (V,E), an integer k, and d hereditary graph classes

Π1, . . . ,Πd such that for all i ∈ [d], Πi VERTEX DELETION is FPT and properties

Pi(H) for input graph H is CMSO expressible.

Parameter: k

Question: Is there a subset Z ⊆V (G), |Z| ≤ k such that every connected component

of G−Z is in at least one of the graph classes Π1, . . . ,Πd?

We recall the notion of unbreakable graphs from [121].

Definition 3.1.1. A graph G is (s,c)-unbreakable if there does not exist a partition of the

vertex set into three sets X ,C and Y such that (a) C is an (X ,Y)-separator: there are no

edges from X to Y in G\C, (b) C is small: |C| ≤ c, and (c) X and Y are large: |X |, |Y | ≥ s.

We now use the following theorem from [121] which says that if the problem is FPT in

unbreakable graphs, then the problem is FPT in general graphs. Let CMSO[ψ] denote the

problem with graph G as an input, and the objective is to determine whether G satisfies ψ .

Theorem 6. [121] Let ψ be a CMSO sentence. For all c ∈N, there exists s ∈N such that if

there exists an algorithm that solves CMSO[ψ] on (s,c)-unbreakable graphs in timeO(nd)

for some d > 4, then there exists an algorithm that solves CMSO[ψ] on general graphs in

time O(nd).

In the following lemma, we show that our problem is CMSO expressible.

Lemma 3.1.1. INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd) VERTEX DELETION is

CMSO expressible.

63

Proof. We use conn(X) which verifies that a subset X of a graph G induces a connected

subgraph. It is known that conn(X) is expressible by an MSO formula [45]. Also for

X ⊆V (G) , we can express the sentence “|X |= k” as ∃x1, . . . ,xk∀u ∈V (G)(u ∈ X) =⇒

(∨i∈[k]u = xi)

Recall that Pi(G) denotes the graph property “graph G is in Πi" for i∈ [d] and input graph G.

Let the CMSO sentences for properties Pi(G) be ψi(G). The overall CMSO sentence for our

problem ψ is ∃X ⊆V (G), |X |= k,∀C ⊆V (G)\X : conn(C) =⇒ (∨i∈[d]ψi(G[C])).

Hence Theorem 6 and Lemma 3.1.1 allow us to focus on solving our problem for unbreak-

able graphs.

Theorem 7. INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd) VERTEX DELETION is FPT

in (s(k),k)-unbreakable graphs for any function s of k.

Proof. Let G be an (s(k),k)-unbreakable graph and X be a solution of size k. Look at the

connected components of G−X . Since X is a separator of size at most k, at most one

connected component of G−X has size more than s(k).

Let us first look at the case where no connected component of G−X has size more than

s(k). In this case, we can bound the number of connected components by 2s(k). Suppose

not. Then we can divide vertex sets of connected components into two parts C1 and C2,

each having at least s(k) vertices. Then the partition (C1,X ,C2) of V (G) contradicts that

G is (s(k),k)-unbreakable.

Since each component has size at most s(k), we have |V (G) \ X | ≤ 2(s(k))2. Hence

|V (G)| ≤ 2(s(k))2 + k. We can solve the problem by going over all subsets of size k in G

and checking if every connected component of G−X is in some graph class Πi for i ∈ [d].

This gives us an algorithm with running time
(h(k)

k

)
h(k)O(1) where h(k) = 2(s(k))2 + k.

Let us now look at the case where there is a component C of G−X of size more than s(k).

Let Π j be the graph class which C belongs to. Let R =V \ (X ∪C). Since X is a separator

64

of size at most k with separation (C,R), we can conclude that |R| ≤ s(k). Hence we can

conclude that X ∪R is a modulator of size at most s(k)+k such that G[C] = G− (X ∪R) is

a graph in graph class Π j. Hence we can conclude that G has a modulator of size at most

g(k) = s(k)+ k to the graph class Π j.

Our algorithm first guesses the graph class Π j and then uses the FPT algorithm for Π j-

Vertex Deletion to find a modulator S of size g(k) such that G− S is in the graph class

Π j.

We know that (C,X ,R) is a partition of V (G). Let (SCX ,SR) be the partition of S where

SCX = S∩ (C∪X) and SR = S∩R. The algorithm goes over all 2-partitions of S to guess

the partition (SCX ,SR).

Claim 3.1.1. For every component Q in the graph G−X such that Q is not in the graph

class Π j, we have SR∩V (Q) 6= /0.

Proof. Suppose SR∩V (Q) = /0. Since Q is not in the graph class Π j and G[C] is in the

graph class Π j, we have V (Q)⊆ R. Hence if SR∩V (Q) = /0, we have S∩V (Q) = /0. But

then this contradicts the fact that G−S is in the graph class Π j as Q is not in the graph

class Π j and Π j is a hereditary graph class.

For every vertex v ∈ SR, let Qv denote the component in G−X that contains v. Note that

the neighborhood of Qv in the graph G is a subset of X which is of size at most k. Since

we know that Qv∪N(Qv) is contained in the set X ∪R, we can conclude that (G,k) is a

YES-instance if and only if (G− (Qv∪N(Qv)),k−|N(Qv)|) is a YES-instance.

The following proposition bounds the number of small connected vertex subsets with a

small neighborhood. This helps us to guess the subset Qv.

Proposition 3.1.1. ([74], [94]) Let G = (V,E) be a graph. For every v ∈V , and integers

b, f ≥ 0, the number of connected vertex subsets B⊆V such that

(a) v ∈ B,

65

(b) |B| ≤ b+1 and

(c) |N(B)| ≤ f

is at most
(b+ f

b

)
and can be enumerated in time O(n ·b2 · f · (b+ f) ·

(b+ f
b

)
) by making use

of polynomial space.

We have the following branching rule.

Branching Rule 1. Let v ∈ SR. Using the enumeration algorithm from Proposition 3.1.1,

go over all connected vertex subsets B⊆V such that v ∈ B, |B| ≤ b+1, and |N(B)| ≤ f

where b = s(k) and f = k and return the instance (G−B,k−|N(B)|).

The branching rule is safe because in one of the branches, the algorithm rightfully guesses

B = Qv. The algorithm repeats the branching rule for all vertices v ∈ SR. Hence we can

assume that the current instance is such that SR = /0. We update the sets X and R by

accordingly deleting the removed vertices. Let (G′,k′) be the resulting instance. We have

the following claim.

Claim 3.1.2. The set X is such that |X | ≤ k′ and G′−X is in the graph class Π j.

The proof of the claim comes from the observation that as S∩R = /0, every component

other than C does not intersect with S. Hence from Claim 3.1.1, these components have to

be in the graph class Π j as G−S is in the graph class Π j.

The algorithm now again uses the FPT algorithm for the graph class Π j to obtain the

solution of size k′ thereby solving the problem.

We summarize the algorithm below for the case when there is exactly one component in

G−X of size more than s(k).

1. For any of the given graph classes check whether the given graph G has a modulator

of size at most g(k). If none of them has such a set, then return NO. Otherwise, we

do Steps 2 and 3 for all graph classes Π j having a modulator S of size at most g(k).

66

2. Go over all 2-partitions (SCX ,SR) of S. For each v ∈ SR, apply Branching Rule 1.

Let (G′,k′) be the resulting instance.

3. Check whether the graph G′ has a Π j-deletion set of size at most k′. If yes, return

YES. Else return NO.

Running Time: Let f (k)nO(1) be the maximum over all the running times of Π j VERTEX

DELETION for j ∈ [d]. We use d · f (g(k)) · 2g(k)nO(1) time to obtain set S and its 2-

partition where g(k) = s(k)+ k. We use overall O(n(g(k)+1))k+1) time to enumerate the

connected vertex sets in Branching Rule 1. The branching factor pf the rule is bounded by

(g(k)+1))k+1 and the depth is bounded by k. Since the choices of v ∈ SR is bounded by

g(k), exhaustive application of Branching Rule takes at most g(k))k(k+2)nO(1) time. Finally

we apply the algorithm for Π j-VERTEX DELETION again taking at most f (k)nO(1) time.

Hence the overall running time is bounded by d · f (g(k)) ·2g(k)(g(k)+1))k(k+2)nO(1).

The proof of Theorem 4 that the problem is FPT in general graphs follows from Theorem

6 and Theorem 7.

3.2 Deletion to scattered classes with finite forbidden fam-

ilies

Unfortunately, the algorithm for INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd) VERTEX

DELETION in Theorem 4 has two drawbacks. One is that the algorithm is only a non-

uniform FPT algorithm. The other is that the algorithm has a huge running time due to the

gargantuan overhead from applying Theorem 6.

We now look into a special case of INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd) VERTEX

DELETION where every graph class Πi with i ∈ [d] can be characterized by a finite

forbidden family. Recall that Πi VERTEX DELETION is FPT for each i ∈ [d] from the

67

simple branching algorithm over vertices of the induced subgraphs H of the input graph G

that is isomorphic to members of the finite forbidden family Fi. Also, the properties that

“graph G is in Πi" can be expressed in CMSO logic as we can hard code the graphs of Fi in

the formula. Hence the problem is indeed a special case of INDIVIDUALLY TRACTABLE

(Π1,Π2, . . . ,Πd) VERTEX DELETION. In this section, we give an FPT algorithm for this

case with running time much better when compared to that in Theorem 4.

Brief Outline of the section:

In Section 3.2.1, we first use the standard technique of iterative compression to obtain a

tuple (G,k,W) of the input instance DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC where W is

a (Π1,Π2, . . . ,Πd)-modulator of size at most k+1 and the aim is to obtain a solution of

size at most k disjoint from W . We also add a requirement to the problem that some of the

vertices are forced to be not in the solution which will be useful later.

In Subsection 3.2.2, we give an FPT algorithm for DISJOINT FINITE (Π1,Π2, . . . ,Πd)-

VDC in the special case when the solution that we are looking for leaves W in a single

component. The algorithm uses the standard technique of important separators [126] where

we branch on vertices of a finite forbidden set in the graph plus some important separators

corresponding to the set.

Finally in Subsection 3.2.3, we handle general instances of DISJOINT FINITE

(Π1,Π2, . . . ,Πd)-VDC. We focus on instances where the solution separates W . We guess

W1 ⊂W as the part of W that occurs in some single connected component after deleting

the solution. The algorithm finds a set R of 2poly(k) vertices one of which intersects the

solution and do a branching on vertices ofR. FindingR involves a recursive subprocedure

described below.

Since, the solution separates W , we know that it contains a W1− (W \W1) separator X . It

can the proven that X is a ‘special’ kind of important separator (its definition is tailored

to our problem). The algorithm uses the technique of tight separator sequences [119].

68

It guesses the integer ` which is the size of the part of the solution present in the graph

containing W1 after removing X . The algorithm then constructs the tight separator sequence

corresponding to ` and finds the separator P furthest from W1 in the sequence such that

there is a (Π1,Π2, . . . ,Πd)-modulator of size ` in the graph containing W1 after removing

P. If separator X either intersects P or dominates the other, then we easily find vertices

that intersects the solution and thereby inR. The harder case is when the two separators

are incomparable. Let Y be the set of vertices Y that is reachable from W1 after deleting P.

The algorithm constructs a graph gadget of kO(1) vertices whose appropriate attachment to

the boundary P of the graph G[Y] gives a graph G′ which preserves the part of the solution

of G present in G[Y]. Since this part of the solution is strictly smaller in size, the algorithm

can find the set of vertices hitting the solution for G by recursively finding a similar set in

G′ and adding it toR.

3.2.1 Iterative Compression

We use the standard technique of iterative compression to transform the FINITE

(Π1,Π2, . . . ,Πd) VERTEX DELETION problem into the following problem DIS-

JOINT FINITE (Π1,Π2, . . . ,Πd) VERTEX DELETION COMPRESSION(DISJOINT FINITE

(Π1,Π2, . . . ,Πd)-VDC for short). Standard ideas from iterative compression shows that

an FPT algorithm with running time O∗(f (k)) for the latter gives a O∗(2k+1 f (k)) time

algorithm for the former. We refer to [45] for the details.

DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC

Input: A graph G, an integer k, finite forbidden sets F1,F2, . . . ,Fd for graph classes

Π1,Π2, . . . ,Πd and a subset W of V (G) such that W is a (Π1,Π2, . . . ,Πd)- modulator

of size k+1.

Parameter: k

Question: Is there a subset Z ⊆V (G)\W, |Z| ≤ k such that Z is a (Π1,Π2, . . . ,Πd)-

modulator of the graph G?

69

We now define an extension of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC to incorporate

the notion of undeletable vertices. The input additionally contains a set U ⊆ V (G) of

undeletable vertices and we require the solution Z ⊆V (G) to be disjoint from U .

DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES

Input: A graph G, an integer k, finite forbidden sets F1,F2, . . . ,Fd for graph classes

Π1,Π2, . . . ,Πd a subset W of V (G) such that W is a (Π1,Π2, . . . ,Πd)- modulator of

size k+1 and a subset U ⊆V (G).

Parameter: k

Question: Is there a subset Z ⊆ V (G) \ (W ∪U), |Z| ≤ k such that Z is a

(Π1,Π2, . . . ,Πd)-modulator of the graph G?

We have the following reduction rule which allows us to remove components in the graph

belonging to some graph class Πi for i ∈ [d].

Reduction Rule 1. If a connected component of G belongs to some graph class Πi for

i ∈ [d], then remove all the vertices of this connected component.

Lemma 3.2.1. Reduction Rule 1 is safe.

Proof. Let X be the connected component of G removed to get an instance (G′,k,W ′).

We claim that (G,k,W) is a YES-instance if and only if (G′,k,W ′) is also a YES-instance.

Let Z be a solution of G of size at most k. Since G′ is an induced subgraph of G, Z is also

a solution of G′ as well. Conversely, suppose Z′ is the solution of size k for graph G′. Then

every connected component of the graph G′ \Z′ belongs to some graph class Πi for i ∈ [d].

Since X also belongs to some graph class Πi for some i ∈ [d], we have that Z′ is also a

solution for the graph G.

We now develop the notion of forbidden sets which can be used to identify if a connected

component of a graph belongs to any of the classes Πi for i ∈ [d].

Definition 3.2.1. We say that a subset of vertices C ⊆V (G) is a forbidden set of G if C

70

occurs in a connected component of G and there exists a subset Ci ⊆C such that G[Ci]∈Fi

for all i ∈ [d] and C is a minimal such set.

Clearly, if a connected component of G contains a forbidden set, then it does not belong to

any of the graph classes Πi for i ∈ [d]. We note that even though the forbidden set C is of

finite size, the lemma below rules out the possibility of a simple algorithm involving just

branching over all the vertices of C.

Lemma 3.2.2. Let G be a graph and C ⊆ V (G) be a forbidden set of G. Let Z be a

(Π1,Π2, . . . ,Πd)-modulator of G. Then Z disconnects C or Z∩C 6= /0.

Proof. Suppose Z is disjoint from C. We know that C cannot occur in a connected

component X of G \Z as X cannot belong to any graph class Πi for i ∈ [d] due to the

presence of subsets Ci ⊆C such that G[Ci] ∈ Fi. Hence Z disconnects C.

3.2.2 Finding non-separating solutions

In this section, we focus on solving instances of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC

WITH UNDELETABLE VERTICES which have a non-separating property defined as follows.

Definition 3.2.2. Let (G,k,W) be an instance of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC

WITH UNDELETABLE VERTICES and Z be a solution for this instance. Then Z is called a

non-separating solution if W is contained in a single connected component of G\Z and

separating otherwise. If an instance has only separating solutions, we call it a separating

instance. Otherwise, we call it non-separating.

We now describe the following lemma on important separators which is helpful in our

algorithm to compute non-separating solutions with undeletable vertices. It was originally

stated without the condition that the separators are disjoint from U . But what is stated

follows from the observation that by replacing each vertex u ∈U with k+1 copies of u

71

that forms a clique, every separator in the new graph of size at most k are those in the

original graph which are disjoint from U .

Lemma 3.2.3. [37] For every k ≥ 0 and subsets X ,Y,U ⊆ V (G), there are at most 4k

important X −Y separators of size at most k disjoint from U. Furthermore, there is an

algorithm that runs in O(4kkn) time that enumerates all such important X−Y separators

and there is an algorithm that runs in nO(1) time that outputs one arbitrary component-

maximal X−Y separator disjoint from U.

We now have the following lemma which connects the notion of important separators with

non-separating solutions to our problem.

Lemma 3.2.4. Let (G,k,W,U) be an instance of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC

WITH UNDELETABLE VERTICES obtained after exhaustively applying Reduction Rule 1

and Z be a non-separating solution. Let v be a vertex such that Z is a {v}−W separator.

Then there is a solution Z′ which contains an important {v}−W separator of size at most

k in G and disjoint from U.

Proof. Since we have applied Reduction Rule 1 as long as it is applicable, there is no

connected component X of G that is disjoint from W . Hence every component of G, in

particular the component containing v intersects with W . Therefore, since the solution Z

disconnects v from W , it must contain a minimal non-empty {v}−W separator A which

is disjoint from U . If A is an important {v}−W separator, we are done. Else there is an

important {v}−W separator B dominating A which is also disjoint from U . We claim

that Z′ = (Z \A)∪B is also a solution. Clearly |Z′| ≤ |Z|. Suppose that there exists a

forbidden set C in the graph G\Z′. Let X be the connected component of G\Z′ containing

C. Suppose X is disjoint from W . Then there exists a connected component Y of G\W

containing X , contradicting that W is a (Π1,Π2, . . . ,Πd)-modulator . Hence X must

intersect W . Since B⊆ Z′ disconnects v from W , we can conclude that X is not contained

in RG(v,B) as if so it cannot intersect with W .

72

By the definition of Z′, any component of the graph G\Z′ which intersects Z \Z′ = A\B

has to be contained in the set RG(v,B). Hence the component X is disjoint from Z \Z′.

Thus, there exists a component H of the graph G\Z containing X . But this contradicts

that Z is a (Π1,Π2, . . . ,Πd)-modulator .

We use the above lemma along with Lemma 3.2.3 to obtain our algorithm for non-separating

instances. The algorithm finds a minimal forbidden set C in polynomial time which by

definition is of bounded size. Then it branches on the set C and also on {v}−W important

separators of size at most k of G for all v ∈C.

Lemma 3.2.5. Let (G,k,W,U) be a non-separating instance of DISJOINT FINITE

(Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES. Then the problem can be solved

in 2O(k)nO(1) time.

Proof. We first apply Reduction Rule 1 exhaustively. If the graph is empty, we return YES.

Else, there is a connected component of G which does not belong to any graph classes Πi

for i ∈ [d]. Therefore, there exists a forbidden set C ⊆V (G) of G present in this connected

component. We find C as follows. We check for each graph class Πi, if a graph in Fi exists

as an induced subgraph for a particular connected component X of G. If so, we take the

union of the vertices of these induced graphs. We then make the set minimal by repeating

the process of removing a vertex and seeing if the set remains a forbidden set.

We branch in |C \ (W ∪U)|-many ways by going over all the vertices v ∈C \ (W ∪U) and

in each branch, recurse on the instance (G− v,k−1,W,U). Then for all v ∈C, we branch

over all important {v}−W separators X of size at most k in G disjoint from U and recurse

on instances (G\X ,k−|X |,W,U).

We now prove the correctness of the algorithm. Let Z ⊆V (G)\ (W ∪U) be a solution of

the instance. From Lemma 3.2.2, we know that a forbidden set C of G is disconnected by

Z or Z∩C 6= /0. In the latter case, we know that Z contains a vertex x ∈C \ (W ∪U) giving

us one of the branched instances obtained by adding x into the solution.

73

Now we are in the case where C is disconnected by Z. Since Reduction rule 1 is applied

exhaustively, the connected component containing C also contains some vertices in W .

Since Z is a non-separating solution, W goes to exactly one connected component of G\Z

and there exists some non-empty part of C that is not in this component. Hence, there

exists some vertex x ∈C that gets disconnected from W by Z. From Lemma 3.2.4, we

know that there is also a solution Z′ which contains an important {x}−W separator of size

at most k in G disjoint from U . Since we have branched over all such {x}−W important

separators disjoint from U , we have correctly guessed on one such branch.

We now bound the running time. Let p be the size of the maximum sized graph present

among all familes Fi. We then have |C| ≤ pd and any forbidden set in G can be obtained

via brute force in npd time. For each i ∈ [k], we know that there are at most 4i important

separators of size 1 ≤ i ≤ k disjoint from U which can be enumerated using Lemma

3.2.3 in O(4i · i · n) time. For the instance (G,k,W), if we branch on v ∈ C , k drops

by 1 and if we branch on a {v}−W separator of size i, k drops by i. Hence if T (k)

denotes the time taken for the instance (G,k,W), we get the recurrence relation T (k) =

pdT (k−1)+
k
∑

i=1
4iT (k− i). Solving the recurrence taking into account that p and d are

constants, we get that T (k) = 2O(k)nO(1).

3.2.3 Solving general instances

We now solve general instances of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC WITH UN-

DELETABLE VERTICES using the algorithm for solving non-separating instances as

a subroutine. Hence we focus on solving separating instances of DISJOINT FINITE

(Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES. We guess a subset W1 ⊂W

such that for a solution Z, W1 is exactly the intersection of W with a connected component

of G\Z. For W2 =W \W1, we are looking for a solution Z containing a W1−W2 separator.

Formally, let W = W1]W2 be a set of size k+1 which is a (Π1,Π2, . . . ,Πd)-modulator.

We look for a set Z ⊆V (G)\ (W ∪U) of size at most k such that Z is a (Π1,Π2, . . . ,Πd)-

74

modulator, Z contains a minimal (W1,W2)-separator X disjoint from U and W1 occurs in a

connected component of G\Z.

From here on, we assume that the separating instance (G,k,W,U) of DISJOINT

FINITE (Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES is represented as

(G,k,W1,W2,U) where W =W1]W2. We branch over all partitions of W into W1 and W2

which adds a factor of 2k+1 to the running time.

3.2.3.1 Disconnected case

We first focus on the particular case when the input instance is such that W1 and W2 are

already disconnected in the graph G. We have the following lemma that allows us to focus

on finding a non-separating solution in the connected component containing W1 to reduce

the problem instance.

Lemma 3.2.6. Let I = (G,k,W1,W2,U) be an instance of DISJOINT FINITE

(Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES where W1 and W2 are in dis-

tinct components of G. Let Z be its solution such that W1 exactly occurs in a connected

component of G \Z. Also let R(W1) be the set of vertices reachable from W1 in G. Let

Z′ = Z∩R(W1). Then (G[R(W1)], |Z′|,W1,U ∩R(W1)) is a non-separating YES-instance

of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES and con-

versely for any non-separating solution Z′′ for (G[R(W1)], |Z′|,W1,U ∩R(W1)), the set

Ẑ = (Z \Z′)∪Z′′ is a solution for the original instance such that W1 exactly occurs in a

connected component of G\Z′′.

Proof. Suppose Z′ is not a (Π1,Π2, . . . ,Πd)-modulator for the graph G′. Then some

component of G′ \Z′ contains a forbidden set C. The sets Z′ and Z \Z′ are disjoint as W1

and W2 are disconnected in G. Hence C is also in a connected component of G\Z giving a

contradiction. Hence Z′ is a solution for the instance (G′, |Z′|,W1). Since the solution Z is

such that W1 is contained in a connected component of Z and Z \Z′ is disconnected from

75

from Z′, Z′ is a non-separating solution.

Conversely, suppose Ẑ is not a solution for the graph G. Then there exists a forbidden

C in a connected component of G \ Ẑ. Either C is contained in the set R(W1) or in the

set NR(W1) =V (G)\R(W1). If C ⊆ R(W1), C is also present in a connected component

of the graph G′ \ Z′′ giving a contradiction that Z′′ is a (Π1,Π2, . . . ,Πd)-modulator of

G′. If C ⊆ NR(W1), then C is contained in some connected component of the graph

G[NR(W1)]\ (Z \Z′). Since Z′ is disjoint from C, we conclude that C is a forbidden set in

the graph G\ (Z′∪ (Z \Z′)) = G\Z, giving a contradiction.

The following reduction rule allows us to use the algorithm for non-separating instance in

the connected component of G containing W1.

Reduction Rule 2. Let I = (G,k,W1,W2,U) be an instance of DISJOINT FINITE

(Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES where W1 and W2 are discon-

nected in G. Compute a non-separating solution Z′ for the instance (G′,k′,W1,U ′) where

G′ = G[R(W1)], U ′ =U ∩R(W1) and k′ is the least integer i≤ k for which (G′, i,W1,U ′)

is a YES-instance. Delete Z′ and return the instance (G\Z′,k−|Z′|,W2,U).

The safeness of Reduction Rule 2 follows from Lemma 3.2.6. The running time for the

reduction is 2O(k)nO(1) which comes from that of the algorithm in Lemma 3.2.5.

We now introduce the notion of good separators, tight separator sequences and t-boundaried

graphs which are used to design the algorithm.

3.2.3.2 Good Separators and Tight Separator Sequences

We first look at a type of W1−W2 separators such that the graph induced on the vertices

reachable from W1 after removing the separator satisfies the property as defined below.

Definition 3.2.3. Let (G,k,W1,W2,U) be an instance of DISJOINT FINITE

76

(Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES. For integer `, we call a W1−W2

separator X in G (`,U)-good if there exists a set K of size at most ` such that K∪X is a

(Π1,Π2, . . . ,Πd)-modulator for the graph G[R[W1,X]] with (K∪X)∩U = /0. Else we call

it (`,U)-bad. If U = /0, we call it `-good and `-bad respectively.

We now show that (`,U)-good separators satisfy a monotone property if we compare them

using their reachability sets.

Lemma 3.2.7. Let (G,k,W1,W2,U) be an instance of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-

VDC WITH UNDELETABLE VERTICES and let X and Y be disjoint W1−W2 separators

in G such that X covers Y and (X ∪Y)∩U = /0. If the set X is (`,U)-good, then Y is also

(`,U)-good.

Proof. Let us define graphs GX = G[R[W1,X]] and GY = G[R[W1,Y]]. Let K be a subset

of size at most ` such that K∪X is a (Π1,Π2, . . . ,Πd)-modulator for the graph GX with

(K ∪X)∩U = /0. Let K′ = K ∩R[W1,Y]. Note that since K′ ⊆ K, we have K′ ∩U = /0.

We claim that K′∪Y is a (Π1,Π2, . . . ,Πd)-modulator for the graph GY proving that Y is

(`,U)-good.

Suppose K′∪Y is not a (Π1,Π2, . . . ,Πd)-modulator . Then there exists a forbidden set

C ⊆ R[W1,Y] contained in a single component of GY \ (K′ ∪Y). Since C ⊆ R[W1,Y] ⊂

R[W1,X] and X and Y are disjoint, C does not intersect X . Also C does not contain any

vertices in K \K′ as Y disconnects the set from C. Hence C is disjoint from K∪X . Since

C lies in a single connected component of GY \ (K′∪Y) we can conclude that C occurs in

a single connected component of the graph GX \ (K∪X) giving a contradiction that X is

(`,U)-good.

We now define the notion of (`,U)-important separators similar to important separators.

Definition 3.2.4. Let (G,k,W1,W2,U) be an instance of DISJOINT FINITE

(Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES and let X and Y be W1−W2

77

separators in G such that Y dominates X and (X ∪Y)∩U = /0. Let ` be the smallest

integer i for which X is (i,U)-good. If Y is (`,U)-good, then we say that Y well-dominates

X. If X is (`,U)-good and there is no Y 6= X which well-dominates X, then we call X as

(`,U)-important.

The following lemma allows us to assume that the solution of the instance (G,k,W1,W2,U)

contains an (`,U)-important W1−W2 separator for some appropriate value of `.

Lemma 3.2.8. Let (G,k,W1,W2,U) be an instance of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-

VDC WITH UNDELETABLE VERTICES and Z be a solution. Let P⊆ Z be a non-empty

minimal W1−W2 separator in G and let P′ be a W1−W2 separator in G well-dominating

P. Then there is also a solution Z′ for the instance containing P′.

Proof. Let Q = Z∩R[W1,P]. Note that Q is a (Π1,Π2, . . . ,Πd)-modulator for the graph

G[R[W1,P]] with Q∩U = /0. Let Q′ ⊇ P′ be a smallest (Π1,Π2, . . . ,Πd)- modulator for

the graph G[R[W1,P′]] extending P′ with Q′ ∩U = /0. We claim that Z′ = (Z \Q)∪Q′

is a solution for the instance (G,k,W1,W2,U). Since P′ well-dominates P, |Z′| ≤ |Z|

and Z′∩U = /0. Also note that Z′∩U = /0. We now show that Z′ is a (Π1,Π2, . . . ,Πd)-

modulator. Suppose not. Then there exists a forbidden subset C present in a connected

component X of G\Z′.

We first consider the case when X is disjoint from the set Z \Z′. Then there is a component

H in G \Z which contains X and hence C, contradicting that Z is a solution. We now

consider the case when X intersects Z \Z′. By definition of Z′, X is contained in the set

R(W1,P′). Since Z′ \Q′ is disjoint from R(W1,P′) and is separated from R(W1,P′) by just

P′, we can conclude that X and hence C is contained in a single connected component of

G[R[W1,P′]]\Q′. But this contradicts that Q′ is a (Π1,Π2, . . . ,Πd)-modulator in the graph

G[R[W1,P′]].

We now define the notion of a tight separator sequence. It gives a natural way to partition

the graph into parts with small boundaries.

78

S1 S2 S3

X
Y

Figure 3.1: An X−Y tight separator sequence of order two with U = /0.

Definition 3.2.5. An X−Y tight separator sequence of order k with undeletable set U of

a graph G with X ,Y,U ⊆V (G) is a setH of X−Y separators such that

• every separator has size at most k,

• the separators are pairwise disjoint,

• every separator is disjoint from U,

• for any pair of separators in the set, one covers another and

• the set is maximal with respect to the above properties.

See Figure 3.1 for an example of a tight separator sequence.

Lemma 3.2.9. Given a graph G, disjoint vertex sets X ,Y and integer k, a tight separator

sequenceH of order k with undeletable set U can be computed in |V (G)|O(1) time.

Proof. Similar to what we mentioned while stating Lemma 3.2.3, we first replace every

vertex u ∈U in our graph G with k+ 1 copies of u forming a clique. Note that every

separator in the new graph of size at most k are those in the original graph which are

disjoint from U .

In this new graph, we check using the minimum cut algorithm if there is an X−Y separator

of size at most k. If not, we stop the procedure. Else we compute an arbitrary component-

maximal X−Y separator S of size at most k using the polynomial time algorithm in Lemma

3.2.3. We add S to the familyH, set Y to S, and repeat the process. We claim thatH is a

79

tight separator sequence of order k with an undeletable set U after the procedure terminates.

It is clear that the first four properties of tight separator sequence are satisfied byH in any

iteration. SupposeH is not maximal and hence an X−Y separator P disjoint from U can be

added. If P covers one of the separators S′ inH, it contradicts the component-maximality

of S′ at the time it was added to H. Else P is covered by all the separators in H which

contradicts the termination of the procedure after the last separator inH was added. This

completes the proof.

In the proof, it can be seen that the separators S inH can be totally ordered by the subset

relation of the reachability sets R(X ,S). HenceH is rather called a sequence than a family

of separators.

3.2.3.3 Boundaried graphs

We now define the notion of boundaried graph where we associate a subset of its vertices as

its boundary. We can then construct graphs by gluing two such graphs along the boundary.

Definition 3.2.6. A t-boundaried graph G is a graph with t distinguished labelled ver-

tices. We call the set of labelled vertices ∂ (G) the boundary of G and the vertices in

∂ (G) terminals. Let G1 and G2 be two t-boundaried graphs with the graphs G1[∂ (G1)]

and G2[∂ (G2)] being isomorphic. Let µ : ∂ (G1)→ ∂ (G2) be a bijection which is an

isomorphism of the graphs G1[∂ (G1)] and G2[∂ (G2)]. We denote the graph G1⊗µ G2

as a t-boundaried graph obtained by the following gluing operation. We take the union

of graphs G1 and G2 and identify each vertex x ∈ ∂ (G1) with vertex µ(x) ∈ ∂ (G2). The

t-boundary of the new graph is the set of vertices obtained by unifying.

Definition 3.2.7. A t-boundaried graph with an annotated set is a t-boundaried graph

with a second set of distinguished but unlabelled vertices disjoint from the boundary. The

set of annotated vertices is denoted by ∆(G).

80

3.2.3.4 Algorithm

We design a recursive algorithm MAIN-ALGORITHM which takes as input the instance

I = (G,k,W1,W2,U) and outputs YES if there exists a solution Z ⊆ V \ (W1 ∪W2 ∪U)

such that every connected component of G−Z belongs to some graph class Πi for i ∈ [d].

Description of MAIN-ALGORITHM procedure: The MAIN-ALGORITHM procedure

initially checks if Reduction Rule 1 is applicable for I . Then it checks if (G,k,W1∪W2,U)

is a non-separating YES-instance using the algorithm from Lemma 3.2.5. If not, it checks

if Reduction Rule 2 is applicable.

After these steps, we know that any solution Z of I contains an (`,U)-good W1−W2

separator X in the graph G for some integer 0≤ `≤ k with |X |= λ > 0. Using Lemma

3.2.8, we can further assume that the separator X is (`,U)-important. Since λ > 0, we have

Z ∩R(W1,X) ⊂ Z as X is not part of the set Z ∩R(W1,X). Hence ` = |Z ∩R(W1,X)| <

|Z| ≤ k. Hence we can conclude that 0≤ ` < k and 1≤ λ ≤ k.

The MAIN-ALGORITHM procedure now calls a subroutine BRANCHING-SET with input as

(I,λ , `) for all values 0≤ ` < k and 1≤ λ ≤ k. The BRANCHING-SET subroutine returns

a vertex subsetR⊆V (G) of size 2poly(k) such that for every solution Z ⊆ (V (G)\U) of

the given instance I containing an (`,U)-important W1−W2 separator X of size at most λ

in G, the set R intersects Z. The MAIN-ALGORITHM procedure then branches over all

vertices v ∈R and recursively run on the input I ′ = (G− v,k−1,W1,W2,U).

Description of BRANCHING-SET procedure:

We first check if there is a W1−W2 separator of size λ in the graph G with the vertices

contained in the set V \U . If there is no such separator, we declare the tuple invalid. Else

we execute the algorithm in Lemma 3.2.9 to obtain a tight W1−W2 separator sequence T

of order λ and undeletable set U .

81

Let T = O1,O2, . . . ,Oq for some integer q. We partition T into (`,U)-good and (`,U)-bad

separators as follows. Recall Lemma 3.2.7 where we proved that if X and Y are disjoint

W1−W2 separators in G such that X covers Y and X is (`,U)-good, then Y is also (`,U)-

good. From this we can conclude that the separators in the sequence T are such that if

they are neither all (`,U)-good nor all (`,U)-bad, there exist an i ∈ [q] where O1, . . . ,Oi

are (`,U)-good and Oi+1, . . . ,Oq are (`,U)-bad. We can find i in dlogqe steps via binary

search if at each step, we know of a way to check if for a given integer j ∈ [q−1] if O j is

(`,U)-good and O j+1 is (`,U)-bad. In the case j = q, we only check if O j is (`,U)-good

and if so conclude that all the separators in the sequence are (`,U)-good. In the case where

j = 0, we only check if O j is (`,U)-bad and if so conclude that all the separators in the

sequence are (`,U)-bad.

In any case, we need a procedure to check whether a given separator P is (`,U)-good

or not. From the definition of (`,U)-good separator, this translates to checking if there

is a (Π1,Π2, . . . ,Πd)-modulator of size at most ` in the graph G[R(W1,P)] such that the

solution is disjoint from W1∪U . Note that since P separates W1 from W2, the set W1 is

a (Π1,Π2, . . . ,Πd)-modulator in the graph G[R(W1,P)]. Hence the problem translates to

checking whether I1 = (G[R(W1,P)], `,W1,U) is a YES-instance of DISJOINT FINITE

(Π1,Π2, . . . ,Πd)-VDC WITH UNDELETABLE VERTICES. This can be done by calling the

MAIN-ALGORITHM procedure for the instance (G[R(W1,P)], `,W1,U). Note that this is a

recursive call in the initial MAIN-ALGORITHM procedure with I as input where we called

the BRANCHING-SET procedure with the associated solution size ` being strictly less than

k.

If we do not find an integer i such that O j is (`,U)-good and O j+1 is (`,U)-bad, or

conclude that all the separators in the sequence are either (`,U)-good or all are (`,U)-

bad, we declare that the tuple is not valid. Otherwise, we have a separator P1 which is

component maximal among all the good separators in T if any exists, and separator P2

which is component minimal among all the bad separators in T if any exists. We initialize

82

the setR := P1∪P2. For i ∈ {1,2}, we do the following.

We go over every subset Pr
i ⊆ Pi. For each such subset, we compute a family H of |Pr

1 |-

boundaried graphs which consists of all graphs of size at most k5(pd)2
of which at most

k are annotated. Note that the total number of such graphs is bounded by 2(
γ

2)
(

γ

k+1

)
for

γ = k5(pd)2
and these can be enumerated in time 2(

γ

2)
(

γ

k+1

)
kO(1).

For every choice of Pr
i ⊆ Pi, for every annotated boundaried graph Ĝ ∈ H with |Pr

i |

terminals and every possible bijection δ : ∂ (Ĝ) → Pr
i , we construct the glued graph

GPr
i ,δ

= G[R[W1,Pi]]⊗δ Ĝ, where the boundary of G[R[W1,Pi]] is Pr
i . We then recursively

call BRANCHING-SET((GPr
i ,δ
\ S̃,k− j,W1,Pi \Pr

i ,U ∪V (Ĝ) \Pr
i),λ

′, `′) for every 0 ≤

λ ′ < λ , 1 ≤ j ≤ k−1 and 0 ≤ `′ ≤ `, where S̃ is the set of annotated vertices in Ĝ. We

add the union of all the vertices returned by these recursive instances toR and return the

resulting set.

This completes the description of the BRANCHING-SET procedure. We now proceed to

the proof of correctness.

Correctness of MAIN-ALGORITHM and BRANCHING-SET procedure: We prove the

correctness of MAIN-ALGORITHM by induction on k. The case when k = 0 is correct as

we can check if I is a YES-instance in polynomial time by checking if every connected

component of G belongs to one of the graph classes Πi for i ∈ [d]. We now move to the

induction step with the induction hypothesis being that the MAIN-ALGORITHM procedure

correctly runs for all instances I where k < k̂ for some k̂ ≥ 1 and identifies whether I is a

YES-instance. We now look at the case when the algorithm runs on an instance with k = k̂.

The correctness of the initial phase follows from the safeness of Reduction Rules 1, 2 and

the correctness of the algorithm in the non-separating case. Let us now assume that the

BRANCHING-SET procedure is correct. Hence the setR returned by BRANCHING-SET

procedure is such that it intersects a solution Z if it exists. Therefore I = (G,k,W1,W2,U)

83

is a YES-instance if and only if I ′ = (G− v,k−1,W1,W2,U) is a YES-instance for some

v ∈R. Applying the induction hypothesis for MAIN-ALGORITHM with input instance I ′,

we prove the correctness of MAIN-ALGORITHM.

It remains to prove the correctness of the BRANCHING-SET procedure. Note that all the

calls of MAIN-ALGORITHM in this procedure have input instances checking for solutions

strictly less than k. Hence these calls run correctly from the induction hypothesis when

BRANCHING-SET is called in the MAIN-ALGORITHM procedure. Hence we only need to

prove that BRANCHING-SET procedure is correct with the assumption that all the calls

of MAIN-ALGORITHM in the procedure run correctly. We prove this by induction on λ .

Recall that the sets P1 and P2 were identified via a binary search procedure described earlier

using the calls of MAIN-ALGORITHM with values strictly less than k. Since we assume

that the calls of MAIN-ALGORITHM runs correctly, the sets P1 and P2 were correctly

identified if present.

We first consider the base case when λ = 1 where there is a W1−W2 (`,U)-good separator

X ⊆ Z of size one. Since X has size one, it cannot be incomparable with the separator

P1. Hence the only possibilities are X is equal to P1, is covered by P1 or covers P1. In the

first case, we are correct as P1 is contained in R. The second case contradicts that X is

(`,U)-important W1−W2 separator. We note that in the third case, we can conclude that X

is covered by P2. This is because the other cases where X is equal to be P2 or X covers P2

cannot happen as P2 is (`,U)-bad and X is incomparable to P2 cannot happen as both are

of size one. Hence X covers P1 and is covered by P2. But then X must be contained in the

tight separator sequence T contradicting that P1 is component maximal. Hence the third

case cannot happen.

We now move to the induction step with the induction hypothesis being that BRANCHING-

SET procedure correctly runs for all tuples where λ < λ̂ for some λ̂ ≥ 2 and returns a

vertex set that hits any solution for its input instance that contains an (`,U)-important

separator of size λ and not containing any vertices from U . We now look at the case when

84

the algorithm runs on a tuple with λ = λ̂ .

Let Z⊆ (V (G)\U) be a solution for the instance I containing an (`,U)-important separator

X . If X intersects P1∪P2 we are done asR⊇ P1∪P2 intersects X . Hence we assume that

X is disjoint from P1∪P2. Suppose X is covered by P1. Then we can conclude that P1

well-dominates X contradicting that X is (`,U)-important W1−W2 separator.

By Lemma 3.2.7, since X is (`,U)-good and P2 is not, X cannot cover P2. Suppose X

covers P1 and itself is covered by P2. Then X must be contained in the tight separator

sequence T contradicting that P1 is component maximal. Hence this case also does not

happen.

Incomparable Case:

Finally we are left with the case where X is incomparable with P1 or with P2 if P1 does not

exist. Without loss of generality, assume X is incomparable with P1. The argument in the

case when P1 does not exist follows by simply replacing P1 with P2 in the proof.

Let K ⊆ Z be the (Π1,Π2, . . . ,Πd)-modulator for the graph G[R[W1,X]] extending X , i.e

X ⊆ K. In other words, K = Z∩R[W1,X]. Since X is an (`,U)-good separator of G, we

have |K \X | ≤ `. If P1∩K is non-empty, we have that P1∩Z is non-empty. Since P1 is

contained inR, the algorithm is correct asR intersects Z. Hence we can assume that P1

and K are disjoint.

Let X r = R(W1,P1)∩ X and Xnr = X \ X r. Similarly, define Pr
1 = R(W1,X)∩ P1 and

Pnr
1 = P1 \Pr

1 . Since X and P1 are incomparable, the sets X r,Xnr,Pr
1 and Pnr

1 are all non-

empty. Let Kr = K∩R[W1,P1] and Knr = K \Kr. Note that X r ⊆ Kr and Xnr ⊆ Knr. See

Figure 3.2.

We intend to show in the case when X and P1 are incomparable, the set returned by one of

the recursive calls of the BRANCHING-SET procedure hits the solution Z.

85

Xnr

Xr

W1 W2

Knr \ Xnr

Pnr
1

P r
1

Kr \ Xr

Figure 3.2: The case where X is incomparable with P1

We now prove the following crucial lemma where we show that by carefully replacing parts

outside of R[W1,P1] with a small gadget, we can get a smaller graph G′ such that Kr, the

part of K inside the set R[W1,P1] is an optimal (Π1,Π2, . . . ,Πd)-modulator containing the

(|Kr \X r|,U ′)-important separator X r in this graph for an appropriate subset U ′ ⊆V (G′).

This allows us to show that the instance of BRANCHING-SET corresponding to G′ would

return a set that intersects the optimal (Π1,Π2, . . . ,Πd)-modulator Kr in G′ and thereby

the solution Z in G. Later, we will see that one of the recursive calls of BRANCHING-SET

indeed correspond to G′.

Lemma 3.2.10. Let G1 = G[R[W1,P1]] be a boundaried graph with Pr
1 as the boundary.

There exists a |Pr
1 |-boundaried graph Ĝ which is at most k5(pd)2

in size with an annotated

set of vertices ∆(Ĝ) of size at most k, and a bijection µ : ∂ (Ĝ)→ Pr
1 such that the glued

graph G′ = G1⊗µ Ĝ has the property that BRANCHING-SET procedure with input as

((G′ \∆(Ĝ), |Kr|,W1,Pnr
1 ,U ∪V (Ĝ) \Pr

1), |X r|, |Kr \X r|) returns a set R′ that intersects

Kr.

Proof. To develop the intuitions behind the proof, we first prove that for the graph G′′ =

G[R[W1,X]], BRANCHING-SET with input as ((G′′ \Knr, |Kr|,W1,Pnr
1 ,U), |X r|, |Kr \X r|)

returns a setR′′ that intersects Kr.

SupposeR′′ does not intersect Kr. The setR′′ by definition intersects any (Π1,Π2, . . . ,Πd)-

modulator Z′′ ⊆V (G′′)\U of size |Kr| for the graph G′′ \Knr containing an (|Kr \X r|,U)-

important separator X ′′. The set Kr ⊆V (G′′)\U is also a (Π1,Π2, . . . ,Πd)-modulator of

size |Kr| for the graph G′′ \Knr and it contains a W1−Pnr
1 separator X r. Hence, if we can

86

prove that the set X r is a (|Kr \X r|,U)-important separator in the graph G′′ \Knr, we are

done.

Suppose this is not the case. Then there exists a (|Kr \X r|,U)-good separator X ′′ ⊆

V (G′′)\U in the graph G′′ \Knr that well-dominates X r. Note that since G′′ is the graph

G[R[W1,X]], the set of vertices reachable from W1 after deleting X r in the graph G′′ \Knr

denoted by RG′′\Knr(W1,X r) is the set RG\Knr(W1,X). If X ′′ 6= X r, the set RG\Knr(W1,X) =

RG′′\Knr(W1,X r)⊂ RG′′\Knr(W1,X ′′) which cannot happen.

Note that the graph G′′ can be viewed as the graph obtained by gluing two bound-

aried graphs G1 and G2 both having boundary Pr
1 where G1 = G[R[W1,P1]] and G2 =

G[NR(W1,P1)∩R(W1,X)∪Pr
1 ∪Knr] with the bijection being an identity mapping from Pr

1

into itself. Unfortunately the graph G2 is not of size kO(1) size and hence does not satisfy

the conditions required for the lemma. We now aim to construct a graph Ĝ by keeping

some kO(1) vertices of G2.

Let V2 = (NR(W1,P1)∩R(W1,X))∪Pr
1 ∪Knr. The set V2 \ (Pr

1 ∪Knr) contains the vertices

which are disconnected by P1 from W1 but are not disconnected from W1 by X . We have

G2 = G[V2].

Marking Vertices of Forbidden Sets:

We now perform the following marking scheme on the graph G where we mark some

vertices of V2 to construct a smaller graph G′. Before this though, we need to define the

following notations.

Let p denote the size of the maximum sized subgraph present among all the families Fi.

Let H = {(H1, . . . ,Hd) : Hi ∈ Fi, i ∈ [d]} where each tuple (H1, . . . ,Hd) corresponds to a

collection of graphs of a forbidden set. ForH= (H1, . . . ,Hd) ∈H, let BH = {(B1, . . . ,Bd) :

Bi ⊆V (Hi), i ∈ [d]}. Let Pr
1 = {(Q1, . . . ,Qd) : Qi ⊆ Pr

1 , |Qi| ≤ p, i ∈ [d]}.

Let TH be the collection of tuples (t1, . . . , tr) where ti is a pair of elements t1
i , t

2
i ∈ Pr

1 ∪{ /0}

87

a1

a2

c1

a3

c2

c3

c4

b1
b2

b3 b4

c5
c6

c7c8

Knr

W1 W2

V2

P r
1

Pnr
1

Figure 3.3: Example of a marked forbidden set

and r =
(∑

i∈[d]
|Hi|

2

)
, i∈ [r]}. We use the bijection ρ :

(⋃
i∈[d] Hi

2

)
→ [r] so that ρ({a,b}) denotes

the index associated to the pair of vertices a,b ∈⋃i∈[d]Hi.

For all tuples 〈H,BH,Pr
1,TH〉 where H = (H1, . . . ,Hd) ∈ H,BH = (B1, . . . ,Bd) ∈

BH,Pr
1 = (Q1, . . . ,Qd) ∈ Pr

1 and TH = (t1, . . . , tr) ∈ TH, if there exists a forbidden set

C ⊆ (V2∪V (G1)) of the graph G\Knr such that

• For all i ∈ [d], there exists a subset Ci ⊆C such that G[Ci] is isomorphic to Hi,

• for sets C+
i =V2∩Ci, we have graphs G[C+

i] isomorphic to Hi[Bi],

• the set Pr
1 ∩Ci = Qi and

• for vertices ai ∈Ci and a j ∈C j with i, j ∈ [d], there is path P′ from ai to a j in the

graph G\Knr such that the first and last vertex of P′ in the set Pr
1 that has a neighbor

to the set R(W1,P1) is t1
ρ(ai,a j)

and t2
ρ(ai,a j)

respectively, (When the path P′ has only

one such vertex v, we denote it by the pair {v, /0}. If the path has no such vertex, then

we denote it by the pair { /0, /0}, . Also note that the existence of such paths for all

pair of vertices in C shows that G[C] is connected in the graph G\Knr).

then for one such forbidden set C, we mark the set C+ = C∩V2. Let M′ be the set of

vertices marked in this procedure. We call the corresponding forbidden sets C as marked

forbidden sets.

See figure 3.3 for an example of a marked forbidden set. We haveH= (H1,H2,H3) where

88

a1

b4

Knr

W1 W2

V2

P r
1

Pnr
1

τ1

τ2

Figure 3.4: Example showing paths between vertices of a marked forbidden set

H1 is a triangle, H2 is a C4 and H3 has two connected components, one of which is K4 after

removal of an edge and the other is a claw K1,3. The graph induced by the set of vertices

{a1,a2,a3} is isomorphic to H1, the one induced by the set of vertices {b1,b2,b3,b4} is

isomorphic to H2 and the one induced by the set of vertices {c1,c2,c3,c4,c5,c6,c7,c8} is

isomorphic to H3. We have BH = (B1,B2,B3) where B1 is a singleton vertex, B2 is the

cycle graph C4 and B3 has two connected components, one of which is a triangle and the

other is a claw K1,3. Notice that there are the graphs induced by H1, H2 and H3 when we

restrict the set of vertices to V2. We have Pr
1 = (Q1,Q2,Q3) as ({a3},{ /0},{c2,c3}).

See figure 3.4 where we look at a path between a1 and b4 of the same marked forbidden

set. The first and last vertex of such a path is τ1 and τ2 respectively. Hence the entry of TH
corresponding to the pair (a1,b4) is {τ1,τ2}.

We now bound the size of M′. We know that each graph class Fi has a finite number

of finite sized graphs. Let f = maxi∈d |Fi|. The size of H is the number of tuples

H = (H1, . . . ,Hd) which is at most f d . Since |Hi| ≤ p, the size of BH is bounded by the

number of tuples (B1, . . . ,Bd) which is at most 2pd . Since the set Qi is of size at most p,

the size of Pr
1 is bounded by k(p+1)d . Each vertex in a pair in TH is a pair of vertices of

Pr
1 . The number of such pairs is bounded by (k+1)2. Since r =

(∑
i∈[d]
|Hi|

2

)
≤
(pd

2

)
, the size

of TH is bounded by ((k+1)2)(
pd
2). Overall, we can conclude that the number of tuples

〈H,BH,Pr
1,TH〉 is at most η = f d2pdk(p+1)dk2(pd)2

. For each of these tuples we mark the

set C∩V2 which is of size at most pd. Hence we can conclude that |M′| ≤ η pd. The same

bound holds for the vertices corresponding to the marked forbidden sets which we denote

89

Knr

W1 W2

V2

P r
1

Pnr
1

F

x2

x3x1

y

Figure 3.5: Forest F that provides required connectivities of marked forbidden set vertices.
The vertices colored grey correspond to marked vertices and white correspond to other
vertices of F . The forest F has a degree two path between x1 and x2 with all the internal
vertices unmarked. If an unmarked vertex y in this path has an edge to some marked vertex
x3, then the forest obtained by replacing an edge adjacent to y in the path with (x3,y) also
preserves the connectivities but has an unmarked vertex as a leaf giving a contradiction.

by MF .

Preserving Connectivity of the Marked Forbidden Sets: We now aim to keep some

vertices in V2 other than those in M′ so that for every marked forbidden set C, the graph

G[C] remains connected in the resulting graph. We also add the requirement that the

connectivity between every vertex in C+ and vertices in Pr
1 and also between pairs of

vertices in Pr
1 in the graph G[V2] are preserved. Let F be the forest of minimum size in the

graph G such that it satisfies these connectivity requirements. Note that M′ ⊆V (F).

We now try to bound the size of the forest F . Note that any leaf of the forest F corresponds

to some vertex in the marked forbidden set MF ∪Pr
1 . This is because it is not the case, then

for some leaf vertex u∈V (F), the forest F−{u} also preserves the connectivities required

for marked forbidden sets contradicting that F is the forest of minimum size. Hence the

number of leaves is bounded by η pd + k.

By properties of any forest, the number of vertices of degree 3 or more is at most the

number of leaves. Hence such vertices of F are also bounded by η pd+k. Hence it remains

to bound the number of degree 2 vertices in F .

Let us focus on a degree 2 path P of F with endpoints either a leaf of F or degree at least

90

3 or any vertex in MF or Pr
1 . Suppose P has at least 3 internal vertices. We claim that

all the internal vertices of P except the first and last internal vertices are not adjacent to

any vertices of F in the graph G induced on V (F) other than its neighbors in the path

F . Suppose this is not the case for some internal vertex u with u1 and u2 being the two

neighbors of u in P. Hence u is adjacent to some other vertex v of F . Note that the edge

(u,v) is not in the forest F . Let us add this edge to the forest F creating a unique cycle C

containing (u,v). Without loss of generality, let u1 be the other neighbor of u in C. Let F1

be the forest created by adding the edge (u,v) and removing the edge (u,u1). Note that we

now have a forest F1 where u1 is a leaf vertex that is not marked. Then F1−{u1} is also a

forest that preserves the connectivities that F did with a fewer number of vertices. This

contradicts that F is the forest with the minimum number of vertices. See Figure 3.5 for an

illustration regarding this proof.

Since P does not have edges from the internal vertices to other vertices of F , we can

contract these paths up to a certain length and preserve connectivities of F .

Let G′2 = G[V (F)]. Let G2 be the graph obtained from G′2 by contracting all the

degree 2 paths in the graph of length more than 4pd + 2 to length 4pd + 2. Since

the number of degree 2 paths in F is bounded by (2(|MF |+ |P1|))2 and each path is

bounded by size 4pd+2, we have V (G2)≤ 2(η pd+k)2(4pd+2) which is at most k5(pd)2
.

Construction of G′: Let G′ be the graph obtained by gluing the boundaried graphs

G[R[W1,P1]] and G2 both having Pr
1 as the boundary with the bijection corresponding to

the gluing being an identity mapping from Pr
1 to itself. See figure 3.6. We also similarly

define G′′′ as the graph obtained by gluing the graphs G[R[W1,P1]] and G′2 both having Pr
1

as the boundary with the bijection corresponding to the gluing being an identity mapping

from Pr
1 to itself.

We claim that for the graph G′, BRANCHING-SET with input ((G′ \

Knr, |Kr|,W1,Pnr
1 ,U ′), |X r|, |Kr \ X r|) returns a set R′ that intersects Kr where

91

Knr

Ĝ

P r
1

W1

Pnr
1

XrKr \ Xr

Figure 3.6: The graph G′ \Knr obtained from gluing the graphs G[R[W1,P1] and Ĝ\Knr

along Pr
1 where Kr is an optimal (Π1,Π2, . . . ,Πd)-modulator

U ′ = U ∪V (Ĝ) \ Pr
1 . Suppose not. The set R′ by the definition of BRANCHING-

SET procedure intersects any (Π1,Π2, . . . ,Πd)-modulator Z′ ⊆ (V (G′)\U ′) of size |Kr|

in the graph G′ \Knr containing an (|Kr \X r|,U ′)-important W1−Pnr
1 separator. Since

K is a (Π1,Π2, . . . ,Πd)-modulator in the graph G[R[W1,X]] with K ∩U ′ = Knr, the set

Kr = K \Knr is a (Π1,Π2, . . . ,Πd)-modulator of size |Kr| for the graph G[R[W1,X]]\Knr

with no vertices from U ′. Let us turn the focus to the graph G′′′ where the degree 2 paths

are not contracted. Since G′′′ \Knr is an induced subgraph of the graph G[R[W1,X]]\Knr,

the set Kr is a (Π1,Π2, . . . ,Πd)-modulator of size |Kr| for the graph G′′′ \Knr as well. In

other words, every connected component of the graph G′′′ \K belongs to at least one of the

graph class Πi with i ∈ [d].

Claim 3.2.1. Kr is a (Π1,Π2, . . . ,Πd)-modulator of size |Kr| for the graph G′ \Knr.

The graph G′ \K can be viewed as obtained from G′′′ \K by contracting some of the degree

2 paths of length more than 4pd + 2 to 4pd + 2. If we can prove that after doing this

contraction in G′′′ \K, the connected components still belongs to at least one of the graph

class Πi with i ∈ [d], we are done.

Suppose not. Then there is a forbidden set C in one of the connected components of the

graph G′ \K. Let us now uncontract the edges that we contracted. We will show that in the

resulting graph G′′′ \K, there exists a forbidden set C′ which is isomorphic to G[C]. This

contradicts our assumption that G′′′ \K is such that each of its components belongs to at

least one of the graph classes Πi for i ∈ [d].

92

Let C =
⋃

i∈[d]Ci where Ci isomorphic to the graph Hi ∈Fi. Let α be one of the paths in the

graph G′′′ \K with degree 2 vertices which was contracted to a path α ′ of length 4pd+2 in

the graph G′ \K. The graph induced by Ci∩V (α ′) is such that each connected component

is a path of length at most p. In the path α too we can find a subset of vertices such that the

graph induced by those vertices is isomorphic to the graph induced by Ci∩V (α ′). Since α ′

has size 4pd +2 > p, no connected component of Ci for any i ∈ [d] has both the endpoints

of α ′. Hence, if we replace Ci∩V (α ′) with the corresponding subsets we identified in

α , we get subsets C′i so that the set C′ =
⋃

i∈[d]C
′
i in the graph G′′′ \K is a forbidden set

isomorphic to C. The connectivity of C′ is preserved as we only uncontract some edges.

This contradicts that G′′′ \K is such that each of its components belongs to at least one of

the graph classes Πi for i ∈ [d]. This concludes the proof of the claim.

We now prove that X r is a (|Kr \X r|,U ′)-important separator in G′ \Knr. This implies that

the set returned from the recursive procedureR′ intersects Kr completing the proof of the

lemma.

Claim 3.2.2. X r is a (|Kr \X r|,U ′)-important separator in G′ \Knr.

We first prove that the set X r is (|Kr \ X r|,U ′)-good W1− Pnr
1 separator in the graph

G′′′ \Knr. We know that X is a W1−Pnr
1 separator in the graph G. Hence X r is W1−Pnr

1

separator in the graph G\Xnr. Since G′′′ \Knr is an induced subgraph of G\Xnr, we can

conclude that X r is a W1−Pnr
1 separator in the graph G′′′ \Knr. Since the graph G′ \Knr

can be seen as obtained from G′′′ \Knr by contracting some degree 2 paths with none of

the edges with endpoints in X r contracted, X r is also a W1−Pnr
1 separator in the graph

G′ \Knr.

Suppose X r is not a (|Kr \X r|,U ′)-good W1−Pnr
1 separator in the graph G′ \Knr. Then

the graph G′ \ (Knr∪X r) does not contain a (Π1,Π2, . . . ,Πd)-modulator of size |Kr \X r|

with undeletable set U ′. We claim that the set Kr \X r is indeed such a (Π1,Π2, . . . ,Πd)-

modulator . Suppose not. Then there exists a forbidden set C in the graph G′ \ (Knr∪X r∪

(Kr \X r)) = G′ \K. But this contradicts Claim 3.2.1.

93

Hence it remains to show that the set X r is a (|Kr \X r|,U ′)-important W1−Pnr
1 separator

in the graph G′ \Knr. Suppose this is not the case. Then there exists a (|Kr \X r|,U ′)-good

W1−Pnr
1 separator X ′ in the graph G′ \Knr that well-dominates X r. We claim that if so,

the set X̂ = X ′∪Xnr is an (`,U)-good W1−W2 separator in the graph G with undeletable

set U well-dominating X . This would contradict that X is an (`,U)-important W1−W2

separator in the graph G.

Let Y ′ be the set witnessing that X ′ is a (|Kr \X r|,U ′)-good W1−Pnr
1 separator in the graph

G′ \Knr. Note that X ′∪Y ′ is contained in the set R[W1,P1] as it cannot contain vertices

from the set (V (Ĝ)\Pr
1)⊆U ′.

We now claim that Y ′∪ (Knr \Xnr) is the set witnessing that X̂ is an (`,U)-good W1−W2

separator in the graph G. Suppose this is not the case. Then there exists a forbidden

set C in the graph G[R[W1, X̂]] \ (X ′ ∪Xnr ∪Y ′ ∪ (Knr \Xnr)) = G[R[W1, X̂]] \K′ where

K′ = X ′∪Y ′∪Knr.

If C ⊆ V (G′) \K′, then the forbidden set C occurs in the graph G′ \K′ contradicting

that X ′ is an (|Kr \X r|,U ′)-good W1−Pnr
1 separator in the graph G′ \Knr. Hence C∩

((R[W1, X̂] \K′) \V (G′)) is non-empty. Let C =
⋃

i∈d Ci where G[Ci] is isomorphic to

graphs Hi ∈ Fi. Let C+
i = Ci ∩NR[W1,P1] and C+ =

⋃
i∈d C+

i . We have graphs G[C+
i]

isomorphic to graphs Hi[Bi] for subsets Bi ⊆ V (Hi). Let CPr
1

i = Ci ∩Pr
1 . Since G[C] is

connected, for vertices ai ∈Ci and a j ∈C j with i, j ∈ [d], there is a path Pai,a j from ai to a j

in the graph G[R[W1, X̂]\K′. Let the first and last vertices of Pr
1 in Pai,a j be the pair tρ(ai,a j).

Then for the tuple 〈H,BH,Pr
1,TH〉 where H = (H1, . . . ,Hd) ∈ H,BH = (B1, . . . ,Bd) ∈

BH,Pr
1 = (CPr

1
1 , . . . ,CPr

1
d) ∈ Pr

1 and TH = (t1, . . . , t(|C|2)
) ∈ TH, there exists a forbidden set

CM ⊆ (V2∪V (G1)) of the graph G\Knr which is marked.

Let CM,i be the set such that G[CM,i] is isomorphic to Hi. Also let C+
M,i =CM,i∩ (V (F)).

The set CM can be viewed as replacing the vertices C+ of C with C+
M.

We first claim that the set of vertices of CM is present in the graph G′ \K′. Recall that

94

G′ is obtained by contracting some degree 2 vertices of G′′′ which in turn is obtained by

gluing the graphs G[R[W1,P1]] and G[V (F)]. All the vertices of CM is present in the graph

G′′′ \Knr as it contains all the marked vertices. In particular, all the vertices of CM in the set

V2 are contained in the set M′, the set of vertices of all the marked forbidden sets contained

in V2. When we transform G′′′ to G′, we only contract degree 2 paths in V2 none of whose

vertices belong to M′ and hence CM. Hence CM is a present in the graph G′ \K′ as well.

If we can prove that CM is in a connected component of G′ \K′, we can conclude that

CM is a forbidden set in the graph G′ \K′ contradicting that X ′ is a (|Kr \X r|,U ′)-good

W1−Pr
1 separator in the graph G′ \Knr.

Suppose CM is not in a connected component of G′ \K′. Then there exist a pair of vertices

u1,u2 ∈CM such that there is no path between u1 and u2 in the graph G′ \K′. But since

CM corresponds to the tuple 〈H,BH,Pr
1,TH〉 with TH = (t1 . . . t(|C|2)

) ∈ TH, there exists a

path Pu1,u2 in the graph G\Knr between u1 and u2 such that the first and last vertices of

the path Pu1,u2 intersecting Pr
1 is the pair tρ(u1,u2) = (τ1,τ2).

Let us also look at vertices u′1,u
′
2 ∈C such that in the isomorphism from C to CM, ui is

mapped to u′i for i ∈ {1,2}. Since C is connected, there is a path Pu′1,u
′
2

between u′1 and u′2

in the graph G[R[W1, X̂]\K′. Note that the forbidden sets C and CM are both candidates

for the marking procedure corresponding to the same tuple 〈H,BH,Pr
1,TH〉. Hence we

can assume that the path Pu′1,u
′
2

in the graph G[R[W1, X̂]\K′ is such that the first and last

vertices of the path Pu′1,u
′
2

intersecting Pr
1 is the pair (τ1,τ2).

We now identify all the vertices of Pr
1 present in the path Pu′1,u

′
2

and partition them accord-

ingly. Specifically, let us partition the path Pu′1,u
′
2

into a sequence of subpaths α1, . . . ,αq

where the path α1 is from u′1 to τ1, the path αq is from τ2 to u′2, the path αi where 1 < i < q

has its endpoints in Pr
1 and none of the internal vertices of the paths contain vertices of

Pr
1 . We aim to use the path Pu1,u2 and the connectivities provided by the forest F in V2 to

construct a path between u1 and u2 in the graph G′ \K′ leading to a contradiction.

95

Let us now look at the cases based on whether ui,u′i ∈ R[W1,P1] or not.

• Case 1, u1,u2 ∈ R[W1,P1]: Note that since both the vertices are in V (G′), we have

ui = u′i for i ∈ {1,2}. The paths αi which is not present in G′ \K′ are those whose

internal vertices contains some vertices of V2 \V (F). The paths α1 and αq are

present in G′ \K′ as all its internal vertices including u1 and u2 are not in V2. Hence

such paths αi have both its endpoints in Pr
1 . Also since Pr

1 separates R(W1,P1) from

V2 \Pr
1 , all paths αi with 1 < i < q are such that all its internal vertices are either in

R(W1,P1) or in V2 \Pr
1 . The former kind of paths are also present in G′ \K′.

Hence the path αi that contains vertices of V2 \F are such that its endpoints are in Pr
1

and all its internal vertices in V2. The forest F preserved connectivities of vertices in

Pr
1 within V2 including the endpoints of αi. Hence we can replace αi with the unique

path between its endpoints in the forest F . Note that such a path is disjoint from K′

and hence is present in G′ \K′.

By replacing all such paths αi with those in F , we get a walk from u1 to u2 in the

graph G′ \K′.

• Case 2, u1 ∈ R[W1,P1],u2 ∈V2 \Pr
1 : In this case, we have u1 = u′1. But it could be

the case that u2 6= u′2. Also it could be that u′2 is a vertex not in G′ \K′.

Like we did in the previous case, we could replace all the paths αi to paths in G′ \K′

using the forest F . Hence we have a path from u1 to τ2 in the graph G′ \K′. We now

focus on the path αq. We know that there is a subpath from τ2 to u2 in the path Pu1,u2

in the graph G\Knr. Since τ2 is the last vertex of Pr
1 in the path, we know that this

subpath is contained in the set V2. Since F is a forest that preserved connectivities of

vertices between M′ and Pr
1 in the set V2, there is a path from τ2 to u2 in the forest F .

Again note that such a path is disjoint from K′ and hence is present in G′ \K′. We

replace αq with this path in F to get a walk from u1 to u2 in the graph G′ \K′.

• Case 3, u2 ∈ R[W1,P1],u1 ∈V2 \Pr
1 : This case is symmetric to the previous case and

96

P r
1

Pnr
1

W1 W2

X ′ Y ′

t1
u1

t2

u2

u′
2

Knr

Figure 3.7: A demonstration of how u1,u2 ∈CM are connected in the graph G′\K′ (denoted
by the grey region). We know from the marking procedure that both C and CM are such
that paths between vertices corresponding to u1 and u2 have its first and last vertex of
Pr

1 as t1 and t2. We replace the path between t2 and u′2 with the path between t2 and u2
guaranteed from the forest F .

the proof goes accordingly.

• Case 4, u1,u2 ∈V2 \Pr
1 : In this case, it could be that u2 6= u′2 and u2 6= u′2. Also it

could be that the vertices u′1 and u′2 are not in G′ \K′.

We replace the path α1 to one in the forest as we done for αq in Case 2. Since τ1 is

the first vertex of Pr
1 in the subpath between u1 and τ1 in the path Pu1,u2 , such a path

is contained in the set V2. The forest F preserves the connectivity between u1 and τ1

in V2. Hence we can replace the path α1 with the one in F which is disjoint from K′.

The other paths αi are replace similarly as in Case 2 to get a walk from u1 to u2 in

the graph G′ \K′.

Hence the graph G[CM] is connected in the graph G′ \K′. Hence CM is a forbidden set

in the graph G′ \K′ contradicting that X ′ is (|Kr \X r|,U ′)-good W1−Pnr
1 separator in the

graph G′ \Knr. Hence |X r| is (|Kr \X r|,U ′)-important W1−Pnr
1 separator in the graph

G′ \Knr. This concludes the proof the claim and thereby the lemma.

From Lemma 3.2.10, we can infer using induction hypothesis that the BRANCHING-

SET procedure called recursively with input as ((G′ \ ∆(Ĝ), |Kr|,W1,Pnr
1 ,U ∪V (Ĝ) \

Pr
1), |X r|, |Kr \X r|) returns a setR′ that intersects Kr. Since Kr ⊆ Z, we can conclude that

R′ intersects Z as well. This completes the correctness of the BRANCHING-SET procedure.

97

Bounding the setR: Let us look at the recursion tree of the BRANCHING SET procedure.

The value of λ drops at every level of the recursion tree. Since λ ≤ k, the depth of the

tree is bounded by k. The number of branches at each node is at most k3 ·2k · k! ·2k10(pd)2

(k3 for choice of λ ′, j and `′, 2k for choice of Pr
i , k! for the choice of the bijection δ and

2k10(pd)2 ≥ 2(
k5(pd)2

2)(k5(pd)2

k+1

)
for the size ofH). Since, at each internal node, we add at most

2k vertices (corresponding to P1∪P2), we can conclude that the size ofR is bounded by

2k10(pd)2+2
.

Let Rλ ′,`′ denote the set returned by BRANCHING-SET procedure with input (I,λ ′, `′).

We defineR as the union of the setsRλ ′,`′ for all possible values of λ ′ and `′. After this,

in the MAIN-ALGORITHM procedure we simply branch on every vertex v ofR creating

new instances (G−v,k−1,W1,W2) of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC. If k < 0,

we return NO. If Reduction Rule 2 applies, we use it to reduce the instance. If this results

in a non-separating instance with W =W1∪W2, we apply the algorithm in Lemma 3.2.5 to

solve the instance. Else we recursively run MAIN-ALGORITHM on the new instance.

Bounding running time of MAIN-ALGORITHM: We now bound the running time T (k)

for MAIN-ALGORITHM for the instance I = (G,k,W1,W2).

The depth of the branching tree is bounded by k and the branching factor at each node is

|R| ≤ 2k10(pd)2+2
. Let γ = 10(pd)2. We have the number of search nodes in the branching

tree to be bounded by (2kγ+2
)k = 2kγ+3

. In each node, the time spent is Q(k)+2ηknδ where

Q(k) is the running time for the BRANCHING-SET for the instance (I,λ , `) and 2ηknδ

is the time spent in the preprocessing stage for some constants η and δ . Hence we have

T (k) = 2kγ+3
(

Q(k)+2ηknδ

)
.

Let us focus on the search tree for the BRANCHING-SET procedure. We know that the

depth of the tree is bounded by k and the branching factor is bounded by 2kγ+2
. Again,

the number of search nodes in the branching tree to be bounded by (2kγ+2
)k = 2kγ+3

. The

time spent at each node is lognT (k− 1)+ 2kγ

nε . The lognT (k− 1) term comes from

the at most logn many calls of sub-instances of MAIN-ALGORITHM called with strictly

98

smaller values of k. The 2kγ

nε for some constant ε term comes from the other processing

which includes the algorithm to enumerate graphs of size at most 2k5(pd)2
. Hence we have

Q(k) = 2kγ+3
(

lognT (k−1)+2kγ

nε

)
.

We now substitute the value of Q(k) above in the equation for T (k) to get

T (k) = 2kγ+3
[
2kγ+3

(
lognT (k−1)+2kγ

nε

)
+2ηknδ

]
= 22kγ+3

lognT (k−1)+22kγ+3+kγ

nε

where assuming ε > δ (if not, set ε = δ +1), we can remove the term containing nδ . We

now have a recurrence on T (k). We now prove by induction that T (k)≤ 23kγ+4
(logn)knε .

The base case is true as T (0) ≤ nε . Assume the statement holds true for 1 ≤ i ≤ k− 1.

Substituting the values for T (k−1) in the recurrence for T (k), we have

T (k) ≤ 22kγ+3
logn

[
23(k−1)γ+4

(logn)k−1nε

]
+22kγ+3+kγ

nε

≤ 22kγ+3
logn

[
23(k−1)kγ+3

(logn)k−1nε

]
+23kγ+3

nε

= 23k·kγ+3−3kγ+3+2kγ+3
(logn)knε +23kγ+3

nε

≤ 23k·kγ+3−1(logn)knε +23kγ+3
nε

≤ 23k·kγ+3
(logn)knε

By observing that (logn)k ≤ (k logk)k +n, we get T (k) = 24kγ+4
nε+1.

Lemma 3.2.11. DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC can be solved in 2q(k)nO(1) time

where q(k) = 4k10(pd)2+4 +1.

Proof. Let (G,k,W) be the instance of DISJOINT FINITE (Π1,Π2, . . . ,Πd)-VDC. We first

apply Lemma 3.2.5 to see if there is a non-separating solution for the instance. If not,

we branch over all 2k+1 subsets W1 ⊂W and for each such choice of W1, apply MAIN-

ALGORITHM procedure with input (G,k,W1,W2, /0) to check if (G,k,W1,W2 = W \W1)

has a solution containing a W1−W2 separator. The correctness and running time follows

99

from those of Lemma 3.2.5 and correctness of the MAIN-ALGORITHM procedure.

As mentioned in Section 3.2.1, the time taken to solve FINITE (Π1,Π2, . . . ,Πd) VER-

TEX DELETION is 2k+1 · 2q(k)nO(1) = 2q(k)+1nO(1). This proves Theorem 5 as q(k) is a

polynomial in k with p,d as constants.

3.3 Conclusion

We have initiated a study on vertex deletion problems to scattered graph classes and showed

that the problem is non-uniformly FPT when there are a finite number of graph classes,

the deletion problem corresponding to each of the finite classes is known to be FPT and

the properties that a graph belongs to each of the classes is expressible in CMSO logic.

Furthermore, we show that in the case where each graph class has a finite forbidden set, the

problem is fixed-parameter tractable by a 2poly(k)nO(1) time algorithm. The existence of a

polynomial kernel for these cases are natural open problems. Exploring the fixed-parameter

tractability of scattered versions of edge deletion and edge contraction problems is also

open. In the traditional deletion setting, for most cases the techniques that helped to design

algorithms for vertex deletion problems also works for edge deletion problems with minor

changes. Hence, it would be interesting to see if the techniques in this chapter can be

applied to scattered edge deletion problems with slight modifications.

In a recent work, Agrawal et al. [2] generalized Theorem 4 by showing ELIMINATION

DISTANCE TOH and TREEWIDTH DECOMPOSITION TOH are FPT whenH is a scattered

graph class satisfying the conditions for INDIVIDUALLY TRACTABLE (Π1,Π2, . . . ,Πd)

VERTEX DELETION.

100

Chapter 4

Faster Algorithms for Pairs of Scattered

Graph Classes

In this chapter, we do a deep dive on pairs of specific graph classes (Π1,Π2) in which

we would like the connected components of the resulting graph to belong to, and design

simpler and more efficient FPT algorithms.

We look at specific variants of the following problem.

Π1 OR Π2 DELETION

Input: An undirected graph G = (V,E), two hereditary graph classes Π1 and Π2 with

Fi as the forbidden family for graphs whose each connected component belongs to Πi

for i ∈ {1,2}.

Parameter: k

Question: Is there a set S ⊆ V (G) of size at most k such that every connected

component of G−S is in Π1 or in Π2?

Note that the forbidden families Fi are for graphs whose each connected component is a

graph belonging to Π1 for i ∈ {1,2}. It is not the forbidden family of graphs associated

to the graph class Πi. This distinction does not make a difference for most of the popular

101

graph classes as the union of connected components of such graph classes still belong to

the graph class. Examples include bipartite graphs, chordal graphs, planar graphs, interval

graphs and forests. But it is important for classes such as cliques and split graphs. The

forbidden family for cliques is the singleton graph 2K1. But if the graph class is such that

each connected component is a clique, 2K1 is present by taking a single vertex from two

different components of the graph. The forbidden family in this case can be proven to be

the singleton graph P3. In our definition of Π1 OR Π2 DELETION, when the graph class Π1

is the class of cliques F1 = {P3} is the forbidden family of graphs where each component

is clique.

We describe a general algorithm for Π1 OR Π2 DELETION under some conditions which

covers pairs of several graph classes. While the specific conditions on the pairs of classes

to be satisfied by this algorithm are somewhat technical and are explained in Section 4.3.2

and 4.3.3.2, we give a high-level description here.

We first make the reasonable assumption that the vertex deletion problems to the graph

class Π1 and to Π2 have FPT algorithms. As we want every connected component of

the graph after removing the solution vertices to be in Π1 or in Π2, any pair of forbidden

subgraphs H1 ∈ F1 and H2 ∈ F2 cannot both be in a connected component of G. Let us

look at such a component C with J1,J2 ⊆ V (C) such that G[Ji] is isomorphic to Hi for

i ∈ {1,2} and look at a path P between the sets J1 and J2. Assuming that the graphs in

families F1 and F2 are connected graphs, we can conclude that the solution has to hit the

set J1∪ J2∪P allowing a branching on such sets.

But if the path is too large, such a branching does not lead to efficient algorithms. The

generalization comes up from our observation that for certain pairs of graph classes, if we

focus on a pair of forbidden subgraphs H1 ∈F1 and H2 ∈F2 that are “closest" to each other,

then there is always a solution that does not intersect the shortest path P between them.

This helps us to branch on the vertex sets of these forbidden graphs. However, note that

the forbidden graphs may have unbounded sizes. We come up with a notion of forbidden

102

pair (Definition 4.3.2 in Section 4.3.1) and show that there are pairs of graph classes that

have a finite number of forbidden pairs even if each of them has infinite forbidden sets.

For some such pairs, we can bound the branching step to obtain the FPT algorithm.

4.1 Preliminaries

We introduce some notations and observations on Π1 OR Π2 DELETION that we use in

this chapter. Throughout this chapter, we assume that the graphs in the forbidden families

F1 and F2 associated to Π1 OR Π2 DELETION are connected which is true for most of the

well-known graph classes. We use Π(1,2) to denote the class of graphs whose connected

components are in the graph classes Π1 or Π2.

Definition 4.1.1 (Minimal Forbidden Family). A forbidden family F for a graph class Π

is said to be minimal if for all graphs H ∈ F , we have that F −{H} is not a forbidden

family for Π.

Let F1×F2 = {(H1,H2) : H1 ∈ F1 and H2 ∈ F2}. The following characterization for

Π(1,2) is easy to see.

Observation 4.1.1. A graph G is in the graph class Π(1,2) if and only if no connected

component C of G contains H1 and H2 as induced graphs in C, where (H1,H2) ∈ F1×F2.

Let J1,J2 ⊆V (G) such that G[Ji] is isomorphic to graphs Hi for i ∈ {1,2} and (H1,H2) ∈

F1×F2. We call the sets J1 and J2 as the vertex sets of the pair (H1,H2).

In the following lemma, we show that any solution to Π1 OR Π2 DELETION must either

hit the vertex sets of a pair in F1×F2 or a path connecting them.

Lemma 4.1.1. Let J1,J2 ⊆V (G) such that G[Ji] is isomorphic to graphs Hi for i ∈ {1,2}

and (H1,H2) ∈ F1×F2. Let P be a path between J1 and J2 in the graph G. Then any

solution for Π1 OR Π2 DELETION with input graph G contains one of vertices in the set

J1∪ J2∪P.

103

Proof. Suppose this is not the case. Since the graphs H1 and H2 are connected, the graph

G′ induced by the set J1∪ J2∪P is a connected subgraph of G. If a solution X does not

intersect J1∪ J2∪P, then G′ occurs in a connected component C of the remaining graph

G−X . The presence of graphs H1 and H2 in C implies that C is neither in Π1 nor in Π2

giving a contradiction that X is a solution.

We use the following reduction rule for Π1 OR Π2 DELETION whose correctness easily

follows.

Reduction Rule 3. If a connected component C of G is in Π1 or in Π2, then delete C from

G. The new instance is (G−V (C),k).

4.2 FINITE Π1 OR Π2 DELETION with forbidden paths

In this section, we restrict the problem to the case where both the forbidden families F1

and F2 are finite and there exists a path Pα in one of the families, say F1 where α is

some constant. Observe that for several natural graph classes (like cluster graphs, edgeless

graphs, split cluster graphs, cographs) paths above a certain length is forbidden.

We define the problem below.

FINITE Π1 OR Π2 DELETION WITH PATH

Input: An undirected graph G, and an integer k. Furthermore, for a fixed integer α ,

the path Pα ∈ F1 .

Question: Does G have a set S of at most k vertices such that every connected

component of G−S is in Π1 or in Π2?

Since both F1 and F2 are finite, the set F1×F2 is also finite.

Let us look at a pair (H1,H2) such that there exist copies of H1 and H2 in G as induced

subgraphs with the distance between the vertex sets being the smallest among all the pairs

104

in F1×F2. We call such a pair the closest pair. We claim below that this distance is

bounded by α .

Lemma 4.2.1. Let (H1,H2) ∈ F1×F2 be a closest pair in the graph G and let (J1,J2) be

a pair of vertex subsets corresponding to the pair. Let P be a shortest path between J1 and

J2. Then |V (P)| ≤ α .

Proof. Suppose this is not the case. Then let us look at the set J′1 of the last α vertices of

P which is isomorphic to Pα ∈ F1. Then the pair of vertex subsets (J′1,J2) corresponds to

the pair (Pα ,H2) in the graph G with the distance between them as zero. This contradicts

that (J1,J2) is the vertex subsets of the closest pair.

Hence, we have the following branching rule for closest pairs where we branch on the

vertex subsets plus the vertices of the path. The correctness follows from Lemma 4.1.1.

Branching Rule 2. Let (J∗,T ∗) be the vertex subsets of a closest pair (H1,H2) ∈ F1×F2.

Let P∗ be a path corresponding to this forbidden pair. Then for each v ∈ J∗∪T ∗∪P∗, we

delete v and decrease k by 1, resulting in the instance (G− v,k−1).

Using this branching rule, we have an FPT algorithm for FINITE Π1 OR Π2 DELETION

WITH PATH. Let di be the size of a maximum sized finite forbidden graph in Fi for

i ∈ {1,2}. Let c = d1 +d2 +α−2.

Theorem 8. FINITE Π1 OR Π2 DELETION WITH PATH can be solved in O∗(ck) time.

Proof. We describe our algorithm as follows. Let (G,k) be an input instance of FINITE Π1

OR Π2 DELETION WITH PATH. We exhaustively apply Reduction Rule 3 and Branching

Rule 2 in sequence to get an instance (G′,k′). The algorithm finds the closest pair to apply

Branching Rule 2 by going over all pairs in (H1,H2) ∈ F1×F2 and going over all subsets

of size |V (H1)|+ |V (H2)| of the graph(which is still a polynomial in n) and checking the

distance between them.

105

Every component of G′ is such that it is F1-free or F2-free or in other words in Π1 or Π2.

Hence if k > 0, we return no-instance. Otherwise, we return yes-instance. Since the largest

sized obstruction in these rules is at most c = d1 +d2 +α−2, the bounded search tree of

the algorithm has ck nodes bounding the running time to ck poly(n). This completes the

proof.

We now describe a family of graphs such that instead of focusing that each component is

free of pairs in F1×F2, we can check whether the graph is free of graphs in this family.

Let F ′ be the minimal family of graphs such that for each member H ∈ F ′, there ex-

ist subsets J1,J2 ⊆ V (H) such that H[Ji] is isomorphic to Hi ∈ Fi for i ∈ {1,2} and

dH(J1,J2)≤ α−1.

From Lemma 4.1.1, it can be inferred that any graph without any members from F ′ as

induced subgraphs belong to the graph class Π1,2. Hence, the set F ′ is the forbidden

family for the graph class Π1,2. We now use this family to give a kernel and approximation

algorithm for FINITE Π1 OR Π2 DELETION WITH PATH.

The size of any member H ∈ F ′ is bounded by c = d1 +d2 +α−2. Suppose not. Then

we can identify a vertex v ∈ V (H) which is not part of J1,J2 and a path P of length at

most α−1 between them. But then the graph H \{v} is also in F ′ contradicting that F ′ is

minimal. This also proves that the size of F ′ is bounded by 2(
c+1

2) which is the bound on

the number of graphs of at most c vertices.

Theorem 9. FINITE Π1 OR Π2 DELETION WITH PATH admits a c-approximation algo-

rithm, and a O(kc) sized kernel.

Proof. We know that F ′ is a finite forbidden family for Π1,2 with any forbidden graph

present in F ′ has size at most c = d1 +d2 +α−2. Since d1,d2 and α are all constants,

FINITE Π1 OR Π2 DELETION WITH PATH is an instance of an implicit c-HITTING SET

problem [45]. We can get a c-approximation algorithm by finding induced graphs in G

106

which are isomorphic to any forbidden set in F ′ and adding all its vertices (which is at most

c) to the solution as usually done in implicit c-HITTING SET problems. Using Sunflower

Lemma [45, 54], FINITE Π1 OR Π2 DELETION WITH PATH admits a kernel of size O(kc).

This completes the proof.

4.3 Π1 OR Π2 DELETION with a constant number of for-

bidden pairs

4.3.1 Forbidden Characterization for Π1 OR Π2 DELETION

Unfortunately, the algorithm in Section 4.2 does not work when at least one of the sets F1

or F2 is infinite as the family F1×F2 is no longer finite. But we observed that for many

problems, branching on most of the pairs in F1×F2 could be avoided.

We aim to identify such ‘redundant’ pairs in F1×F2. Instead of ensuring that such pairs

are absent in a graph for an instance of Π1 OR Π2 DELETION, we identify some graphs

which are forbidden in such a graph. Since ensuring the absence of forbidden graphs

comes in the familiar HITTING SET framework, a characterization for Π(1,2) using such

forbidden graphs and remaining irredundant pairs would be useful.

For example, let F1 = {C3,C4} and F2 = {D4,C4} where D4 is the graph obtained after

removing an edge from K4. We have F1×F2 = {(C3,D4),(C3,C4),(C4,D4),(C4,C4)}.

Since C4 ∈ F1∩F2, the graph C4 is forbidden for the graph class Π1,2. Hence the pairs

(C4,C4),(C3,C4) and (C4,D4) are redundant by identifying that C4 is forbidden. Now note

that C3 is an induced subgraph of the graph D4. Hence the pair (C3,D4) can also be made

redundant by identifying that D4 is forbidden for Π(1,2).

We now formalize such forbidden graphs in the graph class Π(1,2) by defining the notion

of super-pruned family. Recall that if a family of graphs is minimal, no element of it is an

107

induced subgraph of some other element of the family.

Definition 4.3.1 (Super-Pruned Family). An element of a super-pruned family sp(G1,G2)

of two minimal families of graphs G1 and G2 is a graph that (i) belongs to one of the two

families and (ii) has an element of the other family as induced subgraph.

The family sp(G1,G2) can be obtained from an enumeration of all pairs in G1×G2 and

adding the supergraph if one of the graphs is an induced subgraph of the other. The family

obtained is made minimal by removing the elements that are induced subgraphs of some

other elements.

For example, let (Π1,Π2) be (Interval, Trees), with the forbidden families F1 =

{net, sun, long claw, whipping top, † -AW,‡-AW}∪{Ci : i≥ 4} (See Figure 4.2) and F2

as the set of all cycles. Note that all graphs Ci with i≥ 4 are in sp(F1,F2) as they occur in

both F1 and F2. The remaining pairs of F1×F2 contain triangles from F2. If the graph

from F1 is a net, sun, whipping top, †-AW or ‡-AW, it contains triangle as an induced

subgraph. Hence these graphs are also in the family sp(F1,F2).

We now show that graphs in sp(F1,F2) are forbidden in the graph class Π(1,2).

Lemma 4.3.1. If a graph G is in the graph class Π(1,2), then no connected component of

G contains a graph in sp(F1,F2) as induced subgraphs.

Proof. Suppose a graph H ∈ sp(F1,F2) occur as induced subgraph of a connected com-

ponent C of G. From the definition of Super-Pruned Family, we can associate a pair

(H1,H2) ∈ F1×F2 to H such that either H is isomorphic to H1 and H2 is an induced

subgraph of H1 or vice-versa. Without loss of generality, let us assume the former. Since

Hi ∈ Fi, we know that C is not in the graph class Πi for i ∈ {1,2}. This contradicts that G

is in the graph class Π(1,2).

Hence any pair containing a graph from sp(F1,F2) are redundant. But sp(F1,F2) does

not capture all the pairs in F1×F2. We now define the following family to capture the

108

remaining pairs.

Definition 4.3.2 (Forbidden Pair Family). A forbidden pair family Fp, of F1 and F2,

consists of all pairs (H1,H2) ∈ F ′p such that both H1 /∈ sp(F1,F2) and H2 /∈ sp(F1,F2).

For example, if Π1 is the class of interval graphs and Π2 is the class of forests, we have

already shown that sp(F1,F2) contains all the graphs in F1 except long-claw. The only

remaining pair is (long-claw, triangle) and the singleton set contain this pair forms the

forbidden pair family.

Now we characterize Π(1,2) based on the super-pruned family and the forbidden pair family

associated with F1 and F2 as follows. This is used in the algorithms in Section 4.3.

Lemma 4.3.2. The following statements are equivalent.

• Each connected component of G is either in Π1 or Π2.

• The graph G does not contain graphs in the super-pruned family sp(F1,F2) as

induced subgraphs. Furthermore, for pairs (H1,H2) in the forbidden pair family of

F1 and F2, H1 and H2 both cannot appear as induced subgraphs in a connected

component of G.

Proof. To prove the forward direction, note that from Lemma 4.3.1, the G does not contain

graphs in the super-pruned family sp(F1,F2) as induced subgraphs. Hence, suppose that

there exists a pair (H1,H2) ∈ Fp in a connected component χ of G. But then χ cannot

be in Π1 due to the presence of H1 and cannot be in Π2 due to the presence of Π2 giving

a contradiction. To prove the converse, suppose that G contains a component χ which

is neither in Π1 nor in Π2. Then there exist graphs H1 ∈ F1 and H2 ∈ F2 occuring as

induced subgraphs of χ . If H1 occurs as an induced subgraph of H2 or vice-versa, then the

supergraph occurs in sp(F1,F2) giving a contradiction. Else we have H1 ∈F1 \ sp(F1,F2)

and H2 ∈ F2 \ sp(F1,F2). Hence (H1,H2) ∈ Fp giving a contradiction.

109

We now define useful notions of forbidden sets and closest forbidden pairs for the graph

class Π(1,2).

Definition 4.3.3. We call a minimal vertex subset Q⊆V (G) as a forbidden set correspond-

ing to the graph class Π(1,2) if G[Q] is isomorphic to a graph in sp(F1,F2) or G[Q] is

connected and contains both H1 and H2 as induced subgraphs for some forbidden pair

(H1,H2) of Π(1,2).

Definition 4.3.4. We say that a forbidden pair (H1,H2) is a closest forbidden pair in a

graph G if there exists subsets J1,J2 ⊆V (G) such that G[J1] is isomorphic to H1, G[J2] is

isomorphic to H2 and the distance between J1 and J2 in G is the smallest among all such

pairs over all forbidden pairs of F1 and F2. We call the pair of vertex subsets (J1,J2) as

the vertex subsets corresponding to the closest forbidden pair. We call a shortest path P

between J1 and J2 as the path corresponding to the closest forbidden pair.

4.3.2 The case with forbidden paths

We now aim to give an algorithm for Π1 OR Π2 DELETION when the forbidden families F1

and F2 be infinite but the forbidden pair family Fp is finite. We also assume that Pα ∈ F1.

Let us list the conditions that Π1 OR Π2 DELETION is required to satisfy.

1. The vertex deletion problems for the graph classes Π1 and Π2 are FPT with algo-

rithms to the respective classes being A1 and A2.

2. Fp, the forbidden pair family of F1 and F2 is of constant size.

3. The path Pα ∈ F1.

110

Pα -FREE-(Π1,Π2)-DELETION

Input: An undirected graph G, graph classes Π1,Π2 with associated forbidden fami-

lies F1 and F2 such that Conditions 1 - 3 are satisfied and an integer k.

Question: Does G have a set S of at most k vertices such that every connected

component of G−S is either in Π1 or in Π2?

Since the forbidden pair set is finite, we have the following Branching Rule for closest

forbidden pairs which is similar to Branching Rule 2 where we branch on the vertex subsets

plus the vertices of the path. The correctness follows from Lemma 4.1.1.

Branching Rule 3. Let (J∗,T ∗) be the vertex subsets of a closest pair (H1,H2) ∈ F1×F2.

Let P∗ be a path corresponding to this forbidden pair. Then for each v ∈ J∗∪T ∗∪P∗, we

delete v and decrease k by 1, resulting in the instance (G− v,k−1).

From here on, assume that (G,k) be an instance at which Reduction Rule 3 and Branching

Rule 3 are not applicable. Note that any component of G is now free of forbidden pairs.

Let F1
p denote the family of graphs H1 where (H1,H2) ∈ Fp. Similarly define F2

p as the

family of graphs H2 where (H1,H2) ∈ Fp. By the definition of forbidden pairs, every pair

(H1,H2) with Hi ∈ F i
p is the forbidden pair set Fp. Hence a graph that does not contain

any forbidden pairs is F1
p-free or F2

p-free. With this observation, the following results are

easy to see.

Lemma 4.3.3. Let C be a connected component of G that is F i
p-free for i ∈ {1,2}. If

G[C] has no Πi vertex deletion set of size k, then (G,k) is a no-instance. Otherwise, let X

be a minimum Πi vertex deletion set of G[C]. Then (G,k) is a yes-instance if and only if

(G−V (C),k−|X |) is a yes-instance.

Proof. Suppose that the premise of the statement holds and k′ = k−|X |.

(⇐) The backward direction is trivial. If G−V (C) has a feasible solution S′ of size at

most k′. Then, we can add the minimum sized Πi vertex deletion set X of G and output

111

S′∪X has a feasible solution of size k′+ |X |= k.

(⇒) We prove the forward direction now. Suppose that S∗ be a feasible solution of size at

most k to (G,k) and let Y = S∗∩V (C). We prove that D = (S∗ \Y)∪X is also a feasible

solution to (G,k) and |Y | ≥ |X |. If we manage to prove that Y is a Πi-deletion vertex set

of C then we are done. This is because since X is a minimum Πi-deletion vertex set of C,

|X | ≤ |Y |. Since the graph C−Y is in the graph class Πi, the connected components G−D

are still in Π1 or Π2 after replacing Y with X . This implies that D is a feasible solution to

(G,k) and |D| ≤ |S∗|.

We now prove that Y is indeed a Πi-deletion vertex set of C. Suppose not. Then there

exist a forbidden set Q in C−Y . Note that C does not contain any forbidden pairs and is

G1-free. Hence from Lemma 4.3.2, Q is isomorphic to a graph in sp(F1,F2)\G1. But in

that case, from the definition of Super-Pruned Family, any graph H ∈ sp(F1,F2) contains

an induced subgraph which is isomorphic to some graph in Fi. Hence the presence of Q

contradicts that Y is a Πi-deletion set. This completes the proof.

We are ready to prove our main theorem statement of this section. Let f (k) =

max{ f1(k), f2(k)} where O∗(fi(k)) is the running time for the algorithm Ai. Also let

c be the maximum among the size of graphs in G1 and the integer max(H1,H2)∈Fp)(|H1|+

|H2|+α−2).

Theorem 10. Pα -FREE-(Π1,Π2)-DELETION can be solved in

O∗(max{ f (k),ck})-time.

Proof. We describe our algorithm as follows. Let (G,k) be an input instance of Pα -FREE-

(Π1,Π2)-DELETION. We exhaustively apply Reduction Rule 3 and Branching Rule 3 in

sequence to get an instance (G′,k′). The algorithm finds the closest pair to apply Branching

Rule 3 by going over all pairs in (H1,H2) ∈ Fp and going over all subsets of size at most

|V (H1)|+ |V (H2)| of the graph (which is still a polynomial in n) and checking the distance

between them. Since the largest sized obstruction in these rules is at most c, the bounded

112

search tree of the algorithm so far has ck−k′ nodes. Hence, every component of G′ is such

that it is F1
p-free but has graphs in F2

p as induced subgraphs, or vice-versa. In the first

case, we invoke the O∗(f1(|X |))-time algorithm for Π1 VERTEX DELETION on G[C] to

compute a minimum Π1 vertex deletion set X of G[C]. In the second case, we invoke

the O∗(f2(|X |))-time algorithm for Π2 VERTEX DELETION to compute a minimum Π2

vertex deletion set X of G[C]. The correctness follows from Lemma 4.3.3. This creates

the total number of nodes in the search tree to ck−k′ f (k′), bounding the running time to

ck−k′ f (k′)poly(n). This completes the proof.

We now give an approximation algorithm for Pα -FREE-(Π1,Π2)-DELETION when for

i ∈ {1,2}, Πi VERTEX DELETION has an approximation algorithm with approximation

factor ci.

Theorem 11. Pα -FREE-(Π1,Π2)-DELETION has a d-approximation algorithm where

d = max{c,c1,c2}.

Proof. Let G be the input graph. Let SOPT be the minimum sized set such that in the graph

G−SOPT , every connected component is either in Π1 or Π2. Let |SOPT |= OPT .

Let us define the family S1 as follows. Initially S1 = /0. In polynomial time, we find the

closest forbidden pair (J∗,T ∗) in G with P∗ being a shortest path between the pair, add

J∗∪T ∗∪P∗ to S1 and delete J∗∪T ∗∪P∗ from G. We repeat this step until it is no longer

applicable. Let S1 be the set of vertices that is present in any pair of graphs in S1. From

Lemma 4.1.1, we can conclude that any feasible solution of G must contains a vertex from

each member of the family S1. Since the members of S1 are pairwise disjoint, we have

that |SOPT ∩S1| ≥ |S1|.

Let G′ = G−S1. We now construct a set S2 as follows. Let C1, . . . ,Cq be the connected

components of G′. If a connected component Ci has no graphs in F j
p as induced subgraph

for j ∈ {1,2}, we apply the c j-approximation algorithm for Π j VERTEX DELETION

on G′[Ci] to obtain a solution Zi. The correctness comes from Lemma 4.3.3. We have

113

S2 =
⋃

i∈[q]Zi. Since (SOPT −S1)∩Ci is an optimal solution for the connected component

Ci of G′, we have that |Zi| ≤ (max{c1,c2})|(SOPT −S1)∩Ci| for all i ∈ [q].

We set S = S1∪S2. We have

|S| = |S1|+ |S2|

≤
(

max
(H1,H2)∈Fp

(|H1|+ |H2|+α−2)
)
|S1|+

q

∑
i=1
|Zi|

≤ c|SOPT ∩S1|+
q

∑
i=1

(max{c1,c2})|(SOPT −S1)∩Ci|

≤ (max{c,c1,c2})|SOPT |

Thus we have a d-approximation algorithm for Pα -FREE-(Π1,Π2)-DELETION.

We now give some examples of Pα -FREE-(Π1,Π2)-DELETION.

4.3.2.1 Cliques or Kt-free graph subclass

We focus on the case of Π1 OR Π2 DELETION when Π1 is the class of cluster graphs(where

every connected component of the graph is a clique) and Π2 is any graph class such that

the complete graph Kt for some constant t is forbidden in this graph and the problem Π2

VERTEX DELETION is known to be FPT. We show that this problem is an example of

Pα -FREE-(Π1,Π2)-DELETION. We will see later that Π2 can be many of the popular

classes including planar graphs, cactus graphs, t-treewidth graph.

Let us formalize the problem.

114

CLIQUE-OR-Kt -FREE-Π2 DELETION

Input: An undirected graph G = (V,E), an integer k and Π2 is the graph class which

is Kt-free for some constant t and Π2 VERTEX DELETION has an FPT algorithm A

with running time O∗(f2(k′)) for solution size k′.

Parameter: k

Question: Is there S⊆V (G) of size at most k such that every connected component

of G−S is either a clique graph, or in Π2?

We now show that Conditions 1 - 3 are satisfied by CLIQUE-OR-Kt -FREE-Π2 DELETION.

The problems CLIQUE VERTEX DELETION and Π2 VERTEX DELETION has O∗(1.27k)

[36] and O∗(f2(k)) time FPT algorithms parameterized by the solution size k respectively.

Hence Condition 1 is satisfied by CLIQUE-OR-Kt -FREE-Π2 DELETION. Since P3 ∈ F1,

Condition 3 is satisfied by CLIQUE-OR-Kt -FREE-Π2 DELETION. The only condition

remaining to be proven is Condition 2 which we do below.

Lemma 4.3.4. Condition 2 is satisfied by CLIQUE-OR-Kt -FREE-Π2 DELETION.

Proof. Let us first infer what the forbidden pair family corresponding to CLIQUE-OR-Kt -

FREE-Π2 DELETION is. We have the forbidden family for Π1 as F1 = {P3}. Note that we

don’t know what the forbidden family F2 for the graph class Π2 is. We only know that the

graph Kt is present in F2. A crucial observation is that this is all needed to infer that the

forbidden pair family for CLIQUE-OR-Kt -FREE-Π2 DELETION.

We know that a graph is P3-free if and only if it is a collection of cliques. Hence, every

graph H ∈F2 that is not a collection of cliques, contains P3 ∈F1 as induced graphs. Hence

all such graphs H belong to the Super-Pruned family sp(F1,F2). We also know that every

graph in F2 is connected. Hence, the only graph in the minimal family F2 that is P3-free is

the graph Kt . Hence the forbidden pair family is the set {(P3,Kt)} which is of size one.

Since all the conditions of Pα -FREE-(Π1,Π2)-DELETION is satisfied by CLIQUE-OR-Kt -

FREE-Π2 DELETION, we have the following theorem.

115

Theorem 12. CLIQUE-OR-Kt -FREE-Π2 DELETION has an FPT algorithm has running

time O∗(max{(t +2)k, f2(k)}).

Proof. Observe that (P3,Kt) is the only forbidden pair for CLIQUE-OR-Kt -FREE-Π2 DELE-

TION, the path between the closest forbidden pair is always empty (or in other words, the

vertex subsets of the pair intersect). Hence the branching factor the Branching Rule is at

most |V (P3)|+ |V (Kt)|−1 = t +2.

Hence from Theorem 10, we have aO∗(max{(t +2)k, f2(k)}) time algorithm for CLIQUE-

OR-Kt -FREE-Π2 DELETION.

We also give an approximation algorithm for CLIQUE-OR-Kt -FREE-Π2 DELETION. But we

appropriately change the definition of CLIQUE-OR-Kt -FREE-Π2 DELETION where instead

of the assumption that Π2 VERTEX DELETION has an FPT algorithm with running time

O∗(f2(k′)) for solution size k′, we assume that Π2 VERTEX DELETION has a polynomial

time approximation algorithm with approximation factor f2.

Observing that d = max{c,c1,c2} = max{t + 2, f2} from Theorem 11, we have the fol-

lowing theorem.

Theorem 13. CLIQUE-OR-Kt -FREE-Π2 DELETION has an approximation algorithm with

approximation factor max{t +2, f2}.

We now give examples for the graph class Π2 in CLIQUE-OR-Kt -FREE-Π2 DELETION

resulting in FPT and approximation algorithms for the corresponding problems.

• Let Π2 be the class of trees. Since triangles are forbidden in trees, we have t = 3. The

problem Π2 VERTEX DELETION corresponds to FEEDBACK VERTEX SET which

has a O∗(3.618k) time FPT algorithm [106] and a 2-approximation algorithm [11].

We notice here that the closest (P3,C3) pair always intersect on at least two vertices.

Hence the branching factor of Branching Rule 3 can be improved to t +1 = 4 in this

case.

116

• Let Π2 be the class of cactus graphs. The graph K4 is forbidden in cactus graphs as it

has two triangles sharing an edge. Hence we have t = 4. The problem Π2 VERTEX

DELETION corresponds to CACTUS VERTEX DELETION which has a O∗(26k) time

FPT algorithm [21].

• Let Π2 be the class of planar graphs. Since K5 is not planar, we have t = 5. The

problem Π2 VERTEX DELETION corresponds to PLANAR VERTEX DELETION

which has an kO(k)poly(n) time FPT algorithm [96] and a logO(1)n-approximation

algorithm with running time nO(logn/ log logn) [100].

• Let Π2 be the class of η-treewidth graphs. Since Kη+2 has treewidth η + 1, it is

forbidden in such graphs. The problem Π2 VERTEX DELETION corresponds to η

TREEWIDTH VERTEX DELETION which has a 2O(k))nO(1) time FPT algorithm and

a O(1)-approximation algorithm [70].

We have the following corollary.

Corollary 4.3.1. Π1 OR Π2 DELETION when Π1 is the class of cliques and Π2 is

the class of

– trees has an O∗(4k) time FPT algorithm and a 4-approximation algorithm.

– cactus graphs has an O∗(26k) time FPT algorithm.

– planar graphs has an kO(k)poly(n) time FPT algorithm and a logO(1)n-

approximation algorithm with running time nO(logn/ log logn).

– η-treewidth graphs has a max{(η +4)k,2O(k))}nO(1) time FPT algorithm and

a O(1)-approximation algorithm.

117

4.3.2.2 Split or Bipartite Graphs

SPLIT-OR-BIPARTITE DELETION

Input: An undirected graph G = (V,E), an integer k.

Parameter: k

Question: Is there S⊆V (G) of size at most k such that every connected component

of G−S is either a split graph or bipartite?

The family F1 for graphs whose each connected component is a split graph is F1 =

{C4,C5,P5, necktie, bowtie}. [30]. A necktie is the graph with vertices {a,b,c,d,e} where

{a,b,e} forms a triangle and {a,b,c,d} forms a P4. A bowtie is the graph obtained from

a necktie by adding the edge (b,d). The family F2 for graphs whose each connected

component is a bipartite graph is the set of odd cycles.

The problems SPLIT VERTEX DELETION and ODD CYCLE TRANSVERSAL hasO∗(1.27k)

[49] and O∗(2.314k) time [117] FPT algorithms parameterized by the solution size k

respectively. Hence Condition 1 is satisfied by SPLIT-OR-BIPARTITE DELETION. Since

P5 ∈ F1, Condition 3 is satisfied by SPLIT-OR-BIPARTITE DELETION.

The graph C5 is common in both families whereas P5 is an induced subgraph of odd cycles

Ci with i ≥ 7. Hence the family sp(F1×F2) contains of all members in F2 except C3.

Since both necktie and bowtie contains triangles, they are part of sp(F1×F2) as well. The

only remaining pairs are (C4,C3) and (P5,C3) which forms the forbidden pair family Fp.

Since it is of size two, Condition 2 is satisfied.

Hence, we have the following corollary from the algorithms for Pα -FREE-(Π1,Π2)-

DELETION. Observing that the largest obstruction set that we branch on is for the pair

(C4,C3) with a path of length at most four between them, we have c = 11. The problem

ODD CYCLE TRANSVERSAL has a log(OPT) approximation algorithm where OPT is the

size of the optimal solution. This dominates the approximation factor of the algorithm

118

obtained from Theorem 11.

Corollary 4.3.2. SPLIT-OR-BIPARTITE DELETION can be solved in

O∗(11k)-time and has a log(OPT) approximation algorithm where OPT is the size of the

optimal solution.

4.3.3 Algorithms for Π1 OR Π2 DELETION without forbidden paths

We have seen examples of Π1 OR Π2 DELETION where even though the families Fi

are infinite, we manage to come up with fast FPT algorithms. This is mainly thanks to

Branching Rule 3 whose branching factor is bounded due to the fact that the path between

them is bounded. We now look at examples of Π1 OR Π2 DELETION where paths are

not present in the sets Fi. Hence the path between the closest forbidden pair is no longer

bounded. We observe that for certain pairs of graph classes, there is always an optimal

solution that does not intersect the path.

We give a general algorithm for pairs of graph classes where we enforce this condition.

We first look at the simple case of CLAW-FREE-OR-TRIANGLE-FREE DELETION as a

precursor to the algorithm.

4.3.3.1 Claw-free or Triangle-Free graphs

We define the problem.

CLAW-FREE-OR-TRIANGLE-FREE DELETION

Input: An undirected graph G = (V,E) and an integer k.

Parameter: k

Question: Is there S⊆V (G) of size at most k such that every connected component

of G−S is either a claw-free graph, or a triangle-free graph?

The forbidden pair family corresponding to the graph class is of size one which is

119

x1 xi xdu v

wclaw
triangle

Figure 4.1: An illustration of a shortest path between a closest (claw, triangle) pair.

{(K1,3,C3)}. We now describe a branching rule corresponding to the closest forbidden pair

in the graph.

Branching Rule 4. Let (J∗,T ∗) be the vertex subsets of a closest claw-triangle pair in a

connected component of G, where G[J∗] is isomorphic to a claw, and G[T ∗] is isomorphic

to a triangle. Then for each v ∈ J∗∪T ∗, delete v and decrease k by 1, resulting in the

instance (G− v,k−1).

We now prove that Branching Rule 4 is safe. Let P∗ := x0,x1, . . . ,xd−1,xd be a shortest

path between J∗ and T ∗ of length dG(J∗,T ∗) = d with x0 = u ∈ J∗ and xd = v ∈ T ∗. Let C

be the connected component of the graph G− (J∗∪T ∗) containing the internal vertices of

P∗. We have the following lemma.

Lemma 4.3.5. The graph corresponding to C is the path P∗ without its end vertices.

Furthermore, the only vertices of C adjacent to J∗∪T ∗ are x1 and xd−1 which are only

adjacent to vertices u and v respectively.

Proof. Suppose that there is a vertex w ∈ V (C) \V (P∗) that is adjacent to a vertex

xi ∈ V (P∗) with 1 ≤ i ≤ d− 1. Let us look at the graph induced by the set of vertices

{w,xi−1,xi,xi+1} in G. If w is adjacent to xi−1, then the graph induced by the vertices

T ′ = {w,xi−1,xi} forms a triangle. Then since dG(J∗,T ′) < dG(J∗,T ∗), the pair (J∗,T ′)

contradicts that (J∗,T ∗) is the closest forbidden pair in the graph G. We can similarly

prove that w is not adjacent to xi+1. When w is not adjacent to both the vertices xi−1 and

xi+1, the graph induced by the vertices J′ = {w,xi−1,xi,xi+1} forms a claw. Then since

dG(J′,T ∗)< dG(J∗,T ∗), the pair (J′,T ∗) contradicts that (J∗,T ∗) is the closest forbidden

pair in the graph G.

120

Hence we conclude that there is no vertex w ∈V (C)\V (P∗) that is adjacent to a vertex

xi ∈V (P∗) with 1≤ i≤ d−1. Since C is defined as the connected component of graph

G− (J∗∪T ∗) containing the internal vertices of P∗, the first statement of the claim follows.

The second statement is contradicted only when there is an edge from a vertex xi ∈V (P∗)

with 1 ≤ i ≤ d − 1 to the set J∗ ∪ T ∗ apart from the edges (u,x1) and (xd−1,v) . If

2 ≤ i ≤ d− 2, this creates a shorter path P′ between J∗ and T ∗ via this edge giving a

contradiction. For i = 1, in the case x1 is adjacent to some vertex w ∈ J∗ \ {u}, we can

show that either the graph induced by the set of vertices {w,u,x1,x2} is a claw or the graph

induced by the set of vertices {w,u,x1} is a triangle, both contradicting that (J∗,T ∗) is

the closest forbidden pair in the graph G. For i = d− 1, in the case xd−1 is adjacent to

w ∈ T ∗ \{v}, we can show that the graph induced by the vertices {w,xd−1,v} is a triangle

contradicting that (J∗,T ∗) is the closest forbidden pair in the graph G. This covers all the

cases.

Lemma 4.3.6. Branching Rule 4 is sound.

Proof. Suppose not. In this case, all the optimal solutions for a CLAW-FREE-OR-

TRIANGLE-FREE DELETION instance is such that it does not intersect J∗ ∪ T ∗. Let

P∗ := u,x1, . . . ,xd−1,v be a shortest path between J∗ and T ∗ of length dG(J∗,T ∗) = d.

Since the graphs G[J∗] and G[T ∗] cannot be in the same connected component after delet-

ing the solution, all the optimal solutions X has to intersect the set of internal vertices of

P∗.

We now claim that X ′ = (X \ (P∗ \{u}))∪{v} is also an optimal solution for G. Suppose

not. Then there is a forbidden set Q such that Q∩X ′ = /0. Note that Q is a connected set

and intersects some vertex xi ∈ P∗ \{u,v} with 1≤ i≤ d−1 as X is a feasible solution.

The graph G[Q] contain a forbidden pair for (K1,3,C3) and hence contains a cycle. Hence

Q is not fully contained in the connected component C of the graph G\ (J∗∪T ∗) which is

is P∗ \{u,v} from Lemma 4.3.5. Hence we conclude that Q contains some vertex outside

P∗ \{u,v} as well.

121

From Lemma 4.3.5, the only neighbors of C is u and v via x1 and xd−1 respectively. Since

v ∈ X ′ and Q is connected, we can conclude that Q contains the subpath P′ from u to xi.

We now claim that even after deleting the vertices of this subpath from Q except u, the set

remains forbidden. This contradicts that Q is a forbidden set as it is not a minimal set.

Since Q is a forbidden set, it contains vertex subsets that are isomorphic to a claw and a

triangle. From Lemma 4.4.3, we can conclude that none of the vertices of the subpath P′

can be part of any triangle in G. None of these vertices can be part of a claw in G either as

it contradicts that (J∗,T ∗) is the closest forbidden pair. Since v ∈ X ′ disconnects the path

P∗, the subpath P′ is not part of a path connecting a claw and a triangle either. Hence the

set after removing the vertices of P′ from Q is still a forbidden set contradicting that Q is

minimal.

We are ready to give the algorithm for CLAW-FREE-OR-TRIANGLE-FREE DELETION.

Theorem 14. CLAW-FREE-OR-TRIANGLE-FREE DELETION can be solved in O∗(7k)

time.

Proof. Let (G,k) be an input instance of CLAW-FREE-OR-TRIANGLE-FREE DELETION.

We exhaustively apply Reduction Rule 3 and Branching Rule 4 in sequence to get an

instance (G′,k′) such that any component of G′ is either claw-free or triangle-free. Note

that finding the closest claw-triangle pair can be done by going over all subsets of size

at most 7, checking if they do induce a claw and a triangle and finding the shortest

path between them. The correctness follows from Lemma 4.3.6. If k′ < 0, we return

yes-instance. Else, we return yes-instance.

Let us look at the graph where the above rules are not applicable and k′ ≥ 0. We claim

that the graph is such that every connected component is either claw-free or triangle-free.

Suppose not. Then there exists a component C which contains both a claw and a triangle

as induced subgraphs. This contradicts that Branching Rule 4 is no longer applicable from

the presence of the closest such claw-triangle pair in C. This proves the correctness of the

122

algorithm.

Since we branch on a set of size at most 7 in Branching Rule 4, the bounded search tree

of the algorithm has at most 7k nodes. This bounds the running time to 7knO(1). This

completes the proof.

We also give an approximation algorithm for CLAW-FREE-OR-TRIANGLE-FREE DELE-

TION using similar ideas.

Theorem 15. CLAW-FREE-OR-TRIANGLE-FREE DELETION has a 7-approximation

algorithm.

Proof. Let G be the input graph. The approximation algorithm for CLAW-FREE-OR-

TRIANGLE-FREE DELETION is as follows. Let S1 be a family of sets initialized to /0. We

find a closest forbidden pair (J∗,T ∗) in G′, add J∗∪T ∗ to S1 and delete J∗∪T ∗ from G′.

We repeat this step until it is no longer applicable. Let SOPT be the minimum sized set

such that in the graph G−SOPT , every connected component is either a claw-free graph or

a triangle-free graph. Let |SOPT |= OPT . Let S1 be the set of vertices that is present in any

set in S1. From the safeness proof of Branching Rule 4, we can conclude that any feasible

solution of G must contain a vertex from each set of the family S1. Since the union of all

the sets in S1 is a feasible solution, we have that |S1|= 7|S1| ≤ 7|SOPT |.

Thus we have a 7-approximation algorithm for CLAW-FREE-OR-TRIANGLE-FREE DELE-

TION.

4.3.3.2 Algorithm for SPECIAL INFINITE-(Π1,Π2)-DELETION

Now, we show that the algorithm ideas from CLAW-FREE-OR-TRIANGLE-FREE DELE-

TION are applicable for a larger number of pairs of graph classes. Later in Section 4.4, we

give other examples for pairs of graph classes where the same ideas work.

123

We define a variant of Π1 OR Π2 DELETION called SPECIAL INFINITE-(Π1,Π2)-

DELETION satisfying the following properties.

1. The vertex deletion problems for the graph classes Π1 and Π2 are FPT with algo-

rithms to the respective classes being A1 and A2.

2. Fp, the forbidden pair family of F1 and F2 is of constant size.

3. Let (H1,H2) ∈ Fp be a closest forbidden pair in the graph G with (J1,J2) being the

vertex subsets corresponding to the pair. Let P be a shortest path between J1 and J2.

There is a family G1 such that

• G1 is a finite family of graphs of bounded-size (independent of the size of G),

and

• in the graph G that is G1-free, if a forbidden set Q intersects the internal vertices

of P, then Q contains the right endpoint of P.

SPECIAL INFINITE-(Π1,Π2)-DELETION

Input: An undirected graph G = (V,E), graph classes Π1,Π2 with associated forbid-

den families F1 and F2 such that Conditions 1 - 3 are satisfied and an integer k.

Parameter: k

Question: Is there a vertex set S of size at most k such that every connected component

of G−S is either in Π1 or in Π2?

Note that the first two conditions for the problem are the same as those in Pα -FREE-

(Π1,Π2)-DELETION. Only the Condition 3 is changed which is tailored to prove the

soundness of the branching rule we introduce.

Towards an FPT algorithm for SPECIAL INFINITE-(Π1,Π2)-DELETION, We give the

following branching rule whose soundness is easy to see.

124

Branching Rule 5. Let (G,k) be the input instance and let Q⊆V (G) such that G[Q] is

isomorphic to a graph in G1. Then, for each v ∈V (Q), delete v from G and decrease k by

1. The resulting instance is (G− v,k−1).

From here on we assume that Branching Rule 5 is not applicable for G and so G is G1-free.

We now focus on connected components of G which contain forbidden pairs. We have the

following branching rule.

Branching Rule 6. Let (J∗,T ∗) be the vertex subsets of a closest forbidden pair (H1,H2)∈

Fp. Then for each v ∈ J∗∪T ∗, we delete v and decrease k by 1, resulting in the instance

(G− v,k−1).

We now prove the correctness of the above branching rule.

Lemma 4.3.7. Branching Rule 6 is safe.

Proof. Let P∗ be a shortest path between J∗ and T ∗ with endpoints u ∈ J∗ and v ∈ T ∗.

Since G[J∗] and G[T ∗] cannot occur in the same connected component after deleting the

solution, the solution must intersect J∗∪T ∗∪P∗. We now prove that there exists an optimal

solution of (G,k) that does not intersect the internal vertices of P∗.

Let X be an optimal solution such that X ∩ (J∗∪T ∗) = /0. Since X ∩ (J∗∪T ∗∪P∗) 6= /0,

X must intersect the internal vertices of P∗. We claim that X ′ = (X \ (P∗ \{u}))∪{v} is

also an optimal solution for G. Suppose not. Then there exists a forbidden set Q such that

X ′∩Q = /0. Since X ∩Q 6= /0, we know that Q intersects the internal vertices of P∗. But

then by Condition 3, we know that Q contains v as well giving a contradiction.

We now give the FPT algorithm SPECIAL INFINITE-(Π1,Π2)-DELETION which is the

same algorithm in Theorem 10, but the Branching Rule 3 is replaced by Branching Rule 5

and Branching Rule 6 in sequence. The correctness comes from Lemmas 4.3.7 and 4.3.3.

Again we define f (k) = max{ f1(k), f2(k)} where O∗(fi(k)) is the running time for the

algorithm Ai. Also let c be the maximum among the size of graphs in G1 and the integer

125

max(H1,H2)∈Fp)(|H1|+ |H2|). Note that the branching factor of Branching Rule 6 is reduced

to max(H1,H2)∈Fp)(|H1|+ |H2|) as we do not branch on the vertices of the path between the

vertex sets of the closest forbidden pair.

Theorem 16. SPECIAL INFINITE-(Π1,Π2)-DELETION can be solved in

O∗(max{ f (k),ck})-time.

We now give an approximation algorithm for SPECIAL INFINITE-(Π1,Π2)-DELETION

when for i ∈ {1,2}, Πi VERTEX DELETION has an approximation algorithm with approxi-

mation factor ci. The algorithm is similar to that of Theorem 11 with an additional primary

step of greedily adding vertex subsets of induced graphs isomorphic to members in the

family G1 to the solution. Note that any optimal solution should contain at least one of the

vertices of each such vertex subset.

Theorem 17. SPECIAL INFINITE-(Π1,Π2)-DELETION has a d-approximation algorithm

where d = max{c,c1,c2}.

4.4 Examples of SPECIAL INFINITE-(Π1,Π2)-DELETION

Verifying whether Conditions 2 and 3 are satisfied for a general Π1 and Π2 is non-trivial.

Hence we look at specific pairs of graph classes Π1 and Π2 can prove that they are examples

of SPECIAL INFINITE-(Π1,Π2)-DELETION.

We start by showing that the problems CLAW-FREE-OR-TRIANGLE-FREE DELETION is

indeed examples of SPECIAL INFINITE-(Π1,Π2)-DELETION.

Lemma 4.4.1. CLAW-FREE-OR-TRIANGLE-FREE DELETION is an example of SPECIAL

INFINITE-(Π1,Π2)-DELETION.

Proof. We show that Conditions 1 - 3 are satisfied by CLAW-FREE-OR-TRIANGLE-FREE

DELETION. The problems CLAW-TREE VERTEX DELETION and TRIANGLE VERTEX

126

DELETION has simple O∗(4k) and O∗(3k) time FPT algorithms parameterized by the

solution size k via a simple branching on claws and triangles respectively. Hence Condition

1 is satisfied by CLAW-FREE-OR-TRIANGLE-FREE DELETION. The forbidden pair family

for CLAW-FREE-OR-TRIANGLE-FREE DELETION is of size one which is {K1,3,C3}.

Hence Condition 2 is satisfied. Finally, from Lemma 4.3.6, we can conclude that Condition

3 is satisfied as well.

Hence CLAW-FREE-OR-TRIANGLE-FREE DELETION is an example of SPECIAL

INFINITE-(Π1,Π2)-DELETION. We have Let f (k) = max{4k,3k} = 4k and c =

max(H1,H2)∈Fp)(|H1|+ |H2|) = 7. Hence from Theorem 16, we have a O∗(7k) time al-

gorithm for CLAW-FREE-OR-TRIANGLE-FREE DELETION. This is the same running time

obtained independently in Theorem 14.

We also have d = max{c,c1,c2} = 7 giving a 7-approximation for CLAW-FREE-OR-

TRIANGLE-FREE DELETION from Theorem 17, which is the same approximation factor

obtained independently in Theorem 15.

We now give examples of other pairs of graph classes Π1 and Π2 whose scattered deletion

problem is an example of SPECIAL INFINITE-(Π1,Π2)-DELETION. The core part in each

of the cases below is establishing that Condition 3 is satisfied. We do so by establishing

structural properties for the shortest path corresponding to the closest forbidden pair. Such

properties vary for each case.

4.4.1 Interval or Trees

We define the problem.

127

(b) net

(c) whipping top (d) sun

(e) †-AW

(f) ‡-AW

t1

t2

t3

t1

t1

t1

t2

t2

t2

t3

t3

t3

s

s

l

l

r

r

b0

b0

bd+1

bd+1

b1 b2 bi bd−1 bd

b2b1 bi bd−1 bd

c

c1 c2

(g) X2

(h) X3

(a) long-claw (T2)

Figure 4.2: Obstructions for Graph Classes

INTERVAL-OR-TREE DELETION

Input: An undirected graph G = (V,E) and an integer k.

Parameter: k

Question: Is there S⊆V (G) of size at most k such that every connected component

of G−S is either an interval graph, or a tree?

We have the following forbidden subgraph characterization of interval graphs.

Lemma 4.4.2. ([109]) A graph is an interval graph if and only if it does not contain net,

sun, hole, whipping top, long-claw, †-AW, or ‡-AW as its induced subgraphs.

See Figure 4.2 for an illustration of the graphs mentioned as forbidden subgraphs for

interval graphs.

We now give a characterization for graphs whose every connected component is an interval

graph or a tree. Recall from Section 4.3.1 that the forbidden pair family Fp of this pair

of graph classes is (long claw, triangle) and sp(F1,F2) is {net, sun, hole, whipping top,

†-AW, ‡-AW}. The following is a corollary from Lemma 4.3.2.

Corollary 4.4.1. The following statements are equivalent.

1. Let G be a graph such that every connected component is either an interval graph

or a tree.

2. G does not have any net, sun, hole, whipping top, †-AW, ‡-AW as its induced

128

vu x1 xdxi

w trianglelong claw

Figure 4.3: An illustration of a shortest path between a closest (long claw, triangle) pair.

subgraphs. Moreover, G cannot have long-claw and triangle as induced subgraphs

in the same connected component.

We show that Conditions 1 - 3 are satisfied by INTERVAL-OR-TREE DELETION. The

problems INTERVAL VERTEX DELETION and FEEDBACK VERTEX SET has O∗(10k)

[34] and O∗(3.618k) [106] time FPT algorithms parameterized by the solution size k

respectively. Hence Condition 1 is satisfied by INTERVAL-OR-TREE DELETION. The

forbidden pair family for INTERVAL-OR-TREE DELETION is of size one which is the pair

(long-claw, triangle). Hence Condition 2 is satisfied.

It remains to show that Condition 3 is satisfied for INTERVAL-OR-TREE DELETION. We

define G1 be the family of graphs in sp(F1,F2) of size at most 10.

Let (J∗,T ∗) be the vertex subsets of a closest long-claw, triangle pair in a connected

component of G, where J∗ is a long-claw and T ∗ is a triangle. Let P∗ := x0,x1, . . . ,xd−1,xd

be a shortest path between J∗ and T ∗ of length dG(J∗,T ∗) = d with x0 = u ∈ J∗ and

xd = v ∈ T ∗.

A caterpillar graph is a tree in which all the vertices are within distance 1 of a central path.

In the graph G, let C be the connected component of G− (J∗∪T ∗) containing the internal

vertices of P∗. We have the following lemma that helps us to prove Condition 3.

Lemma 4.4.3. The graph C is a caterpillar with the central path being P∗. Furthermore,

the only vertices of C adjacent to J∗∪T ∗ are x1 and xd−1 which are only adjacent to x0

and xd respectively.

Proof. We first look at the neighborhood vertices of the path P∗ in the connected compo-

129

nent C. Let w be such a vertex which is adjacent to a vertex xi with i ∈ {1,2, . . . ,d−1}.

We prove that w is not adjacent to any other vertex in G. Thus there are no cycles in C and

all the vertices in C are at distance at most 1 to P∗ proving that C is a caterpillar.

We go over the possibilities of edges from w to other vertices.

Case 1: Suppose w is adjacent to some vertex x j with j ∈ {0, . . . ,d}. If j = i+ 1 or

j = i−1, then wxix j forms a triangle T ′. Since the path P′ = u,x1, . . . ,xi has length

smaller than P∗ and connects J∗ and T ′, we have that dG(J∗,T ′)< dG(J∗,T ∗). This

contradicts the fact that (J∗,T ∗) is a pair of long-claw and triangle that is the closest.

Hence w is not adjacent to xi−1 and xi+1. Suppose j = i+ 2 or j = i− 2. Then

the graph induced by the set of vertices {w,xi,xi+1,xi+2} or {w,xi,xi−1,xi−2} is C4

contradicting that the graph is G1-free. Hence w is not adjacent to xi−2 and xi+2.

Suppose w is adjacent to x j with 1≤ j < i−2 or i+2 < j ≤ d. Then note that we

have a path from x j to xi of length 2 via w which is shorter than the path xi . . .x j

along P∗. Hence we have a path P′ = ux1 . . .x jwxi . . .xdv or P′ = ux1 . . .xiwx j . . .xdv

from J∗ to T ∗ of length smaller than P∗ contradicting that P∗ is the shortest such

path.

Hence w is not adjacent to any of the vertices in P∗.

Case 2: Suppose w adjacent to a vertex u′ ∈ J∗. We assume without loss of generality that

among all neighbors of w in J∗, u′ is the vertex that is closest to u in J∗, i.e, dJ∗(u,u′)

is minimum. If 3≤ i≤ d−1, we have a path from u′ to xi of length 2 via w which

is shorter than the path from u to xi via P∗. This contradicts that P∗ is the shortest

path from J∗ to T ∗.

Suppose i = 1 or i = 2. Let P′ denote a shortest path between u and u′ in J∗. Since

J∗ is a long-claw, the length of P′ is at most 4. Let us concatenate P′ with the prefix

of the path P∗ from u to xi which is of length at most 2. Then we get a shortest path

from u′ to xi which is of length at least 2 and at most 6. The vertex w is adjacent to

130

only u′ and xi in this path. Hence the graph induced by the set of vertices in this path

plus w is cycle C j with 4≤ j ≤ 8 contradicting that the graph is G1-free.

Hence w is not adjacent to any of the vertices in J∗.

Case 3: Suppose w adjacent to a vertex v′ ∈ T ∗. We have dT ∗(v,v′) = 1 as T ∗ is a triangle.

If 1≤ i≤ d−3, we have a path from v′ to xi of length 2 via w which is shorter than

the path from v to xi via P∗. This contradicts that P∗ is the shortest path from J∗ to

T ∗.

Hence d−2≤ i≤ d−1. Let P′ be the suffix of the path P∗ from xi to v. Then we

get a shortest path from xi to v′ as xiP′vv′ which is of length at least 2 and at most

3. The vertex w is adjacent only vertices xi and v′ in this path. Hence the graph

induced by the set of vertices of this path plus w forms a cycle C j with 4 ≤ j ≤ 5

contradicting that the graph is G1-free.

Hence from the above three cases, w is adjacent to none of the other vertices of

J∗∪T ∗∪P∗.

Case 4: We now prove that w is not adjacent to any other vertex w′ ∈V (C)\P∗. Suppose

that there exists such a vertex w′. We now look at various cases of the adjacency of

w′ with other vertices.

- Case 4.1: We first look at adjacencies of w′ with vertices in P∗.

Suppose w′ is adjacent to vertex xi. Then the graph induced by the set of vertices

T ′ = {w′,w,xi} forms a triangle. Since the path P′ := u,x1, . . . ,xi has length

smaller than P∗ and connects J∗ and T ′, we have that dG(J∗,T ′)< dG(J∗,T ∗).

This contradicts the fact that (J∗,T ∗) is a pair of long-claw and triangle that is

the closest.

Suppose w′ is adjacent to xi+1 or xi−1. Then the graph induced by the set of

vertices {w′,w,xi,xi+1} or {w′,w,xi,xi−1} forms a C4 contradicting that the

graph is G1-free.

131

Hence this is not the case. Now suppose w′ is adjacent to xi+2 or

xi−2. Then the graph induced by the set of vertices {w′,w,xi,xi+1,xi+2} or

{w′,w,xi,xi−1,xi−2,} forms a C5 contradicting that the graph is G1-free.

Hence this is also not the case. Suppose w′ is adjacent to xi+3 or xi−3.

Then the graph induced by the set of vertices {w′,w,xi,xi+1,xi+2,xi+3} or

{w′,w,xi,xi−1,xi−2,xi−3} forms a C6 contradicting that the graph is G1-free.

In the remaining case, w′ is adjacent to x j with 1≤ j < i+3 or i+3 < j ≤ d.

Hence | j− i|> 3. Then note that the path x j,w′,w,xi is of length three which

is shorter than the path between the path between xi and x j in P∗. Hence we

get a path P′ from u to v of length smaller than P∗ contradicting that P∗ is the

smallest such path. Hence w′ is not adjacent to any of the vertices in P∗.

- Case 4.2: Suppose w′ adjacent to a vertex u′ ∈ J∗. We assume without loss of

generality that among all neighbors of w in J∗, u′ is the vertex that is closest

to u in J∗, i.e, dJ∗(u,u′) is minimum. If 3 ≤ i ≤ d− 1, observe that the path

u′w′wxi from u′ to xi is of length 3 which is shorter than the path from u to

xi via P∗. This contradicts that P∗ is the shortest path from J∗ to T ∗. Hence

1≤ i≤ 3. Let P′ denote the path between u and u′ in J∗ and P′′ be the prefix of

the path P∗ from u to xi. Then uP′′xiww′u′P′u forms a cycle C j with 4≤ j≤ 10

with no chords contradicting that the graph is G1-free.

Hence w is not adjacent to any of the vertices in J∗.

- Case 4.3: Suppose w′ adjacent to a vertex v′ ∈ T ∗. We have dT ∗(v,v′) = 1 as T ∗ is

a triangle. If 1≤ i≤ d−4, we have the path v′,w′,w,xi from v′ to xi of length

3 which is shorter than the path from v to xi via P∗. This contradicts that P∗ is

the shortest path from J∗ to T ∗. Hence d−3≤ i≤ d−1. Let P′ be the suffix

of the path P∗ from xi to v. Then v′w′wxiP′vv′ forms a cycle C j with 4≤ j ≤ 6

without any chords contradicting that the graph is G1-free.

Hence we conclude that w′ is not adjacent to any of the vertices in J∗∪T ∗∪P∗. Now look

132

the graph induced by the set of vertices J′ which is

• {w′,w,xi,xi−1,xi−2,xi+1,xi+2} for 3≤ i≤ xd−2 or

• {w′,w,xi,xi−1,u,xi+1,xi+2} when i = 2 or

• {w′,w,xi,u,u′,xi+1,xi+2} when i = 1 for u′ ∈ J∗∩N(u) or

• {w′,w,xi,xi−1,xi−2,v,v′} when i = d−1 for v′ ∈ J∗∩N(v).

In all cases, the graph induced by J′ forms a long-claw. Since the path P′ from J′ to v ∈ T ∗

has length smaller than P∗, we have that dG(J′,T ∗)< dG(J∗,T ∗). This contradicts the fact

that (J∗,T ∗) is a pair of long-claw and triangle that is closest.

Hence no such vertex w′ exists and therefore w has no other neighbors in G.

Hence, the graph C is a caterpillar with the central path being P∗. Furthermore, no vertices

other than x1 and xd−1 is adjacent to J∗∪T ∗.

We now use Lemma 4.4.3 to prove that Condition 3 is satisfied for INTERVAL-OR-TREE

DELETION.

Lemma 4.4.4. Condition 3 is satisfied for INTERVAL-OR-TREE DELETION.

Proof. Condition 3 is not satisfied in the following case. There exist a pair (J∗,T ∗) which is

the vertex subsets of a closest long-claw, triangle pair in a connected component of G, where

J∗ is a long-claw and T ∗ is a triangle. Also there is a shortest path P∗ := x0,x1, . . . ,xd−1,xd

between J∗ and T ∗ of length dG(J∗,T ∗) = d with x0 = u∈ J∗ and xd = v∈ T ∗. A forbidden

set Q of the graph G is such that Q contains some internal vertex xi of the path P but it

does not contain v.

Since the graph G is G1-free, G[Q] can be one of hole, †-AW or a ‡-AW or contain a

forbidden pair for (long claw, triangle). Note that all of these possibilities contain cycles.

But from Lemma 4.4.3, the component C of G\(J∗∪T ∗) that contains the internal vertices

133

of P∗ is a caterpillar which does not contain any cycles. Hence Q is not fully contained in

C.

From Lemma 4.4.3, the only neighbors of C is u and v via x1 and xd−1 respectively. Since

G[Q] is connected and intersects xi, Q∩{u,v} 6= /0. Since we assumed that Q does not

contain the vertex v, we have u ∈Q. In particular, Q contains the entire subpath of P∗ from

u to xi.

Also note that u cannot be part of a subset of three vertices T ′ which is a triangle as

otherwise, we get a pair (J∗,T ′) with distance zero contradicting that (J∗,T ∗) was the

closest pair P∗ has internal vertices. Hence the forbidden set Q cannot be †-AW or a ‡-AW

whose structure forces u to be part of a triangle if it contains xi (which also happens only

in the case when i = 1). Since xi does not have any paths to the vertex u other than the

subpath in P∗, the forbidden set Q cannot be a hole as well.

Hence Q can only correspond to a (long claw, triangle) forbidden pair. In this case, we

claim that the set after removing the vertices x1, . . . ,xi from Q is also a forbidden set. This

contradicts that Q is a forbidden set as by definition they are required to be minimal.

Since Q is a forbidden set, it contains vertex subsets that are isomorphic to a long-claw

and a triangle. From Lemma 4.4.3, we can conclude that none of the vertices x1, . . . ,xi can

be part of any triangle in G. None of these vertices can be part of a long-claw in G either

as it contradicts that (J∗,T ∗) is the closest forbidden pair. Since v disconnects the path P∗,

the subpath x1, . . . ,xi is not part of a path connecting a long-claw and a triangle either as if

so Q must contain the entire path P∗ including v. Hence the set after removing the vertices

x1, . . . ,xi from Q is still a forbidden set contradicting that Q is minimal.

These cases of Q are mutually exhaustive completing the proof of the Lemma.

Hence, we have established that INTERVAL-OR-TREE DELETION is indeed an example of

SPECIAL INFINITE-(Π1,Π2)-DELETION. We have the following theorem.

Theorem 18. INTERVAL-OR-TREE DELETION has an FPT algorithm with running time

134

O∗(10k) and a 10-approximation algorithm.

Proof. We have f (k) = max{10k,3.618k} = 10k and c = max(H1,H2)∈Fp)(|H1|+ |H2|) =

10. Hence from Theorem 16, we have a O∗(10k) time algorithm for INTERVAL-OR-TREE

DELETION.

We know that INTERVAL VERTEX DELETION has an 10-approximation algorithm

[34] and FEEDBACK VERTEX SET has a 2-approximation algorithm [11]. Hence

d = max{c,c1,c2}= 10 giving a 10-approximation for INTERVAL-OR-TREE DELETION

from Theorem 17.

4.4.2 Proper Interval or Trees

We define the problem.

PROPER INTERVAL-OR-TREE DELETION

Input: An undirected graph G = (V,E) and an integer k

Parameter: k

Question: Is there S⊆V (G) of size at most k such that every connected component

of G−S is a proper interval graph or a tree?

We have the following forbidden subgraph characterization of proper interval graphs.

Lemma 4.4.5. [28] A graph is said to be a proper interval graph if and only if it does not

contain claw, net, sun or hole as its induced subgraphs.

We now give a characterization for graphs whose every connected component is a proper

interval graph or a tree.

Lemma 4.4.6. The following statements are equivalent.

1. A graph G is such that every connected component of G is a proper interval graph

or a tree.

135

2. A graph G does not have any net, sun or hole as its induced subgraphs. Moreover,

no connected component of G have a claw and a triangle as induced graphs.

Proof. We prove that the forbidden pair family is (claw, triangle). The forbidden family

F1 for proper interval graphs are claw, net, sun or holes. The forbidden family of trees F2

is cycles. Since cycles of length at least 4 are common in F1 and F2, they are in sp(F1,F2).

Since the graphs net and sun have triangle as induced subgraph, they are in sp(F1,F2) as

well. The only remaining pair in F1×F2 is (claw, triangle). The proof now follows from

the forbidden characterization in Lemma 4.3.2.

Hence Condition 2 is satisfied by PROPER INTERVAL-OR-TREE DELETION as the for-

bidden pair is of size one which is (claw, triangle). Since PROPER INTERVAL VERTEX

DELETION is FPT with a O∗(6k) running time algorithm from [152] and FEEDBACK

VERTEX SET is FPT with a O∗(3.618k) running time algorithm from [106], Condition 1

is satisfied as well.

We now prove that Condition 3 is satisfied by PROPER INTERVAL-OR-TREE DELETION.

Recall Lemma 4.3.5 where we established that the internal vertices of any shortest path

between the vertex sets of a closest claw, triangle pair in a graph do not contain any

neighbors other than the endpoints of the path.

Lemma 4.4.7. Condition 3 is satisfied by PROPER INTERVAL-OR-TREE DELETION.

Proof. Condition 3 is not satisfied in the following case. There exist a pair (J∗,T ∗) which

is the vertex subsets of a closest claw, triangle pair in a connected component of G, where

J∗ is a claw and T ∗ is a triangle. Also there is a shortest path P∗ := x0,x1, . . . ,xd−1,xd

between J∗ and T ∗ of length dG(J∗,T ∗) = d with x0 = u∈ J∗ and xd = v∈ T ∗. A forbidden

set Q of the graph G is such that Q contains some internal vertex xi of the path P but it

does not contain v.

Let G1 = /0. The graph G[Q] can be one of net, sun, hole or contain a forbidden pair

136

for (claw, triangle). Note that all of these possibilities contain cycles. But from Lemma

4.3.5, the component C of G\ (J∗∪T ∗) that contains the internal vertices of P∗ is the path

P∗ \{u,v} which does not contain any cycles. Hence Q is not fully contained in C.

From Lemma 4.3.5, the only neighbors of C is u and v via x1 and xd−1 respectively. Since

G[Q] is connected and intersects xi, Q∩{u,v} 6= /0. Since we assumed that Q does not

contain the vertex v, we have u ∈Q. In particular, Q contains the entire subpath of P∗ from

u to xi.

Also note that u cannot be part of a subset of three vertices T ′ which is a triangle as

otherwise, we get a pair (J∗,T ′) with distance zero contradicting that (J∗,T ∗) was the

closest pair P∗ has internal vertices. Hence the forbidden set Q cannot be a net or a sun

whose structure forces u to be part of a triangle if it contains xi. Since xi does not have any

paths to the vertex u other than the subpath in P∗, the forbidden set Q cannot be a hole as

well.

Hence Q can only correspond to a (claw, triangle) forbidden pair. In this case, we claim

that the set after removing the vertices x1, . . . ,xi from Q is also a forbidden set. This

contradicts that Q is a forbidden set as by definition they are required to be minimal.

Since Q is a forbidden set, it contains vertex subsets that are isomorphic to a claw and

a triangle. From Lemma 4.3.5, we can conclude that none of the vertices x1, . . . ,xi can

be part of any triangle in G. None of these vertices can be part of a claw in G either as

it contradicts that (J∗,T ∗) is the closest forbidden pair. Since v disconnects the path P∗,

the subpath x1, . . . ,xi is not part of a path connecting a claw and a triangle either as if so

Q must contain the entire path P∗ including v. Hence the set after removing the vertices

x1, . . . ,xi from Q is still a forbidden set contradicting that Q is minimal.

These cases of Q are mutually exhaustive completing the proof of the Lemma.

We have f (k) = max{6k,3.618k}= 6k and c = 7. Also we know that PROPER INTERVAL

VERTEX DELETION has an 6-approximation algorithm [152] and FEEDBACK VERTEX

137

SET has a 2-approximation algorithm [11]. Hence we have d = 7 as well. We have the

following theorem.

Theorem 19. PROPER INTERVAL-OR-TREE DELETION can be solved in O∗(7k)-time

and has a 7-approximation algorithm.

4.4.3 Chordal or Bipartite Permutation

We define the problem as follows.

CHORDAL-OR-BIPARTITE PERMUTATION DELETION

Input: An undirected graph G = (V,E) and an integer k

Parameter: k

Question: Is there S⊆V (G) of size at most k such that every connected component

of G−S is either a chordal graph, or a bipartite permutation graph?

The forbidden set for chordal graphs F1 is the set of cycle graphs with a length of at least 4.

We have the following characterization for bipartite permutation graphs which defines F2.

Lemma 4.4.8. ([26]) A graph is said to be a bipartite permutation graph if and only if it

does not contain long-claw,X2,X3,C3 or cycle graphs of length at least 5 as its induced

subgraphs. See Figure 4.2 for an illustration of the graphs X2 and X3.

We now give a characterization for graphs whose each connected component is either a

chordal graph or a bipartite permutation graph.

Lemma 4.4.9. The followings are equivalent.

1. Let G be a graph such that every connected component is either chordal or a bipartite

permutation graph.

2. G does not have any X2,X3 or induced cycle of length at least 5 as induced subgraphs.

Moreover, G cannot have long-claw and C4 in the same connected component or

138

have C4 and triangle in the same connected component.

Proof. We prove that the forbidden pair family is (C4, long-claw) and (C4,C3). The

forbidden family F1 for chordal graphs are holes. The forbidden family of bipartite

permutation graphs F2 i s long-claw,X2,X3,C3 plus cycles of length at least 5. Since cycles

of length at least 5 are common in F1 and F2, they are in sp(F1,F2). Since the graphs

X2,X3 have C4 as induced subgraph, they are in sp(F1,F2) as well. The only remaining

pairs in F1×F2 are (C4, long-claw) and (C4, triangle). The proof now follows from the

forbidden characterization in Lemma 4.3.2.

Hence Condition 2 is satisfied by CHORDAL-OR-BIPARTITE PERMUTATION DELETION

as the forbidden pair is of size two which are (long-claw, C4) and (triangle,C4). Since

CHORDAL VERTEX DELETION is FPT with aO∗(kO(k)) running time algorithm from [35]

and BIPARTITE PERMUTATION VERTEX DELETION SET is FPT with a O∗(9k) running

time algorithm from [26], Condition 1 is satified as well.

It remains to show that Condition 3 is satisfied by CHORDAL-OR-BIPARTITE PERMUTA-

TION DELETION. We define G1 as all the forbidden graphs in sp(F1,F2) of size at most

10.

Let (J∗,T ∗) be the vertex subsets of a closest forbidden pair in a connected component

of a G1-free G, where J∗ is one of long-claw or triangle and T ∗ is a C4. Let P∗ :=

x0,x1, . . . ,xd−1,xd be a shortest path between J∗ and T ∗ of length dG(J∗,T ∗) = d with

x0 = u ∈ J∗ and xd = v ∈ T ∗.

Let C be the connected component of G− (J∗∪T ∗) containing the internal vertices of P∗.

We have the following lemma similar to Lemma 4.4.3 in INTERVAL-OR-TREE DELETION.

Lemma 4.4.10. The graph C is a caterpillar with the central path being P∗ \ {u,v}.

Furthermore, the only vertices of C adjacent to J∗∪T ∗ are x1 and xd−1 which are only

adjacent to x0 and xd respectively.

139

Proof. Let w be a vertex of C other than P∗ adjacent to a vertex xi with i ∈ [d−1]. We

claim that w is not adjacent to any other vertex in G.

We go over possibilities of edges from w to other vertices.

Case 1: Suppose w is adjacent to some vertex x j with j ∈ {0, . . . ,d}. If j = i+ 1 or

j = i−1, then wxix j forms a triangle J′. Since the path P′ = xi, . . . ,xd−1,v that has

length smaller than P∗ connects J′ and T ∗, we have that dG(J′,T ∗) < dG(J∗,T ∗).

This contradicts the fact that (J∗,T ∗) is a closest forbidden pair.

Hence w is not adjacent to xi−1 and xi+1. Suppose j = i+ 2 or j = i− 2. Then

the graph induced by the vertices {w,xi,xi+1,xi+2} or {w,xi,xi−1,xi−2} forms the

graph T ′ which is a C4. Since the path P′ = u, . . . ,xi that has length smaller than P∗

connects J∗ and T ′, we have that dG(J∗,T ′)< dG(J∗,T ∗). This contradicts the fact

that (J∗,T ∗) is a closest forbidden pair.

Suppose now w is adjacent to x j with 0 ≤ j < i− 2 or i+ 2 < j ≤ d. Then note

that we have a path from x j to xi of length two via w which is shorter than the path

xi . . .x j via P∗. This creates a path P′ which is one of u,x1, . . . ,x j,w,xi, . . . ,xd,v or

u,x1, . . . ,xi,w,x j, . . . ,xd,v from J∗ to T ∗ of length smaller than P∗ contradicting that

P∗ is the shortest such path. Hence w is not adjacent to any of the vertices in P∗.

Case 2: Suppose w adjacent to a vertex u′ ∈ J∗. We assume without loss of generality that

among all neighbors of w in J∗, u′ is the vertex that is closest to u in J∗, i.e, dJ∗(u,u′)

is minimum. We have dJ∗(u,u′) ≤ 4 as J∗ is either a long-claw or a triangle. If

3≤ i≤ d−1, we have a path from u′ to xi of length 2 via w which is shorter than

the path from u to xi via P∗. This contradicts that P∗ is the shortest path from J∗ to

T ∗. Hence i = 1 or i = 2. Let P′ denote the path between u and u′ in J∗ and P′′ be

the subpath of P∗ from u to xi. Then u,P′′xiwu′P′u forms a cycle C j with 4≤ j ≤ 8

without any chords. This either contradicts that (J∗,T ∗) is a closest forbidden pair

or G is G1-free. Hence w is not adjacent to any of the vertices in J∗.

140

Case 3: Suppose w adjacent to a vertex v′ ∈ T ∗. We have dT ∗(v,v′)≤ 2 as T ∗ is a C4. If

1≤ i≤ d−3, we have a path from v′ to xi of length 2 via w which is shorter than the

path from v to xi via P∗. This contradicts that P∗ is the shortest path from J∗ to T ∗.

Hence d−2≤ i≤ d−1. Let P′ be the subpath of P∗ from xi to v. Then v′wxiP′vv′

forms a cycle C j with 4 ≤ j ≤ 6 without any chords. This either contradicts that

(J∗,T ∗) is a closest forbidden pair or G is G1-free.

Hence w is adjacent to none of the other vertices of J∗∪T ∗∪P∗.

Case 4: We now prove that w is not adjacent to any other vertex w′ ∈V (G)−(J∗∪T ∗∪P∗).

Suppose that there exists such a vertex w′. Suppose w′ is adjacent to vertex xi. Then

the graph induced by the set of vertices J′ = {w′,w,xi} forms a triangle. Since

the path P′ = xi, . . . ,xd−1,v that has length smaller than P∗ connects J′ and T ∗, we

have that dG(J′,T ∗)< dG(J∗,T ∗). This contradicts the fact that (J∗,T ∗) is a closest

forbidden pair.

- Case 4.1: Suppose w′ is adjacent to xi+1 or xi−1. Then the graph T ′ induced by the

vertices {w′,w,xi,xi+1} or {w′,w,xi,xi−1} forms a C4. Since the path P′ = u, . . . ,xi

that has length smaller than P∗ connects J∗ and T ′, we have that dG(J∗,T ′) <

dG(J∗,T ∗). This contradicts the fact that (J∗,T ∗) is a closest forbiddden pair.

Hence this is not the case. Now suppose w′ is adjacent to xi+2 or xi−2. Then the graph

induced by the set of vertices {w′,w,xi,xi+1,xi+2} or {w′,w,xi,xi−1,xi−2} is C5 con-

tradicting that G is G1-free. Hence this is not the case. Now suppose w′ is adjacent to

xi+3 or xi−3. Then the graph induced by the set of vertices {w′,w,xi,xi+1,xi+2,xi+3}

or {w′,w,xi,xi−1,xi−2,xi−3} is C6 contradicting that G is G1-free.

Now suppose w′ is adjacent to x j with 1≤ j < i+3 or i+3 < j ≤ d. Then we have

a path P′ which is either u,x1 . . .x jw,xi . . .xd,v or u,x1 . . .xiw,x j . . .xd,v from J∗ to

T ∗ of length smaller than P∗ contradicting that P∗ is the smallest such path. Hence

w′ is not adjacent to any of the vertices in P∗.

- Case 4.2: Suppose w′ adjacent to a vertex u′ ∈ J∗. We assume without loss of generality

141

that among all neighbors of w in J∗, u′ is the vertex that is closest to u in J∗, i.e,

dJ∗(u,u′) is minimum. If 3 ≤ i ≤ d−1, we have the path u′w′wxi from u′ to xi of

length 3 via w which is shorter than the path from u to xi via P∗. This contradicts that

P∗ is the shortest path from J∗ to T ∗. Hence 1≤ i≤ 3. Let P′ denote the between u

and u′ in J∗ and P′′ be the prefix of the path P∗ from u to xi. Then uP′′xi,w,w′,u′P′u

forms a cycle C j with 4≤ j≤ 10 with no chords. This either contradicts that (J∗,T ∗)

is a pair that is closest or G is G1-free. Hence w is not adjacent to any of the vertices

in J∗.

- Case 4.3: Suppose w′ adjacent to a vertex v′ ∈ T ∗. We have dT ∗(v,v′)≤ 2 as T ∗ is a C4.

If 1≤ i≤ d−4, we have the path v′,w′,w,xi from v′ to xi of length three which is

shorter than the path from v to xi via P∗. This contradicts that P∗ is the shortest path

from J∗ to T ∗. Hence d−3≤ i≤ d−1. Let P′ be the suffix of the path P∗ from xi

to v. Then v′,w′,w,xiP′v,v′ forms a cycle C j with 4≤ j ≤ 7. This either contradicts

that (J∗,T ∗) is a pair that is closest or G is G1-free.

Hence we conclude that w′ is not adjacent to any of the vertices in J∗∪T ∗∪P∗. Now, we

look at the induced subgraph formed by the set of vertices J′ which is

• {w′,w,xi,xi−1,xi−2,xi+1,xi+2} for 3≤ i≤ xd−2,

• {w′,w,xi,xi−1,u,xi+1,xi+2} when i = 2,

• {w′,w,xi,u,u′,xi+1,xi+2} when i = 1 for u ∈ J∗∩N(u) or

• {w′,w,xi,xi−1,xi−2,v,v′} when i = d−1 for v′ ∈ J∗∩N(v).

This graph forms a long-claw. Since the path P′ from J′ to v ∈ T ∗ has length smaller than

P∗, the distance dG(J′,T ∗)< dG(J∗,T ∗). This contradicts the fact that (J∗,T ∗) is a closest

forbidden pair.

Hence no such vertex w′ exist and therefore w has no other neighbors in G.

142

We now use Lemma 4.4.10 to prove that Condition 3 is satisfied for CHORDAL-OR-

BIPARTITE PERMUTATION DELETION.

Lemma 4.4.11. Condition 3 is satisfied for CHORDAL-OR-BIPARTITE PERMUTATION

DELETION.

Proof. Condition 3 is not satisfied in the following case. There exist a pair (J∗,T ∗) which

is the vertex subsets of a closest long-claw, triangle pair in a connected component of

G, where J∗ one of long-claw or a triangle and T ∗ is a C4. Also there is a shortest path

P∗ := x0,x1, . . . ,xd−1,xd between J∗ and T ∗ of length dG(J∗,T ∗) = d with x0 = u ∈ J∗ and

xd = v ∈ T ∗. A forbidden set Q of the graph G is such that Q contains some internal vertex

xi of the path P but it does not contain v.

Since the graph G is G1-free, G[Q] can be a hole of size at least 11 or contain a forbidden

pair which is (long claw, C4) or (C3,C4). Note that all of these possibilities contain cycles.

But from Lemma 4.4.10, the component C of G \ (J∗ ∪ T ∗) that contains the internal

vertices of P∗ is a caterpillar which does not contain any cycles. Hence Q is not fully

contained in C.

From Lemma 4.4.10, the only neighbors of C is u and v via x1 and xd−1 respectively. Since

G[Q] is connected and intersects xi, Q∩{u,v} 6= /0. Since we assumed that Q does not

contain the vertex v, we have u ∈Q. In particular, Q contains the entire subpath of P∗ from

u to xi.

Since xi does not have any paths to the vertex u other than the subpath in P∗, the forbidden

set Q cannot be a hole. Hence Q can only correspond to a (long claw, C4) or (C3,C4)

forbidden pair. In this case, we claim that the set after removing the vertices x1, . . . ,xi from

Q is also a forbidden set. This contradicts that Q is a forbidden set as by definition they are

required to be minimal.

From Lemma 4.4.3, we can conclude that none of the vertices x1, . . . ,xi can belong to a

subset of vertices in the graph such that the graph induced by the subset is a long-claw,

143

triangle or a C4. This is because otherwise, we get a forbidden pair using this subset which

is closer than the closest forbidden pair (J∗,T ∗). Since v disconnects the path P∗, the

subpath x1, . . . ,xi is not part of a path connecting a forbidden pair either as if so Q must

contain the entire path P∗ including v. Hence the set after removing the vertices x1, . . . ,xi

from Q is still a forbidden set contradicting that Q is minimal.

These cases of Q are mutually exhaustive completing the proof of the Lemma.

We have f (k) = max{kO(k),9k} = kO(k) and c = 11. We know that CHORDAL VERTEX

DELETION has an log2(OPT)-approximation algorithm [3] where OPT denote the size

of the optimal solution. Also, BIPARTITE PERMUTATION VERTEX DELETION has a

9-approximation algorithm [26]. Hence d = max{c,c1,c2}= max{11, log2(OPT),2}=

log2(OPT). We have the following theorem.

Theorem 20. CHORDAL-OR-BIPARTITE PERMUTATION DELETION can be solved in

kO(k)poly(n)-time and has as a log2(OPT)-approximation algorithm..

4.5 Conclusion

We gave faster algorithms for some vertex deletion problems to pairs of scattered graph

classes with infinite forbidden families.

Other than the problems mentioned in the Conclusion section of Chapter 3, an open problem

is to give faster FPT algorithms for problems that do not fit in any of the frameworks

described above, especially problems which do not have a constant sized forbidden pair

family. An example is the case when (Π1,Π2) is (Chordal, Bipartite). The forbidden pair

family for this problem is the set of all pairs (C2i,C3) with i≥ 2 which is not of constant

size.

144

Part II

Deletion distance parameterizations

145

Chapter 5

Structural Parameterizations with

Modulator Oblivion

In this chapter, we look at several problems parameterized by deletion distance to chordal

graphs. Specifically, we look at VERTEX COVER, FEEDBACK VERTEX SET and ODD

CYCLE TRANSVERSAL and some generalizations of these problems, parameterized by

the size of a chordal vertex deletion set (CVD), as these problems are polynomial time

solvable in chordal graphs [80, 148, 41].

In problems for which the parameter is the size of a modulator, it is also assumed that

the modulator is given with the input. This assumption can be removed if finding the

modulator is also FPT parameterized by the modulator size. However, there are instances

where finding the modulator is more expensive than solving the problem if the modulator is

given. For example, finding a subset of k vertices whose deletion results in a perfect graph

is known to be W [2]-hard [84]. But if the deletion set is given, then (as seen in Chapter 1)

VERTEX COVER is FPT when parameterized by the size of the deletion set.

Hence Fellows et al. [64] ask whether VERTEX COVER is FPT when parameterized by

a (promised) bound on the vertex-deletion distance to a perfect graph, without giving a

minimum deletion set in the input. While we do not answer this question, we address a

147

similar question in the context of problems parameterized by the distance to chordal graphs,

another well-studied class of graphs where VERTEX COVER is polynomial time solvable

whereas the best-known algorithm to find a k-sized chordal deletion set takes kO(k)nO(1)

time [35]. We also do not know of a constant factor (FPT) approximation algorithm for

CVD even with 2O(k)nO(1) running time. There are many recent results on polynomial time

approximation algorithms for CHORDAL VERTEX DELETION [91, 3, 101] with the current

best algorithm having a O(log2 opt) ratio, where opt is the size of minimum CVD [3]. If

we use this approximation algorithm and do branching (see Related Work in this section),

then we can obtain a 2O(k log2 k)nO(1) time algorithm for VERTEX COVER.

Hence, in a similar vein to the question by Fellows et al., we ask whether (minimum)

VERTEX COVER (and other related problems) can be solved in 2O(k)nO(1) time with only

a promise on the size k of the chordal deletion set, and answer the question affirmatively.

Our algorithms even go one step further, in not even needing the promise. They solve the

problem or determine that the chordal deletion set is of size more than k.

Our Results: Specifically, we give O∗(2O(k)) algorithms for the problems defined below.

d-COLORABLE SUBGRAPH BY CVD

Input: A graph G = (V,E) and k, `,d ∈ N.

Parameter: k

Question: Determine if there is a vertex set X of size at most ` in G such that G−X

is d-colorable or output that minimum chordal vertex deletion set of G is of size more

than k?

When d = 1 and d = 2, the problem reduces to VERTEX COVER BY CVD and ODD

CYCLE TRANSVERSAL BY CVD where we require the graph G−X to be an independent

set and bipartite, respectively. We also define FEEDBACK VERTEX SET BY CVD where

we require the graph G−X to be a forest.

We remark that our algorithms do not necessarily address the question of whether the input

148

graph has a CVD of size at most k, and may solve the problem sometimes even when the

CVD size is more than k.

We also show that all the problems mentioned above cannot be solved in O∗((2− ε)k)

time under Strong Exponential Time Hypothesis (SETH) even if a CVD of size k is given

as part of the input. This matches the upper bound of the known algorithm for VERTEX

COVER BY CVD when the modulator is given.

Related Work:

When CVD is given: If we are given a CVD S of size k along with an n-vertex graph

G as the input, then we have a 2knO(1) time algorithm (call it A) for VERTEX COVER as

chordal graphs are hereditary. An FPT algorithm with 2O(k)nO(1) time for FEEDBACK

VERTEX SET BY CVD is given by Jansen et al [97] where they first find the modulator.

This algorithm follows the algorithm to find a minimum feedback vertex set in bounded

treewidth graphs. A similar trick works for ODD CYCLE TRANSVERSAL too, when the

modulator is given.

When the modulator is given, the FPT algorithms discussed above have been generalized

for other problems and other classes of graphs (besides those that are k away from the class

of chordal graphs). Let Φ be a Counting Monadic Second Order Logic (CMSO) formula

and t ≥ 0 be an integer. For a given graph G = (V,E), the task is to maximize |X | subject to

the following constraints: there is a set F ⊆V such that X ⊆ F , the subgraph G[F] induced

by F is of treewidth at most t, and structure (G[F],X) models Φ. Note that the problem

corresponds to finding a minimum vertex cover and a minimum feedback vertex set when

t = 0 and t = 1 respectively when Φ is a tautology. For a polynomial poly, let Gpoly be

the class of graphs such that, for any G ∈ Gpoly, graph G has at most poly(n) minimal

separators. Fomin et al [73] gave a polynomial time algorithm for solving this optimization

problem on the graph class Gpoly. Consider Gpoly + kv to be the graph class formed from

Gpoly where to each graph we add at most k vertices of arbitrary adjacencies. Liedloff et

149

al. [111] further proved that the above problem is FPT on Gpoly + kv, with parameter k,

where the modulator is also a part of the input. As a chordal graph has polynomially many

minimal separators [80], we obtain that this problem parameterized by CVD size is FPT

when the modulator is given.

Other ‘permissive’ problems. Similar problems have been termed as ‘permissive prob-

lems’ in the context of testing satisfiability of CSPs (constraint satisfaction problems) with

small sized strong backdoors [79]. While detecting strong backdoors to a general CSP

is hard, the authors address the question of satisfiability of CSPs where the backdoor set

is not given, and the algorithm was supposed to solve satisfiability or determine that the

backdoor set size is more than k.

An example line of work where a faster constant factor approximation algorithm is available

is in the context of optimization problems parameterized by treewidth.

For example, the INDEPENDENT SET problem parameterized by treewidth of the graph tw

can be solved using standard dynamic programming (DP) in 2tw · twO(1) ·n time[45]. But

the best known algorithm for outputting a tree-decomposition of minimum width takes time

twO(tw3)n [18]. Thus, the total running time is twO(tw3)n, when a tree decomposition is not

given as an input. But one can overcome this by obtaining a tree decomposition of width

5tw in time 2O(tw)n [20] and then applying the DP algorithm over the tree decomposition.

One previous example we know of a parameterized problem where the FPT algorithm

solves the problem without the modulator or even the promise, is VERTEX COVER param-

eterized by the size of KÖNIG VERTEX DELETION set k. A König vertex deletion set of G

is a subset of vertices of G whose removal results in a graph where the size of its minimum

vertex cover and maximum matching is the same. In VERTEX COVER BY KÖNIG VERTEX

DELETION, we are given graph G = (V,E), k, ` ∈ N and an assumption that there exists a

König vertex deletion set of size k in G, here k is parameter. We ask whether there exists

a vertex cover of size ` in G. Lokshtanov et al. [117] solve VERTEX COVER BY KÖNIG

150

VERTEX DELETION in O∗(1.5214k) time without the promise.

Finally, we remark that there is an analogous line of work in the classical world of

polynomial time algorithms. For example, it is known that finding a maximum clique

in a unit disk graph is polynomial time solvable given a unit disk representation of the

unit disk graph [40], though it is NP-hard to recognize whether a given graph is a unit

disk graph [29]. Raghavan and Spinrad [142] give a permissive algorithm that given a

graph either finds a maximum clique in the graph or outputs a certificate that the given

graph is not a unit disk graph. See also [27, 82, 73] for some other examples of permissive

algorithms.

Our Techniques:

The first step in our algorithms is to obtain, what we call a semi clique tree decomposition

of the given graph if one exists. It is known [80] that every chordal graph has a clique-tree

decomposition, i.e., a tree decomposition where every bag is a clique in the graph. If the

modulator is given, then we can add it to each bag, and obtain a tree-decomposition where

each bag is a clique plus at most k vertices. In our case (where the modulator is not given),

we obtain a tree decomposition in 2O(k)nO(1) time where each bag can be partitioned into

C]N, where C can be covered by at most 4 cliques in G and |N| ≤ 7k+ 5. Here we

also know a partition C1]C2]C3]C4 of C where each Ci is a clique. We call this tree

decomposition a (4,7k+5)-semi clique tree decomposition. Our result in this regard is

formalized in the following theorem.

Theorem 21. There is an algorithm that given a graph G and an integer k runs in time

O(27k · (kn4 +nω+2)) where ω is the matrix multiplication exponent and either constructs

a (4,7k+5)-semi clique tree decomposition T of G or concludes that there is no chordal

vertex deletion set of size k in G. Moreover, the algorithm also provides a partition

C1]C2]C3]C4]N of each bag of T such that |N| ≤ 7k+5 and Ci is a clique in G for

all i ∈ {1,2,3,4}.

After getting a (4,7k+5)-semi clique tree decomposition, we then design DP algorithms

151

for VERTEX COVER, FEEDBACK VERTEX SET and ODD CYCLE TRANSVERSAL on

this tree decomposition. Since the vertex cover of a clique has to contain all but one

vertex of the clique, the number of ways the solution might intersect a bag of the tree is at

most O(27kn4). Using this fact, one can bound the running time for the DP algorithm for

VERTEX COVER BY CVD to O(27kn5). The overall running time would be the sum of the

time taken to construct a (4,7k+5)-semi clique tree decomposition and the time of the

DP algorithm on this tree decomposition which is bounded by O(27kn5). In the case of

FEEDBACK VERTEX SET and ODD CYCLE TRANSVERSAL, again from each clique all

but two vertices will be in the solution. Using this fact one can bound the running time

of FEEDBACK VERTEX SET BY CVD and ODD CYCLE TRANSVERSAL BY CVD to be

O∗(2O(k)).

Very recently, Fomin and Golovach [65] give subexponential algorithms to various prob-

lems on graphs which can be turned into a chordal graph by adding k edges. Similar to

the line of work in this chapter, they come up with an almost-clique tree decomposition

(where each bag can be converted to a clique by adding k edges) and then apply dynamic

programming algorithms on this tree decompositions. We use the dynamic programming

algorithms in this chapter on the tree decomposition we constructed to give algorithms for

d-COLORABLE SUBGRAPH parameterized by minimum CVD size.

Organization of the chapter. In Section 5.1, we give the necessary preliminaries. In

Section 5.2, we prove Theorem 21. In Section 5.3, we first address d-COLORABLE

SUBGRAPH BY CVD using dynamic programming on semi clique tree decomposition.

We then give more direct and faster algorithms for VERTEX COVER BY CVD and ODD

CYCLE TRANSVERSAL BY CVD and also for FEEDBACK VERTEX SET BY CVD. We

then conclude this section with lower bounds on these problems assuming SETH.

152

5.1 Preliminaries

Proposition 5.1.1 ([57]). Let G be a graph and C be a clique in G. Let T = (T,{Xt}t∈V (T))

be a tree decomposition of G. Then, there is a node t ∈V (T) such that C ⊆ Xt .

Definition 5.1.1 (Clique tree decomposition). A clique tree decomposition of a graph G is

a tree decomposition T = (T,{Xt}t∈V (T)) where Xt is a clique in G for all t ∈V (T).

Proposition 5.1.2 ([80]). A graph is chordal if and only if it has a clique tree decomposi-

tion.

Definition 5.1.2. A graph G is called an (c, `)-semi clique if there is a partition C]N of

V (G) such that G[C] is a union of at most c cliques and |N| ≤ `.

Definition 5.1.3 ((c, `)-semi clique tree decomposition). For a graph G and c, ` ∈ N, a

tree decomposition T = (T,{Xt}t∈V (T)) of G is a (c, `)-semi clique tree decomposition if

G[Xt] is a (c, `)-semi clique for each t ∈V (T).

We define the NODE MULTIWAY CUT problem where we are given an input graph G =

(V,E), a set T ⊆V of terminals and an integer k. We want to ask whether there exists a set

X ⊆V \T of size at most k such that any path between two different terminals intersects

X .

We use the following lemma in Section 5.2.

Proposition 5.1.3 ([67]). Let T be a tree and x,y,z ∈ V (T). Then there exists a vertex

v ∈ V (T) such that every connected component of T − v has at most one vertex from

{x,y,z}.

5.2 Semi Clique Tree Decomposition

Given a graph G and an integer k, we aim to construct a (4,7k + 5)-semi clique tree

decomposition T of G or conclude that G has no CVD of size at most k. We loosely

153

follow the ideas used for the tree decomposition algorithm in [147] to construct a tree

decomposition of a graph G of width at most 4tw(G)+4, where tw(G) is the treewidth of

G. But before that, we propose the following lemmas that we use in getting the required

(4,7k+5)-semi clique tree decomposition.

Lemma 5.2.1. Let G be a graph having a CVD of size k. Then G has a (1,k)-semi clique

tree decomposition.

Proof. Let Y be the chordal vertex deletion set of G of size k. Since G−Y is a chordal

graph, it has a clique tree decomposition T ′. Adding Y to each bag of the tree decomposi-

tion T ′, we get a (1,k)-semi clique tree decomposition T = (T,{Xt}t∈V (T)) of G.

Lemma 5.2.2. For a graph G on n vertices with a CVD of size k, the number of maximal

cliques in G is bounded by O(2k ·n). Furthermore, there is an algorithm that given any

graph G either concludes that there is no CVD of size k in G or enumerates all the maximal

cliques of G in O(2k ·nω+1) time where ω is the matrix multiplication exponent.

Proof. Let X ⊆ V (G) be of size at most k such that G−X is a chordal graph. For any

maximal clique C in G let CX =C∩X and CG−X =C \X . Since G−X is a chordal graph,

it has at most n− k maximal cliques [80].

We claim that for a subset CX ⊆ X and a maximal clique Q in G−X , there is at most one

subset Q′ ⊆ Q such that CX ∪Q′ forms a maximal clique in G. If there are two distinct

subsets Q1,Q2 of Q such that CX ∪Q1 and CX ∪Q2 are cliques in G, then CX ∪Q1∪Q2

is a clique larger than the cliques CX ∪Q1 and CX ∪Q2. Thus, since there are at most 2k

subsets of X and at most n maximal cliques in G, the total number of maximal cliques in

G is upper bounded by 2k(n− k).

There is an algorithm that given a graph H, enumerates all the maximal cliques of H

with O(|V (H)|ω) delay (the maximum time taken between outputting two consecutive

solutions) [125]. If G has a CVD of size k, there are at most 2kn maximal cliques in G

154

which can be enumerated in O(2knω+1) time. So the algorithm to enumerate clique runs

for at most 2kn+1 rounds, if we note that the number of maximal cliques enumerated is

more than 2kn then we return that G has no CVD of size k.

Lemma 5.2.3. Let G be a graph having a CVD of size k and w : V (G)→ R≥0 be a weight

function on V (G). There exists a 2
3 -balanced separation (A,B) of G with respect to w such

that the graph induced on the corresponding separator G[A∩B] is a (1,k)-semi clique.

Proof. First we prove that there is a 1
2-balanced separator X such that G[X] is a (1,k)-

semi clique. By Lemma 5.2.1, there is a (1,k)-semi clique tree decomposition T =

(T,{Xt}t∈V (T)) of G. Arbitrarily root the tree of T at a node r ∈ V (T). For any node

y ∈V (T), let Ty denote the subtree of T rooted at node y and Gy denote the graph induced

on the vertices of G present in the bags of nodes of Ty. That is V (Gy) =
⋃

t∈V (Ty)Xt . Let t

be the farthest node of T from the root r such that w(V (Gt))>
1
2w(V (G)). That is, for all

nodes t ′ ∈V (Tt)\{t}, we have that w(V (Gt ′))≤ 1
2w(V (G)).

We claim that X = Xt is a 1
2-balanced separator of G. Let t1, . . . , tp be the children of

t. Since X is a bag of the tree decomposition T , each of the connected components

of G−X are contained either in Gti −X for some i ∈ [p] or G[V (G) \V (Gt)]. Since

w(V (Gt)) >
1
2w(V (G)), we have w(V (G)\V (Gt)) <

1
2w(V (G)). By the choice of t, we

have w(V (Gti))≤ 1
2w(V (G)) for all i ∈ [p].

Now we define a 2
3-balanced separation (A,B) for G where the set X = A∩B is a 1

2

balanced separator. Let D1, . . . ,Dq be the vertex sets of the connected components of

G−X . Let ai = w(Di) for all i ∈ [q]. Without loss of generality, assume that a1 ≥ . . .≥ aq.

Let q′ be the smallest index such that ∑
q′
i=1 ai ≥ 1

3w(V (G)) or q′ = q if no such index

exists. Clearly, ∑
q
i=q′+1 ai ≤ 2

3w(V (G)). We prove that ∑
q′
i=1 ai ≤ 2

3w(V (G)). If q′ = 1,

∑
q′
i=1 ai = aq′ ≤ 1

2w(V (G)) and we are done. Else, since q′ is the smallest index such

that ∑
q′
i=1 ai ≥ 1

3w(V (G)), we have ∑
q′−1
i=1 ai <

1
3w(V (G)). We also note that aq′ ≤ aq′−1 ≤

∑
q′−1
i=1 ai <

1
3w(V (G)). Hence ∑

q′
i=1 ai = ∑

q′−1
i=1 ai +aq′ ≤ 2

3w(V (G)).

155

Now we define A = X ∪⋃i∈[q′]Di and B = X ∪⋃i∈[q]\[q′]Di. Notice that X = A∩B and

(A,B) is a separation of G. Also notice that w(A\B) = ∑
q′
i=1 ai ≤ 2

3w(V) and w(B\A) =

∑
q
i=q′+1 ai ≤ w(V (G))− 1

3w(V (G)) = 2
3w(V (G)) as

q′

∑
i=1

ai ≥ 1
3w(V (G)). Since X is a bag

of the tree decomposition T , G[X] is a (1,k)-semi clique.

Using Lemmas 5.2.2 and 5.2.3, we obtain the following corollary.

Corollary 5.2.1. Let G be a graph with a CVD of size k. Let N ⊆ V (G) with 5k+ 3 ≤

|N| ≤ 6k+4. Then there exists a partition (NA,NB) of N and a vertex subset X ⊆ V (G)

satisfying the following properties.

• |NA|, |NB| ≤ 4k+2.

• X is a vertex separator of NA and NB in the graph G.

• G[X] is a (1,k)-semi clique.

Moreover, there is an algorithm that given any graph G, either concludes that there is

no CVD of size k in G or computes such a partition (NA,NB) of N and the set X in

O(27k · (kn3 +nω+1)) time.

Proof. Let us define a weight function w : V (G)→ R≥0 such that w(v) = 1 if v ∈ N and 0

otherwise. From Lemma 5.2.3, we know that there exists a pair of vertex subsets (A,B)

which is the balanced separation of G with respect to w where the graph induced on the

corresponding separator G[A∩B] is a (1,k)-semi clique.

Let us define the partition (NA,NB). We add (A\B)∩N to NA and (B\A)∩N to NB. Since

(A,B) is a balanced separation of G with respect to w, |(A\B)∩N|, |(B\A)∩N| ≤ 2
3 |N| ≤

4k+2. For each vertex u ∈ (A∩B)∩N, we iteratively add u to the currently smaller of the

two sets of NA and NB. Since |N| ≤ 6k+4≤ 2 · (4k+2), we have |NA|, |NB| ≤ 4k+2 even

after this process. This shows the existence of subsets NA,NB and X = A∩B. But the proof

156

is not constructive as the existence of (A,B) uses the (1,k)-semi clique tree decomposition

of G which requires the chordal vertex deletion set.

We now explain how to compute these subsets without the knowledge of a (1,k)-semi

clique tree decomposition of G. Let X =C′′]N′′ where C′′ is a clique and |N′′| ≤ k. We

go over all 2|N| ≤ 26k+4 2-partitions of N to guess the partition (NA,NB). We then use

Lemma 5.2.2 to go over all maximal cliques D of G. Then we apply the classic Ford-

Fulkerson maximum flow algorithm to find the separator Z of the sets NA and NB in the

graph G[V \D]. If |Z|> k, we can conclude that G has no CVD of size k in G. Otherwise,

in one such iteration, it is the case that C′′ ⊆ D and Z ⊆ N′′ = X \C′′.

Thus, we obtained a set X ′ = D]Z such that G[X ′] is a (1,k)-semi clique and X ′ is a vertex

separator of NA and NB in the graph G.

Now we estimate the time taken to obtain these sets. We first go over allO(2k ·n) maximal

cliques of the graph which takesO(2k ·nω+1) time. Then for each of theO(2k ·n) maximal

cliques, we go over at most 26k+4 guesses for NA and NB. Finally, we use the Ford-

Fulkerson maximum flow algorithm to find the separator of size at most k for NA and

NB which takes O(k(n+m)) time. Overall the running time is O(2k ·nω+1 +(2kn) ·26k ·

(k(n+m))) =O(27k · (kn3 +nω+1)).

Lemma 5.2.4. Let G be a graph having a CVD of size k. Let C1,C2,C3 be three distinct

cliques in G. Then there exists a vertex subset X ⊆V (G) such that G[X] is a (1,k)-semi

clique and X is a separator of Ci and C j for all i, j ∈ {1,2,3} and i 6= j. Moreover, there

is an algorithm that given any graph G, either concludes that there is no CVD of size k in

G or computes X in O(4k · (kn3 +nω+1)) time.

Proof. By Lemma 5.2.1, there is a (1,k)-semi clique tree decomposition T =

(T,{Xt}t∈V (T)) of G. By Proposition 5.1.1, we know that there exist nodes t1, t2, t3 ∈V (T)

such that C1 ⊆ Xt1 , C2 ⊆ Xt2 and C3 ⊆ Xt3 . If two of the three nodes t1, t2, t3 is the same

node t, then it can be easily seen that X = Xt is the required separator as only at most one

157

of C1,C2, and C3 remains after its deletion.

Hence assume that all three nodes t1, t2, t3 are distinct. From Proposition 5.1.3, we know

that there exists a node t ∈ V (T) such that (i) t1, t2 and t3 are in different connected

components of T − t. We claim that X = Xt is the required separator. Since X is a bag

in the (1,k)-semi clique tree decomposition T , G[X] is a (1,k)-semi clique. Because of

statement (i), we have that X is a separator of Ci and C j for all i, j ∈ {1,2,3} and i 6= j.

The proof is not constructive as we do not have a (1,k)-semi clique tree decomposition of

G.

We compute a set X ′ such that G[X ′] is a (1,k)-semi clique and X ′ is a separator of Ci

and C j for all i, j ∈ {1,2,3} and i 6= j, without the knowledge of a (1,k)-semi clique

tree decomposition of G. Let X = C′′]N′′ where C′′ is a clique and |N′′| ≤ k. Using

Lemma 5.2.2, we either conclude that G has no CVD of size k or we go over all the

maximal cliques of the graph G. We know that C′′ ⊆ D for one of such maximal cliques

D. Now in the graph G[V \D], we know that there exists a set Z ⊆ N′′ = X \C′′ of size at

most k which separates the cliques Cx \D,Cy \D and Cz \D. To find Z, we add three new

vertices x′, y′ and z′. We make x′ adjacent to all the vertices of Cx \D, y′ adjacent to all the

vertices of Cy \D and z′ adjacent to all the vertices of Cz \D. We find the node multiway

cut Y of size at most k with the terminal set being {x′,y′,z′}. The set Y can be found in

O(2kkm) using the known algorithm for node multiway cut [50, 89]. If the algorithm

returns that there is no such set Y of size k, we conclude that there is no CVD of size at

most k in G. Else we get a set X ′ = D]Y which satisfies the properties of X .

Now we estimate the time taken to obtain X ′. We get all theO(2k ·n) maximal cliques of the

graph in O(2k ·nω+1) time. Now for each maximal clique we use the O(2kkm) algorithm

for node multiway cut. Thus, the overall running time is O(2k ·nω+1 +(2kn) · (2kkm)) =

O(4k · (kn3 +nω+1)).

Now we prove our main result (i.e., Theorem 21) in this section. For convenience, we

158

restate it here.

Theorem 1 (21). There is an algorithm that given a graph G and an integer k runs in time

O(27k · (kn4 +nω+2)) and either constructs a (4,7k+5)-semi clique tree decomposition

T of G or concludes that there is no chordal vertex deletion set of size k in G. Moreover,

the algorithm also provides a partition C1]C2]C3]C4]N of each bag of T such that

|N| ≤ 7k+5 and Ci is a clique in G for all i ∈ {1,2,3,4}.

Proof. We assume that G is connected as if not we can construct a (4,7k+5)-semi clique

tree decomposition for each connected component of G and attach all of them to a root

node whose bag is empty to get the required (4,7k+5)-semi clique tree decomposition of

G.

To construct a (4,7k+5)-semi clique tree decomposition T , we define a recursive proce-

dure Decompose(W,S,d) where S⊂W ⊆V (G) and d ∈ {0,1,2}. The procedure returns

a rooted (4,7k+5)-semi clique tree decomposition of G[W] such that S is contained in the

root bag of the tree decomposition. The procedure works under the assumption that the

following invariants are satisfied.

• G[S] is a (d,6k+4)-semi clique and W \S 6= /0.

• S = NG(W \S). Hence S is called the boundary of the graph G[W].

To get the required (4,7k + 5)-semi clique tree decomposition of G, we call

Decompose(V (G), /0,0) which satisfies all the above invariants. The procedure

Decompose(W,S,d) calls procedures Decompose(W ′,S′,d′) and a new procedure

SplitCliques(W ′,S′) whenever d = 2. For these subprocedures, we will show that

|W ′ \ S′| < |W \ S|. Hence by induction on the cardinality of W \ S, we will show the

correctness of the Decompose procedure.

The procedure SplitCliques(W,S) with S ⊂W ⊆ V (G) also outputs a rooted (4,7k+ 5)-

semi clique tree decomposition of G[W] such that S is contained in the root bag of the tree

159

decomposition. But the invariants under which it works are slightly different which we list

below.

• G[S] is a (3,5k+3)-semi clique and W \S 6= /0.

• S = NG(W \S).

Notice that the only difference between invariants for Decompose and SplitCliques is the

first invariant where we require G[S] to be a (3,5k+3)-semi clique for SplitCliques and

(d,6k+4)-semi clique for Decompose.

The procedure SplitCliques(W,S) calls procedures Decompose(W ′,S′,2) where we will

again show that |W ′ \S′|< |W \S|. Hence again by induction on cardinality of W \S, we

will show the correctness. Now we describe how the procedure Decompose is implemented.

Implementation of Decompose(W,S,d): Notice that d ∈ {0,1,2}. Firstly, if |W \ S| ≤

k+1, we output the tree decomposition as a node r with bag Xr =W and stop. Clearly the

graph G[Xr] is a (4,7k+5)-semi clique and it contains S. Otherwise, we do the following.

We construct a set Ŝ with the following properties.

1. S⊂ Ŝ⊆W ⊆V (G).

2. G[Ŝ] is a (d + 1,7k+ 5)-semi clique. Let Ŝ = C′]N′ where G[C′] is the union of

d +1 cliques and |N′| ≤ 7k+5.

3. Every connected component of G[W \ Ŝ] is adjacent to at most 5k+3 vertices of N′.

Since G[S] is a (d,6k+4)-semi clique, we have that S =C]N, where G[C] is the union of

d cliques and |N| ≤ 6k+4.

Case 1: |N|< 5k+3. We set Ŝ = S∪{u}, where u is an arbitrary vertex in W \S. Note

that this is possible as W \S 6= /0. Clearly Ŝ follows all the properties above.

160

Case 2: 5k+3≤ |N| ≤ 6k+4. Note that G[W] being a subgraph of G also has a chordal

vertex deletion set of size at most k if G has it. Applying Corollary 5.2.1 for the graph

G[W] and the subset N, we either conclude that G has no CVD of size k or get a partition

(NA,NB) of N, a subset X ⊆W and a partition D]Z of X , where D is a clique in G[W]

and |Z| ≤ k, in time O(27k · (kn3 +nω+1)) such that |NA|, |NB| ≤ 4k+2 and X is a vertex

separator of NA and NB in the graph G[W].

We define Ŝ = S∪X ∪{u} where u is an arbitrary vertex in W \S. We need to verify that Ŝ

satisfies the required properties.

Claim 5.2.1. The set Ŝ satisfies properties (1),(2) and (3).

Proof. Since u ∈W \S, S⊂ Ŝ. Hence Ŝ satisfies property (1).

We now show that Ŝ satisfies property (2). Recall that S=C]N , where G[C] is the union of

d cliques and |N| ≤ 6k+4. We define sets C′ =C∪D and N′ = ((N∪Z)\C′)∪{u} Notice

that Ŝ =C′∪N′. Clearly G[C′] is the union of d +1 cliques. Also |N′| ≤ |N|+ |Z|+1≤

(6k+4)+ k+1≤ 7k+5. Thus Ŝ satisfies property (2).

We now show that Ŝ satisfies property (3). Recall Ŝ = C′ ∪N′, where C′ = C∪D and

N′ = ((N ∪Z) \C′)∪{u}. Recall that X = D∪Z ⊆ Ŝ is separator of NA and NB. where

N = NA]NB and |NA|, |NB| ≤ 4k + 2. This implies that any connected component H

in G[W \X] can contain at most 4k+ 2 vertices from N as the neighborhood of V (H)

is contained in X , because X is a separator. Moreover |Z| ≤ k. This implies that any

connected component in G[W \ Ŝ] is adjacent to at most 4k+2 vertices in N and at most k

vertices in Z, and hence at most 5k+3 vertices in N′ = ((N∪Z)\C′)∪{u}.

Now we define the recursive subproblems arising in the procedure Decompose (W,S,d)

using the constructed set Ŝ. If Ŝ = W , then there will not be any recursive subproblem.

Otherwise, let P1,P2, . . . ,Pq be vertex sets of the connected components of G[W \ Ŝ] and

q≥ 1 because Ŝ 6=W . We have the following cases:

161

Case 1: d < 2: For each i ∈ [q], recursively call the procedure Decompose(W ′ =

NG[Pi],S′ = NG(Pi),d +1).

We now show that the invariants are satisfied for procedures Decompose(W ′ = NG[Pi],S′ =

NG(Pi),d + 1) for all i ∈ [q]. We start by noticing that since d < 2, d + 1 ≤ 2 which is

required for the validity of the procedure. Let Qi = S′∩N′. Note that from condition (3)

for Ŝ, we have |Qi| ≤ 5k+3. Since S′ \Qi ⊆C′ and G[C′] is a union of d+1 cliques, G[S′]

forms a (d +1,5k+3)-semi clique which is also a (d +1,6k+4)-semi clique. Also by

definition of neighbourhoods, Pi = NG[Pi]\NG(Pi) =W ′ \S′. Since Pi is a non-empty set

by definition, W ′ \S′ is non-empty. Hence the first invariant required for the Decompose is

satisfied. Since S′ = NG(Pi) = NG(NG[Pi]\NG(Pi)) = NG(W ′ \S′), the second invariant is

satisfied.

Case 2: d = 2: For each i ∈ [q], recursively call the procedure SplitCliques(W ′ =

NG[Pi],S′ = NG(Pi)). We can show that the invariants for SplitCliques are satisfied with the

proofs similar to the previous case.

We now explain how to construct the (4,7k + 5)-semi clique tree decomposition

using Decompose(W,S,d). Here, we assume that Decompose(W ′,S′,d + 1) and

SplitCliques(W ′,S′) return a (4,7k + 5)-semi clique tree decomposition G[W ′] when

|W ′ \ S′| < |W \ S|. That is, we apply induction on |W \ S|. Look at the subprocedures

Decompose(W ′,S′,d) and SplitCliques(W ′,S′). We have W ′ \ S′ = NG[Pi] \NG(Pi) = Pi

which is a subset of W \ Ŝ which in turn is a strict subset of W \S. Hence |W ′ \S′|< |W \S|.

Hence we apply induction on |W \ S| to the subprocedures. Let Ti be the (4,7k + 5)-

semi clique tree decomposition obtained from the subprocedure with W ′ = NG[Pi] and

S′ = NG(Pi). Let ri be the root of Ti whose associated bag is Xri . By induction hypothesis

S′ ⊆ Xri . We create a node r with the corresponding bag Xr = Ŝ. For each i ∈ [q], we

attach Ti to r by adding edge (r,ri). Let us call the tree decomposition obtained so with

root r as T . We return T as the output of Decompose(W,S,d). By construction, it easily

follows that T is a (4,7k+5)-semi clique tree decomposition of the graph G[W] with the

162

root bag containing S. We note that when W = Ŝ, the procedure returns a single node tree

decomposition with Xr =W = Ŝ.

Implementation of SplitCliques Procedure: Again if |W \ S| ≤ k+ 1, we output the

tree decomposition as a node r with bag Xr = W and stop. Clearly the graph G[Xr] is a

(4,7k+5)-semi clique and it contains S. Otherwise we do the following. Let S =C]N =

(Cx]Cy]Cz)]N where Cx,Cy and Cz are the vertex sets of the three cliques in G[C]. We

apply Lemma 5.2.4 to graph G[W] and sets Cx,Cy and Cz, to either conclude that G has no

CVD of size k or obtain a set Y such that Y separates the sets Cx,Cy and Cz and G[Y] is a

(1,k)-semi clique. Let Y = D]X where D is a clique and |X | ≤ k.

Let Y ′ = Y ∪{u} where u is any arbitrary vertex from W \ S which we know to be non-

empty. If S∪Y ′ = W , then it will not call any recursive subproblem. Otherwise, let

P1,P2, . . . ,Pq be the connected components of the graph G[W \ (S∪Y ′)]. We recursively

call Decompose(W ′ = NG[Pi],S′ = NG(Pi),2) for all i ∈ [q].

Since Y ′ is a separator of the cliques Cx,Cy and Cz, any connected component Pi will have

neighbours to at most one of the three cliques Cx \Y ′,Cy \Y ′ and Cz \Y ′ in G[W \ (S∪Y ′)].

We show that the invariants required for the procedure Decompose are satisfied in these

subproblems. Let us focus on the procedure Decompose(W ′ = NG[Pi],S′ = NG(Pi),2)

which has neighbours only to the set Cx \Y ′. We define sets C′ = Cx ∪D and N′ =

(N ∪ X ∪ {u}) \C′. The vertex set Pi has neighbours only to the set (Cx]N)∪Y ′ =

(Cx]N)∪ (D]X)∪{u}= (Cx∪D)∪ (N∪X ∪{u}) =C′]N′. Clearly G[C′] is the union

of at most two cliques and |N′| ≤ |N|+ |X |+1 = 5k+3+ k+1≤ 6k+4. Hence the first

invariant is satisfied for the procedure Decompose(NG[Pi],NG(Pi),2). The proof of the

second invariant is the same as that of the subproblems of Decompose procedure. The

satisfiability of invariants for other subprocedures can also be proven similarly.

We now construct the (4,7k+5)-semi clique tree decomposition returned by SplitCliques

(W,S). Again we apply induction on |W \ S|. Consider the subprocedures

Decompose(W ′,S′,d). We have W ′ \ S′ = NG[Pi] \ NG(Pi) = Pi which is a subset of

163

W \ (S ∪Y ′) which in turn is a strict subset of W \ S as u ∈ W \ S is present in Y ′.

Hence |W ′ \S′|< |W \S| and we apply induction on |W \S| to the subprocedures. Let Ti

be the (4,7k+5)-semi clique tree decomposition obtained from the subprocedure with

W ′ = NG[Pi] and S′ = NG(Pi). Let ri be the root of Ti whose bag Xri we show contains S′.

We create a node r with the corresponding bag Xr = S∪Y ′ = (Cx]Cy]Cz]D)]N′. For

each i ∈ [q], we attach Ti to r by adding edge (r,ri). Let us call the tree decomposition

obtained so with root r as T . We return T as the output of SplitCliques(W,S,d). By

construction, it easily follows that T is a (4,7k+ 5)-semi clique tree decomposition of

the graph G[W] with the root bag containing S. We mention that when W = S∪Y ′, the

procedure returns a single node tree decomposition with Xr =W .

Running time analysis: In the procedure Decompose, we invoke Corollary 5.2.1 which

takes O(27k · (kn3 +nω+1)) time. For the procedure SplitCliques, we invoke Lemma 5.2.4

which takesO(4k ·(kn3+nω+1)) time. All that is left is to bound the number of calls of the

procedures Decompose and SplitCliques. Each time Decompose or SplitCliques is called,

it creates a set Ŝ (in the case of SplitCliques, Ŝ = S∪Y ′) which is a strict superset of S.

This allows us to map each call of Decompose or SplitCliques to a unique vertex u ∈ Ŝ\S

of V (G). Hence the total number of calls of Decompose and SplitCliques is not more than

the total number of vertices n. Hence the overall running time of the algorithm which

constructs the (4,7k+5)-semi clique tree decomposition of G isO(27k ·(kn4+nω+2)).

Faster Algorithm. We can get a faster algorithm by making use of the fact that any C4-free

graphs have O(n2) maximal cliques[61]. The algorithm first repeatedly finds induced

subgraphs of G which have C4 if present and removes all its vertices from G. Let Z denote

the union of the vertices removed in this process. We now apply the algorithm in Theorem

21 on the graph G−Z. Note that the graph G−Z has O(n2) maximal cliques. This drops

the 2kn factor to n2 in the running times of the algorithms of Corollary 5.2.1 and 5.2.4

invoked in the algorithm of Theorem 21. Hence the running time to obtain the semi clique

tree decomposition T ′ of G−Z drops to O(26k · (kn5 + nω+2)). We now obtain a semi

164

clique tree decomposition T of G from T ′ by adding Z to every bag of T ′.

We now prove that T is a (4,7k+5)-semi clique tree decomposition. Let k1 ≤ k denote

the number of disjoint C4’s present in Z. Hence |Z|= 4k1. Since Z has k1 disjoint C4’s, any

CVD of G contains at least k1 vertices of Z. Hence G has a CVD of size k if and only if

G−Z has a CVD of size k− k1. The algorithm of Theorem 21 either concludes that G−Z

has no CVD of size k− k1 or returns a (4,7(k− k1)+5)-semi clique tree decomposition

T ′ of G−Z. In the former case we can correctly conclude that G has no CVD of size

k. In the later case, we now obtain a semi clique tree decomposition T of G from T ′ by

adding Z to every bag of T ′. The vertices which are not part of the cliques in every bag

of T is 7(k− k1)+ 5+ |Z| = 7(k− k1)+ 5+ 4k1 which is at most 7k+ 5. Hence T is a

(4,7k+5)-semi clique tree decomposition. Hence we have the following theorem.

Theorem 22. There is an algorithm that given a graph G and an integer k runs in time

O(26k · (kn5 +nω+2)) and either constructs a (4,7k+5)-semi clique tree decomposition

T of G or concludes that there is no chordal vertex deletion set of size k in G. Moreover,

the algorithm also provides a partition C1]C2]C3]C4]N of each bag of T such that

|N| ≤ 7k+5 and Ci is a clique in G for all i ∈ {1,2,3,4}.

We note that though the above algorithm is faster, it does not improve the running time of

algorithms of the dynamic programming algorithms in Section 4. This is because these

algorithms store solutions for every possible subset of the non-clique part of the bags

which is at least 27k. Hence in the following section, we continue using the algorithm in

Theorem 21.

5.3 Structural Parameterizations with Chordal Vertex

Deletion Set

Theorem 23. d-COLORABLE SUBGRAPH BY CVD can be solved in

165

d4d+7k+523(7k+5)nO(d) time.

Proof. First, we use Theorem 21 to construct a (4,7k+5)-semi clique tree decomposition

T = (T,{Xt}t∈V (T)) of G in O∗(27k) time. Now we use the dynamic programming algo-

rithm on tree decompositions given by Fomin and Golovach (Theorem 1 of [65]) on T to

find the maximum sized induced subgraph H of G such that H is d-colorable. Note that

the set V (G)\V (H) is the solution that we are looking for and if its size is at most `, we

return YES. Else we return NO.

This dynamic programming algorithm defines a state cost(t,S,c) for all nodes t ∈V (T),

subsets S ⊆ Xt such that G[S] is d-colorable and a function c : S→ [d]. Since each bag

Xt of T is a (4,7k+5) semi clique, at most d vertices of each clique can be part of S as

else there is a presence of a (d +1) sized clique in S which is not d-colorable. Hence we

can bound the size of S as 4d +7k+5 and also bound the number of possible subsets S as

n4d27k+5. Number of possible functions c is at most d|S| which is at most d4d+7k+5. Hence

we bound the number of states as d4d+7k+527k+5nO(d). For each state, the time taken is

O(|S|2). Hence the overall running time is d4d+7k+523(7k+5)nO(d).

Corollary 5.3.1. VERTEX COVER BY CVD and ODD CYCLE TRANSVERAL BY CVD

can be solved in 221knO(1) and 228knO(1) time, respectively.

We can directly use the dynamic programming on bounded treewidth to get algorithms

with better running times for VERTEX COVER BY CVD and ODD CYCLE TRANSVERSAL

BY CVD and for FEEDBACK VERTEX SET BY CVD using the fact that any vertex cover

contains all but one from each clique and any odd cycle transversal and feedback vertex

set contains all but two from each clique.

Theorem 24. Given a graph G and an integer k, there exist algorithms that determine that

G has no CVD of size k or

• find a minimum vertex cover in 27knO(1) time, and

166

• find a minimum odd cycle transversal in 37knO(1) time, and

• find a minimum feedback vertex set in 2ω7knO(1) time.

Proof. First, we use Theorem 21 to construct a (4,7k+5)-semi clique tree decomposition

T = (T,{Xt}t∈V (T)) of G in O∗(27k) time. Arbitrarily root the tree T at a node r. Let

Xt =Ct,1] . . .]Ct,4]Nt where |Nt | ≤ 7k+5 and Ct, j is a clique in G for all j ∈ {1, . . . ,4}.

In the tree decomposition T = (T,{Xt}t∈V (T)), for any vertex t ∈V (T), we call Dt to be

the set of vertices that are descendant of t. We define Gt to be the subgraph of G on the

vertex set Xt ∪
⋃

t ′∈Dt
Xt ′ .

Proof sketch of the algorithm for VERTEX COVER BY CVD:

We briefly explain the dynamic programming (DP) table entries on T . In a standard

DP for each node t ∈ V (T) and Y ⊆ Xt , we have a table entry DP[Y, t] which stores

the size of a minimum vertex cover S of Gt such that Y = Xt ∩ S and if no such vertex

cover exists, then DP[Y, t] stores ∞. We only need to store DP[Y, t] whenever it is not

equal to ∞. Now consider a bag Xt in T . For any Y ⊆ Xt , if |Ct, j \Y | ≥ 2 for any j ∈ [4],

then DP[Y, t] = ∞ because Ct, j is a clique. Therefore, we only need to consider subsets

Y ⊆ Xt for which |Ct j \Y | ≤ 1 for all j ∈ [4]. The number of choices of such subsets Y is

bounded by O(27kn4). This implies that the total number of DP table entries is O(27kn5).

All these values can be computed in time O(27knO(1)) time using standard dynamic

programming in a bottom up fashion. For more details about dynamic programming over

tree decomposition, see [45].

Proof sketch of the algorithm for ODD CYCLE TRANSVERSAL BY CVD:

Any odd cycle transversal contains all but at most two vertices from each clique C1, j,

i ∈ [4]. Using this fact we can bound the number of DP table entries to be at most 37knO(1).

Then, by computing the entries in a bottom up fashion in time 37knO(1) using standard

167

arguments.

Proof sketch of algorithm for FEEDBACK VERTEX SET BY CVD:

We use the ideas from the DP algorithm for FEEDBACK VERTEX SET using the rank-based

approach [19]. We give a more detailed algorithm as the techniques for solving FEEDBACK

VERTEX SET parameterized by treewidth are slightly sophisticated and it may not be

obvious for the reader that these techniques extend to semi-clique tree decompositions.

We create an auxiliary graph G′ by adding a vertex v0 to G and making it adjacent to all

the vertices of G. Let E0 be the set of newly added edges. Thus we add v0 to all the bags

to get the tree decomposition T = (T,{Xt}t∈V (T)) of G′. We use a dynamic programming

algorithm for FEEDBACK VERTEX SET on T where the number of entries of the DP

table we will show to be 27k+5n11. Let Xt = Ct,1] . . .]Ct,4]Nt for all t ∈ V (T) where

|Nt | ≤ 7k+5 and Ct, j is a clique in G for all j ∈ {1, . . . ,4}. For a node t ∈V (T), a subset

Y ⊆ Xt and integers i, j ∈ [n], we define the entry DP[t,Y, i, j]. The entry DP[t,Y, i, j] stores

a partition P of Y if

• there exists a vertex subset X ⊆ Dt , v0 ∈ X such that X ∩Xt = Y and

• there exists an edge subset X0 ⊆ E(Gt)∩E0 such that in the graph (X ,E(Gt [X \

{v0}])∪X0), we have i vertices, j edges, no connected component is fully contained

in Dt \Xt and the elements of Y are connected according to the partition P .

We set DP[t,Y, i, j] = ∞ if the entry can be inferred to be invalid from Y .

We claim that the FEEDBACK VERTEX SET BY CVD instance (G,k) is a yes instance if and

only if for the root r of T with Xr = {v0} and some i≥ |V |−`, we have DP[r,{v0}, i, i−1]

to be non-empty. In the forward direction, we have a feedback vertex set W of size `.

The graph G−W has |V | − ` vertices and |V | − `− c edges where c is the number of

connected components of G−W . We define X = V \W ∪{v0} and X0 to be c edges

connecting v0 to any one of the vertices of each of the c components of V \W . We have

168

|X | ≥ |V | − `. The graph (X ,E(Gt [X \ {v0}])∪X0) has |V | − ` edges and satisfies the

properties required for an entry in DP[r,{v0}, i, i−1]. In the reverse direction, we have

a graph (X ,E(Gt [X \ {v0}])∪X0) having i edges and i− 1 edges. Since no connected

component of the graph can be contained in V (Gt)\{v0}, the graph is a tree. Hence V \X

is a feedback vertex set.

Now we give the recurrence relations for computing DP[t,Y, i, j]. For this purpose, we

convert T into a nice tree decomposition which can be done in O(n3) time. Since each

bag contains cliques of size O(n), the number of nodes of T can also blow up to be O(n3)

with O(n2) new nodes possibly added for each and edge of T corresponding to O(n2)

edges and vertices added or removed to obtain the collection of the cliques in the child

node from the collection in the parent node.

The recurrences for computing DP[t,Y, i, j] more or less remains the same as in [19].

Before we state them, we define some operations on a family A of partitions of a universe

U .

• Union: For two families A and B of partitions of U , we define the union A∪B as

the family obtained by taking the union of both families.

• Insert: For a family of partitions A and set X such that X ∩U = φ , insert(X ,A) is

the family of partitions obtained by adding each element of X as singleton sets in

each of the partitions of A.

• Glue: For elements u,v, glue(uv,A) is obtained by combining the sets containing u

and v in each of the partitions of A.

• Project: For a family of partitions A and set X ⊆U , pro ject(X ,A) is the family

obtained by removing all the elements of X from each of the partitions, but discarding

the partition if doing so reduces the number of sets in the partition.

• Join: For a partition P of universe U and Q of universe U ′, the join of P and Q is

defined as follows. Look at a graph G over vertices U ∪U ′. Look at each set S in P

169

and turn the corresponding vertex set into a clique. We do so for all the sets in P as

well as Q. Now, look at the set of connected components of G. We get a partition

of U ∪U ′ with each set of the partition being the vertex set of the corresponding

connected component. This partition is called the join of P and Q.

For a family of partitions A over U and a family of partitions B over U ′, join(A,B)

is the family of partitions over U ∪U ′ obtained by taking the join of each pair of

partitions from A and B.

We have the following recurrence relations.

• Leaf Node: We set the entry DP[t,φ ,0,0] = {φ} and all other entries as invalid.

• Introduce vertex Node: Let t and t ′ be the parent and child nodes with vertex v being

introduced in t. We have

DP[t,Y, i, j] =

∞ if v = v0 and v /∈ Y

insert(v,DP[t ′,Y \{v}, i−1, j]) if v ∈ Y

DP[t ′,Y, i, j] otherwise

The first case is to ensure that if the vertex introduced is v0, then it has to be in Y .

Otherwise, if v ∈ Y , we extend solutions that do not contain v with i−1 vertices by

adding singleton v to each of the partitions.

• Forget vertex node: Let t and t ′ be the parent and child nodes with vertex v being

forgotten in t. We have

DP[t,Y, i, j] = DP[t ′,Y, i, j]∪ pro ject(v,DP[t ′,Y ∪{v}, i, j])

We extend solutions of child node t ′ for both the cases when v is present or absent in

the corresponding set Y . We do so by taking the union of partitions for both cases. In

170

the case when v is present, we make sure that the partitions where v is a singleton are

not added. This is because the corresponding component can no longer be connected

as it has no intersection with Xt .

• Introduce Edge Node: Let t and t ′ be the parent and child nodes with edge uv being

added in t. We have

DP[t,Y, i, j] =

DP[t ′,Y, i, j]∪glue(v0v,DP[t ′,Y, i, j−1]) if u = v0 and v ∈ Y

DP[t ′,Y, i, j]∪glue(v0u,DP[t ′,Y, i, j−1]) if v = v0 and u ∈ Y

glue(uv,DP[t ′,Y, i, j−1]) if u,v ∈ Y

DP[t ′,Y, i, j] otherwise

If u = v0 and v ∈ Y (or the symmetric case), then the edge v0v may or may not be

part of the maximal induced forest corresponding to the solution. Hence we can

choose to insert v0v or not. Else if both u and v are present in Y , then edge uv has to

be present in the maximal induced forest. In the cases where the edge is present, we

obtain the corresponding family of partitions by gluing sets containing u and v for

each partition.

• Join node: Let t be the parent node and t ′, t ′′ be the child nodes. We have

DP[t,Y, i, j] =
⋃

i1+i2=i−|Y |, j1+ j2= j

join(DP[t ′,Y, i1, j1],DP[t ′′,Y, i2, j2])

A pair of vertices x,y in Xt is connected in Gt if there is a vertex z ∈ Xt such that

x and z is connected in Gt ′ and y and z is connected in Gt ′′ . The partition of Y

corresponding to this connectivity is obtained exactly via the join of pair of partitions

in the entries of t ′ and t ′′.

Now we bound the number of table entries and the number of partitions stored for each

171

entry. Consider a bag Xt in T . For any Z ⊆ Xt , We focus on the sets Ct, j \Z which is

part of the forest. If |Ct, j \Z| ≥ 3 for any j ∈ [4], then DP[t,Y, i, j] = ∞ because G[Ct, j]

contains a triangle as Ct, j is a clique. Therefore, we only need to consider subsets Z ⊆ Xt

for which |Ct, j \Z| ≤ 2 for all j ∈ [4]. Hence we have |Ci| ≤ 2. The number of choices

for each Ci is at most |Ct,i| ≤ n2. We also have |Y | ≤ |Nt | ≤ 7k+5. Since the number of

nodes of T is O(n3), we have the total number of DP table entries is O(27kn13). In each

DP table entry DP[t,Y, i, j], we store partitions of Y . The cardinality of Y is bounded by

7k+13 as |Ct j \Y | ≤ 2 for all j ∈ [4]. Hence the number of partitions stored in a particular

entry DP[t,Y, i, j] can be as huge as |Y |O(|Y |) which is bounded by (7k+13)O(k). But as

we will see below, we devise a reducing routine that allows us to only store at most 27k+13

partitions in each table entry.

We use the ideas from [19] to bound the time taken to compute all the table entries of a

particular node t. In particular, for each table enrty DP[t,Y, i, j], after obtaining a family

A of partitions over a universe U using recurrence relations, we use reducing algorithm

Theorem 3.7 of [19] to obtain a subfamily A′ of size 2|U | which “represents" A. Since

the subfamily A′ represents A, it can be used for furthur evaluations in the dynamic

programming algorithm. For more details, we refer to [19].

Let us first bound the time taken to compute the recurrence relations. Using Proposi-

tion 3.3 of [19], given to families A and B over a universe U , the time taken for every

operation is bounded by |A||B||U |O(1). The leading factor is the time taken for the re-

ducing algorithm Theorem 3.7 of [19] which is bounded by O(|A| · 2(ω−1)|U ||U |O(1))

where ω is the matrix multiplication exponent. Since the number of table entries is

O(27kn13), U is at most 7k+13 and A is at most 2|U |, we have the total time bounded to

be O(2(ω−1)7k(7k)O(1)27kn13) =O(2ω7k(7k)O(1)n13).

172

5.3.1 SETH Lower Bounds

A graph G is called a cluster graph if it is a disjoint union of complete graphs. It can be

seen that all cluster graphs are chordal. We define a problem called VERTEX COVER BY

CLSVD.

VERTEX COVER BY CLSVD

Input: A graph G = (V,E), k, `∈N and a set S⊆V (G) with |S| ≤ k such that G[V \S]

is a cluster graph.

Parameter: k

Question: Is there a vertex cover of size ` in G?

Assuming SETH, we show that VERTEX COVER BY CLSVD, FVS BY CVD and OCT

BY CVD cannot have an O∗((2− ε)k) FPT algorithm. As the class of all cluster graphs is

a subclass of the class of chordal graphs, deletion distance to a chordal graph is a smaller

parameter. Hence the lower bound also holds for VERTEX COVER BY CVD.

To show the following theorem, we give a parameterized reduction from HITTING SET

parameterized by the size of the universe n to VERTEX COVER BY CLSVD and use the

fact that assuming SETH, HITTING SET cannot be solved in O∗((2− ε)n) time.

Theorem 25. VERTEX COVER BY CLSVD cannot be solved in O∗((2− ε)k) time for any

ε > 0 assuming SETH.

Proof. We give a reduction from HITTING SET defined as follows.

HITTING SET : In any instance of HITTING SET, we are given a set of elements U with

|U |= n, a family of subsets F = {F ⊆U} and a natural number k. The objective is to find

a set F ⊆U , |F | ≤ k such that S∩F 6= /0 for all S ∈ F .

The problem cannot be solved in O∗((2− ε)n) time assuming SETH [48].

Consider a HITTING SET instance (U,F). We construct an instance of VERTEX COVER

173

BY CLSVD as follows. For each element u ∈U , we add a vertex vu. For each set S ∈ F ,

we add |S| vertices corresponding to the elements in S. We also make the vertices of S into

a clique. Finally, for each element u∈U , we add edges from vu to the vertex corresponding

to u for each set in S that contains u. See Figure 5.1.

Figure 5.1: Reduction from HITTING SET to VERTEX COVER BY CLSVD

Note that the set of vertices
⋃

u∈U vu forms a cluster vertex deletion set of size n for the

graph G we constructed.

We claim that there is a hitting set of size k in the instance (U,F) if and only if there is a

vertex cover of size k+ ∑
S∈F

(|S|−1) in G.

Let X ⊆U be the hitting set of size k. For each set S ∈ F , mark an element of X which

intersects S. Now we create a subset of vertices Y in G consisting of vertices corresponding

to elements in X plus the vertices corresponding to all the unmarked elements in S for

every set S ∈ F . Clearly |Y | = k+ ∑
S∈F

(|S|−1). We claim that Y is a vertex cover of G.

Let us look at an edge of G between an element vertex u and its corresponding copy vertex

in S containing u. If u is unmarked in S, then it is covered as the vertex corresponding to u

in S is present in Y . If it is marked, then the element vu is present in Y which covers the

edge. All the other edges of G have both endpoints in a set S ∈ F . Since one of them is

unmarked, it belongs to Y which covers the edge.

174

Conversely, let Z be a vertex cover of G of size k+ ∑
S∈F

(|S|−1). Since the graph induced

on vertices of set S forms a clique for each S ∈ F , Z should contain all the vertices of the

clique except one to cover all the edges of the clique. Let us mark these vertices. This

means that at least ∑
S∈F

(|S|−1) of the vertices of Z are not element vertices vu. Now the

remaining k vertices of Z should hit all the remaining edges in G. Suppose it contains

another vertex x corresponding to an element u in set S ∈ F . Since x can only cover the

edge from x to the element vertex vu out of the remaining edges, we could remove x and

add vu as it is not present in Z and still get a vertex cover of G of the same size. Hence

we can assume, without loss of generality that all the remaining vertices of Z are element

vertices vu. Let X ′ be the union of the k elements corresponding to these element vertices.

We claim that X ′ is a hitting set of (U,F) of size k. Suppose X ′ does not hit a set S ∈ F .

Look at the unmarked vertex x in the vertices of S. There is an edge from x to its element

vertex vu. Since u /∈ X ′, this edge is uncovered in G giving a contradiction.

Hence given a HITTING SET instance (U,F), we can construct an instance for VER-

TEX COVER BY CLSVD with parameter n. Hence, if we could solve VERTEX COVER

BY CLSVD in O∗((2− ε)k) time, we can solve HITTING SET in O∗((2− ε)n) time

contradicting SETH.

The proof of the following theorem works by modifying the reduction in the above proof

to replace edges with triangles.

Theorem 26. FVS BY CVD and OCT BY CVD given the modulator cannot be solved in

O∗((2− ε)k) time for any ε > 0 assuming SETH.

Proof. To prove the above theorem, we again give a reduction very similar to the reduction

given in the proof of Theorem 25. Consider a HITTING SET instance (U,F). To create an

instance of FEEDBACK VERTEX SET BY CVD or ODD CYCLE TRANSVERSAL BY CVD,

we replace each edge in the above reduction by a triangle. It can be easily shown that the

graph obtained after removing the vertices corresponding to elements in U forms a chordal

175

graph. The proof follows on similar lines.

5.4 Conclusion

Our main contribution is to develop techniques for addressing structural parameterization

problems when the modulator is not given. The question, of Fellows et al. about whether

there is an FPT algorithm for VERTEX COVER parameterized by perfect deletion set with

only a promise on the size of the deletion set, is open. Regarding problems parameter-

ized by chordal deletion set size, though our algorithms are based on treewidth DP, we

remark that not all problems that have FPT algorithms when parameterized by treewidth

necessarily admit an FPT algorithm parameterized by CVD. For example, DOMINATING

SET parameterized by treewidth admits an FPT algorithm [45] while DOMINATING SET

parameterized by CVD is para-NP-hard as the problem is NP-hard in chordal graphs [22].

Generalizing our algorithms for other problems, for example, for the optimization problems

considered by Liedloff et al. [111] would be an interesting direction.

Finally, we believe that this whole notion of permissive problems needs to be explored in

many facets of structural parameterizations where finding the modulator is more expensive

than solving the problem when the modulator is given.

176

Chapter 6

Fixed-parameter tractability of (n− k)

List Coloring

6.1 Introduction

The graph coloring problem is one of the fundamental combinatorial optimization problems

with applications in scheduling, register allocation, pattern matching and many other active

research areas. Given a graph G = (V,E), the k-coloring problem is asking whether there

is a way to assign at most k colors/labels to vertices of a graph such that no two adjacent

vertices share the same color. Such a coloring is also known as a proper k-coloring. The

smallest number of colors needed to color a graph G is called its chromatic number, and

is denoted by χ(G). Determining whether a graph is 3-colorable is NP-hard [78] while

the 2-coloring problem has a linear time algorithm. It is even hard to approximate the

chromatic number in polynomial time. The 3-coloring problem remains NP-complete even

on 4-regular planar graphs[52]. There are some generalizations and variations of ordinary

graph colorings which are motivated by practical applications such as PRECOLORING

EXTENSION and LIST COLORING. In this chapter, we focus on the LIST COLORING

problem defined as follows.

177

LIST COLORING PROBLEM

Input: A graph G = (V,E) and a LIST L of |V | sets of colors with L(v) being the entry

for v ∈V

Question: Is there an assignment of colors c : V →∪v∈V L(v) such that it respects

the list L, i.e. for any vertex v, c(v) ∈ L(v) and for any two adjacent vertices u and v,

c(v) 6= c(u)?

A list L is `-REGULAR if each set contains exactly ` colors. `-REGULAR LIST COLORING

problem is to decide whether G = (V,E) has a coloring that respects L, where L is `-

REGULAR.

Note that when all the lists L(v) = {1,2, . . . ,k}, the problem becomes the k-COLORING

problem.

Literature and Previous Work. As 3-coloring is NP-hard, the k-coloring problem

is para-NP-hard when parameterized by the number of colors. Hence various other

parameterizations have been studied for the COLORING problem. Some include structural

parameterizations like the size of the vertex cover [95], treewidth [45], deletion distance to

a graph class G where COLORING is solvable in polynomial time such as bipartite graphs,

chordal graphs, complete graphs[33, 138].

It is interesting to see if the COLORING problem is FPT for some parameterization,

whether LIST COLORING problem which is a generalization of COLORING also has an

FPT algorithm. For example, q-COLORING problem parameterized by the vertex cover

size k has a qknO(1) algorithm. The same result can be extended to q-REGULAR LIST

COLORING [95]. But there are also parameterizations where an FPT result in COLORING

problem does not extend to LIST COLORING. For example, while COLORING is FPT when

parameterized by the treewidth of the graph [45], LIST COLORING problem is W [1]-hard

for the same parameter [63]. See [138] for a summary of results on parameterizations of

COLORING and LIST COLORING.

178

It has been long known that it is fixed-parameter tractable to determine whether a graph

can be colored with at most n− k colors (here k is the parameter); i.e. whether one can

save k colors from the trivial n coloring of the graph [38]. We ask whether this result can

be generalized to LIST COLORING by asking whether (n-k)-REGULAR LIST COLORING is

FPT parameterized by k. A previous result by Arora and a subset of authors [10] showed

that (n-k)-REGULAR LIST COLORING is in XP. In this chapter, we improve this result by

showing that the problem is in FPT. A crucial part of the work in this chapter is to show

that the problem is FPT when the graph is f (k) vertices away from a clique that fits in the

deletion distance parameterization techniques.

6.2 Preliminaries

Definition 6.2.1. (Crown Decomposition) A crown decomposition of a graph G is a

partitioning of V(G) into sets C,H and R such that

• C is non-empty.

• C induces an independent set in G.

• There are no edges from C to R.

• G contains a matching of size |H| between C and H.

Here C is said to be the crown and H is the head. (See Figure 6.1).

Theorem 27. (Hall’s theorem, [55]) Let G be an undirected bipartite graph with bipartition

V1 and V2. The graph G has a matching saturating V1 if and only if for all X ⊆V1, we have

|N(X)| ≥ |X |.

Theorem 28. [86] Let G = (V,E) be an undirected bipartite graph with bipartitions

V1 and V2. Then in O(|E|
√
|V |) time we can either find a matching saturating V1 or an

inclusion wise minimal set X ⊆V1 such that |N(X)|< |X |.

179

Figure 6.1: Crown Decomposition

Theorem 29. [16] LIST COLORING can be solved in 2nnO(1) time.

6.3 FPT algorithm for (n-k)-REGULAR LIST COLORING

We restate the following reduction rules and results from [10] without proofs.

Reduction Rule 4. [10] Delete any vertex with degree less than (n− k).

Lemma 6.3.1. [10] If there exists a set of k colors using which it is possible to color

at least 2k vertices of G respecting the lists in L, then there is a feasible coloring for G

respecting L.

Lemma 6.3.2. [10] LIST COLORING PROBLEM is polynomial time solvable on a clique.

We keep applying Reduction Rule 4 till it is no longer applicable and hence from now

onwards we assume that every vertex has degree at least (n− k). We can also assume

that n≥ 3k for otherwise, we can apply Theorem 29 to obtain a fixed-parameter tractable

algorithm with running time 23knO(1).

Let C =∪v∈V L(v). We create a bipartite graph GB(V,C,E) with bipartization (V,C). There

is an edge between v and a color c if c ∈ L(v).

We start with the following new reduction rule.

180

Reduction Rule 5. Let C′ be an inclusion wise minimal subset of C such that |N(C′)|< |C′|

in the graph GB. Delete all the vertices in N(C′) from G.

Lemma 6.3.3. Reduction Rule 5 is safe and can be implemented in polynomial time.

Proof. Let D = C′ \ {c} for any arbitrary vertex c ∈ C′. Since C′ is an inclusion wise

minimal set satisfying the condition of the rule, for any subset D′ ⊆ D, |N(D′)| ≥ |D′|.

Hence by Hall’s theorem 27, there is a matching saturating D.

Let M be a matching saturating D into N(D). As N(D)⊆N(C′), we have |N(D)| ≤ |N(C′)|.

Since |N(D)| ≥ |D| = |C′|−1, we have |N(C′)| ≥ |C′|−1. But as |N(C′)| ≤ |C′|−1 by

definition of C′, we get |N(C′)|= |C′|−1. By definition of D, we have |N(D)|= |D| and

N(D) = N(C′). Hence there are no unmatched vertices in N(C′) with respect to M. We

have a crown decomposition in the graph GB with D as the crown and N(D) as the head.

Let us denote for each vertex v ∈ N(C′), mv as the matching partner in D with respect to

M. We show that there exists a list coloring respecting L in G if and only if there exists a

list coloring respecting L in G\N(C′). Since G\N(C′) is a subgraph of G, the forward

direction is true. In the converse, suppose that there exists a coloring C respecting L in

the graph G\N(C′). We extend this coloring C to a coloring C′ in G by assigning color

mv to each vertex v ∈ N(C′). We claim that C′ is a proper coloring respecting L. Suppose

not. Then there exists a monochromatic edge (u,v) ∈ E. Since C is a valid coloring, either

u ∈ N(C′) or v ∈ N(C′). Since all the vertices in N(C′) have different colors, both u and

v cannot be in N(C′). Hence without loss of generality, assume v /∈ N(C′). Since all the

vertices of N(C′) are colored by using colors in C′ and v /∈ N(C′), color of v cannot be

mu ∈C′ giving a contradiction.

Note that by deleting the vertices in N(C′) from G, we are also deleting the colors C′ from

C as the colors in C′ are only present in the set N(C′) by definition.

We use Theorem 28 in the graph GB to either conclude that there is a matching saturating

181

C or obtain a set C′ such that |N(C′)|< |C′| in polynomial time. If its the latter, we apply

Reduction Rule 5.

Note that when |V | < |C|, there is no matching in the bipartite graph GB saturating C.

Hence by Theorem 28, there exists a non-empty set C′ which is inclusion wise minimal

subset of C such that |N(C′)|< |C′|. Hence Reduction Rule 5 can be applied reducing |V |

and |C|. When the rule can no longer be applied |V | ≥ |C|. But note that if it is the case that

|V |= |C| when the reduction rule can no longer be applied, the matching M saturating C

from Theorem 28 gives a perfect matching M in GB. In this case, we can conclude that the

input is a YES instance as we can construct a feasible list coloring function C respecting L

with C(v) = mv where v ∈V and mv the matching partner of v in M.

Hence we can assume henceforth that in the graph G, |V |= n > |C|.

For an edge e = (u,v) ∈ G we define a list L(e) = L(u)∩L(v). We call a matching M in G

a MULTICOLOR MATCHING if it is possible to choose a distinct color from each L(e) for

every edge e ∈M. Now, we have the following corollary of Lemma 6.3.1 as the 2k end

points of the k matching edges can be colored with k colors.

Corollary 29.1. If there exists a multicolor matching of size k in G, then there is a feasible

coloring for G with respecting L.

Next, we show that we can color each vertex of G with a different color, or there exists a

MULTICOLOR MATCHING of size k or there exists a large clique in G.

Lemma 6.3.4. For any u,v ∈V , |NGB(u)∩NGB(v)|> n−2k in GB.

182

Proof. Let u,v ∈V . We have

n = |V | > |C|

≥ |NGB(u)∪NGB(v)|

= |NGB(u)|+ |NGB(v)|− |NGB(u)∩NGB(v)|

≥ 2n−2k−|NGB(u)∩NGB(v)|

from which it follows that n > 2n−2k−|NGB(u)∩NGB(v)| from which the claim follows.

Next, we prove the following.

Lemma 6.3.5. Either there is a multicolor matching of size k in G or there is a clique of

size n−2k in G.

Proof. Find any maximal matching M in G. Suppose |M| < k. Let VM be the set of

endpoints of edges in M. The set of vertices V \VM is an independent set in G, therefore

they form a clique in G. Since |V \VM|> n−2k, one part of the lemma follows.

If |M| ≥ k, choose exactly k edges of the matching and let us call this set of edges as M.

From Lemma 6.3.4 we know that between any pair of vertices in V , there are at least

n−2k shared colors. As we have assumed that n≥ 3k, we have n−2k ≥ k. Hence we can

greedily assign an unassigned color to each edge of M starting from an arbitrary color for

the first edge in M, resulting in a multicolor matching of size k in G.

If there is a multicolor matching of size k in G, then by Corollary 29.1, G can be list colored.

Now, in what follows, we show that the list coloring can be determined in FPT time when

G has a clique of size at least n− 2k. Towards this, we define the graph class CLIQUE

+ f (k) whose members G has the property that there exists a subset of f (k) vertices in G

183

whose deletion results in a clique.

We look at (n-k)-REGULAR LIST COLORING in the graph class CLIQUE + f (k) parameter-

ized by k. A recent result by Gutin et al. [81] gives a randomized 2 f (k)nO(1) algorithm for

(even a more general version of) this problem. However in the following result, we give a

deterministic FPT algorithm using the fact that the degree of every vertex in our graph is

at least n− k.

Notice that we have f (k) = 2k in the case that we ended up with.

Clique

F

Figure 6.2: List coloring in clique+ f (k)

Theorem 30. (n-k)-REGULAR LIST COLORING is FPT for the graph class CLIQUE + f (k).

Proof. Let G(V,E) be a graph in CLIQUE + f (k) such that V = D∪F where D induces

a clique, and |F | ≤ f (k). Any feasible coloring for G partitions V into different color

classes where each color class induces an independent set. Now we show that given any

partition V = {V1,V2 · · ·Vl} of V , in polynomial time, we can determine whether there is a

list coloring of the vertices such that all vertices in Vi ∈ V are colored with a single color.

First, observe that the following properties must be satisfied for V to be a partition of V

into independent sets. We call a partition of V satisfying the following properties a good

partition of V .

• Each subset Vi must be an independent set in G.

184

• For each subset Vi ∈ V , ∩v∈ViL(v) 6= /0.

• For each subset Vi ∈ V , |D∩Vi| ≤ 1.

For a good partition V , we create the following bipartite graph GB with bipartization (V,C),

where one partition V contains a vertex corresponding to each Vi. Recall that C =∪v∈V L(v)

is the set of colors. There is an edge between the vertex corresponding to Vi and c j if and

only if c j ∈ ∩v∈ViL(v). Then the following claim is easy to see.

Claim 6.3.1. There is a feasible coloring of G with exactly the color classes in a good

partition V if and only if there is a matching saturating V in GB.

Proof. Let C be a feasible coloring of G. For each color class Vi ∈ V , we have a different

color C(Vi). Hence by the definition of the edges of GB, we have a matching saturating V ,

the matching edges being (Vi,C(Vi)).

In the converse, let M be a matching saturating V . Let cVi be the matching partner of Vi in

M. We construct a coloring function C : V →C such that C(v) = cVi if v ∈Vi. Since V is a

good partition, each Vi ∈ V is an independent set. Hence we have a feasible coloring of

G.

Now, we argue that the number of distinct good partitions of V is a function g(k) to

complete the argument.

Let X = F ∪NG\F(F) where NG\F(F) = ∪v∈FNG\F(v), i.e. the union of non neighbors in

V \F for each vertex v ∈ F . Define Y =V \X . Then every vertex of Y is adjacent to all

other vertices of V . Hence each vertex of Y should get a separate color that is different

from the colors of all other vertices of X in any proper coloring. Hence in a good partition

V , there will be a color class with the singleton element {y} for every y ∈ Y . Let Y denote

the partition of Y of such singleton sets.

Hence to check if there exists a list coloring of G, it suffices to test for every partition X

185

of X , whether the partition V formed by the union of X and Y forms a feasible coloring.

This can be tested using Claim 6.3.1 by going over all partitions of X .

The running time is bounded by B|X |nO(1) where B|X | is the number of partitions of X which

is at most dd where |X |= d. For any vertex v of F , |NG(v)| ≤ k due to reduction rule 4.

Thus |X | ≤ f (k)+ k · f (k). Hence the overall runtime is (f (k)+ k · f (k))(f (k)+k· f (k))nO(1).

From Lemma 6.3.5, we know that either there is a multicolor matching of size k in G when

we have a list coloring respecting the lists or that there is a clique of size at least n−2k in

G where we can check if there is a list coloring in (2k2 +2k)2k2+2knO(1) time.

The running time can be slightly improved (to (2k2)O(k)nO(1)) by observing the following.

Since the (non-neighbor) vertices in N(F) are part of a clique, in any valid coloring they

need separate colors. Let us look at the subfamily of a partition of X containing at least

one vertex from F . There are at most 2k sets in this subfamily and each set in the family

contains at most one vertex from N(F). Hence we can fix a partition of X that corresponds

to a list coloring by first fixing a partition of F and then adding at most one vertex from

N(F) to each of the sets in this partition. The number of partitions of F is at most 2k2k.

For a fixed partition of F , the number of ways in which we can add at most one vertex

from N(F) to each of the sets is at most (2k2 +1)2k. Hence the number of partitions of X

is at most (2k2 +1)2k ·2k2k. Thus we have the main result of the chapter.

Theorem 31. (n-k)-REGULAR LIST COLORING is FPT parameterized by k with running

time (2k2)O(k)nO(1).

We give the following pseudo code below summarizing the entire algorithm.

186

Algorithm 6.3.1: FPT Algorithm for (n-k)-REGULAR LIST COLORING

1 Input: A graph G = (V,E) and a list L of |V | many sets of |V |− k colors with L(v)
being the entry for v ∈V .

2 Output: YES if there is a proper list coloring of V , NO otherwise.

1. If |V | ≤ 3k, use algorithm in Theorem 29.

2. Repeat until it is no longer applicable :

• Delete any vertex with degree less than |V |− k.

• If there is a matching saturating C, return YES. Otherwise, find C′ which is an
inclusion wise minimal subset of C such that |N(C′)|< |C′| in the graph GB.
Delete all the vertices in N(C′) from G.

3. Check if there is a multicolor matching of size k in G. If so, return YES.

4. Find a subset F of size at most 2k in G whose deletion results in a clique D.

5. Compute X = F ∪NG\F(F).

6. Go over all good partitions of X and see if there is a proper list coloring with the
partition of X and singleton sets of D\X forming the color classes of the list
coloring (using Theorem 30).

6.4 Conclusion

We have shown that (n-k)-REGULAR LIST COLORING is FPT parameterized by k. Another

well-studied notion in parameterized complexity is the notion of kernelization, where

given an input instance (I,k) of the parameterized problem Q, we use a polynomial time

algorithm to convert it to an equivalent instance (I′,k′) ∈ Q where |I′| ≤ g(k) for some

computable function g. The latter instance is called the kernel of the problem. A natural

open problem is the existence of a polynomial kernel for (n-k)-REGULAR LIST COLORING.

Recently, Gutin et al. [81] solved this by giving a kernel with O(k2) vertices and colors.

187

188

Chapter 7

Deletion Distance Parameterizations of

Dominating Set Variants

7.1 Introduction

7.1.1 Motivation

DOMINATING SET problem is one of the classical NP-complete graph-theoretic problems.

It asks for a minimum set of vertices in a graph such that every vertex is either in that

set or has a neighbor in that set. It, along with several variations including independent

domination, total domination, efficient domination, connected domination, total perfect

domination, threshold domination are well-studied in all algorithmic paradigms including

parameterized complexity and approximation and structural points of view. All of these

versions are hard for the parameterized complexity class W[2] in general graphs when

parameterized by solution size. It means that the problem of determining whether a graph

has a dominating set(or any variants listed above) of size k is unlikely to be fixed-parameter

tractable.

189

We consider parameterizations of DOMINATING SET variants that are more natural and

functions of the input graph. To the best of our knowledge, this is the first serious study of

structural parameterization of any version of dominating set.

Our parameter of interest is the ‘distance’ of the graph from a natural class of graphs. Note

that if dominating set is NP-hard in a graph class, then it will continue to be NP-hard even

on graphs that are k away from the class, even for constant k (in particular for k = 0) and

hence is unlikely to be fixed-parameter tractable. Hence it is natural to consider graphs that

are not far from a class of graphs where the dominating set problem is polynomial time

solvable. Our case study considers two such special graphs: cluster graphs where each

connected component is a clique and split graphs where the vertex set can be partitioned

into a clique and an independent set. In the former, all the variants of dominating set we

consider are polynomial time solvable, while in the latter class of split graphs, we consider

the independent and efficient dominating set problems that are polynomial time solvable.

We call the set of vertices whose deletion results in a cluster graph and split graph as

cluster vertex deletion set (CVD) and split vertex deletion set (SVD) respectively.

Finally, we remark that the size of minimum CVD and minimum SVD are at most the

size of a minimum vertex cover in a graph, which is a well-studied parameterization in the

parameter-ecology program [134].

It is called an efficient dominating set if for every vertex v ∈V , |N[v]∩S|= 1. Note that

an efficient dominating set may not exist for a graph (for example, for a 4-cycle). If for

every vertex v, |N(v)∩ S| ≥ r, S is a threshold dominating set with threshold r. When

r = 1, S is a total dominating set. Note that for dominating set, the vertices in S do not

need other vertices to dominate them, but they do in a total dominating set. For more on

these dominating set variants, see [83]. We will often denote efficient dominating set by

EDS and independent dominating set by IDS in the rest of the article. When we say that a

graph G is k-away from a graph in a graph class, what we mean is that there is a subset S

of k vertices in the graph such that G\S belongs to the class.

190

Now we describe the main results in this chapter (See Table 7.1 for a summary). When

parameterized by the deletion distance k to cluster graphs,

• we can find a minimum dominating set in O∗(3k) time. Within the same time,

we can also find a minimum independent dominating set (IDS) or a minimum

efficient dominating set (EDS) or a minimum total dominating set. We also give

a O∗((r + 2)k) algorithm for minimum threshold dominating set with threshold

r. These algorithms are obtained through a dynamic programming approach for

interesting generalizations of set cover which may be of independent interest. These

results are discussed in Section 7.2.1.

• We complement our upper bound results by showing that for dominating set and

total dominating set, O∗((2− ε)k) algorithm is not possible for any ε > 0 under

what is known as Set Cover Conjecture. We also show that for IDS, O∗((2− ε)k)

algorithm is not possible for any ε > 0 under the Strong Exponential Time Hypothesis

(SETH) and for EDS no 2o(k) algorithm is possible unless the Exponential Time

Hypothesis (ETH) is false. It also follows from our reductions that dominating

set, total dominating set and IDS do not have polynomial sized kernels unless

NP⊆ coNP/poly. These results are discussed in Section 7.2.2.

The standard dominating set and most of its variants are NP-hard or W[2]-hard in split

graphs [145]. For the two variants IDS and EDS that are polynomial time solvable in split

graphs, we show that when parameterized by the deletion distance k to split graphs,

• IDS can be solved in O∗(2k) time and provide an O∗((2− ε)k) lower bound for

any ε > 0 under the strong exponential time hypothesis (SETH). We also show that

IDS-SVD has no polynomial kernel unless NP⊆ coNP/poly.

• The 2k barrier can be broken for EDS by designing an O∗(3k/2) algorithm. This

is one of the very few problems with a runtime better than O∗(2k) in the realm

191

Cluster Deletion Set Split Deletion Set
Algorithms Lower Bounds Algorithms Lower Bounds

DS, TDS O∗(3k) ? O∗((2− ε)k) and para-NP-hard
npk ?

IDS O∗(3k) ? O∗((2− ε)k) and O(2k) ? O∗((2− ε)k) and
npk npk

EDS O∗(3k) ? O∗(2o(k)) ? O∗(3k/2) ? O∗(2o(k)) ?

THDS O∗((r+2)k) ? npk ? para-NP-hard

Table 7.1: Summary of results. Results marked ? indicate our results. npk stands for ‘No
polynomial kernel’

of structural parameterization. We also show that no 2o(k) algorithm is possible

unless the exponential time hypothesis (ETH) is false. These results are discussed in

Section 7.3.

7.1.2 Related Work

Clique-width [43] of a graph is a parameter that measures how close to a clique the graph

is. Courcelle et. al. [42] showed that for a graph with clique-width at most k, any problem

expressible in MSO1 (monadic second order logic of the first kind) has an FPT algorithm

with k as the parameter if a k-expression for the graph (a certificate showing that the

clique-width of the graph is at most k) is also given as input. The clique-width of a graph

that is k away from a cluster graph can be easily shown to be k+1 (with a k-expression)

and all the dominating set variants discussed in this chapter can be expressed in MSO1

and hence can be solved in FPT time in such graphs. But the running time function

f (k) in Courcelle’s theorem is huge (more than doubly exponential). Oum et al. [136]

gave an kO(k)nO(1) algorithm to solve the minimum dominating set for clique-width k

graphs without assuming that the k-expression is given. There is a O∗(4k) algorithm by

Bodlaender et. al. [85] for finding minimum dominating set in graphs with clique-width k

when the k-expression given as input. It is easy to construct the k-expression for graphs k

away from a cluster graph and hence we have a O∗(4k) algorithm. The algorithms we give

192

in Section 7.2, not only improve the running time, but also are applicable for other variants

of dominating set.

7.1.3 Problem Definitions

SET COVER

Input: A universe U and a family F ⊆ 2U and an integer k

Parameter: |U|

Question: Does there exist k sets A1, . . . ,Ak ∈ F such that
k⋃

i=1
Ai = U?

CNF-SAT

Input: A boolean formula φ in conjunctive normal form with n variables and m

clauses

Parameter: n

Question: Is there an assignment which evaluates φ to true?

3-CNF-SAT

Input: A boolean formula φ in conjunctive normal form with n variables and m

clauses such that every clause has at most three literals.

Parameter: n

Question: Is there an assignment that evaluates φ to true?

We give a general template of formal definition of problems as follows:

P -Q
Input: An undirected graph G = (V,E),S⊆V (G) which is a Q and an integer `.

Parameter: |S|

Question: Is there a P in G of size at most `?

193

P can be one of DOMINATING SET, EFFICIENT DOMINATING SET, INDEPENDENT

DOMINATING SET, TOTAL DOMINATING SET and THRESHOLD DOMINATING SET

denoted by DS, EDS, IDS, TDS and THDS. Q can be one of CLUSTER VERTEX

DELETION set, SPLIT VERTEX DELETION set and VERTEX COVER denoted by CVD,

SVD and VC respectively.

For example, DS-CVD is as follows according to the template.

DS-CVD

Input: An undirected graph G = (V,E),S⊆V (G) which is a cluster vertex deletion

set and an integer `.

Parameter: |S|

Question: Is there a dominating set in G of size at most `?

A minimal vertex cover is a vertex cover of a graph that is not a proper subset of any other

vertex cover. We now define the following parameterizations of the maximum minimal

vertex cover problem.

MMVC-VC

Input: An undirected graph G = (V,E),S ⊆V (G) such that S is a vertex cover and

an integer `.

Parameter: |S|

Question: Does G have a minimal vertex cover with at least ` vertices?

MMVC-CVD

Input: An undirected graph G = (V,E),S ⊆ V (G) such that S is a cluster vertex

deletion set of G and an integer `.

Parameter: |S|

Question: Does G have a minimal vertex cover with at least ` vertices?

194

7.2 Dominating Set Variants parameterized by CVD Size

7.2.1 Upper Bounds

In a clique graph, any vertex of the graph is a dominating set. Hence in cluster graphs

where each component is a clique, any optimal dominating set is such that it has exactly

one vertex from each clique component. It is easy to see from the definitions that this

dominating set is also efficient and independent. Any optimal threshold dominating set

with threshold r is such that it contains exactly r+1 vertices from each clique component.

Note that in this case, every vertex has r neighbors excluding itself.

We can assume that the CVD set S of size k is given with the input. If not, we can use the

algorithm by Boral et al. [23] that runs in O∗(1.92k) time and either outputs a CVD set of

size at most k or says that no such set exists.

We now give an algorithm for DS-CVD defined in Section 7.1.3.

Our FPT algorithm starts with making a guess S′ for the solution’s intersection with S. We

delete vertices in N[S′]∩S as they have been already dominated by S′.

Let us denote the cliques in the cluster graph G′ = G\S as C1,C2, . . . ,Cq where q≤ n− k.

We label the vertices of G′ as v1,v2, . . . ,v|V\S| such that the first l1 of them belong to the

clique C1, the next l2 of them belong to clique C2 and so on for integers l1, l2, . . . , lq. Note

that for some cliques, it could be that all the vertices of the clique are dominated by S′.

We are left with the problem of picking the minimum number of vertices from the clique

vertices in V \S to dominate, the vertices of the cliques that are not yet dominated by S′,

and the set S\N[S′]. We abstract out the problem as follows.

195

DS-DISJOINTCLUSTER

Input: An undirected graph G=(V,E), S⊆V such that every connected component of

G\S is a clique, a (0,1) vector (f1, f2, . . . , fq) corresponding to the cliques (C1, . . . ,Cq)

and an integer `.

Parameter: |S|

Question: Does there exist a subset T ⊆V \S of size `, that dominates all vertices of

S and all vertices of all cliques Ci with flags fi = 1?

For the DS-CVD problem, the set S in this new formulation is the remaining vertices of S

after deleting N[S′]∩S. Also for the clique Ci, the flag fi is set to 1 if all its vertices have

not been dominated by S′ and is set to 0 otherwise. Note that if all the vertices of a clique

component are not dominated, one of its vertices has to go into the solution to dominate

the remaining vertices.

We now give an algorithm for DS-DISJOINTCLUSTER. We formulate this problem instance

as a variant of SET COVER instance. We define the universe U for the SET COVER instance

as the vertex set S. For each vertex v ∈ V \ S, let Sv = N(v)∩ S. We define the family

of sets of SET COVER as F = {Sv|v ∈ V \ S}. We say that a subfamily F ′ ⊆ F covers

a subset W ⊆ U if for every element w ∈W , there exist some set in F ′ containing w.

A SET COVER solution F ′ ⊆ F for (U ,F) covers all the elements of U . In the graph

G, the vertices corresponding to the sets in F ′ will dominate all the vertices in S. But

DS-DISJOINTCLUSTER has the additional requirement of dominating the vertices of every

clique Ci with fi = 1 as well. This means from every such clique at least one vertex has

to be in the solution. With this in mind, we define for each clique Ci in the graph G, a

subfamily Bi = {Sv : v ∈Ci} for the SET COVER instance. We call these subfamilies as

blocks. Let us order the sets Sv in a block in the order of the vertices v1, . . . ,v|V\S|. We

have the following problem which is a slight generalization of SET COVER.

196

SET-COVER WITH PARTITION

Input: A universe U , a family of sets F = {S1, . . . ,Sm}, a partition B =

(B1,B2, . . . ,Bq) of F , a (0,1) vector (f1, f2, . . . , fq) corresponding to each block

in the partition (B1,B2, . . . ,Bq) and an integer `.

Parameter: |U|= k

Question: Does there exist a subfamily F ′ ⊆ F of size ` that covers U and at least

one set is present in blocks Bi with flags fi = 1?

Lemma 7.2.1. SET-COVER WITH PARTITION can be solved in O∗(2|U |) time.

Proof. We give a dynamic programming algorithm to solve SET-COVER WITH PARTITION.

The algorithm is similar to the exact algorithm to solve SET COVER [68] but with some

modifications to handle the blocks Bi with flag fi = 1. For every subset W ⊆U , for every

j ∈ [m] and a flag f ∈ {0,1}, we define OPT [W, j, f] as the cardinality of the minimum

sized subfamily X of {S1, . . . ,S j} that covers W and from each block Bi with fi = 1, there

is at least one set in X except the block Bx containing the last set S j where we reset the

flag to f to indicate that at least f sets are required in that block.

We have OPT [W,1, f] = 1 if W ⊆ S1, else we set OPT [W,1, f] to ∞ to indicate that there

is no such subfamily. To compute all the values of OPT [W, j, f], we initially set all the

remaining values to ∞. Assuming that OPT [W ′, j′, f ′] is computed for all subsets W ′ ⊆W ,

integers 1≤ j ≤ j and flags f ′ ∈ {0,1}, we give the following recursive formulation for

OPT [W, j+1, f].

• Case 1 : S j+1 is not the first set in its block Bx.

OPT [W, j+1, f] = min
{

OPT [W, j, f],1+OPT [W \S j+1, j,0]
}

In computing OPT [W, j+1, f] recursively, either S j+1 is in the solution where the

block Bx is covered, and we are left to cover W \ S j+1 using {S1, . . . ,S j} or S j+1

197

is not picked and we are left to cover W using {S1, . . . ,S j}. Hence we take the

minimum of these two cases in the above recursive formulation.

• Case 2 : S j+1 is the first set in its block Bx.

OPT [W, j+1, f] =

1+OPT [W \S j+1, j, fx−1] if f = 1

min
{

OPT [W, j, fx−1],1+OPT [W \S j+1, j, fx−1]
}

if f = 0

When S j+1 is the first element of the block Bx and the flag corresponding to Bx

f is 1, then the set S j+1 has to be in the optimal solution as it is the only set

among {S1, . . . ,S j} present in Bx. Since the set S j is in the previous block Bx−1, we

recursively look at the optimal solution with the flag corresponding to the recursive

instance set to fx−1. This justifies the above recursive formulation.

We compute the subproblems in increasing order subsets W ⊆U and for each W increasing

order of j and f . The solution to the problem is computed at OPT [U ,m, fx] where fx is the

value for the block Bx containing Sm. The number of problems is 2|U |+1 ·m and for each

subproblem we spend O(|U|) time. Hence the total running time is O(2|U | · (n−|U|) · |U|)

which is O(2|U | ·n2).

We solve DS-DISJOINTCLUSTER in O∗(2|S|) time as follows. We construct the SET-

COVER WITH PARTITION instance from the DS-DISJOINTCLUSTER instance as discussed

earlier. It can be easily seen that there exists a solution of size ` in DS-DISJOINTCLUSTER

instance if and only if there exists a solution of size ` in SET-COVER WITH PARTITION

instance. We then use the algorithm Lemma 7.2.1 for SET-COVER WITH PARTITION.

In the algorithm for DS-CVD, for each guess S′ ⊆ S with |S′| = i, we construct the

DS-DISJOINTCLUSTER instance with |S|= k− i and solve it with running time O∗(2k−i).

Hence the total running time is
k
∑

i=1

(k
i

)
O∗(2k−i) which is 3knO(1).

198

We show that with some careful modifications to the above dynamic programming algo-

rithm, we can obtain efficient FPT algorithms for minimum efficient, independent, total

and threshold dominating set when parameterized by the size of cluster deletion set to

show the following.

Theorem 32. EDS-CVD, TDS-CVD and IDS-CVD can be solved in O∗(3k) time.

THDS-CVD can be solved in O∗((r+2)k) time.

Proof. We first give the algorithm for EDS-CVD.

Algorithm for EDS-CVD

Like in DS-CVD, we make a guess S′ from the modulator. It is required all the vertices in

S′ should have a disjoint closed neighborhood as otherwise some vertex in S′ is dominated

twice. Otherwise, we return NO. We delete N[S′] and color the vertices in N2[S′]\N[S′]

red to indicate that these vertices are to be dominated, but cannot be picked as picking

one would make some vertex in N[S′] dominated twice. If some clique in G\S has all red

vertices, we move on to make another guess from the modulator S′ as these vertices in the

clique cannot be dominated. If a clique contains both red and non-red vertices, we can

delete the red vertices from that clique. Now from each clique in G\S exactly one vertex

has to be picked. We are left to solve the following problem.

EDS-DISJOINTCLUSTER

Input: An undirected graph G = (V,E),S⊆V (G) such that G\S is a cluster graph

Parameter: |S|

Question: Is there an efficient dominating set in G that is disjoint from S?

For the problem we started with, the set S in this new formulation is the remaining vertices

of S after deleting S′ and N[S′] and the cluster graph is the union of original cliques after

deleting the red vertices of the cliques.

We now give an algorithm to solve EDS-DISJOINTCLUSTER.

199

Any solution must pick exactly one vertex from each clique as one vertex is sufficient

and necessary to dominate all vertices in a clique and we expect them to dominate S as

well. Like we did in DS-CVD, we construct the set cover instance (U ,F ,B). Here all

the vertices of S must be exactly dominated once using the remaining vertices in V \ S.

This suggests that the problem could be formulated as a variant of the EXACT SET COVER

problem where you require every element in the universe to be covered exactly once. The

additional requirement of picking exactly one set from each block leads to a reduction to

the following problem.

EXACT SET-COVER WITH PARTITION

Input: A universe U , a family of sets F = {S1, . . . ,Sm} , a partition B =

(B1,B2, . . . ,Bq) of F and an integer `.

Parameter: |U|

Question: Does there exist a subset F ′ ⊆F of size at most ` such that every u ∈ U is

covered exactly once and from each block Bi exactly one set is picked?

It can be easily seen that there exists a solution of size ` for EDS-DISJOINTCLUSTER

instance if and only if there exists a solution of size ` for EXACT SET-COVER WITH

PARTITION instance. We now give a dynamic programming algorithm to solve EXACT

SET-COVER WITH PARTITION. For every nonempty subset W ⊆ U , for every j ∈ [m] and

flag f = {0,1}, we define OPT [W, j, f] as the cardinality of the minimum subset X of

{S1, . . . ,S j} such that each element of W is covered exactly once and from each block Bi,

there is exactly one set in X except the block Bx containing the set S j where we reset the

flag to f to indicate that exactly f sets are required in that block.

We have OPT [W,1, f] = 1 if W = S1 and f = 1, else OPT [W,1, f] = ∞. To compute all

the values of OPT [W, j, f], we initially set all the remaining values to ∞. We give the

following recursive formulation for OPT [W, j+1, f] with j ≥ 1.

200

• Case 1 : S j+1 is not the first set in its block Bx

OPT [W, j+1, f] =

OPT [W, j, f] if S j+1 *W or f = 0

min
{

OPT [W, j, f],1+OPT [W \S j+1, j,0]
}

otherwise

• Case 2 : S j+1 is the first set in its block Bx.

OPT [W, j+1, f] =

∞ if S j+1 *W and f = 1

1+OPT [W \S j+1, j,1] if S j+1 ⊆W and f = 1

OPT [W, j,1] if f = 0

The idea is similar to the earlier recursive formula for dominating set. Checking whether

S j+1 ⊆W before adding to the solution ensures that every element in the universe is

covered exactly once. We compute the subproblems in increasing order subsets W ⊆ U

and for each W increasing order of j and f . The solution to the problem is computed at

OPT [U ,m,1].

Hence, we have a O∗(2|S|) algorithm for EDS-DISJOINTCLUSTER. If EDS-

DISJOINTCLUSTER returns ∞ for all choices of S′, we return NO as there is no such

EDS in the graph. Since the number of subproblems remains the same as DS-CVD, the

total running time to solve EDS-CVD is O∗(3k).

Algorithm for IDS-CVD

The idea remains almost the same as in DS-CVD. For the guess in the modulator S′ ⊆ S,

the graph G[S′] has to be independent. If S′ dominates all the vertices of a clique we can

delete the clique as you cannot pick any vertex from this clique preserving independence.

In the graph obtained after deleting N[S′]∩S, we have to pick exactly one vertex from each

clique to dominate vertices in S \N[S′]. Hence the IDS-CVD instance can be reduced

to the SET-COVER WITH PARTITION problem instance with a slight modification where

201

instead of at least picking one set from each block we have to pick exactly one set. A

similar dynamic programming algorithm can solve this problem giving us an overall

running time of O∗(3k).

Algorithm for THDS-CVD

Again our FPT algorithm starts with making a guess S′ for the solution’s intersection with

S. We delete vertices in S∩N[S′] that has r neighbours to S′. For the rest of the vertices

v ∈ V (G), we associate a weight w(v) ∈ {0,1, . . . ,r} denoting the remaining number of

times v is required to be dominated after S′ is added to the r-threshold dominating set. Now

we are left to solve the following problem (for each guesses S′).

THDS-DISJOINTCLUSTER

Input: An undirected graph G = (V,E),S⊆V (G) such that G\S is a cluster graph,

weight function w : V →{0,1, . . . ,r}.

Parameter: |S|

Question: Is there a subset D ∈V \S of size l in G such that every vertex v ∈V has at

least w(v) neighbours in D?

We now give an algorithm to solve THDS-DISJOINTCLUSTER. For each clique Ci, we

have to pick at least max
v j∈Ci

w(v j)+ 1 vertices to dominate all the vertices in the clique at

least r times. This can be viewed as a weight corresponding to the clique.

Again we construct a SET COVER instance (U ,F ,B) as done in DS-CVD. Since elements

in U are to be covered multiple times, the problem to be reduced is a variant of WEIGHTED

MULTICOVER problem. The additional covering requirement in each of the blocks leads

us to the following problem definition.

202

WEIGHTED SET-MULTICOVER WITH PARTITION

Input: A universe U , a family of sets F = {S1, . . . ,Sm}, a partition B =

(B1,B2, . . . ,Bq) of F , a weight functions w|UU : U → [r], wB : B → {0,1, . . . ,r} and

an integer `.

Parameter: |U|

Question: Does there exist a subset F ′ ⊆F of size ` such that every u ∈ U is covered

at least wU(u) times and from each block Bi at least wB(Bi) sets are picked?

It can be easily seen that there exists a solution of size ` for the THDS-DISJOINTCLUSTER

instance if and only if there exists a solution of size ` for the WEIGHTED SET-

MULTICOVER WITH PARTITION instance. We now give a dynamic programming al-

gorithm to solve WEIGHTED SET-MULTICOVER WITH PARTITION. For every j ∈ [m],

for every weight vector w = (wu1,wu2, . . . ,wu|U |) (where ui ∈ U , wui ∈ {0,1, . . . ,r}) and

flag f = {0,1, . . . ,r}, we define OPT [j,w, f] as the cardinality of the minimum subfamily

X of {S1, . . . ,S j} such that each element ui ∈ U is covered at least wui times (note that

wui = 0 indicates that you do not need to cover ui) and from each block Bi, there is at least

wB(Bi) sets in X except the block Bx containing the set S j where we reset the weight to f

to indicate that at least f sets are required in that block.

We have OPT [1,w, f] = 1 if S1 covers every element in ui ∈U at least wui times and f ≤ 1,

else OPT [1,w, f] = ∞. To compute all the values of OPT [j,w, f], we initially set all the

remaining values to ∞ and give the following recursive formulation for OPT [j+1,w, f]

with j ≥ 1.

• Case 1 : S j+1 is not the first set in its block Bx.

OPT [j+1,w, f] = min
{

OPT [j,w, f],1+OPT [j,w′,max{ f −1,0}]
}

where w′ is the weight-vector after subtracting 1 from wui for each of the elements

ui ∈ S j+1 where wui > 0.

203

• Case 2 : S j+1 is the first set in its block Bx.

OPT [j+1,w, f] =

1+OPT [j,w′,wB(Bx−1)] if f = 1

min
{

OPT [j,w,wB(Bx−1)],

1+OPT [j,w′,wB(Bx−1)]
}

if f = 0

∞ otherwise

where w′ is the weight-vector after subtracting 1 from wui for each of the elements

ui ∈ S j+1 where wui > 0.

Again the idea is similar to the recursive formulation of DS-CVD with the choice of

whether S j+1 is in the optimal solution or not. When S j+1 is in the optimal solution, we

decrease the weight requirements of the elements in the set by one and get the new weight

vector w′. When S j+1 is the first set in the block, in the recursive subproblem, we set the

flag to wB(Bx−1) corresponding to the block Bx−1 that contains the set S j.

We compute the subproblems in increasing order of j, w and f . The solution to the problem

is computed at OPT [m,w1,wB(Bx)] where w1 corresponds to the weight-vector from the

input function wU and wB(Bx) is the weight of the block Bx containing Sm. The number of

problems are m · (r+1)|U | · (r+1) and for each subproblem we takeO(|U|) time to update

the weight vector. The total running time is O((n−|S|) · (r+1)|S| · |S|) =O∗((r+1)|S|).

Now for each guess S′ in the modulator with |S′|= i, we get a

THDS-DISJOINTCLUSTER instance with |S|= k− i and solve it with running timeO∗((r+

1)k−i). Hence the total running time in solving THDS-CVD is
k
∑

i=1

(k
i

)
O∗((r+1)k−i) =

O∗((r+2)k).

Since TDS-CVD is THDS-CVD with r = 1, we have a O∗(3k) algorithm to solve TDS-

CVD.

204

7.2.2 Lower bounds

We first give lower bounds for DS-CVD and TDS-CVD by giving a reduction from the

SET COVER problem.

Lemma 7.2.2. There is a polynomial time algorithm that takes an instance (U ,F , `) of

SET COVER with ` > 1 and outputs an instance (G, `) of DS-CVD (or TDS-CVD) such

that G has a cluster vertex deletion set with exactly |U| vertices, such that (U ,F , `) has a

set cover of size ` if and only if G has a (total) dominating set of size `.

Proof. Consider a SET COVER instance (U ,F , `) with U = {u1,uk} and F =

{S1, ...,Sm}. Construct the graph G = (U]V,E) with vertex sets U = {u1,uk} and

V = {s1, ...,sm}. Every vertex in U corresponds to an element in the universe U and every

vertex s j ∈ V corresponds to the set S j ∈ F for j ∈ [m]. We add edges (ui,s j) if ui ∈ S j.

We also add edges (si,s j) for all i 6= j to make G[V] a clique with m vertices. Hence the

graph G\U is a cluster graph with |U |= k.

We now claim that there is a subset F ′ ⊆F of size ` covering U if and only if and only if

there is a dominating set of size ` in G.

We first prove the forward direction. We claim that the set of vertices in V of size

` corresponding to the subsets in F ′ forms a dominating set. More specifically, let

V ′ = {si ∈V |Si ∈ F ′}. Since G[V] is a clique, by picking at least one vertex from V all the

vertices of V are dominated. Since F ′ covers all the elements of U , for each vertex ui ∈U

there exists some s j ∈V such that there is an edge (ui,s j) in G. Hence all the vertices of U

are dominated as well. Hence V ′ is a dominating set in G of size `.

We now prove the reverse direction. First, we claim that there is a dominating set of size

` which does not contain any vertex from U . Let D⊆V (G) be a dominating set of size

` in G. Suppose there is a vertex ui ∈U in D. Since G[U] is an independent set, ui can

only cover some subset of vertices in V other than ui. But by picking any vertex of V

205

adjacent to ui, all the vertices of V can also be covered other than ui. Hence D\{ui}∪{v}

for any neighbour v of ui(such a neighbour exists as otherwise ui is not present in any of

the sets) is also a dominating set of the same size. We do this for all vertices u ∈U and get

a dominating set D of size at most ` not containing any vertex in U . By picking the sets

corresponding to the vertices in D⊆V , we get a subfamily F ′ ⊆F of size ` covering U .

Note that the dominating set in the above claim is also a total dominating set for ` > 1

where at least two vertices of the clique are in the solution. This proves the lemma.

The following theorem follows from the above lemma and Set Cover Conjecture (Conjec-

ture 2.2.3).

Theorem 33. DS-CVD and TDS-CVD cannot be solved in O∗((2− ε)k) running time

for any ε > 0 unless Set Cover Conjecture fails.

Proof. Suppose that there is an algorithm solving DS-CVD in O∗((2− ε)k) running time.

Then by Lemma 7.2.2, we can solve SET COVER with |U|= k in running timeO∗((2−ε)k)

violating the Set Cover Conjecture (SCC). This completes the proof. Since the dominating

set in the reduction is also total, TDS-CVD also cannot be solved inO∗((2−ε)k) running

time for any ε > 0 as well.

The following theorem follows from Theorem 2 and Lemma 7.2.2.

Theorem 34. DS-CVD, TDS-CVD and THDS-CVD do not have polynomial sized

kernels unless NP⊆ coNP/poly.

Proof. SET COVER parameterized by the size of the universe does not admit polynomial

sized kernels unless the polynomial hierarchy collapses to the third level, i.e. NP ⊆

coNP/poly [56]. Since the reduction provided in Lemma 7.2.2 is a polynomial parameter

transformation (PPT) (see Definition 2.2.7), by Property 2.2.1, we have that these problems

including THDS-CVD do not have polynomial kernel unless NP⊆ coNP/poly.

206

Note that the proof idea of Theorem 34 does not work for IDS-CVD. This is because,

in the reduction, we turn the graph induced by the family of sets into a clique. Hence,

only one vertex of the clique can be in an independent dominating set of such a graph.

Nevertheless, we give a O∗((2− ε)k) lower bound for IDS-CVD under SETH using the

following lower bound result for a different problem which is MMVC-VC.

Theorem 35 ([154]). Unless SETH fails, MMVC-VC cannot be solved in O∗((2−

ε)k) time. Moreover, MMVC-VC does not admit polynomial sized kernel unless NP⊆

coNP/poly.

We now prove the following observation from which it follows that the complement of a

maximum minimal vertex cover is a minimum independent dominating set. This observa-

tion is already known from before [24, 154]. But we still give proof for completeness.

Observation 7.2.1. If T is a minimal vertex cover of the graph G, then V (G) \T is an

independent dominating set in G. Furthermore, if T is a maximum sized minimal vertex

cover, then V (G)\T is a minimum sized independent dominating set.

Proof. A set T ⊆V (G) is a maximum minimal vertex cover when T is a minimal vertex

cover and among all minimal vertex covers, T has the maximum number of vertices. Let

D =V (G)\T . Clearly, D is an independent set. Note that for all u ∈V (G), either u ∈ D

or if u /∈ D, then u ∈ T . As T is minimal, there must be a neighbor v that is not in T . So,

such a neighbor can only be in D. So, D is a dominating set. Hence D is an independent

dominating set. Now suppose that D is not a minimum independent dominating set. Then

there exists another independent dominating set D′ such that |D′| < |D|. Now consider

T ′ =V (G)\D′. Clearly |T ′|> |S| and any vertex in D′ has some neighbor in T ′ (otherwise

D′ is not minimum). So, T ′ is a minimal vertex cover. But then T is not a maximum

minimal vertex cover and that is a contradiction. So, D which is V (G)\T is a minimum

independent dominating set.

207

It follows from the observation that the MMVC-VC problem is equivalent to IDS-VC.

From Theorem 35, we have the following result.

Theorem 36. IDS-VC cannot be solved in (2− ε)knO(1) time unless SETH fails. More-

over IDS-VC does not have any polynomial kernel unless NP⊆ coNP/poly.

We now note that any vertex cover is a cluster vertex deletion set. Hence the cluster vertex

deletion set size parameter is at most the vertex cover size parameter. From Theorem 36,

we have the following result.

Corollary 7.2.1. IDS-CVD cannot be solved in O∗((2− ε)k) time for any ε > 0 unless

SETH fails. Moreover IDS-CVD does not have any polynomial kernel unless NP ⊆

coNP/poly.

For EDS-CVD, we can only prove a weaker lower bound of 2o(k) time assuming ETH.

But we give the lower bound for EDS parameterized by even a larger parameter, the size

of a vertex cover. We have the following result.

Theorem 37. EDS-VC cannot be solved in 2o(|S|) time unless ETH fails.

Proof. We give a reduction from 3-SAT to EDS-VC.

Construction: Let φ be the 3-SAT input formula with variables x1, . . . ,xn and clauses

C1, . . . ,Cm. For all i ∈ [n], we create vertices vi and v̄i. The vertex vi corresponds to xi

appearing in its pure form and v̄i corresponds to xi appearing in negated form. For all

i ∈ [n], we add edge (vi, v̄i). We call this as variable gadget. Let C be a clause. We create

vertices c1,c2,c3,d0,d1,d2,d3,d1,2,d2,3,d1,3 and form a clause gadget as in Figure 7.1.

c1,c2,c3 represents a copy of clause C. We repeat this process for each of the clauses.

Suppose a clause C = (vi∨ v̄ j∨vp). We add edges (vi,c1),(v̄ j,c2),(vp,c3). This completes

our construction.

Now we show that φ is satisfiable if and only if Gφ has an EDS of size n+m.

208

c1 c2 c3

d1

d1,2

d2

d1,3

d2,3

d3

d0

Figure 7.1: An illustration of the construction described in Theorem 37

To prove the forward direction, let φ be satisfiable with ā = (a1, . . . ,an) being a satisfying

assignment where ∀i ∈ [n] : ai ∈ {true, f alse}. We construct an efficient dominating set D

as follows. If ai = true, then we add vi into D. Otherwise we add v̄i into D. Fix a clause C.

If only c1 is dominated, then we pick d2,3 into D. The case is symmetric when only c2 or

c3 is dominated. Otherwise if c1 and c2 are dominated but c3 is not dominated, then we

add d3 into D. Other cases are symmetric when exactly two from c1,c2,c3 are dominated.

When all c1,c2,c3 are dominated, then we pick d0. In this way, we pick exactly one vertex

from each of the clause gadgets and get an efficient dominating set of size n+m.

We now prove the reverse direction. Let D be an efficient dominating set size n+m.

Clearly by construction exactly one vertex is picked from each of the clause gadgets and

exactly one vertex is picked from each of the variable gadgets. We construct an assignment

ā = (a1, . . . ,an) as follows. If vi ∈ D, then we assign ai = true, otherwise v̄i ∈ D and we

assign ai = f alse. Suppose ā does not satisfy φ . Then there exists a clause C that is not

satisfied by ā. It means that none of c1,c2,c3 is dominated by variable vertices. Now

note that to dominate them at least two vertices are required from the clause gadget. But

between every two vertices in the clause gadget, the distance is two. So, in such a case D

was not an efficient dominating set which is a contradiction. So, ā satisfies φ proving φ to

be a satisfiable formula.

We have proved a reduction from 3SAT to EDS-VC. Suppose there exists algorithm B

that solves EDS-VC in O∗(2o(k)) time. Now we use algorithm B to provide an algorithm

209

for 3-SAT running in O∗(2o(n+m)) time. Let φ be an instance of 3SAT consisting of n

variables and m clauses. We construct Gφ as the construction described above. Now we use

algorithm B. If B outputs (Gφ ,n+m) as NO-instance then we output that φ is unsatisfiable.

Otherwise B outputs an efficient dominating set of size n+m. By construction as described

above, we construct an assignment ā = (a1, . . . ,an) for 3SAT and output as the satisfying

assignment. As B runs in O∗(2o(n+m)) time and the transformation from φ to Gφ takes

polynomial time, we get an algorithm for 3SAT in O∗(2o(n+m) time. From [88, 87] (See

also Theorem 14.4 of [45]) we know that unless ETH fails, 3-SAT cannot be solved in

O(2o(n+m)) time. This contradicts ETH. So EDS-VC cannot be solved in O∗(2o(|S|)) time

unless ETH fails. Now, we know that any vertex cover is a cluster vertex deletion set. So,

EDS-CVD also cannot be solved in O∗(2o(k)) time unless ETH fails.

Since cluster vertex deletion size is at most the vertex cover size parameter, we have the

following corollary.

Corollary 7.2.2. EDS-CVD cannot be solved in 2o(|S|) time unless ETH fails.

7.3 Dominating Set variants parameterized by SVD size

In this section, we address the parameterized complexity of dominating set variants when

parameterized by the size of a given SVD set S. Note that DS and TDS are NP-hard on

split graphs [145]. Hence we focus only on EDS and IDS.

We assume that S is given with the input. Otherwise given (G,k), we use anO∗(1.27k+o(k))

algorithm due to Cygan and Pilipczuk [46] to find a set of vertices of size at most k whose

removal makes G into a split graph.

210

7.3.1 EDS and IDS parameterized by SVD size

We provide a simple algorithm for IDS-SVD. The idea is to make a guess for the solution

within the SVD and solve the resulting disjoint problem in polynomial time. It turns out

that it works for EDS-SVD too.

Theorem 38. EDS-SVD and IDS-SVD can be solved in O∗(2k) time.

Proof. We will essentially prove that once we guess a correct subset S′ of S that is in the

EDS solution we seek, the remaining set of vertices can be determined in polynomial time,

and then the claim will follow as we will try all possible guesses of S′. As in the case of

EDS parameterized by cluster vertex deletion set, once we guess the subset S′, we delete

N[S′] and mark N2[S′] red. Let S′′ = S\N[S′] be the remaining vertices of S. Let (C, I) the

partition of G\S into a clique C and an independent set I.

To dominate the vertices of C, we need to pick some non-red vertex of C or a non-red

vertex from I. In particular, there are up to |C|+1 choices (at most one vertex from C)

of vertices to be picked from C. For each such choice, as before, we delete the closed

neighbors of the vertex picked, and move the vertices in the second neighborhood to S′′. If

we decide to pick no vertex from C, we move the vertices of C to S′′. After these choices

have been made, all vertices of C have been deleted (or moved to S′′). Now if there are

any red vertices in I, we move to the new guess, as such vertices cannot be dominated.

Otherwise, to dominate the remaining non-red vertices in I, we need to pick them all. Now

we check whether the final solution picked is an EDS for the entire graph (in particular

they should uniquely dominate S′′). This proves that EDS-SVD can be solved in O∗(2k)

time.

The algorithm for INDEPENDENT DOMINATING SET also works similarly. First, we guess

an independent set S′ ⊆ S. We delete N[S′] from G. Now we are left with the split graph

(C, I) and vertices in T = S\N[S′]. We have to use vertices from C∪ I only to dominate

vertices in C∪T ∪ I. We guess vertices in C. There can be at most |C|+1 many guesses

211

since at most one vertex can be part of the solution. If v ∈ C is decided to be picked

in the solution, then N[v] is deleted. Now I \N[v] is essential to be part of the solution.

If A = S′ ∪{v}∪ (I \N[v]) forms an independent dominating set, then we store A as a

candidate for being a solution. If no vertex from C is decided to be picked into the solution,

then we have to pick all vertices from I into the solution. If S′∪ I is a solution, then we

store S′∪ I also as a candidate for being a solution. We go through all these candidates and

choose one that is of the smallest cardinality. We repeat this step for all possible subsets of

S that forms an independent set. So, for IDS-SVD also, there exists an algorithm running

in time O∗(2|S|) for IDS-SVD.

7.3.2 Improved Algorithm for EDS-SVD

In this section, we give an improved algorithm for EDS-SVD parameterized by the size of

a given split vertex deletion set S breaking the barrier of O∗(2k).

Let F = G\S. As F is a split graph, V (F) =C] I where C induces a clique and I induces

an independent set. The algorithm uses the standard branching technique. Consider any

efficient dominating set D of a graph. Any two vertices u,v ∈ D must have a distance of at

least three. At any intermediate stage of the algorithm, we make a choice of not picking a

vertex and we mark such vertices by coloring them red. Other vertices are colored blue.

Hence all vertices of G are blue initially.

We initialize D = /0 which is the solution set we seek. Consider any pair of blue vertices

x,y ∈ S. If the distance between x and y is at most two in G, then we use the following

branching rule.

Branching Rule 7. Consider a pair of blue vertices x,y ∈ S such that the distance between

x and y is at most two in G. In the first branch, we add x into D, delete N[x] from G, color

the vertices in N=2(x) by red. In the second branch, we add y into D, delete N[y] from

G, color the vertices in N=2(y) by red. In the third branch, we color x,y by red. (See

212

x 2 S y 2 S

z

y 2 S x 2 S y 2 S

z

Add x into D,
delete N [x] from G and

color N2(x) by red.

Add y into D,
delete N [y] from G and

color N2(y) by red.

Color x and y by red

x 2 S

Figure 7.2: Illustration of Branching Rule 7. Note that the number of blue vertices drop by
at least two in each of the branches.

Figure 7.2 for an illustration.)

Clearly, the branches are exhaustive as both x and y cannot be in the EDS solution we seek.

We measure the progress of the algorithm by µ(G) which is the number of blue vertices

in S, which is k initially. In the first branch, x is deleted from S and y is colored red.

Symmetrically in the second branch, y is deleted from S and x is colored red. In the third

branch, x and y are colored red. So in all the branches, µ(G) drops by at least two resulting

in a (2,2,2) branching rule.

When this branching rule is not applicable, for every pair of blue vertices x,y ∈ S, N[x]∩

N[y] = /0. Now, as C is a clique, we can have at most one vertex from C in the solution.

When we decide to pick some vertex v ∈C into the solution, then we delete N[v] and color

N=2(v) as red. So all vertices of C get deleted. There are at most |C| vertices in C. When

we decide not to pick any vertex from C into the solution, then we color all vertices of C as

red. So we have (|C|+1) choices from the vertices of C. Measure µ(G) does not increase

in any of these choices. A multiplicative factor of (|C|+1) would come in the running

time because of this one-time branching. Now, we are left with only the vertices of I. We

apply the following reduction rule to rule out some simple boundary conditions.

Reduction Rule 4. If there exists a red vertex x ∈V (G) such that NG(x) has only one blue

213

vertex y, then add y into D, delete N[y] from G and color N=2(y) as red. Also if there exists

a blue vertex x ∈V (G) such that NG(x) contains no blue vertex, then add x into D, delete

N[x] from G and color N=2(x) as red.

It is easy to see that the above reduction rule is safe. Note that we have some blue vertices

in I. Such vertices can only be dominated by themselves or a unique blue vertex in S, as

otherwise Branching Rule 7 would have been applicable. Now, suppose that there exists a

blue vertex x ∈ S that has at least two blue neighbors u,v ∈ I. If we decide to pick u (or

symmetrically v) into D, then we are not allowed to pick x or v (symmetrically u) in D but

then u or v cannot be dominated. This forces x into D. We have the following reduction

rule.

Reduction Rule 5. If there exists a blue vertex x ∈ S such that NG(x) contains at least two

blue neighbors in I, then add x into D, delete N[x] from G and color vertices in N=2(x)

red.

Lemma 7.3.1. Reduction Rule 5 is safe.

Proof. The safeness of this reduction rule is based on the fact that any feasible solution

(if exists) must contain x under this construction. Suppose not. Then let D be an efficient

dominating set that does not contain x. Then either u ∈ I or v ∈ I but not both. Note that

any blue vertex in I has only one blue neighbor in S. as all vertices of C are red. So if

u ∈ D then x,v /∈ D. Then v cannot be dominated at all. Similarly if v ∈ D, then u cannot

be dominated at all. So x ∈ D and this concludes the proof.

Lemma 7.3.2. Reduction Rules 4 and 5 do not increase µ(G).

Proof. Reduction Rule 4 does not add any blue vertex into S, rather can delete blue vertex

from S. Similarly, Reduction Rule 5 only deletes a blue vertex from S. So, µ does not

increase in either of these two reduction rules.

214

Now if there are red vertices in I having no blue neighbor in S, then we move to the next

branch as such a vertex cannot be dominated. Thus any blue vertex in I has only one blue

neighbor in S and any blue vertex in S has only one blue neighbor in I. As Reduction Rule 4

is not applicable, any red vertex x ∈ S∪C has at least two blue neighbors in u,v ∈ NG(x).

Clearly both {u,v} 6⊂ S as otherwise Branching Rule 7 would have been applicable. So,

now we are left with the case that u,v ∈ I or u ∈ I,v ∈ S but (u,v) may or may not be an

edge. Now we apply the following branching rule.

Branching Rule 8. Let x be a red vertex in S with two blue neighbors u,v.

1. If u,v ∈ I, then we branch as follows. In one branch we add u into D, delete N[u]

from G , color N=2(u) as red. As v ∈ N=2(u) and v has only one blue neighbor z ∈ S,

we add z also into D, delete N[z] from G and color N=2(z) by red. In the second

branch, we add v into D, delete N[v] from G, color N=2(v) as red. As u ∈ N=2(v)

and u has only one blue neighbor y ∈ S, we add y also into D, delete N=2(y) from

G and color N=2(z) by red. In the third branch, color both u and v by red. Add the

only blue neighbor y of u and z of v into D. Delete N[y],N[z] from G and color the

vertices in N=2(y)∪N=2(z) by red.

2. u ∈ I,v ∈ S,(u,v) /∈ E(G), then we branch as follows. In the first branch, we add u

to D, color v as red. This forces us to pick the only blue neighbor z of v where z ∈ I.

So, we add z to D. Delete N[u],N[z] from G and color N=2(u),N=2(z) as red. In

the second branch, e color u as red. This forces us to pick the only neighbor y of

u where y ∈ S. And we pick v into D as well as y into D. We delete N[v],N[y] from

G and color N=2(v),N=2(y) by red. In the third branch, we color both u and v by

red. This forces us to pick the only blue neighbor z ∈ NG(v)∩ I,y ∈ NG(u)∩S into

D. So, we pick z into D, delete N[z],N[y] from G and color N=2(y),N=2(z) by red.

(See Figures 7.3 and 7.4 for detailed illustrations.)

It is easy to see that µ(G) drops by at least two in all three branches as eventually two blue

vertices of S get deleted in all the branches.

215

x

u v

zy

v

z

u

y

x

u v

zy

Add u into D.
So, x, y get deleted.

v gets red color.

Add v into D.
So, x, z get deleted.

u gets red color.

S

S

Color u, v by red.

S

S

This forces
z into D.
So, z gets

deleted too. This forces
y into D.
So, y gets

deleted too.

This forces
y, z into D.
So, y, z get
deleted too.

I I

I

I

Figure 7.3: Illustration of Branching Rule 8 for the first case. Note that the number of blue
vertices in S drops by at least two in each of the branches.

x

u

y

v

z

u

y

x

u

v

z

y

Add u into D.
So, x, y get deleted.

v gets red color.

Add v into D.
So, x, z get deleted.

u gets red color.

S

S

Color u, v by red.

S

S

This forces
z into D.
So, z gets

deleted too. This forces
y into D.
So, y gets

deleted too.

This forces
y, z into D.
So y, z get
deleted too.

I I

I

I

v

z

Figure 7.4: Illustration of Branching Rule 8 for the second case. Note that the number of
blue vertices in S drops by two in each of the branches.

216

When none of the above rules are applicable, then we have u ∈ S,v ∈ I and (u,v) ∈ E(G).

We know that either u ∈ D or v ∈ D. Consider the red vertices in N(u) and red vertices in

N(v). As Branching Rule 7, Reduction Rule 4 and Branching Rule 8 are not applicable, by

the following lemma using which we can pick u or v arbitrarily.

Lemma 7.3.3. If Branching Rule 7, Reduction Rule 4 and Branching Rule 8 are not

applicable, then N(u)\{v}= N(v)\{u}.

Proof. Suppose x ∈ N(u)\{v}. Clearly x is a red vertex by the premise. As Branching

Rule 7 is not applicable, x cannot have any other neighbor which is a blue vertex of S.

As Reduction Rule 4 is not applicable, x has another blue neighbor let y. And y ∈ I. If

(u,y) /∈ E(G), then Branching Rule 8 is applicable. So (u,y) ∈ E(G) implying that y = v.

So, x ∈ N(v) \ {u} implying that N(u) \ {v} ⊆ N(v) \ {u}. Similarly we can prove that

N(v)\{u}= N(u)\{v}. This completes the proof of the above lemma.

This completes the description of our algorithm that consists of a sequence of reduction

rules and branching rules. The measure is k initially and the branching continues as long

as k drops to 0. So, we have the following recurrence.

T (k)≤ 3T (k−2)+α · (n+ k)c

Solving this recurrence, we get 1.732k ·nO(1) implying the following theorem.

Theorem 39. EDS-SVD can be solved in O∗(3k/2) time.

7.3.3 Lower Bounds for IDS and EDS

We know that any vertex cover is a split vertex deletion set. So, we have the following

corollary as a consequence of Theorem 35.

Corollary 7.3.1. IDS-SVD cannot be solved in O∗((2−ε)k) time unless SETH fails and

it does not admit polynomial kernels unless NP⊆ coNP/poly.

217

x y

v1 v2 v3 v4 v5 v6 v7

S

X

Figure 7.5: In this example, S is a minimum vertex cover of this graph. But there is no
minimal vertex cover that contains only x, but not y from S.

For EFFICIENT DOMINATING SET as the size of the SVD set is always smaller than the

size of the vertex cover, we have the following corollary of Theorem 37.

Corollary 7.3.2. EDS-SVD cannot be solved in 2o(|S|) time unless ETH fails.

7.4 Concluding Remarks

We have initiated a study of structural parameterizations of some dominating set variants

and complemented them with lower bounds based on ETH and SETH. One immediate

open problem is to narrow the gap between upper and lower bounds, especially for the

dominating set variants parameterized by the size of a cluster vertex deletion set.

We know that INDEPENDENT DOMINATING SET is the complementary version of MAX-

IMUM MINIMAL VERTEX COVER problem. So, one natural approach for an O∗(2k)

algorithm for IDS-CVD is to apply the ideas used in [154] to get O∗(2k) algorithm for

MMVC-VC. But this seems to require more work, as there may not exist a minimal vertex

cover that intersects the CVD set S in a particular subset (See Figure 7.5).

Recently Bergougnoux et al. [15] have given an O∗(2O(k)) algorithm for connected dom-

inating set (where we insist on the dominating set to induce a connected graph) for

clique-width k graphs when the k-expression given as input. An interesting open prob-

lem is whether connected dominating set has a simpler FPT algorithm, as in the FPT

algorithms in this chapter, when parameterized by cluster vertex deletion set.

218

Part III

Deletion with additional constraints

219

Chapter 8

Parameterized Complexity of

Conflict-Free Set Cover

8.1 Introduction and Previous Work

SET COVER is one of the well-studied classical NP-hard problems. In the SET COVER

problem, we have a universe U , a family F of subsets of U and an integer k and the goal is

to find a subfamily F ′ of size at most k such that
⋃

S∈F ′ S = U .

SET COVER is very well-studied in a variety of algorithmic settings, especially in the realm

of approximation algorithms and parameterized complexity. Unfortunately, SET COVER

when parameterized by solution size k is W[2]-hard [45] and hence is unlikely to be FPT.

It has been seen in computational problems [8, 7, 6, 13, 14, 90, 140, 99, 139, 53] where

additional constraints are enforced on the solution we seek. One category of such problems

is choice problems which can be described as follows. There is a set V from which we

seek a solution subset. The set is partitioned into groups and the solution requires picking

exactly one representative element from each of the groups. For example, consider the

problem MULTICOLORED CLIQUE where the vertex set is partitioned into groups, and the

221

solution we seek is a clique such that exactly one vertex of the clique is present in each

group. Another example in the geometric setting is by Arkin and Hassin [8] where they

look at the following problem. Given a collection of points partitioned into groups and a

matrix describing the distance between pairs of points, find a set of points such that exactly

one point is in each of the groups and the set has minimum diameter.

We can generalize these choice problems to a setting where we say that some pairs of

elements in the problem are in conflict with each other and hence cannot go in the solution

together. This can be modeled by defining a graph on the elements and an edge (u,v) is

added if elements u and v do not go into the solution together or in other words form a

conflict. Hence a solution without conflicts will form an independent set in this graph.

Looking back at the example of MULTICOLORED CLIQUE, we have a conflict-graph where

each group forms a clique and there are no edges across any pair of groups.

Conflict-free versions of classical problems in P like MAXIMUM FLOW [139], MAXIMUM

MATCHING [53], SHORTEST PATH [99], KNAPSACK [140], BIN PACKING [59] and

SCHEDULING [60] have been studied. A study of some geometric problems in the conflict-

free setting was initiated recently [7, 6, 13, 14] motivated by various applications. Conflict-

free version of graph problems like VERTEX COVER [90], FEEDBACK VERTEX SET [1],

SPLIT VERTEX DELETION [90] have been studied from the parameterized point of view

very recently. Some of the problems above are covering problems. Since SET COVER

is a very general covering problem, studying the conflict-free version of SET COVER

contributes to advancing this framework.

We look at the conflict-free version of SET COVER defined as follows:

CONFLICT-FREE SET COVER

Input: An universe U , a family F of subsets of U , a graph GF with vertex set F and

an integer k.

Question: Is there a subfamily F ′ ⊆F of size at most k such that ∪F∈F ′F = U and

F ′ forms an independent set in GF?

222

Note that if GF is edgeless, the problem is equivalent to SET COVER as every subset

of vertices of GF forms an independent set. Hence if GF is from a graph class that

contains edgeless graphs, when SET COVER is W[2]-hard with respect to some parameter,

then CONFLICT-FREE SET COVER is also W[2]-hard with respect to the same parameter.

Therefore, the only interesting cases of CONFLICT-FREE SET COVER are those special

instances or parameterizations where SET COVER is FPT or when GF is from a graph

class that does not contain edgeless graphs.

One such example is SET COVER when parameterized by the size of the universe U . There

is a 2|U |(|U|+ |F|)O(1) time algorithm for this problem using dynamic programming over

subsets of U [69]. Another example is a restricted version of SET COVER where every pair

of sets in F intersect in at most c elements for a constant c. This version of SET COVER

which we call c-INTERSECTION SET COVER is known to be FPT parameterized by k and

has a kernel of universe size ck2 and
(ck2

c+1

)
sets [145]. Problems like COVERING POINTS

BY LINES can be seen as special cases of c-INTERSECTION SET COVER [108].

We note that like the SET COVER problem, CONFLICT-FREE SET COVER is trivially FPT

parameterized by |F| due to the simple brute-force algorithm of choosing at most k sets

from F .

Unlike the SET COVER problem, in CONFLICT-FREE SET COVER duplicate sets do play

an important role. This is because two identical sets in the family F can have different

neighborhood relations in the graph GF which matters in the independence requirement of

the solution. We study CONFLICT-FREE SET COVER both in the presence and absence of

duplicate sets in F . Note that if there are no duplicate sets in the family F , |F| ≤ 2|U |.

Banik et al. [14] studied CONFLICT-FREE SET COVER in the context of some geometric

covering problems having FPT algorithms. They showed that one of their geometric

covering problems in the conflict-free setting is W[1]-hard parameterized by solution size

k when GF is from those classes of graphs where INDEPENDENT SET is W[1]-hard. They

also showed that CONFLICT-FREE SET COVER is FPT parameterized by k whenever SET

223

GF restriction Solution size k Universe size |U|
General graph W[1]-hard [14]

(|F |
|U |
)
≤ 2|U |

2
algorithm

without duplicates,
2|U | log |F | `b (Theorem 44),

W[1]-hard with duplicates (Lemma 42)
Empty graph FPT* † FPT †, npk †

Bipartite f (k)|F|o(k) `b W[1]-hard with duplicates
(Theorem 40) (Lemma 42)

Chordal FPT (Theorem 48), npk †
d-degenerate FPT* [14] FPT †, npk †

Nowhere Dense FPT* (Theorem 46) FPT (Theorem 46), npk †
Bounded #MIS FPT* (Theorem 45) FPT (Theorem 45), npk †

Table 8.1: Table of results: CONFLICT-FREE SET COVER . FPT* denotes that the problem
is FPT whenever the SET COVER variant is FPT, #MIS abbreviates ‘number of maximal
independent sets’, † denotes results from existing literature (other than those cited), `b
abbreviates ‘lower bound’, npk abbreviates ‘no polynomial kernel’

COVER is FPT parameterized by k when GF has bounded arboricity.

Our results: We focus on general CONFLICT-FREE SET COVER as well as the restricted

version c-INTERSECTION SET COVER. Let us refer to the conflict-free version of c-

INTERSECTION SET COVER as c-INTERSECTION CONFLICT-FREE SET COVER.

We refer to Tables 8.1 and 8.2 listing results for CONFLICT-FREE SET COVER and c-

INTERSECTION CONFLICT-FREE SET COVER respectively.

• Our first result is an f (k)|F|o(k) time lower bound for 1-INTERSECTION CONFLICT-

FREE SET COVER assuming the Exponential Time Hypothesis (ETH). The lower

bound holds even when GF is restricted to bipartite graphs where INDEPENDENT

SET is polynomial-time solvable. In contrast to this result, Banik et al. [14] showed

hardness for their conflict-free geometric cover problem when GF is from those

classes of graphs where INDEPENDENT SET is W[1]-hard.

• For 1-INTERSECTION CONFLICT-FREE SET COVER with duplicate sets we give

an f (|U|)|F|o(|U |) lower bound assuming the ETH even when GF is restricted to

224

GF restriction Solution size k Universe size |U|
General graph W[1]-hard even if c = 1 W[1]-hard even if c = 1

(Theorem 40) (Lemma 42)
Empty graph FPT, Polynomial Kernel [145] FPT, Polynomial Kernel [145]

Bipartite W[1]-hard even if c = 1 W[1]-hard even if c = 1
(Theorem 40) (Lemma 42)

Chordal FPT (Theorem 49) FPT (Theorem 48)
Cluster FPT (Corollary 8.3.2), FPT (Corollary 8.3.2)

Polynomial Kernel (Theorem 50) Polynomial Kernel (Theorem 50)
d-degenerate FPT † [14] FPT †

Nowhere Dense FPT (Theorem 46) FPT (Theorem 46)
Bounded #MIS FPT (Theorem 45) FPT (Theorem 45)

Table 8.2: Table of results: c-INTERSECTION CONFLICT-FREE SET COVER with du-
plicates. FPT* denotes that the problem is FPT whenever the SET COVER variant is
FPT, #MIS denote number of maximal independent sets, † denotes results from existing
literature (other than those cited).

bipartite graphs where the INDEPENDENT SET problem can be solved in polynomial

time.

If there are no duplicate sets, the number of sets |F| ≤ 2|U |. Hence CONFLICT-FREE

SET COVER is FPT as the trivial brute-force algorithm of choosing at most k sets

from F is of complexity bounded by
(|F |

k

)
≤
(|F |
|U |
)
≤
(2|U |
|U |
)
≤ 2|U |

2
.

• For the upper bound
(|F |
|U |
)
, we give a matching lower bound of 2o(|U | log |F |) for any

value of |F| as well assuming the ETH.

We note that the problem does not have a polynomial kernel as when GF is an empty

graph, the problem becomes SET COVER parameterized by universe size which does

not have a polynomial kernel unless NP⊆ coNP/poly [48].

• On the positive side, we provide meta-theorems giving FPT algorithms for

CONFLICT-FREE SET COVER parameterized by k whenever SET COVER is FPT

and GF belongs to graph classes which are sparse; i.e graphs of bounded degeneracy

or nowhere dense graphs. This is proved using the recently introduced independence

covering family [118]. Furthermore, if GF is a dense graph like split or co-chordal,

we give FPT algorithm whenever SET COVER is FPT. This algorithm works for a

225

large class of graphs where the number of maximal independent sets is polynomial

in the number of vertices (that are sets in the family in our case).

• For c-INTERSECTION CONFLICT-FREE SET COVER, we give an FPT algorithm

parameterized by k when we restrict GF to chordal graphs. This contrasts the

hardness result we have for c-INTERSECTION CONFLICT-FREE SET COVER in

bipartite graphs.

• Furthermore, when we restrict GF to a subclass of chordal graphs called cluster

graphs, we obtain a polynomial kernel for c-INTERSECTION CONFLICT-FREE SET

COVER parameterized by k.

• For CONFLICT-FREE SET COVER parameterized by |U|, since solution size k ≤ |U|,

the FPT results listed above for CONFLICT-FREE SET COVER parameterized by k

also follow for |U|. Furthermore, we give an FPT algorithm for CONFLICT-FREE

SET COVER parameterized by |U| even in presence of duplicates when we restrict

GF to interval graphs via a dynamic programming algorithm using the ordering of

the corresponding intervals. We extend this idea and give an FPT algorithm for

chordal graphs which is a superclass of interval graphs via dynamic programming

on the clique tree decomposition of the graph.

• We also study the CONFLICT-FREE SET COVER problem where there is an under-

lying (linearly representable) matroid on the family of subsets, and we want the

solution to be an independent set in the matroid. Banik et al. [14] studied this version

for a specialization of SET COVER where the sets are intervals on a real line.

We show that even the more general problem (where the sets in the family are

arbitrary) is FPT when parameterized by the universe size, using the idea of dynamic

programming over representative families [71].

We note that this result can be obtained as a corollary of a result by Bevern et

al. [150] where they give algorithms for a generalization of our problem called

226

uncapacitated facility location problem with multiple matroid constraints. But our

algorithm is simpler and has a better running time when the corresponding matroid

has huge rank.

Structure of the Chapter: In Section 8.2, we give the hardness results of some of the

variants of CONFLICT-FREE SET COVER . In Section 8.3, we give some FPT algorithms

and kernels for some variants of CONFLICT-FREE SET COVER when the conflict-graph is

restricted to various graph classes. Finally in Section 8.4, we give an FPT algorithm for

MATROIDAL CONFLICT-FREE SET COVER parameterized by universe size.

8.2 Hardness results for Conflict-Free Set Cover

8.2.1 1-Intersection Conflict-Free Set Cover parameterized by solu-

tion size k

The problem c-INTERSECTION SET COVER is known to be in FPT [145]. On the contrary,

for the conflict-free version, we show the following.

Theorem 40. 1-INTERSECTION CONFLICT-FREE SET COVER cannot be solved in time

f (k)|F|o(k) for solution size k in bipartite graphs for any computable function f assuming

the ETH.

Proof. We give a reduction from the problem MULTICOLORED BICLIQUE [45] defined as

follows:

227

MULTICOLORED BICLIQUE

Input: A bipartite graph G = (A∪B,E), an integer k, a partition of A into k sets

A1,A2, . . . ,Ak and a partition of B into k sets B1,B2, . . . ,Bk.

Parameter: k

Question: Does there exist a subgraph of G isomorphic to the biclique Kk,k with one

vertex from each of the sets Ai and Bi?

Given an instance of (G,k,A1, . . . ,Ak,B1, . . . ,Bk) of MULTICOLORED BICLIQUE with

V (G) = {v1,v2, . . . ,vn}, we construct an instance of CONFLICT-FREE SET COVER

(U ,F ,GF ,2k+1) without duplicates as follows:

We define the universe U = [2k]∪V (G)∪{x}. Now, we associate a set corresponding to

each vertex of the graph G. For a vertex v j of V (G), let Sv j denote the corresponding set.

For i∈ [k], if v j ∈Ai, define Sv j = {v j, i}. For i ∈ [2k]\ [k], if v j ∈ Bi−k, define Sv j = {v j, i}.

Define a set D =V (G)∪{x}. We have F =
⋃

v∈V (G) Sv∪{D}. The graph GF is obtained

by taking the complement of the graph G, removing all the edges in G[A] and G[B] and

adding an isolated vertex corresponding to the set D. Note that the graph GF remains

bipartite.

Note that F is defined in such a way that all pairs of sets intersect in at most one element.

Also, there are no duplicate sets in this instance as only the set Sv j other than D contains

the element v j and only D contains the element x.

We claim that (G,k,A1, . . . ,Ak,B1, . . . ,Bk) is a YES-INSTANCE of MULTICOLORED BI-

CLIQUE if and only if (U ,F ,GF ,2k + 1) is a YES-INSTANCE of 1-INTERSECTION

CONFLICT-FREE SET COVER.

Let S = {a1, . . . ,ak,b1, . . . ,bk} be the vertices in G that form a multicolored biclique. Then

F ′ = {D,Sa1, . . . ,Sak ,Sb1, . . . ,Sbk} covers U as D covers V (G)∪{x} and i ∈ Sai for i ∈ [k]

and i ∈ Sbi−k for i ∈ [2k]\ [k]. Since the edges across A and B in G are non-edges in GF

and D is an isolated vertex, F ′ forms an independent set in GF . In the reverse direction,

228

let F ′ = {S1, . . . ,S2k+1} be a solution of size 2k+1 covering U . The set D has to be part

of the solution F ′ as only the set D contains the element x. Now note that an element

i ∈ [k] can be covered only by sets Sv where v ∈ Ai. Similarly an element i ∈ [2k]\ [k] can

be covered only by sets Sv where v ∈ Bi−k. Hence the vertices of the sets in F ′ are such

that there is at least one vertex from each of the sets Ai and Bi. Since the budget is limited

to 2k after picking D, exactly one vertex from each of the sets Ai and Bi is contained in

F ′. Since the vertices F ′ \ {D} form an independent set in the bipartite graph GF , the

corresponding vertices form a biclique in G.

Since MULTICOLORED BICLIQUE cannot be solved in time f (k)|V (G)|o(k) for solution

size k assuming ETH [129], the theorem follows.

8.2.2 Conflict-Free Set Cover parameterized by |U|

In the section, we give lower bound results for CONFLICT-FREE SET COVER when

parameterized by the universe size |U|. We study the problem in both the cases when the

family F has duplicate sets and when it does not.

8.2.2.1 The family F has duplicates

In this section, we study the case when duplicate sets are allowed in the family F . Banik

et al. [14] have the following hardness result for this case when the graph GF is restricted

to a class where finding independent set of size k is W[1]-hard.

Theorem 41 ([14]). If for a subclass of graphs G , finding an independent set of size k is

W[1]-hard parameterized by k, then CONFLICT-FREE SET COVER parameterized by |U|

is W[1]-hard when GF is restricted to the class G .

Bipartite graphs are one class of graphs where the INDEPENDENT SET problem can be

solved in polynomial time. In contrast to Theorem 41, we show that 1-INTERSECTION

229

CONFLICT-FREE SET COVER on bipartite graphs is W[1]-hard. Note that in Theorem 40

proven previously, the size of the universe can be much larger than the solution size k, and

hence the hardness result does not follow from it.

Theorem 42. 1-INTERSECTION CONFLICT-FREE SET COVER parameterized by |U| is

W[1]-hard on bipartite graphs.

Proof. We again give a reduction from the W[1]-hard problem MULTICOLORED BI-

CLIQUE.

Given an instance of MULTICOLORED BICLIQUE, we construct an instance of 1-

INTERSECTION CONFLICT-FREE SET COVER as follows: U = [2k]. Let Sv denote

the set corresponding to vertex v we add to F . For i ∈ [k], if v ∈ Ai, define Sv = {i}. For

i ∈ [2k]\ [k], if v ∈ Bi−k, define Sv = {i}. The graph G′ is obtained by complementing the

graph G and removing edges in the graphs G[A] and G[B]. The graph G′ remains bipartite.

Since every set in F is of size one, sets can pairwise intersect in at most one elements.

Hence we can conclude that the instance we have constructed is a valid 1-INTERSECTION

CONFLICT-FREE SET COVER instance.

Note that the construction is very similar to that in Theorem 40, the difference being the

vertex v is not added to sets Sv.

The correctness proof follows similar to Theorem 40.

8.2.2.2 The family F has no duplicates

If there are no duplicate sets, the number of sets |F| ≤ 2|U |. Hence CONFLICT-FREE SET

COVER is FPT as the trivial brute-force algorithm of choosing at most k sets from F is

of complexity bounded by
(|F |

k

)
≤
(|F |
|U |
)
≤
(2|U |
|U |
)
≤ 2|U |

2
. In this section, we give a lower

bound of 2o(|U | log |F |) under ETH for CONFLICT-FREE SET COVER without duplicates

when GF is bipartite. We do so by giving an appropriate reduction from the following

variant of MULTICOLORED BICLIQUE defined below.

230

SMALL MULTICOLORED BICLIQUE

Input: A bipartite graph G = (A∪B,E), an integer k, a partition of A into k sets

A1,A2, . . . ,Ak and a partition of B into k sets B1,B2, . . . ,Bk such that |Ai| = |Bi| = s

where k ≤ s≤ 2k/2k.

Parameter: k

Question: Does there exist a subgraph of G isomorphic to the biclique Kk,k with one

vertex from each of the sets Ai and Bi?

We first note that the reduction from 3-COLORING used in [114] can be modified so that

we get the following lower bound for SMALL MULTICOLORED BICLIQUE.

Theorem 43. SMALL MULTICOLORED BICLIQUE cannot be solved in time 2o(k logs) under

the ETH.

Proof. We give a reduction from 3-COLORING problem. Let G, a graph with N vertices

be the instance of 3-Coloring problem.

Let k = N·log3
logs .

Divide vertices of G into k groups V1,V2,Vk of equal size, each size being logs
log3 .

For each set Vi, list out all the possible valid 3-colorings. There would be at most 3|Vi| ≤

3logs/ log3 = 2log3·logs/ log3 = 2logs = s colorings. If there is no valid coloring for some Vi,

we can conclude that we have a NO-INSTANCE of 3-COLORING. Duplicate some valid

colorings so that the number of colorings is exactly s. Let us call list of colorings of Vi as

Pi. Let P = ∪iPi.

Create a graph H with two copies of P, A and B as its vertex set with the corresponding

partitions P1, . . . ,Pk being A1, . . . ,Ak and B1, . . . ,Bk. Let (Ai,c) and (Bi,c) denote the

vertex corresponding to coloring c in sets Ai and Bi respectively. We add edges as follows:

Look at colorings c1 ∈ Pi and c2 ∈ Pj. If i 6= j and the colorings c1 of G[Vi] and c2 of G[Vj]

together forms a valid coloring in the graph G[Vi∪Vj], add edges from vertex (Ai,c1) to

231

(B j,c2) and from (A j,c2) to (Bi,c1).

Now we claim that (H,A1, . . . ,Ak,B1, . . . ,Bk,k) is a YES-INSTANCE of SMALL MUL-

TICOLORED BICLIQUE if and only if G has a 3-coloring. For the reverse direction, let

C be a valid 3-coloring of G. Let C|Vi denote the coloring C restricted to Vi. We claim

the vertices (Ai,C|Vi) and (Bi,C|Vi) forms a biclique. Suppose not. Then there is an ab-

sence of edge between two vertices (Ai1,C|Vi1
) and (Bi2,C|Vi2

). But then this means that

C|Vi1
∪C|Vi2

=C|Vi1∪Vi2
is not a valid coloring of G[Vi1 ∪Vi2] giving a contradiction.

For the forward direction, let the vertices (A1,c1), . . . ,(Ak,ck),(B1,c1), . . . ,(Bk,ck) form

a biclique. We say that ∪ici is a valid coloring of the graph G. Suppose not. Then

there is a monochromatic edge (u,v) in G. Both u and v cannot belong to a group Vi as

corresponding 3-coloring ci is a valid 3-coloring of G[Vi]. So u and v belong to different

groups i1 and i2. But then there will not be an edge between vertices (Ai1,ci1) and (Bi2,ci2)

as ci1 and ci2 together does not form a valid 3-coloring of G[Vi1 ∪Vi2]. contradicting that

the vertices (A1,c1), . . . ,(Ak,ck),(B1,c1), . . . ,(Bk,ck) form a biclique.

Now suppose there is 2o(k logs) running time algorithm for SMALL MULTICOLORED

BICLIQUE. Then there is a 2o(N·log3) = 2o(N) time algorithm for 3-coloring violating the

ETH.

We give the following lower bound for CONFLICT-FREE SET COVER by giving a reduction

from SMALL MULTICOLORED BICLIQUE.

Theorem 44. CONFLICT-FREE SET COVER without duplicates when GF is bipartite

cannot be solved in time 2o(|U | log |F |) under ETH.

Proof. Given an instance of (G,A1, . . . ,Ak,B1, . . . ,Bk) of SMALL MULTICOLORED BI-

CLIQUE with V (G) = {v1,v2, . . . ,vn}, we construct an instance of CONFLICT-FREE SET

COVER (U ,F ,GF ,2k+1) without duplicates as follows:

Let us define sets Z = {z1,z2, . . . ,zdlogne} and O = {o1,o2, . . . ,odlogne}.

232

We define the universe U = [2k]∪Z∪O∪{x}.

Let us look at vertex v j ∈ V and construct sets Sv j ∈ F . Let us map j to its binary

representation b1,b2, . . . ,bdlogne where bi denotes the ith bit of the number j. We create

a set Tj as follows: for all i ∈ [dlogne], when bi = 0, add zi to Tj, else add oi to Tj. For

i ∈ [k], if v j ∈ Ai, define Sv j = {i}∪Tj. For i ∈ [2k]\ [k], if v j ∈ Bi−k, define Sv j = {i}∪Tj.

Define another set D = Z ∪O∪{x}. We have F =
⋃

v∈V (G) Sv∪{D}. The graph GF is

obtained by taking the complement of the graph G, removing the edges in the graphs G[A]

and G[B] independent and adding an isolated vertex corresponding to the set D. Note that

the graph GF remains bipartite.

Note that the construction is almost the same as in Theorem 40 but the vertices are encoded

in binary form.

We now claim that (G,k,A1, . . . ,Ak,B1, . . . ,Bk) is a YES-INSTANCE of SMALL MULTICOL-

ORED BICLIQUE if and only if (U ,F ,GF ,2k+1) is a YES-INSTANCE of CONFLICT-FREE

SET COVER .

Let S = {a1, . . . ,ak,b1, . . . ,bk} be the vertices in G that form a multicolored biclique. Then

F ′ = {D,Sa1, . . . ,Sak ,Sb1, . . . ,Sbk} covers U as D covers Z∪O∪{x} and i ∈ Sai for i ∈ [k]

and i ∈ Sbi−k for i ∈ [2k]\ [k]. Since the edges across A and B in G are non-edges in GF

and D is an isolated vertex, F ′ forms an independent set in GF . In the reverse direction,

let F ′ = {S1, . . . ,S2k+1} be a solution of size 2k+1 covering U . The set D has to be part

of the solution F ′ as only the set D contains the element x. Now note that an element

i ∈ [k] can be covered only by sets Sv where v ∈ Ai. Similarly an element i ∈ [2k]\ [k] can

be covered only by sets Sv where v ∈ Bi−k. Hence the vertices of the sets in F ′ are such

that there is at least one vertex from each of the sets Ai and Bi. Since the budget is limited

to 2k after picking D, exactly one vertex from each of the sets Ai and Bi is contained in

F ′. Since the vertices F ′ \ {D} form an independent set in the bipartite graph GF , the

corresponding vertices form a biclique in G.

233

Note that in the SMALL MULTICOLORED BICLIQUE instance, n = 2k · s ≤ 2k. Since

logn≤ k, |U | ≤ 4k+1.

Now suppose CONFLICT-FREE SET COVER has an algorithm with running

time 2o(|U | log |F |). Since s= |F |2k and |U| ≤ 4k+1, we have a running time of 2o(4k log(2k·s))=

2o(k(logs+logk) = 2o(k logs) for SMALL MULTICOLORED BICLIQUE violating the ETH.

8.3 Algorithms

In this section, we give algorithms for variants of CONFLICT-FREE SET COVER when the

graph GF is restricted to different graph classes.

8.3.1 Conflict-Free Set Cover parameterized by

solution size k

In the following results, we restrict the graph GF .

8.3.1.1 Graphs with bounded number of maximal independent sets

Theorem 45. When GF is restricted to a graph where the number of maximal independent

sets is polynomial in |F|, if the restricted variant of SET COVER can be solved inO∗(f (k))

time, then the corresponding CONFLICT-FREE SET COVER variant can be solved in

O∗(f (k)) time.

Proof. We first note that since the maximal independent sets of a graph can be enumerated

with polynomial delay(the maximum time taken between outputting two consecutive

solutions) [98], they can be enumerated in time polynomial in |F| for the given graph GF .

For each maximal independent set I of GF , we run theO∗(f (k)) algorithm for SET COVER

234

with the family F containing sets corresponding to the vertices in I. Since the solution X of

CONFLICT-FREE SET COVER is an independent set, X ⊆ I′ for some maximal independent

set I′. So if the SET COVER algorithm returns YES for any I, return YES, else return

NO.

As the number of maximal independent sets in split graphs (since at most one vertex of the

clique can be in the independent set), co-chordal graphs [80] and 2K2-free graphs [61] is

polynomial in the number of vertices and can be enumerated in polynomial time, we have

the following corollary.

Corollary 8.3.1. If SET COVER can be solved in O∗(f (k)) time, then CONFLICT-FREE

SET COVER can be solved in O∗(f (k)) time when GF is restricted to split graphs,

co-chordal graphs or 2K2-free graphs.

8.3.1.2 Nowhere Dense graphs

Nowhere dense graph class contains several graph classes such as graphs with bounded

degree, graphs with bounded local treewidth, graphs with bounded expansion and graphs

that locally exclude a fixed minor.

We define the notion of k-Independence Covering Family introduced by [118].

Definition 8.3.1 (k-Independence Covering Family). For a graph G and integer k, a family

of independent sets of G is called an independence covering family for (G,k), denoted by

F (G,k), if for any independent set X in G of size at most k, there exists an independent

set Y ∈F (G,k) such that X ⊆ Y .

In [118], the authors construct a k-independence covering family for nowhere dense graphs.

Lemma 8.3.1 ([118]). Let G be a nowhere dense graph and k be an integer. There is a

235

deterministic algorithm that runs in time

O
(

f (k,
1
k
) ·n1+o(1)+g(k) ·

(
k2

k

)
·2o(k2) ·n(n+m) logn

)

and outputs a k-independence covering family for (G,k) of sizeO(g(k)
(k2

k

)
·2o(k2) ·n logn)

where f is a computable function and g(k) = (f (k, 1
k))

k .

We get the following theorem.

Theorem 46. If the restricted variant of SET COVER can be solved in O∗(h(k)) time with

solution size k and a computable function h, then the corresponding CONFLICT-FREE SET

COVER variant has an algorithm with running time O∗(h(k)g(k)
(k2

k

)
·2o(k2)) for nowhere

dense graphs for a computable function g.

Proof. We use Lemma 8.3.1 on GF to get a k-independence covering family F (GF ,k).

For each independent set Y ∈F (GF ,k), we run the algorithm for SET COVER for the

instance (U ,Y,k) in O∗(h(k)) time. If for any of the sets Y , (U ,Y,k) is a YES-INSTANCE,

we return YES. Otherwise we return NO.

Let X be the solution of size k. There is a set Y in F (GF ,k) such that X ⊆Y . Hence when

we run the algorithm for SET COVER in instance (U ,Y,k), since G[Y] is an independent

set, the algorithm will return X .

We note that Banik et al. [14] has proven that CONFLICT-FREE SET COVER is FPT

parameterized by k if the SET COVER variant is FPT parameterized by k when GF is a

graph of bounded arboricity. The result also holds for graphs with bounded degeneracy

as the degeneracy of a graph is also bounded when the arboricity is bounded. A k-

Independence Covering Family can also be constructed for graphs with bounded degeneracy

[118]. We note that an alternate algorithm for CONFLICT-FREE SET COVER parameterized

by k when GF has bounded degeneracy can be obtained using the ideas used for nowhere

236

dense graphs earlier. Note that graphs with bounded degeneracy contain many other graph

classes such as planar graphs and graphs with bounded treewidth.

8.3.2 Conflict-Free Set Cover parameterized by |U| when F has du-

plicates

We remind that when F has no duplicates, CONFLICT-FREE SET COVER parameterized

by |U| is trivially FPT as |F| ≤ 2|U |. Hence we focus on the case when there are duplicate

sets in F . Again we restrict the graph GF .

8.3.2.1 Interval Graphs

Before we state our result, let us focus on some properties of interval graphs. Let us order

the vertices of a given interval graph G as v1, . . . ,vn based on the increasing value of their

left endpoints. Let the indices 1, . . . ,n denote the intervals. Let l(i) and r(i) denote the left

and right endpoints of interval i respectively.

Look at a vertex vi and its neighborhood N(vi) in the set {vi+1, . . . ,vn}. Let v j,vk ∈

{vi+1, . . . ,vn} such that (vi,v j) ∈ E(G) and (vi,vk) /∈ E(G). By definition, vi and v j has an

edge if intervals i and j intersect. Hence l(j)≤ r(i). Also since intervals i and k do not

intersect, r(i)≤ l(k). Hence we have l(j)≤ l(k). Since this is true for any non-neighbor

of vi in {vi+1, . . . ,vn}, we have shown that all the non-neighbors of vi to its right comes

after the last neighbor of vi to its right. We make use of this ordering to give a dynamic

programming algorithm for CONFLICT-FREE SET COVER with duplicates on interval

graphs. Note that the ordering can be obtained in time linear in |V (G)| by arranging them

according to their leftmost endpoints.

Theorem 47. CONFLICT-FREE SET COVER with duplicate sets when GF is restricted to

interval graphs can be solved in O∗(2|U |) time.

237

Proof. Let the sets of F = {S1, . . .Sm} be ordered in the reverse order of the ordering

described above. For each subset W ⊆ U , and i ∈ [m], define DP[W, i] as the size of the

minimum set X ⊆ {S1, . . .Si} such that X covers W and vertices of X are independent in

GF . Initially, set DP[/0,0] = 0 and DP[X ,0] = ∞ when X 6= /0. We have the following

recursive formula for DP[W, i].

DP[W, i] = min
{

1+DP[W \Si, `],DP[W, i−1]
}

where ` is the index of the rightmost non-neighbor of Si in GF [{S1, . . . ,Si−1}].

The correctness proof of the above equation is as follows.

Let X be the optimal solution for DP[W, i]. The subfamily X either contains the set Si or it

does not. When X does not contain Si, then it is a valid candidate for DP[W, i−1] and hence

|X | ≥ DP[W, i−1]. When it contains Si, X \{Si} is a valid candidate for DP[W \Si, `] and

hence |X |−1≥ DP[W \Si, `]. Hence DP[W, i]≥min
{

1+DP[W \Si, `],DP[W, i−1]
}

.

Let Y be the optimal solution for DP[W \Si, `]. Then Y ∪Si is a valid candidate for DP[W, i]

since {S1, . . .S`} contains only non-neighbors of Si as all the neighbors of Si follows after

the rightmost non-neighbor of Si which is S`. Hence DP[W, i]≤ 1+DP[W \Si, l]. Let Z

be the optimal solution for DP[W, i− 1]. Then Z is also a valid candidate for DP[W, i].

Hence DP[W, i]≤ DP[W, i−1].

The entry DP[W,m] contains the size of the minimum-sized solution of CONFLICT-FREE

SET COVER . The number of subproblems is ∑ j∈[|U |]
(|U |

j

)
·m and at each subproblemO(m)

time is spent to find `. Hence the running time is ∑ j∈[|U |]
(|U |

j

)
·O(m) =O∗(2|U |).

Now we give a O∗(3|U |)-time dynamic programming algorithm for chordal graphs which

is a superclass of interval graphs.

238

8.3.2.2 Chordal Graphs

A clique tree decomposition is a tree decomposition T where for all nodes i ∈V (T), the

vertices of in the bag Xi are such that G[Xi] forms a clique. All chordal graphs have

clique tree decompositions that can be found in polynomial time [80]. Given a clique

tree decomposition, it can be converted to a nice clique tree decomposition in polynomial

time using Lemma 2.3.1. Note from Lemma 2.3.1 that every bag of the new nice tree

decomposition is a subset of some bag of the original tree decomposition. Hence every

bags in the nice tree decompositions are also cliques.

In the theorem below, we give an algorithm for CONFLICT-FREE SET COVER with dupli-

cates on chordal graphs using dynamic programming on the nice clique tree decomposition

of the graph.

Theorem 48. CONFLICT-FREE SET COVER with duplicates on chordal graphs can be

solved in O∗(3|U |) running time.

Proof. For the instance (U ,F ,GF ,k) of CONFLICT-FREE SET COVER , let T be the tree

of the nice clique tree decomposition of the chordal graph GF . For a node i ∈V (T), let

Ti denote the subtree rooted at node i, Vi denote the vertices of G in the bags of nodes of

Ti and Xi denote the vertices in the bag of node i. Note that since we are looking for a

solution that is also independent set in the chordal graph, from each bag no more than one

vertex can be in the solution as G[Xi] forms a clique.

For each subset W ⊆ U , node i ∈ V (T) and x ∈ Xi, let DP[W, i,x] denote the size of the

minimum-sized independent set Y of the graph G[Vi] covering W such that x ∈ Y . Node x

can take empty value /0 as well to denote no vertex is picked from the bag Xi. Initially, set

all entries to ∞ denoting that no such solution exists. We have the following recurrence

relations for each type of node in T to compute DP[W, i,x]:

239

• Leaf Node:

DP[W, i, /0] =

0 if W = /0,

∞ otherwise

• Introduce Node: Let i the the parent of node j and vertex v is introduced in Xi.

DP[W, i,x] =

DP[W, j,x] if x 6= v

1+DP[W \Sv, j, /0] when x = v

• Forget Node: Let i the the parent of node j and vertex v is forgotten in Xi.

DP[W, i,x] =

DP[W, j,x] if x 6= /0

min
{

DP[W, j, /0],DP[W, j,v]
}

when x = /0

• Join Node: Let i be the parent of two nodes j and j′ and Xi = X j = X ′j.

DP[W, i,x] =

min

W1⊆W

{
DP[W1, j,x]+DP[W \W1, j′,x]−1

}
if x 6= /0

min
W1⊆W

{
DP[W1, j, /0]+DP[W \W1, j′, /0]

}
when x = /0

The entry DP[U ,r, /0] contains the size of the minimum-sized solution of CONFLICT-FREE

SET COVER where r is the root of the tree. The number of subproblems isO(
|U |
∑
j=1

(|U |
j

)
· |T | ·

|F|). The maximum time spent on computing DP[W, i,x] where |W |= j isO(2 j) for going

over all subsets W1 at the join node. Hence the overall running time is O∗
(|U |

∑
j=1

(|U |
j

)
·2 j)=

O∗(3|U |).

Correctness of Recurrence Relations:

For ease of writing, let us denote the terms present in the left hand side of the equation

as LHS and on the right hand side of the equation as RHS. For each recurrence relation

240

defined above, we prove its correctness by showing inequality in both sides. We use the

term optimal solution for a DP entry to denote the minimum-sized conflict-free set cover

corresponding to the entry and candidate solution for a DP entry to denote any conflict-free

set cover corresponding to the entry (need not be of minimum size).

• Introduce Node:

Let X be the optimal solution for the entry DP[W, i,x]. By definition x ∈ X . If x 6= v,

X is also a candidate solution for DP[W, j,x] as Vi \{v}=Vj. If x = v, X \{v} is a

candidate solution for DP[W, j, /0] as no y ∈ Xi,y 6= v can be in X \{v} since G[Xi] is

a clique. In either case, the value at RHS can be either the size of LHS or even lower.

Hence, LHS≥ RHS.

Let Y be the optimal solution for DP[W, j,x]. If x 6= /0, the set Y is also a candidate

solution for DP[W, i,x]. Hence LHS ≤ RHS. If x = /0, look at Z, the solution for

DP[W \Sv, j,x]. Since all the edges of v in the graph G[Vi] is in bag Xi, Z∪{v} is

also an independent set and it covers W . Hence both Y and Z are candidate solutions

for DP[W, i,x] when x = /0. Hence LHS≤ RHS.

• Forget Node:

Let X be the optimal solution for DP[W, i,x] such that X ∩Xi = {x} with x 6= /0. Since

Vj =Vi, X is also a solution for G[Vj] such that X ∩Xi = {x} and hence a candidate

solution for DP[W, j,x]. Hence LHS≥ RHS. Similarly we can prove the inequality

in the other direction.

When x = /0, let X be the optimal solution for DP[W, i,x] such that X ∩Xi = /0. Since

Vj = Vi, X is also a solution for G[Vj] such that X ∩Xi = /0 and hence a candidate

solution for DP[W, j,x]. Also if v ∈ X , X is a candidate solution for DP[W, j,v] as

well. If v ∈ X , DP[W, j, /0]≥ DP[W, j,v]. Hence LHS≥ RHS.

Let Y be the optimal solution for the minimum of two entries DP[W, j, /0] and

241

DP[W, j,v]. If the minimum is DP[W, j,v] , then Y \{v} is a candidate solution of

DP[W, i, /0]. Else Y is also a candidate solution of DP[W, i, /0]. Hence LHS≤ RHS.

• Join Node:

Let X be the optimal solution for the entry DP[W, i,x]. When x 6= /0 and G[Xi] forms a

clique, X∩Xi = {x}. Let W1 and W2 be the subset of elements covered by Y j = X∩Vj

and Yj′ = X ∩Vj′ respectively. Note that since X covers W , W1∪W2 =W . Since X is

an independent set, Yj and Yj′ are independent sets as well as they both are subsets of

X . Note that Y j∩Y j′ = {x}. Hence Yj and Yj′ respectively are candidate solutions to

entries DP[W1, j,x] and DP[W \W1, j′,x] as W \W1 ⊆W2. Since x is the only entry

common to both of them, we have LHS≥ RHS.

Let Z j and Z j′ be the optimal solutions for the entries DP[W1, j,x] and DP[W2, j′,x]

where W2 = W \W1. Since Xi = X j = X ′j and G[Xi] forms a clique, Z j ∩ X j =

Z j′ ∩X j = {x}. Look at the set Z = Z j ∪Z j′ . The set Z is an independent set since

Z j and Z j′ are independent sets and since there are no edges across G[Vj \Xi] and

G[Vj′ \Xi] by the definition of tree decomposition. Hence Z is a candidate solution

for the entry DP[W, i,x] of size |Z j|+ |Z j′|−1. Therefore LHS≤ RHS.

When x = /0, using similar arguments we can prove that LHS = RHS.

8.3.3 c-Intersection Conflict-Free Set Cover parameterized by k

8.3.3.1 FPT algorithm for Chordal Graphs

When GF is a chordal graph, we could not come up with a meta-theorem like we had earlier

in Section 8.3.1 for split graphs, nowhere dense graphs etc which gave an FPT algorithm

for CONFLICT-FREE SET COVER given that the restricted version of SET COVER has

242

an FPT algorithm. Hence we focus on a particular restriction of SET COVER known

to be FPT which is c-INTERSECTION SET COVER and give an FPT algorithm for the

conflict-free version. Note that on the contrary, Theorem 40 shows that the problem is

W[1]-hard when GF is bipartite even when c = 1.

Given the instance (U ,F ,GF ,k). We start the algorithm with the following reduction rule.

Reduction Rule 6. If there is a set S ∈ F such that |S|> ck, then put S in the solution and

drop k by 1. The new instance is (U ′,F ′,G′F ,k−1) where U ′ = U \S, F ′ = F \N[S] and

G′F = GF [F ′].

Claim 8.3.1. Reduction Rule 6 is safe.

Proof. Let I′ = (U ′,F ′,G′F ,k′) be the instance of c-INTERSECTION CONFLICT-FREE SET

COVER after applying Reduction Rule 6 to instance I = (U ,F ,GF ,k) for a set S ∈ F . We

show that I is a YES-INSTANCE if and only if I′ is a YES-INSTANCE.

Let X ⊆ F be a solution of size at most k. We claim that S ∈ X . Suppose not. The

elements of S has to be covered by the other sets in F . We know that for any set S′ ∈ F ,

|S′∩S| ≤ c. Since |X | ≤ k, X can cover only at most ck elements of S. Since |S|> ck, X

do cover the set S giving a contradiction.

We claim that the set X ′ = X \S is a solution of size at most k′ ≤ k−1 to the instance I′.

Suppose not. Note that all the sets in X ′ are present in F ′ = F \N[S] as they cannot be

present in N[S] which would contradict the fact that X is an independent set in GF . Since

X covers U , X ′ covers U ′ = U \ S. Also since X is an independent set in GF , X ′ is an

independent set in G′F . Hence I′ is a YES-INSTANCE.

Conversely, let Y ′ be a solution of size k′ to the instance I′. We claim that Y = Y ′∪S is

a solution of size at most k to the instance I. Since Y ′ is an independent set in G′F and

F ′ = F \N[S], Y is an independent set in GF . Also since U ′ = U \S, Y covers U .

We apply Reduction Rule 6 exhaustively. Note that by applying Reduction Rule 6, we

243

introduce duplicate sets. Afterwards, we can assume that the size of every set in F has

size at most ck. We now apply the following reduction rule.

Reduction Rule 7. If |U|> ck2, return NO.

Since every set in F has size at most ck, a solution of size at most k can cover at most ck2

elements. Hence if |U|> ck2, there is no solution of size k and hence we return NO.

After applying reduction rules 6 and 7 exhaustively in order, we get an instance where

the universe size |U| ≤ ck2, a function of k. Hence the problem can now be treated as

an instance of CONFLICT-FREE SET COVER parameterized by |U|. We use Theorem

48 to get an FPT algorithm with running time O∗(3|U |) =O∗(3ck2
). Hence we have the

following theorem.

Theorem 49. c-INTERSECTION CONFLICT-FREE SET COVER when GF is a chordal

graph has an algorithm with a running time of O∗(3ck2
).

8.3.3.2 Polynomial Kernel in cluster graphs

In this section, we show a polynomial kernel for cluster graphs which is a subclass of

chordal graphs.

We initially apply reduction rules 6 and 7 exhaustively in order. Hence we can assume that

the universe size is at most ck2.

We first claim that there are only
(ck2

c+1

)
distinct sets present in F . Let us look at an arbitrary

subset A of c+1 elements from U . There is only one set S ∈ F such that A⊆ S. Suppose

there also exist S′ ∈F ,S′ 6= S such that A⊆ S′. Then we have A⊆ S∩S′. Hence |S′∩S|> c

giving a contradiction.

Hence we can create an injective map from each distinct set in F of size at least c+1 to a

subset of c+1 elements of U . Since there are at most
(|U |

c+1

)
such subsets, there are at most(ck2

c+1

)
distinct elements in F of size at least c+1. The number of distinct sets in F of size

244

at most c is also bounded by
(|U |

c+1

)
≤
(ck2

c+1

)
. Hence we can conclude that the total number

of distinct elements in F is at most
(ck2

c+1

)
.

Hence to bound the size of F , we only need to bound the number of duplicates in F .

Let C1,C2, . . . ,Cp the components in the cluster graph GF , each component being a clique.

We have the following reduction rule.

Reduction Rule 8. If a component Ci where i ∈ [p] has two vertices v and v′ where the set

corresponding to both vertices is the same set S, delete v′ from F .

Both the vertices v and v′ cover the same set S and have the same closed neighborhood set

which is the entire clique. Since a solution will contain only at most one vertex from Ci as

it is a clique, the reduction rule 8 is safe.

We apply reduction rule 8 to all components Ci for i ∈ p. Since all the sets in Ci are distinct

afterwards, we have |Ci| ≤
(ck2

c+1

)
.

We have the following reduction rule to take care of duplicate sets among different

components Ci.

Reduction Rule 9. For each distinct set S ∈ F , if there are more than k vertices whose

corresponding set is S, keep arbitrarily selected k+1 vertices whose set is S and delete

the rest of the vertices.

After applying this rule, we can conclude that every set in F has at most k duplicates.

Claim 8.3.2. Reduction Rule 9 is safe on instances of c-INTERSECTION CONFLICT-FREE

SET COVER where GF is a cluster graph.

Proof. Let I′ = (U ′,F ′,G′F ,k′) be the instance of c-INTERSECTION CONFLICT-FREE SET

COVER after applying Reduction Rule 9 to instance I = (U ,F ,GF ,k) for a set S ∈ F . We

show that I is a YES-INSTANCE if and only if I′ is a YES-INSTANCE.

245

Let X be a solution of size at most k for I. We construct a subset of vertices X ′ in the

instance I′ as follows. The set X ′ is initially empty. In phase 1, for each vertex v ∈ X , if

the number of duplicates of the corresponding set Sv is not more than k in I, then v is also

present in I′. Add v to X ′. Mark v and the corresponding component containing v. If the

number of duplicates of Sv is more than k in I, we do nothing.

After we do this for every vertex in X , phase 2 begins. Every unmarked vertex v ∈ X

has more than k duplicates in I. For each such vertex v we add a vertex w to X ′ from an

unmarked component whose corresponding set is Sv. Mark the corresponding component

containing w.

Note that the procedure to construct X ′ terminates without fail. This is because there is an

unmarked component containing vertex Sv at every step where a vertex is added since we

keep k+1 duplicates for v which is present in different components of GF .

We claim that X ′ is a solution for the instance I′. Clearly, X ′ covers U as the sets corre-

sponding to each vertex in X ′ remain the same as X . Since at each time, a vertex in X ′ is

added from an unmarked cluster, X ′ also forms an independent set.

Conversely, a solution Y for I′ is also a solution for I as all the vertices of Y are also present

in I.

After applying reduction rules 1 to 4 exhaustively in order, it is easy to see that we get

a kernel for c-INTERSECTION CONFLICT-FREE SET COVER with universe size ck2 and

family size (k+1) ·
(ck2

c+1

)
. We have the following theorem.

Theorem 50. c-INTERSECTION CONFLICT-FREE SET COVER parameterized by k when

GF is a cluster graph has a kernel with universe size ck2 and family size (k+1) ·
(ck2

c+1

)
.

Using the kernel, we get a better FPT algorithm when GF is a cluster graph by going over

all the k-sized subsets of F .

Corollary 8.3.2. c-INTERSECTION CONFLICT-FREE SET COVER parameterized by k

246

when GF is a cluster graph has an FPT algorithm with running time O∗(
(
(k + 1) ·(ck2

c+1

))k
)) =O∗(kO(ck)).

8.4 Matroidal Conflict-free Set Cover

In this section, we study the MATROIDAL CONFLICT-FREE SET COVER problem where

the conflicting condition is being an independent set in a (representable) matroid.

Let Fp` denote a finite field of order p` where p is a prime and ` is a positive integer. Also,

we denote by Q the field of rationals. Let us first define the MATROIDAL CONFLICT-FREE

SET COVER problem as follows.

MATROIDAL CONFLICT-FREE SET COVER

Input: A universe U , a family F of subsets of U , a linear representation of a matroid

M = (F ,I) over a field F where F = Fp` or F is Q and an integer k.

Question: Is there a subfamily F ′ ⊆F of size at most k such that
⋃

F∈F ′ F = U and

F ′ forms an independent set in M?

Note that we need the linear representation of the matroid M over a field F where F = Fp`

or F is Q. This is due to technical reasons which will be revealed later.

We give a dynamic programming algorithm for MATROIDAL CONFLICT-FREE SET COVER

containing duplicate sets using computation of representative sets noting that the similar

ideas used in [14] for INTERVAL COVERING can be extended to MATROIDAL CONFLICT-

FREE SET COVER .

For W ⊆ U , let BW denote the collection of subfamilies X of F of size at most k such that

X covers W and forms an independent set in the matroid M.

BW = {X ⊆F
∣∣∣ |X | ≤ k,W ⊆

⋃
S∈X

S and X ∈ I}

247

Note that BU contains all the solutions of size at most k of MATROIDAL CONFLICT-FREE

SET COVER . Hence we solve the MATROIDAL CONFLICT-FREE SET COVER problem by

checking whether BU is empty or not.

Definition 8.4.1 (q-representative family [127]). Let M = (E,I) be a matroid and A be

a family of sets of size p in M. For sets A,B ⊆ E, we say that A fits B if A∩B = /0 and

A∪B ∈ I. A subfamily Â ⊆ A is said to q-represent A if for every set B of size q such that

there is an A ∈ A that fits B, there is an Â ∈ Â that also fits B. We use Â ⊆q
rep A to denote

that Â q-represents A.

Lemma 8.4.1 ([71]). For a matroid M = (E,I) and S ⊆ E, if S1 ⊆q
rep S and S2 ⊆q

rep S1,

then S2 ⊆q
rep S.

Note that BU is nonempty if and only if B̂U ⊆0
rep BU is nonempty. Let us define BW j as

the subset of BW containing sets of size exactly j. We use B̂W ⊆1,...,k
rep BW to denote that

B̂W contains the union of all the i-representative families of BW where 1≤ i≤ k. In other

words,

B̂W =
k⋃

j=1

(
B̂W j ⊆k− j

rep BW j)
Lemma 8.4.2 ([115]). Let M = (E,I) be a linear matroid of rank n and S be a family of

t independent sets of size p. Let A be a n×|E| matrix representation of M over a field F

where F = Fp` or F is Q. Then there is a deterministic algorithm to compute Ŝ ⊆q
rep S of

size np
(p+q

p

)
in O

((p+q
p

)
t p3n2 + t

(p+q
p

)ω−1
(pn)ω−1)+(n+ |E|)O(1)) operations over F

where ω is the matrix multiplication exponent.

Note that Lemma 8.4.2 is applicable only when the matroid is represented over a field F

where F = Fp` or F is Q. This is why we imposed a similar restriction for the matroid

representation in the definition of MATROIDAL CONFLICT-FREE SET COVER .

Theorem 51. MATROIDAL CONFLICT-FREE SET COVER can be solved in O∗(2(ω+1)·|U |)

time where ω is the matrix multiplication exponent.

248

Proof. Let D be an array of size 2|U | with D[W] storing the family B̂W ⊆1,...,k
rep BW . We

compute the entries of D in the increasing order of subsets of U . To do so we compute the

following:

(8.1) NW =
⋃

Si∈F
(D[W \Si]•Si)∩I

where A•B = {A∪B | A ∈ A and B ∈ B and A∩B = /0}.

We show thatNW ⊆1,...,k
rep BW . Let S ∈ BW j and Y be a set of size k− j such that S∩Y = /0

and S∪Y ∈ I. We give a set Ŝ ∈NW j such that Ŝ∩Y = /0 and Ŝ∪Y ∈ I.

Let S = {S1,S2, . . . ,S j}. Let S′ = S \ {S j}. Let Y ′ = Y ∪{S j}. Then, |S′| = j− 1 and

|Y ′|= k− j+1. Since S′ covers W \S j, S′ ∈B(W\S j)(j−1). By definition, D[W \S j] contains

B̂(W\S j)(j−1) ⊆k− j+1
rep B(W\S j)(j−1) and hence a set S∗ ∈D[W \S j] such that S∗∩Y ′ = /0 and

S∗ ∪Y ′ ∈ I. From equation (8.1), S∗ ∪{S j} ∈ NW . The set Ŝ = S∗ ∪{S j} is such that

Ŝ∩Y = /0 and Ŝ∪Y ∈ I. Hence NW ⊆1,...,k
rep BW .

We store N̂W ⊆1,...,k
rep NW in D[W]. The sets N̂W j are computed using Lemma 8.4.2. We

have N̂W j ⊆k− j
rep NW j ⊆k− j

rep BW j for all 1 ≤ j ≤ k. Hence from Lemma 8.4.1, we have

D[W] = N̂W ⊆1,...,k
rep BW .

We now focus on the running time to compute D[W] and the size of D[W]. Assume that

D[Y] is precomputed for all subsets Y ⊆W . We have |D[Y]|= |N̂Y |=
k
∑
j=1
|N̂Y j|. From

Lemma 8.4.2, |N̂Y j| ≤ |F| · k ·
(k

j

)
. Hence from equation (8.1), putting Y = W \ Si, we

have |NW j| ≤ |F|2 · k ·
(k

j

)
. Using Lemma 8.4.2, the time to compute N̂W j ⊆k− j

rep NW j is

O∗
((k

j

)2
+
(k

j

)ω)
where ω is the exponent for matrix multiplication. Hence the total time

to compute D[W] is
k
∑
j=1
O∗(

(k
j

)ω
) =O∗(2ωk). The size of D[W] is O(|F| · k ·

k
∑
j=1

(k
j

)
) =

O(2k · k · |F|).

The overall running time to check if D[U] is empty or not is bounded by O∗(2|U | ·2ωk) =

O∗(2ω|U |+|U |) =O∗(10.361|U |).

249

We note that an FPT algorithm for MATROIDAL CONFLICT-FREE SET COVER parame-

terized by k can be obtained as a corollary of a result by Bevern et al. [150]. The authors

give an algorithm for a generalization of SET COVER called uncapacitated facility location

problem with multiple matroid constraints. This algorithm also uses the idea of representa-

tive families that we use. But the algorithm involves further sophistication as they work on

a general problem. The running time for MATROIDAL CONFLICT-FREE SET COVER from

Bevern et al is 2O(r logr)n2 where r is the rank of the matroid. The rank r is bounded by the

universe size |U|. The running time is 2O(|U | log |U |)n2 when r =O(|U|) in which case our

algorithm from Theorem 51 with running time O∗(2(ω+1)·|U |) is better. But when the rank

is smaller, the algorithm by Bevern et al. is better.

8.5 Conclusion

We have initiated a systematic study of CONFLICT-FREE SET COVER with various parame-

terizations and restrictions to GF . When parameterized by the solution size k and when the

restricted SET COVER variant is FPT parameterized by k, we have shown W[1]-hardness

for the corresponding CONFLICT-FREE SET COVER variant when the conflict graph GF is

bipartite and gave FPT algorithms when GF is nowhere dense or has bounded number of

independent sets. When parameterized by the universe size (hence SET COVER variant

is FPT), we have shown W[1]-hardness when GF is bipartite and gave FPT algorithms

when GF is chordal, nowhere dense or has bounded number of independent sets. One

open question is to identify a general characterization for the graph classes of GF when

CONFLICT-FREE SET COVER becomes FPT for the above two cases.

We gave an FPT algorithm for c-INTERSECTION CONFLICT-FREE SET COVER when

GF is a chordal graph but only managed to find a polynomial kernel for cluster graphs,

a subgraph of chordal graphs. Finding a polynomial kernel for c-INTERSECTION

CONFLICT-FREE SET COVER when GF is a chordal graph remains open.

250

251

252

Chapter 9

Fair Vertex Deletion problems

9.1 Introduction

Recently, there is an interest in vertex deletion problems where along with optimizing the

vertex deletion set, we want the deletion set to be fair in the sense that it does not have too

many vertices from the neighborhood of any vertex [130, 105, 104]. It can be viewed as

spreading the cost of the deletion set to all vertices such that the cost is not too high for

anyone.

Let us formalize the problem by introducing the following notions. Given a graph G =

(V,E) and a positive integer d, a set S⊆V is fair if it contains at most d vertices from the

neighborhood of each vertex. That is, for each vertex v ∈ G, |N(v)∩S| ≤ d. We call d the

fairness factor of S.

Given a set S⊆V (G), checking whether S is a fair set can be done in polynomial time by

going over the neighborhoods of all the vertices in G and counting the vertices in S in it. If

for some vertex v, |N(v)∩S|> d, we say that the fairness constraint for v with respect to S

is violated.

A graph property Π is the same as a graph class which is a collection of graphs. We define

253

Π-FAIR VERTEX DELETION problem as follows.

Π-FAIR VERTEX DELETION

Input: A graph G = (V,E) and k,d ∈ N.

Question: Does there exist a set S ⊆ V (G) of at most k vertices such that G[V − S]

satisfies property Π and for each vertex v ∈V (G), |N(v)∩S| ≤ d?

Using Π-FAIR VERTEX DELETION, we can define FAIR VERTEX COVER and FAIR

FEEDBACK VERTEX SET where Π is the class of edgeless graphs and acyclic graphs

respectively.

9.1.1 Previous Work and Deconstructing Hardness

Fair deletion problems were introduced by Lin and Sahni [112] where edges are deleted.

Here, we require that the number of edges incident for every vertex in the graph to be

bounded. This could also be viewed as minimizing the maximum degree of the graph

restricted to the deleted edges. The authors showed that such problems are NP-complete.

Later, Kolman et al. gave an XP algorithm for a generalization of fair edge deletion

problems parameterized by treewidth when the property Π is expressible by a Monadic

Second Order (MSO) formula.

The Π-FAIR VERTEX DELETION problem was introduced by Masařík and Toufar [130]

where they studied the problem in the lens of logic. They first looked at Π-FAIR VERTEX

DELETION where Π is expressible by a First Order formula also given as input. They

showed that the problem is W [1]-hard when parameterized by the sum of treedepth and

the size of the minimum feedback vertex set of the graph. They also presented an FPT

algorithm parameterized by the neighborhood diversity of the graph when Π can be

expressed by an MSO formula given as input. Later, Knop, Masařík and Toufar [105]

showed that Π-FAIR VERTEX DELETION where Π is expressible by an MSO formula

with one free variable is FPT when parameterized by the twin cover number of the graph.

254

They also showed that FAIR VERTEX COVER is W [1]-hard when parameterized by both

treedepth and feedback vertex set of the input graph.

Since Π-FAIR VERTEX DELETION problems like FAIR VERTEX COVER are W [1]-hard

parameterized by the minimum feedback vertex set of the graph, they are W [1]-hard

parameterized by the treewidth t of the graph for t ≥ 1 as the latter is a smaller parameter.

But we note that in the reduction used in the proofs, the fairness factor d is in Ω(n).

Inspired by the parameter ecology program of Fellows et al. [64], we believe that it is more

natural to consider the fairness factor d also as a parameter in these problems.

9.1.2 Our Results

We first show that Π-FAIR VERTEX DELETION is FPT parameterized by t + d if Π-

VERTEX DELETION can be expressed by an MSO logic formula of constant length. This

includes the fair version of a huge class of well-studied vertex deletion problems such as

FEEDBACK VERTEX SET, ODD CYCLE TRANSVERSAL, CLUSTER VERTEX DELETION

and CHORDAL VERTEX DELETION. Unfortunately, the FPT algorithms obtained above

have a large exponential dependence on the parameter in the running time. Hence we

study two classic problems FAIR VERTEX COVER and FAIR FEEDBACK VERTEX SET

and give dynamic programming algorithms with much better running time parameterized

by t + d. As a corollary, we get an FPT algorithm for FAIR FEEDBACK VERTEX SET

parameterized by solution size as well. We remark that the standard reduction rules of

FAIR FEEDBACK VERTEX SET do not seem to have an easy implementation to maintain

the fairness constraint, and hence we do not know of other FPT algorithms for FAIR

FEEDBACK VERTEX SET.

We then take a closer look at FAIR VERTEX COVER and more generally Π-FAIR VERTEX

DELETION where the graph class Π has a finite forbidden family F . We call the forbidden

family F a q-forbidden family if the vertex set of each graph in F is of size at most q. In a

255

graph G, we say a subset S⊆V (G) hits all graphs in F when for all induced subgraphs H

of G such that H is isomorphic to some member in F , S∩V (H) 6= /0.

We now define Π-FAIR VERTEX DELETION where Π is a graph class having a q-forbidden

family.

FAIR q-FORBIDDEN FAMILY VERTEX DELETION

Input: Given a graph G = (V,E), a q-forbidden set F where q,k,d ∈ N.

Question: Does there exist a subset S ⊆ V (G) of at most k vertices such that S

hits all the occurrences of graphs in family F in G and for each vertex v ∈ V (G),

|N(v)∩S| ≤ d?

We give a simple O?(qk) FPT algorithm for FAIR q-FORBIDDEN FAMILY VERTEX

DELETION parameterized by solution size k. The more challenging task is to design a

polynomial kernel as here again the standard reduction rules for q-FORBIDDEN FAMILY

VERTEX DELETION do not keep track of fairness constraints. We reduce the problem

instance to a MIN-ONES-SAT instance formula where all the clauses are constant-sized

and each clause is either monotone or anti-monotone. We then show that this variant of

MIN-ONES-SAT has a polynomial kernel. The latter result is of independent interest as in

contrast, the general MIN-ONES-SAT problem even when all the clauses are of size 3 does

not have a polynomial kernel [107], unless NP⊆ coNP/poly.

The FAIR VERTEX COVER problem can also be thought of as a special instance of FAIR

q-FORBIDDEN FAMILY VERTEX DELETION with the q-Forbidden Set being the single

edge K2. For FAIR VERTEX COVER we obtain a much better kernel through a different

technique.

Finally, we complement our FPT results with some hardness results. We show that FAIR

SET (defined below) and FAIR INDEPENDENT SET are W [1]-hard even in 3-degenerate

graphs, with fairness factor 1 when parameterized by solution size.

256

FAIR SET

Input: A graph G = (V,E) and k,d ∈ N.

Question: Does there exist a set S ⊆ V (G) of at least k vertices such that for each

vertex v ∈V (G), |N(v)∩S| ≤ d?

We note that the FAIR SET can be seen as a special case of (σ ,ρ) DOMINATING SET [149]

where the sets σ and ρ = {0,1, . . . ,d}. The (σ ,ρ) DOMINATING SET is shown to be FPT

when parameterized by treewidth when the sets σ and ρ are finite or cofinite [151] with

running time O∗((st)s−2st) where t is the treewidth of the graph and s is the number of

states in the sets. As the number of states in the FAIR SET can be shown to be d +1, the

problem is FPT parameterized by sum of treewidth t and fairness factor d with running

time O∗(((d +1)t)d−1(d +1)t).

A FAIR DOMINATING SET is a dominating set which is also a fair set. A problem very

closely related to FAIR DOMINATING SET named [1, j] DOMINATING SET has been

studied recently [5] where it is shown to be W [1]-hard in graphs of degeneracy j + 1

and FPT in nowhere dense graphs parameterized by the solution size. We note that in

the W [1]-hardness reduction, the [1, j] dominating set is also a fair dominating set with

fairness j and the FPT algorithm for nowhere dense graphs can be easily extended to FAIR

DOMINATING SET.

Concerning the solvability of FAIR VERTEX COVER and FAIR FEEDBACK VERTEX SET

for specific values of d, we note that FAIR VERTEX COVER and FAIR FEEDBACK VERTEX

SET are NP-hard when d = 3 and d = 4 respectively as VERTEX COVER is NP-hard in

cubic graphs [78] and FEEDBACK VERTEX SET is NP-hard on graphs with degree at most

4 [146]. For FAIR VERTEX COVER, we show that the problem is polynomial-time solvable

when d = 1 or 2. For FAIR FEEDBACK VERTEX SET, we complete the picture by showing

that the problem is NP-hard even when d ∈ {1,2,3}.

We end this section with the following observation, which essentially says that when the

257

parameter is the solution size, Π-FAIR VERTEX DELETION problems are interesting only

when d ≤ k.

Observation 9.1.1. When d ≥ k, Π-FAIR VERTEX DELETION is FPT when parameterized

by solution size k whenever the corresponding Π-VERTEX DELETION problem (without

the fairness constraint) is FPT when parameterized by solution size.

This is because when d ≥ k, the Π-FAIR VERTEX DELETION problem turns into the

standard Π-VERTEX DELETION problem as every vertex has at most k ≤ d neighbors in

the solution.

9.2 Preliminaries

We state the sunflower lemma which is widely applied in kernelization algorithms.

Definition 9.2.1 (Sunflower). A sunflower with k petals and a core Y is a collection of sets

S1, . . . ,Sk such that Si∩S j = Y for all i 6= j and the sets Si \Y are non-empty.

Lemma 9.2.1 (Sunflower Lemma). [45] Let A be a family of sets (without duplicates)

over a universe U such that each set in A has cardinality exactly q. If |A > q!(k− 1)q,

then A contains a sunflower with k petals and can be computed in time polynomial in |A|,

|U | and k.

9.3 Π-FAIR VERTEX DELETION parameterized by

treewidth + fairness factor

Here, we use the famous Courcelle’s theorem which we state below.

Theorem 52 (Courcelle’s theorem [44]). Given an MSO formula φ , an n-vertex graph G

and a tree decomposition of G of width t, there exists an algorithm that verifies whether φ

258

is satisfied in G in time f (|φ |, t) ·n for some computable function f and |φ | denoting the

length of encoding of φ as a string.

We show the following theorem.

Theorem 53. The Π-FAIR VERTEX DELETION problem is FPT parameterized by the sum

of treewidth and fairness factor if the corresponding Π-VERTEX DELETION problem can

be expressed by an MSO formula of constant length.

Proof. Let φ1 be the constant length formula expressing the Π-VERTEX DELETION

problem sentence. We can express the fairness property for a set of vertices with fairness

factor d by the following MSO logic formula φ2.

φ2 := ∃S ∀u ∈V @v1, . . . ,vd+1 ∈ S such that {(u,v1), . . . ,(u,vd+1)} ∈ E

The length of the formula φ2 is linear in d. The Π-FAIR VERTEX DELETION problem

can be expressed by MSO formula φ = φ1∧φ2 which is of length linear in d. Hence by

Courcelle’s theorem, the result follows.

Sentences of most of the Π-VERTEX DELETION problems like VERTEX COVER and

FEEDBACK VERTEX SET can be expressed by a constant length MSO formula. Hence the

above theorem gives FPT algorithms for these problems. But the running time of these

FPT algorithms have huge exponents. So we focus on FAIR VERTEX COVER and FAIR

FEEDBACK VERTEX SET and give better FPT algorithms using dynamic programming on

tree decompositions.

Theorem 54. FAIR VERTEX COVER can be solved in running time O∗(2tw(d +1)3tw) on

graphs of treewidth tw if a nice tree decomposition of width ω is given as input.

Proof. Let T = (T,{Xt}t∈V (T)) be the nice tree decomposition of the input graph G with

treewidth tw. We use Vt to denote the set of vertices of G contained in the bags of the

subtree rooted at t.

259

For a bag Xt of node t, we fix a set Y ⊆ Xt and a partition P = (W0,W2, . . . ,Wd) of Xt . We

define DP[t,Y,P] as the size of the minimum fair vertex cover S of the graph G[Vt] satifies

the following.

• S∩Xt = Y .

• The set Vt is partitioned into sets C0, . . . ,Cd . For i ∈ {0,1, . . . ,d}, the set Ci contains

vertices v ∈Vt such that |N(v)∩S|= i. The sets Ci intersect in Xt in sets Wi.

We now provide recursive formulas to compute the values of the entries in DP.

• Leaf Node: Since Xt = /0, the entry DP[t,Y = φ ,P = /0] = 0.

• Introduce Node: The node t has a single child node t ′ such that Xt = Xt ′ ∪{v}.

– Case 1: v ∈ Y and v ∈Wi where i 6= d.

DP[t,Y,P] = 1+DP[t ′,Y \ v,P ′]

where P ′ is obtained by removing v from Wi.

– Case 2: v /∈ Y and v ∈Wi.

DP[t,Y,P] = DP[t ′,Y,P ′]

where P ′ is obtained by removing v from Wi.

• Forget Node: The node t has a single child node t ′ such that Xt = Xt ′ \{v}.

DP[t,Y,P] = min
{

min
P ′

DP[t ′,Y ∪{v},P ′],min
P ′

DP[t ′,Y,P ′]
}

where P ′ is obtained by adding v to one of the parts Wi.

260

• Join Node: The node t is a parent node of two children nodes t1 and t2 such that

Xt = Xt1 = Xt2 .

DP[t,Y,P] = min
P1,P2

{DP[t1,Y,P1]+DP[t2,Y,P2]−|Y |}

where P is formed from compatible partitions P1 and P2 defined as follows. Look

at a vertex v ∈ Xt . If v ∈W 1
i ∈ P1 and v ∈W 2

i′ ∈ P2, then v ∈Wi+i′ ∈ P for i+ i′ ≤ d.

If i+ i′ > d for some vertex v, then P1 and P2 are incompatible.

Running time: For each node t, there are at most 2tw sets Y of Xt . There are (d + 1)tw

partitions P of size d+1. Hence, the number of states per node is at most 2tw((d+1))tw ·n.

For a join node, for a state, we go over pairs of partitions P1 and P2 which is bounded by

(d +1))2tw. Hence, the overall running time is O∗(2tw((d +1))3tw).

As a corollary of the above theorem, we show that the FAIR VERTEX COVER is FPT

parameterized by the sum of chordal vertex deletion size and fairness factor of the graph.

We make the following crucial observation.

Observation 9.3.1. There does not exist a fair vertex cover with fairness factor d for a

graph G with maximum clique size more than d +1.

Proof. Suppose not. Let S be a fair vertex cover with fairness factor d for a graph

G Let us look at a clique C of size more than d + 1 in G. Since S is a vertex cover,

|S∩C| ≥ |C|−1 > d. Hence, there exist a vertex v ∈C with more than d neighbors which

are the vertices of S∩C. This contradicts that S is a fair vertex cover with fairness factor

d.

We have the following corollary.

Corollary 9.3.1. FAIR VERTEX COVER is FPT parameterized by the sum of chordal

vertex deletion size and fairness factor.

261

Proof. We know that chordal graphs have a tree decomposition where each bag is a clique.

By adding the chordal vertex deletion set of size k to each of the bags, we have a tree

decomposition where each bag is a clique plus k vertices. If the maximum clique size

of the graph is more than d +1, using Observation 9.3.1, we can conclude that the given

instance is a NO-instance. Else, we know that the maximum clique size is bounded by

d +1. Hence the treewidth of the graph is bounded by k+d. We now use the algorithm in

Theorem 54 with running time O∗(2k+d((d +1))3(k+d)).

Theorem 55. FAIR FEEDBACK VERTEX SET can be solved in running time O∗((tw(d +

1))2tw) on graphs of treewidth tw if a nice tree decomposition of width tw is given as input.

Proof. Let T = (T,{Xt}t∈V (T)) be the nice tree decomposition of the input graph G with

treewidth tw.

For a bag Xt of node t, we set a partition P = (W1,W2, . . . ,Wp,Y) of Xt . Also for i ∈ [p],

we define (d + 1)-sized partitions Z i = (Zi
0,Z

i
1, . . . ,Z

i
d) of each sets Wi in the partition

P and partition Z p+1 = (Zp+1
0 ,Zp+1

1 , . . . ,Zp+1
d) of Y . Now we define DP[t,P,Z] where

Z = (Z1, . . . ,Z p+1) as the size of the minimum fair feedback vertex set S of the graph

G[Vt] satisfying the following.

• S∩Xt = Y .

• G[Vt]\S is a forest containing p connected components C1, . . . ,Cp which intersect

the bag Xt in non empty sets W1, . . . ,Wp respectively.

• For each set Wi, the subsets Zi
j contain vertices that has exactly j neighbors to the

solution S. Note that some of the sets Zi
j could be empty as well.

• For set Y , the sets Zp+1
j has vertices that has exactly j neighbors to the solution S.

The set Zp+1
j could be empty as well.

We now provide recursive formulas to compute the values of the entries in DP.

262

• Leaf Node: Since Xt = /0, the entry DP[t,P = φ ,Z = /0] = 0.

• Introduce Node: The node t has a single child node t ′ such that Xt = Xt ′ ∪{v}.

– Case 1: If v ∈ Y and there are no vertex u ∈ Zi
d ∩N(v) for i ∈ [p].

DP[t,P = (W1, . . . ,Wp,Y),Z] = 1+DP[t ′,P ′ = (W1, . . . ,Wp,Y \ v),Z ′]

where Z is obtained from Z ′ by moving vertices u ∈ Z′ij ∩N(v) to set Zi
j+1 for

0≤ j ≤ d−1 and keeping in Zi
j+1 otherwise.

– Case 2: If v ∈Wi and there are no vertices u,w ∈Wj∩N(v).

DP[t,P = (W1, . . . ,Wp,Y),Z] = DP[t ′,P ′ = (W1, . . . ,Wi \ v, . . . ,Wp,Y),Z ′]

where Z ′ is obtained by removing the corresponding entry for v from Z . Note

that it is possible that Wi = {v} as well in which case you remove the ith part in

P ′.

– Case 3: Otherwise DP[t,P,Z] = ∞.

• Forget Node: The node t has a single child node t ′ such that Xt = Xt ′ \{v}.

DP[t,P,Z] = min
P ′,Z ′

DP[t ′,P ′,Z ′]

where P ′ = (W1, . . . ,Wi∪{v}, . . . ,Wp,Y) for some i ∈ [p] or

P ′ = (W1, . . . ,Wi, . . . ,Wp,Y ∪ {v}). The minimum is taken over all Z ′ which is

obtained from Z by updating Z ′ij = Z ′ij ∪{v} for some 0≤ j ≤ d.

• Join Node: The node t is a parent node of two children nodes t1 and t2 such that

Xt = Xt1 = Xt2 .

DP[t,P,Z] = min
P1,P2,Z1,Z2

{DP[t1,P1,Z1]+DP[t2,P2,Z2]−|Y |}

263

where P1 and P2 are partitions such that P can be obtained as the acyclic

merging of P1 and P2 defined below. Let P1 = (W 1
1 ,W

1
2 , . . . ,W

1
p1
,Y) and P2 =

(W 2
1 ,W

2
2 , . . . ,W

2
p2
,Y) be the partitons with Y , the part of the solution intersecting the

bag Xt being common. If merging the two forests corresponding to P1 and P2 do

not form any cycle and create a forest whose corresponding partition in Xt is P , then

P is the acyclic merging of P1 and P2.

The tuple Z is formed as follows: Look at a vertex v ∈ Xt \Y . It is present in sets

Zi
j and Zi′

j′ corresponding to parts in W 1
i ∈ P1 and W 2

i′ ∈ P2. If j+ j′ > d, the merge

is invalid. Else the merge is valid and v is put in set Zi′′
j+ j′ corresponding to part in

Wi′′ ∈ P . For vertex v ∈ Y present in Zp+1
j and Zp+1

j′ corresponding to Y in P1 and

P2, we move it to Zp+1
j+ j′ if j+ j′ ≤ d. Else the merge is invalid again.

Running time: For each node t, there are at most twtw partitions of P of Xt . For each Wi,

there are (d +1)tw partitions Zi. Hence, the number of states per node is twtwtwtw(d +

1)tw =O((tw(d +1))tw). Since at join node we go over pairs of states, overall running

time is O∗((tw(d +1))3tw).

Corollary 9.3.2. FAIR FEEDBACK VERTEX SET is FPT parameterized by solution size k.

Proof. If d > k, then from Observation 9.1.1, the problem is FPT from the FPT algorithm

for Feedback Vertex Set [106]. Else if the treewidth of the graph is at most k+1, then we

first construct a tree decomposition of width k′ = 4(k+1)+4 inO(8k ·n2) time [45]. Then

we apply Theorem 55 with this tree decomposition to get running timeO∗((k′(d+1))3k′)=

kO(k). Else the treewidth of the graph is greater than k+1. But if there exists a feedback

vertex set S of size k, then we can always get a tree decomposition with treewidth k+1

by adding S to each of the bags in the tree decomposition obtained for the forest G \ S.

Hence if the treewidth of graph is greater than k+1, then we can conclude that there is no

feedback vertex set of size k and return NO.

264

Corollary 9.3.3. FAIR FEEDBACK VERTEX SET is FPT parameterized by chordal vertex

deletion size k.

Proof. We use similar arguments for FAIR VERTEX COVER. In a clique C, at least |C|−2

vertices have to be in any feedback vertex set. Hence if the maximum clique of the graph

is more than d +2, we can find a vertex in the clique with d +1 neighbors in the clique

violating the fairness constraint. Hence, we can conclude that the input is a NO-instance.

The treewidth of the graph is hence bounded by k+d +1. We apply Theorem 55 to get

an algorithm with running time ((k+d +1)d)O(k+d+1) ·n. for FAIR FEEDBACK VERTEX

SET.

9.4 FAIR q-FORBIDDEN FAMILY VERTEX DELETION pa-

rameterized by solution size

9.4.1 FPT Algorithm

We first give a simple FPT algorithm for FAIR q-FORBIDDEN FAMILY VERTEX DELE-

TION.

Theorem 56. FAIR q-FORBIDDEN FAMILY VERTEX DELETION can be solved in O?(qk)

time.

Proof. We use the folklore result to enumerate all minimal q-forbidden family vertex

deletion sets of size at most k. The algorithm uses the standard branching technique on

vertex subsets of size at most q whose corresponding induced graph is a member of the

forbidden family F . This generates a search tree with at most qk leaves. Every minimal

q-forbidden family vertex deletion set of size at most k appears in one of the leaves of this

tree.

265

Now for each such minimal q-forbidden family vertex deletion set X , we check if X is

a d-fair set in polynomial time. If such a set X exists, we return YES-instance. Else we

return NO-instance.

The running time of the algorithm is O?(qk) as the number of leaves of the search tree is

at most qk.

Since FAIR VERTEX COVER is a special case of FAIR q-FORBIDDEN FAMILY VERTEX

DELETION with the forbidden set being an edge, we have the following corollary.

Corollary 9.4.1. FAIR VERTEX COVER can be solved in O?(2k) running time.

9.4.2 Polynomial Kernel

The q-FORBIDDEN FAMILY VERTEX DELETION is known to have a kernel of size O(kq).

The problem can be easily reduced to the q-HITTING SET problem with the universe

being V (G) and the family containing all subsets Q⊆V (G) such that G[Q] is a member

of F . Using reductions rules based on the popular Sunflower Lemma, we may obtain a

O(kq) kernel q-HITTING SET. Similar reduction rules could be devised to obtain smaller

instances of q-FORBIDDEN FAMILY VERTEX DELETION as well leading to a O(kq)

kernel.

We observed that the Sunflower Lemma based reduction rules used to obtain a kernel

for q-FORBIDDEN FAMILY VERTEX DELETION do not work when we bring fairness

constraints. This is because by deleting a vertex, we forget that only d neighbors of it are

allowed to be in the solution. Hence we take a different approach by casting the problem

as a special case of the well studied MIN ONES-SAT problem.

A clause of a formula in the conjunctive normal form(CNF) is monotone if all its literals

are positive. If all its literals are negative, we call it anti-monotone. Let us define the

following problem.

266

MIN-ONES-MONOTONE/ANTI-MONOTONE `-SAT

Input: A CNF formula φ on n variables and m clauses such that all the clauses have at

most ` variables and are either monotone or anti-monotone.

Question: Does there exist an assignment A with at most k variables set to true that

satisfies φ?

Theorem 57. MIN-ONES-MONOTONE/ANTI-MONOTONE `-SAT parameterized by k

has a polynomial kernel for constant `.

Proof. Let φ = φ1∧φ2 where φ1 is the conjunction of all the monotone clauses in φ and

φ2 is the conjunction of all the anti-monotone clauses in φ . Let a and b be the maximum

size of the clauses in φ1 and φ2, respectively.

Since φ1 is a monotone formula, it can be treated as a set system with the universe being

the variables and the family of sets being the monotone clauses. We have the following

reduction rules.

Reduction Rule 10. Suppose that in the set system of the formula φ1, there exists a

sunflower S = {C1, . . . ,Ck+1} with the core set of positive literals Y = {xy1, . . . ,xyp}. If

Y is empty, then we return NO. Else in the formula φ we remove all the clauses Ci with

i ∈ [k+ 1] and add a clause CY = xy1 ∨ . . .∨ xyq . If |Y | = 1, we set the corresponding

variable to 1 in all the clauses in the formula.

Claim 9.4.1. Reduction Rule 10 is safe and can be performed in polynomial time.

Proof. We prove this by showing that the formula φ is satisfiable by setting at most k

variables to 1 if and only if the formula φ ′ obtained after applying the reduction rule is

satisfiable with setting at most k variables to 1.

Let A be the assignment of φ by setting at most k variables to 1. We know that in A, one of

the variables in Y has to be set to 1 as otherwise we need to set k+1 distinct variables of

267

monotone clauses Ci not in Y to 1 violating the assumption that at most k variables are set

to 1. This also means that Y is non-empty as if it is empty we get a NO-instance of the

problem. Hence in formula φ ′, the clause CY is set to true. Since φ ′ is formed by removing

the clauses Ci and adding CY , φ ′ is also satisfied by assignment A with at most k variables

set to 1.

For the converse, let A′ be the assignment that sets φ ′ satisfiable by setting at most k

variables to 1. Since one of the variables in CY is set to 1 and all clauses Ci contains all the

variables in Y , all the clauses Ci in formula φ are set to true by A′. Hence φ is also satisfied

with at most k variables set to 1.

Note that when the core CY is a singleton set, we know the corresponding variable is set to

1.

Reduction Rule 11. Let xv be a variable that is present only in negative form in φ , then

delete all the clauses containing xv.

Claim 9.4.2. Reduction Rule 11 is safe.

Proof. Since the variable appears only in the negative form, it appears in φ2 consisting of

anti-monotone clauses. Now since all the clauses containing xv can be set to true by setting

xv to false, we can delete all these clauses and get a formula φ ′ which is also satisfiable

with the same number of variables set to true in φ .

Claim 9.4.3. Let integers a and b be the number of variables in the monotone and

antimonotone clauses of φ . If Reduction Rules 10 and 11 are not applicable, then φ has

O((a!ka ·a2)b) clauses.

Proof. Look at the subfamily of monotone clauses of size a′ ∈ [a] in φ . If the number of

monotone clauses N > a′!ka′ , then by Sunflower Lemma 9.2.1, there exists a sunflower

in the family. Hence we can apply Reduction Rule 10 which is not the case. Hence the

268

number of monotone clauses is at most
a
∑

a′=1
a′!ka′ ≤ a!ka ·a. Let M be the set of variables

appearing in these clauses. We have |M| ≤ a!ka ·a2.

Now we look at the anti-monotone clauses of φ . There are at most
(M

b

)
clauses here

containing only variables in M. In the rest of the clauses there exists a variable that is

occurring only in the anti-monotone clauses of φ and hence only in negative form in φ .

Reduction rule 11 would have removed all such clauses.

Hence, the number of clauses in φ is bounded by a!ka ·a+
(a!ka·a2

b

)
=O((a!ka ·a2)b).

When a,b ≤ ` are constants, the input formula size is polynomial in k. Thus we have a

kernel of size O((a!ka ·a2)b)

We now claim that FAIR q-FORBIDDEN FAMILY VERTEX DELETION has a polynomial

kernel by giving a parameterized reduction to MIN-ONES-MONOTONE/ANTI-MONOTONE

`-SAT problem.

Theorem 58. There is a polynomial kernel for FAIR q-FORBIDDEN FAMILY VERTEX

DELETION parameterized by the solution size k when both q and the fairness factor d are

constants.

Proof. Let l =max{q,d+1}. Let (G,F ,k,d) be an instance FAIR q-FORBIDDEN FAMILY

VERTEX DELETION. Let F ′ be the family of subsets Q⊆V (G) such that G[Q] ∈ F . We

construct an instance of MIN-ONES-MONOTONE/ANTI-MONOTONE l-SAT which is the

formula φ as follows:

For each vertex u ∈V , we have a variable xu. We define two types of clauses:

• Monotone clauses: For each set S ∈ F ′ with S = {u1, . . . ,uq}, we define the clause

CS = xu1 ∨ . . .∨ xuq .

• Anti-monotone clauses: For each vertex u∈V (G), we look at the open neighborhood

269

set N(u). For all sets D⊆ N(u) of size d +1, say D = {v1, . . . ,vd+1}, we construct

a clause CD = xv1 ∨ . . .∨ xvd+1 .

If we look at any d +1-sized set from the open neighborhood of any vertex u ∈V , at least

one of the vertices cannot be in the solution as otherwise it violates the fairness of vertex u.

This is captured by the anti-monotone clauses CD.

The formula φ is the conjunction of all the clauses CS and CD. Note that since |N(u)| ≤

n− 1, the number of clauses is O(m+ nd+1 · n) which is polynomial in n and m for a

constant d. Let the formula formed by the conjunction of all the monotone clauses be φ1

and by all the anti-monotone clauses be φ2. Note that here a = q and b = d +1.

It can be easily shown that (G,F ,k,d) is a YES-instance of FAIR q-FORBIDDEN

FAMILY VERTEX DELETION if and only if (φ ,k) is a YES-instance of MIN-ONES-

MONOTONE/ANTI-MONOTONE `-SAT. We use Theorem 57 to obtain a kernel (φ ,k′)

of MIN-ONES-MONOTONE/ANTI-MONOTONE SAT with the formula φ ′ size being

O((q!kq · q2)d+1). Since both the problems are NP-complete, there is a polynomial

time reduction from MIN-ONES-MONOTONE/ANTI-MONOTONE SAT back to FAIR

q-HITTING SET. We use this reduction on φ ′ to get a FAIR q-HITTING SET instance

of size |φ ′|O(1) = ((q!kq · q2)d+1)O(1) which is polynomial in k when q and d are con-

stants.

As FAIR VERTEX COVER is a special case of FAIR q-HITTING SET with q = 2, we have

the following corollary.

Corollary 9.4.2. FAIR VERTEX COVER parameterized by solution size k has a kernel of

size kO(d).

270

9.4.3 Improved Kernel for FAIR VERTEX COVER parameterized by

solution size

For FAIR VERTEX COVER, we observe that we can get an improved kernel by modifying

the classical Buss kernel [31] for VERTEX COVER.

We apply the following reduction rules in sequence, only once.

Reduction Rule 12. Delete all isolated vertices in (G,k).

The above reduction rule is safe as isolated vertices do not cover any edge.

Reduction Rule 13. Let H be the set of vertices in G having degree greater than d. If

|H|> k or H is not a fair set, then return NO-instance. Else delete all the isolated vertices

in G[V \H]. Add d+1 many pendant vertices adjacent to each v ∈H. Return the resulting

instance (G′,k) .

Lemma 9.4.1. Reduction rule 13 is safe.

Proof. Consider an instance (G,k) of FAIR VERTEX COVER. We claim that (G,k) is an

YES instance if and only if (G′,k) is an YES instance.

Let Z be a minimal solution of (G,k). First, we claim that every vertex in H should be in

Z. For contradiction let v ∈ H such that v /∈ Z. Then we know that N(v)⊆ Z as otherwise

the edges incident to v are not covered. But this violates the fact that Z is a fair set as v

will have d +1 neighbors in Z. Hence, if H is not a fair set in G, there is no solution of

size at most k.

Now consider the graph G[V −H] with an isolated vertex v ∈V \H. Suppose v ∈ Z. From

Reduction Rule 12, we know that v is not an isolated vertex in G. Hence, v is a neighbor to

some vertex in H. We proved that H ⊆ Z. Hence, the edges incident on v are covered by

vertices in H. Also since the degree of v is at most d, any solution in G′ will not violate the

271

fairness condition of v. Thus, Z−v is also a solution to (G,k) contradicting the minimality

of Z.

Hence we can assume that all the vertices of Z are present in G′′ which is the graph formed

from G by removing isolated vertices in G[V −H]. Since G′′ is a subgraph of G and

fairness is preserved in subgraphs, Z \H is also a solution in G′′.

The graph G′ is formed by adding d +1 pendant vertices to each vertex v ∈ H of the graph

G′′. Since H ⊆ Z, Z is a vertex cover in G′ as well. The neighborhood of the graph changes

only for vertices in H. Hence we only need to verify that fairness is preserved by Z for

the vertices H plus the newly added vertices. Since all the newly added vertices have only

one neighbor in Z, fairness is preserved for them as d ≥ 1. Since none of the newly added

vertices are in Z, fairness is preserved for vertices in H. Hence we can conclude that Z is

also a solution for the instance (G′,k).

For the converse, let Y be a solution for (G′,k). We claim that Y is a solution for (G,k)

as well. Since there are d +1 many pendant vertices on each v ∈ H, H ⊆ Y as otherwise

fairness is violated for v in G′. The graph G can be obtained from G′ by removing the d+1

pendant vertices of each vertex in H and adding back the isolated vertices in G[V \H].

Since these isolated vertices are adjacent to H alone and have degree at most d, we can

conclude that Y is a fair vertex cover in G as well.

Reduction Rule 14. Let (G,k) be an input instance on which Reduction Rules 12 and 13

are not applicable. Let H be the set of vertices in G having degree greater than d. If there

are more than k ·d edges in G[V \H], then return NO.

Lemma 9.4.2. Reduction rule 14 is safe.

Proof. Since every vertex in V \H has degree at most d, it can cover only at most d edges

in G[V \H]. Hence any set of k vertices can cover at most k ·d edges in G[V \H]. If there

are more than k ·d edges in G[V \H], then we can conclude that there is no vertex cover of

size k in G[V \H] and therefore in the supergraph G.

272

Reduction Rule 15. Let (G,k) be an input instance on which Reduction Rules 12, 13 and

14 are not applicable. If G has more than 3kd +2k vertices or 2k2d + k2 +2kd + k edges,

then return NO.

Lemma 9.4.3. Reduction rule 15 is safe.

Proof. Let (G,k) be an instance of FAIR VERTEX COVER obtained after applying Reduc-

tion rules 12 , 13 and 14. Let H be the set of vertices in G having degree greater than

d. Let N be the set of pendant vertices adjacent to some v ∈ H. Since the vertices in H

belong to any solution of G, |H| ≤ k. Since we added at most d +1 many pendant vertices

adjacent to each v ∈ H, we have |N| ≤ k(d +1).

We claim that if (G,k) is a YES instance, G \ (H ∪N) has at most 2kd many vertices.

Since Reduction Rule 14 is no longer applicable and N is the set of isolated vertices in

G\H, there are at most kd edges in G\ (H ∪N). Also, after the application of reduction

rule 13, there are no isolated vertices in G′ \ (H ∪N). Hence there are at most 2kd many

vertices in G\ (H ∪N).

Thus the vertex set size of G is bounded by 2kd+ |N|+ |H| ≤ 2kd+k(d+1)+k = 3kd+2k.

We now bound the number of edges in G. Since Reduction Rule 14 is no longer applicable,

there are at most kd edges in G\H. Every other edge in G has one endpoint in H. Each

vertex in v ∈ H can be adjacent to all vertices in V \N and d +1 vertices in N. Hence the

number of edges adjacent to each v ∈ H is bounded 2kd + k+d +1. Since |H| ≤ k, the

number of edges incident to k is bounded by (2kd + k+d +1)k. Therefore, the number of

edges in G is bounded by (2kd + k+d +1)k+ kd = 2k2d + k2 +2kd + k.

Thus if G has more than 3kd +2k vertices or 2k2d + k2 +2kd + k edges, we conclude that

we are dealing with a NO instance.

This leads to our kernel result for FAIR VERTEX COVER.

Theorem 59. There exists a kernel for FAIR VERTEX COVER with O(kd) vertices and

273

O(k2d) edges.

9.5 Hardness Results

9.5.1 W[1]-Hardness for Fair Set

Theorem 60. FAIR SET with d = 1 is W [1]-hard when parameterized by solution size k

for graphs with degeneracy three.

Proof. We give a reduction from the MULTICOLORED INDEPENDENT SET problem

known to be W [1]-hard [45] defined as follows.

MULTICOLORED INDEPENDENT SET

Input: A graph G = (V,E) and partition of (V1, . . . ,Vk) of V for k ∈ N.

Question: Does there exist a set S⊆V of k vertices such that S forms an independent

set and for each vertex Vi, |Vi∩S|= 1?

Let (G,V1, . . . ,Vk) be the MULTICOLORED INDEPENDENT SET instance. Without loss of

generality, assume that G[Vi] is an independent set for all i ∈ [k]. We construct an instance

(G′,k+2,1) of FAIR SET with d = 1 as follows:

We start constructing G′ with the same vertex set of G. For each class Vi, we introduce a

vertex vi and make it adjacent to all the vertices in Vi. For each edge e j = (u,v) ∈ E(G),

we add a vertex e j in G′ and add edges (u,e j) and (e j,v). We also add a vertex s adjacent

to all edge vertices e j for j ∈ [m] and the vertices v1,v2, . . . ,vk. Finally we add vertices t

adjacent to s and t ′ adjacent to t. Refer to Figure 9.1.

Claim 9.5.1. (G,V1, . . . ,Vk) is a yes instance for MULTICOLORED INDEPENDENT SET if

and only if (G′,k+2,1) is a yes instance for FAIR SET.

Proof. In the forward direction, let X = {x1, . . . ,xk} be a multicolored independent set in

G with xi ∈ Xi. Then we claim that X ′ = X ∪{t, t ′} is a fair set in G′. For a vertex v ∈Vi,

274

s

e1 em

tt
′

ej

u v

v1 v2 vk

V1 V2 Vk

Figure 9.1: Construction of FAIR SET instance with d = 1 from MULTICOLORED INDE-
PENDENT SET instance in Theorem 60

|N(v)∩X ′| ≤ 1. For vertex vi, N(vi)∩X ′ = {xi}. For an edge vertex e j, |N(e j)∩X ′| ≤ 1 as

X is an independent set in G. For vertex s, N(s)∩X ′ = {t}, for vertex t, N(t)∩X ′ = {t ′}

and vertex t ′, N(t ′)∩X ′ = {t}. Hence X ′ is a fair set.

Conversely, let Y be a fair set in G′ of size k+ 2. Since the vertex vi is adjacent to all

the vertices in Vi, we have |Y ∩Vi| ≤ 1 as otherwise fairness of vi is violated. Since

vertex s is adjacent to all the vertices e j, vi and vertex t, for j ∈ [m], we have |Y ∩

{e1, . . . ,em,v1, . . . ,vk, t}| ≤ 1. Also since t is adjacent to s and t ′, we have |Y ∩{s, t ′}| ≤

1. Hence Y can contain at most 2 vertices apart from the vertices from V1, . . . ,Vk, the

original vertices of G. Since |Y |= k+2, we can conclude that |Y ∩Vi|= 1 for i ∈ [k] and

|Y ∩{e1, . . . ,em,v1, . . . ,vk,s, t, t ′}|= 2. Let Y ′ = {y1, . . . ,yk} be the vertices in Y ∩Vi. We

claim that Y ′ is an independent set in G. Suppose there is an edge between yi and yi′ . Then

fairness is violated in the corresponding vertex e j in G′. Hence the claim follows.

Now we look at the degeneracy of the graph G′. We give the degeneracy order where

we first put edge vertices e1, . . . ,em, then all the vertices in V1, . . . ,Vk and then vertices

v1, . . . ,vk,s, t, t ′ in that order. It can be verified that the degeneracy of the graph is 3 from

this order.

275

A fair independent set is an independent set which is also a fair set. The reduction in Theo-

rem 60 can be slightly modified to give a W [1]-hardness result for FAIR INDEPENDENT

SET problem where we look for a fair independent set of size k.

Theorem 61. The FAIR INDEPENDENT SET problem is W [1]-hard parameterized by

solution size k for graphs with degeneracy three.

9.5.2 NP-Hardness Dichotomy of FAIR VERTEX COVER and FAIR

FEEDBACK VERTEX SET

9.5.2.1 FAIR VERTEX COVER

Since VERTEX COVER is NP-hard on subcubic graphs [78], we know that FAIR VERTEX

COVER is NP-hard when d ≥ 3. We complete the picture by showing that the problem is

polynomial-time solvable when d = 1 and d = 2.

Theorem 62. FAIR VERTEX COVER is polynomial-time solvable when d = 1.

Proof. Let S denote the set of all vertices of the graph G with degree more than 1. All the

vertices v ∈ S must be in any solution of FAIR VERTEX COVER as otherwise the fairness

of v is violated. Hence if S is not a fair set, return NO . Look at the graph G\S. Since the

vertices in G\S have degree at most 1, it consists of isolated vertices and edges. Note that

the endpoints of the isolated edges have no neighbors to S as well as they must have degree

1 in G. Let us create a set T by picking an arbitrary vertex from every isolated edge. We

can easily see that T ∪S is the minimum sized FAIR VERTEX COVER in G.

We now show that FAIR VERTEX COVER is polynomial-time solvable when d = 2 by

observing that after all the vertices that are forced to go into the solution are picked, the

problem boils down to a matching problem.

Theorem 63. FAIR VERTEX COVER is polynomial-time solvable when d = 2.

276

Proof. Let S denote the set of all vertices of the graph G with degree more than 2. All

the vertices v ∈ S have to go into the solution of FAIR VERTEX COVER as otherwise the

fairness of v is violated. Hence if S is not a fair set, return NO . Look at the graph G\S.

Since the vertices in G\S has degree at most two, it has isolated vertices, paths and cycles.

Note that since all the vertices of a cycle have degree two, there is no edge from any vertex

in the cycle to S. Hence we can arbitrarily pick alternate vertices of the cycles in G\S into

the solution.

Look at a path P = (v1,v2, . . . ,vl) in G\S with l > 2. Since all the internal vertices of P

have degree two, there are no edges from any such vertex to S. If l is odd, picking all

vertices v2i will cover all the edges of P. If l is even, picking all vertices v2i other than vl

and the vertex vl−1 will cover all the edges of P. Note that in both cases, we pick only the

internal vertices of P. Hence no fairness constraints are violated by picking these vertices.

Hence all the edges of G are covered except isolated edges in G\S. Look at any isolated

edge (u,v). If u or v does not have any edges to S, then pick the corresponding vertex into

the solution. Hence assume that both u and v have edges to S. Since u and v has degree at

most two, they have a unique neighbor in S. Let us denote them as nu and nv.

Note that G[S] has degree at most two as otherwise fairness is violated for some vertex.

If nu is a degree two vertex in G[S], then the corresponding vertex u cannot go into the

solution as otherwise the fairness of nu is violated. We have the same conclusion for nv.

Thus, if exactly one of nu or nv, say nu is of degree two, then we add v to the solution.

We can now conclude that either both nu and nv are isolated vertices in G[S] or are endpoints

of some path in G[S].

Let A denote the isolated edges (u,v) in G\S remaining to be covered and B denote set of

vertices nu where u is an endpoint of these edges. The problem reduces to picking exactly

one endpoint of each isolated edge in G\S such that for all vertices v ∈ B, the number of

vertices of N(v) picked is at most

277

• one when v is an endpoint of a path in G[S] or

• two if v is an isolated vertex in G[S] respectively.

To solve this problem, we construct a bipartite graph H = (A,B′) from G with B′ = B∪ I

where I is a copy of all the isolated vertices in G[S] which are present in B. We add edges

(a,b) for a ∈ A and b ∈ B′ when (a0,b0) ∈ E where a0 is one of the endpoints of the edge

a and b0 ∈ B is the corresponding vertex in S.

Claim 9.5.2. We claim that there is a matching saturating A in H if and only if there is a

solution for FAIR VERTEX COVER in G.

Proof. Let M be the matching saturating A in H if it exists. We construct a solution R that

covers the isolated edges maintaining the fairness as follows: for each matched edge (e,w)

where e = (u,v), if (u,w) is an edge, we add u to R, else we add v to R. Note that fairness

of no vertices in V \ S is violated by adding R to the solution as they are from isolated

edges. Also note that since all the vertices of isolated edges in A have degree exactly one

into S, all vertices in u ∈ R are neighbors only to its matched vertex w in the set S. Hence

for all the vertices w ∈ B which are endpoints of paths in G[S], the fairness constraint is

maintained as |N(w)∩R| ≤ 1. For the isolated vertices w in S, |N(w)∩R| ≤ 2 as there are

two copies of w in B′. Since fairness constraint is satisfied for all the vertices in S as well,

we have a FAIR VERTEX COVER in G.

To prove the converse, let us look at an optimal fair vertex cover R′ in G. We know that

S ⊆ R′. Each a ∈ A correspond to some isolated edge (u,v) in G−S. To cover the edge,

one of the endpoints is in R′. For each endpoint u in any isolated edge, there is a neighbor

nu ∈ S. Any vertex in R′ that is not an isolated vertex in G[S] is adjacent to at most one

vertex in (V \S)∩R′. Any vertex in R′ that is an isolated vertex in G[S] is adjacent to at

most two vertices in (V \S)∩R′.

We now try to construct a matching M saturating A as follows. For each a ∈ A with the

corresponding edge (u,v), let u ∈ R′. We add the edge (a,nu) to M. The set M is not a

278

matching only when there exist a vertex in r ∈ R′ that is part of two edges (a1,r) and (a2,r)

for a1,a2 ∈ A. But this can happen only when r is an isolated vertex in G[S]. But in this

case, there is a copy r′ ∈ I of r for the graph H. We remove the edge (a2,r) and add the

edge (a2,r′) to M. It is easy to see that M is a matching saturating A after we do the above

process for all isolated vertices of G[S] part of M.

Hence we have a polynomial-time algorithm for FAIR VERTEX COVER with d = 2 since

we can find the above matching if it exists in polynomial time.

9.5.2.2 FAIR FEEDBACK VERTEX SET

Since FEEDBACK VERTEX SET is NP-hard on graphs with degree at most 4 [146], we

know that FAIR FEEDBACK VERTEX SET is NP-hard when d ≥ 4. We complete the

picture by showing that the problem is NP-hard when d ∈ {1,2,3}.

Theorem 64. FAIR FEEDBACK VERTEX SET is NP-hard when d ∈ {1,2,3}.

Proof. We give the proof for d = 1. The proof for d = 2 and d = 3 are similar with slight

modifications.

We give a reduction from 3-SAT. Given a 3-SAT instance formula φ with variables

v1, . . . ,vn and clauses C1,C2, . . . ,Cm, we construct a FAIR FEEDBACK VERTEX SET in-

stance graph G as follows:

For each clause Ci = u∨v∨w, we create a triangle of three vertices ui,vi,wi corresponding

to the literals in the clause. We then subdivide each edge in the triangle by adding three

new vertices. That is, for the pair of literals (ui,vi), we construct a path P of five vertices

ui,e11
i ,e21

i ,e31
i ,vi. Similarly, we construct paths for pairs vi,wi using vertices e12

i ,e22
i and

e32
i and wi,ui with vertices e13

i ,e23
i and e33

i . We create new vertices di, private to each

clause and attach the middle vertices e21
i ,e22

i ,e23
i to di. Finally, we add a self loop to

vertices di.

279

v1

u1 = x

w1

d1

e121
e221
e321

e311
e211

e111

e131 e231 e331
v2

w2 = y

d2

u2 = x

vm = y wm

dm

x12 y2m

c1 = u1 ∨ v1 ∨ w1 c2 = u2 ∨ v2 ∨ w2

um = x

x1m

Figure 9.2: Construction of FAIR FEEDBACK VERTEX SET instance with d = 1 from
3-SAT instance in Theorem 64

Now for a variable x, if x occurs positively in clause Ci and negatively in clause C j, we

create a new vertex xi, j and add edges to the vertex corresponding to literals corresponding

to x in Ci and C j. We do so over all variables and all pairs of clauses.

Claim 9.5.3. The formula φ is satisfiable if and only if there exist a fair feedback vertex

set with d = 1 in G.

Proof. Let A be a satisfying assignment to φ . We add all vertices in the triples correspond-

ing to clauses where the corresponding literal is set to true by A into a set S. Also add all

vertices di for all 1≤ i≤ m. We claim S is a fair feedback vertex set with d = 1.

First, we prove that S is a feedback vertex set. Suppose that there exists a cycle C in G\S.

Every cycle corresponding to clauses has a vertex corresponding to one of the literals in S

by definition. Also all vertices di are in S. Hence it can be seen from the construction of G

that the cycle C has to contain one of the vertices xi j. Also, C has to contain both the two

neighbors of xi j that correspond to literal x and its complement. By definition of S, one of

these two vertices must be in S as the corresponding literal is true. Hence no such cycle

exists.

Now we prove that S is a fair set with fairness 1. Let us focus on the triple of vertices

corresponding to a clause. Notice that none of its neighbors are in S. For the five length path

u,e1,e2,e3,v from two vertices u to v of a clause triplet, we see that fairness is preserved

280

for the vertices e1 and e3 as at most one of its neighbors (which is one of u or v) is in

S. For vertices e2, again only one of its neighbors di is in S. The same goes for di with

the neighbor being itself. Finally, we look at vertices xi j. Since only one of the literal

corresponding to variable x can be true, only one of its neighbors to clauses Ci and C j is in

S. Hence S is a fair feedback vertex set with fairness 1.

In the converse, let us look at a fair feedback vertex set X in G. All the vertices di ∈ X as

they have self-loops. Now for every five length path u,e1,e2,e3,v from u to v, as vertices

di ∈ X , the fairness of vertices e2 is tight. Hence vertices e1 and e3 cannot be in X .

Also since for vertices di the fairness is tight, the vertices e2 /∈ X . Thus to hit the cycle

corresponding to the clauses, one of the literal vertices has to be in X . Now to preserve the

fairness of vertices xi j, for a variable x, it cannot be that both the vertex corresponding to

the positive literal x and for the negative literal x be in the set X . Hence for all variables x,

either all vertices in X are positive or all are negative. Corresponding to this, we create an

assignment A. Since the cycle corresponding to every clause is hit by X , the assignment is

a satisfying assignment to φ .

This proves the theorem.

9.6 Conclusion

We initiated a systematic study on various Π-FAIR VERTEX DELETION problems under

various parameterizations. An open problem is to give a polynomial kernel for FAIR

FEEDBACK VERTEX SET parameterized by solution size. Also finding FPT algorithms

for other Π-FAIR VERTEX DELETION problems like FAIR ODD CYCLE TRANSVERSAL

remains open.

281

282

Part IV

Conclusion

283

Chapter 10

Conclusion and Future Directions

In this thesis, we studied vertex deletion problems in three different directions. In the

first direction (Chapters 3 and 4), we looked at vertex deletion to scattered graph classes

and provided several FPT algorithms. The existence of a polynomial kernel for most

cases of scattered version of problems is open. Exploring fixed-parameter tractability of

scattered versions of edge deletion and edge contraction problems is also worth looking at.

Giving faster FPT algorithms for pairs (Π1,Π2) of scattered classes that do not have finite

forbidden pairs (such as (Chordal, Bipartite)) is another future direction.

In the second direction, we look at several deletion distance parameterizations. In Chapter

5, we observed the issues that come up from assuming that a modulator is given as input

for deletion distance parameterizations. We provided FPT algorithms for several problems

parameterized by deletion distance to chordal graphs without assuming modulator is given

as input. In the future, we hope to see similar deletion distance parameterization results in

the case when finding the modulator is ‘harder’ than solving problems using the modulator.

Some such parameter examples are deletion distance to planar graphs and perfect graphs.

The problem of PLANAR VERTEX DELETION can be solved in kO(k)nO(1) time [96] while

PERFECT VERTEX DELETION is W [2]-hard [84]. The VERTEX COVER problems has a

PTAS in planar graphs [12] and is polynomial-time solvable in perfect graphs [80]. The

285

first open problem is to give an approximation scheme in 2O(k)nO(1) time for VERTEX

COVER with the parameter being deletion distance to planar graphs without the modulator

assumption. The second open problem is to give a 2O(k)nO(1) time algorithm for VERTEX

COVER with the parameter being deletion distance to perfect graphs without the modulator

assumption.

In Chapter 6, we provided an FPT algorithm for (n− k) LIST COLORING using a deletion

distance parameterization for the same as a subroutine. In a later work, Gutin et al. [81]

provided a kernel for the problem with O(k2) vertices and colors. In Chapter 7, we looked

at several dominating set problems parameterized by deletion distance to cluster and split

graphs and provided FPT and kernel bounds for the same. Designing FPT algorithms for

variants of DOMINATING SET where the parameter is deletion distance to a graph class

(other than cluster or split graphs) where the variant is solvable in polynomial time is open.

In the third direction, we looked at vertex deletion problems where we want the solution

set to satisfy additional constraints. In Chapter 8, we looked at CONFLICT FREE SET

COVER which generalizes conflict-free version of several vertex deletion problems and

provides FPT and kernel bounds under different parameterizations. An open problem is to

identify a general characterization for the graph classes of GF when a CONFLICT-FREE

SET COVER variant studied becomes FPT. Finally, in Chapter 9, we looked at fair vertex

deletion problems where we want our solution to also form a fair set and provide FPT

and kernel results under different parameterizations. Open problems include giving a

polynomial kernel for FAIR FEEDBACK VERTEX SET parameterized by solution size and

finding FPT algorithms for other Π-FAIR VERTEX DELETION problems like FAIR ODD

CYCLE TRANSVERSAL.

286

Bibliography

[1] Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Daniel Lokshtanov, and Saket

Saurabh. Conflict free feedback vertex set: A parameterized dichotomy. In LIPIcs-

Leibniz International Proceedings in Informatics, volume 117. Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2018.

[2] Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, MS Ra-

manujan, Saket Saurabh, and Meirav Zehavi. Deleting, eliminating and decompos-

ing to hereditary classes are all fpt-equivalent. In Proceedings of the 2022 Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1976–2004. SIAM,

2022.

[3] Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and

Meirav Zehavi. Polylogarithmic approximation algorithms for weighted-f-deletion

problems. ACM Transactions on Algorithms (TALG), 16(4):1–38, 2020.

[4] Akanksha Agrawal, Daniel Lokshtanov, Amer E Mouawad, and Saket Saurabh.

Simultaneous feedback vertex set: A parameterized perspective. ACM Transactions

on Computation Theory (TOCT), 10(4):1–25, 2018.

[5] Mohsen Alambardar Meybodi, Fedor Fomin, Amer E Mouawad, and Fahad Panolan.

On the parameterized complexity of [1, j]-domination problems. In FSTTCS 2018.

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

287

[6] Esther M Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J Katz, Joseph SB

Mitchell, and Marina Simakov. Choice is hard. In International Symposium on

Algorithms and Computation, pages 318–328. Springer, 2015.

[7] Esther M Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J Katz, Joseph SB

Mitchell, and Marina Simakov. Conflict-free covering. In Conference on Computa-

tional Geometry, page 17, 2015.

[8] Esther M Arkin and Refael Hassin. Minimum-diameter covering problems. Net-

works: An International Journal, 36(3):147–155, 2000.

[9] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-

decomposable graphs. Journal of Algorithms, 12(2):308–340, 1991.

[10] Pranav Arora, Aritra Banik, Vijay Kumar Paliwal, and Venkatesh Raman. Some (in)

tractable parameterizations of coloring and list-coloring. In International Workshop

on Frontiers in Algorithmics, pages 126–139. Springer, 2018.

[11] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for

the undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics,

12(3):289–297, 1999.

[12] Brenda S Baker. Approximation algorithms for np-complete problems on planar

graphs. Journal of the ACM (JACM), 41(1):153–180, 1994.

[13] Aritra Banik, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Fréchet distance

between a line and avatar point set. Algorithmica, 80(9):2616–2636, 2018.

[14] Aritra Banik, Fahad Panolan, Venkatesh Raman, Vibha Sahlot, and Saket Saurabh.

Parameterized complexity of geometric covering problems having conflicts. Algo-

rithmica, Jul 2019.

[15] B. Bergougnoux and M. M. Kanté. Fast exact algorithms for some connectivity

problems parametrized by clique-width. arXiv preprint arXiv:1707.03584, 2017.

288

[16] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via

inclusion-exclusion. SIAM Journal on Computing, 39(2):546–563, 2009.

[17] H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and

disjoint paths. Theoretical Computer Science, 412(35):4570–4578, 2011.

[18] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of

small treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

[19] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Determin-

istic single exponential time algorithms for connectivity problems parameterized by

treewidth. Information and Computation, 243:86–111, 2015.

[20] Hans L. Bodlaender, Pål Gronås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel

Lokshtanov, and Michał Pilipczuk. A cˆkn 5-approximation algorithm for treewidth.

SIAM Journal on Computing, 45(2):317–378, 2016.

[21] Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Parameterized

vertex deletion problems for hereditary graph classes with a block property. In

International Workshop on Graph-Theoretic Concepts in Computer Science, pages

233–244. Springer, 2016.

[22] Kellogg S. Booth and J. Howard Johnson. Dominating sets in chordal graphs. SIAM

J. Comput., 11:191–199, 1982.

[23] Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A

Fast Branching Algorithm for Cluster Vertex Deletion. Theory Comput. Syst.,

58(2):357–376, 2016.

[24] N. Boria, F. D. Croce, and V. T. Paschos. On the max min vertex cover problem.

Discrete Applied Mathematics, 196:62–71, 2015.

289

[25] Nicolas Bourgeois, Konrad K. Dabrowski, Marc Demange, and Vangelis Th Paschos.

Playing with parameters: structural parameterization in graphs. arXiv preprint

arXiv:1309.6144, 2013.

[26] Lukasz Bożyk, Jan Derbisz, Tomasz Krawczyk, Jana Novotná, and Karolina Okrasa.

Vertex deletion into bipartite permutation graphs. In 15th International Symposium

on Parameterized and Exact Computation (IPEC 2020). Schloss Dagstuhl-Leibniz-

Zentrum für Informatik, 2020.

[27] Andreas Brandstädt. On robust algorithms for the maximum weight stable set

problem. In International Symposium on Fundamentals of Computation Theory,

pages 445–458. Springer, 2001.

[28] Andreas Brandstadt, Jeremy P Spinrad, et al. Graph classes: a survey, volume 3.

Siam, 1999.

[29] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard.

Comput. Geom., 9(1-2):3–24, 1998.

[30] Sharon Bruckner, Falk Hüffner, and Christian Komusiewicz. A graph modification

approach for finding core–periphery structures in protein interaction networks.

Algorithms for Molecular Biology, 10(1):1–13, 2015.

[31] Jonathan F Buss and Judy Goldsmith. Nondeterminism within p. In Annual

Symposium on Theoretical Aspects of Computer Science, pages 348–359. Springer,

1991.

[32] Leizhen Cai. Fixed-Parameter Tractability of Graph Modification Problems for

Hereditary Properties. Inf. Process. Lett., 58(4):171–176, 1996.

[33] Leizhen Cai. Parameterized complexity of vertex colouring. Discrete Applied

Mathematics, 127(3):415–429, 2003.

290

[34] Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM

Transactions on Algorithms (TALG), 11(3):1–35, 2015.

[35] Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorith-

mica, 75(1):118–137, 2016.

[36] Jianer Chen, Iyad A Kanj, and Ge Xia. Improved upper bounds for vertex cover.

Theoretical Computer Science, 411(40-42):3736–3756, 2010.

[37] Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for

the minimum node multiway cut problem. Algorithmica, 55(1):1–13, 2009.

[38] Benny Chor, Mike Fellows, and David Juedes. Linear kernels in linear time, or how

to save k colors in o (n 2) steps. In International Workshop on Graph-Theoretic

Concepts in Computer Science, pages 257–269. Springer, 2004.

[39] Jayesh Choudhari, Anirban Dasgupta, Neeldhara Misra, and MS Ramanujan. Saving

critical nodes with firefighters is fpt. In 44th International Colloquium on Automata,

Languages, and Programming (ICALP 2017). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2017.

[40] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs.

Discrete Mathematics, 86(1-3):165–177, 1990.

[41] Derek G. Corneil and Jean Fonlupt. The complexity of generalized clique covering.

Discrete Applied Mathematics, 22(2):109–118, 1988.

[42] B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization

problems on graphs of bounded clique-width. Theory of Computing Systems, 33:125–

150, 2000.

[43] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete

Applied Mathematics, 101(1):77–114, 2000.

291

[44] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of

finite graphs. Information and computation, 85(1):12–75, 1990.

[45] M. Cygan, F. V. Fomin, K. Lukasz, D. Lokshtanov, D. Marx, M. Pilipczuk,

M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[46] M. Cygan and M. Pilipczuk. Split vertex deletion meets vertex cover: New fixed-

parameter and exact exponential-time algorithms. Inf. Process. Lett., 113(5-6):179–

182, 2013.

[47] Marek Cygan. Deterministic parameterized connected vertex cover. In Scandinavian

Workshop on Algorithm Theory, pages 95–106. Springer, 2012.

[48] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof,

Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On

problems as hard as cnf-sat. ACM Transactions on Algorithms (TALG), 12(3):41,

2016.

[49] Marek Cygan and Marcin Pilipczuk. Split vertex deletion meets vertex cover: new

fixed-parameter and exact exponential-time algorithms. Information Processing

Letters, 113(5-6):179–182, 2013.

[50] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk.

On multiway cut parameterized above lower bounds. TOCT, 5(1):3:1–3:11, 2013.

[51] Konrad K Dabrowski, Carl Feghali, Matthew Johnson, Giacomo Paesani, Daniël

Paulusma, and Paweł Rzążewski. On cycle transversals and their connected variants

in the absence of a small linear forest. Algorithmica, 82(10):2841–2866, 2020.

[52] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular

graphs are NP-complete. Discrete Mathematics, 30(3):289–293, 1980.

292

[53] Andreas Darmann, Ulrich Pferschy, Joachim Schauer, and Gerhard J Woeginger.

Paths, trees and matchings under disjunctive constraints. Discrete Applied Mathe-

matics, 159(16):1726–1735, 2011.

[54] Walter A. Deuber, Paul Erdös, David S. Gunderson, Alexandr V. Kostochka, and

A. G. Meyer. Intersection Statements for Systems of Sets. J. Comb. Theory, Ser. A,

79(1):118–132, 1997.

[55] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in

mathematics. Springer, 2012.

[56] M. Dom, D. Lokshtanov, and S. Saurabh. Kernelization lower bounds through

colors and ids. ACM Transactions on Algorithms (TALG), 11(2):13, 2014.

[57] Rodney G Downey and Michael R Fellows. Fundamentals of parameterized com-

plexity, volume 4. Springer, 2013.

[58] Rodney G Downey, Michael R Fellows, Catherine McCartin, and Frances Rosamond.

Parameterized approximation of dominating set problems. Information Processing

Letters, 109(1):68–70, 2008.

[59] Leah Epstein, Lene M Favrholdt, and Asaf Levin. Online variable-sized bin packing

with conflicts. Discrete Optimization, 8(2):333–343, 2011.

[60] Guy Even, Magnús M Halldórsson, Lotem Kaplan, and Dana Ron. Scheduling

with conflicts: online and offline algorithms. Journal of scheduling, 12(2):199–224,

2009.

[61] Martin Farber. On diameters and radii of bridged graphs. Discrete Mathematics,

73(3):249–260, 1989.

[62] Michael Fellows and Frances Rosamond. The complexity ecology of parameters:

an illustration using bounded max leaf number. In Conference on Computability in

Europe, pages 268–277. Springer, 2007.

293

[63] Michael R Fellows, Fedor V Fomin, Daniel Lokshtanov, Frances Rosamond, Saket

Saurabh, Stefan Szeider, and Carsten Thomassen. On the complexity of some

colorful problems parameterized by treewidth. Information and Computation,

209(2):143–153, 2011.

[64] Michael R. Fellows, Bart M.P. Jansen, and Frances Rosamond. Towards fully multi-

variate algorithmics: Parameter ecology and the deconstruction of computational

complexity. European Journal of Combinatorics, 34(3):541–566, 2013.

[65] Fedor V. Fomin and Petr A. Golovach. Subexponential parameterized algorithms

and kernelization on almost chordal graphs. In 28th Annual European Symposium

on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference),

pages 49:1–49:17, 2020.

[66] Fedor V Fomin, Fabrizio Grandoni, and Dieter Kratsch. Solving connected domi-

nating set faster than 2 n. Algorithmica, 52(2):153–166, 2008.

[67] Fedor V. Fomin, Petteri Kaski, Daniel Lokshtanov, Fahad Panolan, and Saket

Saurabh. Parameterized single-exponential time polynomial space algorithm for

steiner tree. SIAM J. Discret. Math., 33(1):327–345, 2019.

[68] Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer Science

& Business Media, 2010.

[69] Fedor V Fomin, Dieter Kratsch, and Gerhard J Woeginger. Exact (exponential)

algorithms for the dominating set problem. In International Workshop on Graph-

Theoretic Concepts in Computer Science, pages 245–256. Springer, 2004.

[70] Fedor V Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar

f-deletion: Approximation, kernelization and optimal fpt algorithms. In 2012 IEEE

53rd Annual Symposium on Foundations of Computer Science, pages 470–479.

IEEE, 2012.

294

[71] Fedor V Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient

computation of representative families with applications in parameterized and exact

algorithms. Journal of the ACM (JACM), 63(4):29, 2016.

[72] Fedor V. Fomin and Torstein JF Strømme. Vertex cover structural parameterization

revisited. In International Workshop on Graph-Theoretic Concepts in Computer

Science, pages 171–182. Springer, 2016.

[73] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via

triangulations and CMSO. SIAM J. Comput., 44(1):54–87, 2015.

[74] Fedor V Fomin and Yngve Villanger. Treewidth computation and extremal combi-

natorics. Combinatorica, 32(3):289–308, 2012.

[75] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and

succinct pcps for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

[76] Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos

of tractability for constraint satisfaction and counting. ACM Trans. Algorithms,

13(2):29:1–29:32, 2017.

[77] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H.Freeman and Company, 1979.

[78] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified

np-complete graph problems. Theoretical computer science, 1(3):237–267, 1976.

[79] Serge Gaspers and Stefan Szeider. Backdoors to satisfaction. In Hans L. Bodlaender,

Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algo-

rithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the

Occasion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science,

pages 287–317. Springer, 2012.

295

[80] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57.

Elsevier, 2004.

[81] Gregory Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus Wahlström.

Parameterized pre-coloring extension and list coloring problems. arXiv preprint

arXiv:1907.12061, 2019.

[82] Michel Habib and Christophe Paul. A simple linear time algorithm for cograph

recognition. Discrete Applied Mathematics, 145(2):183–197, 2005.

[83] T. W. Haynes, S. Hedetniemi, and P. Slater. Domination in graphs: advanced topics.

1997.

[84] Pinar Heggernes, Pim van ’t Hof, Bart M. P. Jansen, Stefan Kratsch, and Yngve

Villanger. Parameterized complexity of vertex deletion into perfect graph classes.

Theor. Comput. Sci., 511:172–180, 2013.

[85] H.L.Bodlaender, E.J.V.Leeuwen, and J.M.Van Rooji. Faster algorithms on branch

and clique decompositions. In MFCS, pages 174–185. Springer, 2010.

[86] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings

in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[87] R. Impagliazzo and R. Paturi. On the complexity of k-sat. Journal of Computer and

System Sciences, 62:367–375, 2001.

[88] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential

complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[89] Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all CSPs, Half-integral

A-path packing, and linear-time FPT algorithms. In 2018 IEEE 59th Annual

Symposium on Foundations of Computer Science (FOCS), pages 462–473. IEEE,

2018.

296

[90] Pallavi Jain, Lawqueen Kanesh, and Pranabendu Misra. Conflict free version

of covering problems on graphs: Classical and parameterized. In International

Computer Science Symposium in Russia, pages 194–206. Springer, 2018.

[91] Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for

chordal vertex deletion. SIAM J. Discret. Math., 32(3):2258–2301, 2018.

[92] Bart M.P. Jansen. The power of data reduction: Kernels for fundamental graph

problems. PhD thesis, Utrecht University, 2013.

[93] Bart M.P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited.

Theory of Computing Systems, 53(2):263–299, 2013.

[94] Bart MP Jansen and Jari JH de Kroon. Fpt algorithms to compute the elimination

distance to bipartite graphs and more. arXiv preprint arXiv:2106.04191, 2021.

[95] Bart MP Jansen and Stefan Kratsch. Data reduction for graph coloring problems.

Information and Computation, 231:70–88, 2013.

[96] Bart MP Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planariza-

tion algorithm. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 1802–1811. SIAM, 2014.

[97] Bart M.P. Jansen, Venkatesh Raman, and Martin Vatshelle. Parameter ecology for

feedback vertex set. Tsinghua Science and Technology, 19(4):387–409, 2014.

[98] David S Johnson, Mihalis Yannakakis, and Christos H Papadimitriou. On generating

all maximal independent sets. Information Processing Letters, 27(3):119–123, 1988.

[99] Viggo Kann. Polynomially bounded minimization problems which are hard to

approximate. In International Colloquium on Automata, Languages, and Program-

ming, pages 52–63. Springer, 1993.

297

[100] Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approxima-

tion for minimum planarization (almost). In 2017 IEEE 58th Annual Symposium on

Foundations of Computer Science (FOCS), pages 779–788. IEEE, 2017.

[101] Eun Jung Kim and O-joung Kwon. Erdős-pósa property of chordless cycles and its

applications. J. Comb. Theory, Ser. B, 145:65–112, 2020.

[102] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith,

Ignasi Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms

via protrusion decompositions. ACM Transactions on Algorithms (TALG), 12(2):1–

41, 2015.

[103] Ton Kloks. Treewidth: computations and approximations, volume 842. Springer

Science & Business Media, 1994.

[104] Dušan Knop, Martin Kouteckỳ, Tomáš Masařík, and Tomáš Toufar. Simplified

algorithmic metatheorems beyond mso: Treewidth and neighborhood diversity. In

International Workshop on Graph-Theoretic Concepts in Computer Science, pages

344–357. Springer, 2017.

[105] Dusan Knop, Tomás Masarík, and Tomás Toufar. Parameterized complexity of fair

deletion problems II. CoRR, abs/1803.06878, 2018.

[106] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic Feedback Vertex

Set. Inf. Process. Lett., 114(10):556–560, 2014.

[107] Stefan Kratsch and Magnus Wahlström. Two edge modification problems without

polynomial kernels. Discrete Optimization, 10(3):193–199, 2013.

[108] V. S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of set cover with inter-

section 1. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata,

Languages and Programming, pages 624–635, Berlin, Heidelberg, 2000. Springer

Berlin Heidelberg.

298

[109] C Lekkeikerker and J Boland. Representation of a finite graph by a set of intervals

on the real line. Fundamenta Mathematicae, 51(1):45–64, 1962.

[110] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary

properties is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980.

[111] Mathieu Liedloff, Pedro Montealegre, and Ioan Todinca. Beyond classes of graphs

with "few" minimal separators: FPT results through potential maximal cliques.

Algorithmica, 81(3):986–1005, 2019.

[112] Lishin Lin and Sartaj Sahni. Fair edge deletion problems. IEEE transactions on

computers, 38(5):756–761, 1989.

[113] Daniel Lokshtanov. Wheel-free deletion is W[2]-hard. In Parameterized and Exact

Computation, Third International Workshop, IWPEC 2008, Victoria, Canada, May

14-16, 2008. Proceedings, pages 141–147, 2008.

[114] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential

parameterized problems. SIAM J. Comput., 47(3):675–702, 2018.

[115] Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deter-

ministic truncation of linear matroids. ACM Transactions on Algorithms (TALG),

14(2):14, 2018.

[116] Daniel Lokshtanov, Pranabendu Misra, MS Ramanujan, and Saket Saurabh. Hitting

selected (odd) cycles. SIAM Journal on Discrete Mathematics, 31(3):1581–1615,

2017.

[117] Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and

Saket Saurabh. Faster parameterized algorithms using linear programming. ACM

Transactions on Algorithms (TALG), 11(2):1–31, 2014.

[118] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav

Zehavi. Covering small independent sets and separators with applications to pa-

299

rameterized algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 2785–2800. Society for Industrial and

Applied Mathematics, 2018.

[119] Daniel Lokshtanov and MS Ramanujan. Parameterized tractability of multiway cut

with parity constraints. In International Colloquium on Automata, Languages, and

Programming, pages 750–761. Springer, 2012.

[120] Daniel Lokshtanov, MS Ramanujan, and Saket Saurabh. A linear time parameterized

algorithm for directed feedback vertex set. arXiv preprint arXiv:1609.04347, 2016.

[121] Daniel Lokshtanov, MS Ramanujan, Saket Saurabh, and Meirav Zehavi. Reduc-

ing CMSO Model Checking to Highly Connected Graphs. In 45th International

Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[122] Diptapriyo Majumdar. Classical and Approximate Kernels for Structural Parame-

terizations of some Graph Parameters. PhD thesis, HOMI BHABHA NATIONAL

INSTITUTE, 2018.

[123] Diptapriyo Majumdar and Venkatesh Raman. Structural parameterizations of

undirected feedback vertex set: FPT algorithms and kernelization. Algorithmica,

80(9):2683–2724, 2018.

[124] Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Polynomial kernels

for vertex cover parameterized by small degree modulators. Theory Comput. Syst.,

62(8):1910–1951, 2018.

[125] Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all maximal

cliques. In Scandinavian Workshop on Algorithm Theory, pages 260–272. Springer,

2004.

300

[126] Dániel Marx. Parameterized graph separation problems. Theoretical Computer

Science, 351(3):394–406, 2006.

[127] Dániel Marx. A parameterized view on matroid optimization problems. Theoretical

Computer Science, 410(44):4471–4479, 2009.

[128] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Treewidth reduction for con-

strained separation and bipartization problems. In 27th International Symposium on

Theoretical Aspects of Computer Science-STACS 2010, pages 561–572, 2010.

[129] Dániel Marx, Ario Salmasi, and Anastasios Sidiropoulos. Constant-factor approxi-

mations for asymmetric tsp on nearly-embeddable graphs. In LIPIcs-Leibniz Inter-

national Proceedings in Informatics, volume 60. Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2016.

[130] Tomáš Masařík and Tomáš Toufar. Parameterized complexity of fair deletion

problems. In T.V. Gopal, Gerhard Jäger, and Silvia Steila, editors, Theory and

Applications of Models of Computation, pages 628–642, Cham, 2017. Springer

International Publishing.

[131] George J Minty. On maximal independent sets of vertices in claw-free graphs.

Journal of Combinatorial Theory, Series B, 28(3):284–304, 1980.

[132] Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On

parameterized independent feedback vertex set. Theoretical Computer Science,

461:65–75, 2012.

[133] Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh, and Som-

nath Sikdar. Fpt algorithms for connected feedback vertex set. Journal of Combina-

torial Optimization, 24(2):131–146, 2012.

301

[134] M.R.Fellows, B.M.P.Jansen, and F.A.Rosamond. Towards fully multivariate algo-

rithmics: Parameter ecology and the deconstruction of computational complexity.

European Journal of Combinatorics, 34(3):541–566, 2013.

[135] Jaroslav Nešetřil and Patrice Ossona De Mendez. On nowhere dense graphs. Euro-

pean Journal of Combinatorics, 32(4):600–617, 2011.

[136] Sang-il Oum, Sigve Hortemo Sæther, and Martin Vatshelle. Faster algorithms

parameterized by clique-width. arXiv preprint arXiv:1311.0224, 2013.

[137] James G Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

[138] Daniël Paulusma. Open problems on graph coloring for special graph classes. In

Graph-Theoretic Concepts in Computer Science - 41st International Workshop, WG

2015, Garching, Germany, June 17-19, 2015, Revised Papers, pages 16–30, 2015.

[139] Ulrich Pferschy and Joachim Schauer. The maximum flow problem with conflict

and forcing conditions. In Network Optimization, pages 289–294. Springer, 2011.

[140] Ulrich Pferschy and Joachim Schauer. Approximation of knapsack problems with

conflict and forcing graphs. Journal of Combinatorial Optimization, 33(4):1300–

1323, 2017.

[141] Geevarghese Philip, Ashutosh Rai, and Saket Saurabh. Generalized pseudoforest

deletion: Algorithms and uniform kernel. SIAM J. Discrete Math., 32(2):882–901,

2018.

[142] Vijay Raghavan and Jeremy P. Spinrad. Robust algorithms for restricted domains. J.

Algorithms, 48(1):160–172, 2003.

[143] Ashutosh Rai and M. S. Ramanujan. Strong parameterized deletion: Bipartite

graphs. In 36th IARCS Annual Conference on Foundations of Software Technology

and Theoretical Computer Science, FSTTCS 2016, pages 21:1–21:14, 2016.

302

[144] Ashutosh Rai and Saket Saurabh. Bivariate complexity analysis of almost forest

deletion. Theor. Comput. Sci., 708:18–33, 2018.

[145] Venkatesh Raman and Saket Saurabh. Short cycles make w-hard problems hard:

Fpt algorithms for w-hard problems in graphs with no short cycles. Algorithmica,

52(2):203–225, 2008.

[146] Romeo Rizzi. Minimum weakly fundamental cycle bases are hard to find. Algorith-

mica, 53(3):402–424, 2009.

[147] Neil Robertson and Paul D. Seymour. Graph minors. xiii. the disjoint paths problem.

Journal of combinatorial theory, Series B, 63(1):65–110, 1995.

[148] Jeremy P. Spinrad. Efficient graph representations. American Mathematical Society,

2003.

[149] Jan Arne Telle. Complexity of domination-type problems in graphs. Nord. J.

Comput., 1(1):157–171, 1994.

[150] René van Bevern, Oxana Yu Tsidulko, and Philipp Zschoche. Fixed-parameter

algorithms for maximum-profit facility location under matroid constraints. In

Proceedings of the 11th International Conference on Algorithms and Complexity,

2019.

[151] Johan MM Van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic

programming on tree decompositions using generalised fast subset convolution. In

Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,

September 7-9, 2009. Proceedings, pages 566–577, 2009.

[152] Pim Van’t Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica,

65(4):845–867, 2013.

[153] Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput.,

10(2):310–327, 1981.

303

[154] M. Zehavi. Maximum minimal vertex cover parameterized by vertex cover. SIAM

Journal of Discrete Mathematics, 31(4):2440–2456, 2017.

304

	Synopsis
	List of Figures
	Introduction
	Deletion to Scattered Graph Classes
	Deletion distance parameterizations
	Vertex Deletion with additional constraints
	Organization of Thesis

	Preliminaries
	Sets, Numbers and some Notations
	Parameterized Complexity and Kernelization
	Graph Theory
	Basic Notations and Definitions
	Graph Separators
	Tree Decomposition and Treewidth

	Second Order Logic
	Matroids

	I Deletion to Scattered Graph Classes
	FPT algorithms for general cases
	Deletion to scattered classes when each class is individually tractable
	Deletion to scattered classes with finite forbidden families
	Iterative Compression
	Finding non-separating solutions
	Solving general instances

	Conclusion

	Faster Algorithms for Pairs of Scattered Graph Classes
	Preliminaries
	Finite 1 or 2 Deletion with forbidden paths
	1 or 2 Deletion with a constant number of forbidden pairs
	Forbidden Characterization for 1 or 2 Deletion
	The case with forbidden paths
	Algorithms for 1 or 2 Deletion without forbidden paths

	Examples of Special Infinite-(1, 2)-Deletion
	Interval or Trees
	Proper Interval or Trees
	Chordal or Bipartite Permutation

	Conclusion

	II Deletion distance parameterizations
	Structural Parameterizations with Modulator Oblivion
	Preliminaries
	Semi Clique Tree Decomposition
	Structural Parameterizations with Chordal Vertex Deletion Set
	SETH Lower Bounds

	Conclusion

	Fixed-parameter tractability of (n-k) List Coloring
	Introduction
	Preliminaries
	FPT algorithm for (n-k)-regular List coloring
	Conclusion

	Deletion Distance Parameterizations of Dominating Set Variants
	Introduction
	Motivation
	Related Work
	Problem Definitions

	Dominating Set Variants parameterized by CVD Size
	Upper Bounds
	Lower bounds

	Dominating Set variants parameterized by SVD size
	EDS and IDS parameterized by SVD size
	Improved Algorithm for EDS-SVD
	Lower Bounds for IDS and EDS

	Concluding Remarks

	III Deletion with additional constraints
	Parameterized Complexity of Conflict-Free Set Cover
	Introduction and Previous Work
	Hardness results for Conflict-Free Set Cover
	1-Intersection Conflict-Free Set Cover parameterized by solution size k
	Conflict-Free Set Cover parameterized by |U|

	Algorithms
	Conflict-Free Set Cover parameterized by solution size k
	Conflict-Free Set Cover parameterized by |U| when F has duplicates
	 c-Intersection Conflict-Free Set Cover parameterized by k

	Matroidal Conflict-free Set Cover
	Conclusion

	Fair Vertex Deletion problems
	Introduction
	Previous Work and Deconstructing Hardness
	Our Results

	Preliminaries
	-Fair Vertex Deletion parameterized by treewidth + fairness factor
	 Fair q-Forbidden Family Vertex Deletion parameterized by solution size
	FPT Algorithm
	Polynomial Kernel
	Improved Kernel for Fair Vertex Cover parameterized by solution size

	Hardness Results
	W[1]-Hardness for Fair Set
	NP-Hardness Dichotomy of Fair Vertex Cover and Fair Feedback Vertex Set

	Conclusion

	IV Conclusion
	Conclusion and Future Directions
	Bibliography

