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Summary

Surface defects in gauge theories are non-local operators supported on co-dimension

two sub manifold. Defects in quantum field theory can provide us with important non-

perturbative information eg. di↵erent phase structures present in the system. They were

first studied by Gukov-Witten in the context of N=4 super Yang-Mills theories. The

Gukov-Witten surface defects are characterized by sets of discrete and continuous param-

eters. In this thesis, we geometrically engineer Gukov-Witten surface defects in maxi-

mally supersymmetricN = 4 Yang-Mills theory with gauge group U(N) within the setup

of perturbative Type IIB string theory. In particular, we refine the proposal of Kanno and

Tachikawa and realize the defect by a configuration of fractional D3 branes on an orbifold

background that preserves two dimensional Poincaré invariance.

On this particular orbifold target space in which the D3 world volume is extended partially

along the orbifold, we consider closed string fields that act as a background. Moreover,

the relevant closed string states are the twisted sector ones that are special to the orbifold

space. Due to the presence of the fractional D3 branes which introduce a boundary on

the worldsheet, the left and right moving sectors of the closed string fields are identified

under some reflection rules. In addition, we consider the open string vertex operators

that are invariant under the action of the orbifold group. After providing the necessary

details about twisted closed string sectors, Reflection rules, and open string spectra, we

calculate open/closed disk correlation functions on the worldsheet involving one massless

closed string field from a twisted sector and one massless open string field. By giving

a constant background vacuum expectation value to the twisted field, we interpret non-

vanishing correlators as sources for the open string field. By Fourier transform to position

space, we obtain a space-time profile for the open string field that matches exactly with

the expected singular profiles of the four dimensional fields of the gauge theory in the

presence of the Gukov-Witten defect. The background values of the twisted closed string
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fields are identified with the continuous parameters that define the defect in the gauge

theory description. We provide an important check of our proposal by verifying that

this identification is consistent with the expected S-duality properties of these continuous

parameters.

In the first part, we consider the simplest possible surface defect with two discrete pa-

rameters realized via fractional D3 branes on a background with Z2 orbifolding. In the

later part, we generalize the above construction to the most generic type of Gukov-Witten

defects with M discrete parameters realized via fractional D3 branes on a ZM orbifold.
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Synopsis

0.1 Introduction

The study of defects in QFT has become an active area of research in recent years and

their study has provided useful information about the vacuum structure of the gauge the-

ories. They are an important probe of the non-perturbative e↵ects and dualities in gauge

theories. One-dimensional or line defects such as Wilson and ’t Hooft loops in gauge the-

ories are the best studied in the literature. In this thesis, we focus on higher dimensional

defects which are supported on co-dimension two submanifolds, called surface defects.

These were first introduced by Gukov and Witten (GW) [1,2] in the context of four dimen-

sional maximally supersymmetricN = 4 Yang-Mills theory with U(N) gauge group. The

defect was defined as a “monodromy defect" by specifying the singular behavior of the

four dimensional fields in the gauge theory as one approaches the location of the defect.

With these boundary conditions specified for the path integral, correlation functions in the

presence of such defects provide us with valuable non-perturbative information about the

bulk gauge theory.

In this thesis, we geometrically engineer a Gukov-Witten surface defect within Type II

B string theory by considering a configuration of fractional branes on an orbifold back-

ground. In addition, we provide a physical interpretation of the defining parameters of the

defect in terms of background values for closed string scalars in the twisted sectors of the

closed string orbifold.
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0.2 Background

0.2.1 Type II B string theory

The massless spectra of Type II B string theory in 10d flat spacetime having S O(1, 9)

symmetry, contains the N = (2, 0) gravity multiplet. In addition, there are two matter

multiplets containing the 2-form field Bµ⌫ and Dilaton in NS/NS sector and Cµ⌫ in R/R

sector in addition to other fields. In the Type II B theory, the same GSO projection is taken

in both left and right sectors and the spectrum is chiral. The closed string background we

will be interested in is given by the following orbifold:

C3
⇥

�
C2/ZM

�
. (1)

If we do a ZM orbifolding along 4 directions, the massless spectra of Type II B theory, in

addition to the untwisted sector mentioned above, will contain (M�1) twisted sectors [3].

0.2.2 D-branes

D-branes are explicit realizations of RR charged BPS states in superstring theory. From

an open string theory perspective, D-branes are hypersurfaces on which the end-points of

the open string lies. In closed string theory, they can be described using boundary state

formalism.

Fractional branes are particular to orbifold backgrounds and correspond to D-branes that

are stuck at the fixed loci of the orbifolded space. They transform under the irreducible

representations of the orbifold group. Regular branes that can freely move along the

orbifolded representations are simply linear combinations of these fractional branes.

In this thesis, we realize GW type surface defects within the perturbative string the-
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ory. The configuration that we shall consider was first introduced in a work by Kanno-

Tachikawa (KT) [4]. Their goal was to derive the instanton partition functions in the

presence of surface defects by introducing stacks of fractional D3 and D(-1) branes in the

orbifold background. We shall consider just the fractional D3 branes and consider the

following brane set-up:

Figure 1: The orbifold setup.

0.2.3 Surface operators

In this section, we review basic facts about surface operators in N = 4 SYM theory with

U(N) gauge group, following [1]. One approach to define these operators is by specifying

a particular monodromy behaviour of the massless fields of the four dimensional theory

near the defect plane. If z = rei✓ is the coordinate for the transverse plane to the defect D,

then as one approaches r ! 0, the gauge field behaves in the following manner:

A ⇠ ↵ d✓ = diag
✓

|      {z      }
n0

↵0, . . . ,↵0,
|      {z      }

n1

↵1, . . . ,↵1, . . .
|             {z             }

nM�1

↵M�1, . . . ,↵M�1

◆
d✓ , (2)

where the nI set of integers satisfy
PM�1

I=0 nI = N.

In the path integral, one needs to integrate over all gauge field configurations with the

above prescribed condition. The holonomy of the gauge field is given by P exp(�
R

l A).

So, the monodromy of the gauge connection A around a circle of constant r is given by

exp(�2⇡↵). At the location of the defect the gauge group is broken to its Levi subgroup:

L = U(n0) ⇥ U(n2) ⇥ ... ⇥ U(nM�1) (3)
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Also, the scalars in the theory behave in the following manner as z! 0 :

� ⇠
� + i�

2z
(4)

Figure 2: The monodromy behaviour of the fields.

In the path integral, one is also allowed to add a 2d topological term:

exp

0
BBBBB@2⇡i

MX

I=1

⌘I

Z

D
Tr FU(nI )

1
CCCCCA (5)

Since d(d✓) = 2⇡�D, the field strength calculated using this gauge field A is singular:

F = 2⇡↵�D. A surface operator is characterized by 4M continuous parameters (↵, �, �, ⌘)

and M discrete parameters nI , I = 0, 1, ..., (M � 1).

Lastly, a remarkable feature ofN = 4 SYM is that it is invariant under the non-perturbative

duality group S L(2,Z). This is a strong weak coupling duality as far as the gauge coupling

is concerned; in particular an element ⇤ =

0
BBBBBBBBB@
m n

p q

1
CCCCCCCCCA
2 S L(2,Z) induces the transformation

⌧!
m⌧ + n
p⌧ + q

, (6)

where ⌧ is the complexified gauge coupling constant ⌧ = ✓
2⇡ +

4⇡i
g2 .

As shown in [1] the duality group also acts naturally on the continuous parameters of the

4



surface defect as follows:

(↵I , ⌘I)! (↵I , ⌘I)⇤�1 = (q↵I � p⌘I ,�n↵I + m⌘I),

(�I , �I)! |p⌧ + q|(�I , �I) . (7)

0.3 Surface defects from fractional Branes

0.3.1 Summary of main idea

Our primary goal is to derive the field profiles (2) and (4) as well as the topological term

(5) that characterize a Gukov-Witten defect from a world-sheet analysis. In our set-up,

the 4d gauge theory lives on a system of D3-branes in Type II B string theory placed in

a ZM orbifold space as shown in the figure 1. We divide the 10d target space into five

complex directions in the following way:

C(1) ⇥
C(2) ⇥ C(3)

ZM
⇥ C(4) ⇥ C(5) (8)

The world volume of the D3 brane is along C(1)
⇥ C(2) whereas the ZM orbifold is along

C(2)
⇥ C(3). The defect is extended along C(1) i.e. its located at the fixed point of orbifold

action.

The integer partition of N, which determines the unbroken Levi subgroup corresponds to

the choice of the N-dimensional representation of ZM on the Chan-Paton indices of the

D3-branes; in other words, nI is the number of the fractional branes transforming in the

I-th irreducible representation of ZM. The missing link in the KT description was how

the orbifold realization encodes the continuous parameters of the surface defect. In this

thesis work, we fill this gap by showing that they correspond to background values for

massless closed string fields belonging to the twisted sectors of the Type II B theory on

the orbifold.
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Schematically, the mechanism goes as follows. We give a constant background value to

the closed string scalars in the twisted sector and they act as a classical source for the

open string fields. In the presence of a closed string background certain open string fields

�open attached to a fractional D3-brane of type I acquire a non-zero one point function,

i.e. a tadpole. If we denote by Vopen the open string vertex operator associated to �open

and byVclosed the closed string vertex operator corresponding to field �closed, the tadpole

hVopeniclosed,I arises from an open/closed string correlator evaluated on a disk which con-

tains an insertion ofVclosed in the interior and of the vertex operatorVopen on the boundary

that lies on a D3-brane of type I:

Figure 3: An example of an open/closed string amplitude on a D3-brane with one closed
string vertex operator insertion in the interior and one open string vertex operator insertion
at the boundary.

The disk diagram presented above acts as a classical source for �open and acquires a non-

trivial profile in the transverse plane to the defect plane. The explicit expression of this

profile near the defect is obtained by attaching a propagator to the source and taking the

Fourier transform.

To calculate the open/closed correlators we will need the vertex operator of closed string

scalars in twisted sectors, the boundary states for the closed string fields which will pro-

vide the reflection rules for the left and right moving sectors, and the open string spectrum.
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0.3.2 The Z2 orbifold

Closed string spectrum

We will be considering the Z2 orbifold setup first. In this case, the closed string Hilbert

space in addition to the usual untwisted sector, contains one twisted sector, associated

with the non-trivial conjugacy class of Z2 [5].

The vertex operator at the massless level in the NS/NS twisted sector is given by com-

bining the left moving and right moving vertex operators. For the left moving one the

explicit form of the vertex operator is given by:

V
↵(z) = �(z) S ↵(z) e��(z) ei ̄·Z(z)+i ·Z̄(z) . (9)

which is a conformal field of weight 1 if  · ̄ = 1
2k2 = 0. The conformal twist operator

�(z) and spin field S ↵(z) are of conformal weight 1
4 each. The vertex operator : e��(z) : is

to describe physical vertex operators in the standard (�1)-superghost picture of the NS

sector. We have introduced the complexified momentum i =
ki+iki+1
p

2
.

Similarly one can construct the right moving vertex operator eV↵(z̄).

eV↵(z̄) = e�(z̄) eS ↵(z̄) e�e�(z̄) ei ̄·eZ(z̄)+i ·ēZ(z̄) , (10)

The complete NS/NS vertex operators are constructed by combining b↵�V↵(z)eV�(z̄).

The four independent components can be decomposed into a real scalar b and a triplet bc

(with c = 1, 2, 3). They correspond to the following vertex operators:

b  ! Vb(z, z̄) = i ✏↵�V↵(z) eV�(z̄) ,

bc  ! Vbc(z, z̄) = (✏ ⌧c)↵�V↵(z) eV�(z̄) ,
(11)

where ⌧c are the usual Pauli matrices. Due to the fact that D3 brane is partially extended
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along the orbifold, the triplet state bc further breaks down to a scalar b0 and a doublet of

complex conjugate fields b±.

Similarly one can construct the R/R massless vertex operators. We write down the vertex

operators of two massless scalars c and c0 below which we will need later:

c  ! Vc(z, z̄) = CAḂV
A(z) eVḂ(z̄) , (12a)

c0  ! Vc0(z, z̄) = (C �12)AḂV
A(z) eVḂ(z̄) . (12b)

where �MN =
1
2 [�M,�N], with �M being the Dirac matrices of S O(6).

Boundary states and Reflection rules

In the Z2 orbifold case there are two types of fractional D-branes that correspond to the

two irreducible representations of the orbifold group. The fractional D3-branes can be

schematically represented in the boundary state formalism as follows [6–8]:

|D3; Ii = N |Ui +N 0 |T; Ii with |T; Ii = (�1)I
|Ti . (13)

I = 0, 1 labelling two types of fractional branes. |Ui and |Ti are the untwisted and twisted

Ishibashi states.

The boundary state |D3; Ii introduces a boundary on the closed string world-sheet along

which the left and right moving modes are identified. Using explicit expressions of the

boundary states, one can derive that the right moving parts of the twisted closed string

vertex operators are reflected on a boundary of type I with the following rules

eV↵(z̄) �! (�1)I(�4�3)↵�V
�(z̄) , (14a)

eVȦ(z̄) �! (�1)I(�1�2)Ȧ
ḂV

Ḃ(z̄) . (14b)
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�m and �M being the Dirac matrices of S O(4) and S O(6) respectively.

0.3.3 Open string spectrum

In the case of D3 branes completely transverse to the orbifold, the open string vertex

operators for gauge field Aµ in (0)-picture number is given by:

�
i @Xµ + k ·   µ

�
ei k·X . (15)

But in our case where the D3-brane is partially extended along the Z2 orbifold, we have

to take appropriate linear combinations of eik.X factor which transforms covariantly under

the orbifold action.

For eg. the vertex operator for the gauge field component A1 is given by,

A1 �! VA1 =
h�

i @Z1 + k · k 
1� cos(? ·Z?) + i ? · ? 1 sin(? ·Z?)

i
ei k·Zk . (16)

where we define the following combinations

zi =
x2i�1 + i x2i
p

2
and z̄i =

x2i�1 � i x2i
p

2
(17)

? ·Z? = 2 Z
2
+ 2 Z2 , ? ·Z? = 2 Z

2
+ 2 Z2 . (18)

Also k · k and ? · ? are defined in similar way. In addition to the gauge field, there are

three complex scalars as well in the massless open string spectra denoted as �, �r {r =

4, 5}.

9



Open/Closed correlators

The couplings of the massless open string fields of a fractional D3-brane of type I with a

closed string field is given by,

⌦
Vopen

↵
b;I =

Z
dz dz̄ dx
dVproj

⌦
Vclosed(z, z̄)Vopen(x)

↵
I (19)

whereVclosed,Vopen stands for any of the closed and open string vertex operators respec-

tively and dVproj is the invariant projective volume.

The final result of the coupling of the four dimensional fields with the closed string scalars

are given as follows:

⌦
VA2

↵
b;I = (�1)I+1 b 2 �

(2)(k) (20)
⌦
V�

↵
b+;I = (�1)I+1 i b+ ̄2 �

(2)(k) (21)
⌦
VA1

↵
c;I = (�1)I+1 2i c 1 �

(2)(k) . (22)

Field profiles

The profile of gauge field A2 in configuration space induced by the NS/NS twisted scalar

b is obtained by Fourier transforming the coupling we have just obtained:

A2 =

Z
d2k d2?

(2⇡)2 i sin(? ·z?) ei k·zk

⌦
VA2

↵
b;0

2(|k|2 + |?|2)

= �i b
Z

d2?
(2⇡)2 sin(? ·z?)

2

2|?|2

(23)

After doing the integral, the final expression for the gauge profile is given by

A2 = �
i b

4⇡z̄2
. (24)
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The component Ā2 of the gauge field also has a non-trivial profile which is given by the

complex conjugate of (24). Using these, the gauge field on a fractional D3-brane of type

0 in the Z2 orbifold acquires the following profile

A = A · dx = A2 dz̄2 + Ā2 dz2 = �
i b
4⇡

 
dz̄2

z̄2
�

dz2

z2

!
= �

b
2⇡

d✓ (25)

where ✓ is the polar angle in the C(2) plane which is perpendicular direction to the defect.

A similar calculation for the scalar leads to a simple pole for �.

It is quite straightforward to generalize these findings to the case of a system made of n0

fractional D3-branes of type 0 and n1 fractional D3-branes of type 1, which describes a

gauge theory with group U(n0 + n1) broken to the Levi group U(n0)⇥U(n1). The profiles

of the gauge field and scalar are given by

A = � b
2⇡

0
BBBBBBBBB@
In0 0

0 �In1

1
CCCCCCCCCA

d✓ , (26a)

� =
b+
4⇡

0
BBBBBBBBB@
In0 0

0 �In1

1
CCCCCCCCCA

1
z2
. (26b)

This is precisely the expected profile for a monodromy defect of GW type. The continuous

parameters of the surface defect are related to the background values of the fields in the

NS/NS twisted sector as follows

↵I = (�1)I+1 b
2⇡
, �I = (�1)I Re(b+)

2⇡
, �I = (�1)I Im(b+)

2⇡
(27)

Similarly, one can show that there is a coupling between the longitudinal component of

the gauge field A1 and the twisted scalar c in the R/R sector. While this does not lead to a

profile, we show that this can be interpreted as an e↵ective topological term localized on
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the defect D and identified with the “⌘- parameter" in the following way:

⌘I = (�1)I c
2⇡

(28)

S-duality

From a geometric view point, the twisted scalars b and c arise by wrapping the NS/NS and

R/R 2-form fields B(2) and C(2) of Type II B string theory around the exceptional 2-cycle

!2 at the orbifold fixed point, namely

b =
Z

!2

B(2) , c =
Z

!2

C(2) . (29)

It leads to an identification of ↵I with
R
!2

B(2) and ⌘I with
R
!2

C(2). Similarly the b± field

is identified with the string-frame metric Gµ⌫. So, (�I , �I) transform in the similar way as

Gµ⌫. Since, the S-duality properties of the parent Type II B theory are inherited within

B(2),C(2) and Gµ⌫, it leads to natural transformation properties for all the continuous pa-

rameters ↵I , �I , �I , ⌘I which matches exactly with the expected transformation properties

(7) prescribed for them in GW-prescription.

0.4 Surface defects from ZM orbifolds

We will now generalize the above construction to ZM orbifold which captures the generic

surface defect of type [n0, n1, ..., nM�1].

0.4.1 Closed string spectrum

In this case, the closed string Hilbert space in addition to the usual untwisted sector,

contains (M � 1) twisted sector, associated with the non-trivial conjugacy class of ZM
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labeled by a = 1, 2, ...,M � 1.

When M is even, there is a state with ⌫a ⌘
a
M equal to 1

2 in which case the details are same

as the Z2 case. So, from now onwards without loss of generality, we will consider M to

be odd. The salient feature of this case is that the vacuum states are tachyonic and the

massless states are the first excited states.

eg. in the case of ⌫a <
1
2 , in NS-sector we have the following vertex operators at the

massless level [9, 10]

V
1
a(z) = �a(z) : 3(w) sa(z) : e��(z) ,

V
2
a(z) = �a(z) : 

2
(w) sa(z) : e��(z) .

(30)

The bosonic twist field �a(z) is a conformal field of weight ⌫a(1� ⌫a) while the fermionic

twist field sa(w) is a conformal field of weight ⌫2
a.

The massless closed string excitations in the twisted NS/NS sectors are obtained by com-

bining the left- and right-moving massless states. In the sectors with twist parameter

⌫a <
1
2 , they are then described by the following vertex operators at zero momentum

b(a)
↵� V

↵
a (z) eV�

a(z̄) (31)

where b(a)
↵� are four constant complex fields.

Similarly, in the sectors with twist parameter (1 � ⌫a) > 1
2 , the massless closed string

excitations are described by the vertex operators at zero momentum

b(M�a)
↵� V

↵
M�a(z) eV�

M�a(z̄) (32)

where again b(M�a)
↵� are four constant complex fields.

In the R/R sector, we only consider non-vanishing background values for the scalars C(a)

and C(M�a), since they are the only ones that turn out to be relevant for the description of

the continuous parameters of surface defects. Thus, the closed string vertex operators we
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consider are

C
(a) CAḂV

A
a (z) eVḂ

a (z̄) and C
(M�a) CȦBV

Ȧ
M�a(z) eVB

M�a(z̄) . (33)

Boundary states and Reflection rules

The fractional D3-branes can be schematically represented in the boundary state formal-

ism as follows [6–8]:

|D3; Ii = N |Ui +N 0 |T; Ii with |T; Ii = (�1)I
|Ti . (34)

I = 0, 1, ...,M � 1 corresponding to M irreducible representation of ZM. |Ui and |T; Ii are

the untwisted and twisted components of the boundary states.

As in the Z2 case due to presence of the D-branes, the right and left moving vertex opera-

tors are related. Schematically introducing the following reflection rule for right moving

NS/NS vertex operators:

eV�
a(z̄) �! (RI,a)��V

�
M�a(z̄) , (35)

The reflection matrix RI,a is found to be

RI,a = i sin
⇣⇡a

M

⌘
!�I a ⌧3 (36)

with a = 1, . . . ,M � 1 and ! is the Mth root of unity.
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0.4.2 Open string spectrum

To construct the massless open string vertex operators, we need to construct linear com-

binations of eiK.X factors that transform covariantly under the orbifold group action g.

EI =
1
M

M�1X

J=0

!�IJ gJ
h
ei ?·Z?

i
=

1
M

M�1X

J=0

!�IJ ei (!�J2 Z
2
+!J2 Z2) . (37)

One can easily check that g
⇥
EI

⇤
= !I

EI . A typical vertex operator eg. for the gauge field

A1 is given by

VA1 =
h�

i @Z1 + k · k 
1�
E0 + 2 

2
 1
E1 + 2 

2 1
EM�1

i
ei k·Zk . (38)

Similarly, expressions can be written for the vertex operators for gauge field component

A2 and other three scalars as well as each of their complex conjugate fields.

0.4.3 Open/Closed correlators and field theory profiles

Having both the closed string and open string field vertex operators, we can calculate the

various open/closed correlators using (4.54). The complete expression for the open string

fields emitted by a fractional D3-brane of type I in the presence of background values for

the scalars of the NS/NS twisted sectors is given by summing over all components of b(a)
↵�

and over all twisted sectors:

⌦
Vopen

↵
I =

M�1X

a=1

2X

↵,�=1

⌦
Vopen

↵
b(a)
↵� ;I . (39)

We define the singlet combination to be b(a)
s =

i
2 (b(a)

12 � b(a)
21 ) and also define b(a)

+ = b(a)
22 and

b(a)
� = �b(a)

11 . Then the non-zero coupling of the transverse gauge field is given by:

⌦
VA2

↵
I = �2 bI �

(2)(k) , (40)
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with the following combination defined as bI:

bI =

M�1
2X

a=1

sin ⇡⌫a

h
!�Ia b(a)

s + !
Ia b(M�a)

s

i
=

M�1X

a=1

sin
⇣⇡a

M

⌘
!�Ia b(a)

s , (41)

After taking the fourier transform with the appropriate insertion of propagator, we have

the result:

A2;I = �
i bI

4⇡z̄2
, (42)

Combining this result with the one for the complex conjugate component A2, we find that

the gauge field on the I-th fractional D3-brane has the following profile:

AI = A · dx = A2;I dz̄2 + A2;I dz2 = �
i bI

4⇡

⇣dz̄2

z̄2
�

dz2

z2

⌘
= �

bI

2⇡
d✓ , (43)

The only other open string field that has a non-vanishing profile in the twisted NS/NS

background we have chosen is the complex scalar �. The analogous calculation takes the

following form:

�I =
b+I

4⇡z2
, (44)

with

b±I =

M�1
2X

a=1

sin ⇡⌫a

h
!�Ia b(a)

± + !
Ia b(M�a)
±

i
=

M�1X

a=1

sin
⇣⇡a

M

⌘
!�Ia b(a)

± . (45)

These results relate (↵I , �I , �I) that conventionally parametrize the singular profiles near

the defect to the background values of the NS/NS twisted scalars as follows:

↵I = �
bI

2⇡
, �I =

Re(b+I )
2⇡

, �I =
Im(b+I )

2⇡
(46)

The coupling of the gauge field component with R/R scalars leads to the following iden-

tification of the ⌘I parameter:

⌘I =
cI

2⇡
(47)
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where cI is the following combination:

cI =

M�1
2X

a=1

sin ⇡⌫a

h
!�Ia
C

(a) + !Ia
C

(M�a)
i
=

M�1X

a=1

sin
⇣⇡a

M

⌘
!�Ia
C

(a) . (48)

The continuous parameters ↵I and ⌘I are identified with the the NS/NS 2-form B(2) and

the R/R 2-form C(2) of Type II B supergravity around the exceptional cycles !I of the

blown-up ALE space.

↵I = �
1

2⇡

Z

!I

B(2) , ⌘I =
1

2⇡

Z

!I

C(2) . (49)

Using the S-duality action on the 2-forms, with simple manipulations one can show that

this identification implies that ↵I and ⌘I indeed transform in the expected way.

Similarly, the b±I parameters can be identified with the (string frame) metric moduli cor-

responding to the complex structure of the blown-up exceptional cycle !I . As such they

inherit the S-duality transformation properties from the (string frame) metric, which are

precisely the ones expected for the parameters �I and �I of the GW defects.

0.5 Conclusion

In this thesis, we have studied a microscopic realization of Gukov-Witten surface defects

within the realm of Type II B string theory. The setup we considered is a 10d target

space of Type II B theory with ZM orbifolding along 2 of the complex directions. The

world-volume of the D3 brane on which the gauge theory lives is extended partially along

the orbifolded directions. It was already clear from the work of Kanno-Tachikawa that

the discrete data of the surface defect are encoded within the number of fractional branes

of each type. In our work [11, 12], we have shown that the continuous data of the sur-

face defect is encoded as the background value of di↵erent twisted closed string scalars.
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We provided support for our claim by matching the expected S-duality properties of the

continuous parameters from the viewpoint of Type II B theory.

Plan of the thesis

In this thesis, we study the geometric engineering of surface defects in 4d U(N) SYM

within Type II B string theory via fractional branes.

• Chapter 1 provides a general introduction to surface defects and summarizes the

motivation of our work.

• Chapter 2 provides necessary background material regarding Type II B string the-

ory, orbifold backgrounds, and D-branes.

• Chapter 3 discusses the realization of the simplest Gukov-Witten (GW) defects of

type [n0, n1] within Type II B string theory via branes on a Z2 orbifold.

• Chapter 4 generalizes the above construction to generic GW defect of type [n0, ...., nM�1]

within Type II B string theory via branes on a ZM orbifold background.

• Chapter 5 will conclude with a discussion of the results.
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Chapter 1

Motivation and Introduction

The study of defects in QFT has become an active area of research in recent years and their

study has provided useful information about the vacuum structure of the gauge theories.

They are an important probe of the non-perturbative e↵ects and dualities in gauge theo-

ries. One-dimensional or line defects such as Wilson and ’t Hooft loops in gauge theories

are the best studied in the literature. In this thesis, we focus on higher dimensional defects

which are supported on co-dimension two sub manifolds, called surface defects. These

were first introduced by Gukov and Witten (GW) [1, 2] in the context of topologically

twisted four dimensional maximally supersymmetric N = 4 Yang-Mills theory with U(N)

gauge group. The defect was defined as a “monodromy defect" by specifying the singular

behavior of the four dimensional fields in the gauge theory as one approaches the location

of the defect. With these boundary conditions specified for the path integral, correla-

tion functions in the presence of such defects provide us with valuable non-perturbative

information about the bulk gauge theory.

From the gauge theory point of view, there are several ways to analyze surface defects.

The original approach of Gukov and Witten (GW) in [1, 2] was to treat them as mon-

odromy defects, in which one specifies the singular behavior of the fields of the gauge

theory as one approaches the defect. Another possibility is to describe them as flavour
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defects: we specify the theory on the defect as a 2d quiver gauge theory with a U(N)

flavour group, which is then identified with the gauge group of the 4d theory [13, 14].

In many cases, these two di↵erent descriptions lead to the same results [15]. For ex-

ample, the low-energy e↵ective action on the Coulomb branch of the 4d gauge theory

computed in the two approaches exactly match. Moreover, by fruitfully combining the

two methods various properties of the surface defects as well as many duality relations

and non-perturbative e↵ects can be studied [16–24].

There are also several ways to embed the surface defects in string theory and, more gen-

erally, to study the defects from a higher-dimensional perspective. In [25, 26] the GW

defects were given a holographic representation in terms of bubbling geometries, which

are particular solutions of Type II B supergravity that asymptote to AdS 5 ⇥ S 5. Since

many 4d supersymmetric gauge theories can be obtained by compactification from the

6d (2, 0) theory defined on the world-volume of an M5 brane [27, 28], surface defects

can also be realized by introducing intersecting M5 branes or an M2 brane inside the M5

brane [18]. From this six dimensional perspective, surface defects have been recently

studied in detail [29] following earlier work in [28, 30, 31], by exploiting the relation to

the Hitchin integrable system, with the aim of obtaining a complete classification of the

surface defects in the 6d theory.

In this thesis, we geometrically engineer a GW surface defect within Type II B string

theory by considering a configuration of fractional branes on an orbifold background.

Further, we provide a physical interpretation of the defining parameters of the defect in

terms of background values for closed string scalars in the twisted sectors of the closed

string orbifold. In particular, we consider Type II B string theory on the following orbifold

space

C(1) ⇥
C(2) ⇥ C(3)

ZM
⇥ C(4) ⇥ C(5) (1.1)

Note that we will be considering Euclidean string theory for the setup and hence all the

10 real directions in (1.1) are space-like.
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We turn on constant vacuum expectation values for particular twisted scalar fields in the

Neveu-Schwarz/Neveu-Schwarz (NS/NS) and Ramond/Ramond (R/R) sectors. In this

background we engineer a 4d gauge theory by introducing stacks of fractional D3-branes

that extend along the first two complex planes C(1) and C(2). In this combined orbifold/D-

brane set-up, which we refer to as the Kanno-Tachikawa [KT] configuration [4], we

compute the profile in configuration space of the massless open strings by means of

open/closed world-sheet correlators, and show that these exactly reproduce the singu-

lar profiles that characterize the GW surface defect in theN = 4 gauge theory [1]. In this

way, we are therefore able to provide an explicit identification of the continuous parame-

ters of the GW solution with the vacuum expectation values of the twisted scalars.

Historically, it has been fruitful to embed field theory solutions or phenomena in string

theory as it is a much larger framework and usually the embedding leads one to uncover

new ideas and/or phenomena. The work presented in this thesis is best understood from

this perspective: it is a first step in the study of surface defects using perturbative string

theoretic methods. The rest of the thesis is organized as follows, in chapter 2 we provide

the basic background concepts used in our calculations. In chapter 3 we introduce surface

operators as monodromy defects, providing the path integral definition of it as well as

introduce the various parameters needed to define it. We also discuss the string theoretic

setup and open/closed string disk diagram that we need to calculate. In chapter 4 we give

the explicit string theoretic realization of the simplest possible [n0, n1] type of surface

defects via fractional branes in a Z2 orbifolded background. In chapter 5 we generalize

the above construction of ch. 4 to the more generic [n0, n1, ..., nM�1] type of surface defects

realized via fractional branes in a ZM orbifolded background. In chapter 6 we finish with

a summary of the results and their importance.

23





Chapter 2

Background

In this chapter, we review some of the important background concepts needed to follow

this thesis. It is by no means complete and the reader is suggested to refer to the appro-

priate literature for more details.

2.1 Type IIB string theory

We follow the discussion in [32, 33]. and begin with the 1 + 1 dimensional worldsheet

action corresponding to superstrings propagating on ten dimensional flat space R1,9:

S =
1

4⇡

Z
d2z

 
2
↵0
@Xµ@Xµ +  µ@ µ + e µ@e µ

!
(2.1)

The index µ = 0, 1, . . . 9 and the parameter ↵0 is given in terms of the string length as

↵0 = `2
s and is the inverse tension of the fundamental string. This action has N = (1, 1)

supersymmetry on the worldsheet and describes a superconformal theory. The bosonic

fields Xµ and their superpartners fermionic fields  µ,e µ have the following OPEs :
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Xµ(z, z̄) X⌫(0, 0) ⇠ �
↵0

2
⌘µ⌫ ln |z|2

 µ(z)  ⌫(0) ⇠
⌘µ⌫

z

e µ(z̄) e ⌫(0) ⇠
⌘µ⌫

z̄
(2.2)

Ramond and Neveu Schwarz sectors

Now we investigate the (Xµ, ⌫) superconformal field theory (SCFT) on a worldsheet with

cylindrical topology. With the cylindrical coordinate w = �1 + i�2 , the fermionic part of

the action is given by,

1
4⇡

Z
d2w

⇣
 µ@w̄ µ + e µ@we µ

⌘
(2.3)

This action must be invariant under the periodic identification w ⇠ w + 2⇡. This allows

for two possible periodic conditions for the  µ fields.

Ramond (R) :  µ(w + 2⇡) = + µ(w)

Nevue-Schwarz(NS) :  µ(w + 2⇡) = � µ(w) (2.4)

Similar periodicity conditions are defined for e µ. It can be written compactly as

 µ(w + 2⇡) = exp(2⇡i⌫) µ(w)

e µ(w̄ + 2⇡) = exp(�2⇡i⌫̃)e µ(w) (2.5)
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where ⌫ and ⌫̃ takes values 0 and 1
2 . 1

To maintain Poincare invariance, one considers periodic boundary conditions for bosonic

fields Xµ. In later sections, we will relax this condition when we consider orbifold back-

grounds in which the X-fields have non-trivial identifications as one traverses the world-

sheet circle.

There are four di↵erent combinations one can make out of the NS and R sectors i.e. NS-

NS, NS-R, R-NS, R-R thus counting for four possible kinds of closed superstrings.

The bosonic and fermionic fields can be mode expanded in the following way:

 µ(w) = i�1/2
X

r2Z+⌫

 µr exp(irw), e µ(w̄) = i1/2
X

r2Z+⌫

e µr exp(�irw̄) (2.6)

After the coordinate transformation z = exp(�iw), the expansion becomes:

 µ(z) =
X

r2Z+⌫

 µr
zr+1/2 ,

e µ(z̄) =
X

r2Z+⌫̃

e µr
z̄r+1/2 (2.7)

For the bosonic part of the theory, we have the following expansions for @X and @X :

@Xµ(z) = �i
 
↵0

2

!1/2 1X

m=�1

↵µm
zm+1 , @Xµ(z̄) = �i

 
↵0

2

!1/2 1X

m=�1

e↵µm
z̄m+1 (2.8)

It’s clear from the expansion that they are holomorphic and anti-holomorphic respectively.

Using these one can write down the expansion of Xµ field:

1We will see later that for string theories on orbifolded backgrounds can have more general periodicity
conditions leading to more possible values of ⌫, ⌫̃.
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Xµ(z, z̄) = xµ � i
↵0

2
pµln|z|2 + i

✓↵
2

◆1/2 1X

m=�1,m,0

1
m

 
↵µm
zm +

e↵µm
z̄m

!
(2.9)

For open string, there are two possible periodicities:

 µ(0,�2) = exp(2⇡i⌫) e µ(0,�2),  µ(⇡,�2) = exp(2⇡i⌫0) e µ(⇡,�2) (2.10)

By the redifinition e µ ! exp(�2⇡i⌫0) e µ, one can set ⌫0 = 0. Thus there are only two

sectors for open string : NS and R.

Now consider the spectrum generated by a single NS or R field which can correspond to

an open string or one of the left/right sectors of the closed string. In the NS sector, there

is no mode with r = 0 and we define the ground state to be the state annihilated by all

r > 0 modes:

 µr |0iNS = 0, r > 0 (2.11)

The modes with r < 0 are the ones that act as the raising operators. Moreover, because of

their anticommuting properties, each mode can be excited only once.

For the R sector states, there are states with r = 0 mode. If we define the ground state to

be the one annihilated by r > 0 modes and since { µr , ⌫0} = 0 for r > 0, the  µ0 take ground

states into ground states. Due to this reason, the R sector ground state is degenerate. If we

define �µ ⇠ 21/2 µ0, it satisfies the gamma matrix algebra {�µ,�⌫} = 2⌘µ⌫. So, the ground

states of the R sector form a representation of the gamma matrix algebra. One can show

that to make the total central charge of the worldsheet CFT be zero (which is related to

the cancellation of Weyl Anomaly ) we must take the spacetime dimension D to be 10 for

the superstring theory. In D = 10 the dimension of the gamma matrix algebra is 32.

In the R sector, all the states including the ground state have half-integer spacetime spins.
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In the NS sector, all the states have integer spins.

There is an operator that anticommutes will all the  µ s. The operator is exp(⇡iF) where

F is the world-sheet fermion number. Since  µ changes F by one, it’s easy to check it

anticommutes with  µ. The spacetime Lorentz generators are defined as

⌃µ� = �
i
2

X

r2Z+⌫

[ µr , 
�
�r] (2.12)

We also define the spin operator S a = i�a,0⌃2a,2a+1 whose eigenvalue gives the spacetime

spin for a given state. With that generators, the fermion number operator is defined as

follows:

F =
4X

a=0

S a (2.13)

Closed string spectra: The spins of the states in the two closed string sectors are additive.

So, for closed string, the NS-NS states have integer spins. The two half integers from R-R

sectors also add up to give integer spins. Whereas NS-R and R-NS states have half-integer

spin.

We will now denote the two sectors of the open strings by (↵, F). Where it’s defined as

↵ = (1 � 2⌫) is 1 for R sector and 0 for the NS sector.

For the closed string, there are independent periodicities and fermion numbers on both

sides, so there are 16 possible combinations:

(↵, F,e↵, eF) (2.14)

But six out of these combinations are ruled out by level matching conditions: L0 = eL0.

L0 � ↵0p2/4 is half-integer in NS- sector whereas its integer in NS+, R+, and R- sectors.
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So, NS- can’t pair with any of the three mentioned sectors.

Further constraints appear as the various vertex operators need to be mutually local i.e.

they should not have branch cuts in their operator product expansions. There are total 210

such possible combinations but only some subset of it will lead to consistent closed string

theories. It is achieved by imposing the following consistency conditions:

1. All pairs of vertex operators in the theory should be mutually local i.e. if (↵1, F1,e↵1, eF1)

and (↵2, F2,e↵2, eF2), the net phase when one operator encircles another is exp (F1↵2 �

F2↵1 � eF1e↵2 + eF2e↵1) and for them to be local one should have

F1↵2 � F2↵1 � eF1e↵2 + eF2e↵1 2 2Z (2.15)

2. The OPE must close. If both (↵1, F1,e↵1, eF1) and (↵2, F2,e↵2, eF2) are in the spectrum so

does (↵1 + ↵2, F1 + F2,e↵1 +e↵2, eF1 + eF2).

3. To ensure modular invariance of the one-loop amplitude, there must be atleast one of

both left moving R sector (↵ = 1) and right moving R sector ( e↵ = 1) in the spectrum.

There are four possible superstring theories with at least one R-NS sector IIA, IIB, IIA0,

IIB0 which satisfy all the three conditions above. None of these theories contains any

tachyon.

Without any R-NS sector, there are two possible string theories 0A and 0B. Both of

these two theories contain tachyons in (NS-,NS-) sector and do not contain any space-

time fermion.

In this thesis we will be particularly interested in the Type IIB theory. It contains the

following sectors:

IIB : (NS+,NS+) (R+,NS+) (NS+,R+) (R+,R+) (2.16)
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In 10-d, in each sector, (left or right) massless states are classified by their behavior under

the SO(8) rotations which keep the momentum invariant. Thus the massless closed string

spectrum is given by a product representation of SO(8) corresponding to combining left

and right sectors. Alternative to the product rep., one can as well write the massless

spectra by the following tensor representations of SO(8):

IIB : [0]2 + [2]2 + [4]2
+ + (2) + 802 + 562 (2.17)

where (m) and [m] denote the traceless symmetric and antisymmetric rank m tensor in

eight dimensions respectively 2. Note that 80, 56 denotes objects of dimensions 8 and

56 respectively and is not representable in tensor representation. They are obtained by

multiplying a vector rep. and spinor rep. of SO(8): 8v ⇥ 8.

In type IIB theory one keep the sectors with

exp(⇡iF) = exp(⇡ieF) = +1 (2.18)

This is known as the Gliozzi-Scherk-Olive (GSO) projection where the full spectra are

projected onto the eigenstates of exp(⇡iF) and exp(⇡ieF). The GSO projection ensures

spacetime supersymmetry and also removes the tachyonic states to make the tachyon free

type II B theory 3. Since the same GSO projection is taken in both left and right sectors,

the spectrum of type IIB theory is chiral.

2[0] denotes a scalar of SO(8).
3GSO projection similarly removes the tachyon from type II A , II A’, II B’ theories too
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2.2 State-operator correspondence and Vertex operators

In quantum field theory, there is on the one hand the space of states of the theory and on

the other hand the set of local operators. In conformal field theory, there is a simple and

useful isomorphism between these, with the CFT quantized on a circle [34]. Consider a

QFT on a semi-infinite cylinder R ⇥ S P, the metric is given by ds2 = �dt2 + d⌦2
p. By

the coordinate transformation r = exp(it), the cylinder is mapped to a plane Rp+1 with the

metric ds2 = (dr2 + r2d⌦2
p)/r2 which is simply flat space with a conformal factor.

If one specifies an initial state | i on the cylinder, one can make a conformal transforma-

tion that squeezes it to the origin of the plane Rp+1. Thus it is a local perturbation at the

origin and corresponds to local operator O (r = 0). So there is a correspondence between

local operators and states in CFT :

States specified on cylinder$ local operators at the origin of the plane (2.19)

One can also go the other way around, given a local operator on the plane the initial state

on the cylinder can be recovered in the following way:

|Oi = limx!0 O(x)|0i (2.20)

where |0 > denotes the vacuum or ground state.

Here are a few examples that illustrate this [32]:

The unit operator corresponds to the vacuum state: |1i = |0; 0i .

The free state with momentum k corresponds to : exp(ik.X) : operator. Similarly, one can

write the following bosonic excited states and their corresponding vertex operators :
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↵µ�m|1i ! i
 

2
↵0

!1/2 1
(m � 1)!

@mXµ(0), m � 1

e↵µ�m|1i ! i
 

2
↵0

!1/2 1
(m � 1)!

@̄mXµ(0), m � 1 (2.21)

And for the fermionic excitations:

e.g NS states

 µ�r|1i !
1

(r � 1/2)!
@r�1/2 µ(0), r �

1
2

(2.22)

2.3 D-branes

D-branes are extended (solitonic) dynamical objects in string theory. From the perspective

of open strings [32, 33, 35], D-branes are the hyperplanes on which open strings ends

Fig.2.1. A Dp brane is obtained by imposing dirichlet boundary conditions in (d � p � 1)

directions. The world volume of a Dp brane is (p + 1) dimensional hyperplane and the

end point of the open strings can only move along the world volume of the brane. They

are new dynamical objects within superstring theory on their own. Further, if we consider

U(N) Chan-Paton factors on the end points of the open string, there would be N such

hyperplanes for each dirichlet direction on which the open strings can end. Usually, a

gauge field theory lives on the world volume of the D-brane.

An alternative way to describe D-branes which will be more suitable for our purpose is

given as follows.

The 10d spacetime SUSY algebra is schematically given by,
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Figure 2.1: Open string end points lying on same D-brane or di↵erent D branes.

{QȦ,Q
Ḃ

} ⇠ PM�
ȦḂ

M

{eQȦ,
g
Q
Ḃ

}} ⇠ PM�
ȦḂ

M (2.23)

All other anti-commutators being zero. QȦ and eQḂ are the left and right moving su-

persymmetry charges respectively and similary for the conjugate supercharges Q
Ȧ

,
f
Q
Ḃ

.

M = 0, 1, ..., 9 , PM is the momentum and �M is the 10d Dirac matrices.

The supersymmetry charges are obtained by integrating supersymmetry currents which

contains spin field S Ȧ transforming as a Weyl tensor of S O(10). The presence of D3

brane breaks the S O(10) symmetry of spacetime to S O(4)⇥S O(6) and the Ȧ index divides

into (S ↵S A, S ↵̇S A) depending upon positive and negative chiralities respectively. One can

show that on the D3 branes only the supercharge combination Q↵̇A
� eQ↵̇A and Q↵A+ eQ↵A is

preserved on the D3 branes whereas the other two combinations Q↵̇A+ eQ↵̇A and Q↵A� eQ↵A

is broken. So, only half of the supersymmetry is preserved ie. 16 supercharges. In fact,

one can define D-branes as some BPS states within superstring theory which preserve only

half of the supersymmetry. Moreover, these objects are charged under the R-R 2-forms.

From the closed string perspective, the D-branes introduce a boundary in the string world-

sheet and are described by a boundary state |B > which is a BRST invariant state. They
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encode the couplings of all perturbative closed string fields to the D-brane. They can

therefore be expanded in a basis of such closed string fields in which the coe�cient en-

codes the coupling of the brane to the perturbative field. We will discuss more about it

in the main text. But here we briefly mention few uses of boundary states to calculate

D-brane couplings and interactions [36] : If we denote the closed string propagator by

Da, the matrix element < B|Da|B > will give rise to an interaction between two D-branes.

If we consider a first excited state of momentum k, its coupling with the D-brane is given

by the amplitude:

Aµ⌫ =< 0|aµã⌫|B > (2.24)

where a, ã are the usual left and right moving creation operators respectively. The em-

mision amplitude of a graviton or dilaton can be obtained by contracting Aµ⌫ with the

appropriate polarization vectors.

Agrav
⌘ Aµ⌫✏grav

µ⌫ , Adil
⌘ Aµ⌫✏dil

µ⌫ (2.25)

where ✏grav
µ⌫ , ✏

dil
µ⌫ are the polarization vectors corresponding to graviton and dilaton respec-

tively.

In this thesis, we will be interested in what is called fractional D-branes in an orbifold

background, which we will briefly review in sec. 2.5. Our goal will be to compute some

open/closed correlators on the disk. As a warm up we shall compute some simple disk

correlators in the following section.
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Calculation of total R-R charge carried by a Dp brane us-

ing one-point functions

In the massless spectrum in R-R sectors of type IIB string theory there are antisymmetric

form fields Aµ1µ2...µn where n is even for type IIB theory. The vertex operator corresponding

to the R-R form field in usual (�1) picture number is given by [36],

VR-R(k, z, z̄) = F↵̇�̇ : V↵̇
�1/2(

k
2
, z) ]V�̇

�1/2(
k
2
, z̄) : (2.26)

where the holmorphic part is given by

V
↵̇
�1/2(

k
2
, z) = c(z)S ↵̇(z) e��(z)/2 eik.X(z) (2.27)

S ↵̇ is the spin field, c(z) is the ghost field and �(z) is related to superghost fields.

By using the picture changing operator one can write the same R-R vertex operator in

(�2) picture number also which we denote as WR-R. One can also write down a boundary

state |B >R for the R-R form field. 4

To compute the interaction between the R-R field and the Dp-brane, one needs to saturate

|B >R with the corresponding state i.e. one needs to evaluate < 0| WR-R
|B >R. Here we

quote the final result [36],

limz!1 < 0| WR-R(k, z, z̄) |B >R = ±
p

2TpVp+1 A0,...,p (2.28)

Note that p is odd for type IIB theory and the ± sign refers to brane and anti-brae configu-

ration respectively. Vp+1 is the world-volume of Dp-brane and Tp is the D-brane tension.

From (2.28) one can immediately identify the total R-R charge of the Dp-brane to be

4Refer to [36] for the exact expressions of WR-R and |B >R .
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µp = ±
p

2Tp (2.29)

Illustrative computation of 3-pt correlator of fields living

on the D3 banes

Let us compute some amplitudes among fields living on D3 branes and their interpretation

[37]. It will serve as a warm up for the calculation of disk amplitudes in the later chapters.

In the NS sector, there are a gauge vector Aµ and six scalars �a at the massless level. They

can propagate along the four world-volume directions of the D3 branes. The correspond-

ing vertex operators for these fields are given by,

V (�1)
A (z) = Aµ V(�1)

Aµ (z, p)

V (�1)
� (z) = �a

V
(�1)
�a

(z, p) (2.30)

where

V
(�1)
Aµ (z, p) =

1
p

2
 µ(z) e��(z) eip⌫X⌫(z)

V
(�1)
�a (z, p) =

1
p

2
 a e��(z) eip⌫X⌫(z) (2.31)

In the R sector, there are two gauginos at the massless level, ⇤↵A and ⇤↵̇A. In the (�1/2)

picture, the gaugino vertex operators are given by,
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V (�1/2)
⇤ (z) = ⇤↵A(p)V(�1/2)

⇤↵A (z, p)

V (�1/2)
⇤

(z) = ⇤↵̇A(p)V(�1/2)
⇤↵̇A

(z, p) (2.32)

where

V
(�1/2)
⇤↵A (z, p) = S ↵(z)S A(z) e�

1
2�(z) eip⌫X⌫

V
(�1/2)

⇤
↵̇A (z, p) = S ↵̇(z)S A(z) e�

1
2�(z) eip⌫X⌫ (2.33)

where S ↵, S ↵̇, S A are the spin fields of S O(4) and S O(6) respectively.

Let us consider the amplitude between one gauge boson and two gauginos 5:

A(⇤̄A⇤) = hhV
(�1/2)
⇤̄

V (�1)
A V (�1/2)

⇤ ii

= C
Z

dz1dz2dz3

dV123
hV (�1/2)

⇤̄
(z1) V (�1)

A (z2) V (�1/2)
⇤ (z3)i (2.34)

where C is a normalization constant and dV123 is the projective volume element defined

as follows:

dV123 =
dz1dz2dz3

(z1 � z2)(z2 � z3)(z3 � z1)
(2.35)

The correlator breaks into various correlators of free theories and after some simple alge-

bra the final amplitude is given by [37],

5We will use use similar calculations to compute disk amplitudes among open/closed string fields in the
main text and this calculation will serve as an illustrative example.
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A⇤A⇤ = C0Tr
⇣
⇤↵̇A ◆A↵̇� ⇤A

�

⌘
�4(p1 + p2 + p3) (2.36)

where C0 is a constant, ◆A notation means contraction of Aµ with �µ and we have used the

following basic correlators in evaluating the amplitude:

h S A(z1)S B(z2) i ⇠
i�A

B

(z1 � z2)3/4

h S ↵̇(z1) µ(z2)S �(z3) i =
1
p

2
(�µ)↵̇� (z1 � z2)�1/2 (z2 � z3)�1/2

h e�
�
2 (z1)e��(z2)e�

�
2 (z3) i ⇠ (z1 � z2)�1/2 (z2 � z3)�1/2 (z3 � z1)�1/4

heip1.X(z1) eip2.X(z2) eip3.X(z3)i ⇠ �4(p1 + p2 + p3) (2.37)

Where � is the Dirac matrices of S O(4). One can calculate the 3-pt and 4-pt amplitude

among the various D3 string modes in a similar fashion. After taking a Fourier transform,

one can show that the 1PI part of them is reproduced by the N = 4 SYM action.
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2.4 ALE space

In this thesis, we will be interested in studying the superstring theory on an orbifolded

background which is a special case of what is called ALE spaces. From a physicist point

of view [38], an Asymptotically Locally Euclidean or ALE manifold is the minimal res-

olution of singularities of an orbifold C2/� where C2
⌘ R4 is the usual Euclidean 4d flat

space and � is a finite Kleinian subgroup of S U(2). Since we are dealing with orbifolded

theories there is a point group and corresponding to that there are twisted sectors in the

closed string spectrum.

The ALE manifolds can be described geometrically as a�ne complex variety in C3 i.e.

the zero loci of the following polynomial constraints [38]:

{x, y, z} 2M� (t1, ..., tr) ! W̃� (x, y, z; t1, ..., tr) = 0 (2.38)

that are determined by the algebraic structure of the Kleinian group � and that depend

on r complex parameters {ti} (i = 1, ..., r), r being the number of non-trivial conjugacy

classes in �. In the limit ti ! 0 the locus (2.38) reduces to the orbifolded manifold C2/�.

In type IIB theory, by viewing the orbifold background as the singular limit of the ALE

space for vanishing two-cycles [39], the NS-NS 2-form field B(2) and R-R 2-form field

C(2) gives rise to the twisted sector scalars b and c 6 (located at the orbifold fixed point)

in the low energy e↵ective action of the six dimensional theory extended in the transverse

direction to the orbifold via the following relations [40] :

B(2) = b !2 , C(2) = c !2 (2.39)

where !2 is the 2-form dual to the vanishing 2-cycle of the orbifold. This relation will be

6We will describe in details about twisted scalars in sec. 4.1.1, 5.1.1
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important when we will study the S-dualty properties of the twisted fields b, c in sec. 4.5,

5.4.

2.5 Fractional Branes

Following the discussion in [41], an open string state is described in the following way :

CP factor ⇥ oscillator | momentum eigenstatesi (2.40)

Now, we already know that the open strings end on D-branes. So, if there is a single

D-brane in flat space, the CP factor is just a number. And for a stack of N D-branes,

the CP factor is an (N ⇥ N) matrix. For a D-brane in orbifold space, the CP matrix

transforms under di↵erent representations of the orbifold group � in the following way:

let us denote the CP factor by �, then it transforms as � ! �0 = R(h) � R(h)�1 where h

is any orbifold group element and R is any specific representation. Since there is various

possible representation of a group, there are di↵erent kinds of D-branes on orbifolded

space.

A D-brane whose CP factors transform under the regular representation7 of the orbifold

group is called regular D-brane. But we know that the regular representation is reducible;

the regular representation R is decomposed into its irreducible representations DI in the

following way:

R =
M

nIDI (2.41)

where nI; I = 0, ...,M � 1 is the dimension of I-th irreducible representation of �, and
PM�1

I=0 nI = |�| .

7The dimension of regular representation is equal to order |�| of orbifold group �.
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This leads one naturally to define another type of D-brane, one whose CP factors trans-

form under the irreducible representations of orbifold group �. These branes are called

Fractional D-branes and there are as many distinct fractional branes as there are irre-

ducible representations of the discrete group. So, a fractional brane of type I is the one

whose CP factor transforms under the DI-th irreducible representation of �8.

When one computes the open string spectrum of a regular brane, one finds massless scalar

fields or moduli that correspond to motion along the orbifolded directions. However, the

fractional branes do not have any such open string moduli in their spectrum. They are

stuck at the orbifold fixed point and are invariant states under the action of the orbifold

group.

As already mentioned D-branes in flat space carry charges under the R-R two forms,

which can be obtained from the boundary state. The basic idea of constructing the bound-

ary state was first explained by Cardy: we begin with the one-loop open string partition

function and then use open/closed duality to rewrite it as a tree level closed string am-

plitude. The properties of the boundary state can then be read o↵ from this result. By a

calculation of the charges carried by the branes labeled by the irreducible representation,

it can be shown that these branes carry fractional charge w.r.t the untwisted R-R (p + 1)

form of a usual Dp-brane. 9. To be specific if the usual flat space D-brane has charge

µp under the untwisted RR form, the fractional brane of type I will have the charge nI µp

|�| .

Note, for the ZM orbifold setup we consider in this thesis, nI = 1. In addition, however,

fractional branes are also charged w.r.t. some twisted R-R (p + 1) form fields [42].

In Appendix C we explicitly write down the boundary state corresponding to a fractional

brane in a Z2 orbifold, in which the brane is extended partially along the orbifold direc-

tions.

8For the ZM orbifold group considered in this thesis, the dimension of its irreducible representations are
always 1 and there are total M types of fractional branes.

9Hence the name "fractional brane".
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Chapter 3

Surface operators as monodromy

defects

Non-local operators or defects in quantum field theories are generally classified by the

dimension of their support. In this thesis, we will be mainly interested in four dimensional

quantum field theories. So there are four possible kinds of operators [43].

⌅ Codimension 4: These are usual local operators in QFT of zero dimension sup-

ported on a point eg. gauge invariant combinations of the fields in any gauge theory.

⌅ Codimension 3: These are non-local operators supported on a one-dimensional

line, hence they are called line operators. eg. Wilson and ’t Hooft operators.

⌅ Codimension 2: These operators are supported on co-dimension two surfaces. For

the four dimensional cases we will be considering, these operators are supported on

two dimensional surfaces.1 These will be the primary objects of study in this thesis

and we will be giving more details and defining properties of them as we go along.

1The name surface operator is applicable for any non-local operator with co-dimension two support
irrespective of the dimension of the total manifold.
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⌅ Codimension 1: These operators have support on co-dimesional 3 manifolds. eg.

domain walls.

Another way to classify defects is by their construction. An operator is called “electri-

cal" if it can be constructed directly from the elementary fields present in the theory eg.

local operators or Wilson line. The other type of operators called “magnetic" or disorder

operators which can not be defined through algebraic combinations of elementary fields

but rather by some particular behavior of the some of the elementary fields near these

operators eg. ’t-Hooft line defects, Gukov-Witten surface defects (which will be the topic

of interest in this thesis).

To have an intuitive physical picture in mind, Wilson loops in an U(1) theory can be

viewed as world-volume of oppositely moving electron - anti electron bound state 2 Simi-

larly, surface defects can be thought of as world-volume of a Dirac string of dyonic charge

which does not obey the Dirac quantization rule [43].

3.1 Monodromy defects

We will be mainly interested in studying half-BPS surface defects in N = 4 super Yang-

Mills theory. We will define them as monodromy defects: consider a four dimensional

manifold M and we modify it along a co-dimensional two sub manifold D in such a way

that specific fields in the four dimensional theory develop singularities along surface D. 3

Let us consider the N = 4 super Yang-Mills theory with gauge group U(N) defined on

R4
' C(1) ⇥ C(2). We will use the complex coordinate zi on C(i); we will also use polar

coordinates in C(2) setting z2 = r ei✓. It will also be useful at times to denote by ~xk and ~x?

the real coordinates of these two planes and by ~kk and ~k? the corresponding momenta in

these directions.
2For U(N) theories, one can picture them as quark - anti quark pairs.
3This definition is very analogous to the construction of an ’t Hooft operator as a co-dimensional three

singularity.
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A monodromy defect D is a surface defect extended along C(1) and placed at the origin

of C(2). It is defined by the singular behavior of some of the bosonic fields of the theory,

namely the 1-form gauge connection A and one of the three complex adjoint scalars,

which we call �. Near the location of the defect, i.e. for r ! 0, these fields have the

following non-trivial (singular) profile:

A =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

↵0 In0 0 · · · 0

0 ↵1 In1 · · · 0
...

...
. . .

...

0 0 · · · ↵M�1 InM�1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

d✓ , (3.1)

and

� =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

(�0 + i �0) In0 0 · · · 0

0 (�1 + i �1) In1 · · · 0
...

...
. . .

...

0 0 · · · (�M�1 + i �M�1) InM�1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

1
2z2
. (3.2)

Here InI denotes the (nI ⇥ nI) identity matrix; ↵I , �I and �I are real parameters and the

integers nI are such that
M�1X

I=0

nI = N . (3.3)

This non-trivial field configuration breaks the U(N) gauge group to a Levi subgroup

U(n0) ⇥ U(n1) ⇥ · · · ⇥ U(nM�1) . (3.4)

If the gauge group is SU(N) one has to remove the overall U(1) factor from (3.4) and

subtract the trace from (3.1) and (3.2).

Since the defect D is supported on a 2d surface, in the definition of the path-integral one

is allowed to turn on a 2d ✓-term, whose coe�cient we denote ⌘I for each factor in the

unbroken Levi subgroup. This means that in the path-integral we include the following
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phase factor:

exp
0
BBBBB@i

M�1X

I=0

⌘I

Z

D
Tr U(nI )FI

1
CCCCCA . (3.5)

The reason for calling the gauge and scalar field profile (3.1), (3.2) respectively to be sin-

gular is the presence of 1
z pole at the origin z = 0 4. The introdcution of the surface defect

breaks the poincare symmtery along C(2) plane and also breaks half of the supersymmetry

of the N = 4 sYM. Interestingly the specific form of these profiles (3.1), (3.2) are scale

invariant [25]. As a result, the Gukov-Witten defects are 2d superconformal defects inside

the 4d N = 4 sYM theory. Since d(d✓) = 2⇡�D, the field strength calculated using this

gauge field A is given by: F = 2⇡↵�D where �D is a 2-form delta function supported on

D. The holonomy of the singular gauge field A around the singularity is given by

P exp(i
I

A) = exp(2⇡i↵) (3.6)

Altogether, we can say that a monodromy defect is characterized by the discrete parame-

ters nI , which constitute a partition of N, and by the four sets of real continuous parame-

ters {↵I , �I , �I , ⌘I}, with I = 0, . . . ,M � 1. Whereas the discrete parameters are analogous

to the choice of representation R of the gauge groups for line operators, the continuous

parameters are novel to the surface operators. Surface operators that do not depend on

continuous parameters do exist and are called rigid surface operators.

One of the remarkable features of the N = 4 Yang-Mills theory is its invariance under

the action of the non-perturbative duality group SL(2,Z). It turns out that this duality also

acts naturally on the parameters of the surface operator as shown in [1]. In particular, an

4Note that d✓ = i
2

⇣
dz̄
z̄ �

dz
z

⌘
and gauge field A has similar pole singularity as �.
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element ⇤ =
� m n

p q
�
2 SL(2,Z) induces the transformation

(↵I , ⌘I) �! (↵I , ⌘I)⇤�1 = (q↵I � p ⌘I ,�n↵I + m ⌘I) ,

(�I , �I) �! |p ⌧ + q| (�I , �I)
(3.7)

where ⌧ is the complexified gauge coupling constant.

3.1.1 Origin of GW defect

Gukov-Witten(GW) surface defects were first introduced in the seminal papers [1, 2].

There they studied surface defects in a topological theory, the GL-twisted N = 4 super

Yang-Mills theory, which was introduced by Kapustin and Witten in [44]. The topological

twist leads to non-canonical spins for the fields and the relevant fields turn out to be the

gauge field A and a one-form scalar field �. The Kapustin-Witten equations were derived

by imposing the supersymmetry projections consistent with the topological twist:

F � � ^ � = 0

dA� = 0

dA ? � = 0 (3.8)

where the covariant derivative is defined as dA ⌘ d + A and ? is Hodge star operator.

Gukov and Witten reduced these equations further to two dimensions, appropriate to the

existence of a defect, and found the most general solution to the above set of equations

having a singular behavior around the defect to be given by

A = ↵d✓

� = �
dr
r
� �d✓ (3.9)
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where ↵, �, � are constant elements of the lie algebra of the gauge group and (r, ✓) are the

polar coordinate in the two-plane transverse to the defect (the defect being at the origin of

the coordinate system).

The monodromy of the gauge field around the defect is given by P exp(�
H

A). Note that

the gauge and scalar field used in Gukov-Witten original papers [1, 2] are anti-hermitian

in nature whereas in this thesis we used hermitian fields (3.1), (3.2) 5 6. That is why the

holonomy expression in this thesis (3.6) di↵ers by a factor of i from the above expression

used in [1, 2].

3.1.2 Path integral description of surface defects

To understand how surface defects are treated within the path integral formulation, let us

suppose we want to calculate an n-point correlator within the four-dimensional gauge the-

ory but in presence of a Gukov-Witten defect i.e., we want to compute hO1(z1)O2(z2) ...O(n)(zn) Si

where the GW surface operator is denoted by S . Then, such a correlator is given the fol-

lowing path integral:

Z

GW
[DA][D�][D�] e(�S SYM+i ⌘

R
D F) O1(z1) O2(z2) ...On(zn) (3.10)

where � is the gaugino field, S SYM is the euclidean sYM action and the 2d theta-term has

been added by hand in the total action. The important point to note is, by
R

GW we mean

carry out the path integral only over the singular field configurations given by (3.1),(3.2).

One such example of the above type of correlator is the instanton partition function in the

presence of a Gukov-Witten defect [4, 16].

Although in this thesis we will not be exploring the operator properties of the surface

5This matches with the conventions of [25].
6Also in GW original papers, they studied the GL-twisted N = 4 sYM theory and the scalar field is a

one-form. But for the usual N = 4 sYM theory we are interested in this thesis, the scalar field is complex
scalar valued.
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defects but will primarily focus on reproducing the classical space-time profiles (3.1),(3.2)

from a string theoretic setup. We discuss this setup in full detail in the next section.

3.2 Monodromy defects from fractional branes

In this thesis, we shall study the simplest case of GW defects in the maximally super-

symmetricN = 4 Yang-Mills theory with gauge group U(N) or SU(N). Our primary goal

is to realize these surface defects in perturbative string theory and to recover the singular

profiles of the fields in the gauge theory. We do so by calculating perturbative open/closed

string amplitudes in Type II B string theory on an orbifold background. Following a pro-

posal of Kanno and Tachikawa (KT) [4], we engineer the 4d N = 4 Yang-Mills theory

using fractional D3-branes with two world-volume directions along the orbifold, leaving

unbroken the Poincaré symmetry in the other two world-volume directions. This is quite

di↵erent from the more familiar configuration in which the fractional D3-branes are com-

pletely transverse to the orbifold [3]. In fact, in this latter case, the resulting gauge theory

has Poincaré symmetry in four dimensions but a reduced amount of supersymmetry since

only a fraction of the sixteen supercharges of the orbifold background is preserved on the

world-volume.

This orbifold set-up has already been studied in earlier works on the subject [4, 16, 20,

45, 46] where also fractional D(–1)-branes have been introduced on top of the fractional

D3-branes to derive the so-called ramified instanton partition function in the presence of

a surface operator, extending the equivariant localization methods of [47]. In this thesis,

instead, we consider only stacks of fractional D3-branes and focus on the gauge theory

defined on their world-volume, which has largely remained unexplored. In particular

we compute correlators involving both the massless fields of the gauge theory and the

massless twisted scalars in the NS/NS and R/R sectors of the closed string background,

and show that these correlators precisely encode the singular profiles that define a GW
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defect. The continuous parameters that appear in these profiles and that are part of the

defining data of a surface operator are related to the vacuum expectation values of the

twisted scalars. In this way, we clarify in detail how the KT set-up realizes surface defects

in the gauge theory.

3.2.1 Setup

Our primary goal is to derive the field profiles (3.1) and (3.2) as well as the topological

term (3.5) that characterize a monodromy GW defect from a world-sheet analysis of its

orbifold realization proposed in [4].

In this set-up, the gauge theory lives on a system of D3-branes in Type II B string theory

placed in a ZM orbifold space. The orbifold group acts on two complex planes C(2) ⇥

C(3), the first of which is transverse to the defect inside the world-volume of the D3-

branes, while the second is transverse to the D3. In this realization, therefore, the defect

D is located at the fixed point of the orbifold action. The integer partition of N, (see

(3.3)), which determines the unbroken Levi subgroup (3.4) corresponds to the choice of

the N-dimensional representation of ZM on the Chan-Paton indices of the D3-branes; in

other words, nI is the number of the fractional branes transforming in the I-th irreducible

representation of ZM. We shall refer to these fractional branes as D3-branes of type I.

What is missing in the KT description is how the orbifold realization encodes the contin-

uous parameters of the monodromy defect. Our goal is to fill this gap by showing that

they correspond to background values for fields belonging to the twisted sectors of the

closed string theory on the orbifold. In particular, the twisted background fields in the

NS/NS sector, which here we collectively denote as b, account for the parameters ↵I , �I

and �I which appear in (3.1) and (3.2), while the twisted scalar of the R/R sector, which

we denote c, accounts for the parameters ⌘I in the topological term (3.5).

Schematically, the mechanism goes as follows. In the presence of a closed string back-
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ground certain open string fields �open attached to a fractional D3-brane of type I acquire

a non-zero one-point function, i.e. a tadpole. If we denote byVopen the open string vertex

operator associated to �open and byVb the closed string vertex operator corresponding to

b, the tadpole
⌦
Vopen

↵
b;I arises from an open/closed string correlator evaluated on a disk

which contains an insertion of bVb in the interior and of the vertex operatorVopen on the

boundary that lies on a D3-brane of type I:

Figure 3.1: An example of a mixed open/closed string amplitude on a D3-brane of type I.

Note that the open string vertex carries momentum along the D3-brane world-volume.

While its longitudinal components ~kk along the defect are set to zero by momentum con-

servation, its transverse components ~k? need not be set to zero, as we have pictorially

indicated in the diagram. Indeed, the twisted fields, which are localized at the orbifold

fixed point, break translation invariance along the orbifold directions and thus ~k? does not

need to be conserved. Therefore, the disk diagram represented above acts as a classical

source for �open, which acquires a non-trivial profile in the plane transverse to the defect.

The explicit expression of this profile near the defect is obtained by attaching a propagator

to the source and taking the Fourier transform (FT ), namely

�open(~x?) = FT
h 1
~k2
?

⌦
Vopen

↵
b;I(~k?)

i
. (3.11)

The fields �open which get a tadpole from this mechanism arise from open strings with

both ends on the same D3-brane, so they have diagonal Chan-Paton factors. In the fol-
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lowing, we will show in detail that the only non-zero tadpoles are those of the diagonal

entries of the transverse components7 A2 and Ā2 of the gauge connection 1-form and

the diagonal entries of the complex scalar �. These are precisely the fields which have

a non-trivial profile in a monodromy defect of GW type. Moreover, we will show that

the functional dependence on the transverse coordinates acquired by these fields through

(3.11) coincides with that of (3.1) and (3.2), thereby identifying the parameters ↵I , �I and

�I with some of the background fields of the twisted NS/NS sector.

The mechanism that encodes the non-trivial profile of the surface defect in a perturbative

disk diagram is reminiscent of the way in which disks with mixed D3/D(–1) boundary

conditions account for the classical profile of the instanton solutions [37, 48]. In that

case, however, the defect is point-like and the classical profile of the fields depends on all

world-volume coordinates; moreover, the role of parameters that appear in the profile is

played by the D3/D(–1) open string moduli, instead of the closed string moduli, as in the

present situation.

The twisted fields in the R/R sector also couple to the open string excitations through

disk diagrams analogous to the one in (3.1). It turns out that the only non-zero diagrams

of this type involve the diagonal entries of the longitudinal components A1 and Ā1 of

the gauge connection and do not depend on the transverse momentum ~k?. Thus, these

diagrams are not tadpoles and do not lead to the emission of open string fields with a

non-trivial profile; instead, they account for some terms of the defect e↵ective action, and

in particular, correspond to the ✓-terms of (3.5). This implies that the parameters ⌘I arise

from the twisted R/R background fields.

The description of the monodromy defects that we propose is analogous to the holo-

graphic description of defects given by [25, 26] in terms of bubbling geometries. Also in

that case one gives a bulk description of the defect that accounts for all of its parameters

in terms of a closed string background. The orbifold description that we will discuss in

7We use the complex notation A =
P2

i=1

⇣
Aidz̄i + Āidzi

⌘
to facilitate the comparison with (3.1).
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the following is however quite di↵erent since it makes use of perturbative string theory

and world-sheet conformal field theory tools.

The perturbative string theory realization of a non-trivial sector of the gauge theory that

we have described bears many analogies with the explicit derivation of the gauge instanton

profiles from D3/D-instanton systems [49–51] via the emission of open strings from disk

diagrams with mixed boundary conditions [37]. The role of the instanton moduli is played

in the construction of the surface defect by the insertion of the twisted closed string at zero

momentum.
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Chapter 4

Surface operators using Z2 orbifold

In this section, we will consider the particular case M = 2, corresponding to simple

defects. This case allows us to illustrate all the ingredients and mechanisms involved in

our proposal, while at the same time avoiding some of the more technical issues related

to the general ZM orbifold.

4.1 Closed strings in the Z2 orbifold

We consider Type II B string theory propagating in a 10d target space given by the orbifold

C(1) ⇥
C(2) ⇥ C(3)

Z2
⇥ C(4) ⇥ C(5) . (4.1)

The i-th complex plane C(i) is parametrized by the complex coordinates zi and z̄i defined

as

zi =
x2i�1 + i x2i
p

2
and z̄i =

x2i�1 � i x2i
p

2
(4.2)
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in terms of the ten real coordinates xµ, and the non-trivial element of the Z2 orbifold group

acts as follows

(z2, z3) �! (�z2,�z3) and (z̄2, z̄3) �! (�z̄2,�z̄3) . (4.3)

This breaks the SO(4) ' SU(2)+⌦SU(2)� isometry of the spaceC(2)⇥C(3) down to SU(2)+.

To describe closed strings in the orbifold (1.1) we use a complex notation analogous to

the one in (4.2). We denote the left-moving bosonic string coordinates as Zi(z) and Z̄i(z),

and the right-moving ones as eZi(z̄) and
e
Z

i
(z̄). Here, z and z̄ are the complex coordinates

that parametrize the world-sheet of the closed strings. In a similar way, we introduce

the complex world-sheet fermionic coordinates  i(z) and  
i
(z), and their right-moving

counterparts e i(z̄) and
f
 

i
(z̄). In all of our string computations we will use the convention

that 2⇡↵0 = 1.

For the Z2 orbifold under consideration, the Hilbert space of the closed string, in addition

to the usual untwisted sector, possesses one twisted sector, associated to the non-trivial

conjugacy class of Z2. In the following, we are going to briefly review1 the main properties

of this twisted sector which will play a crucial role in our analysis.

4.1.1 Twisted closed string sectors

In the twisted sector the left-moving bosonic string coordinates Z2 and Z3 has the follow-

ing anti-periodicity:

Z2(e2⇡i z) = �Z2(z) and Z3(e2⇡i z) = �Z3(z) . (4.4)

1See for instance [3, 38, 52] for more detailed accounts of various properties of the CFT on a C2/�
orbifold space.
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Of course, the same happens for the complex conjugate coordinates Z
2
(z) and Z

3
(z). The

vacuum for these twisted bosonic fields is created by the operator

�(z) = �2(z)�3(z) , (4.5)

where �2(z) and �3(z) are the twist fields [5] in the complex directions 2 and 3. Each of

these twist fields is a conformal operator of weight 1/8 so that �(z) has weight 1/4.

A completely analogous construction can be made in the right-moving sector, where one

has

eZ2(e2⇡i z̄) = �eZ2(z̄) and eZ3(e2⇡i z̄) = �eZ3(z̄) , (4.6)

and similarly for their complex conjugates. Correspondingly, one defines the right-moving

twist field e�(z̄) of dimension 1/4.

As far as the fermionic coordinates are concerned, one has

 2(e2⇡i z) = ⌥ 2(z) and  3(e2⇡i z) = ⌥ 3(z) , (4.7)

where the upper signs refer to the NS sector and the lower ones to the R sector. The

complex conjugate coordinates  
2
(z) and  

3
(z) have similar monodromy properties. In

the right-moving sector, the fermionic fields are such that

e 2(e2⇡iz̄) = ⌥ e 2(z̄) and e 3(e2⇡iz̄) = ⌥ e 3(z̄) , (4.8)

with similar expressions for the complex conjugate coordinates
f
 

2
(z̄) and

f
 

3
(z̄).

As a consequence of these monodromy properties, in the expansion of the various fields

the moding is shifted by 1/2 with respect to their untwisted values. In particular, the

bosonic fields Z2, Z3, Z
2

and Z
3

have half-integer modes, while the fermions  2,  3,  
2
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and  
3

are integer moded in the NS sector, and half-integer moded in the R sector. The

same is true, of course, for their right-moving counterparts.

Massless states in the NS/NS sector

Since in the NS sector the fermionic coordinates along directions 2 and 3 are periodic

and possess zero-modes, the vacuum of the world-sheet theory of the fields  2 and  3 is

degenerate and carries a representation of the 4d Cli↵ord algebra formed by their zero-

modes. With respect to the SO(4) isometry of C(2) ⇥ C(3), these zero-modes build a 4d

Dirac spinor, which decomposes into its chiral and anti-chiral parts: (2, 1) � (1, 2). Given

our choice for the embedding of the Z2 action into SO(4), the anti-chiral part (1, 2) is

not invariant under the orbifold and is projected out. Therefore, we just remain with the

chiral spinor (2, 1), whose two components are labeled by an index ↵. From the world-

sheet point of view, this chiral spinor is created by a 4d chiral spin field [9, 10]

S ↵(z) (4.9)

which is a conformal field of weight 1/4.

Due to the twisted boundary conditions (4.4), the bosonic coordinates Z2 and Z3 along the

orbifold do not possess zero-modes. The momentum can only be defined in the directions

Z1, Z4 and Z5 that have the standard behavior. We find it convenient to use a complex

notation for the momentum analogous to the one in (4.2), and thus we define

i =
k2i�1 + i k2i
p

2
and ̄i =

k2i�1 � i k2i
p

2
(4.10)

where k is the momentum in real notation. Then, in the twisted sector, the usual plane-

wave factor : ei k·X : that appears in the vertex operators describing string exictations is

written as follows

:ei ̄·Z(z)+i ·Z̄(z) : (4.11)
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where only 1, 4 and 5 (and their complex conjugates) are defined. The operator (4.11)

is a conformal field of weight  · ̄ = 1
2k2.

Finally, to describe physical vertex operators in the standard (�1)-superghost picture of

the NS sector, one introduces the vertex operator

:e��(z) : (4.12)

where �(z) is the field appearing in the bosonization formulas of the superghost system [9].

The operator (4.12) is a conformal field of weight 1/2.

We have now all ingredients to construct a vertex operator that describes a physical left-

moving excitation at the massless level in the NS twisted sector. This is obtained by taking

the product of the twist field (4.5), the spin field (4.9), the plane-wave factor (4.11) and

the superghost term (4.12). In this way, we obtain 2

V
↵(z) = �(z) S ↵(z) e��(z) ei ̄·Z(z)+i ·Z̄(z) , (4.13)

which is a conformal field of weight 1 if  · ̄ = 1
2k2 = 0. In the following, we will

consider the closed strings as providing a constant background for the gauge theory, and

thus in these vertex operators we will set the momentum to zero. We also observe that the

vertices (4.13) are preserved by the GSO projection of the NS sector. Indeed, the sum of

the spinor weights minus the superghost charge is an even integer.

Exploiting the conformal properties of the various factors, it is easy to check that 3

⌦
V
↵(z)V�(z0)

↵
=

(✏�1)↵�

(z � z0)2 , (4.14)

2For simplicity, from now on in all vertex operators we will suppress the : : notation, but the normal
ordering will be always present.

3Here and in the following, we understand the �-function enforcing momentum conservation.
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where

✏ =

0
BBBBBBBBB@

0 �1

+1 0

1
CCCCCCCCCA

(4.15)

is the chiral part of the charge conjugation matrix bC in four dimensions (see Appendix A.0.1

for details and our conventions).

The same construction goes through in the right-moving sector, where one finds the vertex

operators

eV↵(z̄) = e�(z̄) eS ↵(z̄) e�e�(z̄) ei ̄·eZ(z̄)+i ·ēZ(z̄) (4.16)

which have the same form of the two-point function as in (4.14) but with anti-holomorphic

coordinate dependence.

Overall, the massless spectrum in the twisted NS/NS sector contains four states described

by the vertices V↵(z) eV�(z̄) in the (�1,�1)-superghost picture. The four independent

components can be decomposed into a real scalar b and a triplet bc (with c = 1, 2, 3),

transforming, respectively, in the (1, 1) and (3, 1) representations of SO(4). They corre-

spond to the following vertex operators:

b  ! Vb(z, z̄) = i ✏↵�V↵(z) eV�(z̄) ,

bc  ! Vbc(z, z̄) = (✏ ⌧c)↵�V↵(z) eV�(z̄) ,
(4.17)

where ⌧c are the usual Pauli matrices.

Massless states in the R/R sector

In the twisted R sector, the bosonic coordinates in the complex directions 2 and 3 have, of

course, the same monodromy properties as in the NS sector, whereas the corresponding

fermionic coordinates  2,  3 and their complex conjugates are anti-periodic. This means

that in those directions the world-sheet vacuum is non-degenerate. On the contrary, the

fermionic fields  1,  4 and  5 and their complex conjugates are periodic as usual in the
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R sector and possess zero-modes. Therefore the world-sheet vacuum in this twisted sector

is degenerate and carries a representation of the 6d Cli↵ord algebra generated by the zero

modes of the periodic fermions. These form a Dirac spinor of SO(6) which decomposes

into a chiral part, transforming in the 4 of SO(6), plus an anti-chiral part transforming in

the 4̄.

From the world-sheet point of view, the chiral spinor is created by a 6d chiral spin field

[9, 10]

S A(z) , (4.18)

with A taking four values. Likewise, the anti-chiral spinor corresponds to the 6d anti-

chiral spin field

S Ȧ(z) , (4.19)

where also the dotted index Ȧ takes four values. Both S A and S Ȧ are conformal fields of

weight 3/8.

In the R sector there are two standard choices for the superghost picture: the (�1
2 )-picture

and the (�3
2 )-picture, created respectively by the operators

e�
1
2�(z) and e�

3
2�(z) , (4.20)

which are both conformal fields of weight 3/8.

The GSO projection selects the combinations S A(z) e� 1
2�(z) and S Ȧ(z) e� 3

2�(z), for which the

sum of the spinor weights minus the superghost charge is an even integer. Then, using

these ingredients we can build the following vertex operators

V
A(z) = �(z) S A(z) e�

1
2�(z) ei ̄·Z(z)+i ·Z̄(z) , (4.21a)

V
Ȧ(z) = �(z) S Ȧ(z) e�

3
2�(z) ei ̄·Z(z)+i ·Z̄(z) , (4.21b)

which are conformal fields of dimension 1 if  · ̄ = 1
2k2 = 0. From the conformal
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properties of the various components, it is easy to check that

⌦
V

A(z)VḂ(z0)
↵
=

(C�1)AḂ

(z � z0)2 , (4.22)

where C is the charge conjugation matrix of the spinor representations of SO(6) (see

Appendix A.0.2).

The same construction goes on in the right-moving sector, where one finds the vertex

operators

eVA(z̄) = e�(z̄) eS A(z̄) e�
1
2
e�(z̄) ei ̄·eZ(z̄)+i ·ēZ(z̄) , (4.23a)

eVȦ(z̄) = e�(z̄) eS Ȧ(z̄) e�
3
2
e�(z̄) ei ̄·eZ(z̄)+i ·ēZ(z̄) , (4.23b)

which have the same two-point function as in (4.22).

Using the vertex operators (4.21) and (4.23) we can study the massless spectrum of

the twisted R/R sector. In the asymmetric (�1
2 ,�

3
2 )-superghost picture the vertex oper-

atorsVA(z) eVḂ(z̄) describe R/R potentials 4 which have sixteen independent components.

These can be decomposed into a scalar c and a 2-index anti-symmetric tensor cMN of

SO(6) that correspond to the vertex operators

c  ! Vc(z, z̄) = CAḂV
A(z) eVḂ(z̄) ,

cMN  ! VcMN (z, z̄) = (C �MN)AḂV
A(z) eVḂ(z̄) ,

(4.24)

where �MN =
1
2 [�M,�N], with �M being the Dirac matrices of SO(6) (see Appendix

A.0.2).

4As shown in [53] the full BRST invariant vertex operators describing the R/R potentials in the asymmet-
ric supeghost picture are actually a sum of infinite terms with multiple insertions of superghost zero-modes.
Here we only consider the first one of these terms, since all the others decouple from the physical amplitudes
we will consider and thus can be neglected for our present purposes.
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4.2 Fractional D3-branes in the Z2 orbifold

We engineer the 4d gauge theory supporting the surface defect employing fractional D3-

branes in the Z2 orbifold background (1.1). Di↵erently from the case usually considered in

the literature [3] in which the fractional D3-branes are entirely transverse to the orbifold,

we take fractional D3-branes whose world-volume extends partially along the orbifold. In

particular, using the notation introduced in the previous section, we consider D3-branes

that extends along the complex directions 1 and 2, and are transverse to the complex

directions 3, 4 and 5. Thus, the Z2 orbifold acts on one complex longitudinal and one

complex transverse direction. This fact has two important consequences: firstly, on the

D3-brane world-volume, one finds the same content of massless fields as in N = 4 super

Yang-Mills theory; secondly, since the orbifold acts only on one of the two complex

directions of the world-volume, a 2d surface defect is naturally introduced in the gauge

theory. Our goal is to show that this defect is precisely a GW monodromy defect.

To do so we first clarify the properties of the fractional D3-branes in the Z2 orbifold from

the closed string point of view, using the boundary state formalism 5, and then from the

open string point of view by analyzing the world-volume massless fields.

4.2.1 Boundary states

In a Z2 orbifold there are two types of fractional D-branes that correspond to the two ir-

reducible representations of the orbifold group. We label these two types of D-branes by

an index I = 0, 1. The D-branes with I = 0 carry the trivial representation in which the Z2

element g is represented by +1, while the D-branes with I = 1 carry the other represen-

tation in which g is represented by �1. The two types of fractional branes therefore only

di↵er by a sign in front of the twisted sectors. With this in mind, the fractional D3-branes

5For a review on the boundary state formalism, see for example [6, 7].
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can be represented in the boundary state formalism in the following schematic way [6–8]:

|D3; Ii = N |Ui +N 0 |T; Ii with |T; Ii = (�1)I
|Ti . (4.25)

Here N and N 0 are dimensionful normalization factors related to the brane tension, and

|Ui and |Ti are the untwisted and twisted Ishibashi states that enforce the identification

between the left and right moving modes in the untwisted and twisted sectors, respec-

tively. For our purposes, we do not need to write the explicit expressions of these quanti-

ties which can be obtained by factorizing the 1-loop open-string partition function in the

closed string channel, and thus we refer to the original literature and in particular to [8],

where also the case of D3-branes partially extending along the orbifold has been con-

sidered. We do give a very brief review of the boundary state description for fractional

branes in Appendix C. However, for clarity, we recall the essential information that will

be needed in the following, namely that both |Ui and |Ti have a component in the NS/NS

sector and a component in the R/R sector and that, after GSO projection, the twisted part

of the boundary state is

|Ti = |TiNS + |TiR (4.26)

with

|TiNS = (bC�3�4)↵� |↵i |e�i + · · · , (4.27a)

|TiR = (C�1�2)AḂ |Ai |ėBi + · · · . (4.27b)

Here the kets represent the ground states created by acting on the untwisted vacuum with

the vertex operators (4.13), (4.16) of the NS/NS twisted sector and with the vertex opera-

tors (4.21a) and (4.23b) of the R/R twisted sector, namely

|↵i = lim
z!0
V
↵(z) |0i , |e�i = lim

z̄!0
eV�(z̄) f|0i , (4.28a)

|Ai = lim
z!0
V

A(z) |0i , |ėBi = lim
z̄!0

eVḂ(z̄) |e0i . (4.28b)
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In (4.27) the ellipses stand for terms involving higher excited states which will not play

any role in our analysis. We remark that the coe�cient (bC�3�4)↵� in the NS/NS compo-

nent (4.27a) is the appropriate one for our D3-branes since in the NS/NS twisted sector

the ground states are spinors of the 4d space spanned by the real coordinates x3, x4, x5

and x6, of which only the directions x3 and x4 are longitudinal to the D3-brane world-

volume. Therefore the product of the SO(4) �-matrices �3�4 must appear in the prefactor.

Notice that the GSO projection only selects the chiral block of the matrix bC�3�4, as it is

indicated by the undotted indices. Likewise, in the R/R component (4.27b) the coe�cient

(C�1�2)AḂ is due to the fact that in R/R twisted sector the ground states are spinors in the

6d space in which the real coordinates x1 and x2 belong to the D3-brane world-volume

while the real coordinates x7, x8, x9 and x10 are transverse. This explains why the prod-

uct of the SO(6) �-matrices �1�2 appears in the prefactor. Again the GSO projection

selects only the chiral/anti-chiral block of the matrix C�1�2, as indicated by the pair of

undotted/dotted indices.

Reflection rules

When the world-sheet of the closed string has a boundary, there are non-trivial 2-point

functions between the left and right moving parts. We are interested in computing these 2-

point functions for the massless fields of the twisted sectors when the boundary is created

by a fractional D3-brane of type I in the Z2 orbifold discussed in Section 4.2.

In the boundary state formalism (see for instance the reviews [6,7]) the boundary created

by a D-brane is the unit circle, i.e. the set of points corresponding to the world-sheet time

⌧ = 0 where the boundary state is inserted. The points inside the unit circle define the disk

D. When we insert a closed string inside D, the left and right moving modes are reflected

at the boundary, and a non-vanishing correlator between them arises. For example, con-

sidering the twisted NS/NS sector and in particular the massless states described by the
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vertex operators (4.17) in the presence of a fractional D3-brane of type I, we have

hV
↵(w) eV�(w̄)iI = hT ; I| V↵(w) eV�(w̄) |0i|e0i

= (�1)I
NShT | V↵(w) eV�(w̄) |0i|e0i

(4.29)

for w and w̄ 2 D. Here we have used the boundary state to represent the fractional D3-

brane of type I (see (4.25)) and taken into account that only the NS component of its

twisted part is relevant for the calculation. As in the main text, |0i and f|0i denote the left

and right vacua.

On the other hand, conformal invariance implies that the disk 2-point function ofV↵ and

eV�, which are conformal fields of weight 1, has the following form

hV
↵(w) eV�(w̄)iI =

M↵�
I

(1 � ww̄)2 (4.30)

where M↵�
I is a constant to be determined. Combining (4.29) and (4.30), we easily see

that

M↵�
I = lim

w!0
lim
w̄!0
hV

↵(w) eV�(w̄)iI = (�1)I
NShT |↵i|e�i (4.31)

where |↵i and |e�i are the left and right ground states defined in (4.28a). Thus, the disk

2-point function (4.30) becomes

hV
↵(w) eV�(w̄)iI = (�1)I NShT |↵i|e�i

(1 � ww̄)2 . (4.32)

Let us now map this result to the complex plane by means of the Cayley map

w =
z � i
z + i

, w̄ =
z̄ + i
z̄ � i

. (4.33)

Notice that w is mapped to the upper half-complex plane and w̄ to the lower half. Then,
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we have

hV
↵(z) eV�(z̄)iI = hV↵(w) eV�(w̄)iI

dw
dz

dw̄
dz̄
= (�1)I+1 NShT |↵i|e�i

(z � z̄)2 . (4.34)

Comparing with (4.14) and using the so-called doubling trick, we are led to introduce the

following reflection rule

eV�(z̄) �! (RI)��V
�(z̄) (4.35)

with

(RI)�� = (�1)I bC�↵ NShT |↵i|e�i = (�1)I+1 "�↵ NShT |↵i|e�i (4.36)

where in the second step we have used the fact that the chiral part of the charge conjuga-

tion matrix is ✏ (see A.5)). Using the expression (4.27a) for the twisted boundary state in

the NS/NS sector, it is easy to show that

NShT |↵i|e�i = (�4�3 bC�1)�↵ . (4.37)

Inserting this into (4.36), we find

(RI)�� = (�1)I(�4�3)�� (4.38)

in agreement with (4.44a) of the main text.

The reflection matrix for the R sector can be obtained in the same way. Indeed, in the

presence of a D3-brane of type I the left and right-moving vertex operators VA and eVḂ

have the following 2-point function

hV
A(z) eVḂ(z̄)iI = (�1)I+1 RhT |Ai|ėBi

(z � z̄)2 . (4.39)
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Comparing with (4.22), we are led to introduce the reflection rule

eVḂ(z̄) �! (RI)Ḃ
ĊV

Ċ(z̄) (4.40)

such that

(RI)Ḃ
Ċ = (�1)I+1 CĊA RhT |Ai|ėBi . (4.41)

From the expression (4.27b) for the twisted boundary state in the R/R sector, one can

show that

RhT |Ai|ėBi = (�2�1C�1)ḂA . (4.42)

Inserting this into (4.41), we therefore find

(RI)Ḃ
Ċ = (�1)I(�1�2)Ḃ

Ċ (4.43)

in agreement with (4.44b) of the main text.

The boundary state |D3; Ii introduces a boundary on the closed string world-sheet along

which the left and right moving modes are identified. From (4.27) one can derive that the

right moving parts of the twisted closed string vertex operators are reflected on a boundary

of type I with the following rules

eV↵(z̄) �! (�1)I(�4�3)↵�V
�(z̄) , (4.44a)

eVȦ(z̄) �! (�1)I(�1�2)Ȧ
ḂV

Ḃ(z̄) . (4.44b)

These reflection rules will be important in computing closed string amplitudes involving

twisted fields in the presence of the fractional D3-branes.
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4.2.2 The open string spectrum

We now analyze the spectrum of the massless excitations defined on the world-volume of

the fractional D3-branes. For definiteness, we take a fractional D3-brane of type 0, but of

course completely similar considerations apply to a D3-brane of type 1. Since the world-

volume extends in the first two complex directions and the orbifold acts on the second one,

it is convenient, as remarked at the start of Section 3.1, to distinguish the directions that are

along and transverse to the orbifold. We will label the longitudinal variables (momentum,

coordinates, and so on) by a subscript k, which involves the components along the first

complex direction. We will similarly use the subscript? to label the components along the

second complex direction. The reason for these labels is that the first complex direction

is longitudinal to the surface defect that the D3-branes realize, while the second direction

is transverse to it. In particular, using the complex notation introduced in Section 4.1, we

define the combinations
k ·Zk = 1 Z

1
+ 1 Z1 ,

? ·Z? = 2 Z
2
+ 2 Z2 ,

(4.45)

and
k · k = 1 

1
+ 1 

1 ,

? · ? = 2 
2
+ 2 

2 .
(4.46)

Notice that under the Z2 orbifold parity, k ·Zk and k · k are even, while ? ·Z? and ? · ?

are odd.

Let us consider the bosonic NS sector. In the familiar case when the D3-branes are com-

pletely transverse to the orbifold, the gauge vector field Aµ is typically represented in the

(0)-superghost picture by the standard vertex operator

�
i @Xµ + k ·   µ

�
ei k·X . (4.47)

In our case things are di↵erent. First of all, in the plane wave factor ei k·X we have to dis-
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tinguish the parallel and perpendicular parts which behave di↵erently under the orbifold,

and thus we are naturally led to consider the following structures

cos(? ·Z?) ei k·Zk ,

i sin(? ·Z?) ei k·Zk ,
(4.48)

which are respectively even and odd under Z2. Therefore, they can be combined with

other even and odd structures to make invariant vertex operators selected by the orbifold

projection. Similarly, also the k ·  combination appearing in (4.47) has to be split into a

parallel and a perpendicular component.

Applying these considerations, it is not di�cult to realize that the gauge field A1 along

the parallel directions is described by the following vertex operator in the (0)-superghost

picture 6

A1 �! VA1 =
h�

i @Z1 + k · k 
1� cos(? ·Z?) + i ? · ? 1 sin(? ·Z?)

i
ei k·Zk . (4.49)

Each term in this expression is invariant under Z2. For instance, the terms i @Z1 or k· k 1,

which are Z2-even, are multiplied with the cosine combination cos(?Z?) which is also

even, so that the product is invariant under the orbifold action. Similarly, the odd term

?· ? 1 is multiplied by the sine combination sin(?·Z?), which is also odd, to make an

even expression under Z2. Furthermore, it is easy to check that VA1 is a conformal field

of weight 1 if  · ̄ = 1
2k2 = 0. The vertex operator for the complex conjugate component

A1 of the gauge field is simply obtained by replacing @Z1 with @Z
1

and  1 with  
1

in the

above expression.

The gauge field A2 along the second complex direction of the D3-brane world-volume is

6We consider the (0)-superghost picture since it is the relevant one for the applications discussed in
Section 4.3, but of course our analysis can be done also in any other superghost picture of the NS sector.
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instead described by the following vertex operator

A2 �! VA2 =
h�

i @Z2 + k · k 
2� i sin(? ·Z?) + ? · ? 2 cos(? ·Z?)

i
ei k·Zk . (4.50)

Notice that the position of the cosine and sine combinations is di↵erent with respect to

(5.95), but this is precisely what is needed to obtain an invariant vertex in this case. Again

this vertex is a conformal field of weight 1 if the field is massless. The operator describing

the complex conjugate component Ā2 is obtained by replacing @Z2 with @Z
2

and  2 with

 
2

in (5.96).

Let us now consider the massless scalar fields. Without the orbifold, on the D3-brane

world-volume there are three complex scalars that together with the gauge vector provide

the bosonic content of the N = 4 vector multiplet. When the orbifold acts entirely in

the transverse directions, only one of these scalars remains in the invariant spectrum, thus

reducing the supersymmetry fromN = 4 toN = 2. In our case, instead, when the orbifold

acts partially along the world-volume, all three complex scalars remain. Denoting them

by � and �r with r = 4, 5, they are described by the following three Z2-invariant vertices

� �! V� =
h�

i @Z3 + k · k 
3� i sin(? ·Z?) + ? · ? 3 cos(? ·Z?)

i
ei k·Zk . (4.51)

and

�r �! V�r =
h�

i @Zr + k · k 
r� cos(? ·Z?) + i ? · ? r sin(? ·Z?)

i
ei k·Zk . (4.52)

Since the scalars are massless, these vertices are conformal operators of weight 1.

A similar analysis can be repeated also for the fermionic R sector, where one can find

sixteen massless fermions that are the supersymmetric partners of the bosonic fields listed

above.

In conclusion, we see that when the fractional D3-branes extend partially along the orb-
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ifold, the latter does not project the open string spectrum by removing some excitations,

as it does when the fractional D3-branes are totally transverse, but instead it reorganizes

the fields in such a way that they behave di↵erently along the k and ? subspaces into

which the 4d world-volume of the D3-branes is divided. Another piece of evidence for

the defect interpretation is the 1-loop open string partition function [8], which receives

contributions both from modes that propagate in all four dimensions of the world-volume

and also from modes that propagate only in the k subspace. This is precisely what one

expects for a surface defect in the 4d gauge theory, extended along the k subspace. More-

over, if we consider a system made of n0 fractional D3-branes of type 0 and n1 fractional

D3-branes of type 1, we engineer a 4d theory with gauge group U(n0 + n1) broken to the

Levi group U(n0)⇥U(n1) at the orbifold fixed plane. In the case of special unitary groups,

the overall U(1) factor has to be removed.

4.3 Open/closed correlators

Our next step is to show that there are non-vanishing interactions between the twisted

closed string sectors discussed in Section 4.1 and the open string fields introduced in the

previous section. In particular, we will show that there are non-vanishing amplitudes

corresponding to the diagram represented in (3.1). The reason why such open/closed

amplitudes exist is that a D-brane inserts a boundary in the closed string world-sheet

along which the left- and right-moving modes are identified. Thus, the two components

of the closed string vertex operators e↵ectively behave as two open string vertices which

can have a non-vanishing interaction with a third open string vertex operator describing

an excitation of the gauge theory on the brane word-volume. In the following, we are

going to systematically compute these open/closed string amplitudes, starting from the

twisted NS/NS sector.
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4.3.1 Correlators with NS/NS twisted fields

As we discussed in the Section 5.1.3, in the twisted NS/NS sector the fermionic fields in

the 4d space where the Z2 orbifold acts have zero modes that build a spinor representation

of SO(4). A fractional D3-brane that partially extends along the orbifold breaks this SO(4)

into SO(2)⇥SO(2). In this breaking, the singlet b remains, while the triplet bc 2 (3, 1)

decomposes into a scalar b0 and a doublet b± of complex conjugate fields. The vertex

operators corresponding to these four fields can be read from (4.17), which we rewrite

here for convenience

b  ! Vb(z, z̄) = i ✏↵�V↵(z) eV�(z̄) , (4.53a)

b0  ! Vb0(z, z̄) = (✏⌧3)↵�V↵(z) eV�(z̄) , (4.53b)

b±  ! Vb±(z, z̄) = (✏⌧±)↵�V↵(z) eV�(z̄) (4.53c)

where ⌧± = (⌧1 ± i ⌧2)/2. Since we are going to regard the closed string fields as a

background for the open string excitations, in all vertices (4.53) we set the momentum to

zero.

Correlators with b

We begin by evaluating the couplings of the massless open string fields of a fractional

D3-brane of type I with the scalar b. These are given by

⌦
Vopen

↵
b;I = b

Z
dz dz̄ dx
dVproj

⌦
Vb(z, z̄)Vopen(x)

↵
I (4.54)

whereVopen stands for any of the vertex operators described in Section 5.2.2 and

dVproj =
dz dz̄ dx

(z � z̄)(z̄ � x)(x � z)
(4.55)
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is the projective invariant volume element. In (4.54) the integrals are performed on the

string word-sheet. In particular z and z̄, where the close string vertex operator is inserted,

are points in the upper and lower half complex plane, respectively, while x is a point on

the real axis from which the open string is emitted. The integrand of (4.54) is

⌦
Vb(z, z̄)Vopen(x)

↵
I = i ✏↵�

⌦
V

↵(z) eV�(z̄)Vopen(x)
↵

I

= (�1)I i ✏↵�(�4�3)��
⌦
V

↵(z)V�(z̄)Vopen(x)
↵

(4.56)

where the second line follows from the reflection rules (4.44a). Our task is therefore

to compute the three-point functions
⌦
V

↵(z)V�(z̄)Vopen(x)
↵

for the various open string

fields.

Let us start with the components of the gauge field that are longitudinal to the defect.

These are described by the vertex operator (5.95). Factorizing the resulting amplitude in

a product of correlation functions for the independent conformal fields, we find

⌦
V

↵(z)V�(z̄)VA1(x)
↵
=

⌦
e��(z) e��(z̄)↵ (4.57)

⇥

h
i
⌦
@Z1(x)ei k·Zk(x)↵⌦�(z)�(z̄) cos(k? ·Z?)(x)

↵⌦
S ↵(z)S �(z̄)

↵

+
⌦
ei k·Zk(x)↵⌦�(z)�(z̄) cos(k? ·Z?)(x)

↵⌦
S ↵(z)S �(z̄)

↵⌦
k · k(x) 1(x)

↵

+ i
⌦
ei k·Zk(x)↵⌦�(z)�(z̄) sin(k? ·Z?)(x)

↵⌦
S ↵(z)S �(z̄) ? · ?(x)

↵⌦
 1(x)

↵i
.

It is not di�cult to realize that in each of the three lines in square brackets, there is always

one factor that vanishes due to normal ordering. For example, in the first line it is the

term containing i @Z1 that vanishes, while in the second and third line it is the last factor

involving the fermionic field  1 that gives zero. Therefore,

⌦
V

↵(z)V�(z̄)VA1(x)
↵
= 0 , (4.58)

74



so that
⌦
VA1

↵
b;I = 0 . (4.59)

Let us now consider the components of the gauge field that are transverse to the defect.

Using the corresponding vertex operator (5.96), we obtain

⌦
V

↵(z)V�(z̄)VA2(x)
↵
=

⌦
e��(z) e��(z̄)↵⌦ei k·Zk(x)↵ (4.60)

⇥

h
�

⌦
�(z)�(z̄) @Z2(x) sin(k? ·Z?)(x)

↵⌦
S ↵(z)S �(z̄)

↵

+ i
⌦
�(z)�(z̄) sin(k? ·Z?)(x)

↵⌦
k · k(x)

↵⌦
S ↵(z)S �(z̄) 2(x)

↵

+
⌦
�(z)�(z̄) cos(k? ·Z?)(x)

↵⌦
S ↵(z)S �(z̄) ? · ?(x) 2(x)

↵i
.

As before, in the first and second lines inside the square brackets there are vanishing

factors; instead, the third line is not zero and we remain with

⌦
V

↵(z)V�(z̄)VA2(x)
↵
=

⌦
e��(z) e��(z̄)↵⌦ei k·Zk(x)↵⌦�(z)�(z̄) cos(k? ·Z?)(x)

↵

⇥
⌦
S ↵(z)S �(z̄) ? · ?(x) 2(x)

↵
.

(4.61)

Each correlator in this expression can be easily evaluated using standard conformal field

theory methods; in particular we have

⌦
e��(z) e��(z̄)↵ =

1
z � z̄

, (4.62a)

⌦
ei k·Zk(x)↵ = �(2)(k) , (4.62b)

⌦
�(z)�(z̄) cos(k? ·Z?)(x)

↵
=

1
(z � z̄) 1

2
, (4.62c)

⌦
S ↵(z)S �(z̄) m(x) n(x)

↵
=

1
2

(�n�m bC�1)↵�

(z � z̄)� 1
2 (z � x)(z̄ � x)

. (4.62d)
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The last correlator implies that

⌦
S ↵(z)S �(z̄) ? · ?(x) 2(x)

↵
= i 2

⌦
S ↵(z)S �(z̄) 3(x) 4(x)

↵

= i
2

2
(�4�3 bC�1)↵�

(z � z̄)� 1
2 (z � x)(z̄ � x)

.
(4.63)

Putting everything together, we obtain

⌦
V

↵(z)V�(z̄)VA2(x)
↵
= i

2

2
(�4�3 bC�1)↵�

(z � z̄)(z � x)(z̄ � x)
�(2)(k) . (4.64)

Inserting this result in (4.56) and performing the corresponding �-matrix algebra, in the

end we find
⌦
VA2

↵
b;I = (�1)I+1 b 2 �

(2)(k) . (4.65)

As is clear from this expression, the momentum conservation occurs only in the longi-

tudinal directions, whereas the transverse momenta 2 and ̄2 can be arbitrary. This fact

implies that (4.65) can be interpreted as a tadpole-like source for the gauge field A2 which

acquires a non-trivial profile in the transverse space. We will explicitly compute this

profile in the following section.

The calculation of the couplings of b with the complex scalar � gauge theory proceeds

along the same lines. One finds that the only non-vanishing contribution to the correlation

function is given by

⌦
V

↵(z)V�(z̄)V�(x)
↵
=

⌦
e��(z) e��(z̄)↵⌦ei k·Zk(x)↵⌦�(z)�(z̄) cos(k? ·Z?)(x)

↵

⇥
⌦
S ↵(z)S �(z̄) ? · ?(x) 3(x)

↵
.

(4.66)

The last factor is easily computed using (4.62d) with the result

⌦
S ↵(z)S �(z̄) ? · ?(x) 3(x)

↵
=
2

4

�
(�5 + i �6)(�3 � i �4)bC�1�↵�

(z � z̄)� 1
2 (z � x)(z̄ � x)

+
̄2

4

�
(�5 + i �6)(�3 + i �4)bC�1�↵�

(z � z̄)� 1
2 (z � x)(z̄ � x)

.

(4.67)
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This implies that

⌦
V

↵(z)V�(z̄)V�(x)
↵
=

h� 2
4 (�5 + i �6)(�3 � i �4) + ̄2

4 (�5 + i �6)(�3 + i �4)
� bC�1

i↵�

(z � z̄)(z � x)(z̄ � x)
�(2)(k) .

(4.68)

When we plug this expression into (4.56) and perform the resulting �-matrix algebra we

get zero, so that
⌦
V�

↵
b;I = 0 (4.69)

Finally, considering the scalars �r, we find that

⌦
V

↵(z)V�(z̄)V�r (x)
↵
= 0 (4.70)

since, like for A1, the resulting correlator always contains a vanishing factor. Therefore,

⌦
V�r

↵
b;I = 0 . (4.71)

Correlators with b0

Let us now consider the couplings with the twisted scalar b0 whose vertex operator (4.53b)

has the polarization ✏⌧3. The vanishing of the correlators (4.58) and (4.70) shows that A1

and �r do not couple to any NS/NS twisted field, including b0. Also the non-vanishing

correlators (4.64) and (4.68) give a zero result for b0 due to the �-matrix algebra. Therefore

the field b0 does not couple to any of the massless open string fields of the gauge theory:

⌦
VA1

↵
b0;I =

⌦
VA2

↵
b0;I =

⌦
V�

↵
b0;I =

⌦
V�r

↵
b0;I = 0 . (4.72)

Correlators with b±

The couplings of the doublet b± with the open string fields can be computed along the

same lines. We simply have to use the correlators (4.58), (4.64), (4.68) and (4.70) and the
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polarizations (✏⌧±) corresponding to b±. Proceeding in this way we find

⌦
VA1

↵
b±;I =

⌦
VA2

↵
b±;I =

⌦
V�

↵
b�;I =

⌦
V�r

↵
b±;I = 0 . (4.73)

The vanishing of the coupling of A2 with b± and of the coupling of � with b� is again

due to the structure of the resulting combinations of �-matrices which have a vanishing

trace. On the other hand, the terms proportional to ̄2 in (4.68) yield a non-zero result

when contracted with the polarization of b+, leading to

⌦
V�

↵
b+;I = (�1)I+1 i b+ ̄2 �

(2)(k) . (4.74)

4.3.2 Correlators with R/R twisted fields

For the twisted fields of the R/R sector discussed in Section 4.1.1, the twisted R/R sector

the fermionic fields possess zero modes in the six dimensions that are orthogonal to the

Z2 orbifold. They realize spinor representations of SO(6), but when a fractional D3-brane

is inserted, this group is broken to SO(2)⇥SO(4). We are interested in giving a constant

background value to some scalars that remain after this breaking. The scalar c obviously

remains, while the anti-symmetric tensor cMN 2 15 decomposes in various representations

of the unbroken subgroup. In particular, we will consider only the component c12 which

is a scalar of SO(2)⇥SO(4) that we denote c0. The vertex operators corresponding to c

and c0 are given in (4.24) which we rewrite here for convenience:

c  ! Vc(z, z̄) = CAḂV
A(z) eVḂ(z̄) , (4.75a)

c0  ! Vc0(z, z̄) = (C �12)AḂV
A(z) eVḂ(z̄) . (4.75b)

Again we take these vertices at zero momentum since we want to regard the closed string

fields as a constant background.
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Correlators with c

The mixed correlators between the R/R twisted scalar c and the open string massless fields

of a D3-brane of type I are given by

⌦
Vopen

↵
c;I = c

Z
dz dz̄ dx
dVproj

⌦
Vc(z, z̄)Vopen(x)

↵
I (4.76)

with

⌦
Vc(z, z̄)Vopen(x)

↵
I = CAḂ

⌦
V

A(z) eVḂ(z̄)Vopen(x)
↵

I

= (�1)I CAḂ(�1�2)Ḃ
Ċ

⌦
V

A(z)VĊ(z̄)Vopen(x)
↵
.

(4.77)

where the last step follows from the reflection rules (4.44b).

The first coupling we consider is the one with the gauge field A1. Using the vertex operator

(5.95) we find that there is only a single structure contributing to the amplitude, namely

⌦
V

A(z)VĊ(z̄)VA1(x)
↵
=

⌦
e�

1
2�(z) e�

3
2�(z̄)↵⌦ei k·Zk(x)↵⌦�(z)�(z̄) cos(k? ·Z?)(x)

↵

⇥
⌦
S A(z)S Ċ(z̄) k · k(x) 1(x)

↵
.

(4.78)

The second and third factors are given in (4.62b) and (4.62c), while the other factors are

obtained from the standard conformal field theory results, namely

⌦
e�

1
2�(z) e�

3
2�(z̄)↵ =

1
(z � z̄) 3

4
, (4.79a)

⌦
S A(z)S Ċ(z̄) M(x) N(x)

↵
=

1
2

(�M�NC�1)AĊ

(z � z̄)� 1
4 (z � x)(z̄ � x)

. (4.79b)

The last correlator implies that

⌦
S A(z)S Ċ(z̄) k · k(x) 1(x)

↵
= i 1

⌦
S A(z)S Ċ(z̄) 1(x) 2(x)

↵

= i
1

2
(�1�2C�1)AĊ

(z � z̄)� 1
4 (z � x)(z̄ � x)

(4.80)
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so that from (4.78) we get

⌦
V

A(z)VĊ(z̄)VA1(x)
↵
= i

1

2
(�1�2C�1)AĊ

(z � z̄)(z � x)(z̄ � x)
�(2)(k) . (4.81)

Plugging this expression into (4.76) and performing the algebra on the �-matrices in the

end we obtain
⌦
VA1

↵
c;I = (�1)I+1 2 i c 1 �

(2)(k) . (4.82)

There are no other non-trivial couplings of c since for A2, � and �r the three-point func-

tions vanish at the level of conformal field theory correlators, namely

⌦
V

A(z)VĊ(z̄)VA2(x)
↵
=

⌦
V

A(z)VĊ(z̄)V�(x)
↵
=

⌦
V

A(z)VĊ(z̄)V�r (x)
↵
= 0 . (4.83)

Obviously this implies that

⌦
VA2

↵
c;I =

⌦
V�

↵
c;I =

⌦
V�r

↵
c;I = 0 . (4.84)

Correlators with c0

In this case we can be extremely brief since the scalar c0 does not couple to any of the

massless bosonic open string fields. Indeed we have

⌦
VA1

↵
c0;I =

⌦
VA2

↵
c0;I =

⌦
V�

↵
c0;I =

⌦
V�r

↵
c0;I = 0 . (4.85)

The last three equalities clearly follow from (4.83), while the vanishing of the coupling of

A1 is due to the fact that the �-matrices in the numerator of (4.81) give a zero result when

they are contracted with the polarization (C �12)AḂ. Thus, like b0, the scalar c0 will also

not play any role in our further analysis.
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4.4 Continuous parameters of surface operators from world-

sheet correlators

In this section, we provide an interpretation of the non-vanishing couplings between the

closed string massless fields of the twisted sectors and the massless open string fields on

the fractional D3-branes.

Field Profiles

The twisted scalar b of the NS/NS sector produces a tadpole-like source for the gauge field

A2 given in (4.65), which depends on the orthogonal momentum to the surface defect.

This source, which is localized at the orbifold fixed point where b is defined, gives rise

to a non-trivial profile for A2 in the transverse directions: This profile is obtained by

computing the Fourier transform of the tadpole after including the massless propagator

1
2(|k|2 + |?|2)

=
1

k2
1 + k2

2 + k2
3 + k2

4
. (4.86)

This procedure is the strict analog of what has been discussed in [36] for the profile of

the gravitational fields emitted by a Dp-brane and in [37] for the instanton profile of the

gauge fields of a D3-brane in the presence of D-instantons.

One new feature in this orbifold case is that for functions f+ and f� which are, respectively,

even and odd under Z2, the Fourier transform is given by

FT [ f+](z) =
Z

d2k d2?
(2⇡)2 cos(? ·z?) ei k·zk f+() ,

FT [ f�](z) =
Z

d2k d2?
(2⇡)2 i sin(? ·z?) ei k·zk f�() .

(4.87)

Let us consider for simplicity a fractional D3-brane type 0. Applying the above procedure,
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the profile of its gauge field A2 in configuration space induced by the NS/NS twisted scalar

b is

A2 =

Z
d2k d2?

(2⇡)2 i sin(? ·z?) ei k·zk

⌦
VA2

↵
b;0

2(|k|2 + |?|2)

= �i b
Z

d2?
(2⇡)2 sin(? ·z?)

2

2|?|2

(4.88)

where in the second line we have used (4.65) with I = 0 and taken into account the

�-function enforcing momentum conservation in the parallel directions to perform the

integral over k. This shows that, as anticipated, the propagation of the source is only in

the transverse directions. With a simple calculation we can see that

Z
d2?
(2⇡)2 sin(? ·z?)

2

2|?|2
=

1
4⇡z̄2

, (4.89)

so that

A2 = �
i b

4⇡z̄2
. (4.90)

The component Ā2 of the gauge field also has a non-trivial profile which is given by the

complex conjugate of (5.131).

As we have seen in the previous section, there are no other tadpole-like sources for A2, so

that (5.131) is the full result. One might think that the R/R scalar c can act as a source for

the longitudinal component A1 of the gauge field in view of (4.82). However, if one takes

into account the �-function that enforces momentum conservation along the first complex

direction, one easily realizes that this actually vanishes. Therefore, the vector field is only

sourced by the NS/NS twisted scalar b which yields (5.131) and its complex conjugate.

In conclusion, the gauge field on a fractional D3-brane of type 0 in the Z2 orbifold acquires

the following profile

A = A · dx = A2 dz̄2 + Ā2 dz2 = �
i b
4⇡

 
dz̄2

z̄2
�

dz2

z2

!
= �

b
2⇡

d✓ (4.91)

where ✓ denote the polar angle in the C(2) plane . If we take a fractional D3-brane of type
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1, we obtain the same profile but with an overall minus sign due to the di↵erent sign in

twisted component of the boundary state and in the reflection rules (see (4.44a)).

Let us now consider the scalar field �, the only other open string field that has a non-

vanishing tadpole produced by b+. Applying the same procedure discussed above and

using (4.74), for a fractional D3-brane of type 0 we obtain

� =

Z
d2k d2?

(2⇡)2 ei k·zk i sin(? ·z?)
⌦
V�

↵
b+;0

2(|k|2 + |?|2)

= b+
Z

d2?
(2⇡)2 sin(? ·z?)

̄2

2|?|2
=

b+
4⇡z2

.

(4.92)

Of course, for a fractional D3-brane of type 1 we get the same result with an overall minus

sign.

It is quite straightforward to generalize these findings to the case of a system made of n0

fractional D3-branes of type 0 and n1 fractional D3-branes of type 1, which describes a

gauge theory with group U(n0 + n1) broken to the Levi group U(n0)⇥U(n1). In fact, we

simply obtain

A = � b
2⇡

0
BBBBBBBBB@
In0 0

0 �In1

1
CCCCCCCCCA

d✓ , (4.93a)

� =
b+
4⇡

0
BBBBBBBBB@
In0 0

0 �In1

1
CCCCCCCCCA

1
z2
. (4.93b)

This is precisely the expected profile for a monodromy defect of GW type. Comparing

with (3.1) and (3.2) we see that the continuous parameters of the surface defect are related

to the background fields of the NS/NS twisted sector as follows

↵I = (�1)I+1 b
2⇡
, �I = (�1)I Re(b+)

2⇡
, �I = (�1)I Im(b+)

2⇡
. (4.94)

Notice that in our realization we have
P

I ↵I =
P

I �I =
P

I �I = 0. This is not a limitation
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since a generic GW solution can always be brought to this form by adding a U(1) term

proportional to the identity without changing the Levi subgroup U(n0) ⇥ U(n1).

To obtain the profile in the case of special unitary groups we have to remove the overall

U(1) factor. This is simply done as follows

A 7�! A � 1
n0 + n1

�
Tr A

�
In0+n1 = �

b
2⇡

0
BBBBBBBBB@

n1
n0+n1
In0 0

0 �
n0

n0+n1
In1

1
CCCCCCCCCA

d✓ , (4.95a)

� 7�! � �
1

n0 + n1

�
Tr�

�
In0+n1 =

b+
4⇡

0
BBBBBBBBB@

n1
n0+n1
In0 0

0 �
n0

n0+n1
In1

1
CCCCCCCCCA

1
z2 . (4.95b)

Let us now comment on the meaning of the result (4.82), which indicates a coupling

between the longitudinal component of the gauge field A1 and the twisted scalar c in the

R/R sector. This cannot be interpreted as a source for the gauge field A1 because it is

not proportional to the transverse momentum but to the longitudinal one, which is set

to zero by the momentum conserving �-function. However, a di↵erent and interesting

interpretation is possible. If we multiply the amplitude (4.82) and its complex conjugate

by the corresponding polarizations of the gauge field, namely Ā1 and A1, the resulting

sum can be interpreted as an e↵ective interaction term involving the gauge field strength

in the longitudinal directions. Such a term can be non-zero even in the presence of the

momentum conserving �-function provided the field strength is kept fixed. To make this

explicit, let us consider a D3-brane of type 0 and use (4.82) for I = 0. Then we have

Ā1
⌦
VA1

↵
c;0 + A1

⌦
VĀ1

↵
c;0 = �2 i c (1 Ā1 � ̄1 A1) �(2)(kk) = 2 i c eF0 �

(2)(k) (4.96)

where eF0 = ̄1 A1 � 1 Ā1 is the (momentum space) field strength in the 2d space where

the surface defect is extended. The Fourier transform of (4.96), computed according to
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(4.87), is

i c
Z

d2kk eF0 �
(2)(k) ⇥ 2 �(2)(z?) =

i c
2⇡

Z
d2xk F0 ⇥ 2 �(2)(z?) (4.97)

where F0 is the field strength in configuration space. If we assume that this 2d space

instead of being simply C is a manifold D where the gauge field strength has a non-

vanishing first Chern class, then (4.97) can be interpreted as an e↵ective interaction term

localized 7 on D, meaning that in the path-integral of the underlying (abelian) gauge theory

one has the following phase factor

exp
 

i c
2⇡

Z

D
F0

!
. (4.98)

If we extend this argument to a system made of n0 fractional D3-branes of type 0 and n1

fractional D3-branes of type 1, the phase factor becomes

exp
0
BBBBB@i

X

I

(�1)I c
2⇡

Z

D
Tr U(nI )FI

1
CCCCCA (4.99)

which has exactly the same form of the one of the GW monodromy defect given in (3.5)

with

⌘I = (�1)I c
2⇡
. (4.100)

In the case of special unitary groups, we have to remove the overall U(1) factor and this

leads to

exp
 

i c
2⇡

n1

n0 + n1

Z

D
Tr U(n0)F0 �

i c
2⇡

n0

n0 + n1

Z

D
Tr U(n1)F1

!
. (4.101)

7Notice that the term that localizes on the defect placed at the origin is 2 �(2)(z?), where the factor of 2
compensates the fact that the orbifold halves the volume of the transverse space.
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4.5 S-duality properties

We have shown that a system of n0 fractional D3-branes of type 0 and n1 fractional D3-

branes of type 1 that partially extend along a Z2 orbifold, supports a gauge theory with a

surface defect of the GW type, whose discrete data (n0, n1) are encoded in the representa-

tion of the orbifold group assigned to the fractional D3-branes and whose continuous data

are encoded in the expectation values of the closed string fields in the orbifold twisted

sectors according to

{↵I , �I , �I , ⌘I} =
n
(�1)I+1 b

2⇡
, (�1)I Re(b+)

2⇡
, (�1)I Im(b+)

2⇡
, (�1)I c

2⇡

o
. (4.102)

In the case of special unitary gauge groups, the parameters with I = 0 must be multiplied

by n1
n0+n1

and those with I = 1 by n0
n0+n1

in order to enforce the decoupling of the overall

U(1) factor.

This explicit realization of the continuous parameters of the surface defect in terms of

closed string fields allows us to also discuss how they behave under duality transforma-

tions. To do so we first recall that, from a geometric point of view, the twisted scalars b

and c arise by wrapping the NS/NS and R/R 2-form fields B(2) and C(2) of Type II B string

theory around the exceptional 2-cycle !2 at the orbifold fixed point [40, 52, 54], namely 8

b =
Z

!2

B(2) , c =
Z

!2

C(2) . (4.103)

Using this fact, we can then rewrite the parameters ↵I and ⌘I given in (4.102) in the

following suggestive way

↵I =
(�1)I+1

2⇡

Z

!2

B(2) , ⌘I =
(�1)I

2⇡

Z

!2

C(2) . (4.104)

8Note that the symbols b and c are used for closed string twisted scalars, not to be confused with
conventional notation for (b, c) ghost fields.
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These formulas, including the relative minus sign, are reminiscent of those obtained in

[25,26] where a holographic representation of the GW surface defects has been proposed

in terms of bubbling geometries, which are particular solutions of Type II B supergravity

with an AdS 5⇥S 5 asymptotic limit. Our explicit realization in terms of perturbative string

theory, however, is very di↵erent, although the identification of the parameters ↵I and ⌘I

with the holonomies of the two 2-forms of Type II B is similar.

The exceptional 2-cycle !2 has a vanishing size in the orbifold limit but when the orbifold

singularity is resolved in a smooth space, it acquires a finite size. The other three fields of

the twisted NS/NS sector, b0 and b±, correspond precisely to the blow-ups of the orbifold

fixed point [38, 54]. In particular, b0 is the Kähler modulus while b± is the complex

structure moduli of the blown-up 2-cycle. Hence they are directly related to the string-

frame metric Gµ⌫ of the Type II B string theory.

This geometric interpretation fixes the duality transformations of the twisted fields since

they are inherited from those of the parent Type II B fields from which they descend. It

is well-known 9 that under a duality transformation ⇤ =
� a b

c d
�
2 SL(2,Z) the two 2-forms

rotate among themselves according to

0
BBBBBBBBB@
C(2)

B(2)

1
CCCCCCCCCA
�!

0
BBBBBBBBB@
a b

c d

1
CCCCCCCCCA

0
BBBBBBBBB@
C(2)

B(2)

1
CCCCCCCCCA

(4.105)

while the string-frame metric Gµ⌫ transforms as

Gµ⌫ �! |c ⌧ + d|Gµ⌫ (4.106)

where ⌧ is the axio-dilaton field. Therefore, under a duality b and c rotate as in (4.105) and

b± transform as the metric in (4.106). From this and the identification (4.102), it follows

9See, for instance, [55].
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with straightforward manipulations that the surface operator parameters transform as

(↵I , ⌘I) �! (d ↵I � c ⌘I ,�b↵I + a ⌘I) ,

(�I , �I) �! |c ⌧ + d| (�I , �I)
(4.107)

Comparing with (3.7), we see that this is precisely the expected behavior of the parameters

of the GW defect as originally shown in [1]. This agreement is an important check of our

proposal for the realization of surface operators using perturbative string theory.
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Chapter 5

Surface operators using ZM orbifold

In the previous section, we already worked out this identification for the simple surface

defects that correspond to the Z2 orbifold. In this section, we extend our analysis to the

ZM orbifolds for M > 2 which can describe the most generic half-BPS surface defect

corresponding to the breaking of the U(N) gauge group to the Levi subgroup U(n0)⇥ . . .⇥

U(nM�1) with
P

I nI = N.

While the basic conceptual issues in realizing such a surface defect using fractional D3-

branes remain the same for all M, the main di↵erence with respect to ch.4 lies in the

treatment of the closed string background. For M = 2 the massless fields of the NS/NS

and R/R twisted sectors correspond to degenerate ground states and their vertex operators

are realized using spin fields [9]. This is no longer the case for M > 2 and, in fact, the

massless fields of the NS/NS sector arise from excited states created by the oscillators

of the fermionic string coordinates. Furthermore, pairs of twisted sectors are related by

complex conjugation and this turns out to play an important role in the identification of

the closed string background with the real parameters in the GW profiles.

In the ZM orbifold, there are (M�1) twisted sectors. One could treat all of them at once us-

ing the bosonization formalism [9,10], but in order to keep track of all the relative phases

it would be necessary to introduce the so-called cocycle factors. Since dealing with these
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cocycle factors is quite involved, and since the relative phases are crucial to obtain the

correct identification of the continuous parameters of the GW surface defects, we adopt

an explicit fermionic approach and use the bosonization formalism only where no phase

ambiguities arise. The advantage of this method is that the relative phases among the

contributions from di↵erent sectors are easily tracked and fixed by the fermionic statis-

tics. Moreover, in this fermionic approach we can describe the fractional D3-branes using

boundary states (for a review see for example [6, 7]). Even though the KT brane configu-

ration has not been explicitly considered so far from the boundary state point of view, we

can exploit many of the results that already exist in the literature [3,8,42,52] and general-

ize them to the present case, in which the fractional D3-branes partially extend along the

orbifold. The price we have to pay for using this fermionic approach is that we have to

distinguish between the twisted sectors and treat separately those whose twist parameter

is smaller or bigger than 1
2 .

The open string sector, instead, is similar to that of the M = 2 case. We recall that for

the KT configuration, the fractional D3-branes have the same field content as the regular

D3-branes, since in this case the orbifold does not project away any of the open string

excitations, unlike the case when the branes are entirely transverse to the orbifolded space.

Indeed, on the world-volume of the fractional D3-branes we find a gauge vector and

three complex massless scalars plus their fermionic partners. However, the corresponding

vertex operators are linear combinations that behave covariantly under the action of the

orbifold. When M > 2, these combinations are slightly more involved than for M = 2

and are written in terms of generalized plane-waves.

Once the vertex operators for the massless open and closed string states are derived, the

discussion proceeds along the same lines as in the M = 2 case, but with the important

technical di↵erences and peculiarities that we have just mentioned.

Our analysis provides an explicit realization of the monodromy defects of the N = 4

super Yang-Mills theory using perturbative string theory methods. As we discuss in the
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concluding chapter 6 we believe that this stringy realization may prove to be useful in

further investigations of surface defects and their properties, and it may even o↵er an

alternative approach to the study of extended objects in ordinary field theory through

their embedding into string theory.

5.1 Twisted closed strings in the ZM orbifold

We consider Type II B string theory on the orbifold (1.1). The i-th complex plane C(i) is

parametrized by

zi =
x2i�1 + i x2i
p

2
and z̄i =

x2i�1 � i x2i
p

2
(5.1)

where xµ are the ten real coordinates of space-time. The orbifold group ZM is generated

by an element g such that gM = 1, with the following action on z2 and z3:

g : (z2 , z3) �! (! z2 , !
�1z3) (5.2)

where

! = e
2⇡i
M . (5.3)

The action of g on z̄2 and z̄3 follows from complex conjugation. This breaks the SO(4) '

SU(2)+ ⇥ SU(2)� isometry group of C(2) ⇥ C(3) to SU(2)+.

To describe the closed strings propagating on this orbifold, we use the complex nota-

tion and denote the bosonic string coordinates by
⇢
Zi(z),Z

i
(z)

�
for the left-movers and

�eZi(z̄),
e
Z

i
(z̄)

 
for the right-movers, with z and z̄ parametrizing the closed string world-sheet.

Similarly, we denote the fermionic string coordinates by
�
 i(z),  ̄ i(z)

 
for the left-movers

and
�f i(z̄), f̄ i(z̄)

 
for the right-movers.
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5.1.1 Twisted sectors

In the ZM orbifold theory, there are (M � 1) twisted sectors labeled by the index ba =

1, . . . ,M�1. If M is odd, we can divide the twisted sectors in two sets, each one containing

M�1
2 elements. The sectors of the first set are labeled by ba = a = 1, · · · , M�1

2 and are

characterized by a twist parameter

⌫a =
a
M
<

1
2
. (5.4)

The sectors of the second set have, instead, a twist parameter

1 � ⌫a =
M � a

M
>

1
2

(5.5)

and are labeled by ba = (M � a). If M is even, in addition, there is an extra sector with

twist parameter 1
2 , which has to be treated separately. For most of the discussion, we will

assume that M is odd and briefly comment on the special case with twist 1
2 , occurring

when M is even, only at the very end, since this case has already been discussed in detail

in the previous chapter [4].

In the sectors with label a and twist parameter as in (5.4), the left-movers of the bosonic

and fermionic string coordinates satisfy the following monodromy properties on the world-

sheet:

Z2(e2⇡i z) = e2⇡i⌫a Z2(z) , Z3(e2⇡i z) = e�2⇡i⌫a Z3(z) , (5.6a)

 2(e2⇡i z) = ± e2⇡i⌫a  2(z) ,  3(e2⇡i z) = ± e�2⇡i⌫a  3(z) , (5.6b)

where the +(�) sign refers to the NS (R) sector. The analogous relations for Z
i

and  
i

can be obtained by complex conjugation. On the other hand, the right-movers satisfy the
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monodromy properties:

eZ2(e2⇡i z̄) = e�2⇡i⌫a eZ2(z̄) , eZ3(e2⇡i z̄) = e2⇡i⌫a eZ3(z̄) , (5.7a)

f 2(e2⇡i z̄) = ± e�2⇡i⌫a f 2(z̄) , f 3(e2⇡i z̄) = ± e2⇡i⌫a f 3(z̄) . (5.7b)

Again, the relations for
e
Z

i
and

f
 

i
are obtained by complex conjugation.

For the sectors with label (M � a) and twist parameter as in (5.5), similar monodromy

relations hold for the world-sheet fields but with ⌫a everywhere replaced by (1 � ⌫a).

5.1.2 Twisted NS sectors

We now turn to a discussion of the spectrum of massless string states in the various twisted

sectors, focusing mainly on the fermionic fields in the complex directions 2 and 3. In the

fermionic formalism, when the NS boundary conditions are imposed, we have to treat

separately the sectors with twist parameter smaller than 1
2 and those with twist parameter

bigger than 1
2 .

Sectors with twist parameter ⌫a <
1
2

In this case the monodromy properties (5.6b) and their complex conjugate lead to the

following mode expansions for the left-moving fermionic fields (see for example [56] and

references therein):

 2(z) =
1X

r=1/2

⇣
 

2
r�⌫a

z�r+⌫a�
1
2 +  2

�r�⌫a
zr+⌫a�

1
2
⌘
,

 
2
(z) =

1X

r=1/2

⇣
 2

r+⌫a
z�r�⌫a�

1
2 +  

2
�r+⌫a

zr�⌫a�
1
2
⌘
,

(5.8)
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and

 3(z) =
1X

r=1/2

⇣
 

3
r+⌫a

z�r�⌫a�
1
2 +  3

�r+⌫a
zr�⌫a�

1
2
⌘
,

 
3
(z) =

1X

r=1/2

⇣
 3

r�⌫a
z�r+⌫a�

1
2 +  

3
�r�⌫a

zr+⌫a�
1
2
⌘
.

(5.9)

The oscillators  2
�r�⌫a

,  
2
�r+⌫a

,  3
�r+⌫a

and  
3
�r�⌫a

are creation modes acting on the twisted

vacuum of the a-th sector which we denote by |⌦ai. Such a state is defined by

|⌦ai = lim
z!0

�a(z) sa(z) |0i (5.10)

where |0i is the Fock vacuum and �a(z) and sa(z) are, respectively, the bosonic and

fermionic twist fields [5]. More precisely, these twist fields take the form

�a(z) = �2
⌫a

(z)�3
1�⌫a

(z) and sa(z) = s2
⌫a

(z) s3
�⌫a

(z) , (5.11)

where the superscripts refer to the complex directions where the twist takes place, and the

subscripts indicate the twist parameters. The bosonic twist field �a(z) is a conformal field

of weight ⌫a(1 � ⌫a) while the fermionic twist field sa(w) is a conformal field of weight

⌫2
a. Therefore, the total conformal weight of the operator associated to the twisted ground

state is ⌫a. This means that |⌦ai is massive with a mass m given by

m2 = ⌫a �
1
2
< 0 . (5.12)

This tachyonic state is removed by the GSO projection.

The first set of physical states one finds in the GSO projected spectrum are those obtained

by acting with one fermionic creation mode with index r = 1
2 on the twisted vacuum. In

particular, the oscillators  3
�

1
2+⌫a

and  
2
�

1
2+⌫a

increase the energy by (1
2�⌫a) and thus, when

acting on the twisted vacuum, they create two massless states 1. The vertex operators

1The oscillators  2
�

1
2�⌫a

and  
3
�

1
2�⌫a

, instead, carry an energy ( 1
2 + ⌫a) and, upon acting on the twisted

vacuum, they create massive states with m2 = 2⌫a.
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corresponding to these massless excitations, in the (�1)-superghost picture and at zero

momentum 2, are:

V
1
a(z) = �a(z) : 3(w) sa(z) : e��(z) ,

V
2
a(z) = �a(z) : 

2
(w) sa(z) : e��(z) .

(5.13)

Here �(z) is the bosonic field appearing in the bosonization formulas of the superghosts [9]

and, as usual, the symbol : : denotes the normal ordering. The vertex operators (5.13) are

conformal fields of weight 1 and we collectively denote them asV↵
a (z) with ↵ = 1, 2. As

explained in Appendix A.0.1, they form a doublet transforming as a spinor of SU(2)+.

In the right-moving part, the monodromy properties (5.7b) lead to the following mode

expansions for the fermionic fields

f 2(z̄) =
1X

r=1/2

⇣f
 

2
r+⌫a z̄�r�⌫a�

1
2 + f 2

�r+⌫a z̄r�⌫a�
1
2
⌘
,

f
 

2
(z̄) =

1X

r=1/2

⇣f 2
r�⌫a z̄�r+⌫a�

1
2 +

f
 

2
�r�⌫a z̄r+⌫a�

1
2
⌘
,

(5.14)

and
f 3(z̄) =

1X

r=1/2

⇣f
 

3
r�⌫a z̄�r+⌫a�

1
2 + f 3

�r�⌫a z̄r+⌫a�
1
2
⌘
,

f
 

3
(z̄) =

1X

r=1/2

⇣f 3
r+⌫a z̄�r�⌫a�

1
2 +

f
 

3
�r+⌫a z̄r�⌫a�

1
2
⌘
.

(5.15)

The oscillators f 2
�r+⌫a ,

f
 

2
�r�⌫a , f 3

�r�⌫a and
f
 

3
�r+⌫a are creation modes acting on the

twisted vacuum of the right sector which we denote by |e⌦ai. This is defined by

|e⌦ai = lim
z̄!0

e�a(z̄)esa(z̄) |e0i (5.16)

2The reason to write the vertex operators at zero momentum is because, as in chapter 4, ultimately we
will be interested in describing a constant twisted closed string background to account for the continuous
parameters of the GW surface defects.
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where |e0i is the Fock vacuum of this sector and

e�a(z̄) = e� 2
1�⌫a

(z̄) e� 3
⌫a

(z̄) and esa(z̄) = es 2
�⌫a

(z̄)es 3
⌫a

(z̄) . (5.17)

The bosonic twist field e�a(z̄) is a conformal field of weight (1� ⌫a)⌫a while the fermionic

twist field esa(z̄) is a conformal field of weight ⌫2
a, so that the total conformal weight of the

operator associated to |e⌦ai is ⌫a. The right-moving ground state is then tachyonic with a

mass given by (5.12) and it is removed by the GSO projection.

The first set of physical states in the GSO projected spectrum are those created by a

fermionic creation mode with index r = 1
2 . In particular those generated by the oscillators

f 2
�

1
2+⌫a

and
f
 

3
�

1
2+⌫a

are massless since the energy carried by these modes exactly cancels

that of the vacuum. Therefore, the vertex operators at zero momentum associated to these

right-moving massless excitations in the (�1)-superghost picture are:

eV1
a(z̄) = �e�a(z̄) : f 2(z̄)esa(z̄) : e�e�(z̄) ,

eV2
a(z̄) = e�a(z̄) :

f
 

3
(z̄)esa(z̄) : e�e�(z̄) .

(5.18)

These are conformal fields of weight 1 and we collectively denote them as eV�
a(z̄) with

� = 1, 2. We point out that the � sign in the first line above is introduced because in this

way the two operators form a doublet transforming in the spinor representation of SU(2)+,

as explained in Appendix A.0.1.

Sectors with twist parameter (1 � ⌫a) > 1
2

Apart from a few subtleties, the conclusions obtained in the previous subsection for the

twisted sectors with ⌫a <
1
2 , are valid also in the twisted sectors with (1�⌫a) > 1

2 provided

one exchanges the role of the complex directions 2 and 3, and uses the sector label (M�a).

Thus, we can rather brief in our presentation.
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In the left-moving part, the fermionic creation modes are the oscillators  2
�r+⌫a

,  
2
�r�⌫a

,

 3
�r�⌫a

and  
3
�r+⌫a

where r is a positive half-integer. They act on the twisted vacuum

|⌦M�ai which is defined by

|⌦M�ai = lim
z!0

�M�a(z) sM�a(z) |0i (5.19)

with

�M�a(z) = �2
1�⌫a

(z)�3
⌫a

(z) , and sM�a(z) = s2
�⌫a

(z) s3
⌫a

(z) . (5.20)

The ground state |⌦M�ai is tachyonic with a mass given by (5.12) and is removed by the

GSO projection. At the first excited level, instead, we find two massless states created by

the oscillators  2
�

1
2+⌫a

and  
3
�

1
2+⌫a

, which correspond to the following vertex operators at

zero momentum:
V

1
M�a(z) = ��M�a(z) : 2(z) sM�a(z) : e��(z) ,

V
2
M�a(z) = �M�a(z) : 

3
(z) sM�a(z) : e��(z) .

(5.21)

These are conformal fields of weight 1 which we collectively denote as V↵
M�a(z) with

↵ = 1, 2. Again the � sign in the first line is inserted so that these two operators transform

as a doublet in the spinor representation of SU(2)+ (see Appendix A.0.1).

Finally, in the right-moving part the oscillators f 2
�r�⌫a ,

f
 

2
�r+⌫a , f 3

�r+⌫a and
f
 

3
�r�⌫a where

r is a positive half-integer, are creation modes. They act on the twisted vacuum defined

by

|e⌦M�ai = lim
z̄!0

e�M�a(z̄)esM�a(z̄) |0i (5.22)

where

e�M�a(z̄) = e� 2
⌫a

(z̄) e� 3
1�⌫a

(z̄) , and esM�a(z̄) = es 2
⌫a

(z̄)es 3
�⌫a

(z̄) . (5.23)

As before this vacuum state is tachyonic and removed by the GSO projection. On the

other hand, the states created by
f
 

2
�

1
2+⌫a

and f 3
�

1
2+⌫a

are massless and selected by the
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GSO projection. They correspond to the following vertex operators at zero momentum:

eV1
M�a(z̄) = e�M�a(z̄) : e 3(z̄)esM�a(z̄) : e�e�(z̄) ,

eV2
M�a(z̄) = e�M�a(z̄) :

f
 

2
(z̄)esM�a(z̄) : e�e�(z̄) ,

(5.24)

which are conformal fields of weight 1. We collectively denote these vertex operators as

eV�
M�a(z̄) with � = 1, 2, since they transform as a doublet of SU(2)+ (see Appendix A.0.1).

We summarize our results on the massless vertex operators of the twisted NS sectors in

Table 5.1 below.

Vertex operator State

V
1
a(z) = �a(z) : 3(z) sa(z) : e��(z)  3

�
1
2+⌫a
|⌦ai(�1)

V
2
a(z) = �a(z) : 

2
(z) sa(z) : e��(z)  

2
�

1
2+⌫a
|⌦ai(�1)

eV1
a(z̄) = �e�a(z̄) : f 2(z̄)esa(z̄) : e�e�(z̄)

�f 2
�

1
2+⌫a
|e⌦ai(�1)

eV2
a(z̄) = e�a(z̄) :

f
 

3
(z̄)esa(z̄) : e�e�(z̄) f

 
3
�

1
2+⌫a
|e⌦ai(�1)

V
1
M�a(z) = ��M�a(z) : 2(z) sM�a(z) : e��(z)

� 2
�

1
2+⌫a
|⌦M�ai(�1)

V
2
M�a(z) = �M�a(z) : 

3
(z) sM�a(z) : e��(z)  

3
�

1
2+⌫a
|⌦M�ai(�1)

eV1
M�a(z̄) = e�M�a(z̄) : f 3(z̄)esM�a(z̄) : e�e�(z̄) f 3

�
1
2+⌫a
|e⌦M�ai(�1)

eV2
M�a(z̄) = e�M�a(z̄) :

f
 

2
(z̄)esM�a(z̄) : e�e�(z̄) f

 
2
�

1
2+⌫a
|e⌦M�ai(�1)

Table 5.1: The vertex operators and the corresponding states in the left- and right-moving
parts of the various twisted NS sectors. Here the label a takes values in the range

⇥
1, M�1

2
⇤
,

and in the last column the subscript (�1) on the kets identifies the superghost picture.

Two-point functions in the twisted NS sectors

Given the explicit form of the vertex operators that we have derived, it is rather straight-

forward to compute their two-point functions. As a first step, we observe that there are no

non-vanishing correlators between left (or right) operators of the same twisted sector, due
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to the presence of the bosonic twist fields; in fact for any complex direction j one has [5]

⌦
� j
⌫a

(z1)� j
⌫b

(z2)
↵
=

�⌫b,1�⌫a

(z1 � z2)⌫a(1�⌫a) , (5.25)

and similarly in the right sector. This implies that only the correlator h�a(w1)�M�a(w2)i

is non vanishing. Therefore, only the two-point functions between vertex operators in

sectors a and (M � a) are non-zero. Another important point to consider is that these

vertex operators inherit the fermionic statistics from the fermionic fields that are present

in their definitions.

Let us then compute the two-point function betweenV1
a andV2

M�a. Using (5.25) and the

basic conformal field theory correlators

⌦
: 3(z1) sa(z1) : : 

3
(z2) sM�a(z2) :

↵
=

1
(z1 � z2)1�2⌫a(1�⌫a) ,

⌦
e��(z1) e��(z2)↵ =

1
z1 � z2

,

(5.26)

we obtain
⌦
V

1
a(z1)V2

M�a(z2)
↵
=

1
(z1 � z2)2 . (5.27)

In a similar way, using

⌦
: 

2
(z1) sa(z1) : : 2(z2) sM�a(z2) :

↵
=

1
(z1 � z2)1�2⌫a(1�⌫a) , (5.28)

and taking into account the explicit negative sign inV1
M�a, we get

⌦
V

2
a(z1)V1

M�a(z2)
↵
=

�1
(z1 � z2)2 . (5.29)

Furthermore, the two-point functions between V1
a and V1

M�a and between V2
a and V2

M�a

vanish since their fermionic charges do not match. Thus, altogether, we have

⌦
V

↵
a (z1)V�

M�a(z2)
↵
=

(✏�1)↵�

(z1 � z2)2 (5.30)
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where we have defined

✏ =

0
BBBBBBBBB@

0 �1

+1 0

1
CCCCCCCCCA
. (5.31)

By taking into account the fermionic statistics of the vertex operators and the anti-symmetry

of ✏, we also find
⌦
V

↵
M�a(z1)V�

a(z2)
↵
=

(✏�1)↵�

(z1 � z2)2 . (5.32)

Notice that (5.30) and (5.32) may be unified in a single formula by promoting the index

a to the complete index ba. This shows that despite the di↵erences in the structure of the

states and vertex operators in the fermionic formalism, all twisted sectors are actually

treated on equal footing.

Similarly, in the right-moving sector, we obtain

⌦eV↵
M�a(z̄1) eV�

a(z̄2)
↵
=

⌦eV↵
a (z̄1) eV�

M�a(z̄2)
↵
=

(✏�1)↵�

(z̄1 � z̄2)2 . (5.33)

From these two-point functions it is possible to infer the conjugate vertex operators as

follows:
�
VM�a(z)

�†
↵ = V

�
a(z) ✏�↵ ,

�
Va(z)

�†
↵ = V

�
M�a(z) ✏�↵ ,

�eVa(z)
�†
↵ =

eV�
M�a(z) ✏�↵ ,

�eVM�a(z)
�†
↵ =

eV�
a (z) ✏�↵ .

(5.34)

5.1.3 The massless NS/NS vertex operators

The massless closed string excitations in the twisted NS/NS sectors are obtained by com-

bining the left- and right-moving massless states that we have obtained in the previous

subsection. In the sectors with twist parameter ⌫a <
1
2 , they are then described by the

following vertex operators at zero momentum

b(a)
↵� V

↵
a (z) eV�

a(z̄) (5.35)
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where b(a)
↵� are four constant complex fields.

Similarly, in the sectors with twist parameter (1 � ⌫a) > 1
2 , the massless closed string

excitations are described by the vertex operators at zero momentum

b(M�a)
↵� V

↵
M�a(z) eV�

M�a(z̄) (5.36)

where again b(M�a)
↵� are four constant complex fields.

The constants b(a) and b(M�a) can be considered as a background in which the string theory

on the orbifold is defined. Given the structure of the vertex operators, there are non-trivial

relations among them. In particular, using (5.34) one finds that

⇣
b(a)
↵�V

↵
a (z) eV�

a(z̄)
⌘†
= b(M�a)

↵� V
↵
M�a(z) eV�

M�a(z̄) (5.37)

where

b(M�a)
11 = �b(a)?

22 , b(M�a)
12 = b(a)?

21 , b(M�a)
21 = b(a)?

12 , b(M�a)
22 = �b(a)?

11 , (5.38)

or, equivalently in matrix notation,

b(M�a) = ✏ b(a)? ✏ . (5.39)

These relations, which also appear in [3], show that if one turns on background values for

the closed string fields in the twisted sector a, one also turns on background values for the

fields in the twisted sector (M � a) and viceversa, in such a way that the total background

configuration is real.
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5.1.4 Twisted R sectors

The ZM orbifold (1.1) breaks the isometry of the ten-dimensional space as follows:

SO(10) �! SO(6) ⇥ SO(2) ⇥ SO(2) , (5.40)

where SO(6) acts on the first, fourth and fifth complex directions, which are not a↵ected

by the orbifold action. Correspondingly, the untwisted vacuum of the R sector which car-

ries the 32-dimensional spinor representation of SO(10) decomposes into eight massless

spinors of SO(6). Four of these are chiral and four anti-chiral. We denote the four chiral

vacuum states by
����A,±

1
2
,±

1
2

E
(5.41)

where A 2 4 labels the four di↵erent components of the chiral spinor representation of

SO(6) and the four pairs of ±1
2 denote the spinor weights along the second and third

complex directions where the orbifold acts. Similarly, the four anti-chiral vacuum states

are denoted by
����Ȧ,±

1
2
,±

1
2

E
(5.42)

where Ȧ 2 4̄ spans the four-dimensional anti-chiral spinor representation of SO(6).

In the twisted R sectors, not all such chiral and anti-chiral states remain massless. Indeed,

the fermionic twist fields change the spinor weights in the orbifolded directions, so that

conformal dimensions and the GSO parities of the corresponding vertex operators are

modified. In the following we present a brief description of the spectrum in the various

twisted R sectors, focusing on the massless excitations.

102



Sectors with twist parameter ⌫a <
1
2

In these sectors the left-moving bosonic and fermionic twist fields �a and sa are given in

(5.11). When we act with sa on the states (5.41) and (5.42), the charges in the directions

2 and 3 become

"2 = ±
1
2
+ ⌫a and "3 = ±

1
2
� ⌫a (5.43)

depending on their initial values. Because of this, not all choices of signs lead to massless

configurations. In fact, the mass vanishes only if

"2
2 = "

2
3 =

⇣1
2
� ⌫a

⌘2
. (5.44)

Combining this with (5.43), we see that the only solution is

"2 = �"3 = �
1
2
+ ⌫a , (5.45)

so that, instead of sa(z), we can consider the e↵ective fermionic twist

ra(z) = s2
⌫a�

1
2
(z) s3

�⌫a+
1
2
(z) (5.46)

which is a conformal field of weight
�1

4 � ⌫a(1 � ⌫a)
�
.

In the R sector, there are two fundamental superghost pictures that one considers: the

(�1
2 )- and the (�3

2 )-pictures [9]. Enforcing the GSO projection, in the (�1
2 )-picture one

selects the chiral spinor of SO(6), while in the (�3
2 )-picture one selects the anti-chiral one.

In this way, in fact, the sum of the spinor weights minus the superghost-charge is always

an even integer. Thus we are led to introduce the following two vertex operators at zero

momentum

V
A
a (z) = �a(z) ra(z) S A(z)e�

1
2�(z) , (5.47a)
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V
Ȧ
a (z) = �a(z) ra(z) S Ȧ(z)e�

3
2�(z) , (5.47b)

where S A and S Ȧ are, respectively, the chiral and anti-chiral spin-fields of SO(6) [9, 10].

Both vertex operators are conformal fields of weight 1 and define the following massless

twisted vacuum states:
|Aai(� 1

2 ) = lim
z!0
V

A
a (z) |0i ,

|Ȧai(� 3
2 ) = lim

z!0
V

Ȧ
a (z) |0i .

(5.48)

As far as the right-moving part is concerned, the bosonic and fermionic twist fields are

given in (5.17). Therefore, we can repeat the previous analysis by simply replacing ev-

erywhere ⌫a with (1� ⌫a). In this way we find the following two physical vertex operators

of weight 1:

eVA
a (z̄) = e�a(z̄)era(z̄) eS A(z̄) e�

1
2
e�(z̄) , (5.49a)

eVȦ
a (z̄) = e�a(z̄)era(z̄) eS Ȧ(z̄) e�

3
2
e�(z̄) , (5.49b)

where the e↵ective fermionic twist is given by

era(z̄) = es2
�⌫a+

1
2
(z̄)es3

⌫a�
1
2
(z̄) . (5.50)

The massless states corresponding to these vertex operators are

|eAai(� 1
2 ) = lim

z̄!0
eVA

a (z̄) |0i ,

|
ėAai(� 3

2 ) = lim
z̄!0

eVȦ
a (z̄) |0i .

(5.51)

Sectors with twist parameter (1 � ⌫a) > 1
2

These sectors can be described in the same manner as before by simply exchanging the

roles of the complex directions 2 and 3, and using (M�a) as twist label. Thus, we merely
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present the physical GSO projected massless vertex operators at zero momentum. In the

left-moving part they are

V
A
M�a(z) = �M�a(z) rM�a(z) S A(z) e�

1
2�(z) , (5.52a)

V
Ȧ
M�a(z) = �M�a(z) rM�a(z) S Ȧ(z) e�

3
2�(z) , (5.52b)

with

rM�a(z) = s2
�⌫a+

1
2
(z) s3

⌫a�
1
2
(z) . (5.53)

In the right-moving part, instead, they are

eVA
M�a(z̄) = e�M�a(z̄)erM�a(z̄) eS A(z̄) e�

1
2
e�(z̄) , (5.54a)

eVȦ
M�a(z̄) = e�M�a(z̄)erM�a(z̄) eS Ȧ(z̄) e�

3
2
e�(z̄) . (5.54b)

where

erM�a(z̄) = es2
⌫a�

1
2
(z̄)es3

�⌫a+
1
2
(z̄) . (5.55)

When acting on the Fock vacuum these vertex operators create the twisted ground states

which have the same expressions as in (5.48) and (5.51) with the obvious changes in

notation.

We summarize our findings in Table 5.2 below.

Two-point functions in the twisted R sectors

As we have seen in the twisted NS sectors, the only non-vanishing two-point functions

necessarily involve the left-moving (or right-moving) vertex operators in complementary

sectors a and (M � a), because of the two-point functions (5.25). Of course, the same is

true in the twisted R sectors. Furthermore, in order to soak up the background charge in

the superghost sector, only the overlaps between states in the (�1
2 )- and (�3

2 )-pictures, or

viceversa, are non-zero. Taking this into account and using standard results from confor-
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Vertex operator State

V
A
a (z) = �a(z) ra(z) S A(z)e� 1

2�(z)
|Aai(� 1

2 )

V
Ȧ
a (z) = �a(z) ra(z) S Ȧ(z)e� 3

2�(z)
|Ȧai(� 3

2 )

eVA
a (z̄) = e�a(z̄)era(z̄) eS A(z̄) e� 1

2
e�(z̄)

|eAai(� 1
2 )

eVȦ
a (z̄) = e�a(z̄)era(z̄) eS Ȧ(z̄) e� 3

2
e�(z̄)

|
ėAai(� 3

2 )

V
A
M�a(z) = �M�a(z) rM�a(z) S A(z) e� 1

2�(z)
|AM�ai(� 1

2 )

V
Ȧ
M�a(z) = �M�a(z) rM�a(z) S Ȧ(z) e� 3

2�(z)
|ȦM�ai(� 3

2 )

eVA
M�a(z̄) = e�M�a(z̄)erM�a(z̄) eS A(z̄) e� 1

2
e�(z̄)

|eAM�ai(� 1
2 )

eVȦ
M�a(z̄) = e�M�a(z̄)erM�a(z̄) eS Ȧ(z̄) e� 3

2
e�(z̄)

|
ėAM�ai(� 3

2 )

Table 5.2: The vertex operators and the corresponding states in the left- and right-moving
parts of the twisted R sectors.

mal field theory, we find

⌦
V

A
a (z1)VḂ

M�a(z2)
↵
=

⌦
V

A
M�a(z1)VḂ

a (z2)
↵
=

(C�1)AḂ

(z1 � z2)2 ,

⌦
V

Ȧ
a (z1)VB

M�a(z2)
↵
=

⌦
V

Ȧ
M�a(z1)VB

a (z2)
↵
=

(C�1)ȦB

(z1 � z2)2 ,

(5.56)

where C is the charge conjugation matrix of SO(6) (see Appendix A.0.2). Of course,

analogous correlators hold for the right-moving vertex operators.

From the first line of (5.56), we read the following conjugation rules

�
VM�a(z)

�†
Ḃ = V

A
a (z) CAḂ ,

�
Va(z)

�†
Ḃ = V

A
M�a(z) CAḂ ,

(5.57)

while from the second line we obtain the same relations with dotted and undotted indices

exchanged. The same formulas apply also for the right-moving vertices.
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5.1.5 The massless R/R vertex operators

The massless closed string excitations in the twisted R/R sectors are obtained by com-

bining left and right movers. We shall work with the asymmetric superghost pictures

(�1
2 ,�

3
2 ) or (�3

2 ,�
1
2 ), so that the corresponding closed string fields are R/R potentials. In

the twisted sector labeled by a we choose the (�1
2 ,�

3
2 )-picture and write the following

massless vertex operators at zero momentum: 3.

C
(a)
AḂ
V

A
a (z) eVḂ

a (z̄) (5.58)

where C(a)
AḂ

are sixteen constant complex fields. These constants can be considered as a

background in which the orbifold closed string theory is defined.

In the twisted sector labeled by (M � a) we choose, instead, the other asymmetric su-

perghost picture, namely the (�3
2 ,�

1
2 )-picture, and consider the following massless vertex

operators

C
(M�a)
ȦB

V
Ȧ
M�a(z) eVB

M�a(z̄) (5.59)

where C(M�a)
AḂ

are other sixteen constant complex fields contributing to the background in

which the closed string propagates.

Notice that in writing the vertex operators (5.58) and (5.59) for the twisted R/R potentials,

we have correlated the choice of picture numbers with the twisted sector. Of course, we

could have made di↵erent choices, but they would lead to the same results. In fact, it

is well-known that in a BRST invariant framework like ours, the way in which the su-

perghost pictures are distributed is completely arbitrary, provided one satisfies the global

constraints due to the presence of a background charge, and that the physical results do

3In [53] it is shown that the complete BRST invariant vertex operators in the asymmetric superghost
pictures are an infinite sum of terms characterized by the number of superghost zero modes. For our
purposes, however, only the first (and simplest) terms in these sums is relevant since all the others decouple
and thus can be discarded.
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not depend on this choice. However, our picture assignment is particularly convenient

because it immediately implies that the R/R potentials in the a-th twisted sector are natu-

rally related to those in the sector (M � a) by complex conjugation, exactly as it happens

in the twisted NS/NS sectors. Indeed, we have

⇣
C

(a)
AḂ
V

A
a (z) eVḂ

a (z̄)
⌘†
= C(M�a)

ȦB
V

Ȧ
M�a(z) eVB

M�a(z̄) , (5.60)

where, in matrix notation,

C
(M�a) = C C(a)? C , (5.61)

which is the strict analogue of (5.39) holding in the NS/NS sectors. We therefore see that

by turning on a R/R background potential value in the twisted sector a, one also turns on

a background R/R potential in the twisted sector (M�a) and viceversa, in such a way that

the total configuration is real.

5.2 Fractional D3-branes in the ZM orbifold

We now turn to discuss the open strings in the ZM orbifold with the aim of analyzing

surface defects in 4d gauge theories engineered on stacks of (fractional) D3-branes. As

is well-known, a D-brane introduces a boundary on the string world-sheet where non-

trivial relations between the left and the right movers of the closed strings take place.

We will investigate these relations using the boundary state formalism (for a review, see

for example [6, 7]) and then will analyze the massless open string spectrum on the brane

world-volume. Since our ultimate goal is to recover a string theory description of the

surface defects in a 4d gauge theory, we place the (fractional) D3-branes in such a way

that they are partially extended along the orbifold as originally proposed in [4]. More

precisely, we take the D3-brane world-volume to be C(1) ⇥ C(2) in such a way that the

orbifold action breaks the 4d Poincaré symmetry leaving unbroken the one in the first

complex direction along which the surface defect is extended.
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5.2.1 Boundary states and reflection rules

In the ZM orbifold there are M di↵erent types of fractional D-branes, labeled by an index

I = 0, 1, . . . ,M�1, corresponding to the M irreducible representations of ZM. A fractional

D3-brane of type I can be described by a boundary state which contains an untwisted

component |Ui, which is the same for all types of branes, and a twisted component |T ; Ii,

which depends on the type of brane considered:

|D3; Ii = N |Ui +N 0 |T ; Ii (5.62)

whereN andN 0 are appropriate normalization factors related to the brane tensions (whose

explicit expression is not relevant for our purposes). This schematic structure holds of

course both in the NS/NS and R/R sectors, which we now discuss in turn, focusing on the

fermionic twisted components.

NS/NS sector

The twisted component of the boundary state for a fractional D3-brane of type I is a sum

of (M � 1) terms which refer to the (M � 1) twisted sectors of the closed strings on the

orbifold and whose coe�cients have to be chosen in a specific way in order to have a con-

sistent description of the D-brane. By this, we mean that the cylinder amplitude between

two such boundary states, once translated into the open string channel, must correctly re-

produce the ZM-invariant one-loop annulus amplitude. In [42] a thorough analysis of this

issue was carried out in general, using the Cardy condition for the construction of consis-

tent boundary states in rational conformal field theories [57]. Borrowing these results and

adapting them to our case, we can write the twisted component of the boundary state for

109



a D3-brane of type I in the NS/NS sector and its conjugate as follows:

|T ; I|iNS =

M�1X

ba=1

sin
⇣⇡ba

M

⌘
!Iba
|ba iiNS ,

NShT ; I| =
M�1X

ba=1

sin
⇣⇡ba

M

⌘
!�Iba

NShhba | .

(5.63)

Here, the sum runs over all twisted sectors, ! is the M-th root of unity as in (5.3) and

|ba iiNS is the GSO projected Ishibashi state for the twisted sectorba. These Ishibashi states

enforce the appropriate gluing conditions between the left-moving and right-moving modes.

For our purposes, it is not necessary to write the complete expression of these Ishibashi

states, but it is enough to write the terms which may have a non-zero overlap with the

massless states of the closed string twisted sectors discussed in Section 5.1.

Let us suppose again that M is odd. If ba = a 2 [1, M�1
2 ], we have

|aiiNS =
⇣
i 

2
�

1
2+⌫a

f 2
�

1
2+⌫a
� i 3

�
1
2+⌫a

f
 

3
�

1
2+⌫a

⌘
|⌦ai(�1) |e⌦ai(�1) + · · · (5.64)

where the ellipses stand for terms involving a higher number of oscillators or massive

fermionic modes. The relative minus sign in the brackets of (5.64) is due to the fact that

the complex direction 3 is transverse to the D3-brane while the complex direction 2 is

longitudinal. If ba = (M � a), instead, we have

|M � aiiNS =
⇣
i 2
�

1
2+⌫a

f
 

2
�

1
2+⌫a
� i 

3
�

1
2+⌫a

f 3
�

1
2+⌫a

⌘
|⌦M�ai(�1) |e⌦M�ai(�1) + · · · . (5.65)

The corresponding Ishibashi bra states are

NShha| = (�1)he⌦a| (�1)h⌦a|
⇣
� i f 2 1

2�⌫a
 

2
1
2�⌫a
+ i

f
 

3
1
2�⌫a

 3
1
2�⌫a

⌘
+ · · ·

NShhM � a| = (�1)he⌦M�a| (�1)h⌦M�a|
⇣
� i

f
 

2
1
2�⌫a

 2
1
2�⌫a
+ i f 3 1

2�⌫a
 

3
1
2�⌫a

⌘
+ · · ·

(5.66)
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where the conjugate vacuum states are normalized in such a way that

(�1)h⌦a|⌦ai(�1) = 1 and (�1)h⌦M�a|⌦M�ai(�1) = 1 , (5.67)

and similarly for the right-moving sectors.

When the fractional D3-branes are present, the left and right moving parts of a twisted

closed string have non-trivial correlation functions since the closed string world-sheet has

a boundary. In the boundary state formalism, this boundary is the unit circle on which

the Ishibashi states enforce an identification between the left and the right movers of the

closed strings. In particular for the massless vertex operators of the twisted NS sector

with label a and twist parameter ⌫a described in Section 5.1.2, given any two points w and

w̄ inside the unit disk D corresponding to a D3-brane of type I, we have

⌦
V

↵
a (w) eV�

a(w̄)
↵

I ⌘ NS
⌦
T ; I| V↵

a (w) eV�
a(w̄)|0i|e0

↵
=

M↵�
I,a

(1 � ww̄)2 ,
(5.68)

where the last step is a consequence of the conformal invariance which fixes the form

of the two-point function of conformal fields of weight 1 on D. The constant in the

numerator can be obtained from the overlap between the twisted boundary state and the

states created by the vertex operators V↵
a and eV�

a. For example, fixing ↵ = 1 and � = 2

and referring to the explicit expressions in Table 5.1, we have

M12
I,a = lim

w!0
lim
w̄!0

NShT ; I| V1
a(w) eV2

a(w̄)|0i|e0i

= NShT ; I| 3
�

1
2+⌫a

f
 

3
�

1
2+⌫a
|⌦ai(�1) |e⌦ai(�1)

= sin(⇡⌫a)!�Ia
NShha| 3

�
1
2+⌫a

f
 

3
�

1
2+⌫a
|⌦ai(�1) |e⌦ai(�1)

= i sin(⇡⌫a)!�Ia . (5.69)

Proceeding in a similar way, we find that M21
I,a is identical to (5.69), while M11

I,a = M22
I,a = 0,

since in these cases the fermionic oscillators are unbalanced. We can thus summarize this
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result by rewriting (5.68) as

⌦
V

↵
a (w) eV�

a(w̄)
↵

I =
i sin(⇡⌫a)!�Ia (⌧1)↵�

(1 � ww̄)2 (5.70)

where ⌧1 is the first Pauli matrix.

We now map this disk two-point function onto the complex plane by using the Cayley

transformation

w =
z � i
z + i

, (5.71)

obtaining

⌦
V

↵
a (z) eV�

a(z̄)
↵

I =
⌦
V

↵
a (w) eV�

a(w̄)
↵

I
dw
dz

dw̄
dz̄
=
�i sin(⇡⌫a)!�Ia (⌧1)↵�

(z � z̄)2 . (5.72)

Thus, using the doubling trick, we are led to introduce the following reflection rule for

right moving vertex operators:

eV�
a(z̄) �! (RI,a)��V

�
M�a(z̄) , (5.73)

so that
⌦
V

↵
a (z) eV�

a(z̄)
↵

I �! (RI,a)��
⌦
V

↵
a (z)V�

M�a(z̄)
↵
= (RI,a)��

(✏�1)↵�

(z � z̄)2 (5.74)

where, in the last step, we used (5.30). Comparing with (5.72) we find that the reflection

matrix RI,a is given by

RI,a = i sin(⇡⌫a)!�Ia ⌧3 (5.75)

where ⌧3 is the third Pauli matrix. Repeating the same calculations in the twisted sector

labeled by (M � a), we get

RI,M�a = i sin(⇡⌫a)!Ia ⌧3 . (5.76)

Notice that even though the oscillator structure of the boundary states in the sectors a and
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(M � a) is di↵erent, in the end the reflection matrices (5.75) and (5.76) have the same

form and can be simultaneously written as

RI,ba = i sin
⇣⇡ba

M

⌘
!�Iba ⌧3 (5.77)

with ba = 1, . . . ,M � 1.

R/R sector

The above analysis can be easily extended to the R/R sector where, in analogy with (5.63),

the twisted components of the boundary state are given by

|T ; I|iR =
M�1X

ba=1

sin
⇣⇡ba

M

⌘
!Iba
|ba iiR ,

RhT ; I| =
M�1X

ba=1

sin
⇣⇡ba

M

⌘
!�Iba

Rhhba | .

(5.78)

In writing the expressions for the GSO-projected Ishibashi states |ba iiR and their conju-

gates, we adopt the same picture assignments discussed in Section 5.1.4: the (�1
2 ,�

3
2 )-

picture for the twisted sectors labeled by ba = a 2 [1, M�1
2 ], and the (�3

2 ,�
1
2 )-picture for

the sectors withba = (M�a). Apart from this, the structure of these states is similar to that

of the twisted boundary states for D3-branes in the Z2 orbifold obtained in [8] from the

factorization of the one-loop open string partition function, and already used in pevious

chapter [4] of this thesis. In particular, for ba = a we have

|aiiR =
�
C�1�2)AḂ |Aai(� 1

2 )|
ėBai(� 3

2 ) + . . . (5.79)

where the ellipses stand for contributions from massive fermionic modes, the vacuum

states have been defined in (5.48) and (5.51), and �1 and �2 are the SO(6) Dirac matrices

along the first two real longitudinal directions of the D3-branes. Likewise, when ba =
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(M � a) we have

|M � aiiR =
�
C�1�2)ȦB |ȦM�ai(� 3

2 )|
eBM�ai(� 1

2 ) + . . . . (5.80)

The corresponding Ishibashi conjugate states are

Rhha| = (� 3
2 )h

ėAa| (� 1
2 )hBa|

�
�2�1C�1�ȦB

+ . . .

RhhM � a| = (� 1
2 )h

eAM�a| (� 3
2 )hḂM�a|

�
�2�1C�1�AḂ

+ . . .
(5.81)

where the bra vacuum states are defined such that

(� 1
2 )hBa|Aai(� 1

2 ) = �
A
B and (� 3

2 )h
ėBM�a|

ėAM�ai(� 3
2 ) = �

Ȧ
Ḃ (5.82)

with analogous relations for the right-moving vacua 4.

We can now repeat the same steps followed in the NS sector to prove that the boundary

state enforces an identification between left-moving and right-moving vertex operators in

the twisted R sector a according to

eVḂ
a (z̄) �! (RI,a)Ḃ

ĊV
Ċ
M�a(z̄) , (5.83)

where the reflection matrix is the anti-chiral/anti-chiral block of

RI,a = sin(⇡⌫a)!�Ia �1�2 . (5.84)

Similarly, in the twisted R sector labeled by (M�a) the reflection matrix is the chiral/chiral

block of

RI,M�a = sin(⇡⌫a)!Ia �1�2 . (5.85)

4We remark that in (5.82) the superghost charges of the bra and ket states exactly soak up the background
charge anomaly. For example the superghost charge of (� 1

2 )hBa| is � 3
2 , and that of |Aai(� 1

2 ) is � 1
2 .
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We can combine the last two formulas into

RI,ba = sin
⇣⇡ba

M

⌘
!�Iba �1�2 (5.86)

with the understanding that one has to take the lower-right and upper-left blocks forba = a

and ba = (M � a), respectively, as a consequence of the picture assignments.

5.2.2 Massless open string spectrum

We now analyze the spectrum of massless open strings that live on a configuration made

of stacks of nI fractional D3-branes of type I for I = 0, . . . ,M � 1, that engineer a theory

with gauge group U(n0) ⇥ . . . ⇥ U(nM�1). We will restrict ourselves to listing the fields in

the adjoint representation of U(nI) as these will be the only fields that are sourced by the

background values given to the twisted closed string scalars. We tailor our notations and

conventions to be as close as possible to those in chapter 4.

In the familiar case of D3-branes in flat space, in the (0)-superghost picture the bosonic

massless open string states are represented by vertex operators of the form 5

�
i @Zi +  ·   i� ei ·Z . (5.87)

where

i =
k2i�1 + i k2i
p

2
and i =

k2i�1 + i k2i
p

2
, (5.88)

with kµ being the real momentum along the direction xµ of the D3-brane world-volume.

In addition we denote the complex direction 1 by the symbol k and the complex direction

2 by the symbol ?, since these directions are, respectively, longitudinal and perpendicular

to the surface defect realized by the D3-brane configuration on the orbifold. We also

5Here and in the following we always assume the operators to be normal ordered, unless this causes
ambiguities.
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introduce the following convenient notation

k ·Zk = 1 Z
1
+ 1 Z1 , ? ·Z? = 2 Z

2
+ 2 Z2 ,

k · k = 1  
1
+ 1  

1 , ? · ? = 2  
2
+ 2  

2 ,
(5.89)

so that

 · Z = k ·Zk + ? ·Z? (5.90)

and similarly for  ·  . Clearly, the parallel terms k ·Zk and k · k are invariant under the

orbifold group ZM, but the perpendicular terms are not, since

g :

8>>>>>><
>>>>>>:

? ·Z? �! g[? ·Z?] = !�12 Z
2
+ !2 Z2 ,

? · ? �! g[? · ?] = !�12  
2
+ !2  2 .

(5.91)

This in particular implies that in order to write the open string vertex operators for the

fractional D3-branes one cannot use the plane waves ei ?·Z? but instead decomposes these

into functions that transform in the irreducible representations of ZM. These functions,

which we denote by EI with I = 0, . . . ,M � 1, are simply obtained by summing the

plane waves ei ?·Z? over the orbits of the group with coe�cients chosen such that the

combination transforms covariantly under the group action. So we are led to define:

EI =
1
M

M�1X

J=0

!�IJ gJ
h
ei ?·Z?

i
=

1
M

M�1X

J=0

!�IJ ei (!�J2 Z
2
+!J2 Z2) . (5.92)

One can easily check that

g
⇥
EI

⇤
=

1
M

M�1X

J=0

!�IJ ei (!�J�12 Z
2
+!J+12 Z2) = !I

EI , (5.93)

which shows that EI transforms in the I-th irreducible representation of ZM. For M = 2

and ! = �1, the functions EI are simply

E0 = cos(? ·Z?) and E1 = i sin(? ·Z?) , (5.94)
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which are exactly the two combinations used in the case of the Z2 orbifold in previous

chapter.

In a similar way, we have to break up the operators multiplying the plane wave in (5.87)

into various pieces with definite charge I under the orbifold action and form invariant

combinations with EM�I . In the orbifold theory, only such combinations represent vertex

operators describing physical fields on the world-volume of the fractional D3-brane.

Applying these considerations, we see that the gauge field A1 along the parallel directions

is described by the following vertex operator in the (0)-superghost picture:

VA1 =
h�

i @Z1 + k · k 
1�
E0 + 2  

2
 1
E1 + 2  

2  1
EM�1

i
ei k·Zk . (5.95)

Each term in square brackets is invariant under ZM. For instance, the terms @Z
1

and

k · k 
1
, which are ZM invariant, are multiplied with the invariant function E0. Similarly

the term 2  
2
 1, which gets a factor !�1 under the orbifold action, is multiplied by E1 to

make a ZM-invariant combination. Likewise, it is easy to see that the third term in (5.95)

is also ZM invariant. The vertex operator for the complex conjugate field component A1 is

obtained by simply replacing @Z1 and  1 with @Z
1

and  
1
.

In a similar way we can write the vertex operators for the gauge field A2 in the directions

transverse to the surface defect, which is

VA2 =
h�

i @Z2 + k · k 
2�
EM�1 + 2  

2
 2
E0

i
ei k·Zk . (5.96)

The vertex operator for A2 can be obtained from the above expression by replacing @Z2

and  2 with @Z
2

and  
2
, and EM�1 with E1.

Finally, let us consider the scalar fields. On the fractional D3-brane world-volume there

are three complex scalars that together with the gauge vector provide the bosonic content

of the N = 4 vector multiplet. When the orbifold acts partially along the world-volume
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as in our case, all three complex scalars remain in the spectrum. Denoting them by �

and �r with r = 4, 5, they and their complex conjugates are described by the following

ZM-invariant vertices:

V� =
h�

i @Z3 + k · k 
3�
E1 + 2  

2
 3
E2 + 2  

2  3
E0

i
ei k·Zk ,

V� =
h�

i @Z
3
+ k · k 

3�
EM�1 + 2  

2
 

3
E0 + 2  

2  
3
EM�2

i
ei k·Zk ,

(5.97)

and

V�r =
h�

i @Zr + k · k 
r�
E0 + 2  

2
 r
E1 + 2  

2  r
EM�1

i
ei k·Zk , (5.98)

withV�r
obtained by simply replacing  r with  

r
.

All these vertex operators have conformal dimension 1 provided the corresponding fields

are massless, i.e. if  ·  = 1
2k2 = 0.

5.3 Open/closed correlators

In this section we study the mixed amplitudes between the twisted closed string fields

discussed in Section 5.1 and the massless open string fields introduced in the previous

section by calculating open/closed disk correlators (see [58] for a review of scattering of

strings o↵ D-branes). An example of such a mixed amplitude is shown in Figure 3.1, in

which the closed string field is the NS/NS scalar b(ba)
↵� in the twisted sector ba.

The open/closed string amplitudes we consider correspond to disk diagrams with a closed

string vertex insertion at the center and an open string vertex inserted on the boundary.

These diagrams are generically non-vanishing due to the D3-brane boundary conditions

that enforce an identification between the left and right movers of the closed strings.

We now explain how to compute these mixed amplitudes starting from the NS/NS twisted

fields.
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5.3.1 Correlators with NS/NS twisted fields

Let us consider the scalar b(ba)
↵� in the NS/NS twisted sector ba. Its coupling with a massless

open string excitation on a D3-brane of type I described by the vertex operator Vopen is

given by the following expression:

⌦
Vopen

↵
b(ba)
↵� ;I = b(ba)

↵�

Z
dz dz̄ dx
dVproj

⌦
V

↵
ba (z) eV�

ba(z̄)Vopen(x)
↵

I , (5.99)

where

dVproj =
dz dz̄ dx

(z � z̄)(z̄ � x)(x � z)
(5.100)

is the projective invariant volume element and the integrals are performed on the string

world-sheet. In particular the closed string insertion points z and z̄, are in the upper and

lower half complex plane, respectively, while the open string insertion point x is on the

real axis.

Since we are interested in the couplings with constant background fields b(ba)
↵� , the left and

right vertex operators in (5.99) are at zero momentum. The open string vertex, instead,

has a non-vanishing momentum. Since the fractional brane is located at the orbifold fixed

point z2 = 0, translation invariance is broken in the complex direction 2. Therefore, the

components 2 and 2 of the open string momentum are arbitrary, while the components

1 and 1 are set to zero by momentum conservation in the parallel directions and the final

amplitude will be proportional to �(2)(k).

Using the reflection rule (5.77), the integrand of (5.99) can be rewritten as

⌦
V

↵
ba (z) eV�

ba(z̄)Vopen(x)
↵

I = i sin
⇣⇡ba

M

⌘
!�Iba (⌧3)��

⌦
V

↵
ba (z)V�

M�ba(z̄)Vopen(x)
↵
. (5.101)

Thus, the calculation is reduced to the evaluation of a three-point function of vertex op-

erators of conformal weight 1. The functional dependence on the word-sheet variables

is fixed by conformal invariance and exactly cancels that of the projective invariant vol-

119



ume (5.100) so that in the end the result will be a constant that depends on the detailed

structure of the vertex operators.

There are, however, some features that can be described in generality, and are indepen-

dent of the specific components of b(ba)
↵� and of the particular open string vertices that are

considered. When we write the three-point functions in (5.101) as products of correla-

tors for each of the independent conformal fields, we easily recognize that the superghost

contribution is always given by

⌦
e��(z) e��(z̄)↵ =

1
z � z̄

. (5.102)

It is perhaps less obvious but it turns out that also the contribution arising from the bosonic

string coordinates is the same for all amplitudes. Indeed, the only non-vanishing correla-

tor involving the bosonic coordinates along the parallel direction is

⌦
ei k·Zk(x)

↵
= �(2)(k) , (5.103)

which enforces the anticipated momentum conservation for k, while the terms containing

@Z1 or @Z
1

always vanish inside the correlators and thus they can be ignored. As far as

the perpendicular direction is concerned, we have to take into account the presence of

the bosonic twist fields and the fact that the plane waves appear in the combinations EI

defined in (5.92). Thus, one typically has to evaluate a correlator of the form

⌦
�ba(z)�M�ba(z̄)EI(x)

↵
=

1
M

M�1X

J=0

!�IJ ⌦
�ba(z)�M�ba(z̄) ei

�
!�J2 Z

2
(x)+!J2 Z2(x)

�↵
. (5.104)

For any value of J, the correlator in the sum is equal simply to h�ba(z)�M�ba(z̄)i, so that

⌦
�ba(z)�M�ba(z̄)EI(x)

↵
=

1
M

⇣ M�1X

J=0

!�IJ
⌘⌦
�ba(z)�M�ba(z̄)

↵
= �I,0

⌦
�ba(z)�M�ba(z̄)

↵
. (5.105)

This means that in the open string vertex operators we can just focus on the terms propor-
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tional to E0 and disregard the other terms, as they will not contribute. Furthermore, we

can also neglect the terms involving @Z2 or @Z
2
, since they always give a vanishing contri-

bution inside the correlators. With this in mind, we can proceed to the explicit evaluation

of the mixed amplitudes with the twisted NS/NS scalars.

Explicit computations

We start by considering the correlator (5.101) with ba = a 2 [1, M�1
2 ] and ↵ = 1 and � = 2,

corresponding to the twisted field b(a)
12 . Applying the above considerations, one realizes

that this scalar does not couple to any open string field except A2 and A2. Indeed, the terms

of the vertex operators of A1, �, �r and their conjugates which contain E0 always contain

other structures with unbalanced bosonic or fermionic fields, which therefore vanish in-

side the correlator. Let us then consider the coupling with A2. In this case, inserting the

explicit expressions of the vertex operators in (5.101), we have

⌦
V

1
a(z) eV2

a(z̄)VA2(x)
↵

I = �i sin ⇡⌫a !
�Ia ⌦
V

1
a(z)V2

M�a(z̄)VA2(x)
↵ (5.106)

with

⌦
V

1
a(z)V2

M�a(z̄)VA2(x)
↵
= 2

⌦
e��(z) e��(z̄)↵ ⌦

ei k·Zk(x)↵ ⌦
�a(z)�M�a(z̄)

↵

⇥
⌦

: 3(z)sa(z) : : 
3
(z̄)sM�a(z̄) : : 

2
(x) 2(x) :

↵
.

(5.107)

The fermionic correlator in the second line above can be evaluated by factorizing it in the

two independent directions 2 and 3 and using the bosonization method [10]. In this way

we have

⌦
: 3(z)sa(z) : : 

3
(z̄)sM�a(z̄) : : 

2
(x) 2(x) :

↵
=

⌦
s2
⌫a

(z) s2
�⌫a

(z̄) : 
2
(x) 2(x) :

↵

⇥
⌦

: 3(z)s3
�⌫a

(z) : : 
3
(z̄)s3

⌫a
(z̄) :

↵

(5.108)
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where 6

⌦
s2
⌫a

(z) s2
�⌫a

(z̄) : 
2
(x) 2(x) :

↵
=

⌦
ei ⌫a �2(z) e�i ⌫a �2(z̄) (�i @�2(x))

↵

=
�⌫a

(z � z̄)⌫2
a�1(z � x)(z̄ � x)

,
(5.109)

and

⌦
: 3(z)s3

�⌫a
(z) : : 

3
(z̄)s3

⌫a
(z̄) :

↵
=

⌦
ei (1�⌫a)�3(z) e�i (1�⌫a)�3(z̄)

↵
=

1
(z � z̄)(1�⌫a)2 . (5.110)

Combining everything together in (5.107), we obtain

⌦
V

1
a(z)V2

M�a(z̄)VA2(x)
↵
=

2 ⌫a

(z � z̄)(z̄ � x)(x � z)
�(2)(k) . (5.111)

Finally, inserting this into (5.106) and (5.99), we find that the coupling of b(a)
12 with A2 is

⌦
VA2

↵
b(a)

12 ;I = �i b(a)
12 2 ⌫a sin ⇡⌫a !

�Ia �(2)(k) . (5.112)

The same calculation shows that b(a)
12 also couples to A2 and the result is simply obtained

by replacing 2 with �2 in the above expression.

We can similarly repeat the analysis for the other components b(a)
↵� . For example, taking

b(a)
21 we find that its only non-vanishing coupling is

⌦
VA2

↵
b(a)

21 ;I = i b(a)
21 2 (1 � ⌫a) sin ⇡⌫a !

�Ia �(2)(k) , (5.113)

with a similar result for A2 in which 2 is replaced with �2. The diagonal components

b(a)
11 and b(a)

22 , instead, only couple to the complex scalars � and � according to

⌦
V�

↵
b(a)

22 ;I = �i b(a)
22 2 sin ⇡⌫a !

�Ia �(2)(k) ,

and
⌦
V�

↵
b(a)

11 ;I = i b(a)
11 2 sin ⇡⌫a !

�Ia �(2)(k) .
(5.114)

6Here �2 and �3 denote the fields that bosonize the fermionic systems in the complex directions 2 and 3.
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It is equally straightforward to compute the open/closed string correlators in the twisted

sectors with ba = (M � a). In this case, we find again that the o↵-diagonal components

b(M�a)
12 and b(M�a)

21 only interact with A2 and A2, and that the couplings with A2 are

⌦
VA2

↵
b(M�a)

12 ;I = �i b(M�a)
12 2 (1 � ⌫a) sin ⇡⌫a !

Ia �(2)(k) ,

and
⌦
VA2

↵
b(M�a)

21 ;I = i b(M�a)
21 2 ⌫a sin ⇡⌫a !

Ia �(2)(k) ,
(5.115)

while those with A2 follow by replacing 2 with �2 in the above expressions. The di-

agonal components b(M�a)
11 and b(M�a)

21 interact instead with � and � with the following

couplings:
⌦
V�

↵
b(M�a)

22 ;I = �i b(M�a)
22 2 sin ⇡⌫a !

Ia �(2)(k) ,

and
⌦
V�

↵
b(M�a)

11 ;I = i b(M�a)
11 2 sin ⇡⌫a !

Ia �(2)(k) .
(5.116)

As a consistency check of our results, we observe that the formulas (5.115) and (5.116)

can be obtained from (5.112), (5.113) and (5.114) by simply replacing everywhere a with

(M � a). Thus, despite the fact that the fermionic approach we have used introduces

di↵erences in the explicit expressions for the twisted sector vertex operators, in the end,

all sectors are treated on an equal footing.

Results

We are finally in a position to write down the complete expression for the open string

fields emitted by a fractional D3-brane of type I in the presence of background values for

the scalars of the NS/NS twisted sectors. This is given by summing over all components

of b(ba)
↵� and over all twisted sectors:

⌦
Vopen

↵
I =

M�1X

ba=1

2X

↵,�=1

⌦
Vopen

↵
b(ba)
↵� ;I . (5.117)

As we have seen, the components of the gauge field along the parallel direction 1 and

the complex scalars �r do not couple to any NS/NS twisted field, while we have a non-
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vanishing source for A2, � and their complex conjugates. For A2 the above formula gives

⌦
VA2

↵
I = �i 2

M�1
2X

a=1

sin ⇡⌫a

h
⌫a !

�Ia b(a)
12 � (1 � ⌫a)!�Ia b(a)

21

� ⌫a !
Ia b(M�a)

21 + (1 � ⌫a)!Ia b(M�a)
12

i
�(2)(k) .

(5.118)

Taking into account the relations (5.38), it is easy to realize that the quantity in square

brackets is purely imaginary. A similar result holds for A2 with 2 replaced by �2.

For the complex scalars � and � we have instead

⌦
V�

↵
I = �i 2

M�1
2X

a=1

sin ⇡⌫a

h
!�Ia b(a)

22 + !
Ia b(M�a)

22

i
�(2)(k) ,

⌦
V�

↵
I = i 2

M�1
2X

a=1

sin ⇡⌫a

h
!�Ia b(a)

11 + !
Ia b(M�a)

11

i
�(2)(k) .

(5.119)

5.3.2 Correlators with R/R twisted fields

We now turn to the calculation of the interactions between the massless open string fields

and the twisted R/R potentials. For definiteness, we only consider non-vanishing back-

ground values for the scalars C(a) and C(M�a), since they are the only ones that turn out to

be relevant for the description of the continuous parameters of surface defects. Thus, the

closed string vertex operators we consider are

C
(a) CAḂV

A
a (z) eVḂ

a (z̄) and C
(M�a) CȦBV

Ȧ
M�a(z) eVB

M�a(z̄) . (5.120)

By inspecting the fermionic structure of these vertex operators and comparing it with that

of the open string vertices, one realizes that only the longitudinal component of the gauge

field A1 and its conjugate A1 can have a non-vanishing coupling.
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Let us start by considering the interaction between A1 and C(a). This is given by

⌦
VA1

↵
C(a),I = C

(a) CAḂ

Z
dz dz̄ dx
dVproj

⌦
V

A
a (z) eVḂ

a (z̄)VA1(x)
↵

I , (5.121)

where the projective invariant volume element is defined in (5.100). Using the reflection

rules (5.84) for the R/R fields, the integrand of (5.121) becomes

⌦
V

A
a (z) eVḂ

a (z̄)VA1(x)
↵

I = sin(⇡⌫a)!�Ia (�1�2)Ḃ
Ċ

⌦
V

A
a (z)VĊ

M�a(z̄)VA1(x)
↵
. (5.122)

Using the explicit form of the vertex operators given in (5.47a), (5.52b) and (5.95), and

taking into account the points discussed at the beginning of this section, the above corre-

lator can be written as follows:

⌦
V

A
a (z)VĊ

M�a(z̄)VA1(x)
↵
= 1

⌦
e�

1
2�(z) e�

3
2�(z̄)↵ ⌦

ei k·Zk↵ ⌦
�a(z)�M�a(z̄)

↵

⇥
⌦
ra(z) rM�a(z̄)

↵ ⌦
S A(z) S Ċ(z̄) : 

1
 1 : (x)

↵
.

(5.123)

Each factor in this expression can be easily computed using standard conformal field

theory methods. The new ingredients with respect to the calculations in the NS/NS sectors

are the following two-point functions:

⌦
e�

1
2�(z) e�

3
2�(z̄)↵ =

1
(z � z̄) 3

4
,

⌦
ra(z) rM�a(z̄)

↵
=

1
(z � z̄) 1

2�2⌫a(1�⌫a)
,

and
⌦
S A(z) S Ċ(z̄) : 

1
 1 : (x)

↵
=

i
2

(�1�2C�1)AĊ

(z � z̄)� 1
4 (z � x)(z̄ � x)

.

(5.124)

Putting everything together, we have

⌦
V

A
a (z)VĊ

M�a(z̄)VA1(x)
↵
= �

i
2

(�1�2C�1)AĊ

(z � z̄)(z̄ � x)(x � z)
�(2)(k) . (5.125)

Inserting this into (5.122) and (5.121), and performing the �-matrix algebra, we finally
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obtain
⌦
VA1

↵
C(a),I = �2i 1 sin ⇡⌫a !

�Ia
C

(a) �(2)(k) . (5.126)

In a very similar way we find

⌦
VA1

↵
C(M�a),I = �2i 1 sin ⇡⌫a !

Ia
C

(M�a) �(2)(k) . (5.127)

Thus, the full amplitude becomes

⌦
VA1

↵
I = �2i 1

M�1
2X

a=1

h
sin ⇡⌫a

�
!�Ia
C

(a) + !Ia
C

(M�a)�i �(2)(k) . (5.128)

Taking into account that C(M�a) = C(a)?, as it follows from (5.61), we see that the expres-

sion inside the square brackets is real.

5.4 Continuous parameters of surface defects

We are now ready to identify the twisted closed string background that leads to a mon-

odromy surface defect in the gauge theory on the world-volume of the fractional D3-

branes. It is convenient to decompose the twisted fields of the NS/NS sectors into irre-

ducible representations of the unbroken SU(2)+ symmetry group of the orbifolded space

(see the discussion in Section 5.1). In each twisted sector ba, this can be done by writing

b(ba)
↵� = i b(ba)

s ✏↵� + b(ba)
+ (✏⌧+)↵� + b(ba)

� (✏⌧�)↵� + b(ba)
3 (✏⌧3)↵� (5.129)

where ✏ is defined in (5.31) and ⌧± = (⌧1 ± i⌧2)/2. In the M = 2 case studied in chapter 4

it was found that only the singlet component b(ba)
s (which we denoted b in that reference)

acted as a source for the gauge field. This can also be seen from (5.118) by setting ⌫1 =
1
2

and ! = �1 for the only twisted sector that is present when M = 2. For the general M > 2

case, however, we see that the gauge field couples to both the scalars b(ba)
s and b(ba)

3 . Since
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we wish to have a uniform description of surface defects for all values of M, in what

follows, we will set b(ba)
3 = 0 and only turn on the background value for b(ba)

s . Furthermore,

we also turn on the doublet components b(ba)
± which source the scalar fields � and �. This

means that, in terms of the initial fields b(ba)
↵� , our background reads

b(ba)
12 = �b(ba)

21 = �i b(ba)
s ,

b(ba)
22 = b(ba)

+ , b(ba)
11 = �b(ba)

� ,
(5.130)

with (b(ba)
s

�⇤
= b(M�ba)

s and (b(ba)
+

�⇤
= b(M�ba)

� for all twisted sectors, as follows from the

relations (5.38).

Inserting these background values in (5.118) and (5.119), we have

⌦
VA2

↵
I = �2 bI �

(2)(k) , (5.131)

and
⌦
V�

↵
I = �i 2 b+I �

(2)(k) ,
⌦
V�

↵
I = �i 2 b�I �

(2)(k) , (5.132)

where we have defined the combinations

bI =

M�1
2X

a=1

sin ⇡⌫a

h
!�Ia b(a)

s + !
Ia b(M�a)

s

i
=

M�1X

ba=1

sin
⇣⇡ba

M

⌘
!�Iba b(ba)

s , (5.133)

and

b±I =

M�1
2X

a=1

sin ⇡⌫a

h
!�Ia b(a)

± + !
Ia b(M�a)
±

i
=

M�1X

ba=1

sin
⇣⇡ba

M

⌘
!�Iba b(ba)

± . (5.134)

Notice that bI is real, while (b+I )⇤ = b�I . It is interesting to note that a similar change of

basis for profiles of closed string fields between the fractional branes (labelled by irre-

ducible representations) and the twisted sectors (labelled by conjugacy classes) has been

observed previously for fractional branes at orbifolds in [52].
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Field Profiles

As explained in detail in previous chapter [4], these amplitudes are interpreted as a source

for the corresponding open string field (see also Figure 3.1), whose profile in configuration

space is obtained by taking the Fourier transform, after attaching the massless propagator

along the D3-brane world-volume:

1
k2 =

1
2
�
|k|2 + |?|2

� . (5.135)

For example, for the gauge field A2 we have

A2;I = FT
⌦
VA2

↵
I

k2

�
. (5.136)

In Appendix B we show how to organize the calculation of this Fourier transform in

terms of the generalized plane-waves EI that transform covariantly with charge I under

the orbifold group. Applying these methods to the present case, we see that since the

source (5.131) is proportional to 2, which has charge (�1), only the term proportional to

E1 remains so that (5.136) becomes

A2;I =

Z
d2kd2?

(2⇡)2

⌦
VA2

↵
I

2(2
k
+ 2

?
)

ei k·zk E1

= �bI
1
M

M�1X

J=0

!�J
Z

d2?
(2⇡)2

2

2|?|2
ei (!�J2 z̄2+!J 2 z2) = �

i bI

4⇡z̄2
,

(5.137)

where the last equality is a consequence of the fact that all M terms in the sum are actually

all equal to each other and equal to i/(4⇡z̄2).

Combining this result with the one for the complex conjugate component A2, we find that

the gauge field on the I-th fractional D3-brane has the following profile:

AI = A · dx = A2;I dz̄2 + A2;I dz2 = �
i bI

4⇡

⇣dz̄2

z̄2
�

dz2

z2

⌘
= �

bI

2⇡
d✓ , (5.138)
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where ✓ is the usual polar angle in the C(2)-plane.

The only other open string field that has a non-vanishing profile in the twisted NS/NS

background we have chosen is the complex scalar �. The analogous calculation takes the

following form:

�I = FT
⌦
V�

↵
I

k2

�
=

Z
d2kd2?

(2⇡)2

⌦
V�

↵
I

2(2
k
+ 2

?
)

ei k·zk EM�1

= �i b+I
1
M

M�1X

J=0

!J
Z

d2?
(2⇡)2

2

2|?|2
ei (!J2 z̄2+!J 2 z2) =

b+I
4⇡z2

.

(5.139)

If we now consider a general configuration with nI fractional D3-branes of type I for all

values of I, as in the KT proposal [4], we obtain the following profiles:

A = �d✓
2⇡

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0 In0 0 · · · 0

0 b1 In1 · · · 0
...

...
. . .

...

0 0 · · · bM�1 InM�1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (5.140)

and

� =
1

4⇡ z2

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

b+0 In0 0 · · · 0

0 b+1 In1 · · · 0
...

...
. . .

...

0 0 · · · b+M�1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

. (5.141)

These are precisely the profiles of a GW surface defect in the N = 4 theory correspond-

ing to the breaking of U(N) group to the Levi subgroup U(n0) ⇥ . . . ⇥ U(nM�1), provided

the continuous parameters (↵I , �I , �I) that conventionally parametrize the singular pro-

files near the defect are related to the background values of the NS/NS twisted scalars as

follows:

↵I = �
bI

2⇡
, �I =

Re(b+I )
2⇡

, �I =
Im(b+I )

2⇡
. (5.142)

If the original gauge group is SU(N), the corresponding field profiles are obtained by
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removing the overall trace from each of the above expressions.

We now turn to discussing the coupling of the open string fields with the twisted scalars in

the R/R sector. As we have seen in Section 5.3.2, we only need to consider the coupling

with the longitudinal component A1 of the gauge field. This is given in (5.128), which we

rewrite as
⌦
VA1

↵
I = �2i 1cI �

(2)(k) (5.143)

where

cI =

M�1
2X

a=1

sin ⇡⌫a

h
!�Ia
C

(a) + !Ia
C

(M�a)
i
=

M�1X

ba=1

sin
⇣⇡ba

M

⌘
!�Iba
C

(ba) . (5.144)

This real quantity is the R/R counterpart of bI defined in (5.133) for the NS/NS sectors.

At face value, the coupling (5.143) is vanishing because of the �-function. However, as

was explained in the Z2 in ch. 4, if we multiply this amplitude and its complex conjugate

with the corresponding gauge field polarizations, the resulting sum can be interpreted as

an interaction term between the R/R scalars and the longitudinal components of the gauge

field strength. Indeed,

A1,I
⌦
VA1

↵
I + A1,I

⌦
VA1

↵
I = �2 i cI

�
1A1 � 1A1

�
�2(k) = 2 i cI eFI �

2(k) , (5.145)

where eFI is the gauge field strength on the Ith fractional brane (along the defect), in

momentum space. Performing the Fourier transform, this expression becomes an e↵ective

interaction term localized on the surface defect:

i cI

2⇡

Z
d2zk FI , (5.146)

where FI is the gauge field strength in configuration space, on the Ith fractional brane.

If this has a non-trivial first Chern class, then this e↵ective interaction can be understood

as the 2d topological ✓-term that can be included in the path integral definition of the
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theory with surface defect. When a generic configuration with nI D3-branes of type I is

considered, the following phase factor is therefore introduced in the path integral

exp
✓
i

M�1X

I=0

cI

2⇡

Z
d2zk TrU(nI )FI

◆
, (5.147)

leading to the following identification of the ⌘-parameters of the surface defect:

⌘I =
cI

2⇡
. (5.148)

This completes the identification of all the parameters of the generic GW monodromy

defect with the background values of the twisted scalars in the ZM orbifold. We note that

these formulas generalize those in chapter 4 and exactly reduce to them when M = 2. We

also remark that if we write the parameters bI , b±I and cI as sums over all twisted sectors,

their relation with the parameters of the surface defects holds also for even M. In this

case, in fact, besides the twisted sectors we have described at length in this chapter, there

is also a sector with twist 1
2 whose contribution is exactly the same as in the M = 2 case.

For this reason, therefore, we see that the restriction we made at the beginning to restrict

to odd values of M does not lead to any loss of generality.

We end this section by observing that the identifications (5.142) and (5.148), namely

{↵I , �I , �I , ⌘I} =
n
�

bI

2⇡
,

Re(b+I )
2⇡
,

Im(b+I )
2⇡
,

cI

2⇡

o
, (5.149)

are consistent with the behavior of the GW parameters under S-duality, as given in [1].

S-duality properties

In fact, even though our world-sheet analysis has been at the orbifold fixed point, it is

possible to blow-up the ZM-singularity into an ALE space and provide an interpretation
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to the twisted scalars of the orbifold theory as massless moduli in the low-energy su-

pergravity (see for instance [3, 38]). In such a geometric approach, the combinations bI

and cI , which are made of the singlets b(ba)
s and C(ba) from each twisted sector as shown in

(5.133) and (5.144), arise by integrating, respectively, the NS/NS 2-form B(2) and the R/R

2-form C(2) of Type II B supergravity around the exceptional cycles !I of the blown-up

ALE space. Therefore, from (5.149) we read

↵I = �
1

2⇡

Z

!I

B(2) , ⌘I =
1

2⇡

Z

!I

C(2) . (5.150)

Using the S-duality action on the 2-forms, with simple manipulations as in sec.4.5 one

can show that this identification implies that ↵I and ⌘I indeed transform in the expected

way.

Similarly, the b±I parameters can be identified with the (string frame) metric moduli cor-

responding to the complex structure of the blown-up exceptional cycle !I . As such they

inherit the S-duality transformation properties from the (string frame) metric, which are

precisely the ones expected for the parameters �I and �I of the GW defects.

We finally remark that when M > 2 also the scalars b(ba)
3 can couple to the gauge fields,

di↵erently from what happens in the M = 2 case [ch.4]. To have a uniform description

for all M we have therefore chosen to set b(ba)
3 = 0 in each twisted sector. As we have

just seen, this choice has allowed us to identify a perturbative closed string realization

of the generic GW defects that is fully consistent with S-duality. However, our approach

o↵ers the possibility of considering more general backgrounds with also b(ba)
3 turned on,

and it would be interesting to further investigate their meaning and implications for the

world-volume theory on the D3-branes and their defects.
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Chapter 6

Conclusion

In a quantum field theory, observables are the primary objects used to extract and un-

derstand the underlying physics of that theory. Scattering amplitudes, n-point correlation

functions, etc. are among the most used and well studied observables. In addition, there

are various other operators e.g. Wilson loops, t’Hooft line operators, etc. which can be

inserted inside the correlation function and can give important non-perturbative informa-

tion about the theory under consideration. In particular, they can reveal information about

di↵erent phase structures within the theory and their expectation values can serve as the

order parameter. Surface operators or defects are also one such kind of disorder (defect)

operator supported on a co-dimensional two surface which can extract non-perturbative

information including di↵erent existing phase structures.

In [4], it was already suggested by Kanno and Tachikawa (KT) that the surface defects

can be realized within a string theory setup using fractional branes on an orbifolded back-

ground. They showed in that paper the instanton contributions to the e↵ective theory of

surface defects are organized in terms of chain-saw quivers and described as D-instanton

corrections to a system of fractional D3-branes with two world-volume directions ex-

tended along the orbifold background. From the KT construction, it was clear that the

discrete data of the surface defect i.e. the number of elements in the partition of N (total
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rank of gauge group) is captured by the order M of the orbifold group, and each partition

nI is captured by the number of fractional branes of type I transforming under I-th irre-

ducible representation of orbifold group ZM. But their construction did not give any hint

as to how to realize the continuous parameters that are also part of the defining data of the

Gukov-Witten surface defect. In this thesis, we addressed this issue and showed that these

continuous data are in fact encoded within this fractional brane setup as the background

values of certain twisted closed string scalar fields. Further, we derived the singular pro-

files of the gauge fields and scalars within this setup via open/closed correlators. This

result has now provided us with a microscopic realization of GW surface defects within

perturbative Type II B string theory using fractional D3 branes.

We want to point out that the orbifold setup considered in this thesis is quite di↵erent

from the usual orbifold structures considered in the literature where the orbifolding is

done entirely in transverse directions to the D-brane world volume. In our case, two of

the world-volume directions are along the orbifold, and in Section 5.2.2, we saw that the

orbifold group in addition to acting on the oscillators and Chan-Paton factors, also acts

on the momentum factor ei.k X 1. The open string vertex operators are combinations of

momentum factors that have specific charges under the action of the orbifold group and

the corresponding transformation can be compensated by the transformation of the oscil-

lators and CP factors. This leads to the conclusion that none of the massless open string

states is projected out of the open string spectrum. This is in line with our expectation

as well since the presence of the defect does not alter the basic spectrum of the N = 4

SYM. It will be an interesting exercise to calculate all the 3-pt and 4-pt couplings among

the various fields and reproduce the N = 4 SYM action.

The work presented in this thesis is very similar in spirit to the string theoretic realiza-

tion of the gauge instantons using D3/D(-1) brane system [37]. In that work, one point

emission of the open string field is calculated with disk diagrams having mixed bound-

ary conditions and the derived profile matched that of the classical instanton. In our
1To be more specific it acts non-trivially only on the part of the momentum factors along the orbifold.
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case, the role of the D-instantons is being played by the twisted closed string scalars at

zero momentum. We believe that this string theoretic construction of surface defects us-

ing perturbative string theory is interesting because it provides an explicit and calculable

framework. Moreover, we hope such a microscopic realization may be useful for various

generalizations, applications in deformed theories and possibly letting us explore some

novel e↵ects at higher energies which are unseen in usual e↵ective field theory descrip-

tions which operates on much lower energy scales 2.

On the other hand, the construction may turn out to be useful in computing other quanti-

ties that characterize the superconformal defect field theory and help to establish connec-

tions with alternative approaches to the study of defects. One such alternative approach

is the holographic description of surface defects where surface defects are realized us-

ing bubbling geometries of Type II B supergravity that asymptote to AdS 5 ⇥ S 5 [25, 26].

Our construction of surface defects based on an exactly solvable string background of

fractional D3 branes on orbifold space facilitates us with a framework where world-sheet

computations are possible and usual string theoretic techniques can be applied. In contrast

to the supergravity description, we are on the gauge theory side of holographic correspon-

dence: the D-branes are not dissolved into the geometry, and the open string degrees of

freedom that capture the gauge theory fields are explicitly present. A study to explore

the interconnection between these two approaches: bubbling geometries and D-brane on

orbifolds can shed some more light on the gauge/gravity correspondence.

Throughout the thesis, we have considered GW surface defects in N = 4 U(N) theories

as half-BPS objects from the total 10d string theory perspective. The natural step ahead

would be to extend our explicit realization of surface defects in theories with lower super-

symmetry and/or with other gauge groups. For example, by introducing a mass deforma-

tion in two of the directions transverse to the D3-branes [20] we can realize the so-called

N = 2⇤ theory. To study gauge theories with less number of supersymmetry we can im-

2These expectations are based on the applications and constructions of various novel instanton configu-
rations using the D3/D(-1) brane realization of gauge instantons [71–76]
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plement another orbifold acting purely in directions transverse to the D3-branes: e.g. in

our setup (1.1) employing one orbifold along C(4) would lead to an N = 2 theory living

on the D-brane world -volume, consequent orbifolding along C(5) would lead to anN = 1

theory and so on. To study defects with orthogonal SO or symplectic Sp gauge groups, one

can consider additional orientifold planes. One can also explore if this construction can

be generalized to more general surface defects with distinct singularity structures other

than simple poles and which can lead to quarter-BPS or 1
8-BPS defects [59, 60].

As already mentioned line operators such as Wilson lines, t’Hooft operators can help us in

distinguishing di↵erent phases within the theory. Surface operators also do a similar job

but in some cases, surface operators can distinguish between phases that are otherwise

indistinguishable using line operators [43]. It will be wonderful if the string theoretic

realization of surface defects presented here could be applied to such scenarios and might

provide us with an extremely important understanding of the phase dynamics from a string

theory perspective.
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Appendix A

Dirac matrices

In this appendix, we define in detail our conventions for the Dirac matrices used in the

main text.

A.0.1 4d

We consider the 4d Euclidean space spanned by the coordinates xm with m 2 {3, 4, 5, 6}.

These are the real coordinates corresponding to the complex coordinates z2 and z3 (see

(4.2)) along which the ZM orbifold acts.

An explicit realization of the Dirac matrices �m satisfying the 4d Euclidean Cli↵ord alge-

bra

{�m, �n} = 2�mn , (A.1)

is given by

�3 =

0
BBBBBBBBB@

0 ⌧1

⌧1 0

1
CCCCCCCCCA
, �4 =

0
BBBBBBBBB@

0 �⌧2

�⌧2 0

1
CCCCCCCCCA
, �5 =

0
BBBBBBBBB@

0 ⌧3

⌧3 0

1
CCCCCCCCCA
, �6 =

0
BBBBBBBBB@

0 +i I2

�i I2 0

1
CCCCCCCCCA

(A.2)

where ⌧c are the usual Pauli matrices and I2 is the 2 ⇥ 2 identity matrix.
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The chirality matrix b� is given by

b� = ��3�4�5�6 =

0
BBBBBBBBB@
+I2 0

0 �I2

1
CCCCCCCCCA
. (A.3)

This shows that in this basis a 4d Dirac spinor is written as

0
BBBBBBBBB@
S ↵

S ↵̇

1
CCCCCCCCCA

(A.4)

where ↵ and ↵̇ label, respectively, the chiral and anti-chiral components.

Finally, the charge conjugation matrix bC is given by

bC =

0
BBBBBBBBB@
+✏ 0

0 �✏

1
CCCCCCCCCA

(A.5)

where ✏ = �i ⌧2 (see (5.31)), and is such that

bC �m bC�1 = (�m)t (A.6)

where t denotes the transpose.

Spinors in 4d

Introducing the following matrices

�m =
�
⌧1, ⌧2, ⌧3,�i 12

�
, (A.7)
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we can form the combination

X↵�̇ =
1
p

2
xm (�m)↵�̇ =

0
BBBBBBBBB@
z̄3 z̄2

z2 �z3

1
CCCCCCCCCA
. (A.8)

The SO(4) ' SU(2)+ ⇥ SU(2)� isometry group acts on X as follows

X �! U+ X U†� (A.9)

where U± 2 SU(2)±. Therefore, the two columns of X are two doublets transforming as

spinors of SU(2)+:

y↵ =

0
BBBBBBBBB@
z̄3

z2

1
CCCCCCCCCA

and w↵ =

0
BBBBBBBBB@

z̄2

�z3

1
CCCCCCCCCA
. (A.10)

Raising the indices, we have

y↵ = y� (✏�1)�↵ =

0
BBBBBBBBB@
�z2

z̄3

1
CCCCCCCCCA

and w↵ = w� (✏�1)�↵ =

0
BBBBBBBBB@
z3

z̄2

1
CCCCCCCCCA

(A.11)

where ✏ = �i ⌧2 as in (5.31). Of course the same combinations can be made with the

fermionic coordinates leading to the doublets

0
BBBBBBBBB@
� 2

 
3

1
CCCCCCCCCA

and

0
BBBBBBBBB@
 3

 
2

1
CCCCCCCCCA
. (A.12)

These are precisely the structures that have been used in Section 5.1 to write the massless

vertex operators of the twisted NS/NS sectors.

A.0.2 6d

We consider the 6d Euclidean space spanned by the coordinates xM with M 2 {1, 2, 7, 8, 9, 10}.

These are the real coordinates corresponding to the complex coordinates z1, z4 and z5 (see
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(4.2)) that are transverse to the ZM orbifold.

An explicit realization of the Dirac matrices �M satisfying the 6d Euclidean Cli↵ord al-

gebra

{�M,�N} = 2�MN , (A.13)

is given by

�1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 �i I2 0

0 0 0 �i I2

i I2 0 0 0

0 i I2 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

, �2 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 ⌧3 0

0 0 0 �⌧3

⌧3 0 0 0

0 �⌧3 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

�7 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 �⌧2 0

0 0 0 ⌧2

�⌧2 0 0 0

0 ⌧2 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

, �8 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 ⌧1 0

0 0 0 �⌧1

⌧1 0 0 0

0 �⌧1 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

�9 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 �i I2

0 0 i I2 0

0 �i I2 0 0

i I2 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

, �10 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 I2

0 0 I2 0

0 I2 0 0

I2 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

(A.14)

The chirality matrix b� is

b� = i�1�2�7�8�9�10 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

I2 0 0 0

0 I2 0 0

0 0 �I2 0

0 0 0 �I2

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

. (A.15)
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This shows that in this basis a 6d Dirac spinor is written as

0
BBBBBBBBB@
S A

S Ȧ

1
CCCCCCCCCA

(A.16)

where A and Ȧ label, respectively, the chiral and anti-chiral components.

The charge conjugation matrix C is

C =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 +✏

0 0 +✏ 0

0 �✏ 0 0

�✏ 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A.17)

where, as before, ✏ = �i ⌧2. The above charge conjugation matrix is such that

C �M C�1 = �(�M)t . (A.18)
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Appendix B

ZM in momentum space

Here we briefly comment on how to define the ZM orbifold action in momentum space.

Let us take the complex plane C(2) with coordinates z2 and z̄2 on which ZM acts as in (5.2),

and define the momenta 2 and 2 as in (5.88). For simplicity, however, we can drop the

index 2 since in this appendix this does not cause any ambiguity.

First of all, we observe that the orbifold action on the coordinates can be equivalently read

as an inverse action on the momenta. Consider for example the scalar product

 z +  z , (B.1)

which, under the action of ZM on the coordinates, is mapped to

!�1 z + ! z . (B.2)

Clearly, this result can also be interpreted as due to the following action of ZM on the

momentum variables:

ĝ : ( , ) �! (!�1  , !) (B.3)

with the coordinates held fixed.
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Then, let us consider a function in momentum space, f (, ), and define its images under

the orbifold group according to

⇧I(, ) =
1
M

M�1X

J=0

!�IJ f
�
!�J,!J 

�
(B.4)

where I = 0, . . . ,M � 1, modulo M. Using (B.3), it is immediate to check that

ĝ
⇥
⇧I

⇤
= !I ⇧I , (B.5)

namely that ⇧I transforms in the I-th representation of ZM. Inverting (B.4), we get

f (, ) =
M�1X

I=0

⇧I(, ) . (B.6)

Applying these definitions to the plane wave ei ( z+ z), we get

EI =
1
M

1X

J=0

!�IJ ei (!�J z+!J z) , (B.7)

with

ĝ
⇥
EI

⇤
= !I

EI . (B.8)

These functions EI have exactly the same form and properties of the functions introduced

in Section 5.2.2 when we described the ZM-invariant open string states. In terms of them,

the plane wave can be written as

ei ( z+ z) =

M�1X

I=0

EI . (B.9)

Let us now consider the Fourier transform of f . Using (B.6) and (B.9), we have

FT [ f ](z) =
Z

d2

2⇡
f (, ) ei ( z+ z) =

Z
d2

2⇡

M�1X

I,J=0

⇧I(, )EJ . (B.10)
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Since the integration measure is ZM-invariant, only the invariant products⇧I EM�I survive,

and thus

FT [ f ](z) =
Z

d2

2⇡

M�1X

I=0

⇧I(, )EM�I =
1
M

Z
d2

2⇡

M�1X

I=0

ĝI
h
f (, ) ei ( z+ z)

i
. (B.11)

This shows that the Fourier transform leads to a well-defined function in the orbifolded

theory. In particular, the Fourier transform of a function in the I-th irreducible represen-

tation of ZM in momentum space is a function in configuration space that transforms in

the representation (M � I), and viceversa.
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Appendix C

Fractional Branes: boundary state

perspective

In this appendix, we will discuss how the fractional D-brane can be described from the

perspective of boundary states [8] in the simplest case of Z2 orbifolding. Let us start

with the expression of vacuum energy of open strings stretched between two fractional

Dp branes in a C3
⇥ C2/Z2 orbifold background:

Z =
Z
1

0

ds
s

TrNS�R

" 
1 + (�1)F

2

! ✓e + g
2

◆
e�2⇡s (L0�a)

#
(C.1)

with the first term inside the trace performs the GSO projection, e and g are the two

elements of Z2 and a = 1/2, 0 for NS and R sector respectively.

When the integral is evaluated with the factor e
2 gives the contribution from the untwisted

sector and its half the contribution of the open strings stretched between usual Dp branes

in flat space. The other g
2 factor gives the contribution from the twisted sector. If we denote

the untwisted contribution as Ze and twisted one as Zg, we can interpret them respectively

as the tree level closed string amplitude between two untwisted and two twisted boundary

states.
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Ze =
↵0⇡

2

Z
1

0
dt U
hDp| e�⇡t(L0+L̃0�2a)

|DpiU

Zg =
↵0⇡

2

Z
1

0
dt T
hDp| e�⇡t(L0+L̃0)

|DpiT (C.2)

The untwisted and twisted parts of the boundary state can be expressed as a linear combi-

nation of NS and R sector parts :

|DpiU =
Tp

2
p

2

⇣
|DpiUNS + |DpiUR

⌘

|DpiT = �
1

2s/2

Tp

2
p

2⇡2↵0

⇣
|DpiTNS + |DpiTR

⌘
(C.3)

where Tp and Tr are normalization factors. The number of D brane worldvolume direc-

tions along the orbifold is denoted by s.

In this thesis, we will be more interested in the twisted part of boundary states as they are

used to calculate the refection rules. 1

Now, both |DpiTNS,R are expressed as the following linear combination of Ishibashi states:

|DpiTNS,R =
1
2

⇣
|Dp,+iTNS,R + |Dp,�iTNS,R

⌘
(C.4)

We note down the explicit forms of the Ishibashi states |Dp, ⌘iTNS,R; ⌘ = ± below [8]. We

also give a short note on ishibashi states at the end of this appendix.

In the NS-NS twisted sector,

|Dp, ⌘iTNS = |DpXi
T
|Dp , ⌘iTNS (C.5)

1The explicit forms of untwisted boundary states are given in Ref. [36, 53]
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And in the R-R twisted sector,

|Dp, ⌘iTR = |DpXi
T
|Dp , ⌘iTR (C.6)

where ⌘ = ± and

|DpXi
T = �(5�r) (q̂i

� yi)
1Y

n=1

e�
1
n↵�n.S .↵̃�n

1Y

r=1/2

e�
1
r ↵�r .S .↵̃�r

0Y

↵

|p↵ = 0i
0Y

i

|pii (C.7)

|Dp , ⌘iTNS =

1Y

r=1/2

ei⌘ �r .S . ̃�r

1Y

n=1

ei⌘ �n.S . ̃�n |Dp , ⌘iTNS(0) (C.8)

|Dp , ⌘iTR =
1Y

r=1/2

ei⌘ �r .S . ̃�r

1Y

n=1

ei⌘ �n.S . ̃�n |Dp , ⌘iTR(0) (C.9)

with S = (�↵�,��i j and |Dp , ⌘iTNS(0) and |Dp , ⌘iTR(0) are the zero modes in the fermionic

sector. The longotudinal indices are denoted by ↵, � = 1, 2, ..., (p + 1) and the transverse

indices are denoted by i, j = (p+2), ..., 10. Note the prime in the product over ↵ and i in eq.

(C.7) signifies the fact the product is over only those longitudinal and transverse directions

which are not along the orbifold, since there is no zero mode along those directions.

Lets now look at the zero mode parts; in the NS-NS sector its given by,

|Dp , ⌘iTNS(0) =

 
Ĉ�3�4

1 + i⌘�̂
1 + i⌘

!

LM
|Li| eMi (C.10)

where �m and C are the 6d gamma matrices and charge conjugation matrix of S O(6)

(defined in Appendix A), and �̂ = ��3�4�5�6. Also |Li, | eMi are spinors of S O(4).

In the R-R sector the zero mode part looks like,

|Dp , ⌘iTR(0) =

 
Ĉ�1�2

1 + i⌘�̂
1 + i⌘

!

AB
|Ai|eBi (C.11)
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where �M and Ĉ are the 4d gamma matrices and charge conjugation matrix of S O(4)

(defined in Appendix A), and �̂ = i�1�2�3�4�5�6. Also |Ai, |eBi are spinors of S O(6).

There are two types of fractional branes corresponding to two irreducible representations

of Z2. The untwisted and twisted boundary states given in eq. C.3 are the building block

for the fractional branes of both type 0 and 1:

|Dpi0 = |DpiU + |DpiT

|Dpi1 = |DpiU � |DpiT (C.12)

This discussion can be straight forwardly generalized to the ZM orbifold case in which

there will be M di↵erent types of fractional branes corresponding to M irreducible rep-

resentations of the orbifold group. The only di↵erence being in the Z2 case the Ishibashi

states we are interested in are parts of the zero modes, but in the general ZM case the

relevant Ishibashi states are from the first excited states (5.64),(5.65).

Short note on Ishibashi states [61] :

In a rational CFT made out of a chiral algebra A and Ā, for A = Ā, one can associate

to each highest weight representation Ri ofA a unique state (upto a constant) |Bii which

satisfies the gluing conditions arising out of conformal symmetry and extended symmetry

(e.g supersymmetry):

(Ln � L̄�n) |Bii = 0; conformal symmetry condition
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(Wi
n � (�1)hiW̄i

�n) |Bii = 0; extended symmetry condition (C.13)

where Ln is the usual Virasoro generator and Wi
n is the holomorphic Laurent mode of the

extended symmetry generator Wi with conformal weight hi. The barred objects denote

the corresponding anti-holomorphic counterparts.

The states |Bii are known as Ishibashi states [62, 63]. Since we are considering rational

CFTs which contain finite highest weight states, the number of ishibashi states is also

finite. The true boundary states build-out of linear combinations of ishibashi states 2:

|Bi =
X

i

CB
i |Bii (C.14)

where CB
i s are complex coe�cients.

The ishibashi states are constructed to satisfy the gluing conditions. But the actual bound-

ary state made out of a specific linear combination of Ishibashi states transforms properly

under the modular transformations and satisfies the “Cardy’s Condition" [42, 57].

We study the boundary states for free boson CFT as an example to illustrate how boundary

states are constructed [61] . The bosonic field can X satisfy the following two possible

boundary conditions:

@�Xopen| �=0,⇡ = 0 Neumann b.c

�Xopen| �=0,⇡ = 0 = @⌧X| �=0,⇡ Dirichlet b.c (C.15)

where (⌧,�) are the worldsheet coordinates.

The above conditions are for the open string description of the bosonic field X. To study

2In eq. C.4 the boundary states are constructed with such a linear combination of ishibashi states.
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the boundary states we need to the closed string sector. Using the open-closed duality,

we interchange between (⌧,�) ! (�, ⌧). So, the conditions in (C.15) transform into the

following:

@⌧Xclosed|⌧=0 |BNi = 0 Neumann b.c

@�Xclosed|⌧=0 |BDi = 0 Dirichlet b.c (C.16)

where we have introduced the boundary states |BNi and |BDi satisfying Neumann and

Dirchlet conditions respectively.

In terms of the mode expansion of X (2.9), the above conditions are translated to the

following:

(↵m + ↵̃�m) |BNi = 0

(↵m � ↵̃�m) |BDi = 0 (C.17)

These are the gluing conditions for the free boson case. The solutions to these conditions

are given by the following boundary states:

|BiN =
1
CN

exp
0
BBBBB@�

1X

k=1

1
k
↵�k↵̃�k

1
CCCCCA |0i

|BiD =
1
CD

exp
0
BBBBB@+

1X

k=1

1
k
↵�k↵̃�k

1
CCCCCA |0i (C.18)

where CN and CD are normalization constants. Note the di↵erent sign inside the expo-

nential for the two di↵erent boundary conditions. It is possible to check explicitly by

applying these states with ↵m and ↵̃m, they do satisfy the gluing conditions (C.17).
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These are coherent states and flat space counterparts of the Ishibashi states which are

relevant in orbifold space. For comparison, notice the similarity between (C.18) and

(C.7)(C.8)(C.9). The di↵erence being whereas (C.18) is the total boundary states, for

the orbifold case the Ishibashi states are being the building blocks, and their linear com-

binations are taken to construct a total boundary state to make them satisfy “ Cardy’s

condition".
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