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Synopsis

Introduction

The central theme in this thesis revolves around understanding certain aspects of relation-

ship between asymptotic symmetries and soft theorems in gravity.

Asymptotic symmetries are gauge transformations that do not die down at the infin-

ity. Since these transformations lead to actual physical symmetries,there are conserved

charges associated with it. In gravity, the asymptotic symmetry corresponds to those that

preserve the asymptotic structure of spacetime. This corresponds to the infinite dimen-

sional extension of the famous Bondi, Metzner and Sachs (BMS) group. There are two

known extensions, one being the extended BMS group [1] and the other being the Gen-

eralized BMS (GBMS) group [2] [3]. Soft theorems on the other hand are factorization

theorems which constrains the scattering amplitude when one or more of the external

gravitons becomes soft. The deep underlying connection between these two independent

areas were unknown till Strominger et al showed that Weinberg’s soft graviton theorem

(leading soft graviton theorem) is equivalent to Ward identities corresponding to BMS

symmetry of the quantum gravity S-matrix [4]. Later it was shown by Campiglia and

Laddha [2] that these statements can be extended to subleading level.

In this thesis we are interested in the aspects of the generalized BMS symmetries and

its connection with the Double soft theorems [5]. Double soft theorems are factorization

statements which constrain the scattering amplitude when two of the external gravitons

1



become soft. Such theorems are very interesting in the sense that they contain the infor-

mation of the structure of the (unbroken) symmetry generators.

In particular we try to find a interpretation of a special class of Double Soft theorems

called consecutive double soft theorems (CDST) as a consequence of Ward Identities cor-

responding to generalized BMS symmetry. We also find that algebra of generalized BMS

vector fields close at time-like infinity, which will serve as a precursor for understanding

the relationship of GBMS charge algebra and consecutive double soft theorems when the

external states are massive.

Background

In this section we quickly review the equivalence of the single soft graviton theorems2

for massless particles (both leading and sub–leading) from asymptotic symmetries at null

infinity [2, 4]. This will serve as the background for our main work in this thesis. In the

process, we also define the notations that we use later.

According to present understanding, the asymptotic symmetry group of gravity, acting on

the asymptotic phase space of gravity is the “Generalized BMS” group — it is a semidirect

product of supertranslations and Di�(S 2). They can be thought of as a local generalization

of translations and the Lorentz group respectively. While the original BMS group [6, 7]

is a semidirect product of supertranslations and S L(2,C), in the generalized BMS group

the S L(2,C) symmetry is further extended to Di�(S 2). Each of the supertranslations and

Di�(S 2) symmetry gives rise to conserved asymptotic charges, namely, the supertrans-

lation charge (Qf ) and Di�(S 2) charge (QV) respectively. These charges are determined

completely by the asymptotic “free data" and are parametrized by an arbitrary function

f (z, z̄) and an arbitrary vector field VA(z, z̄), respectively, where (z, z̄) denotes coordinates

on 2-sphere.

2In this thesis we are analyzing the soft theorems only at tree level S matrix.
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To define a symmetry of a gravitational scattering problem at the quantum level, these

charges are elevated to a symmetry of the quantum gravity S–matrix. Corresponding to

each such symmetry one gets a Ward identity. The authors in [2] showed that each such

Ward identity is equivalent to single soft graviton theorem at the leading and subleading

level. In the rest of this section, we discuss briefly how the single soft graviton theorems

are equivalent to Ward identities of generalized BMS charges.

The leading single soft graviton theorem follows from the Ward identity of the supertrans-

lation charge Qf [4], which physically corresponds to the conservation of energy at each

direction on the conformal sphere at null infinity. The supertranslation charge Qf is given

by [4]

Qf =

Z
du d2z f �zz̄ Nzz Nzz + 2

Z
du d2z f @u

�

@zUz̄ + @z̄Uz

⇥

. (1)

Here, Uz = �
1
2 DzCzz , and Nzz = @uCzz is the Bondi news tensor, where Czz is the radiative

“free data”. The derivative Dz is the covariant derivative w.r.t. the 2–sphere metric.

The supertranslation charge Qf is characterized by the arbitrary function f (z, z̄), where (z,

z̄) are coordinates on the conformal sphere at null infinity. The first term in 1 is quadratic

in Czz is conventionally called the “hard part”(Qhard
f ), while the second is linear in Czz —

is called the “soft part” (Qsoft
f ).

The equivalence between the supertranslation Ward identity and the leading single soft

graviton theorem, follows from the fact that the asymptotic charge 1 is a symmetry of the

quantum gravity S–matrix [4]. As a result, one gets the Ward identity for supertranslation

as:

hout| [Qf ,S] |ini = 0, hout| [Qsoft
f ,S] |ini = � hout| [Qhard

f ,S] |ini . (2)

where in writing the above, the classical charges have been promoted to quantum opera-

tors. This quantization is carried out using the asymptotic quantization of Czz [4]. Upon

asymptotic quantization of the charges one can see that Qsoft
f is responsible for the creation

3



or annihilation of a soft graviton mode, and Qhard
f acts non trivially on the external states

through a contribution from the energy momentum tensor of massless particles at null

infinity. Additionally one uses Christodoulou and Klainerman condition to relate posi-

tive helicity soft graviton mode with negative helicity soft graviton mode. Finally we can

write 2 as

lim
Ep!0

Ep

2⇥

Z
d2w D2

w̄ f (w, w̄) hout| a+(Ep,w, w̄)S |ini

= �

⇤ X

out

Ei f (k̂i) �
X

in

Ei f (k̂i)
⌅

hout| S |ini . (3)

Structure of the terms in 3 encourages one to ask whether this can be related to Weinberg’s

soft graviton theorem [8] which is given as,

lim
Ep!0

Ep hout| a+(Ep,w, w̄) S |ini =
X

i

(⇤+(w, w̄) · ki)2

(p/Ep) · ki
hout| S |ini . (4)

where the soft graviton has energy Ep and momentum p. Its direction is parametrized by

(w, w̄) and its polarization vector is denoted by ⇤+(w, w̄). We adopt the notation:

Ŝ (0)(p; ki) ⇥
1

Eki

(⇤+(w, w̄) · ki)2

(p/Ep) · ki
. (5)

with which, the leading soft factor in the r.h.s. of 4 can be written as:

X

i

(⇤+(w, w̄) · ki)2

(p/Ep) · ki
⇥ S (0)(p; {ki}) ⇥

X

i

S (0)(p; ki) ⇥
X

i

Eki Ŝ (0)(p; ki). (6)

Now one can show the equivalence of the Ward identity 3 with the leading soft theorem 4

by choosing f (z, z̄) to a particular function s(z, z̄; w, w̄) which satisfies

D2
z̄ s(z, z̄; w, w̄) = 2⇥⌅2(w � z). (7)

The subleading single soft graviton theorem follows from the Ward identity of the Di�(S 2)

4



charge QV [2], which physically corresponds to the conservation of angular momentum

at each angle in a gravitational scattering process. This charge is given by:

QV =
1
4

Z
du d2z

p
� @uCAB

�

LVCAB � ⇧ CAB + ⇧u @uCAB

⇥

+
1
2

Z
du d2z

p
�

�

Czz D3
z Vz + Cz̄z̄ D3

z̄ V z̄
⇥

. (8)

where ⇧ = 1
2
⇧

DzVz+Dz̄Vz̄⌃ and VA(z, z̄) is an arbitrary vector field on the conformal sphere

at null infinity. The covariant derivatives are w.r.t. the 2–sphere metric. As explained for

the supertranslation case, the first term is the “hard part” Qhard
V and the second is the “soft

part” Qsoft
V of the Di�(S 2) charge.

Proceeding in a manner similar to the case of supertranslation, the Ward identity for

Di�(S 2)s can be written as:

hout| [QV ,S] |ini = 0, hout| [Qsoft
V ,S] |ini = � hout| [Qhard

V ,S] |ini . (9)

Now, using the asymptotic quantization of the “free data" and crossing symmetry one can

write the Ward identity as

�
1

4⇥
lim

Ep!0
(1 + Ep @Ep)

⇤

Z
d2w

"
Vw̄ @3

w̄ hout| a+(Ep,w, w̄) S |ini + Vw @3
w hout| a�(Ep,w, w̄) S |ini

#

=

"X

out

Jhi
Vi
�

X

in

J�hi
Vi

#
hout| S |ini .

(10)

where Jhi
Vi

is a di�erential operator characterised by the vector field VA(z, z̄) acting on the

external states.
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Now, the Cachazo–Strominger (CS) subleading soft graviton theorem reads [9]:

lim
Ep!0

(1 + Ep @Ep) hout|a+(Ep,w, w̄) S |ini

=
X

i

⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i hout| S |ini . (11)

where, Jµ⌃i is the angular momentum operator acting on the ith hard particle. For further

use, we adopt the notation:

S (1)(p; ki) =
⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i . (12)

Using this, the subleading soft factor in the r.h.s. of 11 can be written as:

X

i

⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i =

X

i

S (1)(p; ki) = S (1)(p; {ki}). (13)

Now, in the Ward identity 10, if one chooses the vector field VA as:

VA = K+(w,w̄) ⇥
(z̄ � w̄)2

(z � w)
@z̄. (14)

one can show the equivalence between the Ward identity and the subleading soft graviton

theorem.

Double Soft theorems and asymptotic symmetries

Having reviewed the relationship between asymptotic symmetries and the single soft

graviton theorems, the next natural question is to ask if such a relationship holds be-

tween the generalized BMS algebra and double soft graviton theorems. These theorems

(and its generalization to the multiple soft graviton case) have been studied previously

using various methods including BCFW recursions [10], CHY amplitudes [11–14] and

Feynman diagram techniques [15]. In a recent work [16], the authors have studied the

6



symmetry foundations of the double soft theorems of certain classes of theories like the

dilaton, DBI, and special Galileon. As has been analyzed in the literature, there are two

kinds of double soft graviton theorems depending upon the relative energy scale of the

soft gravitons. The simultaneous soft limit is the one where soft limit is taken on both the

gravitons at the same rate. It was shown in [15], that simultaneous soft limit yields a uni-

versal factorization theorem. However, from the perspective of Ward identities, it is the

consecutive soft limits which arise rather naturally. Consecutive double soft graviton the-

orems (CDST) elucidate the factorization property of scattering amplitudes when the soft

limit is taken on one of the gravitons at a faster rate than the other [10]. We now review

this factorization property when such soft limits are taken and show that they give rise to

three CDSTs. The first one, we refer to as the leading CDST which is the case where the

leading soft limit is taken on both the soft gravitons. The remaining two theorems refer to

the case where the leading soft limit is taken with respect to one of the gravitons and the

subleading soft limit is taken with respect to the other.

We begin with a (n + 2) particle scattering amplitude denoted by An+2(q, p, {km}) where

p , q are the momenta of the two gravitons which will be taken to be soft and {km} is

the set of momenta of the n hard particles. Consider the consecutive limit where the soft

limit is first taken on graviton with momentum q, keeping all the other particles momenta

unchanged and then a soft limit is taken on the graviton with momentum p. Following

this one finally gets the factorization

An+2(q, p, {km}) =
⇤ 1
EpEq

X

i, j

Eki Ek j Ŝ (0)(q; ki) Ŝ (0)(p; k j) +
X

i, j

Eki

Eq
Ŝ (0)(q; ki) S (1)(p; k j)

+
X

i

Eki

Eq
Ŝ (0)(q; p) Ŝ (0)(p; ki) +

X

i, j

S (1)(q; ki)
Ek j

Ep
Ŝ (0)(p; k j)

+ S (1)(q; p)
X

i

Eki

Ep
Ŝ (0)(p; ki)

⌅

An({km}) + O(Ep) + O(Eq). (15)

7



This expansion contains three types of terms. The first type scales as 1/(EpEq) (and hence

gives rise to a pole in both the soft graviton energies), giving the leading contribution

to the factorization. The second and the third type of terms scale as E0
q/Ep and E0

p/Eq

respectively, both contributing to the subleading order of the factorization. This gives the

leading CDST as:

lim
Ep!0

Ep lim
Eq!0

Eq An+2(q, p, {km}) =
⇤

S (0)(q; {ki}) S (0)(p; {k j})
⌅

An({km}). (16)

At the subleading level one gets two types of factorisation which are given by

lim
Ep!0

(1 + Ep@Ep) lim
Eq!0

Eq An+2(q, p, {km})

=

⇤

S (0)(q; {ki}) S (1)(p; {k j}) +N(q; p; {ki})
⌅

An({km}). (17)

and

lim
Ep!0

Ep lim
Eq!0

(1 + Eq @Eq)An+2(q, p, {km})

=

"
S (0)(p; {ki}) S (1)(q; {k j}) +M1(q; p; {ki}) +M2(q; p; {ki})

#
An({km}). (18)

where

M1(q; p; {ki}) =
X

i

S (1)(q; ki)
�

Eki Ŝ (0)(p; ki)
⇥

=
X

i

S (1)(q; ki)
�

S (0)(p; ki)
⇥

, (19)

M2(q; p; {ki}) =
X

i

lim
Ep!0

Ep S (1)(q; p)
 

Eki

Ep
Ŝ (0)(p; ki)

!
, (20)

N(q; p; {ki}) = Ŝ (0)(q; p) S (0)(p; {ki}). (21)

We now ask if there are Ward identities in the theory which are equivalent to the dou-

ble soft graviton theorems at the leading and sub–leading order. In particular, we look

for Ward identities that will lead us to the CDSTs. Let us consider the family of Ward

8



identities whose general structure is:

hout|
⌥

Q1, [Q2,S]
�

|ini = 0. (22)

where both Q1 and Q2 are either both supertranslation charges or Q1 is a supertranslation

charge and Q2 is a Di�(S 2) charge.

In [5] following a work by Avery and Schwab [17], we present a derivation of this pro-

posed Ward identity. Using the tools that we discussed in the previous section we show

that such a proposal leads to the CDSTs. Depending on the choice of charges one gets the

leading as well as the subleading consecutive double soft theorems.

We also show that the CDST’s are equivalent to Ward identities associated to Generalized

BMS in scattering states defined around (non) Fock vacua parametrized by supertransla-

tions and Di�(S 2) charges. As explained in the previous section the asymptotic charges

can be written as a sum of soft and hard part. The soft part is responsible for the cre-

ation and annihilation of a soft graviton mode. Therefore the action of the soft charge

on the usual Fock vacuum gives rise to a infinite degeneracy in the definition of vaccua.

Each such vaccua can be parameterized by a supertranslation soft charge or Di�(S 2) soft

charge3. In [5] we showed that, CSDT’s arise naturally if one considers Ward Identity

involving one asymptotic charge on scattering states built around such degenerate vaccua.

We summarize the main results in [5] as

hout| [Qf , [Qg,S]] |ini = 0, hout, f | [Qg,S] |ini = 0, Leading CDST, (23)

hout| [Qf , [QV ,S]] |ini = 0, hout, f | [QV ,S] |ini = 0, Sub leading CDST 1, (24)

hout| [QV , [Qf ,S]] |ini = 0, hout,V | [Qf ,S] |ini = 0, Sub leading CDST 2. (25)

where Qf ,Qg corresponds to supertranslation charge and QV corresponds to Di�(S 2)

3the notion of Di�(S 2) vacuum has some conceptual and mathematical subtleties associated to it and we
have treated this formally in our work.
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charge. hout, f |,hout,V | corresponds to external states built from supertranslated and

Di�(S 2) vaccua respectively. Leading CDST, subleading CDST 1 and subleading CDST

2 refers to 16, 17 and 18 respectively.

Generalized BMS algebra at time-like infinity

In the previous section, the focus has been on the asymptotic symmetry group at null

infinity and its relationship with the soft theorems where the external particles were mass-

less. In soft theorems, the external particles (other than the soft particle), can be massive

or massless. To prove the equivalence between asymptotic symmetries and soft theorems

when the external states contain massive particles, one needs to include the phase space

for massive particles (whose geodesics start(end) at past(future) time-like infinity) as well.

Based on the earlier work on the action of BMS group on massive scalar particle phase

space [18], this question was addressed in [19].

The study of extended BMS as well as generalized BMS charge algebra at null infinity has

been extensively carried out in [1, 20–23]. Motivated by these works, we were interested

in understanding the generalized BMS charge algebra from the perspective at time-like

infinity and its relationship with double soft theorems when the external states are mas-

sive. Our work [24] serves as a precursor to this goal. In this paper, we are interested in

understanding the generalized BMS vector field algebra at time-like infinity with the aim

of understanding the generalized BMS charge algebra at time-like infinity in future. We

show that there is a closure of generalized BMS vector fields under modified version of

Lie bracket as proposed by Barnich et.al [1].

We now summarize the key ideas that were relevant for our analysis. The set of coordi-

nates which we used are the hyperbolic coordinates (⌥, �, x̂), which are defined in terms
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of Cartesian coordinates (t, ~x) in the region t ⌅ r ⇥
p
~x · ~x as:

⌥ B
p

t2 � r2 ; � B
r

p
t2 � r2

; x̂ = ~x/r. (26)

We consider a space of metrics gab which has an asymptotic expansion in ⌥ near time-like

infinity of the form:

ds2 =
⇧

� 1 + O(1/⌥)
⌃

d⌥2 + ⌥2h⇧ (⌥, �, x̂)dx⇧dx . (27)

where h⇧ (⌥, �, x̂) has the following asymptotic expansion (in ⌥) around time-like infinity

h⇧ (⌥, �, x̂) = h(0)
⇧ (�, x̂) +

h(1)
⇧ (�, x̂)
⌥

+
h(2)
⇧ (�, x̂)
⌥2 + · · · . (28)

where h(0)
⇧ (�, x̂) belongs to the class of metrics di�eomorphic to the hyperboloid part of

the usual Minkowski metric. This ansatz is mainly motivated from the asymptotic flat-

ness structure taken in [2, 3] where the authors considered asymptotic flat metrics at null

infinity in which leading order sphere metric can be any unit S (2) metric. The notion of

asymptotic flatness for metric of this form 27 at time-like infinity have been addressed

in [25, 26]. The Minkowski metric (which we denote by g̊ab) belongs to the class of met-

ric 27 that has only the leading components (in ⌥) and the hyperboloid components take a

particular form. The line element for g̊ab is written as:

ds2 = �d⌥2 + ⌥2h̊⇧ (�, x̂)dx⇧dx . (29)

where

h̊⇧ (�, x̂)dx⇧dx ⇥
d�2

1 + �2 + �
2qABdxAdxB. (30)

Here, qAB is the unit metric on 2-sphere. The greek indices ⇧,  , · · · runs over the coordi-

nates on the hyperboloid. We also denote the small Latin indices a, b, c, · · · to denote the
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four spacetime indices.

One can reach time-like infinity i+ in hyperboloid coordinates by taking ⌥ ! 1 limit (or

in the Cartesian coordinates t ! 1, keeping t ⌅ r ). Similarly, one can reach the part

of null infinity where u > 0 in the hyperboloid coordinates by taking the limit ⌥ ! 1,

�! 1, keeping ⌥
2� = const.

In order to analyze the asymptotic symmetries at time-like infinity i+, we suitably adapt

the de-Donder gauge in the hyperbolic coordinates. In this gauge, the residual (large) dif-

feomorphisms are generated by supertranslation and Di�(S 2) vector fields that smoothly

matches with the corresponding BMS vector fields at null infinity.

In particular, we consider the following gauge conditions to the metric ansatz4 27

r̊bGab = 0, (31)

Tr(h(1)
⇧ (�, x̂)) = 0. (32)

whereGab
⇥
pggab and r̊b refers to the covariant derivative w.r.t to the reference Minkowski

metric (g̊ab) in 29. The trace free condition 32 of h(1)
⇧ (�, x̂) is taken w.r.t to h(0)

⇧ (�, x̂).

The generalized BMS vector fields at time-like infinity are those that generate the group

of di�eomorphisms that preserve the form of the metric 27 and the gauge conditions 31-

32. To find the structure of such vector fields we start by taking a general ansatz for the

vector fields which has an asymptotic expansion (in ⌥) of the form:

⌦(⌥, �, x̂) =
�

⌦(0)⌥(�, x̂) +
⌦(1)⌥(�, x̂)

⌥
+ · · ·

⇥

@⌥ +
�

⌦(0)⇧(�, x̂) +
⌦(1)⇧(�, x̂)

⌥
+ · · ·

⇥

@⇧. (33)

Using the ansatz above and applying the gauge constraints, one gets the following condi-

4We are indebted to Miguel Campiglia for suggesting this gauge choice which was a vital input in this
work.
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tions on the vector fields,

�

↵ � 3
⇥

⌦(0)⌥(�, x̂) = 0, (34)

2 D(⇧⌦(0) )@ 
�

ln
�

s
h(0)

h̊

⇥⇥

+ h(0)⇧ @ D�⌦
(0)� + 2D̊ D(⇧⌦(0) ) = 0, (35)

D⇧⌦(0) h̊⇧ = 0. (36)

The above constraints are a more general case of the constraints obtained by Campiglia

and Laddha in [19] where they considered asymptotic symmetries at time-like infinity

as residual gauge transformations of de-Donder gauge around the reference Minkowski

metric.

In our work [24], we were primarily interested in the algebra of the generalized BMS

vector fields w.r.t reference Minkowski metric (g̊ab). The supertranslation and Di�(S 2)

vector fields to leading order at time-like infinity are given by

⌦S T = fH (�, x̂)@⌥, (37)

⌦S R = V⇧
H (�, x̂)@⇧. (38)

The constraints 35,36 at the reference Minkowski metric therefore becomes

�

↵̊ � 3
⇥

fH (�, x̂) = 0, (39)
�

↵̊ � 2
⇥

V⇧
H = 0, (40)

D̊⇧V⇧
H = 0. (41)

where ↵̊ refers to Laplacian w.r.t h̊⇧ . A naive attempt to study the vector field algebra

will be to compute the ordinary Lie bracket (as for the null infinity case) of the vector

fields and check whether the resulting vector field satisfies the constraint 39 (in case for

supertranslation), 40 and 41 (in case for Di�(S 2)). However, as is well known in the

literature [1,23], the correct definition of Lie bracket in the case of asymptotic symmetries
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is more intricate. This can be explained as follows.

Usually, one studies the vector field algebra by considering the commutator of two vari-

ations of the vector fields on the metric. An important point to be noted here is the fact

that the vector fields themselves are metric dependent. This can be seen from the defining

equations for the vector field 39, 40 and 41, which tells us that the vector fields depend

upon the hyperboloid metric h̊⇧ through covariant derivative and Laplacian. Therefore,

performing the second variation will a�ect both the first variation as well as the metric.

This can be written as

[⌅⌦1(g), ⌅⌦2(g)]gµ⌃ = ⌅⇧

[⌦1(g),⌦2(g)]�⌅g
⌦1
⌦2(g)+⌅g

⌦2
⌦1(g)

⌃gµ⌃.

The first term in the above expression is the ordinary Lie bracket. The extra term ⌅
g
⌦1
⌦2(g)

captures the variation on the vector field ⌦2(g) due to the action of the vector field ⌦1(g)

on the metric. Hence to realize the algebra of the vector fields at time-like infinity one

needs to take into account such terms. Therefore one defines the modified Lie bracket for

realizing the BMS vector fields algebra as

[⌦1, ⌦2]a
M ⇥ [⌦1, ⌦2]a

� ⌅
g
⌦1
⌦a

2 + ⌅
g
⌦2
⌦a

1. (42)

where ⌅
g
⌦1
⌦a

2 denotes the change in ⌦a
2 due to the variation in the metric induced by ⌦1.

In [24] we find that the vector fields that one gets from the modified Lie bracket obeys

the same constraints that the supertranslation and Di�(S 2) vector field does. This can be

written as

[⌦S T1, ⌦S T2]a
M = 0, (43)

(↵̊ � 3)[⌦S T , ⌦S R]M = 0, (44)

D̊⇧[⌦S R1, ⌦S R2]M = 0, (45)

(↵̊ � 2)[⌦S R1, ⌦S R2]M = 0. (46)
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Thus under the modified Lie bracket, the supertranslation vector fields commute, a super-

translation and a Di�(S 2)) vector field gives another supertranslation vector field and two

Di�(S 2)) vector field gives another Di�(S 2)) vector field. Thus we show that under the

modified Lie bracket the generalized BMS vector fields closes.

Plan of the thesis

In this thesis, we will investigate various aspects of generalized BMS symmetry and rela-

tionship with double soft graviton theorems. It will include the following chapters.

• Chapter 1 will provide an introduction to asymptotic symmetries in gravity and soft

graviton theorems.

• Chapter 2 reviews the earlier works on asymptotic symmetry groups in gravity,

single soft graviton theorems and their equivalence.

• Chapter 3 discusses about the double soft graviton theorem with focus on consecu-

tive double soft graviton theorems at leading and subleading level.

• Chapter 4 will discuss the equivalence of consecutive double soft graviton theorems

with generalized BMS symmetry group.

• Chapter 5 will discuss the extension of generalized BMS to time-like infinity and

the study of GBMS vector field algebra at time-like infinity.

• Chapter 6 will be the concluding chapter which include the summary of the results

and future directions.
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Chapter 1

Introduction

Understanding the symmetries of classical and quantum gravitational scattering has been

an active area of research since the 1960s [6, 21, 22, 27–44]. The study of soft theorems

in scattering amplitudes also has a similar history [8, 12–14, 38, 45–53]. The relationship

between these seemingly independent topics was unknown until the seminal work by

Strominger [4]. Since then there were lot of works in exploring the deep connection

between the two subjects [2–5, 19, 54–64]. This thesis explores the relationship of the

symmetries associated to quantum gravitational scattering amplitudes with a particular

class of soft graviton theorems known as the double soft graviton theorems.

Gravitational scattering is studied in asymptotically flat spacetimes. Asymptotic flatness

can be understood as the behavior of space-times as one recedes away from isolated grav-

itational systems. The mathematically rigorous definition for asymptotic flatness can be

found in the works by [6,7,27,29–32]. Away from the sources, one expects that such class

of metrics asymptotes to the Minkowski metric and therefore one expects the asymptotic

symmetries to be the isometries of the Minkowskian space-time, which generates the

Poincar̀e group. But in their seminal work [6, 7, 27] Bondi, Van der Berg, Metzner, and

Sachs, showed that one gets an infinite dimensional extension of the Poincar̀e group. This

extension is known as the BMS (Bondi, Metzner, and Sachs) group. It is a semi-direct
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product of the Lorentz group and an infinite-dimensional extension of the constant trans-

lations known as supertranslations.

There are two known extensions to the BMS group. Motivated from AdS/CFT, Bar-

nich and Troessart proposed one of the extensions which are referred to as the “Ex-

tended” BMS group. The extended BMS algebra is implemented by enhancing the six-

dimensional global conformal transformations that generate the Lorentz transformations

in the original BMS, to infinite-dimensional local conformal transformations. Such lo-

cal conformal transformations are known as super-rotations. Hence, the extended BMS

can be written as a semi-direct product of supertranslations and superrotations. There

are several works understanding the many aspects of the “Extended” BMS, especially in

connection with the algebra related to “Extended” BMS charges and its relationship with

conformal field theories [1, 23, 38].

Campiglia and Laddha proposed a second extension [2, 3] to BMS, which is known as

the “generalized” BMS group. Generalized BMS is realized by enhancing the Lorentz

group in the BMS to the infinite-dimensional group generated by smooth vector fields on

the 2-sphere (which is denoted as Di�(S 2)). Hence, the generalized BMS group can be

written as the semi-direct product of supertranslations and Di�(S 2). A lot of aspects of

generalized BMS symmetry are currently being explored [3,20–22,24,65]. In this thesis,

we will focus on this proposed extension and explore its relationship with soft graviton

theorems.

Soft theorems are factorization theorems that are related to the infrared properties of the

scattering amplitude. Consider a scattering amplitude of finite energy particles and soft

particles 1. Such an amplitude can be written in terms of soft factors and scattering am-

plitude involving finite energy particles only. The soft factors are an expansion in the

soft momenta and depend on the kinematics of the soft particles and finite energy parti-

cles. The soft expansion terminates at a particular order in the soft momenta. If one takes

1a massless particle of momentum k is considered a soft particle if the ratio pi·k
pi·p j
<< 1 8 pi, p j where

pi, p j denote the momentum of the rest of the particles in the scattering amplitude
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appropriate soft limits in the scattering amplitude, one can extract each of the soft fac-

tors seperately. The soft factors are not arbitrary and there are certain aspects of the soft

factors that are universal in nature and does not depend on a specific Lagrangian under

consideration. Hence the factorization is known as the soft theorems. If the soft particles

in the external state are photons, then one gets soft photon theorems and similarly, if the

soft particles are gravitons, one gets soft graviton theorems.

Weinberg’s soft factor [8],which corresponds to the leading term in the soft expansion, is

universal in nature and does not depend on a particular theory and is valid up to all orders

in the perturbation theory in the scattering amplitude. The sub-leading soft photon the-

orem was identified by Low [45]. Unlike Weinberg’s soft photon factor, the sub-leading

soft photon factor is not universal (theory dependent) and is a�ected by the loop cor-

rections in the scattering amplitude. The sub-leading and sub-subleading soft graviton

theorems for tree-level amplitudes were discovered very recently by Cachazo and Stro-

minger [9]. In dimensions greater than four, the sub-leading soft graviton factor is uni-

versal, but in four dimensions due to infrared divergences in the scattering amplitude the

sub-leading soft factor gets loop corrected [66]. The sub-sub-leading soft graviton factor

can be written as a sum of a universal term and a theory dependent term that comes from

the non-minimal coupling of the Riemann tensor with finite energy particles. In [15], Sen

introduced a new procedure known as “covariantization” technique for deriving the soft

photon and graviton theorems for any generic quantum theory of gravity that admits gen-

eral coordinate invariance and U(1) gauge invariance. Many other recent developments in

the area of soft theorems have happened, especially in the understanding of soft theorems

in the classical regime and its applications to classical gravitational radiation [67–72].

The deep underlying connection between the two seemingly independent areas of study

was unknown until the work by Strominger [4]. In [4], it was shown that the Ward iden-

tities corresponding to the supertranslation invariance of the quantum gravity S matrix

are equivalent to Weinberg’s soft graviton theorem with massless external particles. This
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initiated a flurry of activities toward understanding similar relationships in gauge the-

ories and gravity [2, 19, 62, 63, 73–75]. For example, asymptotic symmetries in QED

were shown to be equivalent to leading/sub-leading soft photon theorems [56, 57, 61, 75].

Similar relationships were also established in the context of non Abelian gauge theories

also [73, 76, 77].

One of the major implications of this equivalence is that it helps us get new insights to

one of the fields by knowing the results of the other. For example, in [59] it was shown

that one could derive the Ward identities corresponding to super-rotation invariance of the

quantum gravity Smatrix at the tree-level. But there were certain subtleties in proceeding

in the opposite direction, i.e if sub-leading soft graviton theorem can be understood as

a consequence of super-rotation invariance. This motivated Campiglia and Laddha to

propose the generalized BMS symmetry in which such obstacles can be overcome and

equivalence can be established [2, 3].

Motivated by the connections between asymptotic symmetries and soft theorems, we tried

to explore the relationship between generalized BMS group and soft graviton theorems in

the context of double soft graviton theorems that are factorization statements in scatter-

ing amplitudes involving two soft gravitons. There are two types of double soft graviton

theorems in the literature, depending on the energy scale of the soft gravitons. If the soft

limit is taken at the same rate, one gets a simultaneous double soft graviton theorem. If

the soft limit of one of the gravitons is taken at a faster rate than the other, one gets a

consecutive double soft graviton theorem. In [5], we find that generalized BMS symme-

tries are equivalent to the consecutive double soft graviton thorems. Generalized BMS

charges give rise to an infinite set of degenerate vacua which is labeled by the supertrans-

lation and Di�(S 2) charges2. We show that the consecutive double soft graviton theorem

at the leading and subleading level can be derived from Ward identities corresponding to

the generalized BMS charge, but evaluated around the external states built from such de-

2there are some subtleties associated with degenerate vacua parametrized by Di�(S 2) charge. We will
elaborate on this in section 4
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generate vacua. We also show that the consecutive double soft graviton theorems can be

derived by evaluating the nested Ward identities constructed from two generalized BMS

charges in states built around Fock vacua.

In the second part of the thesis, we explore another aspect of generalized BMS group. In

soft theorems the external particle (other than the soft particle) can be massive or mass-

less. Hence, to prove the equivalence between generalized BMS group and soft graviton

theorems when the external states are massive, one should understand the role of general-

ized BMS at time-like infinity. Massive particle geodesics asymptotically reach time-like

infinity in a asymptotically flat space-time. The vector fields that generate the general-

ized BMS symmetry at time-like infinity were already derived by Campiglia and Laddha

in [19]. Subsequently, the equivalence between Ward identities associated with general-

ized BMS symmetry and leading/subleading single soft graviton theorem were external

states are massive were established. But the algebra of the vector fields were not investi-

gated. In [24], we explore this aspect. The vector field algebra is conventionally studied

by computing the Lie bracket. But at time-like infinity, the vector fields are metric de-

pendent and therefore the ordinary Lie bracket will not su⇥ce to capture the algebra of

the vector fields. Motivated by the above, in [24], we show that the super-translations and

vector fields that generate the sphere di�eomorphisms close under a modified version of

Lie bracket as proposed by Barnich et al. in [1].

This thesis is organized as follows. In chapter 2, we give an brief review of the asymptotic

symmetries in gravity with a focus on generalized BMS symmetry. A brief overview of

soft graviton theorems and the equivalence between generalized BMS symmetry and soft

graviton theorems are presented. In chapter 3, we give the notion of double soft graviton

theorems with emphasis on consecutive double soft graviton theorems at the leading and

sub-leading level. In chapter 4, we present the equivalence between consecutive double

soft graviton theorems and generalized BMS symmetry, which is one of the main results

in this thesis. In chapter 5, we study the generalized BMS symmetry at time-like infinity
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and specifically discuss the algebra of the vector fields that generate generalized BMS

symmetry at time-like infinity. In chapter 6, we summarize the main results in this thesis.
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Chapter 2

Preliminaries

In this chapter, we review the earlier works on asymptotic symmetries and soft theorems in

gravity. This will serve as the background material for our works, which will be explained

in detail in sections 3 and 4. In section 2.1, we give an brief review of asymptotic flat

spacetimes and corresponding asymptotic symmetries and charges. In section 2.2 a review

of soft theorems in gravity is presented and in section 2.3 the equivalence between the two

is given following the works of [2, 3].

2.1 Asymptotic flat spacetimes and asymptotic symme-

tries in gravity

Asymptotic flatness is referred to as the properties of space times as one moves away from

localized gravitational sources. It is described in the literature in two regimes, depending

on how one moves from isolated gravitational systems. If one moves from the sources in

a space-like direction toward the boundary of space-time one has a notion of asymptotic

flatness at spatial infinity that is defined as the conformal boundary of space-time in space-

like directions. Asymptotic flatness has been explored in detail [33,95]. In this thesis, we
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focus on the second regime in which one defines a notion of asymptotic flatness near the

null boundaries of space time. This was mainly pursued in the works by Bondi, Sachs,

Penrose [6,7,30], where they studied the propagation of gravitational waves from isolated

systems. Asymptotic flatness in the null directions is defined around null infinity (denoted

byI), which is defined as conformal boundary of space time in null directions [30–32,34].

If one moves away from the sources in the future null direction one reaches future null

infinity (denoted by I+) and if one moves in the past null direction one reaches past null

infinity (denoted by I�). Hence all null geodesics start at I� and end at I+. Future

null infinity (I+) is described in terms of a retarded null coordinate system labeled by

(u, r, z, z̄). These are related to Cartesian coordinates (t, x1, x2, x3) by

u = t � r ; r =
p

(x1)2 + (x2)2 + (x3)2 ; z =
x1 + ix2

x3 + r
; z̄ =

x1
� ix2

x3 + r
. (2.1)

One can reach I+ by taking u = constant and r ! 1 limit. Similarly, the asymptotic

flatness in the past null direction is described using an advanced null coordinate system

labeled by (v, r, z, z̄), which are related to Cartesian coordinates (t, x1, x2, x3) by

v = t + r ; r =
p

(x1)2 + (x2)2 + (x3)2 ; z =
x1 + ix2

x3 + r
; z̄ =

x1
� ix2

x3 + r
. (2.2)

In [6, 7, 27], the authors showed that any four-dimensional asymptotically flat spacetime

in these coordinates takes the following form:

ds2 = (V/r)e2 du2
� 2e2 dudr + gAB(dxA

� UAdu)(dxB
� UBdu), (2.3)

with the following gauge conditions1:

grr = 0 ; grA = 0, (2.4)

1For our purposes in this thesis, we focus on the description of asymptotic flatness in a coordinate based
approach. There also exists a coordinate free description for asymptotic flatness and the corresponding
asymptotic symmetries. This is due to the works by Ashtekar et. al [33–37]
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det ( gAB ) = r4det ( �AB ). (2.5)

where  ,V,UA, gAB are functions of the coordinates (u, r, z, z̄) and A, B indices denotes the

coordinates on the sphere expressed in stereographic coordinates (z, z̄) and �AB denotes

the metric on unit 2�sphere given by �zz̄ =
2

(1+zz̄)2 , �zz = �z̄z̄ = 0.

The asymptotic flatness at null infinity is imposed by assuming appropriate fall-o� condi-

tions at large r on the metric components. The fall-o�s are chosen such that they are not

strong enough to disallow interesting solutions like gravitational waves, but should not be

weak enough so that they allow unphysical solutions.

Based on the above criteria, Bondi and Sachs in [6, 7] adopted the following conditions

on the metric:

 ⇧ O(r�2) ;
V
r
⇧ �1 + O(r�1) ; UA

⇧ O(r�2), (2.6)

gAB ⇧ r2�AB + O(r). (2.7)

where �AB denotes the metric on unit 2�sphere given by �zz̄ =
2

(1+zz̄)2 . Using these fall-o�s

given in 2.6, 2.7, one can see that at the leading order (in r) of the metric given in 2.3

the metric becomes the Minkowski metric expressed in the (u, r, z, z̄) coordinates, i.e 2.3

becomes

ds2 = �du2
� 2dudr + 2r2�ABdxAdxB + · · · (2.8)

where · · · denotes the subleading components in r. With these fall-o� conditions, one

can now describe the asymptotic symmetry group to such class of metrics. These are de-

scribed as the group of non-trivial di�eomorphisms ( i.e those di�eomorphisms generated

by vector fields that survive at null infinity ) that preserves the fall-o� conditions 2.6 and
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2.7. Inorder to find such vector fields, the following conditions are imposed:

L⌦guu = O(r�1) ; L⌦gur = O(r�2) ; L⌦guA = O(1) ; L⌦gAB = O(r). (2.9)

Since the metric asymptotes to Minkowski metric at large r, one might expect that the

asymptotic symmetry group will be generated by vector fields that generate the Poincar̀e

group. However surprising enough, one gets an infinite number of vector fields that gen-

erate the asymptotic symmetry group. These vector fields are known in the literature as

Bondi, Metzner and Sachs ( BMS ) vector fields and the asymptotic symmetry group gen-

erated by such vector fields is called the BMS group. The BMS vector fields are given

by:

⌦BMS
f = f (z, z̄)@u + DADA f@r �

1
r

DA f@A + · · · (2.10)

⌦BMS
Y = YA(z, z̄)@A + u

DAYA

2
@u � r

DAYA

2
@r + · · · (2.11)

where f (z, z̄) is an arbitrary function on the 2� sphere and YA corresponds to those vector

fields that satisfies

YC@C�AB + �CB@AYC + �AC@BYC = DCYC�AB. (2.12)

The vector field ⌦BMS
f characterized by the arbitrary function f (z, z̄) is called the super-

translation vector field. These are an infinite dimensional extension of the vector fields

that generate the global translations. The global Poincar̀e translations xµ ! xµ + aµ are

realized using the following f (z, z̄):

f (z, z̄) =
(a0
� a3) � (a1

� ia2)z � (a1
� +ia2)z̄ + (a0 + a3)zz̄

1 + zz̄
. (2.13)

From 2.12, it can be seen that Yz, Yz̄ satisfies the 2�d conformal Killing equation on the

2�sphere. Hence, the solutions to Yz, Yz̄ can be any holomorphic/anti holomorphic vector
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fields and hence there are infinitely many solutions of them. The globally well-defined so-

lutions to the 2.12 correspond to those Yz to be spanned by the generators,{1, z, z2, i, iz, iz2}

and Yz̄ to be spanned by the generators,{1, z̄, z̄2, i, iz̄, iz̄2} . These six generators correspond

to six generators of the Lorentz transformations. Hence, one can see that ⌦Y are the vector

fields that generate the Lorentz transformations.

We now discuss a more relaxed set of fall-o� conditions adopted by Campiglia and Lad-

dha [2, 3]. This will be our focus in rest of the thesis. The fall-o� conditions that are

adopted in [2, 3] for the metric components 2.3 around I+ are as follows :

 =
 ̊(u, x̂)

r2 + O(r�3) ;
V
r
= V̊(u, x̂) + O(r�1), (2.14)

UA =
Ů(u, x̂)

r2 + O(r�3), (2.15)

gAB = r2qAB(x̂) + r
�

CAB(u, x̂) + uTAB(x̂)
⇥

+ · · · (2.16)

where  ̊, V̊ , Ů are functions of (u, z, z̄). Here all the indices are raised w.r.t to the metric

qAB. An important thing to note is regarding the metric component qAB. In the previous

choice, for defining the notion of asymptotic flatness, qAB was fixed to be proportional to

round sphere metric �AB. In [2,3], the authors considered more relaxed fall-o� conditions,

in which qAB can be any sphere metric, which is independent of u and such that volume

element of qAB is that of the unit 2-sphere metric �AB. i.e qAB belong to the class of metrics:

@uqAB = 0 ;
p

q =
p
�. (2.17)

CAB is often referred to as shear tensor in the literature and TAB is a 2D tensor constructed

entirely from qAB and vanishes when qAB is chosen to be the round sphere metric �AB.

Along with the fall-o� conditions, one assumes the gauge fixing condition,

grr = 0 ; grA = 0 ; det(gAB) = r4det(qAB) (2.18)
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One can now solve the Einstein equations using the metric given and find that

V̊ = �
1
2
R ;  ̊ = �

1
32

C2 ; ŮA = �
1
2

DBCAB. (2.19)

where R and DA denote the Ricci scalar curvature and covariant derivative of qAB and

C2 = CABCAB. It can also be shown that all the subleading components in the metric can

be expressed in terms of qAB and CAB. qAB is often referred as the kinematical “frame”

and the pair (qAB,CAB) are often referred to as the radiative free data as these are the data

required to determine all other metric components. The special case in which qAB is the

unit round sphere �AB is known as the “Bondi” frame. From the gauge fixing condition

2.18, it can be easily seen that qABCAB = 0 and hence CAB is trace-free. Therefore, there

are two independent degrees of freedom encoded in CAB that indicate that CAB are the two

radiative degrees of freedom.

Having defined the fall-o� conditions, one can now define the asymptotic symmetry group

associated with such class of metrics. The asymptotic symmetries of such asymptotically

flat spacetimes are the group of di�eomorphisms that preserves the form of the metric,

along with preserving the gauge fixing condition 2.5. Additionally, in [2, 3], it was found

that the vector fields that generate these di�eomorphisms are asymptotically divergence

free,

lim
r!1
ra⌦

a = 0. (2.20)

The vector fields that satisy these constraints are of the form2:

⌦ f+ = f+(x̂)@u + · · · ; ⌦V+ = VA
+ (x̂)@A + u⇧@u � r⇧@r + · · · (2.21)

where f+(x̂) denotes an arbitrary function on the two-sphere, and VA
+ (x̂) is an arbitrary

vector field on the sphere and ⇧ = DCVC
+ /2. The vector fields ⌦ f+ characterized by f+(x̂)

2The detailed derivation of the vector fields will be discussed in chapter 5
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are called the supertranslation vector fields. On the other hand the vector fields ⌦V+ charac-

terized by VA
+ (x̂) are called Di�(S 2) vector fields. · · · indicate the subleading components

(in r) of the vector fields. The algebra of the vector fields can be obtained by evaluating

the Lie bracket of the vector fields and one finally gets

[⌦ f1 , ⌦ f2] = 0 ; [⌦V1 , ⌦V2] = ⌦[V1,V2] ; [⌦ f , ⌦V] = ⌦LV f�⇧ f . (2.22)

From 2.22, one can see the Generalized BMS vector fields at null infinity have a semidi-

rect sum algebra structure in which the supertranslation vector fields form an Abelian

ideal. We will revisit more of the generalized BMS vector field algebra in chapter 5.

Using the Lie derivative of the generalized BMS vector fields on the metric, the action of

the vector fields on the radiative free data can be found to be,

⌅ f+qAB = 0 ; ⌅ f+CAB = f@uCAB � 2(DADB f+)TF + f+TAB, (2.23)

⌅V+qAB = LV+qAB � 2⇧qAB ; ⌅V+CAB = LV+CAB � ⇧CAB + ⇧u@uCAB. (2.24)

where T.F indicates the trace-free component.

Having defined the asymptotic symmetries, one can now construct the corresponding

charges. In [3], the authors used covariant phase space formalism to derive the gener-

alized BMS charges. Inorder to construct well defined finite charges, one must define an

appropriate radiative phase space that considers the variation in both qAB and CAB, and

suitable fall-o�s and boundary conditions (in u) for CAB
3. The radiative phase space �q is

given by:

�q
B

n
(qAB,CAB) : qABCAB = 0 ; lim

u!±1
@uCAB = O(1/|u|2+⇤) ; D2

zCz̄z̄|I++ = D2
z̄Czz|I+�

o
.

(2.25)

3The fall-o�s chosen here are restrictive for a general gravitational scattering. This choice has been
made for compatibility with tree-level scattering processes. For a general classic scattering process one
should allow for @uCABs to fall as O(1/u2).
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where I++ and I+
�

denote the boundaries of future null infinity as u ! ±1 respectively.

The generalized BMS charges that correspond to supertranslation symmetry and Di� (S 2)

symmetry are defined in a particular subspace of �q in which qAB is the 2-sphere metric

�AB. The charges are found to be [2, 3]:

Q+f+ =
1
4

Z
du d2z f+ NAB NAB +

Z
du d2z f+ lim

r!1
r2T M

uu �
1
2

Z
du d2z f+ DADBNAB,

(2.26)

Q+V+ =
1
4

Z
du d2z NAB

�

LV+CAB � ⇧ CAB + ⇧u NAB

⇥

+

Z
du d2z

�1
2

u⇧ lim
r!1

r2T M
uu + 2VA

+ lim
r!1

T M
uA

⇥

+
1
2

Z
du d2z u

�

Nzz D3
z Vz
+ + Nz̄z̄ D3

z̄ V z̄
+

⇥

.

(2.27)

where NAB ⇥ @uCAB is the Bondi News tensor and T M
uu, T M

uA correspond to the uu and uA

components of the matter stress energy tensor, respectively. We have chosen the conven-

tion 8⇥G = 1. In this thesis, we restrict ourselves to pure gravity and therefore drop the

terms involving the matter stress energy terms from here.

One can repeat the similar analysis at past null infinity (I�) and arrive at a generalized

BMS group defined at I�. We denote the generalized BMS group acting on I+ and I�

as G+ and G� respectively. The generalized BMS G of the asymptotically flat spacetime

is defined as the diagonal subgroup of G+ ⇤G�. The relationship of the generalized BMS

group G with single soft graviton theorems will be discussed in section 2.3.

Motivated by connections from AdS/CFT correspondence, Barnich and Troessart pro-

posed another natural extension to BMS group. This was based on extending the BMS

vector field ⌦BMS
Y that generated the Lorentz group. In [1, 23], it was found that one can

naturally extend the global conformal Killing vector YA in ⌦BMS
Y to include local con-

formal Killing vectors, so that the vector fields that generate the Lorentz symmetry is

extended to those that generate local conformal transformations. This extension is known

as “Extended BMS” group, which is characterized by supertranslation vector fields and
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“superrotation” vector fields. The superrotation vector fields are the infinite dimensional

extension of ⌦BMS
Y by allowing YA to have local conformal Killing vectors on the sphere.

The consequence of such an extension is that one must relax one of the fall-o� condi-

tions, namely the gAB component in 2.7, such that the leading order component of gAB is

round sphere metric (denoted by �AB) except at isolated singular points. Since we focus

on generalized BMS in this thesis, we are not going into the details of extended BMS

here.

2.2 Soft graviton theorems

Soft graviton theorems are factorization statements in scattering amplitudes involving fi-

nite energy particles and soft gravitons4. It relates a scattering amplitude with finite energy

external particles (which can be massive or massless) and soft gravitons with scattering

amplitude involving finite energy particles only. From recent works [11, 15, 66, 96], it

has now become clear that soft theorems exist for any generic quantum theory of gravity

as well as in the classical regime. In classical scattering amplitudes, the soft graviton

theorem extracts the low energy spectrum of gravitational radiation emitted during a clas-

sical gravitational scattering process and has many interesting applications [67–70]. In

this thesis, we focus on understanding the aspects on soft graviton theorems in quantum

scattering amplitude in four dimensions and its relationship with asymptotic symmetries.

Consider a scattering amplitude involving (n+ 1) external particles denoted byA(p, {km})

where {km} denotes the set of n finite energy particles and p denotes the momentum of a

positive helicity soft graviton. In four dimensions, there are two types of soft theorems

depending on whether one considers the scattering amplitude at tree-level or at loop-

level. The soft graviton theorem at tree-level states that the tree-level scattering amplitude

4Recall the definition of a soft particle in footnote 1
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Atree(p, {km}) can be written as:

Atree(p; {km}) =
 

1
Ep

S (0)(p; km) + S (1)(p; {km}) + · · ·
!
Atree({km}). (2.28)

where

S (0)(p; {km}) =
X

i=out

(⇤+(p) · ki)2

(p/Ep) · ki
�

X

i=in

(⇤+(p) · ki)2

(p/Ep) · ki
, (2.29)

S (1)(p; {km}) =
X

i=out

⇤+(p) · ki

p · ki
⇤+µ (p) p⌃ Jµ⌃i �

X

i=in

⇤+(p) · ki

p · ki
⇤+µ (p) p⌃ Jµ⌃i (2.30)

In the above expression ⇤+(p) denotes the positive helicity polarization of the soft graviton

with momentum p, and Jµ⌃i denotes the angular momentum operator (both orbital angular

momentum and spin angular momentum) of the external finite energy particles. “out” and

“in” in the summation of the above expression denote outgoing/incoming states, respec-

tively.

As explained in the introduction, the terms inside the bracket are known as the soft factors.

The leading soft factor S (0)(p; {km}) known as the Weinberg’s soft graviton factor has a

pole in the soft momenta [8]. It is a function depending on the external momenta of the

finite energy particles and the direction of the soft graviton. Similarly, the sub-leading

soft factor also known as Cachazo-Strominger (CS) soft factor correspond to O(E0
p) in the

soft momenta. Unlike the leading soft factor, the CS soft factor is a di�erential operator

that depends upon the angular momentum of the external particle. From the expression

2.28, if one takes the appropriate soft limits, one can extract each soft factor separately.

This can be written as,

lim
Ep!0

EpAtree(p; {km}) = S (0)(p; {km})Atree({km}), (2.31)

lim
Ep!0

(1 + Ep@Ep)A
tree(p; {km}) = S (1)(p; {km})Atree({km}). (2.32)

In this thesis, we wil focus on the above factorization theorems 2.31,2.32. Howevever, it
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is important to note that the soft expansion 2.28 was valid only for tree-level scattering

amplitudes in four dimensions. If one considers a scattering amplitude beyond tree-level,

one gets a di�erent soft expansion. This can be written as:

A(p; {km}) =
 

1
Ep

S (0)(p; km) + ln(Ep)S (ln)(p; km) + · · ·
!
A({km}). (2.33)

Even though the leading order contribution is Weinberg’s soft factor, unlike the tree-level

soft expansion, the second term S (ln)(p; km) in the soft factors involve a logarithmic di-

vergence in the soft momenta. S (ln)(p; km) was found recently by Sahoo and Sen in [66].

These terms arise due to infrared divergences arising from loop integrals in a quantum

scattering amplitude in four dimensions and hence will not appear if one considers the

scattering amplitude at tree-level. The Sahoo-Sen soft factor is found to be one loop exact

and universal. One can find the explicit expression for the logarithmic soft factor in [66].

2.3 Equivalence between soft graviton theorems and asymp-

totic symmetries in gravity

In this section, we give a quick review of the deep connection between the two seemingly

independent areas of study discussed in section 2.3 and 2.2. This relationship was initially

explored in the seminal work by Strominger et.al in [4], where it was discovered that the

supertranslation invariance of the quantum gravity S matrix is equivalent to Weinberg’s

soft graviton theorem. Later, it was shown by Campiglia and Laddha that if considers the

Di�(S 2) subgroup of generalized BMS as the symmetry of the quantum gravity Smatrix,

the equivalence can be extended to subleading soft graviton theorems at the tree level. In

the rest of this section we will elaborate on this.

As we have discussed in 2.1, there are two asymptotic symmetry groups that act on the

radiative free data at I+ and I� respectively. Inorder to define a gravitational scattering
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problem that takes incoming scattering data defined at fields at I� to outgoing scatter-

ing data defined at I+, one must define a common asymptotic symmetry group that acts

throughout null infinity. Motivated by this fact following [4], in [2,3] Campiglia and Lad-

dha proposed that the diagonal subgroup of generalized BMS G5 to be the symmetry of

the quantum gravity S matrix. The diagonal subgroup is identified using the conditions

on
�

f+(x̂) , VA
+ (x̂)

⇥

and
�

f�(x̂) , VA
�

(x̂)
⇥

appearing in the null generators of G+ and G�

respectively. The identification is as follows,

f+(x̂) = f�(�x̂) ; VA
+ (x̂) = VA

�
(�x̂). (2.34)

From here on, we drop the labels (+,�) on generalized BMS vector fields and the charges

and parametrize them by ( f ,VA) only. Based on this proposal that generalized BMS being

a symmetry of quantum gravity S matrix, one can write the following Ward identity,

hout| [Q,S] |ini = 0. (2.35)

where hout| , |ini refers to outgoing/incoming scattering states and Q denote the general-

ized BMS charges. We will see in the later sections, that the Ward identity of supertransla-

tion charge is equivalent to leading soft graviton theorem and Ward identity corresponding

to Di�(S 2) charge is equivalent to subleading soft graviton theorem at tree-level.

5the definition of G was defined in 2.1 as the diagonal subgroup of G+ ⇤ G�
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2.3.1 Leading single soft graviton theorem and supertranslation sym-

metry

The leading single soft graviton theorem follows from the Ward identity of the supertrans-

lation charge Qf [4]. The supertranslation charge Qf is given by 2.266 [4]

Qf =
1
4

Z
du d2z f NAB NAB

�
1
2

Z
du d2z f DADBNAB. (2.36)

where NAB is the Bondi News tensor defined by NAB ⇥ @uCAB. It is important to note that,

the supertranslation charge Qf is characterized by the arbitrary function f (z, z̄), where

(z, z̄) are coordinates on the conformal sphere at null infinity. Notice that, the first term

in 2.36 is quadratic in the Bondi-News NAB while the second is linear in NAB — these

are conventionally referred to as the “hard part” (Qhard
f ) and the “soft part” (Qsoft

f ) of the

supertranslation charge respectively.

We begin by writing the Ward identity for supertranslation symmetry of generalized BMS

as 2.35:

hout| [Qf ,S] |ini = 0, hout| [Qsoft
f ,S] |ini = � hout| [Qhard

f ,S] |ini . (2.37)

In writing the above, the classical charges have been promoted to quantum operators.

This quantization is evaluated using the asymptotic quantization of Czz and Cz̄,z̄ [4], which

expresses them in terms of the graviton creation and annihilation operators as:

Czz(u, z, z̄) =
�i

2⇥2(1 + zz̄)2

Z 1

0
a+(!, z, z̄)e�i!u

� a†�(!, z, z̄)ei!u, (2.38)

Cz̄z̄(u, z, z̄) =
i

2⇥2(1 + zz̄)2

Z 1

0
a†+(!, z, z̄)ei!u

� a�(!, z, z̄)e�i!u. (2.39)

where a+(!, z, z̄)/a†+(!, z, z̄) denotes positive helicity annihilation/creation graviton oper-

6In this thesis we restrict to pure gravity and hence the terms involving the matter stress tensor will not
appear in the supertranslation charge.
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ator with energy ! and direction parametrized by (z, z̄). Similarly a�(!, z, z̄)/a†�(!, z, z̄)

denotes negative helicity annihilation/creation graviton operator. Using 2.38 and 2.39 one

can now express the hard and soft charge in terms of the graviton creation and annihilation

operators. Subsequently one can evaluate the action of the hard and soft charges on the

“in" and “out" states.

Using 2.38,2.39 and the boundary conditions given in 2.25 (D2
zCz̄z̄|I++ = D2

z̄Czz|I+�), the

soft charge can be written as:

Qsoft
f = lim

Ep!0

Ep

4⇥

Z
d2w D2

w f (w, w̄)
�

a�(Ep,w, w̄) + a†+(Ep,w, w̄)
⇥

,

= lim
Ep!0

Ep

4⇥

Z
d2w D2

w̄ f (w, w̄)
�

a+(Ep,w, w̄) + a†�(Ep,w, w̄)
⇥

. (2.40)

Here, Ep is the energy of the soft graviton and (w, w̄) characterizes its direction on the

conformal sphere. From 2.40 one can see that the soft charge Qsoft
f is responsible for the

creation and annihilation of soft gravitons.

The hard charge can also be evaluated in a similar procedure, finally giving the action on

“in” and “out” states as:

Qhard
f |ini =

X

i=in

Ei f (k̂i) |ini , (2.41)

hout|Qhard
f =

X

i=out

Ei f (k̂i) hout| . (2.42)

Here, the sum
P
i=in

and
P

i=out
is over the hard particles7 in the “in" and “out" states re-

spectively, with energy Ei = |~ki| and the unit spatial vector k̂i = ~ki/Ei characterizing the

direction of ith particle.

Using 2.40 and 2.41 in 2.37, one obtains a factorization of the form:

lim
Ep!0

Ep

4⇥

Z
d2w D2

w̄ f (w, w̄)
 
hout| a+(Ep,w, w̄)S |ini + hout| Sa†�(Ep,w, w̄) |ini

!
,

7Particles with finite energy are known as hard particles
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= �

⇤ X

out

Ei f (k̂i) �
X

in

Ei f (k̂i)
⌅

hout| S |ini . (2.43)

Now one can use the crossing symmetry to write the above expression as:

lim
Ep!0

Ep

2⇥

Z
d2w D2

w̄ f (w, w̄) hout| a+(Ep,w, w̄)S |ini

= �

⇤ X

out

Ei f (k̂i) �
X

in

Ei f (k̂i)
⌅

hout| S |ini . (2.44)

The structure of the terms in 2.44 encourages one to ask whether this can be related to

Weinberg’s soft graviton theorem [8] which is related to leading term in the soft expansion

given in 2.28 . This reads,

lim
Ep!0

Ep hout| a+(Ep,w, w̄) S |ini =
 X

i=out

(⇤+(w, w̄) · ki)2

(p/Ep) · ki
�

X

i=in

(⇤+(w, w̄) · ki)2

(p/Ep) · ki

!
hout| S |ini .

(2.45)

where the soft graviton has energy Ep and momentum p. Its direction is parametrized

by (w, w̄) and its polarization is given by ⇤+(w, w̄) = 1/
p

2(w̄, 1,�i,�w̄). We adopt the

notation:

Ŝ (0)(p; ki) ⇥
1

Eki

(⇤+(w, w̄) · ki)2

(p/Ep) · ki
. (2.46)

with which, the leading soft factor in the r.h.s. of 2.45 can be written as:

S (0)(p; {ki}) ⇥
X

i=out

(⇤+(w, w̄) · ki)2

(p/Ep) · ki
�

X

i=in

(⇤+(w, w̄) · ki)2

(p/Ep) · ki
, (2.47)

⇥

X

i=out

S (0)(p; ki) �
X

i=in

S (0)(p; ki), (2.48)

⇥

X

i=out

Eki Ŝ (0)(p; ki) �
X

i=in

Eki Ŝ (0)(p; ki). (2.49)

It is important to notice that the contribution to the soft factor S (0)(p; {ki}) from the ith hard

particle with momentum ki and energy Eki , namely, S (0)(p; ki), depends on the energy of

the hard particle. But, Ŝ (0)(p; ki) does not depend on Eki — as written in 2.47, the energy

dependence has been separated out.
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Now, consider a hard particle of momentum k parametrized by (E, z, z̄) where E denotes

the energy of the particle and (z, z̄) denotes its direction. The four momentum of such a

particle can be written as:

kµ = E
�

1,
z + z̄

1 + zz̄
,
�i(z � z̄)

1 + zz̄
,

1 � zz̄
1 + zz̄

⇥

(2.50)

Now if one chooses

f (z, z̄) = s(z, z̄; w, w̄) ⇥
1 + ww̄
1 + zz̄

·
w̄ � z̄
w � z

. (2.51)

in 2.44, then the rhs of the soft theorem 2.45 and the Ward identity 2.44 match, since,

(⇤+(w, w̄) · k)2

(p/Ep) · k
= �Ek s(z, z̄; w, w̄) (2.52)

Further, the l.h.s. of the soft theorem 2.45 and the Ward identity 2.44 match because of

the identity,

D2
z̄ s(z, z̄; w, w̄) = 2⇥⌅2(w � z). (2.53)

It is also possible to go from the soft theorem 2.45 to the Ward identity 2.44 by acting

(2⇥)�1
R

d2w f (w, w̄)D2
w̄ on both sides of 2.45. In this case, the r.h.s. matches because of

the identity:

D2
w̄s(z, z̄; w, w̄) = 2⇥⌅2(w � z). (2.54)

Hence, the equivalence of Weinberg’s soft theorem and supertranslation Ward identity is

established. It should also be noted that Weinberg’s soft theorem for the negative helic-

ity graviton is not an independent soft theorem and can be obtained through a similar

derivation.
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We would like to conclude this section by a convention that we will follow in the rest

of this thesis. In the rest of this thesis, we will always be concerned with the action of

the soft operator at the level of the scattering amplitudes. Therefore, using the notion

of crossing symmetry, one can always relate the outgoing postive/negative helicity soft

graviton with incoming negative/postive helicity soft graviton. Therefore, one can drop

the creation operator terms in the soft charge 2.40 for convenience in calculations, i.e we

can write

Qsoft
f = lim

Ep!0

Ep

2⇥

Z
d2w D2

w f (w, w̄)
�

a�(Ep,w, w̄)
⇥

,

= lim
Ep!0

Ep

2⇥

Z
d2w D2

w̄ f (w, w̄)
�

a+(Ep,w, w̄)
⇥

. (2.55)

2.3.2 Subleading single soft graviton theorem and Di�(S 2) symmetry

The subleading single soft graviton theorem follows from the Ward identity of the Di�(S 2)

charge QV [2, 3]. This charge is given by 2.278:

QV =
1
4

Z
du d2z NAB

�

LVCAB � ⇧ CAB + ⇧u NAB

⇥

+
1
2

Z
du d2z u

�

Nzz D3
z Vz + Nz̄z̄ D3

z̄ V z̄
⇥

. (2.56)

where ⇧ = 1
2
⇧

DzVz+Dz̄Vz̄⌃ and VA(z, z̄) is an arbitrary vector field on the conformal sphere

at null infinity and the covariant derivatives are w.r.t. the 2–sphere metric. As before, the

first term (which is quadratic in NAB) is the “hard part” Qhard
V and the second is known as

the “soft part” Qsoft
V

Proceeding in a manner similar to the case of supertranslation, the Ward identity for

Di�(S 2) charge can be written as:

hout| [QV ,S] |ini = 0, hout| [Qsoft
V ,S] |ini = � hout| [Qhard

V ,S] |ini . (2.57)

8In this thesis we restrict ourselves to pure gravity and hence the terms involving the matter stress tensor
will not appear in the Di�(S 2) charge.
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Now, using the asymptotic quantization of the “free data", one can write the Di�(S 2) soft

charge as :

Qsoft
V =

1
4⇥i

lim
Ep!0

(1 + Ep @Ep)

⇤

Z
d2w

"
Vw̄@3

w̄a+(Ep,w, w̄) + Vw @3
wa�(Ep,w, w̄)

#
. (2.58)

Hence, Qsoft
V |ini = 0 9. The action of the hard Di�(S 2) charge gives:

hout|Qhard
V = i

X

out

Jhi
Vi
hout| , (2.59)

Qhard
V |ini = i

X

in

J�hi
Vi
|ini . (2.60)

Again, the sum
P
i=in

and
P

i=out
is over all the hard particles in the “in" and “out" states

respectively, with the ith particle having energy Ei = |~ki| and direction characterized by the

vector k̂i = ~ki/Ei. Jhi
V is a di�erential operator and the detailed expression of Jhi

V is given

as [2] .

Jhi
V = Vz@z + Vz̄@z̄ �

1
2

⇧

DzVz + Dz̄Vz̄⌃!i@!i +
hi

2
(@zVz

� @z̄V z̄). (2.61)

where !i, hi denote the energy and helicity of the “i”-th external particle. One can there-

fore write the Ward identity for Di�(S 2) charge as 2.57 as:

�
1

4⇥
lim

Ep!0
(1 + Ep @Ep)

⇤

Z
d2w

"
Vw̄ @3

w̄ hout| a+(Ep,w, w̄) S |ini + Vw @3
w hout| a�(Ep,w, w̄) S |ini

#

9Note that in 2.58 there should be terms corresponding to the creation operators
(a†+(Ep,w, w̄), a†�(Ep,w, w̄)) in the expression. We have excluded such terms here for the conve-
nience for calculations. As we have done for the supertranslation Ward identity at the level of the
scattering amplitudes using crossing symmetry one can relate the incoming positive/negative helicity soft
graviton insertion to outgoing negative/positive helicity soft graviton insertion in the S matrix when one
finally evaluates the Di�(S 2) Ward identity. Therefore, at the level of evaluating the Ward identity both
conventions give the same result.
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=

"X

out

Jhi
Vi
�

X

in

J�hi
Vi

#
hout| S |ini .

(2.62)

Now, the Cachazo–Strominger (CS) subleading soft theorem 2.32 reads [9]:

lim
Ep!0

(1 + Ep @Ep) hout| a+(Ep,w, w̄) S |ini (2.63)

=

 X

i=out

⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i �

X

i=in

⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i

!
hout| S |ini .

where, Jµ⌃i is the angular momentum operator acting on the ith hard particle. For further

use, we adopt the notation:

S (1)(p; ki) =
⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i . (2.64)

Using this, the subleading soft factor in the r.h.s. of 2.63 can be written as:

S (1)(p; {ki}) =
 X

i=out

⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i �

X

i=out

⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i

!
,

=

 X

i=out

S (1)(p; ki) �
X

i=in

S (1)(p; ki)
!
. (2.65)

Now, in the Ward identity 2.62, if one chooses the vector field VA as:

VA = K+(w,w̄) ⇥
(z̄ � w̄)2

(z � w)
@z̄. (2.66)

the r.h.s. of the soft theorem 2.63 and the Ward identity 2.62 match since:

⇤+(w, w̄) · ki

p · ki
⇤+µ (w, w̄) p⌃ Jµ⌃i = Ji

K+(w,w̄)
. (2.67)

The l.h.s. of the soft theorem 2.63 and the Ward identity 2.62 also match due to the
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identity:

@3
z̄
(z̄ � w̄)2

(z � w)
= 4⇥⌅2(w � z). (2.68)

To go from the CS soft theorem 2.63 to the Di�(S 2) Ward identity 2.62 one acts the

operator �(4⇥)�1
R

d2w Vw̄@3
w̄ on both sides of 2.63. Then, using the linearity of JV in

vector field V ,

�(4⇥)�1
Z

d2w Vw̄ @3
w̄Ji

K+(w,w̄)
= �(4⇥)�1JW . (2.69)

and the identity,

@3
w̄

(z̄ � w̄)2

(z � w)
= �4⇥⌅2(w � z), (2.70)

one recovers Ward identity 2.62 with the vector field Vw̄@w̄. The vector field W in above

expression is given by:

W =
Z

Vw̄ @3
w̄K+(w,w̄). (2.71)

Here, unlike the Ward identity for the leading case 2.44, it is important to note that the

Ward identity for the subleading case 2.62, contains both negative and positive helicity

soft graviton amplitudes. To get a factorization that involves only one of the soft gravitons,

one of the components of vector field VA is chosen to be zero, depending upon which soft

graviton helicity we want in the soft theorem.
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Chapter 3

Double soft graviton theorems

Having reviewed the relationship between asymptotic symmetries and the single soft theo-

rem, the next natural question is to ask if such a relationship holds between the generalised

BMS symmetry and double soft graviton theorems. These theorems (and its generaliza-

tion to the multiple soft graviton case) have been studied previously using various methods

including BCFW recursions [10], CHY amplitudes [11–14] and Feynman diagram tech-

niques [15]. In a recent work [16], the authors have studied the symmetry foundations of

the double soft theorems of certain classes of theories like the dilaton, DBI, and special

Galileon.

As has been analyzed in the literature, there are two kinds of double soft graviton theorems

depending upon the relative energy scale of the soft gravitons. The simultaneous soft limit

is the one where soft limit is taken on both the gravitons at the same rate. However, as we

argue in Appendix A, from the perspective of Ward identities, it is the consecutive soft

limits which arise rather naturally. Consecutive double soft graviton theorems (CDST)

elucidate the factorization property of scattering amplitudes when the soft limit is taken

on one of the gravitons at a faster rate than the other [10]. We now review this factorization

property when such soft limits are taken and show that they give rise to three CDSTs. The

first one, we refer to as the leading CDST which is the case where the leading soft limit
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is taken on both the soft gravitons. The remaining two theorems refer to the case where

the leading soft limit is taken with respect to one of the gravitons and the subleading soft

limit is taken with respect to the other.

3.1 Consecutive double soft graviton theorems (CDST)

We begin with a (n+2) particle scattering amplitude at tree-level denoted byAn+2(q, p, {km})

where p , q are the momenta of the two gravitons which will be taken to be soft and {km} is

the set of momenta of the n hard particles. Consider the consecutive limit where the soft

limit is first taken on graviton with momentum q, keeping all the other particles momenta

unchanged and then a soft limit is taken on the graviton with momentum p.

Using the single soft factorization, the scattering amplitudeAn+2(q, p, {km}) can be written

as:

An+2(q, p, {km}) =
"X

i

Eki

Eq
Ŝ (0)(q; ki) +

Ep

Eq
Ŝ (0)(q; p)

+
X

i

S (1)(q; ki) + S (1)(q; p)
#
An+1(p, {km}) + O(Eq). (3.1)

where An+1(p, {km}) is the n + 1 particle scattering amplitude. It is important to recall

the notations used here, which we explained in section 2.3 (2.47, 2.64). As mentioned,

S (1)(q; ki) is the contribution to the subleading soft factor with soft momentum q with ki

being the ith hard particle. Similarly Ŝ (0)(q; ki) denotes the contribution to the subleading

soft factor with soft momentum q with ki being the ith hard particle, with energy depen-

dences w.r.t. both the soft and hard particles seperated out. Ŝ (0)(q; p) and S (1)(q; p) denote

similar contributions to the soft factor where the graviton with momentum p is treated as

hard w.r.t. the graviton with momentum q.
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Now, the amplitudeAn+1(p, {km}) further factorizes as:

An+1(p, {km}) =
"X

i

Eki

Ep
Ŝ (0)(p; ki) +

X

i

S (1)(p; ki)
#
An({km}) + O(Ep). (3.2)

Note that, according to our notation, S (1)(p; ki) is the contribution to the subleading soft

factor with soft momentum p and ki is the ith hard particle. Again, Ŝ (0)(p; ki) denotes

the contribution to the subleading soft factor with soft momentum p and ki the ith hard

particle, with energy dependences w.r.t. both the soft and the hard particles seperated out.

Substituting 3.2 in 3.1, we get the factorization of the (n+2) particle amplitude containing

two soft gravitons in terms of the amplitude of the n hard particles (up to subleading order

in energy of the individual soft particles).

An+2(q, p, {km}) =
⇤ 1
EpEq

X

i, j

Eki Ek j Ŝ (0)(q; ki) Ŝ (0)(p; k j) +
X

i, j

Eki

Eq
Ŝ (0)(q; ki) S (1)(p; k j)

+
X

i

Eki

Eq
Ŝ (0)(q; p) Ŝ (0)(p; ki) +

X

i, j

S (1)(q; ki)
Ek j

Ep
Ŝ (0)(p; k j)

+ S (1)(q; p)
X

i

Eki

Ep
Ŝ (0)(p; ki)

⌅

An({km}) + O(Ep) + O(Eq). (3.3)

This expansion contains three types of terms. The first type scales as 1/(EpEq) (and hence

gives rise to a pole in both the soft graviton energies), giving the leading contribution

to the factorization. The second and the third type of terms scale as E0
q/Ep and E0

p/Eq

respectively, both contributing to the subleading order of the factorization.

The leading order contribution, described above, is:

⇤ 1
EpEq

X

i, j

Eki Ek j Ŝ (0)(q; ki) Ŝ (0)(p; k j)
⌅

An({km}). (3.4)
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This gives the leading CDST as:

lim
Ep!0

Ep lim
Eq!0

Eq An+2(q, p, {km}) =
⇤

S (0)(q; {ki}) S (0)(p; {k j})
⌅

An({km}). (3.5)

As is evident, the leading double soft factor is just the product of the individual leading

soft factors. One obtains this same theorem in the case of the simultaneous double soft

limit as well [10, 12, 13, 15]. In section 4.1, we show that this soft theorem matches with

the result derived from the Ward identity of two supertranslation charges 4.10.

Let us now consider the subleading soft limit. At this order of factorization we have four

terms:

⇤ X

i, j

Eki

Eq
Ŝ (0)(q; ki) S (1)(p; k j) +

X

i

Eki

Eq
Ŝ (0)(q; p) Ŝ (0)(p; ki)

+
X

i

S (1)(q; ki)
X

j

Ek j

Ep
Ŝ (0)(p; k j) + S (1)(q; p)

X

i

Eki

Ep
Ŝ (0)(p; ki)

⌅

An({km}). (3.6)

Notice that the first two terms in (3.6) scale with soft graviton energies as E0
p/Eq and the

second two terms scale as E0
q/Ep.

From the first two terms of (3.6), one gets a subleading CDST.

lim
Ep!0

(1 + Ep@Ep) lim
Eq!0

Eq An+2(q, p, {km})

=

⇤

S (0)(q; {ki}) S (1)(p; {k j}) +N(q; p; {ki})
⌅

An({km}). (3.7)

Here, the first term is the product of single soft factors 2.47, 2.65, appearing in the leading

and subleading single soft theorems respectively. The second term in the r.h.s of 3.7

contains a single sum over the set of hard particles as opposed to the first term which is

the product of single soft factors and contains two sums over the set of hard particles.

Such terms are referred to as “contact terms" in the literature. One can evaluate this
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contact term as:

N(q; p; {ki}) = Ŝ (0)(q; p) S (0)(p; {ki}) =
X

i

(⇤q · p̃)2

q̃ · p̃
·

(⇤p · ki)2

p̃ · ki
. (3.8)

where p̃ = p/Ep = (1, p̂) and similarly, q̃ = q/Eq = (1, q̂). ⇤p and ⇤q refer to the

polarisations of soft gravitons with momentum p and q respectively. This is the well

known consecutive double soft graviton theorem [10] .

A di�erent consecutive limit.

We now take a di�erent limit in eq.(3.6) and show how it leads to a distinct factorization

theorem. From the last two terms in (3.6) one gets:

lim
Ep!0

Ep lim
Eq!0

(1 + Eq @Eq)An+2(q, p, {km}) (3.9)

=

⇤ X

i

S (1)(q; ki)
X

j

Ek j Ŝ (0)(p; k j) + lim
Ep!0

Ep S (1)(q; p)
X

i

Eki

Ep
Ŝ (0)(p; ki)

⌅

An({km}).

Now, S (1)(q; ki) contains the angular momentum operator of the ith hard particle, and thus

acts on Ek j Ŝ (0)(p; k j), as well as the n particle amplitude An({km}). However, S (1)(q; p)

does not depend on the set of hard particles labelled by momentum {km}. Hence S (1)(q; p)

acts only on the soft factor, and one can finally write the subleading CDST as:

lim
Ep!0

Ep lim
Eq!0

(1 + Eq @Eq)An+2(q, p, {km})

=

"
S (0)(p; {ki}) S (1)(q; {k j}) +M1(q; p; {ki}) +M2(q; p; {ki})

#
An({km}). (3.10)

Similar to the other subleading CDST 3.7, the first term in the r.h.s. of 3.10 is product of

single soft factors. However, the important di�erence is that the role of the soft gravitons

with momentum p and q is interchanged in the first term of 3.10 and the first term of

3.7. Here,M1(q; p; {ki}) andM2(q; p; {ki}) are contact terms which can be expressed as
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follows:

M1(q; p; {ki}) =
X

i

S (1)(q; ki)
�

Eki Ŝ (0)(p; ki)
⇥

=
X

i

S (1)(q; ki)
�

S (0)(p; ki)
⇥

,

=
X

i

⇤

�
(⇤q · ki)2(⇤p · ki)2(p · q)

(q · ki)(p · ki)2 +
(⇤q · ki)(⇤q · p)(⇤p · ki)2

(p · ki)2

+ 2
(⇤q · ki)2(⇤p · ki)(⇤p · q)

(p · ki)(q · ki)
� 2

(⇤q · ki)(⇤p · ⇤q)(⇤p · ki)
(p · ki)

⌅

. (3.11)

and,

M2(q; p; {ki}) =
X

i

lim
Ep!0

Ep S (1)(q; p)
 

Eki

Ep
Ŝ (0)(p; ki)

!

=
X

i

⇤ (⇤q · p̃)(⇤q · ki)(⇤p · ki)2

( p̃ · ki)2 �
(⇤q · p̃)2(⇤p · ki)2(q · ki)

( p̃ · ki)2( p̃.q)

� 2
(⇤q · p̃)(⇤q · ki)(⇤p · q)(⇤p · ki)

( p̃.q)( p̃.ki)
+ 2

(⇤q · p̃)(⇤q · ⇤p)(⇤p · ki)(q.ki)
( p̃.q)(p̃.ki)

⌅

. (3.12)

Again, p̃ = p/Ep = (1, p̂) and ⇤p and ⇤q refer to the polarisation of soft gravitons with

momentum p and q respectively.

In [10], the authors have considered similar consecutive limits for the double soft graviton

and gluon amplitudes. There, they have imposed a gauge condition ⇤p ·q = 0 and ⇤q ·p = 0.

However, our analysis proceeded without imposing any particular gauge condition. With

the specific gauge condition used in [10], a few of the terms like Ŝ (0)(q; p) and S (1)(q; p)

drop out from the CDST result that we have obtained at the subleading level and we

recover their result. This serves as a consistency check for our calculation.

One can also verify the consistency of both the consecutive limits with the general result

which was given in [15]. That is, both the CDST 3.7 and 3.10 are special cases of the

double soft limit in [15]. The CDST 3.7 can be recovered by imposing the condition

Ep ⌃ Eq on the result of [15] and taking the leading limit in Eq and subleading limit

in Ep. Similarly, the CDST 3.10 can be obtained by imposing the the same Ep ⌃ Eq

condition, but taking the leading limit in Ep and subleading limit in Eq.
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Chapter 4

Equivalence between double soft

graviton theorem and generalized BMS

symmetry

Having reviewed the relationship between Ward identities associated to the asymptotic

symmetries and single soft graviton theorems, we now ask if there are Ward identities

in the theory which are equivalent to the double soft graviton theorems at the leading

and sub–leading order. In particular, we look for Ward identities that will lead us to the

consecutive double soft theorems (CDST). Let us consider the family of Ward identities

whose general structure is:

hout|
⌥

Q1, [Q2,S]
�

|ini = 0. (4.1)

where both Q1 and Q2 are either both supertranslation charges or Q1 is a supertranslation

charge and Q2 is a Di�(S 2) charge.1

Following [17], we present a derivation of this proposed Ward identity in Appendix A.

1The alternate case where Q1 is Di�(S 2) charge and Q2 is supertranslation charge is riddled with con-
ceptual subtleties which remain unresolved — we return to this in Appendix B.
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In the following sections, we show that such a proposal leads to the consecutive double

soft theorems discussed in section 3.1. Depending on the choice of charges one gets the

leading as well as the subleading consecutive double soft theorems.

4.1 Leading CDST and asymptotic symmetries

4.1.1 Ward identity from asymptotic symmetries

Following the discussion in the previous section, we explore the factorization arising from

two supertranslation charges, Qf and Qg characterized by arbitrary functions f (z, z̄) and

g(z, z̄), on the conformal sphere. We start with:

hout|
⌥

Qf , [Qg,S]
�

|ini = 0. (4.2)

Proceeding in a manner similar to the single soft case in section 2.3, we can write Qf and

Qg as sum of hard and soft charges as:

Qf = Qhard
f + Qsoft

f , Qg = Qhard
g + Qsoft

g . (4.3)

Thus, the Ward identity 4.2 becomes:

hout|
⌥

Qhard
f , [Q

hard
g ,S]

�

|ini + hout|
⌥

Qhard
f , [Q

soft
g ,S]

�

|ini

+ hout|
⌥

Qsoft
f , [Q

hard
g ,S]

�

|ini + hout|
⌥

Qsoft
f , [Q

soft
g ,S]

�

|ini = 0. (4.4)

Now using the Ward identity of supertranslation, namely [Qsoft
g , S ] = �[Qhard

g , S ], the first

and the second terms cancel each other. One may be tempted to cancel the third and fourth

terms, on similar lines. However, we contend that this isn’t quite correct as the action of

Qsoft
f maps ordinary the Fock vaccuum to a supertranslated vaccuum state parametrised by
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f [55, 90, 91]. As a result, we are really looking at the following Ward identity.

hout, f | [Qg, S ] |ini = 0. (4.5)

where |out, f i is a finite energy state defined with respect to the super–translated vac-

uum. The “in" state is defined w.r.t standard Fock Vacuum because of our prescription

Qsoft
f |ini = 0. We can re–write the above identity as:

hout|
⌥

Qsoft
f , [Q

soft
g ,S]

�

|ini = � hout|
⌥

Qsoft
f , [Q

hard
g ,S]

�

|ini . (4.6)

Now using the Jacobi identity among Qsoft
f , Qhard

g andS, the commutation relation [Qsoft
f ,Q

hard
g ] =

0, and the single soft Ward identity, we can finally write

hout|
⌥

Qsoft
f , [Q

soft
g ,S]

�

|ini = hout|
⌥

Qhard
g , [Q

hard
f ,S]

�

|ini . (4.7)

. Using the (known) action of charges on external states in 4.7 we finally arrive at the

Ward identity:

lim
Ep!0

Ep

2⇥
lim

Eq!0

Eq

2⇥

Z
d2w1 d2w2 D2

w̄1
f (w1, w̄1) D2

w̄2
g(w2, w̄2)

⇤ hout| a+(Ep,w1, w̄1) a+(Eq,w2, w̄2) S |ini

=

"X

out

f (k̂i)Ei �
X

in

f (k̂i)Ei

#"X

out

g(k̂ j)E j �
X

in

g(k̂ j)E j

#
hout| S |ini . (4.8)

The factorization above is just the product of two factors of the type obtained from the

Ward identity for supertranslation 2.44. It is natural therefore to expect that the soft

theorem we obtain from 4.8 will also be the product of two leading single soft factors. In

the next section, we show that this is indeed true.
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4.1.2 From Ward identity to soft theorem

From the factorization obtained in 4.8 from the Ward identity with two supertranslation

charges, we try to understand what soft theorem follows from it. Motivated from the

single soft case, we make the choices for arbitrary function f and g on the conformal

sphere as:

f (w1, w̄1) = s(w1, w̄1; wp, w̄p) , g(w2, w̄2) = s(w2, w̄2; wq, w̄q). (4.9)

where the definition of the functions s(w1, w̄1; wp, w̄p) and s(w2, w̄2; wq, w̄q) can be read

from 2.51. Substituting these choices in 4.8, we finally get:

lim
Ep!0

Ep lim
Eq!0

Eq hout| a+(Ep,wp, w̄p) a+(Eq,wq, w̄q) S |ini

=

⇤

S (0)(q; {ki}) S (0)(p; {k j})
⌅

hout| S |ini . (4.10)

This is the same as the leading double soft theorem 3.5 for the case of two positive helicity

soft gravitons with momenta p and q, localized at (wp, w̄p) and (wq, w̄q) respectively, on

the conformal sphere. Although we have chosen both the soft graviton helicities to be

positive in the above, one can do a similar analysis for both the helicities being negative

or one positive and one negative, and a similar result holds. This provides the equivalence

of the leading CDST and the Ward identity 4.2.

We have thus shown that the leading order double soft graviton theorem is equivalent to

the supertranslation Ward identity when this identity is evaluated in a Hilbert space built

out of a super–translated vacuum that containing a single soft graviton.
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4.2 Subleading CDST and asymptotic aymmetries

4.2.1 Ward identity from asymptotic symmetries

As motivated in section 4, and derived in Appendix A, we now analyze the Ward identity

corresponding to one supertranslation charge (characterized by arbitrary function f ) and

one Di�(S 2) charge (characterized by vector field VA):

hout|
⌥

Qf , [QV ,S]
�

|ini = 0. (4.11)

We begin by writing the charges as sum of hard and soft charges:

hout|
⌥

Qhard
f , [Q

hard
V ,S]

�

|ini + hout|
⌥

Qhard
f , [Q

soft
V ,S]

�

|ini

+ hout|
⌥

Qsoft
f , [Q

hard
V ,S]

�

|ini + hout|
⌥

Qsoft
f , [Q

soft
V ,S]

�

|ini = 0. (4.12)

Now, using the Ward identity for Di�(S 2), namely [Qsoft
V ,S] = �[Qhard

V ,S], the first and

the second term of 4.12 cancel each other. Again, one may be tempted to cancel the third

and the fourth term of 4.12 instead, using the same Di�(S 2) Ward identity. However if we

do not cancel them, we are led to

hout|Qsoft
f [QV , S ] |ini = 0, (4.13)

hout, f | [QV , S ] |ini = 0. (4.14)

Whence not cancelling the third and forth terms in (4.12) is tantamount to considering

Di�(S 2) Ward identity in scattering states which are excitations around supertranslated

vacuua. As we show below, it is precisely the Ward identity

hout, f | [QV ,S] |ini = 0 that leads to a specific double soft graviton theorem.
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Hence the above identity 4.12 reduces to,

hout|
⌥

Qsoft
f , [Q

soft
V ,S]

�

|ini

= � hout|
⌥

Qsoft
f , [Q

hard
V ,S]

�

|ini ,

= � hout|Qsoft
f Qhard

V S |ini + hout|Qsoft
f S Qhard

V |ini . (4.15)

Using the known action of the soft and hard charges, first term in the r.h.s. of 4.15 can be

written as:

hout|Qsoft
f Qhard

V S |ini

=
1

2⇥
lim

Ep!0

Z
d2w1 D2

w̄1
f Ep hout| a+(Epx̂) Qhard

V S |ini ,

=
i

2⇥
lim

Ep!0

Z
d2w1 D2

w̄1
f Ep

�
X

out

Jhi
V + J+V

⇥

hout| a+(Epx̂) S |ini . (4.16)

where x̂ denotes the direction of the soft graviton parametrized by (w1, w̄1) on the confor-

mal sphere. J+V represents the action of Qhard
V on the soft graviton with energy Ep.

Similarly, the second term in 4.15 can be evaluated to:

hout|Qsoft
f SQhard

V |ini =
i

2⇥
lim

Ep!0

Z
d2w1 D2

w̄1
f

�
X

in

J�hi
V

⇥

Ep hout| a+(Epx̂) S |ini . (4.17)

Hence, the Ward identity 4.15 simplifies to:

hout|Qsoft
f Qsoft

V S |ini =

�
i

2⇥
lim

Ep!0

Z
d2w1D2

w̄1
f
�
X

out

Jhi
V �

X

in

J�hi
V

⇥h
Ep hout| a+(Epx̂)S |ini

i

�
i

2⇥
lim

Ep!0

Z
d2w1 D2

w̄1
f Ep

�

J+V
⇥h
hout| a+(Epx̂) S |ini

i
. (4.18)
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Note that, the l.h.s. of 4.18 can be written as:2

lim
Ep!0

1
2⇥

Ep lim
Eq!0

1
4⇥i

(1 + Eq@Eq)⇤
Z

d2w1 d2w2 D2
w̄1

f @3
w̄2

Vw̄2 hout| a+(Epx̂) a+(Eqŷ) S |ini . (4.19)

It is important to note that the soft limits taken in the above equation do not follow any

particular order in the energies of the soft gravitons. However as we show in the next

section, the right hand side of the Ward identity is equivalent to the right hand side of one

of the CDSTs .

From Ward identity to soft theorem

Having derived the Ward identity 4.18, we now ask whether it can be interpreted as a soft

theorem. Motivated by the single soft graviton case, we make the following choices for

function f and vector field V:

f (w1, w̄1) = s(w1, w̄1; wp, w̄p),

Vw̄2 = K+(wq,w̄q). (4.20)

where s(w1, w̄1; wp, w̄p) and K+(wq,w̄q) follow the definitions in section 2.3. Using this, 4.19

becomes:

lim
Ep!0

Ep lim
Eq!0

(1 + Eq @Eq) hout| a+(Epx̂) a+(Eqŷ) S |ini . (4.21)

where the unit vectors x̂ and ŷ denote the coordinates (wp, w̄p) and (wq, w̄q) on the confor-

mal sphere.

2More precise definition of l.h.s. is given in Appendix B.
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Further, for the r.h.s. of 4.18, we have:

lim
Ep!0

X

i

S (1)(q; ki)
h
Ep hout|a+(Epx̂) S |ini

i

+ lim
Ep!0

Ep S (1)(q; p)
h
hout| a+(Epx̂) S |ini

i
. (4.22)

In the above expression, notice that in both the subleading factors S (1)(q; ki) and S (1)(q; p),

the soft graviton with momentum q is localized at ŷ on the conformal sphere. However,

the first one contains an angular momentum operator acting on the ith hard particle and the

latter contains an angular momentum operator acting on the soft graviton with momentum

p.

Now, using the leading single soft theorem, the first term in 4.22 can be written as:

X

i

S (1)(q; ki)
"X

j

Ek j Ŝ
(0)(p; k j) hout| S |ini

#
. (4.23)

For the second term in 4.22, we use the expansion of the (n + 1) particle amplitude 3.2

and we get a factorization of the form:

hout| a+(Epx̂) S |ini =
"X

i

Eki

Ep
Ŝ (0)(p; ki) +

X

i

S (1)(p; ki)
#
hout| S |ini + O(Ep). (4.24)

The second term of 4.24 is at a higher order in soft graviton energy, and so does not

contribute to 4.22. Thus, 4.22 finally becomes:

X

i

S (1)(q; ki)
"X

j

Ek j Ŝ
(0)(p; k j) hout| S |ini

#

+ lim
Ep!0

Ep S (1)(q; p)
"X

j

Ek j

Ep
Ŝ (0)(p; k j)

#
hout| S |ini . (4.25)

Lastly, since S (1)(q; ki) is a linear di�erential operator and S (1)(q; p) acts only on the soft
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coordinates, we can further simplify 4.25 as:

"X

i, j

Eki Ŝ (0)(p; ki) S (1)(q; k j) +
X

i

S (1)(q; ki)
�

Eki Ŝ (0)(p; ki)
⇥

+ lim
Ep!0

Ep S (1)(q; p)
�
X

j

Ek j

Ep
Ŝ (0)(p; k j)

⇥

#
hout| S |ini . (4.26)

Finally, putting this all together, we get a subleading double soft theorem:

lim
Ep!0

Ep lim
Eq!0

(1 + Eq @Eq)An+2(q, p, {km})

=

"
S (0)(p; {ki}) S (1)(q; {k j}) +M1(q; p; {ki}) +M2(q; p; {ki})

#
An({km}) (4.27)

where,M1(q; p; {ki}) andM2(q; p; {ki}) are the same contact terms obtained in subleading

CDST 3.10, whose expressions can be read o� from 3.11, 3.12 respectively. This is the

same subleading consecutive double soft theorm 3.10, that we studied in the section 3.1.

Note however that, in 4.19 there is no particular ordering in the limits of the soft graviton

energy obtained from the successive action of the soft charges. Hence, the l.h.s. of the

double soft theorem 4.27 contains independent limits as opposed to 3.10, where the limits

have definite ordering. Although we believe this point needs to be better understood,

what we have shown here is that the Ward identity of Di�(S 2) charges in a supertranslated

vacuum leads to a particular CDST. It is also important to emphasise that there is a definite

time ordering in
⌥

Qf , [QV ,S]
�

= 0. This is clear from the derivation of the Ward identity

hout|
⌥

Qf , [QV ,S]
�

|ini = 0, which is presented in Appendix A.

4.2.2 Relating the standard CDST to a Ward identity

As we saw above, the Ward identity [Qf , [QV ,S]] = 0, gave rise to a double soft theorem

whose r.h.s. matched with the consecutive soft theorem, where we considered the sublead-

ing limit of the graviton which was taken soft first. This is in contrast to the more standard
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consecutive soft limit where we consider the leading soft limit of the graviton which is

taken soft first and subleading soft limit of the graviton which is taken soft second. We

will argue how this CDST could potentially arise out of the Ward identity:

hout|
⌥

QV , [Qf ,S]
�

|ini = 0. (4.28)

Expressing the charges in 4.28 as the sum of hard and soft charges, we get:

hout|
⌥

Qhard
V ,[Q

hard
f ,S]

�

|ini + hout|
⌥

Qsoft
V , [Q

hard
f ,S]

�

|ini

+ hout|
⌥

Qhard
V , [Q

soft
f ,S]

�

|ini + hout|
⌥

Qsoft
V , [Q

soft
f ,S]

�

|ini = 0. (4.29)

Using the Ward identity for supertranslation, namely [Qsoft
f ,S] = �[Qhard

f ,S], the first and

the third terms cancel each other. Once again, this leads us to the following supertransla-

tion Ward identity evaluated in states defined with respect to “super–rotated vacuum".

hout|Qsoft
V [Qf ,S] |ini = 0, (4.30)

hout,V | [Qf ,S] |ini = 0. (4.31)

where by |out,Viwe mean a finite energy scattering state defined with respect to a vacuum

which contains a subleading soft graviton mode.3 However, as we explain in appendix B,

unlike the action of Qsoft
f , the action of Qsoft

V is not well understood thus far. Consequently,

the proposed Ward identity remains rather formal at this point. We will still proceed

further and show that this proposed Ward identity, if well defined is equivalent to the

standard CDST. We can rewrite the Ward identity as

hout|Qsoft
V Qsoft

f S |ini

= � hout| [Qsoft
V , [Q

hard
f ,S]] |ini ,

= hout|Qsoft
V SQhard

f � Qhard
f Qsoft

V S |ini + hout| [Qhard
f ,Q

soft
V ]S |ini . (4.32)

3It was shown in [3] how Qsoft
V maps the vacuum to a di�erent vacuum.
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We evaluate the two terms in the r.h.s. of 4.32 one by one. The first term can be written

as:

hout|Qsoft
V S Qhard

f �Qhard
f Qsoft

V S |ini ,

= � hout| [Qhard
f ,Q

soft
V S] |ini = � hout|

⌥

Qhard
f , [Q

soft
V ,S]

�

|ini ,

= hout|
⌥

Qhard
f , [Q

hard
V ,S]

�

|ini . (4.33)

Then, using the action of Qhard
f and Qhard

V on the external states, we can write the r.h.s. of

4.33 as:

hout|
⌥

Qhard
f , [Q

hard
V ,S]

�

|ini = (4.34)

i
"X

out

f (k̂i)Ei �
X

in

f (k̂i)Ei

#"X

out

Jhi
Vi
�

X

in

J�hi
Vi

#
hout| S |ini .

To evaluate the second term in 4.32, note that for a single particle state |ki,

hk| [Qhard
f , Q

soft
V ]

= �
1

4⇥i
lim

Ep!0
(1 + Ep @Ep)

Z
d2w2 @

3
w̄2

Vw̄2 Ep f (w2, w̄2) hk| a+(Ep,w2, w̄2)

= �
1

4⇥i
lim

Ep!0

Z
d2w2 @

3
w̄2

Vw̄2 Ep f (w2, w̄2) hk| a+(Ep,w2, w̄2) (4.35)

Where, in going from the first line to the second, we have used the fact that a+(Ep,w2, w̄2) ⇧

1
Ep

. Therefore,

�
1

4⇥i
lim

Ep!0
Ep @Ep

Z
d2w2 @

3
w̄2

Vw̄2 Ep f (w2, w̄2) hk| a+(Ep,w2, w̄2) = 0. (4.36)

Using the above expression 4.35, we can evaluate the second term of (4.32) as:

hout| [Qhard
f ,Q

soft
V ] S |ini = �

1
4⇥i

lim
Ep!0

Z
d2w2 @

3
w̄2

Vw̄2 Ep (4.37)

⇤ f (w2, w̄2) hout| a+(Ep,w2, w̄2) S |ini .
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Lastly, using the single soft graviton theorem (with energy Ep), 4.37 simplifies to:

hout| [Qhard
f ,Q

soft
V ] S |ini

= �
1

4⇥i

X

i

Z
d2w2 @

3
w̄2

Vw̄2 f (w2, w̄2) Eki Ŝ (0)(p; ki) hout| S |ini .

(4.38)

Finally, substituting (4.34) and (4.38) in (4.32), we arrive at the Ward identity:

hout|Qsoft
V Qsoft

f S |ini

= i
"X

out

f (k̂i)Ei �
X

in

f (k̂i)Ei

#"X

out

Jhi
Vi
�

X

in

J�hi
Vi

#
hout| S |ini

�
1

4⇥i

X

hard

Z
d2w2 @

3
w̄2

Vw̄2 f (w2, w̄2) Eki S (0)(w2, w̄2; ki) hout| S |ini . (4.39)

where the l.h.s. can be expressed as:

1
4⇥i

lim
Ep!0

⇧

1 + Ep @Ep

⌃ 1
2⇥

lim
Eq!0

Eq

Z
d2w1 d2w2 D2

w̄1
f (w1, w̄1) @3

w̄2
Vw̄2

⇤ hout|a+(Eq,w1, w̄1) a+(Ep,w2, w̄2) S |ini . (4.40)

In order to proceed from the Ward identity 4.39 to a soft theorem we make the following

choices for f and V:

f (w1, w̄1) = s(w1, w̄1; wq, w̄q) , Vw̄2 = K+(wp,w̄p). (4.41)

Substituting these in 4.39, we formally get the subleading CDST for positive helicity

gravitons as:

lim
Ep!0

⇧

1 + Ep @Ep

⌃

lim
Eq!0

Eq hout| a+(Eqŷ) a+(Epx̂) S |ini

=

⇤

S (0)(q; {ki}) S (1)(p; {k j}) + Ŝ (0)(q; p) S (0)(p; {ki})
⌅

hout| S |ini . (4.42)
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Again, x̂ and ŷ denote the points (wp, w̄p), (wq, w̄q) on the conformal sphere. This is the

same consecutive double soft theorem 3.7 discussed in section 3.1.

However, as discussed in Appendix B, there are some important subtleties in the definition

of soft operators, especially the soft Di�(S 2) charge Qsoft
V . Due to this, in the evaluation

of the Ward identity hout| [QV , [Qf ,S]] |ini = 0, the steps which involve the operation

of charge Qsoft
V first on the “out" state before the other charge are not mathematically

rigorous. However, we present this calculation here, in the hope that this might give some

hint to the structure of a more mathematically sound proof of this soft theorem as well as

a more rigorous understanding of the operation of the soft Di�(S 2) charge.
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Chapter 5

Generalized BMS algebra at time-like

infinity

In this chapter, we will be interested in understanding the aspects of the asymptotic sym-

metries in gravity at time-like infinity. In most of the earlier literature, the study of asymp-

totic symmetries were focused, at null infinity and spatial infinity. However, to describe

asymptotic symmetries throughout space-time one should understand the asymptotic sym-

metries at time-like infinity ( denoted by i0 ) too. Time-like infinity is described as the con-

formal boundary of the space-time in the time-like direction. All the massive geodesics

start at past time-like infinity and end at future time-like infinity. We will elaborate on this

further in this section.

One of the main motivations for our study on generalized BMS symmetry at time-like

infinity is from the soft graviton theorems. In soft graviton theorems the external particles

(other than the soft particle) can be massive or massless. To prove the equivalence be-

tween asymptotic symmetries and soft theorems when the external states contain the mas-

sive particles, one should include the phase space for massive particles as well. Based on

the earlier work on the action of BMS group on massive scalar particle phase space [18],

this question was addressed in [19]. To describe time-like infinity in [19], the authors con-

65



sidered constant time Euclidean-AdS hypersurface foliations of the Minkowski space. In

the limit when the time coordinate in their coordinate system tends to infinity, one reaches

near time-like infinity. The boundary of such hypersurfaces resides on the null infinity,

and therefore one can express the vector fields preserving large time fall o� behavior of

Minkowski space, using generalized BMS vector fields, by use of bulk-boundary Green’s

functions of standard AdS/CFT dictionary. In this way, one has a natural action of gener-

alized BMS vector fields near time-like infinity, which are intrinsically defined from the

perspective of null infinity. Using this, the authors derived the generalized BMS charges at

time-like infinity, which have a natural action on the phase space of the massive particles

and the equivalence between soft graviton theorems and generalized BMS symmetries

were established.

Although the vector fields that generate the generalized BMS algebra at time-like infinity

were defined in the literature, the algebra has not been investigated. In this chapter, we

are interested in this aspect. The rest of the chapter is organized as follows. Section 5.1.1

deals with the algebra of generalized BMS vector fields at null infinity. In section 5.1.2,

we discuss the asymptotic flatness at time-like infinity and associated generalized BMS

vector fields at time-like infinity. We also discuss the constraints on the vector fields and

what we mean by supertranslation and the Di�(S 2) vector fields from the perspective of

time-like infinity. The need for modified Lie bracket for realizing the vector field algebra

is also summarized. In section 5.2, we show the algebra between generalized BMS vector

fields at time-like infinity and prove that there is a closure of the vector fields.
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5.1 Generalized BMS vector fields

5.1.1 Generalized BMS vector fields at null infinity

In the previous chapters, the generalized BMS vector fields were derived by considering

the vector fields that preserve the asymptotic flatness and the Bondi gauge conditions. In

this chapter, we adopt an alternate way to derive the generalized BMS vector fields, as this

method is more suited for describing generalized BMS vector fields at time-like infinity.

This was adopted by Campiglia and Laddha in [62, 63] following the work by Avery and

Schwab in [97].

We start by reviewing the generalized BMS vector fields and their algebra at null infinity

. We discuss the case for future null infinity (I+) following [62, 63], but similar analysis

can be done for past null infinity.

Recall that the coordinates that are well adapted for describing future null infinity are

(u, r, xA), where u = t � r is the retarded time, r is the radial coordinate, and xA denote the

direction along the unit sphere S 2. One can reach future null infinity by taking u = const

and r ! 1 limit. The flat Minkowski metric in these coordinates is given by the line

element

ds2 = �du2
� 2dudr + r2�ABdxAdxB (5.1)

where �AB is the unit S 2 metric. The generalized BMS vector fields can be described as

follows. These are vector fields (denoted by ⌦a) that survive at null infinity and generate

residual gauge transformations in the de-Donder gauge (w.r.t to Minkowski metric). Such

vector fields obey the wave equation. Additionally, they satisfy the asymptotic divergence
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free condition as given in [2]. These two conditions can be written as

�⌦a = 0, (5.2)

lim
r!1
ra⌦

a = 0. (5.3)

where �,r refers to the flat space Laplacian and flat space covariant derivative, respec-

tively. To understand the structure of the vector fields that satisfy these conditions, one

starts with the following ansatz:

⌦a@a =
�

⌦(0)u(u, xB) + O(r⇤)
⇥

@u +
�

r⌦(1)r(u, xB) + O(r0)
⇥

@r

+
�

⌦(0)A(u, xB) + r�1⌦(�1)A(u, xB) + O(r�1�⇤)
⇥

@A. (5.4)

One can find the vector field components by substituting the above ansatz in 5.2 and

solving them perturbatively in r. The details of the computation can be found in [62].

Finally, one gets the generalized BMS vector field as:

⌦ = ( f + u⇧)@u � r⇧@r + VA@A + · · · (5.5)

Here, f = f (q̂) is a free scalar function and VA = VA(q̂) is a free vector field, that depends

on the sphere coordinates q̂. Also, ⇧ = 1
2 DAVA, where DA is the covariant derivative

compatible with qAB. The vector fields characterized by the function f (q̂) (i.e by setting

VA = 0 in 5.5 ) are called the supertranslation vector fields. Similarly, the vector fields

characterized by VA (by setting f = 0 in 5.5) are called Di�(S 2) vector fields. The

subleading components in 1/r expansion are also characterized by f (q̂) and VA(q̂). The

supertranslation and Di�(S 2) vector fields at future null infinity can therefore be written

as:

⌦ f = f@u, (5.6)

⌦V = u⇧@u � r⇧@r + VA@A. (5.7)
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One can study the algebra of the vector fields by computing the commutator of two vari-

ations of the metric w.r.t to the vector fields.

[⌅⌦1 , ⌅⌦2]gµ⌃ = ⌅⌦1⌅⌦2gµ⌃ � ⌅⌦2⌅⌦1gµ⌃,

= ⌅⌦1L⌦2gµ⌃ � ⌅⌦2L⌦1gµ⌃,

= L⌦1L⌦2gµ⌃ �L⌦2L⌦1gµ⌃,

= ⌅[⌦1,⌦2]gµ⌃. (5.8)

where [⌦1, ⌦2] denotes the Lie bracket of the vector fields which is defined as,

[⌦1, ⌦2]a = ⌦b
1@b⌦

a
2 � ⌦

b
2@b⌦

a
1. (5.9)

Therefore, the generalized vector field algebra at null infinity is found to be,

[⌦ f1 , ⌦ f2] = 0 ; [⌦V , ⌦ f ] = ⌦ef ; [⌦V1 , ⌦V2] = ⌦eV . (5.10)

Here, ⌦ f1 and ⌦ f2 are two supertranslation vector fields characterized by two functions

on the sphere namely, f1 and f2. Similarly, ⌦V1 and ⌦V2 are two Di�(S 2) vector fields

characterized by two vector fields on the sphere namely V1 and V2. Here, ⌦ef is another

supertranslation vector field characterized by ef = LV f � ⇧ f . Also, ⌦eV is another Di�(S 2)

vector field characterized by eVA = VB
1 @BVA

2 � VB
2 @BVA

1 . Clearly, supertranslation forms an

abelian ideal of the generalized BMS group.

5.1.2 Generalized BMS vector fields at time-like infinity

Having discussed the algebra of vector fields at null infinity, our main goal in this chapter

will be to investigate the algebra at time-like infinity. Following [19, 65], we summarize

the key ideas relevant for our analysis. The set of coordinates, that we shall use are the

hyperbolic coordinates (⌥, �, x̂), which are defined in terms of Cartesian coordinates (t, ~x)
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in the region t ⌅ r ⇥
p
~x · ~x as:

⌥ B
p

t2 � r2 ; � B
r

p
t2 � r2

; x̂ = ~x/r. (5.11)

We consider a space of metrics gab which has an asymptotic expansion in ⌥ near time-like

infinity of the form:

ds2 =
⇧

� 1 + O(1/⌥)
⌃

d⌥2 + ⌥2h⇧ (⌥, �, x̂)dx⇧dx . (5.12)

where h⇧ (⌥, �, x̂) has the following asymptotic expansion (in ⌥) around time-like infinity

h⇧ (⌥, �, x̂) = h(0)
⇧ (�, x̂) +

h(1)
⇧ (�, x̂)
⌥

+
h(2)
⇧ (�, x̂)
⌥2 + · · · . (5.13)

where h(0)
⇧ (�, x̂) belongs to the class of metrics di�eomorphic to the hyperboloid part of

the Minkowski metric, which we will describe shortly. The asymptotic flatness for metric

of this form 5.12 at time-like infinity has been addressed in [25, 26]. The Minkowski

metric (which we denote by g̊ab) belongs to the class of metric 5.12 that has only the

leading components (in ⌥) and the hyperboloid components take a particular form. The

line element for g̊ab is written as:

ds2 = �d⌥2 + ⌥2h̊⇧ (�, x̂)dx⇧dx , (5.14)

where

h̊⇧ (�, x̂)dx⇧dx ⇥
d�2

1 + �2 + �
2�ABdxAdxB. (5.15)

Here, �AB is the unit metric on 2-sphere. The greek indices ⇧,  , · · · runs over the co-

ordinates on the hyperboloid and the capital Latin indices A, B,C, · · · runs over the co-

ordinates of the 2-sphere. Here after, we denote the small Latin indices a, b, c, · · · to
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denote the four spacetime indices. The Riemann tensor for the above mentioned hyper-

boloid metric (h̊⇧ ) can be written as

R̊⇧ �⌅ = h̊⇧⌅h̊ � � h̊⇧�h̊ ⌅ ; R̊⇧
 �� = ⌅⇧� h̊ � � ⌅

⇧
� h̊ �. (5.16)

One can reach time-like infinity i+ in hyperboloid coordinates by taking ⌥ ! 1 limit (or

in the Cartesian coordinates t ! 1, keeping t ⌅ r ). Similarly, one can reach the part

of null infinity where u > 0 in the hyperboloid coordinates by taking the limit ⌥ ! 1,

�! 1, keeping ⌥
2� = const.

To analyze the asymptotic symmetries at time-like infinity i+, we suitably adapt the de-

Donder gauge in the hyperbolic coordinates. In this gauge, the residual (large) di�eo-

morphisms are precisely generated by supertranslation and Di�(S 2) vector fields that

smoothly matches with the corresponding BMS vector fields at null infinity.

We consider the following gauge conditions to the metric ansatz 5.12.

r̊bGab = 0, (5.17)

Tr(h(1)
⇧ (�, x̂)) = 0. (5.18)

whereGab
⇥
pggab and r̊b refers to the covariant derivative w.r.t to the reference Minkowski

metric (g̊ab) in 5.14. One can see that the gauge condition 5.17 reduces to the de-Donder

gauge condition when one uses the linearized metric around the Minkowski metric, i.e

gab ! g̊ab + hab
1. It is also important to note that, the trace free condition 5.18 of h(1)

⇧ (�, x̂)

is taken w.r.t to h(0)
⇧ (�, x̂).

The generalized BMS vector fields at time-like infinity are those that generate the group

of di�eomorphisms that preserve the form of the metric 5.12 and the gauge conditions

5.17-5.18. To find the structure of such vector fields, we start by taking a general ansatz

1Not to be confused hab here with the hyperboloid metric defined earlier 5.15. Here hab refers to a small
perturbation around the Minkowski metric
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for vector fields which have an asymptotic expansion (in ⌥) of the form:

⌦(⌥, �, x̂) =
�

⌦(0)⌥(�, x̂) +
⌦(1)⌥(�, x̂)

⌥
+ · · ·

⇥

@⌥ +
�

⌦(0)⇧(�, x̂) +
⌦(1)⇧(�, x̂)

⌥
+ · · ·

⇥

@⇧. (5.19)

From the form of the metric ansatz given in 5.12, we note that the metric component g⌥⇧

is absent. This imposes the following condition on the vector field:

L⌦g⌥⇧ = 0 () ⌦(1)⇧(�, x̂) = D⇧⌦(0)⌥(�, x̂). (5.20)

Here D⇧ refers to the covariant derivative w.r.t h(0)
⇧ (�, x̂). Similarly the trace free condition

5.18 leads to the following constraint.

h(0)⇧ L⌦g⇧ = 0 at O(⌥0) ()
�

↵ � 3
⇥

⌦(0)⌥(�, x̂) = 0. (5.21)

Here ↵ refers to the Laplacian w.r.t h(0)
⇧ (�, x̂). The remaining gauge condition 5.17 can

also be written as

gab@b

�

ln
�

s
h
h̊

⇥⇥

+ r̊bgab = 0. (5.22)

The above expression puts the following contraints on the vector fields (details are given

in the Appendix-D):

2 D(⇧⌦(0) )@ 
�

ln
�

s
h(0)

h̊

⇥⇥

+ h(0)⇧ @ D�⌦
(0)� + 2D̊ D(⇧⌦(0) ) = 0, (5.23)

D⇧⌦(0) h̊⇧ = 0. (5.24)

In the above expression D̊ refers to the covariant derivative w.r.t reference hyperboloid

metric h̊⇧ . As one can see from the constraints 5.21, 5.23 and 5.24, the vector field

components (to the leading order in ⌥) depend on the hyperboloid metric h(0)
⇧ as well as
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the reference hyperboloid metric h̊⇧ . The dependence on h̊⇧ arises due to the gauge

condition 5.17 that we have chosen in which divergence is taken w.r.t to the reference

metric g̊ab.

In [19], Campiglia and Laddha derived the generalized BMS vector fields at time-like

infinity as residual gauge transformations (that survive at time-like infinity) of de-Donder

gauge around the fixed Minkowski background g̊ab. The conditions that we obtained for

the vector fields are more general in the sense that these are the constraints for the vector

fields that preserve the form of the metric ansatz2 together with the gauge conditions.

Inorder to make connection with [19], we consider the above constraints 5.21, 5.23 and

5.24 evaluated at h(0)
⇧ = h̊⇧ . Therefore, substituting h(0)

⇧ = h̊⇧ in 5.21, 5.23 and 5.24 we

get,

�

↵̊ � 3
⇥

⌦(0)⌥(�, x̂) = 0, (5.25)
�

↵̊ � 2
⇥

⌦(0)⇧(�, x̂) = 0, (5.26)

D̊⇧⌦
(0)⇧(�, x̂) = 0. (5.27)

where ↵̊ refers to the Laplacian w.r.t h̊⇧ . These are the same conditions that the authors

arrive in [19] for the vector fields at time-like infinity. The following boundary conditions

are also imposed to make a connection with the generalized BMS vector fields at null-

infinity.

lim
�!1

��1⌦(0)⌥(�, x̂) = f (x̂), (5.28)

lim
�!1

⌦(0)A(�, x̂) = VA(x̂). (5.29)

From the above equations, the leading component of these vector fields can be written

in terms of the functions characterizing supertranslation and Di�(S 2) vector field at null

2The fixed Minkowski metric is one of the metric that satisfies the ansatz.
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infinity

⌦(0)⌥(�, x̂) =
Z

S 2
d2q̂ GS T (�, x̂; q̂) f (q̂) ⇥ fH (�, x̂), (5.30)

⌦(0)⇧(�, x̂) =
Z

S 2
d2q̂ G⇧

A(�, x̂; q̂)VA(q̂) ⇥ V⇧
H (�, x̂). (5.31)

The Green’s functions in turn follows the following constraints:

(↵̊ � 3)GS T = 0 ; lim
�!1

��1GS T (�, x̂; q̂) = ⌅(2)(x̂, q̂), (5.32)

(↵̊ � 2)G⇧
A = 0 ; D̊⇧G⇧

A = 0 ; lim
�!1

GA
B(�, x̂; q̂) = ⌅A

B ⌅(2)(x̂, q̂). (5.33)

For detailed expressions of the Green’s functions and further discussions, one can refer

to [65].

In this work, we are primarily interested in the algebra of the generalized BMS vector

fields w.r.t reference Minkowski metric (g̊ab). Therefore, the supertranslation and Di�(S 2)

vector fields to leading order at time-like infinity are given by

⌦S T = fH (�, x̂)@⌥, (5.34)

⌦S R = V⇧
H (�, x̂)@⇧. (5.35)

One can verify that variation w.r.t. the supertranslation vector field does not alter the

leading order (in ⌥) structure of 5.12 (and hence 5.14) but the variation under Di�(S 2)

vector field does. This can be seen from evaluating the Lie derivative of the metric w.r.t

supertranslation/Di�(S 2) vector field.

L⌦S T g̊⌥⌥ = 0 ; L⌦S T g̊⇧ = O(⌥), (5.36)

L⌦S R g̊⌥⌥ = 0 ; L⌦S R g̊⇧ = O(⌥2). (5.37)
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One can clearly see that the Di�(S 2) vector field changes the hyperboloid components of

the metric at order ⌥2. The relevance of the above mentioned point will become clear in

further sections where we verify the algebra of the vector fields.

Our main interest in this chapter is to understand whether the supertranslation and Di�(S 2)

vector fields defined above form a closed algebra at time-like infinity. A naive attempt to

study these algebra will be to compute the ordinary Lie bracket (as we have done for the

null infinity case) of the vector fields and check whether the resulting vector field satisfies

the constraint 5.25 (in case for supertranslation), 5.26 and 5.27 (in case for Di�(S 2)).

However, as is well known in the literature [1, 23], the correct definition of Lie bracket in

the case of asymptotic symmetries is more intricate. This can be explained as follows.

The vector field algebra is studied by considering the commutator of two variations of the

vector fields on the metric. An important point to be noted here is the fact that the vector

fields themselves are metric dependent3. This can be seen from the defining equations for

the vector field 5.25, 5.26 and 5.27, which tells us that the vector fields depend upon the

hyperboloid metric h̊⇧ through covariant derivative and Laplacian. Therefore, performing

the second variation will a�ect both the first variation as well as the metric. This can be

seen as

[⌅⌦1(g), ⌅⌦2(g)]gµ⌃ = ⌅⌦1(g)⌅⌦2(g)gµ⌃ � ⌅⌦2(g)⌅⌦1(g)gµ⌃,

= ⌅⌦1(g)L⌦2(g)gµ⌃ � ⌅⌦2(g)L⌦1(g)gµ⌃,

= L⌦1(g)L⌦2(g)gµ⌃ �L⌅
g
⌦1
⌦2(g)gµ⌃ �L⌦2(g)L⌦1(g)gµ⌃ +L⌅

g
⌦2
⌦1(g)gµ⌃,

= ⌅[⌦1(g),⌦2(g)]gµ⌃ �
⇧

⌅⌅g
⌦1
⌦2(g) � ⌅⌅g

⌦2
⌦1(g)

⌃

gµ⌃,

= ⌅⇧

[⌦1(g),⌦2(g)]�⌅g
⌦1
⌦2(g)+⌅g

⌦2
⌦1(g)

⌃gµ⌃. (5.38)

As one can see, this is di�erent from 5.8. The first term in the above expression is the

3This was not the case at null infinity, where the generalized BMS vector fields were metric independent.
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ordinary Lie bracket, which is the same as that we encountered in the null infinity case.

The extra term ⌅
g
⌦1
⌦2(g) captures the variation on the vector field ⌦2(g) due to the action

of the vector field ⌦1(g) on the metric. Hence, to realize the algebra of the vector fields at

time-like infinity, one should take into account such terms. One defines the modified Lie

bracket for realizing the BMS vector field algebra as

[⌦1, ⌦2]a
M ⇥ [⌦1, ⌦2]a

� ⌅
g
⌦1
⌦a

2 + ⌅
g
⌦2
⌦a

1. (5.39)

where ⌅g
⌦1
⌦a

2 denotes the change in ⌦a
2 due to the variation in the metric induced by ⌦1. The

exact computation of these terms will be shown in the next section.

We end this section by emphasizing the di�erence between the two sets of constraints

we have derived for the vector fields. The first set of constraints (equations 5.21, 5.23

and 5.24) are defining equations for vector fields that preserve the gauge conditions and

metric ansatz 5.12. The second set of constraints (equations 5.25, 5.26 and 5.27) are

the conditions on the vector fields when, one chooses a particular metric from the metric

ansatz, i.e, the reference Minkowski metric 5.14.

5.2 Generalised BMS vector field algebra at time-like in-

finity

In this section, we show the closure of the generalized BMS vector fields at time-like

infinity using the modified Lie-bracket. We first consider the algebra between two super-

translations and then, in the next sub-section, we look at the algebra between a supertrans-

lation and Di�(S 2) vector field. Finally, we would be considering the algebra between two

Di�(S 2) vector fields. In each case, we find a similar result like one gets of the algebra

for generalized BMS vector fields at null infinity.
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5.2.1 Algebra between two supertranslations

We start with the case of two supertranslations. Consider two supertranslation vector

fields:

⌦S T1 = fH (�, x̂)@⌥, (5.40)

⌦S T2 = gH (�, x̂)@⌥. (5.41)

where, fH and gH is defined as follows:

fH (�, x̂) =
Z

d2q̂1 GS T1(�, x̂; q̂1) f (q̂1), (5.42)

gH (�, x̂) =
Z

d2q̂2 GS T2(�, x̂; q̂2)g(q̂2). (5.43)

Here, GS T1 and GS T2 is the same Green’s function satisfying the constraints 5.32. To

compute the algebra of two supertranslation vectors, we evaluate the modified Lie bracket

as defined in 5.39. We expect an algebra similar to the case of null infinity, where the

supertranslation vector fields commute.

The modified Lie bracket is written as:

[⌦S T1, ⌦S T2]a
M = [⌦S T1, ⌦S T2]a

� ⌅
g
⌦S T1

⌦a
S T2 + ⌅

g
⌦S T2

⌦a
S T1. (5.44)

As we have explained in the previous section, supertranslation vector fields do not change

the Minkowski metric at the leading order in ⌥. This can be seen from 5.36. Hence, the

terms ⌅
g
⌦S T1

⌦a
S T2 and ⌅

g
⌦S T2

⌦a
S T1 do not contribute at time-like infinity. Consequently, the

above expression of modified Lie bracket reduces to the ordinary Lie bracket, namely:

[⌦S T1, ⌦S T2]a
M = [⌦S T1, ⌦S T2]a. (5.45)

Now, using the expressions of the vector fields 5.40 and 5.41, it is then easy to see that
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ordinary Lie bracket also vanishes. Hence we finally get

[⌦S T1, ⌦S T2]a
M = 0. (5.46)

This matches with the case of null infinity. We see that supertranslations form an Abelian

ideal.

5.2.2 Algebra between a supertranslation and a Di�(S 2) vector field

We now consider the modified Lie bracket between a supertranslation and a Di�(S 2)

vector field. i.e:

⌦S T = fH (�, x̂)@⌥, (5.47)

⌦S R = V⇧
H (�, x̂)@⇧. (5.48)

where, fH and V⇧
H are already defined in 5.30 and 5.31, and they satisfy:

↵̊ fH (�, x̂) = 3 fH (�, x̂) ; D̊⇧V⇧
H (�, x̂) = 0 ; ↵̊V⇧

H (�, x̂) = 2V⇧
H (�, x̂). (5.49)

From the equations above it is clear that fH and V⇧
H depend upon the metric h̊⇧ (through

covariant derivative D̊⇧ and Laplacian ↵̊).

Using 5.39 the modified Lie bracket of supertranslation and Di�(S 2) vector field can be

written as:

[⌦S T , ⌦S R]a
M = [⌦S T , ⌦S R]a

� ⌅
g
⌦S T

⌦a
S R + ⌅

g
⌦S R
⌦a

S T . (5.50)

As explained in the beginning of this section the Di�(S 2) vector field depends upon h̊⇧ ,

and ⌅
g
⌦S T

⌦a
S R represents the variation in ⌦a

S R due to the change in the metric induced by
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the supertranslation vector field ⌦S T . But we already saw in the previous section that the

supertranslation does not alter the Minkowski metric to the leading order 5.36 and hence,

does not alter h̊⇧ . Therefore, the term ⌅
g
⌦S T

⌦a
S R in the above expression vanishes and the

modified Lie bracket becomes

[⌦S T , ⌦S R]a
M = [⌦S T , ⌦S R]a + ⌅

g
⌦S R
⌦a

S T . (5.51)

From the definitions of the vector fields given in 5.47, 5.48, it is clear that, only the ⌥

component contributes to the above expression of modified Lie bracket. For the null in-

finity case, the algebra of one supertranslation and one Di�(S 2) vector field gives another

supertranslation. Hence, it is natural to expect that a similar algebra holds at time-like

infinity. Namely, the modified Lie bracket 5.51 gives us another supertranslation. In order

to verify this, we check whether the conditions on a supertranslation vector field hold for

the modified Lie bracket, i.e.

(↵̊ � 3)[⌦S T , ⌦S R]⌥M
?
= 0. (5.52)

Or, equivalently,

(↵̊ � 3)[⌦S T , ⌦S R]⌥ + (↵̊ � 3)⌅g
⌦S R
⌦⌥S T

?
= 0. (5.53)

In the rest of this section, we show that this is indeed true. We start with the contribution

from the ordinary Lie bracket term.

(↵̊ � 3)[⌦S T , ⌦S R]⌥ = �(↵̊ � 3)
h
V⇧
H D̊⇧ fH

i
. (5.54)

Using the properties of V⇧
H and fH given in 5.49, the r.h.s of the above expression finally

becomes (Details of the calculation are given in Appendix-E.1.1):

(↵̊ � 3)[⌦S T , ⌦S R]⌥ = �2D̊ V⇧
H D̊ D̊⇧ fH . (5.55)
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We now proceed to evaluate the second term in 5.53. As we have mentioned in the previ-

ous section, the Di�(S 2) vector field changes the Minkowski metric at the leading order.

It can be easily seen that, under the Lie derivative action of the Di�(S 2) vector field, the

hyperboloid components of the reference Minkowski metric is shifted, i.e

L⌦S R g̊⇧ = ⌥2⇧

D̊⇧⌦S R + D̊ ⌦S R⇧
⌃

. (5.56)

where D̊ refers to the covariant derivative w.r.t. to reference hyperboloid metric h̊⇧ .

Thereby, the gauge condition on the supertranslation vector fields shift to

(↵ � 3)⌦⌥S T = 0, (5.57)

where, ↵ refers to the Laplacian w.r.t. to shifted hyperboloid h(0)
⇧ = h̊⇧ + L⌦S R h̊⇧ . This

indicates that the change in the vector field ⌦S T due to the change in the metric induced

by ⌦S R is reflected in the variation of the Laplacian induced by ⌦S R. Therefore, the second

term in 5.53 can be evaluated as:

(↵̊ � 3)⌅g
⌦S R
⌦⌥S T = ⌅

g
⌦S R

�

(↵̊ � 3)⌦⌥S T

⇥

� ⌅
g
⌦S R

�

↵̊ � 3
⇥

⌦⌥S T ,

= �⌅
g
⌦S R

�

↵̊ � 3
⇥

⌦⌥S T . (5.58)

In going from first line to the second in the above expression we have used the fact (↵̊ �

3)⌦⌥S T = 0. One can evaluate r.h.s of 5.58 to (Details of this calculation are given in

Appendix-E.1.2):

(↵̊ � 3)⌅g
⌦S R
⌦⌥S T = 2D̊ V⇧

H D̊ D̊⇧ fH . (5.59)

Therefore, summing 5.55 and 5.59 we finally get:

(↵̊ � 3)[⌦S T , ⌦S R]⌥ + (↵̊ � 3)⌅g
⌦S R
⌦⌥S T = 0. (5.60)
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This shows that the modified Lie bracket of a supertranslation and a Di�(S 2) vector field

is indeed another supertranslation.

5.2.3 Algebra between two Di�(S 2) vector fields

We now proceed to compute the algebra of two Di�(S 2) vector fields at i+. The Di�(S 2)

vector fields at i+ are

⌦S R1 = V⇧
H (�, x̂)@⇧, (5.61)

⌦S R2 = W⇧
H (�, x̂)@⇧, (5.62)

where, V⇧
H and W⇧

H are defined as in 5.31. Therefore, we can write:

V⇧
H =

Z
d2q̂1 G⇧

A(�, x̂; q̂1)VA(q̂1), (5.63)

W⇧
H =

Z
d2q̂2 G⇧

B(�, x̂; q̂2)WB(q̂2), (5.64)

where VA(q̂1), WB(q̂2) are two vector fields on the 2�sphere at I+. The vector fields

V⇧
H , W⇧

H follow the constraints 5.33.

D̊⇧V⇧
H (�, x̂) = 0 ; ↵̊V⇧

H (�, x̂) = 2V⇧
H (�, x̂) (5.65)

D̊⇧W⇧
H (�, x̂) = 0 ; ↵̊W⇧

H (�, x̂) = 2W⇧
H (�, x̂) (5.66)

In order to understand the algebra between two Di�(S 2) vector fields, we evaluate the

modified Lie bracket i.e.

[⌦S R1, ⌦S R2]a
M = [⌦S R1, ⌦S R2]a

� ⌅
g
⌦S R1

⌦a
S R2 + ⌅

g
⌦S R2

⌦a
S R1. (5.67)

It is easy to see, from the form of the vector fields ⌦S R1, ⌦S R2 given in 5.61, 5.62 that the

⌥ component of the modified Lie bracket vanishes and only the hyperboloid component
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exists. Therefore, we need to evaluate

[⌦S R1, ⌦S R2]⇧M = [⌦S R1, ⌦S R2]⇧ � ⌅g
⌦S R1

⌦⇧S R2 + ⌅
g
⌦S R2

⌦⇧S R1, (5.68)

where, ⇧ runs over the hyperboloid components only. At null infinity we have already

seen that, the Lie bracket of two Di�(S 2) vector fields is another Di�(S 2) vector field. We

expect similar result to hold at time-like infinity. Therefore, we want to check whether

the vector field that one gets from the modified Lie bracket obeys the constraints

D̊⇧[⌦S R1, ⌦S R2]⇧M
?
= 0, (5.69)

(↵̊ � 2)[⌦S R1, ⌦S R2]⇧M
?
= 0. (5.70)

Here, written explicitly in terms of expression of modified Lie bracket the above expres-

sions are equivalent to

D̊⇧[⌦S R1, ⌦S R2]⇧ � D̊⇧⌅
g
⌦S R1

⌦⇧S R2 + D̊⇧⌅
g
⌦S R2

⌦⇧S R1
?
= 0, (5.71)

�

↵̊ � 2
⇥

[⌦S R1, ⌦S R2]⇧ �
�

↵̊ � 2
⇥

⌅
g
⌦S R1

⌦⇧S R2 +
�

↵̊ � 2
⇥

⌅
g
⌦S R2

⌦⇧S R1
?
= 0. (5.72)

We start with the verification of 5.71. The first term in the l.h.s of 5.71 vanishes. This can

be shown as

D̊⇧[⌦S R1, ⌦S R2]⇧ = V 

H D̊⇧D̊ W⇧
H �W 

H D̊⇧D̊ V⇧
H ,

= R̊⇧
�⇧ V

 

HW�

H � R̊⇧
�⇧ W

 

HV�

H ,

= �2h̊� 

�

V 

HW�

H �W 

HV�

H

⇥

= 0. (5.73)

In going from the first line to the second we used the divergence free condition of the

Di�(S 2) vector fields. We now proceed to evaluate the contribution from the modification

terms (the last two terms in 5.68) in the modified Lie bracket. In the earlier section 5.2.2,
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we showed that the change in the supertranslation vector field due to the change in the

metric induced by the Di�(S 2) vector field was reflected in the variation of the Laplacian

in 5.25. But the situation is more intricate for the case of Di�(S 2) vector field. The gauge

conditions 5.26 and 5.27 for one of the Di�(S 2) vector field (say ⌦S R1) now shift to 5.23

and 5.24 respectively where h(0)
⇧ (�, x̂) will be now defined by h(0)

⇧ = h̊⇧ + L⌦S R2 h̊⇧ ,where

⌦S R2 is another Di�(S 2) vector field. Keeping this in mind, in order to evaluate the last

two terms in the l.h.s of 5.71, we use the residual gauge condition 5.24, which is one of

the defining condition for the Di�(S 2) vector field for an arbitrary h(0)
⇧ (�, x̂). We vary this

gauge condition w.r.t. another Di�(S 2) vector field and finally evaluate the expression at

h(0)
⇧ (�, x̂) = h̊⇧ (�, x̂). We demonstrate this in detail further in this section.

We start with the gauge condition 5.24 for an arbitrary h(0)
⇧ 

D⇧⌦(0) h̊⇧ = 0. (5.74)

Under variation w.r.t. to the Di�(S 2) vector field ⌦SR1, the above condition becomes

⌅
g
⌦S R1

�

D⇧⌦ h̊⇧ 

⇥

= ⌅
g
⌦S R1

�

D⇧
⇥

⌦ h̊⇧ + D⇧⌅
g
⌦S R1

⌦ h̊⇧ = 0. (5.75)

It is important to note that, the variation is not taken on the reference metric h̊⇧ . Hence,

the above expression can be written as

D⇧⌅
g
⌦S R1

⌦ h̊⇧ = �⌅
g
⌦S R1

�

D⇧
⇥

⌦ h̊⇧ . (5.76)

In order to compute D̊⇧⌅
g
⌦S R1

⌦⇧S R2 in 5.71, we evaluate the above expression at h(0)
⇧ = h̊⇧ ,

then

D̊⇧⌅
g
⌦S R1

⌦
 

S R2h̊⇧ = �⌅
g
⌦S R1

�

D̊⇧
⇥

⌦
 

S R2h̊⇧ . (5.77)
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The r.h.s of the above expression can be evaluated as

⌅
g
⌦S R1

�

D̊⇧
⇥

⌦
 

S R2h̊⇧ = ⌅
g
⌦S R1

�

h̊⇧�D̊�

⇥

⌦
 

S R2h̊⇧ ,

=
�

⌅
g
⌦S R1

h̊⇧�
⇥

D̊�⌦
 

S R2h̊⇧ + h̊⇧�
�

⌅
g
⌦S R1

D̊�

⇥

⌦
 

S R2h̊⇧ ,

=
�

D̊⇧V�

H + D̊�V⇧
H

⇥

D̊�W
 

H h̊⇧ +
�

⌅
g
⌦S R1

�̊�
��

⇥

W�

H h̊⇧ ,

=
�

D̊⇧V�

H + D̊�V⇧
H

⇥

D̊�W
 

H h̊⇧ + 0,

=
�

D̊⇧V�

H + D̊�V⇧
H

⇥

D̊�W
 

H h̊⇧ . (5.78)

In evaluating the above expression, we have used the fact that ⌅g
⌦S R1

�̊
�
�� = 0. This can be

easily seen from C.5. Therefore, 5.77 becomes

D̊⇧⌅
g
⌦S R1

⌦⇧S R2 = �D̊�W⇧

�

D̊⇧V� + D̊�V⇧
⇥

. (5.79)

Similarly, the last term in 5.71 i.e. D̊⇧⌅
g
⌦S R2

⌦⇧S R1 can be evaluated as

D̊⇧⌅
g
⌦S R2

⌦⇧S R1 = �
�

D̊⇧W� + D̊�W⇧
⇥

D̊�V⇧. (5.80)

Therefore,

D̊⇧⌅
g
⌦S R1

⌦⇧S R2 � D̊⇧⌅
g
⌦S R2

⌦⇧S R1 = 0. (5.81)

Hence, the divergence of the modified terms sums to zero, thereby verifying one of the

conditions for a Di�(S 2) vector field. i.e.

D̊⇧[⌦S R1, ⌦S R2]⇧M = 0. (5.82)

Now, one needs to verify 5.72. We start by evaluating the first term in 5.72.

�

↵̊ � 2
⇥

[⌦S R1, ⌦S R2]⇧ = 2
�

D̊�V D̊�D̊ W⇧
� D̊�W D̊�D̊ V⇧

⇥
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+
�

V ↵̊ D̊ W⇧
�W ↵̊ D̊ V⇧

⇥

. (5.83)

The last two terms can be simplified more using 5.26 and 5.27 and using the identity

[↵̊, D̊⇧]T a1..an = 2
�

⌅a1
⇧ D̊�T �a2..an + ..⌅an

⇧ D̊�T a1a2..�
⇥

� 2
�

D̊a1T a2..an
⇧ + ...D̊anT a1..an�1

⇧ + D̊⇧T a1...an
⇥

. (5.84)

The above expression can be derived using the Riemann tensor of the hyperboloid metric

5.16 and T a1..an is a arbitrary tensor on the hyperboloid. Therefore, 5.83 finally evaluates

to

�

↵̊ � 2
⇥

[⌦S R1, ⌦S R2]⇧ = 2
�

D̊�V D̊�D̊ W⇧
� D̊�W D̊�D̊ V⇧

⇥

� 2
�

V D̊⇧W �W D̊⇧V 

⇥

. (5.85)

To evaluate the last two terms in 5.71, we proceed similarly as we have done earlier for

the verification of divergence free condition. We use residual gauge condition 5.23 to

evaluate the last two terms. The details of the calculation is given in the Appendix E.2.1 .

Finally, we get

�

↵̊ � 2
⇥

⌅
g
⌦S R1

⌦⇧S R2 �
�

↵̊ � 2
⇥

⌅
g
⌦S R2

⌦⇧S R1

= 2
�

D̊ V�D̊ D̊�W⇧
� D̊ W�D̊ D̊�V⇧

⇥

� 2
�

V�D̊⇧W�
�W�D̊⇧V�

⇥

. (5.86)

Therefore, substituting 5.85 and 5.86 in 5.72, we get

�

↵̊ � 2
⇥

[⌦S R1, ⌦S R2]⇧ �
�

↵̊ � 2
⇥

⌅
g
⌦S R1

⌦⇧S R2 +
�

↵̊ � 2
⇥

⌅
g
⌦S R2

⌦⇧S R1 = 0. (5.87)
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Hence, we have a closure of Di�(S 2) vector field at time-like infinity similar to the case

of null infinity. In all the three cases, the desired relations are satisfied and hence we show

that the BMS vector field algebra closes under the modified Lie bracket.
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Chapter 6

Conclusion

In the first part of this thesis, we studied the relationship of generalized BMS symmetry

with tree-level double soft graviton theorems at leading and subleading level. The ac-

tion of generalized BMS charges on Fock vaccua gives rise to an infinite set of degenerate

vacua, which are parametrized by the supertranslation and Di�(S 2) charges. We show that

a particular class of a class of double soft factorization theorems at tree-level can be de-

rived at the leading and subleading level, if one considers the Ward identity of generalized

BMS charges evaluated in finite energy states which are built from the degenerate vacua

which are parametrized by a single generalized BMS charge. These double soft graviton

theorems are identified with the consecutive double soft graviton theorems (CDST), which

elucidate the factorization property of scattering amplitude involving two soft gravitons in

which energy of one of the soft graviton falls at a faster rate than the other. We also show

one can arrive at consecutive double soft theorems at leading and sub-leading levels if

one considers nested Ward identities of two generalized BMS charges evaluated in states

built from Fock vaccua. Using a method proposed by Avery and Schwab using Noether’s

second theorem and path integral techniques, we give a derivation for these nested Ward

identities in appendix A. The results in the first part of the thesis can be summarized as
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follows:

hout| [Qf , [Qg,S]] |ini = 0, hout, f | [Qg,S] |ini = 0, Leading CDST, (6.1)

hout| [Qf , [QV ,S]] |ini = 0, hout, f | [QV ,S] |ini = 0, Sub leading CDST 1, (6.2)

hout| [QV , [Qf ,S]] |ini = 0, hout,V | [Qf ,S] |ini = 0, Sub leading CDST 2. (6.3)

where Qf ,Qg corresponds to supertranslation charge and QV corresponds to Di�(S 2)

charge. hout, f |,hout,V | corresponds to external states built from supertranslated and

Di�(S 2) vaccua respectively.

In the second part of this thesis, we studied the algebra of generalized BMS vector fields

at time-like infinity. Inspired by [25, 26], we defined the notion of asymptotic flatness

at time-like infinity. The generalized BMS vector fields at time-like infinity correspond

to those vector fields that preserve this asymptotic flatness structure. Similar to the case

at null infinity, the generalized BMS vector fields at time-like infinity are characterized

by supertranslation and Di�(S 2) vector fields. But unlike null infinity, the generalized

BMS vector fields at time-like infinity are metric dependent. The metric dependence

appears through the di�erential equations that the generalized BMS vectors obey 5.21,

5.23, 5.24. In order for the vector fields to give a faithful representation of generalized

BMS algebra, one should use the modified Lie bracket proposed by Barnich et.al in [1]

instead of ordinary Lie bracket. The algebra is found to be similar to that at null infinity,

in which, supertranslation vector fields form an Abelian subgroup. The (modified) Lie

bracket between one supertranslation and a Di�(S 2) vector field is found to be another

supertranslation and the algebra between two Di�(S 2) vector fields is found to be another

Di�(S 2) vector field.
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Appendix A

Ward identities from the Avery–Schwab

method

In this appendix we derive the asymptotic Ward identity hout|
⌥

Qf , [QV ,S]
�

|ini = 0, based

on a method that was proposed in [17]. The basic idea is to use Noether’s second theorem

and path integral techniques to derive Ward identities for asymptotic symmetries.

As shown in [17], given a asymptotic symmetry or large gauge transformation with a

gauge parameter �, at the level of correlation functions one obtains the following Ward

identity.

�i h0| ⌅�T
�

�(x1) . . .�(xn)
⇥

|0i = h0|T
�

⇧

QI+[�] � QI�[�]
⌃

�(x1) . . .�(xn)
⇥

|0i (A.1)

Here we use a generic label � to label the quantum field associated to scattering particles.

QI±[�] are the asymptotic charges associated to large gauge transformations � at future

and past null infinity respectively.

Before deriving the identity associated to the insertion of two charge operators, we first

revisit the supertranslation Ward identity hout| [Qf ,S] |ini = 0. Let � be any massless
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field that interacts with gravity and ⌅� = ⌅ f be the generator of supertranslation on the

fields.

We begin by noting that through LSZ reduction we have the following1

mY

i=1

p2
i

Z
d4xi e�ipi·xi

nY

j=m+1

p2
j

Z
d4x j eip j·x j h0| ⌅ f T (�(x1) . . .�(xn)) |0i

= �i hp1, . . . , pm|Qhard+
f S � S Qhard�

f |pm+1, . . . , pni

(A.2)

We can schematically represent this step as,

h0| ⌅�T (�(x1) . . . �(xn)) |0i ���!
LSZ
hp1, . . . , pm| [Qhard

f ,S] |pm+1, . . . , pni (A.3)

where we have used the fact that

⌅ f�(p) = �i [Qf ,�(p)] (A.4)

On the other hand, once again via LSZ and the fact that

Qhard
f |0i = 0

Qsoft
f |0i = 0

h0|Qsoft
f , 0

(A.5)

we see that

h0| T
�

⇧

QI+[�] � QI�[�]
⌃

�(x1) . . .�(xn)
⇥

|0i ���!
LSZ
hp1, . . . , pm| [Qsoft

f ,S] |pm+1, . . . , pni

(A.6)

1These arguments are formal because they are tied to the fact that the usual Dyson S–matrix with
massless particles is only formally defined. However, as we are only analyzing symmetries of the tree–level
S–matrix, we will not worry about the issue of infra–red divergence.
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Substituting eqns. (A.3,A.6) in eq.(A.1) we recover the super-translation Ward identity,

hout| [Qf ,S] |ini = 0 (A.7)

We note that an identical derivation for Ward identity associated to large U(1) gauge trans-

formations was already given in [76].

We will now derive the Ward identities
⌥

Qf , [QV ,S]
�

= 0 using this method. That is, we

begin with the Ward identity where the Di�(S 2) ⌅V is applied after the supertranslation

⌅ f . The starting point for the derivation is (45) in [17], which in the present context can

be written as

� h0|T
�

⇧

QI+[ f ] � QI�[ f ]
⌃⇧

QI+[V] � QI�[V]
⌃

�(x1) . . .�(xn)
⇥

|0i

= h0| ⌅ f ⌅VT
�

�(x1) . . .�(xn)
⇥

|0i
(A.8)

With our prescription that the soft charges annihilate the “in" vacuum, the l.h.s. of (A.8)

reduces to

� h0|T
�

⇧

QI+[ f ] � QI�[ f ]
⌃⇧

QI+[V] � QI�[V]
⌃

�(x1) . . .�(xn)
⇥

|0i

= � h0|Qsoft
I+ [ f ]

�

Qsoft
I+ [V] + Qhard

I+ [V]
⇥

T
⇧

�(x1) . . .�(xn)
⌃

|0i
(A.9)

On the other hand, using (A.4), it is easy to see that the r.h.s. of (A.8) is given by

h0| ⌅ f ⌅V T (�(x1) . . .�(xn)) |0i

= � h0|
X

i, j

T
�

�(x1) . . . [Qf ,�(xi)] . . . [QV ,�(x j)] . . .�(xn)
⇥

|0i

���!
LSZ
� hout|

⌥

Qhard
f , [Q

hard
V , S]

�

|ini

(A.10)

Thus the path integral identity and the LSZ formula lead to (equating the r.h.s. of (A.9)

91



with r.h.s. of (A.10)),

hout|Qsoft
f Qsoft

V S |ini

= � hout|Qsoft
f Qhard

V S |ini + hout|
⌥

Qhard
f , [Q

hard
V , S]

�

|ini
(A.11)

A straightforward manipulation shows that above equation is equivalent to

hout|
⌥

Qf , [QV ,S]
�

|ini = 0 (A.12)

This is one of the Ward identities used in the main text of the thesis. The remaining

identities can be derived similarly.
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Appendix B

Subtleties associated to the domain of

soft operators

We will now comment on the assumption that was implicitly used in previous section, and

which has been used frequently in relating single soft theorems to BMS Ward identities.

From the expressions of the supertranslation and Di�(S 2) soft charges, we can see that

these are singular limits of single graviton annihilation operators.

Qsoft
f ⇧ lim

E!0
E a+(E,w, w̄)

Qsoft
V ⇧ lim

E!0
(1 + E@E)a+(E,w, w̄) (B.1)

For simplicity we have just considered the expression of the soft charges for positive

helicity graviton creation operators only. In the case of Ward identities associated to the

single soft theorems, it has been implicitly assumed that the super-translation soft charge

can be defined as (apart from the extra factors),

hout| lim
E!0

E a+(E,w, w̄) S |ini = lim
E!0

E hout| a+(E,w, w̄) S |ini (B.2)
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A similar assumption is also made for the Di�(S 2) soft charge Qsoft
V .

However, this does not take into account the fact that the supertranslation soft charge shifts

the vacuum. This subtlety is now well understood for supertranslations. It was shown

in [55, 90, 91, 98] that the action of the supertranslation soft charge maps a standard Fock

vaccuum to a supertranslated state which can be thought of as being labelled by a single

soft graviton. With this is in mind the precise definition of hout|Qsoft
f Qsoft

V S |ini would be

hout|Qsoft
f Qsoft

V S |ini :⌥
Z

d2w D3
w̄Vw̄ hout, f | lim

E!0
(1 + E@E) a+(E,w, w̄) S |ini (B.3)

where hout, f | is the “out” state defined over the shifted vaccuum parametrized by f , gen-

erated by the action of supertranslation charge (Qsoft
f ) on the Fock vaccuum.

In going from (4.18) to (4.19) we have made the same assumption for defining Qsoft
V on

the shifted vacuum as has been made in the literature for defining it on the Fock vacuum,

namely:

hout, f | lim
E!0

(1 + E@E) a+(E,w, w̄) := lim
E!0

(1 + E@E) hout, f | a+(E,w, w̄) (B.4)

However for reasons which can be traced back to the classical theory, it is still not clear

what the precise definition of Qsoft
V is. That is, just as a rigorous definition of Qsoft

f being

defined as an operator which maps the ordinary Fock vacuum to a super–translated state

[55, 90], no corresponding definition is available for Qsoft
V as yet. Consquently, operator

insertions like hout|Qsoft
V Qsoft

f S |ini are not mathematically well–defined, and we do not

know how to make sense of them.
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Appendix C

Variation of Christo�el symbols

In this section, we compute the variation of Christo�el symbol under a Di�(S 2) vector

field. We start with:

�̊⇧
�� =

1
2

h̊⇧✏
�

@�h̊�✏ + @�h̊✏� � @✏h̊��

⇥

(C.1)

Now,

⌅
g
⌦S R

�

�̊⇧
��

⇥

=
1
2
⌅

g
⌦S R

⇧

h̊⇧✏⌃
�

@�h̊�✏ + @�h̊�✏ � @✏h̊��

⇥

+
1
2

h̊⇧✏
�

@�⌅
g
⌦S R

(h̊�✏) + @�⌅
g
⌦S R

(h̊✏�) � @✏⌅
g
⌦S R

(h̊��)
⇥

(C.2)

To evaluate the above expression we compute the variation of metric by taking the Lie

derivative w.r.t. the Di�(S 2) vector field. Using this, after some algebraic manipulation

we finally get C.2 as:

⌅
g
⌦S R

�

�̊⇧
��

⇥

=
1
2

⇧

D̊�D̊� + D̊�D̊�

⌃

V⇧
H +

1
2

h̊⇧✏
�

R̊�⇣�✏ + R̊�⇣�✏

⇥

V⇣

H (C.3)

Here, R̊�⇣�✏ and R̊�⇣�✏ are the Riemann tensor for the hyperboloid metric h̊⇧ . For the
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hyperboloid metric we can write the Riemann tensor as:

R̊⇧ �⌅ = h̊⇧⌅h̊ � � h̊⇧�h̊ ⌅ (C.4)

Substituting C.4 in C.3 we finally get the variation of Christo�el Symbols as:

⌅
g
⌦S R

�

�̊⇧
��

⇥

=
1
2

⇧

D̊�D̊� + D̊�D̊�

⌃

V⇧
H +

1
2

VH�⌅
⇧
� +

1
2

VH�⌅
⇧
� � h��V⇧

H (C.5)
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Appendix D

Details of calculation of constraints on

the generalized BMS vector fields at

time-like infinity

In this section, we give the sketch of the calculation that leads to the constraints on the

generalized BMS vector fields 5.23, 5.24. We start with the gauge condition 5.22

gab@b

�

ln
�

s
h
h̊

⇥⇥

+ r̊bgab = 0 (D.1)

If we consider the ⌥ component of the above expression at leading order in ⌥ we get:

r̊⇧g⌥⇧ = 0 (D.2)

In evaluating the l.h.s of the above expression one can use the non-zero Christo�el sym-

bols for the Minkowski metric

�̊⌥
⇧ = ⌥h̊⇧ ; �̊⇧

 ⌥ = ⌥�1⌅⇧ (D.3)
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to get

(h̊⇧ h(0)⇧ 
� 3) = 0 (D.4)

Similarly, one can find that at the leading order in ⌥ the hyperboloid components in D.1

evaluates to

h(0)⇧ @ 
⇧

ln
⇧

s
h(0)

h̊
⌃⌃

+ r̊ h(0)⇧ = 0 (D.5)

The residual gauge transformations that preserves the above gauge conditions namely D.4

and D.5 can be found by varying the metric gab w.r.t. to the vector field as given by 5.19.

In both of the expressions we can see that only the metric component h(0)⇧ is involved.

One can easily check that h(0)⇧ will be altered only by the ⌦(0)⇧ part of the vector field

(the ⌥ component of the vector field only alters the hyperboloid part of the metric at O(⌥)

). i.e. one can see that

L⌦h(0)
⇧ =

�

D⇧⌦
(0)
 + D ⌦

(0)
⇧

⇥

(D.6)

Hence, substituting h(0)
⇧ ! h(0)

⇧ +
�

D⇧⌦
(0)
 + D ⌦

(0)
⇧

⇥

in the gauge conditions D.4 and D.5

one finally gets the constraints:

2 D(⇧⌦(0) )@ 
�

ln
�

s
h(0)

h̊

⇥⇥

+ h(0)⇧ @ D�⌦
(0)� + 2D̊ D(⇧⌦(0) ) = 0 (D.7)

D⇧⌦(0) h̊⇧ = 0 (D.8)
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Appendix E

Details of calculation for modified Lie

bracket

E.1 Calculation of modified Lie bracket between super-

translation and Di�(S 2) vector field

In this section, we provide the details of the calculation for the modified bracket between

one supertranslation and one Di�(S 2) vector field at i+.

E.1.1 Contribution from ordinary Lie bracket

We start with evaluating the expression 5.54. This can be written as

�(↵̊�3)
⇧

V⇧
H D̊⇧ fH

⌃

= �D̊ D̊ 

⇧

V⇧
H D̊⇧ fH

⌃

+ 3V⇧
H D̊⇧ fH

= �
⇧

↵V⇧
H D̊⇧ fH + D̊ V⇧

H D̊ D̊⇧ fH + D̊ V⇧
H D̊ D̊⇧ fH + V⇧

H D̊ D̊ D̊⇧ fH
⌃

+ 3V⇧
H D̊⇧ fH

= �
⇧

2D̊ V⇧
H D̊ D̊⇧ fH + V⇧

H D̊ D̊ D̊⇧ fH
⌃

+ V⇧
H D̊⇧ fH (E.1)
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We have used ↵̊V⇧
H = 2V⇧

H in going from third line to the last line. The second term in the

above expression E.1 can be further simplified as

V⇧
H D̊ D̊ D̊⇧ fH = V⇧

H D̊ D̊⇧D̊ fH

= V⇧
H

⇧

D̊⇧D̊ D̊ fH + R 

� ⇧D̊� fH
⌃

= V⇧
H D̊⇧ fH (E.2)

Here, in going from the second line to the third we have used the Riemann tensor R̊ 

� ⇧ =

R̊�⇧ = �2h̊�⇧ for EAdS 3 metric h̊⇧ and the constraint ↵̊ fH = 3 fH . Using E.2 in E.1, we

finally get

�(↵ � 3)
⇧

V⇧
H D̊⇧ fH

⌃

= �2D̊ V⇧
H D̊ D̊⇧ fH (E.3)

E.1.2 Contribution from modification terms

In this section, we evaluate the details of the calculation to arrive at 5.59. We have:

⌅
g
⌦S R

�

↵̊ � 3
⇥

⌦⌥S T = ⌅
g
⌦S R

�

↵̊
⇥

fH

= ⌅
g
⌦S R

(h̊⇧ D̊⇧D̊ ) fH

= ⌅
g
⌦S R

(h̊⇧ )D̊⇧D̊ fH + h̊⇧ ⌅
g
⌦S R

(D̊⇧)D̊ fH + h̊⇧ D̊⇧⌅
g
⌦S R

(D̊ ) fH

= ⌅
g
⌦S R

(h̊⇧ )D̊⇧D̊ fH � h̊⇧ ⌅
g
⌦S R

(��

⇧ )D̊� fH (E.4)

We have used the fact that variation of the partial derivative term in the covariant derivative

does not contribute since this does not depend on the metric. The first term in E.4 can be

evaluated by taking the Lie derivative on the hyperboloid metric h̊⇧ w.r.t ⌦S R. To evaluate

the second term in E.4, we need the variation of the Christo�el symbols w.r.t the Di�(S 2)
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vector field. This is computed in Appendix-C and using this we finally evaluate E.4 as

⌅
g
⌦S R

�

↵̊ � 3
⇥

⌦⌥S T

= �D̊⇧V 

H (D̊⇧D̊ + D̊ D̊⇧) fH �
1
2

h̊⇧ (D̊⇧D̊ + D̊ D̊⇧)VH�D̊� fH

�
1
2

h̊⇧ (VH ⌅
�
⇧ + VH⇧⌅

�

 )D̊� fH + h̊⇧ h̊⇧ V
�

H D̊� fH

= �D̊⇧V 

H (D̊⇧D̊ + D̊ D̊⇧) fH �
1
2

(D̊⇧D̊⇧ + D̊⇧D̊⇧)V�

H D̊� fH

�
1
2

D̊� fH
�

VH h̊� + VH⇧h̊�⇧
⇥

+ 3V�

H D̊� fH

= �D̊⇧V 

H (D̊⇧D̊ + D̊ D̊⇧) fH � ↵̊V�

H D̊� fH � D̊� fHV�

H + 3V�

H D̊� fH

= �D̊⇧V 

H (D̊⇧D̊ + D̊ D̊⇧) fH

= �2D̊⇧V 

H D̊⇧D̊ fH (E.5)

Hence, we can finally write

⌅
g
⌦S R

�

↵̊ � 3
⇥

⌦⌥S T = �2D̊⇧V 

H D̊⇧D̊ fH (E.6)

E.2 Details of calculation for modified Lie bracket of two

Di�(S 2) vector fields

E.2.1 Contribution from the modification terms

In this section, we give the details of the computation of last two terms in 5.72, i.e we

evaluate the expression

�

↵̊ � 2
⇥

⌅
g
⌦S R1

⌦⇧S R2 �
�

↵̊ � 2
⇥

⌅
g
⌦S R2

⌦⇧S R1 (E.7)

In order to evaluate the above, we start with the variation w.r.t to one of the Di�(S 2) vector

101



field on the gauge condition 5.24

2 D(⇧⌦(0) )@ 
�

ln
�

s
h(0)

h̊

⇥⇥

+ h(0)⇧ @ D�⌦
(0)� + 2D̊ D(⇧⌦(0) ) = 0 (E.8)

Under variation w.r.t ⌦S R1 the first term in the above expression becomes

⌅
g
⌦S R1

�

2 D(⇧⌦(0) )@ 
�

ln
�

s
h(0)

h̊

⇥⇥⇥

= ⌅
g
⌦S R1

�

2 D(⇧⌦ )
⇥

@ 
�

ln
�

s
h(0)

h̊

⇥⇥⇥

+ 2 D(⇧⌦ )@ 
�

D�⌦
�

S R1

⇥

(E.9)

The r.h.s of the above expression vanishes when one considers the variation of E.8 on

the Di�(S 2) vector field ⌦S R2. This corresponds to evaluating the above expression at

h(0)
⇧ = h̊⇧ and ⌦ = ⌦S R2.

Consider the variation of the second term in E.8 w.r.t ⌦S R1.

⌅
g
⌦S R1

�

h(0)⇧ @ D�⌦
�
⇥

= ⌅
g
⌦S R1

�

h(0)⇧ 
⇥

@ D�⌦
� + h(0)⇧ @ 

�

⌅
g
⌦S R1

�

D�⌦
�
⇥⇥

(E.10)

As we have done previously, the first term in the r.h.s of the above expression will vanish

when we finally substitute h(0)
⇧ = h̊⇧ , due the divergence free condition of ⌦

�

S R2. The

second term in E.10 can be evaluated when h(0)
⇧ = h̊⇧ and ⌦ = ⌦S R2 as

h(0)⇧ @ 
�

⌅
g
⌦S R1

�

D�⌦
�

S R2

⇥⇥

 

 

 

 

h(0)
⇧ 
=h̊⇧ 
= h̊⇧ @ 

�

⌅
g
⌦S R1

⇧

D�

⌃

⌦
�

S R2

⇥

 

 

 

 

h(0)
⇧ 
=h̊⇧ 
+ h̊⇧ @ 

�

D�⌅
g
⌦S R1

⇧

⌦
�

S R2
⌃

⇥

 

 

 

 

h(0)
⇧ 
=h̊⇧ 

= h̊⇧ @ 
�

⌅
g
⌦S R1

⇧

D̊�

⌃

⌦
�

S R2

⇥

+ h̊⇧ @ 
�

D̊�⌅
g
⌦S R1

⇧

⌦
�

S R2
⌃

⇥

= h̊⇧ @ 
�

⌅
g
⌦S R1

⇧

�̊�
��

⌃

⌦
�

S R2

⇥

+ h̊⇧ @ 
�

D̊�⌅
g
⌦S R1

⇧

⌦
�

S R2
⌃

⇥

= 0 + h̊⇧ @ 
�

D̊�⌅
g
⌦S R1

⇧

⌦
�

S R2
⌃

⇥

(E.11)

= h̊⇧ @ 
��

D̊�V�

H + D̊�V�

H

⇥

D̊�WH�

⇥

(E.12)

Here, in going from E.11 to E.12 we have used 5.77 and 5.78.
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At this point, it will be useful to remember the expression E.7. There is a term
�

↵̊ �

2
⇥

⌅
g
⌦S R2

⌦⇧S R1 which also needs to be evaluated. This corresponds to doing the same analysis

as we have done till now but interchanging V⇧
H with W⇧

H . This will help us in eliminating

many terms which will not appear in the final expression. Therefore, contribution of E.12

corresponding to doing this procedure is equal to

h(0)⇧ @ 
�

⌅
g
⌦S R2

�

D�⌦
�

S R1

⇥⇥

 

 

 

 

h(0)
⇧ 
=h̊⇧ 
= h̊⇧ @ 

��

D̊�W�

H + D̊�W�

H

⇥

D̊�VH�

⇥

. (E.13)

Therefore, we get

h(0)⇧ @ 
�

⌅
g
⌦S R1

�

D�⌦
�

S R2
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h(0)
⇧ 
=h̊⇧ 
� h(0)⇧ @ 

�

⌅
g
⌦S R2

�

D�⌦
�

S R1

⇥⇥

 

 

 

 

h(0)
⇧ 
=h̊⇧ 
= 0. (E.14)

Hence, the second term in E.8 will not contribute.

We are now left with the variation of the third term in E.8

⌅
g
⌦S R1

�

2D̊ D(⇧⌦
 )
S R2

⇥

= 2D̊ 

�

D(⇧⌅
g
⌦S R1

⌦
 )
S R2 + ⌅

g
⌦S R1

⇧

D(⇧⌃

⌦
 )
S R2

⇥

(E.15)

The first term in the above expression evaluated at h(0)
⇧ = h̊⇧ and ⌦ = ⌦S R2 can be written

as

2
�

D̊ D(⇧⌅
g
⌦S R1

⌦
 )
S R2

⇥

 

 

 

 

h(0)
⇧ 
=h̊⇧ 
= D̊ D̊⇧⌅

g
⌦S R1

⌦
 

S R2 + D̊ D̊ ⌅
g
⌦S R1

⌦⇧S R2 (E.16)

= h̊⇧�D̊�D̊ ⌅
g
⌦S R1

⌦
 

S R2 +
⇧

↵̊ � 2
⌃

⌅
g
⌦S R1

⌦⇧S R2 (E.17)

=
⇧

↵̊ � 2
⌃

⌅
g
⌦S R1

W⇧
H (E.18)

The second term in E.15 evaluated at h(0)
⇧ = h̊⇧ and ⌦ = ⌦S R2 can be written as

2D̊ 

�

⌅
g
⌦S R1

⇧

D(⇧⌃

⌦
 )
S R2

⇥

 

 

 

 

h(0)
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=h̊⇧ 
= D̊ 

�

⌅
g
⌦S R1

⇧

D⇧⌃

⌦
 

S R2

⇥

 

 

 

 

h(0)
⇧ 
=h̊⇧ 
+ D̊ 

�

⌅
g
⌦S R1

⇧

D ⌃

⌦⇧S R2

⇥

 

 

 

 

h(0)
⇧ 
=h̊⇧ 

(E.19)
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= D̊ 

�

⌅
g
⌦S R1

⇧

D̊⇧⌃

⌦
 

S R2

⇥

+ D̊ 

�

⌅
g
⌦S R1

⇧

D̊ ⌃

⌦⇧S R2

⇥

= D̊ 

�

(⌅g
⌦S R1

h̊⇧�)D̊�⌦
 

S R2

⇥

+ D̊ 

�

(⌅g
⌦S R1

h̊� )D̊�⌦
⇧
S R2

⇥

+ D̊ 

�

h̊⇧�(⌅g
⌦S R1

D̊�)⌦
 

S R2

⇥

+ D̊ 

�

h̊ �(⌅g
⌦S R1

D̊�)⌦⇧S R2

⇥

(E.20)

The first two terms in the above expression can be computed using ⌅
g
⌦S R1

h̊⇧� = �
�

D̊⇧V�

H +

D̊�V⇧
H

⇥

to get

D̊ 

�

(⌅g
⌦S R1

h̊⇧�)D̊�⌦
 

S R2

⇥

+ D̊ 

�

(⌅g
⌦S R1

h̊� )D̊�⌦
⇧
S R2

⇥

= �
h
D̊ (D̊⇧V�

H + D̊�V⇧
H )D̊�W

 

H + D̊ (D̊ V�

H + D̊�V 

H )D̊�W⇧
H

+ (D̊⇧V�

H + D̊�V⇧
H )D̊ D̊�W

 

H + (D̊ V�

H + D̊�V 

H )D̊ D̊�W⇧
H

i
(E.21)

The second term in the above expression can be shown to vanish using 5.65 and 5.16. The

third term can be further simplified using 5.65 and 5.16 to

(D̊⇧V�

H + D̊�V⇧
H )D̊ D̊�W

 

H = (D̊⇧V�

H + D̊�V⇧
H )R̊ 

� �W
�

H = �2WH�(D̊⇧V�

H + D̊�V⇧
H )

(E.22)

Therefore, E.21 can be written as

D̊ 

�

(⌅g
⌦S R1

h̊⇧�)D̊�⌦
 

S R2

⇥

+ D̊ 

�

(⌅g
⌦S R1

h̊� )D̊�⌦
⇧
S R2

⇥

= �
h
(D̊ V�

H + D̊�V 

H )D̊ D̊�W⇧
H + D̊ (D̊⇧V�

H + D̊�V⇧
H )D̊�W

 

H

� 2WH�(D̊⇧V�

H + D̊�V⇧
H )

i
(E.23)

Now, as we have done previously, the terms in E.23 that will contribute to E.8 can be

found by interchanging V⇧ with W⇧ and ignoring the terms that are same. Finally, the
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terms that contribute to E.8 in the above expression can be found to be

�

D̊ 

�

(⌅g
⌦S R1

h̊⇧�)D̊�⌦
 

S R2

⇥

+ D̊ 

�

(⌅g
⌦S R1

h̊� )D̊�⌦
⇧
S R2

⇥⇥

non�vanishing

= �D̊ D̊⇧V�

H D̊�W
 

H + 2WH�(D̊⇧V�

H + D̊�V⇧
H ) � D̊ D̊�W⇧

H D̊ V�

H

(E.24)

where, “non-vanishing" denotes the terms that contribute to E.8. Now, let us simplify the

last two terms in E.20.

D̊ 

�

h̊⇧�(⌅g
⌦S R1

D̊�)⌦
 

S R2

⇥

+ D̊ 

�

h̊ �(⌅g
⌦S R1

D̊�)⌦⇧S R2

⇥

= D̊ 

�

h̊⇧�(⌅g
⌦S R1

�̊ 
��)⌦

�

S R2

⇥

+ D̊ 

�

h̊ �(⌅g
⌦S R1

�̊⇧
��)⌦

�

S R2

⇥

(E.25)

The variation of Christo�el symbol under Di�(S 2) vector field C.5 is

⌅
g
⌦S R1

�̊⇧
 � =

1
2

�

D̊ D̊� + D̊�D̊ 

⇥

V⇧
H +

1
2

VH ⌅
⇧
� +

1
2

VH�⌅
⇧
 � h̊ �V⇧

H . (E.26)

Let us denote the first term in the above expression involving two covariant derivatives as

“DD" term, the terms containing delta function as “⌅” term and the last term as “h” term.

We can show that, ⌅ term and h term does not contribute to E.25.

The ⌅ piece contribution of E.26 in E.25 can be evaluated as

2D̊ (h̊⇧ VH�W
�

H ) + D̊ (W⇧
HV +WH V⇧

H ), (E.27)

which will not contribute because of the similar contribution when we interchange V⇧
H

with W⇧
H when evaluating E.8.

The h piece contribution of E.26 in E.25 can be evaluated similarly as

D̊ (V
 

HW⇧
H + V⇧

HW 

H ), (E.28)

105



which will also not contribute when we interchange V⇧
H with W⇧

H . Therefore, we are left

with only the contribution of the “DD" piece which can be written as

D̊ 
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h̊⇧�(⌅g
⌦S R1

D̊�)⌦
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D̊ 
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(E.29)

Now, using 5.16 the above expression can be written as
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(E.30)

Only the first term contributes in the above expression when V⇧
H interchanged with W⇧

H .

Therefore, the contribution of E.30 becomes
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H (E.31)

Finally, adding up E.24 and E.31 and interchanging V⇧
H with W⇧

H , E.8 evaluates to
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