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Summary

In this section we briefly summarize the work done in my PhD thesis. We can divide our

work into three parts. First we have shown polynomial kernels for ARC DISJOINT CYCLE

PACKING in α-bounded digraphs and linear kernels in tournaments. CYCLE PACKING is

polynomial time solvable on proper interval graphs. So we tried to analyze the complexity

of the problem when extra k vertices are added which is CYCLE PACKING parameterized

by the structural parameter- proper interval deletion set. We obtained 2O(t log t)nO(1) time

FPTalgorithm. We also designed 2O(t log t)nO(1) time FPT algorithms for CYCLE/ PATH

COVER parameterized by the same parameter.

In part 2, we looked at a special kind of domination problem known as MIXED

DOMINATING SET and studied it from the parameterized perspective with respect to

various parameters such as solution size, treewidth etc.. We also studied its complexity on

different graph classes such as split graphs, proper interval graphs, Kd,d-free graphs and

obtained various FPTalgorithms, kernelization results and some lower bounds.

In the third part, we have considered a special variation of dynamic problem where

the input graph gets updated by a series of edge insertions and deletions and the goal is to

efficiently maintain a solution. A dynamic version of a problem P is a quintuple (I, I′,S,k,r)

where I and I′ are instances of P, and S is a solution (not necessarily optimal) to I. Further

I′ can be obtained from I by making at most k edits. The task is to determine whether there

is a solution S′ (not necessarily optimal) to I′ that can be obtained from S by making at most

r changes. We did solve various problems such as VERTEX COVER, FEEDBACK VERTEX

i



SET, CONNECTED VERTEX COVER, DOMINATING SET, CONNECTED DOMINATING

SET. We studied these problems with respect to both parameters- r and k.

ii



Chapter 1

Introduction

1.1 Preamble

Packing and Covering are some of the fundamental problems in graph theory. An H-

PACKING problem is, given a graph G, what is the maximum number of disjoint graphs in

H one can find in G. Similarly in H-COVERING problem we desire to find the minimum

number of disjoint graphs in H that together constitute the graph G. Both these problems

are extremely well studied and proved to be NP-hard. The COVERING problems that we

study encompasses the very well known HAMILTONICITY problems. In part 1 of our thesis

we study these problems where H is the class of cycles/paths. We study these problems

with respect to the standard parameter (solution size) as well as some well known structural

parameters.

Another problem that we consider that is not as well studied but still has significant

importance is the TOTAL COVERING or MIXED DOMINATION problem. Given a graph G

a set S ⊆V (G)∪E(G) is a mixed dominating set iff every element x ∈ (V (G)∪E(G))\S

is either adjacent to or incident with an element of S. Not only we consider MIXED

DOMINATION with different parameters, but also we study its complexity on different

graph classes.

1



The last set of problems that we focus on in our thesis is a specific kind of dynamic

problem. Here the graph is being updated by a series of edge insertions and deletions. And

the goal is to efficiently maintain a solution to the problem. Formally, a dynamic version of

a problem P is a quintuple (I, I′,S,k,r) where I and I′ are instances of P and S is a solution

(not necessarily optimal) to I. Further, I′ can be obtained from I by making at most k edits.

The task is to determine whether there is a solution S′ (not necessarily optimal) to I′ that

can be obtained from S by making at most r changes.

We study the parameterized version of all the above mentioned problems. So first we

reiterate the notations and definitions of parameterized complexity below.

Parameterized complexity: In this framework, each problem instance is associated

with a non-negative integer k called parameter, and a problem is said to be fixed-parameter

tractable if it can be solved in f (k)nO(1) time for some computable function f , where n is the

input size. For convenience, the running time f (k)nO(1), where f grows super-polynomially

with k is denoted as O( f (k)). A kernelization algorithm is a polynomial-time algorithm

that transforms an arbitrary instance of the problem to an equivalent instance of the same

problem whose size is bounded by some computable function g of the parameter of the

original instance. The resulting instance is called a kernel and if g is a polynomial function,

then it is called a polynomial kernel and we say that the problem admits a polynomial kernel.

A decidable parameterized problem is fixed-parameter tractable if and only if it has a kernel

(not necessarily of polynomial size). Kernelization typically involves applying a set of

rules (called reduction rules) to the given instance to produce another instance. A reduction

rule is said to be safe if it is sound and complete, i.e., applying it to the given instance

produces an equivalent instance. In order to classify parameterized problems as being fixed-

parameter tractable or not, the W-hierarchy is defined: FPT⊆W[1]⊆W[2]⊆ . . .⊆ XP

where FPTis the set of all parameterized problems that are fixed-parameter tractable. It

is believed that the subset relations in this sequence are all strict, and a parameterized

problem that is hard for some complexity class above FPTin this hierarchy is said to be

2



fixed-parameter intractable. As mentioned before, the set of parameterized problems that

admit a polynomial kernel is contained in the class FPTand it is believed that this subset

relation is also strict. For further details on parameterized algorithms, we refer to [25].

Structural parameters: In the early years of parameterized complexity and algo-

rithms, problems were almost always parameterized by the solution size. Recent research

has focused on other parameterizations based on structural parameters in the input [56],

or above or below some guaranteed optimum values [47, 48, 72]. Such “non-standard”

parameters are more likely to be small in practice. Also, once a problem is shown to

be FPT or to have a polynomial sized kernel by a parameterization, it is natural to ask

whether the problem is FPT(and admits a polynomial kernel) when parameterized by a

provably smaller parameter. In the same vein, if we show that a problem is W-hard under a

parameterization, it is natural to ask whether it is FPT when parameterized by a provably

larger parameter.

Apart from solution size, treewidth is one of the most well studied parameters. However,

in the context of CYCLE PACKING, our understanding of treewidth is complete in the

following sense: while CYCLE PACKING is known to be solvable in time O∗(2O(tw logtw)),

it cannot be solved in time O∗(2o(tw logtw)) unless the Exponential Time Hypothesis fails

[29]. Another parameter that has gained significant attention recently is the size of a

modulator to a family of graphs. Let F be a family of graphs. Given a graph G and a set

S ⊆ V (G), we say that S is an F -modulator if G− S is in F . For example, if F is the

family of independent sets, forests, bipartite graphs, interval graphs and chordal graphs,

then the modulator corresponds to a vertex cover, feedback vertex set, odd cycle transversal,

interval deletion set and chordal deletion set, respectively. The size of S is also called

the vertex-deletion distance to F . One of the earliest studies in the realm of alternate

parameterizations is by Cai [17]. Cai [17] studied COLORING problems parameterized

by the vertex-deletion distance to various graph classes including bipartite graphs and

split graphs. Fellows et al. [37] studied alternate parameterizations for problems that were

3



proven to be intractable with respect to the standard parameterization. This led to a whole

new ecology program and opened up a floodgate of new and exciting research. Structural

parameterizations of the classical VERTEX COVER ([12, 56]) and FEEDBACK VERTEX

SET [57] have also been explored. We refer to [56] for a detailed introduction to the whole

program as well as the thesis of Jansen [55]. Focusing on structural parameters for CYCLE

PACKING, one of the problems considered in our thesis, Bodlaender et al. [13] obtained

polynomial kernels with respect to the size of vertex cover, the vertex-deletion distance to

a cluster graph and the maximum leaf number (see [13] or [55] for definitions). There is

also a kernel lower bound result known for parameterization with respect to solution size

[14] leading to several other lower bounds.

1.2 Our contributions

We divide our work in the thesis into 3 parts. For each part we will briefly state our

contributions. The detailed descriptions of previous work and our contributions can be

found in the introductions of each chapter.

In part 1 of our thesis, we consider PACKING/COVERING problems. On tournaments

VERTEX-DISJOINT CYCLE PACKING directly reduces to 3-SET PACKING and admits an

O(k2) kernel as a consequence (recently it was improved to a subquadratic kernel [68]).

Hence instead we focus our attention on the arc variant of the problem i.e. ARC-DISJOINT

CYCLE PACKING. We first study the problem on tournaments, where we give a linear

bound (O(k)) on feedback vertex set similar to the very well known Erdős-Pósa bound and

design a linear kernel. Making use of this kernel we obtain an FPTalgorithm running in

time 2O(k logk)nO(1). The next question that interested us was, could we similarly design

polynomial kernels on α-bounded digraphs which contain tournaments. We answer this

question affirmatively by again obtaining an Erdős-Pósa like bound on feedback vertex set

of size O(α2k2) and polynomial kernels for every constant value of α . We use one of the

4



results obtained by Lochet et al. [70] that gives a small cut-preserving set on α-bounded

digraphs. Combining their result with our theorems we obtain the desired polynomial

kernel.

Next we consider VERTEX-DISJOINT CYCLE PACKING parameterized by some struc-

tural parameters. For the VERTEX-DISJOINT CYCLE PACKING problem, Bodlaender et

al. [13] obtained polynomial kernels with respect to the size of vertex cover, the vertex-

deletion distance to a cluster graph and the maximum leaf number. We try to contribute

some results to this line of work. Since the problem is still open on interval graphs, we

consider a natural subclass of interval graphs known as proper interval graphs. We stu-

dy the problem parameterized by vertex deletion distance to proper interval graphs (t).

Just as chordal graphs have clique-tree decomposition structure, proper interval graphs

have clique-path decomposition structure [58]. We combine color coding, greedy strate-

gy and multi layered dynamic programming to design an FPTalgorithm running in time

2O(t log t)nO(1).

The next set of problems that we consider are- CYCLE/PATH COVERING, paramete-

rized by the same structural parameter- proper interval deletion set. These problems are

generalizations of HAMILTONIAN CYCLE/PATH problems. There has been an extensive

study of structural parameters for problems related to PATH COVER and CYCLE COVER

such as CYCLE PACKING, LONGEST PATH and LONGEST CYCLE [13, 64]. We first disco-

vered some interesting properties (monotonicity properties) of paths in proper interval

graphs. We explore these properties to design dynamic programming algorithms that solve

the CYCLE/PATH COVERING in 2O(t log t)nO(1). This also automatically solves the HAMIL-

TONICITY problem parameterized by proper interval deletion set. We summarize all these

results in Table 1.1.

In part 2 of our thesis we focus on the problem of MIXED DOMINATION. MDS

(MIXED DOMINATING SET) parameterized by the solution size (k) can be solved in time

5



PACKING and COVERING

Problems
Parameters Our results

ARC DISJOINT CYCLE PACKING

in tournaments
Solution size(k) O(k) kernel, O∗(2O(k logk)) FPT

ARC DISJOINT CYCLE PACKING

in α- bounded digraphs
Solution size(k) 2α4k5(110α35k30)

4α

kernel

VERTEX DISJOINT CYCLE PAC-
KING

Proper interval
deletion set (t)

O∗(2O(t log t)) FPT

VERTEX DISJOINT CYCLE CO-
VERING

Proper Interval
deletion set (t)

O∗(2O(t log t)) FPT

VERTEX DISJOINT PATH COVE-
RING

Proper Interval
deletion set (t)

O∗(2O(t log t)) FPT

Table 1.1: Our results on PACKING/COVERING problems

7.465knO(1) on general graphs, and in time 2O(
√

k)nO(1) on planar graphs.* We complement

this result by showing that MDS on general graphs does not admit an algorithm with

running time 2o(k)nO(1) unless the Exponential Time Hypothesis (ETH) fails, and that it

does not admit a polynomial kernel unless coNP ⊆ NP/poly. In addition, we provide an

algorithm which, given a graph G together with a tree decomposition of width tw, solves

MDS in time 6twnO(1). We also show that unless the Set Cover Conjecture fails, MDS

does not admit an algorithm with running time O((2− ε)tw(G)nO(1)) for any ε > 0, where

tw(G) is the tree-width of G.

We also study the problem on various graph classes and obtain the following results.

• On split graphs, MDS does not admit a polynomial kernel unless coNP ⊆ NP/poly.

• On proper interval graphs, MDS is polynomial time solvable.

• On graphs that do not contain Kd,d as a subgraph (biclique-free graphs), MDS admits

a kernel of size O(kd).

We use the standard branching technique to design an exact algorithm with running

time 2nnO(1) for MDS on general graphs.

*MDS parameterized by solution size has now an improved running time of O∗(3.510k) [34].

6



In part 3 of our thesis we consider some well known parameterized problems in a

dynamic framework where the input graph is being updated by a series of edge insertions

and deletions. The goal is to efficiently maintain a solution. We recall the notations for the

dynamic problem instance stated in the preamble section. In the context of parameterized

algorithms, two relevant parameters are the edit distance k (number of updates) and the

Hamming distance r (between the input solution and a solution to the updated instance).

We revisit some classical parameterized problems in the dynamic setting, where the input

graph gets updated. For a fixed collection of graphs Π, given a graph G and an integer l, the

Π-DELETION problem is to determine if G has a set S ⊆V (G) of vertices with |S|= l such

that G−S ∈ Π. Π-DELETION is an abstraction of various classical problems in the graph

theoretic framework. Examples include the classical VERTEX COVER and FEEDBACK

VERTEX SET. Due to a generic result by Lewis and Yannakakis [69], it is known that

finding a minimum solution to Π-DELETION is NP-hard in general for most choices

of Π. Hence, it has been extensively studied in various algorithmic realms. We define

the dynamic version of this problem referred to as DYNAMIC Π-DELETION and show

NP-hardness, fixed-parameter tractability and kernelization results. Then, for the specific

cases of Π-DELETION such as DYNAMIC VERTEX COVER and DYNAMIC FEEDBACK

VERTEX SET, we give improved FPT algorithms with respect to k as the parameter and

also obtain linear kernels. Then, for the same parameterization, we describe improved

algorithms for DYNAMIC CONNECTED VERTEX COVER, DYNAMIC DOMINATING SET

and DYNAMIC CONNECTED DOMINATING SET. For DYNAMIC DOMINATING SET and

DYNAMIC CONNECTED DOMINATING SET, we show that these running times are optimal

(up to polynomial factors) assuming the Set Cover Conjecture. The Table 1.2 summarizes

these results along with the running time bounds known for these problems.
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Dynamic Problem Parameter k Parameter r
VERTEX COVER 1.0822k 1.2738r

O(k) kernel O(r2) kernel
CONNECTED VERTEX 4k [2], 2k ‡ W[2]-hard [2]
COVER No kO(1) size kernel
FEEDBACK VERTEX SET 1.6667k (randomized) 3.592r, 3r (randomized)

O(k) kernel O(r2) kernel
CONNECTED FEEDBACK 2O(k) W[2]-hard
VERTEX SET No kO(1) size kernel
DOMINATING SET 2O(k2) [33], 2k ‡ W[2]-hard [33]

No kO(1) size kernel
CONNECTED DOMINATING 4k [2], 2k ‡ W[2]-hard [2]
SET No kO(1) size kernel

Table 1.2: Summary of known and new results for different dynamic parameterized
problems. All running time bounds are specified by ignoring polynomial factors. ‡ denotes
that the running time is optimal under the Set Cover Conjecture. k and r respectively denote
the parameters ”edit distance”and ”hamming distance”.
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Chapter 2

Notations

In this chapter we state some notations and graph structural properties.

Undirected graphs: For an undirected graph G, V (G) and E(G) denote the set of vertices

and edges, respectively. Two vertices u,v are said to be adjacent if there is an edge (denoted

as uv or vu) between u and v. The (open) neighborhood of a vertex v, denoted by NG(v),

is the set of vertices adjacent to v in G and its closed neighborhood NG[v] is the set

NG(v)∪{v}. This notation is extended to subsets of vertices as NG[S] =
⋃

v∈S NG[v] and

NG(S) = NG[S] \ S where S ⊆ V (G). The subscript in the notation for neighborhood is

omitted if the graph under consideration is clear. For a set S ⊆V (G), G[S] and G−S denote

the subgraphs of G induced on the set S and V (G)\S, respectively. For a set of edges E ′,

V (E ′) denotes the union of the endpoints of the edges in E ′. The contraction operation

of an edge e = uv in G adds a new vertex w adjacent to the vertices that are adjacent

to either u or v and then deletes u and v. That is, the contraction of e in G results in a

graph G′ with V (G′) =V (G)∪{w}\{u,v} and E(G′) = {xy|x,y ∈V (G)\{u,v} and xy ∈

E(G)}∪{wx|x ∈ NG(u)∪NG(v)}. An independent set is a set of pairwise non-adjacent

vertices. A forest is a graph with no cycles. A set Q ⊆V (G)of pairwise adjacent vertices is

called a clique. A clique of three vertices (which also forms a cycle on three vertices) is
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called a triangle. A graph is said to be triangle-free if it has no triangles.

Directed graphs: A directed graph (or digraph) is a pair consisting of a set of vertices

and a set of arcs. An arc is specified as an ordered pair of vertices (called its endpoints).

We consider only simple unweighted digraphs. For a digraph D, V (D) and A(D) denote

the set of its vertices and the set of its arcs, respectively. Two vertices u, v are said to

be adjacent in D if uv ∈ A(D) or vu ∈ A(D). For an arc e = uv, we define h(e) = v as

the head of e and t(e) = u as the tail of e. For a vertex v ∈V (D), its out-neighbourhood,

denoted by N+(v), is the set {u ∈ V (D):vu ∈ A(D)} and its in-neighbourhood, denoted

by N−(v), is the set {u ∈V (D):uv ∈ A(D)}. For a set F of arcs, V (F) denotes the union

of the sets of endpoints of arcs in F . Given a digraph D and a subset X of vertices, we

denote by D[X ] the digraph induced by the vertices in X . Moreover, we denote by D\X

the digraph D[V (D)\X ] and say that this digraph is obtained by deleting X from D. For a

set F ⊆ A(D), D−F denotes the digraph obtained from D by deleting F .

Tournaments: A tournament T is a digraph in which for every pair u,v of distinct vertices

either uv ∈ A(T ) or vu ∈ A(T ) but not both. In other words, a tournament T on n vertices is

an orientation of the complete graph Kn. A tournament T can alternatively be defined by an

ordering σ(T ) = (v1, . . . ,vn) of its vertices and a set of backward arcs Aσ (T ) (which will

be denoted A(T ) as the considered ordering is not ambiguous), where each arc a ∈ A(T ) is

of the form vi1vi2 with i2 < i1. Indeed, given σ(T ) and A(T ), we define V (T ) = {vi : i∈ [n]}

and A(T ) = A(T )∪A(T ) where A(T ) = {vi1vi2 : (i1 < i2) and vi2vi1 /∈ A(T )} is the set of

forward arcs of T in the given ordering σ(T ). The pair (σ(T ),A(T )) is called a linear

representation of the tournament T . A tournament is called transitive if it is a directed

acyclic graph and a transitive tournament has a unique topological ordering. It is clear

that for any linear representation (σ(T ),A(T )) of T the set A(T ) is an FAS (feedback arc

set) of T . Given a linear representation (σ(T ),A(T )) of a tournament T , a triangle C in

T is a triple (vi1,vi2,vi3) with il < il+1 such that either vi3vi1 ∈ A(T ), vi3vi2 /∈ A(T ) and

vi2vi1 /∈ A(T ) (in this case we call C a triangle with backward arc vi3vi1), or vi3vi1 /∈ A(T ),

vi3vi2 ∈ A(T ) and vi2vi1 ∈ A(T ) (in this case we call C a triangle with two backward arcs
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vi3vi2 and vi2vi1). Given two tournaments T1,T2 defined by σ(Tl) and A(Tl) with l ∈ {1,2},

we denote by T = T1T2 the tournament called the concatenation of T1 and T2, where

V (T ) = V (T2)∪V (T2), σ(T ) = σ(T1)σ(T2) is the concatenation of the two sequences,

and A(T ) = A(T1)∪A(T2).

Proper Interval Graphs: An interval I, denoted as [i, j] with i ≤ j and i, j ∈ N, is the

ordered set {i, . . . , j} of consecutive integers. For an interval I = [i, j], i is called the left

endpoint and j is called the right endpoint. A graph is an interval graph if its vertices can

be assigned to intervals such that there is an edge between two vertices if and only if their

corresponding intervals have a non-empty intersection. A set of intervals assigned to the

vertices of an interval graph satisfying this property is called an interval representation.

An interval graph is called a proper interval graph if it has an interval representation in

which no interval properly contains another interval. Such an interval representation is

called a proper interval representation.

Let G be a proper interval graph and IG be its proper interval representation. For each

v ∈ V (G) with interval I(v), l(v) denotes the left endpoint of I(v) and r(v) denotes the

right endpoint of I(v). Observe that for two distinct vertices u and v of G, if l(u)< l(v),

then r(u) < r(v) too. This imposes a natural total order on the intervals which in turn

defines a permutation π : V (G)→ [|V (G)|] of the vertices obtained by listing the vertices

in the ascending order of the left (or right) endpoints of their intervals. This ordering or

permutation is called proper interval ordering and has the following property.

Proposition 1 ([75]). Let G be a proper interval graph with proper interval ordering π .

For every pair u,v of vertices with π(u) < π(v), if uv ∈ E(G), then {w ∈ V (G) : π(u) ≤

π(w)≤ π(v)} is a clique in G.

Given a proper interval representation, the following result known from Ke et al. [58]

states that the vertex set of the proper interval graph can be organized into a sequence of

cliques satisfying certain properties.
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Proposition 2 ([58]). Given a proper interval graph G with proper interval ordering π ,

there is a linear-time algorithm that outputs a partition of V (G) into a sequence Q1, . . . ,Qq

of (pairwise vertex-disjoint) cliques satisfying the following properties.

• For each pair of vertices u ∈ Qi, v ∈ Q j with 1 ≤ i < j ≤ q, π(v)> π(u).

• For every edge uv ∈ E(G), there exists 1 ≤ i ≤ q such that either u,v ∈ Qi or u ∈ Qi

and v ∈ Qi+1 or u ∈ Qi+1 and v ∈ Qi.

Observe that this partition is different from the classical clique path decomposition

of (proper) interval graphs. We refer to the ordered set of cliques Q = {Q1, . . . ,Qq} as a

clique partition of G. As a proper interval representation, a proper interval ordering π and

a clique partition Q of a proper interval graph can be obtained in polynomial time [45, 58],

we assume that Q and π are given as part of the input with the proper interval graph G.

We remark that neither the proper interval representation (and hence the proper interval

ordering resulting from it) nor the clique partition is unique.

Paths and cycles: A path P = (v1, . . . ,vℓ) is a sequence of distinct vertices where every

consecutive pair of vertices are adjacent. We say that P starts at v1 and ends at vℓ. The

vertices (or vertex set) of P, denoted by V (P), is the set {v1, . . . ,vℓ}. The endpoints of P

is the set {v1,vℓ} and the internal vertices of P is the set V (P) \ {v1,vℓ}. The length of

P is defined as |V (P)|. A cycle is a sequence (v1, . . . ,vℓ) of vertices such that (v1, . . . ,vℓ)

is a path and vℓv1 is an edge. A path (v1, . . . ,vℓ) is also represented as the ordered set

v1 → . . .→ vℓ. For a collection P of paths (or cycles), V (P) denotes the set
⋃

P∈P V (P).

The concatenation of paths P1 = (v1, . . . ,v j−1,v j) and P2 = (v j,v j+1, . . . ,vℓ) such that

V (P1)∩V (P2) = {v j} is defined as the path P3 = (v1, . . . ,v j−1,v j,v j+1, . . . ,vℓ).

A set of pairwise disjoint paths/cycles is called a path/cycle packing and a set of pairwi-

se disjoint triangles is called a triangle packing. Similarly a set of disjoint paths/cycles that

covers all the vertices of G is called a path/cycle cover of G. G is said to be connected if
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there is a path between every pair of its vertices and it is said to be 2-connected if for each

v ∈V (G), G− v is connected.

All the above notations for paths and cycles are defined similarly for directed graphs. A

digraph is called a directed acyclic graph if it has no cycles. A feedback arc set (FAS) is a

set of arcs whose deletion results in an acyclic graph. For a digraph D, minfas(D) denotes

the size of a minimum FAS of D. Any directed acyclic graph D has an ordering σ(D) =

(v1, . . . ,vn) called topological ordering of its vertices such that for each viv j ∈ A(D), i < j

holds. Given an ordering σ and two vertices u and v, we write u <σ v if u is before v in σ .

For graph theoretic terms and definitions not stated explicitly here, we refer to Diestel [31].

Treewidth Let G be a graph. A tree-decomposition of a graph G is a pair (T,X =

{Xt}t∈V (T)) such that

• ⋃
t∈V (T)Xt =V (G),

• for all xy ∈ E(G) there is a t ∈V (T) such that {x,y} ⊆ Xt , and

• for all v ∈V (G) the subgraph of T induced by {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T)|Xt |−1 and the treewidth of G is the

minimum width over all tree decompositions of G and is denoted by tw(G).

Functions and permutations: The set {1, . . . ,n} is denoted by [n]. Let ϒ : A → B

be a function from a set A to a set B. For an element a ∈ A, ϒ(a) is called the image of

a. The domain of ϒ, denoted by dom(ϒ), is A and the codomain of ϒ is B. The image (or

range) of ϒ, denoted by img(ϒ), is the set {b ∈ B : ∃a ∈ A,ϒ(a) = b}. ϒ is an injective

function (or an injection) if for each a1,a2 ∈ dom(ϒ), ϒ(a1) = ϒ(a2) implies a1 = a2

holds. In that case, for an element b ∈ img(ϒ), ϒ−1(b) denotes the element a ∈ A with

ϒ(a) = b. ϒ is a surjective function (or a surjection) if B = img(ϒ). ϒ is a bijection if it is

both an injection and a surjection. In that case, for each b ∈ B, ϒ−1(b) denotes the unique

element a ∈ A with b = ϒ(a). An empty function is a function where the domain is the

empty set. For a set A′ ⊆ dom(ϒ), ϒ(A′) denotes the set {ϒ(a) : a ∈ A′}. The function ϒ
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restricted to a subset A′ ⊆ A as the domain is defined as the function ϒ′ with dom(ϒ′) = A′

such that ϒ′(a) = ϒ(a) for each a ∈ A′. A permutation σ of a set A = {a1, . . . ,a|A|} is

denoted by a sequence ai1,ai2, . . . ,ai|A| where {i1, i2, . . . , i|A|}= [|A|]. Given a permutation

σ = ai1,ai2, . . . ,ai|A| of A, σ−1( j) denotes the element ai j for each j ∈ [|A|]. For a string β ,

β ( j) denotes the jth character in β .
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Chapter 3

Cycle Packing and cycle/path covering

In this chapter first we look at ARC-DISJOINT CYCLE PACKING problem in tournaments

parameterized by the solution size k. We prove a bound (on FVS) for tournaments similar to

that of Erdős-Pósa using which we design a linear kernel for the above problem as well as

give a 2O(k)nO(1) FPTalgorithm. Next, we extend these ideas to a superclass of graphs that

contain tournaments, known as α-bounded digraphs and provide polynomial kernels for

every constant value of α . We also study VERTEX-DISJOINT CYCLE PACKING problem

from the perspective of a structural parameter - proper interval deletion set. We combine

color-coding, greedy strategy and dynamic programming to design an FPTalgorithm

running in time 2O(k logk)nO(1). In the last section we focus on CYCLE/PATH COVERING

parameterized by proper interval deletion set and obtain an FPTalgorithm running in time

2O(k logk)nO(1).

3.1 Introduction

In this chapter our focus is on CYCLE PACKING and CYCLE/PATH COVERING problems.

Since the publication of the classic Erdős-Pósa Theorem, CYCLE PACKING has recei-

ved significant scientific attention in various algorithmic realms. In particular, VERTEX-
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DISJOINT CYCLE PACKING in undirected graphs is one of the first problems studied in the

framework of parameterized complexity. The Erdős-Pósa Theorem states that there exists

a function f (r) = O(k logk) such that for each non-negative integer k, every undirected

graph either contains k vertex-disjoint cycles or has a feedback vertex set consisting of

f (k) vertices, using which one can easily design an FPTalgorithm for CYCLE PACKING

problem. Although VERTEX-DISJOINT CYCLE PACKING in undirected graphs is FPTwith

respect to the solution size [11, 71], it has no polynomial kernel unless NP ⊆ coNP/poly

[14]. In contrast, EDGE-DISJOINT CYCLE PACKING in undirected graphs admits a kernel

with O(k logk) vertices (and is therefore FPT). On directed graphs both these problems

are equivalent and W[1]-hard [65, 85]. Therefore, studying these problems on a subclass of

directed graphs is a natural direction of research. We focus on tournaments, which form a

mathematically rich subclass of directed graphs with interesting structural and algorithmic

properties. A tournament is a directed graph in which there is a single arc between every

pair of distinct vertices. Any tournament that has a cycle also has a triangle [6]. Therefore,

if a tournament has k vertex-disjoint cycles, then it also has k vertex-disjoint triangles.

Thus, VERTEX-DISJOINT CYCLE PACKING in tournaments is just packing vertex-disjoint

triangles. This problem is NP-hard [8]. A straight forward application of color coding

[5] shows that this problem is in FPT. A kernel with O(k2) vertices is an immediate

consequence of the quadratic element kernel known for 3-SET PACKING [1]. Recently,

a kernel with O(k1.5) vertices was shown for this problem using interesting variants and

generalizations of the popular expansion lemma [67]. It is easy to verify that a tournament

that has k arc-disjoint cycles need not necessarily have k arc-disjoint triangles. This ob-

servation hints that packing arc-disjoint cycles could be significantly harder than packing

vertex-disjoint cycles. This is the starting point of our study. We give a bound analogous to

Erdős-Pósa using which we design a linear kernel. This in turn gives us an FPTalgorithm.

Independence number plays a crucial role in solving the problem on tournaments. So

a natural question one can ask is there a relationship between the independence number

and a polynomial size kernel? Can we extend the polynomial kernel on tournaments to the
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class of α-bounded digraphs that contains tournaments? Formally, for any integer α ≥ 1,

the class of α-bounded digraphs, denoted by Dα , is defined as follows-

Dα ={D : D is a digraph and the maximum size of an independent set in D is at most α }.

Interested in this question we study the ARC DISJOINT CYCLE PACKING problem

on Dα . Notice that an α-bounded digraph is a directed graph where the graph induced on

any α +1 vertices has at least one arc. First, we prove a theorem analogous to the Erdős-

Pósa Theorem to bound the feedback vertex set size of the input graph. Next we find an

approximate feedback vertex set as well as state the notions and results of a cut-preserving

set [70]. Working with the feedback vertex set, we give an algorithm to find the desired

polynomial kernel.

The CYCLE PACKING problelms we have considered so far are with respect to the

standard parameterization- number of disjoint cycles. The fixed-parameter tractability of

CYCLE PACKING follows from the Robertson-Seymour theorem. In 1994, Bodlaender

showed that CYCLE PACKING can be solved in O∗(2O(k2)) time [11]. The treewidth

(tw) of a graph is not larger than the size of its feedback vertex set, and that a naive

dynamic programming scheme solves CYCLE PACKING in O∗(2O(tw log tw)) time (see, e.g.,

[25]). Thus, the existence of an O∗(2O(k log2 k)) time algorithm can be viewed as a direct

consequence of the Erdös-Pósa Theorem. Recently, Lokshtanov et al. [71] obtained an

algorithm with running time O∗(2O( k log2 k
log logk )) for CYCLE PACKING, improving upon the

classical consequence of the Erdös-Pósa Theorem. However, in the next set of problems

we focus on a structural parameter rather than the solution size.

A family of structural parameters that have gained significant attention recently are

the size of modulators families of graphs. Let F be a family of graphs. Given a graph G

and a set S ⊆ V (G), we say that S is an F-modulator if G \ S is in F . For example, if F

is the family of independent sets, forests, bipartite graphs, interval graphs and chordal

graphs, then the modulator corresponds to a vertex cover, feedback vertex set, odd cycle

transversal, interval deletion set and chordal deletion set, respectively. The size of S is also
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called the vertex deletion distance to F . In CYCLE PACKING first Bodlaender et al. [13]

obtained polynomial kernels with respect to the size of vertex cover, the vertex-deletion

distance to a cluster graph and the maximum leaf number. Since CYCLE PACKING is

solvable in O∗(2O(tw log tw)) time on graphs of treewidth tw, we have that CYCLE PACKING

is FPTparameterized by vertex cover size, feedback vertex set size, pathwidth, and vertex-

deletion distance to graphs of constant treewidth. We try to contribute some results to this

line of work. However, the status of the problem when parameterized by the vertex-deletion

distance to interval graphs or chordal graphs has not yet been studied. Cycle Packing is

NP-complete on chordal graphs [46] and thus we cannot hope to have an algorithm with

running time n f (t), where t is the size of the modulator to chordal graphs, unless P = NP.

On the other hand, the classical complexity status of CYCLE PACKING on interval graphs

is not known. That is, we do not know whether CYCLE PACKING admits a polynomial

time algorithm on interval graphs. A natural graph class that is a subset of the class of

interval graphs is the one of proper interval graphs (also known as indifference graphs

and unit interval graphs in the literature). A graph is a proper interval graph if its vertices

can be assigned to intervals such that there is an edge between two vertices if and only

if their corresponding intervals have non-empty intersection. Further, this set of intervals

should satisfy the property that no interval properly contains another. It is well known that

CyclePacking can be solved in polynomial time on proper interval graphs [77]. This is the

starting point of our work.

Just as chordal graphs have clique-tree decomposition structure, proper interval graphs

have clique-path decomposition structure [58]. We combine color coding, greedy strategy

and multi layered dynamic programming to obtain an FPT algorithm. We additionally

assume that the proper interval deletion set T is part of the input. This assumption is

reasonable as given a graph G and an integer t, there is an algorithm that, in O∗(6t) time,

outputs a proper interval deletion set of size at most t (if one exists) [18, 87].

The next set of problems (HAMILTONICITY) that we consider are parameterized by
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the same structural parameter- proper interval deletion set. In CYCLE/PATH COVERING,

the task is to find minimum number of vertex disjoint cycles/paths that together cover

all the vertices. These problems are generalizations of Hamiltonian Cycle/Path problems

and are NP-hard. There has been an extensive study of structural parameters for problems

related to PATH COVER and CYCLE COVER such as CYCLE PACKING, LONGEST PATH

and LONGEST CYCLE [13, 64]. We explore the monotonicity properties of paths in proper

interval graphs to design dynamic programming algorithms that solve the above mentioned

problems. We show that PATH COVER and CYCLE COVER parameterized by the size

of a proper interval deletion set are FPT. By parameterizing PATH COVER and CYCLE

COVER with respect to the size of a proper interval deletion set as parameter, we attempt

to understand the complexity of the problem on almost proper interval graphs. Recently,

Chaplick et al. [19] obtained polynomial kernels and compression algorithms for PATH

COVER and CYCLE COVER parameterized by a different measure of similarity with proper

interval graphs. Our FPT algorithms also add to this study of structural parameterizations

for these classical problems.

3.2 ARC-DISJOINT CYCLE PACKING in tournaments (ACT)

ARC-DISJOINT CYCLE PACKING Parameter: k

Input: A graph G, a proper interval deletion set T of G and a positive integer k.

Question: Does there exist k pairwise arc-disjoint cycles in G?

An interesting consequence of Erdős-Pósa Theorem is that it leads to an FPT algorithm

for VERTEX-DISJOINT CYCLE PACKING running in time O⋆(2O(k log2 k)) (see [71] for

more details). Analogous to these results, we prove an Erdős-Pósa type theorem for

tournaments and show that it leads to an O⋆(2O(k logk)) time algorithm and a linear vertex

kernel for ARC-DISJOINT CYCLE PACKING problem in tournaments (ACT).

19



3.2.1 An Erdős-Pósa Type Theorem

In this subsection, we show certain interesting combinatorial results on arc-disjoint cycles

in tournaments.

Theorem 1. Let k and r be positive integers such that r ≤ k. A tournament T contains a

set of r arc-disjoint cycles if and only if T contains a set of r arc-disjoint cycles each of

length at most 2k+1.

Proof. The reverse direction of the claim holds trivially. Let us now prove the forward

direction. Let C be a set of r arc-disjoint cycles in T that minimizes ∑C∈C |C|. If every

cycle in C is a triangle, then the claim trivially holds. Otherwise, let C be a longest cycle

in C and let ℓ denote its length. Let vi,v j be a pair of non-consecutive vertices in C. Then,

either viv j ∈ A(T ) or v jvi ∈ A(T ). In any case, the arc e between vi and v j along with A(C)

forms a cycle C′ of length less than ℓ with A(C′)\{e} ⊂ A(C). By our choice of C , this

implies that e is an arc in some other cycle Ĉ ∈ C . This property is true for the arc between

any pair of non-consecutive vertices in C. C can have a maximum of
(ℓ

2

)
− ℓ many internal

arcs and each of them must belong to some other cycle in in some other cycle Ĉ ∈ C .

Therefore, we have
(ℓ

2

)
− ℓ≤ ℓ(k−1) leading to ℓ≤ 2k+1.

This result essentially shows that it suffices to determine the existence of k arc-disjoint

cycles in T each of length at most 2k+1 in order to determine if (T,k) is an yes-instance

of ACT. This immediately leads to a quadratic Erdős-Pósa bound. That is, for every non-

negative integer k, every tournament T either contains k arc-disjoint cycles or has an FAS

of size O(k2). Next, we strengthen this result to arrive at a linear bound.

We will use the following lemma known from [23] in the process*. For a digraph D,

let Λ(D) denote the number of non-adjacent pairs of vertices in D. That is, Λ(D) is the

number of pairs u,v of vertices of D such that neither uv ∈ A(D) nor vu ∈ A(D). Recall

*The authors would like to thank F. Havet for pointing out that Lemma 3 was a consequence of a result
of [23], as well for an improvement of the constant in Theorem 2.
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that for a digraph D, minfas(D) denotes the size of a minimum FAS of D.

Lemma 3. [23] Let D be a triangle-free digraph in which for every pair u,v of distinct

vertices, at most one of uv or vu is in A(D). Then, we can compute an FAS of size at most

Λ(D) in polynomial time.

This leads to the following main result of this section.

Theorem 2. For every non-negative integer k, every tournament T either contains k arc-

disjoint triangles or has an FAS of size at most 5(k−1) that can be obtained in polynomial

time.

Proof. Let C be a maximal set of arc-disjoint triangles in T (that can be obtained greedily

in polynomial time). If |C |≥ k, then we have the required set of triangles. Otherwise, let

D denote the digraph obtained from T by deleting the arcs that are in some triangle in

C . Clearly, D has no triangle and Λ(D) ≤ 3(k− 1). Let F be an FAS of D obtained in

polynomial time using Lemma 3. Then, we have |F |≤ 3(k−1). Next, consider a topological

ordering σ of D−F . Each triangle of C contains at most 2 arcs which are backward in this

ordering. If we denote by F ′ the set of all the arcs of the triangles of C which are backward

in σ , then we have |F ′|≤ 2(k− 1) and (D−F)−F ′ is acyclic. Thus F∗ = F ∪F ′ is an

FAS of T satisfying |F∗|≤ 5(k−1).

3.2.2 A Linear Vertex Kernel

Next, we show that ACT has a linear vertex kernel. This kernel is inspired by the linear

kernelization described in [9] for FAST and uses Theorem 2. Let T be a tournament on n

vertices. First, we apply the following reduction rule.

Reduction Rule 3.2.1. If a vertex v is not in any cycle, then delete v from T .

This rule is clearly safe as our goal is to find k cycles and v cannot be in any of them.
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To describe our next rule, we need to state a lemma known from [9]. An interval is a

consecutive set of vertices in a linear representation (σ(T ),A(T )) of a tournament T .

Lemma 4 ([9]). * Let T = (σ(T ),A(T )) be a tournament on which Reduction Rule 3.2.1

is not applicable. If |V (T )|≥ 2|A(T )|+1, then there exists a partition J of V (T ) into

intervals (that can be computed in polynomial time) such that there are |A(T )∩E|> 0

arc-disjoint cycles using only arcs in E where E denotes the set of arcs in T with endpoints

in different intervals.

Our reduction rule that is based on this lemma is as follows.

Reduction Rule 3.2.2. Let T = (σ(T ),A(T )) be a tournament on which Reduction Rule

3.2.1 is not applicable. Let J be a partition of V (T ) into intervals satisfying the properties

specified in Lemma 4. Reverse all arcs in A(T )∩E and decrease k by |A(T )∩E| where E

denotes the set of arcs in T with endpoints in different intervals.

Lemma 5. Reduction Rule 3.2.2 is safe.

Proof. Let T ′ be the tournament obtained from T by reversing all arcs in A(T )∩E. Suppose

T ′ has k−|A(T )∩E| arc-disjoint cycles. Then, it is guaranteed that each such cycle is

completely contained in an interval. This is due to the fact that T ′ has no backward arc

with endpoints in different intervals. Indeed, if a cycle in T ′ uses a forward (backward) arc

with endpoints in different intervals, then it also uses a back (forward) arc with endpoints

in different intervals. It follows that for each arc uv ∈ E, neither uv nor vu is used in these

k−|A(T )∩E| cycles. Hence, these k−|A(T )∩E| cycles in T ′ are also cycles in T . Then,

we can add a set of |A(T )∩E| cycles obtained from the second property of Lemma 4 to

these k−|A(T )∩E| cycles to get k cycles in T . Conversely, consider a set of k cycles in

T . As argued earlier, we know that the number of cycles that have an arc that is in E is at

most |A(T )∩E|. The remaining cycles (at least k−|A(T )∩E| of them) do not contain any

*Lemma 4 is Lemma 3.9 of [9] that has been rephrased to avoid the use of several definitions and
terminology introduced in [9].
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arc that is in E, in particular, they do not contain any arc from A(T )∩E. Therefore, these

cycles are also cycles in T ′.

Thus, we have the following result.

Theorem 3. ACT admits a kernel with O(k) vertices.

Proof. Let (T,k) denote the instance obtained from the input instance by applying Reduc-

tion Rule 3.2.1 exhaustively. From Theorem 2, we know that either T has k arc-disjoint

triangles or has an FAS of size at most 5(k− 1) that can be obtained in polynomial ti-

me. In the first case, we return a trivial yes-instance of constant size as the kernel. In the

second case, let F be the FAS of size at most 5(k−1) of T . Let (σ(T ),A(T )) be the linear

representation of T where σ(T ) is a topological ordering of the vertices of the directed

acyclic graph T −F . As V (T −F) = V (T ), |A(T )|≤ 5(k− 1). If |V (T )|≥ 10k− 9, then

from Lemma 4, there is a partition of V (T ) into intervals with the specified properties.

Therefore, Reduction Rule 3.2.2 is applicable (and the parameter drops by at least 1). When

we obtain an instance where neither of the Reduction Rules 3.2.1 and 3.2.2 is applicable, it

follows that the tournament in that instance has at most 10k vertices.

3.2.3 An FPT Algorithm

Finally, we show that ACT can be solved in O⋆(2O(k logk)) time. The idea is to reduce the

problem to the following ARC-DISJOINT PATHS problem in directed acyclic graphs: given

a digraph D on n vertices and k ordered pairs (s1, t1), . . . ,(sk, tk) of vertices of D, do there

exist arc-disjoint paths P1, . . . ,Pk in D such that Pi is a path from si to ti for each i ∈ [k]?

On directed acyclic graphs, ARC-DISJOINT PATHS is known to be NP-complete [36],

W[1]-hard [85] with respect to k as parameter and solvable in nO(k) time [42]. Despite

its fixed-parameter intractability, we will show that we can use the nO(k) algorithm and

Theorems 2 and 3 to describe an FPT algorithm for ACT.
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Theorem 4. ACT can be solved in O⋆(2O(k logk)) time.

Proof. Consider an instance (T,k) of ACT. Using Theorem 3, we obtain a kernel I =

(T̂ , k̂) such that T̂ has O(k) vertices. Further, k̂ ≤ k. By definition, (T,k) is an yes-instance

if and only if (T̂ , k̂) is an yes-instance. Using Theorem 2, we know that T̂ either contains

k̂ arc-disjoint triangles or has an FAS of size at most 5(k̂− 1) that can be obtained in

polynomial time. If Theorem 2 returns a set of k̂ arc-disjoint triangles in T̂ , then we declare

that (T,k) is an yes-instance.

Otherwise, let F̂ be the FAS of size at most 5(k̂−1) returned by Theorem 2. Let D

denote the (acyclic) digraph obtained from T̂ by deleting F̂ . Observe that D has O(k)

vertices. Suppose T̂ has a set C = {C1, . . . ,Ck̂} of k̂ arc-disjoint cycles. For each C ∈ C ,

we know that A(C)∩ F̂ ̸= /0 as F̂ is an FAS of T̂ . We can guess that subset F of F̂ such

that F = F̂ ∩A(C ). Then, for each cycle Ci ∈ C , we can guess the arcs Fi from F that

it contains and also the order πi in which they appear. This information is captured as a

partition F of F into k̂ sets, F1 to F̂k and the set {π1, . . . ,πk̂} of permutations where πi

is a permutation of Fi for each i ∈ [̂k]. Any cycle Ci that has Fi ⊆ F contains a (v,x)-path

between every pair (u,v), (x,y) of consecutive arcs of Fi with arcs from A(D). That is,

there is a path from h(π−1
i ( j)) and t(π−1

i (( j+1) mod |Fi|)) with arcs from D for each

j ∈ [|Fi|]. The total number of such paths in these k̂ cycles is O(|F |) and the arcs of these

paths are contained in D which is a (simple) directed acyclic graph.

The number of choices for F is 2|F̂ | and the number of choices for a partition F =

{F1, . . . , F̂k} of F and a set X = {π1, . . . ,πk̂} of permutations is 2O(|F̂ |log|F̂ |). Once such a

choice is made, the problem of finding k̂ arc-disjoint cycles in T̂ reduces to the problem

of finding k̂ arc-disjoint cycles C = {C1, . . . ,Ck̂} in T̂ such that for each 1 ≤ i ≤ k̂ and for

each 1 ≤ j ≤ |Fi|, Ci has a path Pi j between h(π−1
i ( j)) and t(π−1

i (( j+1) mod |Fi|)) with

arcs from D = T̂ − F̂ . This problem is essentially finding r = O(|F̂ |) arc-disjoint paths in

D and can be solved in |V (D)|O(r) time using the algorithm in [42]. Therefore, the overall

running time of the algorithm is O⋆(2O(k logk)) as |V (D)|= O(k) and r = O(k).
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3.3 ARC DISJOINT CYCLE PACKING in α-bounded di-

graphs

In this section we will design a polynomial size kernel for the ARC DISJOINT CYCLE

PACKING problem in α-bounded digraphs. We make use of the independence of vertices

in α-bounded digraphs to design a polynomial kernel. Towards that, in Subsection 3.3.1,

we prove a theorem analogous to the Erdős-Pósa Theorem to bound the feedback vertex

set size. In Subsection 3.3.2, we find an approximate feedback vertex set as well as state

the notions and results of a cut-preserving set [70]. Working with the feedback vertex set,

in Subsection 3.3.3 we give an algorithm to obtain the desired polynomial kernel.

3.3.1 An Erdős-Pósa type theorem for α-bounded digraphs

Here we show that there exists a function f (r) =O(2α2r2) such that for each non-negative

integer r, every digraph G ∈ Dα either contains r vertex disjoint cycles or has a directed

feedback vertex set consisting of f (r) vertices. We start by showing a density lemma about

digraphs in Dα and then use it to obtain the desired result.

Lemma 6. Any α-bounded digraph G on n vertices has at least n2/2α2 arcs.

Proof. Let S ⊆V (G) be any set of size α +1. Then by definition all the vertices in S can

not be independent in G i.e. there must be at least one arc between some two vertices in S.

Let’s call this arc a witness for S (if there are more than one arcs, pick any arbitrary arc as

a witness). The graph G has a total of
( n

α+1

)
many vertex sets of size α +1. And each of

them must have a witness arc. Hence there are at least
( n

α+1

)
witness arcs (not necessarily

different arcs). But any arc xy can witness at most
(n−2

α−1

)
sets of size α +1, since x and y
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are forced to be present in the set. This implies

(3.1)

|E(G)|
(

n−2
α −1

)
≥ no. of witnesses ≥

(
n

α +1

)
=⇒ |E(G)|≥

( n
α+1

)(n−2
α−1

) ≥ (n2/2α
2)

Hence G has at least n2

2α2 many arcs.

arcs used in cycle1

arcs used in cycle2

unused arcs

Fig 3.1: Replacement procedure to get a nice collection of cycles

Now we are ready to present our main result of this subsection.

Theorem 5. Any α-bounded digraph G that does not have k arc disjoint cycles, has a

feedback vertex set (FVS) of size at most 2α2k2. Furthermore, there exists a maximum size

family of arc disjoint cycles, where each cycle has length at most 2α2k.

Proof. Suppose the graph G has a maximum of k′ many arc disjoint cycles where k′ < k.

Let C = {C1, . . . ,Ck′} be a nice collection of k′ arc disjoint cycles i.e. there is no other

set of k′ arc disjoint cycles, which has less arcs than C . Suppose Ci is the longest cycle

in C with length l. We know that any induced subgraph of an α-bounded digraph is also

α-bounded. Hence from Lemma 6, it follows that G[V (Ci)] has at least l2

2α2 edges. So cycle

Ci has ( l2

2α2 − l) many internal chords as the only arcs that are not chords are the l edges

used by the cycle.
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Let the cycle be Ci = (v1 → v2 → v3 . . .→ vl → v1). We try to find a replacement cycle

C∗ in the following manner. Let viv j be any internal chord of Ci. If i < j, then C∗ = (v1 →

. . . → vi → v j → v j+1, . . . → vl → v1), otherwise C∗ = (v j → v j+1 . . . → vi → v j). Now

clearly C∗ has length strictly smaller than the length of Ci. But C was a nice solution. The

only reason we can not replace the cycle Ci in C with C∗ is because there must be some

other cycle C j such that {(vi,v j)} ∈ E(C j). Since the longest cycle in C has size l, the

total number of edges used by all other cycles in C is at most l(k′−1). But all the internal

chords inside cycle Ci must be used by other cycles (otherwise C is not a nice collection

of cycles). This implies

(3.2)

l2

2α2 − l ≤ l(k′−1)

=⇒ l ≤ 2α
2k′ ≤ 2α

2k

So there is a feedback vertex set F ′ =
k′⋃

i=1
V (Ci) of size at most 2α2k2 and in the nice

collection C each cycle has length at most 2α2k. In Section 3.3.2, in fact we improve the

bound on size of FVS to α2k2 when the graph does not have k arc disjoint cycles.

3.3.2 Algorithm to find an FVS

Next we make the proof of Theorem 5 algorithmic. We will use this directed feedback

vertex set to design our kernel. We first state the algorithm in the box.
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Algorithm 1(G ∈ Dα ,k)

1. Initialize F = /0, G′ = G, i = 0.

2. Run Breadth First Search on each vertex of G′. Find the shortest cycle Ci. If

G′ is acyclic goto Step 5.

3. If the shortest cycle Ci has length more than 2α2(k− i), return G has k arc

disjoint cycles.

4. F = F ∪V (Ci), G′ = G[V (G′)\V (Ci)], i = i+1.

5. If i = k, return G has k arc disjoint cycles.

6. If G′ is acyclic, return FVS F , otherwise goto Step 2.

From Theorem 5, any α-bounded digraph H which not does not have k arc disjoint

cycles, has a cycle of size at most 2α2k. In other words any α-bounded digraph H, where

the smallest cycle has length more than 2α2k, has at least k arc disjoint cycles. In the ith

iteration of Step 2 of the above algorithm, we have already found i arc disjoint cycles

{C1, . . .Ci}. If the shortest cycle in G[V (G)\
i⋃

j=1
V (C j)] has length more than 2α2(k− i),

then it has at least k− i arc disjoint cycles. But then the original graph G definitely has k

arc disjoint cycles. This proves the correctness of the 3rd Step of the algorithm. In Step

5, if we can get k vertex disjoint cycles then of course G also has k arc disjoint cycles.

If the graph G does not have k arc disjoint cycles, then in any ith iteration, the graph G′

does not have more than k− i arc disjoint cycles. So it also has a cycle of length at most

2α2(k− i) from Theorem 5. This, together with the fact that the algorithm runs at most k

many iterations implies the FVS F that we get at the end of the algorithm has a maximum

size of 2α2((k− 1)+ (k− 2)+ . . .+ 1) ≤ α2k2. Since each step of the algorithm takes

poly(n) time and each step is also executed at most poly(n) times, the entire algorithm runs

in poly(n) time.
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A cut-preserving set

Definition 7 ([70]). For any digraph G, a positive integer k and x,y ∈V (G), we say that

Z ⊆ V (G) is a k-cut-preserving set for (x,y) in G, if the following properties hold. Let

L = V (G) \Z . For any path P from x to y in G, there exist paths P1,P2, ...,Pe and a set

L1, ...,Le where each Li is a list of k paths with the following properties:

• For every i ∈ [e], Pi is a subpath of P from si to ti.

• The Pis are internally disjoint and contain all vertices in P∩L as inner vertices.

• for every i ∈ [e], Li is a set of k vertex disjoint paths from si to ti using only vertices

of Z .

• Replacing in P each Pi by one of the paths in Li yields a path of Z from x to y.

x y

a cb d

Z

Pi Pj

Li Lj

Fig 3.2: A cut-preserving set Z for (x,y)

Figure 2 gives an easy depiction of a cut-preserving set. Lochet et al. [70] have recently

shown that in an α-bounded digraph G, from any x to y a k-cut-preserving set of size

f (k,α) can be found in polynomial time where f (k,α) = (22k5)
4α

.

Theorem 6 ([70]). Let D be an α-bounded acyclic digraph and x,y ∈V (D) such that any

(x,y)-vertex- cut in D has size at least k+1. Then one can, in polynomial time, compute a

k-cut-preserving (x,y) in D of size at most (22k5)
4α

. Moreover in polynomial time one can

obtain k+1 vertex disjoint paths from u to v where each path has length at most 2α +1.
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3.3.3 Algorithm to compute the kernel

In this subsection we gather everything and design our kernel. We start with the description

and then prove its correctness and finally give the size bound.

Algorithm 2

1. Initialize TCL (total cycle length)=2α2k2, i = 1, Kernel = F , ℓ (max cycle

length)= 2α2k.

2. Let σ ′ be an ordered set on F × F such that σ ′ =

((u1,u1)(u1,u2),(u1,u3), . . .(u|F |,u|F |)). Now fix an ordered set

σ of size k|F |2 such that, ∀ j ∈ [k|F |2], σ( j) = σ ′(⌈ j/k⌉). In

σ each element from σ ′ is repeated k consecutive times i.e.

σ=((u1,u1),(u1,u1), . . .(u1,u2),(u1,u2), . . .(u|F |,u|F |),(u|F |,u|F |)).

3. Intitialize i = 1.

4. Let σ(i) = (x,y). Get a (K = TCL+ ℓ(2α +1))-cut-preserving set Z from

x to y of size f (K ,α). Kernel = Kernel ∪Z , TCL = K .

5. if i=k|F |2 (all elements of σ are exhausted) stop, else i = i+1, go to Step 4.

6. Return Kernel.

3.3.4 Running time and kernel size analysis

Step 1 and Step 2 takes nO(1) time. Step 4 and 5 of the algorithm are executed k|F |2 many

times and in each iteration, we spend at most nO(1) time to get the cut-preserving set Z

[70]. Hence our algorithm runs in polynomial time.

Next we determine the final size of Kernel set. Let g(i) and TCL(i) denote the size of

Kernel and TCL in the ith iteration. We get the following recurrence equations from the
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above algorithm and solve them to get a bound on the Kernel size:

1. g(i) = g(i−1)+ f (TCL(i−1)+ ℓ(2α +1)),α).

2. TCL(i) = TCL(i−1)+ ℓ(2α +1).

3. g(0) = α2k2,TCL(0) = 2α2k2.

Notice that TCL and g are strictly increasing functions. We compute their maximum values

below.

(3.3)
TCL(i) = 2α

2k2 + i(ℓ(2α +1))

= 2α
2k2 + i(2α

2k(2α +1))

(3.4)

TCL(k|F |2) = TCL(α4k5)

= 2α
2k2 +α

4k5(2α
2k(2α +1))

≤ 5α
7k6.

Since g and f both are increasing functions, g(k|F |2) has the maximum value.

(3.5)

g(k|F |2)≤ g(0)+ k|F |2. f (TCL(k|F |2),α)

≤ α
2k2 +α

4k5 f (5α
7k6,α)

≤ 2α
4k5 f (5α

7k6,α)

≤ 2α
4k5(110α

35k30)
4α

= P1(k,α)

Hence g admits a maximum value (Kernel size) of P1(k,α). Now if we can show that

G[Kernel] has k arc disjoint cycles iff G has k arc disjoint cycles, then the problem indeed

admits a kernel of size P1(k,α).
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3.3.5 Correctness of the algorithm

In the forward direction, if G[Kernel] has k arc disjoint cycles, then the graph G also

has the same k arc disjoint cycles. We will use induction to prove the reverse direction.

Suppose G has k arc disjoint cycles. Using the arguments in Theorem 5, we know there is

a nice set of k arc disjoint cycles C = {Ci}k
i=1, where the total number of arcs in C is at

most 2α2k2 and any cycle Ci has length li(≤ 2α2k). Let us define the notions of segment

and subsegment for our proof. Segments for C are the paths from x to y (where x,y ∈ F)

and there is no other vertices of F in between. Subsegments are the maximal subpaths of

segments that lie outside the Kernel. Refer to Fig.3.

F = {x, y, z}
k = 3

σ = {(x, x), (x, x), (x, x), (x, y), (x, y), (x, y), ..., (z, z)}

x x

x

z z

y

yseg1

seg7

seg6

seg5
seg4

seg3

seg2

x
y

Kernel

Subseg Ss1t1

Zoom In

s1 t2s2t1

A nice
Cycle packing

Fig 3.3: Segments and subsegments

Let Ci = (ui1 → Si12 → ui2 → Si23 → ui3 . . .uiki
→ Siki(ki+1) → ui(ki+1)) , where ui j

vertices are from the modulator F and ui1 = ui(ki+1) . Si j( j+1) denotes the segment of cycle

Ci from the vertex ui j to ui( j+1) . In each induction step we will replace a segment between

two modulator vertices with another segment that is completely contained inside Kernel,

while maintaining the property that even after the replacement, the cycles in C are still

arc disjoint. Notice each cycle in a nice collection can have at most |F | many segments

and hence there are at most α2k3 many segments in C . If we are able to replace all the

segments (a maximum of α2k3 many), then Kernel actually will have k arc disjoint cycles

contained in it.
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Let Si =
ki⋃

j=1
(ui j ,ui( j+1)) and S = ⊎k

i=1Si. Observe that a pair (x,y) can appear at most k

many times in S (If any vertex appears more than once in a cycle, we can get another cycle

that uses a strict subset of the arcs used by the original cycle). We use induction below to

prove the correctness. Our induction properties will be as follows:

1. In qth step, we are able to replace the segments between the first q pairs of vertices

of σ that appear in S, with segments that are completely contained inside Kernel.

2. There exists a collection of arc disjoint cycles with the replaced segments whose

total length is not more than TCL(q).

Induction step 1 (first segment replacement from Kernel)

Let C be a nice collection of arc disjoint cycles and (x = ui j ,y = ui( j+1)) be the pair of

vertices in S that appears first in σ . We will replace the segment from x to y with a segment

completely contained inside Kernel if it already isn’t, while still keeping it arc disjoint

from all other segments. If the segment Si j( j+1) is completely inside the computed Z in

round 1, then it satisfies both the induction properties from Theorem 5. Otherwise for the

pair (x,y), in Kernel we have stored enough vertices (Z ) to get a (TCL(0)+ ℓ(2α +1))-

cut-preserving set.

From the cut-preserving set properties we have segment Si j( j+1) = P = (x = s0 →

Ss0s1 → s1 →Ss1t1 → t1 →St1s2 . . .sl →Ssltl → tl →Stlt f → t f = y), where V (P)\Z =

∪l
j=1V (Ss jt j) is the set of vertices from P that are not in Kernel. Notice that l ≤ ki ≤ ℓ.

And Z is a (TCL(0)+ ℓ(2α +1))-cut-preserving set. Then from Theorem 6 we can get

(TCL(0)+(ℓ(2α +1)) many vertex disjoint paths each with length at most 2α +1 from

s j to t j for any j that are completely inside Kernel.

First subsegment replacement

Hence from s1 to t1 there is a path that is vertex disjoint from V (C ), since |V (C )|=

2α2k2 = TCL(0). Let this path be L1 that has length at most 2α + 1 and is completely
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inside Z . Now replace the subsegment Ss1t1 with L1 in P to get a new segment from

s0 to t f , P′ = (s0 → Ss0s1 → s1 → L1 → t1 → St1s2 . . . → t f ) and get a new set of arc

disjoint cycles by replacing the segment Si j( j+1) with P′ i.e. C = C \{Ci}∪{Ci = (ui1 →

Si12 . . .ui j → P′ → ui( j+1) . . . → Siki(ki+1) → ui(ki+1))}. Now the updated C has at most

2α2k2 +2α +1 many vertices (or arcs) and L1 is completely contained inside Kernel.

Second subsegment replacement

Similarly from s2 to t2 there are at least (TCL(0)+ ℓ(2α +1)) vertex disjoint paths in

Z , each with length at most 2α +1. In the udpated C , there are at most (TCL(0)+2α +1)

vertices, hence there is a path L2 from s2 to t2 that is vertex disjoint from V (C ) and is

completely inside Z . We replace the subsegment Ss2t2 with L2 and get a new path

P′ = (s0 → Ss0s1 → s1 → L1 → t1 → St1s2 → s2 → L2 → t2 . . .→ t f ). We also get a new

set of arc disjoint cycles C = C \ {Ci}∪ {Ci = (ui1 → Si12 . . .ui j → P′ → ui( j+1) . . . →

Siki(ki+1) → ui(ki+1))}. The new C has at most 2α2k2 +2(2α +1) many arcs. Moreover L1

and L2 are completely contained inside Kernel.

All l subsegments replacement

But l ≤ ℓ, as every cycle in the beginning had length at most 2α2k. Hence we will be

able to apply the above replacement procedure for all Ssiti , where i ≤ l. And get a new seg-

ment P′ = (s0 →Ss0s1 → s1 → L1 → t1 . . .→ sl → Ll → tl →Stlt f → t f ) which is comple-

tely contained inside Kernel. Now in Ci replacing the segment from ui j to ui( j+1) by P′ and

updating the C , we get a set of arc disjoint cycles where the segment from ui j to ui( j+1) is

completely contained inside Kernel. The updated set of arc disjoint cycles C uses at most

2α2k2+ℓ(2α +1) many arcs. This proves the correctness for the first step of the induction.

Let the induction properties hold true for all j < q. So we are able to sucsessfully

replace(or keep) the segments between the first q−1 pairs of vertices in S that appear in σ

with segments completely inside Kernel, such that the new collection of arc disjoint cycles

with the replaced segments uses at most TCL(q−1) number of arcs.
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Induction step q (qth segment replacement from Kernel)

Let (x′ = ui′ j′ ,y
′ = ui′( j′+1)

) be the qth pair of vertices of σ that appear in S. The (q−1)

other pairs from S that appear in σ before (x′,y′), their segments have already been replaced

in C in the first (q−1) steps of induction. Let Z be a K (= TCL(q−1)+ℓ(2α +1))-cut-

preserving set from x′ to y′ of size f (K ,α). Let the collection of cycles after the (q−1)

replacements be C = {Ci}k
i=1. Let Ci′ = (ui′1 → S ′

i′12 → ui′2 . . .→ ui′ki′
→ S ′

i′ki′ (ki′+1)
→

ui′(ki′+1)
), where ui′ j′ and ui′( j′+1)

vertices are from the modulator F and ui′1 = ui′(ki′+1)
. The

segment of cycle Ci from the vertex ui′ j′ to u′i( j′+1)
is denoted by S ′

i′ j′( j′+1)
. For the pair

(x′,y′), in Kernel we have stored enough vertices (Z ) to get a K -cut-preserving set.

If the segment S ′
i′ j′( j′+1)

is completely inside Z , we do not need to replace the segment

at all and we can move onto the next segments. All the q segments are completely contained

in Kernel and the total length of all cycles in C is at most TCL(q−1) ≤ TCL(q). This

satisfies the induction properties for qth step.

If the segment is not completely contained in Z then from Theorem 6, we get the

segment of the form S ′
i′ j′( j′+1)

= P = (x′ = s′0 →S ′
s′0s′1

→ s′1 →S ′
s′1t ′1

. . .→S ′
s′rt ′r → t ′r →

S ′
t ′rt ′f

→ t ′f = y′), where S ′
s′it

′
i

are the subsegments that are not in Z i.e. V (P) \A =

∪r
i=1V (S ′

s′it
′
i
). Notice that r ≤ ki′ ≤ ℓ. But since Z is a K -cut-preserving set, we can get

K many vertex disjoint paths each with length at most 2α +1 from s′j to t ′j for all j.

First subsegment replacement

Hence from s′1 to t ′1 there is a path that is vertex disjoint from V (C ) since |V (C )|=

TCL(q−1). Let this path be L′
1 that has length at most 2α +1 and is completely inside

Z . Now replace the subsegment S ′
s′1t ′1

with L′
1 in P to get a new path from s′0 to t ′f . Let

P′ = (s′0 → S ′
s′0s′1

→ s′1 → L′
1 → t ′1 . . .→ t ′f ). We get a new set of arc disjoint cycles by

replacing the segment Si′ j′( j′+1)
with P′ i.e. C = C \Ci ∪{Ci = (ui′1 → S ′

i′12 . . .ui′ j′ →

P′ → ui′ j′+1
. . .→S ′

i′ki′ (ki′+1)
→ ui′(ki′+1)

)}. The updated C has at most (TCL(q−1)+2α +
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1) many arcs and L′
1 is completely contained inside Kernel.

Second subsegment replacement

Similarly from s′2 to t ′2, there are at least K vertex disjoint paths in Z each with length

(2α + 1). In the updated C , there are at most TCL(q− 1)+ (2α + 1) arcs. Hence there

is a subsegment(path) L′
2 from s′2 to t ′2 that is vertex disjoint from V (C ) and completely

contained inside Z . We replace the subsegment S ′
s′2t ′2

with L′
2 and get a new path from

s′0 to t ′f , P′ = (s′0 → S ′
s′0s′1

→ s′1 → L′
1 → t ′1 → S ′

t ′1s′2
→ s′2 → L′

2 → t ′2 . . .→ t ′f ). We get

a new set of arc disjoint cycles by replacing the segment C = C \ {Ci}∪{Ci = (ui′1 →

S ′
i′12 . . .ui′ j′ → P′ → ui′( j′+1)

. . .→ ui′
(ki′+1))

}. The new C has at most TCL(q−1)+2(2α +

1) many arcs. Moreover L′
1 and L′

2 are completely contained inside Kernel.

All r subsegments replacement

But r ≤ ℓ, as every cycle in the beginning had length at most 2α2k. Hence we will be

able to apply the above replacement procedure for all S ′
s′it

′
i
, where i ≤ r. And get a new

segment P′ = (s′0 → S ′
s′0s′1

→ s′1 → L′
1 → t ′1 . . .→ s′r → L′

r → t ′r → S ′
t ′rt ′f

→ t ′f ) which is

entirely contained inside Kernel. Now in Ci′ replacing the segment from x′ to y′ by P′ and

updating C , we get the set of arc disjoint cycles where the segment from ui′ j′ to ui′( j′+1)

is completely contained inside Kernel. The updated set of arc disjoint cycles C uses at

most TCL(q− 1)+ ℓ(2α + 1) = TCL(q) many arcs. This proves the correctness of the

induction.

Theorem 7. ARC DISJOINT CYCLE PACKING in α-bounded digraphs, when parame-

terized by the number of cycles k, admits a kernel of size P1(k,α) where P1(k,α) =

2α4k5(110α35k30)
4α

.
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para-NP-hard

FPT (Theorem 10) + no polynomial kernel

FPT + no polynomial kernel
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Fig 3.4: Structural parameterizations of Cycle Packing. For deletion distance parameters,
assume that a modulator is part of the input. The parameter values are the minimum possible
for a given graph. An arrow from parameter x to parameter y means that necessarily x ≥ y.

3.4 Vertex-Disjoint Cycle Packing parameterized by pro-

per interval deletion set

In this subsection we will focus on VERTEX-DISJOINT CYCLE PACKING parameterized

by the structural parameter proper interval deletion set and will design an FPTalgorithm

running in time O∗(2O(t log t)) where t is the size of the deletion set. We state the currently

known results on VERTEX-DISJOINT CYCLE PACKING parameterized by different struc-

tural parameters in the diagram below. And for this section we will interchangeably use

the terms CYCLE PACKING and VERTEX-DISJOINT CYCLE PACKING . We will use r to

denote size of the packing and t to denote the proper interval deletion set though out this

subsection.

CYCLE PACKING Parameter: |T |
Input: A graph G, a proper interval deletion set T of G and a positive integer r.

Question: Does there exist r pairwise vertex-disjoint cycles in G?
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We show that this problem is FPT and this is the main result of this section.

Theorem 8. CYCLE PACKING parameterized by the size t of a proper interval deletion set

can be solved in O∗(2O(t log t)) time.

We assume that the proper interval deletion set T is part of the input. This assumption

is reasonable as given a graph G and an integer t, there is an algorithm that, in O∗(6t) time,

outputs a proper interval deletion set of size at most t (if one exists) [18, 87].

Overview of our Algorithm and Techniques. The FPT algorithm combines various

ingredients like color coding, greedy strategy and a multi-layered dynamic programming

routine. One of the most important properties of proper interval graphs that makes this

graph class amenable to elegant polynomial-time algorithms for several classical problems

is the existence of proper interval orderings [75]. A proper interval ordering is an ordering

v1, . . . ,vn of the vertices of a proper interval graph such that for any two adjacent vertices

vi and v j, the set {vi,vi+1, . . . ,v j} is a clique (a set of pairwise adjacent vertices). This

ordering also leads to a partition (called clique partition) of the vertices into a sequence of

disjoint cliques such that the endpoints of any edge are in the same clique or in consecutive

cliques. Our algorithm crucially uses the properties of such partitions and proper interval

orderings. We essentially reduce the problem of finding cycles in G to finding appropriate

paths in G−T (which is a proper interval graph). Our approach consists of (i) a guessing

phase, where we determine important relations between the vertices of T and the rest of the

graph G−T . This allows us to replace the vertices in T by variables that capture precisely

the roles of those vertices; (ii) a coloring phase, which allows us to separate the tasks

associated with individual variables, that later allows us to employ a greedy strategy; (iii) a

dynamic programming routine over a clique partition that incorporates a greedy strategy

using the properties of a proper interval ordering to find an assignment to these variables.

An illustrative overview of the algorithm is given in Figure 3.5.

Now, we explain each of the phases in detail. In the first phase, we reduce CYCLE

PACKING to multiple instances of a constraint satisfaction problem which we call CON-
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STRAINED PATH ASSIGNMENT. For this purpose, we show the existence of a solution with

“nice” properties. The properties of such a solution allow us to reduce CYCLE PACKING to

an auxiliary problem which is just a constrained variant of CYCLE PACKING. The idea

behind this reduction is the following. Any solution consists of cycles of two types; those

cycles that are entirely contained in G−T and those cycles that have a vertex from T . The

number of cycles that contain a vertex from T is at most |T |. We first guess this number ℓ.

Then, for each of the ℓ cycles, we guess the vertices from T that it contains and also the

order in which they appear. This information is captured as a partition of T into ℓ ordered

sets, T1 to Tℓ. Any cycle Ci with Ti ⊆ T contains a path between every pair of consecutive

vertices of Ti with internal vertices from G−T . The total number of such paths in these ℓ

cycles is |T |. We guess the number of internal vertices of each such path as being zero, one,

two or at least three. We further observe that paths with at least three internal vertices can

be assumed to satisfy a certain condition regarding their intersections, which we explicitly

encode as a constraint. This observation specifically uses the properties of proper interval

graphs that distinguishes this graph class from the superclass of interval graphs. Then, the

problem boils down to finding a collection of vertex-disjoint paths in G−T satisfying

certain constraints.

As these paths are all completely contained in G−T , we can delete T from G once the

constraints to be satisfied are encoded. For this encoding, we introduce four sets of variables.

Type 1 and Type 2 variables together are placeholders for paths of length two. Type 3

variables correspond to paths of length one. These three types of variables should simply be

assigned to vertices. Finally, Type 4 variables are placeholders for paths of length at least

three, where in practice we only demand such paths to be of length at least two, but still

retain the intersections-related constraint. Apart from the length constraints (specified as

variable types), the endpoints of the solution paths need to satisfy the adjacency relationship

with respect to T . These constraints are captured using appropriate functions from the

variables to a collection of subsets of V (G−T ). Furthermore, we have to make additional

guesses concerning orientations of paths with respect to the clique partition. The task is
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then to find an assignment to the variables satisfying these constraints that maximizes the

maximum number of vertex-disjoint triangles in the remaining (proper interval) graph.

This completes the first phase of the algorithm.

In the second phase, we reduce CONSTRAINED PATH ASSIGNMENT to a “colored”

variant called COLORFUL CONSTRAINED PATH ASSIGNMENT using color coding. Let S

denote the set of variables of Type 1, 2 and 3. Let W denote the set of variables of Type 4.

We color the graph with |S| colors and find a solution (which is an assignment of paths

to variables in S∪W ) satisfying certain color constraints. Such a solution (called colorful

solution) is one in which any pair of vertices assigned to distinct variables of S have distinct

colors. This property is independent of the assignment to variables in W . By looking for

only colorful solutions, we not only reduce the search space of solutions but also make

the assignment to two variables in S independent of each other. This independence allows

us to resort to a greedy strategy in the next phase where we only look for a canonical

solution. Informally, a canonical solution is a colorful solution that is aligned to the left

or to the right with respect to the proper interval ordering where we interpret leftmost as

“first” and rightmost as “last”. The third and final phase is an algorithm to find a canonical

solution, if it exists, thereby solving COLORFUL CONSTRAINED PATH ASSIGNMENT.

This is indubitably the most technical part of the FPT algorithm that employs a dynamic

programming routine incorporating a greedy strategy over the clique partition of G−T to

find a suitable assignment to variables in S∪W . We use dynamic programming primarily to

assign paths to W and resort to a greedy choice when it comes to assigning paths to S. This

greedy strategy is of the flavour “choose the first/last vertex from the vertices belonging to

some specific restriction of a color set”. This choice naturally follows from the definition

of a canonical solution and from the properties of a proper interval ordering (and clique

partition).

Kernelization Complexity. There is a kernel lower bound result known for CYCLE

PACKING with respect to the solution size r by a reduction from DISJOINT FACTORS [14].
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Fig 3.5: Illustrative Overview of the Algorithm

This reduction constructs a graph that is obtained by adding r vertices adjacent to some

vertices of a path. As a path is a proper interval graph, it follows that the graph has a proper

interval deletion set of size r. Therefore, it follows that CYCLE PACKING parameterized

by the size of a proper interval deletion set does not admit a polynomial kernel unless NP

⊆ coNP/poly.

Next we will list some properties of proper interval graphs which we are going to use

throughout this section.

3.4.1 Set of cycles in proper interval graphs

Throughout the discussion, for a proper interval graph G, we fix an interval representation

along with the proper interval ordering π and the clique partition Q obtained from it. Next,

we observe some properties of a collection of cycles in a proper interval graph. As every

induced cycle in a proper interval graph is a triangle, the following property holds.

Proposition 8. Let C be a set of vertex-disjoint cycles in a proper interval graph G. Then,

G has a set C ′ of vertex-disjoint triangles with |C |= |C ′|.

The next property follows from Proposition 111.
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Proposition 9. Let C be a triangle in a proper interval graph G with clique partition

{Q1, . . . ,Qq}. Then, there is an integer i ∈ [q−1] such that C ⊆ Qi ∪Qi+1.

Now, we define the notion of a nice set of triangles.

Definition 10. (Nice set of triangles) Let G be a proper interval graph with clique partition

{Q1, . . . ,Qq} and proper interval ordering π . A set C = {C1, . . . ,Cr} of vertex-disjoint

triangles in G is a nice set of triangles if it satisfies the following properties.

• (NT.1) For each i ∈ [q], at most two vertices in Qi are not present in any triangle of

C ′.

• (NT.2) For each i ∈ [q−1], at most two vertices in Qi are present in triangles in C ′

that have vertices from Qi+1.

• (NT.3) For each i ∈ [q−1], at most two vertices in Qi+1 are present in triangles in

C ′ that have vertices from Qi.

Lemma 11. Let G be a proper interval graph with clique partition {Q1, . . . ,Qq} and

proper interval ordering π . If G has a maximal set C of vertex-disjoint triangles, then G

has a nice maximal set C ′ of triangles with |C |≤ |C ′| that can be obtained in polynomial

time.

Proof. First, if there is a clique Qi such that |Qi\V (C )|> 2, then C is not maximal because

any set of three distinct vertices from Qi \V (C ) can be added to C to get a larger set of

vertex-disjoint triangles containing C . Next, suppose there is a clique Qi that has three

vertices a,b,c that are present in triangles of C that have vertices from Qi+1. Consider the

following cases. In this analysis, vertex identifiers with subscripts correspond to vertices in

Qi+1 and the others correspond to vertices in Qi. In each of the cases, we identify a set C ′

of vertex-disjoint triangles that is at least as large as C and therefore replaces C . Note that

in each of these cases, if C satisfies (NT.1), then C ′ too satisfies (NT.1). Let C1,C2 and C3

be the triangles in C that contain a, b and c, respectively.
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• C1,C2 and C3 are all distinct. From Proposition 9, each of these triangles is of one of

the following types.

– C1 = {a,a1,a2}, C2 = {b,b1,b2} and C3 = {c,c1,c2}. Then, C ′=(C \{C1,C2,

C3})∪ ({{a,b,c},{a1,b1,c1},{a2,b2,c2}}).

– C1 = {a,d,a1},C2 = {b,b1,b2}, and C3 = {c,c1,c2}. Now, C ′=(C \{C1,C2})

∪({{a,b,d},{a1,b1,b2}}).

– C1 = {a,d,a1},C2 = {b,e,b1}, and C3 = {c,c1,c2}. Here, C ′=(C \{C2,C3})

∪({{b,e,c},{b1,c1,c2}}).

– C1 = {a,d,a1},C2 = {b,e,b1}, and C3 = {c, f ,c1}. Now, C ′=(C \{C1,C2,C3})

∪({{a,b,c},{a1,b1,c1},{d,e, f}}).

• C1 = C2. Once again from Proposition 9, each of C1,C2 and C3 is of one of the

following types.

– C1 =C2 = {a,b,x1} and C3 = {c,y1,z1}. Then, C ′=(C \{C1,C3})∪({{a,b,c},

{x1,y1,z1}}).

– C1 = C2 = {a,b,x1} and C3 = {c,d,y1}. Let z denote the vertex from X =

{a,b,c,d} that maximizes π(z). As a is adjacent to x1 and π(x1)> π(z)≥ π(a),

it follows that z is adjacent to x1 as well from Proposition 110. Similarly, as

c is adjacent to y1 and π(y1) ≥ π(z) ≥ π(c), z too is adjacent to y1. Then,

C ′ = (C \{C1,C3})∪ ({X \{z},{z,x1,y1}}).

Repeating this replacement procedure, we obtain a set C of triangles that satisfies (NT.1)

and (NT.2). Finally, suppose there is a clique Qi+1 that has more than two vertices that

are present in triangles of C that have vertices from Qi. Then, there are four vertices

v,x,y,z ∈ Qi+1 that are in triangles C1 = {a,x,v} and C2 = {b,y,z} where a,b ∈ Qi by

(NT.2). Without loss of generality let π(a) < π(b). Let u denote the vertex from X =

{v,x,y,z} that minimizes π(u). As a is adjacent to x and π(a)< π(u)≤ π(x), it follows

that a is adjacent to u as well from Proposition 110. Similarly, since a is adjacent to u and
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π(a)< π(b)< π(u), b is adjacent to u too. Then, C ′=C \{C1,C2}∪({X \{u},{u,a,b}}).

Further, C ′ satisfies (NT.1) and (NT.2) as C satisfies them. Repeating this as long as

possible ensures that (NT.3) is satisfied.

3.4.2 Reduction to Constrained Path Assignment

In this section, we show how to reduce an instance I = (G,T,r) of CYCLE PACKING to

multiple instances of CONSTRAINED PATH ASSIGNMENT. We first define the notion of a

nice set of cycles.

Definition 12. (Nice set of cycles) Let G be a graph and T ⊆V (G) be a proper interval de-

letion set. Let H be the proper interval graph G−T with clique partition Q = {Q1, . . . ,Qq}.

A set C = {C1, . . . ,Cr} of vertex-disjoint cycles in G is a nice set of cycles if it satisfies the

following properties.

• (NC.1) For each i ∈ [r], if V (Ci)⊆V (H), then Ci is a triangle.

• (NC.2) For each i ∈ [r] with V (Ci)∩T ̸= /0, if Ci has a path P with V (P) ⊆ V (H),

then for each j ∈ [q], |V (P)∩Q j|≤ 2.

• (NC.3) For each j ∈ [q], let ℓ j denote the number of maximal paths P1, . . . ,Pℓ j , each

of length at least three, such that for each i ∈ [ℓ j] there exists a cycle Cki ∈ C such

that V (Pi)⊆V (Cki)∩V (H), and V (Pi)∩Q j ̸= /0. Then, ℓ j ≤ 14.

Lemma 13. Let T ⊆ V (G) be a proper interval deletion set of a graph G. Let H be

the proper interval graph G−T with clique partition Q = {Q1, . . . ,Qq}. Given a set C

of r vertex-disjoint cycles, a nice set C ∗ of r vertex-disjoint cycles can be obtained in

polynomial time.

Proof. From Proposition 8, C satisfies (NC.1) as H is a proper interval graph. Suppose

there is a cycle C ∈ C and a clique Q ∈ Q with |V (C)∩Q|≥ 3. Let a,b,c be three distinct
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vertices in V (C)∩Q. Then, C ′ = (C \{C})∪{a,b,c} is another set of r vertex-disjoint

cycles in G. By applying this procedure as long as possible, we obtain a set C ′ of r vertex-

disjoint cycles in G that satisfies (NC.2). Observe that if C satisfies (NC.1), then C ′ too

satisfies (NC.1). Consider a clique Q j where j ∈ [q]. Let ℓ j denote the number of maximal

paths P1, . . . ,Pℓ j , each of length at least three, such that for all i ∈ [ℓ j] there exists a cycle

Ci ∈ C such that V (Pi)⊆V (Ci)∩V (H), and V (Pi)∩Q j ̸= /0. Let P = {P1, . . . ,Pℓ j}. From

Proposition 111, each path in P is in at least one of the following subsets.

• P1 = {P ∈ P : |V (P)∩Q j|= 1, |V (P)∩Q j−1|≥ 1, |V (P)∩Q j+1|≥ 1}.

• P2 = {P ∈ P : |V (P)∩Q j|= 1, |V (P)∩Q j−1|≥ 1, |V (P)∩Q j−2|≥ 1}.

• P3 = {P ∈ P : |V (P)∩Q j|= 1, |V (P)∩Q j+1|≥ 1, |V (P)∩Q j+2|≥ 1}.

• P4 = {P ∈ P : |V (P)∩Q j|= 2, |V (P)∩Q j−1|≥ 1}.

• P5 = {P ∈ P : |V (P)∩Q j|= 2, |V (P)∩Q j+1|≥ 1}.

• P6 = {P ∈ P : |V (P)∩Q j|= 1, |V (P)∩Q j−1|= 2}.

• P7 = {P ∈ P : |V (P)∩Q j|= 1, |V (P)∩Q j+1|= 2}.

By the pigeonhole principle, if |P|> 14, then there is an index i∈ [7] such that |Pi|≥ 3. Let

P1, P2 and P3 be three distinct paths in Pi. Let C1, C2 and C3 be the cycles (not necessarily

distinct) in C ′ that contain P1, P2 and P3, respectively. We claim that C1, C2 and C3 can

be replaced by three triangles in C ′. Consider the case when i = 1. Let {a1,b1,c1} ⊆

V (C1), {a2,b2,c2} ⊆ V (C2) and {a3,b3,c3} ⊆ V (C3) such that A = {a1,a2,a3} ⊆ Q j,

B = {b1,b2,b3}⊆ Q j−1 and C = {c1,c2,c3}⊆ Q j+1. Then, (C ′\{C1,C2,C3})∪{A,B,C}

is also a set of at least r vertex-disjoint cycles in G. A similar replacement works for other

values of i. An illustration of the same is shown in Figure 3.6.

This procedure can be applied for each j ∈ [q]. When this replacement can no longer

be made, we have a set C ∗ of r vertex-disjoint cycles that satisfies (NC.3). Further, if C ′
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Q jQ j−2 Q j−1 Q j+1 Q j+2

Fig 3.6: Illustration of the replacement of the cycles containing the paths highlighted in
blue by the set of three triangles highlighted using dashed edges.

satisfies (NC.1) and (NC.2), then C ∗ also satisfies them. In other words, C ∗ is a nice set of

cycles.

Next, using Lemma 13, we reduce I to multiple instances of CONSTRAINED CYCLE

PACKING defined as follows.
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CONSTRAINED CYCLE PACKING Parameter: |T |
Input: A graph G, a proper interval deletion set T of G, a clique partition {Q1, . . . ,Qq}

of H = G−T , a partition T of T into sets T1, . . . ,Tℓ, a set {σ1, . . . ,σℓ} of permutations

where σi is a permutation of Ti for each i ∈ [ℓ], a set {γi ∈ {0,1,2,3}|Ti| : i ∈ [ℓ]} of

strings and a positive integer r.

Question: Do there exist r vertex-disjoint cycles C in G such that the following

properties hold?

• There are ℓ cycles C1,C2, . . . ,Cℓ in C such that for each i ∈ [ℓ], V (Ci)∩T = Ti.

• For each i ∈ [ℓ] and j ∈ [|Ti|] with γi( j) ∈ {0,1,2}, Ci has a path Pi j between

σ
−1
i ( j) and σ

−1
i (1+( j mod |Ti|)) with γi( j) internal vertices all of which are in

H.

• For each i ∈ [ℓ] and j ∈ [|Ti|] with γi( j) = 3, Ci has a path Pi j between σ
−1
i ( j)

and σ
−1
i (1+( j mod |Ti|)) with at least 2 internal vertices all of which are in H.

Further, |V (Pi j)∩Qp|≤ 2 for each p ∈ [q].

• For each p ∈ [q], the number of Pi j paths such that γi( j) = 3, V (Pi j)∩Qp ̸= /0,

i ∈ [ℓ] and j ∈ [|Ti|] is at most 14.

The idea behind this reduction is the following. Any solution for I consists of cycles

of two types; those cycles that are entirely contained in G−T and those cycles that have

a vertex from T . The total number of cycles is r and the number of cycles that contain

a vertex from T is ℓ ≤ |T |. We first guess this number ℓ. Then, for each of the ℓ cycles

Ci with i ∈ [ℓ], we guess the vertices Ti from T that it contains and also the order σi in

which they appear. This information is captured as a partition of T into ℓ sets, T1 to Tℓ and

the set {σ1, . . . ,σℓ} of permutations where σi is a permutation of Ti for each i ∈ [ℓ]. Any

cycle Ci with Ti ⊆ T contains a path between every pair of consecutive vertices of Ti with

internal vertices from G−T . Note that, in this context, σ
−1
i (|Ti|) and σ

−1
i (1) are treated

as consecutive vertices. Therefore, there is a path from σ
−1
i ( j) and σ

−1
i (1+( j mod |Ti|))
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x y z w

Fig 3.7: An illustration of the cycle Ci containing Ti ⊆ T where Ti = {x,y,z,w} in the order
mentioned. In a particular guess, the number of internal vertices between x and y is one
and between y and z is two. Also, the number of internal vertices between z and w and
between w and x is at least three.

with internal vertices from G−T for each j ∈ [|Ti|]. The total number of such paths in

these ℓ cycles is |T |. We guess the number of internal vertices of each such path as being

zero, one, two or at least three. This information is encoded in the set {γi : i ∈ [ℓ]}. An

example is illustrated in Figure 3.7.

Paths with zero internal vertices are trivial to handle. Paths of length at least three can

be assumed to satisfy a certain condition (given by Lemma 13) regarding their intersections.

However, in practice, we only demand such paths to be of length at least two, but still

retain the intersections-related constraint.

Proposition 14. There is an algorithm that, given an instance I = (G,T,r) of CYCLE

PACKING, runs in O∗(2O(|T |log|T |)) time and returns a set of 2O(|T |log|T |) instances of

CONSTRAINED CYCLE PACKING such that I is a yes-instance if and only if at least one

of the returned instances is a yes-instance.

Proof. Let Q denote the clique partition {Q1, . . . ,Qq} of G−T . Let F be the set of all

subsets of T . For each S ∈ F , let PS be the set of all partitions of S into non-empty sets.

Let α denote a tuple (S,T ,A,B) with the following interpretation.

• S ⊆ T and T = {T1, . . . ,Tℓ} is an element of PS.
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• A = {σ1, . . . ,σℓ} where σi is a permutation of Ti for each i ∈ [ℓ].

• B = {γi ∈ {0,1,2,3}|Ti| : i ∈ [ℓ]} where γi satisfies the following properties for each

i ∈ [ℓ].

– if |Ti|= 1, then γi ∈ {2,3}.

– if |Ti|= 2, then either γi(1) ∈ {1,2,3} or γi(2) ∈ {1,2,3}.

• For each i ∈ [ℓ] and for each j ∈ [|Ti|], if γi( j) = 0, then σ
−1
i ( j) and σ

−1
i (1 +

( j mod |Ti|)) are adjacent.

For each such tuple α = (S,T ,A,B), we create an instance Iα = (G−T ′,S,Q,T ,A,B,r)

of CONSTRAINED CYCLE PACKING where T ′ = T \S. Observe that we create 2O(|T |log|T |)

instances and each of these instances can be obtained in polynomial time. We claim that

I is a yes-instance if and only if there is at least one tuple α = (S,T ,A,B) such that Iα

is a yes-instance. The backward direction of the claim follows immediately as any solution

for Iα is also a solution for I by the definitions of the corresponding problems. For the

forward direction, consider a set C = {C1, . . . ,Cr} of r vertex-disjoint cycles of G. From

Lemma 13, we can assume C to be a nice set of cycles. Let S denote the subset of vertices

of T that are present in some cycle of C . Let ℓ denote the number of cycles of C that

contain a vertex from T (or equivalently from S). Without loss of generality, let C1, . . . ,Cℓ

be these cycles. Define Ti =V (Ci)∩S for each i ∈ [ℓ]. Then, {T1, . . . ,Tℓ} is a partition of S.

For each i ∈ [ℓ], let σi denote the order of occurrence of vertices (which is unique up to

cyclic shifts) of Ti in Ci. For each i ∈ [ℓ], let ηi( j) denote the number of internal vertices

of the path between σ
−1
i ( j) and σ

−1
i (1+( j mod |Ti|)) in Ci where j ∈ [|Ti|]. For each

i ∈ [ℓ], define the string γi character-wise as follows: for each j ∈ [|Ti|], γi( j) = ηi( j) if

ηi( j) ∈ {0,1,2}; otherwise γi( j) = 3. Observe that if for some i ∈ [ℓ] we have |Ti|= 1, then

γi(1) ∈ {2,3}. Similarly, if for some i ∈ [ℓ] we have |Ti|= 2, then either γi(1) ∈ {1,2,3}

or γi(2) ∈ {1,2,3}. By setting A = {σi : i ∈ [ℓ]}, B = {γi : i ∈ [ℓ]} and α = (S,T ,A,B), it

follows that C is a solution for Iα . This completes the proof of the claim.
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Finally, we reduce an instance I of CONSTRAINED CYCLE PACKING to multiple instances

of CONSTRAINED PATH ASSIGNMENT. We need to state some preliminaries before

defining this problem. Observe that in CONSTRAINED CYCLE PACKING, the task is to find

a collection of vertex-disjoint paths satisfying certain constraints in a proper interval graph.

Let H be this proper interval graph with proper interval ordering π and clique partition

Q = {Q1, . . . ,Qq}. We use sets, W , X , Y and Z, of variables corresponding to placeholders

for paths that we wish to find in H. For each path Pi j with γi( j) = 1, there is a variable in

Z, and for each path Pi j with γi( j) = 2, there is a variable in X and a variable in Y . Finally,

for each path Pi j with γi( j) = 3, there is a variable in W . The variables in X ∪Y ∪Z have to

be assigned to vertices (paths of length one) and the variables in W have to be assigned to

paths of length at least two. Apart from the length constraints, the solution paths of I need

to satisfy the adjacency relationship with respect to the proper interval deletion set T . These

constraints are captured using functions Γ, Λ1, Λ2, Ω. For example, if we need to find a

path between t1 ∈ T and t2 ∈ T with exactly two internal vertices both of which are from H,

then we have a variable x ∈ X and a variable y ∈Y corresponding to this constraint. Further,

Γ(x) is N(t1)∩V (H) and Γ(y) is N(t2)∩V (H) with the interpretation that in any valid

assignment g of vertices to X ∪Y ∪Z, g(x) ∈ Γ(x) and g(y) ∈ Γ(y). Moreover, we require

g(x) and g(Ω(x)) to be adjacent. To encode this constraint, we set Ω(x) = y. Similarly, if

we need to find a path between t1 ∈ T and t2 ∈ T with exactly 1 internal vertex which is

from H, then we have a variable z ∈ Z and set Γ(z) to be N(t1)∩N(t2)∩V (H) with the

interpretation that we require g(z) ∈ Γ(z). Finally, if we need to find a path between t1 ∈ T

and t2 ∈ T with at least two internal vertices all of which are from H, then we have a

variable w ∈W corresponding to this constraint. Further, Λ1(w) is N(t1)∩V (H) and Λ2(w)

is N(t2)∩V (H). The interpretation is that the path assigned to w has to start at a vertex in

Λ1(w) and end at a vertex in Λ2(w). Observe that the notions of starting vertex and ending

vertex of a path are derived from the proper interval ordering π of H. It might very well be

the case that w can only be assigned to a path that starts at a vertex in Λ2(w) and ends at a

vertex in Λ1(w). Therefore, such possibilities have to be handled while creating multiple
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instances of CONSTRAINED PATH ASSIGNMENT corresponding to I . Observe that from

Lemma 13, it suffices to assign each variable w in W to a path P of length at least two such

that |V (P)∩Qi|≤ 2 for each i ∈ [q]. Using functions Γ, Ω, Λ1 and Λ2, we ensure that the

vertices/paths assigned to X ∪Y ∪Z∪W indeed form cycles (when combined with T ) with

the required properties specified by I .

CONSTRAINED PATH ASSIGNMENT is an optimization problem with an objective to

find an assignment (of paths) to the placeholders W , X , Y and Z such that the maximum

number of vertex disjoint triangles in a subgraph of H induced by the remaining vertices is

maximized. First, we state what an instance to this problem looks like.

Definition 15. (Instance of CONSTRAINED PATH ASSIGNMENT) An instance J =

(H,Q,π,X ,Y,Z,W,Γ,Λ1,Λ2,Ω) of CONSTRAINED PATH ASSIGNMENT consists of the

following components.

• A proper interval graph H with clique partition Q = {Q1,Q2, . . .Qq} and proper

interval ordering π .

• Sets X, Y , Z, W of variables.

• Functions Γ : X ∪Y ∪Z → R, Λ1 : W → S , Λ2 : W → S ′ where R, S , S ′ are

collections of subsets of V (H).

• A bijection Ω : X → Y .

As we would use CONSTRAINED PATH ASSIGNMENT only to solve CONSTRAINED

CYCLE PACKING, we will require the paths that are a part of the solution to have a

certain structure. For this purpose, we define the set paths(H) to denote the set of paths

P = v1, . . . ,v j in H that have the following properties.

• |V (P)|≥ 2.

• |V (P)∩Qi|≤ 2 for each i ∈ [q].
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• Let Qqi be the clique in Q containing vi and Qq j be the clique in Q containing v j.

Then, qi ≤ q j.

Next, we will define the desired properties of a solution to an instance J of CON-

STRAINED PATH ASSIGNMENT. Given two sets A and B, functions h : A → paths(H) and

g : B →V (H) are said to have disjoint images if for each pair of elements a ∈ A, b ∈ B, we

have g(b) /∈V (h(a)).

Definition 16. (Feasible solution) Given an instance J =(H,Q,π,X ,Y, Z,W,Γ,Λ1,Λ2,Ω)

of CONSTRAINED PATH ASSIGNMENT, a pair (h,g) of injective functions h : W →

paths(H) and g : X ∪Y ∪Z →V (H) with disjoint images is said to be a feasible solution

of J if the following properties hold.

(i) For each x ∈ X, y ∈ Y and z ∈ Z, g(x) ∈ Γ(x), g(y) ∈ Γ(y) and g(z) ∈ Γ(z).

(ii) For each x ∈ X, g(x)g(Ω(x)) ∈ E(H).

(iii) For each w ∈ W, h(w) is a path starting at u ∈ Qi ∩Λ1(w) and ending at v ∈

Q j ∩Λ2(w) for some i, j ∈ [q] with i ≤ j.

(iv) For each pair w,w′ of distinct variables in W, V (h(w))∩V (h(w′)) = /0.

(v) For each i ∈ [q], |{w ∈W : V (h(w))∩Qi ̸= /0}|≤ 14.

Informally, a feasible solution (h,g) has the following properties.

• g assigns a vertex of H to each variable in X ∪Y ∪ Z such that the assignment

restricted to certain pairs x ∈ X and y ∈ Y is a path of length two.

• h assigns a path from paths(H) to each variable in W satisfying certain intersection

constraints propagated from the CONSTRAINED CYCLE PACKING instance I .

Further, we do require h and g to be injective as our interest is in finding vertex-disjoint

paths. We also require the images of g and h to be disjoint in the previously mentioned
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sense. Now, we are ready to formally define the CONSTRAINED PATH ASSIGNMENT

problem.

CONSTRAINED PATH ASSIGNMENT Parameter: |X |+|Y |+|Z|+|W |
Input: A proper interval graph H with clique partition Q = {Q1,Q2, . . .Qq} and pro-

per interval ordering π , sets X , Y , Z, W of variables, functions Γ : X ∪Y ∪Z → R,

Λ1 : W → S , Λ2 : W → S ′ where R, S , S ′ are collections of subsets of V (H) and

a bijection Ω : X → Y .

Output: A feasible solution (h,g) that maximizes the number of vertex-disjoint

triangles in H − (V (img(h))∪ img(g)).

Definition 17. (Value of a feasible solution) The value of a feasible solution (h,g) of

an instance J of CONSTRAINED PATH ASSIGNMENT, denoted by valJ ((h,g)), is the

maximum number of vertex-disjoint triangles in H − (V (img(h))∪ img(g)).

Definition 18. (Optimum solution) An optimum solution of an instance J of CON-

STRAINED PATH ASSIGNMENT is a feasible solution (h,g) that maximizes valJ ((h,g))

over all feasible solutions of J and its value valJ ((h,g)) is denoted by opt(J ).

We omit the subscript in the notation for value if the instance under consideration is

implicit. Now, we show the following reduction.

Proposition 19. There is an algorithm that, given an instance I =(G,T,Q, {T1, . . . ,Tℓ},A,B,r)

of CONSTRAINED CYCLE PACKING, runs in O∗(2O(|T |)) time and returns a set of 2|T |

instances of CONSTRAINED PATH ASSIGNMENT such that I is a yes-instance if and

only if at least one of the returned instances J satisfies opt(J ) ≥ r− ℓ. Further, the

parameter of each of the returned instances is linearly upper-bounded by the parameter of

I .

Proof. Let H denote the proper interval graph G−T with clique partition Q= {Q1, . . . ,Qq}

and proper interval ordering π . Let A be the set {σ1, . . . ,σℓ} of permutations where σi is
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a permutation of Ti for each i ∈ [ℓ]. Let B be the set {γi ∈ {0,1,2,3}|Ti| : i ∈ [ℓ]}. Without

loss of generality, we assume that I satisfies the following properties for each i ∈ [ℓ].

Otherwise, we can declare that I is a no-instance.

• If |Ti|= 1, then γi(1) ∈ {2,3}.

• if |Ti|= 2, then either γi(1) ∈ {1,2,3} or γi(2) ∈ {1,2,3}.

• For each j ∈ [|Ti|], if γi( j) = 0, then σ
−1
i ( j) and σ

−1
i (1+( j mod |Ti|)) are adjacent.

Initialize X ,Y,Z and W to be empty sets and Γ, Λ1, Λ2, Ω and ϒ to be empty functions.

For each i ∈ [ℓ], let Si denote the set of all strings in {1,2}|Ti|. For each λ ∈ {β1 . . .βℓ : βi ∈

Si, ∀i∈ [ℓ]}, create an instance Jλ = (H,Q,π,X ,Y,Z,W,Γ,Λ1,Λ2,Ω) of CONSTRAINED

PATH ASSIGNMENT as follows: for each i ∈ [ℓ] with Ti = {t1, . . . , tc} in the order specified

by σi, perform the following steps for each j ∈ [c]. We remark that the function ϒ with

dom(ϒ) =
⋃

i∈[ℓ]{(i, j) : j ∈ [|Ti|]} and img(ϒ) = W ∪X ∪Z would be used in the proof

below, and is not part of the construction of the new instance.

1. Let j′ denote 1+( j mod c). Let b = βi( j) and d =

 1 if b = 2,

2 if b = 1.

2. If γi( j) = 3, add a variable w to W . Add w to dom(Λ1) and to dom(Λ2). Add (i, j)

to dom(ϒ). Set Λb(w) = N(t j)∩V (H), Λd(w) = N(t j′)∩V (H), ϒ((i, j)) = w.

3. If γi( j) = 2, add variables x to X , y to Y . Add x to dom(Ω) and (i, j) to dom(ϒ).

Add x and y to dom(Γ). Set Γ(x) = N(t j)∩V (H),Γ(y) = N(t j′)∩V (H), Ω(x) = y

and ϒ((i, j)) = x.

4. If γi( j) = 1, add a variable z to Z. Add z to dom(Γ) and (i, j) to dom(ϒ). Set

Γ(z) = N(t j)∩N(t j′)∩V (H), ϒ((i, j)) = z.

As each of these steps can be executed in polynomial time, it follows that Jλ can be

computed in polynomial time for a particular choice of λ . Note that the number of choices
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for λ is 2|T1|2|T2| . . .2|Tℓ| = 2|T | since λ is a string in {1,2}|T |. Therefore, the total running

time of this reduction is O∗(2O(|T |)). Further, observe that |X |+|Y |+|Z| is |T |. That is, the

parameter of Jλ is linearly upper-bounded by the parameter of I .

We claim that I is a yes-instance if and only if opt(Jλ )≥ r− ℓ for some λ . Let ϖ

denote an arbitrary permutation of vertices of T . Consider the forward direction of the

claim. Let C ′ = {C1, . . . ,Cr} be a solution to I . Let C = {C1, . . . ,Cr̂} be a maximal set

of vertex-disjoint cycles of G containing C ′ where r̂ ≥ r. From Lemma 13, we can assume

C to be a nice set of cycles. We will show the existence of a feasible solution (h,g) to Jλ

with val((h,g)) = r̂− ℓ where λ ∈ {1,2}|T |. Without loss of generality, let {C1, . . . ,Cℓ} be

the set of cycles in C that have a vertex from T . For each i ∈ [ℓ] with Ti = {t1, . . . , tc} in

the order specified by Ci, perform the following steps for each j ∈ [c]. Let σi denote the

permutation t1 . . . tc of Ti. Let β1, . . . ,βℓ be initialized to empty strings.

1. Let j′ denote 1+( j mod c).

2. Suppose γi( j) = 3. Set h(ϒ((i, j))) to be the maximal subpath Pi j (in H) of the path

in Ci between σ
−1
i ( j) and σ

−1
i ( j′). Let ai j denote the starting vertex of Pi j and bi j

denote the ending vertex of Pi j. Let Qa be the clique in Q containing ai j and Qb be

the clique in Q containing bi j. If a ≤ b, then set βi( j) = 1; otherwise set βi( j) = 2.

3. Suppose γi( j) = 2. Set g(ϒ((i, j))) to be the vertex u that succeeds σ
−1
i ( j) in Ci. Set

g(Ω(ϒ((i, j)))) to be the vertex v that succeeds u in Ci.

4. Suppose γi( j) = 1. Set g(ϒ((i, j))) to be the vertex v that succeeds σ
−1
i ( j) in Ci.

Then, by construction, H−(V (img(h))∪ img(g)) has r̂−ℓ≥ r−ℓ vertex-disjoint triangles.

Further, the first three conditions in the definition of a feasible solution to an instance of

CONSTRAINED PATH ASSIGNMENT are satisfied by the construction of Γ, Λ1, Λ2 and Ω.

The fourth condition requiring the vertex-disjointness of the paths assigned to variables in

W is satisfied as these paths come from pairwise vertex-disjoint cycles. Finally, the last
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condition holds as these paths come from a nice set of cycles. Thus, (h,g) is a feasible

solution for Jλ with val((h,g)) = r̂− ℓ where λ = β1 . . .βℓ. Hence, opt(Jλ )≥ r− ℓ.

Conversely, suppose opt(Jλ )≥ r−ℓ for some λ ∈ {β1, . . . ,βℓ : βi ∈ Si, ∀i ∈ [ℓ]}. Let

(h,g) be a feasible solution to Jλ with val((h,g)) = r′ ≥ r − ℓ. Let C△ be a set of r′

vertex-disjoint triangles in H − (V (img(h))∪ img(g)). Clearly, each triangle in this set is

also a triangle in G. We will construct a set C of ℓ cycles in G such that any two distinct

cycles in C ∪C△ are disjoint. For each i ∈ [ℓ] with Ti = {t1, . . . , tc} in the order specified

by σi, perform the following steps for each j ∈ [c].

(i) Let s denote the variable ϒ((i, j)).

(ii) If γi( j) = 3 and βi( j) = 1, let Pi j be the path h(s).

(iii) If γi( j) = 3 and βi( j) = 2, let Pi j be the path obtained from h(s) by reversing the

order of its vertices.

(iv) If γi( j) = 2, let Pi j be the path g(s),g(Ω(s)).

(v) If γi( j) = 1, let Pi j be the path g(s).

(vi) If γi( j) = 0, let Pi j be the empty path on zero vertices.

Define Ci to be the cycle σ
−1
i (1),Pi1,σ

−1
i (2),Pi2, . . . ,σ

−1
i (c),Pic. Now, C ′

△ = {C1, . . . ,Cℓ}

is a set of vertex-disjoint cycles in G−V (C ). Therefore, G has a set C△∪C ′
△ of r vertex-

disjoint cycles. Moreover, this set is a nice set of cycles. Therefore, the last condition in

the definition of CONSTRAINED CYCLE PACKING holds. The other conditions hold by the

construction of W , X , Y and Z. This completes the proof of the claim.

3.4.3 Reduction to Colorful Constrained Path Assignment

At this point, we have reduced an instance of CYCLE PACKING to an instance of CON-

STRAINED PATH ASSIGNMENT. In this section, we describe a reduction from CON-
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STRAINED PATH ASSIGNMENT to its colorful variant using color coding. Consider an

instance J = (G,Q,π,X ,Y,Z,W,Γ,Λ1,Λ2,Ω) of CONSTRAINED PATH ASSIGNMENT.

Let X = {x1, . . . ,xrX}, Y = {y1, . . . ,yrY }, Z = {z1, . . . ,zrZ} and W = {w1, . . . ,wrW }. Recall

that each variable in X ∪Y ∪Z has to be assigned to a vertex of G and each variable in W

has to be assigned to a path of length at least two in G.

We color the vertices of G uniformly at random from the color set [r̂] where r̂ =

rX + rY + rZ . Let χ : V (G)→ [r̂] denote this coloring.

Proposition 20 ([5]). If U is a subset of V (G) of size r̂, then the probability that the

vertices of U are colored with pairwise distinct colors is at least e−r̂.

Next, we define the notion of a colorful solution for our problem.

Definition 21. (Colorful solution) A feasible solution (h,g) of J that satisfies the

property that for any two distinct variables s, t ∈ X ∪Y ∪Z, χ(g(s)) ̸= χ(g(t)) is said to

be a colorful solution.

Observe that the characteristic of a solution being colorful does not depend on the

assignment to the variables in W . Now, we define the notion of an optimum colorful

solution.

Definition 22. (Optimum colorful solution) An optimum colorful solution of J is a

colorful solution that maximizes valJ ((h,g)) over all colorful solutions (h,g).

Rephrasing Proposition 20 in the context of CONSTRAINED PATH ASSIGNMENT, we

have the following observation.

Observation 23. If (h,g) is a feasible solution of J , then (h,g) is a colorful solution of

J with probability at least e−r̂.

Armed with the guarantee that an optimum solution of J is colorful with sufficiently

high probability, we focus on finding an optimum colorful solution of J . Now that we
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have reduced our search space from the set of all feasible solutions to the set of all colorful

solutions, we will simplify the instance accordingly. For each i ∈ [r̂], let Vi denote the set

{v∈V (G) : χ(v) = i} of vertices of G that have been colored i by χ . Let δ be a permutation

of [r̂]. We use δ to specify the exact color of the vertex that is to be assigned to a variable

in X ∪Y ∪Z. Define the function Γ̂ : X ∪Y ∪Z → 2V (G) as follows.

• For each i ∈ [rX ], Γ̂(xi) = Γ(xi)∩Vδ (i).

• For each i ∈ [rY ], Γ̂(yi) = Γ(yi)∩Vδ (rX+i).

• For each i ∈ [rZ], Γ̂(zi) = Γ(zi)∩Vδ (rX+rY+i).

For example, if δ specifies that a variable s is to be assigned to a vertex that has

color i, then we restrict the set of vertices that can possibly be assigned to s to those

that are colored i. Let J (χ,δ ) denote the instance (G,Q,π,X ,Y,Z,W, Γ̂,Λ1,Λ2,Ω) of

CONSTRAINED PATH ASSIGNMENT. Since for each pair of variables s, t ∈ X ∪Y ∪Z, we

have Γ̂(s)∩ Γ̂(t) = /0, J (χ,δ ) has the following property.

Observation 24. Any feasible solution (h,g) of J (χ,δ ) is also a colorful solution.

For the sake of clarity, we subsequently call the CONSTRAINED PATH ASSIGNMENT

problem in which, for each pair of variables s, t ∈ X ∪Y ∪Z, Γ(s)∩Γ(t) = /0 holds, as the

COLORFUL CONSTRAINED PATH ASSIGNMENT problem.

Observation 25. If (h,g) is a colorful solution of J , then there exists a permutation δ of

[r̂] such that (h,g) is a feasible solution of J (χ,δ ).

Using the standard technique of derandomization of algorithms based on color coding

[5, 25, 82], we have the following result by taking n = |V (G)|.

Proposition 26 ([5, 25, 82]). Given integers n, r̂ ≥ 1, there is a family Fn,r̂ of coloring

functions χ : V (G)→ [r̂] of size er̂ r̂O(log r̂) logn that can be constructed in er̂ r̂O(log r̂)n logn
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time satisfying the following property: for every set U ⊆V (G) of size r̂, there is a function

χ ∈ Fn,r̂ such that χ(u) ̸= χ(v) for any two distinct vertices u,v ∈U.

Then, we have the following result.

Proposition 27. There is an algorithm that, given an instance J of CONSTRAINED PATH

ASSIGNMENT, runs in O∗(2O(r̂ log r̂)) time where r̂ = |X |+|Y |+|Z| and returns a set of at

most O∗(r̂!er̂ r̂O(log r̂)) instances of COLORFUL CONSTRAINED PATH ASSIGNMENT such

that at least one of the returned instances Ĵ satisfies opt(J ) = opt(Ĵ ).

Proof. Given J , we compute the family Fn,r̂ of er̂ r̂O(log r̂) logn coloring functions using

Proposition 26 where r̂ = |X |+|Y |+|Z| and n is the number of vertices in the graph of the

instance J . For each coloring function χ ∈ Fn,r̂ and for each permutation δ of [r̂], we

create the instance J (χ,δ ) of COLORFUL CONSTRAINED PATH ASSIGNMENT as desc-

ribed earlier. Overall, we create r̂!er̂ r̂O(log r̂) logn instances of COLORFUL CONSTRAINED

PATH ASSIGNMENT. From Observation 25 and Proposition 26, there is a coloring function

χ ∈ Fn,r̂ and a permutation δ of [r̂] such that (h,g) is an optimum solution of J if and

only if (h,g) is an optimum solution of the instance J (χ,δ ). Further, the running time of

the reduction is O∗(2O(r̂ log r̂)). Thus the claim holds.

3.4.4 An FPT Algorithm for Colorful Constrained Path Assignment

In this section, we describe an algorithm to solve COLORFUL CONSTRAINED PATH

ASSIGNMENT in O∗(2O(k logk)) time where k = |X |+|Y |+|Z|+|W |. The algorithm uses

a dynamic programming routine and a greedy strategy. Consider an instance J =

(G,Q,π,X ,Y,Z,W,Γ,Λ1,Λ2,Ω). Let Q be the given clique partition {Q1, . . . ,Qq} of

G.
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Properties of a Feasible Solution

First, we observe some properties of a feasible solution which follow from the structure of

Q.

Observation 28. If (h,g) is a feasible solution of J , then for each s∈X ∪Y with g(s)∈Qi

for some i ∈ [q], we have g(Ω(s)) ∈ Q j with |i− j|≤ 1.

This observation follows from the requirement that g(s)g(Ω(s)) ∈ E(G) enforced by

COLORFUL CONSTRAINED PATH ASSIGNMENT and from the property of Q given by

Proposition 111.

Lemma 29. If (h,g) is a feasible solution of J , then there is a feasible solution (h′,g)

such that for each variable w ∈ W and for each i, j ∈ [q] with i < j, every vertex from

V (h′(w))∩Qi occurs before any vertex from V (h′(w))∩Q j in h′(w). Further, val((h,g))≤

val((h′,g)).

Proof. Let w be a variable in W such that h(w) is a path starting from u ∈ Qî and ending

at v ∈ Q ĵ. Note that î ≤ ĵ and |V (h(w))|≥ 2. For every variable w′ ∈W \{w}, let h′(w′) =

h(w′). For each i, j ∈ [q] with i < j, if every vertex from V (h(w))∩Qi occurs before any

vertex from V (h(w))∩Q j in h(w), then h′(w) = h(w). Otherwise, let u′ ∈ Qi be the first

vertex in h(w) such that the vertex v′ succeeding u′ is in a clique Q j with j < i. Observe

that î ≤ i. From Proposition 111, we have j = i−1. Consider the following cases.

Case (î = ĵ or |V (h(w))|= 2): Let h′(w) = u,v. Then, h′(w) and h(w) have the same

starting and ending vertices. Further, |V (h′(w))|= 2 and V (h′(w)) ⊆ V (h(w)) implying

that val((h,g))≤ val((h′,g)). That is, (h′,g) is a feasible solution of J with the required

property.

Case (î < ĵ and î = i): As î < ĵ, there is a vertex v′′ ∈ Qî distinct from u such that h(w)

contains a subpath from v′ to v′′. Let h′(w) be the path obtained from h(w) by replacing

the subpath from u′ to v′′ (via v′) by the subpath u′,v′′. Then, (h′,g) is a feasible solution

of J as |V (h′(w))|≥ 2 and h′(w) and h(w) have the same starting and ending vertices.
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Further, as V (h′(w))⊂V (h(w)), it follows that val((h,g))≤ val((h′,g)).

Case (î < ĵ, î < i and ĵ ≤ i−1): Now, there is a vertex v′′ ∈ Q ĵ distinct from v such that

h(w) contains a subpath from u to v′′ followed by a subpath from v′′ to u′. Let h′(w) be the

path obtained from h(w) by replacing the subpath from v′′ to u′ by the subpath v′′,v. Then,

once again (h′,g) is a feasible solution of J with V (h′(w))⊂V (h(w)).

Case (î < ĵ, î < i and ĵ > i−1): Here, there is a vertex u′′ ∈ Qi distinct from u′ such that

h(w) has a subpath from u to u′ followed by a subpath from u′ to v′ which is followed by

a subpath from v′ to u′′ that is followed by a subpath from u′′ to v. Let h′(w) be the path

obtained from h(w) by replacing the subpath from u′ to u′′ (via v′) by the subpath u′,u′′.

Then, once again (h′,g) is a feasible solution of J with V (h′(w))⊂V (h(w)).

By repeating this process (at most |V (G)| times), we obtain the solution (h′,g) with

the desired property.

Subsequently, we will only consider feasible solutions with the property given by

Lemma 29.

Canonical Solutions

Next, we will define (in Definition 32) the notion of a feasible solution with more special

properties. Let us identify what nice properties a feasible solution can have. Let (h∗,g∗) be

a feasible solution of J . Let C be a maximum size set of nice vertex-disjoint triangles in

G− (V (img(h∗))∪ img(g∗)). Consider the clique Qi for some i ∈ [q].

Definition 30. (Partition of Qi with respect to (h∗,g∗)) Given a feasible solution (h∗,g∗)

of J and an integer i ∈ [q], the clique Qi can be partitioned into the following subsets.

• Di
1 = {v ∈ Qi : v /∈V (img(h∗))∪ img(g∗)∪V (C )}.

• Di
2 = {v ∈ Qi : v ∈V (img(h∗))}.

• Di
3 = {v ∈ Qi : ∃C ∈ C with v ∈C and C∩Qi+1 ̸= /0}.
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• Di
4 = {v ∈ Qi : ∃C ∈ C with v ∈C and C∩Qi−1 ̸= /0}.

• Di
5 = {v ∈ Qi : v ∈ img(g∗)}.

• Di
6 = {v ∈ Qi : ∃C ∈ C with v ∈C and C ⊆ Qi}.

We now observe certain properties of the sets Di
j given by Definition 30.

Observation 31. The partition of Qi with respect to (h∗,g∗) given by Definition 30 satisfies

the following properties.

• Di
1 is the set of vertices of Qi that are neither in V (C ) nor in a path assigned to some

variable in W nor assigned to any variable in X ∪Y ∪Z. By Lemma 11, |Di
1|≤ 2.

• Di
2 is the set of vertices of Qi that are in a path assigned to some variable in W.

As there can be at most fourteen paths that have a vertex from Qi (by definition of

COLORFUL CONSTRAINED PATH ASSIGNMENT), it follows that |Di
2|≤ 28.

• Di
3 is the set of vertices of Qi that are present in triangles that have vertices from

both Qi and Qi+1. By Lemma 11, |Di
3|≤ 2.

• Di
4 is the set of vertices of Qi that are present in triangles that have vertices from

both Qi and Qi−1. By Lemma 11, |Di
4|≤ 2.

• Di
5 is the set of vertices of Qi that are assigned to variables in X ∪Y ∪Z.

• Di
6 is the set of vertices of Qi that are present in triangles of C contained in Qi.

An example is given in Figure 3.8. Consider a pair u,v of vertices such that u ∈ Di
5

and v ∈ Di
6. Let s ∈ X ∪Y ∪Z be the variable such that g∗(s) = u. Then, u ∈ Γ(s). Suppose

v ∈ Γ(s). Let (h∗,g∗∗) denote the pair of functions obtained from (h∗,g∗) by setting

g∗∗(s) = v. Consider the following cases.

• (Case s ∈ Z): Then, (h∗,g∗∗) is also a feasible solution of J .
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QiQi−1 Qi+1

T

Fig 3.8: Illustration of the partition of Qi into sets Di
j for each j ∈ [6]. The blue lines

indicate the edges that are obtained from (h∗,g∗) and the red triangles are elements of C .

• (Case s ∈ X ∪Y and g∗(Ω(s)) ∈ Qi ∪Qi+1): If π(v)> π(u), then (h∗,g∗∗) is also a

feasible solution of J since v and g∗∗(Ω(s)) are adjacent by Proposition 110.

• (Case s∈X∪Y and g∗(Ω(s))∈Qi−1): If π(v)< π(u), then (h∗,g∗∗) is also a feasible

solution of J since v and g∗∗(Ω(s)) are adjacent by Proposition 110.

Informally, in each of the cases, we obtain an aligned (to the left or to the right with respect

to π) solution (h∗,g∗∗) with val((h∗,g∗)) = val((h∗,g∗∗)). This leads us to the notion of a

canonical solution of J that allows us to resort to a greedy strategy for assigning vertices

to variables in X ∪Y ∪Z.

We emphasize the role played by color coding here in the context of solving CONSTRAI-

NED PATH ASSIGNMENT. Observe that there is no feasible solution (h′,g′) of J such that

there is a variable t ∈ X ∪Y ∪Z distinct from s with g′(t) = v. This crucially uses the fact

that for each pair of distinct variables s, t ∈ X ∪Y ∪Z, we have Γ(s)∩Γ(t) = /0. Therefore,

if v∈ Γ(s), then v /∈ Γ(t) for every t ̸= s. In particular, the sets in {Di
6∩Γ(s) : s∈X ∪Y ∪Z}

form a partition of Di
6 into |X |+|Y |+|Z| (not necessarily non-empty) sets. This property is

achieved using our application of color coding to the instance of CONSTRAINED PATH
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ASSIGNMENT from which J may be obtained (see Section 3.4.3 for details).

Definition 32. (Canonical solution) Let (h,g) be a feasible solution of J . Let C be a

maximum size set of vertex-disjoint triangles in G− (V (img(h))∪ img(g)). Let C ′ denote

the set of triangles in C that are contained in Qi for some i ∈ [q]. Let V ′ =V (C ′)∪ img(g)

and Di = V ′ ∩Qi. Then, (h,g) is a canonical solution if the following properties are

satisfied.

• For each i ∈ [q] and for each s ∈ X ∪Y with g(s) ∈ Qi and g(Ω(s)) ∈ Qi+1∪Qi, g(s)

is the vertex that maximizes π(g(s)) over all vertices in Di ∩Γ(s).

• For each i ∈ [q] and for each s ∈ X ∪Y with g(s) ∈ Qi and g(Ω(s)) ∈ Qi−1, g(s) is

the vertex that minimizes π(g(s)) over all vertices in Di ∩Γ(s).

• For each i ∈ [q] and for each s ∈ Z with g(s) ∈ Qi, g(s) is the vertex that maximizes

π(g(s)) over all vertices in Di ∩Γ(s).

Note that the function h in the feasible solution (h,g) plays no role in deciding if (h,g)

is indeed a canonical solution or not. Next, we prove the existence of canonical solutions.

Lemma 33. If (h,g) is a feasible solution of J , then there is a canonical solution (h,g∗)

of J with val((h,g)) = val((h,g∗)).

Proof. Let Q0 = /0. For an integer i ∈ [q]∪{0}, we say that (h,g) is an i-canonical solution

if it satisfies the properties in Definition 32 for cliques Q0,Q1, . . . ,Qi. In this context, a q-

canonical solution is a canonical solution. We show the existence of a q-canonical solution

by induction on q. For q = 0, observe that (h,g) is a q-canonical solution. Suppose (h,g) is

an (i−1)-canonical solution for some i ≥ 1. We show that there is another feasible solution

(h,g∗) that is an i-canonical solution. Let C be a maximum size set of vertex-disjoint

triangles in G− (V (img(h))∪ img(g)). Let C ′ be the set {C ∈ C : ∃ j ∈ [q],C ⊆ Q j} and

V ′ =V (C ′). Initialize (h,g∗) to (h,g). Observe that V ′ is the set of vertices in V (C ) that
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are present in triangles of C that are completely contained in some clique Q j, j ∈ [q]. Let

Di =V ′∩Qi.

Let s be a variable in X ∪Y such that g(s) ∈ Qi. Then, from Observation 28, eit-

her g(Ω(s)) ∈ Qi−1 or g(Ω(s)) ∈ Qi+1 ∪Qi. In the former case, update g∗(s) to the ver-

tex v in Di ∩Γ(s) that minimizes π(v). From Proposition 111, as π(g∗(s)) ≤ π(g(s)),

π(g(Ω(s))) < π(g∗(s)) and (g(s),g(Ω(s))) ∈ E(G), we have (g∗(s),g∗(Ω(s))) ∈ E(G).

In the latter case, update g∗(s) to the vertex v in Di ∩Γ(s) that maximizes π(v). From Pro-

position 111, as π(g∗(s))≥ π(g(s)), π(g(Ω(s)))> π(g∗(s)) and (g(s),g(Ω(s))) ∈ E(G),

we have (g∗(s),g∗(Ω(s))) ∈ E(G). In any case, v is either g(s) or v is in a triangle C of

C with vertices only from Qi. Therefore, the set C ∗ of triangles obtained from C from

replacing v by g(s) is a set of same size as C . Execute this replacement procedure for all

variables in X ∪Y that are assigned to vertices in Qi by g. At the end of this reassignment,

we have the desired i-canonical solution.

Recall that by the definition of COLORFUL CONSTRAINED PATH ASSIGNMENT, for a

pair s, t of distinct variables in X ∪Y ∪Z, we have Γ(s)∩Γ(t) = /0 and hence (Di ∩Γ(s))∩

(Di ∩Γ(t)) = /0. Therefore, once a variable s ∈ dom(g) is reassigned to a vertex by g∗, its

assignment does not change subsequently during reassignment of other variables.

Finding Canonical Solutions

Lemma 33 implies that it suffices to find an optimum solution of J that is canonical. We

will describe a dynamic programming algorithm that finds such a solution (if one exists)

by processing the cliques in Q = {Q1, . . . ,Qq} in the increasing order of their indices. Let

Qq+1 = /0. For each i ∈ [q+1], let Gi denote the subgraph of G induced by
⋃i

j=1 Q j.
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Setting up the Table

For each i ∈ [q+1], we maintain a table Ti. Let T denote the table that contains all entries

of Ti for each i ∈ [q+1]. Before describing the entries in Ti, we give an overview of what

we would ideally like to store in these entries.

Let (h∗,g∗) be an optimum solution of J . By Lemma 33, we can assume (h∗,g∗)

to be a canonical solution. Let C be a maximum size set of vertex-disjoint triangles in

G− (V (img(h∗))∪ img(g∗)) satisfying the properties listed in Lemma 11. As each of

the graphs in the sequence G1,G2, . . . ,Gq,Gq+1 is a subgraph of the graph succeeding it,

we like to process the cliques Q1, . . . ,Qq,Qq+1 from “left-to-right”, that is, from Q1 to

Qq+1, in order to compute (h∗,g∗) (or a feasible solution (h∗∗,g∗∗) with val((h∗∗,g∗∗)) =

val((h∗,g∗))). We would first like to understand how (h∗,g∗) and C look like when they

are restricted to Gi for a fixed i ∈ [q+1]. This could shed insight into the subproblem that

we want to solve on Gi and the (partial) solution that we want to store for Gi.

Ideally, we want to store the number (or set) of triangles in C that are contained in Gi.

Let us call this set C ′. Any triangle C in C \C ′ has a vertex from Q j for some j ≥ i+1.

We cannot see this triangle until we look at G j. Our subproblem on Gi can afford to forget

such triangles provided it remembers the vertices from Qi that are present in these triangles.

That is, we need to remember the set Next∗ of vertices of Qi that are present in triangles

in C that have a vertex from both Qi and Qi+1. Note that no vertex in Qi can be in a

triangle that has a vertex from Qi+2 by Proposition 111. Let Not∗ be the set of vertices of

Qi that are not in the set V (C )∪V (img(h∗))∪ img(g∗). Let us partition C ′ into C1 and C2

such that C1 is the set of triangles contained in Gi−1 and C2 = C ′ \C1. Suppose we have

computed |C1| by solving the subproblem on Gi−1. Then, |C1| can be used to compute |C ′|

provided we know the set Qi ∩V (C2). That is, we need to know the set Prev∗ of vertices

of Qi that are present in triangles in C ′ that have a verti from both Qi and Qi−1. So far,

we have identified two types of vertices (those in Prev∗ and those in Next∗) in Qi with

respect to (h∗,g∗). In order to understand the role of other vertices in Qi, we partition Qi
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into 6 sets Di
1,D

i
2,D

i
3,D

i
4,D

i
5,D

i
6 given by Definition 30. From Observation 31, we have

|Di
1|, |Di

3|, |Di
4|≤ 2 and |Di

2|≤ 28.

Observe that Di
1 is Not∗, Di

3 is Next∗ and Di
4 is Prev∗. When we are processing

Qi (to solve the problem on Gi), we can afford to store all possible choices for Di
j for

each j ∈ [4]. The number of such choices is upper bounded by a polynomial (in |Qi|)

function. Though, the number of choices for Di
5 is huge, the size of Di

5 is at most k where

k = |X |+|Y |+|Z|+|W |. Instead of guessing Di
5, we can guess the set S∗i = {v ∈ X ∪Y ∪Z :

g∗(v) ∈ Qi} of variables that are assigned to vertices from Qi by g∗. There are at most

2k such choices. Similarly, we can guess the set L∗
i = {w ∈ W : V (h∗(w))∩Qi ̸= /0} of

variables that are assigned to paths that contain a vertex from Qi by h∗. We can also map

these variables to vertices in Di
2. Let us now handle the set Di

6. Each vertex in Di
6 is in a

triangle that is contained in Qi. Further, the set of vertices of Qi that are a part of some

triangle contained completely in Qi is Di
6. Thus, |Di

6| is a multiple of three and though the

set of choices for such triangles is huge, the number of such triangles is easy to estimate.

This number is simply |Di
6|/3 which is equal to (|Qi|−∑

5
j=1|Di

j|)/3. As Qi is a clique,

once Di
5 is determined, any arbitrary set of (|Qi|−∑

5
j=1|Di

j|)/3 triangles consisting of the

remaining vertices is good enough for our solution.

As mentioned earlier, we would like to solve the subproblem on Gi using the previously

computed solution on Gi−1. For this purpose, we need some information regarding the

solution contained in Gi−1. Let us define the following sets.

• S∗ = {v ∈ X ∪Y ∪Z : g∗(v) ∈V (Gi−1)} is the set of variables in X ∪Y ∪Z that are

assigned to vertices in Gi−1 by g∗. Observe that S∗∩S∗i = /0.

• L∗ = {w ∈W : V (h∗(w))⊆V (Gi−1)} is the set of variables in W that are assigned

to paths in Gi−1 by h∗. Note that L∗∩L∗
i = /0.

Once again the number of choices for S∗ and L∗ is O(2k). Therefore, we can also guess S∗

and L∗ while processing Qi. For technical convenience, we guess another special subset
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L∗
new of L∗

i which denotes the set of variables in W that are assigned to paths that start at a

vertex in Qi by h∗. That is, L∗
new = {w ∈ L∗

i : V (h∗(w))∩V (Gi)⊆ Qi}. Now, we are ready

to describe the entries of T.

Index of an Entry. We identify each entry in T by an index.

Definition 34. (Index of an entry) Let i ∈ [q+1]. Each entry in Ti is indexed by a tuple

τ = (i,Si,Li,Lnew,Prev,Next,Not,S,L,h1,h2) with the following interpretation.

• Si ⊆ X ∪Y ∪Z, Li ⊆W and Lnew ⊆ Li.

• Prev, Next and Not are pairwise disjoint subsets of Qi.

• S ⊆ X ∪Y ∪Z and L ⊆W with S∩Si = /0 and L∩Li = /0.

• h1 : Li → Qi is an injective function that maps each variable in Li to a vertex in Qi.

• h2 : L′
i → Qi is an injective function that maps each variable in a subset L′

i of Li to a

vertex in Qi.

We remark that not all indices with an interpretation as given in Definition 34 would

represent entries in the table. Clearly, if this was the case, the total number of entries would

be too large for our purposes. Intuitively, Ti(τ) indicates the possibility of the existence of

an optimum solution (h∗,g∗) to J with the following properties. An illustration of the

same is given in Figure 3.9.

• S is the set of variables that are assigned to vertices in Gi−1 by g∗.

• L is the set of variables that are assigned to paths in Gi−1 by h∗.

• Si is the set of variables that are assigned to vertices in Qi by g∗.

• Li is the set of variables that are assigned to paths that have a vertex in Qi by h∗.

Clearly, |Li|≤ 14.
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• For each w ∈ Li, h1(w) is the first vertex in h∗(w) that is from Qi and h2(w) is

the second vertex (if w ∈ dom(h2)) in h∗(w) that is from Qi. Specifically, for each

w ∈ Li, h1(w) ̸= h2(w). Further, img(h1)∩ img(h2) = /0 as {h∗(w) : w ∈W} is a set

of pairwise vertex-disjoint paths.

• Lnew is the set of variables that are assigned to paths that start at a vertex in Qi by h∗.

In particular, for each w ∈ Lnew, V (h∗(w))∩V (Gi−1) = /0 and h1(w) ∈ Λ1(w).

QiQi−1 Qi+1

Not
Prev Next

Fig 3.9: Components of an index τ = (i,Si,Li,Lnew,Prev,Next,Not,S, L,h1,h2). Vertices
assigned to S are the filled green circles and vertices assigned to Si are the filled violet
circles. The paths assigned to L are highlighted using blue dashed lines. The paths assigned
to Li \Lnew are highlighted using red lines and filled red circles. The paths assigned to Lnew
are highlighted using filled blue circles and blue lines.

Eventually, Ti(τ) would store the information relating to a maximum size set C of nice

triangles in G− (V (img(h∗))∪ img(g∗)) with the following properties.

• (Not ∩V (img(h∗))∪ img(g∗) = /0 and no triangle in C has a vertex from Not. From

Lemma 11, |Not|≤ 2.

• For each v ∈ Prev, there is a triangle T in C that contains v and a vertex from Qi−1.

By Lemma 11, |Prev|≤ 2.

• For each v ∈ Next, there is a triangle T in C that contains v and a vertex from Qi+1.

By Lemma 11, |Next|≤ 2.
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• |Qi|−(|Prev|+|Next|+|Not|+|img(h1)|+|img(h2)|+|Si|)/3 is the number of triangles

in C that are contained in Qi.

We next define the notion of a valid index. We only store entries with valid indices in the

table.

Valid Indices. The set of conditions that determine the validity of an index is based on our

requirement of what we want to store in the entry corresponding to it.

Definition 35. (Valid index) An index τ = (i,Si,Li,Lnew,Prev,Next, Not,S,L,h1,h2) in

Ti is said to be valid if the following conditions are satisfied.

• (VI.1) |Li|≤ 14 and |Prev|, |Next|, |Not|≤ 2.

• (VI.2) |Qi|−(|Prev|+|Next|+|Not|+|img(h1)|+|img(h2)|+|Si|) is a non-negative

integer divisible by three.

• (VI.3) img(h1)∩ img(h2) = /0.

• (VI.4) For each w ∈ Lnew, h1(w) ∈ Λ1(w).

• (VI.5) If i = 1, then Prev = S = L = /0 and Li = Lnew.

• (VI.6) If i = q+ 1, then Si,Li,Lnew,Prev,Next,Not,dom(h1) and dom(h2) are all

empty sets. Further, S = X ∪Y ∪Z and L =W.

• (VI.7) If i = q, then Next = /0, Si ∪S = X ∪Y ∪Z and Li ∪L =W.

• (VI.8) If i = q, then for each w ∈ dom(h1)\dom(h2), h1(w) ∈ Λ2(w).

• (VI.9) If i = q, then for each w ∈ dom(h2), h2(w) ∈ Λ2(w).

(VI.1)–(VI.3) are justified by the interpretation of the sets that define an index. (VI.4)

encodes the requirement that for each w ∈ Lnew, the path h∗(w) starts at a vertex in Λ1(w).
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(VI.5)–(VI.9) consider the special cases when an index identifies an entry in T1 or Tq or

Tq+1. Among these, (VI.5)–(VI.7) are again justified by the interpretation of the sets that

define an index. (VI.8) and (VI.9) encode the requirement that for each w ∈ Lq, the path

h∗(w) ends at a vertex in Λ2(w). This is due to the fact that any such path should end at Qq

since Qq+1 = /0.

Graph Hτ and Instance Jτ . Let us again consider our canonical solution (h∗,g∗) of

J and see how it looks like when restricted to Gi. The sets L∗, S∗, L∗
i , S∗i and L∗

new

are as defined earlier (see the explanation preceding Definition 34). Let L∗
old be the set

{w ∈ L∗
i : V (h∗(w))∩Qi−1 ̸= /0}. That is, L∗

old is the set of variables in W that are assigned

to paths that not only have a vertex in Qi but also have a vertex from Qi−1. Let us try

to understand what is the precise task to be performed on Gi. We would like to capture

this task with a “specialized” instance of CONSTRAINED PATH ASSIGNMENT, so we

would not need to introduce yet another problem definition. Hence, we would next like to

proceed by formally defining how to restrict the original problem instance to fit our local

task. For the sake of readability, let us first separately explain how to restrict the graph

itself, dismissing some irrelevant information. The formal definition corresponding to this

explanation is captured by Definition 36 below.

Let h′ denote h∗ with domain restricted to L∗ ∪L∗
old and g′ denote g∗ with domain

restricted to S∗∪S∗i . We would ideally like to store the partial solution (h′,g′) in the table.

However, V (img(h′)) is not necessarily a subset of V (Gi). Recall that by the definition of

CONSTRAINED PATH ASSIGNMENT, we need to ensure that a path whose construction

has already started, corresponding to some variable w ∈W , would terminate at a vertex

from Λ2(w). However, when we are considering Qi, the path has only reached a vertex in

Qi and its end vertex could be located at some future clique (outside the current graph Gi

into which we would like to zoom in). To obtain a valid instance of CONSTRAINED PATH

ASSIGNMENT, we need to terminate all paths. It is guaranteed that, for every variable
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w ∈ L∗
old , the subpath of h′(w) contained in Gi is of length at least two. This property is not

necessarily guaranteed for a variable in L∗
new. For every variable w ∈ L∗

old , if we set h′(w)

to be this path, then (h′,g′) becomes a feasible solution for an appropriate subproblem

in Gi. Clearly, we also need to update Λ2 accordingly, which is done later in Definition

37. Then, when we restrict (h∗,g∗) to the graph Gi, we see that each subpath that has not

terminated at Qi or earlier can be forced to terminate at Qi. The handling of paths of length

exactly two (assigned to variables in X and Y ) which have now turned to paths of length

one (with a “to be determined” second vertex) will be discussed later in Definition 37.

Here, we address paths that are assigned to variables in W which have not terminated at Qi

or earlier.

At this point, it is worth mentioning that, at an entry indexed by τ =(i,Si,Li, Lnew,Prev,Next

,Not, S,L,h1,h2), we have information on whether a path to be assigned to a variable in

Li \Lnew can be terminated at Qi or not. If for such a variable w with w ∈ dom(h2), we have

h2(w) ∈ Λ2(w), then this path can be terminated at h2(w). Similarly, if w ∈ Li \dom(h2),

then also this path can be terminated at h1(w) provided h1(w) ∈ Λ2(w) holds. In both

cases, the path will be of length at least two. Towards the formulation of the restriction

of the graph, we first define Q′ as the set (h2(Lnew)∪h1(Lnew)∪Next ∪Not). Indeed, the

vertices in Not and Next clearly do not affect the task to be done up and including the point

where we process clique Qi, it is only necessary to ensure that they are not yet used, for

which purpose we may simply remove them. Now, recall that h1(Lnew) is the set of vertices

that start new paths (assigned to variables in Lnew). These are also only relevant when we

consider a clique Q j with j ≥ i+ 1, hence, we can simply remove these vertices while

processing Qi. Similarly, h2(Lnew) can also be deleted (even if they end the new paths).

Definition 36. (Graph Hτ ) Let τ = (i,Si,Li,Lnew,Prev,Next,Not,S,L, h1,h2) be the index

of an entry in Ti. Let Q′ = (h2(Lnew)∪ h1(Lnew)∪Next ∪Not). Then, Hτ denotes the

subgraph of Gi induced by V (Gi)\Q′.

Clearly, Hτ is a proper interval graph with clique partition Q′ = {Q1, . . . , Qi−1,Qi \
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Q′} and proper interval ordering π ′ which is π restricted to V (Hτ). Next, we define the

subproblem and an instance of it associated with τ . Recall that in a partial solution (h′,g′)

defined earlier, it is possible that there is a vertex s ∈ X ∪Y such that g′(s) ∈ V (Gi) but

g′(Ω(s)) /∈ V (Gi). In such a case, we treat s as a variable in Z. Observe that the only

property that distinguishes a variable s ∈ X ∪Y from a variable t ∈ Z is that the assignment

of a vertex to s depends on the assignment of a vertex to Ω(s) while the assignment of a

vertex to t is independent of all other assignments. However, when we say that we forget

the dependence of a variable s and treat it as being independent, it appears as if we are

forgetting crucial information. Note that our interest is only in canonical solutions (see

Lemma 33) and in a canonical solution, a variable in Z is always assigned to the “rightmost”

permissible vertex (determined by Γ). Therefore, the possibility that s and Ω(s) can indeed

be assigned to a pair of adjacent vertices is not affected by treating s as a variable in Z in

the local instance. We remark that Proposition 110 is crucially used for this property to be

guaranteed.

Definition 37. (Instance Jτ ) Let τ = (i,Si,Li,Lnew,Prev,

Next,Not, S,L,h1,h2) be the index of an entry in Ti. Let X ′ = (S∪Si)∩X, Y ′ = (Si∪S)∩Y

and Z′ = (Si ∪S)∩Z. Let W ′ be L∪ (Li \Lnew). Let Γ̂ denote Γ restricted to X ′∪Y ′∪Z′ as

the domain defined as follows.

• For each s ∈ S, set Γ̂(s) = Γ(s)∩V (Gi−1).

• For each s ∈ Si, set Γ̂(s) = Γ(s)∩Qi.

Similarly, let Λ̂1 denote Λ1 restricted to W ′ as the domain defined as follows.

• For each w ∈ L∪ (Li \Lnew), Λ̂1(w) = Λ1(w)∩V (Gi−1).

Let Λ̂2 denote the function with dom(Λ̂2) =W ′ defined as follows.

• For each w ∈ L, Λ̂2(w) = Λ2(w)∩V (Gi−1).
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• For each w ∈ Li \Lnew with w ∈ dom(h2), Λ2(w) = {h2(w)}.

• For each w ∈ Li \Lnew with w /∈ dom(h2), Λ2(w) = {h1(w)}.

Let X̂ = {x ∈ Si ∩X : Ω(x) /∈ Si ∪S} and Ŷ = {y ∈ Si ∩Y : Ω(y) /∈ Si ∪S}. Let Ω′ be the

bijection Ω restricted to X ′ \ X̂ as the domain. Then, (Hτ ,Q′,π ′,X ′ \ X̂ ,Y ′ \ Ŷ ,Z′∪ X̂ ∪

Ŷ ,W ′, Γ̂, Λ̂1, Λ̂2,Ω
′) is the instance Jτ of COLORFUL CONSTRAINED PATH ASSIGN-

MENT corresponding to τ .

The arguments to the instance Jτ are simply the arguments to the original instance

restricted to Hτ with additional restrictions which are justified by the interpretation of τ .

We need to take into account the meaning of τ , as we would like to consider a solution

space more restricted than simply the set of all canonical solutions (in order to be able

to use the stored solution in the future). For this purpose, we ensure that Si and S can be

interpreted as we intended, meaning gτ (of a feasible solution (hτ ,gτ)) maps variables

belonging to Si to vertices in the current clique Qi, and variables belonging to S to the

vertices in previous cliques. We also ensure that any variable w in L (that is associated

with a path that has already been terminated) is indeed assigned to a path fully contained

in Gi−1. In particular, such a path should have started in Gi−1. Further, we need that any

variable in Li \Lnew is associated with a path that has started before Qi.

So far, we have defined the input of an instance associated with the local task performed

when processing a clique Qi, but we have not yet defined the objective of the task itself.

This objective is precisely what we aim to capture in the following Definition 38. We will

first informally explain the intuition guiding us here. We are interested in combining the

following ingredients.

(i) triangles that are fully contained in Gi−1 (which were already identified in earlier

computations).

(ii) triangles that “lie between” Qi−1 and Qi, that is, triangles that contain at least one

vertex from Qi−1 and at least one vertex from Qi.

74



(iii) local triangles fully contained in Qi.

When combining these ingredients, we clearly need to ensure that the result is a feasible

solution to the instance we have just created in Definition 37. We first require that Prev is

“meaningful” in the sense that all of its vertices indeed belong to triangles of ingredient (ii).

Next, we ensure that each variable w ∈W that belongs to Li \Lnew, and hence is associated

with a path that is still “under construction”, is assigned to a path whose intersection with

Qi is precisely {h1(w)}∪{h2(w)}.

Value of the Entry Ti(τ). We now formally define the information stored in an entry of Ti.

Definition 38. (Value of Ti(τ)) Let τ = (i,Si,Li,Lnew,Prev,Next,Not, S,L,h1,h2) be the

index of an entry in Ti. Then, Ti(τ) stores the number ∆τ which is the maximum size of

a set C of vertex-disjoint triangles in Hτ − (V (img(hτ))∪ img(gτ)) over all canonical

solutions (hτ ,gτ) of Jτ satisfying the following properties.

• Every vertex in Prev is in a triangle C in C that has a vertex from Qi−1.

• For each w ∈ Li \Lnew, V (hτ(w))∩Qi = {h1(w)}∪{h2(w)}.

If no such (hτ ,gτ) exists, then ∆τ =−∞.

We call a canonical solution (hτ ,gτ) of Jτ satisfying the above two properties a

feasible solution for Jτ and val((hτ ,gτ)) denotes |C |. In this context, a feasible solution

(hτ ,gτ) with maximum val((hτ ,gτ)) is called an optimum solution. Observe that any

feasible solution (hτ ,gτ) of Jτ also satisfies the following properties.

• For each s ∈ Si, gτ(s) ∈ Qi and for each s ∈ S, gτ(s) ∈V (Gi−1).

• For each w ∈ L, V (hτ(w))⊆V (Gi−1).
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Note that for the index τ = (q+1,Sq+1,Lq+1,Lnew,Prev,Next,Not,S,L, h1,h2), Hτ is G

and Jτ is J . More importantly, ∆τ is opt(J ) as an optimum solution for Jτ is an

optimum solution for J . This completes the description of T.

Filling the Table

Now, we move on to filling up the entries in T. The following lemma states how to fill the

entries in T1.

Lemma 39. Let τ = (1,S1,L1,Lnew,Prev,Next,Not,S,L,h1,h2) be the index of an entry in

T1. Let loc = (|Q1|−(|Prev|+|Next|+|Not|+|img(h1)|+|img(h2)|+|S1|))/3. Then, ∆τ =

loc.

Proof. Observe that Prev = /0, L1 = Lnew, S = /0, L = /0 and loc is an integer by Defini-

tion 35. Also, Hτ is an induced subgraph of the complete graph G[Q1]. Any optimum

solution (hτ ,gτ) of Jτ assigns S1 to a set of |S1| vertices in Q1 \ (Prev∪Next ∪Not ∪

img(h1)∪ img(h2)). The remaining vertices in Q1 are partitioned into loc triangles in

Hτ − (V (img(hτ))∪ img(gτ)). Therefore, ∆τ is loc.

Next, we characterize the value of an entry in Ti (where i > 1) as a function of the

value of an entry in Ti−1.

Function Φτ . We first associate an auxiliary information with each index τ = (i,Si,Li,

Lnew,Prev,Next,Not, S,L,h1,h2). This information is an injective function Φτ : Si →

Qi. Consider an optimum solution (hτ ,gτ) of Jτ . Let Uτ = Qi − (Prev∪Next ∪Not ∪

img(h1)∪ img(h2)). As (hτ ,gτ) is a canonical solution, the following holds.

• For s ∈ Si ∩ (X ∪Y ) with gτ(Ω(s)) ∈ Qi+1 ∪Qi, gτ(s) is the vertex in Qi that maxi-

mizes π(gτ(s)) over all vertices in Uτ ∩Γ(s).
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• For each s ∈ Si ∩ (X ∪Y ) with gτ(Ω(s)) ∈ Qi−1, gτ(s) is the vertex in Qi that mini-

mizes π(gτ(s)) over all vertices in Uτ ∩Γ(s).

• For each s ∈ Z∩Si, gτ(s) is the vertex in Qi that maximizes π(gτ(s)) over all vertices

in Uτ ∩Γ(s).

We store precisely the function gτ with domain restricted to Si as the function Φτ . Recall

that, in the above list, for a pair s, t of distinct variables in X ∪Y ∪ Z, we have (Uτ ∩

Γ(s))∩ (Uτ ∩Γ(t)) = /0 since Γ(s)∩Γ(t) = /0. As a consequence, Φτ can be obtained by

just examining the components of τ .

Definition 40. (Function Φτ ) Let τ = (i,Si,Li,Lnew,Prev,Next,Not,S, L, h1,h2). We

compute Φτ using the following procedure.

1. Let Uτ be Qi − (Prev∪Next ∪Not ∪ img(h1)∪ img(h2)) and Var be Si.

2. Initialize Φ to be the empty function.

3. For each variable s ∈Var, execute the following steps.

(a) If s ∈ Z, s ∈ X ∪Y with Ω(s) ∈ Si, or s ∈ X ∪Y with Ω(s) /∈ S∪Si, let v be the

vertex in Uτ ∩Γ(s) that maximizes π(v) (if one exists).

(b) If s ∈ X ∪Y with Ω(s) ∈ S\Si, let v be the vertex in Uτ ∩Γ(s) that minimizes

π(v) (if one exists).

(c) If v is well-defined, then add s to dom(Φ), set Φ(s) = v and delete s from Var.

4. If dom(Φ) = Si, then set Φτ to Φ. Otherwise, set Φτ to the empty function.

We now explain the importance of storing this information. Once again, let us con-

sider the canonical optimum solution (h∗,g∗) of J . Let C be a maximum size set of

vertex-disjoint triangles in G − (V (img(h∗))∪ img(g∗)). The sets Prev∗, Next∗, Not∗,

L∗, S∗, L∗
i , S∗i and L∗

new are as defined earlier (see the explanation preceding Defini-

tion 34). Suppose (h∗,g∗) and C satisfy the following properties: L = L∗, S = S∗, Si =
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S∗i , Li = L∗
i , Lnew = L∗

new, Prev = Prev∗, Next = Next∗, Not = Not∗. Further, suppose

for each w ∈ Li, V (h∗(w))∩ Qi = {h1(w)} ∪ {h2(w)}. Let Uτ = Qi − (Prev ∪ Next ∪

Not ∪ img(h1) ∪ img(h2)). Then, g∗ with domain restricted to Si is the function Φτ .

Recall that to compute ∆τ , we will look up entries in Ti−1. Suppose we look at the

index ν of an entry (and the value ∆ν ) that may be used to compute ∆τ . Let ν =

(i−1,Si−1,Li−1,L′
new,Prev′,Next ′,Not ′,S′, L′,h′1,h

′
2). Note that we would have only sto-

red the value ∆ν and not a canonical solution (hν ,gν) of Jν that achieves it. However,

if for some s ∈ Si ∩ (X ∪Y ) such that Ω(s) ∈ dom(Φν), Φτ(s) and Φν(Ω(s)) are not

adjacent, then there is no canonical solution (or rather, no feasible solution) (h∗,g∗) of

J such that g∗ with domain restricted to Si is Φτ and g∗ with domain restricted to Si−1

is Φν . In other words, we cannot use ∆ν to compute ∆τ . This justifies the importance of Φτ .

Computing ∆τ . Finally, we deal with computing ∆τ . Let C ′ be the set of triangles in C

that contain both a vertex from Qi and a vertex from Qi−1. We define the following sets of

variables.

• Si−1 = {v ∈ X ∪Y ∪ Z : g∗(v) ∈ Qi−1}, the set of variables in X ∪Y ∪ Z that are

assigned to vertices in Qi−1 by g∗.

• Li−1 = {w ∈W : V (h∗(w))∩Qi−1 ̸= /0}, the set of variables in W that are assigned

to paths that have a vertex from Qi−1 by h∗.

• L′
new = {w ∈ Li−1 : V (h∗(w))∩V (Gi−1)⊆ Qi−1}, the set of variables in W that are

assigned to paths that start at a vertex in Qi−1 by h∗.

• S′ = {v ∈ X ∪Y ∪Z : g∗(v) ∈ V (Gi−2)}, the set of variables in X ∪Y ∪Z that are

assigned to vertices in Gi−2 by g∗.

• L′ = {w ∈W : V (h∗(w))⊆V (Gi−2)}, the set of variables in W that are assigned to

paths in Gi−2 by h∗.
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Next, we define the following sets of vertices.

• Prev′ is the set of vertices of Qi−1 that are present in triangles in C that have a vertex

from both Qi−2 and Qi−1.

• Next ′ is the set of vertices of Qi−1 that are present in triangles in C that have a vertex

from both Qi and Qi−1.

• Not ′ is the set of vertices of Qi−1 that are not in the set V (C )∪V (img(h∗))∪

img(g∗).

Note that these sets together form the index ν = (i − 1,Si−1,Li−1,L′
new,Prev′, Next ′,

Not ′,S′,L′,h′1,h
′
2) where for each w ∈ Li−1, V (h∗(w))∩Qi−1 = {h′1(w)}∪{h′2(w)}. Mo-

reover, either Li−1 ⊆ Li or for each w ∈ Li−1 \Li, |V (h∗(w))|≥ 2. Clearly, the components

of τ and ν are related. This relation is stated below in Definition 41 using the notion of

compatible entries.

Definition 41. (Compatible indices)

Let τ = (i,Si,Li,Lnew,Prev,Next,Not,S,L,h1,h2) be the index of an entry in Ti. If i =

q+ 1, then the index ν of any entry in Tq is compatible with τ . Suppose 1 < i ≤ q. Let

ν = (i−1,Si−1,Li−1,L′
new,Prev′,Next ′,Not ′,S′, L′,h′1,h

′
2) be the index of an entry in Ti−1.

We say that ν and τ are compatible if the following properties hold.

• (CI.1) S′ ⊆ S, L′ ⊆ L, Si−1 ∪S′ = S and Lnew ∩Li−1 = /0.

• (CI.2) |Prev|=


0 if |Next ′|= 0,

2 if |Next ′|= 1,

1 if |Next ′|= 2.

• (CI.3) There is a set C ′ of vertex-disjoint triangles in G[Prev∪Next ′] such that

every vertex in Prev∪Next ′ is in some triangle of C ′.

• (CI.4) G[Not ∪Not ′] has no triangle.
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• (CI.5) For each w ∈ dom(h′1)\ (dom(h′2)∪Li), h′1(w) ∈ Λ2(w).

• (CI.6) For each w ∈ dom(h′2)\Li, h′2(w) ∈ Λ2(w).

• (CI.7) For each w ∈ dom(h′2)∩dom(h1), h′2(w) and h1(w) are adjacent.

• (CI.8) For each w ∈ (dom(h′1)∩dom(h1))\dom(h′2), h′1(w) and h1(w) are adjacent.

• (CI.9) For each w ∈ Li−1 \Li, one of the following holds.

– (Case w /∈ L′
new): If w ∈ dom(h′2(w)), then h′2(w) ∈ Λ2(w). Otherwise, h′1(w) ∈

Λ2(w).

– (Case w ∈ L′
new): w ∈ dom(h′1)∩dom(h′2) and h′2(w) ∈ Λ2(w).

• (CI.10) For each s ∈ Si ∩ (X ∪Y ) such that Ω(s) ∈ dom(Φν), Φτ(s) and Φν(Ω(s))

are adjacent.

(CI.1) follows from the definition of the corresponding sets. (CI.2) and (CI.3) specify that

the triangles in C ′ are formed exactly by the vertices in Prev∪Next ′. (CI.4) encodes the

maximality of C . Suppose there is a variable w ∈W that is in L∩Li−1. That is, h∗(w) has

ended at Qi−1. We could have gathered this information while processing Qi−1 as explained

earlier (see the paragraph preceding Definition 36). If we are going to compute ∆τ using

∆ν , it is necessary that we should be able to forget the paths assigned to such variables as

they have ended before Qi. Then, such paths should have ended at legal vertices specified

by Λ2. This check is made using (CI.5) and (CI.6). Suppose there is a variable w ∈W that is

in Li∩Li−1. That is, V (h∗(w)) has a vertex (specified by h′1 and h′2) from Qi−1 and a vertex

(specified by h1 and h2) from Qi. (CI.7) and (CI.8) ensure that h′1(w),h
′
2(w),h1(w),h2(w)

is indeed a path. (CI.10) is justified by the fact that Φτ is g∗ with domain restricted to Si

and Φν is g∗ with domain restricted to Si−1. (CI.9) ensures that each path assigned to a

variable w ∈ Li−1 \Li that has terminated before Qi (in particular, at Qi−1) is of length at

least two and has its end vertex in Λ2(w).
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Now, we have set up the framework to characterize each entry in Ti for i > 1 as a

function of an appropriate previous entry. This characterization is given in Lemma 42.

Before proceeding to its statement and proof, we will give an outline of the same. Let

τ = (i,Si,Li,Lnew,Prev,Next,Not,S,L,h1,h2) be the index of an entry in Ti for which we

wish to compute ∆τ . Recall that ∆τ is the value of an optimum solution for Jτ . That is, ∆τ

is the maximum size of a set C of vertex-disjoint triangles in Hτ −(V (img(hτ))∪ img(gτ))

satisfying properties mentioned in Definition 38. Observe that there are three types of

triangles in C .

• Triangles that are completely contained in Qi. Let c1 denote the number of such

triangles.

• Triangles that have a vertex from Qi−1 and a vertex from Qi. Let c2 denote the

number of such triangles.

• Triangles that are contained in Gi−1. Let c3 denote the number of such triangles.

Then, ∆τ is the sum of three values – c1, c2 and c3. The first two values can be computed

by just examining τ while the third value can be obtained by examining entries in Ti−1.

This observation is formalized in the following lemma.

Lemma 42. Let τ = (i,Si,Li,Lnew,Prev,Next,Not,S,L,h1,h2) be the index of an entry in

Ti for some i > 1. Then, ∆τ =−∞ if and only if there is no entry in Ti−1 whose index is

compatible with τ . Further, if ∆τ ̸= −∞, then ∆τ = ∆ν +ρ + loc where the terms in the

summation have the following definition.

• loc = (|Qi|−(|Prev|+|Next|+|Not|+|img(h1)|+|img(h2)|+|Si|))/3.

• ρ ∈ {0,1} is the maximum number of vertex-disjoint triangles in G[Prev∪Next ′].

• ν is the index of an entry in Ti−1 that maximizes ∆ν among all indices compatible

with τ .
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Proof. Recall from Definition 36 that Hτ is the subgraph of G induced by V (Gi)\Q′ where

Q′ = (h2(Lnew)∪h1(Lnew)∪Next ∪Not). Let (hν ,gν) be an optimum solution of Jν . Let

Cν be a maximum size set of vertex-disjoint triangles of Hν − (V (img(hν))∪ img(gν))

with the required properties given by Definition 38. Then, we obtain a feasible solution

(h,g) of Jτ by extending (hν ,gν) as follows.

• For each w ∈ L\L′
new, h(w) = hν(w) and for each s ∈ S, g(s) = gν(s).

• For each w ∈ L∩L′
new, h(w) is the path h′1(w)h

′
2(w).

• For each w ∈ Li \Lnew, h(w) is the path hν(w)h1(w)h2(w).

• For each s ∈ Si, g(s) = Φτ(s).

The feasibility of (h,g) follows from the definition of Jτ . Let Loc = Qi \ (Prev∪Next ∪

Not∪ img(Φτ)∪ img(h1)∪ img(h2)). Let C1 be a maximum size set of triangles in G[Loc].

Let C2 be a maximum size set of triangles in G[Prev∪Next ′]. Then, C = Cν ∪C1 ∪

C2 is a set of vertex-disjoint triangles in Hτ − (V (img(h))∪ img(g)) such that |C |=

|Cν |+|C1|+|C2|= ∆ν + loc+ρ . Therefore, ∆τ ≥ ∆β +ρ + loc where β is the index of an

entry in Ti−1 that maximizes ∆β among all indices compatible with τ .

Let (hτ ,gτ) be an optimum solution to Jτ . Let Cτ be a maximum size set of vertex-

disjoint triangles of Hτ − (V (img(hτ))∪ img(gτ)) with the required properties given by

Definition 38. Without loss of generality, assume that Cτ satisfies the properties mentioned

in Lemma 11. As (hτ ,gτ) is a canonical solution, gτ restricted to the domain as Si is Φτ .

Let C ′
1 be the set of triangles in Cτ that are completely contained in Qi. Let C ′

2 be the set

of triangles in Cτ that have a vertex from Qi−1 and a vertex from Qi. Let C ′
3 be the set

of triangles in Cτ that are contained in Gi−1. Then, ∆τ = |Cτ |= |C ′
1|+|C ′

2|+|C ′
3| where

|C ′
1|= loc. If |Prev|̸= 0, then |C ′

2|= 1. Otherwise, |C ′
2|= 0. Let ρ ′ = |C ′

2|.

Let Next ′′ be the vertices of Qi−1 that are present in triangles in C ′
2. Note that V (C ′

2) =

Prev∪Next ′′. Let S′i−1 denote the set of variables from X ∪Y ∪ Z that are assigned to

82



vertices from Qi−1 by gτ . Clearly, Si ∩S′i−1 = /0 and S′i−1 ⊆ S. Let L′
i−1 denote the set of

variables that are assigned to paths that intersect with Qi−1 by hτ . Let L′′
new denote the set

of variables that are assigned to paths that start from Qi−1 by hτ . Let Prev′′ denote the

set of vertices of Qi−1 that are present in triangles in Cτ that have a vertex in Qi−2. Let

Not ′′ be the vertices of Qi−1 \ (V (img(hτ))∪ img(gτ)) that are not in any triangle in Cτ .

Let S′′ and L′′ denote the sets of variables that have been assigned to vertices and paths,

respectively, in Gi−2 by hτ . Define the functions h′′1 : Li−1 → Qi−1 and h′′2 : Li−1 → Qi−1

as follows. For each w ∈ Li−1, h′′1(w) is the first vertex from Qi−1 in the path hτ(w) and

h′′2(w) is the second vertex (if it exists) from Qi−1 in the path hτ(w).

Let β denote the index (i−1,S′i−1,L
′
i−1,L

′′
new,Prev′′,Next ′′,Not ′′,S′′, L′′,h′′1,h

′′
2) obtai-

ned from (hτ ,gτ). Let (h′,g′) be the pair of functions obtained from (hτ ,gτ) by setting

the domain of h′ to L∪ (L′
i−1 \L′′

new) and reassigning h′(w) to be the subpath of hτ(w)

contained in Gi−1 for each w ∈ L′′
i−1 \L′′

new. Observe that each such path is of length at least

two. Hence, by the definition of Jβ , (h′,g′) is a feasible solution of Jβ . Thus, ∆β ≥ |C ′
3|.

Therefore, ∆τ ≤ ∆β +ρ ′+ loc. Note that ρ ′ = ρ as this number depends only on the size

of Prev. Finally, by the definition of compatible entries, τ and β are compatible. This

completes the proof of the claim.

This completes the description of the computation of entries of T.

Pseudo Code for Filling T. The procedure for computing T using Lemmas 39 and 42 is

described in Algorithm 1. We obtain opt(J ) as the value ∆τ where τ is the index of an

entry in Tq+1. Recall that there is only one index τ in Tq+1 by Definitions 34 and 35.

Now, we are ready to formally prove the main result of this section.

Proposition 43. There is an algorithm that solves COLORFUL CONSTRAINED PATH

ASSIGNMENT in O∗(2O(|X |+|Y |+|Z|+|W |)) time.
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Algorithm 1: Pseudocode for Computing T
Input: (G,{Q1, . . . ,Qq},π,X ,Y,Z,W,Γ,Λ1,Λ2,Ω)
Output: Tables T1, . . . ,Tq+1

1 Let Qq+1 = /0.
2 for each i ∈ [q+1] do
3 for each index τ = (i,Si,Li,Lnew,Prev,Next,Not,S,L,h1,h2) of an entry in Ti

do
4 Initialize ∆τ =−∞.
5 Let loc = (|Qi|−(|Prev|+|Next|+|Not|+|img(h1)|+|img(h2)|+|Si|))/3.
6 if dom(Φτ) = Si then
7 if i = 1 then
8 Set ∆τ = loc.

9 else
10 if there is no index ν in Ti−1 compatible with τ then
11 Set ∆τ =−∞.

12 else
13 for each index ν in Ti−1 compatible with τ do
14 if |Prev|̸= 0 then
15 ρ = 1.

16 else
17 ρ = 0.

18 if ∆τ < ∆ν +ρ + loc then
19 Set ∆τ = ∆ν +ρ + loc.

20 else
21 Set ∆τ =−∞.

22 return {Ti : i ∈ [q+1]}.

84



Proof. Consider an instance J = (G,Q,π,X ,Y,Z,W,Γ,Λ1,Λ2,Ω) of COLORFUL CON-

STRAINED PATH ASSIGNMENT. Let n denote the number of vertices of G and {Q1, . . . ,Qq}

be the clique partition Q of G. Let k denote |X |+|Y |+|Z|+|W |. We compute tables

Ti for each i ∈ [q+ 1] where q ≤ n using Algorithm 1. Let s denote |W | and r deno-

te |X |+|Y |+|Z|. An entry in Ti is uniquely identified by the index τ = (i,Si,Li,Lnew,

Prev,Next,Not,S,L,h1,h2). We bound the number of choices for such indices in order to

bound the size of Ti. As Si and S are disjoint subsets of X ∪Y ∪Z, the number of choices for

pairs (Si,S) is therefore at most 4r. Similarly, the number of choices for triples (Li,Lnew,L)

is at most 8s. Since Prev, Next and Not are pairwise disjoint subsets of sizes at most two of

Qi (which has size at most n), there are at most O(n6) choices for triples (Prev,Next,Not).

Finally, as |dom(Li)|≤ 14, it follows that there are at most O(n28) choices for functions

(h1,h2). Therefore, the size of Ti is O∗(2O(k)). Consequently, the size of T is O∗(2O(k)).

To fill an entry in Ti, it is necessary to look at all entries in Ti−1 and the rest is a polynomial

time computation. Hence, the time taken to compute entries of T is also O∗(2O(k)). Then,

by examining the (unique) index τ of Tq+1, the final answer ∆τ can be obtained. If ∆τ is

−∞, then J has no feasible solution. Otherwise, opt(J ) = ∆τ . Therefore, the overall

running time of the algorithm is O∗(2O(k)).

3.4.5 Putting it all Together: Proof of Theorem 1

The main result (Theorem 10) now follows from Propositions 14, 19, 27 and 43.

Theorem 9. 10 (restated) CYCLE PACKING parameterized by the size t of a proper

interval deletion set can be solved in O∗(2O(t log t)) time.

Proof. Consider an instance I = (G,T,r) of CYCLE PACKING with parameter |T |. Using

Proposition 14, we create a set of 2O(|T |log|T |) instances of CONSTRAINED CYCLE PAC-

KING such that I is a yes-instance if and only if at least one of the instances is a yes-
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instance. This step takes O∗(2O(|T |log|T |)) time. Each such instance I ′ is of the form

(G′,T ′,Q,T ′,A,B,r) with parameter |T ′|. The components of I ′ have the following

interpretation.

• G′ is a subgraph of G induced by a subset of vertices that contains V (G−T ) and

T ′ ⊆ T .

• T ′ is a proper interval deletion set of G′ and Q is a clique partition of G′−T ′.

• T ′ = {T1, . . . ,Tℓ} is a partition of T ′ into ℓ non-empty subsets for some ℓ≤ |T ′|.

• A is a set {σ1, . . . ,σℓ} where σi is a permutation of Ti for each i ∈ [ℓ].

• B is a set {γi ∈ {0,1,2,3}|Ti| : i ∈ [ℓ]}.

For each instance I ′ = (G′,T ′,Q,T ′,A,B,r) (with parameter |T ′|) created in the

previous step, we use Proposition 19 to construct (in O∗(2O(|T ′|)) time) a set of 2|T |

instances of CONSTRAINED PATH ASSIGNMENT such that I ′ is a yes-instance if and

only if at least one of the instances J satisfies opt(J )≥ r− ℓ. Each such instance J

is of the form (H,Q,π,X ,Y,Z,W,Γ, Λ1,Λ2,Ω) whose components have the following

interpretation. The parameter of J is k = |X |+|Y |+|Z|+|W |.

• H is the graph G′−T ′ with clique partition Q = {Q1, . . . ,Qq} and proper interval

ordering π .

• Each of X , Y , Z and W is a set of O(|T ′|) variables.

• Γ is a function from X ∪Y ∪Z to a collection of subsets of V (H).

• Λ1 and Λ2 are functions from W to collections of subsets of V (H).

• Ω is a bijection from X to Y .

For each instance J = (H,Q,π,X ,Y,Z,W,Γ,Λ1,Λ2,Ω) (with parameter k = |X |+|Y |

+|Z|+|W |) created in this step, we use Proposition 27 to create O∗(k!ekkO(logk)) instances
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of COLORFUL CONSTRAINED PATH ASSIGNMENT such that at least one of these instances

Ĵ satisfies opt(J ) = opt(Ĵ ). Each such instance Ĵ (with parameter k) is an instance

(H,Q,π,X ,Y,Z,W, Γ̂,Λ1, Λ2,Ω) of CONSTRAINED PATH ASSIGNMENT where Γ̂ is a

function from X ∪Y ∪ Z to a collection of subsets of V (H). Also, for each variables

s ∈ X ∪Y ∪Z, Γ̂(s)⊆ Γ(s). Moreover, for each pair s, t of distinct variables in X ∪Y ∪Z,

we have Γ̂(s)∩ Γ̂(t) = /0.

Finally, we solve each such instance Ĵ of CONSTRAINED PATH ASSIGNMENT with

parameter k using Proposition 43 in O∗(2O(k)) time. Therefore, the overall running time of

the algorithm for solving the instance I of CYCLE PACKING is O∗(2O(|T |log|T |)).

3.5 CYCLE COVER and PATH COVER parameterized by

proper interval deletion set

In the previous subsections we looked at the CYCLE PACKING problem. In this subsection

we shift our attention to the CYCLE/PATH COVER problem. We study these problems

parameterized by the same structural parameter, proper interval deletion set. In particular,

we show that PATH COVER and CYCLE COVER are fixed-parameter tractable (FPT) when

parameterized by k, the size of a proper interval deletion set (a set of vertices whose

deletion results in a proper interval graph). For this purpose, we design an algorithm with

2O(k logk)nO(1) running time for each of these problems. Notice that we denote the size of

proper interval deletion set by k for this particular subsection. Our algorithms use several

interesting properties paths/cycles of proper interval graphs and a dynamic programming

procedure over clique partitions to solve these problems in the mentioned FPTtime. As

a consequence, we get the same fixed-parameter tractability results for HAMILTONIAN

CYCLE and HAMILTONIAN PATH problems.
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PATH COVER Parameter: |T |
Input: A graph H, a proper interval deletion set T of H and an integer r.

Question: Does H have a path cover of size at most r?

CYCLE COVER Parameter: |T |
Input: A graph H, a proper interval deletion set T of H and an integer r.

Question: Does H have a cycle cover of size at most r?

We show that these problems are FPT and this is the main result of this section. By

parameterizing PATH COVER and CYCLE COVER with respect to the size of a proper

interval deletion set as parameter, we attempt to understand the complexity of the problem

on almost proper interval graphs. Recently, Chaplick et al. [19] obtained polynomial

kernels and compression algorithms for PATH COVER and CYCLE COVER parameterized

by a different measure of similarity with proper interval graphs. Our FPT algorithms also

add to this study of structural parameterizations for these classical problems.

Theorem 10. PATH COVER and CYCLE COVER parameterized by the size k of a proper

interval deletion set can be solved in O∗(2O(k logk)) time.

We assume that the proper interval deletion set T is part of the input. This assumption

is reasonable as given a graph H and an integer k, there is an algorithm that, in O∗(6k) time,

outputs a proper interval deletion set of size at most k (if one exists) [18, 87]. Our algorithms

use several interesting properties of proper interval graphs and a dynamic programming

procedure over clique partitions to solve these problems in the mentioned time. As a

consequence, we get the same fixed-parameter tractability results for HAMILTONIAN

CYCLE and HAMILTONIAN PATH problems with the same parameterization.

Overview of our Algorithm and Techniques. Consider an instance I = (H,T,r) of

PATH COVER and CYCLE COVER. Let P be a minimum path cover of H that we are

looking for. We first guess the following properties of P . Intialize the set of variables S
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to be the empty set. Let G denote H −T .

1. We guess the number ℓ of paths in P that have a vertex from T . Clearly, ℓ≤ k and

the number of choices for ℓ is k. Let Pm = {P1, . . . ,Pℓ} denote the set of these paths.

2. For each Pi ∈ Pm, we guess if Pi has zero, one or two endpoints in T . The number

of possible choices in this step is 2O(k).

3. For each Pi ∈ Pm, we guess the order λ (Pi) of vertices of V (Pi)∩T . The number of

possible choices in this step is 2O(k logk).

4. For each Pi ∈Pm that starts at a vertex in G, we add the variable Si($, t) to S where

t is the first vertex according to λ (Pi). The variable Si($, t) indicates that we need to

assign it a path in G that ends in a neighbour of t.

5. For each Pi ∈Pm that ends at a vertex in G, we add the variable Si(t ′,$) to S where

t ′ is the last vertex according to λ (Pi). The variable Si(t ′,$) indicates that we need

to assign it a path in G that starts in a neighbour of t ′.

6. For each Pi ∈ Pm, for each pair of vertices t ∈ T and t ′ ∈ T that are consecutive

according to λ (Pi), we add a variable Si(t, t ′) to S indicating that Si(t, t ′) should be

assigned a path in G that is between a neighbour of t and a neighbour of t ′.

Clearly, |S |= O(k) and the task of finding a minimum path cover of H reduces to the

problem of finding an assignment of vertex-disjoint paths in G to the variables in S

satisfying the appropriate endpoint constraints while minimizing the size of a minimum

path cover of G[X ] where V (G)\X is the set of vertices that are in the path assigned to

some variable in S .

Similarly, let C be a minimum cycle cover of H that we are looking for. We first guess

the following properties of C . Intialize the set of variables S to be the empty set.
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1. We guess the number ℓ of cycles in C that have a vertex from T . Clearly, ℓ ≤ k

and the number of choices for ℓ is k. Let Cm = {C1, . . . ,Cℓ} denote the set of these

cycles.

2. For each Ci ∈ Cm, we guess the order λ (Ci) of vertices of V (Ci)∩T . The number of

possible choices in this step is 2O(k logk).

3. For each Ci ∈ Cm with |V (Ci)∩ T |≥ 2, for each pair t ∈ T and t ′ ∈ T that are

consecutive according to λ (Ci), we add a variable Si(t, t ′) to S indicating that

Si(t, t ′) should be assigned a path in G that is between a neighbour of t and a

neighbour of t ′. Note that the first and last vertices in λ (Ci) are also considered to be

consecutive.

4. For each Ci ∈ Cm with V (Ci)∩T = {t}, we add a variable Si(t, t) to S indicating

that Si(t, t) should be assigned a path in G that is between two neighbours of t.

Once again, |S |= O(k) and the task of finding a minimum cycle cover of H reduces to

the problem of finding an assignment of vertex-disjoint paths in G to the variables in S

satisfying the appropriate endpoint constraints while minimizing the size of a minimum

cycle cover of G[X ] where V (G)\X is the set of vertices that are in the path assigned to

some variable in S .

Thus, both the problems of finding a minimum path cover and a minimum cycle cover

of H boil down to the problem of finding certain constrained paths in G which is a proper

interval graph. We first show that these paths are very structured due to the properties given

by a proper interval ordering. Then, we describe a dynamic programming procedure to

find such structured paths.

Road Map. In Section 3.5, we list some fundamental terminology and properties related to

proper interval graphs. In Section 3.5.1, we list important properties of paths and cycles in

proper interval graphs. In Section 3.6, we describe an FPT algorithm for PATH COVER and
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in Section 3.7, we describe an FPT algorithm for CYCLE COVER. Finally, we conclude

with some remarks.

Notations: We state the following notations that are specifically used throughout this

section. A permutation/ordering π of a set A = {a1, . . . ,a|A|} is denoted by a sequence

(ai1,ai2, . . . ,ai|A|) where {i1, i2, . . . , i|A|}= [|A|]. Given a permutation π of A and an element

a ∈ A, π(a) denotes the position (between 1 to |A|) of a in π .

3.5.1 Structure of Path Covers and Cycle Covers

Recall that a path cover P (cycle cover C ) of a graph H is a set of vertex-disjoint paths

(cycles) in H such that V (P) =V (H) (V (C ) =V (H)). Consider an instance I = (H,T,r)

of PATH COVER and CYCLE COVER. Let π and Q = {Q1, · · · ,Qq} denote the proper

interval ordering and clique partition of G = H −T , respectively, obtained in polynomial

time [44, 58]. Let T = {t1, . . . , tk}.

Paths and Cycles in Proper Interval Graphs

In this section, we list some fundamental properties of paths and cycles in proper interval

graphs. The following result is well-known in the proper interval graphs literature.

Proposition 44 ([7, 20, 53]). Every connected proper interval graph has a Hamiltonian

path, and a proper interval graph has a Hamiltonian cycle if and only if it is 2-connected

with at least three vertices.

This results leads to the following proposition.

Proposition 45. Let G be a connected proper interval graph with proper interval ordering

π where u is the leftmost vertex in G and v is the rightmost vertex in G. Then, G has a

Hamiltonian path from u to v.
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Definition 46. (Monotone path) Let G be a proper interval graph with proper interval

ordering π . A path P = (v1, . . . ,vr) in G is called monotone if π(v1)< π(v2)< · · ·< π(vr)

or π(v1)> π(v2)> · · ·> π(vr).

The following holds from Proposition 45.

Observation 47. If P is a path in a proper interval graph G with proper interval ordering

π , then there is a monotone path P′ in G with V (P) =V (P′).

Next, we study the structures of cycles in proper interval graphs.

Definition 48. (Starting and ending vertices of a cycle) Let C = (v1, . . . ,vp) be a cycle in

a proper interval graph G with proper interval ordering π . Then, we say that C starts at

vi and ends at v j where vi is the leftmost vertex in V (C) and v j is the rightmost vertex in

V (C).

Definition 49. (2-monotone cycle) Let G be a proper interval graph with proper interval

ordering π . A cycle C = (v1,v2, . . . ,vi,vi+1, . . . ,vr) in G is called 2-monotone if there is

an integer i ∈ [r] such that (v1,v2, . . . ,vi) and (v1,vr, . . . ,vi) are monotone paths that are

internally vertex-disjoint and start and end at the same vertices.

Observe that a 2-monotone cycle C can be obtained by the concatenation of two

maximal monotone paths and this pair of subpaths is unique for C.

Proposition 50. If G is a 2-connected proper interval graph with proper interval ordering

π , then G has a 2-monotone Hamiltonian cycle.

Proof. We claim that C = (π(1), . . . ,π(n)) is the required Hamiltonian cycle. Consi-

der the sequences P1 = (π(1),π(3),π(5), . . . ,π(n)) and P2 = (π(1),π(2),π(4), . . . ,π(n)).

Suppose π(i) is not adjacent to π(i+ 1) for some i. Then, from Proposition 110, there

does not exist a pair i′ ≤ i, j′ ≥ i+ 1 such that π(i′) and π( j′) are adjacent. Thus, the-

re is no edge between a vertex in C1 =
i⋃

j=1
{π( j)} and a vertex in C2 =

n⋃
j=i+1

{π( j)}
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implying that G is disconnected. This leads to a contradiction. Similarly, suppose for some

i, π(i) is not adjacent to π(i+2). Then, from Proposition 110, there does not exist a pair

i′ ≤ i, j′ ≥ i+2 such that π(i′) and π( j′) are adjacent. Thus, there is no edge between a

vertex in C3 =
i⋃

j=1
{π( j)} and a vertex in C4 =

n⋃
j=i+2

{π( j)} in G−π(i+1) implying that

G is not 2-connected leading to a contradiction. Thus, P1 and P2 are paths in G. Clearly, P1

and P2 are internally vertex-disjoint and monotone by definition. Thus, C is a 2-monotone

Hamiltonian cycle.

Observation 51. If C is a cycle in a proper interval graph G with proper interval ordering

π , then there is a 2-monotone cycle C′ in G such that V (C) =V (C′).

Next, we define the notion of i-monotone paths in proper interval graphs.

Definition 52. (i-Monotone path) Let G be a proper interval graph with proper interval

ordering π . For a positive integer i, a path P is called i-monotone if P is the concatenation

of i monotone paths.

Observe that monotone paths are 1-monotone.

Proposition 53. If P is a path from a vertex s in a proper interval graph G with proper

interval ordering π , then there is an i-monotone path P′ in G from s with V (P) =V (P′)

for some i ∈ [2].

Proof. Let v denote the other endpoint of P. Let vl and vr be the leftmost and rightmost

vertices of P. Note that vl,vr,s,v may not all be distinct. Let Z denote the set of these (at

most 4) vertices.

Case 1: The order of appearance of Z in P is s,vr,vl,v.

Let S′ be the subpath of P from s to vr. Let X = {v ∈V (S′) : π(v)≥ π(s)} and Y = (V (P)\

X)∪{vr}. Observe that G[X ] and G[Y ] are connected. Therefore, there are monotone

paths S1 from s to vr and and S2 from vr to vl such that V (S1)∪V (S2) =V (P). Then, the

concatenation of paths S1 and S2 is an i-monotone (s,vl)-path P′ with V (P) =V (P′) for

some i ∈ [2]. See Figure 3.10 for an illustration.
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Case 2: The order of appearance of Z in P is s,vl,vr,v.

Let S′ be the subpath of P from s to vl . Let X = {v ∈V (S′) : π(v)≤ π(s)} and Y = (V (P)\

X)∪ {vl}. Observe that G[X ] and G[Y ] are connected. Therefore, there are monotone

paths S1 from s to vl and S2 from vl to vr such that V (S1)∪V (S2) = V (P). Then, the

concatenation of paths S1 and S2 is an i-monotone (s,vr)-path P′ with V (P) =V (P′) for

some i ∈ [2].

v

vl

vr

s

vl

vr

s

X

S2

S1S′

S′

Fig 3.10: A 2-monotone path from s

Proposition 54. If P is a (s, t)-path in a proper interval graph G with proper interval

ordering π , then there is an i-monotone (s, t)-path P′ in G with V (P) = V (P′) for some

i ∈ [3].

Proof. Let vl and vr be the left most and right most vertices of P. Note that vl,vr,s, t

may not all be distinct. Let the four vertices appear in P in the order (s,a,b, t) where

a,b ∈ {vl,vr}. Define the following subpaths of P: S1 from s to a, S2 from a to b and S3

from b to t. Let X = {v ∈ V (S1) : π(v) ≤ π(s)} and Y = {v ∈ V (S3) : π(v) ≥ π(t)}. Let

Z =V (P)\ (X ∪Y )∪{a,b}. Observe that G[X ], G[Y ] and G[Z] are connected. Therefore,

there are monotone paths S′1 from s to a, S′2 from a to b and S′3 from b to t. Thus, the

concatenation of paths S′1, S′2 and S′3 is an i-monotone path P′ from s to t for some i ∈ [3].

See Figure 3.11 for an illustration.
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Fig 3.11: A 3-monotone path between s and t

3.5.2 Canonical Minimum Path Covers

For a path cover P of H, define the following sets.

• Po = {Pi ∈P : V (Pi)∩T = /0}, the set of paths in P that are completely contained

in G.

• Pm = P \Po, the set of paths in P that have at least one vertex from T .

• M(P) is the set of maximal subpaths of paths in Pm that are contained in G. That

is, for each P in Pm, a subpath S of P with V (S)⊆V (G) is in M(P) if and only if

there is no subpath S′ of P such that V (S′)⊆V (G) and V (S)⊂V (S′).

• S(P) is the set of maximal subpaths of paths in M(P) that are monotone. That is,

for each P in M(P), a subpath S of P is in S(P) if and only if S is monotone and

there is no monotone subpath S′ of P such that V (S)⊂V (S′).

We refer to elements of S(P) as segments of P . In the example shown below, Pm

contains a path P from t1 to t2 and M(P) = {S} where S = (a,b,c,d,e, f ,g,h, i, j,k, l).

The set of segments is S(P) = {S1,S2,S3} where S1 = (c,b,a), S2 = (c,d,e, f ,g,h) and

S3 = (l,k, j, i,h).
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Definition 55. (Pseudo-consecutive vertices) Two vertices u,v ∈ T are said to be pseudo-

consecutive if u and v are in the same path P in P and there is no other vertex of T that is

in the subpath of P between u and v.

In the example shown above, t1 are t2 are pseudo-consecutive.

Definition 56. (Pseudo-adjacent vertices) Let y be a vertex in G that is an endpoint of

some path in P . A vertex x ∈ T is said to be pseudo-adjacent to y if x and y are in the

same path P in P and there is no other vertex of T that is in the subpath of P between y

and x.

In the example shown below, t1 are l are pseudo-adjacent.

Definition 57. (Relevant and irrelevant vertices in Qi) For a path S in S(P)∪Po that

contains at least one vertex from Qi, the set Ri(P,S) of relevant vertices is V (S)∩Qi if

|V (S)∩Qi|≤ 2, otherwise Ri(P,S) consists of the leftmost and the rightmost vertices of

V (S)∩Qi. The collection Ri(P) of relevant vertices contains the set Ri(P,S) of every

path S in S(P)∪Po that contains at least one vertex from Qi. A vertex in Qi that is not in

Ri(P) called irrelevant.
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An example is shown in the following figure.

Relevant vertex

Irrelavant vertexQi

Sj
Sl

Sj′

Sl′

Definition 58. (Nice path cover) A path cover P is said to be nice if the following

properties hold.

• (NP.1) Every path in Po is monotone.

• (NP.2) For any i ∈ [q], there is at most one path P in Po such that Qi ∩V (P) ̸= /0.

• (NP.3) For every path P in Pm, for every pair of pseudo-consecutive modulator

vertices t, t ′ in P that are not consecutive in P, the maximal subpath of P between t

and t ′ that is contained in G is i-monotone for some i ∈ [3].

• (NP.4) For every path P in Pm starting (or ending) at a vertex s in G whose pseudo-

adjacent modulator vertex is t, the maximal subpath of P contained in G that is

between s and the neighbour of t in P is i-monotone for some i ∈ [2].

• (NP.5) For any i ∈ [q], if |Qi|> 10k, then each segment S ∈ S(P) with V (S)∩Qi ̸= /0

that neither starts nor ends at a vertex in Qi satisfies |V (S)∩Qi|≥ 2.

Lemma 59. Given a path cover P of H, a nice path cover P∗ of H with |P∗|≤ |P| can

be obtained in polynomial time.

Proof. Every path P in Po not satisfying (NP.1) can be replaced by a path P′ satisfying

(NP.1) using Observation 47. If there are two paths P and P′ in Po containing vertices

from Qi, then they can be replaced by the Hamiltonian path of G[V (P)∪V (P′)] given by

Proposition 45. Applying these replacement rules as long as possible results in a path
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cover P∗ of H with |P∗|≤ |P| satisfying (NP.1) and (NP.2). Suppose S is a subpath

of a path in P∗
m between two pseudo-consecutive modulator vertices u and v. Let s and

t be the neighbors of u and v respectively in S. If the subpath S′ of S between s and t

is not i-monotone for some i ∈ [3], we replace S′ by an i-monotone (s, t)-path S′′ with

V (S) = V (S′′) for some i ∈ [3] given by Proposition 54. Applying this replacement rule

as long as possible results in a path cover P⋆ of H with |P⋆|≤ |P∗| satisfying (NP.1),

(NP.2) and (NP.3). Similarly, using Proposition 53, we may assume that this path cover

also satisfies (NP.4). Suppose s is a vertex in G that is an endpoint of some path P ∈ P⋆.

Let t be its pseudo-adjacent modulator vertex and let S be the subpath of P between s and

t. Let v be the neighbour of t in S and S′ denote the subpath of S from v to s. Then, from

Proposition 53, there is an i-monotone path S′′ with v as an endpoint and V (S′′) =V (S′)

for some i ∈ [2]. We replace the subpath S′ by S′′ in P. Applying this replacement rule as

long as possible results in a path cover P̂ of H with |P̂|≤ |P⋆| satisfying (NP.1), (NP.2),

(NP.3) and (NP.4).

Suppose there is a segment S ∈ S(P̂) that neither starts nor ends in Qi but has exactly

one vertex x from Qi. Let P be the path in P that contains S. As |Qi|> 10k, from Lemma

61, there is an irrelevant vertex y ∈ Qi that is in a monotone path S′ ∈ S(P)∪Po. Let

P′ be the path in P that contains S′. We delete y from S′ to get another monotone path

S′′. We replace S′ with S′′ in P′ and P′ remains a path with the same monotonicity. Then,

we replace S = (x) with S∗ = (x,y) if π(x) ≤ π(y), otherwise we replace S = (x) with

S∗ = (y,x). We claim that P remains a path with the same monotonicity. Without loss of

generality, let S∗ = (y,x) and let the last vertex of V (P)∩Qi−1 be z. Since z is adjacent to

x, z is also adjacent to y as π(y) ≤ π(x). The other case when S∗ = (x,y) can be argued

similarly. Applying this replacement rule as long as possible results in a path cover P̂⋆ of

H with |P̂⋆|≤ |P̂| satisfying (NP.1), (NP.2), (NP.3), (NP.4) and (NP.5).

Corollary 60. Given a minimum path cover P of H, a nice minimum path cover P∗ of H

with |P∗|≤ |P| can be obtained in polynomial time.
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Lemma 61. If P is a nice minimum path cover of H, then |S(P)|≤ 4k and for any i ∈ [q],

|Ri(P)|≤ 8k+2.

Proof. From Propositions 53 and 54, each vertex v ∈ T is preceeded by at most 3 segments

and succeeded by at most 3 segments in P . Further, each vertex in T that has no other

vertex in T preceeding it is preceeded by at most 2 segments. Similarly, each vertex in

T that has no other vertex in T succeeding it is succeeded by at most 2 segments. Thus

S(P)≤ 4k. In any minimum path cover, there is at most one path in Po that intersects Qi

(from NP.2) and it has at most 2 relevant vertices in it. Hence |Ri(P)|≤ 8k+2.

Definition 62. (Leftmost and rightmost set of vertices) Consider a subset S of vertices of

G. If |S|> 10k, then let LM(S) denote the 10k leftmost vertices of S and RM(S) denote the

10k rightmost vertices of S. Otherwise, LM(S) = RM(S) = S.

Definition 63. (Boundary vertices of Qi) Consider the following sets.

• Li = LM(Qi).

• Ri = RM(Qi).

• Li
x = LM(Qi ∩N(x)) for each x ∈ T .

• Ri
x = RM(Qi ∩N(x)) for each x ∈ T .

• Li
xy = LM(Qi ∩N(x)∩N(y)) for each x,y ∈ T .

• Ri
xy = RM(Qi ∩N(x)∩N(y)) for each x,y ∈ T .

The set B(Qi) = Li ∪Ri ⋃
x∈T

(Li
x ∪Ri

x)
⋃

y,z∈T
(Li

yz ∪Ri
yz) is called the boundary vertices of Qi.

Notice that for any i ∈ [q], the size of B(Qi) is O(k3).

Definition 64. For every vertex v ∈ V (G), let ρ(v) denote the tuple (m1,m2) defined as

follows.
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• m1 is the vertex in T that preceeds v in the path in P that contains v. If no such

vertex exists, then m1 = $.

• m2 is the vertex in T that succeeds v in the path in P that contains v. If no such

vertex exists, then m2 = $.

Definition 65. (Canonical path cover) A nice path cover P is said to be canonical if

for each i ∈ [q] and each S ∈ S(P), Ri(P,S)⊆ B(Qi) and the following properties are

satisfied.

• (CP.1) For a segment S ∈ S(P) passing through Qi, its first and last vertices in Qi

are in Li ∪Ri.

• (CP.2) For a segment S ∈ S(P) that ends in Qi, the following hold.

– If S∩Qi = (a) and ρ(a) = ($,$), then a ∈ Li.

– If S∩Qi = (a) and ρ(a) = (m1,m2), then a ∈ Li
m1m2

∪Ri
m1m2

.

– If S∩Qi = (a) and ρ(a) = (m1,$), then a ∈ Li
m1

∪Ri
m1

.

– If S∩Qi = (a) and ρ(a) = ($,m2), then a ∈ Li
m2

∪Ri
m2

.

– If Ri(P,S) = (a,b) and ρ(a) = (m1,$), ρ(b) = ($,m2), then a ∈ Li
m1

∪

Ri
m1
,b ∈ Ri

m2
∪Li

m2
.

– If Ri(P,S) = (a,b) and ρ(a) = ($,$), ρ(b) = ($,m2), then a ∈ Li,b ∈ Ri
m2

∪

Li
m2

.

– If Ri(P,S) = (a,b) and ρ(a) = (m1,$), ρ(b) = ($,$), then a ∈ Li
m1

∪Ri
m1
,b ∈

Ri ∪Li.

– If Ri(P,S) = (a,b) and ρ(a) = ($,$), ρ(b) = ($,$), then a ∈ Li,b ∈ Ri.

• (CP.3) For a segment S ∈ S(P) that starts in Qi, the following hold.

– If S∩Qi = (a) and ρ(a) = ($,$), then a ∈ Ri.

– If S∩Qi = (a) and ρ(a) = (m1,$), then a ∈ Li
m1

∪Ri
m1

.
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– If S∩Qi = (a) and ρ(a) = ($,m2), then a ∈ Ri
m2

∪Li
m2

.

– If Ri(P,S) = (a,b) and ρ(a) = ($,$), ρ(b) = ($,m2), then a ∈ Li ∪Ri,b ∈

Ri
m2

∪Li
m2

.

– If Ri(P,S) = (a,b) and ρ(a) = (m1,$), ρ(b) = ($,$), then a ∈ Li
m1

∪Ri
m1
,b ∈

Ri.

– If Ri(P,S) = (a,b) and ρ(a) = ($,$), ρ(b) = ($,$), then a ∈ Li,b ∈ Ri.

Lemma 66. Given a nice path cover P of H, a canonical path cover P∗ of H with

|P∗|≤ |P| can be obtained in polynomial time.

Proof. From Lemma 61, as P is a nice minimum path cover of H, we have |S(P)|≤ 4k

and for any i ∈ [q], |Ri(P)|≤ 8k + 2. For any i ∈ [q] such that |Qi|≤ 10k, Properties

(CP.1), (CP.2) and (CP.3) vacously hold as Li = Ri = Qi, Li
x = Ri

x = Qi ∩N(x), Li
xy =

Ri
xy = Qi ∩N(x)∩N(y). Now, consider a clique Qi such that |Qi|> 10k.

Suppose S(P) has a segment S that intersects Qi but neither starts nor ends in it.

Suppose the first vertex a in V (S)∩Qi is not in Li. Since Qi has more than 10k vertices,

|Li|= 10k and Li has a vertex a′ that is irrelevant in some Sl ∈ S(P)∪Po. Delete a′ from

Sl to get S′l and add a′ to S between a and the last vertex of V (S)∩Qi−1 to get S′. As

π(a′)< π(a) and Sl has two relevant vertices in Qi, it follows that S′ and S′l are monotone

paths, starting and ending at the same vertices as before while together covering the same

set of vertices. After this preprocessing, the leftmost relevant vertex of S is in Li. We can

apply a similar preprocessing to show that the rightmost vertex of V (S)∩Qi is in Ri.

Suppose S(P) has a segment S such that V (S)∩Qi =(a) where a is adjacent to two mo-

dulator vertices m1, m2 but a /∈ Li
m1m2

∪Ri
m1m2

. As a /∈ Li
m1m2

, |Li
m1m2

|= 10k and Li
m1m2

has

a vertex a′ that is irrelevant in some Sl ∈ S(P)∪Po. Let V (Sl)∩Qi = (x, . . . ,xi,xi+1, . . .y)

where x and y are the two relevant vertices of Sl in Qi. First we obtain S′ from S by replacing

a with a′. Then, we obtain S′l from Sl depending on the following cases.

• Case Sl ∈ S(P) and π(x) ≤ π(a) ≤ π(y): Then, S′l is obtained from Sl by adding
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a between two consecutive vertices xi and xi+1 in Sl where π(x) ≤ . . . ≤ π(xi) ≤

π(a) ≤ π(xi+1) ≤ . . . ≤ π(y). Then, S′l is a segment starting and ending with the

same vertices as Sl and V (S′l)∪V (S′) =V (Sl)∪V (S).

• Case Sl ∈ S(P) and π(a)≥ π(y): In this case we consider the following possibilities.

Refer to Figure 3.12 for an illustration.

– Case 1: If Sl does not end in Qi, then we add the vertex a after y to get the

monotone path S′l .

– Case 2: If Sl ends in Qi and there is no modulator vertex after y and there is no

other segment ending at y, then we add a after y to get the monotone path S′l .

– Case 3: If Sl ends in Qi and there is no modulator vertex in after y but there

is another segment Sr ending at y, then we add a to the end of Sr after y and

replace y with a in Sl to get S′l .

– Case 4: If Sl ends in Qi and there is modulator vertex m3 after y, then we add

the new monotone segment (y,a) and replace y in Sl with a. We concatenate

these two segments to get a path (x . . .a,y) and replace the segment Sl in P

with this new path.

Sl

x y

a

S′
l

x y aa′

S
a′

S′

m1 m2
m1 m2

Sl

x y

a

S′
l

x y a
a′

S
a′

S′

m1 m2
m1 m2

Sl x y

a

S′
l x

y

aa′

S
a′

S′

m1 m2
m1 m2

Sr Sr

Sl x y

a

S′
l x

y

aa′

S
a′

S′

m1 m2
m1 m2

Snew

m3 m3

Case:1

Case:2

Case:3

Case:4

Fig 3.12: Reconstructing Segments

• Case Sl ∈ S(P) and π(a)≤ π(x): This case is similar to the previous case.
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• Case Sl /∈ S(P): In this case Sl is a monotone path from Po. Since Sl has 2 vertices

in Qi, V (Sl)∪{a}\{a′} induces a connected subgraph and hence has a Hamiltonian

path S′l .

The other properties can be proved in a similar manner. Note that if there are two segments

that start at the same vertex in Qi and some property does not hold true for the first

relevant vertex in Qi, then we apply the replacement procedure for the first vertex of both

these segments together. We do the same for two segments that end at the same vertex in

Qi.

Corollary 67. Given a nice minimum path cover P of H, a canonical minimum path

cover P∗ of H with |P∗|≤ |P| can be obtained in polynomial time.

3.5.3 Canonical Minimum Cycle Covers

For a cycle cover C of H, define the following sets.

• Co = {Ci ∈ C : V (Ci)∩T = /0}, the set of cycles in C that are completely contained

in G.

• Cm = C \Co, the set of cycles that have at least one vertex from T .

• M(C ) is the set of maximal subpaths of cycles in Cm that are contained inside G.

That is, for each C ∈ Cm, a subpath S of C is in M(C ) if and only if V (S)⊆V (G)

and there is no subpath S′ of C such that V (S′)⊆V (G) and V (S)⊂V (S′).

• S(C ) is the set of maximal subpaths of paths in M(C ) that are monotone. That is,

for each P in M(C ), a subpath S of P is in S(C ) if and only if S is monotone and

there is no monotone subpath S′ of P such that V (S)⊂V (S′).

We refer to elements of S(C ) as segments of C .
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Definition 68. (Pseudo-consecutive vertices) Two vertices u,v ∈ T are said to be pseudo-

consecutive if u and v are in the same cycle C in C and there is a subpath in C between u

and v with no other vertex of T .

Definition 69. (Relevant and irrelevant vertices in Qi) For a path P∈ S(C ) that contains at

least one vertex from Qi, the set Ri(C ,P) of relevant vertices is V (P)∩Qi if |V (P)∩Qi|≤ 2,

otherwise Ri(C ,P) consists of the leftmost and the rightmost vertices of V (P)∩Qi. The

relevant vertices Ri(C ,C) of a 2-monotone cycle C ∈ Co is the collection of relevant

vertices of its two maximal internally vertex-disjoint monotone paths in Qi. We denote

the set of relevant vertices in Qi by Ri(C ) = Rim ∪Rio , where Rim is the collection of

the relevant vertices of all the segments in S(C ) in Qi and Rio is the collection of all the

relevant vertices of the 2-monotone cycles of Co in Qi. A vertex in Qi that is not in Ri(C )

called irrelevant.

See ?? for an illustration.

Relevant vertex (Rim)

Irrelevant vertex

S1

S2

S3

Ce

Cc

Relevant vertex (Rio)

Fig 3.13: Relevant vertices of Qi

Proposition 70. For any minimum cycle cover C = Co∪Cm and for any i ∈ [q], there is at

most 1 cycle in Co from each of the following sets.

• (Type 1) Cycles that are contained in G[Qi].

• (Type 2) Cycles that do not start but end in Qi.

• (Type 3) Cycles that start but do not end in Qi.
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• (Type 4) Cycles that intersect Qi, but neither start nor end in it.

Moreover, for each i ∈ [q], if there is a cycle of Type 2 (Type 4) in Co, then there is no cycle

of Type 4 (Type 2). Similarly, for each i ∈ [q], if there is a cycle of Type 3 (Type 4) in Co,

then there is no cycle of Type 4 (Type 3).

Proof. Suppose there are two cycles C and C′ in Co that are in G[Qi]. Then, G[V (C)∪

V (C′)] is 2-connected and hence has a 2-monotone Hamiltonian cycle C∗ by Proposition 50.

Then C \{C,C′}∪{C∗} is a cycle cover of H smaller than C leading to a contradiction.

Suppose there are two cycles C,C′ ∈ Co that do not start but end in Qi. We claim

that G[V (C)∪V (C′)] is 2-connected. Let x ∈ V (C)∪V (C′). As G[V (C)] and G[V (C′)]

are 2-connected, it follows that G[V (C)]− x and G[V (C′)]− x are connected. If x ∈ Qi,

then V (C) \ {x} and V (C′) \ {x} have vertices in Qi−1 and hence G[V (C)∪V (C′)]− x

is connected. If x /∈ Qi, then V (C) \ {x} and V (C′) \ {x} have vertices in Qi and hence

G[V (C)∪V (C′)]− x is connected. Thus, G[V (C)∪V (C′)] is 2-connected. Then, from

Proposition 50, we can replace C and C′ by a Hamiltonian cycle in G′ leading to a cycle

cover smaller than C which leads to a contradiction. A similar argument proves that there

is at most one cycle of Type 3 and there is at most one cycle of Type 4 in Co.

Suppose there is a Type 2 cycle C and a Type 4 cycle C′ in Co. Note that each of C

and C′ has vertices in Qi−1 and Qi. Therefore, a similar argument to the above shows that

G[V (C)∪V (C′)] is 2-connected and hence by Proposition 50 has a Hamiltonian cycle.

Replacing C and C′ with this cycle results in a cycle cover smaller than C which leads to a

contradiction. A similar argument proves that Co cannot have a cycle of Type 3 and a cycle

of Type 4.

Definition 71. (Nice cycle cover) A cycle cover C = Cm ∪Co is said to be nice if the

following properties hold.

• (NC.1) Every cycle in Co is 2-monotone.
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• (NC.2) The cycle cover C satisfies the properties given by Proposition 70.

• (NC.3) For every cycle C in Cm, for every pair of pseudo-consecutive modulator

vertices t, t ′ in C that are not consecutive in C, the maximal subpath of P between t

and t ′ that is contained in G is i-monotone for some i ∈ [3].

• (NC.4) For any i ∈ [q], if |Qi|> 10k, then each S ∈ S(C ∗) with V (S)∩Qi ̸= /0 that

neither starts nor ends at a vertex in Qi satisfies |V (S)∩Qi|≥ 2.

Lemma 72. If C is a nice minimum cycle cover of H, then |S(C )|≤ 3k and for any i ∈ [q],

|Ri(C )|≤ 6k+16.

Proof. From Proposition 53, we may assume that the path between any two pseudo-

consecutive vertices can have at most 3 monotone segments in S(C ). Hence any cycle

in C having t vertices from T has at most 3t segments in S(C ). This upper bounds the

number of maximal monotone paths in S(C ) by 3k. By definition, each segment has at

most 2 relevant vertices in Qi. From Proposition 70, there are at most four 2-monotone

cycles from Co that intersect Qi and each such cycle has at most 4 relevant vertices in Qi.

This upper bounds the size of Ri(C ) by 6k+16.

Lemma 73. Given a cycle cover C of H, a nice cycle cover C ∗ of H with |C ∗|≤ |C | can

be obtained in polynomial time.

Proof. Every cycle C in Co not satisfying (NC.1) can be replaced by a cycle C′ satisfying

(NC.1) using Observation 51. Property (NC.2) is a direct consequence of Proposition

70. Let us next consider (NC.3). Suppose S is a subpath of a path in C ∗
m between two

pseudo-consecutive modulator vertices u and v. Let s and t be the neighbors of u and v

respectively in S. If the subpath S′ of S between s and t is not i-monotone for some i ∈ [3],

we replace S′ by an i-monotone (s, t)-path S′′ with V (S) =V (S′′) for some i ∈ [3] given by

Proposition 54. Applying this replacement rule as long as possible results in a cycle cover

C ⋆ of H with |C ∗|≤ |C | satisfying (NC.1), (NC.2) and (NC.3).
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Suppose there is a segment S ∈ S(C ∗) that neither starts nor ends in Qi but has just one

vertex x in it. As |Qi|> 10k, from Lemma 72, there an irrelevant vertex y in Qi that is in

some maximal monotone path Sl which is a subpath of some cycle in C ∗. We consider the

two following cases.

Case 1: (Sl ∈ S(C ∗)) First, we delete y from Sl to get S′l . Then, if π(x) ≤ π(y), we

add y before x in S to get S′. Otherwise, we add y after x in S to get S′. Without loss of

generality, let S∩Qi = (y,x) and the last vertex of S∩Qi−1 be z. Since z is adjacent to x, z

is also adjacent to y as π(z)≤ π(y)≤ π(x). The other case when y is added after x can be

argued similarly. Thus, S′ and S′l are segments that cover the same set of vertices as S and

Sl . Hence, after these updates C ∗ is still a minimum cycle cover.

Case 2: (Sl /∈ S(C ∗)) In this case, Sl is one of the two maximal monotone subpaths of

a 2-monotone cycle C in Co. Deleting the irrelevant vertex y from Sl and adding it to S in

the above mentioned way results in a new minimum cycle cover where S has at least 2

vertices from Qi. We apply this procedure exhaustively to make sure that property (NC.4)

holds.

Corollary 74. Given a minimum cycle cover C of H, a nice minimum cycle cover C ∗ of

H with |C ∗|≤ |C | can be obtained in polynomial time.

Definition 75. (Leftmost and rightmost set of vertices) Consider a subset S of vertices of

G. If |S|> 10k, then let LM(S) denote the 10k leftmost vertices of S and RM(S) denote the

10k rightmost vertices of S. Otherwise, LM(S) = RM(S) = S.

Definition 76. (Boundary vertices of Qi) Consider the following sets.

• Li = LM(Qi).

• Ri = RM(Qi).

• Li
x = LM(Qi ∩N(x)) for each x ∈ T .

• Ri
x = RM(Qi ∩N(x)) for each x ∈ T .
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• Li
xy = LM(Qi ∩N(x)∩N(y)) for each x,y ∈ T .

• Ri
xy = RM(Qi ∩N(x)∩N(y)) for each x,y ∈ T .

The set B(Qi) = Li ∪Ri ⋃
x∈T

(Li
x ∪Ri

x)
⋃

y,z∈T
(Li

yz ∪Ri
yz) is called the boundary vertices of Qi.

Notice that for any i ∈ [q], the size of B(Qi) is O(k3).

Definition 77. For every vertex v ∈ V (G), let ρ(v) denote the tuple (m1,m2) defined as

follows.

• m1 is the vertex in T that preceeds v in a subpath of the cycle in C that contains v. If

no such vertex exists, then m1 = $.

• m2 is the vertex in T that succeeds v in a subpath of the cycle in C that contains v. If

no such vertex exists, then m2 = $.

Definition 78. (Canonical cycle cover) A nice cycle cover P is said to be canonical if for

each i ∈ [q] and each S ∈ S(C ), Ri(C ,S)⊆ B(Qi), the following properties are satisfied.

• (CC.1) For a segment S ∈ S(C ) passing through Qi, its first and last vertices in Qi

are in Li ∪Ri.

• (CC.2) For a segment S ∈ S(C ) that ends in Qi, the following hold.

– If S∩Qi = (a) and ρ(a) = ($,$), then a ∈ Li.

– If S∩Qi = (a) and ρ(a) = (m1,m2), then a ∈ Li
m1m2

∪Ri
m1m2

.

– If S∩Qi = (a) and ρ(a) = (m1,$), then a ∈ Li
m1

∪Ri
m1

.

– If S∩Qi = (a) and ρ(a) = ($,m2), then a ∈ Li
m2

∪Ri
m2

.

– If Ri(C ,S)= (a,b) and ρ(a)= (m1,$), ρ(b)= ($,m2), then a∈Li
m1
∪Ri

m1
,b∈

Li
m2

∪Ri
m2

.

– If Ri(C ,S) = (a,b) and ρ(a) = ($,$), ρ(b) = ($,m2), then a ∈ Li,b ∈ Li
m2

∪

Ri
m2

.
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– If Ri(C ,S)(C ) = (a,b) and ρ(a) = (m1,$), ρ(b) = ($,$), then a ∈ Li
m1

∪

Ri
m1
,b ∈ Ri.

– If Ri(C ,S) = (a,b) and ρ(a) = ($,$), ρ(b) = ($,$), then a ∈ Li,b ∈ Ri.

• (CC.3) For a segment S ∈ S(C ) that starts in Qi, the following hold.

– If S∩Qi = (a) and ρ(a) = ($,$), then a ∈ Ri.

– If S∩Qi = (a) and ρ(a) = (m1,$), then a ∈ Li
m1

∪Ri
m1

.

– If S∩Qi = (a) and ρ(a) = ($,m2), then a ∈ Li
m2

∪Ri
m2

.

– If Ri(C ,S) = (a,b) and ρ(a) = ($,$), ρ(b) = ($,m2), then a ∈ Li,b ∈ Li
m2

∪

Ri
m2

.

– If Ri(C ,S) = (a,b) and ρ(a) = (m1,$), ρ(b) = ($,$), then a ∈ Li
m1

∪Ri
m1
,b ∈

Ri.

– If Ri(C ,S) = (a,b) and ρ(a) = ($,$), ρ(b) = ($,$), then a ∈ Li,b ∈ Ri.

Lemma 79. Given a nice cycle cover C of H, a canonical cycle cover C ∗ of H with

|C ∗|≤ |C | can be obtained in polynomial time.

Proof. From Lemma 72, as C is a nice minimum cycle cover of H, we have |S(C )|≤ 3k

and for any i ∈ [q], |Ri(C )|≤ 6k + 16. For any i ∈ [q] such that |Qi|≤ 10k, Properties

(CC.1), (CC.2) and (CC.3) vacously hold as Li = Ri =V (Qi), Li
x = Ri

x =V (Qi)∩N(x),

Li
xy = Ri

xy =V (Qi)∩N(x)∩N(y). Now, consider a clique Qi such that |Qi|> 10k. Suppose

S(C ) has a segment S that intersects Qi but neither starts nor ends in it. Suppose the first

vertex a in V (S)∩Qi is not in Li. Since Qi has more than 10k vertices, |Li|= 10k and Li

has an irrelevant vertex a′ that is in a maximal monotone path Sl which is a subpath of

some cycle in C ∗. If Sl ∈ S(C ), then we delete a′ from Sl and add it to S between a and the

last vertex of S∩Qi−1. As π(a′)< π(a) and Sl has two relevant vertices in Qi, it follows

that the updated S and Sl are still monotone paths starting and ending at the same vertices

as before while together covering the same set of vertices. After this preprocessing the
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leftmost relevant vertex of S is in Li. Now, we are in the case when Sl /∈ S(C ). Then, Sl is

one of the two maximal monotone paths of a 2-monotone cycle C ∈ Co and we delete a′

from Sl and add it to S as mentioned earlier. After this preprocessing the leftmost vertex of

V (S)∩Qi is in Li. We can apply a similar preprocessing to show that the rightmost vertex

of V (S)∩Qi is in Ri.

Suppose S(C ) has a segment S such that S∩Qi = (a), where a is adjacent to two

modulator vertices m1 and m2 in C , but a /∈ Li
m1m2

∪Ri
m1m2

. As a /∈ Li
m1m2

, |Li
m1m2

|= 10k

and Li
m1m2

has an irrelevant vertex a′ in Sl between its two relevant vertices x and y, where

Sl is either a segment or a maximal monotone path of some 2-monotone cycle in Co. We

interchange the vertices a and a′ between S and Sl to construct a new cycle cover. Let S′

denote the segment obtained from S by replacing a with a′. Then we obtain S′l from Sl

depending on the following cases.

• Case Sl ∈ S(C ) and π(x) ≤ π(a) ≤ π(y): Then, S′l is obtained from Sl by adding

a between two consecutive vertices xi and xi+1 in Sl where π(x) ≤ . . . ≤ π(xi) ≤

. . .≤ π(a)≤ π(xi+1)≤ . . .≤ π(y). Then, S′l is a segment starting and ending with

the same vertices as Sl and V (S′l)∪V (S′) =V (Sl)∪V (S).

• Case Sl ∈ S(C ) and π(a)≥ π(y): In this case we consider the following possibilities.

Refer to Figure 3.12 for an illustration.

– If Sl does not end in Qi, then we add the vertex a after y to get the monotone

path S′l .

– If Sl ends in Qi and there is no modulator vertex after y and there is no other

segment ending at y, then we add a after y to get the monotone path S′l .

– If Sl ends in Qi and there is no modulator vertex in after y but there is another

segment Sr ending at y, then we add a to the end of Sr after y and replace y

with a in Sl to get S′l .

– If Sl ends in Qi and there is modulator vertex m3 after y, then we add the new
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monotone segment (y,a) and replace y in Sl with a. We concatenate these two

segments to get a path (x . . .a,y) and replace the segment Sl in C with this new

path.

• Case Sl ∈ S(C ) and π(a)≤ π(x): This case is similar to the previous case.

• Case: Sl /∈ S(C ): In this case Sl is a maximal monotone path of some 2-monotone

cycle C ∈ Co. Since C has at least 2 vertices in Qi other than a′, V (C)∪{a}\{a′}

induces a 2-connected component. Hence we can get a new 2-monotone cycle that

covers all the vertices in V (C)∪{a}\{a′} from Observation 50.

The other properties can be proved in a similar manner. Note that if there are two segments

that start at the same vertex in a clique Qi and some property does not hold true for their

first relevant vertex in Qi, then we apply the above replacement procedure for the first

vertex of both these segments together. We do the same for two segments that end at the

same vertex in Qi.

Corollary 80. Given a minimum cycle cover C of H, a canonical minimum cycle cover

C ∗ of H with |C ∗|≤ |C | can be obtained in polynomial time.

3.6 Path Cover Parameterized by Proper Interval Dele-

tion Set

Let P denote a minimum canonical path cover of H. We define the following functions

that help us to understand the relationship between the segments of a canonical path cover

P .

• F : S(P)×S(P)→{0,1} where F (S,S′) = 1 if and only if S and S′ start at the

same vertex.
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• L : S(P)×S(P)→ {0,1} where L (S,S′) = 1 if and only if S and S′ end at the

same vertex.

• F1 : S(P)→ T ∪{0} where F1(S) = t if S starts immediately after t, otherwise

F1(S) = 0.

• L1 : S(P)→ T ∪{0} where L1(S) = t if S ends just before t, otherwise L1(S) = 0.

We remark that F and L are symmetric functions. In the example given below, the

segment S1 ends just before t1 and the segment S3 starts just after t2. Further, segments

S1 and S2 have the same starting vertex while segments S2 and S3 have the same ending

vertex.

Given P , determining S(P) is easy and in turn given S(P), determining F , F1,

L and L1 is easy. It is now natural to ask what choices of (F ,L ,F1,L1) lead to a set

S(P) that in turn leads to a minimum canonical path cover P . Let us first guess the size

of S(P). From Lemma 61, it is at most 4k. For a correct choice of this number, the choice

(F ,L ,F1,L1) that minimizes the size of a minimum path cover of G[X ] where V (G)\X

is the set of vertices that are in some segment assigned to a variable in S is the one the

results in a minimum canonical path cover P .
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3.6.1 The Guessing Phase

With this information, we proceed as follows. Let P be a minimum canonical path cover

that we are looking for. We first guess the following properties of P . Intialize S to be the

empty set.

1. We guess the number ℓ of paths in Pm. Clearly, ℓ≤ k and the number of choices for

ℓ is k. Let P1, . . . ,Pℓ denote the paths in Pm.

2. For each Pi ∈ Pm, we guess if Pi has zero, one or two endpoints in T . The number

of possible choices in this step is O(3k).

3. For each Pi ∈ Pm, we guess the order of vertices of V (Pi)∩ T . The number of

possible choices in this step is 2O(k logk).

4. For each Pi ∈ Pm, for each pair of pseudo-consecutive vertices t and t ′ in Pi, we

guess if t and t ′ are consecutive in Pi (in which case t and t ′ must be adjacent) or not.

It t and t ′ are not consecutive in Pi, then we guess if the maximal subpath P of the

(t, t ′)-path that is contained in G is 1-monotone or 2-monotone or 3-monotone. The

number of possible choices in this step is O(3k).

• If P is 1-monotone, then we add the variable Si to S and set F1(Si) = t,

L1(Si) = t ′.

• If P is 2-monotone, then we add the variables Si
1 and Si

2 to S . We guess one of

the following two choices.

– Set L1(Si
1) = t, F1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = t ′, F (Si
1,S

i
2) = 1,

L (Si
1,S

i
2) = 0.

– Set F1(Si
1) = t, L1(Si

1) = 0, F1(Si
2) = t ′, L1(Si

2) = 0, L (Si
1,S

i
2) = 1,

F (Si
1,S

i
2) = 0.

• If P is 3-monotone, then we add the variables Si
1, Si

2 and Si
3 to S . We set

L1(Si
1) = t, F1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = 0, F1(Si
3) = t ′, L1(Si

3) = 0,
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F (Si
1,S

i
2) = 1, L (Si

2,S
i
3) = 1, F (Si

1,S
i
3) = 0, F (Si

2,S
i
3) = 0, L (Si

1,S
i
2) = 0,

L (Si
1,S

i
3) = 0.

5. For each Pi ∈ Pm, for each ordered pair of pseudo-adjacent vertices x ∈ T and

y ∈V (G), we guess if the maximal subpath P of the (x,y)-path that is contained in G

is 1-monotone or 2-monotone. The number of possible choices in this step is O(2k).

• If P is 1-monotone, then we add the variable Si to S .

– If x /∈ T and y ∈ T , then set F1(Si) = 0 and L1(Si) = y.

– If x ∈ T and y /∈ T , then set F1(Si) = x and L1(Si) = 0.

• If P is 2-monotone, then we add the variables Si
1 and Si

2 to S .

– If x /∈ T and y ∈ T , then we guess one of the following two choices.

* Set F1(Si
1) = 0, L1(Si

1) = 0, F1(Si
2) = y, L1(Si

2) = 0, F (Si
1,S

i
2) = 0,

L (Si
1,S

i
2) = 1.

* Set F1(Si
1) = 0, L1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = y, F (Si
1,S

i
2) = 1,

L (Si
1,S

i
2) = 0.

– If x ∈ T and y /∈ T , then we guess one of the following two choices.

* Set F1(Si
1) = x, L1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = 0, F (Si
1,S

i
2) = 0,

L (Si
1,S

i
2) = 1.

* Set F1(Si
1) = 0, L1(Si

1) = x, F1(Si
2) = 0, L1(Si

2) = 0, F (Si
1,S

i
2) = 1,

L (Si
1,S

i
2) = 0.

6. For each pair S and S′ of variables in S such that F (S,S′) (or L (S,S′)) is not yet

set is set to 0. Similarly, for each variable S in S such that F1(S) (or L1(S)) is not

yet set is set to 0.

As |Pm|≤ k, the maximum number of guesses in Steps 1-3 is 2O(k logk). The maximum num-

ber of guesses in Steps 4-6 is asymptotically upper bounded by the maximum number of

choices for (S ,F ,L ,F1,L1) which is 2O(k). Once these choices are fixed, the problem
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of finding a mnimum path cover P now reduces to the problem of finding an assignment

of segments to variables in S that satisfy the relationships given by (S ,F ,L ,F1,L1)

while minimizing the size of a minimum path cover of G−X where X is the set of ver-

tices of H that are in a segment assigned to some variable in S . In other words, we

find an assignment of segments to variables in S that satisfy the relationships given by

(S ,F ,L ,F1,L1) resulting in a set of paths Pm while minimizing the number of paths

in Po. Note that not all choices of (S ,F ,L ,F1,L1) may necessarily lead to a minimum

path cover Po ∪Pm of H. However, at least one of the choices that we generate leads to

one.

Consider a particular choice for Steps 1-3 and a choice of (S ,F ,L ,F1,L1). This

fixes how the paths in Pm interact with T . That is, for any path P in Pm, the vertices

of T that are in P and their order in P are fixed. Furthernore, the paths between any two

pseudo-consecutive vertices and the paths between any two pseudo-adjacent vertices are

also fixed. This also fixes the number of segments and the relationship among the segments.

We will now describe a dynamic programming algorithm that finds a minimum canonical

path cover respecting this choice ϑ = (S ,F ,L ,F1,L1).

3.6.2 Finding an Assignment of Segments for ϑ = (S ,F ,L ,F1,L1)

Let Q0 = /0. For each i ∈ [q], let Gi denote the graph G[Q1 ∪·· ·∪Qi]. Let us first unders-

tand the interaction of the solution (minimum canonical path cover with the properties

given by (S ,F ,L ,F1,L1)) with Gi. Subsequently, we refer to S as segments instead

of variables that have to be assigned segments.

Index of an Entry: An entry in the table Ti is indexed by a tuple (S f ,X ,Xo,A ,B) with

the following interpretation.

• S f ⊆ S denotes the segments that have no vertex from Qi+1 ∪ . . .∪Qq. That is,
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these segments are completely contained in Gi.

• X denotes the set of relevant vertices of all segments from S in Qi. That is, for

every S ∈ S , XS in X is the set of relevant vertices of the segment S in Qi.

– If XS is the empty set, then the segment corresponding to S has no vertex from

Qi.

– Otherwise, XS has a single vertex or an ordered pair of vertices.

* If XS is an ordered pair of vertices (v1,v2), we call v1 the first relevant

vertex (denoted by XS(1)) and v2 the last relevant vertex (denoted by XS(2))

of S in Qi.

* If XS has a single vertex v, we call v both first and last relevant vertex of S

in Qi.

• Xo denotes the set of relevant vertices of the unique monotone path in Po that has a

vertex from Qi.

• A ∈ [0,1,2,3,4]|S | represents the interactions of the segments from S with Qi.

– aS = 0 iff the segment S does not intersect Qi.

– aS = 1 iff the segment S has at least one vertex from Qi but neither starts nor

ends in Qi.

– aS = 2 iff the segment S starts but does not end in Qi.

– aS = 3 iff the segment S ends but does not start in Qi.

– aS = 4 iff the segment S starts and ends in Qi.

• B ∈ {0,1,2,3,4} represents the interaction of the monotone path P in Po with Qi.

– B = 0 iff the segment P does not intersect Qi.

– B = 1 iff the segment P has at least one vertex from Qi but neither starts nor

ends in Qi.
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– B = 2 iff the segment P starts but does not end in Qi.

– B = 3 iff the segment P ends but does not start in Qi.

– B = 4 iff the segment P starts and ends in Qi.

Valid Indices: An index (S f ,X ,Xo,A ,B) corresponding to an entry in Ti is valid if the

following conditions are satisfied.

• (VI.1) Two sets XS and XS′ are vertex-disjoint iff F (S,S′) = L (S,S′) = 0.

• (VI.2) If F (S,S′) = 1 and aS ∈ {2,4}, then aS′ ∈ {2,4} and XS and XS′ have the

same first vertex.

• (VI.3) If L (S,S′) = 1 and aS ∈ {3,4}, then aS′ ∈ {3,4} and XS and XS′ have the

same last vertex.

• (VI.4) aS = 0 iff XS = /0 and B = 0 iff Xo = /0.

• (VI.5) aS ∈ {3,4} iff S ∈ S f and aS ∈ {1,2} iff S /∈ S f .

• (VI.6) The set XS along with aS for any segment S satisfy the canonical solution

properties given by Definition 65. For example, if XS = (a,b), aS = 2, then a ∈ Li,

b ∈ Ri.

• (VI.7) For every vertex v ∈ Qi \ (V (X )∪V (Xo)), either there is an element S ∈ S

such that π(XS(1))≤ π(v)≤ π(XS(2)) or π(Xo(1))≤ π(v)≤ π(Xo(2)).

Observe that all segments are disjoint except possibly at the start and end vertices.

(VI.1) ensures that if two segments do not have common start and end vertices then they

are vertex-disjoint. In particular, their relevant vertices are disjoint. (VI.2) and (VI.3)

ensure that the choice of (F ,L ) is respected. (VI.4) and (VI.5) ensure that the intended

interpretation of A is respected. In particluar, (VI.5) makes sure that only the segments

from S which are ending in Qi are taken into S f . (VI.6) follows from Lemma 66 and it
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ensures that the relevant vertices of segments are chosen from B(Qi) and these segments

can be concatenated to the modulator vertices appropriately. (VI.7) makes sure that any

irrelevant vertex can always be added in between the relevant vertices of some segment in

S or some monotone path in Po.

Observation 81. For each i ∈ [q], the maximum number of valid indices is O∗(2O(k logk)).

Proof. Let us bound the number of valid entries α = (S f ,X ,Xo,A ,B) in Ti. There

are 2O(k) choices for S f . Every relevant set in X is chosen from a set of at most 10k

vertices. Hence there are 2O(k logk) choices for X . We have O(n2) ways to select an Xo

and there are 2O(k) choices for A and B. Thus, the maximum number of entries in Ti is

2O(k logk)nO(1).

(Optimum) Partial Solutions: For σ =(S f ,X ,Xo,A ,B), a collection of paths Pd⊎Pu

is a partial solution of Ti(σ) if the following conditions hold. Let h : S f ⊎{S ∈ S : aS ∈

{1,2}}→ Pu denote the assignment of paths in Pu to variables in S f ⊎{S ∈ S : aS ∈

{1,2}}.

• (PS.1) |Pu|= |S f |+|{S ∈ S : aS ∈ {1,2}}| and h is injective.

• (PS.2) Every path P in Pd ∪Pu is monotone and satisfies V (P)⊆ Q1 ∪ . . .Qi.

• (PS.3) Every vertex in Q1 ∪ . . .∪Qi is in a path in Pd ∪Pu.

• (PS.4) Every pair Pi,Pj of distinct paths in Pd ∪Pu are internally vertex-disjoint.

Further, they are vertex-disjoint except when F (Pi,Pj) = 1 or L (Pi,Pj) = 1.

• (PS.5) The paths in Pu take their respective relevant vertices in Qi according to

the assignment X i.e. the first and last vertices of XS are the first and last vertices

V (h(S))∩Qi.

• (PS.6) For each S ∈ dom(h), h(S) starts at a vertex in N(m1) if F1(S) = m1.
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• (PS.7) For each S ∈ S f , h(S) ends at a vertex in N(m2) if L1(S) = m2.

• (PS.8) If F (Si,S j) = 1 and Si ∈ dom(h), then S j ∈ dom(h) and h(Si) and h(S j) start

at the same vertex.

• (PS.9) If L (Si,S j) = 1 and Si ∈ S f , then S j ∈ S f and h(Si) and h(S j) end at the

same vertex.

• (PS.10) At most one path from Pd has relevant vertices in Qi and these vertices are

given by Xo.

• (PS.11) Any path P = h(S) with S ∈ dom(h) and at most one path from Pd start

and end in Qi iff aS (and/or B) is in {2,4}.

• (PS.12) Any path P = h(S) with S ∈ dom(h) and at most one path from Pd do not

start but end in Qi iff (and/or B) is in {1,3}.

Let B∗ = 1 if B ∈ {3,4}, 0 otherwise. Over all possible partial solutions Pd ∪Pu, Ti(σ)

stores the one that minimizes the value of |Pd|−(1−B∗). Such a partial solution is called

an optimum partial solution. In other words, Ti(σ) stores a partial solution that minimizes

the number of paths contained inside Pd that end in Gi. If there is a path in Pd with B

value either 1 or 2 in Qi, it has a vertex in Qi+1 and hence not counted. We also store the

size of an optimum solution denoted by |Ti(σ)|.

Clearly, an optimum solution for an entry in Tq where every path in the solution has

ended in Gq = G gives the required answer. In the dynamic programming algorithm that we

will subsequently describe, we compute partial solutions for Gi and use them to compute

partial solutions for Gi+1. So let us understand how the solution that we are looking for

interacts with Gi. A partial solution for Gi is the one that minimizes the number of paths

contained in Po when restricted to Gi. To determine such a partial solution we need to

know the segments that have already terminated before Qi and the interaction of segments

in S(P)∪Po with Qi. Refer to Figure 3.14 for an illustration.
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(S1, aS1 = 3,F1(S1) = m1)

Li
m1

Li
m2m3

Ri
m4

Ri
Li

(S2, aS2
= 4,F1(S2) = m2,L1(S2) = m3)

(S3, aS3 = 1)

(S4, aS4 = 3,L1(S4) = m1) Qi

Tm1 m2 m3 m4

Relevant vertices
Qi−1

S5 S8

S7

S6

Fig 3.14: Interaction of a canonical path cover with Q1 ∪·· ·∪Qi

Compatible Entries: A valid entry in Ti with index (S f ,X ,Xo,A ,B) is compatible with

a valid entry in Ti−1 with index (S ′
f ,X

′,X ′
o,A ′,B′) if the following conditions hold.

• (CI.1) S f = S ′
f ∪{S : aS ∈ {3,4}}.

• (CI.2) If aS = 0 (B = 0), then a′S ∈ {0,3,4} (B′ ∈ {0,3,4}).

• (CI.3) If aS = 1 (B = 1), then a′S ∈ {1,2} (B′ ∈ {1,2}) and the first relevant vertex

of XS (Xo) is adjacent to the last relevant vertex of X ′
S (X ′

o).

• (CI.4) If aS = 2 (B = 2), then a′S ∈ {0} (B′ ∈ {0}).

• (CI.5) If aS = 3 (B = 3), then a′S ∈ {1,2} (B′ ∈ {1,2}) and the first relevant vertex

of XS (Xo) is adjacent to the last relevant vertex of X ′
S (X ′

o).

• (CI.6) If aS = 4 (B = 4), then a′S = 0 (B′ = 0).

• (CI.7) If aS ̸= 0, then S /∈ S′f .

• (CI.8) Xo ̸= /0 and B ∈ {1,3} iff X ′
o ̸= /0, B′ ∈ {1,2} and the first relevant vertex of

Xo is adjacent to the last relevant vertex X ′
o.

(CI.1) makes sure that the segments completely contained in Gi are the segments

completed before Qi and the segments completed in Qi. (CI.2) ensures that if a seg-

ment/monotone path does not intersect Qi, it is not continued from Qi−1. (CI.3) and (CI.5)

ensure we can extend a segment/monotone path from Qi−1 to Qi. (CI.4), (CI.6) and (CI.7)
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make sure that the continuing segments/monotone paths in Qi are disjoint from the seg-

ments/monotone paths that are finished till Qi−1. (CI.8) makes sure we can extend the

monotone path in Po from Qi−1 to Qi.

Lemma 82. |T0(α)|= 0 and for each i ∈ [q], |Ti(α)|= min{|Ti−1(β )|+B∗} over all valid

β compatible with α . Further, all the entries in T can be computed in O∗(2O(k logk)) time.

Proof. Since Q0 is the empty clique, 0 paths are required to cover vertices of G0 and hence

|T0(α)|= 0. Let i ∈ [q]. Suppose Ti−1(β ) has been correctly computed for Gi−1 for all valid

β . Consider an entry in Ti−1(β
′) that is compatible with Ti(α). Let α = (S f ,X ,Xo,A ,B)

and β ′ = (S ′
f ,X

′,X ′
o,A

′,B′). Let P ′
d ∪P ′

u be an optimal partial solution for Ti−1(β
′).

We will construct a partial solution for Ti(α) from P ′
d ∪P ′

u in the following manner.

• If XS ̸= /0 and X ′
S ̸= /0 for some S in S , we delete P from P ′

u corresponding to S and

add the path obtained by concatenating P and (X ′
S(2)XS(1)XS(2)) to Pu.

• If X ′
S = /0 and XS ̸= /0 for some S in S , we add the new path (XS(1)XS(2)) to the set

Pu.

• If X ′
o ̸= /0 and Xo ̸= /0, then there is a monotone path P in P ′

d that intersects Qi−1

with B′ ∈ {1,2}. We delete P from P ′
d and add the path obtained by concatenating

P and (X ′
o(2)Xo(1)Xo(2)) to Pd .

• If X ′
o = /0,Xo ̸= /0, we add the path (Xo(1)Xo(2)) to Pd .

• All the paths that are not modified in P ′
d (and P ′

u) are included into Pd (and Pu).

If there are vertices in Qi which are not in any path in Pu ∪Pd , then we add them

to the paths in between their relevant vertices while preserving monotonicity. This is

always possible due to (VI.9).

Thus, we get a collection of monotone paths Pd ∪Pu that cover all the vertices of Gi

while satisfying the required properties given by α . Hence, |Ti(α)|≤ |Ti−1(β
′)|+B∗ ≤

min{|Ti−1(β )|+B∗} (over all valid and compatible β ).
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Conversely, let Pd ∪Pu be an optimal partial solution for Ti(α). Let us restrict the

paths in Pd ∪Pu to Gi−1 and get P ′
d ∪P ′

u. Then, P ′
d ∪P ′

u is a partial solution for

Ti−1(β
′) where β ′ = (S ′

f ,X
′,X ′

o,A
′,B′) such that

• S ′
f ⊆ S f is the set of segments that are completely contained in Gi−1.

• For each S ∈ S , X ′
S is the ordered set of the first and last relevant vertices (not

necessarily distinct) of the path corresponding to S in Qi−1. The set X ′ is the set

{X ′
S : S ∈ S }.

• X ′
o is the ordered set of the first and last relevant vertices (not necessarily distinct) in

Qi−1 of the path P in Pd with V (P)∩Qi−1 ̸= /0.

• The string A ′ is defined as follows.

– a′S = 0 iff the path corresponding to S in P ′
u has no vertex from Qi−1.

– a′S = 1 iff the path P corresponding to S in P ′
u neither starts nor ends in Qi−1

but has a vertex from Qi−1.

– a′S = 2 iff the path P corresponding to S in P ′
u starts but does not end in Qi−1.

– a′S = 3 iff the path P corresponding to S in P ′
u ends but does not start in Qi−1.

– a′S = 4 iff the path P corresponding to S in P ′
u starts and ends in Qi−1.

• B′ takes a value in {0,1,2,3,4} in the same way as any a′S does with P corresponding

to the path in Pd that intersects Qi−1.

Then β ′ is compatible with α and |Ti−1(β
′)|+(1−B∗)= |Ti(α)| and hence min{|Ti−1(β )|+(1−

B∗)} ≤ |Ti(α)| (over all valid and compatible β ).

Finally, from Observation 81, the maximum number of entries in T is O∗(2O(k logk))

and each entry (that only involves a minimum computation over O∗(2O(k logk)) entries) can

be computed in O∗(2O(k logk)) time.
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3.6.3 Overall Algorithm

Now, we are ready to prove the main result of this section.

Theorem 11. PATH COVER parameterized by the size k of a proper interval deletion set

can be solved in O∗(2O(k logk)) time.

Proof. Consider an instance I = (H,T,r) of PATH COVER. Let π and Q = {Q1, · · · ,Qq}

denote the proper interval ordering and clique partition of G = H −T . Let T = {t1, . . . , tk}.

From Corollaries 60 and 67, there is a minimum path cover P of H that is canonical

satisfying the properties listed in Definition 65. We first guess the properties of P given in

Section 3.6.1. There are 2O(k logk) choices for such a guess and for each such choice we

get a tuple ϑ = (S ,F ,L ,F1,L1). The task is now to find an assignment of segments to

variables in S that satisfy the relationships given by ϑ resulting in a set of paths Pm while

minimizing the number optϑ of paths in Po. This task is accomplished by the dynamic

programming procedure described in Section 3.6.2. Following is the description of the

algorithm and an illustration of the same is given in Figure 3.15.

Algorithm for PATH COVER

1. Generate all valid tuples (S ,F ,L ,F1,L1) using the guessing phase descri-

bed in Section 3.6.1.

2. For every valid ϑ = (S ,F ,L ,F1,L1), run the following subroutine.

Subroutine(ϑ )

• Initialize opt = n and T0(α) = 0 for each valid α .

• For all i ∈ [q]

for each valid α

Ti(α) = ∞.
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• For each i ∈ [q] do

for each valid entry Ti(α) where α = (S f ,X ,Xo,A ,B)

for each valid entry Ti−1(β ) compatible with α

Let β = (S ′
f ,X

′,X ′
o,A

′,B′).

if (Ti(α)≥ Ti−1(β )+B∗)

Ti(α) = Ti−1(β )+B∗ where B∗ = 1 if B ∈ {3,4}

and 0 otherwise.

• For each valid entry Tq(α) where α = (S f ,X ,Xo,A ,B)

if S f = S and B ∈ {0,3,4}

if opt ≥ Tq(α)

opt = Tq(α)

• optϑ = opt + ℓ where ℓ= |Pm| as guessed in Step 1.

3. Return the smallest optϑ among all valid ϑ generated in Step 1.

Let us now analyze the running time for the dynamic programming procedure. From

Observation 81, the maximum number of entries in the dynamic programming table is

O∗(2O(k logk)). Computing an optimum solution for a single entry takes 2O(k logk)nO(1) time

from Lemma 82. Then, the size of a minimum path cover of H is given by the minimum

value of |Pm|+optϑ over all choices for ϑ .

Finally, we show how to construct a minimum path cover of H given an assignment

to segments corresponding to an optimum ϑ = (S ,F ,L ,F1,L1). Let Pd ∪Pu be an

optimum solution of an entry in Tq. Let r = |Pm| as guessed in Step 1. We construct a

path cover of H in the following way.

• Initialize Pm as Pu. For a path P ∈ Pm, if F1(P) = m1, add the vertex m1 to the

beginning of the path P. Similarly if L1(P) = m2, add the vertex m2 to the end of

the path P.
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Minimum Cover

Minimum Nice Cover

Minimum Canonical Cover

ϑ1 = (S,F ,L,F1,L1)

minimum canonical solution
satisying a valid tuple

Subroutine to compute

Solution1 Solution4
Solution′

Minimum size solution

Partition T, order the sets in the partition,

ϑ2 ϑ3 ϑ4 ϑ′ϑ5

Solution5Solution2 Solution3

decide the i-monotone segments between

pseudo consecutive and pseudo adjacent vertices

Step 1

Step 2

Step 3

Steps in the algorithm

(Generating valid tuples)

ϑ = (S,F,L,F1,L1)

Fig 3.15: Outline of the Algorithm

• If there are two paths P1,P2 ∈ Pm that start/end at the same vertex, then concatenate

P1 and P2 to get a new path P and add it to Pm. Delete P1 and P2 from Pm.

Now, Pd ∪Pm is a path cover for H of size |Pd|+ℓ where ℓ= |Pm|. Hence the overall

running time of the algorithm is 2O(k logk)nO(1).

3.7 CYCLE COVER Parameterized by Proper Interval de-

letion Set

Let C denote a minimum canonical cycle cover of H. We define the following functions

that help us to understand the relationship between the segments of a canonical cycle cover

C .

• F : S(C )× S(C )→ {0,1} where F (S,S′) = 1 if and only if S and S′ start at the
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same vertex.

• L : S(C )× S(C )→ {0,1} where L (S,S′) = 1 if and only if S and S′ end at the

same vertex.

• F1 : S(C ) → T ∪{0} where F1(S) = t if S starts immediately after t, otherwise

F1(S) = 0.

• L1 : S(C )→ T ∪{0} where L1(S) = t if S ends just before t, otherwise L1(S) = 0.

Given C , determining F , F1, L and L1 is easy. It is now natural to ask what choices

of (F ,L ,F1,L1) lead to a minimum canonical cycle cover. Let us first guess the size of

S(C ). From Lemma 72, it is at most 3k. For a correct choice of this number, the choice

(F ,L ,F1,L1) that minimizes the size of a minimum cycle cover of G[X ] where V (G)\X

is the set of vertices that are in some segment assigned to a variable in S is the one that

results in a minimum canonical cycle cover C .

3.7.1 The Guessing Phase

With this information, we proceed as follows. Let C be a minimum canonical cyle cover

that we are looking for. We first guess the following properties of C . Intialize S to be the

empty set.

1. We guess the number ℓ of cycles in Cm. Clearly, ℓ≤ k and the number of choices for

ℓ is k. Let C1, . . . ,Cℓ denote the cycles in Cm.

2. For each Ci ∈ Cm, we guess the order of vertices of V (Ci)∩ T . The number of

possible choices in this step is 2O(k logk).

3. For each Ci ∈ Cm with V (Ci)∩T = {t}, we guess if the path P in Ci between the

two neigbours of t is 1-monotone or 2-monotone or 3-monotone. The number of

possible choices in this step is O(3k).
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• If P is 1-monotone, then we add the variable Si to S and set F1(Si) = t,

L1(Si) = t.

• If the P is 2-monotone, then we add the variables Si
1 and Si

2 to S . We guess

one of the following two choices.

– Set L1(Si
1) = t, F1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = t, F (Si
1,S

i
2) = 1,

L (Si
1,S

i
2) = 0.

– Set F1(Si
1) = t, L1(Si

1) = 0, F1(Si
2) = t, L1(Si

2) = 0, L (Si
1,S

i
2) = 1,

F (Si
1,S

i
2) = 0.

• If P is 3-monotone, then we add the variables Si
1, Si

2 and Si
3 to S . We set

L1(Si
1) = t, F1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = 0, F1(Si
3) = t, L1(Si

3) = 0,

F (Si
1,S

i
2) = 1, L (Si

2,S
i
3) = 1, F (Si

1,S
i
3) = 0, F (Si

2,S
i
3) = 0, L (Si

1,S
i
2) = 0,

L (Si
1,S

i
3) = 0.

4. For each Ci ∈ Cm with |V (Ci)∩T |≥ 2, for each pair of pseudo-consecutive vertices

t and t ′ in Ci, we guess if t and t ′ are consecutive in Ci (in which case t and t ′ must

be adjacent) or not. It t and t ′ are not consecutive in Ci, then we guess if the maximal

subpath P of the (t, t ′)-path that is contained in G is 1-monotone or 2-monotone or

3-monotone. The number of possible choices in this step is O(3k).

• If P is 1-monotone, then we add the variable Si to S and set F1(Si) = t,

L1(Si) = t ′.

• If P is 2-monotone, then we add the variables Si
1 and Si

2 to S . We guess one of

the following two choices.

– Set L1(Si
1) = t, F1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = t ′, F (Si
1,S

i
2) = 1,

L (Si
1,S

i
2) = 0.

– Set F1(Si
1) = t, L1(Si

1) = 0, F1(Si
2) = t ′, L1(Si

2) = 0, L (Si
1,S

i
2) = 1,

F (Si
1,S

i
2) = 0.

• If P is 3-monotone, then we add the variables Si
1, Si

2 and Si
3 to S . We set

L1(Si
1) = t, F1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = 0, F1(Si
3) = t ′, L1(Si

3) = 0,
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F (Si
1,S

i
2) = 1, L (Si

2,S
i
3) = 1, F (Si

1,S
i
3) = 0, F (Si

2,S
i
3) = 0, L (Si

1,S
i
2) = 0,

L (Si
1,S

i
3) = 0.

5. For each pair S and S′ of variables in S such that F (S,S′) (or L (S,S′)) is not yet

set is set to 0. Similarly, for each variable S in S such that F1(S) (or L1(S)) is not

yet set is set to 0.

As |Cm|≤ k, the maximum number of guesses in Steps 1-2 is 2O(k logk). The maxi-

mum number of guesses in Steps 3-5 is asymptotically upper bounded by the maximum

number of choices for (S ,F ,L ,F1,L1) which is 2O(k). Once these choices are fixed,

the problem of finding a mnimum cycle cover C now reduces to the problem of fin-

ding an assignment of segments to variables in S that satisfy the relationships given by

(S ,F ,L ,F1,L1) while minimizing the size of a minimum cycle cover of G−X where

X is the set of vertices of H that are in a segment assigned to some variable in S . In other

words, we find an assignment of segments to variables in S that satisfy the relationships

given by (S ,F ,L ,F1,L1) resulting in a set of paths Cm while minimizing the number

of paths in Co. Note that not all choices of (S ,F ,L ,F1,L1) may necessarily lead to a

minimum cycle cover Co ∪Cm of H. However, at least one of the choices that we generate

leads to one.

3.7.2 Finding an Assignment of Segments for ϑ = (S ,F ,L ,F1,L1)

Let Q0 = /0. For each i ∈ [q], let Gi denote the graph G[Q1 ∪·· ·∪Qi]. Let us first unders-

tand the interaction of the solution (minimum canonical cycle cover with the properties

given by (S ,F ,L ,F1,L1)) with Gi. Subsequently, we refer to S as segments instead

of variables that have to be assigned segments.

Index of an Entry: An entry in the table Ti is indexed by a tuple (S f ,X ,A ,Xo =

(Cs,Cc,Ce,Cin)) with the following interpretation.
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• S f ⊆ S denotes the segments that have no vertex from Qi+1 ∪ . . .∪Qq. That is,

these segments are completely contained in Gi.

• X denotes the set of relevant vertices of all segments from S in Qi. That is, for

every S ∈ S , XS in X is the set of relevant vertices of the segment S in Qi.

– If XS is the empty set, then the segment corresponding to S has no vertex from

Qi.

– Otherwise, XS has a single vertex or an ordered pair of vertices.

* If XS is an ordered pair of vertices (v1,v2), we call v1 the first relevant

vertex (denoted by XS(1)) and v2 the last relevant vertex of S in Qi (denoted

by XS(2)).

* If XS has a single vertex v, we call v both first and last relevant vertex of S

in Qi.

• A ∈ [0,1,2,3,4]|S(C )| represents the interactions of the segments from S with Qi.

– aS = 0 iff the segment S does not intersect Qi.

– aS = 1 iff the segment S has at least one vertex from Qi but neither starts nor

ends in Qi.

– aS = 2 iff the segment S starts but does not end in Qi.

– aS = 3 iff the segment S ends but does not start in Qi.

– aS = 4 iff the segment S starts and ends in Qi.

• Xo contains the sets of relevant vertices of the 2-monotone cycles in Co that intersect

Qi. Cin consists of an ordered set of three distinct vertices corresponding to two

relevant vertices of the cycle in Co of Type 1 (defined in Proposition 70) and an

irrelevant vertex of this cycle. The sets Cs, Ce and Cc contain the relevant vertices of

the cycles in Co of Types 3, 2 and 4, respectively.
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We denote the two pairs of relevant set of vertices of the two maximal monotone segments

of Type 3 cycle by Cs[1] and Cs[2]. Similarly, Ce[p],Cc[p],Cin[p] are defined for p ∈ [2].

Also, Cγ [i]( j) denotes the jth relevant vertex of the ith relevant set of vertices of the cycle

of type indicated by γ . If there is no cycle of a particluar type (say Type 3), then Cs has

empty entries. The set X together with Xo denote all the relevant vertices of the cycle

cover (that we are looking for) in Qi.

Valid Indices: An index (S f ,X ,A ,Xo = (Cs,Cc,Ce,Cin)) corresponding to an entry in

Ti is valid if the following conditions are satisfied.

• (VI.1) Two sets XS and XS′ are vertex-disjoint if F (S,S′) = L (S,S′) = 0.

• (VI.2) The sets Cs,Ce,Cc,Cin are disjoint from each other as well as from the sets in

X .

• (VI.3) If F (S,S′) = 1 and aS ∈ {2,4}, then aS′ ∈ {2,4} and XS and XS′ have the

same first vertex.

• (VI.4) If L (S,S′) = 1 and aS ∈ {3,4}, then aS′ ∈ {3,4} then XS and XS′ have the

same last vertex.

• (VI.5) aS = 0 iff XS = /0.

• (VI.6) aS ∈ {3,4} iff S ∈ S f and aS ∈ {1,2} iff S /∈ S f .

• (VI.7) The set XS along with aS for any segment S satisfy the canonical solution

properties given by Definition 78. For example, if XS = (a,b), aS = 2, then a ∈ Li,

b ∈ Ri.

• (VI.8) For every irrevant vertex v∈Qi, either there exists S∈S such that π(XS(1))≤

π(x) ≤ π(XS(2)) or there is a pair (a,b) of relevant vertices in Xo such that the

π(a)≤ π(v)≤ π(b).
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• (VI.9) If Cs ̸= /0, then either Cs = ((a,a),(a,a)) or Cs = ((a,b),(a,c)) where a,b,c

are distinct vertices.

• (VI.10) If Ce ̸= /0, then either Ce = ((a,a),(a,a)) or Ce = ((b,a),(c,a)) where a,b,c

are distinct vertices.

• (VI.11) If Cc ̸= /0 then Cc ∈ {((a,a),(b,b)),((a,a),(b,c)),((a,b),(c,c)),

((a,b),(c,d))} where a,b,c,d are distinct vertices.

• (VI.12) If Cin ̸= /0, then |Cin|= 3.

• (VI.13) Both Cc and Ce cannot be nonempty. Similary both Cc and Cs cannot be

nonempty.

Observe that all segments are disjoint except possibly at the start and end vertices. This

is encoded by (VI.1) and (VI.2). In particluar, (VI.1) ensures that if two segments do not

have common start and end vertices then they are vertex-disjoint. That is, their relevant

vertices are disjoint. (VI.3) and (VI.4) ensure that the choice of (F ,L ) is respected.

(VI.5) and (VI.6) ensure that the intended interpretation of A is respected. In particluar,

(VI.6) makes sure that only the segments from S which are ending in Qi are taken into

S f . (VI.7) follows from Lemma 78 and it ensures that the relevant vertices of segments

are chosen from B(Qi) and these segments can be concatenated to the modulator vertices

appropriately. (VI.8) makes sure that any irrelevant vertex can always be added in between

the relevant vertices of some segment in S or some monotone path of a 2-monotone

cycle in Co. (VI.9) to (VI.12) make sure that the two maximal monotone paths forming a

2-monotone cycle together are internally vertex-disjoint from each other and start/end at

the same vertices. (VI.13) follows from Proposition 70.

Observation 83. For each i ∈ [q], the maximum number of valid indices is O∗(2O(k logk)).

Proof. Let us bound the number of valid entries α = (S f ,X ,A ,Xo) in Ti. There are

2O(k) choices for S f . Every relevant set in X is chosen from a set of at most 20k vertices.
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Hence there are 2O(k logk) choices for X . We have O(n16) ways to select Xo and there are

2O(k) choices for A . Thus, the maximum number of entries in Ti is 2O(k logk)nO(1).

(Optimum) Partial Solutions: A collection of paths and cycles Cd ⊎Pu ⊎P2 is a partial

solution of Ti(σ) where σ = (S f ,X ,A ,Xo = (Cs,Cc,Ce,Cin)) if the following condi-

tions hold. Let h : S f ⊎{S ∈ S : aS ∈ {1,2}} → Pu denote the assignment of paths in

Pu to variables in S f ⊎{S ∈ S : aS ∈ {1,2}}.

• (PS.1) |Pu|= |S f |+|{S ∈ S : aS ∈ {1,2}}| and h is injective.

• (PS.2) Pu is a set of monotone paths and Cd is a collection of 2-monotone cycles.

• (PS.3) Every path/cycle in Cd ⊎Pu ⊎P2 is contained in Gi.

• (PS.4) P2 is either empty or contains one 2-monotone path with both endpoints in

Qi.

• (PS.5) Every vertex from Q1 ∪ . . .∪Qi is in some element in Cd ∪Pu ∪P2.

• (PS.6) Every pair of distinct elements in Cd ∪P2 are vertex-disjoint and an element

from Cd ∪P2 is vertex-disjoint with an element in Pu. Further, two paths P,P′ ∈

Pu are internally vertex-disjoint, moreover, they are vertex-disjoint except when

F (P,P′) = 1 or L (P,P′) = 1.

• (PS.7) For each S ∈ dom(h), h(S) starts at a vertex in N(m1) if F1(S) = m1.

• (PS.8) For each S ∈ S f , h(S) ends at a vertex in N(m2) if L1(S) = m2.

• (PS.9) If F (S,S′) = 1 and S ∈ dom(h), then S′ ∈ dom(h) and h(S) and h(S′) start

at the same vertex.

• (PS.10) If L (S,S′) = 1 and S ∈ S f , then S′ ∈ S f and h(S) and h(S′) end at the

same vertex.

132



• (PS.11) The paths in Pu take their respective relevant vertices in Qi according to

the assignment X , i.e. the first and last vertices of XS are the first and last vertices

of h(S) in Qi.

• (PS.12) Any path S ∈ Pu starts and ends in Qi iff as ∈ {2,4}.

• (PS.13) Any path S ∈ Pu does not start but ends in Qi iff as ∈ {1,3}.

• (PS.14) If Cin ̸= /0, then there is a cycle in Cd , contained in G[Qi] containing the first

and last vertices of Cin as relevant vertices.

• (PS.15) If Ce ̸= /0, then there is a cycle in Cd that ends but does not start in Qi and

its relevant vertices in Qi are given by Ce.

• (PS.17) If Cs ̸= /0, then the path in P2 starts in Qi and its relevant vertices in Qi are

given by Cs.

• (PS.18) If Cc ̸= /0, then the path in P2 starts before Qi and its relevant vertices in Qi

are given by Cc.

Let B∗
1 = 1 iff Cin ̸= /0, 0 otherwise. Similarly B∗

2 = 1 iff Ce ̸= /0, 0 otherwise. Over all

possible partial solutions Cd ∪Pu ∪P2, Ti(σ) stores the one that minimizes the value of

|Cd|+B∗
1 +B∗

2. Such a partial solution is called an optimum partial solution. In other

words, Ti(σ) stores a partial solution that minimizes the number of cycles contained inside

Cd that end in Gi. Also, as Ce ̸= /0 implies a cycle finishing in Qi, we add this cycle to our

solution and increase its value by 1. A similar contribution is for Cin too.

Clearly, an optimum solution for an entry in Tq where every cycle in the solution has

ended in Gq = G gives the required answer. In the dynamic programming algorithm that we

will subsequently describe, we compute partial solutions for Gi and use them to compute

partial solutions for Gi+1. So let us understand how the solution that we are looking for

interacts with Gi. A partial solution for Gi is the one that minimizes the number of cycles

contained in Co when restricted to Gi. To determine such a partial solution we need to
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know the segments that have already terminated before Qi and the interaction of segments

in S(P)∪Co with Qi. Refer to the following for an illustration.

(S1, as1 = 3,F1(S1) = m1)

Li
m1

Li
m2m3

Ri
m4

Ri

Li

(S2, aS2 = 4,F1(S2) = m2,L1(S2) = m3)

(S3, aS3
= 1)

Qi

Tm1 m2 m3 m4

Relevant vertices
Qi−1

S5 S8

S7

S6

Cin

Ce

(S4, aS4
= 3,L1(S4) = m4)

S9

Fig 3.16: Interaction of a canonical cycle cover with Q1 ∪ . . .∪Qi

Compatible Entries: A valid entry in Ti with index (S f ,X ,A ,Xo = (Cs,Cc,Ce,Cin))

is compatible with a valid entry in Ti−1 with index (S ′
f ,X

′,A ′,X ′
o = (C′

s,C
′
c,C

′
e,C

′
in)) if

the following conditions hold.

• (CI.1) S f = S ′
f ∪{S : aS ∈ {3,4}}.

• (CI.2) If aS = 0, then a′S ∈ {0,3,4}.

• (CI.3) If aS = 1, then a′S ∈ {1,2} and the first relevant vertex of XS is adjacent to the

last relevant vertex X ′
S.

• (CI.4) If aS = 2, then a′S = 0.

• (CI.5) If aS = 3, then a′S ∈ {1,2} and the first relevant vertex of XS is adjacent to the

last relevant vertex X ′
S.

• (CI.6) If aS = 4, then a′S = 0.

• (CI.7) If aS ̸= 0, then S /∈ S′f .

• (CI.8) Exactly one of Cc and Ce (say C) is non-empty iff exactly one of C′
c and C′

s

(say C′) is non-empty. Moreover, C′[1](2) and C′[2](2) are adjacent to C[1](1) and

C[2](1), respectively.
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(CI.1) makes sure that the segments completely contained in Gi are the segments completed

before Qi and the segments that end in Qi. (CI.2) ensures that if a segment does not intersect

Qi, it is not continued (unfinished) from Qi−1. (CI.3) and (CI.5) ensure we can extend a

segment from Qi−1 to Qi. (CI.4), (CI.6) and (CI.7) make sure that the segments/monotone

paths that have vertices in Qi are disjoint from the ones that end before Qi. (CI.8) makes

sure that if a cycle continues or ends in Qi, then it must have continued from Qi−1 i.e. it

ensures we can extend the cycles in Co from Qi−1 to Qi.

Lemma 84. T0(α) = 0 and for each i ∈ [q], Ti(α) = min{Ti−1(β )+B1
∗+B2

∗} over all

valid β compatible with α . Further, all the entries in T can be computed in O∗(2O(k logk))

time.

Proof. Since Q0 is the empty clique, 0 cycles are required to cover vertices of G0, hence

T0(α) = 0. Let i ∈ [q]. Suppose Ti−1(β ) has been correctly computed for Gi−1 for all valid

β . Consider an entry in Ti−1(β
′) that is compatible with Ti(α). Let α = (S f ,X ,A ,Xo =

(Cs,Cc,Ce,Cin)) and β ′ = (S ′
f ,X

′,A ′,X ′
o = (C′

s,C
′
c,C

′
e,C

′
in)). Let C ′

d ∪P ′
u ∪P′

2 be an

optimal partial solution for Ti−1(β
′). We will construct a partial solution for Ti(α) from

C ′
d ∪P ′

u ∪P′
2 in the following manner.

• If XS ̸= /0 and X ′
S ̸= /0 for some S in S , we delete P from P ′

u corresponding to S and

add the path obtained by concatenating P and (X ′
S(2)XS(1)XS(2)) to Pu.

• If X ′
S = /0 and XS ̸= /0 for some S in S , we add the new path (XS(1)XS(2)) to the set

Pu.

• If Cc ̸= /0, then we update the 2-monotone path S in P ′
2 by connecting the last

relevant vertices of the maximal monotone paths of S in Qi−1 to their first relevant

vertices of Cc. Also we connect the second relevant vertices of Cc to the updated

monotone paths in S. We add the updated 2-monotone path S to P2.

• If Ce ̸= /0, then we update the 2-monotone path S in P ′
2 by connecting the last

relevant vertices of the maximal monotone paths of S in Qi−1 to their first relevant
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vertices of Cc. Also we connect the second relevant vertices of Cc to the updated

monotone paths in S. Since the 2-monotone path S is updated to a cycle, we add the

cycle to Cd .

• If Cs ̸= /0, then we add a new 2-monotone path S to P2 where S consists of two

monontone paths that have their first vertices (same vertex) from first relevant

vertices of Cs and their next vertices from the second relevant vertices from Cs.

• If Cin ̸= /0, we add a new cycle C to Cd where C consists of the vertices from Cin.

• All the paths and cycles that are not modified in C ′
d ∪P ′

u ∪P′
2 are included into

Cd ∪Pu ∪P2. If there are vertices in Qi, which are not in any paths or cycles from

Cd ∪Pu ∪P2, we add them to the paths or cycles in between their relevant vertices

while preserving the monotonicity of paths. Because of (VI.9) we will always be

able to add all the remaining vertices.

This is how we create a partial solution Cd ∪Pu ∪P2. From the construction Cd ∪

Pu ∪P2 covers all the vertices in Q1 ∪ . . .Qi, as well as satisfies all other conditions to be

a partial canonical solution for α . Hence Ti(α)≤ Ti−1(β
′)+B1

∗+B2
∗ ≤ min{Ti−1(β )+

B1
∗+B2

∗}(over all valid and compatible β ).

Converesely, let Cd ∪Pu ∪P2 be an optimal partial solution for Ti(α). Let us restrict

the cycles and paths in Cd ∪Pu ∪P2 to Gi−1 and get C ′
d ∪P ′

u ∪P′
2. Then, C ′

d ∪P ′
u ∪P′

2 is

a partial solution for Ti−1(β
′) where β ′ = (S ′

f ,X
′,A ′,X ′

o = (C′
s,C

′
c,C

′
e,C

′
in)) such that

• S ′
f ⊆ S f is the set of segments that are completely contained in Gi−1.

• For each S ∈ S , X ′
S is the ordered set of the first and last relevant vertices (not

necessarily distinct) of the path corresponding to S in Qi−1. The set X ′ is the set

{X ′
S : S ∈ S }.

• The string A ′ is defined as follows.
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– a′S = 0 iff the path corresponding to S in P ′
u has no vertex from Qi−1.

– a′S = 1 iff the path P corresponding to S in P ′
u neither starts nor ends in Qi−1

but has a vertex from Qi−1.

– a′S = 2 iff the path P corresponding to S in P ′
u starts but does not end in Qi−1.

– a′S = 3 iff the path P corresponding to S in P ′
u ends but does not start in Qi−1.

– a′S = 4 iff the path P corresponding to S in P ′
u starts and ends in Qi−1.

• C′
s is the relevant set of vertices corresponding to the two maximal monotone paths

of a cycle in Cd or the 2-monotone path in P2 that starts but does not end in Qi−1.

• C′
c is the relevant set of vertices corresponding to the two maximal monotone paths

of a cycle in Cd or the 2-monotone path in P2 that intersects Qi−1 but neither starts

nor ends in it.

• C′
e is the relevant set of vertices corresponding to the two maximal monotone paths

of a cycle in Cd that does not start but ends in Qi−1.

• C′
in is the relevant set of vertices corresponding to the two maximal monotone paths

of a cycle in Cd that is completely inside Qi−1.

Then β ′ is compatible with α and Ti−1(β
′)+B1

∗+B2
∗ = Ti(α) and hence min{Ti−1(β )+

B1
∗+B2

∗} ≤ Ti(α)(over all valid and compatible β ).

Finally, from Observation 83, the maximum number of entries in T is O∗(2O(k logk))

and each entry (that only involves a minimum computation over O∗(2O(k logk)) entries) can

be computed in O∗(2O(k logk)) time.

3.7.3 Overall Algorithm

Now, we are ready to prove the main result of this section.
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Theorem 12. CYCLE COVER parameterized by the size k of a proper interval deletion set

can be solved in O∗(2O(k logk)) time.

Proof. Consider an instance I =(H,T,r) of CYCLE COVER. Let π and Q= {Q1, · · · ,Qq}

denote the proper interval ordering and clique partition of G = H −T . Let T = {t1, . . . , tk}.

From Corollaries 74 and 80, there is a minimum cycle cover C of H that is canonical

satisfying the properties listed in Definition 78. We first guess the properties of C given in

Section 3.7.1. There are 2O(k logk) choices for such a guess and for each such choice we

get a tuple ϑ = (S ,F ,L ,F1,L1). The task is now to find an assignment of segments to

variables in S that satisfy the relationships given by ϑ resulting in a set of cycles Cm while

minimizing the number optϑ of cycles in Co. This task is accomplished by the dynamic

programming procedure described in Section 3.7.2. Following is the description of the

overall algorithm.

Algorithm for CYCLE COVER

1. Generate all valid tuples (S ,F ,L ,F1,L1) using the guessing phase descri-

bed in Section 3.7.1.

2. For every valid ϑ = (S ,F ,L ,F1,L1), run the following subroutine.

Subroutine(ϑ )

• Intialize opt = ∞ and T0(α) = 0 for all valid α .

• For all i ∈ [q]

for all valid α

Ti(α) = ∞.

• For each i ∈ [q] do

for each valid entry Ti(α = (S f ,X ,A ,Xo))

for each valid entry Ti−1(β ) compatible with α

Let β = (S ′
f ,X

′,A ′,X ′
o ).
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if (Ti(α)≥ Ti−1(β )+B1
∗+B2

∗)

Ti(α) = Ti−1(β ) + B1
∗ + B2

∗ where B1
∗/B2

∗ = 1

iff Cin/Ce ̸= /0 and

0 otherwise.

• For each valid entry Tq(α) where α = (S f ,X ,A ,X ′
o ))

if (S f = S and Cs =Cc = /0)

if opt ≥ Tq(α)

opt = Tq(α).

• optϑ = opt + ℓ where ℓ= |Cm| as guessed in Step 1.

3. Return the smallest optϑ among all valid ϑ generated in Step 1.

Let us now analyze the running time for the dynamic programming procedure. From

Observation 83, the maximum number of entries in the dynamic programming table is

O∗(2O(k logk)). Computing an optimum solution for a single entry takes O∗(2O(k logk)) time

from Lemma 84. Then, the size of a minimum cycle cover of H is given by the minimum

value of |Cm|+optϑ over all choices for ϑ .

Finally, we show how to construct a minimum cycle cover of H given an assignment

to segments corresponding to an optimum ϑ = (S ,F ,L ,F1,L1). Let Cd ∪Pu ∪P2 be

an optimum solution. We construct a cycle cover for H in the following way. Notice that

P2 = /0 when we compute the optimum solution on G.

• Initialize Cm as Pu. For a path P ∈ Cm, if F1(P) = m1, add the vertex m1 to the

beginning of the path P. Similarly if L1(P) = m2, add the vertex m2 to the end of

the path P.

• If there are two paths P1,P2 ∈ Cm that start/end at the same vertex, then concatenate

P1 and P2 to get a new path P and add it to Cm. Delete P1 and P2 from Cm.
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• For any two paths P1,P2 ∈ Cm that start and end at the same vertex, concatenate P1

and P2 to get a cycle and add it to Cm. Delete P1 and P2 from Cm.

From the construction Cd ∪Cm is a cycle cover for H of size |Cd|+ℓ where ℓ= |Cm|. Hence

the overall running time of the algorithm is 2O(k logk)nO(1).

3.8 Conclusion

We designed linear kernel for CYCLE PACKING in tournaments and polynomial kernel in

α-bounded digraphs. The questions about lower bounds and improving the kernel size in

α-bounded digraphs still remain open. We also described an FPTalgorithm for CYCLE

PACKING parameterized by the size of a proper interval deletion set. As mentioned earlier,

CYCLE PACKING parameterized by the size of a proper interval deletion set does not

admit a polynomial kernel unless NP ⊆ coNP/poly. Recently, a kernelization framework

(called lossy kernelization) that is less stringent than the notion of polynomial kernels

was introduced in [73]. It was shown that there are many problems (including CYCLE

PACKING parameterized by the solution size) without classical polynomial kernels that

admit lossy polynomial kernels. It is interesting to explore the possibility of such a kernel

for our problem.

Finally, the status of CYCLE PACKING on interval graphs is an inevitable line of study.

Similarly for COVERING problem parameterization by distance to interval graphs would

be an interesting idea to pursue.
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Chapter 4

Mixed Domination (Total Covering)

In this chapter we study a specific version of COVERING problem known as TOTAL

COVERING/ MIXED DOMINATION (MDS) parameterized by various parameters where the

objective is to cover a graph with both vertices and edges. We provide a formal definition

of the problem in the introduction. Firstly we give an FPTalgorithm running in time

7.465knO(1) on general graphs parameterized by solution size k. We complement this result

by showing that MDS does not admit an algorithm with running time 2o(k)nO(1) unless

the Exponential Time Hypothesis (ETH) fails, and that it does not admit a polynomial

kernel unless coNP ⊆ NP/poly. In addition, we provide an algorithm which, given a graph

G together with a tree decomposition of width tw, solves MDS in time 6tw(G)nO(1). We

finally show that unless the Set Cover Conjecture (SeCoCo) fails, MDS does not admit

an algorithm with running time O((2− ε)tw(G)nO(1)) for any ε > 0, where tw(G) is the

tree-width of G. Next we look at the restriction of MDS to several graph classes and

establish the following results.

• On proper interval graphs, MDS is polynomial time solvable.

• On graphs that exclude Kd,d as a subgraph, MDS admits a kernel of size O(kd).

• On split graphs, MDS does not admit a polynomial kernel unless coNP ⊆ NP/poly.
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Dominating By Problem PC Poly Kernel
Vertices Vertices DOMINATING SET W[2]-hard No
Vertices Edges EDGE COVER P O(1)
Edges Edges EDGE DOMINATING SET FPT Yes
Edges Vertices VERTEX COVER FPT Yes

Edges+Vertices Vertices VERTEX COVER FPT Yes
Edges+Vertices Edges EDGE COVER P O(1)
Edges+Vertices Edges+Vertices MIXED DOMINATING SET FPT No

Table 4.1: Different domination problems and their FPT and kernelization status.
In addition, we show that on general graphs, MDS admits an exact algorithm with running

time 2nnO(1).

4.1 Introduction

Dominating (or covering) objects such as vertices and edges in a graph by vertices or

edges give rise to several classic problems, such as VERTEX COVER, EDGE COVER,

DOMINATING SET and EDGE DOMINATING SET (see Table 4.1). All these problems

and their numerous variants have been studied extensively from structural as well as

algorithmic points of view. However, all these problems except EDGE COVER are known

to be NP-complete [43, 89], and thus, they have been subjected to intense scrutiny in all

the algorithmic paradigms meant for coping with NP-hardness, including approximation

algorithms and parameterized complexity. In this paper we consider a well-studied variant

of these problems, where the objective is to dominate vertices and edges by vertices and

edges.

In order to define the problems formally, we first define the notion of domination, that

is, what a vertex or an edge can dominate. A vertex dominates itself, all its neighbors and

all the edges incident with it. On the other hand, an edge dominates its two endpoints,

and all the edges incident with either of its endpoints. We first define the problem of

dominating vertices by vertices. A dominating set of a graph G is a set S ⊆ V (G) such

that every vertex v ∈V (G)\S is adjacent to at least one vertex in S. In the DOMINATING
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SET problem, we are given an input graph G, a positive integer k, and the objective is to

check whether there exists a dominating set of size at most k. The edge counterpart of

DOMINATING SET is called EDGE DOMINATING SET. The problem we study in this paper

is a variant of these domination problems. Towards that we first define the notion of mixed

dominating set (mds). Given a graph G, and a set X ⊆ V (G)∪E(G), X is called a mds

if every element x ∈ (V (G)∪E(G))\X is either adjacent to or incident with an element

of X . More formally, we study the following problem in the parameterized complexity

framework.

MIXED DOMINATING SET (MDS) Parameter: k or tw(G)

Input: A graph G on n vertices and m edges and a positive integer k.

Question: Does there exist a MDS of size at most k in G?

Previous work: The notion of MDS (also called total cover) was introduced in the 70s

by Alavi et al. [3] as a generalization of matching and covering, and after that it has been

studied extensively in graph theory [4, 35, 79, 83]. See the chapter in [51] for a survey on

MDS. The algorithmic complexity of MDS was first considered by Majumdar [76], where

he showed that the problem is NP-complete on general graphs and admits a linear-time

algorithm on trees. Hedetniemi et al. [52] and Manlove [78] showed that MDS remains NP-

complete on bipartite and chordal graphs and on planar bipartite graphs of maximum degree

4, respectively. A decade and half later, Zhao et al. [90] considered MDS and showed that

it remains NP-complete on split graphs. Unaware of the older result, they also designed

an O(n logn) time algorithm on trees. Lan and Chang [66] extended this result and gave a

linear time algorithm for MDS on cacti (an undirected graph where any two cycles have

at most one vertex in common). Hatami [50] gave a factor 2 approximation algorithm for

MDS on general graphs. Recently, Rajaati et al. [84] studied MDS parameterized by the

treewidth of the input graph and designed an algorithm with running time O⋆(3tw(G)2
)*.

We obtain MDS parameterized by solution size (k) and treewidth (tw(G)) of the graphs.

*O⋆ notation suppresses the polynomial factor. That is, O( f (k)nO(1)) = O⋆( f (k)).
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We also consider the problem on various graph classes and obtain the following results.

Our results:

1. MDS admits an algorithm with running time O⋆(7.465k). We complement the

FPT result by observing that (a) MDS does not admit an algorithm with running

time 2o(k)nO(1) unless ETH [54] fails; and (b) it does not admit a polynomial kernel

unless coNP ⊆ NP/poly. See the last row of Table 4.1.

2. We design an algorithm with running time O⋆(6tw(G)) for MDS parameterized by

tw(G). This algorithm is a significant improvement over the O⋆(3tw(G)2
) algorithm

of Rajaati et al. [84]. We also show that it does not admit an algorithm with running

time O⋆((2− ε)tw(G)), for any ε > 0, unless SeCoCo fails [30].

3. On proper interval graphs, MDS is polynomial time solvable. We utilize the property

of proper interval graphs’ admitting a clique-partition—a partition of the vertex set

into an ordered sequence such that the graph induced by each part is a clique, and

each edge of the graph is contained within one clique or between consecutive cliques.

Then we do dynamic programming over the clique-partition to show polynomial

time solvability of MDS.

4. On graphs that do not contain Kd,d as a subgraph (biclique-free graphs), MDS admits

a kernel of size O(kd). Biclique-free graphs contain well known sparse graph classes

such as graphs of bounded expansion and nowhere dense graphs. Our kernel relies

on a crucial relationship between vertex cover and mixed dominating set, namely, if

a graph G has an mds of size at most k, then G has a vertex cover of size at most 2k.

5. On split graphs, MDS does not admit a polynomial kernel unless coNP ⊆ NP/Poly.

The proof is by a reduction from the RED-BLUE DOMINATING SET problem,

parameterized by the number of red vertices.

6. We use the standard branching technique to design an exact algorithm with running

time 2nnO(1) for MDS on general graphs.
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For references to algorithms and hardness mentioned in Table 4.1, we refer to [26].

4.2 Preliminaries

For a graph G and R ⊆V (G), we use E(R) to denote the set of edges incident with at least

one vertex in R. The following observation follows directly from the definition of a mixed

dominating set, and we shall use it throughout the paper.

Observation 85. Let G be a graph and V ′∪E ′ be an mds of size k, where V ′ ⊆V (G) and

E ′ ⊆ E(G). Let E1 ⊆ E ′. Then,

(i) V ′∪V (E ′) is a vertex cover of G of size at most 2k,

(ii) any vertex v of degree at least 2k+1 belongs to V ′∪V (E ′),

(iii) V ′∪ (E ′ \E1)∪E2 is an mds of G for any E2 ⊆ E(G) with V (E2) =V (E1),

(iv) if G is a complete graph, then V ′∪V (E ′) must contain all but one vertices of G.

Now we define a special mixed dominating set and prove that there is in fact an

optimum mds which is also a special mds.

Definition 86. A mixed dominating set V ′∪E ′ of a graph G, where V ′ ⊆V (G) and E ′ ⊆

E(G) is said to be a special mixed dominating set if E ′ is a matching and V ′∩V (E ′) = /0.

Observation 87. A graph G has an mds of size k if and only if G has a special mds of size

k.

Proof. Among all the k-sized mixed dominating sets of G, let S be an mds such that

|E(G)∩S| is minimum. We claim that S is a special mds. If S contains two edges uv and

uw, then (S\{uv})∪{v} is also an mds of size k with less number of edges than that in

S. If S contains a vertex v and an edge uv, then (S \{uv})∪{u} is also an mds of size k

with less number of edges than that in S. In either case, we have a contradiction to the

assumption.
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4.3 Algorithm for MDS parameterized by the solution

size

In this section we design an algorithm for MDS parameterized by the solution size. We

start with a simple observation that vertices and endpoints of edges in an mds form a vertex

cover.

Lemma 88. Let G be a graph and S =V ′∪E ′ be an mds of G. Then V ′∪V (E ′) is a vertex

cover of G, of cardinality at most 2|S|.

Proof. Since S =V ′∪E ′ is an mds of G, where V ′ ⊆V (G) and E ′ ⊆ E(G), every edge in

G has at least one of its endpoints in V ′∪V (E ′). This implies that V ′∪V (E ′) is a vertex

cover of G, of cardinality at most 2|S|.

In order to get a handle on an optimal solution we define what we call a nice mds.

Among all minimum sized mixed dominating sets of G, pick the one with the

least number of vertices. Such an mds is called a nice mds. To re-emphasize,

a nice mds by definition is minimum sized.

We now prove the following lemma, which forms the crux of our algorithm.

Lemma 89. Let G be a connected graph and V ′∪E ′ be a nice mds of G. Then, there is a

minimal vertex cover C of G such that V ′ ⊆C ⊆V ′∪V (E ′).

Proof. Let S =V ′∪E ′. Since S is mds, by Lemma 88, V ′∪V (E ′) is a vertex cover of size

at most 2|S|. Any edge incident on v ∈V ′ dominates v as well as all the edges incident on

v. Therefore, if v is such that S\{v} dominates NG(v), then by replacing v in S with some

edge incident on v (this is possible since G is connected), we get another minimum sized

mds with fewer vertices. This implies every vertex in V ′ must dominate at least one vertex

(other than itself) which no other element in V ′∪E ′ dominates. More specifically, for every
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C

I

V ′ Z

Id Iu

Fig 4.1: Partition of V (G) into minimal vertex cover C and independent set I, where
C =V ′⊎Z and I = Id ⊎ Iu.

v ∈ V ′, there is a vertex v′ ∈ V (G) such that vv′ ∈ E(G) and v′ /∈ NG[(V ′ \{v})]∪V (E ′).

This means, every minimal vertex cover contained in V ′∪V (E ′) must contain V ′, because

if C ⊆V ′∪V (E ′) does not contain v ∈V ′, then edge vv′ is not covered by C. Therefore, if

the vertex cover V ′∪V (E ′) is not minimal, keep removing vertices from V (E ′)\V ′ until

we are left with a minimal vertex cover.

Let V ′∪E ′ be a nice mds and C be a minimal vertex cover such that V ′⊆C ⊆V ′∪V (E ′).

Let I =V (G)\C. Note that I is an independent set and it can partitioned into two sets Id and

Iu, where Id is the set of vertices dominated by V ′ and Iu = I \ Id . That is, Id = NG(V ′)∩ I,

and Iu = I \ Id . Also, let Z =C \V ′. We thus have a partition of V (G) into V ′,Z, Id and Iu.

We call the quadruple (V ′,Z, Id, Iu) a nice partition of V (G) with respect to the mds V ′∪E ′

and the minimal vertex cover C (see Fig. 4.1). Also, we refer to the graph G′ = G[Z ∪ Iu]

as the companion graph of G with respect to V ′ and C.

Now let us define a new kind of domination called special domination. We say a vertex

special dominates only itself, and an edge special dominates its endpoints as well as all

the edges incident to at least one of its endpoints. Consequently, we can define a special

dominating set (sds) as follows. An sds of a graph G′ is a set Q′ ⊆V (G′)∪E(G′) such that

every element x ∈ (V (G′)∪E(G′))\Q′ is either adjacent to or incident on an edge in Q′.

The next lemma shows the relation between mds and sds.

Lemma 90. Let V ′∪E ′ be a nice mds of G and C be a minimal vertex cover of G such that

V ′ ⊆C ⊆V ′∪V (E ′). Let (V ′,Z, Id, Iu) be a nice partition of V (G) with respect to V ′∪E ′
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and C. Then G has an mds of size at most k if and only if G′ = G[Z ∪ Iu] has an sds of size

at most k−|V ′|.

Proof. Assume G has an mds of size at most k. Since V ′∪E ′ is a nice mds, |V ′∪E ′| ≤ k.

We can construct an sds Q′ for G′ as follows. If an edge e ∈ E ′ has both its endpoints in

V (G′), add e to Q′. If an edge e ∈ E ′ has exactly one endpoint in V (G′), then add that

endpoint to Q′.

We now claim that Q′ is indeed an sds for G′. Since E ′ dominates every vertex in

V (E ′)⊇ Z ∪ Iu =V (G′), Q′ special dominates all vertices of G′. If e = uv is an edge of G′

such that there exists an edge uw ∈ E ′ (or vw ∈ E ′) for some w ∈V (G′), then uw ∈ Q′ (or

vw ∈ Q′) and hence Q′ special dominates e.

We claim that Q′ special dominates all the edges in G′. By way of contradiction, suppose

e = uv is an edge of G′ such that there is no edge uw′ or vw′ in E ′ for any w′ ∈ V (G′).

Note that this also means uv /∈ E ′. But u,v ∈V (E ′)⊇ Z ∪ Iu. In that case, there must exist

xu,yv ∈ E ′, where x,y ∈ V ′∪ Id . Then we claim that S = V ′∪ ((E ′ \ {xu,yv})∪{uv}) is

an mds of G. Notice that {xu,yv} dominate the set of vertices R = {x,u,y,v} and all the

edges E(R) incident to at least one vertex in R = {x,u,y,v}. Since V ′∪E ′ is an mds of

G, to prove S is an mds of G, it is enough to show that S dominates R and E(R). Since

S ⊇ V ′∪{uv} and x,y ∈ Id , we have that x,y ∈ NG[V ′]. This implies that S dominates R.

Now, what is left to prove is, S dominates E(R). Since uv ∈ S, all the edges incident to

at least one of u or v is dominated by S. Finally, we show that S dominates all the edges

incident to at least one of x or y. Let e be an edge incident on z ∈ {x,y}. If z ∈V ′, then S

dominates e, because z ∈V ′ ⊆ S. Otherwise z ∈ Id , because z ∈ {x,y} ⊆V ′∪ Id . Let e = zw.

Since z ∈ Id and V ′∪Z is a vertex cover of G, we have that w ∈V ′∪Z. If w ∈V ′, then S

dominates e = zw, because w ∈V ′ ⊆ S. If w ∈ {u,v}, then S dominates e = zw, because

uv ∈ S. Otherwise w ∈ Z \ {u,v} ⊆ V (E ′) \ {u,v}. Since w ∈ V (E ′) \ {u,v}, there is an

edge in E ′ \{xu,yv} ⊆ S. This implies that S dominates e. Thus we have shown that S is

an mds of cardinality strictly less than that of V ′∪E ′, a contradiction. Hence we conclude
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that Q′ is an sds of G′.

To prove the other direction, suppose G′ has an sds Q′ of size atmost k−|V ′|. We claim

that V ′∪Q′ is an mds of G. Note that Q′ dominates all vertices and edges in graph G′ as

well as all edges incident on Z ∪ Iu, and V ′ dominates all vertices in V ′∪ Id as well as all

edges incident on V ′. Therefore, V ′∪Q′ is an mds of G of cardinality |V ′|+ |Q′| ≤ k.

Lemma 90 shows that given a graph G, V ′ and C as defined above, the problem of

deciding whether G has an mds of size at most k boils down to deciding whether G′ has an

sds of size at most k−|V ′|. This results in solving the following problem.

SPECIAL DOMINATING SET (SDS)

Input: An undirected graph G and a positive integer ℓ.

Question: Does there exist an sds of size at most ℓ in G?

In what follows we first design a polynomial time algorithm for SDS. Towards this,

note that an edge has more “special dominating power” than a vertex has, in the sense that

an edge special dominates itself, its endpoints and its adjacent edges, whereas a vertex

special dominates only itself. Therefore, a natural strategy is to first try to special dominate

as many vertices and all edges with as few edges as possible, and then add to the solution

all those vertices that are not special dominated by any of the edges. This intuition leads to

following polynomial time algorithm for SDS.

ALGORITHM-SDS (G, ℓ)

Step 1. Find a maximum matching, say M, in G. Let U =V (G)\V (M).

Step 2. If |M∪U | ≤ ℓ, return Yes; else return No.

The only time consuming step in the above algorithm is Step 1 – finding a maximum

matching – and this can be done in time O(m
√

n) [80]. Thus, ALGORITHM-SDS runs in

polynomial time, and the following lemma shows the correctness of the algorithm.

Lemma 91. Let M be a maximum matching in a graph G and let U =V (G)\V (M). Then
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M∪U is a minimum sized sds of G.

Proof. Since M is a maximum matching, every edge e ∈ E \M is incident to an edge in M,

and thus M special dominates all edges in G. The set M also special dominates all vertices

in V (M), and the rest of the vertices in G are special dominated by U . Therefore, M∪U is

indeed an sds of G.

Now we claim that M ∪U is a minimum size sds of G. Since V (M)∩U = /0 and

V (G) =V (M)∪U , we have that |V (G)|= 2|M|+|U |. Towards proving the minimality of

M∪U , we show that any sds E1∪V1 of G, where E1 ⊆E(G) and V1 ⊆V (G), has cardinality

at least |M∪U |= |M|+|U |. Let M1 be a maximum (w.r.t. E1) matching contained in E1. The

total number of vertices special dominated by E1 is at most 2|M1|+|E1 \M1|≤ |M1|+|E1|.

Since E1 ∪V1 is an sds of G, we have

|M1|+|E1|+|V1| ≥ |V (G)|

|E1|+|V1| ≥ |V (G)|−|M1|

≥ 2|M|+|U |−|M1| (because |V (G)|= 2|M|+|U |)

≥ |M|+|U |. (because |M|≥ |M1|)

This completes the proof of the lemma.

ALGORITHM-SDS together with Lemma 91 results in the following result.

Lemma 92. SDS can be solved in time O(m
√

n).

We are now fully equipped to give our algorithm for MDS.
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ALGORITHM-MDS (G,k)

Step 1. Enumerate all minimal vertex covers of G of size at most 2k. Let CC be the

collection of such vertex covers.

Step 2. For each C ∈ CC and each V ′ ⊆ C such that |V ′| ≤ k and |C| ≤ 2k−|V ′|, use

ALGORITHM-SDS to decide if the companion graph G′ (w.r.t. C and V ′) has an

sds of size at most k−|V ′|; if it has, return Yes.

Step 3. Otherwise return No.

The correctness of the algorithm follows from Lemma 90. Now, let us analyze the running

time of ALGORITHM-MDS. Any graph has at most 22k minimal vertex covers of size at

most 2k. Furthermore, given G and k, all minimal vertex covers of size at most 2k can be

enumerated in time 22knO(1) [38]. This means, Step 1 can be executed in time 22knO(1).

For each C ∈ CC, there are at most 2|C| ≤ 22k choices for V ′. For each such choice of C

and V ′, by Lemma 92, a minimum sds in G′ can be found in polynomial time. Therefore, the

running time of ALGORITHM-MDS (G,k) can be bounded by 22k ·22k ·nO(1) = O⋆(16k).

This, however, is a liberal estimate. A finer analysis shows that the running time can be

brought down to O⋆(7.465k).

Lemma 93. ALGORITHM-MDS runs in time O⋆(7.465k).

Proof. If (G,k) is a yes-instance of MDS with a nice mds V ′∪E ′, where |V ′|= j, then

any minimal vertex cover C such that V ′ ⊆C ⊆V (E ′) can have size at most |V ′|+2|E ′| ≤

j+2(k− j) = 2k− j. Therefore, in Step 2, we only process those pairs (C,V ′) such that

|C| ≤ 2k− j, where |V ′|= j, and there are only 22k− j such C. Thus Step 2 takes time

k

∑
j=0

22k− j
(

2k− j
j

)
= 22k

k

∑
j=0

2− j
(

2k− j
j

)
.

Since for any x > 0,
(n

i

)
xi ≤ ∑

n
i′=0

(n
i′
)
xi′ = (1+ x)n, we get

(n
i

)
≤ (1+ x)n/xi. Using
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this inequality, for any x > 0,

2− j
(

2k− j
j

)
≤ (1+ x)2k− j

(2x) j =
(1+ x)2k

((1+ x) ·2x) j .

We choose x = (
√

3−1)
2 so that (1+ x) ·2x = 1. This gives (1+x)2k

((1+x)2x) j ≤ (1.3661)2k. Hence,

Step 2 can be executed in time 22k ·1.36612k ·nO(1) ≤ (7.465)k ·nO(1).

Thus, we get the following theorem.

Theorem 13. MDS parameterized by k can be solved in time O⋆(7.465k).

4.4 Algorithm for MDS parameterized by Treewidth

In this section we devise an algorithm which, given a graph G and a nice tree decomposition

of G of width tw(G), computes the size of a minimum mixed dominating set of G. First

we give the notion of nice tree decomposition.

A tree decomposition (T,X ) is called a nice tree decomposition if T is a tree rooted at

some node r where Xr = /0, each node of T has at most two children, and each node is of

one of the following kinds:

1. Introduce vertex node: a node t that has only one child t ′ where Xt ⊃ Xt ′ and

|Xt |= |Xt ′|+1.

2. Forget node: a node t that has only one child t ′ where Xt ⊂ Xt ′ and |Xt |= |Xt ′|−1.

3. Introduce edge node: a node t, labeled with an edge uv ∈ E(G) such that u,v ∈ Xt ,

and with exactly one child t ′ such that Xt = Xt ′ . We say that edge uv is introduced at

t. We additionally require that every edge of E(G) is introduced exactly once in the

whole decomposition

4. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
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5. Leaf node: a node t ̸= r such that t is a leaf of T, and Xt = /0.

It is well known that any tree decomposition of G can be transformed into a nice tree decom-

position maintaining the same width in linear time [61, 27]. Corresponding to each node t in

T, let Vt be the union of all the bags present in the subtree of T rooted at t, including Xt and

let Gt be the subgraph of G defined as Gt =(Vt ,Et = {e∈E(G) : e is introduced in the sub

tree rooted at t}).

Hence, we assume that input to our algorithm is a graph G and a nice tree decomposition

of G of width tw(G). We start with following two lemmata about special properties of

some solution.

Lemma 94. Every graph has a minimum mixed dominating set such that the edges in that

set form a matching.

Proof. Let S be a minimum mixed dominating set of G, which contains edges e = uv and

e′ = vw that share a common endpoint v, otherwise the edges in S form a matching. Let

S′ = (S\{e′})∪{w}. Notice that |S′|= |S|. We claim that S′ is also a mixed dominating

set. Notice that the only vertices dominated by edge e′ ∈ S are v and w, and the only edges

dominated by e′ are those incident on v or w. But, both v and w, and edges incident on them

are dominated by S′ as well. We can apply this procedure exhaustively to get a minimum

mixed dominating set in which the edges form a matching.

Lemma 95. Let G be a graph. There is a minimum mixed dominating set S for G such that

(i) the edges in S form a matching, and (ii) the set of endpoints of the edges in S is disjoint

from the set of vertices in S.

Proof. Suppose the statement in the lemma is not true. Among the minimum mixed

dominating sets with edges in it forms a matching, choose a set D = V ′ ∪E ′ such that

|V ′∩V (E ′)| is minimized, where V ′ ⊆ V (G) and E ′ ⊆ E(G). Since, by our assumption

|V ′∩V (E ′)|≥ 1, there is an edge uv ∈ E ′ and u ∈V ′. Let D′ = (D\{uv})∪{v}. Notice that
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|D′|≤ |D| and D′ =U ∪F , where U =V ′∪{v} and F = E ′ \{uv}. We claim that D′ is a

mixed dominating set with edges in it form a matching. Since E ′ is a matching and F ⊆ E ′,

we have that F is a matching. The edge uv dominates vertices u and v, and edges incident

on them. These elements are also dominated by the set D′ = (D \ {uv})∪{v}, because

u,v ∈ D′. This implies that D′ is a mixed dominating set. Also, since E ′ is a matching,

we have that F is a matching and U ∩V (F) is a strict subset of V ′ ∩V (E ′), which is a

contradiction to the choice of the set D.

We start with an intuition about our algorithm. Let G be the input graph and (T,X =

{Xt}t∈V (T)) be the given tree decomposition of G. Any standard dynamic programming

over tree decomposition has three ingredients: for any node t ∈ T (i) defining partial

solution, (ii) defining equivalence classes among partial solutions (or in other words

defining states of DP table according to partial solutions) and (iii) computing a ‘best partial

solution’ for each state from previously computed values. Normally, for any node t ∈ T,

partial solutions are defined according to the properties of the intersection of solutions

with the graph Gt . In our case, a partial solution will be a subset of V (Gt)∪E(Gt). When

we define equivalence classes of these partial solutions, one of the factors in consideration

is how do these partial solutions intersect with the bag Xt . Since partial solutions contain

edges, these choices naively turns to at least 2O(tw2), and we can bring it down to twO(tw)

using Lemma 94.

Instead, we prove that it has an equivalent characterization in terms of pairs of vertices

which allows us to bound the number equivalence classes. By Lemma 95, we know that

there is a minimum mixed dominating set S =V ′∪E ′, where V ′ ⊆V (G) and E ′ ⊆ E(G),

with the following properties:

(a) E ′ is a matching, and

(b) V ′∩V (E ′) = /0.

Thus, in this subsection, we use the term solution to represent mixed dominating set
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satisfying conditions (a) and (b).

Let V ′ ∪E ′ be a solution. Consider the pair (V ′,V (E ′)). Since V ′ ∪E ′ is a solution

we have that (i) (V ′,V (E ′)) is a vertex cover of G, (ii) N[V ′]∪V (E ′) = V (G), and (iii)

G[V (E ′)] has a perfect matching. In fact, any pair of vertex subsets which satisfies these

three properties, can be turned to a mixed dominating set. That is these two notions are

equivalent as formalized in the following lemma.

Lemma 96. Let G be a graph. G has a mixed dominating set of size at most k if and

only if there is a pair of vertex subsets (X ,Y ) such that G[Y ] has a perfect matching,

V (G) = NG[X ]∪Y , X ∪Y is a vertex cover of G and |X |+1
2 |Y |≤ k.

Proof. If G has a mixed dominating set of size at most k, then by Lemma 95 we know that

G has a mixed dominating set S=V ′∪E ′ such that E ′ is a matching and V ′∩V (E ′) = /0. Let

X =V ′ and Y =V (E ′). By construction G[Y ] has a perfect matching E ′. Since S =V ′∪E ′

is a mixed dominating set of G, every vertex and edge in G is adjacent or incident to an

element in S. That is, V (G) = NG[X ]∪Y and X ∪Y is a vertex cover of G. Notice that

|X |+1
2 |Y |= |V ′|+|E ′|≤ k.

To prove the converse, suppose there is a pair of vertex subsets (X ,Y ) such that G[Y ]

has a perfect matching, V (G) = NG[X ]∪Y , X ∪Y is a vertex cover of G and |X |+1
2 |Y |≤ k.

Let V ′ = X and E ′ be an arbitrary perfect matching in G[Y ]. Since X ∪Y =V ′∪V (E ′) is

a vertex cover of G and V (G) = NG[X ]∪Y = NG[V ′]∪V (E ′), we have that V ′∪E ′ is a

mixed dominating set of G. Also notice that |V ′|+|E ′|= |X |+1
2 |Y |≤ k.

As a result of Lemma 96, for any node t in the tree decomposition we define partial

solutions and equivalence classes among partial solutions as follows. A partial solution is a

tuple (X ,F,Y ) satisfying the following conditions, where X ⊆V (Gt), F ⊆ E(Gt),Y ⊆ Xt :

• X ⊎Y ⊎V (F) is a vertex cover of Gt ,

• V (Gt)\Xt ⊆ NGt [X ]∪V (F).
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The intuitive meaning of (X ,F,Y ) is that there will potentially be a solution S such that

X ∪F ⊆ S and for each u ∈ Y , there will be an edge uv ∈ S\E(Gt).

Now we define equivalence classes of partial solutions corresponding to a node t in the

tree decomposition. We define Pt [ f ], where f : Xt →{1,2,2′,3,3′} as the set of partial

solutions (X ,F,Y ), which satisfy the following.

1. Xt ∩X = f−1(1),

2. Xt ∩V (F) = f−1(2),

3. Y = f−1(2′), and

4. (NGt (X)∩Xt)\ (Y ∪V (F))⊇ f−1(3).

Informally, each partial solution imposes a partition of Xt , which is defined by f . The set

f−1(1) is the set of vertices from Xt which are part of solution. The set f−1(2) is the set of

vertices from Xt such that there are edges in the solution which are incident on vertices

in f−1(2) and are present in the graph Gt . The set f−1(2′) is the set of vertices from Xt

such that there are edges in the solution which are incident on vertices in f−1(2′) and these

edges are not present in the graph Gt . Here, the condition 4 implies that the set f−1(3) is

the set of vertices in Xt , which are not part of solution vertices or end points of solution

edges in the partial solution, but they are already dominated. The set f−1(3′) is the set

of vertices in Xt which are not yet dominated and not in f−1(2′). The following lemma

proves that it is enough to keep one partial solution in each equivalence class.

Lemma 97. Let D be a solution and t be a node in the tree decomposition. Let X =

D∩V (Gt), F =D∩E(Gt) and Y = {u∈D∩V (Gt) | ∃v∈V (G) such that uv∈D\E(Gt)}.

Then (X ,F,Y ) ∈ Pt [ f ] for some f : Xt →{1,2,2′,3,3′}. Moreover, for any (X ′,F ′,Y ′) ∈

Pt [ f ], X ′∪F ′∪ (D\ (X ∪F)) is a solution.

Proof. Let D = V ′∪E ′, where V ′ ⊆ V (G) and E ′ ⊆ E(G). First we show that (X ,F,Y )

is a partial solution. Since D is a mixed dominating set, for any edge e ∈ E(Gt) at least
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one of its endpoints belongs to (V ′∪V (E ′))∩V (Gt). This implies that X ∪V (F)∪Y is

a vertex cover of Gt . Now we show that V (Gt)\Xt ⊆ NGt [X ]∪V (F). Since D is a mixed

dominating set, for any v ∈ V (Gt) \Xt , either vu ∈ E ′ for some u ∈ V (G) or v ∈ NG[V ′].

Since Xt is a separator in G, NG(v)⊆V (Gt). This implies that V (Gt)\Xt ⊆ NGt [X ]∪V (F).

Thus, we have proved that (X ,F,Y ) is a partial solution corresponding to the node t.

Let (X ,F,Y )∈Pt [ f ], where f : Xt →{1,2,2′,3,3′}. Let (X ′,F ′,Y ′) be another partial

solution in Pt [ f ]. Notice that, by property 3 of Pt [ f ], we have that Y = Y ′ . We need to

show that D′ = X ′∪F ′∪ (D\ (X ∪F)) is a solution. Let Z = D\ (X ∪F). Let v ∈V (G) be

a vertex.

1. If v ∈V (Gt)\Xt , then by the definition of partial solution v ∈ NGt [X
′]∪V (F) and

hence v is dominated by D′.

2. If v ∈ f−1(1)∪ f−1(2)∪ f−1(3), then it is dominated by X ′∪F ′, by properties 1,2

and 4 of Pt [ f ].

3. If v ∈ f−1(2′), then there an edge e ∈ Z which is incident to v, because D is a mixed

dominating set. Hence v is dominated by D′ ⊇ Z.

4. If v ∈ f−1(3′)∪ (V (G)\V (Gt)), then it is dominated either by Z or by X ∩Xt =

f−1(1) = X ′∩Xt ; so v is dominated by X ′∪F ′∪Z.

Hence all vertices of G are dominated by D′. Let e ∈ E(G) be an edge.

1. Since X ′∪Y ′∪V (F ′) is a vertex cover of Gt , all edges in E(Gt) are dominated by

D′.

2. Suppose e ∈ E(G)\E(Gt) has an endpoint in f−1(1)∪ f−1(2). Then it is dominated

by X ′∪F ′ by properties 1 and 2. If e has an endpoint in f−1(2′), then it is incident

on an edge e′ ∈ Z and hence dominated by D′ ⊇ Z. Otherwise edge e has both

its endpoints in in f−1(3)∪ f−1(3′)∪ (V (G)\V (Gt)). Notice that e could not be
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dominated by X ∪F . Also, since e is dominated by the mixed dominating set D, e is

dominated by Z. This implies that e is dominated by D′.

Thus D′ = X ′ ∪F ′ ∪Z dominates all vertices and edges of G and hence is a mixed

dominating set. This completes the proof of the lemma.

Now we are ready to explain our dynamic programming (DP) algorithm A. Due to

Lemma 97 it is enough to store one partial solution (X ,F,Y ) for each equivalence class

Pt [ f ] which minimizes the quantity |X |+|F |. In our DP table, for every node t in the tree

decomposition and for every f : Xt →{1,2,2′,3,3′}, we have an entry c[t, f ] which stores

the the value min{|X |+|F | | (X ,F,Y ) ∈ Pt [ f ]}.

Before moving to the computation of the DP table entries, we define some no-

tations. For a function f : A → B from A to B and elements {a1,a2,b1,b2}, we use

f(a1,a2)→(b1,b2) : A∪{a1,a2}→ B∪{b1,b2} to denote the following function.

f(a1,a2)→(b1,b2)(x) =


f (x) if x /∈ {a1,a2}

b1 if x = a1

b2 if x = a2

Note that a1 and a2 may or may not be in A, similarly, b1 and b2 may or may not be in

B. For two elements a and b, and a function f , the function fa→b : A∪{a}→ B∪{b} is

defined analogously. For A′ ⊆ A, we denote by f |A′ , the restriction of f to A′.

Computation.

Now move to the computation of the DP table entries c[, ]. The DP table entries are

computed in a bottom-up fashion of the given tree decomposition (T,X = {Xt}t∈V (T))

of the input graph G. Let t ∈ V (T) and f : Xt → {1,2,2′,3,3′} be a function. We have

different cases based on the kind of node t is.
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• Leaf node: When t is a leaf node, Xt = /0, and hence there is only one function – the

empty function – on Xt . Here, we have c[t, /0] = 0.

• Introduce vertex node: Let t be an introduce vertex node with child t ′ such that

Xt = Xt ′ ∪{v} for some v /∈ Xt ′ . Since v is an isolated vertex in Gt , v alone can

dominate itself. But it might also be dominated in future either as some edge’s

endpoint in the solution or by some vertex. We thus have the following formula:

c[t, f ] =


1+ c[t ′, f |Xt′ ] if f (v) = 1

c[t ′, f |Xt′ ] if f (v) ∈ {2′,3′}

∞ if f (v) ∈ {2,3}

• Introduce edge node: Let t be an introduce edge node labeled with edge e = uv and

let t ′ be the child of t. Now graph Gt is exactly the same as graph Gt ′ except for the

additional edge e. If exactly one of the endpoints of e is in f−1(1), then e can be

used to dominate the other endpoint. In the case where e is in the partial solution,

we have f (u) = f (v) = 2, so that while taking the precomputed solution for t ′, we

must have u and v in f−1(2′). In addition, we also have to take care of the fact that

we have added a new edge and it needs to be covered by f−1(1)∪ f−1(2)∪ f−1(2′).

These observations lead to the following formula.

c[t, f ] =



min
{

1+ c[t ′, f(u,v)→(2′,2′)],c[t ′ f ]
}

if f (u) = f (v) = 2

min{c[t ′, f ],c[t ′, fv→3′]} if ( f (u), f (v)) = (1,3)

min{c[t ′, f ],c[t ′, fu→3′]} if ( f (u), f (v)) = (3,1)

∞ if { f (u), f (v)}∩{1,2,2′}= /0

∞ if { f (u), f (v)}= {1,3′}

c[t ′, f ] otherwise.

• Forget node: Let t be a forget node with child t ′ such that Xt = X ′
t \{v} for some

v ∈ X ′
t . When we are forgetting the vertex v we need to make sure that v is dominated
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in graph Gt , since it cannot be dominated in future. Hence, in t ′, v must be in

f−1(1)∪ f−1(2) f−1(3) and thus we have the following formula.

c[t, f ] = min{c[t ′, fv→1],c[t ′, fv→2],c[t ′, fv→3]}.

• Join node: Let t be a join node with children t1 and t2. Then Xt = Xt1 = Xt2 . We say

that functions f1 : Xt1 →{1,2,2′,3,3′} and f2 : Xt2 →{1,2,2′,3,3′} are consistent

with f if the following conditions hold.

1. f−1(1) = f−1
1 (1) = f−1

2 (1)

2. f−1(2) = f−1
1 (2)⊎ f−1

2 (2)

3. f−1(2′) = f−1
1 (2′)∩ f−1

2 (2′)

4. f−1(3) = f−1
1 (3)∪ f−1

2 (3)

5. f−1(3′) = f−1
1 (3′)∩ f−1

2 (3′).

Now we define c[t, f ] as follows.

c[t, f ] = min
f1, f2

{c[t1, f1]+ c[t2, f2]−| f−1(1)|},

where the minimum is over all possible functions f1 on Xt1 and f2 on Xt2 that are

consistent with f .

This completes the description of the computation of DP table entries. Algorithm A

will output c[r, /0]. The correctness of the algorithm A follows from the following lemma.

Lemma 98. For any t ∈V (T) and f : Xt →{1,2,2′,3,3′}, c[t, f ] =min{|X |+|F | | (X ,F,Y )∈

Pt [ f ]}.

Proof sketch. We prove the lemma using induction on the height of the tree rooted at t.

The base case is when height of the tree rooted at t is 0. In this case t is a leaf node and we
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have that Pt [ /0] contains only /0. Thus c[t, /0] = 0. Now let the height of the tree rooted at t

be i > 0. Here, we consider only the case when t is a join node with child nodes t1 and t2.

Other cases can be proved using similar arguments.

First, we prove that c[t, f ]≤ min{|X |+|F | | (X ,F,Y ) ∈ Pt [ f ]}. Let (X ,F,Y ) ∈ CPt [ f ]

be such that |X |+|F |= min{|X ′|+|F ′| | (X ′,F ′,Y ′) ∈ Pt [ f ]}. For i ∈ {1,2}, let Xi = X ∩

V (Gti), Fi =F∩E(Gti), and Yi = (Xt ∩(X ∪V (F)∪Y ))\(Xi∪V (Fi)). Since each edge in F

is either in Gt1 or in Gt2 , but not in both the graphs Gt1 and Gt2 , we have that F =F1⊎F2. Let

fi, i ∈ {1,2}, be a function such that (Xi,Fi,Yi) ∈ CPt [ fi]. Now we prove that f1 and f2 are

consistent with f . Notice that for i ∈ {1,2}, Xi = X ∩V (Gti) = X ∩V (Gt). This implies that

f−1(1) = f−1
1 (1) = f−1

2 (1). Since F = F1 ⊎F2, we have that f−1(2) = f−1
1 (2)⊎ f−1

2 (2).

Now we prove that Y = Y1 ∩Y2.

Y = f−1(2′) = (Xt ∩ (X ∪V (F)∪Y ))\ (X ∪V (F))

= (Xt ∩ (X ∪V (F)∪Y ))\ (X1 ∪V (F1)∪X2 ∪V (F2))

=
⋂

i∈[2]
(Xt ∩ (X ∪V (F)∪Y ))\ (Xi ∪V (Fi))

= Y1 ∩Y2.

Since Y =Y1 ∩Y2, we have that f−1(2′) = f−1
1 (2′)∩ f−1

2 (2′). We can argue that f−1(3) =

f−1
1 (3)∪ f−1

2 (3). The reason is f−1(3) is the set of vertices in Xt which are dominated by

X in Gt , but not in the set X ∪Y ∪V (F). By our construction each element in f−1(3) is

dominated by X either in Gt1 or in Gt2 . This implies that f−1(3) = f−1
1 (3)∪ f−1

2 (3). Now

we argue that f−1(3′) = f−1
1 (3′)∩ f−1

2 (3′). The reason is f−1(3′) is the set of vertices in

Xt which are not dominated by X in Gt and not in the set Y ∪V (F). By our construction

each element in f−1(3′) will not be dominated by X either in Gt1 or in Gt2 . This implies

that f−1(3′) = f−1
1 (3′)∩ f−1

2 (3′). Hence, we have proved that f1 and f2 are consistent

with f . Since, for i ∈ {1,2}, (Xi,Fi,Yi) ∈ CPt [ fi], by induction hypothesis, we have that
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c[ti, fi]≤ |Xi|+|Fi|. Hence,

c[t, f ] ≤ c[t1, f1]+ c[t2, f2]−| f−1(1)|

= |X1|+|F1|+|X2|+|F2|−| f−1(1)|

= |X1 ∪X2|+|F |+|X1 ∩X2|−| f−1(1)| (Because F1 ∩F2 = /0)

= |X |+|F | (Because f−1(1) = X1 ∩X2)

Now, we prove that c[t, f ] ≥ min{|X |+|F | | (X ,F,Y ) ∈ Pt [ f ]}. Let f1 and f2 are

two functions, consistent with f and c[t, f ] = c[t1, f1]+ c[t2, f2]−| f−1(1)|. By induction

hypothesis, for i ∈ {1,2} there exists (Xi,Fi,Yi) ∈ CPti[ fi] such that c[ti, fi] = |Xi|+|Fi|.

Let Y = f−1(2′). Since f1 and f2 are consistent with f , we have that Y = f−1(2′) =

f−1
1 (2′)∩ f−1

2 (2′) = Y1 ∩Y2. Consider the tuple (X = X1 ∪X2,F = F1 ∪F2,Y ). Notice

that X1 ∩X2 = X1 ∩Xt = X2 ∩Xt = f−1(1) and F = F1 ⊎F2. This implies that c[t, f ] =

|X1|+|F1|+|X2|+|F2|−|X1 ∩X2|= |X |+|F |.

Now we claim that (X ,F,Y ) ∈ Pt [ f ]. Towards that first we argue that (X ,F,Y ) is

a partial solution corresponding to node t. Since f1 and f2 are consistent with f , we

have that X ∪V (F)∪Y = X1 ∪X2 ∪V (F1)∪V (F2)∪Y1 ∪Y2. This, along with the fact that

Xi ∪V (Fi)∪Yi is a vertex cover of Gti for any i ∈ {1,2}, implies that X ∪V (F)∪Y is a

vertex cover of Gt . Since, (Xi,Fi,Yi) ∈ CPti[ fi], V (Gti)\Xti ⊆ NGti
[Xi]∪V (Fi), we have that

V (Gt)\Xt ⊆ NGt [X ]∪V (F). This implies that (X ,F,Y ) is a partial solution corresponding

to node t. Now we show that (X ,F,Y ) ∈ Pt [ f ]. Notice that f−1(1) = X1 ∩Xt = X2 ∩Xt =

X ∩Xt . Since f−1(2) = f−1
1 (2)⊎ f−1

2 (2) and for any i ∈ {1,2}, V (Fi)∩Xti = f−1
i (2), we

have that f−1(2) = Xt ∩V (F). We have already argued that Y = f−1(2′). Since f−1(3) =

f−1
1 (3)∪ f−1

2 (3), each vertex in f−1(3) is either dominated by X1 or X2, and thus we have

that (NGt (X)∩Xt)\ (Y ∪V (F)) = f−1(3). Hence we have that (X ,F,Y ) ∈ Pt [ f ].

Since (X ,F,Y )∈Pt [ f ] and c[t, f ] = |X |+|F |, we have that c[t, f ]≥min{|X |+|F | | (X ,

F,Y ) ∈ Pt [ f ]}. This complete the proof sketch of the lemma.
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Lemma 99. Algorithm A runs in time 8twnO(1).

Proof. The number of DP table entries is upper bounded by 5twnO(1). The time required to

process each leaf node, introduce vertex/edge node or forget node is 5tw · twO(1). Because

for every entry to be computed we only have to check at most 3 many entries from children

nodes. However, computing the values of c[t, ·] for a join node t is more time consuming.

Note that if a pair f1, f2 is consistent with f , then for every v ∈ Xt , ( f (v), f1(v), f2(v))

belongs to

{(1,1,1),(2,2,2′),(2,2′,2),(2′,2′,2′),(3,3,3),(3,3,3′),(3,3′,3),(3′,3′,3′)}.

This implies that for any t ∈ V (T), there are exactly 8|Xt | many valid triples of func-

tions ( f , f1, f2) such that f1 and f2 are consistent with f , because for every vertex v

we have 8 possibilities for ( f (v), f1(v), f2(v)). The computation can be implemented

as follows. Initialize c[t, f ] = ∞ for all functions f on Xt . We iterate through all valid

triples and for each such triple ( f , f1, f2), we replace the current value of c[t, f ] with

{c[t1, f1]+ c[t2, f2]−| f−1(1)|} in case the latter value is smaller. As |Xt |≤ tw+1, it fol-

lows that the algorithm spends 8tw · twO(1) time for every join node. Hence, we get the

required running time.

Improving the runtime:

We can improve the running time of algorithm A using fast computation of cover product.

The cover product of two functions f ,g : 2V → Z∪{∞} is a function ( f ∗c g) : 2V → (Z∪

{∞}) such that for every Y ⊆V ,

( f ∗c g)(Y ) = min
A∪B=Y

( f (A)+g(B)).

Theorem 14 ([10]). For two functions f ,g : 2V →{−M, . . . ,M}, where |V |= n, given all
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the 2n values of f and g in the input, all the 2n values of the cover product of f and g

over the integer min-sum semi-ring (Z,min ,+) can be computed in time 2n ·nO(1) ·O(M ·

logM · log logM).

We can use Theorem 14 to accelerate run time of our dynamic programming algorithm

to 6tw ·nO(1). The processing of introduce nodes and forget nodes is already fast enough.

We will show here that for a join node t the values of c[t, f ] for all the 5|Xt | functions

f : Xt →{1,2,2′,3,3′} can be computed in time 6|Xt | · |Xt |O(1). Recall that

c[t, f ] = min{c[t1, f1]+ c[t2, f2]−| f−1(1)|},

where t1 and t2 are the children of t and the minimum is taken over all colorings f1, f2 that

are consistent with f . Recall that Xt = Xt1 = Xt2 . From the consistency conditions we know

that

1. f−1(1) = f−1
1 (1) = f−1

2 (1),

2. f−1(2) = f−1
1 (2)⊎ f−1

2 (2),

3. f−1(2′) = f−1
1 (2′)∩ f−1

2 (2′),

4. f−1(3) = f−1
1 (3)∪ f−1

2 (3),

5. f−1(3′) = f−1
1 (3′)∩ f−1

2 (3′).

Conditions 1, 2 and 3 together imply that

⋃
x∈{1,2,2′}

f−1(x) =
⋃

x∈{1,2,2′}
f−1
1 (x) =

⋃
x∈{1,2,2′}

f−1
2 (x).

Let us call this set R. If we fix the partitions for R for three functions f , f1 and f2, then what

we want to compute resembles the cover product. Let us follow this idea. Any partition

of R into 4 parts P1 ⊎P2 ⊎P3 ⊎P4 can be interpreted as follows: P1 = f−1(1) = f−1
1 (1) =
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f−1
2 (1), P2 = f−1

1 (2), P3 = f−1
2 (2) and P4 = f−1(2′) = f−1

1 (2′)∩ f−1
2 (2′). That is given

R = P1 ⊎P2 ⊎P3 ⊎P4, we can uniquely determine f1|R and f2|R as follows:

f−1
1 (1) = f−1

2 (1) = P1

f−1
1 (2) = P2

f−1
2 (2) = P3(4.1)

f−1
1 (2′) = P3 ∪P4

f−1
2 (2′) = P2 ∪P4

So we have 4|R|consistent partitions from a set R. Each partition in R determines the

exact sets f−1(x), f−1
1 (x), f−1

2 (x) for all x ∈ {1,2,2′}, such that the first three conditions

of consistency are satisfied. Thus we can partition the pair of functions ( f1, f2) which

are consistent with f according to (P1,P2,P3,P4), where P1 ⊎P2 ⊎P3 ⊎P4 ⊆ Xt , satisfies

Equations (4.1). For every S ⊆ Xt \ (P1 ∪P2 ∪P3 ∪P4), define

g1,S(x) =



1 if x ∈ P1

2 if x ∈ P2

2′ if x ∈ P3 ∪P4

3 if x ∈ S

3′ otherwise

g2,S(x) =



1 if x ∈ P1

2 if x ∈ P3

2′ if x ∈ P2 ∪P4

3 if x ∈ S

3′ otherwise

gS(x) =



1 if x ∈ P1

2 if x ∈ P2 ∪P3

2′ if x ∈ P4

3 if x ∈ S

3′ otherwise

Let R = P1 ∪P2 ∪P3 ∪P4). Now we define functions cti,c
′ : 2Xti\R, where i ∈ {1,2}, as
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ct1(S) = c[t1,g1,S], ct2(S) = c[t2,g2,S] and c′(P1,P2,P3,P4,S) = (ct1 ∗c ct2)(S). The values

c′(P1,P2,P3,P4,S) for all S ⊆ Xt \R can be computed in time 2|Xt\R|nO(1).

Having computed all c′(P1,P2,P3,P4,S), the value c[t, f ] can be computed as,

c[t, f ] = min
Q1⊎Q2= f−1(2)

{c′( f−1(1),Q1,Q2,P4,S)−| f−1(1)|}.

The computation of c[t, f ] from the values c′(P1,P2,P3,P4,S) takes time O(2| f
−1(2)|).

The total running time to compute all values c′(P1,P2,P3,P4,S) is upper bounded by

∑R⊆Xt 4|R|2|Xt\R|nO(1) = 6twnO(1). For a node t, the total running time to compute all the

entries c[t, f ] from c′(P1,P2,P3,P4,S) is upper bounded by ∑Q⊆Xt 4|Xt\Q|2|Q| = 6tw. Hence

the total running time is 6twnO(1).

Theorem 15. Given a graph G together with a tree decomposition of width tw, MDS can

be solved in time O⋆(6tw).

4.5 MDS on split graphs has no polynomial kernel

In this section, we show that MDS restricted to split graphs does not admit a polynomial

kernel unless coNP ⊆ NP/poly. The proof is by a polynomial parameter transformation

from RED-BLUE DOMINATING SET (RBDS), parameterized by the number of red vertices.

In the RBDS problem, the input is a bipartite graph G with bipartition R∪B and

a positive integer ℓ. The objective is to test whether there exists a set X ⊆ R of size

at most ℓ that dominates the set B, i.e., N(X) = B. Such a set X is called a red-blue

dominating set (rbds, for short) of G. This problem when parameterized by |R| is the same

as SMALL UNIVERSE HITTING SET, which does not have a polynomial kernel unless

coNP ⊆ NP/poly (see [32]). Thus we get the following result from [32].
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Lemma 100 ([32]). RBDS parameterized by |R| has no polynomial kernel unless coNP

⊆ NP/poly.

We first state an auxiliary lemma, (the proof of which follows from Observation 85)

and then prove the main theorem of the section.

Lemma 101. Let G be a graph and let X ⊆V (G) be such that G[X ] is a complete graph.

Let S ⊆V (G)∪E(G) be such that S dominates all edges of G[X ]. Then, |S| ≥ (|X |−1)/2.

Theorem 16. MDS on split graphs does not admit a polynomial kernel, unless coNP

⊆ NP/poly.

Proof. The proof is by a polynomial parameter transformation from the RED-BLUE

DOMINATING SET problem, parameterized by the number of red vertices. Consider an

instance (G, ℓ) of RBDS, where V (G) = R∪B. We assume that the instance (G, ℓ) has the

following properties: (i) the set R contains an isolated vertex, and (ii) |R| is odd and ℓ is

even. It is easy to verify that these assumptions are safe.

We construct an equivalent instance (G′, ℓ′) of MDS as follows. Let G′ be the graph

obtained from G by turning G[R] into a clique. That is, V (G′) = V (G) = R ∪ B and

E(G′)=E(G)∪{r1r2 | r1,r2 ∈ R}. Note that G′ is a split graph. We set ℓ′=(|R|+ℓ−1)/2.

We claim that G has an rbds of size at most ℓ if and only if G′ has an mds of size at most

ℓ′ = (|R|+ ℓ−1)/2.

Assume that (G, ℓ) is a yes-instance of RBDS and let X ⊆ R be an rbds of G of size

ℓ. Let v ∈ R be an isolated vertex in G. If v ∈ X , then replace v with any other vertex

in R \X , which is still an rbds of G. So from now on, we assume that v /∈ X . Now note

that |R\ (X ∪{v})|= |R|− (ℓ+1) is even and G′[R\ (X ∪{v})] is a complete graph and

hence G′[R \ (X ∪{v})] admits a perfect matching M. Then, |M| = (|R| − ℓ− 1)/2 and

|X ∪M| = |X |+ |M| = ℓ+(|R|− ℓ− 1)/2 = (|R|+ ℓ− 1)/2. We claim that X ∪M is an

mds of G′. Note that X dominates all vertices in B, as X is an rbds of G. Since G′[R] is a

clique, X dominates all vertices of R. (In fact, any one vertex of X dominates all of R.)
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The set X also dominates all edges of G′ that are incident with X . Thus, the only elements

of V (G′)∪E(G′) that are not dominated by X are the edges incident with R\X , but not

incident with X . Now note that, since M is a perfect matching of G′[R \ (X ∪{v})], we

have V (M) = R\ (X ∪{v}), and hence M dominates all edges incident with R\ (X ∪{v}).

Notice that all the edges incident with v and X are dominated by X . This implies that

M ∪X dominates all edges incident with R \X . Thus, X ∪M is an mds of G′ of size

(|R|+ ℓ−1)/2 = ℓ′.

Conversely, assume that G does not have an rbds of size at most ℓ. Let S = V ′∪E ′

be a minimum-sized mds of G′, where V ′ ⊆ V (G′) and E ′ ⊆ E(G′). We shall show that

|S|> ℓ′. Let S′ ⊆ S be a minimum-sized subset of S that dominates all vertices in B. Thus,

S′ consists of some vertices in R∪B and some edges in E(R,B). Construct a set S′′ ⊆ R

as follows. Add all vertices in S′∩R to S′′. For every xy ∈ S′∩E(R,B), where x ∈ R and

y ∈ B, add x to S′′. For every y ∈ S′∩B, add a neighbor of y to S′′. Then, |S′′| ≤ |S′| and

S′′ ⊇V (S′)∩R.

We claim that S′′ is an rbds of G. To see this, consider w ∈ B. We shall show that

w ∈ NG(S′′). Since S is an mds of G′, (i) either w ∈V ′, in which case we added a neighbor

of w to S′′, and hence w ∈ NG(S′′), or (ii) S′ contains an edge incident with w, say uw, in

which case we added u to S′′, and hence w ∈ NG(S′′), or (iii) S′ contains a neighbor (in G′)

of w, say u, and then u ∈ S′∩R ⊆ S′′, in which case also w ∈ NG(S′′). Thus S′′ is an rbds of

G. Because of our assumption that G has no mds of size at most ℓ, we have ℓ < |S′′| ≤ |S′|.

Now consider the subgraph G′[R\S′′] of G′. Note that G′[R\S′′] is a clique and none

of its edges are dominated by S′, because S′′ ⊇V (S′)∩R. Equivalently, (since S is an mds

of G′,) all edges of the clique G′[R \ S′′] are dominated by S \ S′. Therefore, by Lemma
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101, |S\S′| ≥ (|R\S′′|−1)/2 = (|R|− |S′′|−1)/2. Hence,

|S|= |S′|+(|R|− |S′′|−1)/2

≥ |S′|+(|R|− |S′|−1)/2 (because |S′′| ≤ |S′|)

= (|R|+ |S′|−1)/2

> (|R|+ ℓ−1)/2 (because |S′| ≥ |S′′|> ℓ)

= ℓ′.

That is |S|> ℓ′. This completes the proof of the lemma.

4.6 Polynomial kernel for MDS on Kd,d-free graphs

In this section, we show that MIXED DOMINATING SET admits a kernel with O(kd)

vertices on Kd,d-free graphs. A graph G is said to be Kd,d-free if G does not contain Kd,d

as a subgraph (not necessarily induced). Before focusing exclusively on Kd,d-free graphs,

we explore some structural properties of graphs that have mixed dominating sets of size at

most k, for a non-negative integer k. For a graph G and a non-negative integer k, we define

the k-induced partition of G as follows.

Definition 102. Let G be a graph without isolated vertices and k a non-negative integer.

The k-induced partition of G is a triplet (H, I,R), where H = {v ∈V (G) | dG(v)≥ 2k+1},

I = {v ∈V (G)\H | NG(v)⊆ H} and R =V (G)\ (H ∪ I).

Notice the following immediate consequences of the above definition. First, the k-

induced partition is unique, and that H ∪ I ∪R is indeed a partition of V (G). Also, by

definition, I is an independent set (i.e., E(I) = /0) and there is no edge in G with one

endpoint in I and the other in R (i.e., E(I,R) = /0). Finally, it is easy to see that H must be

contained in every vertex cover of G of size at most 2k, if such a vertex cover exists. We

now define what we call a k-induced mixed dominating set.
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Definition 103. Let G be a graph without isolated vertices and k be a non-negative integer.

Let (H, I,R) be the k-induced partition of G. A mixed dominating set S of G is called a

k-induced mixed dominating set if V (S)∩ I = /0.

The following lemma shows that if G has an mds of size at most k, then G has a

k-induced mds.

Lemma 104. Let G be a graph without isolated vertices and k a non-negative integer.

Suppose (G,k) is a yes-instance of MDS. Then G has a k-induced mds.

Proof. Let S′ be a minimum-sized mds of G. Since(G,k) is a yes-instance, by Observation

85, we have that H ⊆ V (S′). We construct S from S′ as follows. Add all vertices of

(H ∪R)∩S′ to S. Add all edges of E(G[H ∪R])∩S′ to S. For every edge xy ∈ E(H, I)∩S′,

where x ∈ H and y ∈ I, add x to S. For every vertex y ∈ S′∩ I, add a neighbor of y to S.

Then, |S| ≤ |S′| and V (S)∩ I = /0. We claim that S is a mixed dominating set of G. Consider

x ∈ R∪H. Note that our construction of S ensures that if x ∈V (S′), then x ∈V (S) as well.

Thus S dominates H ∪R and all edges incident with H ∪R. Therefore, in order to show

that S is an mds of G, we only need to show that S dominates I. Consider y′ ∈ I. Then,

since S′ dominates y′, either x′y′ ∈ S′ for some x′ ∈ H, in which case x′ ∈ S, and hence

S dominates y′; or y′ ∈ S′, in which case we added a neighbor of y′ to S, and hence S

dominates y; or S′ contains a neighbor of y′, say z′ ∈ H, in which case S contains z′ too,

and hence S dominates y′. Thus S is a minimum-sized mds of G and V (S)∩ I = /0. Hence,

S is a k-induced mds of G. This completes the proof of the lemma.

In what follows, let (G,k) be an instance of MDS where G is a Kd,d-free graph. Note

that all isolated vertices in G must belong to any mixed dominating set. Consequently, we

apply the following reduction rule.

Reduction Rule 1: If v ∈V (G) is an isolated vertex, then delete v from G and decrease k

by one.
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From now on, we assume that G has no isolated vertices. Let (H, I,R) be the k-induced

partition of G. We now separately bound the sizes of H, R and I in the event that (G,k)

is a yes-instance. The proof of the following lemma, which bounds |H|, follows from

Observation 85.

Lemma 105. If |H|> 2k, then (G,k) is a no-instance.

Lemma 106. If |R|> 8k2, then (G,k) is a no-instance.

Proof. Assume that (G,k) is a yes-instance. Let S be an mds of G of size at most k. We

shall show that |R| ≤ 8k2. Note that V (S) is a vertex cover of G. Now, consider the graph

G[R], the subgraph of G induced by R. Then, V (S)∩R is a vertex cover of G[R]. Since

every vertex in R has degree at most 2k, V (S)∩R can cover at most 2k|V (S)∩R| edges of

G[R]. Since V (S)∩R is a vertex cover of G[R], V (S)∩R covers all edges of G[R]. We thus

get that |E(G[R])| ≤ 2k|V (S)∩R| ≤ 2k|V (S)| ≤ 2k×2k = 4k2.

Recall that Rule 1 removed all isolated vertices from G. Observe that G[R] has no

isolated vertices either. If v ∈ R were isolated in G[R], then NG(v)⊆ H, which then would

imply that v ∈ I, a contradiction. Since G[R] has no isolated vertices and |E(G[R])| ≤ 4k2,

we have |V (G[R])| ≤ 2|E(G[R])| ≤ 8k2.

As Lemmas 105 and 106 show, if either |H|> 2k or |R|> 8k2, then we can immediately

conclude that (G,k) is a no-instance. This leads to the following reduction rule.

Reduction Rule 2: Let (G,k) be an instance of MDS and let (H, I,R) be the k-induced

partition of V (G). If |H|> 2k or |R|> 8k2, then return a trivial no-instance.

Hence from now on, we assume that |H| ≤ 2k and |R| ≤ 8k2. In order to obtain a kernel,

we now need to upper bound |I|. Towards that end, we introduce the following reduction

rule.
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Reduction Rule 3: If there exist 2k+ 2 distinct vertices u0,u1, . . . ,u2k+1 in I such that

NG(u0) = NG(u1) = · · ·= NG(u2k+1), then delete u0 from G.

Lemma 107. Reduction Rule 3 is safe.

Proof. Consider u0,u1, . . . ,u2k+1 ∈ I with NG(u0) = NG(u1) = · · ·= NG(u2k+1). We shall

show that (G,k) is a yes-instance if and only if (G−u0,k) is a yes-instance. Now, if (G,k)

is a yes-instance, then by Lemma 104, G has a k-induced mds, say S, of size at most k.

Then u0 /∈V (S), and hence S is an mds of G−u0 as well.

To see the reverse direction, assume that (G− u0,k) is a yes-instance. Then, since

dG−u0(x) ≥ 2k+ 1 for every x ∈ H, (H, I \ {u0} ,R) is the k-induced partition of G− u0.

By Lemma 104, G−u0 has a k-induced mds, say S′, of size at most k. That is, V (S′)∩ (I \

{u0}) = /0. We claim that S′ is a mixed dominating set of G as well. Note that we only need

to show that S′ dominates u0 and all edges incident with u0. By Observation 85, we have

H ⊆V (S′). In particular, NG(u0)⊆ H ⊆V (S′), and hence S′ dominates all edges incident

with u0. Now, since S′ dominates u1, and since S′ is k-induced, S′ must contain a neighbor

of u1, say v. But we have NG(u0) = NG(u1). Thus v ∈ NG(u0)∩S′, and hence S′ dominates

u0.

It is easy to see that all the Reduction Rules 1–3 can be applied in polynomial time.

Assume that Reduction Rules 1–3 have been applied exhaustively. Let (G′,k′) be the

reduced instance with the k′-induced partition (H, I,R). Notice that k′ ≤ k. We partition

I into two parts as follows. Let I<d be the set of vertices in I that have at most (d − 1)

neighbors and I≥d be the set of vertices in I that have at least d neighbors. That is, I<d =

{v ∈ I | |NG′(v)| ≤ d −1} and I≥d = I \ I<d = {v ∈ I | |NG′(v)| ≥ d}. We shall separately

bound the sizes of I<d and I≥d . Let CH<d be the family of subsets of H of size at most

(d −1), i.e., CH<d = {X ⊂ H: |H| ≤ d −1}. Let CH=d be the family of subsets of H of

size exactly d, i.e., CH=d = {X ⊂ H: |H|= d}.

Observation 108. |CH<d| ≤ d(2k′)d−1 and |CH=d| ≤ (2k′)d .
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Lemma 109. |I<d| ≤ d(2k′+1)(2k′)d−1 and |I≥d| ≤ (d −1)(2k′)d .

Proof. Since Reduction Rule 3 has been applied exhaustively, for every X ∈ CH<d there

exist at most 2k′+1 vertices x ∈ I<d such that NG′(x) = X . Hence, |I<d| ≤ (2k′+1)|CH<d|,

and then using Observation 108, we get |I<d| ≤ (2k′+1)d(2k′)d−1.

Note that for every x ∈ I≥d , there exists X ∈ CH=d such that NG′(x) ⊇ X ; and call x

and X partners of each other. Now, given Y ∈ CH=d , note that Y can have at most (d −1)

partners in I≥d . For otherwise, if Y has at least d partners, then the graph induced on Y and

all its partners contains Kd,d as a subgraph. But this is not possible as G is Kd,d-free. Thus,

every x ∈ I≥d has a partner in CH=d , and every Y ∈ CH=d has at most (d−1) partners. We

thus have |I≥d| ≤ (d −1)|CH=d| ≤ (d −1)(2k′)d .

Lemma 109 shows that |I|= |I<d ∪ I≥d| ≤ d(2k′+1)(2k′)d−1+(d−1)(2k′)d =(2k′)d−1

(4dk′−2k′+d). Thus, as k′ ≤ k, we get the following theorem.

Theorem 17. MIXED DOMINATING SET on Kd,d-free graphs admits a kernel with

(2k)d−1(4dk−2k+d)+8k2 +2k = O(kd) vertices.

4.7 MDS on proper interval graphs is in P

In this section, we prove the following theorem.

Theorem 18. MDS on proper interval graphs can be solved in time O(n13), where n is

the number of vertices of the input graph.

In order to prove Theorem 18, we design a dynamic programming algorithm. In light

of Observation 87, notice that we need to consider only special mixed dominating sets of

the input graph.

We first state some properties of proper interval graphs that will be used throughout

this section. Let G be a proper interval graph and I(G) be its proper interval representation.

173



That is, I(G) is a set of intervals such that no interval is contained in any of the other

intervals in I(G). For each v ∈V (G) with interval I(v), l(v) denotes the left endpoint of

I(v) and r(v) denotes the right endpoint of I(v). Observe that for two distinct vertices u and

v of G, if l(u)< l(v), then r(u)< r(v). This imposes a natural total order on the intervals,

which in turn defines an ordering π : V (G)→ [|V (G)|] of the vertices. The ordering π is

obtained by listing the vertices in the ascending order of the left (or right) endpoints of

their intervals. This ordering is referred to as a proper interval ordering in the literature

and has the following property.

Proposition 110 (folklore). Let G be a proper interval graph with proper interval ordering

π . For every pair u,v of vertices with π(u)< π(v), if uv ∈ E(G), then {w ∈V (G) | π(u)≤

π(w)≤ π(v)} is a clique in G.

Given a proper interval representation, the following result states that the vertex set

of the proper interval graph can be organized into a sequence of cliques satisfying certain

properties.

Proposition 111 (folklore). Given a proper interval graph G with proper interval ordering

π , there is a linear-time algorithm that outputs a partition of V (G) into a sequence

Q1, · · · ,Qq of (pairwise vertex-disjoint) cliques satisfying the following properties.

(i) For each pair of vertices u ∈ Qi, v ∈ Q j with 1 ≤ i < j ≤ q, π(u)< π(v).

(ii) For every edge uv ∈ E(G), there exists 1 ≤ i ≤ q such that either u,v ∈ Qi or u ∈ Qi

and v ∈ Qi+1.

We refer to the ordered set of cliques CQ = {Q1, · · · ,Qq} as the clique-partition of G.

Given a proper interval representation, a proper interval ordering π and a clique-partition

CQ of a proper interval graph can be obtained in polynomial time [45, 59]. So we assume

that CQ and π are given as part of the input with the proper interval graph G. We remark

that neither the proper interval representation (and hence the proper interval ordering

resulting from it) nor the clique-partition is unique.
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Throughout this section, for a proper interval graph G, we fix an interval representation

along with the proper interval ordering π and the clique-partition CQ obtained from it. We

begin by proving the following preparatory lemmas that explore how a minimum-sized

special mixed dominating set of G interacts with the clique induced by Qi.

Lemma 112. Let G be a proper interval graph. Then G has a minimum-sized special mds

S such that for every i ∈ [q−1], |S∩E(Qi,Qi+1)| ≤ 1, i.e., S contains at most one edge

with one endpoint in Qi and the other in Qi+1.

Proof. Let S be a minimum-sized special mds of G. Fix i ∈ [q−1]. Suppose that

|S∩E(Qi,Qi+1)| ≥ 2. Let ab and cd be two distinct edges in S such that a,c ∈ Qi and

b,d ∈ Qi+1. Note that since G[Qi] and G[Qi+1] are cliques, we have ac,bd ∈ E(G). Let S′

be the set obtained from S by replacing ab and cd with ac and bd, i.e., S′ = (S\{ab,cd})∪

{ac,bd}. Then |S′|= |S| and S′ is a special mds of G as edges ac and bd together dominate

exactly the same vertices and edges as ab and cd together do. Apply this replacement

procedure exhaustively to get a minimum-sized mds with the desired property.

Lemma 113. Let G be a proper interval graph. Then every minimum-sized mds of G

contains at most 3 vertices from Qi for every i ∈ [q].

Proof. Suppose the lemma is not true. Then there exists a minimum-sized mds S of G and

i ∈ [q] such that |S∩Qi|≥ 4. Let a,b,c,d be four distinct vertices in S∩Qi. Without loss

of generality, assume that π(a)< π(b)< π(c)< π(d). Let e denote the edge bc. Now we

claim that S′ = (S\{b,c})∪{e} is an mds of G, which will contradict the fact that S is a

minimum-sized mds as |S′|< |S|.

First, note that the set {b,c} dominates N[{b,c}] and all the edges incident with

b or c. Now, the edge e = bc dominates {b,c} and all the edges incident with b or c.

Therefore, now we only need to show that S′ dominates N(b)∪N(c). We shall show that

N(b)∪N(c)⊆ N[{a,d}], which will imply that S′ dominates N(b)∪N(c), as a,d ∈ S′.
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Consider x ∈ N(c). Since xc ∈ E(G) and c ∈ Qi, by Proposition 111-(ii), either x ∈ Qi

or x ∈ Qi+1 or x ∈ Qi−1. If x ∈ Qi, then x is adjacent to both a and d. If x ∈ Qi+1, then, since

d ∈ Qi, by Proposition 111-(i), we get π(c)< π(d)< π(x). But then by Proposition 110,

the subgraph of G induced by X = {w ∈V (G) | π(c)≤ π(w)≤ π(x)} is a clique. Note

that d ∈ X and hence d and x are adjancet. Using symmetric arguments, we can show that

if x ∈ Qi−1, then a and x are adjacent. In any case, we have x ∈ N[{a,d}]. Similarly, we can

also show that y ∈ N[{a,d}] for every y ∈ N(b). Thus, we have N(b)∪N(c)⊆ N[{a,d}],

and this completes the proof.

Consider a minimum-sized mds S of G. Fix i ∈ [q]. Let Si ⊆ S be the set of all vertices

and edges in S that have at least one endpoint in Q≤i =
⋃

1≤ j≤i Q j. The following lemma

shows that Q≤i contains at most one vertex that is not dominated by Si.

Lemma 114. Let G be a proper interval graph and S be a minimum-sized mds of G. Let Si =

Vi∪Ei = {x ∈ S:V (x)∩ (
⋃

1≤ j≤i Q j) ̸= /0}. Then |{Q1∪Q2....∪Qi}\{N[Vi]∪V (Ei)}|≤ 1.

Proof. Suppose that the lemma is not true. Then there are at least two vertices in
⋃

1≤ j≤i Q j

that are not dominated by Si. Let a,b be two such vertices. We now claim that a and b must

belong to Qi. To see this, note that both a and b are dominated by S \Si. In particular, a

and b are dominated by some vertices in S \Si. For otherwise, if an edge, say e ∈ S \S′,

were to dominate a, then a ∈ Qi must be the endpoint of e ∈ S, which means that e ∈ Si,

and hence a is dominated by Si, a contradiction. Therefore, both a and b are dominated by

S∩ (Qi+1 ∪·· ·∪Qq), which means that there exist a′,b′ ∈ S∩ (Qi+1 ∪·· ·∪Qq) such that

a′ ∈ N(a) and b′ ∈ N(b). Then, since a ∈ Q j for some j ≤ i and a′ ∈ Q j′ for some j′ ≥ i+1,

and aa′ ∈ E(G), by Proposition 111-(ii), we get that a ∈ Qi and a′ ∈ Qi+1. Similarly, b ∈ Qi

and b′ ∈ Qi+1. Then, since G[Qi] is a clique, ab ∈ E(G). But then, because S does not

contain a,b or any edge incident with a or b, the edge ab cannot be dominated by the S,

which is a contradiction. This completes the proof.

Lemma 115. Let G,S,Si be as defined in Lemma 114. Then, |Qi \V (Si)|= |Qi \V (S)| ≤ 1.
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Proof. If there exist two distinct vertices a,b ∈ Qi \V (Si), then S does not contain a,b

or any edge incident with a or b, which implies that S does not dominate the edge ab, a

contradiction.

Dynamic programming algorithm for MDS.

We now design a dynamic programming algorithm that computes the size of a minimum-

sized mds of a proper interval graph G. Let us first try to develop an intuitive understanding

of the algorithm. Let G be the input proper interval graph and Q = {Q1, . . . ,Qq} be the

given clique-partition of G. We process the graph from left to right. That is, at stage i ∈ [q]

, we consider the subgraph of G induced by Q≤i = Q1 ∪Q2 ∪·· ·∪Qi.

Lemmas 112−115 show that G has a minimum-sized special mds S with the following

properties.

(i) For any i ∈ [q], S contains at most three vertices from Qi (“vertices in the solution”).

(ii) For any i ∈ {2, . . . ,q}, S contains at most one edge from E(Qi−1,Qi) (“past edge,”

has one endpoint in Qi).

(iii) For any i ∈ [q−1], S contains at most one edge from E(Qi,Qi+1) (“future edge,” has

one endpoint in Qi).

(iv) For any i ∈ [q], at most one vertex of Qi is not dominated by S (“vertex to be

dominated in the future by some vertex”).

(v) For any i ∈ [q], at most one vertex of Qi does not belong to V (S) (“vertex not part of

the solution”).

We try to compute the size of such an mds S. At stage i, we guess these “special vertices”

in Qi, and for each guess find an optimal partial solution. With all these in mind, we define

a feasible tuple as follows.
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Definition 116. For i ∈ [q], a quintuple (Fi,Pi,Yi,Ni,Ti), where Fi,Pi,Yi,Ni,Ti ⊆ Qi and

|Fi|, |Pi|, |Ni|, |Ti| ≤ 1 and |Yi| ≤ 3 is said to be a feasible tuple at the ith stage if the following

conditions hold.

1. |Ni ∪Ti|≤ 1 and Ni ∩Ti = /0.

2. Fi ∩ (Ni ∪Ti) = /0.

3. If Yi ̸= /0, then Ti = /0.

4. |Qi \ (Fi ∪Pi ∪Yi ∪Ni ∪Ti)| is even.

Intuitively, think of a feasible tuple as follows. Let S =V ′∪E ′ be an optimal solution,

where V ′ ⊆V (G) and E ′ ⊆ E(G). Let S≤i =Vi ∪Ei be the set of vertices and edges in S

that are fully contained in G[Q≤i].

• Fi = (V (E(Qi,Qi+1))∩ S)∩Qi (i.e., Fi contains the endpoint in Qi of the future

edge).

• Pi =V (E(Qi−1,Qi)∩S)∩Qi (i.e., Pi contains the endpoint in Qi of the past edge).

• Yi = Qi ∩S (i.e., Yi is the set of vertices in Qi that belong to the solution).

• Ni contains the vertex in Qi that is not part of the solution, but dominated by S∩Q≤i.

• Ti contains the vertex in Qi that is not part of the solution and to be dominated in the

future, i.e., the vertex in Qi \ (N[Vi]∪V (Ei)).

Now look at the conditions in the definition of a feasible tuple. The first condition

ensures that at most one vertex from Qi is excluded from Vi ∪V (Ei) or left un-dominated

(See Lemmas 114 and 115). Note that we want Fi ⊆ V (S) and hence Fi is not “to be

dominated in the future” or “not part of solution” and thus we have the second condition.

The third condition ensures that if S≤i ⊆ S contains at least one vertex from (the clique) Qi,

then all vertices of Qi are dominated, and hence no vertex of Qi needs to be dominated
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in the future. Let H denote the clique induced by Qi \ (Fi ∪Pi ∪Yi ∪Ni ∪Ti). The fourth

condition ensures that H admits a perfect matching. Note that we need all edges of H to be

dominated by Ei, and since Ei is a matching, we need H to have a perfect matching (see

Observation 85(iii)).

We now define a valid set for a feasible tuple and a pair of compatible tuples as follows.

Definition 117. For every i∈ [q] and for every feasible tuple at ith stage, σ =(Fi,Pi,Yi,Ni,Ti),

a set S′ =V ′∪E ′, where V ′ ⊆ Q≤i and E ′ ⊆ E(G[Q≤i]) is said to be valid for σ if we the

following conditions hold.

(i) All vertices in Q≤i \ (Fi ∪Ti) are dominated by S′.

(ii) All edges of the graph G[Q≤i \ (Fi)] are dominated by S′.

(iii) Qi \V (S′) = Fi ∪Ni ∪Ti.

(iv) Qi ∩V ′ = Yi.

(v) If Pi = y, then there exists xy ∈ E ′ such that x ∈ Qi−1, and there exists no other edge

e = x′y′ ∈ E ′ such that x′ ∈ Qi−1,y′ ∈ Qi.

Definition 118. A feasible tuple at the ith stage (Fi,Pi,Yi,Ni,Ti) and a feasible tuple at

the (i−1)st stage (Fi−1,Pi−1,Yi−1,Ni−1,Ti−1) are said to be compatible if the following

conditions hold.

1. Fi−1 = /0 ⇔ Pi = /0 or if Fi−1 = {x},Pi = {y} then x and y are adjacent.

2. Ni ⊆ N[Yi−1 ∪Yi].

3. Ti−1 ⊆ N[Yi].

4. There are no edges between the vertices of (Ni−1 ∪Ti−1) and (Ni ∪Ti).

Intuitively, for a feasible tuple σ at stage i, and any valid set S′ for σ , S′ can be

derived from a tuple which is compatible with σ . Let S be a special mds for G satisfying
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Lemmas 112−115. Let S≤i and S<i be the sets of vertices and edges of S restricted to

G[Q≤i] and G[Q≤i−1], respectively. The set S≤i and S<i are valid sets for (Fi,Pi,Yi,Ni,Ti)

and (Fi−1,Pi−1,Yi−1,Ni−1,Ti−1), respectively, where each entry in the tuple is defined as

follows.

• Fi−1 = Qi−1 ∩V (e), where e ∈ S<i ∩E(Qi−1,Qi),

• Pi−1 = Qi−1 ∩V (e), where e ∈ S<i ∩E(Qi−2,Qi−1),

• Yi−1 = S<i ∩Qi−1,

• Ni−1 = N(S<i ∩V (G))∩ (Qi−1 \V (S)), and

• Ti−1 = Qi−1 \ (N[S<i ∩V (G)]∪V (S∩E(G))).

• Fi = Qi ∩V (e), where e ∈ S≤i ∩E(Qi,Qi+1),

• Pi = Qi ∩V (e), where e ∈ S≤i ∩E(Qi−1,Qi),

• Yi = S≤i ∩Qi,

• Ni = N(S≤i ∩V (G))∩ (Qi \V (S)), and

• Ti = Qi \ (N[S≤i ∩V (G)]∪V (S∩E(G))).

One can verify that all the four conditions of Definition 118 holds for tuples (Fi,Pi,Yi,Ni,

Ti) and (Fi−1,Pi−1,Yi−1,Ni−1,Ti−1). Condition 1 follows from the fact that Fi−1 and Pi are

end points of the edge in S∩E(Qi−1,Qi), if one such edge exits, otherwise those sets will

be empty. Condition 2 and 3 follows from the above definitions of Ni and Ti and the fact

that S is an mds of G. If there is an edge between Ni ∪Ti and Ni−1 ∪Ti−1, then S can not

dominate that edge. Thus condition (4) follows.
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DP Table and its computation. For every i ∈ [q] and for every feasible tuple at ith stage,

σ = (Fi,Pi,Yi,Ni,Ti), we define M[i,(Fi,Pi,Yi,Ni,Ti)] to be the size of a smallest set S =

V ′∪E ′ such that S is valid for M[i,σ ]. We refer to such a minimum-sized set S as a set that

achieves (or realizes) M[i,(Fi,Pi,Yi,Ni,Ti)]. Observe that min{M[q,(Fq,Pq,Yq,Nq,Tq)]},

where the minimum is over all feasible tuples at the qth stage with Fq = Tq = /0 gives the

size of a minimum mixed dominating set of G.

We now show that the DP table entries M[i,σ ] can be computed using the following

recurrence.

M[1,(F1,P1,Y1,N1,T1)] =


|Y1|+ |Q1\(F1∪Y1∪N1∪T1)|

2 , if P1 = /0

∞, otherwise.

For i ∈ {2,3, . . . ,q},

M[i,(Fi,Pi,Yi,Ni,Ti)] = min {M[i−1,(Fi−1,Pi−1,Yi−1,Ni−1,Ti−1)]+ |Pi|

+ |Yi|+
|Qi \ (Fi ∪Pi ∪Yi ∪Ni ∪Ti)|

2
},

where the minimum is over all feasible tuples at the (i−1)st stage (Fi−1, Pi−1, Yi−1, Ni−1,

Ti−1) that are compatible with (Fi,Pi,Yi,Ni,Ti).

Correctness of the algorithm. In what follows, we show that the above recursive

formula correctly computes M[i,(Fi,Pi,Yi,Ni,Ti)]. The proof is by induction on i. The base

case follows easily, because the least number of elements that dominate all the edges

in a clique on 2ℓ vertices is a perfect matching. Now consider the induction step. Let

σ = (Fi,Pi,Yi,Ni,Ti) be a feasible tuple at stage i.

Let σ ′ be a feasible tuple at the (i−1)st stage such that σ ′ is compatible with σ and

M[i− 1,σ ′] = minσ ′′ M[i− 1,σ ′′], where the minimum is over all feasible tuples at the
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(i− 1)st stage σ ′′ that are compatible with σ . Also, let Sσ ′ = Vσ ′ ∪Eσ ′ be the set that

achieves M[i−1,σ ′]. Define a set Z as follows. If Fi−1 = /0, then set Z = /0. Otherwise let

Fi−1 = {z}. Then by compatibility conditions, we have /0 ̸= Pi = {z′} for some z′ ∈ Qi and

zz′ ∈ E(G). In this case we set Z = {zz′}. Let Pσ be a perfect matching in the graph induced

by Qi\(Fi∪Pi∪Yi∪Ni∪Ti), which is a complete graph. We claim that Sσ = Sσ ′∪Z∪Yi∪Pσ

is a valid set for σ .

(a) All vertices in Q≤i−1 \ (Fi−1 ∪ Ti−1) are dominated by Sσ ′ . The set Z dominates

Fi−1 and Pi. Since σ and σ ′ are compatible, Ti−1 ⊆ N[Yi]. Hence Sσ dominates all

the vertices in Qi−1 as well as Pi. By condition (2) of Definition 118, we have

that Ni ⊆ N[Yi−1 ∪Yi] and by the definition Sσ ′ , Yi−1 ⊆ Sσ ′ . This implies that Sσ

dominates Ni. Also notice that the perfect matching Pσ dominates Qi \ (Fi ∪Pi ∪

Yi ∪Ni ∪Ti). Therefore, Sσ dominates all the vertices in Q≤i \ (Fi ∪Ti). Hence Sσ

satisfies condition (i) of Definition 117.

(b) All edges of G[Q≤i−1 \ (Fi−1)] are dominated by Sσ ′ . The set Z dominates all edges

incident with Fi−1. Thus, Sσ ′ ∪Z dominates all edges of G[Q≤i−1]. Now consider

an edge e ∈ E(Qi−1,Qi \Fi)∪E(Qi \Fi), i.e., e has at least one of its endpoints in

Qi \Fi. If e is incident with Pi ∪Yi, then Sσ (⊇ Z ∪Yi) dominates e. If e is incident

with Qi \ (Fi∪Pi∪Yi∪Ni∪Ti), then the perfect matching Pσ dominates e. Otherwise,

e is incident with Ni ∪ Ti. Recall that |Ni ∪Ti| ≤ 1 and Ni ∩ Ti = /0. Let u and v

be the endpoints of e, where {u} = Ni ∪Ti. If v ∈ Qi, then since v /∈ Fi, we must

have v ∈ Pi ∪Yi ∪V (Pσ ). But we already covered the cases of edges incident with

Pi ∪Yi ∪V (Pσ ). Therefore, assume that v ∈ Qi−1. Then by the condition (4) of

Definition 118, we have that v /∈ (Ni−1 ∪ Ti−1). If v ∈ Fi−1, then Z dominates e.

Otherwise v ∈ Qi−1 \ (Fi−1∪Ni−1∪Ti−1). Note that by definition of M[i−1,σ ′], we

have Qi−1 \V (Sσ ′) = (Fi−1 ∪Ni−1 ∪Ti−1), which implies that v ∈V (Sσ ′), in which

case Sσ (⊇ Sσ ′) dominates e. Hence Sσ satisfies condition (ii) of Definition 117.

(c) Notice that Qi ∩V (Sσ ) = Pi ∪Yi ∪V (Pσ ′), and therefore, Qi \V (Sσ ) = (Fi ∪Ni ∪Ti).
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Hence Sσ satisfies condition (iii) of Definition 117.

(d) Notice that Sσ ∩Qi = Yi. Hence Sσ satisfies condition (iv) of Definition 117.

(e) Notice that E(Qi−1,Qi)∩ Sσ = Z, and |Z| ≤ 1. Therefore, either Z = /0, in which

case Sσ contains no edge from E(Qi−1,Qi), or Sσ contains exactly one edge from

E(Qi−1,Qi), the unique edge in Z with its endpoints being in Fi−1 ∪Pi. Hence Sσ

satisfies condition (v) of Definition 117.

We have thus seen that Sσ is a valid set for σ . Since M[i,σ ] is the defined to be the

minimum size of such a set, we get that

M[i,σ ]≤ |Sσ |

= M[i−1,Sσ ′ ]+ |Pi|+ |Yi|+ |Pσ |

= min
σ ′′

compatible
with σ

{
M[i−1,Sσ ′′ ]+ |Pi|+ |Yi|+

|Qi \ (Fi ∪Pi ∪Yi ∪Ni ∪Ti)|
2

}
.

Now let Rσ ⊆V (G[Q≤i])∪E(G[Q≤i]) be a set that achieves M[i,σ ]. Let R̂ =VR̂ ∪ER̂,

where VR̂ = Rσ ∩ (V (G[Q≤i−1]) and ER̂ = Rσ ∩E(G[Q≤i−1])), i.e., R̂ is the intersection of

Rσ with the graph induced by Q≤i−1. There exists a feasible tuple at the (i−1)st stage,

say σ̂ , such that R̂ is a valid set for σ̂ , and σ̂ is compatible with σ . In fact, we have

σ̂ = (Fi−1,Pi−1,Yi−1,Ni−1,Ti−1), where,

• Fi−1 = Qi−1 ∩V (e), where e ∈ R̂∩E(Qi−1,Qi),

• Pi−1 = Qi−1 ∩V (e), where e ∈ R̂∩E(Qi−2,Qi−1),

• Yi−1 = R̂∩Qi−1,

• Ni−1 = N(R̂∩V (G))∩ (Qi−1 \V (S)), and

• Ti−1 = Qi−1 \ (N[R̂∩V (G)]∪V (S∩E(G))).
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Since R̂ is a valid set for σ̂ , we get that M[i−1, σ̂ ]≤ |R̂|. Since σ is compatible with

σ̂ , we have |Fi−1| = |Pi|. Now, if Pi is non-empty, then, (because Rσ is valid for σ ,) Rσ

contains the unique edge in the set E(Fi−1,Pi). Again, since the set Rσ is valid for σ , we

have the following.

(i) Rσ ∩Qi = Yi.

(ii) Qi \V (Rσ ) = (Fi ∪Ni ∪Ti). This, along with the fact that Pi ∪Yi ⊆ V (Rσ ) implies

that for every vertex v ∈ Qi \(Fi∪Pi∪Yi∪Ni∪Ti), Rσ contains an edge (from E(Qi))

that is incident with v. More specifically, Rσ \ (R̂∪Pi ∪Yi) contains an edge from

E(Qi) that is incident with v. Therefore, |Rσ \ (R̂∪Pi ∪Yi)| ≥ |Qi\(Fi∪Pi∪Yi∪Ni∪Ti)|
2 .

The above facts imply that

M[i,σ ] = |Rσ |

≥ |R̂|+ |Pi|+ |Yi|+
|Qi \ (Fi ∪Pi ∪Yi ∪Ni ∪Ti)|

2

≥ M[i−1, σ̂ ]+ |Pi|+ |Yi|+
|Qi \ (Fi ∪Pi ∪Yi ∪Ni ∪Ti)|

2

≥ min
σ ′′

compatible
with σ

{
M[i−1,σ ′′]+ |Pi|+ |Yi|+

|Qi \ (Fi ∪Pi ∪Yi ∪Ni ∪Ti)|
2

}
.

This completes the correctness proof of the algorithm.

Runtime analysis. For each fixed i ∈ [q], for a feasible tuple at the ith stage σ =

(Fi∪Pi∪Yi∪Ni∪Ti), we have |Fi ∪Pi ∪Yi ∪Ni ∪Ti| ≤ 6. Therefore, the number of feasible

tuples at the ith stage is at most |Qi|6 ≤ n6. Now since q ≤ n, there are at most n ·n6 = n7

pairs (i,σ). Thus there are at most n7 entries in the DP table. Computing each DP table

entry entails computing the minimum of a set of size at most n6, which can be done in

O(n6) time. Hence the total running time of the algorithm can be bounded by O(n13).

The above algorithm leads to Theorem 18.
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4.8 Exact exponential time algorithm for MDS

In this section, we design an exponential time algorithm that computes the size of a

minimum mixed dominating set of an n-vertex graph in time 2nnO(1). The problem is

formally defined as follows.

MINIMUM MIXED DOMINATING SET (MIN MDS)

Input: An undirected graph G.

Question: The size of a minimum mixed dominating set of G.

Let G be an n-vertex graph. In light of Observation 87, in order to find a minimum-

sized mds of G, we can restrict the search space to the collection of all special mixed

dominating sets of G. Moreover, by Observation 85(iii) if S =V ′∪E ′ is a special mixed

dominating set of G, then for any arbitrary perfect matching E ′′ of G[V (E ′)], V ′∪E ′′ is a

special mixed dominating set of size |S|. Hence, to test whether G has an mds of size ℓ, it

is enough to check the existence of a partition (V1,V2,V3) of V (G) such that |V1|+ |V2|
2 = ℓ

and V1 ∪E2 is an mds of G, where E2 is an arbitrary perfect matching in G[V2]. Thus, our

search space here is the collection of all partitions of V (G) into at most three parts, which

is upper bounded by 3n. Now by checking if each partition corresponds to a special mds of

G, (which can be done in polynomial time because a maximum matching can be found

in polynomial time), and by finding the minimum-sized one among the special mixed

dominating sets, we get the required result.

Our goal here is to design a faster exponential time algorithm. We now state the

following two lemmas that form the basis of our algorithm.

Lemma 119. Let S = V ′ ∪E ′ be a minimum-sized special mixed dominating set of a

graph G, where V ′ ⊆ V (G) and E ′ ⊆ E(G). Let G′ be the subgraph of G induced by

V (G)\V (E ′). Let V ′′ be the set of isolated vertices in G′. Then V ′′ ⊆V ′ and V ′ \V ′′ is a

minimum-sized vertex cover of G′. Moreover, for any vertex cover U of G′, U ∪V ′′∪E ′′ is

a mixed dominating set of G, where E ′′ is any perfect matching in G[V (E ′)].
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Proof. To see that V ′′ ⊆ V ′, consider w ∈ V ′′, i.e., w is an isolated vertex in G′. Since

V ′∪E ′ dominates w, and E ′ does not dominate w, we must have w ∈V ′.

Since V ′′ is the set of isolated vertices in G′, to prove that V ′ \V ′′ is a vertex cover

of G′, it is enough to prove that V ′ is a vertex cover of G′. In order to prove that V ′ is

a vertex cover of G′, consider uv ∈ E(G′). Then, note that u,v ∈ V (G′) = V (G)\V (E ′).

Then, since S =V ′∪E ′ dominates the edge uv (and since E ′ does not dominate uv), either

u ∈V ′ or v ∈V ′. This implies that V ′ and hence V ′ \V ′′ is a vertex cover of G′. Now we

need to prove that V ′ \V ′′ is indeed a minimum-sized vertex cover of G′.

Claim 120. Let Ṽ be a vertex cover of G′. Then S̃ = Ṽ ∪V ′′ ∪E ′ is a special mixed

dominating set of G.

Proof. The set E ′ dominates V (E ′) and all edges incident on V (E ′). Since Ṽ is a vertex

cover of G′, Ṽ dominates all edges of G with both their endpoints in V (G)\V (E ′). That is

E ′∪Ṽ dominates E(G) and V (E ′). If v ∈V (G)\V (E ′) is isolated in G′, then v ∈V ′′, and

hence S̃ dominates v. Otherwise, there is an edge, say uv ∈ E(G′), and then either u ∈ Ṽ or

v ∈ Ṽ , and in either case S dominates the vertex v.

The above claim along with the assumption that S is a minimum-sized special mds

implies that V ′ \V ′′ is a minimum-sized vertex cover of G′. By the above claim we also

know that U ∪V ′′∪E ′ is a special mds of G, where U is a vertex cover of G′. Thus, for any

perfect matching E ′′ of G[V (E ′)], by Observation 85(iii), U ∪V ′′∪E ′′ is a special mds of

G for any perfect matching E ′′ of G.

Lemma 121. There is an algorithm that, given an n-vertex graph G, runs in time 2nnO(1)

and outputs a minimum vertex cover of G[U ] for every U ⊆V (G). That is, the algorithm

outputs 2n minimum vertex covers, one for each G[U ], where U ⊆V (G).

Proof. We design a simple dynamic programming algorithm, where we have a DP table

entry for every U ⊆V (G). That is, the DP table entry M[U ] stores the size of a minimum
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vertex cover of G[U]. Notice that for the graph G[U ] and a non-isolated vertex v in G[U ],

any vertex cover of G contains either v or NG[U ](v). Therefore we can design a recursive

formula for computing M[U ] as follows.

M[U ] =


min{M[U \{v}]+1,M[U \NG(v)]+ |NG(v)∩U |}, if dG[U ](v)≥ 1

M[U \{v}], otherwise

Here v ∈ U is an arbitrary vertex in U . The base case is M[ /0] = 0. The above recursive

formula can be turned into a DP algorithm over the subsets of the vertices of input

graph. Since the size of DP table is 2n and computation of each entry using the above

recursive formula requires only polynomial time, the algorithm will have the desired

running time.

We are now ready to describe our algorithm for MIN MDS.

Algorithm for MIN MDS

Step 1. Run the algorithm in Lemma 121 on G and let M[X ] be the value returned by

the algorithm for X ⊆V (G).

Step 2. For each X ⊆V (G), do the following.

• Let GX = G−X , and let IX be the set of isolated vertices in GX .

• If G[X ] has a perfect matching, then set val(X) := |X |/2+ |IX |+M[X ];

otherwise, set val(X) := ∞.

Step 3. Return minX⊆V (G) val(X).

The correctness of the algorithm follows from Lemma 119. As for the running time of

the algorithm, note that each of step 1 and step 2 takes time 2nnO(1). Hence our algorithm

runs in time 2nnO(1). We thus have the following result.
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Theorem 19. MIN MDS on a n-vertex graph can be solved in time 2nnO(1).

4.9 Lower Bounds

Now we prove a kernel lower bound for MDS. That is, we show that unless coNP

⊆ NP/poly, MDS does not admit a polynomial kernel when parameterized by k. We

do this by a polynomial parameter transformation from an appropriate parameterization of

RED BLUE DOMINATING SET (RBDS).

Definition 122 ([15]). Let P and Q be two parameterized problems. A polynomial para-

meter transformation (PPT, for short) from P to Q is a polynomial time algorithm, which

given an instance, say (x,k) of P, produces an equivalent instance (y,k′) of Q such that

k′ ≤ p(k) for some polynomial p(·).

Proposition 123 ([15]). If there is a PPT from P to Q and P has no polynomial kernel,

then Q has no polynomial kernel.

In the RBDS problem, the input is a bipartite graph G with bipartition R⊎B and a

positive integer ℓ, and the question is whether there exists a set X ⊆ R of size at most ℓ,

which dominates the set B, i.e., N(X) = B. (Such a set X is called a red-blue dominating

set (rbds, for short) of G). This problem when parameterized by |R| is the same as SMALL

UNIVERSE HITTING SET (see [32]) and thus from [32] we get the following result.

Lemma 124 ([32]). RBDS parameterized by |R| and ℓ has no polynomial kernel unless

coNP ⊆ NP/poly.

Theorem 20. MDS parameterized by the solution size has no polynomial kernel, unless

coNP ⊆ NP/poly.

Proof. The proof is by a polynomial parameter transformation from RBDS parameterized

by |R| and ℓ. Given an instance (G = (R⊎B,E), ℓ) of RBDS, we construct an equivalent
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instance (G′, |R|+ ℓ+1) of MDS. If B ⊆V (G) contains an isolated vertex, then note that

G has no rbds (of any size), so take G′ to be a |R|+ ℓ+2-sized matching. Otherwise, if B

has no isolated vertices, then proceed as follows (see Fig. 4.2).

1. Add all vertices and all edges of G to G′, i.e., V (G′)⊇V (G) and E(G′)⊇ E(G).

2. Corresponding to every vertex vi ∈ R, add vertices xi and yi, and add edges vixi and

xiyi in G′.

3. Add a vertex z and add edges zyi, for all yi.

4. Add |R|+ ℓ+2 additional neighbors to z.

We claim that G has a rbds of size at most ℓ if and only if G′ has a mds of size at most

|R|+ ℓ+1. Let X ⊆ R be a rbds of G of size at most ℓ. Then X ∪{xivi : i = 1,2, . . . , |R|}∪

{z} is a mds of size at most |R|+ ℓ+1.

Conversely, assume that G does not have any rbds of size at most ℓ. Let S be a minimum

sized mds of G′. Let S′ be the set of all elements x ∈ S such that x dominates some

element(s) of B. Let S′ = S1 ⊎S2 ⊎S3, where S1 = S′∩B, S2 = S′∩E(G′) and S3 = S′∩R.

Construct S′′ ⊆ R as follows: (i) for every v ∈ S1, add a neighbor of v to S′′, (ii) for every

edge ww′ ∈ S2, where w ∈ R and w′ ∈ B, add w to S′′, and (iii) add all vertices of S3 to

S′′. Clearly, |S′′| ≤ |S′| and S′′ is a rbds of G. By assumption, |S′′|> ℓ which implies that

|S′|> ℓ.
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Thus, S′ is a subset of the minimum sized mds S and |S′| > ℓ. Assume that z ∈ S,

otherwise |S| ≥ |R|+ ℓ+2. Note that neither the elements of S′ nor z can dominate any of

the |R| edges xiyi. And at least |R| elements are required to dominate all of them. Therefore,

|S| ≥ |{z}|+ |{the |R| elements that dominate edges xiyi}|+ |S′|

> 1+ |R|+ ℓ.

That is, G′ does not have a mds of size at most |R|+ ℓ+1. Hence, the theorem follows

from the given reduction, Proposition 123 and Lemma 124.

Now we present an improved lower bound for MDS when parameterized by the

treewidth of the input graph. We can reduce an instance of SET COVER problem (U,CF, ℓ)

to an equivalent instance of RBDS, (R⊎B,E, ℓ), where R = CF and B = U . Edge set

E consists of edges between F ∈ R and x ∈ B if and only if x ∈ F . We now apply the

reduction given in the proof of Theorem 20 to an instance of RBDS, (R⊎B,E, |R|+ℓ) to

get an equivalent instance of MDS, (G, |R|+ ℓ+1). Notice that graph G has treewidth at

most 1+ |B|= 1+ |U |. The Set Cover Conjecture [30] states that SET COVER cannot be

solved in O⋆((2− ε)|U |) time for any ε > 0. We thus have the following theorem.

Theorem 21. Unless the Set Cover Conjecture fails, MDS does not admit an algorithm

with running time O⋆((2− ε)tw(G)).

4.10 Conclusion

While we studied the complexity of MIXED DOMINATING SET in details, the complexity

status of MDS on interval graphs is still unknown, and is worth investigating. Another

open question is to improve the size of the kernel for MDS on Kd,d -free graphs or prove a

matching lower bound.
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Chapter 5

Dynamic Parameterization

In this chapter, we study the parameterized complexity of various classical graph-theoretic

problems in the dynamic framework setting where the input graph is being updated by a

sequence of edge insertions and deletions. The goal is to efficiently maintain a solution

under these changes. In the context of parameterized algorithms, we study our problem

with respect to the two natural parameters, k (the symmetric difference of the edge sets of

the two graphs on n vertices) and r (the symmetric difference of the two solutions). We

define the Dynamic Π-Deletion problem which is the dynamic variant of the Π-Deletion

problem and then show NP-hardness, fixed-parameter tractability and kernelization results.

For specific cases of Dynamic Π-Deletion problems such as DYNAMIC VERTEX COVER

and DYNAMIC FEEDBACK VERTEX SET, we describe improved FPTalgorithms and give

linear kernels. Specifically, we show that DYNAMIC VERTEX COVER admits algorithms

with running times 1.1740knO(1) (polynomial space) and 1.1277knO(1) (exponential space).

Then, we show that DYNAMIC FEEDBACK VERTEX SET admits a randomized algorithm

with 1.667knO(1) running time. Finally, we consider DYNAMIC CONNECTED VERTEX

COVER, DYNAMIC DOMINATING SET and DYNAMIC CONNECTED DOMINATING SET

and describe algorithms with 2knO(1) running time improving over the known running time

bounds for these problems. Additionally, for DYNAMIC DOMINATING SET and DYNAMIC
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CONNECTED DOMINATING SET, we show that this is the optimal running time (up to

polynomial factors) assuming the Set Cover Conjecture.

5.1 Introduction

Graphs are discrete mathematical structures that represent pairwise relations between

objects. Due to their tremendous power to model real world systems, many problems of

practical interest can be represented as problems on graphs. Consequently, the design

of algorithms on graphs is of major importance in computer science. Applications that

employ graph algorithms typically involve large graphs that change over time. A natural

goal in this setting is to design algorithms that efficiently maintain a solution under these

updates. That is, given a graph G and a solution S, one searches for a solution S′ that is as

close as possible to S in a graph G′ that can be obtained from G by making at most k edits.

In this work, we only consider instances where the graphs under consideration have the

same vertex set. Formally, a dynamic version of a graph-theoretic problem is a quintuple

(G,G′,S,k,r) where G and G′ are graphs on the same vertex set (of size n). Further, the

size of the symmetric difference of the edge sets of G and G′ is upper bounded by k and S

is a solution (not necessarily optimal) on G. The task is to determine whether there is a

solution S′ (also not necessarily optimal) on G′ such that the symmetric difference of S

and S′ is at most r.

Dynamic problems have been recently studied in the parameterized complexity fra-

mework [2, 33, 49]. Two relevant parameters for dynamic problem instances are the edit

parameter k and the distance parameter r. Parameterized complexity results for the dyna-

mic versions of various problems with these parameterizations are known [33] and [2]. In

this work, we revisit several classical parameterized problems in the dynamic setting. Table

5.1 summarizes our results along with the running time bounds known for these problems.

For a fixed collection of graphs Π, given a graph G and an integer l, the Π-DELETION
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Dynamic Problem Parameter k Parameter r
VERTEX COVER 1.0822k 1.2738r

O(k) kernel O(r2) kernel
CONNECTED VERTEX 4k [2], 2k ‡ W[2]-hard [2]
COVER No kO(1) size kernel
FEEDBACK VERTEX SET 1.6667k (randomized) 3.592r, 3r (randomized)

O(k) kernel O(r2) kernel
CONNECTED FEEDBACK 2O(k) W[2]-hard
VERTEX SET No kO(1) size kernel
DOMINATING SET 2O(k2) [33], 2k ‡ W[2]-hard [33]

No kO(1) size kernel
CONNECTED DOMINATING 4k [2], 2k ‡ W[2]-hard [2]
SET No kO(1) size kernel

Table 5.1: Summary of known and new results for different dynamic parameterized
problems. All running time bounds are specified by ignoring polynomial factors. ‡ denotes
that the running time is optimal under the Set Cover Conjecture.

problem is to determine if G has a set S ⊆V (G) of vertices with |S|≤ l such that G−S ∈ Π.

Π-DELETION is an abstraction of various problems in the graph theoretic framework.

Examples include VERTEX COVER and FEEDBACK VERTEX SET. Due to a generic

result by Lewis and Yannakakis [69], it is known that finding a minimum solution to Π-

DELETION is NP-hard in general for most choices of Π. Hence, it has been extensively

studied in various algorithmic realms. We define the dynamic version of this problem

referred to as DYNAMIC Π-DELETION and show NP-hardness, fixed-parameter tractability

and kernelization results. Then, for the specific cases of Π-DELETION such as DYNAMIC

VERTEX COVER and DYNAMIC FEEDBACK VERTEX SET, we describe improved FPT

algorithms with respect to k as the parameter and give linear kernels. Then, for the same

parameterization, we describe improved algorithms for DYNAMIC CONNECTED VERTEX

COVER, DYNAMIC DOMINATING SET and DYNAMIC CONNECTED DOMINATING SET.

For DYNAMIC DOMINATING SET and DYNAMIC CONNECTED DOMINATING SET, we

show that this is the optimal running time (up to polynomial factors) assuming the Set

Cover Conjecture [24].
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5.2 Preliminaries

All graphs considered in this chapter are finite, undirected, unweighted and simple. For

a graph G, V (G) and E(G) denote the set of vertices and edges respectively. The size of

symmetric difference of two subsets S,S′ ⊆V (G), denoted by dv(S,S′), is defined as the

size of the set (S\S′)∪ (S′ \S). For two graphs G and G′ on the same vertex set, de(G,G′)

denotes the size of the symmetric difference of E(G) and E(G′).

5.3 Complexity of Dynamic Π-Deletion

A graph property Π is a collection of graphs. Π is said to be (induced) hereditary if for any

graph in Π, all of its (induced) subgraphs are in Π too. The membership testing problem

for Π is the task of determining if a graph is in Π or not. Let In denote the graph on n

vertices with no edges and Kn denote the complete graph on n vertices. For most natural

choices of Π, the Π-DELETION problem is NP-hard [69] and interesting dichotomy results

are known in the parameterized complexity framework [16, 60]. We formally define its

dynamic variant referred to as DYNAMIC Π-DELETION as follows.

Dynamic Π-Deletion Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a set S ⊆V (G) such that G−S ∈ Π and

integers k,r with de(G,G′)≤ k.

Question: Does there exist S′ ⊆V (G′) with dv(S,S′)≤ r such that G′−S′ ∈ Π?

Observe that if Π-DELETION is in NP then so is DYNAMIC Π-DELETION. We are now

ready to state our first result.

Theorem 22. Let Π be a graph property that includes all independent sets or all cliques.

Then, Π-DELETION reduces to DYNAMIC Π-DELETION in polynomial time.

Proof. Let (H, l) be an instance of Π-DELETION where H is a graph on n vertices. We
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reduce (H, l) to the instance (G,G′ = H,S = /0,k,r = l) of DYNAMIC Π-DELETION as

follows. If Π includes all independent sets, then G = In and k = |E(H)|. Otherwise, G = Kn

and k =
(|V (H)|

2

)
−|E(H)|. In both the cases, by the property of Π, G−S ∈ Π. Also, the

vertex sets of H, G and G′ are the same. Then, for a set S′ ⊆V (H), we have H −S′ ∈ Π if

and only if G′−S′ ∈ Π such that dv(S,S′) = |S′|.

As a consequence of Theorem 22, we have the following hardness result.

Corollary 125. The following results hold for a property Π that includes all independent

sets or all cliques.

• If Π-DELETION is NP-hard, then DYNAMIC Π-DELETION is NP-hard.

• If Π-DELETION parameterized by solution size is fixed-parameter intractable then

DYNAMIC Π-DELETION parameterized by r is fixed-parameter intractable.

• If Π-DELETION is NP-complete and does not admit a polynomial kernel when

parameterized by solution size then DYNAMIC Π-DELETION parameterized by r

does not admit a polynomial kernel.

Proof. The NP-hardness and the fixed-parameter intractability results follow straightaway

from Theorem 22. If Π-DELETION is NP-complete, then DYNAMIC Π-DELETION reduces

to Π-DELETION in polynomial time. Therefore, if DYNAMIC Π-DELETION parameterized

by r admits a polynomial kernel, such a kernel can be transformed to a polynomial kernel

for Π-DELETION using this reduction and the reduction described in Theorem 22.Thus,

the claimed kernelization hardness follows too.

The following lemma shows that for many choices of Π, to solve DYNAMIC Π-DELETION,

it suffices to look for a solution S′ that contains S.

Lemma 126. Let Π be an induced hereditary property. If S′ is a solution to the DYNAMIC

Π-DELETION instance (G,G′,S,k,r) with dv(S,S′) = r′, then there is another solution S′′

with dv(S,S′′)≤ r′ and S ⊆ S′′.
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Proof. We have dv(S,S′) = |S\S′|+|S′ \S|= r′. Let S′′ be the set S∪S′. Then, dv(S,S′′) =

|S\S′′|+|S′′ \S|= |S′′ \S|= |S′ \S|≤ r′. Now, as G′−S′ ∈ Π and Π is hereditary, it follows

that G′−S′′ ∈ Π as well.

Now, we proceed to show certain tractable cases of DYNAMIC Π-DELETION.

Theorem 23. Let Π be an induced hereditary property whose membership testing problem

is polynomial-time solvable. Then, DYNAMIC Π-DELETION reduces to Π-DELETION in

polynomial time.

Proof. Consider an instance (G,G′,S,k,r) of DYNAMIC Π-DELETION. The task is to

determine if G′ has a solution S′ with dv(S,S′)≤ r. If G′−S ∈ Π, then S is the required

solution S′. Otherwise, from Lemma 126, assume that the required S′ contains S. Let H

denote the graph G′−S. Then, H − (S′ \S) ∈ Π. Therefore, for a set T ⊆V (H), we have

H −T ∈ Π if and only if G′− (S∪T ) ∈ Π such that dv(S,S′) = |T |.

Now, the following claim holds.

Corollary 127. Let Π be a hereditary property whose membership testing problem is

polynomial-time solvable. If Π-DELETION is FPT with respect to the solution size l as

the parameter, then DYNAMIC Π-DELETION is FPT with respect to both r and k as

parameters.

Proof. Consider an instance (G,G′,S,k,r) of DYNAMIC Π-DELETION. Suppose Π-DELE

TION admits an algorithm with O( f (l)) running time. Then, from Theorem 23, there is

an algorithm A solving (G,G′,S,k,r) in O∗( f (r)) time. Thus, the problem is FPT when

parameterized by r. Let Ẽ denote the set E(G′)\E(G). Let T be a set of vertices of G′ of

size at most k that contains at least one endpoint of each edge in Ẽ. As Π is hereditary

and G−S ∈ Π, it follows that G′− (S∪T ) ∈ Π. Now, if r ≥ k, then S∪T is the required

solution S′. Otherwise, the algorithm A solving DYNAMIC Π-DELETION runs in O∗( f (k))

time. Hence, the problem is FPT when parameterized by k.
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Finally, we move on to kernelization results for the problem.

Corollary 128. Let Π be a hereditary property whose membership testing problem is

polynomial-time solvable. Suppose Π-DELETION parameterized by the solution size l

admits a kernel with p(l) vertices and q(l) edges. Then the following results hold.

• If Π includes all independent sets, then DYNAMIC Π-DELETION admits a kernel

with 2p(r)≤ 2p(k) vertices and q(r)≤ q(k) edges.

• If Π includes all cliques, then DYNAMIC Π-DELETION admits a kernel with 2p(r)≤

2p(k) vertices and q(r)+ p(r)2 ≤ q(k)+ p(k)2 edges.

Proof. Consider an instance (G,G′,S,k,r) of DYNAMIC Π-DELETION. If G′− S ∈ Π

or r ≥ k, the output of the kernelization algorithm is (K1, /0,K1,0,0) (with constant size)

which is a trivial YES instance of DYNAMIC Π-DELETION. Suppose G′−S ̸∈ Π and r < k.

Let (H ′,r′) be the kernelized instance of (H,r), the instance of Π-DELETION obtained

from Theorem 23. Then, (H ′′,H ′, /0, |E(H ′)|,r′) is the kernelized instance of (G,G′,S,k,r)

where H ′′ = I|V (H ′)| if Π includes all independent sets and H ′′ = K|V (H ′)| if Π includes all

cliques. Hence, the claimed bounds on the kernel size follow.

Remark A property Π is called interesting if the number of graphs in Π and the number

of graphs not in Π are unbounded. Any induced-hereditary property that is interesting

either contains all independent sets or contains all cliques. Thus, all the above results hold

for such properties. In particular, the results of this section hold for the dynamic variants

of classical problems like VERTEX COVER, FEEDBACK VERTEX SET and ODD CYCLE

TRANSVERSAL.
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5.4 Dynamic Vertex Cover

A vertex cover is a set of vertices that has at least one endpoint from every edge and

DYNAMIC VERTEX COVER is formally defined as follows.

DYNAMIC VERTEX COVER Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a vertex cover S of G and integers k,r such

that de(G,G′)≤ k.

Question: Does there exist a vertex cover S′ of G′ such that dv(S,S′)≤ r?

Clearly, DYNAMIC VERTEX COVER is DYNAMIC Π-DELETION where Π is the set of all

independent sets. As VERTEX COVER, the problem of determining if a graph has a vertex

cover of size l, is NP-hard, its dynamic version is NP-hard too by Theorem 22. In [2], the

authors claim that DYNAMIC VERTEX COVER is W[1]-hard with respect to k+ r as the

parameter by a reduction from INDEPENDENT SET parameterized by the solution size.

However, the reduction is incorrect and the fixed-parameter intractability does not follow.

VERTEX COVER parameterized by the solution size l, the problem admits a kernel with at

most 2l vertices [22] and the current best FPT algorithm runs in O∗(1.2738l) time [21].

By Theorem 23 and Corollaries 127 and 128, these results extend to DYNAMIC VERTEX

COVER as well. In particular, the following results hold.

• DYNAMIC VERTEX COVER can be solved in O∗(1.2738r) time and in O∗(1.2738k)

time.

• DYNAMIC VERTEX COVER admits a kernel with at most 4r vertices and O(r2)

edges.

• DYNAMIC VERTEX COVER admits a kernel with at most 4k vertices and O(k2)

edges.

We now improve over these results by describing a linear edge kernel and a faster FPT

algorithm with respect to k as the parameter. First, we describe the linear kernelization.
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Theorem 24. DYNAMIC VERTEX COVER admits a kernel with at most 2k vertices and k

edges.

Proof. Consider an instance (G,G′,S,k,r) of DYNAMIC VERTEX COVER. By Lemma

126, it suffices to search for a solution S′ that contains S. As de(G,G′) ≤ k, we have

|E(G′)\E(G)|≤ k. Also, edges in E(G)\E(G′) do not affect the solution. Let H be the

graph with V (H) =V (E(G′)\E(G)) and E(H) = E(G′)\E(G). Then, H has at most 2k

vertices and k edges. Further, we have that (G,G′,S,k,r) is a YES instance of DYNAMIC

VERTEX COVER if and only if (H,r) is a YES instance of VERTEX COVER. Then, from

Corollary 128, it suffices to output a linear kernel of the instance (H,r). We apply the

following standard preprocessing on H.

Reduction Rule 5.4.1. Delete isolated vertices.

Reduction Rule 5.4.2. If there is a vertex v of degree 1, add its neighbour u into the

solution and decrease r by 1. Delete u and v from the graph.

Let H ′ denote the resultant graph on which these rules are no longer applicable and r′

denote the budget. As the rules are safe (i.e., they preserve minimum vertex covers), we

have the following equivalence: (H,r) is a YES instance of VERTEX COVER if and only

if (H ′,r′) is a YES instance of VERTEX COVER. Then, as the minimum degree of H ′

is at least 2, we have that 2|E(H ′)|≥ 2|V (H ′)|. As |E(H ′)|≤ k, it follows that |V (H ′)|≤

k. Thus, from Corollary 128 the kernelized instance corresponding to (G,G′,S,k,r) is

(I|V (H ′)|,H ′, /0,k = |E(H ′)|,r′).

Next, we describe an FPT algorithm (faster than O∗(1.2738k)) for the problem paramete-

rized by k.

Theorem 25. DYNAMIC VERTEX COVER can be solved in O∗(1.1740k) time.

Proof. Consider an instance (G,G′,S,k,r) of DYNAMIC VERTEX COVER. By Lemma

126, it suffices to search for a solution S′ that contains S. Let H be the graph with V (H) =
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V (E(G′)\E(G)) and E(H) = E(G′)\E(G). Then, H has at most 2k vertices and k edges

and it suffices to solve the instance (H,r) of VERTEX COVER. We first apply Reduction

Rules 5.4.1 and 5.4.2 on H as long as they are applicable. Then, |V (H)|≤ |E(H)≤ k. It is

known that a minimum vertex cover of a graph on n vertices can be found in O∗(1.2002n)

time [88]. Thus, an O∗(1.2002k) algorithm follows. We will describe a faster branching

algorithm where the measure used to bound the number of nodes of the search tree is the

number of edges in H and the leaves of the tree are instances corresponding to the empty

graph or a graph with maximum degree at most 2. To this end, we apply the following

additional rule exhaustively.

Reduction Rule 5.4.3. If there exists a triangle on vertices u,v,w such that deg(u) = 2,

then include v,w into the solution and delete u,v and w from the graph.

We eliminate all other triangles in the graph by applying following branching strategy.

Branching Rule 5.4.1. Let u,v,w be vertices of a triangle.

• Branch 1: Include vertex u into the solution and delete it from the graph.

• Branch 2: Include N(u) into the solution and delete N[u] from the graph.

As the degree of a vertex in a triangle is at least 3, the measure drops by at least 3 in the

first branch and by at least 6 in the second. When this rule is no longer applicable, we have

a triangle-free graph. Now, we state our final branching rule.

Branching Rule 5.4.2. Let u be a vertex of degree at least three.

• Branch 1: Include vertex u into the solution and delete it from the graph.

• Branch 2: Include N(u) into the solution and delete N[u] from the graph.

In the first branch, the measure drops by at least 3. As the graph is triangle-free, no two

neighbours of u are adjacent. Further, all vertices have degree at least 2. Therefore, the
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measure drops by at least 2|N(u)|≥ 6 in the second branch. As no new edges are added

to the graph in any rule, the measure never increases after the application of a reduction

or branching rule. Further, all reduction rules can be applied in polynomial time. At each

branching, we only spend polynomial time to find a vertex to branch on. When k is zero

or the maximum degree of the graph is at most 2, finding a minimum vertex cover is

polynomial-time solvable. The initial measure is upper bounded k and the worst case

branching vector is (3,6). This leads to the recurrence T (k)≤ T (k−3)+T (k−6) whose

solution is 1.1740k. Thus, the algorithm runs in O∗(1.1740k) time.

The treewidth of a graph is a parameter that quantifies the closeness of the graph to a tree

(see [25] for the precise definition). If the treewidth of the input graph is upper bounded

by tw, then a minimum vertex cover can be obtained in O∗(2tw) time [25]. The following

result relates the treewidth of a graph to the number of its vertices and edges.

Lemma 129. [62] If G is a graph on n vertices and m edges, then the treewidth of G is

upper bounded by m
5.769 +O(logn). Moreover, a tree decomposition of the corresponding

width can be constructed in polynomial time.

Since the graph H on which a minimum vertex cover is desired has at most k edges and

k vertices, its treewidth tw is bounded by k
5.769 +O(logk). Then, we have the following

result.

Theorem 26. DYNAMIC VERTEX COVER can be solved in O∗(1.1277k) time.

Though this algorithm is faster than the branching algorithm described earlier, it requires

exponential space while the algorithm in Theorem 25 requires only polynomial space.

5.5 Dynamic Connected Vertex Cover

A connected vertex cover of a graph is a vertex cover that induces a connected subgraph

and the parameterized DYNAMIC CONNECTED VERTEX COVER is defined as follows.
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DYNAMIC CONNECTED VERTEX COVER Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a connected vertex cover S of G and

integers k,r such that de(G,G′)≤ k.

Question: Does there exist a connected vertex cover S′ of G′ such that dv(S,S′)≤ r?

The problem is NP-complete, W[2]-hard when parameterized by r and admits an O∗(4k)

algorithm by a reduction to finding a minimum weight Steiner tree [2]. We describe an

O∗(2k) algorithm by a reduction to finding a group Steiner tree. Given a graph G, an

integer p and a family F of subsets of V (G), the GROUP STEINER TREE problem is

the task of determining whether G contains a tree on at most p vertices that contains at

least one vertex from each set in F . This problem is known to admit an algorithm with

O∗(2|F |) running time [81]. First, we show a lemma on the property of a solution to an

instance of DYNAMIC CONNECTED VERTEX COVER analogous to Lemma 126.

Lemma 130. Consider an instance (G,G′,S,k,r) of DYNAMIC CONNECTED VERTEX

COVER. If S′ is a connected vertex cover of G′ with dv(S,S′) = r′, then S′ ∪ S is also a

connected vertex cover of G′ with dv(S,S′∪S)≤ r′.

Proof. Assume G′ is connected, otherwise, it is a NO instance. As a set that contains

a vertex cover is also a vertex cover, it follows that T = S′ ∪ S is a vertex cover of G′.

As S′ is a vertex cover of G′, S \ S′ is an independent set in G′. As G′ is connected,

every vertex in S \ S′ is adjacent to some vertex in S′. Then, as G′[S′] is connected and

S′ ⊆ T , it follows that G′[T ] is connected too. Further, as T \ S = S′ \ S it follows that

dv(S,T ) = |T \S|+|S\T |= |T \S|= |S′ \S|≤ r′.

Now, we prove the main result of this section.

Theorem 27. DYNAMIC CONNECTED VERTEX COVER admits an FPT algorithm that

runs in O∗(2k) time.

Proof. Consider an instance (G,G′,S,k,r) of DYNAMIC CONNECTED VERTEX COVER.
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By Lemma 130, we can assume that the required solution S′ contains S. Observe that

G′[S] is not necessarily connected and the edges in G′ that are not covered by S are those

edges in E ′ = (E(G′)\E(G))∩E(G′−S). Now, we show a reduction to finding a group

Steiner tree. Contract each connected component of G′[S] to a single vertex. Let H denote

the resulting graph and let X = V (H) \V (G′). Construct an instance (H, |X |+r,F ) of

GROUP STEINER TREE where F = {{u,v} | uv ∈ E ′}∪{{x} | x ∈ X}. We claim that

(G,G′,S,k,r) is a YES instance of DYNAMIC CONNECTED VERTEX COVER if and only

if (H, |X |+r,F ) is a YES instance of GROUP STEINER TREE.

Suppose there is a connected vertex cover S′ of G′ such that dv(S,S′)≤ r and S ⊆ S′.

As G′[S′] is connected, it follows that H[X ∪ (S′∩V (G′−S))] is also connected. Moreover,

as |S′∩V (G′− S)|≤ r, it follows that the spanning tree of H[X ∪ (S′∩V (G′− S))] is of

size at most |X |+r. Hence (H, |X |+r,F ) is a YES instance of GROUP STEINER TREE.

Conversely, suppose (H, |X |+r,F ) is a YES instance of GROUP STEINER TREE. Let T

denote the solution tree of H. Then, X ⊆ V (T ) and |V (T )\X |= |V (T )∩V (G′−S)|≤ r.

Define S′ = S∪ (V (T )∩V (G′− S)). The size of S′ is at most |S|+r. Further, G′[S′] is

connected as S′ is obtained from the vertices of T . Also, for every edge in E ′, T contains

at least one of its endpoints. Thus, S′ is the desired connected vertex cover of G′. As the

sum of the number of connected components of G′[S] and the size of E ′ is upper bounded

by k+1, it follows that |F |≤ k+1. Thus, the GROUP STEINER TREE algorithm of [81]

runs in O∗(2k) time.

5.6 Dynamic Feedback Vertex Set

A feedback vertex set is a set of vertices whose deletion results in an acyclic graph and

DYNAMIC FEEDBACK VERTEX SET is defined as follows.
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DYNAMIC FEEDBACK VERTEX SET Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a feedback vertex set X of G and integers

k,r such that de(G,G′)≤ k.

Question: Does there exist a feedback vertex set X ′ of G′ such that dv(X ,X ′)≤ r?

Clearly, DYNAMIC FEEDBACK VERTEX SET is DYNAMIC Π-DELETION where Π is the

set of all forests. As FEEDBACK VERTEX SET, the problem of determining if a graph on n

vertices has a feedback vertex set of at most l vertices, is NP-hard, its dynamic variant is

NP-hard too by Theorem 22. FEEDBACK VERTEX SET is known to admit an O∗(3.592l)

algorithm [63] and a kernel with O(l2) vertices [86]. Also, a randomized algorithm that

solves the problem in O∗(3l) time is known from [28]. By Theorem 23 and Corollaries

127 and 128, all these results extend to DYNAMIC FEEDBACK VERTEX SET. In particular,

the following results hold.

• DYNAMIC FEEDBACK VERTEX SET can be solved in O∗(3.592r) time and in

O∗(3.592k) time.

• DYNAMIC FEEDBACK VERTEX SET admits randomized algorithms with O∗(3r)

and O∗(3k) running times.

• DYNAMIC FEEDBACK VERTEX SET admits an O(r2) kernel and an O(k2) kernel.

We now improve these bounds by describing a linear kernel and a faster randomized FPT

algorithm with respect to k as the parameter. First, we describe the linear kernelization.

Theorem 28. DYNAMIC FEEDBACK VERTEX SET admits a kernel with at most 4k vertices

and 3k edges.

Proof. Consider an instance (G,G′,X ,k,r) of DYNAMIC FEEDBACK VERTEX SET. Ob-

serve that if G′ is obtained from G by only deleting edges, then X is feedback vertex

set of G′ too. Also, edges in E(G′) \E(G) that have an endpoint in X do not affect the

solution. Moreover, from Lemma 126, it suffices to search for a feedback vertex set of G′

204



that contains X . Let H be the subgraph of G′ induced on V (G′) \X . From Theorem 23,

we have that (G,G′,X ,k,r) is a YES instance of DYNAMIC FEEDBACK VERTEX SET if

and only if (H,r) is a YES instance of FEEDBACK VERTEX SET. From Corollary 128, it

suffices to output a linear kernel of the instance (H,r).

We primarily exploit the fact that H is obtained by adding at most k edges to a forest.

This implies that |E(H)|≤ |V (H)|+k − 1. Let Ẽ be the set of edges in G′ whose both

endpoints are in V (G)\X and U =V (Ẽ). We apply the following reduction rule to G−X .

Note that G−X is a subgraph of H as E(H) = E(G−X)∪ Ẽ.

Reduction Rule 5.6.1. If there is a vertex v of degree at most 1 such that v /∈U, then delete

v from the graph.

This rule is safe as v has degree at most 1 in H too and no minimal feedback vertex set of

H contains it. As the number of vertices with degree at least 3 is upper bounded by the

number of leaves in a forest, we have the following claim on the resulting graph G′′ on

which this rule is not applicable.

Observation 131. The number of vertices of degree at least 3 is at most 2k.

Consider the graph H ′′ obtained from G′′ by adding Ẽ. We once again delete vertices of

degree at most 1 (if any) and then apply following reduction rule exhaustively.

Reduction Rule 5.6.2. If there is a vertex v of degree 2, then delete v and add an edge

between its two neighbours.

Once again this rule is safe as any minimal feedback vertex set of H ′′ that contains v can

be modified into another minimal feedback vertex set of at least the same size that does

not contain v. Note that the application of Reduction Rules 5.6.1 and 5.6.2 ensure that

|E(H ′′)|≤ |V (H ′′)|+k−1 is satisfied. The following properties now hold for H ′′ on which

neither of the above reduction rules are applicable.

Observation 132. The minimum degree of H ′′ is at least 3 and |E(H ′′)|≤ |V (H ′′)|+k−1.

205



This implies that 1.5|V (H ′′)|≤ |E(H ′′)|≤ |V (H ′′)|+k − 1 and hence |V (H ′′)|≤ 2k − 2,

|E(H ′′)|≤ 3k − 3. As the reductions rules are safe (i.e. they preserve minimum feed-

back vertex sets), we have the following equivalence: (H,r) is a YES instance of FEED-

BACK VERTEX SET if and only if (H ′′,r) is a YES instance of FEEDBACK VERTEX

SET. Thus, from Corollary 128, the kernelized instance corresponding to (G,G′,S,k,r) is

(I|V (H ′′)|,H ′′, /0,k = |E(H ′′)|,r).

Next, we proceed to describe an improved FPT algorithm for the problem. If the treewidth

of the input graph is upper bounded by tw, then a randomized O∗(3tw) time algorithm is

known [28] that computes a minimum feedback vertex set. Further, for finding a minimum

feedback vertex set, there is a deterministic algorithm with running time O(1.7216n) and a

randomized algorithm running in O(1.6667n) time [39]. The following result relates the

treewidth of a graph to the number of its vertices and edges.

Lemma 133. [40] For any ε > 0, there exists an integer nε such that for every connected

graph G on n vertices and m edges with n > nε and 1.5n ≤ m ≤ 2n, the treewidth of G is

upper bounded by m−n
3 + εn. Moreover, a tree decomposition of the corresponding width

can be constructed in polynomial time.

This theorem along with the described linear kernelization leads to the following result.

Theorem 29. DYNAMIC FEEDBACK VERTEX SET admits a randomized algorithm run-

ning in O∗(1.6667k) time.

Proof. Consider an instance (G,G′,X ,k,r) of DYNAMIC FEEDBACK VERTEX SET. Let

(H ′′,r) be the corresponding instance of FEEDBACK VERTEX SET obtained from the linear

kernelization of Theorem 28. That is, H ′′ is a graph (not necessarily simple) on n vertices

and m edges such that m ≤ n+ k − 1 and n ≤ 2k − 2. Further, every vertex of H ′′ has

degree at least 3 and hence m ≥ 1.5n. If m > 2n, then as m ≤ n+ k−1, we have n < k−1.

Then, a minimum feedback vertex set of H ′′ can be obtained in O(1.6667k) using the
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randomized exact exponential-time algorithm described in [39]. Otherwise, 1.5n ≤ m ≤ 2n.

Let ε be a constant (to be chosen subsequently). Then, let nε be the integer obtained

from Theorem 133 satisfying the required properties. If n ≤ nε , then a minimum feedback

vertex set of H ′′ can be obtained in constant time as nε is a constant depending only on

ε . Otherwise, the treewidth of H ′′ is at most t = m−n
3 + εn = m

3 +n(ε − 1
3). Then, using

the randomized algorithm described in [28], a minimum feedback vertex set of H ′′ can be

obtained in O∗(3t) time. Now, by choosing ε to be a sufficiently small constant, t can be

made arbitrarily close to m−n
3 . For instance, if ε = 10−10, then t is .3m− .33333333323n.

As m−n
3 ≤ n+k−1−n

3 = k
3 , the algorithm in [28] runs in O∗(1.443k) time.

5.7 Dynamic Dominating Set

A dominating set of a graph G is a set D of vertices such that D∩N[v] ̸= /0 for every

v ∈ V (G). A set S ⊆ V (G) is said to dominate another set T ⊆ V (G) if T ⊆ N[S]. The

parameterized DYNAMIC DOMINATING SET is formally defined as follows.

DYNAMIC DOMINATING SET Parameter: k, r

Input: Graphs G,G′, a dominating set D of G and integers k,r such that de(G,G′)≤ k.

Question: Does there exist a dominating set D′ of G′ such that dv(D,D′)≤ r?

The problem is NP-complete and W[2]-hard when parameterized by r [33]. Also, it is FPT

when parameterized by k but admits no polynomial kernel unless NP ⊆ coNP/poly/poly.

We describe a faster FPT algorithm for this parameterization. First, we show that it suffices

to look for a dominating set with a specific property.

Lemma 134. Consider an instance (G,G′,D,k,r) of DYNAMIC DOMINATING SET. If D′

is a dominating set of G′ with dv(D,D′) = r′, then D′∪D is also a dominating set of G′

with dv(D,D′∪D)≤ r′.

Proof. As a set that contains a dominating set is also a dominating set, it follows that
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D′′ = D′∪D is a dominating set of G′. Further, dv(D,D′′) = |D′′ \D|+|D\D′′|= |D′′ \D|=

|D′ \D|≤ r′.

Now, we solve DYNAMIC DOMINATING SET by reducing it to an instance of SET COVER.

In the SET COVER problem, we are given a family F of subsets of a universe U and a

positive integer ℓ. The problem is to determine whether there exists a sub family F ′ ⊆ F

of size at most ℓ such that U =
⋃

X∈F ′ X .

Theorem 30. DYNAMIC DOMINATING SET admits an FPT algorithm that runs in O∗(2k)

time.

Proof. Consider an instance (G,G′,D,k,r) of DYNAMIC DOMINATING SET. If G′ is

obtained from G by only adding edges, then D is dominating set of G′. The only kind of

edge deletions that could possibly affect the solution are those that have one endpoint in D

and the other endpoint in V (G′)\D. Further, as de(G,G′)≤ k, |V (G′)\NG′[D]|≤ k. That

is, there are at most k vertices in G′ that are not dominated by D. Let H be the subgraph

of G′ induced on V (G′)\D. Partition V (H) into two sets C = NG′(D) and B =V (H ′)\C

where |B|≤ k.

We claim that (G,G′,D,k,r) is a YES instance of DYNAMIC DOMINATING SET if and

only if there exists a set P ⊆V (H) of cardinality at most r such that B ⊆ NH [P]. If there is a

set P of size at most r in V (H) that dominates B, then D′ = D∪P is a dominating set of G′

with dv(D,D′)≤ r. Hence, (G,G′,D,k,r) is a YES instance of DYNAMIC DOMINATING

SET. Conversely, suppose there is a dominating set D′ of G′ with dv(D,D′)≤ r. Define D′′

as D′ \D. Notice that |D′′|≤ r. By construction of H, B is not dominated by D and hence

B ⊆ NH [D′′]. This implies that D′′ is the required set of vertices of H that dominates B.

The problem now reduces to finding a set of at most r vertices from B∪C that dominates

B in H. We construct an instance of SET COVER with U = B, F = {NH(u)∩B | u ∈

C}∪ {NH [w]∩B | w ∈ B} and ℓ = r. Then, there exists a set P of size at most r in H

which dominates B if and only if (U,F , ℓ) is a YES instance of SET COVER. A set X ∈F
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is said to be associated with a vertex v in C if X = NH(v)∩B or with a vertex v in B if

X = NH [v]∩B. If there exists a set P with desired property, then every vertex w in B is

contained in open or closed neighbourhood of some vertex in P. Consider the subfamily

F ′ of F that are associated with vertices in P. Every element of U is contained in at least

one of these sets. Thus, F ′ is the required set cover. Conversely, if there exists a set cover

F ′ of size at most ℓ= r, then let P′ be the set of vertices which are associated with sets in

F ′. Then, |P′|= |F ′|≤ r and every vertex in B is either in P′ or is adjacent to some vertex

in P′. Hence, P′ is the desired set.

As any instance (U,F , ℓ) of SET COVER can be solved in O∗(2|U |) [41], the claimed

running time bound follows.

Finally, we show a lower bound on the running time of an algorithm that solves DYNAMIC

DOMINATING SET assuming the Set Cover Conjecture which states that SET COVER

cannot be solved in O∗((2− ε)|U |) for any ε > 0 [24]. We do so by a reduction from SET

COVER to DYNAMIC DOMINATING SET.

Theorem 31. DYNAMIC DOMINATING SET does not admit an algorithm with O∗((2−ε)k)

running time for any ε > 0 assuming the Set Cover Conjecture.

Proof. Consider an instance (U,F , ℓ) of SET COVER where U = {u1, · · · ,un} and F =

{S1, · · · ,Sm}. Without loss of generality, assume that every ui is in at least one set S j. Let

G be the graph with vertex set U ∪V ∪{x} where U = {u1, · · · ,un} and V = {s1, · · · ,sm}.

The set V is a clique and the set U is an independent set in G. Further, a vertex ui is

adjacent to s j if and only if ui ∈ S j and x is adjacent to every vertex in U ∪V . Clearly,

D = {x} is a dominating set of G. Let G′ be the graph obtained from G by deleting edges

between x and U . We claim that (U,F , ℓ) is a YES instance of SET COVER if and only if

(G,G′,D = {x},k = n,r = ℓ) is a YES instance of DYNAMIC DOMINATING SET. Suppose

F ′ is a set cover of size at most ℓ. Then, D′ = D∪{si | Si ∈ F ′} is a dominating set of

G′ with dv(D,D′)≤ ℓ. Conversely, suppose G′ has a dominating set D′ with dv(D,D′)≤ ℓ.
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From Lemma 134, assume that D ⊆ D′ and so |D′ \D|≤ ℓ. For every vertex u ∈U ∩D′,

replace u by one of its neighbours in V . The resultant dominating set D′′ contains D and

satisfies D′′ \D ⊆ V . Now, {Si ∈ F | vi ∈ D′′∩V} is a set cover of size at most ℓ. This

leads to the claimed lower bound under the Set Cover Conjecture.

5.8 Dynamic Connected Dominating Set

A connected dominating set of a graph is a dominating set that induces a connected graph.

The parameterized DYNAMIC CONNECTED DOMINATING SET is formally defined as

follows.

DYNAMIC CONNECTED DOMINATING SET Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a connected dominating set D of G and

integers k,r such that de(G,G′)≤ k.

Question: Does there exist a connected dominating set D′ of G′ such that dv(D,D′)≤ r?

The problem is NP-complete and admits an O∗(4k) algorithm by a reduction to finding a

minimum weight Steiner tree [2]. We now show that it admits an O∗(2k) algorithm by a

reduction to finding a group Steiner tree. Analogous to the problems considered earlier, we

first prove a property on the required solution.

Lemma 135. Consider an instance (G,G′,D,k,r) of DYNAMIC CONNECTED DOMINA-

TING SET. If D′ is a connected dominating set of G′ with dv(D,D′) = r′, then D′∪D is

also a connected dominating set of G′ with dv(D,D′∪D)≤ r′.

Proof. Assume G′ is connected, otherwise, it is a NO instance. As a set that contains a

dominating set is also a dominating set, it follows that D′′ = D′∪D is a dominating set of

G′. Now, D′′ \D is D′ \D. As D′ is a dominating set of G′, every vertex in D\D′ is adjacent

to some vertex in D′. Then, as G′[D′] is connected and D′ ⊆ D′′, it follows that G′[D′′] is

connected too. Further, dv(D,D′′) = |D′′ \D|+|D\D′′|= |D′′ \D|= |D′ \D|≤ r′ ≤ r.
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Now, we describe an algorithm by reducing the problem to finding a Group Steiner tree.

Theorem 32. DYNAMIC CONNECTED DOMINATING SET admits an FPT algorithm that

runs in O∗(2k) time.

Proof. Consider an instance (G,G′,D,k,r) of DYNAMIC CONNECTED DOMINATING SET.

Assume G′ is connected, otherwise, it is a NO instance. Also, edges in E(G′)\E(G) do

not affect the solution. Partition V (G′)\D into two sets C = NG′(D) and B = V (G′)\C.

Contract each connected component of G′[D] to a single vertex. Let H denote the resulting

graph and let X =V (H)\V (G′). Construct an instance (H, |X |+r,F ) of GROUP STEINER

TREE where F = {NG′[v] | v ∈ B}∪{{x} | x ∈ X}. We claim that (G,G′,D,k,r) is a YES

instance of DYNAMIC CONNECTED DOMINATING SET if and only if (H, |X |+r,F ) is a

YES instance of GROUP STEINER TREE.

Suppose there exists a connected dominating set D′ of G′ such that dv(D,D′)≤ r and

D ⊆ D′. For every vertex u in B, there is a vertex x in D′∩ (B∪C) that is adjacent to u.

As G′[D′] is connected, it follows that H[X ∪ (D′∩ (B∪C))] is also connected. Moreover,

as |D′∩ (C∪B)|≤ |D′|−|D|≤ r, it follows that the spanning tree of H[X ∪ (D′∩ (C∪B))]

is of size at most |X |+r. Hence (H, |X |+r,F ) is a YES instance of GROUP STEINER

TREE. Suppose (H, |X |+r,F ) is a YES instance of GROUP STEINER TREE. Let T denote

the solution tree of H. Then, X ⊆ V (T ) and |V (T ) \X |= |V (T )∩ (C ∪B)|≤ r. Define

D′ = D∪ (V (T )∩ (B∪C)). The size of D′ is at most |D|+r. Now, G′[D′] is connected as

D′ is obtained from the vertices of T . Also, for every vertex u in B, T contains at least one

vertex in NG′[v]. Thus, D′ is the desired connected dominating set of G′.

As E(G)\E(G′), the sum of the number of connected components of G′[D] and the

size of B is upper bounded by k+1. That is, |F |≤ k+1 and the GROUP STEINER TREE

algorithm of [81] runs in O∗(2k) time.

Finally, by a reduction from SET COVER to DYNAMIC CONNECTED DOMINATING SET,

we show the following result.
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Theorem 33. DYNAMIC CONNECTED DOMINATING SET does not admit an algorithm

with O∗((2− ε)k) running time for any ε > 0 assuming the Set Cover Conjecture.

Proof. We observe that the reduction described in Theorem 31 produces instances of DY-

NAMIC CONNECTED DOMINATING SET. Thus, the claimed lower bound holds assuming

the Set Cover Conjecture.

5.9 Conclusion

We described FPT algorithms for the dynamic variants of several classical parameterized

problems with respect to the edit parameter. The role of structural parameters like treewidth

and pathwidth in this setting remains to be explored. Also, further exploration of the

contrast between the parameterized complexity of a problem and its dynamic version is an

interesting direction of research.
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Chapter 6

Conclusion

In our thesis we did explore the path like clique decomposition of proper interval graphs to

design algorithms for PACKING and COVERING problems. It would be interesting to see if

we can find some similar properties to exploit in interval graphs and solve CYCLE PACKING

on them (complexity of this problem is still open). Many PACKING problems that do not

admit polynomial kernels suddenly become interesting under a slighty loose definition of

kernelization known as lossy kernelization [74]. Basically in lossy kernelization we look

for a polynomial kernel while sacrificing some accuracy/exactness in our answer. CYCLE

PACKING is one of the first problems to be shown to have a lossy polynomial kernel.

We believe that we can also obtain lossy polynomial kernels for many other PACKING

problems such as HOLE PACKING etc.. There are also PACKING problems such as (A, ℓ)-

PATH PACKING, TREE PACKING which are only recently studied in the parameterized

framework and many questions on them are still open and yet to be solved.

The complexity of MIXED DOMINATING SET on interval graphs is still open. It also

makes sense to close the gap between the lower bounds and our various FPTalgorithms for

MIXED DOMINATING SET. Studying DYNAMIC PARAMETERIZED ALGORITHMS from

the view of structural parameters such as treewidth, pathwidth, treedepth etc. might be an

interesting prospect as it is yet to be explored.
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