Surface Defects from Fractional Branes

By
SUJOY MAHATO
PHYS10201604003

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the
Board of Studies in Physical Sciences
In partial fulfilment of requirements
For the Degree of DOCTOR OF PHILOSOPHY
of
HOMI BHABHA NATIONAL INSTITUTE

May, 2021

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we certify that we have read the dissertation prepared by Mr. Sujoy Mahato entitled "Surface Defects from Fractional Branes" and recommend that it maybe accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy.

> V.Ravindu.

Date: 18-11-2021
Chair - V Ravindran

\qquad Date: 18-11-2021

Member 1 - Nemani V Suryanarayana
 Date: 18-11-2021

Member 2 - Rajesh Ravindran
ssharma
Date: 18-11-2021
Member 3 - Sayantan Sharma

Date: 18-11-2021
External Examiner - Sunil Mukhi

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it may be accepted as fulfilling the dissertation requirement.

Date: 18-11-2021
Place: IMSc, Chennai

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfilment of requirements for an advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the Competent Authority of HBNI when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

Sujoy Mahato

Sujoy Mahato

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me. The work is original and has not been submitted earlier as a whole or in part for a degree / diploma at this or any other Institution / University.

List of Publications arising from the thesis ${ }^{1}$

Journal

1. "Surface Defects from Fractional Branes - I"
S.K. Ashok, M. Billò, M. Frau, A. Lerda, S. Mahato

JHEP 07 (2020) 051,arXiv:2005.02050 [hep-th]
2. "Surface Defects from Fractional Branes - II"
S.K. Ashok, M. Billò, M. Frau, A. Lerda, S. Mahato

JHEP 08 (2020) 058, arXiv:2005.03701 [hep-th].

List of other Publications, Not included in the thesis

Journal

1. "Weights, Recursion relations and Projective triangulations for positive geometry of scalar theories"

Renjan Rajan John, Ryota Kojima, Sujoy Mahato JHEP 10 (2020) 037, arXiv:2007.10974 [hep-th].
2. "On positive geometries of quartic interactions: Stokes polytopes,lower forms on associahedra and world-sheet forms"
P. Aneesh, P. Banerjee, M. Jagadale, R. R. John, A. Laddha and S. Mahato

JHEP 04 (2020) 149, arXiv:1911.06008 [hep-th].

Sujoy Mahato

Sujoy Mahato

[^0]
Conferences and workshops attended

1. "Hamilton School on Mathematical Physics" held Online during August 24 -August 28, 2020.
2. "National String Meet" held at IISER, Bhopal during December 22 - December 27, 2019.
3. "Laces 2019" organized by GGI, Florence from November 25 to December 13, 2019.
4. "International School on Amplitudes and Cosmology, Holography and Positive Geometries" organized by INFN, Lecce from May 27 to June 1, 2019.
5. "IX Workshop on Geometric Correspondences of Gauge Theories" organized by SISSA, Trieste held during June 17- June 21, 2019.
6. "Indian String Meet" held at IISER, Thiruvananthapuram from December 16 to December 21, 2018.
7. "SERC Main School in THEP" held at IISER, Pune from November 25 to December 15, 2018 .
8. "National String Meet" held at NISER, Bhubaneswar from December 5 to December 10, 2017.

Presentation and poster

1. Conference talk on ""Weights, Recursion relations and Projective triangulations for positive geometry of scalar theories" " in Chennai String Meet held online by IMSc from December 14 to December 18, 2020.
2. Poster presentation on "Surface Defects from Fractional Branes" in YITP Workshop on Strings and Fields held Online from November 16 to November 20, 2020.
3. Gong show talk and Poster presentation on "Surface Defectsfrom Fractional Branes" in Hamilton School on Mathematical Physics held Online from August 24 to August 28, 2020.
4. Conference talk on "Surface Defects from String Theory" in Chennai String Meet held at IMSc from November 21 to November 23, 2019.

মায়ের জন্য...

আজ তুমি নিশ্চয়ই আমার জন্য খুশি
হয়েছ, যেখানেই আছো খুব
ভালো থেকো মা ।।

ACKNOWLEDGEMENTS

A journey of a thousand miles begin with a single step...

Another small step ahead! And well it was a real journey, a journey through so many ups and downs still a really fulfilling one in the end.

First of all, I would sincerely thank my supervisor Prof. Sujay K. Ashok for guiding me through these years of PhD . I am thankful to him for taking me as a student in the very first place and giving me an opportunity to step into the world of research in string theory. His careful guidance, immense patience, and amazing work culture have not only inspired me but have taught me many lessons which will stay with me in the coming days of research and life in general. I don't remember you shouting or scolding me not even once in my whole PhD , although on numerous occasions you had every reason to do so. Thanks for believing in me even when I was seriously lacking in getting ahead with the thesis project in the initial days. You have always given me enough freedom to work at my own pace and explore things on my own. I owe you a lot for everything and hopefully will do justice to some of your teachings in my future endeavors.

I am grateful to Alok Laddha for introducing me to the field of positive geometry and amplitudes. I am especially thankful to him for taking me on a project when I had close to zero background knowledge to even start it out. He has helped me out on numerous occasions whenever I have asked him about some doubts or any other kind of help including suggesting possible topics of projects. His remarkable understanding of the current topics of research in the field of amplitudes has been inspiring to witness so closely.

I have been really lucky to have some great collaborators to work with: Alberto, Alok, Aneesh, Marco, Marialuisa, Mrunmay, Pinaki, Renjan, Ryota. I was amazed by Alberto's insightful ideas, grasp of the field, and explaining complicated concepts in simple terms.

Thanks to his very well written final drafts of the papers, the writing of my thesis became a lot easier. The handwritten notes by Mariluisa were especially helpful. The clear explanations of Marco with physical insights were excellent. Although very busy people, they were always one mail away, I am grateful to all three of them for their quick replies and encouragement they used to give for whatever calculation I used to send them.

I convey my thanks to my doctoral committee members V Ravindran, Nemani V Suryanarayana, Rajesh Ravindran, and Sayantan Sharma for the necessary guidance and for fulfilling the official formalities. I am also thankful to Nemani for asking important questions during my DC meetings, it has always made me realize the gaps in my understanding and pushed me to study things in more detail.

I thank Prof. Sunil Mukhi and Prof. Debashis Ghosal for carefully reviewing my thesis and suggesting numerous corrections.

Here I take the opportunity to thank the faculty members of the Chennai string group for keeping the environment lively for research: Sujay Ashok, Nemani Suryanarayana, Bala Sathiapalan, Kalyan Rama, Partha Mukhopadhyay, Roji Pius, Suresh Govindarajan, Ayan Mukhopadhyay, Prashant Tripathy, Alok Laddha, Amitabh Virmani, K. Narayan. It's been a privilege to listen in various seminars, conferences and discuss with Renjan, Madhu, Arnab, Atanu, Prafulla, Sourav Ballav, Varun, Shabbir, Arpan, Anupam, Semanti, Ankit, Arkajyoti, Raghvendra, Pavan, Toshali, Tanmay, Subhroneel, Ritabrata, P N Bala, Aditya, Sourav Roy Chowdhury, Manu, Aneesh, Athira, Debadrina and many more during these five years of stay in Chennai. I would like to thank all the participants of NSM 2017, ISM 2018, and NSM 2019 and all the conferences I have attended during my PhD life for the amazing experiences both academically and non academically. I also thank all the participants of the SERC Main school in THEP and ST4 for the beautiful time spent and amazing learning experiences.

I am grateful to the administrative staff at IMSc: Vishnu Prasad, Indra, Gayatri, Prema, Usha, etc. for their support in carrying out the various academic formalities over the
years. I thank Balaji and all the other canteen workers for providing nutritious food. I am grateful to all the house-keeping, civil and electrical staff at IMSc for their round the clock service and for keeping office and hostel places clean and comfortable. Thanks to all the other non academic staff including the library, system, and media for their service. The contribution of the security guards in keeping IMSc a safe place is very much appreciated.

I would like to say thanks to my batchmates: Ankit Aggarwal, Ankit Dhanuka, Anupam, Arindam, Ajjath, Pooja, Nana Siddharth, Thiru Senthil, Sabiar, Semanti, Shivani, Soumya, Vinay for the memorable experiences in the classes, discussing assignments, gossiping about exam papers, etc. during our coursework. I have learned a lot during my coursework at IMSc. I convey my gratitude to Nemani, Digal, Rajesh, Indumathi, Partha, and Shrihari for their teachings during that period. The assignments and exam papers were always challenging and insightful which helped me to appreciate how a research problem should be approached.

I am highly thankful to Marialuisa, Alberto, and Marco for allowing me to visit the string theory group at the University of Torino. It was during this visit my PhD project took shape. Without their collaboration and help, it wouldn't be possible to get through this conceptually tricky project. I am especially thankful to Marco for taking me to the beautiful Alps for a nice trek. I also thank Renjan for letting me stay in his apartment and using his office space during this visit.

I convey my gratitude to Alok, Marco, and Sujay for writing out the recommendation letters for my post-doc applications.

I am highly thankful to Ankit and Semanti for the group studies. I have learned a lot from it. Hopefully, we will continue and come out with some fruitful collaboration in near future.

I would like to thank Arindam, Arkajyoti, and Sahil for the exciting days of preparing the demonstration of Open Day.

I am especially grateful to Renjan for collaborating with me on various projects and guiding me through them. His hard working attitude has always inspired me. I owe much of my Mathematica knowledge to him.

Sourav da has been an amazing senior and friend to have. I have always asked him for academic advice over different stages of my PhD . I am grateful for the help I have received from him, Varun and Renjan during my project in the last semester of coursework.

I thank my officemates: Syed Meesum, Digjoy, Mrigendra, and Chandrani for maintaining a nice atmosphere in the office and for the fun conversation we had.

Sports have been a very important part of my life in IMSc and have helped me with staying physically fit and mentally relaxed. I have started playing cricket within weeks after joining here. I would like to thank Sohan, Raghvendra, Bhargava, Devanand, Rakesh, Hitesh, Sahil, Jyotijwal, Nirmalya, Sourav, Mahaveer, Gopal, Moovendan, Subhankar, Sugumar, Umang, Rajesh, Tanmoy, Anupam, Srivatsa, Prashanth, Jahanoor, Rajesh, Ankit, Sabiar, Parth for the enjoyable times in the cricket ground including two very competitive tournaments. I thank Pritam and Arindam for accompanying me for having a hand in Table tennis. I have learned some badminton almost from zero level. I would like to thank Dheeraj, Pritam, Selvakumar, Ankit, Abinash, Vasan, Kiruba, Nidhi, Surabhi, Pavitra, Chandrani, Piyasa, Ramit, Ujjal, Anupam, Yogesh, Semanti, Ajjath, Jaykumar, Mrigendra, Rakesh, and many more for the beautiful memories in the Badminton court. I am very much thankful to Ujjal, Pranendu, Rupam, Anupam, Digjoy, Sahil, Sourav, Subhroneel, Ritabrata, Ankur, Tanmay Sengupta, Tanmay Bera, Abhimanyu, Subhankar, Ajay, Semanti, Ajjath, and many more for the competitive football matches which have helped me learn this sport a bit more and many wonderful memories we have created on the ground. I am grateful to Sourav, Umang, Surabhi, Arindam, Jyotijwal, Suman, Vivek, Rakshika, Pavan, Aritra, Tanmay for participating in the chess tournament and making it a success. I am especially thankful to Sourav for co-organizing the chess tournament with me. I will remember the nice late night carrom matches with Sahil, Arindam, and Pritam.

I will remember all the love and affection I have received from Kido, many other nearby street dogs, and IMSc cats. They have always helped me to get a homely feeling.

During PhD, one passion I have pursued to a good extent is to trek and travel. It was my oxygen that kept me going when academically nothing was working out. I traveled to a good amount of places and there is a long list of people whom I want to thank for giving company in various trips. I thank all the participants of Institute trips from 2016 to 2020 for the sweet memories. Many years after school days I had the opportunity to enjoy such group trips to all the beautiful places in South India. It is one of those things that I will miss most after leaving IMSc. I take this opportunity to convey my sincere gratitude to Ajjath and Semanti for co-organizing the 2017 Institute trip with me. It was one of the few organizational events where I enjoyed every bit of it. I will cherish the beautiful memory of the Puducherry trip with Sabiar. I thank Semanti, Ujjal, Ajjath, Sourav, Ramit, Shivani, Gaurav, Subhankar for the Tada falls trek. I am grateful to Ajjath, Ujjal, Semanti, Subhankar, and Ramit for one of the best trips to Vattakanal. I am thankful to Sabiar and Soumya for our "Good Friday" trips to Ooty and Kotagiri. We created lots of memories to cherish. The trip to Pichavaram in a general class of train on the occasion of year ending was one of the best ways to finish the year. I am grateful to Soumya, Anupam, Tanmay, Jyotijwal, Apurba and Ramit for the beautiful experiences on Mcleodganj trip. The winter trek to Chandrashila with Ajjath, Ujjal, and Subhankar was among one of the unique experiences. I am really thankful to Ramit for agreeing to join me on a trip to North Bengal. After staying at home for months due to lockdown, that trip was more of a necessity than a luxury. I thank Subhankar for calling us to his marriage and the trip to Darjeeling thereafter was amazing, thanks to Ujjal, Semanti, Ajjath, Ramit, Partha for all the nice memories we created during that visit. I also thank Anupam and Manu for the beautiful travel memories in Rome, Lecce and Torino while attending the school in Italy. I thank Tanmay da for including me in their group performance during the 2017 Freshers’ welcome program. I had almost zero experience of performing on stage, I am grateful to
the IMSc audience that they listened to my recitation several times. I am really grateful to all the members : Subhroneel da, Semanti, Ajjath, Ujjal, Ramit, Subhankar, Jyotijwal, Abhimanyu, Tanmay, Pavitra, Chandrani, Subashri, Anupam for the beautiful drama that we were able to execute, thanks for all the funny and sweet memories during rehearsals. I have an inherent interest in organizing and planning things. I am lucky to get the opportunity to serve as a student representative for two terms. I thank Surabhi, Pavan, and Anupam for being co-member of the committee. I am grateful for all the support I have got from all the members of the institute including students, admin, and faculties during these. The experience of organizing the freshers' welcome program was also very satisfying.

After coming to IMSc, I learned to cook a bit as well. Thanks to Sabiar for agreeing to buy the utensils and get started in the first place. After Soumya and Sahil joined in, it was even more enjoyable. I also thank the other group of people : Semanti, Ajjath, Ujjal, Subhankar, Ramit with whom I have cooked many different cuisines. Thanks to them always praising my cooking even when it's not that good all the time. I equally thank them for the delicious dishes they have cooked and invited me over. The conversations over meals in the canteen have been full of fun, thanks to many of my friends including Pritam da for sitting there to let me finish even though they are done with their meal already.

In a long journey like PhD , friends are an integral part of it. I am not so expressive and many times haven't thanked people explicitly. But believe me, I do remember all the support I have received from you people.

Sabiar has been among my first friends after coming to IMSc. From sharing the same room while attending the interview, it is been an eventful friendship thereafter. We have done so many things together: trips, cooking, cycling, morning walks, searching for low price buffets, gossiping, preparing for comprehensive exams together, and many more. You were always available whenever I felt down and needed to talk with someone. I am
really grateful for all the beautiful memories.

I thank Ajjath for the friendship and the care I have received from her on various occasions.

There have been many emotionally down times during the last five years, I am sincerely grateful to Ajjath, Neelam, Semanti, Pooja, Subhankar, Ujjal for checking me out and standing by my side on different occasions.

I am grateful to all the members of "Group of Unusual people" for the nice memories of late night mafia, dumb charades or Pictionary games, food ordering, watching movies, or even just arguing for the whole night and obviously for the amazing trips we had together. We will surely rejoice in these memories after leaving IMSc and hopefully we will stay in touch even after.

Semanti, you are a wonderful friend to have. Throughout my stay in IMSc, she is the person I have interacted with the most. Being working in a similar field, we always shared academic ideas. Many of my other activities like travel, cooking, sports, she was also part of. I have felt most comfortable talking to you. Your sweet smile, whenever we cross paths, is always very welcoming. I have learned a lot from you especially how you take many complicated situations in a very light hearted way and your optimistic way of life has inspired me on various occasions. thanking might just be a formality but still, let me do so on this opportunity for your amazing friendship. I hope we will continue to stay good friends like this.

I am thankful to Sahil for the time spent talking together including late night studies in the library in my initial years at IMSc. Soumya has been a very nice friend. The discussions with him during night walks and trips are all sweet memories.

The beautiful days spent with Sourav while attending the SERC school are really memorable. I thank him for his friendship and the fun times we have spent together while attending various schools and conferences.

I thank my childhood friend Riju for all the mischievous things we have done since childhood and for staying in touch even after I left Kolkata.

I thank Soumya, Sahil, and Arindam for the after dinner walks. Ramit, Neelam, and Sabiar for agreeing to go cycling with me.

I also take this opportunity to apologize to my friends for the misbehave I have done or the anger I have expressed towards them on a few occasions. Also, I must have missed many people to acknowledge, excuse me for that, all of you mattered in my life at some point, thanks for being there at the time of need.

I thank my piano teacher Farook for his nice classes, Masterji for Kalaripayattu classes, Poomani for the Tamil language teaching and the caretaker Anna at the rented house I stay at, and everyone who has contributed to my pleasant stay in Chennai.

Family members always play an important role in one's achievements. I am thankful to my brother and sister-in-law for being supportive. It was a great experience to spend time with my sweet little niece during the lockdown, her jolly presence kept things alive in an otherwise boring time. I thank my cousins for always keeping high expectations of me and keeping me encouraged. I am grateful to all other family members who played some role in my upbringing.

I owe a lot to my father for believing in me, it won't be possible to reach this far without his encouragement and support. It's because of the sacrifices of my parents I could continue to higher studies from a financially unstable family. I thank them for letting me choose physics after higher secondary.

I can't express in words the contribution my mother has on me. I just want to tell you whatever is good within me, I got from you. Still, at times of utmost depression, I feel your loving presence within me and your good wishes always keep me going and will do so in the future too.

Summary

Surface defects in gauge theories are non-local operators supported on co-dimension two sub manifold. Defects in quantum field theory can provide us with important nonperturbative information eg. different phase structures present in the system. They were first studied by Gukov-Witten in the context of $\mathrm{N}=4$ super Yang-Mills theories. The Gukov-Witten surface defects are characterized by sets of discrete and continuous parameters. In this thesis, we geometrically engineer Gukov-Witten surface defects in maximally supersymmetric $\mathcal{N}=4$ Yang-Mills theory with gauge group $\mathrm{U}(N)$ within the setup of perturbative Type IIB string theory. In particular, we refine the proposal of Kanno and Tachikawa and realize the defect by a configuration of fractional D3 branes on an orbifold background that preserves two dimensional Poincaré invariance.

On this particular orbifold target space in which the D3 world volume is extended partially along the orbifold, we consider closed string fields that act as a background. Moreover, the relevant closed string states are the twisted sector ones that are special to the orbifold space. Due to the presence of the fractional D3 branes which introduce a boundary on the worldsheet, the left and right moving sectors of the closed string fields are identified under some reflection rules. In addition, we consider the open string vertex operators that are invariant under the action of the orbifold group. After providing the necessary details about twisted closed string sectors, Reflection rules, and open string spectra, we calculate open/closed disk correlation functions on the worldsheet involving one massless closed string field from a twisted sector and one massless open string field. By giving a constant background vacuum expectation value to the twisted field, we interpret nonvanishing correlators as sources for the open string field. By Fourier transform to position space, we obtain a space-time profile for the open string field that matches exactly with the expected singular profiles of the four dimensional fields of the gauge theory in the presence of the Gukov-Witten defect. The background values of the twisted closed string
fields are identified with the continuous parameters that define the defect in the gauge theory description. We provide an important check of our proposal by verifying that this identification is consistent with the expected S-duality properties of these continuous parameters.

In the first part, we consider the simplest possible surface defect with two discrete parameters realized via fractional D3 branes on a background with \mathbb{Z}_{2} orbifolding. In the later part, we generalize the above construction to the most generic type of Gukov-Witten defects with M discrete parameters realized via fractional D3 branes on a \mathbb{Z}_{M} orbifold.

Contents

Synopsis 1
0.1 Introduction 1
0.2 Background 2
0.2.1 Type II B string theory 2
0.2.2 D-branes 2
0.2.3 Surface operators 3
0.3 Surface defects from fractional Branes 5
0.3.1 Summary of main idea 5
0.3.2 The \mathbb{Z}_{2} orbifold 7
0.3.3 Open string spectrum 9
0.4 Surface defects from \mathbb{Z}_{M} orbifolds 12
0.4.1 Closed string spectrum 12
0.4.2 Open string spectrum 15
0.4.3 Open/Closed correlators and field theory profiles 15
0.5 Conclusion 17
1 Motivation and Introduction 21
2 Background 25
2.1 Type IIB string theory 25
2.2 State-operator correspondence and Vertex operators 32
2.3 D-branes 33
2.4 ALE space 40
2.5 Fractional Branes 41
3 Surface operators as monodromy defects 43
3.1 Monodromy defects 44
3.1.1 Origin of GW defect 47
3.1.2 Path integral description of surface defects 48
3.2 Monodromy defects from fractional branes 49
3.2.1 Setup 50
4 Surface operators using \mathbb{Z}_{2} orbifold 55
4.1 Closed strings in the \mathbb{Z}_{2} orbifold 55
4.1.1 Twisted closed string sectors 56
4.2 Fractional D3-branes in the \mathbb{Z}_{2} orbifold 63
4.2.1 Boundary states 63
4.2.2 The open string spectrum 69
4.3 Open/closed correlators 72
4.3.1 Correlators with NS/NS twisted fields 73
4.3.2 Correlators with R / R twisted fields 78
4.4 Continuous parameters of surface operators from world-sheet correlators 81
4.5 S-duality properties 86
5 Surface operators using \mathbb{Z}_{M} orbifold 89
5.1 Twisted closed strings in the \mathbb{Z}_{M} orbifold 91
5.1.1 Twisted sectors 92
5.1.2 Twisted NS sectors 93
5.1.3 The massless NS/NS vertex operators 100
5.1.4 Twisted R sectors 102
5.1.5 The massless R / R vertex operators 107
5.2 Fractional D3-branes in the \mathbb{Z}_{M} orbifold 108
5.2.1 Boundary states and reflection rules 109
5.2.2 Massless open string spectrum 115
5.3 Open/closed correlators 118
5.3.1 Correlators with NS/NS twisted fields 119
5.3.2 Correlators with R / R twisted fields 124
5.4 Continuous parameters of surface defects 126
6 Conclusion 133
A Dirac matrices 137
A.0. $14 d$ 137
A. $0.2 \quad 6 d$ 139
B \mathbb{Z}_{M} in momentum space 142
C Fractional Branes: boundary state perspective 145

Synopsis

0.1 Introduction

The study of defects in QFT has become an active area of research in recent years and their study has provided useful information about the vacuum structure of the gauge theories. They are an important probe of the non-perturbative effects and dualities in gauge theories. One-dimensional or line defects such as Wilson and 't Hooft loops in gauge theories are the best studied in the literature. In this thesis, we focus on higher dimensional defects which are supported on co-dimension two submanifolds, called surface defects. These were first introduced by Gukov and Witten (GW) [1,2] in the context of four dimensional maximally supersymmetric $\mathcal{N}=4$ Yang-Mills theory with $U(N)$ gauge group. The defect was defined as a "monodromy defect" by specifying the singular behavior of the four dimensional fields in the gauge theory as one approaches the location of the defect. With these boundary conditions specified for the path integral, correlation functions in the presence of such defects provide us with valuable non-perturbative information about the bulk gauge theory.

In this thesis, we geometrically engineer a Gukov-Witten surface defect within Type II B string theory by considering a configuration of fractional branes on an orbifold background. In addition, we provide a physical interpretation of the defining parameters of the defect in terms of background values for closed string scalars in the twisted sectors of the closed string orbifold.

0.2 Background

0.2.1 Type II B string theory

The massless spectra of Type II B string theory in 10d flat spacetime having $S O(1,9)$ symmetry, contains the $\mathrm{N}=(2,0)$ gravity multiplet. In addition, there are two matter multiplets containing the 2 -form field $B_{\mu \nu}$ and Dilaton in NS/NS sector and $C_{\mu \nu}$ in R / R sector in addition to other fields. In the Type II B theory, the same GSO projection is taken in both left and right sectors and the spectrum is chiral. The closed string background we will be interested in is given by the following orbifold:

$$
\begin{equation*}
\mathbb{C}^{3} \times\left(\mathbb{C}^{2} / \mathbb{Z}_{M}\right) . \tag{1}
\end{equation*}
$$

If we do a \mathbb{Z}_{M} orbifolding along 4 directions, the massless spectra of Type II B theory, in addition to the untwisted sector mentioned above, will contain $(M-1)$ twisted sectors [3].

0.2.2 D-branes

D-branes are explicit realizations of RR charged BPS states in superstring theory. From an open string theory perspective, D-branes are hypersurfaces on which the end-points of the open string lies. In closed string theory, they can be described using boundary state formalism.

Fractional branes are particular to orbifold backgrounds and correspond to D-branes that are stuck at the fixed loci of the orbifolded space. They transform under the irreducible representations of the orbifold group. Regular branes that can freely move along the orbifolded representations are simply linear combinations of these fractional branes.

In this thesis, we realize GW type surface defects within the perturbative string the-
ory. The configuration that we shall consider was first introduced in a work by KannoTachikawa (KT) [4]. Their goal was to derive the instanton partition functions in the presence of surface defects by introducing stacks of fractional D3 and $\mathrm{D}(-1)$ branes in the orbifold background. We shall consider just the fractional D3 branes and consider the following brane set-up:

Figure 1: The orbifold setup.

0.2.3 Surface operators

In this section, we review basic facts about surface operators in $\mathcal{N}=4$ SYM theory with $U(N)$ gauge group, following [1]. One approach to define these operators is by specifying a particular monodromy behaviour of the massless fields of the four dimensional theory near the defect plane. If $z=r e^{i \theta}$ is the coordinate for the transverse plane to the defect D , then as one approaches $r \rightarrow 0$, the gauge field behaves in the following manner:

$$
\begin{equation*}
A \sim \underline{\alpha} d \theta=\operatorname{diag}(\underbrace{\alpha_{0}, \ldots, \alpha_{0}}_{n_{0}}, \underbrace{\alpha_{1}, \ldots, \alpha_{1}}_{n_{1}}, \ldots \underbrace{\alpha_{M-1}, \ldots, \alpha_{M-1}}_{n_{M-1}}) d \theta \tag{2}
\end{equation*}
$$

where the n_{I} set of integers satisfy $\sum_{I=0}^{M-1} n_{I}=N$.

In the path integral, one needs to integrate over all gauge field configurations with the above prescribed condition. The holonomy of the gauge field is given by $P \exp \left(-\int_{l} A\right)$. So, the monodromy of the gauge connection A around a circle of constant r is given by $\exp (-2 \pi \underline{\alpha})$. At the location of the defect the gauge group is broken to its Levi subgroup:

$$
\begin{equation*}
L=U\left(n_{0}\right) \times U\left(n_{2}\right) \times \ldots \times U\left(n_{M-1}\right) \tag{3}
\end{equation*}
$$

Also, the scalars in the theory behave in the following manner as $z \rightarrow 0$:

$$
\begin{equation*}
\Phi \sim \frac{\underline{\beta}+i \underline{\gamma}}{2 z} \tag{4}
\end{equation*}
$$

Figure 2: The monodromy behaviour of the fields.
In the path integral, one is also allowed to add a 2 d topological term:

$$
\begin{equation*}
\exp \left(2 \pi i \sum_{I=1}^{M} \eta_{I} \int_{D} \operatorname{Tr} F_{U\left(n_{l}\right)}\right) \tag{5}
\end{equation*}
$$

Since $d(d \theta)=2 \pi \delta_{D}$, the field strength calculated using this gauge field A is singular: $F=2 \pi \underline{\alpha} \delta_{D}$. A surface operator is characterized by 4 M continuous parameters $(\underline{\alpha}, \underline{\beta}, \underline{\gamma}, \underline{\eta})$ and M discrete parameters $n_{I}, I=0,1, \ldots,(M-1)$.

Lastly, a remarkable feature of $\mathcal{N}=4$ SYM is that it is invariant under the non-perturbative duality group $S L(2, \mathbb{Z})$. This is a strong weak coupling duality as far as the gauge coupling is concerned; in particular an element $\Lambda=\left(\begin{array}{ll}m & n \\ p & q\end{array}\right) \in S L(2, \mathbb{Z})$ induces the transformation

$$
\begin{equation*}
\tau \rightarrow \frac{m \tau+n}{p \tau+q} \tag{6}
\end{equation*}
$$

where τ is the complexified gauge coupling constant $\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}}$.
As shown in [1] the duality group also acts naturally on the continuous parameters of the
surface defect as follows:

$$
\begin{align*}
& \left(\alpha_{I}, \eta_{I}\right) \rightarrow\left(\alpha_{I}, \eta_{I}\right) \Lambda^{-1}=\left(q \alpha_{I}-p \eta_{I},-n \alpha_{I}+m \eta_{I}\right), \\
& \left(\beta_{I}, \gamma_{I}\right) \rightarrow|p \tau+q|\left(\beta_{I}, \gamma_{I}\right) . \tag{7}
\end{align*}
$$

0.3 Surface defects from fractional Branes

0.3.1 Summary of main idea

Our primary goal is to derive the field profiles (2) and (4) as well as the topological term (5) that characterize a Gukov-Witten defect from a world-sheet analysis. In our set-up, the $4 d$ gauge theory lives on a system of D3-branes in Type II B string theory placed in a \mathbb{Z}_{M} orbifold space as shown in the figure 1 . We divide the $10 d$ target space into five complex directions in the following way:

$$
\begin{equation*}
\mathbb{C}_{(1)} \times \frac{\mathbb{C}_{(2)} \times \mathbb{C}_{(3)}}{\mathbb{Z}_{M}} \times \mathbb{C}_{(4)} \times \mathbb{C}_{(5)} \tag{8}
\end{equation*}
$$

The world volume of the D3 brane is along $\mathbb{C}^{(1)} \times \mathbb{C}^{(2)}$ whereas the \mathbb{Z}_{M} orbifold is along $\mathbb{C}^{(2)} \times \mathbb{C}^{(3)}$. The defect is extended along $\mathbb{C}^{(1)}$ i.e. its located at the fixed point of orbifold action.

The integer partition of N , which determines the unbroken Levi subgroup corresponds to the choice of the N -dimensional representation of \mathbb{Z}_{M} on the Chan-Paton indices of the D3-branes; in other words, n_{I} is the number of the fractional branes transforming in the I-th irreducible representation of \mathbb{Z}_{M}. The missing link in the KT description was how the orbifold realization encodes the continuous parameters of the surface defect. In this thesis work, we fill this gap by showing that they correspond to background values for massless closed string fields belonging to the twisted sectors of the Type II B theory on the orbifold.

Schematically, the mechanism goes as follows. We give a constant background value to the closed string scalars in the twisted sector and they act as a classical source for the open string fields. In the presence of a closed string background certain open string fields $\Phi_{\text {open }}$ attached to a fractional D3-brane of type I acquire a non-zero one point function, i.e. a tadpole. If we denote by $\mathcal{V}_{\text {open }}$ the open string vertex operator associated to $\Phi_{\text {open }}$ and by $\mathcal{V}_{\text {closed }}$ the closed string vertex operator corresponding to field $\Phi_{\text {closed }}$, the tadpole $\left\langle\mathcal{V}_{\text {open }}\right\rangle_{\text {closed, },}$ arises from an open/closed string correlator evaluated on a disk which contains an insertion of $\mathcal{V}_{\text {closed }}$ in the interior and of the vertex operator $\mathcal{V}_{\text {open }}$ on the boundary that lies on a D3-brane of type I:

Figure 3: An example of an open/closed string amplitude on a D3-brane with one closed string vertex operator insertion in the interior and one open string vertex operator insertion at the boundary.

The disk diagram presented above acts as a classical source for $\Phi_{\text {open }}$ and acquires a nontrivial profile in the transverse plane to the defect plane. The explicit expression of this profile near the defect is obtained by attaching a propagator to the source and taking the Fourier transform.

To calculate the open/closed correlators we will need the vertex operator of closed string scalars in twisted sectors, the boundary states for the closed string fields which will provide the reflection rules for the left and right moving sectors, and the open string spectrum.

0.3.2 The \mathbb{Z}_{2} orbifold

Closed string spectrum

We will be considering the \mathbb{Z}_{2} orbifold setup first. In this case, the closed string Hilbert space in addition to the usual untwisted sector, contains one twisted sector, associated with the non-trivial conjugacy class of \mathbb{Z}_{2} [5].

The vertex operator at the massless level in the NS/NS twisted sector is given by combining the left moving and right moving vertex operators. For the left moving one the explicit form of the vertex operator is given by:

$$
\begin{equation*}
\mathcal{V}^{\alpha}(z)=\Delta(z) S^{\alpha}(z) \mathrm{e}^{-\phi(z)} \mathrm{e}^{\mathrm{i} \bar{\kappa} \cdot \bar{Z}(z)+\mathrm{i} \kappa \cdot \bar{Z}(z)} . \tag{9}
\end{equation*}
$$

which is a conformal field of weight 1 if $\kappa \cdot \bar{\kappa}=\frac{1}{2} k^{2}=0$. The conformal twist operator $\Delta(z)$ and spin field $S^{\alpha}(z)$ are of conformal weight $\frac{1}{4}$ each. The vertex operator : $\mathrm{e}^{-\phi(z)}$: is to describe physical vertex operators in the standard (-1)-superghost picture of the NS sector. We have introduced the complexified momentum $\kappa_{i}=\frac{k_{i}+i k_{i+1}}{\sqrt{2}}$.

Similarly one can construct the right moving vertex operator $\widetilde{\mathcal{V}}^{\alpha}(\bar{z})$.

$$
\begin{equation*}
\widetilde{\mathcal{V}}^{\alpha}(\bar{z})=\widetilde{\Delta}(\bar{z}) \widetilde{S}^{\alpha}(\bar{z}) \mathrm{e}^{-\widetilde{\phi}(\bar{z})} \mathrm{e}^{\mathrm{i} \cdot \widetilde{\mathcal{Z}}(\tilde{z})+\mathrm{i} \kappa \cdot \tilde{Z}(\bar{z})} \tag{10}
\end{equation*}
$$

The complete NS/NS vertex operators are constructed by combining $b_{\alpha \beta} \mathcal{V}^{\alpha}(z) \widetilde{\mathcal{V}}^{\beta}(\bar{z})$.
The four independent components can be decomposed into a real scalar b and a triplet b_{c} (with $c=1,2,3$). They correspond to the following vertex operators:

$$
\begin{align*}
b & \longleftrightarrow \mathcal{V}_{b}(z, \bar{z})=\mathrm{i} \epsilon_{\alpha \beta} \mathcal{V}^{\alpha}(z) \widetilde{\mathcal{V}}^{\beta}(\bar{z}), \\
b_{c} & \longleftrightarrow \mathcal{V}_{b_{c}}(z, \bar{z})=\left(\epsilon \tau_{c}\right)_{\alpha \beta} \mathcal{V}^{\alpha}(z) \widetilde{\mathcal{V}}^{\beta}(\bar{z}) \tag{11}
\end{align*}
$$

where τ_{c} are the usual Pauli matrices. Due to the fact that D3 brane is partially extended
along the orbifold, the triplet state b_{c} further breaks down to a scalar b^{\prime} and a doublet of complex conjugate fields $b_{ \pm}$.

Similarly one can construct the R / R massless vertex operators. We write down the vertex operators of two massless scalars c and c^{\prime} below which we will need later:

$$
\begin{align*}
c & \longleftrightarrow \mathcal{V}_{c}(z, \bar{z})=C_{A \dot{B}} \mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z}), \tag{12a}\\
c^{\prime} & \longleftrightarrow \mathcal{V}_{c^{\prime}}(z, \bar{z})=\left(C \Gamma_{12}\right)_{A \dot{B}} \mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z}) . \tag{12b}
\end{align*}
$$

where $\Gamma_{M N}=\frac{1}{2}\left[\Gamma_{M}, \Gamma_{N}\right]$, with Γ_{M} being the Dirac matrices of $S O(6)$.

Boundary states and Reflection rules

In the \mathbb{Z}_{2} orbifold case there are two types of fractional D-branes that correspond to the two irreducible representations of the orbifold group. The fractional D3-branes can be schematically represented in the boundary state formalism as follows [6-8]:

$$
\begin{equation*}
|\mathrm{D} 3 ; I\rangle=\mathcal{N}|\mathrm{U}\rangle+\mathcal{N}^{\prime}|\mathrm{T} ; I\rangle \quad \text { with } \quad|\mathrm{T} ; I\rangle=(-1)^{I}|\mathrm{~T}\rangle . \tag{13}
\end{equation*}
$$

$I=0,1$ labelling two types of fractional branes. $|\mathrm{U}\rangle$ and $|\mathrm{T}\rangle$ are the untwisted and twisted Ishibashi states.

The boundary state $|\mathrm{D} 3 ; I\rangle$ introduces a boundary on the closed string world-sheet along which the left and right moving modes are identified. Using explicit expressions of the boundary states, one can derive that the right moving parts of the twisted closed string vertex operators are reflected on a boundary of type I with the following rules

$$
\begin{align*}
& \widetilde{\mathcal{V}}^{\alpha}(\bar{z}) \longrightarrow(-1)^{I}\left(\gamma_{4} \gamma_{3}\right)_{\beta}^{\alpha} \mathcal{V}^{\beta}(\bar{z}), \tag{14a}\\
& \widetilde{\mathcal{V}}^{\dot{A}}(\bar{z}) \longrightarrow(-1)^{I}\left(\Gamma_{1} \Gamma_{2}\right)_{\dot{B}}^{\dot{A}} \mathcal{V}^{\dot{B}}(\bar{z}) . \tag{14b}
\end{align*}
$$

γ_{m} and Γ_{M} being the Dirac matrices of $S O(4)$ and $S O(6)$ respectively.

0.3.3 Open string spectrum

In the case of D3 branes completely transverse to the orbifold, the open string vertex operators for gauge field A_{μ} in (0)-picture number is given by:

$$
\begin{equation*}
\left(\mathrm{i} \partial X^{\mu}+k \cdot \psi \psi^{\mu}\right) \mathrm{e}^{\mathrm{i} k \cdot X} . \tag{15}
\end{equation*}
$$

But in our case where the D3-brane is partially extended along the \mathbb{Z}_{2} orbifold, we have to take appropriate linear combinations of $e^{i k . X}$ factor which transforms covariantly under the orbifold action.

For eg. the vertex operator for the gauge field component A_{1} is given by,

$$
\begin{equation*}
A_{1} \longrightarrow \mathcal{V}_{A_{1}}=\left[\left(\mathrm{i} \partial Z^{1}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{1}\right) \cos \left(\kappa_{\perp} \cdot Z_{\perp}\right)+\mathrm{i} \kappa_{\perp} \cdot \Psi_{\perp} \Psi^{1} \sin \left(\kappa_{\perp} \cdot Z_{\perp}\right)\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}} \tag{16}
\end{equation*}
$$

where we define the following combinations

$$
\begin{gather*}
z_{i}=\frac{x_{2 i-1}+\mathrm{i} x_{2 i}}{\sqrt{2}} \quad \text { and } \quad \bar{z}_{i}=\frac{x_{2 i-1}-\mathrm{i} x_{2 i}}{\sqrt{2}} \tag{17}\\
\kappa_{\perp} \cdot Z_{\perp}=\kappa_{2} \bar{Z}^{2}+\bar{\kappa}_{2} Z^{2}, \quad \kappa_{\perp} \cdot Z_{\perp}=\kappa_{2} \bar{Z}^{2}+\bar{\kappa}_{2} Z^{2} . \tag{18}
\end{gather*}
$$

Also $\kappa_{\|} \cdot \Psi_{\|}$and $\kappa_{\perp} \cdot \Psi_{\perp}$ are defined in similar way. In addition to the gauge field, there are three complex scalars as well in the massless open string spectra denoted as $\Phi, \Phi_{r}\{r=$ $4,5\}$.

Open/Closed correlators

The couplings of the massless open string fields of a fractional D3-brane of type I with a closed string field is given by,

$$
\begin{equation*}
\left\langle\mathcal{V}_{\text {open }}\right\rangle_{b ; I}=\int \frac{d z d \bar{z} d x}{d V_{\text {proj }}}\left\langle\mathcal{V}_{\text {closed }}(z, \bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle_{I} \tag{19}
\end{equation*}
$$

where $\mathcal{V}_{\text {closed }}, \mathcal{V}_{\text {open }}$ stands for any of the closed and open string vertex operators respectively and $d V_{\text {proj }}$ is the invariant projective volume.

The final result of the coupling of the four dimensional fields with the closed string scalars are given as follows:

$$
\begin{align*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b ; I} & =(-1)^{I+1} b \kappa_{2} \delta^{(2)}\left(\kappa_{\|}\right) \tag{20}\\
\left\langle\mathcal{V}_{\Phi}\right\rangle_{b_{+} ; I} & =(-1)^{I+1} \mathrm{i} b_{+} \bar{\kappa}_{2} \delta^{(2)}\left(\kappa_{\|}\right) \tag{21}\\
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{c ; I} & =(-1)^{I+1} 2 \mathrm{i} c \kappa_{1} \delta^{(2)}\left(\kappa_{\|}\right) \tag{22}
\end{align*}
$$

Field profiles

The profile of gauge field A_{2} in configuration space induced by the NS/NS twisted scalar b is obtained by Fourier transforming the coupling we have just obtained:

$$
\begin{align*}
A_{2} & =\int \frac{d^{2} \kappa_{\|} d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \mathrm{i} \sin \left(\kappa_{\perp} \cdot z_{\perp}\right) \mathrm{e}^{\mathrm{i} \kappa_{\|} \mid z_{\|}} \frac{\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b ; 0}}{2\left(\left|\kappa_{\|}\right|^{2}+\left|\kappa_{\perp}\right|^{2}\right)} \tag{23}\\
& =-\mathrm{i} b \int \frac{d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \sin \left(\kappa_{\perp} \cdot z_{\perp}\right) \frac{\kappa_{2}}{2\left|\kappa_{\perp}\right|^{2}}
\end{align*}
$$

After doing the integral, the final expression for the gauge profile is given by

$$
\begin{equation*}
A_{2}=-\frac{\mathrm{i} b}{4 \pi \bar{z}_{2}} . \tag{24}
\end{equation*}
$$

The component \bar{A}_{2} of the gauge field also has a non-trivial profile which is given by the complex conjugate of (24). Using these, the gauge field on a fractional D3-brane of type 0 in the \mathbb{Z}_{2} orbifold acquires the following profile

$$
\begin{equation*}
\mathbf{A}=A \cdot d x=A_{2} d \bar{z}_{2}+\bar{A}_{2} d z_{2}=-\frac{\mathrm{i} b}{4 \pi}\left(\frac{d \bar{z}_{2}}{\bar{z}_{2}}-\frac{d z_{2}}{z_{2}}\right)=-\frac{b}{2 \pi} d \theta \tag{25}
\end{equation*}
$$

where θ is the polar angle in the $\mathbb{C}_{(2)}$ plane which is perpendicular direction to the defect. A similar calculation for the scalar leads to a simple pole for Φ.

It is quite straightforward to generalize these findings to the case of a system made of n_{0} fractional D3-branes of type 0 and n_{1} fractional D3-branes of type 1 , which describes a gauge theory with group $\mathrm{U}\left(n_{0}+n_{1}\right)$ broken to the Levi group $\mathrm{U}\left(n_{0}\right) \times \mathrm{U}\left(n_{1}\right)$. The profiles of the gauge field and scalar are given by

$$
\begin{align*}
& \mathbf{A}=-\frac{b}{2 \pi}\left(\begin{array}{cc}
\mathbb{I}_{n_{0}} & 0 \\
0 & -\mathbb{I}_{n_{1}}
\end{array}\right) d \theta, \tag{26a}\\
& \boldsymbol{\Phi}=\frac{b_{+}}{4 \pi}\left(\begin{array}{cc}
\mathbb{I}_{n_{0}} & 0 \\
0 & -\mathbb{I}_{n_{1}}
\end{array}\right) \frac{1}{z_{2}} . \tag{26b}
\end{align*}
$$

This is precisely the expected profile for a monodromy defect of GW type. The continuous parameters of the surface defect are related to the background values of the fields in the NS/NS twisted sector as follows

$$
\begin{equation*}
\alpha_{I}=(-1)^{I+1} \frac{b}{2 \pi}, \quad \beta_{I}=(-1)^{I} \frac{\operatorname{Re}\left(b_{+}\right)}{2 \pi}, \quad \gamma_{I}=(-1)^{I} \frac{\operatorname{Im}\left(b_{+}\right)}{2 \pi} \tag{27}
\end{equation*}
$$

Similarly, one can show that there is a coupling between the longitudinal component of the gauge field A_{1} and the twisted scalar c in the R / R sector. While this does not lead to a profile, we show that this can be interpreted as an effective topological term localized on
the defect D and identified with the " η - parameter" in the following way:

$$
\begin{equation*}
\eta_{I}=(-1)^{I} \frac{c}{2 \pi} \tag{28}
\end{equation*}
$$

S-duality

From a geometric view point, the twisted scalars b and c arise by wrapping the NS/NS and R / R 2-form fields $B_{(2)}$ and $C_{(2)}$ of Type II B string theory around the exceptional 2-cycle ω_{2} at the orbifold fixed point, namely

$$
\begin{equation*}
b=\int_{\omega_{2}} B_{(2)}, \quad c=\int_{\omega_{2}} C_{(2)} . \tag{29}
\end{equation*}
$$

It leads to an identification of α_{I} with $\int_{\omega_{2}} B_{(2)}$ and η_{I} with $\int_{\omega_{2}} C_{(2)}$. Similarly the $b_{ \pm}$field is identified with the string-frame metric $G_{\mu \nu}$. So, $\left(\beta_{I}, \gamma_{I}\right)$ transform in the similar way as $G_{\mu \nu}$. Since, the S-duality properties of the parent Type II B theory are inherited within $B_{(2)}, C_{(2)}$ and $G_{\mu \nu}$, it leads to natural transformation properties for all the continuous parameters $\alpha_{I}, \beta_{I}, \gamma_{I}, \eta_{I}$ which matches exactly with the expected transformation properties (7) prescribed for them in GW-prescription.

0.4 Surface defects from \mathbb{Z}_{M} orbifolds

We will now generalize the above construction to \mathbb{Z}_{M} orbifold which captures the generic surface defect of type $\left[n_{0}, n_{1}, \ldots, n_{M-1}\right]$.

0.4.1 Closed string spectrum

In this case, the closed string Hilbert space in addition to the usual untwisted sector, contains ($M-1$) twisted sector, associated with the non-trivial conjugacy class of \mathbb{Z}_{M}
labeled by $a=1,2, \ldots, M-1$.
When M is even, there is a state with $v_{a} \equiv \frac{a}{M}$ equal to $\frac{1}{2}$ in which case the details are same as the \mathbb{Z}_{2} case. So, from now onwards without loss of generality, we will consider M to be odd. The salient feature of this case is that the vacuum states are tachyonic and the massless states are the first excited states.
eg. in the case of $v_{a}<\frac{1}{2}$, in NS-sector we have the following vertex operators at the massless level $[9,10]$

$$
\begin{align*}
& \mathcal{V}_{a}^{1}(z)=\sigma_{a}(z): \Psi^{3}(w) s_{a}(z): \mathrm{e}^{-\phi(z)} \tag{30}\\
& \mathcal{V}_{a}^{2}(z)=\sigma_{a}(z): \bar{\Psi}^{2}(w) s_{a}(z): \mathrm{e}^{-\phi(z)}
\end{align*}
$$

The bosonic twist field $\sigma_{a}(z)$ is a conformal field of weight $v_{a}\left(1-v_{a}\right)$ while the fermionic twist field $s_{a}(w)$ is a conformal field of weight v_{a}^{2}.

The massless closed string excitations in the twisted NS/NS sectors are obtained by combining the left- and right-moving massless states. In the sectors with twist parameter $v_{a}<\frac{1}{2}$, they are then described by the following vertex operators at zero momentum

$$
\begin{equation*}
b_{\alpha \beta}^{(a)} \mathcal{V}_{a}^{\alpha}(z) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{z}) \tag{31}
\end{equation*}
$$

where $b_{\alpha \beta}^{(a)}$ are four constant complex fields.
Similarly, in the sectors with twist parameter $\left(1-v_{a}\right)>\frac{1}{2}$, the massless closed string excitations are described by the vertex operators at zero momentum

$$
\begin{equation*}
b_{\alpha \beta}^{(M-a)} \mathcal{V}_{M-a}^{\alpha}(z) \widetilde{\mathcal{V}}_{M-a}^{\beta}(\bar{z}) \tag{32}
\end{equation*}
$$

where again $b_{\alpha \beta}^{(M-a)}$ are four constant complex fields.
In the R / R sector, we only consider non-vanishing background values for the scalars $C^{(a)}$ and $C^{(M-a)}$, since they are the only ones that turn out to be relevant for the description of the continuous parameters of surface defects. Thus, the closed string vertex operators we
consider are

$$
\begin{equation*}
C^{(a)} C_{A \dot{B}} \mathcal{V}_{a}^{A}(z) \widetilde{\mathcal{V}}_{a}^{\dot{B}}(\bar{z}) \quad \text { and } \quad C^{(M-a)} C_{A B} \mathcal{V}_{M-a}^{\dot{A}}(z) \widetilde{\mathcal{V}}_{M-a}^{B}(\bar{z}) \tag{33}
\end{equation*}
$$

Boundary states and Reflection rules

The fractional D3-branes can be schematically represented in the boundary state formalism as follows [6-8]:

$$
\begin{equation*}
|\mathrm{D} 3 ; I\rangle=\mathcal{N}|\mathrm{U}\rangle+\mathcal{N}^{\prime}|\mathrm{T} ; I\rangle \quad \text { with } \quad|\mathrm{T} ; I\rangle=(-1)^{I}|\mathrm{~T}\rangle . \tag{34}
\end{equation*}
$$

$I=0,1, \ldots, M-1$ corresponding to M irreducible representation of $\mathbb{Z}_{M} .|\mathrm{U}\rangle$ and $|\mathrm{T} ; I\rangle$ are the untwisted and twisted components of the boundary states.

As in the \mathbb{Z}_{2} case due to presence of the D-branes, the right and left moving vertex operators are related. Schematically introducing the following reflection rule for right moving NS/NS vertex operators:

$$
\begin{equation*}
\widetilde{\mathcal{V}}_{a}^{\beta}(\bar{z}) \longrightarrow\left(R_{I, a}\right)_{\gamma}^{\beta} \mathcal{V}_{M-a}^{\gamma}(\bar{z}), \tag{35}
\end{equation*}
$$

The reflection matrix $R_{I, a}$ is found to be

$$
\begin{equation*}
R_{I, a}=\mathrm{i} \sin \left(\frac{\pi a}{M}\right) \omega^{-I a} \tau_{3} \tag{36}
\end{equation*}
$$

with $a=1, \ldots, M-1$ and ω is the $M^{\text {th }}$ root of unity.

0.4.2 Open string spectrum

To construct the massless open string vertex operators, we need to construct linear combinations of $e^{i K . X}$ factors that transform covariantly under the orbifold group action g.

$$
\begin{equation*}
\mathcal{E}_{I}=\frac{1}{M} \sum_{J=0}^{M-1} \omega^{-I J} g^{J}\left[\mathrm{e}^{\mathrm{i} \kappa_{\perp} \cdot Z_{\perp}}\right]=\frac{1}{M} \sum_{J=0}^{M-1} \omega^{-I J} \mathrm{e}^{\mathrm{i}\left(\omega^{-J}{\kappa_{2}}_{2} \bar{Z}^{2}+\omega^{J}{\overline{K_{2}}} Z^{2}\right)} \tag{37}
\end{equation*}
$$

One can easily check that $g\left[\mathcal{E}_{I}\right]=\omega^{I} \mathcal{E}_{I}$. A typical vertex operator eg. for the gauge field A_{1} is given by

$$
\begin{equation*}
\mathcal{V}_{A_{1}}=\left[\left(\mathrm{i} \partial Z^{1}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{1}\right) \mathcal{E}_{0}+\kappa_{2} \bar{\Psi}^{2} \Psi^{1} \mathcal{E}_{1}+\bar{\kappa}_{2} \Psi^{2} \Psi^{1} \mathcal{E}_{M-1}\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}} \tag{38}
\end{equation*}
$$

Similarly, expressions can be written for the vertex operators for gauge field component A_{2} and other three scalars as well as each of their complex conjugate fields.

0.4.3 Open/Closed correlators and field theory profiles

Having both the closed string and open string field vertex operators, we can calculate the various open/closed correlators using (4.54). The complete expression for the open string fields emitted by a fractional D3-brane of type I in the presence of background values for the scalars of the NS/NS twisted sectors is given by summing over all components of $b_{\alpha \beta}^{(a)}$ and over all twisted sectors:

$$
\begin{equation*}
\left\langle\mathcal{V}_{\text {open }}\right\rangle_{I}=\sum_{a=1}^{M-1} \sum_{\alpha, \beta=1}^{2}\left\langle\mathcal{V}_{\text {open }}\right\rangle_{b_{a \beta}^{(a)} I} . \tag{39}
\end{equation*}
$$

We define the singlet combination to be $b_{\mathrm{s}}^{(a)}=\frac{i}{2}\left(b_{12}^{(a)}-b_{21}^{(a)}\right)$ and also define $b_{+}^{(a)}=b_{22}^{(a)}$ and $b_{-}^{(a)}=-b_{11}^{(a)}$. Then the non-zero coupling of the transverse gauge field is given by:

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{I}=-\kappa_{2} b_{I} \delta^{(2)}\left(\kappa_{\|}\right), \tag{40}
\end{equation*}
$$

with the following combination defined as b_{I} :

$$
\begin{equation*}
b_{I}=\sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a}\left[\omega^{-I a} b_{\mathrm{s}}^{(a)}+\omega^{I a} b_{\mathrm{s}}^{(M-a)}\right]=\sum_{a=1}^{M-1} \sin \left(\frac{\pi a}{M}\right) \omega^{-I a} b_{\mathrm{s}}^{(a)}, \tag{41}
\end{equation*}
$$

After taking the fourier transform with the appropriate insertion of propagator, we have the result:

$$
\begin{equation*}
A_{2 ; I}=-\frac{\mathrm{i} b_{I}}{4 \pi \bar{z}_{2}}, \tag{42}
\end{equation*}
$$

Combining this result with the one for the complex conjugate component \bar{A}_{2}, we find that the gauge field on the I-th fractional D3-brane has the following profile:

$$
\begin{equation*}
\mathbf{A}_{I}=A \cdot d x=A_{2 ; I} d \bar{z}_{2}+\bar{A}_{2 ; I} d z_{2}=-\frac{\mathrm{i} b_{I}}{4 \pi}\left(\frac{d \bar{z}_{2}}{\bar{z}_{2}}-\frac{d z_{2}}{z_{2}}\right)=-\frac{b_{I}}{2 \pi} d \theta, \tag{43}
\end{equation*}
$$

The only other open string field that has a non-vanishing profile in the twisted NS/NS background we have chosen is the complex scalar Φ. The analogous calculation takes the following form:

$$
\begin{equation*}
\Phi_{I}=\frac{b_{I}^{+}}{4 \pi z_{2}}, \tag{44}
\end{equation*}
$$

with

$$
\begin{equation*}
b_{I}^{ \pm}=\sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a}\left[\omega^{-I a} b_{ \pm}^{(a)}+\omega^{I a} b_{ \pm}^{(M-a)}\right]=\sum_{a=1}^{M-1} \sin \left(\frac{\pi a}{M}\right) \omega^{-I a} b_{ \pm}^{(a)} . \tag{45}
\end{equation*}
$$

These results relate $\left(\alpha_{I}, \beta_{I}, \gamma_{I}\right)$ that conventionally parametrize the singular profiles near the defect to the background values of the NS/NS twisted scalars as follows:

$$
\begin{equation*}
\alpha_{I}=-\frac{b_{I}}{2 \pi}, \quad \beta_{I}=\frac{\operatorname{Re}\left(b_{I}^{+}\right)}{2 \pi}, \quad \gamma_{I}=\frac{\operatorname{Im}\left(b_{I}^{+}\right)}{2 \pi} \tag{46}
\end{equation*}
$$

The coupling of the gauge field component with R / R scalars leads to the following identification of the η_{I} parameter:

$$
\begin{equation*}
\eta_{I}=\frac{c_{I}}{2 \pi} \tag{47}
\end{equation*}
$$

where c_{I} is the following combination:

$$
\begin{equation*}
c_{I}=\sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a}\left[\omega^{-I a} C^{(a)}+\omega^{I a} C^{(M-a)}\right]=\sum_{a=1}^{M-1} \sin \left(\frac{\pi a}{M}\right) \omega^{-I a} C^{(a)} \tag{48}
\end{equation*}
$$

The continuous parameters α_{I} and η_{I} are identified with the the NS/NS 2-form $B_{(2)}$ and the $\mathrm{R} / \mathrm{R} 2$-form $C_{(2)}$ of Type II B supergravity around the exceptional cycles ω_{I} of the blown-up ALE space.

$$
\begin{equation*}
\alpha_{I}=-\frac{1}{2 \pi} \int_{\omega_{I}} B_{(2)}, \quad \eta_{I}=\frac{1}{2 \pi} \int_{\omega_{I}} C_{(2)} . \tag{49}
\end{equation*}
$$

Using the S -duality action on the 2 -forms, with simple manipulations one can show that this identification implies that α_{I} and η_{I} indeed transform in the expected way.

Similarly, the $b_{I}^{ \pm}$parameters can be identified with the (string frame) metric moduli corresponding to the complex structure of the blown-up exceptional cycle ω_{I}. As such they inherit the S-duality transformation properties from the (string frame) metric, which are precisely the ones expected for the parameters β_{I} and γ_{I} of the GW defects.

0.5 Conclusion

In this thesis, we have studied a microscopic realization of Gukov-Witten surface defects within the realm of Type II B string theory. The setup we considered is a $10 d$ target space of Type II B theory with \mathbb{Z}_{M} orbifolding along 2 of the complex directions. The world-volume of the D3 brane on which the gauge theory lives is extended partially along the orbifolded directions. It was already clear from the work of Kanno-Tachikawa that the discrete data of the surface defect are encoded within the number of fractional branes of each type. In our work [11, 12], we have shown that the continuous data of the surface defect is encoded as the background value of different twisted closed string scalars.

We provided support for our claim by matching the expected S-duality properties of the continuous parameters from the viewpoint of Type II B theory.

Plan of the thesis

In this thesis, we study the geometric engineering of surface defects in $4 \mathrm{~d} U(N)$ SYM within Type II B string theory via fractional branes.

- Chapter 1 provides a general introduction to surface defects and summarizes the motivation of our work.
- Chapter 2 provides necessary background material regarding Type II B string theory, orbifold backgrounds, and D-branes.
- Chapter 3 discusses the realization of the simplest Gukov-Witten (GW) defects of type $\left[n_{0}, n_{1}\right]$ within Type II B string theory via branes on a \mathbb{Z}_{2} orbifold.
- Chapter 4 generalizes the above construction to generic GW defect of type [$n_{0}, \ldots ., n_{M-1}$] within Type II B string theory via branes on a \mathbb{Z}_{M} orbifold background.
- Chapter 5 will conclude with a discussion of the results.

List of Figures

1 The orbifold setup. 3
2 The monodromy behaviour of the fields 4
3 An example of an open/closed string amplitude on a D3-brane with one closed string vertex operator insertion in the interior and one open string vertex operator insertion at the boundary. 6
2.1 Open string end points lying on same D -brane or different D branes. 34
3.1 An example of a mixed open/closed string amplitude on a D3-brane of type I. 51

Chapter 1

Motivation and Introduction

The study of defects in QFT has become an active area of research in recent years and their study has provided useful information about the vacuum structure of the gauge theories. They are an important probe of the non-perturbative effects and dualities in gauge theories. One-dimensional or line defects such as Wilson and 't Hooft loops in gauge theories are the best studied in the literature. In this thesis, we focus on higher dimensional defects which are supported on co-dimension two sub manifolds, called surface defects. These were first introduced by Gukov and Witten (GW) [1, 2] in the context of topologically twisted four dimensional maximally supersymmetric $\mathrm{N}=4$ Yang-Mills theory with $\mathrm{U}(\mathrm{N})$ gauge group. The defect was defined as a "monodromy defect" by specifying the singular behavior of the four dimensional fields in the gauge theory as one approaches the location of the defect. With these boundary conditions specified for the path integral, correlation functions in the presence of such defects provide us with valuable non-perturbative information about the bulk gauge theory.

From the gauge theory point of view, there are several ways to analyze surface defects. The original approach of Gukov and Witten (GW) in [1,2] was to treat them as monodromy defects, in which one specifies the singular behavior of the fields of the gauge theory as one approaches the defect. Another possibility is to describe them as flavour
defects: we specify the theory on the defect as a $2 d$ quiver gauge theory with a $\mathrm{U}(\mathrm{N})$ flavour group, which is then identified with the gauge group of the $4 d$ theory [13, 14]. In many cases, these two different descriptions lead to the same results [15]. For example, the low-energy effective action on the Coulomb branch of the $4 d$ gauge theory computed in the two approaches exactly match. Moreover, by fruitfully combining the two methods various properties of the surface defects as well as many duality relations and non-perturbative effects can be studied [16-24].

There are also several ways to embed the surface defects in string theory and, more generally, to study the defects from a higher-dimensional perspective. In [25, 26] the GW defects were given a holographic representation in terms of bubbling geometries, which are particular solutions of Type II B supergravity that asymptote to $A d S_{5} \times S_{5}$. Since many $4 d$ supersymmetric gauge theories can be obtained by compactification from the $6 d(2,0)$ theory defined on the world-volume of an M5 brane [27, 28], surface defects can also be realized by introducing intersecting M5 branes or an M2 brane inside the M5 brane [18]. From this six dimensional perspective, surface defects have been recently studied in detail [29] following earlier work in [28,30,31], by exploiting the relation to the Hitchin integrable system, with the aim of obtaining a complete classification of the surface defects in the $6 d$ theory.

In this thesis, we geometrically engineer a GW surface defect within Type II B string theory by considering a configuration of fractional branes on an orbifold background. Further, we provide a physical interpretation of the defining parameters of the defect in terms of background values for closed string scalars in the twisted sectors of the closed string orbifold. In particular, we consider Type II B string theory on the following orbifold space

$$
\begin{equation*}
\mathbb{C}_{(1)} \times \frac{\mathbb{C}_{(2)} \times \mathbb{C}_{(3)}}{\mathbb{Z}_{M}} \times \mathbb{C}_{(4)} \times \mathbb{C}_{(5)} \tag{1.1}
\end{equation*}
$$

Note that we will be considering Euclidean string theory for the setup and hence all the 10 real directions in (1.1) are space-like.

We turn on constant vacuum expectation values for particular twisted scalar fields in the Neveu-Schwarz/Neveu-Schwarz (NS/NS) and Ramond/Ramond (R/R) sectors. In this background we engineer a $4 d$ gauge theory by introducing stacks of fractional D3-branes that extend along the first two complex planes $\mathbb{C}_{(1)}$ and $\mathbb{C}_{(2)}$. In this combined orbifold/Dbrane set-up, which we refer to as the Kanno-Tachikawa [KT] configuration [4], we compute the profile in configuration space of the massless open strings by means of open/closed world-sheet correlators, and show that these exactly reproduce the singular profiles that characterize the GW surface defect in the $\mathcal{N}=4$ gauge theory [1]. In this way, we are therefore able to provide an explicit identification of the continuous parameters of the GW solution with the vacuum expectation values of the twisted scalars.

Historically, it has been fruitful to embed field theory solutions or phenomena in string theory as it is a much larger framework and usually the embedding leads one to uncover new ideas and/or phenomena. The work presented in this thesis is best understood from this perspective: it is a first step in the study of surface defects using perturbative string theoretic methods. The rest of the thesis is organized as follows, in chapter 2 we provide the basic background concepts used in our calculations. In chapter 3 we introduce surface operators as monodromy defects, providing the path integral definition of it as well as introduce the various parameters needed to define it. We also discuss the string theoretic setup and open/closed string disk diagram that we need to calculate. In chapter 4 we give the explicit string theoretic realization of the simplest possible $\left[n_{0}, n_{1}\right]$ type of surface defects via fractional branes in a \mathbb{Z}_{2} orbifolded background. In chapter 5 we generalize the above construction of ch. 4 to the more generic $\left[n_{0}, n_{1}, \ldots, n_{M-1}\right]$ type of surface defects realized via fractional branes in a \mathbb{Z}_{M} orbifolded background. In chapter 6 we finish with a summary of the results and their importance.

Chapter 2

Background

In this chapter, we review some of the important background concepts needed to follow this thesis. It is by no means complete and the reader is suggested to refer to the appropriate literature for more details.

2.1 Type IIB string theory

We follow the discussion in $[32,33]$. and begin with the $1+1$ dimensional worldsheet action corresponding to superstrings propagating on ten dimensional flat space $\mathbb{R}^{1,9}$:

$$
\begin{equation*}
S=\frac{1}{4 \pi} \int d^{2} z\left(\frac{2}{\alpha^{\prime}} \partial X^{\mu} \bar{\partial} X_{\mu}+\psi^{\mu} \bar{\partial} \psi_{\mu}+\widetilde{\psi}^{\mu} \partial \widetilde{\psi}_{\mu}\right) \tag{2.1}
\end{equation*}
$$

The index $\mu=0,1, \ldots 9$ and the parameter α^{\prime} is given in terms of the string length as $\alpha^{\prime}=\ell_{s}^{2}$ and is the inverse tension of the fundamental string. This action has $N=(1,1)$ supersymmetry on the worldsheet and describes a superconformal theory. The bosonic fields X_{μ} and their superpartners fermionic fields $\psi^{\mu}, \widetilde{\psi}^{\mu}$ have the following OPEs :

$$
\begin{align*}
X^{\mu}(z, \bar{z}) X^{v}(0,0) & \sim-\frac{\alpha^{\prime}}{2} \eta^{\mu \nu} \ln |z|^{2} \\
\psi^{\mu}(z) \psi^{v}(0) & \sim \frac{\eta^{\mu \nu}}{z} \\
\widetilde{\psi}^{\mu}(\bar{z}) \widetilde{\psi}^{v}(0) & \sim \frac{\eta^{\mu \nu}}{\bar{z}} \tag{2.2}
\end{align*}
$$

Ramond and Neveu Schwarz sectors

Now we investigate the $\left(X^{\mu}, \psi^{\nu}\right)$ superconformal field theory (SCFT) on a worldsheet with cylindrical topology. With the cylindrical coordinate $w=\sigma^{1}+i \sigma^{2}$, the fermionic part of the action is given by,

$$
\begin{equation*}
\frac{1}{4 \pi} \int d^{2} w\left(\psi^{\mu} \partial_{\bar{w}} \psi_{\mu}+\widetilde{\psi}^{\mu} \partial_{w} \widetilde{\psi}_{\mu}\right) \tag{2.3}
\end{equation*}
$$

This action must be invariant under the periodic identification $w \sim w+2 \pi$. This allows for two possible periodic conditions for the ψ^{μ} fields.

$$
\begin{array}{r}
\operatorname{Ramond}(\mathrm{R}): \psi^{\mu}(w+2 \pi)=+\psi^{\mu}(w) \\
\text { Nevue-Schwarz(NS) : } \psi^{\mu}(w+2 \pi)=-\psi^{\mu}(w) \tag{2.4}
\end{array}
$$

Similar periodicity conditions are defined for $\widetilde{\psi^{\mu}}$. It can be written compactly as

$$
\begin{align*}
& \psi^{\mu}(w+2 \pi)=\exp (2 \pi i v) \psi^{\mu}(w) \\
& \widetilde{\psi}^{\mu}(\bar{w}+2 \pi)=\exp (-2 \pi i \tilde{v}) \widetilde{\psi}^{\mu}(w) \tag{2.5}
\end{align*}
$$

where v and \tilde{v} takes values 0 and $\frac{1}{2} .{ }^{1}$
To maintain Poincare invariance, one considers periodic boundary conditions for bosonic fields X^{μ}. In later sections, we will relax this condition when we consider orbifold backgrounds in which the X-fields have non-trivial identifications as one traverses the worldsheet circle.

There are four different combinations one can make out of the NS and R sectors i.e. NSNS, NS-R, R-NS, R-R thus counting for four possible kinds of closed superstrings.

The bosonic and fermionic fields can be mode expanded in the following way:

$$
\begin{equation*}
\psi^{\mu}(w)=i^{-1 / 2} \sum_{r \in \mathbb{Z}+v} \psi_{r}^{\mu} \exp (i r w), \quad \widetilde{\psi}^{\mu}(\bar{w})=i^{1 / 2} \sum_{r \in \mathbb{Z}+v} \widetilde{\psi}_{r}^{\mu} \exp (-i r \bar{w}) \tag{2.6}
\end{equation*}
$$

After the coordinate transformation $z=\exp (-i w)$, the expansion becomes:

$$
\begin{equation*}
\psi^{\mu}(z)=\sum_{r \in \mathbb{Z}+\nu} \frac{\psi_{r}^{\mu}}{z^{r+1 / 2}}, \quad \widetilde{\psi}^{\mu}(\bar{z})=\sum_{r \in \mathbb{Z}+\tilde{v}} \frac{\widetilde{\psi}_{r}^{\mu}}{\bar{z}^{r+1 / 2}} \tag{2.7}
\end{equation*}
$$

For the bosonic part of the theory, we have the following expansions for ∂X and $\bar{\partial} X$:

$$
\begin{equation*}
\partial X^{\mu}(z)=-i\left(\frac{\alpha^{\prime}}{2}\right)^{1 / 2} \sum_{m=-\infty}^{\infty} \frac{\alpha_{m}^{\mu}}{z^{m+1}}, \quad \bar{\partial} X^{\mu}(\bar{z})=-i\left(\frac{\alpha^{\prime}}{2}\right)^{1 / 2} \sum_{m=-\infty}^{\infty} \frac{\widetilde{\alpha}_{m}^{\mu}}{\bar{z}^{m+1}} \tag{2.8}
\end{equation*}
$$

It's clear from the expansion that they are holomorphic and anti-holomorphic respectively. Using these one can write down the expansion of X^{μ} field:

[^1]\[

$$
\begin{equation*}
X^{\mu}(z, \bar{z})=x^{\mu}-i \frac{\alpha^{\prime}}{2} p^{\mu} \ln |z|^{2}+i\left(\frac{\alpha}{2}\right)^{1 / 2} \sum_{m=-\infty, m \neq 0}^{\infty} \frac{1}{m}\left(\frac{\alpha_{m}^{\mu}}{z^{m}}+\frac{\widetilde{\alpha}_{m}^{\mu}}{\bar{z}^{m}}\right) \tag{2.9}
\end{equation*}
$$

\]

For open string, there are two possible periodicities:

$$
\begin{equation*}
\psi^{\mu}\left(0, \sigma^{2}\right)=\exp (2 \pi i v) \widetilde{\psi}^{\mu}\left(0, \sigma^{2}\right), \quad \psi^{\mu}\left(\pi, \sigma^{2}\right)=\exp \left(2 \pi i v^{\prime}\right) \widetilde{\psi}^{\mu}\left(\pi, \sigma^{2}\right) \tag{2.10}
\end{equation*}
$$

By the redifinition $\widetilde{\psi}^{\mu} \rightarrow \exp \left(-2 \pi i v^{\prime}\right) \widetilde{\psi}^{\mu}$, one can set $v^{\prime}=0$. Thus there are only two sectors for open string : NS and R.

Now consider the spectrum generated by a single NS or R field which can correspond to an open string or one of the left/right sectors of the closed string. In the NS sector, there is no mode with $r=0$ and we define the ground state to be the state annihilated by all $r>0$ modes:

$$
\begin{equation*}
\psi_{r}^{\mu}|0\rangle_{N S}=0, \quad r>0 \tag{2.11}
\end{equation*}
$$

The modes with $r<0$ are the ones that act as the raising operators. Moreover, because of their anticommuting properties, each mode can be excited only once.

For the R sector states, there are states with $r=0$ mode. If we define the ground state to be the one annihilated by $r>0$ modes and since $\left\{\psi_{r}^{\mu}, \psi_{0}^{\nu}\right\}=0$ for $r>0$, the ψ_{0}^{μ} take ground states into ground states. Due to this reason, the R sector ground state is degenerate. If we define $\Gamma^{\mu} \sim 2^{1 / 2} \psi_{0}^{\mu}$, it satisfies the gamma matrix algebra $\left\{\Gamma^{\mu}, \Gamma^{\nu}\right\}=2 \eta^{\mu \nu}$. So, the ground states of the R sector form a representation of the gamma matrix algebra. One can show that to make the total central charge of the worldsheet CFT be zero (which is related to the cancellation of Weyl Anomaly) we must take the spacetime dimension D to be 10 for the superstring theory. In $D=10$ the dimension of the gamma matrix algebra is $\mathbf{3 2}$.

In the R sector, all the states including the ground state have half-integer spacetime spins.

In the NS sector, all the states have integer spins.

There is an operator that anticommutes will all the $\psi^{\mu} \mathrm{s}$. The operator is $\exp (\pi i F)$ where F is the world-sheet fermion number. Since ψ^{μ} changes F by one, it's easy to check it anticommutes with ψ^{μ}. The spacetime Lorentz generators are defined as

$$
\begin{equation*}
\Sigma^{\mu \lambda}=-\frac{i}{2} \sum_{r \in \mathbb{Z}+\nu}\left[\psi_{r}^{\mu}, \psi_{-r}^{\lambda}\right] \tag{2.12}
\end{equation*}
$$

We also define the spin operator $S_{a}=i^{\delta_{a, 0}} \sum^{2 a, 2 a+1}$ whose eigenvalue gives the spacetime spin for a given state. With that generators, the fermion number operator is defined as follows:

$$
\begin{equation*}
F=\sum_{a=0}^{4} S_{a} \tag{2.13}
\end{equation*}
$$

Closed string spectra: The spins of the states in the two closed string sectors are additive. So, for closed string, the NS-NS states have integer spins. The two half integers from R-R sectors also add up to give integer spins. Whereas NS-R and R-NS states have half-integer spin.

We will now denote the two sectors of the open strings by (α, F). Where it's defined as $\alpha=(1-2 v)$ is 1 for R sector and 0 for the NS sector.

For the closed string, there are independent periodicities and fermion numbers on both sides, so there are 16 possible combinations:

$$
\begin{equation*}
(\alpha, F, \widetilde{\alpha}, \widetilde{F}) \tag{2.14}
\end{equation*}
$$

But six out of these combinations are ruled out by level matching conditions: $L_{0}=\widetilde{L}_{0}$. $L_{0}-\alpha^{\prime} p^{2} / 4$ is half-integer in NS- sector whereas its integer in NS,$+ \mathrm{R}+$, and R - sectors.

So, NS- can't pair with any of the three mentioned sectors.

Further constraints appear as the various vertex operators need to be mutually local i.e. they should not have branch cuts in their operator product expansions. There are total 2^{10} such possible combinations but only some subset of it will lead to consistent closed string theories. It is achieved by imposing the following consistency conditions:

1. All pairs of vertex operators in the theory should be mutually local i.e. if ($\alpha_{1}, F_{1}, \widetilde{\alpha}_{1}, \widetilde{F}_{1}$) and $\left(\alpha_{2}, F_{2}, \widetilde{\alpha}_{2}, \widetilde{F}_{2}\right)$, the net phase when one operator encircles another is $\exp \left(F_{1} \alpha_{2}-\right.$ $\left.F_{2} \alpha_{1}-\widetilde{F}_{1} \widetilde{\alpha}_{2}+\widetilde{F}_{2} \widetilde{\alpha}_{1}\right)$ and for them to be local one should have

$$
\begin{equation*}
F_{1} \alpha_{2}-F_{2} \alpha_{1}-\widetilde{F}_{1} \widetilde{\alpha}_{2}+\widetilde{F}_{2} \widetilde{\alpha}_{1} \in 2 \mathbb{Z} \tag{2.15}
\end{equation*}
$$

2. The OPE must close. If both $\left(\alpha_{1}, F_{1}, \widetilde{\alpha}_{1}, \widetilde{F}_{1}\right)$ and $\left(\alpha_{2}, F_{2}, \widetilde{\alpha}_{2}, \widetilde{F}_{2}\right)$ are in the spectrum so $\operatorname{does}\left(\alpha_{1}+\alpha_{2}, F_{1}+F_{2}, \widetilde{\alpha}_{1}+\widetilde{\alpha}_{2}, \widetilde{F}_{1}+\widetilde{F}_{2}\right)$.
3. To ensure modular invariance of the one-loop amplitude, there must be atleast one of both left moving R sector ($\alpha=1$) and right moving R sector ($\widetilde{\alpha}=1$) in the spectrum.

There are four possible superstring theories with at least one R-NS sector IIA, IIB, IIA $^{\prime}$, IIB' which satisfy all the three conditions above. None of these theories contains any tachyon.

Without any R-NS sector, there are two possible string theories 0A and 0B. Both of these two theories contain tachyons in (NS-,NS-) sector and do not contain any spacetime fermion.

In this thesis we will be particularly interested in the Type IIB theory. It contains the following sectors:

$$
\begin{equation*}
\text { IIB : }(N S+, N S+)(R+, N S+)(N S+, R+)(R+, R+) \tag{2.16}
\end{equation*}
$$

In 10-d, in each sector, (left or right) massless states are classified by their behavior under the $\mathrm{SO}(8)$ rotations which keep the momentum invariant. Thus the massless closed string spectrum is given by a product representation of $\mathrm{SO}(8)$ corresponding to combining left and right sectors. Alternative to the product rep., one can as well write the massless spectra by the following tensor representations of $\mathrm{SO}(8)$:

$$
\begin{equation*}
\text { IIB : }[0]^{2}+[2]^{2}+[4]_{+}^{2}+(2)+\mathbf{8}^{\mathbf{2}}+\mathbf{5 6}^{\mathbf{2}} \tag{2.17}
\end{equation*}
$$

where (m) and $[m]$ denote the traceless symmetric and antisymmetric rank m tensor in eight dimensions respectively ${ }^{2}$. Note that $\mathbf{8}^{\prime}, \mathbf{5 6}$ denotes objects of dimensions 8 and 56 respectively and is not representable in tensor representation. They are obtained by multiplying a vector rep. and spinor rep. of $\mathrm{SO}(8): 8_{v} \times 8$.

In type IIB theory one keep the sectors with

$$
\begin{equation*}
\exp (\pi i F)=\exp (\pi i \widetilde{F})=+1 \tag{2.18}
\end{equation*}
$$

This is known as the Gliozzi-Scherk-Olive (GSO) projection where the full spectra are projected onto the eigenstates of $\exp (\pi i F)$ and $\exp (\pi i \widetilde{F})$. The GSO projection ensures spacetime supersymmetry and also removes the tachyonic states to make the tachyon free type II B theory ${ }^{3}$. Since the same GSO projection is taken in both left and right sectors, the spectrum of type IIB theory is chiral.

[^2]
2.2 State-operator correspondence and Vertex operators

In quantum field theory, there is on the one hand the space of states of the theory and on the other hand the set of local operators. In conformal field theory, there is a simple and useful isomorphism between these, with the CFT quantized on a circle [34]. Consider a QFT on a semi-infinite cylinder $\mathbb{R} \times S^{P}$, the metric is given by $d s^{2}=-d t^{2}+d \Omega_{p}^{2}$. By the coordinate transformation $r=\exp (i t)$, the cylinder is mapped to a plane \mathbb{R}^{p+1} with the metric $d s^{2}=\left(d r^{2}+r^{2} d \Omega_{p}^{2}\right) / r^{2}$ which is simply flat space with a conformal factor.

If one specifies an initial state $|\psi\rangle$ on the cylinder, one can make a conformal transformation that squeezes it to the origin of the plane \mathbb{R}^{p+1}. Thus it is a local perturbation at the origin and corresponds to local operator $O_{\psi}(r=0)$. So there is a correspondence between local operators and states in CFT :

$$
\begin{equation*}
\text { States specified on cylinder } \leftrightarrow \text { local operators at the origin of the plane } \tag{2.19}
\end{equation*}
$$

One can also go the other way around, given a local operator on the plane the initial state on the cylinder can be recovered in the following way:

$$
\begin{equation*}
|O\rangle=\lim _{x \rightarrow 0} O(x)|0\rangle \tag{2.20}
\end{equation*}
$$

where $\mid 0>$ denotes the vacuum or ground state.

Here are a few examples that illustrate this [32]:

The unit operator corresponds to the vacuum state: $|1\rangle=|0 ; 0\rangle$.

The free state with momentum k corresponds to : $\exp (i k . X)$: operator. Similarly, one can write the following bosonic excited states and their corresponding vertex operators :

$$
\begin{align*}
& \alpha_{-m}^{\mu}|1\rangle \rightarrow i\left(\frac{2}{\alpha^{\prime}}\right)^{1 / 2} \frac{1}{(m-1)!} \partial^{m} X^{\mu}(0), \quad m \geq 1 \\
& \widetilde{\alpha}_{-m}^{\mu}|1\rangle \rightarrow i\left(\frac{2}{\alpha^{\prime}}\right)^{1 / 2} \frac{1}{(m-1)!} \bar{\partial}^{m} X^{\mu}(0), \quad m \geq 1 \tag{2.21}
\end{align*}
$$

And for the fermionic excitations:
e.g NS states

$$
\begin{equation*}
\psi_{-r}^{\mu}|1\rangle \rightarrow \frac{1}{(r-1 / 2)!} \partial^{r-1 / 2} \psi^{\mu}(0), \quad r \geq \frac{1}{2} \tag{2.22}
\end{equation*}
$$

2.3 D-branes

D-branes are extended (solitonic) dynamical objects in string theory. From the perspective of open strings [32, 33, 35], D-branes are the hyperplanes on which open strings ends Fig.2.1. A $D p$ brane is obtained by imposing dirichlet boundary conditions in $(d-p-1)$ directions. The world volume of a $D p$ brane is $(p+1)$ dimensional hyperplane and the end point of the open strings can only move along the world volume of the brane. They are new dynamical objects within superstring theory on their own. Further, if we consider $U(N)$ Chan-Paton factors on the end points of the open string, there would be N such hyperplanes for each dirichlet direction on which the open strings can end. Usually, a gauge field theory lives on the world volume of the D-brane.

An alternative way to describe D-branes which will be more suitable for our purpose is given as follows.

The 10d spacetime SUSY algebra is schematically given by,

Figure 2.1: Open string end points lying on same D-brane or different D branes.

$$
\begin{align*}
& \left\{Q^{\mathcal{H}}, \bar{Q}^{\dot{\mathcal{B}}}\right\} \sim P_{M} \Gamma_{M}^{\mathscr{A H}} \\
& \left\{\widetilde{Q^{\mathcal{H}}}, \overline{\bar{Q}^{\mathcal{B}}}\right\} \sim P_{M} \Gamma_{M}^{\mathcal{A B} \mathcal{B}} \tag{2.23}
\end{align*}
$$

All other anti-commutators being zero. $Q^{\mathcal{A}}$ and $\widetilde{Q}^{\dot{\mathcal{B}}}$ are the left and right moving supersymmetry charges respectively and similary for the conjugate supercharges $\bar{Q}^{\mathcal{A}}, \widetilde{\bar{Q}^{\mathcal{B}}}$. $M=0,1, \ldots, 9, P_{M}$ is the momentum and γ^{M} is the $10 d$ Dirac matrices.

The supersymmetry charges are obtained by integrating supersymmetry currents which contains spin field $S^{\dot{\mathcal{A}}}$ transforming as a Weyl tensor of $S O(10)$. The presence of D3 brane breaks the $S O(10)$ symmetry of spacetime to $S O(4) \times S O(6)$ and the $\dot{\mathcal{A}}$ index divides into $\left(S_{\alpha} S_{A}, S^{\dot{\alpha}} S^{A}\right)$ depending upon positive and negative chiralities respectively. One can show that on the $D 3$ branes only the supercharge combination $Q^{\dot{\alpha A}}-\widetilde{Q}^{\dot{\alpha A}}$ and $Q_{\alpha A}+\widetilde{Q}_{\alpha A}$ is preserved on the $D 3$ branes whereas the other two combinations $Q^{\dot{\alpha} A}+\widetilde{Q}^{i A}$ and $Q_{\alpha A}-\widetilde{Q}_{\alpha A}$ is broken. So, only half of the supersymmetry is preserved ie. 16 supercharges. In fact, one can define D-branes as some BPS states within superstring theory which preserve only half of the supersymmetry. Moreover, these objects are charged under the R-R 2-forms.

From the closed string perspective, the D-branes introduce a boundary in the string worldsheet and are described by a boundary state $\mid B>$ which is a BRST invariant state. They
encode the couplings of all perturbative closed string fields to the D-brane. They can therefore be expanded in a basis of such closed string fields in which the coefficient encodes the coupling of the brane to the perturbative field. We will discuss more about it in the main text. But here we briefly mention few uses of boundary states to calculate D-brane couplings and interactions [36] : If we denote the closed string propagator by D_{a}, the matrix element $\langle B| D_{a} \mid B>$ will give rise to an interaction between two D-branes. If we consider a first excited state of momentum k, its coupling with the D -brane is given by the amplitude:

$$
\begin{equation*}
A^{\mu \nu}=<0\left|a^{\mu} \tilde{a}^{\gamma}\right| B> \tag{2.24}
\end{equation*}
$$

where a, \tilde{a} are the usual left and right moving creation operators respectively. The emmision amplitude of a graviton or dilaton can be obtained by contracting $A^{\mu \nu}$ with the appropriate polarization vectors.

$$
\begin{equation*}
A^{\text {grav }} \equiv A^{\mu \nu} \epsilon_{\mu \nu}^{\text {grav }}, \quad A^{\mathrm{dil}} \equiv A^{\mu \nu} \epsilon_{\mu \nu}^{\mathrm{dil}} \tag{2.25}
\end{equation*}
$$

where $\epsilon_{\mu \nu}^{\text {grav }}, \epsilon_{\mu \nu}^{\text {dil }}$ are the polarization vectors corresponding to graviton and dilaton respectively.

In this thesis, we will be interested in what is called fractional D-branes in an orbifold background, which we will briefly review in sec. 2.5 . Our goal will be to compute some open/closed correlators on the disk. As a warm up we shall compute some simple disk correlators in the following section.

Calculation of total \mathbf{R} - \mathbf{R} charge carried by a $D p$ brane using one-point functions

In the massless spectrum in R-R sectors of type IIB string theory there are antisymmetric form fields $A_{\mu_{1} \mu_{2} . . \mu_{n}}$ where n is even for type IIB theory. The vertex operator corresponding to the R-R form field in usual (-1) picture number is given by [36],

$$
\begin{equation*}
V^{\mathrm{R}-\mathrm{R}}(k, z, \bar{z})=\mathcal{F}_{\dot{\alpha} \dot{\beta}}: \mathcal{V}_{-1 / 2}^{\dot{\alpha}}\left(\frac{k}{2}, z\right) \widetilde{\mathcal{V}_{-1 / 2}^{\dot{\beta}}}\left(\frac{k}{2}, \bar{z}\right): \tag{2.26}
\end{equation*}
$$

where the holmorphic part is given by

$$
\begin{equation*}
\mathcal{V}_{-1 / 2}^{\dot{\alpha}}\left(\frac{k}{2}, z\right)=c(z) S^{\dot{\alpha}}(z) e^{-\phi(z) / 2} e^{i k . X(z)} \tag{2.27}
\end{equation*}
$$

$S^{\dot{\alpha}}$ is the spin field, $c(z)$ is the ghost field and $\phi(z)$ is related to superghost fields.

By using the picture changing operator one can write the same R-R vertex operator in (-2) picture number also which we denote as W^{R-R}. One can also write down a boundary state $\mid B>_{R}$ for the R-R form field. ${ }^{4}$

To compute the interaction between the R - R field and the $D p$-brane, one needs to saturate $\mid B>_{R}$ with the corresponding state i.e. one needs to evaluate $<0\left|W^{\mathrm{R}-\mathrm{R}}\right| B>_{R}$. Here we quote the final result [36],

$$
\begin{equation*}
\lim _{z \rightarrow \infty}<0\left|W^{\mathrm{R}-\mathrm{R}}(k, z, \bar{z})\right| B>_{R}= \pm \sqrt{2} T_{p} V_{p+1} A_{0, \ldots, p} \tag{2.28}
\end{equation*}
$$

Note that p is odd for type IIB theory and the \pm sign refers to brane and anti-brae configuration respectively. V_{p+1} is the world-volume of $D p$-brane and T_{p} is the D-brane tension. From (2.28) one can immediately identify the total R-R charge of the $D p$-brane to be

[^3]\[

$$
\begin{equation*}
\mu_{p}= \pm \sqrt{2} T_{p} \tag{2.29}
\end{equation*}
$$

\]

Illustrative computation of 3-pt correlator of fields living on the D3 banes

Let us compute some amplitudes among fields living on D3 branes and their interpretation [37]. It will serve as a warm up for the calculation of disk amplitudes in the later chapters. In the NS sector, there are a gauge vector A^{μ} and six scalars ϕ^{a} at the massless level. They can propagate along the four world-volume directions of the D3 branes. The corresponding vertex operators for these fields are given by,

$$
\begin{align*}
& V_{A}^{(-1)}(z)=A^{\mu} \mathcal{V}_{A^{\mu}}^{(-1)}(z, p) \\
& V_{\phi}^{(-1)}(z)=\phi^{a} \mathcal{V}_{\phi_{a}}^{(-1)}(z, p) \tag{2.30}
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{V}_{A_{\mu}}^{(-1)}(z, p)=\frac{1}{\sqrt{2}} \psi_{\mu}(z) e^{-\phi(z)} e^{i p_{v} X^{v}}(z) \\
& \mathcal{V}_{\phi^{a}}^{(-1)}(z, p)=\frac{1}{\sqrt{2}} \psi_{a} e^{-\phi(z)} e^{i p_{v} X^{v}}(z) \tag{2.31}
\end{align*}
$$

In the R sector, there are two gauginos at the massless level, $\Lambda^{\alpha A}$ and $\bar{\Lambda}_{\dot{\alpha} A}$. In the ($-1 / 2$) picture, the gaugino vertex operators are given by,

$$
\begin{align*}
& V_{\Lambda}^{(-1 / 2)}(z)=\Lambda^{\alpha A}(p) \mathcal{V}_{\Lambda^{\alpha A}}^{(-1 / 2)}(z, p) \\
& V_{\bar{\Lambda}}^{(-1 / 2)}(z)=\bar{\Lambda}_{\dot{\alpha} A}(p) \mathcal{V}_{\bar{\Lambda}_{\dot{\alpha} A}}^{(-1 / 2)}(z, p) \tag{2.32}
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{V}_{\Lambda^{A}}^{(-1 / 2)}(z, p)=S_{\alpha}(z) S_{A}(z) e^{-\frac{1}{2} \phi(z)} e^{i p_{v} V^{V}} \\
& \mathcal{V}_{\dot{\Lambda}^{\prime A}}^{(-1 / 2)}(z, p)=S^{\dot{\alpha}}(z) S^{A}(z) e^{-\frac{1}{2} \phi(z)} e^{i p_{v} X^{v}} \tag{2.33}
\end{align*}
$$

where $S_{\alpha}, S^{\dot{\alpha}}, S_{A}$ are the spin fields of $S O(4)$ and $S O(6)$ respectively.
Let us consider the amplitude between one gauge boson and two gauginos ${ }^{5}$:

$$
\begin{align*}
\mathcal{A}_{(\bar{\Lambda} A \Lambda)} & =\left\langle\left\langle V_{\bar{\Lambda}}^{(-1 / 2)} V_{A}^{(-1)} V_{\Lambda}^{(-1 / 2)}\right\rangle\right\rangle \\
& =C \int \frac{d z_{1} d z_{2} d z_{3}}{d V_{123}}\left\langle V_{\bar{\Lambda}}^{(-1 / 2)}\left(z_{1}\right) V_{A}^{(-1)}\left(z_{2}\right) V_{\Lambda}^{(-1 / 2)}\left(z_{3}\right)\right\rangle \tag{2.34}
\end{align*}
$$

where C is a normalization constant and $d V_{123}$ is the projective volume element defined as follows:

$$
\begin{equation*}
d V_{123}=\frac{d z_{1} d z_{2} d z_{3}}{\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)\left(z_{3}-z_{1}\right)} \tag{2.35}
\end{equation*}
$$

The correlator breaks into various correlators of free theories and after some simple algebra the final amplitude is given by [37],

[^4]\[

$$
\begin{equation*}
\mathcal{A}_{\bar{\Lambda} A \Lambda}=C^{\prime} \operatorname{Tr}\left(\bar{\Lambda}_{\dot{\alpha} A} \overline{A^{\dot{\alpha} \beta}} \Lambda_{\beta}^{A}\right) \delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \tag{2.36}
\end{equation*}
$$

\]

where C^{\prime} is a constant, \bar{A} notation means contraction of A_{μ} with $\bar{\sigma}^{\mu}$ and we have used the following basic correlators in evaluating the amplitude:

$$
\begin{align*}
\left\langle S^{A}\left(z_{1}\right) S_{B}\left(z_{2}\right)\right\rangle & \sim \frac{i \delta_{B}^{A}}{\left(z_{1}-z_{2}\right)^{3 / 4}} \\
\left\langle S^{\dot{\alpha}}\left(z_{1}\right) \psi_{\mu}\left(z_{2}\right) S_{\beta}\left(z_{3}\right)\right\rangle & =\frac{1}{\sqrt{2}}\left(\bar{\sigma}_{\mu}\right)_{\beta}^{\dot{\alpha}}\left(z_{1}-z_{2}\right)^{-1 / 2}\left(z_{2}-z_{3}\right)^{-1 / 2} \\
\left\langle e^{-\frac{\phi}{2}}\left(z_{1}\right) e^{-\phi}\left(z_{2}\right) e^{-\frac{\phi}{2}}\left(z_{3}\right)\right\rangle & \sim\left(z_{1}-z_{2}\right)^{-1 / 2}\left(z_{2}-z_{3}\right)^{-1 / 2}\left(z_{3}-z_{1}\right)^{-1 / 4} \\
\left\langle e^{i p_{1} \cdot X}\left(z_{1}\right) e^{i p_{2} \cdot X}\left(z_{2}\right) e^{i p_{3} \cdot X}\left(z_{3}\right)\right\rangle & \sim \delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \tag{2.37}
\end{align*}
$$

Where $\bar{\sigma}$ is the Dirac matrices of $S O(4)$. One can calculate the 3-pt and 4-pt amplitude among the various $D 3$ string modes in a similar fashion. After taking a Fourier transform, one can show that the 1PI part of them is reproduced by the $\mathcal{N}=4 \mathrm{SYM}$ action.

2.4 ALE space

In this thesis, we will be interested in studying the superstring theory on an orbifolded background which is a special case of what is called ALE spaces. From a physicist point of view [38], an Asymptotically Locally Euclidean or ALE manifold is the minimal resolution of singularities of an orbifold \mathbb{C}^{2} / Γ where $\mathbb{C}^{2} \equiv \mathbb{R}^{4}$ is the usual Euclidean 4 d flat space and Γ is a finite Kleinian subgroup of $S U(2)$. Since we are dealing with orbifolded theories there is a point group and corresponding to that there are twisted sectors in the closed string spectrum.

The ALE manifolds can be described geometrically as affine complex variety in \mathbb{C}^{3} i.e. the zero loci of the following polynomial constraints [38]:

$$
\begin{equation*}
\{x, y, z\} \in \mathcal{M}_{\Gamma}\left(t_{1}, \ldots, t_{r}\right) \rightarrow \tilde{W}_{\Gamma}\left(x, y, z ; t_{1}, \ldots, t_{r}\right)=0 \tag{2.38}
\end{equation*}
$$

that are determined by the algebraic structure of the Kleinian group Γ and that depend on r complex parameters $\left\{t_{i}\right\}(i=1, \ldots, r), r$ being the number of non-trivial conjugacy classes in Γ. In the limit $t_{i} \rightarrow 0$ the locus (2.38) reduces to the orbifolded manifold \mathbb{C}^{2} / Γ. In type IIB theory, by viewing the orbifold background as the singular limit of the ALE space for vanishing two-cycles [39], the NS-NS 2-form field $B_{(2)}$ and R-R 2-form field $C_{(2)}$ gives rise to the twisted sector scalars b and c^{6} (located at the orbifold fixed point) in the low energy effective action of the six dimensional theory extended in the transverse direction to the orbifold via the following relations [40] :

$$
\begin{equation*}
B_{(2)}=b \omega_{2} \quad, \quad C_{(2)}=c \omega_{2} \tag{2.39}
\end{equation*}
$$

where ω_{2} is the 2-form dual to the vanishing 2-cycle of the orbifold. This relation will be

[^5]important when we will study the S-dualty properties of the twisted fields b, c in sec. 4.5, 5.4.

2.5 Fractional Branes

Following the discussion in [41], an open string state is described in the following way :

$$
\begin{equation*}
\text { CP factor } \times \text { oscillator } \mid \text { momentum eigenstates }\rangle \tag{2.40}
\end{equation*}
$$

Now, we already know that the open strings end on D-branes. So, if there is a single D-brane in flat space, the CP factor is just a number. And for a stack of N D-branes, the CP factor is an $(N \times N)$ matrix. For a D-brane in orbifold space, the CP matrix transforms under different representations of the orbifold group Γ in the following way: let us denote the CP factor by λ, then it transforms as $\lambda \rightarrow \lambda^{\prime}=\mathcal{R}(h) \lambda \mathcal{R}(h)^{-1}$ where h is any orbifold group element and \mathcal{R} is any specific representation. Since there is various possible representation of a group, there are different kinds of D-branes on orbifolded space.

A D-brane whose CP factors transform under the regular representation ${ }^{7}$ of the orbifold group is called regular D-brane. But we know that the regular representation is reducible; the regular representation \mathbf{R} is decomposed into its irreducible representations $\mathbf{D}_{\mathbf{I}}$ in the following way:

$$
\begin{equation*}
\mathbf{R}=\bigoplus n_{I} \mathbf{D}_{\mathbf{I}} \tag{2.41}
\end{equation*}
$$

where $n_{I} ; I=0, \ldots, M-1$ is the dimension of I-th irreducible representation of Γ, and $\sum_{I=0}^{M-1} n_{I}=|\Gamma|$.

[^6]This leads one naturally to define another type of D-brane, one whose CP factors transform under the irreducible representations of orbifold group Γ. These branes are called Fractional D-branes and there are as many distinct fractional branes as there are irreducible representations of the discrete group. So, a fractional brane of type I is the one whose CP factor transforms under the $\mathbf{D}_{\mathbf{I}}$-th irreducible representation of Γ^{8}.

When one computes the open string spectrum of a regular brane, one finds massless scalar fields or moduli that correspond to motion along the orbifolded directions. However, the fractional branes do not have any such open string moduli in their spectrum. They are stuck at the orbifold fixed point and are invariant states under the action of the orbifold group.

As already mentioned D-branes in flat space carry charges under the R-R two forms, which can be obtained from the boundary state. The basic idea of constructing the boundary state was first explained by Cardy: we begin with the one-loop open string partition function and then use open/closed duality to rewrite it as a tree level closed string amplitude. The properties of the boundary state can then be read off from this result. By a calculation of the charges carried by the branes labeled by the irreducible representation, it can be shown that these branes carry fractional charge w.r.t the untwisted $\mathrm{R}-\mathrm{R}(p+1)$ form of a usual Dp-brane. ${ }^{9}$. To be specific if the usual flat space D-brane has charge μ_{p} under the untwisted RR form, the fractional brane of type I will have the charge $\frac{n_{I} \mu_{p}}{|\Gamma|}$. Note, for the \mathbb{Z}_{M} orbifold setup we consider in this thesis, $n_{I}=1$. In addition, however, fractional branes are also charged w.r.t. some twisted $\mathrm{R}-\mathrm{R}(p+1)$ form fields [42].

In Appendix C we explicitly write down the boundary state corresponding to a fractional brane in a \mathbb{Z}_{2} orbifold, in which the brane is extended partially along the orbifold directions.

[^7]
Chapter 3

Surface operators as monodromy

defects

Non-local operators or defects in quantum field theories are generally classified by the dimension of their support. In this thesis, we will be mainly interested in four dimensional quantum field theories. So there are four possible kinds of operators [43].

- Codimension 4: These are usual local operators in QFT of zero dimension supported on a point eg. gauge invariant combinations of the fields in any gauge theory.
- Codimension 3: These are non-local operators supported on a one-dimensional line, hence they are called line operators. eg. Wilson and 't Hooft operators.
- Codimension 2: These operators are supported on co-dimension two surfaces. For the four dimensional cases we will be considering, these operators are supported on two dimensional surfaces. ${ }^{1}$ These will be the primary objects of study in this thesis and we will be giving more details and defining properties of them as we go along.

[^8]- Codimension 1: These operators have support on co-dimesional 3 manifolds. eg. domain walls.

Another way to classify defects is by their construction. An operator is called "electrical" if it can be constructed directly from the elementary fields present in the theory eg. local operators or Wilson line. The other type of operators called "magnetic" or disorder operators which can not be defined through algebraic combinations of elementary fields but rather by some particular behavior of the some of the elementary fields near these operators eg. 't-Hooft line defects, Gukov-Witten surface defects (which will be the topic of interest in this thesis).

To have an intuitive physical picture in mind, Wilson loops in an $U(1)$ theory can be viewed as world-volume of oppositely moving electron - anti electron bound state ${ }^{2}$ Similarly, surface defects can be thought of as world-volume of a Dirac string of dyonic charge which does not obey the Dirac quantization rule [43].

3.1 Monodromy defects

We will be mainly interested in studying half-BPS surface defects in $\mathcal{N}=4$ super YangMills theory. We will define them as monodromy defects: consider a four dimensional manifold M and we modify it along a co-dimensional two sub manifold D in such a way that specific fields in the four dimensional theory develop singularities along surface $D .{ }^{3}$

Let us consider the $\mathcal{N}=4$ super Yang-Mills theory with gauge group $\mathrm{U}(N)$ defined on $\mathbb{R}^{4} \simeq \mathbb{C}_{(1)} \times \mathbb{C}_{(2)}$. We will use the complex coordinate z_{i} on $\mathbb{C}_{(i)}$; we will also use polar coordinates in $\mathbb{C}_{(2)}$ setting $z_{2}=r \mathrm{e}^{\mathrm{i} \theta}$. It will also be useful at times to denote by $\vec{x}_{\|}$and \vec{x}_{\perp} the real coordinates of these two planes and by $\vec{k}_{\|}$and \vec{k}_{\perp} the corresponding momenta in these directions.

[^9]A monodromy defect D is a surface defect extended along $\mathbb{C}_{(1)}$ and placed at the origin of $\mathbb{C}_{(2)}$. It is defined by the singular behavior of some of the bosonic fields of the theory, namely the 1-form gauge connection \mathbf{A} and one of the three complex adjoint scalars, which we call $\boldsymbol{\Phi}$. Near the location of the defect, i.e. for $r \rightarrow 0$, these fields have the following non-trivial (singular) profile:

$$
\mathbf{A}=\left(\begin{array}{cccc}
\alpha_{0} \mathbb{I}_{n_{0}} & 0 & \cdots & 0 \tag{3.1}\\
0 & \alpha_{1} \mathbb{I}_{n_{1}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{M-1} \mathbb{I}_{n_{M-1}}
\end{array}\right) d \theta
$$

and

$$
\boldsymbol{\Phi}=\left(\begin{array}{cccc}
\left(\beta_{0}+\mathrm{i} \gamma_{0}\right) \mathbb{I}_{n_{0}} & 0 & \cdots & 0 \tag{3.2}\\
0 & \left(\beta_{1}+\mathrm{i} \gamma_{1}\right) \mathbb{I}_{n_{1}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \left(\beta_{M-1}+\mathrm{i} \gamma_{M-1}\right) \mathbb{I}_{n_{M-1}}
\end{array}\right) \frac{1}{2 z_{2}} .
$$

Here $\mathbb{I}_{n_{I}}$ denotes the $\left(n_{I} \times n_{I}\right)$ identity matrix; α_{I}, β_{I} and γ_{I} are real parameters and the integers n_{I} are such that

$$
\begin{equation*}
\sum_{I=0}^{M-1} n_{I}=N . \tag{3.3}
\end{equation*}
$$

This non-trivial field configuration breaks the $\mathrm{U}(N)$ gauge group to a Levi subgroup

$$
\begin{equation*}
\mathrm{U}\left(n_{0}\right) \times \mathrm{U}\left(n_{1}\right) \times \cdots \times \mathrm{U}\left(n_{M-1}\right) . \tag{3.4}
\end{equation*}
$$

If the gauge group is $\mathrm{SU}(N)$ one has to remove the overall $\mathrm{U}(1)$ factor from (3.4) and subtract the trace from (3.1) and (3.2).

Since the defect D is supported on a $2 d$ surface, in the definition of the path-integral one is allowed to turn on a $2 d \theta$-term, whose coefficient we denote η_{I} for each factor in the unbroken Levi subgroup. This means that in the path-integral we include the following
phase factor:

$$
\begin{equation*}
\exp \left(i \sum_{I=0}^{M-1} \eta_{I} \int_{D} \operatorname{Tr}_{\mathrm{U}\left(n_{l}\right)} F_{I}\right) . \tag{3.5}
\end{equation*}
$$

The reason for calling the gauge and scalar field profile (3.1), (3.2) respectively to be singular is the presence of $\frac{1}{z}$ pole at the origin $z=0^{4}$. The introdcution of the surface defect breaks the poincare symmtery along $\mathbb{C}_{(2)}$ plane and also breaks half of the supersymmetry of the $\mathcal{N}=4$ sYM. Interestingly the specific form of these profiles (3.1), (3.2) are scale invariant [25]. As a result, the Gukov-Witten defects are $2 d$ superconformal defects inside the $4 d \mathcal{N}=4$ sYM theory. Since $d(d \theta)=2 \pi \delta_{D}$, the field strength calculated using this gauge field A is given by: $\boldsymbol{F}=\mathbf{2} \boldsymbol{\pi} \boldsymbol{\alpha} \boldsymbol{\delta}_{\boldsymbol{D}}$ where δ_{D} is a 2 -form delta function supported on D. The holonomy of the singular gauge field A around the singularity is given by

$$
\begin{equation*}
P \exp (i \oint A)=\exp (2 \pi i \underline{\alpha}) \tag{3.6}
\end{equation*}
$$

Altogether, we can say that a monodromy defect is characterized by the discrete parameters n_{I}, which constitute a partition of N, and by the four sets of real continuous parameters $\left\{\alpha_{I}, \beta_{I}, \gamma_{I}, \eta_{I}\right\}$, with $I=0, \ldots, M-1$. Whereas the discrete parameters are analogous to the choice of representation R of the gauge groups for line operators, the continuous parameters are novel to the surface operators. Surface operators that do not depend on continuous parameters do exist and are called rigid surface operators.

One of the remarkable features of the $\mathcal{N}=4$ Yang-Mills theory is its invariance under the action of the non-perturbative duality group $\operatorname{SL}(2, \mathbb{Z})$. It turns out that this duality also acts naturally on the parameters of the surface operator as shown in [1]. In particular, an

[^10]element $\Lambda=\left(\begin{array}{cc}m & n \\ p & q\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$ induces the transformation

$$
\begin{align*}
& \left(\alpha_{I}, \eta_{I}\right) \longrightarrow\left(\alpha_{I}, \eta_{I}\right) \Lambda^{-1}=\left(q \alpha_{I}-p \eta_{I},-n \alpha_{I}+m \eta_{I}\right), \tag{3.7}\\
& \left(\beta_{I}, \gamma_{I}\right) \longrightarrow|p \tau+q|\left(\beta_{I}, \gamma_{I}\right)
\end{align*}
$$

where τ is the complexified gauge coupling constant.

3.1.1 Origin of GW defect

Gukov-Witten(GW) surface defects were first introduced in the seminal papers [1, 2]. There they studied surface defects in a topological theory, the GL-twisted $\mathcal{N}=4$ super Yang-Mills theory, which was introduced by Kapustin and Witten in [44]. The topological twist leads to non-canonical spins for the fields and the relevant fields turn out to be the gauge field A and a one-form scalar field ϕ. The Kapustin-Witten equations were derived by imposing the supersymmetry projections consistent with the topological twist:

$$
\begin{align*}
F-\phi \wedge \phi & =0 \\
d_{A} \phi & =0 \\
d_{A} \star \phi & =0 \tag{3.8}
\end{align*}
$$

where the covariant derivative is defined as $d_{A} \equiv d+A$ and \star is Hodge star operator.

Gukov and Witten reduced these equations further to two dimensions, appropriate to the existence of a defect, and found the most general solution to the above set of equations having a singular behavior around the defect to be given by

$$
\begin{align*}
& A=\alpha d \theta \\
& \phi=\beta \frac{d r}{r}-\gamma d \theta \tag{3.9}
\end{align*}
$$

where α, β, γ are constant elements of the lie algebra of the gauge group and (r, θ) are the polar coordinate in the two-plane transverse to the defect (the defect being at the origin of the coordinate system).

The monodromy of the gauge field around the defect is given by $P \exp (-\oint A)$. Note that the gauge and scalar field used in Gukov-Witten original papers [1,2] are anti-hermitian in nature whereas in this thesis we used hermitian fields (3.1), (3.2) ${ }^{5}{ }^{6}$. That is why the holonomy expression in this thesis (3.6) differs by a factor of i from the above expression used in [1, 2].

3.1.2 Path integral description of surface defects

To understand how surface defects are treated within the path integral formulation, let us suppose we want to calculate an n-point correlator within the four-dimensional gauge theory but in presence of a Gukov-Witten defect i.e., we want to compute $\left.\left\langle O_{1}\left(z_{1}\right) O_{2}\left(z_{2}\right) \ldots O_{(} n\right)\left(z_{n}\right) S\right\rangle$ where the GW surface operator is denoted by S. Then, such a correlator is given the following path integral:

$$
\begin{equation*}
\int_{\mathrm{GW}}[\mathcal{D} A][\mathcal{D} \phi][\mathcal{D} \lambda] e^{\left(-S_{\mathrm{SYM}}+i \eta \int_{D} F\right)} O_{1}\left(z_{1}\right) O_{2}\left(z_{2}\right) \ldots O_{n}\left(z_{n}\right) \tag{3.10}
\end{equation*}
$$

where λ is the gaugino field, $S_{\text {SYM }}$ is the euclidean sYM action and the 2 d theta-term has been added by hand in the total action. The important point to note is, by $\int_{\text {GW }}$ we mean carry out the path integral only over the singular field configurations given by (3.1),(3.2). One such example of the above type of correlator is the instanton partition function in the presence of a Gukov-Witten defect $[4,16]$.

Although in this thesis we will not be exploring the operator properties of the surface

[^11]defects but will primarily focus on reproducing the classical space-time profiles (3.1),(3.2) from a string theoretic setup. We discuss this setup in full detail in the next section.

3.2 Monodromy defects from fractional branes

In this thesis, we shall study the simplest case of GW defects in the maximally supersymmetric $\mathcal{N}=4$ Yang-Mills theory with gauge group $U(N)$ or $\operatorname{SU}(N)$. Our primary goal is to realize these surface defects in perturbative string theory and to recover the singular profiles of the fields in the gauge theory. We do so by calculating perturbative open/closed string amplitudes in Type II B string theory on an orbifold background. Following a proposal of Kanno and Tachikawa (KT) [4], we engineer the $4 d \mathcal{N}=4$ Yang-Mills theory using fractional D3-branes with two world-volume directions along the orbifold, leaving unbroken the Poincaré symmetry in the other two world-volume directions. This is quite different from the more familiar configuration in which the fractional D3-branes are completely transverse to the orbifold [3]. In fact, in this latter case, the resulting gauge theory has Poincaré symmetry in four dimensions but a reduced amount of supersymmetry since only a fraction of the sixteen supercharges of the orbifold background is preserved on the world-volume.

This orbifold set-up has already been studied in earlier works on the subject $[4,16,20$, 45,46] where also fractional $\mathrm{D}(-1)$-branes have been introduced on top of the fractional D3-branes to derive the so-called ramified instanton partition function in the presence of a surface operator, extending the equivariant localization methods of [47]. In this thesis, instead, we consider only stacks of fractional D3-branes and focus on the gauge theory defined on their world-volume, which has largely remained unexplored. In particular we compute correlators involving both the massless fields of the gauge theory and the massless twisted scalars in the NS/NS and R / R sectors of the closed string background, and show that these correlators precisely encode the singular profiles that define a GW
defect. The continuous parameters that appear in these profiles and that are part of the defining data of a surface operator are related to the vacuum expectation values of the twisted scalars. In this way, we clarify in detail how the KT set-up realizes surface defects in the gauge theory.

3.2.1 Setup

Our primary goal is to derive the field profiles (3.1) and (3.2) as well as the topological term (3.5) that characterize a monodromy GW defect from a world-sheet analysis of its orbifold realization proposed in [4].

In this set-up, the gauge theory lives on a system of D3-branes in Type II B string theory placed in a \mathbb{Z}_{M} orbifold space. The orbifold group acts on two complex planes $\mathbb{C}_{(2)} \times$ $\mathbb{C}_{(3)}$, the first of which is transverse to the defect inside the world-volume of the D3branes, while the second is transverse to the D3. In this realization, therefore, the defect D is located at the fixed point of the orbifold action. The integer partition of N, (see (3.3)), which determines the unbroken Levi subgroup (3.4) corresponds to the choice of the N-dimensional representation of \mathbb{Z}_{M} on the Chan-Paton indices of the D3-branes; in other words, n_{I} is the number of the fractional branes transforming in the I-th irreducible representation of \mathbb{Z}_{M}. We shall refer to these fractional branes as D3-branes of type I.

What is missing in the KT description is how the orbifold realization encodes the continuous parameters of the monodromy defect. Our goal is to fill this gap by showing that they correspond to background values for fields belonging to the twisted sectors of the closed string theory on the orbifold. In particular, the twisted background fields in the $\mathrm{NS} / \mathrm{NS}$ sector, which here we collectively denote as b, account for the parameters α_{I}, β_{I} and γ_{I} which appear in (3.1) and (3.2), while the twisted scalar of the R / R sector, which we denote c, accounts for the parameters η_{I} in the topological term (3.5).

Schematically, the mechanism goes as follows. In the presence of a closed string back-
ground certain open string fields $\Phi_{\text {open }}$ attached to a fractional D3-brane of type I acquire a non-zero one-point function, i.e. a tadpole. If we denote by $\mathcal{V}_{\text {open }}$ the open string vertex operator associated to $\Phi_{\text {open }}$ and by \mathcal{V}_{b} the closed string vertex operator corresponding to b, the tadpole $\left\langle\mathcal{V}_{\text {open }}\right\rangle_{b ; I}$ arises from an open/closed string correlator evaluated on a disk which contains an insertion of $b \mathcal{V}_{b}$ in the interior and of the vertex operator $\mathcal{V}_{\text {open }}$ on the boundary that lies on a D3-brane of type I :

Figure 3.1: An example of a mixed open/closed string amplitude on a D3-brane of type I.

Note that the open string vertex carries momentum along the D3-brane world-volume. While its longitudinal components $\vec{k}_{\|}$along the defect are set to zero by momentum conservation, its transverse components \vec{k}_{\perp} need not be set to zero, as we have pictorially indicated in the diagram. Indeed, the twisted fields, which are localized at the orbifold fixed point, break translation invariance along the orbifold directions and thus \vec{k}_{\perp} does not need to be conserved. Therefore, the disk diagram represented above acts as a classical source for $\Phi_{\text {open }}$, which acquires a non-trivial profile in the plane transverse to the defect. The explicit expression of this profile near the defect is obtained by attaching a propagator to the source and taking the Fourier transform $(\mathcal{F T})$, namely

$$
\begin{equation*}
\Phi_{\text {open }}\left(\vec{x}_{\perp}\right)=\mathcal{F} \mathcal{T}\left[\frac{1}{\vec{k}_{\perp}^{2}}\left\langle\mathcal{V}_{\text {open }}\right\rangle_{b ; I}\left(\vec{k}_{\perp}\right)\right] . \tag{3.11}
\end{equation*}
$$

The fields $\Phi_{\text {open }}$ which get a tadpole from this mechanism arise from open strings with both ends on the same D3-brane, so they have diagonal Chan-Paton factors. In the fol-
lowing, we will show in detail that the only non-zero tadpoles are those of the diagonal entries of the transverse components ${ }^{7} \mathbf{A}_{2}$ and $\overline{\mathbf{A}}_{2}$ of the gauge connection 1-form and the diagonal entries of the complex scalar $\boldsymbol{\Phi}$. These are precisely the fields which have a non-trivial profile in a monodromy defect of GW type. Moreover, we will show that the functional dependence on the transverse coordinates acquired by these fields through (3.11) coincides with that of (3.1) and (3.2), thereby identifying the parameters α_{I}, β_{I} and γ_{I} with some of the background fields of the twisted NS/NS sector.

The mechanism that encodes the non-trivial profile of the surface defect in a perturbative disk diagram is reminiscent of the way in which disks with mixed $\mathrm{D} 3 / \mathrm{D}(-1)$ boundary conditions account for the classical profile of the instanton solutions [37, 48]. In that case, however, the defect is point-like and the classical profile of the fields depends on all world-volume coordinates; moreover, the role of parameters that appear in the profile is played by the $\mathrm{D} 3 / \mathrm{D}(-1)$ open string moduli, instead of the closed string moduli, as in the present situation.

The twisted fields in the R / R sector also couple to the open string excitations through disk diagrams analogous to the one in (3.1). It turns out that the only non-zero diagrams of this type involve the diagonal entries of the longitudinal components \mathbf{A}_{1} and $\overline{\mathbf{A}}_{1}$ of the gauge connection and do not depend on the transverse momentum \vec{k}_{\perp}. Thus, these diagrams are not tadpoles and do not lead to the emission of open string fields with a non-trivial profile; instead, they account for some terms of the defect effective action, and in particular, correspond to the θ-terms of (3.5). This implies that the parameters η_{I} arise from the twisted R / R background fields.

The description of the monodromy defects that we propose is analogous to the holographic description of defects given by [25,26] in terms of bubbling geometries. Also in that case one gives a bulk description of the defect that accounts for all of its parameters in terms of a closed string background. The orbifold description that we will discuss in

[^12]the following is however quite different since it makes use of perturbative string theory and world-sheet conformal field theory tools.

The perturbative string theory realization of a non-trivial sector of the gauge theory that we have described bears many analogies with the explicit derivation of the gauge instanton profiles from D3/D-instanton systems [49-51] via the emission of open strings from disk diagrams with mixed boundary conditions [37]. The role of the instanton moduli is played in the construction of the surface defect by the insertion of the twisted closed string at zero momentum.

Chapter 4

Surface operators using \mathbb{Z}_{2} orbifold

In this section, we will consider the particular case $M=2$, corresponding to simple defects. This case allows us to illustrate all the ingredients and mechanisms involved in our proposal, while at the same time avoiding some of the more technical issues related to the general \mathbb{Z}_{M} orbifold.

4.1 Closed strings in the \mathbb{Z}_{2} orbifold

We consider Type II B string theory propagating in a $10 d$ target space given by the orbifold

$$
\begin{equation*}
\mathbb{C}_{(1)} \times \frac{\mathbb{C}_{(2)} \times \mathbb{C}_{(3)}}{\mathbb{Z}_{2}} \times \mathbb{C}_{(4)} \times \mathbb{C}_{(5)} \tag{4.1}
\end{equation*}
$$

The i-th complex plane $\mathbb{C}_{(i)}$ is parametrized by the complex coordinates z_{i} and \bar{z}_{i} defined as

$$
\begin{equation*}
z_{i}=\frac{x_{2 i-1}+\mathrm{i} x_{2 i}}{\sqrt{2}} \quad \text { and } \quad \bar{z}_{i}=\frac{x_{2 i-1}-\mathrm{i} x_{2 i}}{\sqrt{2}} \tag{4.2}
\end{equation*}
$$

in terms of the ten real coordinates x_{μ}, and the non-trivial element of the \mathbb{Z}_{2} orbifold group acts as follows

$$
\begin{equation*}
\left(z_{2}, z_{3}\right) \longrightarrow\left(-z_{2},-z_{3}\right) \quad \text { and } \quad\left(\bar{z}_{2}, \bar{z}_{3}\right) \longrightarrow\left(-\bar{z}_{2},-\bar{z}_{3}\right) . \tag{4.3}
\end{equation*}
$$

This breaks the $S O(4) \simeq S U(2)_{+} \otimes S U(2)_{-}$isometry of the space $\mathbb{C}_{(2)} \times \mathbb{C}_{(3)}$ down to $S U(2)_{+}$. To describe closed strings in the orbifold (1.1) we use a complex notation analogous to the one in (4.2). We denote the left-moving bosonic string coordinates as $Z^{i}(z)$ and $\bar{Z}^{i}(z)$, and the right-moving ones as $\widetilde{Z}^{i}(\bar{z})$ and $\widetilde{\bar{Z}}^{i}(\bar{z})$. Here, z and \bar{z} are the complex coordinates that parametrize the world-sheet of the closed strings. In a similar way, we introduce the complex world-sheet fermionic coordinates $\Psi^{i}(z)$ and $\bar{\Psi}^{i}(z)$, and their right-moving counterparts $\widetilde{\Psi}^{i}(\bar{z})$ and $\widetilde{\bar{\Psi}}^{i}(\bar{z})$. In all of our string computations we will use the convention that $2 \pi \alpha^{\prime}=1$.

For the \mathbb{Z}_{2} orbifold under consideration, the Hilbert space of the closed string, in addition to the usual untwisted sector, possesses one twisted sector, associated to the non-trivial conjugacy class of \mathbb{Z}_{2}. In the following, we are going to briefly review ${ }^{1}$ the main properties of this twisted sector which will play a crucial role in our analysis.

4.1.1 Twisted closed string sectors

In the twisted sector the left-moving bosonic string coordinates Z^{2} and Z^{3} has the following anti-periodicity:

$$
\begin{equation*}
Z^{2}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=-Z^{2}(z) \quad \text { and } \quad Z^{3}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=-Z^{3}(z) . \tag{4.4}
\end{equation*}
$$

[^13]Of course, the same happens for the complex conjugate coordinates $\bar{Z}^{2}(z)$ and $\bar{Z}^{3}(z)$. The vacuum for these twisted bosonic fields is created by the operator

$$
\begin{equation*}
\Delta(z)=\sigma^{2}(z) \sigma^{3}(z) \tag{4.5}
\end{equation*}
$$

where $\sigma^{2}(z)$ and $\sigma^{3}(z)$ are the twist fields [5] in the complex directions 2 and 3. Each of these twist fields is a conformal operator of weight $1 / 8$ so that $\Delta(z)$ has weight $1 / 4$.

A completely analogous construction can be made in the right-moving sector, where one has

$$
\begin{equation*}
\widetilde{Z}^{2}\left(\mathrm{e}^{2 \pi \mathrm{i}} \bar{z}\right)=-\widetilde{Z}^{2}(\bar{z}) \quad \text { and } \quad \widetilde{Z}^{3}\left(\mathrm{e}^{2 \pi \mathrm{i}} \bar{z}\right)=-\widetilde{Z}^{3}(\bar{z}), \tag{4.6}
\end{equation*}
$$

and similarly for their complex conjugates. Correspondingly, one defines the right-moving twist field $\widetilde{\Delta}(\bar{z})$ of dimension $1 / 4$.

As far as the fermionic coordinates are concerned, one has

$$
\begin{equation*}
\Psi^{2}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=\mp \Psi^{2}(z) \quad \text { and } \quad \Psi^{3}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=\mp \Psi^{3}(z), \tag{4.7}
\end{equation*}
$$

where the upper signs refer to the NS sector and the lower ones to the R sector. The complex conjugate coordinates $\bar{\Psi}^{2}(z)$ and $\bar{\Psi}^{3}(z)$ have similar monodromy properties. In the right-moving sector, the fermionic fields are such that

$$
\begin{equation*}
\widetilde{\Psi}^{2}\left(\mathrm{e}^{2 \pi \mathrm{i}} \bar{z}\right)=\mp \widetilde{\Psi}^{2}(\bar{z}) \quad \text { and } \quad \widetilde{\Psi}^{3}\left(\mathrm{e}^{2 \pi \mathrm{i}} \bar{z}\right)=\mp \widetilde{\Psi}^{3}(\bar{z}) \tag{4.8}
\end{equation*}
$$

with similar expressions for the complex conjugate coordinates ${\widetilde{\bar{\Psi}^{2}}}^{2}(\bar{z})$ and ${\widetilde{\bar{\Psi}^{3}}}^{3}(\bar{z})$.

As a consequence of these monodromy properties, in the expansion of the various fields the moding is shifted by $1 / 2$ with respect to their untwisted values. In particular, the bosonic fields $Z^{2}, Z^{3}, \bar{Z}^{2}$ and \bar{Z}^{3} have half-integer modes, while the fermions $\Psi^{2}, \Psi^{3}, \bar{\Psi}^{2}$
and $\bar{\Psi}^{3}$ are integer moded in the NS sector, and half-integer moded in the R sector. The same is true, of course, for their right-moving counterparts.

Massless states in the NS/NS sector

Since in the NS sector the fermionic coordinates along directions 2 and 3 are periodic and possess zero-modes, the vacuum of the world-sheet theory of the fields Ψ^{2} and Ψ^{3} is degenerate and carries a representation of the $4 d$ Clifford algebra formed by their zeromodes. With respect to the $\mathrm{SO}(4)$ isometry of $\mathbb{C}_{(2)} \times \mathbb{C}_{(3)}$, these zero-modes build a $4 d$ Dirac spinor, which decomposes into its chiral and anti-chiral parts: $(\mathbf{2}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{2})$. Given our choice for the embedding of the \mathbb{Z}_{2} action into $\operatorname{SO}(4)$, the anti-chiral part $(\mathbf{1}, \mathbf{2})$ is not invariant under the orbifold and is projected out. Therefore, we just remain with the chiral spinor ($\mathbf{2}, \mathbf{1}$), whose two components are labeled by an index α. From the worldsheet point of view, this chiral spinor is created by a $4 d$ chiral spin field $[9,10]$

$$
\begin{equation*}
S^{\alpha}(z) \tag{4.9}
\end{equation*}
$$

which is a conformal field of weight $1 / 4$.

Due to the twisted boundary conditions (4.4), the bosonic coordinates Z^{2} and Z^{3} along the orbifold do not possess zero-modes. The momentum can only be defined in the directions Z^{1}, Z^{4} and Z^{5} that have the standard behavior. We find it convenient to use a complex notation for the momentum analogous to the one in (4.2), and thus we define

$$
\begin{equation*}
\kappa_{i}=\frac{k_{2 i-1}+\mathrm{i} k_{2 i}}{\sqrt{2}} \quad \text { and } \quad \bar{\kappa}_{i}=\frac{k_{2 i-1}-\mathrm{i} k_{2 i}}{\sqrt{2}} \tag{4.10}
\end{equation*}
$$

where k is the momentum in real notation. Then, in the twisted sector, the usual planewave factor $: \mathrm{e}^{\mathrm{i} k \cdot X}$: that appears in the vertex operators describing string exictations is written as follows

$$
\begin{equation*}
: \mathrm{e}^{\mathrm{i} \bar{\kappa} \cdot Z(z)+\mathrm{i} \kappa \cdot \bar{Z}(z)}: \tag{4.11}
\end{equation*}
$$

where only κ_{1}, κ_{4} and κ_{5} (and their complex conjugates) are defined. The operator (4.11) is a conformal field of weight $\kappa \cdot \bar{\kappa}=\frac{1}{2} k^{2}$.

Finally, to describe physical vertex operators in the standard (-1)-superghost picture of the NS sector, one introduces the vertex operator

$$
\begin{equation*}
: \mathrm{e}^{-\phi(z)}: \tag{4.12}
\end{equation*}
$$

where $\phi(z)$ is the field appearing in the bosonization formulas of the superghost system [9]. The operator (4.12) is a conformal field of weight $1 / 2$.

We have now all ingredients to construct a vertex operator that describes a physical leftmoving excitation at the massless level in the NS twisted sector. This is obtained by taking the product of the twist field (4.5), the spin field (4.9), the plane-wave factor (4.11) and the superghost term (4.12). In this way, we obtain ${ }^{2}$

$$
\begin{equation*}
\mathcal{V}^{\alpha}(z)=\Delta(z) S^{\alpha}(z) \mathrm{e}^{-\phi(z)} \mathrm{e}^{\mathrm{i} \bar{\kappa} \cdot \bar{Z}(z)+\mathrm{i} \kappa \cdot \bar{Z}(z)} \tag{4.13}
\end{equation*}
$$

which is a conformal field of weight 1 if $\kappa \cdot \bar{\kappa}=\frac{1}{2} k^{2}=0$. In the following, we will consider the closed strings as providing a constant background for the gauge theory, and thus in these vertex operators we will set the momentum to zero. We also observe that the vertices (4.13) are preserved by the GSO projection of the NS sector. Indeed, the sum of the spinor weights minus the superghost charge is an even integer.

Exploiting the conformal properties of the various factors, it is easy to check that ${ }^{3}$

$$
\begin{equation*}
\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\beta}\left(z^{\prime}\right)\right\rangle=\frac{\left(\epsilon^{-1}\right)^{\alpha \beta}}{\left(z-z^{\prime}\right)^{2}}, \tag{4.14}
\end{equation*}
$$

[^14]where
\[

\epsilon=\left($$
\begin{array}{cc}
0 & -1 \tag{4.15}\\
+1 & 0
\end{array}
$$\right)
\]

is the chiral part of the charge conjugation matrix \widehat{C} in four dimensions (see Appendix A.0.1 for details and our conventions).

The same construction goes through in the right-moving sector, where one finds the vertex operators

$$
\begin{equation*}
\widetilde{\mathcal{V}}^{\alpha}(\bar{z})=\widetilde{\Delta}(\bar{z}) \widetilde{S}^{\alpha}(\bar{z}) \mathrm{e}^{-\widetilde{\phi}(\bar{z})} \mathrm{e}^{\mathrm{i} \tilde{\kappa} \cdot \tilde{Z}(\bar{z})+\mathrm{i} \kappa \cdot \tilde{\bar{Z}}(\bar{z})} \tag{4.16}
\end{equation*}
$$

which have the same form of the two-point function as in (4.14) but with anti-holomorphic coordinate dependence.

Overall, the massless spectrum in the twisted NS/NS sector contains four states described by the vertices $\mathcal{V}^{\alpha}(z) \widetilde{\mathcal{V}}^{\beta}(\bar{z})$ in the $(-1,-1)$-superghost picture. The four independent components can be decomposed into a real scalar b and a triplet b_{c} (with $c=1,2,3$), transforming, respectively, in the $(\mathbf{1}, \mathbf{1})$ and $(\mathbf{3}, \mathbf{1})$ representations of $\mathrm{SO}(4)$. They correspond to the following vertex operators:

$$
\begin{align*}
b & \longleftrightarrow \mathcal{V}_{b}(z, \bar{z})=\mathrm{i} \epsilon_{\alpha \beta} \mathcal{V}^{\alpha}(z) \widetilde{\mathcal{V}}^{\beta}(\bar{z}), \tag{4.17}\\
b_{c} & \longleftrightarrow \mathcal{V}_{b_{c}}(z, \bar{z})=\left(\epsilon \tau_{c}\right)_{\alpha \beta} \mathcal{V}^{\alpha}(z) \widetilde{\mathcal{V}}^{\beta}(\bar{z}),
\end{align*}
$$

where τ_{c} are the usual Pauli matrices.

Massless states in the \mathbf{R} / \mathbf{R} sector

In the twisted R sector, the bosonic coordinates in the complex directions 2 and 3 have, of course, the same monodromy properties as in the NS sector, whereas the corresponding fermionic coordinates Ψ^{2}, Ψ^{3} and their complex conjugates are anti-periodic. This means that in those directions the world-sheet vacuum is non-degenerate. On the contrary, the fermionic fields Ψ^{1}, Ψ^{4} and Ψ^{5} and their complex conjugates are periodic as usual in the

R sector and possess zero-modes. Therefore the world-sheet vacuum in this twisted sector is degenerate and carries a representation of the $6 d$ Clifford algebra generated by the zero modes of the periodic fermions. These form a Dirac spinor of $\mathrm{SO}(6)$ which decomposes into a chiral part, transforming in the $\mathbf{4}$ of $\mathrm{SO}(6)$, plus an anti-chiral part transforming in the $\overline{4}$.

From the world-sheet point of view, the chiral spinor is created by a $6 d$ chiral spin field [9, 10]

$$
\begin{equation*}
S^{A}(z) \tag{4.18}
\end{equation*}
$$

with A taking four values. Likewise, the anti-chiral spinor corresponds to the $6 d$ antichiral spin field

$$
\begin{equation*}
S^{\dot{A}}(z) \tag{4.19}
\end{equation*}
$$

where also the dotted index \dot{A} takes four values. Both S^{A} and $S^{\dot{A}}$ are conformal fields of weight $3 / 8$.

In the R sector there are two standard choices for the superghost picture: the $\left(-\frac{1}{2}\right)$-picture and the $\left(-\frac{3}{2}\right)$-picture, created respectively by the operators

$$
\begin{equation*}
\mathrm{e}^{-\frac{1}{2} \phi(z)} \quad \text { and } \quad \mathrm{e}^{-\frac{3}{2} \phi(z)}, \tag{4.20}
\end{equation*}
$$

which are both conformal fields of weight $3 / 8$.

The GSO projection selects the combinations $S^{A}(z) \mathrm{e}^{-\frac{1}{2} \phi(z)}$ and $S^{\dot{A}}(z) \mathrm{e}^{-\frac{3}{2} \phi(z)}$, for which the sum of the spinor weights minus the superghost charge is an even integer. Then, using these ingredients we can build the following vertex operators

$$
\begin{align*}
& \mathcal{V}^{A}(z)=\Delta(z) S^{A}(z) \mathrm{e}^{-\frac{1}{2} \phi(z)} \mathrm{e}^{\mathrm{i} \bar{\kappa} \cdot Z(z)+\mathrm{i} \kappa \cdot \bar{Z}(z)}, \tag{4.21a}\\
& \mathcal{V}^{\dot{A}}(z)=\Delta(z) S^{\dot{A}}(z) \mathrm{e}^{-\frac{3}{2} \phi(z)} \mathrm{e}^{\mathrm{i} \bar{\kappa} \cdot Z(z)+\mathrm{i} \kappa \cdot \bar{Z}(z)}, \tag{4.21b}
\end{align*}
$$

which are conformal fields of dimension 1 if $\kappa \cdot \bar{\kappa}=\frac{1}{2} k^{2}=0$. From the conformal
properties of the various components, it is easy to check that

$$
\begin{equation*}
\left\langle\mathcal{V}^{A}(z) \mathcal{V}^{\dot{B}}\left(z^{\prime}\right)\right\rangle=\frac{\left(C^{-1}\right)^{A \dot{B}}}{\left(z-z^{\prime}\right)^{2}}, \tag{4.22}
\end{equation*}
$$

where C is the charge conjugation matrix of the spinor representations of $\mathrm{SO}(6)$ (see Appendix A.0.2).

The same construction goes on in the right-moving sector, where one finds the vertex operators

$$
\begin{align*}
& \widetilde{\mathcal{V}}^{A}(\bar{z})=\widetilde{\Delta}(\bar{z}) \widetilde{S}^{A}(\bar{z}) \mathrm{e}^{-\frac{1}{2} \widetilde{\phi}(\bar{z})} \mathrm{e}^{\mathrm{i} \bar{\kappa} \cdot \widetilde{Z}(\bar{z})+\mathrm{i} \kappa \cdot \widetilde{\bar{Z}}(\bar{z})}, \tag{4.23a}\\
& \widetilde{\mathcal{V}}^{\dot{A}}(\bar{z})=\widetilde{\Delta}(\bar{z}) \widetilde{S}^{\dot{A}}(\bar{z}) \mathrm{e}^{-\frac{3}{2} \Phi(\bar{z})} \mathrm{e}^{\mathrm{i} \overline{\mathcal{Z}} \cdot \widetilde{Z}_{\bar{Z}}(\mathrm{z}+\mathrm{i} \kappa \cdot \widetilde{\bar{Z}}(\bar{z})}, \tag{4.23b}
\end{align*}
$$

which have the same two-point function as in (4.22).

Using the vertex operators (4.21) and (4.23) we can study the massless spectrum of the twisted R / R sector. In the asymmetric ($-\frac{1}{2},-\frac{3}{2}$)-superghost picture the vertex operators $\mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z})$ describe R / R potentials ${ }^{4}$ which have sixteen independent components. These can be decomposed into a scalar c and a 2 -index anti-symmetric tensor $c_{M N}$ of $\mathrm{SO}(6)$ that correspond to the vertex operators

$$
\begin{align*}
c & \longleftrightarrow \mathcal{V}_{c}(z, \bar{z})=C_{A \dot{B}} \mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z}), \tag{4.24}\\
c_{M N} & \longleftrightarrow \mathcal{V}_{c_{M N}}(z, \bar{z})=\left(C \Gamma_{M N}\right)_{A \dot{B}} \mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z}),
\end{align*}
$$

where $\Gamma_{M N}=\frac{1}{2}\left[\Gamma_{M}, \Gamma_{N}\right]$, with Γ_{M} being the Dirac matrices of SO (6) (see Appendix A.0.2).

[^15]
4.2 Fractional D3-branes in the \mathbb{Z}_{2} orbifold

We engineer the $4 d$ gauge theory supporting the surface defect employing fractional D3branes in the \mathbb{Z}_{2} orbifold background (1.1). Differently from the case usually considered in the literature [3] in which the fractional D3-branes are entirely transverse to the orbifold, we take fractional D3-branes whose world-volume extends partially along the orbifold. In particular, using the notation introduced in the previous section, we consider D3-branes that extends along the complex directions 1 and 2 , and are transverse to the complex directions 3, 4 and 5. Thus, the \mathbb{Z}_{2} orbifold acts on one complex longitudinal and one complex transverse direction. This fact has two important consequences: firstly, on the D3-brane world-volume, one finds the same content of massless fields as in $\mathcal{N}=4$ super Yang-Mills theory; secondly, since the orbifold acts only on one of the two complex directions of the world-volume, a $2 d$ surface defect is naturally introduced in the gauge theory. Our goal is to show that this defect is precisely a GW monodromy defect.

To do so we first clarify the properties of the fractional D3-branes in the \mathbb{Z}_{2} orbifold from the closed string point of view, using the boundary state formalism ${ }^{5}$, and then from the open string point of view by analyzing the world-volume massless fields.

4.2.1 Boundary states

In a \mathbb{Z}_{2} orbifold there are two types of fractional D-branes that correspond to the two irreducible representations of the orbifold group. We label these two types of D-branes by an index $I=0,1$. The D-branes with $I=0$ carry the trivial representation in which the \mathbb{Z}_{2} element g is represented by +1 , while the D-branes with $I=1$ carry the other representation in which g is represented by -1 . The two types of fractional branes therefore only differ by a sign in front of the twisted sectors. With this in mind, the fractional D3-branes

[^16]can be represented in the boundary state formalism in the following schematic way [6-8]:
\[

$$
\begin{equation*}
|\mathrm{D} 3 ; I\rangle=\mathcal{N}|\mathrm{U}\rangle+\mathcal{N}^{\prime}|\mathrm{T} ; I\rangle \quad \text { with } \quad|\mathrm{T} ; I\rangle=(-1)^{I}|\mathrm{~T}\rangle . \tag{4.25}
\end{equation*}
$$

\]

Here \mathcal{N} and \mathcal{N}^{\prime} are dimensionful normalization factors related to the brane tension, and $|\mathrm{U}\rangle$ and $|\mathrm{T}\rangle$ are the untwisted and twisted Ishibashi states that enforce the identification between the left and right moving modes in the untwisted and twisted sectors, respectively. For our purposes, we do not need to write the explicit expressions of these quantities which can be obtained by factorizing the 1-loop open-string partition function in the closed string channel, and thus we refer to the original literature and in particular to [8], where also the case of D3-branes partially extending along the orbifold has been considered. We do give a very brief review of the boundary state description for fractional branes in Appendix C. However, for clarity, we recall the essential information that will be needed in the following, namely that both $|\mathrm{U}\rangle$ and $|\mathrm{T}\rangle$ have a component in the NS/NS sector and a component in the R / R sector and that, after GSO projection, the twisted part of the boundary state is

$$
\begin{equation*}
|\mathrm{T}\rangle=|\mathrm{T}\rangle_{\mathrm{NS}}+|\mathrm{T}\rangle_{\mathrm{R}} \tag{4.26}
\end{equation*}
$$

with

$$
\begin{align*}
|\mathrm{T}\rangle_{\mathrm{NS}} & =\left(\widehat{C} \gamma_{3} \gamma_{4}\right)_{\alpha \beta}|\alpha\rangle|\widetilde{\beta}\rangle+\cdots \tag{4.27a}\\
|\mathrm{T}\rangle_{\mathrm{R}} & =\left(C \Gamma_{1} \Gamma_{2}\right)_{A \dot{B}}|A\rangle|\widetilde{\dot{B}}\rangle+\cdots \tag{4.27b}
\end{align*}
$$

Here the kets represent the ground states created by acting on the untwisted vacuum with the vertex operators (4.13), (4.16) of the NS/NS twisted sector and with the vertex operators (4.21a) and (4.23b) of the R / R twisted sector, namely

$$
\begin{array}{ll}
|\alpha\rangle=\lim _{z \rightarrow 0} \mathcal{V}^{\alpha}(z)|0\rangle, & \widetilde{\beta}\rangle=\lim _{\bar{z} \rightarrow 0} \widetilde{\mathcal{V}}^{\beta}(\bar{z})|\widetilde{0}\rangle \\
|A\rangle=\lim _{z \rightarrow 0} \mathcal{V}^{A}(z)|0\rangle, & |\widetilde{\dot{B}}\rangle=\lim _{\bar{z} \rightarrow 0} \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z})|\widetilde{0}\rangle . \tag{4.28b}
\end{array}
$$

In (4.27) the ellipses stand for terms involving higher excited states which will not play any role in our analysis. We remark that the coefficient $\left(\widehat{C} \gamma_{3} \gamma_{4}\right)_{\alpha \beta}$ in the NS/NS component (4.27a) is the appropriate one for our D3-branes since in the NS/NS twisted sector the ground states are spinors of the $4 d$ space spanned by the real coordinates x_{3}, x_{4}, x_{5} and x_{6}, of which only the directions x_{3} and x_{4} are longitudinal to the D3-brane worldvolume. Therefore the product of the $\mathrm{SO}(4) \gamma$-matrices $\gamma_{3} \gamma_{4}$ must appear in the prefactor. Notice that the GSO projection only selects the chiral block of the matrix $\widehat{C} \gamma_{3} \gamma_{4}$, as it is indicated by the undotted indices. Likewise, in the R / R component (4.27b) the coefficient $\left(C \Gamma_{1} \Gamma_{2}\right)_{A \dot{B}}$ is due to the fact that in R / R twisted sector the ground states are spinors in the $6 d$ space in which the real coordinates x_{1} and x_{2} belong to the D3-brane world-volume while the real coordinates x_{7}, x_{8}, x_{9} and x_{10} are transverse. This explains why the product of the $\mathrm{SO}(6) \Gamma$-matrices $\Gamma_{1} \Gamma_{2}$ appears in the prefactor. Again the GSO projection selects only the chiral/anti-chiral block of the matrix $C \Gamma_{1} \Gamma_{2}$, as indicated by the pair of undotted/dotted indices.

Reflection rules

When the world-sheet of the closed string has a boundary, there are non-trivial 2-point functions between the left and right moving parts. We are interested in computing these 2 point functions for the massless fields of the twisted sectors when the boundary is created by a fractional D3-brane of type I in the \mathbb{Z}_{2} orbifold discussed in Section 4.2.

In the boundary state formalism (see for instance the reviews [6,7]) the boundary created by a D-brane is the unit circle, i.e. the set of points corresponding to the world-sheet time $\tau=0$ where the boundary state is inserted. The points inside the unit circle define the disk \mathbb{D}. When we insert a closed string inside \mathbb{D}, the left and right moving modes are reflected at the boundary, and a non-vanishing correlator between them arises. For example, considering the twisted NS/NS sector and in particular the massless states described by the
vertex operators (4.17) in the presence of a fractional D3-brane of type I, we have

$$
\begin{align*}
\left\langle\mathcal{V}^{\alpha}(w) \widetilde{\mathcal{V}}^{\beta}(\bar{w})\right\rangle_{I} & \left.=\langle T ; I| \mathcal{V}^{\alpha}(w) \widetilde{\mathcal{V}}^{\beta}(\bar{w})|0\rangle \widetilde{0}\right\rangle \tag{4.29}\\
& =(-1)^{I}{ }_{\mathrm{NS}}\langle T| \mathcal{V}^{\alpha}(w) \widetilde{\mathcal{V}}^{\beta}(\bar{w})|0\rangle|\widetilde{0}\rangle
\end{align*}
$$

for w and $\bar{w} \in \mathbb{D}$. Here we have used the boundary state to represent the fractional D3brane of type I (see (4.25)) and taken into account that only the NS component of its twisted part is relevant for the calculation. As in the main text, $|0\rangle$ and $\widetilde{|0\rangle}$ denote the left and right vacua.

On the other hand, conformal invariance implies that the disk 2-point function of \mathcal{V}^{α} and $\widetilde{\mathcal{V}}^{\beta}$, which are conformal fields of weight 1 , has the following form

$$
\begin{equation*}
\left\langle\mathcal{V}^{\alpha}(w) \widetilde{\mathcal{V}}^{\beta}(\bar{w})\right\rangle_{I}=\frac{M_{I}^{\alpha \beta}}{(1-w \bar{w})^{2}} \tag{4.30}
\end{equation*}
$$

where $M_{I}^{\alpha \beta}$ is a constant to be determined. Combining (4.29) and (4.30), we easily see that

$$
\begin{equation*}
\left.M_{I}^{\alpha \beta}=\lim _{w \rightarrow 0} \lim _{\bar{w} \rightarrow 0}\left\langle\mathcal{V}^{\alpha}(w) \widetilde{\mathcal{V}}^{\beta}(\bar{w})\right\rangle_{I}=(-1)^{I}{ }_{\mathrm{NS}}\langle T \mid \alpha\rangle \widetilde{\beta}\right\rangle \tag{4.31}
\end{equation*}
$$

where $|\alpha\rangle$ and $\widetilde{\beta}\rangle$ are the left and right ground states defined in (4.28a). Thus, the disk 2-point function (4.30) becomes

$$
\begin{equation*}
\left\langle\mathcal{V}^{\alpha}(w) \widetilde{\mathcal{V}}^{\beta}(\bar{w})\right\rangle_{I}=(-1)^{I} \frac{\mathrm{Ns}\langle T \mid \alpha\rangle \widetilde{\beta}\rangle}{(1-w \bar{w})^{2}} . \tag{4.32}
\end{equation*}
$$

Let us now map this result to the complex plane by means of the Cayley map

$$
\begin{equation*}
w=\frac{z-\mathrm{i}}{z+\mathrm{i}}, \quad \bar{w}=\frac{\bar{z}+\mathrm{i}}{\bar{z}-\mathrm{i}} . \tag{4.33}
\end{equation*}
$$

Notice that w is mapped to the upper half-complex plane and \bar{w} to the lower half. Then,
we have

$$
\begin{equation*}
\left\langle\mathcal{V}^{\alpha}(z) \widetilde{\mathcal{V}}^{\beta}(\bar{z})\right\rangle_{I}=\left\langle\mathcal{V}^{\alpha}(w) \widetilde{\mathcal{V}}^{\beta}(\bar{w})\right\rangle_{I} \frac{d w}{d z} \frac{d \bar{w}}{d \bar{z}}=(-1)^{I+1} \frac{\mathrm{NS}\langle T \mid \alpha\rangle\langle\widetilde{\beta}\rangle}{(z-\bar{z})^{2}} . \tag{4.34}
\end{equation*}
$$

Comparing with (4.14) and using the so-called doubling trick, we are led to introduce the following reflection rule

$$
\begin{equation*}
\widetilde{\mathcal{V}}^{\beta}(\bar{z}) \longrightarrow\left(R_{I}\right)_{\gamma}^{\beta} \mathcal{V}^{\gamma}(\bar{z}) \tag{4.35}
\end{equation*}
$$

with

$$
\begin{equation*}
\left.\left(R_{I}\right)^{\beta}{ }_{\gamma}^{\beta}=(-1)^{I} \widehat{C}_{\gamma \alpha}{ }_{\mathrm{NS}}\langle T \mid \alpha\rangle \widetilde{\beta}\right\rangle=(-1)^{I+1} \varepsilon_{\gamma \alpha \mathrm{NS}}\langle T \mid \alpha\rangle\langle\widetilde{\beta}\rangle \tag{4.36}
\end{equation*}
$$

where in the second step we have used the fact that the chiral part of the charge conjugation matrix is ϵ (see A.5)). Using the expression (4.27a) for the twisted boundary state in the NS/NS sector, it is easy to show that

$$
\begin{equation*}
{ }_{\mathrm{NS}}\langle T \mid \alpha\rangle|\widetilde{\beta}\rangle=\left(\gamma_{4} \gamma_{3} \widehat{C}^{-1}\right)^{\beta \alpha} . \tag{4.37}
\end{equation*}
$$

Inserting this into (4.36), we find

$$
\begin{equation*}
\left(R_{I}\right)_{\gamma}^{\beta}=(-1)^{I}\left(\gamma_{4} \gamma_{3}\right)_{\gamma}^{\beta} \tag{4.38}
\end{equation*}
$$

in agreement with (4.44a) of the main text.

The reflection matrix for the R sector can be obtained in the same way. Indeed, in the presence of a D3-brane of type I the left and right-moving vertex operators \mathcal{V}^{A} and $\widetilde{\mathcal{V}}^{\dot{B}}$ have the following 2-point function

$$
\begin{equation*}
\left\langle\mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z})\right\rangle_{I}=(-1)^{I+1} \frac{\mathrm{R}\langle T \mid A\rangle|\widetilde{\dot{B}}\rangle}{(z-\bar{z})^{2}} . \tag{4.39}
\end{equation*}
$$

Comparing with (4.22), we are led to introduce the reflection rule

$$
\begin{equation*}
\widetilde{\mathcal{V}}^{\dot{B}}(\bar{z}) \longrightarrow\left(R_{I}\right)_{C}^{\dot{B}} \mathcal{V}^{\dot{C}}(\bar{z}) \tag{4.40}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left(R_{I}\right)_{C}^{\dot{B}}=(-1)^{I+1} C_{C A \mathrm{R}}\langle T \mid A\rangle|\widetilde{\dot{B}}\rangle . \tag{4.41}
\end{equation*}
$$

From the expression (4.27b) for the twisted boundary state in the R / R sector, one can show that

$$
\begin{equation*}
{ }_{\mathrm{R}}\langle T \mid A\rangle|\widetilde{\dot{B}}\rangle=\left(\Gamma_{2} \Gamma_{1} C^{-1}\right)^{\dot{B} A} . \tag{4.42}
\end{equation*}
$$

Inserting this into (4.41), we therefore find

$$
\begin{equation*}
\left(R_{I}\right)_{C}^{\dot{B}}=(-1)^{I}\left(\Gamma_{1} \Gamma_{2}\right)_{C}^{\dot{B}} \tag{4.43}
\end{equation*}
$$

in agreement with (4.44b) of the main text.

The boundary state $|\mathrm{D} 3 ; I\rangle$ introduces a boundary on the closed string world-sheet along which the left and right moving modes are identified. From (4.27) one can derive that the right moving parts of the twisted closed string vertex operators are reflected on a boundary of type I with the following rules

$$
\begin{align*}
& \widetilde{\mathcal{V}}^{\alpha}(\bar{z}) \longrightarrow(-1)^{I}\left(\gamma_{4} \gamma_{3}\right)_{\beta}^{\alpha} \mathcal{V}^{\beta}(\bar{z}), \tag{4.44a}\\
& \widetilde{\mathcal{V}}^{\dot{A}}(\bar{z}) \longrightarrow(-1)^{I}\left(\Gamma_{1} \Gamma_{2}\right)_{\dot{B}}^{\dot{A}} \mathcal{V}^{\dot{B}}(\bar{z}) . \tag{4.44b}
\end{align*}
$$

These reflection rules will be important in computing closed string amplitudes involving twisted fields in the presence of the fractional D3-branes.

4.2.2 The open string spectrum

We now analyze the spectrum of the massless excitations defined on the world-volume of the fractional D3-branes. For definiteness, we take a fractional D3-brane of type 0, but of course completely similar considerations apply to a D3-brane of type 1 . Since the worldvolume extends in the first two complex directions and the orbifold acts on the second one, it is convenient, as remarked at the start of Section 3.1, to distinguish the directions that are along and transverse to the orbifold. We will label the longitudinal variables (momentum, coordinates, and so on) by a subscript $\|$, which involves the components along the first complex direction. We will similarly use the subscript \perp to label the components along the second complex direction. The reason for these labels is that the first complex direction is longitudinal to the surface defect that the D3-branes realize, while the second direction is transverse to it. In particular, using the complex notation introduced in Section 4.1, we define the combinations

$$
\begin{align*}
\kappa_{\|} \cdot Z_{\|} & =\kappa_{1} \bar{Z}^{1}+\bar{\kappa}_{1} Z^{1}, \tag{4.45}\\
\kappa_{\perp} \cdot Z_{\perp} & =\kappa_{2} \bar{Z}^{2}+\bar{\kappa}_{2} Z^{2},
\end{align*}
$$

and

$$
\begin{gather*}
\kappa_{\|} \cdot \Psi_{\|}=\kappa_{1} \bar{\Psi}^{1}+\bar{\kappa}_{1} \Psi^{1}, \\
\kappa_{\perp} \cdot \Psi_{\perp}=\kappa_{2} \bar{\Psi}^{2}+\bar{\kappa}_{2} \Psi^{2} . \tag{4.46}
\end{gather*}
$$

Notice that under the \mathbb{Z}_{2} orbifold parity, $\kappa_{\|} \cdot Z_{\|}$and $\kappa_{\|} \cdot \Psi_{\|}$are even, while $\kappa_{\perp} \cdot Z_{\perp}$ and $\kappa_{\perp} \cdot \Psi_{\perp}$ are odd.

Let us consider the bosonic NS sector. In the familiar case when the D3-branes are completely transverse to the orbifold, the gauge vector field A_{μ} is typically represented in the (0)-superghost picture by the standard vertex operator

$$
\begin{equation*}
\left(\mathrm{i} \partial X^{\mu}+k \cdot \psi \psi^{\mu}\right) \mathrm{e}^{\mathrm{i} k \cdot X} . \tag{4.47}
\end{equation*}
$$

In our case things are different. First of all, in the plane wave factor $\mathrm{e}^{\mathrm{i} k \cdot X}$ we have to dis-
tinguish the parallel and perpendicular parts which behave differently under the orbifold, and thus we are naturally led to consider the following structures

$$
\begin{align*}
& \cos \left(\kappa_{\perp} \cdot Z_{\perp}\right) \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\| \|}}, \tag{4.48}\\
& \mathrm{i} \sin \left(\kappa_{\perp} \cdot Z_{\perp}\right) \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\| \|}},
\end{align*}
$$

which are respectively even and odd under \mathbb{Z}_{2}. Therefore, they can be combined with other even and odd structures to make invariant vertex operators selected by the orbifold projection. Similarly, also the $k \cdot \psi$ combination appearing in (4.47) has to be split into a parallel and a perpendicular component.

Applying these considerations, it is not difficult to realize that the gauge field A_{1} along the parallel directions is described by the following vertex operator in the (0)-superghost picture ${ }^{6}$

$$
\begin{equation*}
A_{1} \longrightarrow \mathcal{V}_{A_{1}}=\left[\left(\mathrm{i} \partial Z^{1}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{1}\right) \cos \left(\kappa_{\perp} \cdot Z_{\perp}\right)+\mathrm{i} \kappa_{\perp} \cdot \Psi_{\perp} \Psi^{1} \sin \left(\kappa_{\perp} \cdot Z_{\perp}\right)\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}} \tag{4.49}
\end{equation*}
$$

Each term in this expression is invariant under \mathbb{Z}_{2}. For instance, the terms i ∂Z^{1} or $\kappa_{\|} \Psi_{\|} \Psi_{1}$, which are \mathbb{Z}_{2}-even, are multiplied with the cosine combination $\cos \left(\kappa_{\perp} Z_{\perp}\right)$ which is also even, so that the product is invariant under the orbifold action. Similarly, the odd term $\kappa_{\perp} \cdot \Psi_{\perp} \Psi^{1}$ is multiplied by the sine combination $\sin \left(\kappa_{\perp} \cdot Z_{\perp}\right)$, which is also odd, to make an even expression under \mathbb{Z}_{2}. Furthermore, it is easy to check that $\mathcal{V}_{A_{1}}$ is a conformal field of weight 1 if $\kappa \cdot \bar{\kappa}=\frac{1}{2} k^{2}=0$. The vertex operator for the complex conjugate component \bar{A}_{1} of the gauge field is simply obtained by replacing ∂Z^{1} with $\partial \bar{Z}^{1}$ and Ψ^{1} with $\bar{\Psi}^{1}$ in the above expression.

The gauge field A_{2} along the second complex direction of the D3-brane world-volume is

[^17]instead described by the following vertex operator
\[

$$
\begin{equation*}
A_{2} \longrightarrow \mathcal{V}_{A_{2}}=\left[\left(\mathrm{i} \partial Z^{2}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{2}\right) \mathrm{i} \sin \left(\kappa_{\perp} \cdot Z_{\perp}\right)+\kappa_{\perp} \cdot \Psi_{\perp} \Psi^{2} \cos \left(\kappa_{\perp} \cdot Z_{\perp}\right)\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}} \tag{4.50}
\end{equation*}
$$

\]

Notice that the position of the cosine and sine combinations is different with respect to (5.95), but this is precisely what is needed to obtain an invariant vertex in this case. Again this vertex is a conformal field of weight 1 if the field is massless. The operator describing the complex conjugate component \bar{A}_{2} is obtained by replacing ∂Z^{2} with $\partial \bar{Z}^{2}$ and Ψ^{2} with $\bar{\Psi}^{2}$ in (5.96).

Let us now consider the massless scalar fields. Without the orbifold, on the D3-brane world-volume there are three complex scalars that together with the gauge vector provide the bosonic content of the $\mathcal{N}=4$ vector multiplet. When the orbifold acts entirely in the transverse directions, only one of these scalars remains in the invariant spectrum, thus reducing the supersymmetry from $\mathcal{N}=4$ to $\mathcal{N}=2$. In our case, instead, when the orbifold acts partially along the world-volume, all three complex scalars remain. Denoting them by Φ and Φ_{r} with $r=4,5$, they are described by the following three \mathbb{Z}_{2}-invariant vertices

$$
\begin{equation*}
\Phi \longrightarrow \mathcal{V}_{\Phi}=\left[\left(\mathrm{i} \partial Z^{3}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{3}\right) \mathrm{i} \sin \left(\kappa_{\perp} \cdot Z_{\perp}\right)+\kappa_{\perp} \cdot \Psi_{\perp} \Psi^{3} \cos \left(\kappa_{\perp} \cdot Z_{\perp}\right)\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}} \tag{4.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{r} \longrightarrow \mathcal{V}_{\Phi_{r}}=\left[\left(\mathrm{i} \partial Z^{r}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{r}\right) \cos \left(\kappa_{\perp} \cdot Z_{\perp}\right)+\mathrm{i} \kappa_{\perp} \cdot \Psi_{\perp} \Psi^{r} \sin \left(\kappa_{\perp} \cdot Z_{\perp}\right)\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}} \tag{4.52}
\end{equation*}
$$

Since the scalars are massless, these vertices are conformal operators of weight 1.

A similar analysis can be repeated also for the fermionic R sector, where one can find sixteen massless fermions that are the supersymmetric partners of the bosonic fields listed above.

In conclusion, we see that when the fractional D3-branes extend partially along the orb-
ifold, the latter does not project the open string spectrum by removing some excitations, as it does when the fractional D3-branes are totally transverse, but instead it reorganizes the fields in such a way that they behave differently along the \| and \perp subspaces into which the $4 d$ world-volume of the D3-branes is divided. Another piece of evidence for the defect interpretation is the 1-loop open string partition function [8], which receives contributions both from modes that propagate in all four dimensions of the world-volume and also from modes that propagate only in the \|| subspace. This is precisely what one expects for a surface defect in the $4 d$ gauge theory, extended along the || subspace. Moreover, if we consider a system made of n_{0} fractional D3-branes of type 0 and n_{1} fractional D3-branes of type 1 , we engineer a $4 d$ theory with gauge group $\mathrm{U}\left(n_{0}+n_{1}\right)$ broken to the Levi group $\mathrm{U}\left(n_{0}\right) \times \mathrm{U}\left(n_{1}\right)$ at the orbifold fixed plane. In the case of special unitary groups, the overall $\mathrm{U}(1)$ factor has to be removed.

4.3 Open/closed correlators

Our next step is to show that there are non-vanishing interactions between the twisted closed string sectors discussed in Section 4.1 and the open string fields introduced in the previous section. In particular, we will show that there are non-vanishing amplitudes corresponding to the diagram represented in (3.1). The reason why such open/closed amplitudes exist is that a D-brane inserts a boundary in the closed string world-sheet along which the left- and right-moving modes are identified. Thus, the two components of the closed string vertex operators effectively behave as two open string vertices which can have a non-vanishing interaction with a third open string vertex operator describing an excitation of the gauge theory on the brane word-volume. In the following, we are going to systematically compute these open/closed string amplitudes, starting from the twisted NS/NS sector.

4.3.1 Correlators with NS/NS twisted fields

As we discussed in the Section 5.1.3, in the twisted NS/NS sector the fermionic fields in the $4 d$ space where the \mathbb{Z}_{2} orbifold acts have zero modes that build a spinor representation of $\mathrm{SO}(4)$. A fractional D3-brane that partially extends along the orbifold breaks this SO (4) into $\mathrm{SO}(2) \times \mathrm{SO}(2)$. In this breaking, the singlet b remains, while the triplet $b_{c} \in(\mathbf{3}, \mathbf{1})$ decomposes into a scalar b^{\prime} and a doublet $b_{ \pm}$of complex conjugate fields. The vertex operators corresponding to these four fields can be read from (4.17), which we rewrite here for convenience

$$
\begin{align*}
b & \longleftrightarrow \mathcal{V}_{b}(z, \bar{z})=\mathrm{i} \epsilon_{\alpha \beta} \mathcal{V}^{\alpha}(z) \widetilde{V}^{\beta}(\bar{z}), \tag{4.53a}\\
b^{\prime} & \longleftrightarrow \mathcal{V}_{b^{\prime}}(z, \bar{z})=\left(\epsilon \tau_{3}\right)_{\alpha \beta} \mathcal{V}^{\alpha}(z) \widetilde{V}^{\beta}(\bar{z}), \tag{4.53b}\\
b_{ \pm} & \longleftrightarrow \mathcal{V}_{b_{ \pm}}(z, \bar{z})=\left(\epsilon \tau_{ \pm}\right)_{\alpha \beta} \mathcal{V}^{\alpha}(z) \widetilde{V}^{\beta}(\bar{z}) \tag{4.53c}
\end{align*}
$$

where $\tau_{ \pm}=\left(\tau_{1} \pm \mathrm{i} \tau_{2}\right) / 2$. Since we are going to regard the closed string fields as a background for the open string excitations, in all vertices (4.53) we set the momentum to zero.

Correlators with b

We begin by evaluating the couplings of the massless open string fields of a fractional D3-brane of type I with the scalar b. These are given by

$$
\begin{equation*}
\left\langle\mathcal{V}_{\text {open }}\right\rangle_{b ; I}=b \int \frac{d z d \bar{z} d x}{d V_{\text {proj }}}\left\langle\mathcal{V}_{b}(z, \bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle_{I} \tag{4.54}
\end{equation*}
$$

where $\mathcal{V}_{\text {open }}$ stands for any of the vertex operators described in Section 5.2.2 and

$$
\begin{equation*}
d V_{\mathrm{proj}}=\frac{d z d \bar{z} d x}{(z-\bar{z})(\bar{z}-x)(x-z)} \tag{4.55}
\end{equation*}
$$

is the projective invariant volume element. In (4.54) the integrals are performed on the string word-sheet. In particular z and \bar{z}, where the close string vertex operator is inserted, are points in the upper and lower half complex plane, respectively, while x is a point on the real axis from which the open string is emitted. The integrand of (4.54) is

$$
\begin{align*}
\left\langle\mathcal{V}_{b}(z, \bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle_{I} & =\mathrm{i} \epsilon_{\alpha \beta}\left\langle\mathcal{V}^{\alpha}(z) \widetilde{\mathcal{V}}^{\beta}(\bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle_{I} \tag{4.56}\\
& =(-1)^{I} \mathrm{i} \epsilon_{\alpha \beta}\left(\gamma_{4} \gamma_{3}\right)^{\beta}\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle
\end{align*}
$$

where the second line follows from the reflection rules (4.44a). Our task is therefore to compute the three-point functions $\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle$ for the various open string fields.

Let us start with the components of the gauge field that are longitudinal to the defect. These are described by the vertex operator (5.95). Factorizing the resulting amplitude in a product of correlation functions for the independent conformal fields, we find

$$
\begin{align*}
\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z})\right. & \left.\mathcal{V}_{A_{1}}(x)\right\rangle=\left\langle\mathrm{e}^{-\phi(z)} \mathrm{e}^{-\phi(\bar{z})}\right\rangle \tag{4.57}\\
& \times\left[\mathrm{i}\left\langle\partial Z_{1}(x) \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}(x)}\right\rangle\left\langle\Delta(z) \Delta(\bar{z}) \cos \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z})\right\rangle\right. \\
& +\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}(x)}\right\rangle\left\langle\Delta(z) \Delta(\bar{z}) \cos \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z})\right\rangle\left\langle\kappa_{\|} \cdot \Psi_{\|}(x) \Psi_{1}(x)\right\rangle \\
& \left.+\mathrm{i}\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot \mathrm{Z}_{\|}(x)}\right\rangle\left\langle\Delta(z) \Delta(\bar{z}) \sin \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \kappa_{\perp} \cdot \Psi_{\perp}(x)\right\rangle\left\langle\Psi_{1}(x)\right\rangle\right] .
\end{align*}
$$

It is not difficult to realize that in each of the three lines in square brackets, there is always one factor that vanishes due to normal ordering. For example, in the first line it is the term containing i ∂Z_{1} that vanishes, while in the second and third line it is the last factor involving the fermionic field Ψ_{1} that gives zero. Therefore,

$$
\begin{equation*}
\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z}) \mathcal{V}_{A_{1}}(x)\right\rangle=0, \tag{4.58}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{b ; I}=0 . \tag{4.59}
\end{equation*}
$$

Let us now consider the components of the gauge field that are transverse to the defect. Using the corresponding vertex operator (5.96), we obtain

$$
\begin{align*}
\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z})\right. & \left.\mathcal{V}_{A_{2}}(x)\right\rangle=\left\langle\mathrm{e}^{-\phi(z)} \mathrm{e}^{-\phi(\bar{z})}\right\rangle\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}(x)}\right\rangle \tag{4.60}\\
\times & {\left[-\left\langle\Delta(z) \Delta(\bar{z}) \partial Z_{2}(x) \sin \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z})\right\rangle\right.} \\
& +\mathrm{i}\left\langle\Delta(z) \Delta(\bar{z}) \sin \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle\left\langle\kappa_{\|} \cdot \Psi_{\|}(x)\right\rangle\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \Psi_{2}(x)\right\rangle \\
& \left.+\left\langle\Delta(z) \Delta(\bar{z}) \cos \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \kappa_{\perp} \cdot \Psi_{\perp}(x) \Psi_{2}(x)\right\rangle\right] .
\end{align*}
$$

As before, in the first and second lines inside the square brackets there are vanishing factors; instead, the third line is not zero and we remain with

$$
\begin{align*}
&\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z}) \mathcal{V}_{A_{2}}(x)\right\rangle=\left\langle\mathrm{e}^{-\phi(z)} \mathrm{e}^{-\phi(\bar{z})}\right\rangle\left\langle\mathrm{e}^{\mathrm{i}_{\|} \cdot Z_{\|}(x)}\right\rangle\left\langle\Delta(z) \Delta(\bar{z}) \cos \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle \tag{4.61}\\
& \times\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \kappa_{\perp} \cdot \Psi_{\perp}(x) \Psi_{2}(x)\right\rangle .
\end{align*}
$$

Each correlator in this expression can be easily evaluated using standard conformal field theory methods; in particular we have

$$
\begin{align*}
\left\langle\mathrm{e}^{-\phi(z)} \mathrm{e}^{-\phi(\bar{z}}\right\rangle & =\frac{1}{z-\bar{z}}, \tag{4.62a}\\
\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}(x)}\right\rangle & =\delta^{(2)}\left(\kappa_{\|}\right), \tag{4.62b}\\
\left\langle\Delta(z) \Delta(\bar{z}) \cos \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle & =\frac{1}{(z-\bar{z})^{\frac{1}{2}}}, \tag{4.62c}\\
\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \psi_{m}(x) \psi_{n}(x)\right\rangle & =\frac{1}{2} \frac{\left(\gamma_{n} \gamma_{m} \widehat{C}^{-1}\right)^{\alpha \gamma}}{(z-\bar{z})^{-\frac{1}{2}}(z-x)(\bar{z}-x)} . \tag{4.62d}
\end{align*}
$$

The last correlator implies that

$$
\begin{align*}
\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \kappa_{\perp} \cdot \Psi_{\perp}(x) \Psi_{2}(x)\right\rangle & =\mathrm{i} \kappa_{2}\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \psi_{3}(x) \psi_{4}(x)\right\rangle \\
& =\mathrm{i} \frac{\kappa_{2}}{2} \frac{\left(\gamma_{4} \gamma_{3} \widehat{C}^{-1}\right)^{\alpha \gamma}}{(z-\bar{z})^{-\frac{1}{2}}(z-x)(\bar{z}-x)} . \tag{4.63}
\end{align*}
$$

Putting everything together, we obtain

$$
\begin{equation*}
\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z}) \mathcal{V}_{A_{2}}(x)\right\rangle=\mathrm{i} \frac{\kappa_{2}}{2} \frac{\left(\gamma_{4} \gamma_{3} \widehat{C}^{-1}\right)^{\alpha \gamma}}{(z-\bar{z})(z-x)(\bar{z}-x)} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{4.64}
\end{equation*}
$$

Inserting this result in (4.56) and performing the corresponding γ-matrix algebra, in the end we find

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b ; I}=(-1)^{I+1} b \kappa_{2} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{4.65}
\end{equation*}
$$

As is clear from this expression, the momentum conservation occurs only in the longitudinal directions, whereas the transverse momenta κ_{2} and $\bar{\kappa}_{2}$ can be arbitrary. This fact implies that (4.65) can be interpreted as a tadpole-like source for the gauge field A_{2} which acquires a non-trivial profile in the transverse space. We will explicitly compute this profile in the following section.

The calculation of the couplings of b with the complex scalar Φ gauge theory proceeds along the same lines. One finds that the only non-vanishing contribution to the correlation function is given by

$$
\begin{gather*}
\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z}) \mathcal{V}_{\Phi}(x)\right\rangle=\left\langle\mathrm{e}^{-\phi(z)} \mathrm{e}^{-\phi(\bar{z})}\right\rangle\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot \mathrm{Z}_{\|}(x)}\right\rangle\left\langle\Delta(z) \Delta(\bar{z}) \cos \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle \tag{4.66}\\
\times\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \kappa_{\perp} \cdot \Psi_{\perp}(x) \Psi_{3}(x)\right\rangle .
\end{gather*}
$$

The last factor is easily computed using (4.62d) with the result

$$
\begin{align*}
\left\langle S^{\alpha}(z) S^{\gamma}(\bar{z}) \kappa_{\perp} \cdot \Psi_{\perp}(x) \Psi_{3}(x)\right\rangle & =\frac{\kappa_{2}}{4} \frac{\left(\left(\gamma_{5}+\mathrm{i} \gamma_{6}\right)\left(\gamma_{3}-\mathrm{i} \gamma_{4}\right) \widehat{C}^{-1}\right)^{\alpha \gamma}}{(z-\bar{z})^{-\frac{1}{2}}(z-x)(\bar{z}-x)} \\
& +\frac{\bar{\kappa}_{2}}{4} \frac{\left(\left(\gamma_{5}+\mathrm{i} \gamma_{6}\right)\left(\gamma_{3}+\mathrm{i} \gamma_{4}\right) \widehat{C}^{-1}\right)^{\alpha \gamma}}{(z-\bar{z})^{-\frac{1}{2}}(z-x)(\bar{z}-x)} . \tag{4.67}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z}) \mathcal{V}_{\Phi}(x)\right\rangle=\frac{\left[\left(\frac{\kappa_{2}}{4}\left(\gamma_{5}+\mathrm{i} \gamma_{6}\right)\left(\gamma_{3}-\mathrm{i} \gamma_{4}\right)+\frac{\bar{k}_{2}}{4}\left(\gamma_{5}+\mathrm{i} \gamma_{6}\right)\left(\gamma_{3}+\mathrm{i} \gamma_{4}\right)\right) \widehat{C}^{-1}\right]^{\alpha \gamma}}{(z-\bar{z})(z-x)(\bar{z}-x)} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{4.68}
\end{equation*}
$$

When we plug this expression into (4.56) and perform the resulting γ-matrix algebra we get zero, so that

$$
\begin{equation*}
\left\langle\mathcal{V}_{\Phi}\right\rangle_{b ; I}=0 \tag{4.69}
\end{equation*}
$$

Finally, considering the scalars Φ_{r}, we find that

$$
\begin{equation*}
\left\langle\mathcal{V}^{\alpha}(z) \mathcal{V}^{\gamma}(\bar{z}) \mathcal{V}_{\Phi_{r}}(x)\right\rangle=0 \tag{4.70}
\end{equation*}
$$

since, like for A_{1}, the resulting correlator always contains a vanishing factor. Therefore,

$$
\begin{equation*}
\left\langle\mathcal{V}_{\Phi_{r}}\right\rangle_{b ; I}=0 . \tag{4.71}
\end{equation*}
$$

Correlators with b^{\prime}

Let us now consider the couplings with the twisted scalar b^{\prime} whose vertex operator (4.53b) has the polarization $\epsilon \mathcal{\tau}_{3}$. The vanishing of the correlators (4.58) and (4.70) shows that \mathbf{A}_{1} and $\boldsymbol{\Phi}_{r}$ do not couple to any NS/NS twisted field, including b^{\prime}. Also the non-vanishing correlators (4.64) and (4.68) give a zero result for b^{\prime} due to the γ-matrix algebra. Therefore the field b^{\prime} does not couple to any of the massless open string fields of the gauge theory:

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{b^{\prime} ; I}=\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b^{\prime} ; I}=\left\langle\mathcal{V}_{\Phi}\right\rangle_{b^{\prime} ; I}=\left\langle\mathcal{V}_{\Phi_{r}}\right\rangle_{b^{\prime} ; I}=0 \tag{4.72}
\end{equation*}
$$

Correlators with $b_{ \pm}$

The couplings of the doublet $b_{ \pm}$with the open string fields can be computed along the same lines. We simply have to use the correlators (4.58), (4.64), (4.68) and (4.70) and the
polarizations $\left(\epsilon \tau_{ \pm}\right)$corresponding to $b_{ \pm}$. Proceeding in this way we find

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{b_{ \pm} ; I}=\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b_{ \pm} ; I}=\left\langle\mathcal{V}_{\Phi}\right\rangle_{b_{-} ; I}=\left\langle\mathcal{V}_{\Phi_{r}}\right\rangle_{b_{ \pm} ; I}=0 . \tag{4.73}
\end{equation*}
$$

The vanishing of the coupling of A_{2} with $b_{ \pm}$and of the coupling of Φ with b_{-}is again due to the structure of the resulting combinations of γ-matrices which have a vanishing trace. On the other hand, the terms proportional to $\bar{\kappa}_{2}$ in (4.68) yield a non-zero result when contracted with the polarization of b_{+}, leading to

$$
\begin{equation*}
\left\langle\mathcal{V}_{\Phi}\right\rangle_{b_{+} ; I}=(-1)^{I+1} \mathrm{i} b_{+} \bar{\kappa}_{2} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{4.74}
\end{equation*}
$$

4.3.2 Correlators with \mathbf{R} / \mathbf{R} twisted fields

For the twisted fields of the R / R sector discussed in Section 4.1.1, the twisted R / R sector the fermionic fields possess zero modes in the six dimensions that are orthogonal to the \mathbb{Z}_{2} orbifold. They realize spinor representations of $\mathrm{SO}(6)$, but when a fractional D3-brane is inserted, this group is broken to $\mathrm{SO}(2) \times \mathrm{SO}(4)$. We are interested in giving a constant background value to some scalars that remain after this breaking. The scalar c obviously remains, while the anti-symmetric tensor $c_{M N} \in \mathbf{1 5}$ decomposes in various representations of the unbroken subgroup. In particular, we will consider only the component c_{12} which is a scalar of $\mathrm{SO}(2) \times \mathrm{SO}(4)$ that we denote c^{\prime}. The vertex operators corresponding to c and c^{\prime} are given in (4.24) which we rewrite here for convenience:

$$
\begin{align*}
c & \longleftrightarrow \mathcal{V}_{c}(z, \bar{z})=C_{A \dot{B}} \mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z}), \tag{4.75a}\\
c^{\prime} & \longleftrightarrow \mathcal{V}_{c^{\prime}}(z, \bar{z})=\left(C \Gamma_{12}\right)_{A \dot{B}} \mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z}) \tag{4.75b}
\end{align*}
$$

Again we take these vertices at zero momentum since we want to regard the closed string fields as a constant background.

Correlators with c

The mixed correlators between the R / R twisted scalar c and the open string massless fields of a D3-brane of type I are given by

$$
\begin{equation*}
\left\langle\mathcal{V}_{\mathrm{open}}\right\rangle_{c, I}=c \int \frac{d z d \bar{z} d x}{d V_{\mathrm{proj}}}\left\langle\mathcal{V}_{c}(z, \bar{z}) \mathcal{V}_{\mathrm{open}}(x)\right\rangle_{I} \tag{4.76}
\end{equation*}
$$

with

$$
\begin{align*}
\left\langle\mathcal{V}_{c}(z, \bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle_{I} & =C_{A \dot{B}}\left\langle\mathcal{V}^{A}(z) \widetilde{\mathcal{V}}^{\dot{B}}(\bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle_{I} \tag{4.77}\\
& =(-1)^{I} C_{A \dot{B}}\left(\Gamma_{1} \Gamma_{2}\right)^{\dot{B}}\left\langle\mathcal{V}^{A}(z) \mathcal{V}^{\dot{C}}(\bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle .
\end{align*}
$$

where the last step follows from the reflection rules (4.44b).

The first coupling we consider is the one with the gauge field A_{1}. Using the vertex operator (5.95) we find that there is only a single structure contributing to the amplitude, namely

$$
\begin{gather*}
\left\langle\mathcal{V}^{A}(z) \mathcal{V}^{\dot{C}}(\bar{z}) \mathcal{V}_{A_{1}}(x)\right\rangle=\left\langle\mathrm{e}^{-\frac{1}{2} \phi(z)} \mathrm{e}^{-\frac{3}{2} \phi(\bar{z})}\right\rangle\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}(x)}\right\rangle\left\langle\Delta(z) \Delta(\bar{z}) \cos \left(k_{\perp} \cdot Z_{\perp}\right)(x)\right\rangle \tag{4.78}\\
\times\left\langle S^{A}(z) S^{\dot{C}}(\bar{z}) \kappa_{\|} \cdot \Psi_{\|}(x) \Psi_{1}(x)\right\rangle .
\end{gather*}
$$

The second and third factors are given in (4.62b) and (4.62c), while the other factors are obtained from the standard conformal field theory results, namely

$$
\begin{align*}
\left\langle\mathrm{e}^{-\frac{1}{2} \phi(z)} \mathrm{e}^{-\frac{3}{2} \phi(\bar{z})}\right\rangle & =\frac{1}{(z-\bar{z})^{\frac{3}{4}}}, \tag{4.79a}\\
\left\langle S^{A}(z) S^{C}(\bar{z}) \psi_{M}(x) \psi_{N}(x)\right\rangle & =\frac{1}{2} \frac{\left(\Gamma_{M} \Gamma_{N} C^{-1}\right)^{A C}}{(z-\bar{z})^{-\frac{1}{4}}(z-x)(\bar{z}-x)} . \tag{4.79b}
\end{align*}
$$

The last correlator implies that

$$
\begin{align*}
\left\langle S^{A}(z) S^{C}(\bar{z}) \kappa_{\|} \cdot \Psi_{\|}(x) \Psi_{1}(x)\right\rangle & =\mathrm{i} \kappa_{1}\left\langle S^{A}(z) S^{\dot{C}}(\bar{z}) \psi_{1}(x) \psi_{2}(x)\right\rangle \\
& =\mathrm{i} \frac{\kappa_{1}}{2} \frac{\left(\Gamma_{1} \Gamma_{2} C^{-1}\right)^{A C}}{(z-\bar{z})^{-\frac{1}{4}}(z-x)(\bar{z}-x)} \tag{4.80}
\end{align*}
$$

so that from (4.78) we get

$$
\begin{equation*}
\left\langle\mathcal{V}^{A}(z) \mathcal{V}^{\dot{C}}(\bar{z}) \mathcal{V}_{A_{1}}(x)\right\rangle=\mathrm{i} \frac{\kappa_{1}}{2} \frac{\left(\Gamma_{1} \Gamma_{2} C^{-1}\right)^{A C}}{(z-\bar{z})(z-x)(\bar{z}-x)} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{4.81}
\end{equation*}
$$

Plugging this expression into (4.76) and performing the algebra on the Γ-matrices in the end we obtain

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{c ; I}=(-1)^{I+1} 2 \mathrm{i} c \kappa_{1} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{4.82}
\end{equation*}
$$

There are no other non-trivial couplings of c since for A_{2}, Φ and Φ_{r} the three-point functions vanish at the level of conformal field theory correlators, namely

$$
\begin{equation*}
\left\langle\mathcal{V}^{A}(z) \mathcal{V}^{\dot{C}}(\bar{z}) \mathcal{V}_{A_{2}}(x)\right\rangle=\left\langle\mathcal{V}^{A}(z) \mathcal{V}^{\dot{C}}(\bar{z}) \mathcal{V}_{\Phi}(x)\right\rangle=\left\langle\mathcal{V}^{A}(z) \mathcal{V}^{\dot{C}}(\bar{z}) \mathcal{V}_{\Phi_{r}}(x)\right\rangle=0 . \tag{4.83}
\end{equation*}
$$

Obviously this implies that

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{c ; I}=\left\langle\mathcal{V}_{\Phi}\right\rangle_{c ; I}=\left\langle\mathcal{V}_{\Phi_{r}}\right\rangle_{c, I}=0 . \tag{4.84}
\end{equation*}
$$

Correlators with c^{\prime}

In this case we can be extremely brief since the scalar c^{\prime} does not couple to any of the massless bosonic open string fields. Indeed we have

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{c^{\prime} ; I}=\left\langle\mathcal{V}_{A_{2}}\right\rangle_{c^{\prime} ; I}=\left\langle\mathcal{V}_{\Phi}\right\rangle_{c^{\prime} ; I}=\left\langle\mathcal{V}_{\Phi_{r}}\right\rangle_{c^{\prime} ; I}=0 . \tag{4.85}
\end{equation*}
$$

The last three equalities clearly follow from (4.83), while the vanishing of the coupling of A_{1} is due to the fact that the Γ-matrices in the numerator of (4.81) give a zero result when they are contracted with the polarization $\left(C \Gamma_{12}\right)_{A \dot{B}}$. Thus, like b^{\prime}, the scalar c^{\prime} will also not play any role in our further analysis.

4.4 Continuous parameters of surface operators from worldsheet correlators

In this section, we provide an interpretation of the non-vanishing couplings between the closed string massless fields of the twisted sectors and the massless open string fields on the fractional D3-branes.

Field Profiles

The twisted scalar b of the NS/NS sector produces a tadpole-like source for the gauge field A_{2} given in (4.65), which depends on the orthogonal momentum to the surface defect. This source, which is localized at the orbifold fixed point where b is defined, gives rise to a non-trivial profile for A_{2} in the transverse directions: This profile is obtained by computing the Fourier transform of the tadpole after including the massless propagator

$$
\begin{equation*}
\frac{1}{2\left(\left|{k_{\|}}^{2}\right|^{+}+\mid{\left.\kappa_{\perp}\right|^{2}}^{2}\right)}=\frac{1}{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}+k_{4}^{2}} . \tag{4.86}
\end{equation*}
$$

This procedure is the strict analog of what has been discussed in [36] for the profile of the gravitational fields emitted by a $\mathrm{D} p$-brane and in [37] for the instanton profile of the gauge fields of a D3-brane in the presence of D-instantons.

One new feature in this orbifold case is that for functions f_{+}and f_{-}which are, respectively, even and odd under \mathbb{Z}_{2}, the Fourier transform is given by

$$
\begin{align*}
& \mathcal{F} \mathcal{T}\left[f_{+}\right](z)=\int \frac{d^{2} \kappa_{\|} d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \cos \left(\kappa_{\perp} \cdot z_{\perp}\right) \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot z_{\|}} f_{+}(\kappa), \tag{4.87}\\
& \mathcal{F} \mathcal{T}\left[f_{-}\right](z)=\int \frac{d^{2} \kappa_{\|} d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \mathrm{i} \sin \left(\kappa_{\perp} \cdot z_{\perp}\right) \mathrm{e}^{\mathrm{i} \kappa_{\| \mid} z_{\|}} f_{-}(\kappa)
\end{align*}
$$

Let us consider for simplicity a fractional D3-brane type 0 . Applying the above procedure,
the profile of its gauge field A_{2} in configuration space induced by the NS/NS twisted scalar b is

$$
\begin{align*}
A_{2} & =\int \frac{d^{2} \kappa_{\|} d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \mathrm{i} \sin \left(\kappa_{\perp} \cdot z_{\perp}\right) \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot z_{\|}} \frac{\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b ; 0}}{2\left(\left|k_{\|}\right|^{2}+\left|\kappa_{\perp}\right|^{2}\right)} \tag{4.88}\\
& =-\mathrm{i} b \int \frac{d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \sin \left(\kappa_{\perp} \cdot z_{\perp}\right) \frac{\kappa_{2}}{2\left|\kappa_{\perp}\right|^{2}}
\end{align*}
$$

where in the second line we have used (4.65) with $I=0$ and taken into account the δ-function enforcing momentum conservation in the parallel directions to perform the integral over $\kappa_{\|}$. This shows that, as anticipated, the propagation of the source is only in the transverse directions. With a simple calculation we can see that

$$
\begin{equation*}
\int \frac{d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \sin \left(\kappa_{\perp} \cdot z_{\perp}\right) \frac{\kappa_{2}}{2\left|\kappa_{\perp}\right|^{2}}=\frac{1}{4 \pi \bar{z}_{2}}, \tag{4.89}
\end{equation*}
$$

so that

$$
\begin{equation*}
A_{2}=-\frac{\mathrm{i} b}{4 \pi \bar{z}_{2}} . \tag{4.90}
\end{equation*}
$$

The component \bar{A}_{2} of the gauge field also has a non-trivial profile which is given by the complex conjugate of (5.131).

As we have seen in the previous section, there are no other tadpole-like sources for A_{2}, so that (5.131) is the full result. One might think that the R / R scalar c can act as a source for the longitudinal component A_{1} of the gauge field in view of (4.82). However, if one takes into account the δ-function that enforces momentum conservation along the first complex direction, one easily realizes that this actually vanishes. Therefore, the vector field is only sourced by the NS/NS twisted scalar b which yields (5.131) and its complex conjugate.

In conclusion, the gauge field on a fractional D3-brane of type 0 in the \mathbb{Z}_{2} orbifold acquires the following profile

$$
\begin{equation*}
\mathbf{A}=A \cdot d x=A_{2} d \bar{z}_{2}+\bar{A}_{2} d z_{2}=-\frac{\mathrm{i} b}{4 \pi}\left(\frac{d \bar{z}_{2}}{\bar{z}_{2}}-\frac{d z_{2}}{z_{2}}\right)=-\frac{b}{2 \pi} d \theta \tag{4.91}
\end{equation*}
$$

where θ denote the polar angle in the $\mathbb{C}_{(2)}$ plane. If we take a fractional D3-brane of type

1, we obtain the same profile but with an overall minus sign due to the different sign in twisted component of the boundary state and in the reflection rules (see (4.44a)).

Let us now consider the scalar field Φ, the only other open string field that has a nonvanishing tadpole produced by b_{+}. Applying the same procedure discussed above and using (4.74), for a fractional D3-brane of type 0 we obtain

$$
\begin{align*}
\Phi & =\int \frac{d^{2} \kappa_{\|} d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \mathrm{e}^{\mathrm{i} \kappa_{\|} \mid z_{\|}} \mathrm{i} \sin \left(\kappa_{\perp} \cdot z_{\perp}\right) \frac{\left\langle\mathcal{V}_{\Phi}\right\rangle_{b_{+} ; 0}}{2\left(\left|\kappa_{\|}\right|^{2}+\left|\kappa_{\perp}\right|^{2}\right)} \tag{4.92}\\
& =b_{+} \int \frac{d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \sin \left(\kappa_{\perp} \cdot z_{\perp}\right) \frac{\bar{\kappa}_{2}}{2\left|\kappa_{\perp}\right|^{2}}=\frac{b_{+}}{4 \pi z_{2}} .
\end{align*}
$$

Of course, for a fractional D3-brane of type 1 we get the same result with an overall minus sign.

It is quite straightforward to generalize these findings to the case of a system made of n_{0} fractional D3-branes of type 0 and n_{1} fractional D3-branes of type 1 , which describes a gauge theory with group $\mathrm{U}\left(n_{0}+n_{1}\right)$ broken to the Levi group $\mathrm{U}\left(n_{0}\right) \times \mathrm{U}\left(n_{1}\right)$. In fact, we simply obtain

$$
\begin{align*}
& \mathbf{A}=-\frac{b}{2 \pi}\left(\begin{array}{cc}
\mathbb{I}_{n_{0}} & 0 \\
0 & -\mathbb{I}_{n_{1}}
\end{array}\right) d \theta, \tag{4.93a}\\
& \boldsymbol{\Phi}=\frac{b_{+}}{4 \pi}\left(\begin{array}{cc}
\mathbb{I}_{n_{0}} & 0 \\
0 & -\mathbb{I}_{n_{1}}
\end{array}\right) \frac{1}{z_{2}} . \tag{4.93b}
\end{align*}
$$

This is precisely the expected profile for a monodromy defect of GW type. Comparing with (3.1) and (3.2) we see that the continuous parameters of the surface defect are related to the background fields of the NS/NS twisted sector as follows

$$
\begin{equation*}
\alpha_{I}=(-1)^{I+1} \frac{b}{2 \pi}, \quad \beta_{I}=(-1)^{I} \frac{\operatorname{Re}\left(b_{+}\right)}{2 \pi}, \quad \gamma_{I}=(-1)^{I} \frac{\operatorname{Im}\left(b_{+}\right)}{2 \pi} . \tag{4.94}
\end{equation*}
$$

Notice that in our realization we have $\sum_{I} \alpha_{I}=\sum_{I} \beta_{I}=\sum_{I} \gamma_{I}=0$. This is not a limitation
since a generic GW solution can always be brought to this form by adding a $U(1)$ term proportional to the identity without changing the Levi subgroup $\mathrm{U}\left(n_{0}\right) \times \mathrm{U}\left(n_{1}\right)$.

To obtain the profile in the case of special unitary groups we have to remove the overall $\mathrm{U}(1)$ factor. This is simply done as follows

$$
\begin{align*}
& \mathbf{A} \longmapsto \mathbf{A}-\frac{1}{n_{0}+n_{1}}(\operatorname{Tr} \mathbf{A}) \mathbb{I}_{n_{0}+n_{1}}=-\frac{b}{2 \pi}\left(\begin{array}{cc}
\frac{n_{1}}{n_{0}+n_{1}} \mathbb{I}_{n_{0}} & 0 \\
0 & -\frac{n_{0}}{n_{0}+n_{1}} \mathbb{I}_{n_{1}}
\end{array}\right) d \theta, \tag{4.95a}\\
& \boldsymbol{\Phi} \longmapsto \mathbf{\Phi}-\frac{1}{n_{0}+n_{1}}(\operatorname{Tr} \mathbf{\Phi}) \mathbb{I}_{n_{0}+n_{1}}=\frac{b_{+}}{4 \pi}\left(\begin{array}{cc}
\frac{n_{1}}{n_{0}+n_{1}} \mathbb{I}_{n_{0}} & 0 \\
0 & -\frac{n_{0}}{n_{0}+n_{1}} \mathbb{I}_{n_{1}}
\end{array}\right) \frac{1}{z^{2}} . \tag{4.95b}
\end{align*}
$$

Let us now comment on the meaning of the result (4.82), which indicates a coupling between the longitudinal component of the gauge field A_{1} and the twisted scalar c in the R / R sector. This cannot be interpreted as a source for the gauge field A_{1} because it is not proportional to the transverse momentum but to the longitudinal one, which is set to zero by the momentum conserving δ-function. However, a different and interesting interpretation is possible. If we multiply the amplitude (4.82) and its complex conjugate by the corresponding polarizations of the gauge field, namely \bar{A}_{1} and A_{1}, the resulting sum can be interpreted as an effective interaction term involving the gauge field strength in the longitudinal directions. Such a term can be non-zero even in the presence of the momentum conserving δ-function provided the field strength is kept fixed. To make this explicit, let us consider a D3-brane of type 0 and use (4.82) for $I=0$. Then we have

$$
\begin{equation*}
\bar{A}_{1}\left\langle\mathcal{V}_{A_{1}}\right\rangle_{c ; 0}+A_{1}\left\langle\mathcal{V}_{\bar{A}_{1}}\right\rangle_{c ; 0}=-2 \mathrm{i} c\left(\kappa_{1} \bar{A}_{1}-\bar{\kappa}_{1} A_{1}\right) \delta^{(2)}\left(k_{\|}\right)=2 \mathrm{i} c \widetilde{F}_{0} \delta^{(2)}\left(\kappa_{\|}\right) \tag{4.96}
\end{equation*}
$$

where $\widetilde{F}_{0}=\bar{\kappa}_{1} A_{1}-\kappa_{1} \bar{A}_{1}$ is the (momentum space) field strength in the $2 d$ space where the surface defect is extended. The Fourier transform of (4.96), computed according to
(4.87), is

$$
\begin{equation*}
\mathrm{i} c \int d^{2} k_{\|} \widetilde{F}_{0} \delta^{(2)}\left(\kappa_{\|}\right) \times 2 \delta^{(2)}\left(z_{\perp}\right)=\frac{\mathrm{i} c}{2 \pi} \int d^{2} x_{\|} F_{0} \times 2 \delta^{(2)}\left(z_{\perp}\right) \tag{4.97}
\end{equation*}
$$

where F_{0} is the field strength in configuration space. If we assume that this $2 d$ space instead of being simply \mathbb{C} is a manifold D where the gauge field strength has a nonvanishing first Chern class, then (4.97) can be interpreted as an effective interaction term localized ${ }^{7}$ on D, meaning that in the path-integral of the underlying (abelian) gauge theory one has the following phase factor

$$
\begin{equation*}
\exp \left(\frac{\mathrm{i} c}{2 \pi} \int_{D} F_{0}\right) \tag{4.98}
\end{equation*}
$$

If we extend this argument to a system made of n_{0} fractional D3-branes of type 0 and n_{1} fractional D3-branes of type 1, the phase factor becomes

$$
\begin{equation*}
\exp \left(\mathrm{i} \sum_{I}(-1)^{I} \frac{c}{2 \pi} \int_{D} \operatorname{Tr}_{\mathrm{U}\left(n_{l}\right)} F_{I}\right) \tag{4.99}
\end{equation*}
$$

which has exactly the same form of the one of the GW monodromy defect given in (3.5) with

$$
\begin{equation*}
\eta_{I}=(-1)^{I} \frac{c}{2 \pi} . \tag{4.100}
\end{equation*}
$$

In the case of special unitary groups, we have to remove the overall $U(1)$ factor and this leads to

$$
\begin{equation*}
\exp \left(\frac{\mathrm{i} c}{2 \pi} \frac{n_{1}}{n_{0}+n_{1}} \int_{D} \operatorname{Tr}_{\mathrm{U}\left(n_{0}\right)} F_{0}-\frac{\mathrm{i} c}{2 \pi} \frac{n_{0}}{n_{0}+n_{1}} \int_{D} \operatorname{Tr}_{\mathrm{U}\left(n_{1}\right)} F_{1}\right) . \tag{4.101}
\end{equation*}
$$

[^18]
4.5 S-duality properties

We have shown that a system of n_{0} fractional D3-branes of type 0 and n_{1} fractional D3branes of type 1 that partially extend along a \mathbb{Z}_{2} orbifold, supports a gauge theory with a surface defect of the GW type, whose discrete data $\left(n_{0}, n_{1}\right)$ are encoded in the representation of the orbifold group assigned to the fractional D3-branes and whose continuous data are encoded in the expectation values of the closed string fields in the orbifold twisted sectors according to

$$
\begin{equation*}
\left\{\alpha_{I}, \beta_{I}, \gamma_{I}, \eta_{I}\right\}=\left\{(-1)^{I+1} \frac{b}{2 \pi},(-1)^{I} \frac{\operatorname{Re}\left(b_{+}\right)}{2 \pi},(-1)^{I} \frac{\operatorname{Im}\left(b_{+}\right)}{2 \pi},(-1)^{I} \frac{c}{2 \pi}\right\} . \tag{4.102}
\end{equation*}
$$

In the case of special unitary gauge groups, the parameters with $I=0$ must be multiplied by $\frac{n_{1}}{n_{0}+n_{1}}$ and those with $I=1$ by $\frac{n_{0}}{n_{0}+n_{1}}$ in order to enforce the decoupling of the overall $\mathrm{U}(1)$ factor.

This explicit realization of the continuous parameters of the surface defect in terms of closed string fields allows us to also discuss how they behave under duality transformations. To do so we first recall that, from a geometric point of view, the twisted scalars b and c arise by wrapping the NS/NS and R/R 2-form fields $B_{(2)}$ and $C_{(2)}$ of Type II B string theory around the exceptional 2-cycle ω_{2} at the orbifold fixed point [40,52,54], namely ${ }^{8}$

$$
\begin{equation*}
b=\int_{\omega_{2}} B_{(2)}, \quad c=\int_{\omega_{2}} C_{(2)} . \tag{4.103}
\end{equation*}
$$

Using this fact, we can then rewrite the parameters α_{I} and η_{I} given in (4.102) in the following suggestive way

$$
\begin{equation*}
\alpha_{I}=\frac{(-1)^{I+1}}{2 \pi} \int_{\omega_{2}} B_{(2)}, \quad \eta_{I}=\frac{(-1)^{I}}{2 \pi} \int_{\omega_{2}} C_{(2)} . \tag{4.104}
\end{equation*}
$$

[^19]These formulas, including the relative minus sign, are reminiscent of those obtained in $[25,26]$ where a holographic representation of the GW surface defects has been proposed in terms of bubbling geometries, which are particular solutions of Type II B supergravity with an $A d S_{5} \times S_{5}$ asymptotic limit. Our explicit realization in terms of perturbative string theory, however, is very different, although the identification of the parameters α_{I} and η_{I} with the holonomies of the two 2-forms of Type II B is similar.

The exceptional 2-cycle ω_{2} has a vanishing size in the orbifold limit but when the orbifold singularity is resolved in a smooth space, it acquires a finite size. The other three fields of the twisted NS/NS sector, b^{\prime} and $b_{ \pm}$, correspond precisely to the blow-ups of the orbifold fixed point $[38,54]$. In particular, b^{\prime} is the Kähler modulus while $b_{ \pm}$is the complex structure moduli of the blown-up 2-cycle. Hence they are directly related to the stringframe metric $G_{\mu \nu}$ of the Type II B string theory.

This geometric interpretation fixes the duality transformations of the twisted fields since they are inherited from those of the parent Type II B fields from which they descend. It is well-known ${ }^{9}$ that under a duality transformation $\Lambda=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$ the two 2 -forms rotate among themselves according to

$$
\binom{C_{(2)}}{B_{(2)}} \rightarrow\left(\begin{array}{ll}
a & b \tag{4.105}\\
c & d
\end{array}\right)\binom{C_{(2)}}{B_{(2)}}
$$

while the string-frame metric $G_{\mu \nu}$ transforms as

$$
\begin{equation*}
G_{\mu \nu} \longrightarrow|c \tau+d| G_{\mu \nu} \tag{4.106}
\end{equation*}
$$

where τ is the axio-dilaton field. Therefore, under a duality b and c rotate as in (4.105) and $b_{ \pm}$transform as the metric in (4.106). From this and the identification (4.102), it follows

[^20]with straightforward manipulations that the surface operator parameters transform as
\[

$$
\begin{align*}
& \left(\alpha_{I}, \eta_{I}\right) \longrightarrow\left(d \alpha_{I}-c \eta_{I},-b \alpha_{I}+a \eta_{I}\right), \tag{4.107}\\
& \left(\beta_{I}, \gamma_{I}\right) \longrightarrow|c \tau+d|\left(\beta_{I}, \gamma_{I}\right)
\end{align*}
$$
\]

Comparing with (3.7), we see that this is precisely the expected behavior of the parameters of the GW defect as originally shown in [1]. This agreement is an important check of our proposal for the realization of surface operators using perturbative string theory.

Chapter 5

Surface operators using \mathbb{Z}_{M} orbifold

In the previous section, we already worked out this identification for the simple surface defects that correspond to the \mathbb{Z}_{2} orbifold. In this section, we extend our analysis to the \mathbb{Z}_{M} orbifolds for $M>2$ which can describe the most generic half-BPS surface defect corresponding to the breaking of the $U(N)$ gauge group to the Levi subgroup $\mathrm{U}\left(n_{0}\right) \times \ldots \times$ $\mathrm{U}\left(n_{M-1}\right)$ with $\sum_{I} n_{I}=N$.

While the basic conceptual issues in realizing such a surface defect using fractional D3branes remain the same for all M, the main difference with respect to ch. 4 lies in the treatment of the closed string background. For $M=2$ the massless fields of the NS/NS and R / R twisted sectors correspond to degenerate ground states and their vertex operators are realized using spin fields [9]. This is no longer the case for $M>2$ and, in fact, the massless fields of the NS/NS sector arise from excited states created by the oscillators of the fermionic string coordinates. Furthermore, pairs of twisted sectors are related by complex conjugation and this turns out to play an important role in the identification of the closed string background with the real parameters in the GW profiles.

In the \mathbb{Z}_{M} orbifold, there are ($M-1$) twisted sectors. One could treat all of them at once using the bosonization formalism [9, 10], but in order to keep track of all the relative phases it would be necessary to introduce the so-called cocycle factors. Since dealing with these
cocycle factors is quite involved, and since the relative phases are crucial to obtain the correct identification of the continuous parameters of the GW surface defects, we adopt an explicit fermionic approach and use the bosonization formalism only where no phase ambiguities arise. The advantage of this method is that the relative phases among the contributions from different sectors are easily tracked and fixed by the fermionic statistics. Moreover, in this fermionic approach we can describe the fractional D3-branes using boundary states (for a review see for example [6, 7]). Even though the KT brane configuration has not been explicitly considered so far from the boundary state point of view, we can exploit many of the results that already exist in the literature [$3,8,42,52$] and generalize them to the present case, in which the fractional D3-branes partially extend along the orbifold. The price we have to pay for using this fermionic approach is that we have to distinguish between the twisted sectors and treat separately those whose twist parameter is smaller or bigger than $\frac{1}{2}$.

The open string sector, instead, is similar to that of the $M=2$ case. We recall that for the KT configuration, the fractional D3-branes have the same field content as the regular D3-branes, since in this case the orbifold does not project away any of the open string excitations, unlike the case when the branes are entirely transverse to the orbifolded space. Indeed, on the world-volume of the fractional D3-branes we find a gauge vector and three complex massless scalars plus their fermionic partners. However, the corresponding vertex operators are linear combinations that behave covariantly under the action of the orbifold. When $M>2$, these combinations are slightly more involved than for $M=2$ and are written in terms of generalized plane-waves.

Once the vertex operators for the massless open and closed string states are derived, the discussion proceeds along the same lines as in the $M=2$ case, but with the important technical differences and peculiarities that we have just mentioned.

Our analysis provides an explicit realization of the monodromy defects of the $\mathcal{N}=4$ super Yang-Mills theory using perturbative string theory methods. As we discuss in the
concluding chapter 6 we believe that this stringy realization may prove to be useful in further investigations of surface defects and their properties, and it may even offer an alternative approach to the study of extended objects in ordinary field theory through their embedding into string theory.

5.1 Twisted closed strings in the \mathbb{Z}_{M} orbifold

We consider Type II B string theory on the orbifold (1.1). The i-th complex plane $\mathbb{C}_{(i)}$ is parametrized by

$$
\begin{equation*}
z_{i}=\frac{x_{2 i-1}+\mathrm{i} x_{2 i}}{\sqrt{2}} \quad \text { and } \quad \bar{z}_{i}=\frac{x_{2 i-1}-\mathrm{i} x_{2 i}}{\sqrt{2}} \tag{5.1}
\end{equation*}
$$

where x_{μ} are the ten real coordinates of space-time. The orbifold group \mathbb{Z}_{M} is generated by an element g such that $g^{M}=1$, with the following action on z_{2} and z_{3} :

$$
\begin{equation*}
g:\left(z_{2}, z_{3}\right) \longrightarrow\left(\omega z_{2}, \omega^{-1} z_{3}\right) \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=\mathrm{e}^{\frac{2 \pi i}{M}} . \tag{5.3}
\end{equation*}
$$

The action of g on \bar{z}_{2} and \bar{z}_{3} follows from complex conjugation. This breaks the $\mathrm{SO}(4) \simeq$ $\mathrm{SU}(2)_{+} \times \mathrm{SU}(2)_{-}$isometry group of $\mathbb{C}_{(2)} \times \mathbb{C}_{(3)}$ to $\mathrm{SU}(2)_{+}$.

To describe the closed strings propagating on this orbifold, we use the complex notation and denote the bosonic string coordinates by $\left\{Z^{i}(z), \bar{Z}^{i}(z)\right\}$ for the left-movers and $\left\{\widetilde{Z}^{i}(\bar{z}), \widetilde{\bar{Z}}^{i}(\bar{z})\right\}$ for the right-movers, with z and \bar{z} parametrizing the closed string world-sheet. Similarly, we denote the fermionic string coordinates by $\left\{\Psi^{i}(z), \bar{\Psi}^{i}(z)\right\}$ for the left-movers and $\left\{\widetilde{\Psi^{i}}(\bar{z}), \widetilde{\bar{\Psi}^{i}}(\bar{z})\right\}$ for the right-movers.

5.1.1 Twisted sectors

In the \mathbb{Z}_{M} orbifold theory, there are $(M-1)$ twisted sectors labeled by the index $\widehat{a}=$ $1, \ldots, M-1$. If M is odd, we can divide the twisted sectors in two sets, each one containing $\frac{M-1}{2}$ elements. The sectors of the first set are labeled by $\widehat{a}=a=1, \cdots, \frac{M-1}{2}$ and are characterized by a twist parameter

$$
\begin{equation*}
v_{a}=\frac{a}{M}<\frac{1}{2} . \tag{5.4}
\end{equation*}
$$

The sectors of the second set have, instead, a twist parameter

$$
\begin{equation*}
1-v_{a}=\frac{M-a}{M}>\frac{1}{2} \tag{5.5}
\end{equation*}
$$

and are labeled by $\widehat{a}=(M-a)$. If M is even, in addition, there is an extra sector with twist parameter $\frac{1}{2}$, which has to be treated separately. For most of the discussion, we will assume that M is odd and briefly comment on the special case with twist $\frac{1}{2}$, occurring when M is even, only at the very end, since this case has already been discussed in detail in the previous chapter [4].

In the sectors with label a and twist parameter as in (5.4), the left-movers of the bosonic and fermionic string coordinates satisfy the following monodromy properties on the worldsheet:

$$
\begin{array}{ll}
Z^{2}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=\mathrm{e}^{2 \pi \mathrm{i} v_{a}} Z^{2}(z), & Z^{3}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=\mathrm{e}^{-2 \pi \mathrm{i} v_{a}} Z^{3}(z), \\
\Psi^{2}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)= \pm \mathrm{e}^{2 \pi \mathrm{i} \mathrm{v}_{a}} \Psi^{2}(z), & \Psi^{3}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)= \pm \mathrm{e}^{-2 \pi \mathrm{i} v_{a}} \Psi^{3}(z), \tag{5.6b}
\end{array}
$$

where the $+(-)$ sign refers to the NS (R) sector. The analogous relations for \bar{Z}^{i} and $\bar{\Psi}^{i}$ can be obtained by complex conjugation. On the other hand, the right-movers satisfy the
monodromy properties:

$$
\begin{array}{ll}
\widetilde{Z^{2}}\left(\mathrm{e}^{2 \pi \mathrm{i}} \bar{z}\right)=\mathrm{e}^{-2 \pi i v_{a}} \widetilde{Z^{2}}(\bar{z}), & \widetilde{Z^{3}}\left(\mathrm{e}^{2 \pi \mathrm{i}} \bar{z}\right)=\mathrm{e}^{2 \pi \mathrm{i}_{a}} \widetilde{Z^{3}}(\bar{z}), \\
\widetilde{\Psi^{2}}\left(\mathrm{e}^{2 \pi \mathrm{i}} \bar{z}\right)= \pm \mathrm{e}^{-2 \pi i v_{a}} \widetilde{\Psi^{2}}(\bar{z}), & \widetilde{\Psi^{3}}\left(\mathrm{e}^{2 \pi \mathrm{i}} \bar{z}\right)= \pm \mathrm{e}^{2 \pi \mathrm{i} v_{a}} \widetilde{\Psi^{3}}(\bar{z}) . \tag{5.7b}
\end{array}
$$

Again, the relations for $\widetilde{\bar{Z}}^{i}$ and $\widetilde{\bar{Y}}^{i}$ are obtained by complex conjugation.
For the sectors with label $(M-a)$ and twist parameter as in (5.5), similar monodromy relations hold for the world-sheet fields but with v_{a} everywhere replaced by $\left(1-v_{a}\right)$.

5.1.2 Twisted NS sectors

We now turn to a discussion of the spectrum of massless string states in the various twisted sectors, focusing mainly on the fermionic fields in the complex directions 2 and 3. In the fermionic formalism, when the NS boundary conditions are imposed, we have to treat separately the sectors with twist parameter smaller than $\frac{1}{2}$ and those with twist parameter bigger than $\frac{1}{2}$.

Sectors with twist parameter $v_{a}<\frac{1}{2}$

In this case the monodromy properties (5.6b) and their complex conjugate lead to the following mode expansions for the left-moving fermionic fields (see for example [56] and references therein):

$$
\begin{align*}
& \Psi^{2}(z)=\sum_{r=1 / 2}^{\infty}\left(\bar{\Psi}_{r-v_{a}}^{2} z^{-r+v_{a}-\frac{1}{2}}+\Psi_{-r-v_{a}}^{2} z^{r+v_{a}-\frac{1}{2}}\right), \tag{5.8}\\
& \bar{\Psi}^{2}(z)=\sum_{r=1 / 2}^{\infty}\left(\Psi_{r+v_{a}}^{2} z^{-r-v_{a}-\frac{1}{2}}+\bar{\Psi}_{-r+v_{a}}^{2} z^{r-v_{a}-\frac{1}{2}}\right),
\end{align*}
$$

and

$$
\begin{align*}
& \Psi^{3}(z)=\sum_{r=1 / 2}^{\infty}\left(\bar{\Psi}_{r+v_{a}}^{3} z^{-r-v_{a}-\frac{1}{2}}+\Psi_{-r+v_{a}}^{3} z^{r-v_{a}-\frac{1}{2}}\right), \\
& \bar{\Psi}^{3}(z)=\sum_{r=1 / 2}^{\infty}\left(\Psi_{r-v_{a}}^{3} z^{-r+v_{a}-\frac{1}{2}}+\bar{\Psi}_{-r-v_{a}}^{3} z^{r+v_{a}-\frac{1}{2}}\right) . \tag{5.9}
\end{align*}
$$

The oscillators $\Psi_{-r-v_{a}}^{2}, \bar{\Psi}_{-r+v_{a}}^{2}, \Psi_{-r+v_{a}}^{3}$ and $\bar{\Psi}_{-r-v_{a}}^{3}$ are creation modes acting on the twisted vacuum of the a-th sector which we denote by $\left|\Omega_{a}\right\rangle$. Such a state is defined by

$$
\begin{equation*}
\left|\Omega_{a}\right\rangle=\lim _{z \rightarrow 0} \sigma_{a}(z) s_{a}(z)|0\rangle \tag{5.10}
\end{equation*}
$$

where $|0\rangle$ is the Fock vacuum and $\sigma_{a}(z)$ and $s_{a}(z)$ are, respectively, the bosonic and fermionic twist fields [5]. More precisely, these twist fields take the form

$$
\begin{equation*}
\sigma_{a}(z)=\sigma_{v_{a}}^{2}(z) \sigma_{1-v_{a}}^{3}(z) \quad \text { and } \quad s_{a}(z)=s_{v_{a}}^{2}(z) s_{-v_{a}}^{3}(z), \tag{5.11}
\end{equation*}
$$

where the superscripts refer to the complex directions where the twist takes place, and the subscripts indicate the twist parameters. The bosonic twist field $\sigma_{a}(z)$ is a conformal field of weight $v_{a}\left(1-v_{a}\right)$ while the fermionic twist field $s_{a}(w)$ is a conformal field of weight v_{a}^{2}. Therefore, the total conformal weight of the operator associated to the twisted ground state is v_{a}. This means that $\left|\Omega_{a}\right\rangle$ is massive with a mass m given by

$$
\begin{equation*}
m^{2}=v_{a}-\frac{1}{2}<0 . \tag{5.12}
\end{equation*}
$$

This tachyonic state is removed by the GSO projection.

The first set of physical states one finds in the GSO projected spectrum are those obtained by acting with one fermionic creation mode with index $r=\frac{1}{2}$ on the twisted vacuum. In particular, the oscillators $\Psi_{-\frac{1}{2}+v_{a}}^{3}$ and $\bar{\Psi}_{-\frac{1}{2}+v_{a}}^{2}$ increase the energy by $\left(\frac{1}{2}-v_{a}\right)$ and thus, when acting on the twisted vacuum, they create two massless states ${ }^{1}$. The vertex operators

[^21]corresponding to these massless excitations, in the (-1)-superghost picture and at zero momentum ${ }^{2}$, are:
\[

$$
\begin{align*}
& \mathcal{V}_{a}^{1}(z)=\sigma_{a}(z): \Psi^{3}(w) s_{a}(z): \mathrm{e}^{-\phi(z)}, \\
& \mathcal{V}_{a}^{2}(z)=\sigma_{a}(z): \bar{\Psi}^{2}(w) s_{a}(z): \mathrm{e}^{-\phi(z)} . \tag{5.13}
\end{align*}
$$
\]

Here $\phi(z)$ is the bosonic field appearing in the bosonization formulas of the superghosts [9] and, as usual, the symbol : : denotes the normal ordering. The vertex operators (5.13) are conformal fields of weight 1 and we collectively denote them as $\mathcal{V}_{a}^{\alpha}(z)$ with $\alpha=1,2$. As explained in Appendix A.0.1, they form a doublet transforming as a spinor of $\mathrm{SU}(2)_{+}$.

In the right-moving part, the monodromy properties (5.7b) lead to the following mode expansions for the fermionic fields

$$
\begin{align*}
& \widetilde{\Psi^{2}}(\bar{z})=\sum_{r=1 / 2}^{\infty}\left({\widetilde{\bar{\Psi}^{2}}}_{r+v_{a}} \bar{z}^{-r-v_{a}-\frac{1}{2}}+{\widetilde{\Psi^{2}}}_{-r+v_{a}} \bar{z}^{r-v_{a}-\frac{1}{2}}\right), \\
& \widetilde{\bar{\Psi}^{2}}(\bar{z})=\sum_{r=1 / 2}^{\infty}\left({\widetilde{\Psi^{2}}}_{r-v_{a}} \bar{z}^{r+v_{a}-\frac{1}{2}}+{\widetilde{\bar{\Psi}^{2}}}_{-r-v_{a}} \bar{z}^{r+v_{a}-\frac{1}{2}}\right), \tag{5.14}
\end{align*}
$$

and

$$
\begin{align*}
& \widetilde{\Psi^{3}}(\bar{z})=\sum_{r=1 / 2}^{\infty}\left({\widetilde{\bar{\Psi}^{3}}}_{r-v_{a}} \bar{z}^{-r+v_{a}-\frac{1}{2}}+{\widetilde{\Psi^{3}}}_{-r-v_{a}} \bar{z}^{r+v_{a}-\frac{1}{2}}\right), \\
& \widetilde{\bar{\Psi}}^{3}(\bar{z})=\sum_{r=1 / 2}^{\infty}\left({\widetilde{\Psi^{3}}}_{r+v_{a}} \bar{z}^{r-v_{a}-\frac{1}{2}}+{\widetilde{\bar{\Psi}^{3}}}_{-r+v_{a}} \bar{z}^{r-v_{a}-\frac{1}{2}}\right) . \tag{5.15}
\end{align*}
$$

 twisted vacuum of the right sector which we denote by $\left|\widetilde{\Omega}_{a}\right\rangle$. This is defined by

$$
\begin{equation*}
\left|\widetilde{\Omega}_{a}\right\rangle=\lim _{\bar{z} \rightarrow 0} \widetilde{\sigma}_{a}(\bar{z}) \widetilde{s}_{a}(\bar{z})|\widetilde{0}\rangle \tag{5.16}
\end{equation*}
$$

[^22]where $|\widetilde{0}\rangle$ is the Fock vacuum of this sector and
\[

$$
\begin{equation*}
\widetilde{\sigma}_{a}(\bar{z})=\widetilde{\sigma}_{1-v_{a}}^{2}(\bar{z}) \widetilde{\sigma}_{v_{a}}^{3}(\bar{z}) \quad \text { and } \quad \widetilde{s}_{a}(\bar{z})=\widetilde{s}_{-v_{a}}^{2}(\bar{z}) \widetilde{s}_{v_{a}}^{3}(\bar{z}) . \tag{5.17}
\end{equation*}
$$

\]

The bosonic twist field $\widetilde{\sigma}_{a}(\bar{z})$ is a conformal field of weight $\left(1-v_{a}\right) v_{a}$ while the fermionic twist field $\widetilde{s}_{a}(\bar{z})$ is a conformal field of weight v_{a}^{2}, so that the total conformal weight of the operator associated to $\left|\widetilde{\Omega}_{a}\right\rangle$ is v_{a}. The right-moving ground state is then tachyonic with a mass given by (5.12) and it is removed by the GSO projection.

The first set of physical states in the GSO projected spectrum are those created by a fermionic creation mode with index $r=\frac{1}{2}$. In particular those generated by the oscillators $\widetilde{\Psi^{2}}{ }_{-\frac{1}{2}+v_{a}}$ and ${\widetilde{\overline{\Psi^{3}}}}_{-\frac{1}{2}+v_{a}}$ are massless since the energy carried by these modes exactly cancels that of the vacuum. Therefore, the vertex operators at zero momentum associated to these right-moving massless excitations in the (-1)-superghost picture are:

$$
\begin{align*}
& \widetilde{\mathcal{V}}_{a}^{1}(\bar{z})=-\widetilde{\sigma}_{a}(\bar{z}): \widetilde{\Psi^{2}}(\bar{z}) \widetilde{s}_{a}(\bar{z}): \mathrm{e}^{-\widetilde{\phi}(\bar{z})}, \\
& \widetilde{\mathcal{V}}_{a}^{2}(\bar{z})=\widetilde{\sigma}_{a}(\bar{z}):{\widetilde{\Psi^{3}}}^{3}(\bar{z}) \widetilde{s}_{a}(\bar{z}): \mathrm{e}^{-\widetilde{\phi}(\bar{z})} . \tag{5.18}
\end{align*}
$$

These are conformal fields of weight 1 and we collectively denote them as $\widetilde{\mathcal{V}}_{a}^{\beta}(\bar{z})$ with $\beta=1,2$. We point out that the $-\operatorname{sign}$ in the first line above is introduced because in this way the two operators form a doublet transforming in the spinor representation of $\mathrm{SU}(2)_{+}$, as explained in Appendix A.0.1.

Sectors with twist parameter $\left(1-v_{a}\right)>\frac{1}{2}$

Apart from a few subtleties, the conclusions obtained in the previous subsection for the twisted sectors with $v_{a}<\frac{1}{2}$, are valid also in the twisted sectors with $\left(1-v_{a}\right)>\frac{1}{2}$ provided one exchanges the role of the complex directions 2 and 3, and uses the sector label ($M-a$). Thus, we can rather brief in our presentation.

In the left-moving part, the fermionic creation modes are the oscillators $\Psi_{-r+v_{a}}^{2}, \bar{\Psi}_{-r-v_{a}}^{2}$, $\Psi_{-r-v_{a}}^{3}$ and $\bar{\Psi}_{-r+v_{a}}^{3}$ where r is a positive half-integer. They act on the twisted vacuum $\left|\Omega_{M-a}\right\rangle$ which is defined by

$$
\begin{equation*}
\left|\Omega_{M-a}\right\rangle=\lim _{z \rightarrow 0} \sigma_{M-a}(z) s_{M-a}(z)|0\rangle \tag{5.19}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma_{M-a}(z)=\sigma_{1-v_{a}}^{2}(z) \sigma_{v_{a}}^{3}(z), \quad \text { and } \quad s_{M-a}(z)=s_{-v_{a}}^{2}(z) s_{v_{a}}^{3}(z) . \tag{5.20}
\end{equation*}
$$

The ground state $\left|\Omega_{M-a}\right\rangle$ is tachyonic with a mass given by (5.12) and is removed by the GSO projection. At the first excited level, instead, we find two massless states created by the oscillators $\Psi_{-\frac{1}{2}+v_{a}}^{2}$ and $\bar{\Psi}_{-\frac{1}{2}+v_{a}}^{3}$, which correspond to the following vertex operators at zero momentum:

$$
\begin{align*}
& \mathcal{V}_{M-a}^{1}(z)=-\sigma_{M-a}(z): \Psi^{2}(z) s_{M-a}(z): \mathrm{e}^{-\phi(z)}, \\
& \mathcal{V}_{M-a}^{2}(z)=\sigma_{M-a}(z): \bar{\Psi}^{3}(z) s_{M-a}(z): \mathrm{e}^{-\phi(z)} . \tag{5.21}
\end{align*}
$$

These are conformal fields of weight 1 which we collectively denote as $\mathcal{V}_{M-a}^{\alpha}(z)$ with $\alpha=1,2$. Again the $-\operatorname{sign}$ in the first line is inserted so that these two operators transform as a doublet in the spinor representation of $\mathrm{SU}(2)_{+}$(see Appendix A.0.1).

Finally, in the right-moving part the oscillators ${\widetilde{\Psi^{2}}}_{-r-v_{a}} \widetilde{\bar{\Psi}^{2}}{ }_{-r+v_{a}},{\widetilde{\Psi^{3}}}_{-r+v_{a}}$ and $\widetilde{\bar{\Psi}^{3}}{ }_{-r-v_{a}}$ where r is a positive half-integer, are creation modes. They act on the twisted vacuum defined by

$$
\begin{equation*}
\left|\widetilde{\Omega}_{M-a}\right\rangle=\lim _{\bar{z} \rightarrow 0} \widetilde{\sigma}_{M-a}(\bar{z}) \widetilde{s}_{M-a}(\bar{z})|0\rangle \tag{5.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{\sigma}_{M-a}(\bar{z})=\widetilde{\sigma}_{v_{a}}^{2}(\bar{z}) \widetilde{\sigma}_{1-v_{a}}^{3}(\bar{z}), \quad \text { and } \quad \widetilde{s}_{M-a}(\bar{z})=\widetilde{s}_{v_{a}}^{2}(\bar{z}) \widetilde{s}_{-v_{a}}^{3}(\bar{z}) . \tag{5.23}
\end{equation*}
$$

As before this vacuum state is tachyonic and removed by the GSO projection. On the other hand, the states created by $\widetilde{\bar{\Psi}}_{-\frac{1}{2}+v_{a}}^{2}$ and $\widetilde{\Psi}_{-\frac{1}{2}+v_{a}}$ are massless and selected by the

GSO projection. They correspond to the following vertex operators at zero momentum:

$$
\begin{align*}
& \widetilde{\mathcal{V}}_{M-a}^{1}(\bar{z})=\widetilde{\sigma}_{M-a}(\bar{z}): \widetilde{\Psi}^{3}(\bar{z}) \widetilde{s}_{M-a}(\bar{z}): \mathrm{e}^{-\widetilde{\phi}(\bar{z})}, \\
& \widetilde{\mathcal{V}}_{M-a}^{2}(\bar{z})=\widetilde{\sigma}_{M-a}(\bar{z}): \widetilde{\bar{\Psi}}^{2}(\bar{z}) \widetilde{s}_{M-a}(\bar{z}): \mathrm{e}^{-\widetilde{\phi}(\bar{z})}, \tag{5.24}
\end{align*}
$$

which are conformal fields of weight 1 . We collectively denote these vertex operators as $\widetilde{\mathcal{V}}_{M-a}^{\beta}(\bar{z})$ with $\beta=1,2$, since they transform as a doublet of $\mathrm{SU}(2)_{+}$(see Appendix A.0.1).

We summarize our results on the massless vertex operators of the twisted NS sectors in Table 5.1 below.

Vertex operator	State
$\mathcal{V}_{a}^{1}(z)=\sigma_{a}(z): \Psi^{3}(z) s_{a}(z): \mathrm{e}^{-\phi(z)}$	$\Psi_{-\frac{1}{2}+v_{a}}^{3}\left\|\Omega_{a}\right\rangle_{(-1)}$
$\mathcal{V}_{a}^{2}(z)=\sigma_{a}(z): \bar{\Psi}^{2}(z) s_{a}(z): \mathrm{e}^{-\phi(z)}$	$\bar{\Psi}_{-\frac{1}{2}+v_{a}}\left\|\Omega_{a}\right\rangle_{(-1)}$
$\widetilde{\mathcal{V}}_{a}^{1}(\bar{z})=-\widetilde{\sigma}_{a}(\bar{z}): \widetilde{\Psi}^{2}(\bar{z}) \widetilde{s}_{a}(\bar{z}): \mathrm{e}^{-\widetilde{\phi}(\bar{z})}$	$-\widetilde{\Psi}^{2}{ }_{-\frac{1}{2}+v_{a}}\left\|\widetilde{\Omega}_{a}\right\rangle_{(-1)}$
$\widetilde{\mathcal{V}}_{a}^{2}(\bar{z})=\widetilde{\sigma}_{a}(\bar{z}): \widetilde{\bar{\Psi}}^{3}(\bar{z}) \widetilde{s}_{a}(\bar{z}): \mathrm{e}^{-\widetilde{\phi}(\bar{z})}$	${\widetilde{\Psi^{3}}}_{-\frac{1}{2}+v_{a}}\left\|\widetilde{\Omega}_{a}\right\rangle_{(-1)}$
$\mathcal{V}_{M-a}^{1}(z)=-\sigma_{M-a}(z): \Psi^{2}(z) s_{M-a}(z): \mathrm{e}^{-\phi(z)}$	$-\Psi_{-\frac{1}{2}+v_{a}}^{2}\left\|\Omega_{M-a}\right\rangle_{(-1)}$
$\mathcal{V}_{M-a}^{2}(z)=\sigma_{M-a}(z): \bar{\Psi}^{3}(z) s_{M-a}(z): \mathrm{e}^{-\phi(z)}$	$\bar{\Psi}_{-\frac{1}{2}+v_{a}}\left\|\Omega_{M-a}\right\rangle_{(-1)}$
$\widetilde{\mathcal{V}}_{M-a}^{1}(\bar{z})=\widetilde{\sigma}_{M-a}(\bar{z}): \widetilde{\Psi}^{3}(\bar{z}) \widetilde{s}_{M-a}(\bar{z}): \mathrm{e}^{-\widetilde{\phi(\bar{z})}}$	$\widetilde{\Psi}^{3}{ }_{-\frac{1}{2}+v_{a}}\left\|\widetilde{\Omega}_{M-a}\right\rangle_{(-1)}$
$\widetilde{\mathcal{V}}_{M-a}^{2}(\bar{z})=\widetilde{\sigma}_{M-a}(\bar{z}): \widetilde{\Psi}^{2}(\bar{z}) \widetilde{s}_{M-a}(\bar{z}): \mathrm{e}^{-\widetilde{\phi}(\bar{z})}$	${\widetilde{\Psi^{2}}}_{-\frac{1}{2}+v_{a}}\left\|\widetilde{\Omega}_{M-a}\right\rangle_{(-1)}$

Table 5.1: The vertex operators and the corresponding states in the left- and right-moving parts of the various twisted NS sectors. Here the label a takes values in the range $\left[1, \frac{M-1}{2}\right]$, and in the last column the subscript (-1) on the kets identifies the superghost picture.

Two-point functions in the twisted NS sectors

Given the explicit form of the vertex operators that we have derived, it is rather straightforward to compute their two-point functions. As a first step, we observe that there are no non-vanishing correlators between left (or right) operators of the same twisted sector, due
to the presence of the bosonic twist fields; in fact for any complex direction j one has [5]

$$
\begin{equation*}
\left\langle\sigma_{v_{a}}^{j}\left(z_{1}\right) \sigma_{v_{b}}^{j}\left(z_{2}\right)\right\rangle=\frac{\delta_{v_{b}, 1-v_{a}}}{\left(z_{1}-z_{2}\right)^{v_{a}\left(1-v_{a}\right)}}, \tag{5.25}
\end{equation*}
$$

and similarly in the right sector. This implies that only the correlator $\left\langle\sigma_{a}\left(w_{1}\right) \sigma_{M-a}\left(w_{2}\right)\right\rangle$ is non vanishing. Therefore, only the two-point functions between vertex operators in sectors a and $(M-a)$ are non-zero. Another important point to consider is that these vertex operators inherit the fermionic statistics from the fermionic fields that are present in their definitions.

Let us then compute the two-point function between \mathcal{V}_{a}^{1} and \mathcal{V}_{M-a}^{2}. Using (5.25) and the basic conformal field theory correlators

$$
\begin{align*}
\left\langle: \Psi^{3}\left(z_{1}\right) s_{a}\left(z_{1}\right):: \bar{\Psi}^{3}\left(z_{2}\right) s_{M-a}\left(z_{2}\right):\right\rangle & =\frac{1}{\left(z_{1}-z_{2}\right)^{1-2 v_{a}\left(1-v_{a}\right)}}, \tag{5.26}\\
\left\langle\mathrm{e}^{-\phi\left(z_{1}\right)} \mathrm{e}^{-\phi\left(z_{2}\right)}\right\rangle & =\frac{1}{z_{1}-z_{2}},
\end{align*}
$$

we obtain

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{1}\left(z_{1}\right) \mathcal{V}_{M-a}^{2}\left(z_{2}\right)\right\rangle=\frac{1}{\left(z_{1}-z_{2}\right)^{2}} . \tag{5.27}
\end{equation*}
$$

In a similar way, using

$$
\begin{equation*}
\left\langle: \bar{\Psi}^{2}\left(z_{1}\right) s_{a}\left(z_{1}\right):: \Psi^{2}\left(z_{2}\right) s_{M-a}\left(z_{2}\right):\right\rangle=\frac{1}{\left(z_{1}-z_{2}\right)^{1-2 v_{a}\left(1-v_{a}\right)}}, \tag{5.28}
\end{equation*}
$$

and taking into account the explicit negative sign in \mathcal{V}_{M-a}^{1}, we get

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{2}\left(z_{1}\right) \mathcal{V}_{M-a}^{1}\left(z_{2}\right)\right\rangle=\frac{-1}{\left(z_{1}-z_{2}\right)^{2}} . \tag{5.29}
\end{equation*}
$$

Furthermore, the two-point functions between \mathcal{V}_{a}^{1} and \mathcal{V}_{M-a}^{1} and between \mathcal{V}_{a}^{2} and \mathcal{V}_{M-a}^{2} vanish since their fermionic charges do not match. Thus, altogether, we have

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{\alpha}\left(z_{1}\right) \mathcal{V}_{M-a}^{\beta}\left(z_{2}\right)\right\rangle=\frac{\left(\epsilon^{-1}\right)^{\alpha \beta}}{\left(z_{1}-z_{2}\right)^{2}} \tag{5.30}
\end{equation*}
$$

where we have defined

$$
\epsilon=\left(\begin{array}{cc}
0 & -1 \tag{5.31}\\
+1 & 0
\end{array}\right) .
$$

By taking into account the fermionic statistics of the vertex operators and the anti-symmetry of ϵ, we also find

$$
\begin{equation*}
\left\langle\mathcal{V}_{M-a}^{\alpha}\left(z_{1}\right) \mathcal{V}_{a}^{\beta}\left(z_{2}\right)\right\rangle=\frac{\left(\epsilon^{-1}\right)^{\alpha \beta}}{\left(z_{1}-z_{2}\right)^{2}} \tag{5.32}
\end{equation*}
$$

Notice that (5.30) and (5.32) may be unified in a single formula by promoting the index a to the complete index \widehat{a}. This shows that despite the differences in the structure of the states and vertex operators in the fermionic formalism, all twisted sectors are actually treated on equal footing.

Similarly, in the right-moving sector, we obtain

$$
\begin{equation*}
\left\langle\widetilde{\mathcal{V}}_{M-a}^{\alpha}\left(\bar{z}_{1}\right) \widetilde{\mathcal{V}}_{a}^{\beta}\left(\bar{z}_{2}\right)\right\rangle=\left\langle\widetilde{\mathcal{V}}_{a}^{\alpha}\left(\bar{z}_{1}\right) \widetilde{\mathcal{V}}_{M-a}^{\beta}\left(\bar{z}_{2}\right)\right\rangle=\frac{\left(\epsilon^{-1}\right)^{\alpha \beta}}{\left(\bar{z}_{1}-\bar{z}_{2}\right)^{2}} . \tag{5.33}
\end{equation*}
$$

From these two-point functions it is possible to infer the conjugate vertex operators as follows:

$$
\begin{align*}
& \left(\mathcal{V}_{M-a}(z)\right)_{\alpha}^{\dagger}=\mathcal{V}_{a}^{\beta}(z) \epsilon_{\beta \alpha}, \quad\left(\mathcal{V}_{a}(z)\right)_{\alpha}^{\dagger}=\mathcal{V}_{M-a}^{\beta}(z) \epsilon_{\beta \alpha}, \\
& \left(\widetilde{\mathcal{V}}_{a}(z)\right)_{\alpha}^{\dagger}=\widetilde{V}_{M-a}^{\beta}(z) \epsilon_{\beta \alpha}, \quad\left(\widetilde{\mathcal{V}}_{M-a}(z)\right)_{\alpha}^{\dagger}=\widetilde{V}_{a}^{\beta}(z) \epsilon_{\beta \alpha} . \tag{5.34}
\end{align*}
$$

5.1.3 The massless NS/NS vertex operators

The massless closed string excitations in the twisted NS/NS sectors are obtained by combining the left- and right-moving massless states that we have obtained in the previous subsection. In the sectors with twist parameter $v_{a}<\frac{1}{2}$, they are then described by the following vertex operators at zero momentum

$$
\begin{equation*}
b_{\alpha \beta}^{(a)} \mathcal{V}_{a}^{\alpha}(z) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{z}) \tag{5.35}
\end{equation*}
$$

where $b_{\alpha \beta}^{(a)}$ are four constant complex fields.
Similarly, in the sectors with twist parameter $\left(1-v_{a}\right)>\frac{1}{2}$, the massless closed string excitations are described by the vertex operators at zero momentum

$$
\begin{equation*}
b_{\alpha \beta}^{(M-a)} \mathcal{V}_{M-a}^{\alpha}(z) \widetilde{\mathcal{V}}_{M-a}^{\beta}(\bar{z}) \tag{5.36}
\end{equation*}
$$

where again $b_{\alpha \beta}^{(M-a)}$ are four constant complex fields.
The constants $b^{(a)}$ and $b^{(M-a)}$ can be considered as a background in which the string theory on the orbifold is defined. Given the structure of the vertex operators, there are non-trivial relations among them. In particular, using (5.34) one finds that

$$
\begin{equation*}
\left(b_{\alpha \beta}^{(a)} \mathcal{V}_{a}^{\alpha}(z) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{z})\right)^{\dagger}=b_{\alpha \beta}^{(M-a)} \mathcal{V}_{M-a}^{\alpha}(z) \widetilde{\mathcal{V}}_{M-a}^{\beta}(\bar{z}) \tag{5.37}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{11}^{(M-a)}=-b_{22}^{(a) \star}, \quad b_{12}^{(M-a)}=b_{21}^{(a) \star}, \quad b_{21}^{(M-a)}=b_{12}^{(a) \star}, \quad b_{22}^{(M-a)}=-b_{11}^{(a) \star}, \tag{5.38}
\end{equation*}
$$

or, equivalently in matrix notation,

$$
\begin{equation*}
b^{(M-a)}=\epsilon b^{(a) \star} \epsilon . \tag{5.39}
\end{equation*}
$$

These relations, which also appear in [3], show that if one turns on background values for the closed string fields in the twisted sector a, one also turns on background values for the fields in the twisted sector $(M-a)$ and viceversa, in such a way that the total background configuration is real.

5.1.4 Twisted R sectors

The \mathbb{Z}_{M} orbifold (1.1) breaks the isometry of the ten-dimensional space as follows:

$$
\begin{equation*}
\mathrm{SO}(10) \longrightarrow \mathrm{SO}(6) \times \mathrm{SO}(2) \times \mathrm{SO}(2), \tag{5.40}
\end{equation*}
$$

where $\mathrm{SO}(6)$ acts on the first, fourth and fifth complex directions, which are not affected by the orbifold action. Correspondingly, the untwisted vacuum of the R sector which carries the 32-dimensional spinor representation of $\mathrm{SO}(10)$ decomposes into eight massless spinors of $\mathrm{SO}(6)$. Four of these are chiral and four anti-chiral. We denote the four chiral vacuum states by

$$
\begin{equation*}
\left|A, \pm \frac{1}{2}, \pm \frac{1}{2}\right\rangle \tag{5.41}
\end{equation*}
$$

where $A \in \mathbf{4}$ labels the four different components of the chiral spinor representation of $\mathrm{SO}(6)$ and the four pairs of $\pm \frac{1}{2}$ denote the spinor weights along the second and third complex directions where the orbifold acts. Similarly, the four anti-chiral vacuum states are denoted by

$$
\begin{equation*}
\left|\dot{A}, \pm \frac{1}{2}, \pm \frac{1}{2}\right\rangle \tag{5.42}
\end{equation*}
$$

where $\dot{A} \in \overline{\mathbf{4}}$ spans the four-dimensional anti-chiral spinor representation of $\mathrm{SO}(6)$.

In the twisted R sectors, not all such chiral and anti-chiral states remain massless. Indeed, the fermionic twist fields change the spinor weights in the orbifolded directions, so that conformal dimensions and the GSO parities of the corresponding vertex operators are modified. In the following we present a brief description of the spectrum in the various twisted R sectors, focusing on the massless excitations.

Sectors with twist parameter $v_{a}<\frac{1}{2}$

In these sectors the left-moving bosonic and fermionic twist fields σ_{a} and s_{a} are given in (5.11). When we act with s_{a} on the states (5.41) and (5.42), the charges in the directions 2 and 3 become

$$
\begin{equation*}
\varepsilon_{2}= \pm \frac{1}{2}+v_{a} \quad \text { and } \quad \varepsilon_{3}= \pm \frac{1}{2}-v_{a} \tag{5.43}
\end{equation*}
$$

depending on their initial values. Because of this, not all choices of signs lead to massless configurations. In fact, the mass vanishes only if

$$
\begin{equation*}
\varepsilon_{2}^{2}=\varepsilon_{3}^{2}=\left(\frac{1}{2}-v_{a}\right)^{2} \tag{5.44}
\end{equation*}
$$

Combining this with (5.43), we see that the only solution is

$$
\begin{equation*}
\varepsilon_{2}=-\varepsilon_{3}=-\frac{1}{2}+v_{a} \tag{5.45}
\end{equation*}
$$

so that, instead of $s_{a}(z)$, we can consider the effective fermionic twist

$$
\begin{equation*}
r_{a}(z)=s_{v_{a}-\frac{1}{2}}^{2}(z) s_{-v_{a}+\frac{1}{2}}^{3}(z) \tag{5.46}
\end{equation*}
$$

which is a conformal field of weight $\left(\frac{1}{4}-v_{a}\left(1-v_{a}\right)\right)$.

In the R sector, there are two fundamental superghost pictures that one considers: the $\left(-\frac{1}{2}\right)$ - and the $\left(-\frac{3}{2}\right)$-pictures [9]. Enforcing the GSO projection, in the $\left(-\frac{1}{2}\right)$-picture one selects the chiral spinor of $\mathrm{SO}(6)$, while in the $\left(-\frac{3}{2}\right)$-picture one selects the anti-chiral one. In this way, in fact, the sum of the spinor weights minus the superghost-charge is always an even integer. Thus we are led to introduce the following two vertex operators at zero momentum

$$
\begin{equation*}
\mathcal{V}_{a}^{A}(z)=\sigma_{a}(z) r_{a}(z) S^{A}(z) \mathrm{e}^{-\frac{1}{2} \phi(z)} \tag{5.47a}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{V}_{a}^{\dot{A}}(z)=\sigma_{a}(z) r_{a}(z) S^{\dot{A}}(z) \mathrm{e}^{-\frac{3}{2} \phi(z)} \tag{5.47b}
\end{equation*}
$$

where S^{A} and $S^{\dot{A}}$ are, respectively, the chiral and anti-chiral spin-fields of $\operatorname{SO}(6)[9,10]$. Both vertex operators are conformal fields of weight 1 and define the following massless twisted vacuum states:

$$
\begin{align*}
& \left|A_{a}\right\rangle_{\left(-\frac{1}{2}\right)}=\lim _{z \rightarrow 0} \mathcal{V}_{a}^{A}(z)|0\rangle, \tag{5.48}\\
& \left|\dot{A}_{a}\right\rangle_{\left(-\frac{3}{2}\right)}=\lim _{z \rightarrow 0} \mathcal{V}_{a}^{\dot{A}}(z)|0\rangle .
\end{align*}
$$

As far as the right-moving part is concerned, the bosonic and fermionic twist fields are given in (5.17). Therefore, we can repeat the previous analysis by simply replacing everywhere v_{a} with $\left(1-v_{a}\right)$. In this way we find the following two physical vertex operators of weight 1 :

$$
\begin{align*}
& \widetilde{\mathcal{V}}_{a}^{A}(\bar{z})=\widetilde{\sigma}_{a}(\bar{z}) \widetilde{F}_{a}(\bar{z}) \widetilde{S}^{A}(\bar{z}) \mathrm{e}^{-\frac{1}{2} \widetilde{\phi}(\bar{z})}, \tag{5.49a}\\
& \widetilde{\mathcal{V}}_{a}^{\dot{A}}(\bar{z})=\widetilde{\sigma}_{a}(\bar{z}) \widetilde{r}_{a}(\bar{z}) \widetilde{S}^{\dot{A}}(\bar{z}) \mathrm{e}^{-\frac{3}{2} \widetilde{\phi}(\bar{z})} \tag{5.49b}
\end{align*}
$$

where the effective fermionic twist is given by

$$
\begin{equation*}
\widetilde{r}_{a}(\bar{z})=\widetilde{s}_{-v_{a}+\frac{1}{2}}^{2}(\bar{z}) \widehat{s}_{v_{a}-\frac{1}{2}}^{3}(\bar{z}) \tag{5.50}
\end{equation*}
$$

The massless states corresponding to these vertex operators are

$$
\begin{align*}
& \left|\widetilde{A}_{a}\right\rangle_{\left(-\frac{1}{2}\right)}=\lim _{\bar{z} \rightarrow 0} \widetilde{\mathcal{V}}_{a}^{A}(\bar{z})|0\rangle, \tag{5.51}\\
& \left|\widetilde{\dot{A}}_{a}\right\rangle_{\left(-\frac{3}{2}\right)}=\lim _{\bar{z} \rightarrow 0} \widetilde{\mathcal{V}}_{a}^{\dot{A}}(\bar{z})|0\rangle .
\end{align*}
$$

Sectors with twist parameter $\left(1-v_{a}\right)>\frac{1}{2}$

These sectors can be described in the same manner as before by simply exchanging the roles of the complex directions 2 and 3 , and using $(M-a)$ as twist label. Thus, we merely
present the physical GSO projected massless vertex operators at zero momentum. In the left-moving part they are

$$
\begin{align*}
& \mathcal{V}_{M-a}^{A}(z)=\sigma_{M-a}(z) r_{M-a}(z) S^{A}(z) \mathrm{e}^{-\frac{1}{2} \phi(z)}, \tag{5.52a}\\
& \mathcal{V}_{M-a}^{A}(z)=\sigma_{M-a}(z) r_{M-a}(z) S^{\dot{A}}(z) \mathrm{e}^{-\frac{3}{2} \phi(z)}, \tag{5.52b}
\end{align*}
$$

with

$$
\begin{equation*}
r_{M-a}(z)=s_{-v_{a}+\frac{1}{2}}^{2}(z) s_{v_{a}-\frac{1}{2}}^{3}(z) \tag{5.53}
\end{equation*}
$$

In the right-moving part, instead, they are

$$
\begin{align*}
& \widetilde{\mathcal{V}}_{M-a}^{A}(\bar{z})=\widetilde{\sigma}_{M-a}(\bar{z}) \widetilde{r}_{M-a}(\bar{z}) \widetilde{S}^{A}(\bar{z}) \mathrm{e}^{-\frac{1}{2} \widetilde{\phi}(\bar{z})}, \tag{5.54a}\\
& \widetilde{\mathcal{V}}_{M-a}^{A}(\bar{z})=\widetilde{\sigma}_{M-a}(\bar{z}) \widetilde{r}_{M-a}(\bar{z}) \widetilde{S}^{A}(\bar{z}) \mathrm{e}^{-\frac{3}{2} \widetilde{\phi}(\bar{z})} . \tag{5.54b}
\end{align*}
$$

where

$$
\begin{equation*}
\widetilde{r}_{M-a}(\bar{z})=\widetilde{s}_{v_{a}-\frac{1}{2}}^{2}(\bar{z}) \widetilde{s}_{-v_{a}+\frac{1}{2}}^{3}(\bar{z}) . \tag{5.55}
\end{equation*}
$$

When acting on the Fock vacuum these vertex operators create the twisted ground states which have the same expressions as in (5.48) and (5.51) with the obvious changes in notation.

We summarize our findings in Table 5.2 below.

Two-point functions in the twisted \mathbf{R} sectors

As we have seen in the twisted NS sectors, the only non-vanishing two-point functions necessarily involve the left-moving (or right-moving) vertex operators in complementary sectors a and ($M-a$), because of the two-point functions (5.25). Of course, the same is true in the twisted R sectors. Furthermore, in order to soak up the background charge in the superghost sector, only the overlaps between states in the $\left(-\frac{1}{2}\right)$ - and $\left(-\frac{3}{2}\right)$-pictures, or viceversa, are non-zero. Taking this into account and using standard results from confor-

Vertex operator	State
$\mathcal{V}_{a}^{A}(z)=\sigma_{a}(z) r_{a}(z) S^{A}(z) \mathrm{e}^{-\frac{1}{2} \phi(z)}$	$\left\|A_{a}\right\rangle_{\left(-\frac{1}{2}\right)}$
$\mathcal{V}_{a}^{A}(z)=\sigma_{a}(z) r_{a}(z) S^{\dot{A}}(z) \mathrm{e}^{-\frac{3}{2} \phi(z)}$	$\left\|\dot{A}_{a}\right\rangle_{\left(-\frac{3}{2}\right)}$
$\widetilde{\mathcal{V}}_{a}^{A}(\bar{z})=\widetilde{\sigma}_{a}(\bar{z}) \widetilde{r}_{a}(\bar{z}) \widetilde{S}^{A}(\bar{z}) \mathrm{e}^{-\frac{1}{2} \phi(\bar{z})}$	$\left\|\widetilde{A}_{a}\right\rangle_{\left(-\frac{1}{2}\right)}$
$\widetilde{\mathcal{V}}_{a}^{A}(\bar{z})=\widetilde{\sigma}_{a}(\bar{z}) \widetilde{r}_{a}(\bar{z}) \widetilde{S}^{\dot{A}}(\bar{z}) \mathrm{e}^{-\frac{3}{2} \Phi(\bar{z})}$	$\left\|\widetilde{A}_{a}\right\rangle_{\left(-\frac{3}{2}\right)}$
$\mathcal{V}_{M-a}^{A}(z)=\sigma_{M-a}(z) r_{M-a}(z) S^{A}(z) \mathrm{e}^{-\frac{1}{2} \phi(z)}$	$\left\|A_{M-a}\right\rangle_{\left(-\frac{1}{2}\right)}$
$\mathcal{V}_{M-a}^{A}(z)=\sigma_{M-a}(z) r_{M-a}(z) S^{\dot{A}}(z) \mathrm{e}^{-\frac{3}{2} \phi(z)}$	$\left\|\dot{A}_{M-a}\right\rangle_{\left(-\frac{3}{2}\right)}$
$\widetilde{\mathcal{V}}_{M-a}^{A}(\bar{z})=\widetilde{\sigma}_{M-a}(\bar{z}) \widetilde{r}_{M-a}(\bar{z}) \widetilde{S}^{A}(\bar{z}) \mathrm{e}^{-\frac{1}{2} \widetilde{\phi}(\bar{z})}$	$\left\|\widetilde{A}_{M-a}\right\rangle_{\left(-\frac{1}{2}\right)}$
$\widetilde{\mathcal{V}}_{M-a}^{A}(\bar{z})=\widetilde{\sigma}_{M-a}(\bar{z}) \widetilde{r}_{M-a}(\bar{z}) \widetilde{S}^{A}(\bar{z}) \mathrm{e}^{-\frac{3}{2} \Phi(\bar{z})}$	$\left\|\widetilde{A}_{M-a}\right\rangle_{\left(-\frac{3}{2}\right)}$

Table 5.2: The vertex operators and the corresponding states in the left- and right-moving parts of the twisted R sectors.
mal field theory, we find

$$
\begin{align*}
& \left\langle\mathcal{V}_{a}^{A}\left(z_{1}\right) \mathcal{V}_{M-a}^{\dot{B}}\left(z_{2}\right)\right\rangle=\left\langle\mathcal{V}_{M-a}^{A}\left(z_{1}\right) \mathcal{V}_{a}^{\dot{B}}\left(z_{2}\right)\right\rangle=\frac{\left(C^{-1}\right)^{A \dot{B}}}{\left(z_{1}-z_{2}\right)^{2}} \tag{5.56}\\
& \left\langle\mathcal{V}_{a}^{\dot{A}}\left(z_{1}\right) \mathcal{V}_{M-a}^{B}\left(z_{2}\right)\right\rangle=\left\langle\mathcal{V}_{M-a}^{\dot{A}}\left(z_{1}\right) \mathcal{V}_{a}^{B}\left(z_{2}\right)\right\rangle=\frac{\left(C^{-1}\right)^{\dot{A} B}}{\left(z_{1}-z_{2}\right)^{2}}
\end{align*}
$$

where C is the charge conjugation matrix of $\mathrm{SO}(6)$ (see Appendix A.0.2). Of course, analogous correlators hold for the right-moving vertex operators.

From the first line of (5.56), we read the following conjugation rules

$$
\begin{align*}
\left(\mathcal{V}_{M-a}(z)\right)_{\dot{B}}^{\dagger} & =\mathcal{V}_{a}^{A}(z) C_{A \dot{B}}, \tag{5.57}\\
\left(\mathcal{V}_{a}(z)\right)_{\dot{B}}^{\dagger} & =\mathcal{V}_{M-a}^{A}(z) C_{A \dot{B}},
\end{align*}
$$

while from the second line we obtain the same relations with dotted and undotted indices exchanged. The same formulas apply also for the right-moving vertices.

5.1.5 The massless R / R vertex operators

The massless closed string excitations in the twisted R / R sectors are obtained by combining left and right movers. We shall work with the asymmetric superghost pictures $\left(-\frac{1}{2},-\frac{3}{2}\right)$ or $\left(-\frac{3}{2},-\frac{1}{2}\right)$, so that the corresponding closed string fields are R / R potentials. In the twisted sector labeled by a we choose the ($-\frac{1}{2},-\frac{3}{2}$)-picture and write the following massless vertex operators at zero momentum: ${ }^{3}$.

$$
\begin{equation*}
C_{A \dot{B}}^{(a)} \mathcal{V}_{a}^{A}(z) \widetilde{\mathcal{V}}_{a}^{\dot{B}}(\bar{z}) \tag{5.58}
\end{equation*}
$$

where $C_{A \dot{B}}^{(a)}$ are sixteen constant complex fields. These constants can be considered as a background in which the orbifold closed string theory is defined.

In the twisted sector labeled by $(M-a)$ we choose, instead, the other asymmetric superghost picture, namely the $\left(-\frac{3}{2},-\frac{1}{2}\right)$-picture, and consider the following massless vertex operators

$$
\begin{equation*}
\mathcal{C}_{A B}^{(M-a)} \mathcal{V}_{M-a}^{A}(z) \widetilde{\mathcal{V}}_{M-a}^{B}(\bar{z}) \tag{5.59}
\end{equation*}
$$

where $C_{A \dot{B}}^{(M-a)}$ are other sixteen constant complex fields contributing to the background in which the closed string propagates.

Notice that in writing the vertex operators (5.58) and (5.59) for the twisted R / R potentials, we have correlated the choice of picture numbers with the twisted sector. Of course, we could have made different choices, but they would lead to the same results. In fact, it is well-known that in a BRST invariant framework like ours, the way in which the superghost pictures are distributed is completely arbitrary, provided one satisfies the global constraints due to the presence of a background charge, and that the physical results do

[^23]not depend on this choice. However, our picture assignment is particularly convenient because it immediately implies that the R / R potentials in the a-th twisted sector are naturally related to those in the sector $(M-a)$ by complex conjugation, exactly as it happens in the twisted NS/NS sectors. Indeed, we have
\[

$$
\begin{equation*}
\left(C_{A \dot{B}}^{(a)} \mathcal{V}_{a}^{A}(z) \widetilde{\mathcal{V}}_{a}^{\dot{B}}(\bar{z})\right)^{\dagger}=C_{\dot{A} B}^{(M-a)} \mathcal{V}_{M-a}^{\dot{A}}(z) \widetilde{\mathcal{V}}_{M-a}^{B}(\bar{z}), \tag{5.60}
\end{equation*}
$$

\]

where, in matrix notation,

$$
\begin{equation*}
C^{(M-a)}=C C^{(a) \star} C, \tag{5.61}
\end{equation*}
$$

which is the strict analogue of (5.39) holding in the NS/NS sectors. We therefore see that by turning on a R / R background potential value in the twisted sector a, one also turns on a background R / R potential in the twisted sector $(M-a)$ and viceversa, in such a way that the total configuration is real.

5.2 Fractional D3-branes in the \mathbb{Z}_{M} orbifold

We now turn to discuss the open strings in the \mathbb{Z}_{M} orbifold with the aim of analyzing surface defects in $4 d$ gauge theories engineered on stacks of (fractional) D3-branes. As is well-known, a D-brane introduces a boundary on the string world-sheet where nontrivial relations between the left and the right movers of the closed strings take place. We will investigate these relations using the boundary state formalism (for a review, see for example [6, 7]) and then will analyze the massless open string spectrum on the brane world-volume. Since our ultimate goal is to recover a string theory description of the surface defects in a $4 d$ gauge theory, we place the (fractional) D3-branes in such a way that they are partially extended along the orbifold as originally proposed in [4]. More precisely, we take the D3-brane world-volume to be $\mathbb{C}_{(1)} \times \mathbb{C}_{(2)}$ in such a way that the orbifold action breaks the $4 d$ Poincaré symmetry leaving unbroken the one in the first complex direction along which the surface defect is extended.

5.2.1 Boundary states and reflection rules

In the \mathbb{Z}_{M} orbifold there are M different types of fractional D-branes, labeled by an index $I=0,1, \ldots, M-1$, corresponding to the M irreducible representations of \mathbb{Z}_{M}. A fractional D3-brane of type I can be described by a boundary state which contains an untwisted component $|U\rangle$, which is the same for all types of branes, and a twisted component $|T ; I\rangle$, which depends on the type of brane considered:

$$
\begin{equation*}
|\mathrm{D} 3 ; I\rangle=\mathcal{N}|U\rangle+\mathcal{N}^{\prime}|T ; I\rangle \tag{5.62}
\end{equation*}
$$

where \mathcal{N} and \mathcal{N}^{\prime} are appropriate normalization factors related to the brane tensions (whose explicit expression is not relevant for our purposes). This schematic structure holds of course both in the NS/NS and R/R sectors, which we now discuss in turn, focusing on the fermionic twisted components.

NS/NS sector

The twisted component of the boundary state for a fractional D3-brane of type I is a sum of $(M-1)$ terms which refer to the $(M-1)$ twisted sectors of the closed strings on the orbifold and whose coefficients have to be chosen in a specific way in order to have a consistent description of the D-brane. By this, we mean that the cylinder amplitude between two such boundary states, once translated into the open string channel, must correctly reproduce the \mathbb{Z}_{M}-invariant one-loop annulus amplitude. In [42] a thorough analysis of this issue was carried out in general, using the Cardy condition for the construction of consistent boundary states in rational conformal field theories [57]. Borrowing these results and adapting them to our case, we can write the twisted component of the boundary state for
a D3-brane of type I in the NS/NS sector and its conjugate as follows:

$$
\begin{align*}
& |T ; I|\rangle_{\mathrm{NS}}=\sum_{\widehat{a}=1}^{M-1} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{I \widehat{a}}|\widehat{a}\rangle_{\mathrm{NS}}, \\
& \mathrm{NS}\langle T ; I|=\sum_{\widehat{a}=1}^{M-1} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{-I \widehat{a}}{ }_{\mathrm{NS}}\langle\widehat{a}| . \tag{5.63}
\end{align*}
$$

Here, the sum runs over all twisted sectors, ω is the M-th root of unity as in (5.3) and $|\widehat{a}\rangle_{\mathrm{NS}}$ is the GSO projected Ishibashi state for the twisted sector \widehat{a}. These Ishibashi states enforce the appropriate gluing conditions between the left-moving and right-moving modes. For our purposes, it is not necessary to write the complete expression of these Ishibashi states, but it is enough to write the terms which may have a non-zero overlap with the massless states of the closed string twisted sectors discussed in Section 5.1.

Let us suppose again that M is odd. If $\widehat{a}=a \in\left[1, \frac{M-1}{2}\right]$, we have

$$
\begin{equation*}
|a\rangle\rangle_{\mathrm{NS}}=\left(\mathrm{i} \bar{\Psi}_{-\frac{1}{2}+v_{a}}^{2} \widetilde{\Psi}_{-\frac{1}{2}+v_{a}}^{2}-\mathrm{i} \Psi_{-\frac{1}{2}+v_{a}}^{3} \widetilde{\bar{\Psi}}_{-\frac{1}{2}+v_{a}}^{3}\right)\left|\Omega_{a}\right\rangle_{(-1)}\left|\widetilde{\Omega}_{a}\right\rangle_{(-1)}+\cdots \tag{5.64}
\end{equation*}
$$

where the ellipses stand for terms involving a higher number of oscillators or massive fermionic modes. The relative minus sign in the brackets of (5.64) is due to the fact that the complex direction 3 is transverse to the D3-brane while the complex direction 2 is longitudinal. If $\widehat{a}=(M-a)$, instead, we have

$$
\begin{equation*}
|M-a\rangle\rangle_{\mathrm{NS}}=\left(\mathrm{i} \Psi_{-\frac{1}{2}+v_{a}}^{2}{\widetilde{\overline{\Psi^{2}}}}_{-\frac{1}{2}+v_{a}}-\mathrm{i} \bar{\Psi}_{-\frac{1}{2}+v_{a}}^{3} \widetilde{\Psi}_{-\frac{1}{2}+v_{a}}\right)\left|\Omega_{M-a}\right\rangle_{(-1)}\left|\widetilde{\Omega}_{M-a}\right\rangle_{(-1)}+\cdots . \tag{5.65}
\end{equation*}
$$

The corresponding Ishibashi bra states are

$$
\begin{gather*}
\mathrm{NS}\left\langle\langle a|={ }_{(-1)}\left\langle\left.\widetilde{\Omega}_{a}\right|_{(-1)}\left\langle\Omega_{a}\right|\left(-\mathrm{i} \widetilde{\Psi}^{2}{ }_{\frac{1}{2}-v_{a}} \bar{\Psi}_{\frac{1}{2}-v_{a}}^{2}+\mathrm{i} \widetilde{\bar{\Psi}}_{\frac{1}{2}-v_{a}}^{3} \Psi_{\frac{1}{2}-v_{a}}^{3}\right)+\cdots\right.\right. \\
\mathrm{NS}\langle M-a|={ }_{(-1)}\left\langle\left.\widetilde{\Omega}_{M-a}\right|_{(-1)}\left\langle\Omega_{M-a}\right|\left(-\mathrm{i} \widetilde{\bar{\Psi}}_{\frac{1}{2}-v_{a}}^{2} \Psi_{\frac{1}{2}-v_{a}}^{2}+\mathrm{i} \widetilde{\Psi}_{\frac{1}{2}-v_{a}} \bar{\Psi}_{\frac{1}{2}-v_{a}}^{3}\right)+\cdots\right. \tag{5.66}
\end{gather*}
$$

where the conjugate vacuum states are normalized in such a way that

$$
\begin{equation*}
{ }_{(-1)}\left\langle\Omega_{a} \mid \Omega_{a}\right\rangle_{(-1)}=1 \quad \text { and } \quad{ }_{(-1)}\left\langle\Omega_{M-a} \mid \Omega_{M-a}\right\rangle_{(-1)}=1, \tag{5.67}
\end{equation*}
$$

and similarly for the right-moving sectors.
When the fractional D3-branes are present, the left and right moving parts of a twisted closed string have non-trivial correlation functions since the closed string world-sheet has a boundary. In the boundary state formalism, this boundary is the unit circle on which the Ishibashi states enforce an identification between the left and the right movers of the closed strings. In particular for the massless vertex operators of the twisted NS sector with label a and twist parameter v_{a} described in Section 5.1.2, given any two points w and \bar{w} inside the unit disk \mathbb{D} corresponding to a D3-brane of type I, we have

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{\alpha}(w) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{w})\right\rangle_{I} \equiv{ }_{\mathrm{NS}}\langle T ; I| \mathcal{V}_{a}^{\alpha}(w) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{w})|0\rangle|\widetilde{0}\rangle=\frac{M_{I, a}^{\alpha \beta}}{(1-w \bar{w})^{2}}, \tag{5.68}
\end{equation*}
$$

where the last step is a consequence of the conformal invariance which fixes the form of the two-point function of conformal fields of weight 1 on \mathbb{D}. The constant in the numerator can be obtained from the overlap between the twisted boundary state and the states created by the vertex operators \mathcal{V}_{a}^{α} and $\widetilde{\mathcal{V}}_{a}^{\beta}$. For example, fixing $\alpha=1$ and $\beta=2$ and referring to the explicit expressions in Table 5.1, we have

$$
\begin{align*}
M_{I, a}^{12} & =\lim _{w \rightarrow 0} \lim _{\bar{w} \rightarrow 0}{ }_{\mathrm{NS}}\langle T ; I| \mathcal{V}_{a}^{1}(w) \widetilde{\mathcal{V}}_{a}^{2}(\bar{w})|0\rangle|\widetilde{0}\rangle \\
& ={ }_{\mathrm{NS}}\langle T ; I| \Psi_{-\frac{1}{2}+v_{a}}^{3}{\widetilde{\overline{\Psi^{3}}}}_{-\frac{1}{2}+v_{a}}\left|\Omega_{a}\right\rangle_{(-1)}\left|\widetilde{\Omega}_{a}\right\rangle_{(-1)} \\
& =\sin \left(\pi v_{a}\right) \omega^{-I a}{ }_{\mathrm{NS}}\left\langle\left.\langle a| \Psi_{-\frac{1}{2}+v_{a}}^{3} \widetilde{\bar{\Psi}}_{-\frac{1}{2}+v_{a}}^{3} \right\rvert\, \Omega_{a}\right\rangle_{(-1)}\left|\widetilde{\Omega}_{a}\right\rangle_{(-1)} \\
& =\mathrm{i} \sin \left(\pi v_{a}\right) \omega^{-I a} . \tag{5.69}
\end{align*}
$$

Proceeding in a similar way, we find that $M_{I, a}^{21}$ is identical to (5.69), while $M_{I, a}^{11}=M_{I, a}^{22}=0$, since in these cases the fermionic oscillators are unbalanced. We can thus summarize this
result by rewriting (5.68) as

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{\alpha}(w) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{w})\right\rangle_{I}=\frac{\mathrm{i} \sin \left(\pi v_{a}\right) \omega^{-I a}\left(\tau_{1}\right)^{\alpha \beta}}{(1-w \bar{w})^{2}} \tag{5.70}
\end{equation*}
$$

where τ_{1} is the first Pauli matrix.

We now map this disk two-point function onto the complex plane by using the Cayley transformation

$$
\begin{equation*}
w=\frac{z-\mathrm{i}}{z+\mathrm{i}}, \tag{5.71}
\end{equation*}
$$

obtaining

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{\alpha}(z) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{z})\right\rangle_{I}=\left\langle\mathcal{V}_{a}^{\alpha}(w) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{w})\right\rangle_{I} \frac{d w}{d z} \frac{d \bar{w}}{d \bar{z}}=\frac{-\mathrm{i} \sin \left(\pi v_{a}\right) \omega^{-I a}\left(\tau^{1}\right)^{\alpha \beta}}{(z-\bar{z})^{2}} \tag{5.72}
\end{equation*}
$$

Thus, using the doubling trick, we are led to introduce the following reflection rule for right moving vertex operators:

$$
\begin{equation*}
\widetilde{\mathcal{V}}_{a}^{\beta}(\bar{z}) \longrightarrow\left(R_{I, a}\right)_{\gamma}^{\beta} \mathcal{V}_{M-a}^{\gamma}(\bar{z}), \tag{5.73}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{\alpha}(z) \widetilde{\mathcal{V}}_{a}^{\beta}(\bar{z})\right\rangle_{I} \longrightarrow\left(R_{I, a}\right)_{\gamma}^{\beta}\left\langle\mathcal{V}_{a}^{\alpha}(z) \mathcal{V}_{M-a}^{\gamma}(\bar{z})\right\rangle=\left(R_{I, a}\right)_{\gamma}^{\beta} \frac{\left(\epsilon^{-1}\right)^{\alpha \gamma}}{(z-\bar{z})^{2}} \tag{5.74}
\end{equation*}
$$

where, in the last step, we used (5.30). Comparing with (5.72) we find that the reflection matrix $R_{I, a}$ is given by

$$
\begin{equation*}
R_{I, a}=\mathrm{i} \sin \left(\pi v_{a}\right) \omega^{-I a} \tau_{3} \tag{5.75}
\end{equation*}
$$

where τ_{3} is the third Pauli matrix. Repeating the same calculations in the twisted sector labeled by $(M-a)$, we get

$$
\begin{equation*}
R_{I, M-a}=\mathrm{i} \sin \left(\pi v_{a}\right) \omega^{I a} \tau_{3} . \tag{5.76}
\end{equation*}
$$

Notice that even though the oscillator structure of the boundary states in the sectors a and
($M-a$) is different, in the end the reflection matrices (5.75) and (5.76) have the same form and can be simultaneously written as

$$
\begin{equation*}
R_{I, \bar{a}}=\mathrm{i} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{-I \widehat{a}} \tau_{3} \tag{5.77}
\end{equation*}
$$

with $\widehat{a}=1, \ldots, M-1$.

R/R sector

The above analysis can be easily extended to the R / R sector where, in analogy with (5.63), the twisted components of the boundary state are given by

$$
\begin{align*}
& |T ; I|\rangle_{\mathrm{R}}=\sum_{\widehat{a}=1}^{M-1} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{I \widehat{a}}|\widehat{a}\rangle_{\mathrm{R}}, \\
& { }_{\mathrm{R}}\langle T ; I|=\sum_{\widehat{a}=1}^{M-1} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{-I \widehat{a}}{ }_{\mathrm{R}}\langle\langle\widehat{a}| . \tag{5.78}
\end{align*}
$$

In writing the expressions for the GSO-projected Ishibashi states $|\widehat{a}\rangle\rangle_{\mathrm{R}}$ and their conjugates, we adopt the same picture assignments discussed in Section 5.1.4: the $\left(-\frac{1}{2},-\frac{3}{2}\right)$ picture for the twisted sectors labeled by $\widehat{a}=a \in\left[1, \frac{M-1}{2}\right]$, and the ($-\frac{3}{2},-\frac{1}{2}$)-picture for the sectors with $\widehat{a}=(M-a)$. Apart from this, the structure of these states is similar to that of the twisted boundary states for D3-branes in the \mathbb{Z}_{2} orbifold obtained in [8] from the factorization of the one-loop open string partition function, and already used in pevious chapter [4] of this thesis. In particular, for $\widehat{a}=a$ we have

$$
\begin{equation*}
|a\rangle\rangle_{\mathrm{R}}=\left(C \Gamma_{1} \Gamma_{2}\right)_{A \dot{B}}\left|A_{a}\right\rangle_{\left(-\frac{1}{2}\right)}\left|\widetilde{\dot{B}}_{a}\right\rangle_{\left(-\frac{3}{2}\right)}+\ldots \tag{5.79}
\end{equation*}
$$

where the ellipses stand for contributions from massive fermionic modes, the vacuum states have been defined in (5.48) and (5.51), and Γ_{1} and Γ_{2} are the $\mathrm{SO}(6)$ Dirac matrices along the first two real longitudinal directions of the D3-branes. Likewise, when $\widehat{a}=$
$(M-a)$ we have

$$
\begin{equation*}
\left.|M-a\rangle\rangle_{\mathrm{R}}=\left(C \Gamma_{1} \Gamma_{2}\right)_{\dot{A} B}\left|\dot{A}_{M-a}\right\rangle_{\left(-\frac{3}{2}\right)} \widetilde{B}_{M-a}\right\rangle_{\left(-\frac{1}{2}\right)}+\ldots \tag{5.80}
\end{equation*}
$$

The corresponding Ishibashi conjugate states are

$$
\begin{align*}
\mathrm{R}\langle\langle a| & ={ }_{\left(-\frac{3}{2}\right)}\left\langle\left.\widetilde{\dot{A}}_{a}\right|_{\left(-\frac{1}{2}\right)}\left\langle B_{a}\right|\left(\Gamma_{2} \Gamma_{1} C^{-1}\right)^{\dot{A} B}+\ldots\right. \tag{5.81}\\
{ }_{\mathrm{R}}\langle\langle M-a| & ={ }_{\left(-\frac{1}{2}\right)}\left\langle\left.\widetilde{A}_{M-a}\right|_{\left(-\frac{3}{2}\right)}\left\langle\dot{B}_{M-a}\right|\left(\Gamma_{2} \Gamma_{1} C^{-1}\right)^{A \dot{B}}+\ldots\right.
\end{align*}
$$

where the bra vacuum states are defined such that

$$
\begin{equation*}
\left.{ }_{\left(-\frac{1}{2}\right)}\left\langle B_{a} \mid A_{a}\right\rangle_{\left(-\frac{1}{2}\right)}=\delta_{B}^{A} \quad \text { and } \quad{ }_{\left(-\frac{3}{2}\right)}\right) \widetilde{\dot{B}}_{M-a}\left|\widetilde{A}_{M-a}\right\rangle_{\left(-\frac{3}{2}\right)}=\delta_{\dot{B}}^{A} \tag{5.82}
\end{equation*}
$$

with analogous relations for the right-moving vacua ${ }^{4}$.
We can now repeat the same steps followed in the NS sector to prove that the boundary state enforces an identification between left-moving and right-moving vertex operators in the twisted R sector a according to

$$
\begin{equation*}
\widetilde{\mathcal{V}}_{a}^{\dot{B}}(\bar{z}) \longrightarrow\left(R_{I, a}{ }_{C}^{\dot{B}} \mathcal{V}_{M-a}^{c}(\overline{\mathrm{z}}),\right. \tag{5.83}
\end{equation*}
$$

where the reflection matrix is the anti-chiral/anti-chiral block of

$$
\begin{equation*}
R_{I, a}=\sin \left(\pi v_{a}\right) \omega^{-I a} \Gamma_{1} \Gamma_{2} . \tag{5.84}
\end{equation*}
$$

Similarly, in the twisted R sector labeled by $(M-a)$ the reflection matrix is the chiral/chiral block of

$$
\begin{equation*}
R_{I, M-a}=\sin \left(\pi v_{a}\right) \omega^{I a} \Gamma_{1} \Gamma_{2} . \tag{5.85}
\end{equation*}
$$

[^24]We can combine the last two formulas into

$$
\begin{equation*}
R_{I, \widehat{a}}=\sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{-\sqrt{a}} \Gamma_{1} \Gamma_{2} \tag{5.86}
\end{equation*}
$$

with the understanding that one has to take the lower-right and upper-left blocks for $\widehat{a}=a$ and $\widehat{a}=(M-a)$, respectively, as a consequence of the picture assignments.

5.2.2 Massless open string spectrum

We now analyze the spectrum of massless open strings that live on a configuration made of stacks of n_{I} fractional D3-branes of type I for $I=0, \ldots, M-1$, that engineer a theory with gauge group $\mathrm{U}\left(n_{0}\right) \times \ldots \times \mathrm{U}\left(n_{M-1}\right)$. We will restrict ourselves to listing the fields in the adjoint representation of $\mathrm{U}\left(n_{I}\right)$ as these will be the only fields that are sourced by the background values given to the twisted closed string scalars. We tailor our notations and conventions to be as close as possible to those in chapter 4.

In the familiar case of D3-branes in flat space, in the (0)-superghost picture the bosonic massless open string states are represented by vertex operators of the form ${ }^{5}$

$$
\begin{equation*}
\left(\mathrm{i} \partial Z^{i}+\kappa \cdot \Psi \Psi^{i}\right) \mathrm{e}^{\mathrm{i} \kappa \cdot Z} . \tag{5.87}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa_{i}=\frac{k_{2 i-1}+\mathrm{i} k_{2 i}}{\sqrt{2}} \quad \text { and } \quad \bar{\kappa}_{i}=\frac{k_{2 i-1}+\mathrm{i} k_{2 i}}{\sqrt{2}}, \tag{5.88}
\end{equation*}
$$

with k_{μ} being the real momentum along the direction x^{μ} of the D 3 -brane world-volume. In addition we denote the complex direction 1 by the symbol $\|$ and the complex direction 2 by the symbol \perp, since these directions are, respectively, longitudinal and perpendicular to the surface defect realized by the D3-brane configuration on the orbifold. We also

[^25]introduce the following convenient notation
\[

$$
\begin{array}{ll}
\kappa_{\|} \cdot Z_{\|}=\kappa_{1} \bar{Z}^{1}+\bar{\kappa}_{1} Z^{1}, & \kappa_{\perp} \cdot Z_{\perp}=\kappa_{2} \bar{Z}^{2}+\bar{\kappa}_{2} Z^{2} \tag{5.89}\\
\kappa_{\|} \cdot \Psi_{\|}=\kappa_{1} \bar{\Psi}^{1}+\bar{\kappa}_{1} \Psi^{1}, & \kappa_{\perp} \cdot \Psi_{\perp}=\kappa_{2} \bar{\Psi}^{2}+\bar{\kappa}_{2} \Psi^{2}
\end{array}
$$
\]

so that

$$
\begin{equation*}
\kappa \cdot Z=\kappa_{\|} \cdot Z_{\|}+\kappa_{\perp} \cdot Z_{\perp} \tag{5.90}
\end{equation*}
$$

and similarly for $\kappa \cdot \Psi$. Clearly, the parallel terms $\kappa_{\|} \cdot Z_{\|}$and $\kappa_{\|} \cdot \Psi_{\|}$are invariant under the orbifold group \mathbb{Z}_{M}, but the perpendicular terms are not, since

$$
g:\left\{\begin{array}{ccc}
\kappa_{\perp} \cdot Z_{\perp} & \longrightarrow & g\left[\kappa_{\perp} \cdot Z_{\perp}\right]=\omega^{-1} \kappa_{2} \bar{Z}^{2}+\omega \bar{\kappa}_{2} Z^{2} \tag{5.91}\\
\kappa_{\perp} \cdot \Psi_{\perp} & \longrightarrow & g\left[\kappa_{\perp} \cdot \Psi_{\perp}\right]=\omega^{-1} \kappa_{2} \bar{\Psi}^{2}+\omega \bar{\kappa}_{2} \Psi^{2}
\end{array}\right.
$$

This in particular implies that in order to write the open string vertex operators for the fractional D3-branes one cannot use the plane waves $\mathrm{e}^{\mathrm{i}{ }_{\perp} \cdot \mathrm{Z}_{\perp}}$ but instead decomposes these into functions that transform in the irreducible representations of \mathbb{Z}_{M}. These functions, which we denote by \mathcal{E}_{I} with $I=0, \ldots, M-1$, are simply obtained by summing the plane waves $\mathrm{e}^{\mathrm{i} \kappa_{\perp} \cdot Z_{\perp}}$ over the orbits of the group with coefficients chosen such that the combination transforms covariantly under the group action. So we are led to define:

$$
\begin{equation*}
\mathcal{E}_{I}=\frac{1}{M} \sum_{J=0}^{M-1} \omega^{-I J} g^{J}\left[\mathrm{e}^{\mathrm{i} \kappa_{\perp} \cdot Z_{\perp}}\right]=\frac{1}{M} \sum_{J=0}^{M-1} \omega^{-I J} \mathrm{e}^{\mathrm{i}\left(\omega^{-J} \kappa_{2} \bar{Z}^{2}+\omega^{J} \bar{\kappa}_{2} Z^{2}\right)} . \tag{5.92}
\end{equation*}
$$

One can easily check that

$$
\begin{equation*}
g\left[\mathcal{E}_{I}\right]=\frac{1}{M} \sum_{J=0}^{M-1} \omega^{-I J} \mathrm{e}^{\mathrm{i}\left(\omega^{-J-1} \kappa_{2} \bar{Z}^{2}+\omega^{J+1} \bar{K}_{2} Z^{2}\right)}=\omega^{I} \mathcal{E}_{I}, \tag{5.93}
\end{equation*}
$$

which shows that \mathcal{E}_{I} transforms in the I-th irreducible representation of \mathbb{Z}_{M}. For $M=2$ and $\omega=-1$, the functions \mathcal{E}_{I} are simply

$$
\begin{equation*}
\mathcal{E}_{0}=\cos \left(\kappa_{\perp} \cdot Z_{\perp}\right) \quad \text { and } \quad \mathcal{E}_{1}=\mathrm{i} \sin \left(\kappa_{\perp} \cdot Z_{\perp}\right), \tag{5.94}
\end{equation*}
$$

which are exactly the two combinations used in the case of the \mathbb{Z}_{2} orbifold in previous chapter.

In a similar way, we have to break up the operators multiplying the plane wave in (5.87) into various pieces with definite charge I under the orbifold action and form invariant combinations with \mathcal{E}_{M-I}. In the orbifold theory, only such combinations represent vertex operators describing physical fields on the world-volume of the fractional D3-brane.

Applying these considerations, we see that the gauge field A_{1} along the parallel directions is described by the following vertex operator in the (0)-superghost picture:

$$
\begin{equation*}
\mathcal{V}_{A_{1}}=\left[\left(\mathrm{i} \partial Z^{1}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{1}\right) \mathcal{E}_{0}+\kappa_{2} \bar{\Psi}^{2} \Psi^{1} \mathcal{E}_{1}+\bar{\kappa}_{2} \Psi^{2} \Psi^{1} \mathcal{E}_{M-1}\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}} \tag{5.95}
\end{equation*}
$$

Each term in square brackets is invariant under \mathbb{Z}_{M}. For instance, the terms $\partial \bar{Z}^{1}$ and $\kappa_{\|} \cdot \Psi_{\|} \bar{\Psi}^{1}$, which are \mathbb{Z}_{M} invariant, are multiplied with the invariant function \mathcal{E}_{0}. Similarly the term $\kappa_{2} \bar{\Psi}^{2} \Psi^{1}$, which gets a factor ω^{-1} under the orbifold action, is multiplied by \mathcal{E}_{1} to make a \mathbb{Z}_{M}-invariant combination. Likewise, it is easy to see that the third term in (5.95) is also \mathbb{Z}_{M} invariant. The vertex operator for the complex conjugate field component \bar{A}_{1} is obtained by simply replacing ∂Z^{1} and Ψ^{1} with $\partial \bar{Z}^{1}$ and $\bar{\Psi}^{1}$.

In a similar way we can write the vertex operators for the gauge field A_{2} in the directions transverse to the surface defect, which is

$$
\begin{equation*}
\mathcal{V}_{A_{2}}=\left[\left(\mathrm{i} \partial Z^{2}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{2}\right) \mathcal{E}_{M-1}+\kappa_{2} \bar{\Psi}^{2} \Psi^{2} \mathcal{E}_{0}\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}} \tag{5.96}
\end{equation*}
$$

The vertex operator for \bar{A}_{2} can be obtained from the above expression by replacing ∂Z^{2} and Ψ^{2} with $\partial \bar{Z}^{2}$ and $\bar{\Psi}^{2}$, and \mathcal{E}_{M-1} with \mathcal{E}_{1}.

Finally, let us consider the scalar fields. On the fractional D3-brane world-volume there are three complex scalars that together with the gauge vector provide the bosonic content of the $\mathcal{N}=4$ vector multiplet. When the orbifold acts partially along the world-volume
as in our case, all three complex scalars remain in the spectrum. Denoting them by Φ and Φ_{r} with $r=4,5$, they and their complex conjugates are described by the following \mathbb{Z}_{M}-invariant vertices:

$$
\begin{align*}
& \mathcal{V}_{\Phi}=\left[\left(\mathrm{i} \partial Z^{3}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{3}\right) \mathcal{E}_{1}+\kappa_{2} \bar{\Psi}^{2} \Psi^{3} \mathcal{E}_{2}+\bar{\kappa}_{2} \Psi^{2} \Psi^{3} \mathcal{E}_{0}\right] \mathrm{e}^{\mathrm{i} \hat{k}_{\|} \cdot \mathbb{Z}_{\|}}, \tag{5.97}\\
& \mathcal{V}_{\bar{\Phi}}=\left[\left(\mathrm{i} \partial \bar{Z}^{3}+\kappa_{\|} \cdot \Psi_{\|} \bar{\Psi}^{3}\right) \mathcal{E}_{M-1}+\kappa_{2} \bar{\Psi}^{2} \bar{\Psi}^{3} \mathcal{E}_{0}+\bar{\kappa}_{2} \Psi^{2} \bar{\Psi}^{3} \mathcal{E}_{M-2}\right] \mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot \mathcal{Z}_{\|}},
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{V}_{\Phi_{r}}=\left[\left(\mathrm{i} \partial Z^{r}+\kappa_{\|} \cdot \Psi_{\|} \Psi^{r}\right) \mathcal{E}_{0}+\kappa_{2} \bar{\Psi}^{2} \Psi^{r} \mathcal{E}_{1}+\bar{\kappa}_{2} \Psi^{2} \Psi^{r} \mathcal{E}_{M-1}\right] \mathrm{e}^{\mathrm{i}_{\|| |} \cdot \mathbb{Z}_{\|}} \tag{5.98}
\end{equation*}
$$

with $\mathcal{V}_{\bar{\Phi}_{r}}$ obtained by simply replacing Ψ^{r} with $\bar{\Psi}^{r}$.
All these vertex operators have conformal dimension 1 provided the corresponding fields are massless, i.e. if $\kappa \cdot \bar{\kappa}=\frac{1}{2} k^{2}=0$.

5.3 Open/closed correlators

In this section we study the mixed amplitudes between the twisted closed string fields discussed in Section 5.1 and the massless open string fields introduced in the previous section by calculating open/closed disk correlators (see [58] for a review of scattering of strings off D-branes). An example of such a mixed amplitude is shown in Figure 3.1, in which the closed string field is the NS/NS scalar $b_{\alpha \beta}^{(a)}$ in the twisted sector \widehat{a}.

The open/closed string amplitudes we consider correspond to disk diagrams with a closed string vertex insertion at the center and an open string vertex inserted on the boundary. These diagrams are generically non-vanishing due to the D3-brane boundary conditions that enforce an identification between the left and right movers of the closed strings.

We now explain how to compute these mixed amplitudes starting from the NS/NS twisted fields.

5.3.1 Correlators with NS/NS twisted fields

Let us consider the scalar $b_{\alpha \beta}^{(a)}$ in the NS/NS twisted sector \widehat{a}. Its coupling with a massless open string excitation on a D3-brane of type I described by the vertex operator $\mathcal{V}_{\text {open }}$ is given by the following expression:

$$
\begin{equation*}
\left\langle\mathcal{V}_{\mathrm{open}}\right\rangle_{b_{a \beta}^{(\alpha)} ; I}=b_{\alpha \beta}^{(a)} \int \frac{d z d \bar{z} d x}{d V_{\text {proj }}}\left\langle\mathcal{V}_{\bar{a}}^{\alpha}(z) \widetilde{\mathcal{V}}_{\widetilde{a}}^{\beta}(\bar{z}) \mathcal{V}_{\mathrm{open}}(x)\right\rangle_{I}, \tag{5.99}
\end{equation*}
$$

where

$$
\begin{equation*}
d V_{\text {proj }}=\frac{d z d \bar{z} d x}{(z-\bar{z})(\bar{z}-x)(x-z)} \tag{5.100}
\end{equation*}
$$

is the projective invariant volume element and the integrals are performed on the string world-sheet. In particular the closed string insertion points z and \bar{z}, are in the upper and lower half complex plane, respectively, while the open string insertion point x is on the real axis.

Since we are interested in the couplings with constant background fields $b_{\alpha \beta}^{(a)}$, the left and right vertex operators in (5.99) are at zero momentum. The open string vertex, instead, has a non-vanishing momentum. Since the fractional brane is located at the orbifold fixed point $z_{2}=0$, translation invariance is broken in the complex direction 2 . Therefore, the components κ_{2} and $\bar{\kappa}_{2}$ of the open string momentum are arbitrary, while the components κ_{1} and $\bar{\kappa}_{1}$ are set to zero by momentum conservation in the parallel directions and the final amplitude will be proportional to $\delta^{(2)}\left(\kappa_{\|}\right)$.

Using the reflection rule (5.77), the integrand of (5.99) can be rewritten as

$$
\begin{equation*}
\left\langle\mathcal{V}_{\widehat{a}}^{\alpha}(z) \widetilde{\mathcal{V}}_{\widetilde{a}}^{\beta}(\bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle_{I}=\mathrm{i} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{-I \widehat{a}}\left(\tau_{3}\right)_{\gamma}^{\beta}\left\langle\mathcal{V}_{\widehat{a}}^{\alpha}(z) \mathcal{V}_{M-\widehat{a}}^{\gamma}(\bar{z}) \mathcal{V}_{\text {open }}(x)\right\rangle \tag{5.101}
\end{equation*}
$$

Thus, the calculation is reduced to the evaluation of a three-point function of vertex operators of conformal weight 1 . The functional dependence on the word-sheet variables is fixed by conformal invariance and exactly cancels that of the projective invariant vol-
ume (5.100) so that in the end the result will be a constant that depends on the detailed structure of the vertex operators.

There are, however, some features that can be described in generality, and are independent of the specific components of $b_{\alpha \beta}^{(a)}$ and of the particular open string vertices that are considered. When we write the three-point functions in (5.101) as products of correlators for each of the independent conformal fields, we easily recognize that the superghost contribution is always given by

$$
\begin{equation*}
\left\langle\mathrm{e}^{-\phi(z)} \mathrm{e}^{-\phi(\bar{z})}\right\rangle=\frac{1}{z-\bar{z}} . \tag{5.102}
\end{equation*}
$$

It is perhaps less obvious but it turns out that also the contribution arising from the bosonic string coordinates is the same for all amplitudes. Indeed, the only non-vanishing correlator involving the bosonic coordinates along the parallel direction is

$$
\begin{equation*}
\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}}(x)\right\rangle=\delta^{(2)}\left(K_{\|}\right), \tag{5.103}
\end{equation*}
$$

which enforces the anticipated momentum conservation for $\kappa_{\|}$, while the terms containing ∂Z^{1} or $\partial \bar{Z}^{1}$ always vanish inside the correlators and thus they can be ignored. As far as the perpendicular direction is concerned, we have to take into account the presence of the bosonic twist fields and the fact that the plane waves appear in the combinations \mathcal{E}_{I} defined in (5.92). Thus, one typically has to evaluate a correlator of the form

$$
\begin{equation*}
\left\langle\sigma_{\widehat{a}}(z) \sigma_{M-\widehat{a}}(\bar{z}) \mathcal{E}_{I}(x)\right\rangle=\frac{1}{M} \sum_{J=0}^{M-1} \omega^{-I J}\left\langle\sigma_{\widehat{a}}(z) \sigma_{M-\widehat{a}}(\bar{z}) \mathrm{e}^{\mathrm{i}\left(\omega^{-J} K_{2} \bar{Z}^{2}(x)+\omega^{J} \overline{\widehat{k}}^{2} Z^{2}(x)\right)}\right\rangle . \tag{5.104}
\end{equation*}
$$

For any value of J, the correlator in the sum is equal simply to $\left\langle\sigma_{\overparen{a}}(z) \sigma_{M-\widehat{a}}(\bar{z})\right\rangle$, so that

$$
\begin{equation*}
\left\langle\sigma_{\widehat{a}}(z) \sigma_{M-\widehat{a}}(\bar{z}) \mathcal{E}_{I}(x)\right\rangle=\frac{1}{M}\left(\sum_{J=0}^{M-1} \omega^{-I J}\right)\left\langle\sigma_{\overparen{a}}(z) \sigma_{M-\widehat{a}}(\bar{z})\right\rangle=\delta_{I, 0}\left\langle\sigma_{\overparen{a}}(z) \sigma_{M-\widehat{a}}(\bar{z})\right\rangle . \tag{5.105}
\end{equation*}
$$

This means that in the open string vertex operators we can just focus on the terms propor-
tional to \mathcal{E}_{0} and disregard the other terms, as they will not contribute. Furthermore, we can also neglect the terms involving ∂Z^{2} or $\partial \bar{Z}^{2}$, since they always give a vanishing contribution inside the correlators. With this in mind, we can proceed to the explicit evaluation of the mixed amplitudes with the twisted NS/NS scalars.

Explicit computations

We start by considering the correlator (5.101) with $\widehat{a}=a \in\left[1, \frac{M-1}{2}\right]$ and $\alpha=1$ and $\beta=2$, corresponding to the twisted field $b_{12}^{(a)}$. Applying the above considerations, one realizes that this scalar does not couple to any open string field except A_{2} and \bar{A}_{2}. Indeed, the terms of the vertex operators of A_{1}, Φ, Φ_{r} and their conjugates which contain \mathcal{E}_{0} always contain other structures with unbalanced bosonic or fermionic fields, which therefore vanish inside the correlator. Let us then consider the coupling with A_{2}. In this case, inserting the explicit expressions of the vertex operators in (5.101), we have

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{1}(z) \widetilde{\mathcal{V}}_{a}^{2}(\bar{z}) \mathcal{V}_{A_{2}}(x)\right\rangle_{I}=-\mathrm{i} \sin \pi v_{a} \omega^{-I a}\left\langle\mathcal{V}_{a}^{1}(z) \mathcal{V}_{M-a}^{2}(\bar{z}) \mathcal{V}_{A_{2}}(x)\right\rangle \tag{5.106}
\end{equation*}
$$

with

$$
\begin{align*}
\left\langle\mathcal{V}_{a}^{1}(z) \mathcal{V}_{M-a}^{2}(\bar{z}) \mathcal{V}_{A_{2}}(x)\right\rangle= & \kappa_{2}\left\langle\mathrm{e}^{-\phi(z)} \mathrm{e}^{-\phi(\bar{z})}\right\rangle\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \mid Z_{\|}(x)}\right\rangle\left\langle\sigma_{a}(z) \sigma_{M-a}(\bar{z})\right\rangle \\
& \times\left\langle: \Psi^{3}(z) s_{a}(z):: \bar{\Psi}^{3}(\bar{z}) s_{M-a}(\bar{z}):: \bar{\Psi}^{2}(x) \Psi^{2}(x):\right\rangle . \tag{5.107}
\end{align*}
$$

The fermionic correlator in the second line above can be evaluated by factorizing it in the two independent directions 2 and 3 and using the bosonization method [10]. In this way we have

$$
\begin{align*}
\left\langle: \Psi^{3}(z) s_{a}(z):: \bar{\Psi}^{3}(\bar{z}) s_{M-a}(\bar{z}):: \bar{\Psi}^{2}(x) \Psi^{2}(x):\right\rangle= & \left\langle s_{v_{a}}^{2}(z) s_{-v_{a}}^{2}(\bar{z}): \bar{\Psi}^{2}(x) \Psi^{2}(x):\right\rangle \\
& \times\left\langle: \Psi^{3}(z) s_{-v_{a}}^{3}(z):: \bar{\Psi}^{3}(\bar{z}) s_{v_{a}}^{3}(\bar{z}):\right\rangle \tag{5.108}
\end{align*}
$$

where ${ }^{6}$

$$
\begin{align*}
\left\langle s_{v_{a}}^{2}(z) s_{-v_{a}}^{2}(\bar{z}): \bar{\Psi}^{2}(x) \Psi^{2}(x):\right\rangle & =\left\langle\mathrm{e}^{\mathrm{i} v_{a} \phi_{2}}(z) \mathrm{e}^{-\mathrm{i} v_{a} \phi_{2}}(\bar{z})\left(-\mathrm{i} \partial \phi_{2}(x)\right)\right\rangle \\
& =\frac{-v_{a}}{(z-\bar{z})^{v_{a}^{2}-1}(z-x)(\bar{z}-x)}, \tag{5.109}
\end{align*}
$$

and

$$
\begin{equation*}
\left\langle: \Psi^{3}(z) s_{-v_{a}}^{3}(z):: \bar{\Psi}^{3}(\bar{z}) s_{v_{a}}^{3}(\bar{z}):\right\rangle=\left\langle\mathrm{e}^{\mathrm{i}\left(1-v_{a}\right) \phi_{3}}(z) \mathrm{e}^{-\mathrm{i}\left(1-v_{a}\right) \phi_{3}}(\bar{z})\right\rangle=\frac{1}{(z-\bar{z})^{\left(1-v_{a}\right)^{2}}} . \tag{5.110}
\end{equation*}
$$

Combining everything together in (5.107), we obtain

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{1}(z) \mathcal{V}_{M-a}^{2}(\bar{z}) \mathcal{V}_{A_{2}}(x)\right\rangle=\frac{\kappa_{2} V_{a}}{(z-\bar{z})(\bar{z}-x)(x-z)} \delta^{(2)}\left(\kappa_{\|}\right) \tag{5.111}
\end{equation*}
$$

Finally, inserting this into (5.106) and (5.99), we find that the coupling of $b_{12}^{(a)}$ with A_{2} is

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b_{12}^{(a)} ; I}=-\mathrm{i} b_{12}^{(a)} \kappa_{2} v_{a} \sin \pi v_{a} \omega^{-I a} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{5.112}
\end{equation*}
$$

The same calculation shows that $b_{12}^{(a)}$ also couples to \bar{A}_{2} and the result is simply obtained by replacing κ_{2} with $-\bar{\kappa}_{2}$ in the above expression.

We can similarly repeat the analysis for the other components $b_{\alpha \beta}^{(a)}$. For example, taking $b_{21}^{(a)}$ we find that its only non-vanishing coupling is

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b_{12}^{(a)} ; I}=\mathrm{i} b_{21}^{(a)} \kappa_{2}\left(1-v_{a}\right) \sin \pi v_{a} \omega^{-I a} \delta^{(2)}\left(\kappa_{\|}\right), \tag{5.113}
\end{equation*}
$$

with a similar result for \bar{A}_{2} in which κ_{2} is replaced with $-\bar{\kappa}_{2}$. The diagonal components $b_{11}^{(a)}$ and $b_{22}^{(a)}$, instead, only couple to the complex scalars Φ and $\bar{\Phi}$ according to

$$
\begin{align*}
\left\langle\mathcal{V}_{\Phi}\right\rangle_{b_{22}^{(a)} I I} & =-\mathrm{i} b_{22}^{(a)} \bar{K}_{2} \sin \pi v_{a} \omega^{-I a} \delta^{(2)}\left(\kappa_{\|}\right), \tag{5.114}\\
\text {and }\left\langle\mathcal{V}_{\bar{\Phi}}\right\rangle_{b_{11}^{(a)} I I} & =\mathrm{i} b_{11}^{(a)} \kappa_{2} \sin \pi v_{a} \omega^{-I a} \delta^{(2)}\left(\kappa_{\|}\right) .
\end{align*}
$$

[^26]It is equally straightforward to compute the open/closed string correlators in the twisted sectors with $\widehat{a}=(M-a)$. In this case, we find again that the off-diagonal components $b_{12}^{(M-a)}$ and $b_{21}^{(M-a)}$ only interact with A_{2} and \bar{A}_{2}, and that the couplings with A_{2} are

$$
\begin{align*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b_{12}^{(M-a) ; I}} & =-\mathrm{i} b_{12}^{(M-a)} \kappa_{2}\left(1-v_{a}\right) \sin \pi v_{a} \omega^{I a} \delta^{(2)}\left(\kappa_{\|}\right), \tag{5.115}\\
\text {and }\left\langle\mathcal{V}_{A_{2}}\right\rangle_{b_{21}^{(M-a) ; I}} & =\mathrm{i} b_{21}^{(M-a)} \kappa_{2} v_{a} \sin \pi v_{a} \omega^{I a} \delta^{(2)}\left(\kappa_{\|}\right),
\end{align*}
$$

while those with \bar{A}_{2} follow by replacing κ_{2} with $-\bar{\kappa}_{2}$ in the above expressions. The diagonal components $b_{11}^{(M-a)}$ and $b_{21}^{(M-a)}$ interact instead with Φ and $\bar{\Phi}$ with the following couplings:

$$
\begin{array}{r}
\left\langle\mathcal{V}_{\Phi}\right\rangle_{b_{22}^{(M-a)} ; I}=-\mathrm{i} b_{22}^{(M-a)} \bar{K}_{2} \sin \pi v_{a} \omega^{I a} \delta^{(2)}\left(\kappa_{\|}\right), \tag{5.116}\\
\text {and }\left\langle\mathcal{V}_{\bar{\phi}\rangle_{b_{11}^{(M-a)} ; I}}=\mathrm{i} b_{11}^{(M-a)} \kappa_{2} \sin \pi v_{a} \omega^{I a} \delta^{(2)}\left(\kappa_{\|}\right) .\right.
\end{array}
$$

As a consistency check of our results, we observe that the formulas (5.115) and (5.116) can be obtained from (5.112), (5.113) and (5.114) by simply replacing everywhere a with ($M-a$). Thus, despite the fact that the fermionic approach we have used introduces differences in the explicit expressions for the twisted sector vertex operators, in the end, all sectors are treated on an equal footing.

Results

We are finally in a position to write down the complete expression for the open string fields emitted by a fractional D3-brane of type I in the presence of background values for the scalars of the NS/NS twisted sectors. This is given by summing over all components of $b_{\alpha \beta}^{(a)}$ and over all twisted sectors:

$$
\begin{equation*}
\left\langle\mathcal{V}_{\text {open }}\right\rangle_{I}=\sum_{\widehat{a}=1}^{M-1} \sum_{\alpha, \beta=1}^{2}\left\langle\mathcal{V}_{\text {open }}\right\rangle_{b_{a \beta}^{(\alpha)} I} . \tag{5.117}
\end{equation*}
$$

As we have seen, the components of the gauge field along the parallel direction 1 and the complex scalars Φ_{r} do not couple to any NS/NS twisted field, while we have a non-
vanishing source for A_{2}, Φ and their complex conjugates. For A_{2} the above formula gives

$$
\begin{align*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{I}=-\mathrm{i} \kappa_{2} \sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a} & {\left[v_{a} \omega^{-I a} b_{12}^{(a)}-\left(1-v_{a}\right) \omega^{-I a} b_{21}^{(a)}\right.} \tag{5.118}\\
& \left.-v_{a} \omega^{I a} b_{21}^{(M-a)}+\left(1-v_{a}\right) \omega^{I a} b_{12}^{(M-a)}\right] \delta^{(2)}\left(\kappa_{\|}\right) .
\end{align*}
$$

Taking into account the relations (5.38), it is easy to realize that the quantity in square brackets is purely imaginary. A similar result holds for \bar{A}_{2} with κ_{2} replaced by $-\bar{\kappa}_{2}$.

For the complex scalars Φ and $\bar{\Phi}$ we have instead

$$
\begin{align*}
& \left\langle\mathcal{V}_{\Phi}\right\rangle_{I}=-\mathrm{i} \bar{\kappa}_{2} \sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a}\left[\omega^{-I a} b_{22}^{(a)}+\omega^{I a} b_{22}^{(M-a)}\right] \delta^{(2)}\left(\kappa_{\|}\right), \\
& \left\langle\mathcal{V}_{\bar{\phi}}\right\rangle_{I}=\mathrm{i} \kappa_{2} \sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a}\left[\omega^{-I a} b_{11}^{(a)}+\omega^{I a} b_{11}^{(M-a)}\right] \delta^{(2)}\left(\kappa_{\|}\right) . \tag{5.119}
\end{align*}
$$

5.3.2 Correlators with R / R twisted fields

We now turn to the calculation of the interactions between the massless open string fields and the twisted R / R potentials. For definiteness, we only consider non-vanishing background values for the scalars $C^{(a)}$ and $C^{(M-a)}$, since they are the only ones that turn out to be relevant for the description of the continuous parameters of surface defects. Thus, the closed string vertex operators we consider are

$$
\begin{equation*}
\mathcal{C}^{(a)} C_{A \dot{B}} \mathcal{V}_{a}^{A}(z) \widetilde{\mathcal{V}}_{a}^{\dot{B}}(\bar{z}) \quad \text { and } \quad C^{(M-a)} C_{\dot{A} B} \mathcal{V}_{M-a}^{\dot{A}}(z) \widetilde{\mathcal{V}}_{M-a}^{B}(\bar{z}) . \tag{5.120}
\end{equation*}
$$

By inspecting the fermionic structure of these vertex operators and comparing it with that of the open string vertices, one realizes that only the longitudinal component of the gauge field A_{1} and its conjugate \bar{A}_{1} can have a non-vanishing coupling.

Let us start by considering the interaction between A_{1} and $C^{(a)}$. This is given by

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{C^{(a)}, I}=C^{(a)} C_{A \dot{B}} \int \frac{d z d \bar{z} d x}{d V_{\mathrm{proj}}}\left\langle\mathcal{V}_{a}^{A}(z) \widetilde{\mathcal{V}}_{a}^{\dot{B}}(\bar{z}) \mathcal{V}_{A_{1}}(x)\right\rangle_{I} \tag{5.121}
\end{equation*}
$$

where the projective invariant volume element is defined in (5.100). Using the reflection rules (5.84) for the R / R fields, the integrand of (5.121) becomes

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{A}(z) \widetilde{\mathcal{V}}_{a}^{\dot{B}}(\bar{z}) \mathcal{V}_{A_{1}}(x)\right\rangle_{I}=\sin \left(\pi v_{a}\right) \omega^{-I a}\left(\Gamma_{1} \Gamma_{2}\right)_{\dot{C}}^{\dot{B}}\left\langle\mathcal{V}_{a}^{A}(z) \mathcal{V}_{M-a}^{C}(\bar{z}) \mathcal{V}_{A_{1}}(x)\right\rangle \tag{5.122}
\end{equation*}
$$

Using the explicit form of the vertex operators given in (5.47a), (5.52b) and (5.95), and taking into account the points discussed at the beginning of this section, the above correlator can be written as follows:

$$
\begin{align*}
\left\langle\mathcal{V}_{a}^{A}(z) \mathcal{V}_{M-a}^{\dot{C}}(\bar{z}) \mathcal{V}_{A_{1}}(x)\right\rangle=\kappa_{1}\left\langle\mathrm{e}^{-\frac{1}{2} \phi(z)}\right. & \left.\mathrm{e}^{-\frac{3}{2} \phi(\bar{z})}\right\rangle\left\langle\mathrm{e}^{\mathrm{i} \kappa_{\|} \cdot Z_{\|}}\right\rangle\left\langle\sigma_{a}(z) \sigma_{M-a}(\bar{z})\right\rangle \\
& \times\left\langle r_{a}(z) r_{M-a}(\bar{z})\right\rangle\left\langle S^{A}(z) S^{\dot{C}}(\bar{z}): \bar{\Psi}^{1} \Psi^{1}:(x)\right\rangle \tag{5.123}
\end{align*}
$$

Each factor in this expression can be easily computed using standard conformal field theory methods. The new ingredients with respect to the calculations in the NS/NS sectors are the following two-point functions:

$$
\begin{align*}
\left\langle\mathrm{e}^{-\frac{1}{2} \phi(z)} \mathrm{e}^{-\frac{3}{2} \phi(\bar{z})}\right\rangle & =\frac{1}{(z-\bar{z})^{\frac{3}{4}}} \\
\left\langle r_{a}(z) r_{M-a}(\bar{z})\right\rangle & =\frac{1}{(z-\bar{z})^{\frac{1}{2}-2 v_{a}\left(1-v_{a}\right)}} \tag{5.124}
\end{align*}
$$

Putting everything together, we have

$$
\begin{equation*}
\left\langle\mathcal{V}_{a}^{A}(z) \mathcal{V}_{M-a}^{\dot{C}}(\bar{z}) \mathcal{V}_{A_{1}}(x)\right\rangle=-\frac{\mathrm{i}}{2} \frac{\left(\Gamma_{1} \Gamma_{2} C^{-1}\right)^{A \dot{C}}}{(z-\bar{z})(\bar{z}-x)(x-z)} \delta^{(2)}\left(\kappa_{\|}\right) \tag{5.125}
\end{equation*}
$$

Inserting this into (5.122) and (5.121), and performing the Γ-matrix algebra, we finally
obtain

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{C^{(a)}, I}=-2 \mathrm{i} \kappa_{1} \sin \pi v_{a} \omega^{-I a} C^{(a)} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{5.126}
\end{equation*}
$$

In a very similar way we find

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{C^{(M-a), I}}=-2 \mathrm{i} \kappa_{1} \sin \pi v_{a} \omega^{I a} C^{(M-a)} \delta^{(2)}\left(\kappa_{\|}\right) . \tag{5.127}
\end{equation*}
$$

Thus, the full amplitude becomes

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{I}=-2 \mathrm{i} \kappa_{1} \sum_{a=1}^{\frac{M-1}{2}}\left[\sin \pi v_{a}\left(\omega^{-I a} C^{(a)}+\omega^{I a} C^{(M-a)}\right)\right] \delta^{(2)}\left(\kappa_{\|}\right) \tag{5.128}
\end{equation*}
$$

Taking into account that $C^{(M-a)}=C^{(a) \star}$, as it follows from (5.61), we see that the expression inside the square brackets is real.

5.4 Continuous parameters of surface defects

We are now ready to identify the twisted closed string background that leads to a monodromy surface defect in the gauge theory on the world-volume of the fractional D3branes. It is convenient to decompose the twisted fields of the NS/NS sectors into irreducible representations of the unbroken $\mathrm{SU}(2)_{+}$symmetry group of the orbifolded space (see the discussion in Section 5.1). In each twisted sector \widehat{a}, this can be done by writing

$$
\begin{equation*}
b_{\alpha \beta}^{(a)}=\mathrm{i} b_{\mathrm{s}}^{(a)} \epsilon_{\alpha \beta}+b_{+}^{(a)}\left(\epsilon \tau_{+}\right)_{\alpha \beta}+b_{-}^{(a)}\left(\epsilon \tau_{-}\right)_{\alpha \beta}+b_{3}^{(a)}\left(\epsilon \tau_{3}\right)_{\alpha \beta} \tag{5.129}
\end{equation*}
$$

where ϵ is defined in (5.31) and $\tau_{ \pm}=\left(\tau_{1} \pm \mathrm{i} \tau_{2}\right) / 2$. In the $M=2$ case studied in chapter 4 it was found that only the singlet component $b_{\mathrm{s}}^{(a)}$ (which we denoted b in that reference) acted as a source for the gauge field. This can also be seen from (5.118) by setting $v_{1}=\frac{1}{2}$ and $\omega=-1$ for the only twisted sector that is present when $M=2$. For the general $M>2$ case, however, we see that the gauge field couples to both the scalars $b_{\mathrm{s}}^{(a)}$ and $b_{3}^{(a)}$. Since
we wish to have a uniform description of surface defects for all values of M, in what follows, we will set $b_{3}^{(a)}=0$ and only turn on the background value for $b_{\mathrm{s}}^{(a)}$. Furthermore, we also turn on the doublet components $b_{ \pm}^{(a)}$ which source the scalar fields Φ and $\bar{\Phi}$. This means that, in terms of the initial fields $b_{\alpha \beta}^{(a)}$, our background reads

$$
\begin{align*}
& b_{12}^{(a)}=-b_{21}^{(a)}=-\mathrm{i} b_{\mathrm{s}}^{(a)}, \tag{5.130}\\
& b_{22}^{(a)}=b_{+}^{(a)}, \quad b_{11}^{(a)}=-b_{-}^{(a)},
\end{align*}
$$

with $\left(b_{\mathrm{s}}^{(a)}\right)^{*}=b_{\mathrm{s}}^{(M-\bar{a})}$ and $\left(b_{+}^{(a)}\right)^{*}=b_{-}^{(M-\bar{a})}$ for all twisted sectors, as follows from the relations (5.38).

Inserting these background values in (5.118) and (5.119), we have

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{2}}\right\rangle_{I}=-\kappa_{2} b_{I} \delta^{(2)}\left(\kappa_{\|}\right), \tag{5.131}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\mathcal{V}_{\Phi}\right\rangle_{I}=-\mathrm{i} \bar{\kappa}_{2} b_{I}^{+} \delta^{(2)}\left(\kappa_{\|}\right), \quad\left\langle\mathcal{V}_{\bar{\Phi}}\right\rangle_{I}=-\mathrm{i} \kappa_{2} b_{I}^{-} \delta^{(2)}\left(\kappa_{\|}\right), \tag{5.132}
\end{equation*}
$$

where we have defined the combinations

$$
\begin{equation*}
b_{I}=\sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a}\left[\omega^{-I a} b_{\mathrm{s}}^{(a)}+\omega^{I a} b_{\mathrm{s}}^{(M-a)}\right]=\sum_{\widehat{a}=1}^{M-1} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{-\sqrt{a}} b_{\mathrm{s}}^{(a)}, \tag{5.133}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{I}^{ \pm}=\sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a}\left[\omega^{-I a} b_{ \pm}^{(a)}+\omega^{I a} b_{ \pm}^{(M-a)}\right]=\sum_{\widehat{a}=1}^{M-1} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{-\sqrt{a}} b_{ \pm}^{(a)} . \tag{5.134}
\end{equation*}
$$

Notice that b_{I} is real, while $\left(b_{I}^{+}\right)^{*}=b_{I}^{-}$. It is interesting to note that a similar change of basis for profiles of closed string fields between the fractional branes (labelled by irreducible representations) and the twisted sectors (labelled by conjugacy classes) has been observed previously for fractional branes at orbifolds in [52].

Field Profiles

As explained in detail in previous chapter [4], these amplitudes are interpreted as a source for the corresponding open string field (see also Figure 3.1), whose profile in configuration space is obtained by taking the Fourier transform, after attaching the massless propagator along the D3-brane world-volume:

$$
\begin{equation*}
\frac{1}{k^{2}}=\frac{1}{2\left(\left|k_{\|}\right|^{2}+\left|{\kappa_{\perp}}^{2}\right|^{2}\right)} . \tag{5.135}
\end{equation*}
$$

For example, for the gauge field A_{2} we have

$$
\begin{equation*}
A_{2 ; I}=\mathcal{F} \mathcal{T}\left[\frac{\left\langle\mathcal{V}_{A_{2}}\right\rangle_{I}}{k^{2}}\right] . \tag{5.136}
\end{equation*}
$$

In Appendix B we show how to organize the calculation of this Fourier transform in terms of the generalized plane-waves \mathcal{E}_{I} that transform covariantly with charge I under the orbifold group. Applying these methods to the present case, we see that since the source (5.131) is proportional to κ_{2}, which has charge (-1), only the term proportional to \mathcal{E}_{1} remains so that (5.136) becomes

$$
\begin{align*}
A_{2 ; I} & =\int \frac{d^{2} \kappa_{\|} d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \frac{\left\langle\mathcal{V}_{A_{2}}\right\rangle_{I}}{2\left(\kappa_{\|}^{2}+\kappa_{\perp}^{2}\right)} \mathrm{e}^{\mathrm{i} \kappa_{\| \|} \cdot z_{\|}} \mathcal{E}_{1} \\
& =-b_{I} \frac{1}{M} \sum_{J=0}^{M-1} \omega^{-J} \int \frac{d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \frac{\kappa_{2}}{2\left|\kappa_{\perp}\right|^{2}} \mathrm{e}^{\mathrm{i}\left(\omega^{-J} \kappa_{2} \bar{z}_{2}+\omega^{J}{\left.\overline{k_{2}} z_{2}\right)}=-\frac{\mathrm{i} b_{I}}{4 \pi \bar{z}_{2}},\right.} \tag{5.137}
\end{align*}
$$

where the last equality is a consequence of the fact that all M terms in the sum are actually all equal to each other and equal to $\mathrm{i} /\left(4 \pi \bar{z}_{2}\right)$.

Combining this result with the one for the complex conjugate component \bar{A}_{2}, we find that the gauge field on the I-th fractional D3-brane has the following profile:

$$
\begin{equation*}
\mathbf{A}_{I}=A \cdot d x=A_{2 ; I} d \bar{z}_{2}+\bar{A}_{2 ; I} d z_{2}=-\frac{\mathrm{i} b_{I}}{4 \pi}\left(\frac{d \bar{z}_{2}}{\bar{z}_{2}}-\frac{d z_{2}}{z_{2}}\right)=-\frac{b_{I}}{2 \pi} d \theta, \tag{5.138}
\end{equation*}
$$

where θ is the usual polar angle in the $\mathbb{C}_{(2)}$-plane.

The only other open string field that has a non-vanishing profile in the twisted NS/NS background we have chosen is the complex scalar Φ. The analogous calculation takes the following form:

$$
\begin{align*}
\Phi_{I} & =\mathcal{F} \mathcal{T}\left[\frac{\left\langle\mathcal{V}_{\Phi}\right\rangle_{I}}{k^{2}}\right]=\int \frac{d^{2} \kappa_{\|} d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \frac{\left\langle\mathcal{V}_{\Phi}\right\rangle_{I}}{2\left(\kappa_{\|}^{2}+\kappa_{\perp}^{2}\right)} \mathrm{e}^{\mathrm{i} \|_{\|} z_{\|}} \mathcal{E}_{M-1} \\
& =-\mathrm{i} b_{I}^{+} \frac{1}{M} \sum_{J=0}^{M-1} \omega^{J} \int \frac{d^{2} \kappa_{\perp}}{(2 \pi)^{2}} \frac{\bar{\kappa}_{2}}{2\left|\kappa_{\perp}\right|^{2}} \mathrm{e}^{\mathrm{i}\left(\omega^{J} \kappa_{2} \bar{z}_{2}+\omega^{J} \bar{k}_{2} z_{2}\right)}=\frac{b_{I}^{+}}{4 \pi z_{2}} . \tag{5.139}
\end{align*}
$$

If we now consider a general configuration with n_{I} fractional D3-branes of type I for all values of I, as in the KT proposal [4], we obtain the following profiles:

$$
\mathbf{A}=-\frac{d \theta}{2 \pi}\left(\begin{array}{cccc}
b_{0} \mathbb{I}_{n_{0}} & 0 & \cdots & 0 \tag{5.140}\\
0 & b_{1} \mathbb{I}_{n_{1}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & b_{M-1} \mathbb{I}_{n_{M-1}}
\end{array}\right)
$$

and

$$
\boldsymbol{\Phi}=\frac{1}{4 \pi z_{2}}\left(\begin{array}{cccc}
b_{0}^{+} \mathbb{I}_{n_{0}} & 0 & \cdots & 0 \tag{5.141}\\
0 & b_{1}^{+} \mathbb{I}_{n_{1}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & b_{M-1}^{+}
\end{array}\right)
$$

These are precisely the profiles of a GW surface defect in the $\mathcal{N}=4$ theory corresponding to the breaking of $\mathrm{U}(N)$ group to the Levi subgroup $\mathrm{U}\left(n_{0}\right) \times \ldots \times \mathrm{U}\left(n_{M-1}\right)$, provided the continuous parameters ($\alpha_{I}, \beta_{I}, \gamma_{I}$) that conventionally parametrize the singular profiles near the defect are related to the background values of the NS/NS twisted scalars as follows:

$$
\begin{equation*}
\alpha_{I}=-\frac{b_{I}}{2 \pi}, \quad \beta_{I}=\frac{\operatorname{Re}\left(b_{I}^{+}\right)}{2 \pi}, \quad \gamma_{I}=\frac{\operatorname{Im}\left(b_{I}^{+}\right)}{2 \pi} . \tag{5.142}
\end{equation*}
$$

If the original gauge group is $\mathrm{SU}(N)$, the corresponding field profiles are obtained by
removing the overall trace from each of the above expressions.

We now turn to discussing the coupling of the open string fields with the twisted scalars in the R / R sector. As we have seen in Section 5.3.2, we only need to consider the coupling with the longitudinal component A_{1} of the gauge field. This is given in (5.128), which we rewrite as

$$
\begin{equation*}
\left\langle\mathcal{V}_{A_{1}}\right\rangle_{I}=-2 \mathrm{i} \kappa_{1} c_{I} \delta^{(2)}\left(\kappa_{\|}\right) \tag{5.143}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{I}=\sum_{a=1}^{\frac{M-1}{2}} \sin \pi v_{a}\left[\omega^{-I a} C^{(a)}+\omega^{I a} C^{(M-a)}\right]=\sum_{\widehat{a}=1}^{M-1} \sin \left(\frac{\pi \widehat{a}}{M}\right) \omega^{-\sqrt{a}} C^{(a)} . \tag{5.144}
\end{equation*}
$$

This real quantity is the R / R counterpart of b_{I} defined in (5.133) for the NS/NS sectors.

At face value, the coupling (5.143) is vanishing because of the δ-function. However, as was explained in the \mathbb{Z}_{2} in ch. 4 , if we multiply this amplitude and its complex conjugate with the corresponding gauge field polarizations, the resulting sum can be interpreted as an interaction term between the R / R scalars and the longitudinal components of the gauge field strength. Indeed,

$$
\begin{equation*}
\bar{A}_{1, I}\left\langle\mathcal{V}_{A_{1}}\right\rangle_{I}+A_{1, I}\left\langle\mathcal{V}_{\bar{A}_{1}}\right\rangle_{I}=-2 \mathrm{i} c_{I}\left(\bar{\kappa}_{1} A_{1}-\kappa_{1} \bar{A}_{1}\right) \delta^{2}\left(\kappa_{\|}\right)=2 \mathrm{i} c_{I} \widetilde{F}_{I} \delta^{2}\left(\kappa_{\|}\right), \tag{5.145}
\end{equation*}
$$

where \widetilde{F}_{I} is the gauge field strength on the Ith fractional brane (along the defect), in momentum space. Performing the Fourier transform, this expression becomes an effective interaction term localized on the surface defect:

$$
\begin{equation*}
\frac{\mathrm{i} c_{I}}{2 \pi} \int d^{2} z_{\|} F_{I} \tag{5.146}
\end{equation*}
$$

where F_{I} is the gauge field strength in configuration space, on the I th fractional brane. If this has a non-trivial first Chern class, then this effective interaction can be understood as the $2 d$ topological θ-term that can be included in the path integral definition of the
theory with surface defect. When a generic configuration with n_{I} D3-branes of type I is considered, the following phase factor is therefore introduced in the path integral

$$
\begin{equation*}
\exp \left(\mathrm{i} \sum_{I=0}^{M-1} \frac{c_{I}}{2 \pi} \int d^{2} z_{\|} \operatorname{Tr}_{\mathrm{U}\left(n_{l}\right)} F_{I}\right), \tag{5.147}
\end{equation*}
$$

leading to the following identification of the η-parameters of the surface defect:

$$
\begin{equation*}
\eta_{I}=\frac{c_{I}}{2 \pi} . \tag{5.148}
\end{equation*}
$$

This completes the identification of all the parameters of the generic GW monodromy defect with the background values of the twisted scalars in the \mathbb{Z}_{M} orbifold. We note that these formulas generalize those in chapter 4 and exactly reduce to them when $M=2$. We also remark that if we write the parameters $b_{I}, b_{I}^{ \pm}$and c_{I} as sums over all twisted sectors, their relation with the parameters of the surface defects holds also for even M. In this case, in fact, besides the twisted sectors we have described at length in this chapter, there is also a sector with twist $\frac{1}{2}$ whose contribution is exactly the same as in the $M=2$ case. For this reason, therefore, we see that the restriction we made at the beginning to restrict to odd values of M does not lead to any loss of generality.

We end this section by observing that the identifications (5.142) and (5.148), namely

$$
\begin{equation*}
\left\{\alpha_{I}, \beta_{I}, \gamma_{I}, \eta_{I}\right\}=\left\{-\frac{b_{I}}{2 \pi}, \frac{\operatorname{Re}\left(b_{I}^{+}\right)}{2 \pi}, \frac{\operatorname{Im}\left(b_{I}^{+}\right)}{2 \pi}, \frac{c_{I}}{2 \pi}\right\}, \tag{5.149}
\end{equation*}
$$

are consistent with the behavior of the GW parameters under S-duality, as given in [1].

S-duality properties

In fact, even though our world-sheet analysis has been at the orbifold fixed point, it is possible to blow-up the \mathbb{Z}_{M}-singularity into an ALE space and provide an interpretation
to the twisted scalars of the orbifold theory as massless moduli in the low-energy supergravity (see for instance $[3,38]$). In such a geometric approach, the combinations b_{I} and c_{I}, which are made of the singlets $b_{\mathrm{s}}^{(a)}$ and $C^{(a)}$ from each twisted sector as shown in (5.133) and (5.144), arise by integrating, respectively, the NS/NS 2-form $B_{(2)}$ and the R/R 2-form $C_{(2)}$ of Type II B supergravity around the exceptional cycles ω_{I} of the blown-up ALE space. Therefore, from (5.149) we read

$$
\begin{equation*}
\alpha_{I}=-\frac{1}{2 \pi} \int_{\omega_{I}} B_{(2)}, \quad \eta_{I}=\frac{1}{2 \pi} \int_{\omega_{I}} C_{(2)} . \tag{5.150}
\end{equation*}
$$

Using the S -duality action on the 2 -forms, with simple manipulations as in sec.4.5 one can show that this identification implies that α_{I} and η_{I} indeed transform in the expected way.

Similarly, the $b_{I}^{ \pm}$parameters can be identified with the (string frame) metric moduli corresponding to the complex structure of the blown-up exceptional cycle ω_{I}. As such they inherit the S-duality transformation properties from the (string frame) metric, which are precisely the ones expected for the parameters β_{I} and γ_{I} of the GW defects.

We finally remark that when $M>2$ also the scalars $b_{3}^{(a)}$ can couple to the gauge fields, differently from what happens in the $M=2$ case [ch.4]. To have a uniform description for all M we have therefore chosen to set $b_{3}^{(a)}=0$ in each twisted sector. As we have just seen, this choice has allowed us to identify a perturbative closed string realization of the generic GW defects that is fully consistent with S-duality. However, our approach offers the possibility of considering more general backgrounds with also $b_{3}^{(a)}$ turned on, and it would be interesting to further investigate their meaning and implications for the world-volume theory on the D3-branes and their defects.

Chapter 6

Conclusion

In a quantum field theory, observables are the primary objects used to extract and understand the underlying physics of that theory. Scattering amplitudes, n-point correlation functions, etc. are among the most used and well studied observables. In addition, there are various other operators e.g. Wilson loops, t'Hooft line operators, etc. which can be inserted inside the correlation function and can give important non-perturbative information about the theory under consideration. In particular, they can reveal information about different phase structures within the theory and their expectation values can serve as the order parameter. Surface operators or defects are also one such kind of disorder (defect) operator supported on a co-dimensional two surface which can extract non-perturbative information including different existing phase structures.

In [4], it was already suggested by Kanno and Tachikawa (KT) that the surface defects can be realized within a string theory setup using fractional branes on an orbifolded background. They showed in that paper the instanton contributions to the effective theory of surface defects are organized in terms of chain-saw quivers and described as D-instanton corrections to a system of fractional D3-branes with two world-volume directions extended along the orbifold background. From the KT construction, it was clear that the discrete data of the surface defect i.e. the number of elements in the partition of N (total
rank of gauge group) is captured by the order M of the orbifold group, and each partition n_{I} is captured by the number of fractional branes of type I transforming under I-th irreducible representation of orbifold group \mathbb{Z}_{M}. But their construction did not give any hint as to how to realize the continuous parameters that are also part of the defining data of the Gukov-Witten surface defect. In this thesis, we addressed this issue and showed that these continuous data are in fact encoded within this fractional brane setup as the background values of certain twisted closed string scalar fields. Further, we derived the singular profiles of the gauge fields and scalars within this setup via open/closed correlators. This result has now provided us with a microscopic realization of GW surface defects within perturbative Type II B string theory using fractional D3 branes.

We want to point out that the orbifold setup considered in this thesis is quite different from the usual orbifold structures considered in the literature where the orbifolding is done entirely in transverse directions to the D-brane world volume. In our case, two of the world-volume directions are along the orbifold, and in Section 5.2.2, we saw that the orbifold group in addition to acting on the oscillators and Chan-Paton factors, also acts on the momentum factor $e^{i . k X}{ }^{1}$. The open string vertex operators are combinations of momentum factors that have specific charges under the action of the orbifold group and the corresponding transformation can be compensated by the transformation of the oscillators and CP factors. This leads to the conclusion that none of the massless open string states is projected out of the open string spectrum. This is in line with our expectation as well since the presence of the defect does not alter the basic spectrum of the $\mathcal{N}=4$ SYM. It will be an interesting exercise to calculate all the 3-pt and 4-pt couplings among the various fields and reproduce the $\mathcal{N}=4$ SYM action.

The work presented in this thesis is very similar in spirit to the string theoretic realization of the gauge instantons using $\mathrm{D} 3 / \mathrm{D}(-1)$ brane system [37]. In that work, one point emission of the open string field is calculated with disk diagrams having mixed boundary conditions and the derived profile matched that of the classical instanton. In our

[^27]case, the role of the D-instantons is being played by the twisted closed string scalars at zero momentum. We believe that this string theoretic construction of surface defects using perturbative string theory is interesting because it provides an explicit and calculable framework. Moreover, we hope such a microscopic realization may be useful for various generalizations, applications in deformed theories and possibly letting us explore some novel effects at higher energies which are unseen in usual effective field theory descriptions which operates on much lower energy scales ${ }^{2}$.

On the other hand, the construction may turn out to be useful in computing other quantities that characterize the superconformal defect field theory and help to establish connections with alternative approaches to the study of defects. One such alternative approach is the holographic description of surface defects where surface defects are realized using bubbling geometries of Type II B supergravity that asymptote to $\operatorname{AdS}{ }_{5} \times S^{5}[25,26]$. Our construction of surface defects based on an exactly solvable string background of fractional D3 branes on orbifold space facilitates us with a framework where world-sheet computations are possible and usual string theoretic techniques can be applied. In contrast to the supergravity description, we are on the gauge theory side of holographic correspondence: the D-branes are not dissolved into the geometry, and the open string degrees of freedom that capture the gauge theory fields are explicitly present. A study to explore the interconnection between these two approaches: bubbling geometries and D-brane on orbifolds can shed some more light on the gauge/gravity correspondence.

Throughout the thesis, we have considered GW surface defects in $\mathcal{N}=4 \mathrm{U}(N)$ theories as half-BPS objects from the total 10d string theory perspective. The natural step ahead would be to extend our explicit realization of surface defects in theories with lower supersymmetry and/or with other gauge groups. For example, by introducing a mass deformation in two of the directions transverse to the D3-branes [20] we can realize the so-called $\mathcal{N}=2^{*}$ theory. To study gauge theories with less number of supersymmetry we can im-

[^28]plement another orbifold acting purely in directions transverse to the D3-branes: e.g. in our setup (1.1) employing one orbifold along $\mathbb{C}_{(4)}$ would lead to an $\mathcal{N}=2$ theory living on the D-brane world -volume, consequent orbifolding along $\mathbb{C}_{(5)}$ would lead to an $\mathcal{N}=1$ theory and so on. To study defects with orthogonal $S O$ or symplectic $S p$ gauge groups, one can consider additional orientifold planes. One can also explore if this construction can be generalized to more general surface defects with distinct singularity structures other than simple poles and which can lead to quarter-BPS or $\frac{1}{8}$-BPS defects $[59,60]$.

As already mentioned line operators such as Wilson lines, t'Hooft operators can help us in distinguishing different phases within the theory. Surface operators also do a similar job but in some cases, surface operators can distinguish between phases that are otherwise indistinguishable using line operators [43]. It will be wonderful if the string theoretic realization of surface defects presented here could be applied to such scenarios and might provide us with an extremely important understanding of the phase dynamics from a string theory perspective.

Appendix A

Dirac matrices

In this appendix, we define in detail our conventions for the Dirac matrices used in the main text.

A.0. $1 \quad 4 d$

We consider the $4 d$ Euclidean space spanned by the coordinates x_{m} with $m \in\{3,4,5,6\}$. These are the real coordinates corresponding to the complex coordinates z_{2} and z_{3} (see (4.2)) along which the \mathbb{Z}_{M} orbifold acts.

An explicit realization of the Dirac matrices γ_{m} satisfying the $4 d$ Euclidean Clifford algebra

$$
\begin{equation*}
\left\{\gamma_{m}, \gamma_{n}\right\}=2 \delta_{m n}, \tag{A.1}
\end{equation*}
$$

is given by

$$
\gamma_{3}=\left(\begin{array}{cc}
0 & \tau_{1} \tag{A.2}\\
\tau_{1} & 0
\end{array}\right), \quad \gamma_{4}=\left(\begin{array}{cc}
0 & -\tau_{2} \\
-\tau_{2} & 0
\end{array}\right), \quad \gamma_{5}=\left(\begin{array}{cc}
0 & \tau_{3} \\
\tau_{3} & 0
\end{array}\right), \quad \gamma_{6}=\left(\begin{array}{cc}
0 & +\mathrm{i} \mathbb{I}_{2} \\
-\mathrm{i} \mathbb{I}_{2} & 0
\end{array}\right)
$$

where τ_{c} are the usual Pauli matrices and \mathbb{I}_{2} is the 2×2 identity matrix.

The chirality matrix $\widehat{\gamma}$ is given by

$$
\widehat{\gamma}=-\gamma_{3} \gamma_{4} \gamma_{5} \gamma_{6}=\left(\begin{array}{cc}
+\mathbb{I}_{2} & 0 \tag{A.3}\\
0 & -\mathbb{I}_{2}
\end{array}\right) .
$$

This shows that in this basis a $4 d$ Dirac spinor is written as

$$
\begin{equation*}
\binom{S^{\alpha}}{S^{\dot{\alpha}}} \tag{A.4}
\end{equation*}
$$

where α and $\dot{\alpha}$ label, respectively, the chiral and anti-chiral components.
Finally, the charge conjugation matrix \widehat{C} is given by

$$
\widehat{C}=\left(\begin{array}{cc}
+\epsilon & 0 \tag{A.5}\\
0 & -\epsilon
\end{array}\right)
$$

where $\epsilon=-\mathrm{i} \tau_{2}$ (see (5.31)), and is such that

$$
\begin{equation*}
\widehat{C} \gamma_{m} \widehat{C}^{-1}=\left(\gamma_{m}\right)^{\mathrm{t}} \tag{A.6}
\end{equation*}
$$

where t denotes the transpose.

Spinors in $4 d$

Introducing the following matrices

$$
\begin{equation*}
\sigma^{m}=\left(\tau^{1}, \tau^{2}, \tau^{3},-i \mathbf{1}_{2}\right), \tag{A.7}
\end{equation*}
$$

we can form the combination

$$
X_{\alpha \dot{\beta}}=\frac{1}{\sqrt{2}} x_{m}\left(\sigma^{m}\right)_{\alpha \dot{\beta}}=\left(\begin{array}{cc}
\bar{z}_{3} & \bar{z}_{2} \tag{A.8}\\
z_{2} & -z_{3}
\end{array}\right) .
$$

The $\mathrm{SO}(4) \simeq \mathrm{SU}(2)_{+} \times \mathrm{SU}(2)_{-}$isometry group acts on X as follows

$$
\begin{equation*}
X \longrightarrow U_{+} X U_{-}^{\dagger} \tag{A.9}
\end{equation*}
$$

where $U_{ \pm} \in \mathrm{SU}(2)_{ \pm}$. Therefore, the two columns of X are two doublets transforming as spinors of $\mathrm{SU}(2)_{+}$:

$$
\begin{equation*}
y_{\alpha}=\binom{\bar{z}_{3}}{z_{2}} \quad \text { and } \quad w_{\alpha}=\binom{\bar{z}_{2}}{-z_{3}} . \tag{A.10}
\end{equation*}
$$

Raising the indices, we have

$$
\begin{equation*}
y^{\alpha}=y_{\beta}\left(\epsilon^{-1}\right)^{\beta \alpha}=\binom{-z_{2}}{\bar{z}_{3}} \quad \text { and } \quad w^{\alpha}=w_{\beta}\left(\epsilon^{-1}\right)^{\beta \alpha}=\binom{z_{3}}{\bar{z}_{2}} \tag{A.11}
\end{equation*}
$$

where $\epsilon=-\mathrm{i} \tau_{2}$ as in (5.31). Of course the same combinations can be made with the fermionic coordinates leading to the doublets

$$
\begin{equation*}
\binom{-\Psi^{2}}{\bar{\Psi}^{3}} \text { and } \quad\binom{\Psi^{3}}{\bar{\Psi}^{2}} \tag{A.12}
\end{equation*}
$$

These are precisely the structures that have been used in Section 5.1 to write the massless vertex operators of the twisted NS/NS sectors.

A.0. $2 \quad 6 d$

We consider the $6 d$ Euclidean space spanned by the coordinates x_{M} with $M \in\{1,2,7,8,9,10\}$. These are the real coordinates corresponding to the complex coordinates z_{1}, z_{4} and z_{5} (see
(4.2)) that are transverse to the \mathbb{Z}_{M} orbifold.

An explicit realization of the Dirac matrices Γ_{M} satisfying the $6 d$ Euclidean Clifford algebra

$$
\begin{equation*}
\left\{\Gamma_{M}, \Gamma_{N}\right\}=2 \delta_{M N}, \tag{A.13}
\end{equation*}
$$

is given by

$$
\begin{array}{ll}
\Gamma_{1}=\left(\begin{array}{cccc}
0 & 0 & -\mathrm{i} \mathbb{I}_{2} & 0 \\
0 & 0 & 0 & -\mathrm{i} \mathbb{I}_{2} \\
\mathrm{i} \mathbb{I}_{2} & 0 & 0 & 0 \\
0 & \mathrm{i} \mathbb{I}_{2} & 0 & 0
\end{array}\right), & \Gamma_{2}=\left(\begin{array}{cccc}
0 & 0 & \tau_{3} & 0 \\
0 & 0 & 0 & -\tau_{3} \\
\tau_{3} & 0 & 0 & 0 \\
0 & -\tau_{3} & 0 & 0
\end{array}\right), \\
\Gamma_{7}=\left(\begin{array}{cccc}
0 & 0 & -\tau_{2} & 0 \\
0 & 0 & 0 & \tau_{2} \\
-\tau_{2} & 0 & 0 & 0 \\
0 & \tau_{2} & 0 & 0
\end{array}\right), & \Gamma_{8}=\left(\begin{array}{cccc}
0 & 0 & \tau_{1} & 0 \\
0 & 0 & 0 & -\tau_{1} \\
0 & 0 & 0 & -\mathrm{i} \mathbb{I}_{2} \\
\tau_{1} & 0 & 0 & 0 \\
0 & -\tau_{1} & 0 & 0
\end{array}\right), \tag{A.14}\\
\Gamma_{9}=\left(\begin{array}{cccc}
0 & 0 & 0 & \mathbb{I}_{2} \\
0 & -\mathrm{i} \mathbb{I}_{2} & 0 & 0 \\
\mathrm{i} \mathbb{I}_{2} & 0 & 0 & 0
\end{array}\right), & \Gamma_{10}=\left(\begin{array}{cccc}
0 & 0 & \mathbb{I}_{2} & 0 \\
0 & \mathbb{I}_{2} & 0 & 0 \\
\mathbb{I}_{2} & 0 & 0 & 0
\end{array}\right) .
\end{array}
$$

The chirality matrix $\widehat{\Gamma}$ is

$$
\widehat{\Gamma}=\mathrm{i} \Gamma_{1} \Gamma_{2} \Gamma_{7} \Gamma_{8} \Gamma_{9} \Gamma_{10}=\left(\begin{array}{cccc}
\mathbb{I}_{2} & 0 & 0 & 0 \tag{A.15}\\
0 & \mathbb{I}_{2} & 0 & 0 \\
0 & 0 & -\mathbb{I}_{2} & 0 \\
0 & 0 & 0 & -\mathbb{I}_{2}
\end{array}\right) .
$$

This shows that in this basis a $6 d$ Dirac spinor is written as

$$
\begin{equation*}
\binom{S^{A}}{S^{A}} \tag{A.16}
\end{equation*}
$$

where A and \dot{A} label, respectively, the chiral and anti-chiral components.

The charge conjugation matrix C is

$$
C=\left(\begin{array}{cccc}
0 & 0 & 0 & +\epsilon \tag{A.17}\\
0 & 0 & +\epsilon & 0 \\
0 & -\epsilon & 0 & 0 \\
-\epsilon & 0 & 0 & 0
\end{array}\right)
$$

where, as before, $\epsilon=-\mathrm{i} \tau_{2}$. The above charge conjugation matrix is such that

$$
\begin{equation*}
C \Gamma_{M} C^{-1}=-\left(\Gamma_{M}\right)^{\mathrm{t}} . \tag{A.18}
\end{equation*}
$$

Appendix B

\mathbb{Z}_{M} in momentum space

Here we briefly comment on how to define the \mathbb{Z}_{M} orbifold action in momentum space. Let us take the complex plane $C_{(2)}$ with coordinates z_{2} and \bar{z}_{2} on which \mathbb{Z}_{M} acts as in (5.2), and define the momenta κ_{2} and $\bar{\kappa}_{2}$ as in (5.88). For simplicity, however, we can drop the index 2 since in this appendix this does not cause any ambiguity.

First of all, we observe that the orbifold action on the coordinates can be equivalently read as an inverse action on the momenta. Consider for example the scalar product

$$
\begin{equation*}
\kappa \bar{z}+\bar{\kappa} z \tag{B.1}
\end{equation*}
$$

which, under the action of \mathbb{Z}_{M} on the coordinates, is mapped to

$$
\begin{equation*}
\omega^{-1} \kappa \bar{z}+\omega \bar{\kappa} z \tag{B.2}
\end{equation*}
$$

Clearly, this result can also be interpreted as due to the following action of \mathbb{Z}_{M} on the momentum variables:

$$
\begin{equation*}
\hat{g}:(\kappa, \bar{\kappa}) \longrightarrow\left(\omega^{-1} \kappa, \omega \bar{\kappa}\right) \tag{B.3}
\end{equation*}
$$

with the coordinates held fixed.

Then, let us consider a function in momentum space, $f(\kappa, \bar{k})$, and define its images under the orbifold group according to

$$
\begin{equation*}
\Pi_{I}(\kappa, \bar{\kappa})=\frac{1}{M} \sum_{J=0}^{M-1} \omega^{-I J} f\left(\omega^{-J} \kappa, \omega^{J} \bar{\kappa}\right) \tag{B.4}
\end{equation*}
$$

where $I=0, \ldots, M-1$, modulo M. Using (B.3), it is immediate to check that

$$
\begin{equation*}
\hat{g}\left[\Pi_{I}\right]=\omega^{I} \Pi_{I}, \tag{B.5}
\end{equation*}
$$

namely that Π_{I} transforms in the I-th representation of \mathbb{Z}_{M}. Inverting (B.4), we get

$$
\begin{equation*}
f(\kappa, \bar{\kappa})=\sum_{I=0}^{M-1} \Pi_{I}(\kappa, \bar{\kappa}) . \tag{B.6}
\end{equation*}
$$

Applying these definitions to the plane wave $\mathrm{e}^{\mathrm{i}(\kappa \bar{z}+\bar{\kappa} z)}$, we get

$$
\begin{equation*}
\mathcal{E}_{I}=\frac{1}{M} \sum_{J=0}^{\infty} \omega^{-I J} \mathrm{e}^{\mathrm{i}\left(\omega^{-J} \kappa \bar{z}+\omega^{J} \bar{\kappa} z\right)}, \tag{B.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{g}\left[\mathcal{E}_{I}\right]=\omega^{I} \mathcal{E}_{I} \tag{B.8}
\end{equation*}
$$

These functions \mathcal{E}_{I} have exactly the same form and properties of the functions introduced in Section 5.2.2 when we described the \mathbb{Z}_{M}-invariant open string states. In terms of them, the plane wave can be written as

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i}(\kappa \bar{z}+\bar{\kappa} z)}=\sum_{I=0}^{M-1} \mathcal{E}_{I} \tag{B.9}
\end{equation*}
$$

Let us now consider the Fourier transform of f. Using (B.6) and (B.9), we have

$$
\begin{equation*}
\mathcal{F} \mathcal{T}[f](z)=\int \frac{d^{2} \kappa}{2 \pi} f(\kappa, \bar{\kappa}) \mathrm{e}^{\mathrm{i}(\kappa \bar{\chi}+\bar{\kappa} z)}=\int \frac{d^{2} \kappa}{2 \pi} \sum_{I, J=0}^{M-1} \Pi_{I}(\kappa, \bar{\kappa}) \mathcal{E}_{J} . \tag{B.10}
\end{equation*}
$$

Since the integration measure is \mathbb{Z}_{M}-invariant, only the invariant products $\Pi_{I} \mathcal{E}_{M-I}$ survive, and thus

$$
\begin{equation*}
\mathcal{F} \mathcal{T}[f](z)=\int \frac{d^{2} \kappa}{2 \pi} \sum_{I=0}^{M-1} \Pi_{I}(\kappa, \bar{\kappa}) \mathcal{E}_{M-I}=\frac{1}{M} \int \frac{d^{2} \kappa}{2 \pi} \sum_{I=0}^{M-1} \hat{g}^{I}\left[f(\kappa, \bar{\kappa}) \mathrm{e}^{\mathrm{i}(\kappa \bar{z}+\bar{\kappa} z)}\right] \tag{B.11}
\end{equation*}
$$

This shows that the Fourier transform leads to a well-defined function in the orbifolded theory. In particular, the Fourier transform of a function in the I-th irreducible representation of \mathbb{Z}_{M} in momentum space is a function in configuration space that transforms in the representation $(M-I)$, and viceversa.

Appendix C

Fractional Branes: boundary state

perspective

In this appendix, we will discuss how the fractional D-brane can be described from the perspective of boundary states [8] in the simplest case of \mathbb{Z}_{2} orbifolding. Let us start with the expression of vacuum energy of open strings stretched between two fractional Dp branes in a $\mathbb{C}^{3} \times \mathbb{C}^{2} / \mathbb{Z}_{2}$ orbifold background:

$$
\begin{equation*}
Z=\int_{0}^{\infty} \frac{d s}{s} \operatorname{Tr}_{\mathrm{N} S-R}\left[\left(\frac{1+(-1)^{F}}{2}\right)\left(\frac{e+g}{2}\right) e^{-2 \pi s\left(L_{0}-a\right)}\right] \tag{C.1}
\end{equation*}
$$

with the first term inside the trace performs the GSO projection, e and g are the two elements of \mathbb{Z}_{2} and $a=1 / 2,0$ for NS and R sector respectively.

When the integral is evaluated with the factor $\frac{e}{2}$ gives the contribution from the untwisted sector and its half the contribution of the open strings stretched between usual Dp branes in flat space. The other $\frac{g}{2}$ factor gives the contribution from the twisted sector. If we denote the untwisted contribution as Z_{e} and twisted one as Z_{g}, we can interpret them respectively as the tree level closed string amplitude between two untwisted and two twisted boundary states.

$$
\begin{align*}
& Z_{e}=\frac{\alpha^{\prime} \pi}{2} \int_{0}^{\infty} d t^{U}\langle D p| e^{-\pi t\left(L_{0}+\tilde{L}_{0}-2 a\right)}|D p\rangle^{U} \\
& Z_{g}=\frac{\alpha^{\prime} \pi}{2} \int_{0}^{\infty} d t^{T}\langle D p| e^{-\pi t\left(L_{0}+\tilde{L}_{0}\right)}|D p\rangle^{T} \tag{C.2}
\end{align*}
$$

The untwisted and twisted parts of the boundary state can be expressed as a linear combination of NS and R sector parts :

$$
\begin{align*}
|D p\rangle^{U} & =\frac{T_{p}}{2 \sqrt{2}}\left(|D p\rangle_{\mathrm{NS}}^{U}+|D p\rangle_{\mathrm{R}}^{U}\right) \\
|D p\rangle^{T} & =-\frac{1}{2^{s / 2}} \frac{T_{p}}{2 \sqrt{2} \pi^{2} \alpha^{\prime}}\left(|D p\rangle_{\mathrm{NS}}^{T}+|D p\rangle_{\mathrm{R}}^{T}\right) \tag{C.3}
\end{align*}
$$

where T_{p} and T_{r} are normalization factors. The number of D brane worldvolume directions along the orbifold is denoted by s.

In this thesis, we will be more interested in the twisted part of boundary states as they are used to calculate the refection rules. ${ }^{1}$

Now, both $|D p\rangle_{\mathrm{NS}, \mathrm{R}}^{T}$ are expressed as the following linear combination of Ishibashi states:

$$
\begin{equation*}
|D p\rangle_{\mathrm{NS}, \mathrm{R}}^{T}=\frac{1}{2}\left(|D p,+\rangle_{\mathrm{NS}, \mathrm{R}}^{T}+|D p,-\rangle_{\mathrm{NS}, \mathrm{R}}^{T}\right) \tag{C.4}
\end{equation*}
$$

We note down the explicit forms of the Ishibashi states $|D p, \eta\rangle_{\mathrm{NS}, \mathrm{R}}^{T} ; \eta= \pm$ below [8]. We also give a short note on ishibashi states at the end of this appendix.

In the NS-NS twisted sector,

$$
\begin{equation*}
|D p, \eta\rangle_{\mathrm{NS}}^{T}=\left|D p_{X}\right\rangle^{T}\left|D p_{\psi}, \eta\right\rangle_{\mathrm{NS}}^{T} \tag{C.5}
\end{equation*}
$$

[^29]And in the $\mathrm{R}-\mathrm{R}$ twisted sector,

$$
\begin{equation*}
|D p, \eta\rangle_{\mathrm{R}}^{T}=\left|D p_{X}\right\rangle^{T}\left|D p_{\psi}, \eta\right\rangle_{\mathrm{R}}^{T} \tag{C.6}
\end{equation*}
$$

where $\eta= \pm$ and

$$
\begin{align*}
&\left|D p_{X}\right\rangle^{T}=\delta^{(5-r)}\left(\hat{q}^{i}-y^{i}\right) \prod_{n=1}^{\infty} e^{-\frac{1}{n} \alpha_{-n} \cdot S} \tilde{\alpha}_{-n} \tag{C.7}\\
& \prod_{r=1 / 2}^{\infty} e^{-\frac{1}{r} \alpha_{-r} \cdot S . \tilde{\alpha}_{-r}} \prod_{\alpha}^{\prime}\left|p_{\alpha}=0\right\rangle \prod_{i}^{\prime}\left|p_{i}\right\rangle \tag{C.8}\\
&\left|D p_{\psi}, \eta\right\rangle_{\mathrm{NS}}^{T}=\prod_{r=1 / 2}^{\infty} e^{i \eta \psi_{-r} \cdot S \cdot \tilde{\psi}_{-r}} \prod_{n=1}^{\infty} e^{i \eta \psi_{-n} S . \tilde{\psi}_{-n}}\left|D p_{\psi}, \eta\right\rangle_{\mathrm{NS}(0)}^{T} \tag{C.9}\\
&\left|D p_{\psi}, \eta\right\rangle_{\mathrm{R}}^{T}=\prod_{r=1 / 2}^{\infty} e^{i \eta \psi_{-r} \cdot S \cdot \tilde{\psi}_{-r}} \prod_{n=1}^{\infty} e^{i \eta \psi_{-n} S \cdot \tilde{\psi}_{-n}}\left|D p_{\psi}, \eta\right\rangle_{\mathrm{R}(0)}^{T}
\end{align*}
$$

with $S=\left(\delta_{\alpha \beta},-\delta_{i j}\right.$ and $\left|D p_{\psi}, \eta\right\rangle_{\mathrm{NS}(0)}^{T}$ and $\left|D p_{\psi}, \eta\right\rangle_{\mathrm{R}(0)}^{T}$ are the zero modes in the fermionic sector. The longotudinal indices are denoted by $\alpha, \beta=1,2, \ldots,(p+1)$ and the transverse indices are denoted by $i, j=(p+2), \ldots, 10$. Note the prime in the product over α and i in eq. (C.7) signifies the fact the product is over only those longitudinal and transverse directions which are not along the orbifold, since there is no zero mode along those directions.

Lets now look at the zero mode parts; in the NS-NS sector its given by,

$$
\begin{equation*}
\left|D p_{\psi}, \eta\right\rangle_{\mathrm{NS}(0)}^{T}=\left(\hat{C} \gamma_{3} \gamma_{4} \frac{1+i \eta \hat{\gamma}}{1+i \eta}\right)_{L M}|L\rangle|\widetilde{M}\rangle \tag{C.10}
\end{equation*}
$$

where γ_{m} and C are the 6 d gamma matrices and charge conjugation matrix of $S O(6)$ (defined in Appendix A), and $\hat{\gamma}=-\gamma_{3} \gamma_{4} \gamma_{5} \gamma_{6}$. Also $|L\rangle,|\widetilde{M}\rangle$ are spinors of $S O$ (4).

In the R-R sector the zero mode part looks like,

$$
\begin{equation*}
\left|D p_{\psi}, \eta\right\rangle_{\mathrm{R}(0)}^{T}=\left(\hat{C} \Gamma_{1} \Gamma_{2} \frac{1+i \eta \hat{\Gamma}}{1+i \eta}\right)_{A B}|A\rangle|\widetilde{B}\rangle \tag{C.11}
\end{equation*}
$$

where Γ_{M} and \hat{C} are the 4 d gamma matrices and charge conjugation matrix of $S O(4)$ (defined in Appendix A), and $\hat{\Gamma}=i \Gamma_{1} \Gamma_{2} \Gamma_{3} \Gamma_{4} \Gamma_{5} \Gamma_{6}$. Also $|A\rangle,|\widetilde{B}\rangle$ are spinors of $S O(6)$. There are two types of fractional branes corresponding to two irreducible representations of \mathbb{Z}_{2}. The untwisted and twisted boundary states given in eq. C. 3 are the building block for the fractional branes of both type 0 and 1 :

$$
\begin{align*}
& |D p\rangle_{0}=|D p\rangle^{U}+|D p\rangle^{T} \\
& |D p\rangle_{1}=|D p\rangle^{U}-|D p\rangle^{T} \tag{C.12}
\end{align*}
$$

This discussion can be straight forwardly generalized to the \mathbb{Z}_{M} orbifold case in which there will be M different types of fractional branes corresponding to M irreducible representations of the orbifold group. The only difference being in the \mathbb{Z}_{2} case the Ishibashi states we are interested in are parts of the zero modes, but in the general \mathbb{Z}_{M} case the relevant Ishibashi states are from the first excited states (5.64),(5.65).

Short note on Ishibashi states [61] :

In a rational CFT made out of a chiral algebra \mathcal{A} and $\overline{\mathcal{A}}$, for $\mathcal{A}=\overline{\mathcal{A}}$, one can associate to each highest weight representation \mathcal{R}_{i} of \mathcal{A} a unique state (upto a constant) $|\mathcal{B}\rangle_{i}$ which satisfies the gluing conditions arising out of conformal symmetry and extended symmetry (e.g supersymmetry):

$$
\left(L_{n}-\bar{L}_{-n}\right)\left|B_{i}\right\rangle=0 ; \quad \text { conformal symmetry condition }
$$

$$
\begin{equation*}
\left(W_{n}^{i}-(-1)^{h_{i}} \bar{W}_{-n}^{i}\right)\left|B_{i}\right\rangle=0 ; \quad \text { extended symmetry condition } \tag{C.13}
\end{equation*}
$$

where L_{n} is the usual Virasoro generator and W_{n}^{i} is the holomorphic Laurent mode of the extended symmetry generator W^{i} with conformal weight h_{i}. The barred objects denote the corresponding anti-holomorphic counterparts.

The states $\left|\mathcal{B}_{i}\right\rangle$ are known as Ishibashi states [62,63]. Since we are considering rational CFTs which contain finite highest weight states, the number of ishibashi states is also finite. The true boundary states build-out of linear combinations of ishibashi states ${ }^{2}$:

$$
\begin{equation*}
|B\rangle=\sum_{i} C_{i}^{B}|\mathcal{B}\rangle_{i} \tag{C.14}
\end{equation*}
$$

where $C_{i}^{B} \mathrm{~s}$ are complex coefficients.

The ishibashi states are constructed to satisfy the gluing conditions. But the actual boundary state made out of a specific linear combination of Ishibashi states transforms properly under the modular transformations and satisfies the "Cardy's Condition" [42, 57].

We study the boundary states for free boson CFT as an example to illustrate how boundary states are constructed [61]. The bosonic field can X satisfy the following two possible boundary conditions:

$$
\begin{align*}
\left.\partial_{\sigma} X_{\text {open }}\right|_{\sigma=0, \pi} & =0 & & \text { Neumann b.c } \\
\left.\delta X_{\text {open }}\right|_{\sigma=0, \pi} & =0=\left.\partial_{\tau} X\right|_{\sigma=0, \pi} & & \text { Dirichlet b.c } \tag{C.15}
\end{align*}
$$

where (τ, σ) are the worldsheet coordinates.

The above conditions are for the open string description of the bosonic field X. To study

[^30]the boundary states we need to the closed string sector. Using the open-closed duality, we interchange between $(\tau, \sigma) \rightarrow(\sigma, \tau)$. So, the conditions in (C.15) transform into the following:
\[

$$
\begin{array}{ll}
\partial_{\tau} X_{\text {closed }} T_{\tau=0}\left|B_{N}\right\rangle=0 & \\
\text { Neumann b.c }{ }_{\sigma} X_{\text {closed }} T_{\tau=0}\left|B_{D}\right\rangle=0 & \text { Dirichlet b.c } \tag{C.16}
\end{array}
$$
\]

where we have introduced the boundary states $\left|B_{N}\right\rangle$ and $\left|B_{D}\right\rangle$ satisfying Neumann and Dirchlet conditions respectively.

In terms of the mode expansion of $X(2.9)$, the above conditions are translated to the following:

$$
\begin{align*}
& \left(\alpha_{m}+\tilde{\alpha}_{-m}\right)\left|B_{N}\right\rangle=0 \\
& \left(\alpha_{m}-\tilde{\alpha}_{-m}\right)\left|B_{D}\right\rangle=0 \tag{C.17}
\end{align*}
$$

These are the gluing conditions for the free boson case. The solutions to these conditions are given by the following boundary states:

$$
\begin{align*}
& |B\rangle_{N}=\frac{1}{C_{N}} \exp \left(-\sum_{k=1}^{\infty} \frac{1}{k} \alpha_{-k} \tilde{\alpha}_{-k}\right)|0\rangle \\
& |B\rangle_{D}=\frac{1}{C_{D}} \exp \left(+\sum_{k=1}^{\infty} \frac{1}{k} \alpha_{-k} \tilde{\alpha}_{-k}\right)|0\rangle \tag{C.18}
\end{align*}
$$

where C_{N} and C_{D} are normalization constants. Note the different sign inside the exponential for the two different boundary conditions. It is possible to check explicitly by applying these states with α_{m} and $\tilde{\alpha}_{m}$, they do satisfy the gluing conditions (C.17).

These are coherent states and flat space counterparts of the Ishibashi states which are relevant in orbifold space. For comparison, notice the similarity between (C.18) and (C.7)(C.8)(C.9). The difference being whereas (C.18) is the total boundary states, for the orbifold case the Ishibashi states are being the building blocks, and their linear combinations are taken to construct a total boundary state to make them satisfy " Cardy's condition".

Bibliography

[1] Sergei Gukov and Edward Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, arXiv:hep-th/0612073 [hep-th].
[2] Sergei Gukov and Edward Witten, Rigid Surface Operators, Adv. Theor. Math. Phys. 14 (2010) no. 1, 87-178, arXiv:0804.1561 [hep-th].
[3] Douglas M. R. and Moore G. W. , D-branes, Quivers, and ALE Instantons, arXiv:hep-th/9603167.
[4] Hiroaki Kanno and Yuji Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP $\mathbf{0 6}$ (2011) 119, arXiv:1105.0357 [hep-th].
[5] L. J.Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, The Conformal Field Theory of Orbifolds, Nucl. Phys. B282 (1987) 13-73.
[6] Paolo Di Vecchia, Antonella Liccardo, D Branes in String Theory. 1, NATO Sci. Ser. C 556 (2000) 1-60, arXiv:hep-th/9912161 [hep-th].
[7] Paolo Di Vecchia, Antonella Liccardo, D branes in String Theory. 2., in YITP Workshop on Developments in Superstring and M Theory Kyoto, Japan, October 27-29, 1999, pp. 7-48. 1999. arXiv:hep-th/9912275 [hep-th].
[8] M. Bertolini, Paolo Di Vecchia, and R. Marotta, $N=2$ four-dimensional gauge theories from fractional branes, arXiv:hep-th/0112195 [hep-th].
[9] Friedan D., Martinec E. J. , and Shenker S. H. , Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B271 (1986) 93.
[10] V. Alan Kostelecky, Olaf Lechtenfeld, Wolfgang Lerche, Stuart Samuel, and Satoshi Watamura, Conformal Techniques, Bosonization and Tree Level String Amplitudes, Nucl. Phys. B288 (1987) 173-232.
[11] S. Ashok, M. Billo, M. Frau, A. Lerda, and S. Mahato, Surface Defects from Fractional Branes - I, arXiv:2005.02050 [hep-th].
[12] S. Ashok, M. Billo, M. Frau, A. Lerda, and S. Mahato, Surface Defects from Fractional Branes - II, arXiv:2005.03701 [hep-th].
[13] Gaiotto Davide, Surface Operators in $N=2$ 4d Gauge Theories, JHEP 11 (2012) 090, arXiv:0911.1316 [hep-th].
[14] Davide Gaiotto, Sergei Gukov, and Nathan Seiberg, Surface Defects and Resolvents, JHEP 09 (2013) 070, arXiv: 1307.2578 [hep-th].
[15] S. Jeong and N. Nekrasov, Opers, surface defects, and Yang-Yang functional, arXiv:1806.08270 [hep-th].
[16] Alday Luis F. and Tachikawa Yuji, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87-114, arXiv:1005. 4469 [hep-th].
[17] Jaume Gomis and Bruno Le Floch, M2-brane surface operators and gauge theory dualities in Toda, JHEP 04 (2016) 183, arXiv: 1407.1852 [hep-th].
[18] Edward Frenkel, Sergei Gukov, and Joerg Teschner, Surface Operators and Separation of Variables, JHEP 01 (2016) 179, arXiv:1506.07508 [hep-th].
[19] Y. Pan and W. Peelaers, Intersecting Surface Defects and Instanton Partition Functions, JHEP 07 (2017) 073, arXiv: 1612.04839 [hep-th].
[20] Sujay K. Ashok, Marco Billo, E. Dell'Aquila, Marialuisa Frau, Renjan R. John, and Alberto Lerda, Modular and duality properties of surface operators in $N=2$ * gauge theories, JHEP 07 (2017) 068, arXiv: 1702.02833 [hep-th].
[21] A. Gorsky, B. Le Floch, A. Milekhin, and N. Sopenko, Surface defects and instanton/vortex interaction, Nucl. Phys. B920 (2017) 122-156, arXiv:1702.03330 [hep-th].
[22] S. K. Ashok, M. Billo, E. Dell'Aquila, M. Frau, V. Gupta, R. R. John, and A. Lerda, Surface operators, chiral rings, and localization in $N=2$ gauge theories, JHEP 11 (2017) 137, arXiv:1707.08922 [hep-th].
[23] Sujay K. Ashok, Sourav Ballav, Marco Billo, E. Dell'Aquila, Marialuisa Frau, Varun Gupta, Renjan R. John, and A. Lerda, Surface operators, dual quivers and contours, Eur. Phys. J. C79 (2019) no. 3, 278, arXiv: 1807.06316 [hep-th].
[24] S. K. Ashok, S. Ballav, M. Frau, and R. R. John, Surface operators in $N=2$ SQCD and Seiberg Duality, Eur. Phys. J. C79 (2019) no. 5, 372, arXiv: 1901.09630 [hep-th].
[25] Jaume Gomis and Shunji Matsuura, Bubbling surface operators and S-duality, JHEP 06 (2007) 025, arXiv: 0704.1657 [hep-th].
[26] N. Drukker, Jaume Gomis, and Shunji Matsuura, Probing N=4 SYM With Surface Operators, JHEP 10 (2008) 048, arXiv: 0805.4199 [hep-th].
[27] Edward Witten, Solutions of four-dimensional field theories via M theory, Nucl.Phys. B500 (1997) 3-42, arXiv:hep-th/9703166 [hep-th].
[28] D. Gaiotto, $N=2$ dualities, JHEP 1208 (2012) 034, arXiv:0904. 2715 [hep-th].
[29] A. Balasubramanian and J. Distler, Masses, Sheets and Rigid SCFTs, arXiv:1810. 10652 [hep-th].
[30] Gaiotto D., Moore G. W., and Neitzke A., Wall-crossing, Hitchin Systems, and the WKB Approximation, arXiv:0907.3987 [hep-th].
[31] O. Chacaltana, J. Distler, and Y. Tachikawa, Nilpotent orbits and codimension-two defects of $6 d N=(2,0)$ theories, Int. J. Mod. Phys. A28 (2013) 1340006, arXiv:1203.2930 [hep-th].
[32] Joseph Polchinski, String theory Volume 1, Cambridge University press.
[33] Joseph Polchinski, String theory Volume 2, Cambridge University press.
[34] MIT open courseware, 8.821 String Theory Fall 2008, https://ocw.mit.edu/courses/physics/8-821-string-theory-fall-2008/lecturenotes/lecture10.pdf.
[35] Clifford V. Johnson, D-Branes, Cambridge Monograph on Mathematical Physics .
[36] Paolo Di Vecchia, Marialuisa Frau, Igor Pesando, Stefano Sciuto, Alberto Lerda, and Rodolfo Russo, Classical p-branes from boundary state, Nucl. Phys. B507 (1997) 259-276, arXiv:hep-th/9707068 [hep-th].
[37] Marco Billo, Marialuisa Frau, Igor Pesando, Francesco Fucito, Alberto Lerda, and Antonella Liccardo, Classical gauge instantons from open strings, JHEP 02 (2003) 045, arXiv:hep-th/0211250.
[38] D. Anselmi, M. Billo, P. Fre, L. Girardello, and A. Zaffaroni, ALE manifolds and conformal field theories, Int. J. Mod. Phys. A9 (1994) 3007-3058, arXiv:hep-th/9304135 [hep-th].
[39] M. Billo, L. Gallot, and A. Liccardo, Fractional branes on ALE orbifolds, arXiv:hep-th/0112190.
[40] M. Bertolini, Paolo Di Vecchia, M. Frau, Igor Pesando, A. Lerda, and R. Marotta, Fractional D-branes and their gauge duals, JHEP 02 (2001) 014, arXiv:hep-th/0011077.
[41] Matteo Bertolini, Four Lectures On The Gauge/ Gravity Correspondence, arXiv:hep-th/0303160.
[42] M. Billo, B. Craps, and F. Roose, Orbifold boundary states from Cardy's condition, JHEP 01 (2001) 038, arXiv:hep-th/0011060.
[43] S. Gukov, Surface Operators, J. Teschner, ed., pp. 223-259. 2016. arXiv:1412.7127 [hep-th].
[44] Anton Kapustin and Edward Witten,Electric-Magnetic Duality And The Geometric Langlands Program, Commun.Num.Theor.Phys. 1 (2007) 1-236, arXiv:hep-th/0604151.
[45] H. Awata, H. Fuji, H. Kanno, M. Manabe, and Y. Yamada, Localization with a Surface Operator, Irregular Conformal Blocks and Open Topological String, Adv. Theor. Math. Phys. 16 (2012) no. 3, 725-804, arXiv: 1008.0574 [hep-th].
[46] Marco Billo,Livia Ferro, Marialuisa Frau,Francesco Fucito,Alberto Lerda, Jose F. Morales,Flux interactions on D-branes and instantons,arXiv:0807.1666 [hep-th].
[47] N. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831-864, arXiv:hep-th/0206161.
[48] Luca Mattiello and Ivo Sachs, On Finite-Size D-Branes in Superstring Theory, JHEP 02 (2003) 045, arXiv: / 1902.10955 [hep-th].
[49] Edward Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335-350, arXiv:hep-th/9510135.
[50] M. R. Douglas, Gauge fields and D-branes, J. Geom. Phys. 28 (1998) 255-262, arXiv:hep-th/9604198.
[51] M. B. Green and M. Gutperle, D-instanton induced interactions on a D3-brane, JHEP 02 (2000) 014, arXiv: hep-th/0002011.
[52] Marco Billo, Laurent Gallot, and Antonella Liccardo, Classical geometry and gauge duals for fractional branes on ALE orbifolds, Nucl. Phys. B614 (2001) 254-278, arXiv:hep-th/0105258.
[53] Marco Billo, Paolo Di Vecchia, Marialuisa Frau, Alberto Lerda, Igor Pesando, Rodolfo Russo, and Stefano Sciuto, Microscopic string analysis of the D0-D8 brane system and dual R-R states, Nucl. Phys. B526 (1998) 199-228, arXiv:hep-th/9802088.
[54] J. Polchinski, N=2 Gauge / gravity duals, Int.J.Mod.Phys. A16 (2001) 707-718, arXiv:hep-th/0011193 [hep-th].
[55] Katrin Becker, Melanie Becker, and John H. Schwarz, String theory and M-theory: A modern introduction. Cambridge University Press, 2006.
[56] Bertolini M., Billo M ., Lerda A., Morales J. F., and Russo R., Brane world effective actions for D-branes with fluxes, Nucl. Phys. B743 (2006) 1-40, arXiv:hep-th/0512067.
[57] John L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B324 (1989) 581.
[58] Akikazu Hashimoto, Igor Klebanov, Scattering of strings from D-branes, Nucl. Phys. B Proc. Suppl. 55 (1997) 118-133, arXiv:hep-th/9611214.
[59] Koh, Eunkyung and Yamaguchi, Satoshi,Holography of BPS surface operators, JHEP 02 (2009) 012, arXiv:0812.1420 [hep-th].
[60] Ashok, Sujay K. and Gupta, Varun and Suryanarayana, Nemani V,On BPS strings in $\mathcal{N}=4$ Yang-Mills theory, JHEP 01 (2021) 008, arXiv:2008.00891 [hep-th].
[61] Lecture notes on Boundary Conformal Field Theory https: //www.theorie.physik.uni muenchen.de/activities/schools/archiv/sfp10/lectures/blumenhagenlectures.pdf.
[62] Ishibashi Nobuyuki, The Boundary and Crosscap States in Conformal Field Theories, Mod.Phys.Lett.A 4 (1989) 251.
[63] N. Ishibashi and T. Onogi, Open String Model Building, Nucl. Phys. B318 (1989) 239.
[64] D. M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B455 (1995) 522-576, arXiv:cond-mat/9505127 [cond-mat].
[65] M. Billo, V. Goncalves, E. Lauria, and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091, arXiv: 1601.02883 [hep-th].
[66] A. Gadde, Conformal constraints on defects, JHEP 01 (2020) 038, arXiv:1602.06354 [hep-th].
[67] E. Lauria, M. Meineri, and E. Trevisani, Radial coordinates for defect CFTs, JHEP 11 (2018) 148, arXiv:1712.07668 [hep-th].
[68] E. Lauria, M. Meineri, and E. Trevisani, Spinning operators and defects in conformal field theory, JHEP 08 (2019) 066, arXiv: 1807.02522 [hep-th].
[69] L. Bianchi and M. Lemos, Superconformal surfaces in four dimensions, arXiv:1911.05082 [hep-th].
[70] S. Nawata, Givental J-functions, Quantum integrable systems, AGT relation with surface operator, Adv. Theor. Math. Phys. 19 (2015) 1277-1338, arXiv:1408.4132 [hep-th].
[71] Billo Marco, Frau Marialuisa, Pesando Igor, and Lerda Alberto, $N=1 / 2$ gauge theory and its instanton moduli space from open strings in R - R background, JHEP 05 (2004) 023, arXiv:hep-th/0402160.
[72] Marco Billo, Marialuisa Frau, Stefano Sciuto, G. Vallone, and Alberto Lerda, Non-commutative (D)-instantons, JHEP 05 (2006) 069, arXiv: hep-th/0511036.
[73] Marco Billo, Marialuisa Frau, Francesco Fucito, and Alberto Lerda, Instanton calculus in R-R background and the topological string, JHEP 11 (2006) 012, arXiv:hep-th/0606013.
[74] Ralph Blumenhagen, Mirjam Cvetic, Timo Weigand, Spacetime instanton corrections in 4D string vacua - the seesaw mechanism for D-brane models, Nucl. Phys. B771 (2007) 113-142, arXiv:hep-th/0609191.
[75] L. E. Ibanez and A. M. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP 03 (2007) 052, arXiv: hep-th/0609213.
[76] Marco Billo, L. Ferro, M. Frau, Francesco Fucito, Alberto Lerda, and J. F. Morales, Non-perturbative effective interactions from fluxes, JHEP 12 (2008) 102, arXiv:0807.4098 [hep-th].

[^0]: ${ }^{1}$ As it is standard in the High Energy Physics Theory (hep-th) community the names of the authors on any paper appear in their alphabetical order.

[^1]: ${ }^{1}$ We will see later that for string theories on orbifolded backgrounds can have more general periodicity conditions leading to more possible values of v, \tilde{v}.

[^2]: ${ }^{2}$ [0] denotes a scalar of $\mathrm{SO}(8)$.
 ${ }^{3}$ GSO projection similarly removes the tachyon from type II A , II A', II B' theories too

[^3]: ${ }^{4}$ Refer to [36] for the exact expressions of $W^{\mathrm{R}-\mathrm{R}}$ and $\mid B>_{R}$.

[^4]: ${ }^{5}$ We will use use similar calculations to compute disk amplitudes among open/closed string fields in the main text and this calculation will serve as an illustrative example.

[^5]: ${ }^{6}$ We will describe in details about twisted scalars in sec. 4.1.1, 5.1.1

[^6]: ${ }^{7}$ The dimension of regular representation is equal to order $|\Gamma|$ of orbifold group Γ.

[^7]: ${ }^{8}$ For the \mathbb{Z}_{M} orbifold group considered in this thesis, the dimension of its irreducible representations are always 1 and there are total M types of fractional branes.
 ${ }^{9}$ Hence the name "fractional brane".

[^8]: ${ }^{1}$ The name surface operator is applicable for any non-local operator with co-dimension two support irrespective of the dimension of the total manifold.

[^9]: ${ }^{2}$ For $U(N)$ theories, one can picture them as quark - anti quark pairs.
 ${ }^{3}$ This definition is very analogous to the construction of an 't Hooft operator as a co-dimensional three singularity.

[^10]: ${ }^{4}$ Note that $d \theta=\frac{i}{2}\left(\frac{d \bar{z}}{\bar{z}}-\frac{d z}{z}\right)$ and gauge field \mathbf{A} has similar pole singularity as $\boldsymbol{\Phi}$.

[^11]: ${ }^{5}$ This matches with the conventions of [25].
 ${ }^{6}$ Also in GW original papers, they studied the GL-twisted $\mathcal{N}=4$ sYM theory and the scalar field is a one-form. But for the usual $\mathcal{N}=4 \mathrm{sYM}$ theory we are interested in this thesis, the scalar field is complex scalar valued.

[^12]: ${ }^{7}$ We use the complex notation $\mathbf{A}=\sum_{i=1}^{2}\left(\mathbf{A}_{i} d \bar{z}_{i}+\overline{\mathbf{A}}_{i} d z_{i}\right)$ to facilitate the comparison with (3.1).

[^13]: ${ }^{1}$ See for instance $[3,38,52]$ for more detailed accounts of various properties of the CFT on a \mathbb{C}^{2} / Γ orbifold space.

[^14]: ${ }^{2}$ For simplicity, from now on in all vertex operators we will suppress the : : notation, but the normal ordering will be always present.
 ${ }^{3}$ Here and in the following, we understand the δ-function enforcing momentum conservation.

[^15]: ${ }^{4}$ As shown in [53] the full BRST invariant vertex operators describing the R / R potentials in the asymmetric supeghost picture are actually a sum of infinite terms with multiple insertions of superghost zero-modes. Here we only consider the first one of these terms, since all the others decouple from the physical amplitudes we will consider and thus can be neglected for our present purposes.

[^16]: ${ }^{5}$ For a review on the boundary state formalism, see for example $[6,7]$.

[^17]: ${ }^{6} \mathrm{We}$ consider the (0)-superghost picture since it is the relevant one for the applications discussed in Section 4.3, but of course our analysis can be done also in any other superghost picture of the NS sector.

[^18]: ${ }^{7}$ Notice that the term that localizes on the defect placed at the origin is $2 \delta^{(2)}\left(z_{\perp}\right)$, where the factor of 2 compensates the fact that the orbifold halves the volume of the transverse space.

[^19]: ${ }^{8}$ Note that the symbols b and c are used for closed string twisted scalars, not to be confused with conventional notation for (b, c) ghost fields.

[^20]: ${ }^{9}$ See, for instance, [55].

[^21]: ${ }^{1}$ The oscillators $\Psi_{-\frac{1}{2}-v_{a}}^{2}$ and $\bar{\Psi}_{-\frac{1}{2}-v_{a}}^{3}$, instead, carry an energy $\left(\frac{1}{2}+v_{a}\right)$ and, upon acting on the twisted vacuum, they create massive states with $m^{2}=2 v_{a}$.

[^22]: ${ }^{2}$ The reason to write the vertex operators at zero momentum is because, as in chapter 4 , ultimately we will be interested in describing a constant twisted closed string background to account for the continuous parameters of the GW surface defects.

[^23]: ${ }^{3}$ In [53] it is shown that the complete BRST invariant vertex operators in the asymmetric superghost pictures are an infinite sum of terms characterized by the number of superghost zero modes. For our purposes, however, only the first (and simplest) terms in these sums is relevant since all the others decouple and thus can be discarded.

[^24]: ${ }^{4}$ We remark that in (5.82) the superghost charges of the bra and ket states exactly soak up the background charge anomaly. For example the superghost charge of ${ }_{\left(-\frac{1}{2}\right)}\left\langle B_{a}\right|$ is $-\frac{3}{2}$, and that of $\left|A_{a}\right\rangle_{\left(-\frac{1}{2}\right)}$ is $-\frac{1}{2}$.

[^25]: ${ }^{5}$ Here and in the following we always assume the operators to be normal ordered, unless this causes ambiguities.

[^26]: ${ }^{6}$ Here ϕ_{2} and ϕ_{3} denote the fields that bosonize the fermionic systems in the complex directions 2 and 3 .

[^27]: ${ }^{1}$ To be more specific it acts non-trivially only on the part of the momentum factors along the orbifold.

[^28]: ${ }^{2}$ These expectations are based on the applications and constructions of various novel instanton configurations using the $\mathrm{D} 3 / \mathrm{D}(-1)$ brane realization of gauge instantons [71-76]

[^29]: ${ }^{1}$ The explicit forms of untwisted boundary states are given in Ref. [36,53]

[^30]: ${ }^{2}$ In eq. C. 4 the boundary states are constructed with such a linear combination of ishibashi states.

