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NOTATION

The following standard notation is used in this thesis:

5 = e * It, a complex number,
T (s} Riemann zeta functioen.
F{s) The gamma function.
Jntz}. Y;{zl. Kﬂ[zj Bessel functions.
2(x) = @
ain) Fourier coefficients of a cusp form.
¢ls) = E a(n) n™~,
t
k The weight of a cusp form.
r = h/m, a rational number.
h The inverse mod m, hh = 1 (mod m),
= ftn) Usual summation except that if & ar b 1s
a=n<b

integer then f(a) or f(b) resp. 1s to be
multiplied by 1/2.
The symbols 0 ( b2 (), €< and 5 are uaed in  their standard

meaning. Also, f ~ £ means that 1 << £/g << 1.



INTRODUCTION

By an exponential sum we mean a sum of the form

L a(n) e(f(n))

M E n 2 o
where a(n) is an arithmetical function and f is a real wvalued
function on [M,M ]. Many a prcblem in number theory reduces in the
ultimate analysis to estimating an exponential sum. The Waring's
problem, the Geldbach's conjecture, the Dirichlet divisor problem
and order of the Dirchlet series in the critical strip are vary
good examples of this phenemenon.
In the 1820s Van der Corput found a deep method to deal with
exponential sums and integrals in the course of his researches on
the Dirichlet divisor problem. The basic idea here is to transform
an exponential sum intc a new shape by first converting +the sum
into an integral (Van der Corput's lemma) and then evaluating the
integral by the 'Saddle-point method’. The sum treated by him was
0of the above form with a(n) = 1. 7
This method was extended to the case when a(n) = dl(n), the
“Voronol's summation formula" serving in place of the Van der
Corput’s lemma. Since then various summation formulae of the
Voronol type have been found; a very good survey is to be found in
A
A new technique was discovered by Jutila in 1884[ 6 ]. Be replaced
f(n) by f(n) + rn where r is an integer before transforming the

sum by applying the summation formula and the saddle point methed.



This seemingly trivial device while not affecting the original sum
in any way led to much better transformed sums, Another important
observation made by Jutila Wwas the flexibility of thig method
which, he showed, works with minor modifications in the case when
a(n)'s are Fourier coeificients of a cusp form of weight k for the
full modular group,SL(2,€). With the help of his transformation
formula he was able to cbtain for +tha Dirichlet series gssoeistad
to cusp forms for sLh{z, =) analogues of many results known in the
case of the Riemann zeta function, (&), 1ika distance betwss=n
consecutive zeros on the ¢ritical 1line, arder on the ecritiecal
line, mean =quare estimates and higher power moments [6,7,8].

This thesis is a further illustration of the flexibility of his
method. We show that the transformation formula and the above
mentioned applications CArry over to the case when afn)'s are
Fourier coefficients of either holomorphic cusp forms or
‘arithmetic' Maass forms (i.e. Maass forms T with &f = 174%) of
higher levels. While some of the above mentioned applications were
already known in the case of cusp forms for SL(2,Z) due to A.Good
[ 5] they seem to be new in the case of cusp forms of higher
levels., The fact that this method of Jutila generalises to the
case of higher level cusp forms more easily than the techriques of
A. Good goes to show the power of this method. Further most of the
Dirichlet series of interest in arithmetic are covered by the

class of Dirichlet Series considered here.

Mention must also be made of the work of T. Meurman {8,10] who has




extended some of these results of Jutila to +the case of

L-functions assoclated to Maass wave forms for SL{(Z2,Z2). Presumably

his work also extends to higher lavel Maass forms. The class of

Maass forms we consider in this thesis does not occur at Jewval

one.



CHAPTER 1 FUNCTIONAL EQUATIONS AND SUMMATION FORMULAE.

In this chapter we are concerned with funetional equations for
Dirichlet series (and their +twists by additive characters)
assoclated to" arithmetic" modular forms for congruence subgroups
of the full modular group SL(Z, 2). The class of "arithmetie"
forms we consider consists of all holcocmorphic forms and the
subclass of nen - analytic forms with eigenvalue 1\4. We consider
the holomorphic case in &1 and the non - analytic case in §2. The
summation formulae these functional equations lead to are written
down in &3.

If £ is a funetion en the upper half - plane H, k an integer and A

is in GL' (2, R) then flf*,fT] will denote the following function

(det 8)%"® (cr + d)°* e )

TR ), where A = (

b
4’

[P

&1.Holomorphic case: The main reference for this asotion isa 13T,

For k, N = 1 integers and e a character mod N let M(N,k,e¢) denote
the space of modular forms of leval N, Wwelght k and character <.

Thus 1f f € M(N,k,£) and A = r_(N) we have
k -
£l ia(T) = £(d) £(1), where A = {2 EF.
Note that M(N,k,£) = {0} unless £(-1) = (-1)%, and that M(N,k,1)

is M(N,k), the space of modular forms of welght k¥ for Fﬂ{N]. LT

Hi) denotes the matrix {3 then £

ke
=) > Tl oo, defines  an

isomorphism from M(N,k,2) onto M(N,k,e) where € is the {complex)



conjugate character
oo

bet £'e M(NK,e) End 2(r) =T atm) &  be ii's Fourias

expansion at the cusp 1w, We are intereated ip functional

equations for the Dirichlet serias

o 2Munkhm
(s, h/m) =3 -2(n) e

n=l n
This is accomplished by the following
Theorem 1 1 : {aa) Case when {m, N) = H. Let

(s, h/m) = (m/2m)® rs) #.(s, h/m).
k ;e -

Then & (g, h/m) 4 aégi 4-}—§EDLEEULL is EBY {entipe and bounded in

gvery vertical strips) and we have the functional aquat ion

T (s, h/m) = t"e(h) #(k - 5, ~h/m},

where I 1s definoed by hh = 1 (mod m).

(b) Case when (m, N) = 1. pet fhuea (P = Bt & WOLKED and

(48]

B(T) = E bifn) & "7 be 1t's Fourler expanclon. Further let
n=f

f{s, h/m) = (mvN /20 )% M(s) . (5, h/m) and

¥(s, h/m) = (m/N/2n)® ry(s) ¢, (s, h/m)

Then T (s, h/m) + (m'N)™=7%(2L2) +-5{“3b£5i ) is EBV and we have

the functional equation

(s, h/m) = e(m) ¥(k-s, -Nh/m).



Proof: (a) Let t > 0 be a real number and put T = h/m + i/mt and
' = -h/m + it/m. Then v and ' are in the vupper half - plane and

are equivalent under FU[N] by the matrix (remember m = 0 {mod NJ))

h  (hh - 1)/m
A = .
m h

L.e A(r') = 7. Therefore we have £(r) = (k) (it)" f(r'). if Re(s)
is sufficiently large we have

oo 4 i)

T(s, h/m) = 2 a(n) Ezni.nh./rn J- tn—x E—znm;m
n=1 0

dt

L1}

= [ { f(h/m + it/m) - al{ﬂ}} dt..
o

L] i

= J [uh;m + it/m) - a[D]} dt - [ a(o) ¢

1
1

+ 570 fih/m + it/m) de.

L ]

Now consider
i o

JE #h/m + su/my at = F € tih/m v izmn) as.

o 1

=J 770 £(r) de.

m

=e(h) 1 [ 57 £erry g,
i

Thus we have



B R

A =1
&(s, h/m) = | { L £(h/m + it/m) - aco) 7 ¢3¢
i

+ £(h) ik [ f(-h/m + it/m) - a(0) 1 e }dt
- 20) _ e(h) 1" a(o)
s T E=§

This integral representation proves the claims made in (a):

(b).For x = let =«(x) denota the matrix [ L : Jo et 4 > 0 ba g

real number and set T = h/m + ifmth and Tt' = -Efm + it. We need

to know f(r) in Lterms of g(T'"). For that firset observe Lhat

z N m =h m 0
“{h/m) H(m N) - H{N) [ -Nh n ) ©(b/m) ( 0 G
where b is defined via Nhb = =1 (mod m) ¢ which 1is possible
because (m, N) = (m, h) =

1.) and n is chozen such that (¢ M ~b )

-HNh n
isa 1in Fn{HJ. Therefore we have
k- k
fh} - {mzh” ? [jl} fltmuhrrnbillnmnzpl {“"":"'
4 k-2 k
= (m'N) (it) fl ru-nn:cl»:_::h ": VA Lo by (AE)
- {mzﬂ}h{z I:it}h E[]‘!} gllutb.fmutlit}'
= N (10)* 2(m) ml-fif/m + it)
Note that we have made use of (1) £(n) = £(m) as mn = 1 (mod N),
EHgEELY g g TN hsm since

Nhb =1 (mod m).

1l




Considey now the following integral representation
m

Blsy h/m) = (m*N%® [ [f(h/m + it) - a(0)] £5°* qe.
i

o :I./nr‘l"N
= (mH)"7? Lj [£(h/m + it) - a(0)] t"™* dt - Ja(0) " ‘4t
0]

f1nf}~l I.fi'n'fH

toJ flh/m + 1t) £ gt

1 mvYn o
Now J f(h/m + 1£) £ dt = (m*M)™ [ £(h/m + i/e2Nb) ¢ dt.
o 1-m¥N
©
=@ N o(m) [ og(-Rh/m ¢ it) £ gs
LomYN

Thus we geat

L]

¥(s, h/m) - tm'"‘m“”J'{ [ fih/m + 1t) - ago) 7 £° !
I.-"ru'l"N

Ye(m)(m M) TP o (-fih/m it) - b(o) ]1;“‘""} dt.

(m*N) 27 (al0) | i{_p}___pim y.

=3

This integral representation verifies the claims made in (b},

Thus the proof of the Theorem is completes.

Remark: As these functional equations characterise madular forms

of level N (see [13 ] and [14 ]) we can not in general hope to Eet

similar functional equations swhen 1 « (m, M) < M. Far instance |ir

f is a new form of level N then existence of functional equations



for 1 < (m, N} < N would mean that f is a form of

which it is not.

lower level

§2. Non - holomorphic casa:

The main reference here 13 [127.

2 2 z b4 2z
Let & = - ¥ (6% /8. + &% ja,°) denote the Laplacien on the upper

half-plane M associated with the hyperbolic me

an integsr,

tric. Let N = 1 ba

E & character mod N and A a complex number.Let f be an

even Maass form of level N, character £ and elgenvalue (for &) K

This means:
(1) £ = L* (0 (N)\#);

(11) £(r7) = €(d) £(r) for y = {i E} = FG(N];
fEakdod F = X £ N =231 = §

(iv) f is a simultanecus eigjdenfunction of the Hecks operators Tn.

(n, N} = 1 and T £(r) = £(-T) = f(r).

Such an f has a Fourier expansion of the following type:

152

fir) L al(n) v Khtznny} cos 2nnx, T = x + iy,

If in addition A = 174 {1.e. r = 0) we call f &n  "Arithmetis

form". The reascn for this 1lies 4in that +the algebralclty of
Fourier coefficients 0f such forms has been established [ 4 .

Let f be an even arithmetic Maass form with Fourier coefficients

a{n)., Here again we are interested in functiocnal equations for the

following Dirichlet series associated with f:

a{n) cos 2nnh/m

i nﬂ

¢ (s, h/m)

i+ B

n



a(n) sin 2nnh/m

1 ns

¢. (s, h/m)

m
: =

and in this direction we havea:

Theorem 1.2 : (a) (m, N)

= N. The functional equations are
& (s, h/m) £(h) 2 (1 - s, -R/m)

2. (s, h/m) = - £(h) 2)(1 - 5, -A/m),

where hh = 1 fmod m)

Bels hm) = (m/m)® r(s/2) 9 (s, h/m), and
Belse b/m) = (mm)® TH(ERY) 40 (s, hym)
B (my Wy = 4, ket L) = mr)i tHen. & e an  even

Arithmetic Maass form of level N and character c£. Let b(n) be the

Fourier coefficients of g. Then ths functional equations ara;

I

Tels, h/m) = e(m) B (1 - s, -fifi/m)

2% (s, h/m)

I

£(m) ﬁ;{l - 8, -Nh/m) whers

Pels, hmy = (n/mM)T 2 (s/2) ¢, (5, hym) and
Tl B/m) = (n/mvN)TT P2t 4 (s, hym)
Proof: Let £(T) = 1/2ni ayay £{t); (v = x+iy).Then we have

£ (T) =1 L aln) n ¥y K, (2mny) sin (2nny)

We need to know how fx{TJ transforms under the transformationa A

and H(N). For this let fy = 1/2ni /8y £(v). If U e FG{N} then

B(Ur) = 2(d) £(x) , U = (2 2). 86 e gek




f(t) = 1/2ni ajax £(t) = £(d)/2ni asax £(Ur)

€(d) [f (Ur) Re(aUr/ax) + £,(Ur) Im(oUr /ox)]

I

£(d) [£(Ur) Re((cr+d)™?) + £ (UT) Im(

{cT+d}'Z]
Now taking v =-h/m + i/mt and A as

in the above proof we see that
T lh/m + i/mt) = e(R) -2 (-h/m + it/m).

We get a2 sgimilar transformation formula under H(N).

The rest of the proof is along the same lines as that of theorem 1.4

{and so we will not reproduce it here) but will use the

following
formula to g=t integral rspresenta

tion for &(s, h/m):

-

T(s/2) = [ K (2rny/m) v gy
(=]

1/4 (m/mn)" 1 (5/2

3. Summation Formulae: We begin

by stating a theorem of BE.Beprndt

[ 3 ]. Let {ln} and {Hn} be two segquencss of positive numbers

strictly increasing to infinity, Let {a(n)} and {bln)} be twno

Sequences of complex numbers, not identically zero such that the

Dirilchlet serias:

#(s) = £ a(na) h;“ and ¥(s) = ¥ b(n) ph"

converge in some half-plane. Suppose further that they satisfy the

functional equation: x(s) #(s) = ¥x(r - 35) ¥(r - 3) where x(s5) is

one of the following three gamma factors:
(1) F(s) and r arbitrary real
(11) C(s/2) ¢
(111) r*(

.E%E) where p is anp integer and r

1
o

i
+t

s
2

) and r = 1,




Also further suppose that the poles of x(2) ¢(3) are confined

to
Some compact set. Define for x > 0, Qq[x} and Iq[x} as follows:
_ 1 C(s) ¢(s) s+q
Q,(x) = W C‘r s ¥a + IT X ds
q
where Cq is cycle enclesing all eof the integrand's poles: and

respectively as x(s) is as in (i), (ii) and (d4ii):

_ tT+aqh 2
I (x) = x I, . (2Vx)

s xtp+q+1rf2 {ccs{ﬁip?iifil Jp_q”_{‘i’fxi
Btq
(4Vx) +(= g (4vx)}

= sin(mipsari-z ][YP —_

-!--q--i-l

q+1
fg+eir sz

= x (Y (4v%) + ¢ ‘“;“ b, (e 3

Lava

Theorem : Let f e O (0, @). Then

9 > _b(n) P
L'aln) 2h) = [ Que)f(e) de + ¢ 20 I, k) £(t) dt
a= -\h = b 9 a i '“I"t El

summation formulae for the holomorphic case:

For zake of simplicity we write down the summation formulae aonly

when f is a cusp form. In this case only the second tarm on  the

right hand side of the general summation formula in theorsam 3 will

survive., Accordingly let f ha & cusp form of level N and charactsar
g ol
TwaT
£ with the Fourier expansion: L a(n) &, fThe functional

n =1
equations of theorem 1 give rise to the following summation

formulae:

w




(a). Case when (m, N) = N.
1mhsSm - = - L n m = i
E{ain} Ez1"t h £(n) = ikf-‘{h]—ilﬂ a(n) Ezrc b n tk-131 2 X
a=n<hb 1
htk-11f2 4n:nujtf2
X Jx o (——— 1f(x)dx
a8
(b)., Case when (m, N) = 1.
Y AT PRI T = E{m][-%gﬁ}frh(n}:éintuh’m jotEtheR g
=n<hb sl CliE
:k—.i-fz 4TI nxJ"/
x  Jx T (e — ) £(x)dx.

&

Summation formulae for the non-holomorphic casa:

Let f be an even arithmetic Maass form as in 82 with Fouriep
coefficients a(n). Then the functicnal

equations of +theorem 2

o“

imply the following summation formulae (note that p

= Q)=
(a).(m, N} = N.
Ta(n)cos Zoon f{n) ifﬁ}” f'arn1 cos (~2fnhsm) X
nE-h m &M i
- 1.? -ln'?ru P ATV 4 rih -
X J‘L /MK ()Y, (/") 1£ (%) dx

ik . =
E&{n}zin~iﬁl_ £in) = {n}r F.
aEn=h u ;

B P i ‘\fﬂﬂ“
x I [Y, (020 4 gym g (A5XA00 10 ) gy

(b). (m, N) = 1.

10



'!

£(m)r =

T‘:?N—-E b(n) cos(- E"ﬁhhfn-.j X

Znnh
Taln)lcos L
a=n<=h

f{n)

1.2
4TTq nx:l

X j[zm Ky (o — -y l:—,m—nrmdx

" Fnh EI:III_']:T et . .
a{n) sin £ - : ) .
E-'EEEh £(n) =57~ L b(n) sin(-znihem) X
P i s T 102
e, L e T a I Mist b
| ’ .fI w0 T2 B (e ) 1 (s ) dx




CHAPTER 2: TRANSFORMATION FORMULAE.

In +this chapter Wz establish, following M.Jutila (71,

transformation formulae for exponential sums of the type

E a{n} g{n) E?.ﬂLitnl
5rn<h

where a({n)s are Fourisr coefficients of a zusp form for a

congruence subgroup of SL(2, £Z) and ¥ & g are functions on [a, b].

In §1 we recall results on eXponential integrals due to Atkinson

and Jutila. This is essentially chapter 2 of [ 7 1 without proofs,

In §2 we obtain transformaticn foermulae fop cxponential sums

involving Fourier coefficients of cusp forms considered in chapter

1. The proocs of the transformatiaon formula follows Jutlila

falthfully and involves no new ideas. 1In £3 we azhall conslider

special caszes of the transformation formula for Dirichlet

olynomials associated with these cusp forms.
Foly

§1. EXPONENTIAL INTEGRALS.

An integral of the type

b SMMelimd
| glx) e dx

is called an exponential integral. The basic idea of the ‘saddle

point ' method is that the main contributioen to the integral comes

from near the Points x s (a, b) where f is ‘stationary'. that is

where £ (x) = 0.(For this reason 1t is sometimes referred to as the

method of stationary phases,).

12




For sake of convenience it is usual to separate a linear part from

f and write f(x) +a x (a = R) in place of f(x). Let

b b
¥ 2 j g(x) eiﬂufhu+ﬁu>dx & I hitx) dx.
a a

For a positive integer J and a positive real number U define a

smoothed version IJ of I by:

U U  b-u b
U"DJ' du, G_f du, { h(x) dx = [ n,(x) h(x) dx , uw = u + +
a7+l a

Alzso let Ia = I. Note that 0 < n(x) = 1 for x = (a, b) and nlx)=1;

for a + JU = x = b - JU.

We quote three theorems below first of which gives an approximate

value of the integral I in terms of saddle points (Atkinson), the

gecond theorem its generalisation o I due te

Jutila and the

third gives an estimate of I_l when f has no saddle points in

(2,b). For proofs of these theorems seas [ 71

Let f and g be functions on [a, b] satisfying *he followlng
conditions;
(1) £ is real for a < x £ b:

(i1} f and g are holomorphic in the domain

D={2z| |2 - x| < p for some x = (a, b)} where u is a positive

real number;

(1ii) there are positive numbers F and G such that:
]g[z]] €< G and |£ (2)] << F ut for z = D;

(iv) £ (x) > 0 and £ " (x) >> FuZ

13




Bince £’ (x) > 0, ' (%) + @ 4is monotonically increasing and hence

has at most one zero in (a, b), say X, - Further let

EJ{X] = G| (x) + al + £ {x]wz} —J—4

Theorem 2.1: Let f and E be as above. Then

7 = E(an £ (% ]*—J_rz Ezrl:utmu} - a-.uﬂ+ i-8)

+ 0 (G e“*lﬂi““F{b-ay} +0 (WF*) +0 (E (a)) +0 (B, (b)),

Theorem 2.2: Let U > g, =20

a fixed integer, JU < (b-a)/2 and f

and g be as above with the additional condition that F 5> ks

Suppose also that U 3> w Fﬂfl, Then with IJ as above we have:

T, = 8, ) alx,) £70x,)7"7% a(f(x,) + ax, + 1/8)

+0 ((1+(um)’ye rlolH-ar (4

+ 0 ((1+F " %jg u F ¥
of

+ 0 (U7 £ (E,(a+jU)+E, (b-4U)),

i = o

where :ixb}

1 for a + JU < x, < b - JU

J1 3
Tix,) = (JU)Y'E )=y & CLE (%) (x,~a-ju)" ™
j=a

CSLEsr 2

for a ¢ xﬂi at+tJUU with J, the largest integer such that a+j U

(]
e S § " -y J-2u
2060 = (MUY (1) B e #7(x ) (b-x_ - 51
= =0’ [t ot
for b-JU £ x, < b with jz the largest integer such that b*JZU > X,

The c,6 are numerical constants.

Theorem 2.3:

Suppose f and g are functions satisfying (1) and (ii)




above. Assume further that letz)]| << ¢ , 1£ ()] ¥ M ,and

|£7(2)| << M for 2 « D and x = (a, b). Let I, denote the smoothed
version of I with o = 0 and 0 < JUO < (b-a)/2. Then

I << 076 M7 + (! 07 4 (poay)g o AMM

§2. TRANSFORMATION FORMULAE:

Eefore we procesd o the theorem we quote z Lamma (without proct)

which summarizes the Properties of Hanlal functions we  need to

nse.

Lemma 1: L[et 51< T and 62 be Tixed pozitive numbers. Then in  the

sector |arg 2] £ & = & . |z] 2 &, w

e have:
H;“fzj = fEKﬂz]tJZexp [{—1}r1if: R CV N T B R N

where the functions E (2) are holomorphic in the s31it  complex
4
i - ]
Plane z # 0, |larg z| < n , and satisfy i&(:]i << 1z in the

above sector., Further we hava

J.(z) = 172 (H ¥(2) + B%(2))

: - and
™ ]
Y.(z) = 1/20(H "(2) - #%(2)).
T - T -
We alse have Khix} = {n/2x) e (1 + 0.dx ).

In what follows & denotes an arbitravy amall Eozitive constant not

necessarily the same in each cecurrence. Put L = log M‘.

We have the following theoram which gives a transformatiaon

formula in the case of holemorphic cusp forms. Accordingly let

m
flr) =L aln) & " be a cusp form of level N, weight & and
n=q

character £, Further let fh;mme} = g0T) = BORaY YT

==
w



Thecorem 2.4 : Let 2 = M, <M =2M and let f and g be holeomorphic

functions in the domain
D=1{z | |z - x| < cM for some x = [M . M 1},
‘where ¢ is 2 positive constant. Suppoese that f£f(x) is real for x in

EMi.Egl, Suppose alse that, for some pesitive numbers F and G

[y
sl
[
-
3
Fa)
@

|£ (z)] <« FM', for z € D, and that

) Ve . S SR
(O0<) £ " (=) »>> F M fer x = [M, M1,
i 1 s
Let r = h/m be a rationzal rnumber such +hat
1 = m %< th =&
L
|r] 2 F M ", and
i
EV CMIEY) = v iy ~e et ad 2y
£ (Mizr)) = x for a certain number Mir) in
2 PR |
[Ht, HEJ. Write H’ = M{r) # (=L} m, Jj = 1, 2,
Suppose that m, ot m, . and that
M max (MF'?, |Bm|) << m << M*C
i max | A ] !-JTI- ¢ oy A M
Define for j = 1, 2
= Dl , P
P = = 1-1 & I',.L.*.} (= 1] 1
fix) T X | ™ 1 -3 Yo &k
P (%) = {m, N) = N; and
3N =1, 2¢¥(nx) (k = 1 1 ¢
Blx) = xx b L A=W T i

(r - £ (M) m M , if (m, N) = N; and
and 1-:,1 = B !

te = f'(b’!J}}z{:nbe]zHl if (m, N} = 1.

and for n < n let S be the {(unigue) zere of p’ (%} in the

s
(o)




interval (M, M). Set

a |

Then we have

) atn) &(n) e(£(n)) = &

'ﬂLE n = M,

1“2 () (2m)”

2 5F (m,N)

£(m)(2myYN) "%

= N and
y if (m,¥) = 1.

(=1)?~* 2 a’ (n) &{nh’ /n)

i

]t

< ﬂJ
¥ n—:k/2:-1;4 thegy-ta-4, (% }
Joa ot
472
it ) elip; {x. ) + 1/8)

LAZ k=4 w2 172 2
*0 (G (Ih[m)" " m L)

thi=gy 22 bt
ot m, L.

+ 0 {Flfzglh|'3!+m5.!-l i

where a" (n) = a(n) ,h* = -f 1% (m.N) = N and a(n) = bB¢n). B = -Nh

if (m,N) = 1,

Broof: Without loss of geznarality suppos= that r {= h/m) 1isa

Positive. Assume that (m, N) = N, the zasa (m, M) = 1 is antiraly
' similar. The transformation formula should ba undsratood as an

asymptotic result wherelin H1 and !"Ez are largs. PBefora we start an

the procf proper we shall note various estimataes that ars needed:

like, for instance,

{ for by assumption

the order of n..First note that £ (x) XF N

£NeY 3 MY &ad

the revaerse inequality
follows from the eszstimate for £ and holomorphy of £}, and
245 == &
F »» t-!i’ {for F 33 er Z m lﬂln M:"H' ). Thus w= have that
lr - 2 M) X ofM  (for & (Mix)) = r)




This gives us the estimate

The m’s are determined by

£ = 2
: nij‘zm!*-l1 m. .

the condition p;n {Mj} = D This
implies that for n « n P]ﬁ{x] has an unique zero in (M, L
For clearly {—li‘p:“{bij} >0 and {-1}";'“1{3-1{1-)} < 0,if n < n;.
# - 3 1

Note zalsoc that X,.a% % . and that an[xJ has no zero in (M, M)
if n > n . Uniguensss of x ., Tollows from that P°_{x) has the
same crder as 7' [(x) ‘fIﬁ is sufficiently large and hence is
positive for £ "(x) is positive,
Let § = S[H‘,bg} = L aln) gln) e(f{n)).

M= n=<M

1 2
We first replace 3 by 1tz smoothed version 5

1 U
§ = U [ S(u) du , where S(u) = L aln) &(n) a(f(n))
0 M‘ﬂl =En=M Su

and U is a parameter to be chosen later. For now we only assume

M << U S 172 ain (@, m, ).

i 1 4
The estimate a(n) c¢¢ prvoz-c implies +that S - g*
Thi=ghs2 : N 5 "

GO : L. The choice of the Parameter U later will show that
this error has been accounted for in tha statement of the

transformation formula.
The idea is to apply the s
by using

saddle-point th

summation formula to Siu)

factor without disturbing

ummation formula to S{u) and evaluate g

sorems. But instsad of applying the

it has been obsarved by

if we introduce an exponsntial

Accordingly befare applying the




summation formula we modify the sum S(u) as:

Blu) = L a(n) e(nr) g(n) e(f(n) - nr), a = M+u, b = M -u,
a<n<hb : 2

Applying the summaticn formula of £3, chapter 1 we gat:

b
k=132 e e -
ng x " I, (=) z(x) e(f(x)-rx) dx.
Now write Jkd{ ) in terms of the Hankesl functions to get:
b = = —tk—11-2
S(u) = i's(h) ) a(n) e(-nh/m) n I, whers
_m b =132 (1) 4nvinx: t25 4TV ims ; 2
E __ﬁgf % B B = Jlg(x) e(f(x)-rx) dx

whence by lemma 1 we get I_ = I;h - I;m

with
i = -1-2 b oZi=Bodr A Yines
I° = (2m¥n) I x g{x) [1 + g(—F—)lelp .(2)) dx
a * '
[t can checked that the conditicns of the theorems 2.1 and 2.3

satisfied with -r in place of »

£(x) + (-1 (2 (n =xY/m - (k - 1)/4 -1/8),

and u = NL,

The number X  is by definition the saddle point for Ilp sl

lies in the interwval (M ,M] if and only if n < n.. However,

Inﬂ the interval of integration is [a,b] = [H.+u' Hz-u], and

e [a,b] Af and enly if n < n*{uj whares

n(u) = (x = £ (M + (-1)w) mo(M o+ (-1 )

e

it

in



But for simplicity we count the saddle point terms for all n < nj
for this frees the saddle point terms from depending on u and thus
we will have the same saddle point terms for all S(u) and hence

for 5 as well. The number of extra terms counted will be
<1 +mn -n(u) <1+ E"mzH;’ m U

The zaddle point term for I;”,for n<n is:

et T S T t rzs-caran s o
C<m) 8 Fon BLX; n? By 0y 00
1./2
- e P i
E(Pjnﬁ{iLn] 1/8)X (1 + ngECn x;.nj JSm)

Thus upto gﬁ ) we have the explicit terms claimed in the

thecrem.The effact of the omis=sion of g ( ] is:
J
—1.2 Z2 iks2y— &1 - ko2 —
({ FIH G m-l-#‘ HL L5 E a{nj n g ¥ L4}
n<n
|
-i..--"z_‘I 1-F Ihfzr-i..l..-"i! 174 L2 k=i b2
¢ FRRl g n << Gm M L.
1 j 1 1
This error can be abserbed into the first 0 | ) term 1in the
formula given in the theorem.
The extra saddle-points counted while replacing nJ[u} by n}

contribute

. -1 -1 2 bk W T B Sl SRR W e T
<< (1+ FaM® mn 0)F*%6 o2y n;
12 =352 L2 =102 tk—413.-2 +» £
<< F Gh m m, Hl
=1-2 Ar,2 =1s2 152 1k-11-2 = £
F Gh m m M

i i

+

u.

Here the first term is absorbed into the second O {( ) term in the

20




transformation formula and later U will be chosen so that +the

second term above also goces into the second O ( ) term,

We shall now consider the error terms of theorem 2.1 which was

applied to I:Pfér n < n, The first

T error term is clearly

negligible. The contribution of the second 0 - term is:

~8.r,2 =472 itk Tircd g —ithk=1y 2 g4
<{ F Gm H; T a(n)n n
n << n
i
AL (k=112 —(0r2Y 1.2 lk—13 72
<< Gm m,2 M L ¢ @G m, H‘_

which again goes into the first O -term of the theorem.

The terms © [Entalj and O (E, (b)) are similar and so it is

encugh
to consider one of them, say O [Eﬂ{a)]. This error term is
=12 Ak A2 (g —ta . P s =i
< Gm M n (1%, (a)| + p° (a)
Consider the case J = 1; the case J = 2 1s awven simpler for
" =3 b -1
pLh{b} cannot be very small. Piacys (3) = 0 and P, la) R FE

Therefore we have that

Y 'f z p A sz e
[ o 1.2 =y Ff i for ln_nllxu}I €& FJ’I h mll
”P,_'nl[a}lﬂﬁl_n{aj } T & LG 3
mH‘t i t!n'n'['[‘-’-l}l otherwise.

Thus we get that the contribution to S(u) of these Error terms is

k- 2 N :
£¢ G (hm]‘fznifz Hi “sz » Wwhich goes into the first error term

of the formula.

We are now left with showing that the tail part in the summation

formula ,that is terms forn > nj, are accounted for 4in the

theorem. Here we make use of theorem 2.2 for the 2stimation of +the

21




exponential integral since for n > n.i the, integral has

no
saddle-points in the interval of integration. Here U will be the
smoothing parameter with J = 1. The contribution of I;ﬁta gt
‘egquals
B " T (<L) UE agn)  teoese e(-nh/m) n ' "

} o= 1 n < n_]

b kA2 0 — (940 41 s
X J o, (x)x &(x) [1 + g (——)Je(p  (x)) dx
a

where n (x) is the weight function. Apply theorem 2.2 with F,n{2)
in place of f(z) and p ¥ m . Note that the conditions of +the
theorem 2.3 are met if we choose M = ﬁﬂrihqn”q. The second

term
on the right hand side of +he estimate given

in theorem 2.3 1is
exponentially small and hence can be naglacted beca

use
=1 =172 1.2 1,2 2 -2 1.2 P"j
Mu 23 m M, noom > (n/n ) °F mﬁﬁ b {nfnlj i

The term corresponding to UT'GM therein is

B2 (e Zie(i74) -4 : =thk=1)2 =tT4)
€< Gm M. U L a(n) n

n»>» n
1
a2

c¢ G o Hr.hx::-::.-rq.; U-l. n-tf-i

L

T (k23 =tz -1
<¢ GF m M m, UL

<< GFh—n:z mﬂ:zﬂikvx :/zm:i.fzuu i L .

Thus proof of the theorem is complete upto the following error

terms:

thk—13-2 - 1.2 AL 152 L2 Ak=11,2 » &
GUM, L+F ""Gh "m m M u
—3AF2 Fr2 (k-1 r2 =102
+ GFh m M

o
5 m, UL

22



The first and the last terms above coincide with the last term in

the transformation formula if we choose [ = PR e s

Then the second term above is

ce Ghﬂf"-lmﬂfi A4

y 1-2 1.3
m, H‘ << G(hm) m, Hf

which can be seen %o g2 1into the first O -term of the

‘transformation formula. It only remains to be shown that the above

cholce of U satisfies our requirement: Hf <« U= 1/2 min(m ,m ).

We have

Um:.l. ¢ U{H:--I-:EF—L-’:R J-l. ce¢ [:lmjlrim-{fﬂﬁ—-ﬁ —5
For the other inegquality

2, -3/4 5S4 a0 -
o xs Fu- N 4m 4!"!‘ 3 53 H‘:f-l hi/q.m!/q. oy Mcfv

This completes the proof of the thecren.

In the case when #(r) = r

a(n) “y K,(2tny) cos(2nnx) is an

arithmetic even Maass form of level N and character £ as in §2, we

‘have the following transformation formula,

Theorem 2.5: Under the notations and assumpticns of theorem 2.4

Wwith k¥ = 1 we have:

23



A T (-1)""" E£b(n) e(nh’ /m) x
= 1

n < ny
—-41-4 ot Tt
X n X, n 8(x, )
o =is2
X 2 (%, ) e(p; (x; ) +1/8)

+ 0 (G {lh!m}l.fzm:fasz

+ 0 EFingihiig‘**msj*H:fin. m:’“{‘L}.
|

Proof: Note that the second
+

error term above is slightly worse
than the corresponding error term in theorem 2.4. This is

because

‘the Deligne's estimate which was used in theorem 2.4 has not bean

‘proved for non-holomorphic forms arnd

a(n) << n*7=*€,
2.4;
Thus
S(u)

the best known estimate 1is
Let 8, 5 and S(u) be as in the proof  of theorepm

further aszume that (m,N) = N, the other case is similar.

L a(n) g(n) e(f(n))
asn=b

L a(n) [cos anan + 1 sin @mny)] g{n) e(f{n) - nr)
asn=h

Elfu] + i Ez{uj. say.
We now apply summation formulae of §3, chapter 1 to S, (u) and

Ei(uj and proceed to evaluate the integrals as before.

S,(u) = E a(n) cos w@rns g(n) e(f(n) - nr)
as=nth

. sgﬁ!n =

o L a(n) cos-2nnhrm X
n =1

b

X [ [2sn th-:fﬁFfiLJ = B ‘”2““ Ja(x)e(f(x) - rx) dx
a

24



- = 4]
= ﬂi—}l L a(n) cos (-zanhsm (i + 1.1, where
n =1

o
n

n/2 ‘rh 4n¥inxy ) (f = ¥ dx d
= . Ko (=) &(x) e(f(x)- rx an

=
"

b
= Yn(—ﬂF&J g(x) e(f(x) -rx) dx.
a

We first observe that the contribution from the integrals i is

&
negligible. We have 'f{nM‘}fm »>» ¥n M, so that

_-;_m . -4 o &
m Laln) |[i | <«<m'gE a(n) exp (-AvVn M)
n=t n=t

<< G exp I:-AMf].

Write the integrals I 1in terms of the Hankel functians

tao get:

= i b Ht::-[ A Y inxa ) (21 am¥ink) B

v a'r (H, I . Ll . " o )] B(x) e(f(x) rx) dx

5 Dl I‘zl. whers
4] ™
{33 -4 172 =i a4 b T STV rw s
g =it n J x g(x) [1 + g (== Yle(p, ,.(x)) dx.
. .
Notice that this is the same as the integral 'I'"* in the proof

of theorem 2.3 with k& = 1.

Similarly for the sum EI{uj and putting

these two terms together we get the transformation formula claimed

in the theorem. Note alsc that the 'Rankin's <trick’ hazs  bean

extended to the case of

Maass forms to get the mean wvalue

estimate: ¥ |e1u{r:u]l|2 =CX+0 {x"""‘"’:
n=s x

We now proceed to give analogs of the above transformation

25
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formulae for smoothed exponential sums

provided with welghts of

the type % (n) of §1. We get much better error terms but we Wwill

have to allow for certain weights to appear in the

as well,

transformed sunm

Theorem 2.6: Suppose that the assumption £

ptlons of the theorem 2.4 are
e &5
satisfied. Let U > F*M 'S¢ @248,

and J be a fixed rositive

integer eXxceeding a certzain bound. Write for J=1,2

M= Mo+ (-1)77J30 = M(z) + 1:—1.;’::13

and suppose that ma X m . Let n be as before and

nt o= (r - f*{uj}f‘ mzH"l.

Then defining the welights n,(x) in the interval [M!,MEJ as in &1

We have
X n,(n) a(n) g(n) e(f(n)) =
%ﬁn = Fk
Z

= A E (-1)* E WJEnJ a'" (n) e(nh’ /m)

= 1
’ R < n

=tle2ire (leeaimigeg
X n i

Jo ™ ﬂ{xh"]

Jem JaFi

X p'' (x s egﬁ ij ) + 1/8)

+ 0 I: F-;GI h I H-f'lm-l.JIH1 k—uf‘lmt.f:t

i i

where ?ﬁ[n} = 1 forn < o, and wi{n} << 1 for n ¢ n:; further

wiy) and w;{y} are piecewise continucus functions in {n:.njj with
J

at most J-1 discontinuities and wj[y} £4 [Iﬁ—n:]-l for v = fn}-njj
whenever w}{yj exists,
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The proof of this theorem is the same as that of theorem 2.4 but

uses theorem 2.2 in place of thecrem 2.1; for details see £ 7 ke

‘A similar theorem holds for the nonholomorphic case,

§3. A Particular Case:

We now want to specialise the transformation formula to the case

of Dirichlet polynomials, that is to say, to

Sfﬂtzﬂz} 2 Ea{n} ﬁv-:k/m = it
Hifnﬂ I"I2

when H1< tlzrr ¢ Mz with »r satisfying the

conditions of theorem

'2..3 and where a(n)'s are Fourier coefficients of a cusp form of

welght k. Such sums occur, for instance, while estimating +the
Dirichlet seriess (assoeciated to cusp forms) on thae critical 1lipe

and studying their 2eros on the critical line.

Here g(z) = ﬁ*/z. £{2) = -(t/2n) log 2 and M{-r) = +ty/2anp. The
Aassumptions of the theorems 2.2 (and 2.4) are satisfied (with -r
in place of r) if we chocse F = + and G = M8 g o e
.nj = hsz H:", t-‘]:r = (t/22my) + {-:t.'!]'rlrlJ and the funetion p_ln{xj
takes the form

Bo(X) = -(t/am) log x + rx + (- @A tnx) e - (k-1)p4 - 1/8)
where & = m if (m,N) = N and &« = mvN if (m,N) = 1. Assume for salks
of simplicity that im,N) = N; the other case is entirely similap.
Thus x&n's are the roots of the equation

BintX) = ~t/anx 4 v + (=)™ ¥n (mix)™* = g

Or equivalently of the quadratic equation




X = ((t/nr) + (n/BF)) x + (t/zme)?

Therefore, since X, < X, . + We have

J 2
=43
3 zh h
and
z -4+ n S DR hknt 1.2
(t/zmr) sn = 2nT +’h2 12 ( T Fyra

To write the transformation formula here we nesd to

—4i/2 —1-2 -Bs4 —1.-2
2 m X %;J%m} and %m(ﬁnL
We have
e = C . i] -4 43 -1 33
ij{ﬁm} -'hﬁﬁxhn+-{ 1V 2 "n "m X
So
2.2 . - -1.43 >
2 m x:ﬁ PJ_HEXM‘} =T 'm t x:: + (-1) a*®
= (=17 a2 (tfan x' = t/mr) o+ (-1)
- -ir2 1-2 mn 1.2
= (zhkt) (1L + zhktj .
Thus
~1AL —122 =04 - 1,2 _ira -1 nn —1 4
2 ™ LHES J-“[xl-“} Bl (2hkt) (1 + ;E"E‘t}

Calculation of P;ﬁ{x,n} is more delicate. Wz have

i _I_—x -1 n mn -4 2 1.2
(znet J{J_n} =1 + T {{m Yo+ el
in ,1/-2 fn 152 .2
l:(‘stl-nl‘-cl.:i i & 2 ahkr.}
-1 . I J x Th 1.2
whence log (zmrt xb“] = (-1) 2 arsinh Gl ).

We alsoc have, by PLn{an] =10,

calculate

J A2
n



The smoothed version in this case reads:

. -1
TR Lo PP
= _ mn 1 mn I 172
= s hk + =) Zt(:hm * (zhkt} )
Thus
i 1 n mk-23 om0 s
gnp. (k. ) = (1) (et (o) - = = )~ tlog(7) +
' n
+ t log r + £+ - e .
where we have put #(x) = arsinh (¥ °) + (x + xz}ifz-
Thus we have
: - mn k—1 T
.E'[Pi.n{xj;ﬁ-*‘ 1/8) = e(-n/zhk) Exp[:1[~1}‘1 1f.=t"¢{ahlct} "n{a }LT-}
x 1_1.t el.i'l.-l"t.-“t! {zr:jt}“
Thus finally we hawve:
—tks 2y - L
E{-Hirt{:] = Ea{n} ]'][f: & =
M =nlu
i
- 4{:hkt} t-'q.[:ir 11. EL'I: L=T 4 Z E &{n] e{nl: -_'_zT }} V
=1 n(n =
(L) = ke 20 b § -1 4 j= =
X (1 + ) e T 2t - - D
| - -4 -2 2 = L 474 = 1 &
+ﬂ|:hml t L )+0(h m m L.



.,;ahkj = En (n) a(n) RoRY = b

H!Enﬂ Y
4 -1-4 ZTlr Lit+M 4 % 1: 1

(zhkt) (— )" e E I a(n) e(n(—- vl 1 B

J=1 n<n

3
L T IR nmn . —t1.74 J=1 TMik=—121 T

2 i -q L,

n (1 + Lo Al exp(i(-1) {2‘»:»‘:!-{2”:L : ==

40 (K°m e S 11 0

s advantageous fo choose U as small as to ‘satisfy

= -5 + & — + -
g F T PO "0, die. 0% P9 wien this choice

L S 2E fir.- -
fBhe above error term becomes O (F 2 G{|h]m =T i o m:fz

Jia

A5 usual we have a similar formula for the nonholomorphic case.

__'mark: In the case of Dirichlet series coming from cusp-forms of

"___'gher level, N 2 1, the point of interest is t¥N/zn, and m o, the

s ) &
length, satisfies: t'"%"® ¢cm << t. We can manage to get  the

game transformation formulae taking M(r) = t¥N/zn where » 1{is an

E?prgximation to YN which satisfies:

= =

2 = 1//8] << %, r = h/m, m <¢ ©7* with (m,N) = 1

'_! can be verified that the order of n remains unaltered and 50

Will other estimates which depended on 7 (M(r)) = r. For

example
let's look at |-r - £ (M)]:
M = tYN/em - m, = tYN/zm (1 - 2mm /tYN);

= zn/tV/N (1 - znmif‘t.‘fﬂ}-’ =~ zn/tV/N (1 + znm;ft‘r'hl] as mi-:(t:'ﬁ:

30



- ._Z'if‘."fﬂaj = —t;‘an‘. Thus

8 = £ (M) = |- N (1 s 2em /TYN) |

e e T
WEe will make use of this remark in our application to

'zeros [}
€ critical line' in the next chap

ter,
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CHAPTER 3: APPLICATIONS.

In this chapter we give two sample  applications of  the
:;£¢sformatinn formula as examples to show that all those
%ﬁglicaticns of the transformation formula which have  been
obtained by M.Jutila [6,7,8] for the case of the Dirichlet series

E%ﬁﬁuiated to cusp forms for the full medular group are valid in

the case of Dirichlet series coming from 'arithmetic’ cusp  forms
P

0r congruence subgroups of 5L(2,Z) as well. The first application
ﬁ@;ls with zeres on the critical line of the Dirichlet series
‘associated with cusp forms ; this is &1. In &2 we show that a

glight modification of the proof of the estimate for a 1ong!

‘@xponential sum obtained in Lheorem 4.8 (4.3, 7 ] vields the same

‘estimate in our situation also. In all these applications we wuse

| ﬁﬂﬁ? Rankin's meanvalue estimate though in the case of holomorphie

e /)

o b= -
Zorms the estimate a(n) <<« p= v=F {Ramanujan - Peteyrasaon

‘eonjecture) is known due to Deligne. Thus these results go Lhrough

dn the case of nonholomorphic forms as well where Lhe analogue

of
kin's estimate has been proved but Deligne's estimale  has  not
been; the best result known here Is &ty =0 ("™ die Lo

35 on Lhe critical line:

o et

the Dirichlet series ¢(s) = T a(n) n° whers a(n)'s are
ficients of a cusp form of weight k, level N and
&t -
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character ¢£; this series satisfies +the following functional

equation:

(2rn/¥H) " T(s) ¢(s) = C (2n//N)*™" F(k-5) w(k-s).
where |C] = 1 (for a proof take m = 1 in theorem 1.1 of chapter
1}. If # is &a real character then f ——> |H{N, is  an

automorphism of M(N,k,£) and since it is an inveluticn we ean
decompose M(N,k,z) further as M (N,k,z) + M (N,k,&) where on
M (N,k,e) H(N) acts by +1. Thus if f « M (N, k.c) then b(n) = *
a(n) in the earlier notation. In this situation if we rewrite Lhe
functional equation as

$ls) = C Al(s) ¢lk-s), &(s5) = (22/7N)°" % F(k-s) /T (=), O = 2C

and further assume that. a(n)s are real we see that on tha aritleal
line A(s) has abgolute value 1, |a(tk/n4it)| = 1. Therefore the
funetion

zqﬁft-} = [e :‘.'s{d-./z:--inj]"'? W (ibhomreit )

is a real function of t. We can now use this  funetion to echeck
whether ¢(s) has any zeros on the eritical line for t in an
interval [T-H, T+H] by comparing the integrals

f H
| Z4(Tru) du] and [ |Z,(T+u)]| du

-H — H
for if ¢(s) does not vanish for t in the above interwval then these
two integrals should ceincide. We use this trick of G.H.Hardy to
show that for sufficiently large T @(d-2+u) has a zero in the

interval [(T-H), (T+H)] with H = T3¢
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First we will prove this assertion on the zeros not for ¢#(s) but
for #(s, 1s8) since it is easier and defer the proof for ¢(s)
which has to be handled delicately to the end. Obsearve that for

the Dirichlet series ¢(s, 1-%) also the corresponding function
z¢.{t} = [T Al + tt]]hl"z @ {therzh + AL, 1M )

is real by wvirtue of the functional equation proved in theorem
1.1. Also note that here £ need not be a real character and that
the result is true for ¢(s,h/m) where h is such that h'= 1{mod m).
Suppose that ¢(k-z + W, 1,n) does not wanish feor t in the
interval [r-m.ren]. Then Z¢Et} is of constant sign in the above
interval. Let H = T %3¢ and consider the Integral

i - (u/m ]z SRR
I =T Gy(THu) e o’ du, where H = T :
_H 2

It 15 well-known that

lIl -="J‘ |Z¢{T+u]| @

~(u/no }2 o

du > [ ]E¢{T+u}| du »> H

= M
See Thecem 3 in [1] for a proof.
We shall estimate I in a different way by making use of the

following representation for ¢(s, «N) on the eritical line:

Lemma: Let t = 2 and TF t¢ X 2« tA where A i3 an  arbitrary

positive constant. Then we have, putting &’ (n) = a(n) e{i-n),
P lerzivin, 1on) = ¥ a' (n) n ChrZa-vt
n= X

ke ~21-Lt

+ (log 2) ' E a’(n) lom (2X/n) n v oo,

YX<n=2X
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The proof is standard (see for example [6]).

Take X = T and let K< [T77%, 21"% %], We have

"
-tk ¥ - - 2 —1s2 -
I = T a (nln 2 1TG et f Alkrz 4o eTsurs n "
—H

n = 'rg
In—TH;’zni > K

_ |n—'rn,fzr11 = K
+ (log 2) ' T & (n) log(zi/n) n "¥73T
o i |
T (nESzT
- e E
;R oo r Jﬁ{'r.,-zhr'r-urr‘l;znﬂu a MY du

=, + 1, + 1, 4 00(1).

2z
Tu-Hok

du

' 4
= f - 1.2 —tkAEro L LT - FATE
o Zj-;}{k;z-l:r-ujp | E a' (n)n L i j @ L 7

+iEE L)

We will now show that Ii and I" are small. Let first n >TNAT + x,

and estimate the integral ,

i e - - = (nr ]Iz
J Atkrz 4 wemiw) noe M dy

by leoking at the corresponding complex integral
rectangular contour with wvertlees *H, iH-lHai By

formula we have (remember A(s) = fZHHNIZF*F{k-uJEF{sJJ=

A2 :
A(krzruireu ) n o= EXP(LTleatTNAZM-Te u logiTH 21+ Oun |,

On the vertical sides this is bounded and
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2 &=
epl-fuMa) ) o m=p (=T 3},

Un the horizental side in the lower half-plane exp[—{uxnﬁ}z} is
bounded and
2 —iu

Alkrz + ifrsm) " “p << exp {-n_log(znn/nT)} <4 Pxp{—ﬁTﬁ}.

For n £ TH/2n - K the covrespeonding integral can be estimated
similarly by integrating in the upper half-plane. Thus I1 and %

arae << 1.

Coming to 12 we have

. tko2y=1L
I, << H sup | Ea(n)n 1
T-t = H 1L[p'rhtfan’l~ < K
il 25—t ¥ g
¢<¢ H sup | £ a (n)n 1w T e ey
T-L = H 1rvlu:zn\ < K

The error was obtained by Rankin's meanvalue estimate ( for any

X and Y with ¥ < X" we have | T atn) | << ¥*¢™®). wWe shall
¥=n<X+Y

estimate the above sum by applying the transformation formula from

§3,chapter 2 with r = 1/N and M, = tN/zn+(-1)’K.  Then nr-:‘;t"”“'“
and the above sum 1s << T~ °. Thus
A2

| 1] << BT
But this contradicts |I] »>> H if T is sufficiently large. Hence
the assertion.
Now, coming to the Dirichlet series ¢#(s8) we have
Now, coming to the Dirvichlet series $(s) we have

=122 =il i
B (kozain ) n s = expl(il ['ncgrr'fra.fzrr: - 1 o+ ulegtT¥H 2 + O 5y o B

Hence the sum which we will have to estimate will be aver an



interval around TYN/2n. Here we will have to use the remark made
at the end of chapter 2. Because of the approximation of N by
r = h/m we will have to apply the smoothed version of the
transformation formula. So instead of the integral I above we will

start with lts smoothed version IJ:

(34
I, = I N, (Teu) E¢{Tua} EHP{‘{U’”“}‘} du

As in the previous case we have |I,| >> H

o

Proceeding as before but bresaking the sum at {n-Tf&.znl = K-v

where v = thﬁ{ +VJ iz the smoothing parameter, we get
1, = Lo+ I 4 15 O (1)

where now

P
2
" 172 ko2 Taul P
- 4L ~kor T =q4d .~ Hoh
I[E'ﬂm"z”""’*“’] ”J'[""‘*."{E afin) n ] i,
2L |n"Tfozni?x-v
Thus
-k FF L
ITZI << H sup LB n,(n) aln) n .
T-1 = n ln-Terznlfi K -v

Now estimating as in the previeus case but now UWsing tha remark at
the end of chapter 2 and smoothsd version of +the transformation
formula we coneclude that the above sum is o () and so L) 15 o(n),
The lntegrals l; and I’ are estimated as before and so we have the

assertion made at the beginning of this section,



E2: Eslimalblion of "long' sums and order of @#CE-p+itd.

Here we are concernad with exponential sums

Z a(n) gl(n) e(f{n))
MEnZ=m’

which are "long” in the sense that the length may be of the order

of M itself. It is not practical to transform such sums directly

as in chapter 2 because wvariations in " (=) might be too mueh 1n

the interval MM ]. It is advissble teo first partition [M,M']

Into segments such that f"(x) practically remains ; constant in
each segment and then transferm these short sums. Bubt we need to

asaume that £ (x) iz approximately a power to be able to get some

saving in the estimate. The precise result (theorem 4.6 in [ 7T )

is as follows:

Theorem 3.1: Let 2 = M <M = 2M and let f be a holomorphic
function in the domain
D={(2a]le - x| < cM for some x = [M,M])
where o 18 a positive constant. Suppose that f{x) is real In [M,M ]
and that either
fiz) = Bz"(1 + 0 (F")) ,s e0D
where a # 0, 1 is a fixed real number and
F = [B|M"
or

f(z) = Blogz (1 +0 (F77)), ae Dwith F = |B]|.

]

Let g = C'[M,M 1 and suppose that for x = [M,M ]
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jg(x)] << G, Jg(x)]| << G .
Assume further that M % << F <« Pﬁjz, Then

| £ am) o g(n) e(£(n))] << (6 + Me FTE

where a(n)'s are fourier coefficients of cusp forms considered in

earlier chapters,

We will neot give a proof here since Jutila's proof for the full
modular group case goes through word for word. However a slight
modification 15 regquired since wunlike in that ecase in our
situation we do not have transfeormation formulase for ba{tfznrcﬁg,
where r (= h/m) is a ratlional number, for all r;, we naead to aszume
that (m,H) = 1 or N (H ls the level of Lhe cusp form) to gat a
transformation formula. The required modification is as follows:
Put M = F"™' and let K = (M/M )%, We may suppose that M = M
for otherwlise the assertion is +trivial. Consider +the Farey
sequence of order K and drop all those fractions h/m with
{m,N) » l.Dencte this set of fractions by K, If r = h/m and r' =
h' /m" are two consecutive fractions In K let g = (hth')/(mtm") be
thelr 'mediant'. We have
g2 - = [(mh' - m"h)/m{m + m" )

In the usual case we would have p r = 1/m{m + m ), but
order-wise both are same {.e. ¥ 1/mK. Define the points Mleg) by

f' (Mip)) = £ and break the given sum at polnts Mig) lying in  the

interval [M,M' ]. The rest proof is as in [ F ].
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EEEEllary: We have

s Wi LS

[#(kz + it)| << (|t] + 1) .

Proof: We have the following approximate functional eguation for

pw{s), for 0 £ o = k and t = 10:

¢(=s) = L

(n) n- + w(s) T bn) n° " + 0 (¥ %10g t)
n L) .

&
® n=y

where %, v = 1, %y = (t¥N/2n)° and v (g) = [?ﬂffﬂ}r?l Flk—=),/T{8).
This reduces the proof of the corellary teo showing that for all
{positive and negative) large values of t and for all M, M with
1 =M cM = ¢/N/2n and ¥ = 2M we have

k2 — i 1. T £
o

| L aln) n
M=n=H

Thls is precisely the estimate of the theorem 3.1 applied to this

aum.
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