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Summary

The core part of this thesis deals with computing higher order QCD and QED corrections
for the processes involving Higgs boson in the final states and the Drell-Yan (DY) process

by employing the perturbative theory within the SM.

In the first part, we discuss the fixed order approach to compute higher order corrections
concerning two kinds of observables: (1) QCD corrections for the di-Higgs production to
second order, and (2) mixed QCD-QED corrections to Higgs production at second order.
For both these processes, the dominant gluon contributions are known to unprecedented
accuracy, and hence our motive is to capture the corrections arising from the sub-dominant
bottom-quark annihilation channel. Computing di-Higgs production provides valuable
information on the trilinear self-coupling of Higgs boson and thereby on the shape of
Higgs potential. The computation of QCD-QED corrections involves dealing with the
interference effects of QCD and QED interactions. Using the exact NNLO result obtained
from the fixed order computations, we investigate their ultraviolet and infrared structure.
Numerical analysis on both these results at the LHC energy manifests the reduction in

unphysical scales, hence confirming the reliability of our results.

In the second half of the thesis, we address in detail the higher order QCD corrections
at the threshold approximation. We present a systematic framework for studying the cor-
rections arising from the threshold logarithms — also known as soft-virtual corrections —,
in particular, to the differential rapidity distribution for producing arbitrary colorless final

states. We also discuss a systematic way of resumming threshold logarithms to all orders



in double Mellin space. Resummation is required due to certain large logarithms at the

threshold limit, which may question the reliability of perturbative corrections.

While the singular structure of threshold logarithms dominate, the sub-dominant next-to-
threshold corrections are also vital for any precision studies as they give rise to numeri-
cally sizeable contributions. This topic is discussed in the last part of the thesis in great
detail. These sub-leading logarithms also spoil the reliability of the perturbation series
due to its significant contributions at every order. The canonical resolution through re-
summation for the next to SV terms is unfortunately hard to achieve. Nevertheless, we
propose a framework for the same, limiting only to the diagonal partonic channels. We
conclude by noting that the NSV logarithms demonstrates a rich perturbative structure

that needs to be explored further.



Synopsis

The Standard Model (SM) of elementary particle physics is, perhaps, the pinnacle of hu-
man intellectual achievement (to date). It endured all the experimental challenges so far,
and its predictions are incredibly consistent with the measurements. Among its notable
successes are the observations of W and Z boson in 1983 at CERN, the discovery of top
quark in 1995 at Fermi lab, and the recent breakthrough discovery of Higgs boson in
2012 at CERN’s Large Hadron Collider (LHC). With its vast predictive successes, the
Standard Model is the closest we have for the complete description of the universe at the

fundamental level.

However, this is not the complete story: there is ample evidence that SM lacks explana-
tions for yet mysteries in physics. For instance, there is no suitable candidate in SM to
explain the dark matter content of the universe, it does not contain mass terms for the neu-
trinos to describe the neutrino oscillations, there are no explanations for the existence of
baryon asymmetry. More fundamentally, it is yet unclear how to incorporate the standard
model with the theory of gravity. These mysteries drive us to search for physics beyond
the standard model (BSM) hidden in dark processes of the universe. A decade of experi-
ments at LHC via Run-I and Run II phases hints that the effects of new physics might not
likely manifest as a direct signal. Instead, they might appear as small systematic devia-
tions from the SM behaviour. Hence, the new physics searches essentially depend on our
ability to obtain high-precision theoretical predictions within the Standard Model along

with high calibrated measurements at the colliders.



At the experimental end, this undertaking is facilitated by constantly upgrading detectors
with large center-of-mass-energy and improved luminosity, thereby pushing down the sta-
tistical errors. The upcoming High-Luminosity LHC will further improve the precision,
allowing for per cent-level measurements. This scenario calls for immense efforts from
the theory side to produce (at least) the same level of precision as of data for a reliable
comparison between them both, which is crucial for several essential physics goals of the

LHC program.

In improving theoretical precision, higher order quantum chromodynamics (QCD) and
electroweak (EW) corrections play an essential role. Over the past few decades, several
attempts have been made to incorporate these higher order radiative corrections to observ-
ables at colliders. Often observables are expressed in terms of cross-sections, mainly by
either differential cross sections in one or more variables or by integrating over the fiducial
region of the detector surrounding the particle collision site. A successful methodology
to evaluate the cross-section in SM or BSM is based on perturbation theory, under which
any observable can be expanded in powers of coupling constants present in the underlying
Lagrangian. For instance, for QCD, the corresponding expansion parameter is the strong

coupling constant «, and their perturbative corrections take the form:

(0) (1)

oc=09+a,0" +a,0? + - ()

Here, the first term is leading order (LO) or Born cross-section, second is called next-to-
LO (NLO) corrections to Born cross-section and so on so forth. Each new term in the
expansion (1.1) put forth new QCD interactions in the form of closed loops or radiations
of partons both suppressed by factors of ;. Despite this suppression, these higher order

radiative corrections are crucial for reaching the required precision as that of experiments.

Achieving a full QCD correction to any order is not easy, and with increasing perturba-
tive order, the complexity rises substantially. The non-Abelian nature of the theory and

relatively large coupling entails the inclusion of a plethora of sub-processes in the higher



orders, making the task non-trivial. Nevertheless, the tremendous efforts in these direc-
tions in the past few decades lead to remarkable achievements. Now we have advanced
techniques for the automation of NLO computations, and we are in good shape with next-
to-NLO (NNLO). Moreover, we achieved an incredible precision of next-to-next-to-NLO

(N3LO) for many important 2 — 1 processes at LHC.

However, with the increase of loops and legs, the complexity proliferates, making the
exact computation highly challenging. In this scenario, in the absence of exact fixed or-
der results, one could attempt various methods to capture the dominant contributions to
a physical observable by evaluating the quantity in certain limits. In general, the per-
turbative corrections get contributions from hard, soft and virtual parts corresponding to
those arising from energetic, soft and virtual gluons, respectively. For a heavy invariant
mass production at the hadron colliders, generically, the dominant contributions originate
from the soft regions, and hence these corrections are numerically significant at LHC. Be-
sides, the momenta of all the real emission diagrams in the soft region are assumed to be
infinitesimally small, leading to an all order exponentiation of this contribution. Hence,
capturing these corrections are crucial for theoretical understanding as well. We call these

corrections together with the virtual corrections, in general, soft-virtual (SV) corrections.

This thesis concerns the computations of higher order QCD corrections to inclusive and
differential observables for various scattering processes at the colliders. Besides, it also
addresses mixed QCD-QED corrections to the inclusive cross-section by considering a
specific process. For convenience, the topic is divided into two parts. The first part
addresses fixed-order computations, which capture the complete behaviour of a given
quantity at a fixed order in coupling constant. Whereas, in the second part, we discuss the
soft-virtual approximation for various Sudakov-type processes, by addressing not only the
correction but also the question of resummation, which is a necessary ingredient to obtain
reliable theoretical predictions at the soft limit. In addition to the leading term in SV cor-

rections, we focus on the structure of sub-leading terms as well. Perturbative corrections



concerning both SV and NSV contributions are called next to SV (NSV) corrections. In
subsequent sections, we address the above topics with main focus on the corrections to

Higgs production through gluon fusion and/or bottom quark annihilation channel.

Fixed order approach

In this section, we deal with the fixed order calculations till the second order in coupling
constant and is comprises of two subsections. In the first, we address complete fixed order
corrections to an inclusive reaction associated with Higgs production at LHC. Whereas,
in the second part, we discuss a comparative study between QCD, mixed QCD-QED and

pure QED at the NNLO.

Di-Higgs production from bottom quark annihilation at NNLO

In all measurements explored so far at LHC, the rates and differential measurements are
remarkably consistent with the SM predictions. One of the significant challenges in next
LHC phase is constraining Higgs trilinear and quartic self-couplings. The Higgs self-
coupling is crucial to understand the Higgs field potential, thereby explaining the elec-
troweak symmetry breaking mechanism. A useful avenue to investigate the trilinear cou-

pling is the production of a pair of Higgs boson at hadron colliders.

Among various partonic channels that contribute to this process, gluon fusion is the dom-
inant one and is well studied both in effective theory as well as in full-QCD. As the
precision at the hadron collider improves, it is crucial to incorporate other sub-dominant
channels as well into the production mechanism. In this work, we have considered one
such channel, namely di-Higgs production in bottom quark annihilation, which is sensi-
tive to the trilinear coupling. For this process, QCD corrections at NLO exist in the liter-

ature [ 1], and hence our aim is to compute the corrections to the inclusive cross-section at
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NNLO accuracy.

There are mainly two classes of diagrams that contribute at NNLO, both in virtual and
real emission sub-processes. One category is the vertex type diagrams that belongs to
class-A. The latter one, we call class-B, are the t- and u-channel diagrams. The loop
corrections to class-A are known in the literature till the third order [2]. For class-B
diagrams, we produce the virtual corrections at NNLO using in-house routines based on
FORM and Mathematica packages. To check the consistency of these corrections, we
compared them with the well-known universal structure of two-loop infrared poles as

predicted by Catani [3].

Further, using these two-loop results at hand, we have performed the complete NNLO
corrections to the inclusive cross-section for the case of class-A diagrams. For class-B
diagrams, since the full computation is difficult to attain at present, we compute them
at the SV approximation. To obtain the former contributions, we suitably factorized the
scattering amplitudes and the phase space and used the available single Higgs production
cross-section. The latter one is highly non-trivial, nevertheless, considering the univer-
sal nature of soft and collinear components, we obtain the SV contributions till NNLO.
Further, we analyze these results numerically at LHC energy in order to estimate their
size, which demonstrates that the inclusion of higher-order terms in the perturbative ex-
pansion reduces the dependence of unphysical scales in the problem, thereby making the

predictions more reliable.

Mixed QCD-QED corrections to bb — H at NNLO

The efforts to compute the observables related to Higgs production have been going on for
a while as those are very sensitive to high scale physics. Since the dominant contribution,
which is the gluon fusion channel, is known to unprecedented accuracy, the inclusion of

corrections originating from subdominant channels is essential for any consistent study.
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One such subdominant channel is the Higgs production from bottom quark annihilation.
State-of-the-art for this channel in QCD reached an incredible accuracy of N’LO [4].
These QCD corrections are of the same order as that mixed QCD-EW predictions, de-
spite the smallness of EW coupling in SM. Current or future high-precision experimental
measurements and high-luminosity LHC, thus, demands the inclusion of equally precise

predictions in mixed QCD-EW theory.

In this context, we explore the possibility of including EW corrections to the aforemen-
tioned channel. Since the computation of full EW corrections is more involved, as a first
step, we compute all the QED corrections up to second order in the coupling constant
a,, taking into account the non-factorizable or mixed QCDXQED effects through a;a,
corrections. The computation involves dealing with QED soft and collinear singularities

resulting from photons and massless partons along with the corresponding QCD ones.

Understanding the structure of QED infrared (IR) singularities in the presence of QCD
ones is a challenging task. We have systematically investigated both QCD and QED IR
singularities up to second order in their couplings, taking into account the interference
effects. We demonstrate that the IR singularities from QCD, QED and QCDXQED inter-
actions factorize both at the loop corrections as well as at the cross-section level. Besides,
by computing the real emission processes in the SV limit, we have studied the structure
of the soft distribution function. Using the universal IR structure of the observable, we
have determined the mass anomalous dimension of the bottom quark and hence the renor-
malization constant for the bottom Yukawa. We also discussed the relation between the
results from pure QED and pure QCD as well as between QCD X QED through a set of
rules known as Abelianization. Using complete NNLO results from QCD, QED and QCD
x QED, we performed a systematic study to understand their impact at the LHC energy.
We find the corrections from mixed QCD x QED and QED are mild as expected, however

these higher order corrections improve the reliability of the predictions.



Resummation at threshold and beyond

While the fixed order calculations are successful for many observables, they are reli-
able only if the perturbative behaviour of the series is retained. This criteria fails near
kinematic threshold due to certain logarithmic enhancements which, hence, has to be re-
summed to all orders in coupling constant to obtain a reliable approximation. Needless
to say, inclusion of such higher order QCD effects not only improves the accuracy of pre-
dictions but also reduces the unphysical scale dependence significantly. Moreover, those
terms at the kinematic threshold, namely soft-virtual corrections, are often the dominant
contributions to the inclusive cross sections, thus computing them in the absence of full

NNLO or next to NNLO corrections, is essential in the precision studies.

In this section we focus on the study of SV corrections for inclusive as well as differential
observables associated with the Higgs production. This section mainly comprises of two
parts. At first, we discuss the SV computations at the threshold addressing differential
rapidity distributions. And in the later part, we extend this studies to beyond threshold to

obtain so called next-to-SV corrections.

Rapidity resummation for a generic n-colorless final states

Despite its high importance, the differential rapidity distribution and its radiative correc-
tions are computed only for a limited number of scattering processes, unlike the inclusive
ones. This section concerns the differential cross-section with respect to the rapidity vari-
able, in particular, we address the question of computing the higher order QCD correc-
tions to this observable for any generic process at a hadron collider with all the final state

particles as colorless.

A formalism to incorporate the soft-gluon contribution to the rapidity distribution for the

production of a colorless final state in hadron collider is known in the literature [5]. In

9



this work, we extended that formalism to the case of any number of final state colorless
particles. This formalism is based on QCD factorization, which dictates that the soft part
of the real emission diagrams factorizes from the hard contribution and renormalization

group (RG) invariance.

For the production of an arbitrary number of colorless particles in the hadronic collision,
the soft part remains identical to the case of the Sudakov type process since the real emis-
sion can only occur from the initial state partons. The main deviation from the Sudakov
type formalism arises from the virtual corrections, where the kinematic dependence is
much more involved. The rest of the formalism relies essentially on the collinear fac-
torization, the renormalization group invariance, universal IR structure of the scattering
amplitudes, and the process independence of the soft-collinear distributions. Besides this,
we also use an additional fact that the N”* Mellin moment of the differential distribution
has a relation with its inclusive counterpart in the large N-limit. The mere use of this fact
enables us to get an all order relation between the soft-collinear distribution of inclusive
cross-section and that of rapidity. Hence from the given quantity in the inclusive part,
we can determine it for rapidity, thereby avoiding the explicit computation of the real

emission processes for rapidity distribution.

In this work, we presented a general structure for the SV differential rapidity distribution
up to fourth order in the strong coupling constant and the resummed predictions until the
third leading logarithms in QCD. These results can be expressed in terms of universal
anomalous dimensions along with the process-dependent virtual matrix elements. The
former, which comprises of process independent finite segments of soft-collinear distri-
bution and the mass factorized kernels, remains unaltered irrespective of the number of
colorless particles in the final states. Furthermore, the soft-collinear distributions for the
quark and gluon initiated processes are found to be related to each other through sim-
ple quadratic Casimir scaling, known as the maximally non-Abelian property. This is

explicitly verified up to N*LO. In summary, to obtain the fixed order and resummed pre-
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diction for the differential rapidity distributions of a generic n-colorless final states, one
merely requires the form factor corresponding to the hard process under study provided

the soft-collinear distribution for Sudakov type process is known.

NSYV corrections and Resummation beyond threshold

In this subsection, we focus on the computation of SV+NSV contributions for certain
Sudakov type processes, such as production of a pair of leptons in the Drell-Yan process
and Higgs boson in gluon fusion and in bottom quark annihilation. Since the leading term
at the SV limit, known as threshold corrections, are well established, in this work, our

concern is to study the structure of the next term, which is next to-SV contributions.

While SV contributions dominate, the next to SV contributions are also numerically size-
able, and hence computing them in the absence of complete result at a given order is es-
sential in precision studies. Lot of progress [6—8] has been made in recent times leading
to better understanding of NSV terms. In our work, using IR factorization and renor-
malization group invariance, we show that both SV and next-to-SV contributions satisfy
Sudakov differential equation whose solution provides an all order perturbative result in
strong coupling constant. Like SV, next-to-SV contributions also demonstrate IR structure
in terms of certain IR anomalous dimensions. However, NSV terms depend, in addition,
on certain process dependent functions. In z-space, we show that the next to SV contri-
butions do exponentiate allowing us to predict the corresponding NSV logarithms to all
orders. Further, we observe that the NSV part of the solution is invariant under gauge like
transformations allowing us to construct class of solutions, all giving identical fixed order

predictions for NSV terms of partonic coeflicient functions.

The SV and NSV logarithms in the perturbative results, when convoluted with appropri-
ate parton distribution functions to obtain hadronic cross-section, give huge contributions.

The presence of these large corrections at every order may invalidate the predictions from
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the truncated perturbative series. For the leading SV corrections, resolution to this prob-
lem is found by suitably reorganizing the perturbative series, which is widely known as
threshold resummation [9, 10]. Whereas, for the subleading terms, a canonical resolution
through resummation is unfortunately hard to achieve. In this work, along with under-
standing the role of NSV terms, we attempt to develop a resummation formalism for
inclusive cross-sections, constraining only to the diagonal channels. We derived an inte-
gral representation in the z-space for the partonic coefficient function at the exponent level
which can be used to study these threshold logarithms in Mellin N-space. Unlike the SV
part of the resummed result, the resummation coeflicients for NSV terms are found to be
controlled not only by process independent anomalous dimensions but also by process de-
pendent coefficients. Indeed, these observations might shed light to many future attempts
to understand the nature of NSV logarithms and their phenomenological importance to

inclusive observables.
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Introduction

The richness of diverse phenomena in our universe stems from the physical principles that
act at the level of elementary particles. Interaction of these particles constitutes the atoms
and molecules that define the objects in our everyday world. Search for these particles,
deciphering how they interact and what are their properties are centuries-long. The notion
of elementary particles has progressed through histories, from ‘the ancient five’ to the
concept of electrons, protons and neutrons. In the recent past, the protons and neutrons are
also found divisible in terms of entities called quarks. Today, with our current knowledge,
we sum up the fundamental constituents of nature as the matter particles — composed of
quarks and leptons — and force carrying particles — known as bosons. It is these quarks,
leptons and bosons, when cobbled together, account for all the complexity and beauty of

our visible world at the sub-atomic scale.

The theory that best describes (so far) the behaviour of these elementary particles and
almost all their interactions is called the Standard Model (SM) of particle physics. The
development to its current shape took several decades, driven by the collaborative efforts
of many brilliant minds around the world. Since its formulation, the SM predictions
have been scrutinized and verified through a series of discoveries and experimentation.
Among its significant successes are the observations of W and Z boson in 1983 at CERN,
the discovery of top quark in 1995 at Fermilab and the recent breakthrough discovery of
Higgs boson in 2012 at CERN’s Large Hadron Collider (LHC), which marks the inventory

of last, missing particle of SM.
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The SM relies on the mathematical framework of Quantum Field theory (QFT), in which
particles are described in terms of a dynamical field that pervades space-time. The dynam-
ics of this field are controlled by a Lagrangian constructed from underlying symmetries
of the system. These symmetries are primarily classified as global and local or gauge
symmetries that enforce the physical properties to be invariant under certain transfor-
mations. The global symmetries are associated with properties of the particle and are
inherent to the system as a whole. On the other hand, the local gauge symmetry is an in-
ternal symmetry related to particle interactions. The modern version of SM relies on the
local SU(3)¢c x SU(2)L x U(1)y gauge symmetry: each of them manifestly gives rise to a
fundamental interaction. The SU(3)¢ describes the theory of strong interactions — Quan-
tum Chromodynamics (QCD) — with the conserved color charge. Whereas SU(2). de-
scribes the weak 1sospin interaction acting only between left-handed fermions, and U(1)y
is characterized by electromagnetic interactions. The weak and electromagnetic interac-
tions are partly unified in spontaneously broken electroweak (EW) interactions, described
by SU(2)., x U(1)y. Each of these interactions is mediated by gauge bosons, which are

gluons for strong force and photons, W- and Z- bosons for EW interactions.

Three different families of elementary particles characterize the modern SM. The first
family are consists of matter particles — quarks and leptons of 6 each and comes with
half-spin — called fermions and are arising from the quantization of fermion fields. The
fermions appear in three generations, which are identical in every attributes except in their
masses. The first generation is responsible for all the stable matter in the universe, while
the second and third are less stable heavier particles. The second family of elementary
particles are the gauge bosons — quanta of bosonic fields — which are carriers of strong
and electroweak interactions. In addition to these gauge bosons, there is a third boson,
known as Higgs boson, arising from the excitations of Higgs field, which represent the
third family and the only known single scalar particle of SM. The Higgs field is brought
into the SM to explain the spontaneous breaking of electroweak symmetry. Unlike the

predictions from the gauge symmetries, which enforce the particles to be massless, the
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W- and Z- bosons are found to be massive in reality. This discrepancy is explained
through Brout-Englert-Higgs-Kibble mechanism [11-15] which implements spontaneous
breaking of electroweak symmetry to yield mass for these SM particles. This mechanism,
however, additionally predicts the existence of the Higgs field — as what we call it today.
Although originally conceived to explain the origin of W and Z boson masses, the BEH
mechanism later extended to account for the mass of any sub-atomic particles. Particles
that interact with the Higgs field acquire masses, and the strength of its coupling with
Higgs determines how massive the particle is. Those particles which do not interact with
the Higgs field — photons, gluons and possibly neutrinos — remains massless. Built on
spontaneously broken electroweak theory with the unbroken strong interaction and incor-
porating the Higgs mechanism, the SM completely account for the physical realities at

the sub-atomic level.

All those achievements obtain for the SM, however, do not stop the need for further
exploration. Despite its spectacular success, the SM in its current shape leaves many
observed phenomena unexplained. Presently the theory incorporates three out of funda-
mental forces, while the fourth force and the familiar one in our everyday lives, gravity,
as described by the general theory of relativity, is not part of the SM yet. Further, the
model fails to explain the existence of neutrino masses and their hierarchy and the origin
of matter-antimatter asymmetry in the universe. Also, it does not include a suitable can-
didate to explain the nature of dark matter and the dark energy content of the universe.
These mysteries motivate us to keep searching for physics beyond the standard model
(BSM) hidden in the dark recesses of the universe. However, neither any experimental
hints exist for the origin of these phenomena yet, nor we have any precise energy scale
or coupling strength for new physics to explain them. In parallel, many questions remain
unanswered about the origin of the Higgs boson: whether it is an elementary particle or a
composite state of confined particles, how does its mass generate, or what is the mecha-

nism behind its self-interactions.
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To address these questions requires precision measurements of Higgs boson properties
and EW interactions above the weak scale, for which the exclusive tools are the high
energy colliders. In the last fifty years, we have received an enormous wealth of in-
formation from experiments at particle colliders. From CERN’s Large Hadron Collider
(LHC), which is the largest among all the colliders till today, around fifteen million bil-
lion proton-proton collisions are already taken place in a decade. The experiments at LHC
via Run-I and Run II phase hint that the new physics effects probably do not appear as
clear resonance signals but as tiny systematic deviations from the SM predictions. Hence,
the searches for the new physics essentially depend on our ability to obtain high-precision
theoretical predictions within the Standard Model combined with the high calibrated mea-

surements at the colliders.

At the experimental end, this undertaking is facilitated by continuously upgrading the
detectors with improved collision energy and luminosity. Through LHC histories, the
collision energy has improved from 7 to 13 TeV, which possibly will increase to 14 TeV
in the next run. The upcoming High-Luminosity LHC will further enhance the preci-
sion, allowing for per cent-level estimations, hence providing better chances to track rare
phenomena and improve the statistically marginal measurements. This scenario calls for
immense efforts from the theory side to produce (at least) the same level of precision as
data for a reliable comparison between them both, which is crucial for several essential

physics goals of the LHC program.

In improving theoretical precision, higher order QCD and EW corrections play an essen-
tial role. Over the past few decades, several attempts have been made to incorporate these
higher order radiative corrections into the observables at colliders. Often observables are
expressed in terms of cross sections, mainly by either differential cross sections in one or
more variables or by integrating over the fiducial region of the detector surrounding the
particle collision site. A well-employed technique to perform the cross section in SM or

BSM is based on perturbation theory; under this prescription, an observable is expanded
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in powers of coupling constants present in the underlying Lagrangian. For QCD, the cor-
responding expansion parameter is the strong coupling constant a,, whose series plays
a dominant role for a large variety of processes at the typical LHC energy scales. For a

given process, perturbative QCD (pQCD) corrections take the form:

0)

oc=0?+a,0" +a,0? +--- (1.1)

Here, the first term is leading order (LO) or Born cross section, the second is called
next-to-LO (NLO) corrections to Born cross section and so on so forth. Each new term
in the expansion (1.1) put forth new QCD interactions in the form of closed loops or
radiations of partons both suppressed by factors of @,. Despite this suppression, these
higher order radiative corrections are crucial for achieving the required precision as that

of experiments.

Achieving a full QCD correction to any order is not easy, and with increasing perturbative
order, the complexity rises substantially. The non-Abelian nature of the theory and rela-
tively large coupling entails the inclusion of a plethora of sub-processes in higher orders,
making the task non-trivial. Nevertheless, tremendous efforts in these directions in the
past few decades lead to remarkable achievements. Now we have advanced techniques
for automating NLO computations, and we are in (almost) good shape with next-to-NLO

(NNLO).

However, with the increase in loops and legs, the complexity proliferates, making the ex-
act computation highly challenging. Considering N°LO, the exact computation is avail-
able only for the simplest (2 — 1) processes [4, 16, 17]. In this scenario, in the absence
of exact fixed order results, one could attempt different methods to capture the domi-
nant contributions to a physical observable by evaluating the quantity in certain limits.
In general, the perturbative corrections get contributions from hard, soft and virtual parts
corresponding to those arising from energetic, soft and virtual gluons, respectively. For

a heavy invariant mass production at the hadron colliders, such as the Higgs or Z-boson
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productions, the dominant contributions originate from the soft regions. Hence, these
corrections are numerically significant at LHC. Besides, (almost) zero momenta of real
emissions at soft region lead to their all order exponentiation. Hence, capturing these
corrections are crucial for theoretical understanding as well. These contributions cob-
bled with the pure-virtual corrections, in general, known as soft-virtual (SV) or threshold
corrections. The term threshold is because these corrections are the ones contributing
at the extreme production threshold. It is also known as soft due to the soft emissions
in this kinematical region. These corrections play a crucial role in the absence of exact

predictions at a certain order in the coupling constant.

The core part of this thesis deals with computing higher order QCD and QED corrections
for the processes involving Higgs boson in the final states and the Drell-Yan (DY) process

by employing the perturbative theory within the SM. The thesis comprises three parts:

1. The fixed order approach — we compute the complete behaviour of inclusive observ-

ables at a fixed order in the coupling constant present in the underlying Lagrangian.

2. The threshold approximation — by addressing the QCD correction that appears at
the extreme production threshold, we study the general infrared (IR) and ultraviolet
(UV) structure of scattering cross sections, considering a differential observable.
Following these studies, we able to develop a framework for resumming the leading

power (LP) large logarithms at the production threshold.

3. The next-to-threshold or next-to-SV (NSV) approximation — In the last chapter, we
extend the study at threshold approximation by including sub-leading corrections
that arise from the next to leading large logarithms, also known as next to LP (NLP)
logarithms. By studying their UV and IR structure, we propose a framework for

resumming these NLP logarithms.
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Outline

The thesis comprises a selection of published works and preprints that provides a com-
prehensive picture of higher order computations of physical observables at LHC. A con-

densed outline of the thesis is as follows.

In chapter 2, we start with a brief overview of the basic principles of QCD and a discussion
on methods to compute higher order corrections in perturbative QCD. We also review a
framework to compute threshold corrections in great detail, which will play a notable role

in our later results.

In chapter 3, we discuss the NNLO computation of di-Higgs productions in the bottom
quark annihilation channel. This production channel is a valuable avenue to investigate
the trilinear coupling and Higgs potential, which is one of the significant challenges in the
next phase of LHC. At NNLO, two classes of diagrams contribute — vertex type diagrams
and t- and u- channel ones. For the computations, we use in-house routines based on
FORM and Mathematica packages. Since the complete result of #- and u- channels are
challenging (at present), we compute them at the SV approximation. Numerical analysis

at LHC energy illustrates the reliability of our predictions.

The state-of-the-art QCD corrections have reached such accuracy that requisites the in-
clusion of precise predictions of mixed QCD-EW theory. This possibility is explored
in chapter 4 for the bottom quark induced Higgs boson productions. Since the compu-
tation of complete EW corrections is more involved, as a first step, we compute all the
QED corrections up to second order in the coupling constant «,, taking into account the
non-factorizable or mixed QCD-QED effects through o, corrections. The computation
involves dealing with QED soft and collinear singularities resulting from photons and
massless partons, in addition to the QCD ones. We systematically investigate the struc-
ture of QCD and QED IR singularities up to second order in their couplings, taking into

account the interference effects. In the process, we obtain the mass anomalous dimension
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and renormalization constant of Yukawa coupling as a bonus point. We also discuss a set

of rules which connects the QCD, QED and mixed QCD-QED results.

In chapter 5, we discuss the threshold corrections for a differential rapidity observable
associated with the Higgs production. In particular, we address the higher order QCD
corrections to this observable for generic n-colorless final states. The formalism is based
upon the collinear factorization of differential scattering and RG invariance. The soft part
remains similar to Sudakov-type processes, while for the virtual corrections, the kinematic
dependence is much more involved. In addition to the threshold rapidity corrections, we

discuss a framework to resum the threshold logarithms in rapidity variables.

In the last chapter 6, our concern is to extend the threshold framework to include the next-
to-threshold or next-to-SV corrections, which attracted considerable attention in recent
time. While SV singular structure dominates, the next-to-SV ones are also large and pro-
duce numerically sizeable corrections. Hence computing them in the absence of complete
result at a given order is essential in precision studies. In this context, we propose a frame-
work with the logic of IR factorization and RG invariance. We show that similar to SV the
next-to-SV logarithms also exhibit an all order perturbative structure. This idea enables
us to propose a formalism to resum certain next-to-leading power logarithms, which is

the first of the kind in literature beyond leading logs.
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Review of perturbative QCD

To start with, let us review some basics of QCD. It is to be noted that this chapter is by no
means intended for a complete review, rather a short introduction to fix the conventions

and notations. For more details, the reader is referred to [15-21] and the standard texts.

2.1 Basics of QCD

Quantum Chromodynamics — or QCD - is the theory of quarks, gluons and their inter-
actions. This field theory is a non-Abelian gauge theory based on the SU(3) gauge sym-
metry. It has a similar structure as QED — electromagnetic interaction— but with a subtle
difference that the gauge boson — gluon — carries color charge. Hence in addition to the
interaction with quarks, gluons interact among themselves too. Consequent to this fact
comes the aspects of asymptotic freedom, which defines the success of QCD to describe
the strong interaction. The critical implication of asymptotic freedom is that it explains
the point-like behaviour of quark at short distances and offer a mechanism for the strong

confining force at large distances. The short distance physics is the realm of perturbative

QCD.

In the following, we briefly outline the QCD Lagrangian, followed by the aspects of
asymptotic freedom and the running coupling constant. We also discuss parton model and
how it modifies when the QCD radiative corrections are applied. In subsequent sections,

we briefly address fixed order computation techniques and the threshold framework.
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2.1.1 QCD Lagrangian

The perturbative analysis of any process in QFT requires the use of Feynman rules de-
scribing the interactions in theory, which can be derived from the underlying Lagrangian
density. For an SU(N.) gauge group encapsulating the interaction of fermions with the

non-Abelian gauge bosons, the Lagrangian density is given by:
L = Lclassical + Lgauge—fixing + Lghost (21)

The classical Lagrangian takes the form:
! a a,uy N —f .
Lclassical = _Zgﬂvg ot Z wa,i (l'}/;ﬁﬂﬂ’,‘j - mféaﬁd,-j) W[/;,j (22)
7=

These terms represent the interaction of spin-1/2 quarks with mass m and massless spin-1
gluons. The gamma matrices satisfy the anti-commutation relation: {y*,y”"} = 2g*”. The

field strength Gy, is derived from the gluon field Gy,
Gi, = Gy = 9'Gy + 8,/ GG}, (2.3)

and dff; ; 1s the fermionic quark field. The third non-Abelian term in Eq.(2.3) distinguishes
QCD from QED, giving rise to triplet and quartic gluon self-interactions and ultimately to
the property of asymptotic freedom. The coupling constant g, determines the strength of
interaction between quarks and gluons, and f is the structure constants of the SU(N,)

group. The indices in Eq.(2.2) dictates :

a,b,---: colorindices in the adjoint representation = [1, - - - ,NC2 -1],

i, j,---: color indices in the fundamental representation = [1,--- ,N.],
a,f,---: Dirac spinor indices = [1,--- ,d],

u,v,---:  Lorentz indices = [1,--- ,d]. 2.4)
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where d is the space-time dimensions. The covariant derivative Z)fj acting on the adjoint

and fundamental representations takes the form

Dﬂ,ab = 5aba/1 - gsfabc GZ

Dyij = 6ij0u — 18(T);; G, (2.5)

respectively. The T are the generators of the fundamental representation of SU(N,),

which are related to the structure function through
[T“, Tb] Y (2.6)

A representation for 7¢ is provided by the Gell-Mann matrices, which are traceless and

Hermitian and are normalized with
tr T°T% = Tp6® with Tp = 1/2. (2.7)
They also satisfy the completeness relation given by:

1
Z TéTkl = ( Ok — ﬁcs,-l,-ak,) (2.8)

With the above choices, the color matrices obey the following relations, which are often

useful in simplifying the color algebra :

Z (TaTa)ij = Crdj

fabc'fabd — CAécd (29)

where Cp = = N, are the quadratic Casimirs of the SU(N,) group in the

2N
fundamental and adjoint representation respectively. For QCD, the SU(N.) group index

N, = 3 and quark flavor ny = 6.
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The second term in the Lagrangian in Eq.(2.1) is the gauge fixing term, which is required
to perform the perturbation theory consistently. This term originates because, while quan-
tizing, the gluon propagator cannot take an unambiguous form without choosing a gauge.
The reason behind this is the presence of gauge degrees of freedom inherent in the classi-

cal Lagrangian. The choice of gauge is:

1 a
L=-5 (a2) (2.10)

which fixes the gauge in a covariant way with an arbitrary gauge parameter &. A typical
choice of setting ¢ = 1 in Eq.(2.10) gives Feynman gauge. In this thesis, we use the
Feynman gauge throughout unless we specify otherwise. However, we emphasize that
the choice f gauge do not alter the physical results. The immediate consequence of gauge
fixing in QCD is that it generates new particles called Faddeev-Popov ghosts — spin-0

particles but having Fermi statistics. The Lagrangian for the ghost field is given by
Lghost = (au)(a*) D,u,ah Xb (2.11)

where D, 1s defined in Eq.(2.5). The ghost field xy“ cancel the unphysical degrees of
freedom, which would otherwise propagate in covariant gauges. These particles never
appear as external physical states but in closed loops interacting with gluons. Now we
have the full Lagrangian as given in Eq.(2.1), which can be used to derive all the Feynman

rules. See Appendix-A for the complete list of QCD Feynman rules.

There are essentially two first principle approaches to solving the QCD Lagrangian —
lattice QCD and perturbative QCD.'. The complete approach is lattice QCD, where one
discretizes the space-time and consider the values of quark and gluon fields at all the edges

of the resulting 4-dimensional lattice. The method has been successfully used in a range

IThere are, in addition, effective field theory methods where one can solve the specific limits of QCD
with certain inputs taken from lattice or perturbative QCD. Also, there are yet another set of techniques
that makes use of AdS/CFT correspondence to relate the QCD-like models at the strong coupling to weakly
coupled gravitational models
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of contexts such as CKM matrix; however, it is implausible to use them for computations

of LHC scattering processes with the current knowledge along this direction.

The method that is widely used for collider physics is the perturbative QCD approach,
which is based on an order-by-order expansion in the strong coupling constant o, = % <

1. For a given observable o, the expansion looks :
o =0+ a0 +a/§0'2+~~- , (2.12)

where computing lower-order terms of the series are sufficient, with an understanding
that the rest are negligibly small. The coefficients o; is computed using Feynman dia-

grammatic techniques. In this thesis, we deal with the perturbative applications of QCD.

2.1.2 Asymptotic freedom and running coupling

As mentioned earlier, QCD exhibit asymptotic freedom and confinement. Due to the
confinement, the quarks and gluons are strongly interacting at low energy, while at high
energy, they are asymptotically free and do not interact. Hence, the coupling constant
decreases for high energies, enabling the perturbative expansion around the free field
theory. The expansion parameter for QCD is the strong coupling constant,a, and the
series takes the form given in Eq.(2.12). For computations, the standard methodology is
to use the Feynman diagrams that contribute to every order in the coupling constant. This
comprises loop and phase space integrals at higher orders, which involves divergences
beyond the leading order terms. The origin of these divergences can be traced from mainly
two categories. The first one is when the loop momenta approach infinity — so-called
ultraviolet (UV) divergences — and the other category arises when the emissions in the
scattering process go soft or collinear to external partons — commonly called infrared (IR)
divergences. In this section, we focus on UV divergences. Both of these divergences

can be regularized using dimensional regularization [22], in which the dimensionality of
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space-time is analytically continued from 4 to d = 4 + €. Hence divergences will show up

poles in €.

The UV divergences can be removed by performing a suitable redefinition of the coupling
constants and fields — the process is known as renormalization. This redefinition involves
absorbing the UV divergences into a few parameters — known as renormalization constant
—, and each consists of introducing some scale parameter that is not intrinsic to the theory
but tells how we did the renormalization. The new scale is called the renormalization
scale. It is to be noted that this scale is an unphysical one, and our physics is independent
of them. We denote the unrenormalized or bare physical quantity with a hat on the nota-
tion and the renormalized ones without the hat. Renormalization of a given bare quantity

F can be represented in general as:

F = Zp(ug) F(ug) - (2.13)

Here the Zr is the renormalization constant which absorbs all the UV divergences of F,
and the quantity F is UV finite’. For the renormalization procedure, we use minimal

subtraction (MS) scheme.

Running of QCD coupling

As we have seen, the theory must be renormalized, however, the physics is invariant to the

renormalization scale. Running coupling is a consequence of this renormalization group

— G

invariance. The fact that the physical quantity a, =

is independent of g leading to the

renormalization group (RG) equation :

“12?% =Bad).  Blawd) =) B d ) (2.14)
IUR n=0

2 The dependence on the ug-scale comes only through the presence of g
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where the available S;’s [23—-30] are

11 2
Bo = ?CA - gnf s
34 10
B1==Ci=2n;Cr — —=nsCa,
3 3
2857 1415 79 11 205
ﬂz = 34 i— 34 Cil’lf 54CAnf 9 Cpnf 18 CFCAI’lf +CFflf,
17152 448 4204 352
3 = ( 43 + T{:;) CACFTI% ( 7 + T{g,) CACFTFI’lf
424 7073 656 7930 224
o CaTe ( 243 4*) CiCrTrns + ( 81 53) CiTiny
1232 39143 136 150653 44
—CiTind +[-—— CiT - ch
T 243 FF”f+( 81 éV’) e ( 486 9§)
1352 704 512 1664 N.(N? + 6)
( 77 §3)CFT2 §+46C TFI’lf +( 9 — 3 3)I’lf 43
704 .\ 512\ ,(N*-6N?+18) .\ 80 .\ 704\ N2(N? + 36) 2.15)
9 T3 ST oen2 9 " 3% 2 '

where n; being the number of light quark flavors and T = 1/2. Using only £, and

ignoring the fact that the n; depends on ug we get a simple solution

a,(uy) 1
1+ foas(43) In % " poln

as(ug) = , (2.16)
where u 1s a reference scale. In the second solution, we chose non-perturbative constant A
as the reference scale. The negative sign in Eq.(2.14) is the origin of asymptotic freedom,
which is, in fact, the consequence of the color charge of gluons. As far as the nf <
11C4/2 = 33/2, the negative sign retains and consequently, the coupling becomes weaker
with increasing scales. This essentially leads to a free theory with no interaction between
quarks and gluons at high energy or short distances. Conversely, the perturbative coupling
grows at low energies or long distance, causing the quarks and gluons to be tightly bound
into hadrons. With the large coupling, the perturbative expansion gets unreliable. The
scale at which it fails is known in the name of A or Agcp, which is typically the order of

some hundreds MeV, beyond which the realm of non-perturbative physics arises.
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Quark masses

Let us conclude this section with a brief discussion on quark masses. The quark masses

behave similarly to the gauge coupling itself. Running quark masses can be defined as

MR d/l
m(uz) = mig) exp (— f — +ym<asu>>]) (2.17)

Ho

Here y,,(a,) is a perturbative quantity, similar to the Sa;). As ug increases, g(ug) de-
creases and hence m(ug) vanishes. Consequently, the perturbative theory becomes, effec-
tively, a massless theory. From the QCD phenomenology, the light quarks — up, down,
strange — can be taken effectively as massless theory, but for the case of heavy quarks —

charm, bottom, top — the running mass should be taken into account.

2.1.3 Parton model and Collinear factorization theorem

By itself, asymptotic freedom is a striking result and beautifully explains the behavior of
quark-gluon interactions. However, in nature, isolated quarks or gluons do not exist. Not
the partons, but protons involves in high energy colliders, but whose interactions cannot
be described by perturbative QCD (pQCD) methods. For studying these processes, in
general, we adopt Parton model, which describe how a hadron interacts via its constituent

partons.

The original parton model was proposed by Feynman, which relies on the basic assump-
tion that the hadron interactions are due to the interaction of its constituents. Hence, the
structure of the hadron may be described by an instantaneous distribution of partons. This
model is proposed in infinite momentum frame, where each parton is assumed to carry a
fraction of proton momentum, P. That is to say, the i parton gets the momenta p; = x;P
following a distribution ﬁ(xi), where x; is the fraction defined as 0 < x; < 1. The f;(xi)

is generally called the parton distribution functions or in short pdf’s. From this, the mo-
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mentum sum rules are expected as:

1
d f(x) = 1 2.18
fo xef(x) (2.18)

which is a consequence of the momentum conservation. Also, the proton flavor conserva-

tion says:

1 1
fo dx (fu(x) - fu0) = 2, fo dx (fu(x) - fax)) = 1 (2.19)

Based upon these assumptions, the hadronic cross section, o, for a high energy process

can be expressed in terms of the cross section for partons & as:
1 A A
Onyiy(Prs P2) = Zf dxidx; fa(x1) fo(x2) Gap(x1P1, x2P2) . (2.20)
ap V0

Here, the partonic cross section is a perturbative quantity, while the pdf’s f(x) are non-

perturbative objects.

The above picture is a naive parton model description, which will not survive when QCD
corrections are included. Accommodating radiative corrections modify the model to the
so-called improved parton model, where the pdf’s and the partonic cross section acquire
a new energy scale dependence. To understand this, let us briefly look into the details of

radiative corrections and the divergence structures.

Radiative corrections and factorization

In pQCD, the partonic cross section is expanded in terms of a;:

Gij= ) a6l (2.21)

The coefficients oA'g.) are calculated using Feynman diagrammatic approach. In general,

these coefficients gets contributions from loop diagrams and real emissions for [ > 1,
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which give rise to UV and IR divergences. We have already discussed the origin of UV

divergences and how to remove them using UV renormalization.

On the other hand, the IR divergences appear due to soft gluons and massless collinear
partons in the loops. They respectively give rise to soft and collinear divergences. In
the physical observables, the soft and the collinear divergences coming from virtual dia-
grams cancel against those resulting from the phase space integrals of the real emission
processes. Due to the Kinoshita-Lee-Nauenberg (KLN) theorem [31, 32], the cancella-
tion takes place order by order in perturbation theory. While the soft divergences cancel
entirely, the collinear divergences resulting from initial massless states do not cancel at
the sub-process level and must be treated separately, which is done using the technique
called mass factorization. The logic is similar to the renormalization technique: to factor
out these initial state collinear divergences in a process independent way and absorb them
into the bare parton distribution functions. As in renormalization, this will introduce a
new energy scale dependence called factorization scale up. The resulting finite pdf is a

measurable quantity. Schematically, we can express the redefined partonic cross section:
Gap(x1 Py, X2P2) = Z Ih(up) Aea(x1 Py, x2Pa, ) Tan(u) - (2.22)
c,d

The 4,,(14%) is a finite quantity, called partonic coefficient function and the collinear sin-
gularities are encapsulated in I'(u7.), namely mass factorization kernels or Altarelli-Parisi

(AP) [33] kernels. Absorbing them into bare pdf’s gives the finite pdf:
fini) = 3 By ). (2.23)
J

The resulting finite pdf is a measurable quantity and are universal, which means that it

does not depend on the process under study.

Accommodating the radiative corrections and thereby factorization scale dependence in

the (naive) parton model modify them to the so-called improved parton model. We sum-
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marize the details of the improved parton model below.

Improved parton model

For a process:
h(Py) + hay(Py) = F({g;}) + X (2.24)

where two hadrons 4; with momenta P;, i = 1,2 collide and produces the heavy final state
F, the cross section takes the general form in the improved parton model in terms of finite

quantities:

A
Oy, (P1, Pa) = Z fdxldxz FaCxt ) S, ) Aap(x1 Py, X2 Py, i) + O(é) . (2.25)
ab

The X denotes any final inclusive hadrons. In the following we summarize the recipe of

improved parton model

e The incoming hadronic beam is equivalent to the incoherent sum of its constituent
beams, with its longitudinal momentum distribution defined by the parton distribu-

tion functions.

e The short distance partonic cross section is a perturbative quantity:

(9

Aap(x1 Py, X2 Pa, pi) = Z a(uz) A0 (x\ Py, x2Po, 11, 1%) (2.26)
7

while the long distance pdf’s belongs to non-perturbative regime. However, the
pdf’s are universal, by which we mean that they do not depends on the process of

study.

e The evolution of the pdf’s with the scale ur can be expressed in terms of Dokshitzer-
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Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation
0 ' dz X
i)=Y, [ Ery(aiing) 5(2ai) 2.27)
Here, the P;; are called splitting functions.

Together they are called the collinear factorization theorem. The factorization scale ug is
an arbitrary scale whose dependence is compensated between the short and long distances.
Note that we have now two unphysical energy scales in the problem — renormalization
scale, ug, at which a; is evaluated, and the factorization scale, uz, at which the collinear
singularities factorize. Both these scales should have the same order, and it has to be
chosen of the order of energy scale of the hard process to avoid large logarithms in the

perturbative expansion.

Our goal is to improve the accuracy of short distance partonic cross sections by com-
puting higher order radiative corrections, which is the topic of concern in this thesis. In
the next section, we briefly discuss different approaches for performing the higher order

corrections.

2.2 Fixed order computations in QCD

The primary approach to compute the higher order QCD effects is the fixed order expan-
sion. This amounts to expanding the desired observable in powers of the strong coupling
constant and then retaining only the first few orders. Being substantially small, each next
term in the expansion gives minor corrections to the previous one and hence, at least from
the naive comparison, the higher order corrections can be disregarded. In that case, the
result with the first few orders can be an excellent approximation to the complete result;
we call them fixed order approximation. Given that the perturbative expansion is well be-

haved, the fixed order approximation gets closer to the actual value by adding more terms
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in the expansion.

Retaining the perturbative expansion of bare partonic cross section to n'-order gives:

n

GFap(01 P, x2P) = ) d (k) 600 Py, xaPo, i) + O™ (2.28)
l

Since a, < 1, the contributions comes from O(a™*") expected to be small and can be dis-
carded, provided that they are not large enough to surpass the suppression from a"*!. The
first non-zero term in this expansion is called leading order (LO) or Born approximation,
and the consequent terms refer to next to LO (NLO), next to NLO (NNLO) corrections
and so on. In general, if the expansion is retained to k™ order, we call them N¥LO order

corrections to the Born.

The leading order term in a perturbative expansion may vary from process to process. For
instance, for the case gluon induced Higgs production cross section, the first non zero
terms come at a> order while for the case of Higgs production from bottom quark anni-
hilation, the leading term constitutes to O(a’) term. Hence the most general perturbative

expansion reads:
Fa(XiP1, X2 Py) = al(uh) ) () 600 Py, x2Pa, i) + O ) (2.29)

=0

where the A is decided by the LO process. Beyond the LO, the contribution appears from
virtual corrections and/or from real radiation corrections. These contributions give rise to
loop as well as multi-particle phase space integrals. Looking into more details, consider

a partonic sub-process:
a(py) +b(pa) > F(g) + > ri(k;). (2.30)
=1

where the collision of partons a and b produce the final state F along with m partons
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through real radiation. The partonic cross section for this process has a general structure:

. Fab

Tab = 5%

\j"dPSIanvuquP. (2.31)

Here the M, is constructed from the Feynman diagrams contributing toa + b — F
order by order in perturbation theory. The ¥, refers to the numerical constant coming
from the symmetry factor and/or color and spin averaging. The dPS ,,, represents the

(1 + m)-particle phase space measure defined by

fﬂﬁmsz@“1M®W%%Wmﬂww—Zh) (2.32)

=1 j=1

o |2
Mab—)F

At LO, the contribution arises only from the born matrix square, , and from one
particle phase space. Whereas at NLO, corrections appear from emission of an additional

parton (6‘517) as well as from one-loop contributions (&Xb). This gives rise to :

1
o) = 5 | 4P oY+ f dPS, 6% . (2.33)
s
with
A 0),f 1 A 0 2
G = 2Re(MGT M) . 6l = MG (2.34)
At NNLO, the contributions are more involved:
1
Gup = 55 | dPS1 G5 + f dPS, 68 + f dPSs 6%F. (2.35)
where:
. oA _ (0) 2
e double real (RR) corrections: 6% = |Mab_) o

: : .oA _ 0).F (1
e real virtual (RV) corrections: 6%/ =2 Re (Mab_) oM e +1)

. N 2
e double virtual (VV) corrections: 6% = 2 Re (Mfg)’_t MO F) + M)
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We present the details of these computations in the subsequent chapters. As mentioned
earlier, these corrections show up divergences in UV and IR end, which is resolved by us-
ing renormalization and mass-factorization techniques and hence obtain a finite partonic
coeflicient function. In the concluding note, we emphasize that, for the fixed order pertur-

bative theory to be applicable, the contributions at any order should satisfy 6'22 < 6'3;1).

If the contributions are such that 6'32 ~ 0“22_1), then truncating that perturbative expansion

will give rise to unreliable theoretical predictions.

2.3 Effects of threshold corrections and Resummation

The fixed order predictions have limitation in their applicability due to several enhanced
logarithms, which are originating from mainly three categories: UV origin, Collinear
origin and Soft origin . As discussed in previous sections, the logarithms of UV origin
can be absorbed into the running coupling constant and collinear origin into the parton
distribution functions. While, for the soft regions, the large logarithms occurs due to
soft-gluon emissions. Despite the cancellation of divergences of these soft emissions
with those of virtual gluons, the soft gluons effects can still be significant in kinematic
configurations where high unbalance between real and virtual contributions persists. In
such cases, the fixed order convergence is questionable. An alternative approach to treat
these regions is by reorganizing the perturbative expansion by an all-order summation of

a class of large logarithms; the technique is known in the name of resummation.

In addition to the dominance at the partonic level, for certain observable, the pdfs also
get large at soft regions, hence improving their role at the hadronic level. These cor-
rections are, in general, known as soft corrections. Supplemented them with the virtual
contributions account for the soft-virtual or threshold corrections. This section briefly re-
views a formalism to capture the threshold corrections for the inclusive process and their

resummation framework.
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2.3.1 Threshold framework

The emission of soft gluons defines the threshold limit, where the final colorless state
carries almost all the incoming center of mass energy. Denoting the final state invariant
mass as ¢g> and § = (p; + p,)* as the center of mass energy of incoming partons, the

threshold limit can be defined in terms of the dimensionless partonic scaling variable:

2
z % 1. (2.36)

Recall from the factorization theorem that the finite partonic coefficient function can be

related to the bare partonic cross section and mass factorization kernels I” as:

Acd(za QZ» /-12 ) -1 é’ab(Z, qza 6) -

% = Z (FLTa(Z’ /’l%, 6)) ® f ® del (Z’ﬂ%’ 6) (237)
a,b

In the threshold limit, this finite partonic coefficient function decomposes into :
i@ @ iy) = A 6 pp) + A5 ¢y (2.38)

where the 45Y(z, ¢*, u) contain only distributions of the form:

{6(1 -2),Di(z) = [M—_Z)] } (2.39)

1-z2

while the 47%"(z, ¢*, u3.) constitutes to all the regular terms in z, which include logarithms
of the form In'(1 — z) and polynomial of (1 — z). Note that logarithms In‘(1 — 7) also give
rise to divergences, however they are suppressed to the threshold ones. The corresponding
contributions are often called next-to-soft or next-to-threshold corrections, which will be

discussed in detail in subsequent sections.

We focus on SV contributions, which arise only from 4,; for DY, 4,; for Higgs boson

production in bottom quark annihilation and 4,, for Higgs boson production in gluon
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fusion. For convenience, we denote these coefficient functions collectively by 4; with
I = g, b, g respectively refers to DY, bb — H and gg — H production processes. In this
context, it is sufficient to keep only those components of mass factorization kernels and
of &, that upon convolution gives 6(1 — z) and D;(z) terms in (2.37). These contribu-
tions only come from diagonal terms/channels. For instance, in the case of DY, the mass
factorized result 4,; either have convolutions involving only diagonal terms/channels, like
043 ®1 4, ® 135 or those containing one diagonal and a pair of non-diagonal ones/channels,
for example 6, ® I'y, ® I'y,. The former gives SV terms upon convolutions, while the
latter contributes only beyond SV terms. Hence the mass factorized result will be in
terms of only diagonal terms/channels, and the sum over different partonic channels can
be dropped. The diagonal terms are denoted with index / where I = g, b, g respectively

refers (04, I '4q)s (Tpp, I'hp), and (044, I'g,). This gives rise to:

Az, ¢, 17
Z

53(z, 4%, €)

-1
= (M@up.e) ® &I (2,12, €) (2.40)

The superscript sv indicates that we keep only those terms which gives 6(1 — z) and D;

after the aforementioned convolutions.

In constructing threshold enhanced cross section, we start with the decomposition of the
cross section in terms of pure virtual contributions # and soft-collinear distribution func-

tion § in the following way:
2
5@ = ) (Z0R) PP sl - S adhe. (24D

where o® is the born factor. The quantity In S’ is obtained after factoring out the pure
virtual contributions from the total inclusive cross section and thus it embeds all the
contributions coming from real-virtual and real emission processes only. Consequently,

when combined with Eq.(2.40) we get an all-order decomposition formula for the mass-
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factorized partonic threshold cross section as,

A @) = o84 (Z'w) 1 (@Po(1 - ) © I S G, ¢ )

-1
& (I @y 0) Iy (2} e). (2.42)

Here, the symbol ® denotes the Mellin convolution which is defined for functions f;(x;),i =

1,2,---,nas,:

n

fiehe - ef@=]] ( f dxifi(xi)) 5@ - xxy e x,). (243)

i=1

In consequence to the above decomposition formula, the 43" can be expressed in terms of
certain building blocks: form factor ¥/, soft collinear distribution S, and mass factor-
ization Splitting kernels I';. The governing differential equation corresponding to each of
these building blocks paves the way to get an all-order structure for 435", which we will
unravel subsequently. Each of these building blocks has a perturbative expansion in pow-
ers of the bare strong coupling constant, which is related to the renormalized one through
renormalization constant Z,_:
5

a8, = (—2) Za () a5 (1) » (2.44)

R

where S = exp [(yg — Indn)e/2)] with yg being the Euler Mascheroni constant. The scale
Uo 1s an arbitrary mass scale introduced to make g, dimensionless in d-dimensions. From

RG equation, we get

2 4 1
Za () = 1+ as(ui) [;:30 + a3 (up) [;ﬁ% +=h

8 14 2
3,2 3
+ a;(ug) [gﬁo + @ﬁoﬁl + zﬁz

16 46 1(3 10 1
+ ay(up) [gﬁé + gﬁ?ﬁl t 3 (Eﬁ% + ?,30,32) + 2—6,83} : (2.45)

In the subsequent sections, we discuss the building blocks in detail.
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Form factor

The virtual contribution is captured through the form factor, which is defined by the born

factorized square matrix element as
00 134 00 k5 (OIFYI0)

A Q2 : k Ak ok Q2 : <M1 |MI >
Fl= ) ats: (— Fro= Y ast|S5| ——, (2.46)

Z Z ( Mgo)l M§0)>
where 0? = —¢? and M is the k-th order unrenormalized matrix element of the underly-
ing partonic process a(py) + a(p,) — F(q). Form factor for the DY process is the matrix
element of vector current quytpq between on-shell quark states, while for the Higgs bo-

son production in gluon fusion (bottom quark annihilation), it is the matrix element of

G, G"™ (¥, 0, between on-shell gluon (bottom quark) states.

In dimensional regularization, the form factor satisfies the following first-order differential

equation [34-38]:

d 1 Hy Q> u
2 I 2 2 0y — 1, Hr 1|4 R
Q d_Qzln/(?(aSaQ s 1 96)_ §|:K (aS9 l.7,6)+G (asa E’,L?’E . (247)
which follows from the IR factorization, gauge and RG invariances. Here, all the singu-
larities are captured in Q*-independent function K, whereas G collects the remaining
terms which are finite as € — 0. Further, the RG invariance of ¥/ leads to

2 2 2
2Lk (a Hr e) L (a O Hi e) = Alla,d)  (2.48)

S /12 s Rd/-llze s Iu%e ’ #2 b

where A! are the standard cusp anomalous dimensions and is a perturbative quantity.

Al = Zaﬁ (1z) AL (2.49)



The solution to the RG Eq.(2.48) is obtained as [39,40]:
12 o0 12 k3
K (a #_1; e) = ) akst (ﬂ—’;) K!(e) (2.50)

with

1
Ki(e) = E{ - 2A{},
Kz(E):Z 2ﬁ0A1 +g —A2 s

1( 8 1(2 8 1( 2
Ki(e) = —3{ - gﬁéf‘{} + —2{—ﬁ1A{ + —ﬁoAé} + ;{ - §Ag},

1 1(1
Ki(e) = {4,8(3,A’} 5 { ,80,81A’ 6ﬁ3A§} + z{gﬁzA{ +B1AL + 3ﬁ0Ag}
1 1
- Z{ - EAQ} (2.51)

Similarly, RGE of G gives the solution:

. 0% i b dA?
G’(a ?e’ﬂR ) G' (a(Q*).1.€) + sz ?A’(as(&l,%) (2.52)

where the boundary term G’ (as(Qz), 1, e) has a perturbative expansion:

[

G (a(Q%).1.€) = Y d“(0M)Gi(e). (2.53)
k=1
Performing the integral in Eq.(2.52) results:

Qzld/lz 00 R 'uz
[£ Lo o) - Yatst (2

k=1

ks 2\k5
l(%) —~ 1] Ki(e). (2.54)
M

R

Substituting Eq.(2.51),(2.53) and (2.54) in Eq.(2.47) gives the following general structure
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for the form factor:
0 k*
InFl(a,, Qz"uz €) = Z&’j ’; ( 2) .Ek(e) (2.55)
with

Lle) = 12 - 2A{} + E{G{(e)},
1

1 1
5 ﬁoA{} ¥ g{ - 34 —/%Gi(e)} { G’(@}

Lie) =

{
d
Lie) = é{ § %A{} + %{%ﬁlf\{ ﬁoA' + ﬁOG’@}
N é{ g ,BIGI(E) ,BOG (e)} { G’(e)}
Lie) = é{A{ 8} + é{ - —Aéﬁ% - —A{ﬁoﬁl - 2B;G (e))}
é{%Aéﬁo + AN+ A{ﬁz + ,Bo,BlGl(f) + 3ﬁoG£<e»}
+ é{ - %A4 gﬁzG{ (€) — Eﬁng(e) - EﬁoGé(e)}
v é{icj<e)} | (2.56)

Here, the coefficients G/ encapsulated the information about the hard process, while all
other factors are universal quantities. It is interesting to note that, at a given order in a,
coeflicients of all the poles but the single one contains only information from the lower
orders, and hence can be predicted from the known lower orders. Comparing against
the explicit form factor results, it has been observed [41, 42] to satisfy the following

decomposition in terms of collinear (B'), soft (f/) and UV (y') anomalous dimensions:

Glle)=2(Bl —yl))+ fl +x| + Z g, (2.57)
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where the constants C! is given by:

x1=0,

Xa = —2Bog)"

X = =288 = 2B (85" +2B0g})

X4 = —2B:87" = 281 (85" + 4Bogt”) — 280 (g5 +2B0gs” + 4B0g}) - (2.58)

The anomalous dimensions are expanded in powers of a,(u%) as

[e9)

i) = ) alui)yt, (2.59)

J=1

where Y = A, B, f,y. As a consequence of recent calculations, the light-like cusp anoma-
lous dimensions are available to four loops [43-47] in QCD. The soft and collinear
anomalous dimensions to three loops can be extracted [41,42] from the quark and gluon

collinear anomalous dimensions [48,49] through the conjecture [41]
y'=2B"+ f". (2.60)

The partial results of the soft and collinear anomalous dimensions at four-loop can be
obtained from [47,50-52]. For the reader’s convenience, we enlist the values of these

anomalous dimensions in Appendix B.

The constants gf’k can be extracted from the explicit results of form factors. The com-
putation of quark form factor for DY process and Higgs boson productions are partially
available to fourth order in QCD [2,47,53-59]. For completeness, we present the results
of gf’k for quarks in Drell-Yan process, gluon (bottom quark) in Higgs production from

gluon fusion (bottom quark annihilation) channel up to third order in Appendix C.
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Operator renormalization constant

In certain processes such as Higgs production from gluon fusion, it involves an effective
Lagrangian which manifests a non-conserved operator. In such cases, strong coupling
renormalization is not sufficient to preserve the UV finiteness of the theory, rather an
additional renormalization is required, which is generally called overall operator renor-
malization. This additional renormalization is performed through the operator renormal-
ization constant Z’. This is a property inherently associated with the operator and it should
not be mix with the UV renormalization constants for the couplings present in the theory.
For conserved operator, such as leptonic pair production in DY, this quantity is identically

one. The Z’ satisfies the following RG equation:

[ee)

d .
2 I (A~ 2 2 _ i, 2\a 1
Mg In Z" (1, o 127, €) = § a2yl (2.61)

R i=1

where y!’s are the UV or mass anomalous dimension. We already come across this quan-
tities in the form factor and are given in Appendix B for I = ¢, g, b. Solving the above RG

equation, one obtain the solution for the Z’ as given by:

2 €
(1 1 2
{2t 2

2\2
1
Z! (g, g 7, €) = 1 + @ (':%) 56[2(2 76)

2135
~3 MR sl 1[4 )3 N8 o
+ a (/’7) Se|:§(§ (70) - 4ﬁ0 (70) + § 180 70)

2 8 1(2
+ = 27(1)7{—§ﬁ1 Yé—gﬁo)’{)+g(§7§)]

2\ 2€
rat(S5) sy S5 00 - am 00 + 24 04) -asi)

2

2 4 22 8
+t = 2(?’6) 7{_§ﬁ1 (?’(I)) —?ﬁ0767{+§,30,3176+6,337{)

11, 2 4 | 11
+5l5 (1) +3%7%2-3B% B 7{—3ﬁ07§)+;(5 Vé)] (2.62)
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Mass factorization Kernel

The collinear singularities resulting from the massless partons, when their emissions are
parallel to any initial states, are removed by absorbing them into bare parton distribution
functions. The resulting renormalized pdf’s are finite and measurable quantity. This
mass factorization procedure is performed at factorization scale pr. As discussed before,
it introduces mass factorization kernels I';’s which essentially absorbs the initial state
collinear singularities. These kernels, in MS scheme, satisfies following RG eq:

y%ﬁﬂj(z,ﬂ%, €) = % Z Pi (Znu%“) ® 1y (Zn“lzﬁ 6) (2.63)
F k

where, P;; (z, u%) are Altarelli-Parisi splitting functions (matrix valued). Expanding P;; (z, ,u%)

and I';(z, %, €) in powers of the strong coupling constant we get

(o)

Pz ) = ) d WP @), (2.64)

k=1

As discussed before, since our focus is only SV part of cross section, only diagonal terms
of splitting function contributes to our analysis, and hence those give rise to beyond SV are
dropped. Hence, by conveniently expressed in terms of index /, we obtain the following
structure:

PP(2) = 2(Bl,,6(1 - 2) + A, Do(2)) + P, (2) (2.65)

reg,l

Note here that P(r];)g ,(2) contains terms of the form In(1 - z) and O(1 - z). We will come
across these terms in the subsequent chapters while discussing about the next-to-SV con-
tributions. For the time we focus only on the SV part of splitting functions. After solving

RG equation of the kernel in dimensional regularization, we get [39,40]:

00 2 k%
[z}, €)= 8(1-2) + Y ak st (l;%) rPae, (2.66)
k=1
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The coefficients [ ;k) are expressed in terms of splitting functions:

F(])(Z,E)— {P(O)(Z)}
rPze = —{ — BoP(2) + P<0>(z)®P§0’(z)} 1{ Pz )}

1
e = { 5P =P @ P + PP @ P @ P“”}

1 1 1 1
+ —2{ ~ §ﬁ1P§°> +-PPepP) - ﬁOP(l) + =PV e Pf”}
€

6 ! 173
L1
)

1 11 1
F;4)(Z’ €)= g{ _ zﬁSP;O) + gﬁ(z)PEO) ® Pgo) _ EIBOPEO) ® Pgo) ® PEO)

1 4 1
(0) (0) (0) (0) (0) (0) (0)
+ 24P ®P ®P ®P } 3{§ﬁ0ﬁlpl —§ﬁ1P1 ®P1

1 (0) (0) ()] 7 0 (1) 1 (0) (1) 0
+ﬁP1 ®P1 ®P1 —Eﬁopl ®PI +EP1 ®P1 ®P1

+332P" —

5 0 5 o pO . Lpm o pO) o pO
ZBOPI ®Pl +§Pl ®P1 ®P1

1 L, po 1 p0 g po o Lom o o
+§{_8ﬁ2P1 e ﬁlp’ tghreh

1 11
BoP? + 4P§2) Pﬁo)} {4P§3)}. (2.67)

These quantities are universal and independent of the operator insertion.

Soft Collinear distribution

Since the IR behavior of the pure virtual amplitude is completely universal and indepen-
dent of the number of external colorless particles, the combined contributions from the
real emission diagrams and mass factorization must also exhibit the same universality to
get the finite cross section. By employing this universality and imposing the constraint of
the finiteness on the cross section, we determine the universal contribution from the latter

part to obtain the SV cross section, which we now turn to.
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Owing to the decomposition formula given in (2.42) and the universal factorization of
the IR singularities, one can write a first order differential equation, similar to the KG

equation of form factor, for the soft-collinear distribution function as,

2
R

2 d

2
¢ 37 InS! = l[fl(&s, ';%, €, z) + 5;(&5, q—z,

5 s )] (2.68)

P
tNlt

o . L .
Here the quantity K embeds all the soft divergences from the real radiation, which cancels
with the ones coming from the virtual diagrams. The initial state collinear singularities,
which arise from both the virtual and real emission diagrams, are respectively present in

F'and S’

«v» and upon incorporating the mass factorization kernels, I}, all of these cease

to exist. The final state collinear singularities are guaranteed to cancel upon summing
over final states, as dictated by the KLLN theorem. Consequently, the SV cross section
in (2.42) is free of all the divergences and the finite contributions coming from the soft
enhancements associated with the real emission processes are denoted by Eiv which is a

function of (z, €).

In addition, the RG invariance implies:

=

R (0 ,2) = i G 0, L

2 I 2
= -l w\lss =5, —5,2) = Ala;(uRp)) 6(1 —2),  (2.69)
“dpg Hy ) g

This RG invariance and by demanding the finiteness of SV cross section, supplemented
with an understanding on the structure of Feynman integrals provide a unique solution for

the IR structure of soft distribution at threshold:
Sy ¢, 17,2, €) = Cexp (20 (&, ¢ 117, 2, €)) (2.70)

where the functional form of ®! is:

00 ‘ 21_ 2 i% . . .
%=Z%@%¥stfgwa 2.71)
i=1
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The symbol C refers to “ordered exponential” which has the following expansion:
f@) — 1 !
CV =6(1 -+ f@+ 5 (fON@) + -+ (2.72)

The symbol ® refers to the Mellin convolution and f(z) is a distribution of the kind 6(1 —z)

and D;(z), where D;(z) is defined as,

In'(1 -z
Di(2) = (—( )) | @.73)
(1-2) /,
. . o (1 —2)°\5 .
Here the subscript + means that 9;(z) is a plus distributions. The term (—2) in the
u
¢'(z, €

comes from the

parenthesis of Eq.(2.71) results from two body phase space while
-z

square of the matrix elements for corresponding amplitudes. In general, the term ¢*(1—z)?

inside the parenthesis is the hard scale in the problem and it controls the evolution of ®’

at every order. The explicit form of the solution in terms of anomalous dimensions and

certain universal quantities reads as the following [39,40]:

n 1 1{=

¢{1) = 2 2A{) + E(gi(f))

o 1 1/(1 — 1 —

bl = = —,3014{) + Z(EAé —ﬁogi(G)) + 2—6§;(6)

n 1/(8 1 2 8 4 —

dy) = a §ﬁ<2)A§) + g( - §ﬁ1A{ - §ﬁoA§ = gﬁ%gi(f))

1/(2 1 - 4 — 11~
+?(§A§ - gﬁlgi(ﬁ) - gﬁogg(f)) + ;(ggg(f))

A 1 1(2 3 —
b4y = 5( —BSA{) + g(gﬁoﬁv“{ + Eﬁ%Aé - 2ﬁ(3)gf(€))

1(1 1 3 4 — _

- (EﬁzA{ - FPAL = oAl + ZFBiG () + 3ﬁ3g§<e>)
1/(1 1 — 1 — 3 — 1{1—=

+;(§Ai - gﬁzgke) S CACE Eﬁogke)) + ;(nga) (2.74)
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. ool . . I .
where the finite quantity G, are related to its renormalized counterparts G;(€) in the

following way:

Sa(PP 55l - Saa-gio e

i= i=1

we find

— 1 — 1
Gsv,l(e) = gl (6)

— 7 1 — 1 — I

G ,(e) = Z( - 205G, (E)) + G, (e)

— 1 1 =1 1 —1 —1 —1
Gyse) = g(“ﬁogl (6)) + E( - B1G, (6) — 460G, (6)) +G; (6)
— 1

Gsf/,4(6) = ( 8ﬁ0g1 (f)) ( ,30,31Q1 (e) + 12ﬁ0Q2 (E))

1 2 —1 —1 —1 —1
+;( ~ 352G () — 281G, (6) - 6B0G5 (6)) +G,(€) (2.76)

—I
Through explicit determination of the quantity G, (e), it was found that it is dependent

only on the initial partons and can be further decomposed as:

Gi

Glo=-f+x+> 6" X=X (=5 2.77)
k=1 i

The results of finite coeflicients éil’k(e) are given in Appendix C :

One of the most salient features of the @ is that it satisfies the maximally non-Abelian

property:

o = S, (2.78)
Cr

This property essentially signifies its universal behavior. Moreover, it is independent
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of the external quark flavors, as expected from the infrared behavior of the scattering
amplitudes. This is understood as the soft part of the cross section is always independent
of any quantum numbers such as spin, color and flavor once the born is factored out;
rather, it depends only on the gauge interaction, which is SU(N,) for the current case. The
aforementioned non-Abelian property is explicitly verified to NNLO in refs. [39,40] and
in ref. [60] it is conjectured to be valid even at N°LO QCD which is demonstrated through
explicit computations in refs. [61,62]. The flavor dependence of the ®' was exploited in
ref. [63] to calculate the SV cross section at N°LO for the Higgs boson production in
bottom quark annihilation. However, whether the validity of this property holds beyond

N3LO with generalized Casimir scaling [64] needs to be addressed in future.

The SV cross section

Having the IR structure of virtual contributions and real emissions, we get a general struc-

ture of SV cross section, with an expansion in powers of coupling constant:

(o0

') = ) d WA @ i ) (2.79)
i=1

where, A;V’(i) defines the finite partonic coefficient function at each order. At the individual
level, the building blocks form factor, Splitting kernel and soft-collinear distribution con-
tain singularities. However, together they cancel and give rise to a finite partonic SV cross
section, expressed in terms of universal anomalous dimensions and process dependent
terms. Substituting explicit results of anomalous dimensions, S-functions and process de-
pendent terms, we obtain the results of Higgs production from gluon fusion and bottom

quark annihilation and for the DY process, which is available in [39,40,60-63, 65-67].
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2.3.2 Resummation

The threshold corrections dominate when the partonic scaling variable approaches its

kinematical limit, that is when z — 1. They manifest in terms of distributions of the form

{6(1 9, D) = [M] } (2.80)
-z |,
This will be evident by noting:
1 ks I
0= = —6(1 ) +( “[a -] ) (2.81)

When z — 1, the In(1 — z) become very large, on the other hand a, very small so that the
product = a; In(1 —z) ~ 1. In such cases, fixed order truncation will not be justifiable, and
one needs to take care of these logarithms to all orders by doing resummation. The Re-
summation technique provides an alternative perturbative expansion that considers these
large logarithms in the expansion and produces reliable results while truncating. In fact,
the presence of large logarithms is an artefact of truncating the series. When we expand

the series to all orders, it should give a physically acceptable result.

In order to construct a resummation framework, we employ the structure of soft-collinear
distribution, which we obtained in last section. Using the relation (2.81), and by factoriz-
ing the soft divergences from Eq.(2.71), we obtain an integral representation for the soft

collinear distribution :

®/(ay, q* 12, 2, €)

*(1-2)?
[{ e alatra-2).9))

=
=

+5(1 - 2) Z ("—2)25;&,.’(6)

) 2\i%
(1_Z) Z”(MR) SI K, (e) (2.82)
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Some remarks are in order. The third line in the above equation exactly cancels with the
D, term of the mass factorization kernel. The ¢! in the second line contains both pole
and finite terms. The poles cancel with those of form factor and 6(1 — z) part of mass

factorization kernel.

Since the integrand involves many convolutions, it is convenient to solve it Mellin N-
space, where all the convolutions turn to normal products. The Mellin transformation of

a function f(z) is defined as:

1
MLFIN) = f dz 21 £(2) (2.83)

0

Also the Mellin transformation of convolutions given in Eq.(2.43) becomes:
MI[A ® B](N) = M[A](N) M[B](N) (2.84)
The threshold limit in N-space is defined as:
z — 1 transformsto N — o (2.85)

Similarly, the 6(1 — z) becomes a constant, and distributions of the form D;(z) become

logarithms of the form In N.

Adding the form factor and mass factorization kernel with the soft factor given in Eq.(2.82)
and performing the coupling constant renormalization and finally solving them in Mellin

space we get the resummed formula. In Mellin the finite SV cross section reads as:

i 1,2 2 2 b 700 g2 I 2 I 2 2
Ay = Ci(q* - 17 exp f dz— f A () + D (adg’ (1 - 2))
0 - q

= C)(q* 1o 13) exp (In gh(a,(up)) + G (w))

= 20" 3o 117) exp (G () (2.86)
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where, w = 2fBpa,In N and D! (as(qz(l - z)z)) are the well-known threshold exponent

n [68] which is related to the SV coefficients though:

D' (a,(4(1 -z ia (¢°(1 - 2°) D]

i=1

26, V(a; ((1-27) ) (2.87)

e=0

The quantity C} is dependent on the hard process under study, which is basically the
6(1 — z) part of form factor and soft factor and is N-independent. The remaining part
in the above integral is universal. Mellin transformation in Eq.(2.86) produced an N-
dependent (va(w)) and N-independent part (In g{)). Adding the N-independent part with

the C! produces g}

T0(G% 1a 1) = Ch(qP 1k 1) gh(as(uR)) (2.88)

which can be expanded in terms of as(,ulze) as,

(o)

o) = ) auREh, - (2.89)

i=0

The above integral Eq.(2.86) is first employed in Seminar works by Stermann [69], Catani
and Trentedue [68]. The G}, collects and resums all large-N logarithms to all orders and

can be expressed as a resummed perturbative series as:

Gllv(qz, w)=InN gl(q w) + gz(q w) + a, g3(q w) + a g4(q W)+ (2.90)

The coeflicients gg,,. and g/ are given in Appendix E. Each term in the above perturbative
expansion produces all order result. The first term resum every highest logarithm to all
orders, the next term resums next to highest logarithms and so on. These terms, together
with gé in the same accuracy, gives leading logarithm (LL), next-to-leading logarithms

(NLL) and so on respectively. Adding each term in this perturbative expansion improves
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logarithmic accuracy.

We will discuss the resummation framework in great detail in subsequent chapters. In
addition to the resummation for threshold logarithms, we propose a framework for re-

summing the next-to-threshold logarithms in the last chapter.
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Higgs pair production from

bb-annihilation to NNLO in QCD

In this chapter, we present the cross section for bottom quark induced di-Higgs produc-
tions at NNLO. Among two kind of contributions, we present the exact NNLO corrections
for the dominant one. To compute the remaining ones, we adopt the threshold framework
that we discussed in last chapter. Numerical analysis establish that the inclusion of higher
order terms reduce the uncertainties resulting from the unphysical scales. The materials
presented in this chapter are the result of original research done in collaboration with

Pooja Mukherjee, V. Ravindran et.al and are based on the published article [70] .

3.1 Prologue

Ever since discovering the Higgs boson [71, 72], understanding this scalar particle’s na-
ture has been the critical objective of the LHC and future colliders. The measurements
explored so far at the LHC in the Higgs production and decay channels points out towards
the particle being the long-sought Higgs boson of SM of elementary particles [73-84].
For instance, the mass of Higgs (125.38 + 0.14) GeV [85], its zero spin, its couplings to
vector bosons and fermions within 5% accuracy [86,87]. Despite of all these successes of
Higgs programme at the LHC, the nature of Higgs potential remains elusive. The relevant

parameters to constrain the Higgs potential are the self couplings of Higgs boson such as
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trilinear (/lgM) and quartic couplings (AEM). As shown, within the SM, the Higgs potential

after the electro-weak symmetry breaking (EWSB) takes the form:

2 2
£5-T¢w - BN - Mg, M= TE M= G

2
_h

2027 8v2’

where ¢(x) denotes the Higgs field and v ~ 246 GeV is its vacuum expectation value (vev).
In the SM, the Higgs self couplings are related to its mass and the vev of Higgs field, which
is linked to the Fermi constant Gy = 1.16637881075 GeV~2 [88] by v = (V2Gr)'/2
Hence, the SM values for 3™ and A3™ are found to be ~ 0.13 and ~ 0.03, respectively.
However, these values can be modified by the presence of beyond the SM (BSM) physics

scenarios, which, in turn, suggests their independent measurements.

While the quartic Higgs self-coupling (253™) lies beyond the reach of LHC [89,90], various
studies shows that the trilinear self-coupling, (A3™) might be accessible via the Higgs pair
production processes [91-98]. Though this measurement is difficult due to the small
production cross section and the presence of large QCD backgrounds, the study for the
high luminosity LHC indicate that the Higgs boson pair production due to gluon fusion
can predict /lgM with O(1) accuracy. At present the most stringent constraint on the A3 is
given by ATLAS and CMS within the range of (-2.3, 10.3) and (-3.3,8.5), respectively,
times the SM value [99] with the assumption that no other Higgs boson couplings deviate

from their SM value.

A direct way to access the trilinear coupling is the process of producing a pair of Higgs
bosons. This can be attained through several partonic channels, viz gluon fusion, vector
boson fusion, associated production with a vector boson or a pair of heavy quarks. Among
these, the gluon fusion channel has, by far, the largest cross section since it gets the large
gluon luminosity at the LHC. On the theoretical side, the state of the art for the gluon
fusion channel has reached an impressive accuracy of N’LO in strong coupling constant
and also next-to-next-to-leading logarithmic (NNLL) accuracy for the threshold resum-

mation. (See Fig.3.1 for the LO contributions to this channel and for a brief overview
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see [100-116] ). However, being heavy quark loop-induced (See Fig.3.1), this production

channel gets minuscule cross section in the SM. The total Higgs boson pair production

A
X

g ‘H 8

Figure 3.1: LO contributions to Higgs boson pair production from gluon fusion channel.

cross section is approximately three orders of magnitude smaller than that of single Higgs
production. In addition, the presence of extensive background makes its measurement
experimentally challenging. Hence unless contributions from BSM physics enhance the
production cross section, measurement of this channel will require a considerable inte-
grated luminosity. On the other hand, in such a scenario, the sub-dominant channels in
the SM could possibly become interesting as they would receive substantial contributions
from new physics. One such channel is the production of a pair of Higgs bosons in bottom
quark annihilation. In certain supersymmetric models, like the Minimal Supersymmetric
SM (MSSM) [117], the bottom quark Yukawa coupling is enhanced with respect to the
top quark Yukawa coupling, in the large tan 8 region, where tan £ is the ratio of vev’s of up
and down type Higgs fields in the Higgs sector of the MSSM. Hence precise predictions

for this channel is of high importance.

While a plethora of work has been performed to reach ultimate precision for the gluon
channel, the sub-dominant channels have not received much attention. This chapter
mainly concerns the bottom quark annihilation channel where the Higgs boson couples to
bottom quarks through the Yukawa coupling. The NLO corrections for this channel was
first obtained in [1] and later in [118—120] considering several BSM scenarios. For the
latter, the bottom quark annihilation process dominates over the gluon fusion even at the
LO level. In addition, their NLO QCD corrections are not only sizeable but also larger
than the supersymmetric QCD corrections. To stabilize the cross section with respect to

higher order radiative corrections, NNLO corrections to this channel are desirable, which
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is the focus of this chapter.

The chapter is organized as follows. In Sec.[3.2], we discuss the Lagrangian, kinematics
and the classes of diagrams that are relevant for our computation. The computational de-
tails are mentioned in Sec.[3.3] with the structure of UV and IR divergences. We present
the relevant analytic results for the inclusive cross sections in Sec.[3.4] and their numeri-

cal impact in Sec.[3.5]. Finally, we summarize our findings in Sec.[3.6].

3.2 Theoretical Framework

To begin with, we briefly review the theoretical framework for the production of a pair
of Higgs bosons via bottom quark annihilation at hadron colliders. We work in dimen-
sional regularization (DR), in which all the fields and couplings of the Lagrangian and
the loop integrals that appear in the Feynman diagrams are analytically continued to
d = 4 + € space-time dimensions. In addition, we perform traces of Dirac y-matrices

in d-dimensions.

3.2.1 The Yukawa interaction

Within SM, the interaction part of the Lagrangian that is responsible for the production is

given by,

L = -0 (x) (3.2)

where ¢, (x) 1s the bottom quark field. A, is the Yukawa coupling which after the EWSB
is found to be m, /v, where m;, is the bottom quark mass and v the vev of the Higgs field.
In the SM, the ratio of the top quark Yukawa coupling (4,) and the bottom quark Yukawa
coupling (4,) is found to be approximately 35 i.e. A,/4, = 35. In addition, the bottom

quark flux in the proton-proton collision is much smaller than the gluon flux. Hence, the
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contribution from this channel is sub-dominant as compared to the gluon fusion channel.
However, in the MSSM [117], this ratio depends on the value of tan 8, which can increase

the contribution resulting from the bottom quark annihilation channel. At LO,

—cota for ¢ = h,
MSSM

t _ m; 1 . _
AVISSM - f¢(a)m_htan_ﬂ’ with  f4(@) = tana for ¢ = H, (3.3)

cot for ¢ = A,

where h is the SM like light Higgs boson, H and A are the heavy and the pseudoscalar
Higgs bosons, respectively. The parameter « is the angle between weak and mass eigen-
states of the neutral Higgs bosons 4 and H. Since the bottom quark mass is much smaller
than the other energy scales that appear at the partonic level, we set the former to zero
except in the Yukawa coupling in perturbation theory [121-123]. In particular, the finite
mass effects from the bottom quarks are found to be suppressed by the inverse power
of the mass of the Higgs boson. The number of active flavors ny = 5 and we work in

Feynman gauge.

3.2.2 Kinematics

At the LO, the scattering process responsible for the di-Higgs production in bottom quark

annihilation channel is given by

b(p1) + b(p>) — H(ps) + H(pa), (3.4)

where p;, p, are the momenta of incoming bottom, anti-bottom quarks with p? = p2 = 0

and p;, ps are the momenta of the final state Higgs bosons with p? = p3 = m?. The

associated Mandelstam variables are,

s =(p1+ ), t=(p1—p3) u=(py— ps), (3.5)
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which satisfy the relation s + ¢ + u = Zm}zl. For convenience, we use the dimensionless

variables x, y and z defined in [124] as follows

1+x)7°
s = mﬁ( ») , t=—my, u=-mz. (3.6)
x

The variables x, y and z satisfy

(1+ x)?
X

-y—z=2. 3.7

The final result will be expressed in term of logarithms and classical polylogarithms,

which are functions of these scaling variables.

3.2.3 C(lassification of Feynman diagrams

Two mechanisms contribute to the production of Higgs pairs through bottom quark anni-
hilation in the standard model. One is the vertex type of digrams, we call them class-A,
which contains single Yukawa and trilinear couplings. The latter kind of diagrams is
quadratic in Yukawa coupling. At LO, we have three Feynman diagrams, one class-A,
and rest class-B diagrams. The same classes of diagrams contribute beyond LO. We elab-

orate on these classes of diagrams below:

e Class-A: It contains diagrams where an off-shell Higgs boson is produced through
bottom quark annihilation, which then subsequently decays to double Higgs final
states (H* — HH). These diagrams are proportional to 3™, as can be seen from
Fig. 3.2. Note that, the decay part does not get any QCD corrections. Consequently,
the QCD corrections to class-A diagrams are identical to those for producing a
single Higgs boson in bottom quark annihilation, which is known up to three-loop
level in QCD [2]. (Various works on single Higgs production from bb-channel can

be seen in [2, 63, 125-132])
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Figure 3.2: Illustration of Class-A diagrams; Born, one and two-loop examples.

e Class-B: In this class of diagrams, both the Higgs bosons coupled directly to the

bottom quarks. Hence they are proportional to /1,% as shown in Fig. 3.3. For this kind,

at two loops level, one encounters a new set of diagrams, the singlet contributions,

where the Higgs bosons are produced from a closed bottom quark loop as shown

in Fig. 3.4. In the singlet contributions, we have dropped the effects of top quark

loops and considered only those coming from bottom quark loops. The top quark

contributions are already included in the gluon initiated sub-processes obtained in

the heavy top limit in [106] for the Higgs pair production at the LHC.
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Figure 3.3: Illustration of Class-B diagrams; Born, one and two-loop examples.
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Figure 3.4: Illustration of special set of Class-B diagrams, the singlet contributions.

3.2.4 General structure of amplitude

In this section, we describe how the general structure of amplitudes can be obtained us-

ing the projector technique for the process given in (3.4). The projectors are defined by

analyzing the tonsorial structure of the given amplitude, which is valid to all orders in
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perturbation theory. Each projector will isolate the coefficients of particular tensor struc-
tures. For the given amplitude, since it contains two fermions and two scalars, the general

structure takes the form:

Mij = 9(p)(C1 + Ca p3 Ju(p1)6;

= (C171 +C272) 0ij, (3.8)

where 7, are the independent tensor with and the C,, = C,,(x,y,z) with m = 1,2 are the

corresponding scalar coefficients. Here, the tensor structures 7, are defined as:

T1 = v(p2)u(pr) (3.9)

T2 = v(p2)p,u(pr) .

The 6;; in Eq.(3.8) is because, in color space, the amplitude is diagonal in the indices (i, j)
of the incoming quarks. We use symmetries such as Lorentz covariance, parity and time-
reversal invariances to parameterize the amplitude. In addition, we have dropped those
terms that vanish when the bottom quarks are massless. The coefficients C,,, m = 1,2, can
be determined from the amplitude M;; by using appropriate projection operators denoted
by P(C), i.e.,

Con = Ni D PCIM;S;, (3.10)

where the sum includes spin, flavors and colors of the external fermions and N, is the
number of colors in SU(N,) gauge theory. In d-space-time dimensions, the projectors that

satisty . P(C,))T» = 1 and ), P(C,,)T,, = 0V m # n, are found to be

1.
PCy) = 57'1',
1 i

P = S — e —wy =] 2

(3.11)
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Since the application of projection operators on the amplitude gives only Lorentz scalar
functions, the algebraic manipulations with loop integrals become straightforward. The
square of the amplitudes that contributes to the total cross section can now be obtained

from the coefficients C; and C, using
My = N [ICIPTAT, + ICoPTTS + CiCITA TS + ClCaTa T | - (3.12)

Note that these coefficients are, in general, complex due to the Feynman loop integrals.
We expand the amplitude M;; as well as the coefficients C,, in powers of the strong cou-
pling constant defined by a, = g2(u%)/167%, where g; is the renormalized strong coupling

constant and g is the renormalization scale:

M= dM?, C,=) dcl, (3.13)
=0 =0
and consequently
M) = (CVT1 +C)T3) 6535 (3.14)

The coeflicients MS) completely describe the amplitudes order by order in perturbation
theory. Our next task is to compute these coefficients clom=1,2, up to two loop level,

i.e., up to O(a?) in perturbative QCD.

3.3 Calculation of amplitudes

In this section we describe the computational details of the coefficients C,, for the process

bb — HH up to two-loop level in QCD perturbation theory.
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3.3.1 Computational details

As can be seen from the form of 7; in Eq. (3.8), only Class-A diagrams contribute to C,
and Class-B to C,. Since the Class-A diagrams are already computed to three loops in
QCD [2], in this section, our focus is to discuss how the scalar function C, in Eq. (3.10)
is computed order by order in perturbation theory. As we mentioned, we use dimensional
regularization, in which the space-time dimensions are taken to be d = 4 + € and perform
traces of Dirac y-matrices and contraction of Lorentz indices in d-dimensions. For con-
venience, we work with the bare form of the Lagrangian and evaluate the coefficient C,
in powers of bare coupling constant &,, where a, = 8>/16x°, g, being the dimensionless
strong coupling constant. Beyond LO, one- and two-loop amplitudes containing massless
quarks, anti-quarks, and gluons develop UV and IR divergences. These divergences can

be regulated using dimensional regularization. We will come to this point in later sections.

To generate Feynman diagrams, we have used QGRAF [133] at every order in the strong
coupling constant. Beyond one-loop, a large number of Feynman diagrams contributes to
the amplitude. The number of diagrams contributes to tree level, one and two-loop are
2, 10, and 153 respectively, excluding tadpole and self-energy corrections to the external
legs. Multiply these amplitudes with the projection operator $(C,) defined in Eq. (3.11)
will give rise to the scalar function C,. Substitution of Feynman rules and computation of
various traces involving Dirac and Gell-Mann matrices are done using in-house routines
that use publicly available packages such as FORM [134] and Mathematica. At this stage,
we end up with a large number of one- and two-loop Feynman integrals. The projection
operators guarantee that all the tensor integrals are converted to scalar integrals. We
rearrange all the Feynman integrals into a few chosen integral families through shifting
of loop momentum. To achieve this, we use the package Reduze2 [135]. At one-loop, the

following three integral families can accommodate all the Feynman integrals

{Pl’?lih Pl:i,i+1a P1:i,i+l,i+2} ) (315)
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where, i takes one of the values {1, 2, 3} whose elements are arranged cyclically. A typical
two-loop topology contains at most seven propagators. However, there are nine different
Lorentz invariants (k;.k;, k;.p;) which can appear in the numerator of an integral. Hence,
we introduce two auxiliary propagators in each of the two-loop integral families. The

following two sets describe the six integral families that we use at two-loops,

{Po, P1, P2y Pris Paiis Priiints Priivt Priiintivas Priietiva} »

{PO’ Pl ) PZa P1:1'5 P2:1" pl:i,i+l ) P2:i,i+l ) 7)021'+2’ Pl:i,i+l,i+2} . (3 1 6)

Here,

Po = ki’ Poi = (ky —Pi)z, ¢)a:ij = (kq — Di _pj)29 Pa:ijk = (kq —Pi—Dj —Pk)z,

Po =(ki —ka)*,  Poi = (ki —ka— p)*.

This large number of Feynman integrals belonging to different integral families and can
be written in terms of a smaller set of integrals, so-called master integrals (Mls). This can
be achieved by using the integration-by-parts (IBP) [136, 137] and the Lorentz Invariance
(LI) [138] identities, which are implemented in the Mathematica based package LiteRed
[139]. Finally, we obtain 10 and 149 MIs at one- and two-loops, respectively. These MlIs
are analytically known from the seminal works of Gehrmann and Remiddi [124, 140].
We use them by systematic transformation and hence obtain the two-loop result for the
coeflicient C, which are expressed in terms of Laurent series in €. As mentioned before,
these unrenormalized coefficients contain both UV and IR divergences, which appear
as poles in € at every order in a,. In previous chapter, we briefly discussed how the
renormalization of the strong and the Yukawa couplings render these coefficients UV
finite, leaving only IR divergences. In the following section, we demonstrate them in

detail by considering the case of bb — H process.
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3.3.2 Ultraviolet renormalization

Beyond LO, the scalar function C, computed in powers of the bare coupling constant a;
encounters UV and IR divergences. In this section, we describe how to deal with UV
divergences. Perturbative expansion of the amplitude for the aforementioned process in
terms of the bare strong and Yukawa couplings is given by:
4 2
My = ( d ) [M(O) (Zes oy + (2 ) MO+ 0(“)] (3.17)
Ho Ho

€/2
0

where /\?(fi) is the I loop unrenormalized amplitude. Note that the entire amplitude is
proportional to the square of 1, the bare Yukawa coupling. Similarly, the coefficient C,

replicates similar perturbative expansion of the following form,

N 2
Cr=|22s.] [0+ (%s. ) + (Ls, c<2>+0(&3) (3.18)
€/2 Mo Mo

Hq

To perform the UV renormalization of the amplitudes we use the modified minimal sub-
traction (MS') scheme, where the renormalized strong coupling constant a; is related to
the bare strong coupling constant, &, through the renormalization constant Z (/,lee, e) at the

renormalization scale ug as

&—jse =27, (13e). (3.19)
Ho R

where The scale y is an arbitrary mass scale introduced to make g; dimensionless in d-
dimensions. The coupling renormalization constant Z (,ufe, 6) up to four loop is given by
Eq.(2.45). The constants 8y and B, are the coefficients of g function which, for n light

quark flavors, are given in Eq.(2.15).

Similar to ag, the Yukawa coupling constant A, needs to be renormalized as well, as ex-

plained in Sec.[2.3.1]. This has been done as shown below at the renormalization scale
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HR:

A

A A
—EI;ZSE = _51/7224 (,u,ze, 6)
Ho Mg
_ Ab 1 lz(l) 2 1 Z(2) 12(2) 0 3 3.20
= €2 +as ; 1,1 +aS g /l,2+g A,1 + (as) ’ ( . )
Mg

where A,(u2) is the renormalized Yukawa coupling and the coefficients ZEZ)J are given by

3, 97 10
Z) = 6Cp, 21 = 18C. + 6BoCr, Z1) = SCr+ 5 CrCa= 5 Crny T, (321)

Having the strong as well as Yukawa coupling renormalized, now we can express the

coeflicient C, in terms of the renormalized couplings:

€/2

2

A

o[ e ot s 0] a2
Hg

where the coeflicients C(Zl) are obtained using Eq. (3.19) and (3.20) in Eq. (3.18) and

comparing with Eq. (3.22):

e = o,
12 0 14
2 € Fp ,u; 2
12 1 97 20 4
c = [2(6@% +BoCr) + E(3C% + 5 CrCa - 7CanTF)] ¢y’
2 6Crl s, 1 4
i 2 [@ F 2RO — P (3.23)
Hp | € € Hg

These constants C(zl), [ =0,1,2, are now UV finite. However, they are sensitive to IR

divergences which will be the topic of our next section.
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3.3.3 Infrared divergences and their factorization

Besides UV divergences, the amplitudes beyond LO suffer from infrared divergences,
particularly soft and collinear type divergences. The soft ones arise from the soft gluons
and the collinear from the massless quarks and gluons in the loops. The details of IR

divergences and how we resolve them are given in Sec.[2.1.3].

While all the IR divergences that appear in the amplitudes do not pose any problem for the
physical observables, they provide valuable information about the universal structure of
the IR divergences in QCD amplitudes. In fact, it can be shown that these divergences sys-
tematically factor out from the amplitudes to all orders in perturbation theory [141, 142].
These factored IR divergences demonstrate the universal structure in terms of certain soft
and collinear anomalous dimensions. An elegant proposal was put forth by Catani, who
predicted IR pole structure of the amplitudes up to two-loop level in non-abelian gauge
theory [3]. He demonstrated that the n-particle QCD amplitudes factorize in terms of
the universal IR subtraction operator denoted by 7. This 7-operator has a dipole struc-
ture [3] containing process independent universal cusp and collinear anomalous dimen-
sions. Thanks to the wealth of results from two-loop calculations of the three-parton
qqg amplitudes [143] and 2 — 2 scattering amplitudes [144—-146], that involve non-
trivial color structures [146, 147], the J-operator is completely known up to two-loop
level. In [148], the authors provide further insight on the factorization and resummation
properties of QCD amplitudes in the light of Catani’s proposal and demonstrate a con-
nection between divergences governed by soft and collinear anomalous dimensions, see
also [149,150]. Following [3] we express one and two-loop UV renormalized amplitudes

in terms of the 7-operator as

CY(e) = CY"™M(e)
CP(e) = 21" ()Y (e) + C™(e),

CY(e) = 4T (eCP(e) + 213 ()CY(€) + CP™(e). (3.24)
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The matrix elements of the subtraction operator for the bottom quark, 7, are given by

ki 4Cp  3C 5\
o = rarepl @ T e 12
1 280\ . e T +e)( Po
)] — (1) (1) 0 €)) 2
[b (6)— —E_Z.b (6)(Ib (6)—?)+m(—?+K)Ib (2E)+2Hb (6),

(3.25)

with K [3] and Hz(72) [148] are given as follows:

67 2 10
e[ 2o a,

186 9

< e 245 23 13
HY = (-2) =2 _Zacp (-2 v 2 - 2
b (ﬂ,% T(+e)e| a6 35

3 3 25 1
+C12,: (E — §§2+3§3)+Cpl’lf(ﬁ - g{z)] (326)

We simplified the expressions C(Zi)’ﬂ“(e) at the level of color factor and also for each color
factor, in terms of the uniform transcendentality. We find, the resulting expressions are
free of IR divergences and hence are finite as € — 0. This is following Catani’s predic-
tions for the IR poles, which serves as an important check on the correctness of our com-
putation. Although the singlet contributions, which are proportional to the color factor
Crn, Tk, for n, = 1, develops IR divergences at the intermediate stages of the computa-
tion, they cancel among themselves to give rise to a finite piece. This is consistent with
the IR pole structure predicted by Catani. The finite coeflicients, Cg)’ﬁ“, i = 1,2, obtained
in Eq. (3.24) contain multiple classical polylogarithms, which are functions of the scal-
ing variables x and y. These polylogarithms can be attributed to different transcendental
weights. We present these finite finite coefficients C’g)’ﬁ“,l =0, 1,2 in the attachment with

the arXiv submission of [70]
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3.4 Inclusive Cross Section up to NNLO

In this section, we describe in detail the computation of inclusive cross section up to
NNLO level for producing a pair of Higgs bosons resulting from class-A and class-B
diagrams. The hadronic cross section can be expressed in terms of partonic cross sec-
tions appropriately convoluted with the corresponding bare parton distribution functions

fu(x),i=1,2as

o = Zfdxlf‘“(xl)fdxlﬁiz(XZ)OA-ZZ(xl’xz,mi)a (3.27)

ap,az

HHi

where x; are the momentum fractions of initial state partons and a1» = ¢,q,8. G,

S
the UV finite partonic cross section for producing a pair of Higgs bosons along with ny
number of colored particles (partons) through the reactions a,(p;) + ax(p2) — H(q:) +

H(q,) + X(k.) and is obtained using

2 nx J— 2 ny
G, = %l—[ f do(gn | | f dpke) D M P QY6 (pr+ 2= ) gu = Y k)
n=1 n=1 c=1

(3.28)

where p;,g; and k. are the momenta of incoming partons, final state Higgs bosons and
partons respectively. In d-dimensions, the phase space measure d¢(p) of a final state
particle with momentum p and mass m is given by

dd_lﬁ

@02 G2

d¢(p) =

where p® = \/m? + |ﬁ|2 M,,4, 1s the amplitude for the process a;(p;) + ax(p2) —

H(q,) + H(g2) + X(k.) and is calculable order by order in perturbative QCD. The symbol
3 indicates that we have to sum over all the quantum numbers of final states, average over

initial states and finally include the symmetry factor for final state identical particles. For
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convenience, we classify the partonic channels that contribute to M, ,, into class-A and
class-B. We find that these channels do not interfere for the case of inclusive cross sec-
tion and the invariant mass distribution of Higgs boson pairs. Hence, the hadronic cross

section in Eq.(3.27) decompose as:

ot = gliH 4 it (3.30)

We treat them separately and are discussed in the following sections.

3.4.1 Cross section for class-A diagrams

For the class-A diagrams, the amplitude M,,,, factorizes into a product of two sub ampli-
tudes, where one of them describes the production of a single Higgs boson with virtuality,
g* and the other encapsulates its decay to a pair of on-shell Higgs bosons. By suitably
factorizing the phase space we can describe the entire reaction as a continuous process of

producing a single off-shell boson with different virtualities, subsequently decaying to a

HH

pair of on-shell Higgs bosons. In other words, we can write &7, ,,

for class-A diagrams as

A dQZA * 2 N
Tl = | 5O %8 [Pul@)| 24175~ (q) (3.31)

where the Py (g?) is the Higgs boson propagator, given by

i

PH(qz) ==

3.32
q> —mj + ilymy, (3-32)

with I, the decay width of the Higgs boson. The cross section that describes the produc-

tion of a Higgs boson with virtuality ¢ is given by

nx

. 1= 7
o) =5 | | [ otk [ dota) ML, P@rrs (o4 2= - k).
c=1

c=1

(3.33)
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Here Mf;laz is the amplitude for the production of an off-shell Higgs boson with the
virtuality ¢* and ny number of colored particles'. Similarly, the decay rate ' ~#H is

given by

: NS | gt
ri =" "2 [ f dg(q,) ) M en'6%(a - ) ). (3-34)
n=1

2
n=1
with M =HH describing its decay into a pair of on-shell Higgs bosons. The decay rate
=" g straightforward to compute and in 4-dimensions it is found to be

_ 9B(g")m),

it = B@) = |1

2
h

, . 3.35
32mv2q (3-35)

Va

Substituting Eq. (3.31) in Eq. (3.27) and using Egs. (3.33, 3.34), we obtain afH in
Eq. (3.30):

ot = d—CIZD (@) (¢ (3.36)
A = x H q )04 g .

with

AREDY f dxi fo, (1) f dx2fo, ()Y 0 2 )

ap.az

Du(q®) =2q T =11 |Pu(e®)| (3.37)

where the partonic scaling variable z = ¢*/s. Note that " is known exactly up to NNLO
level [130] and N°LO level [40, 63] in the soft plus virtual approximation for on-shell
production of single Higgs boson. Hence, following [130], we can express o/ (¢%) in

terms of IR finite coefficients convoluted with renormalized parton distribution functions

'Note here that, the notation ¢ in the delta function in Eq.(3.33) denotes the momentum of system of
colorless states and do not confuse with the notation given to represent quarks
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[l piz) as

o (@) =l (@) ) f dx) fo (31, ) f A% fo (2, M) Z A a2 G s 1R)

ap,az

(3.38)

where o' (¢?, %) = mml(u%)/(6¢*v*). The partonic coeflicient function A4, can be

expanded in powers of strong coupling constant as

(o)

M@ @t i) = D @GRAD, (@ @i i1} (3.39)
i=0

Substituting Eq. (3.38) in Eq. (3.36) and making suitable change of variables, we obtain

q*=xzS

1 1
dx .
o= f 2 P (5. 1) f dz |0t (4, iR)D#( @) A p s @ T 170 117

ayaz

(3.40)

where 7 = 4m,21 /S, S = s/x1x,, the hadronic center of mass energy of incoming hadrons

and the partonic flux @, 4, (x, u%) is given by

La X
Doy (X, 7)) = f %ﬁlw,uimz(;,u%). (3.41)

In the next section, we use Eq. (3.40) to obtain the numerical impact of class-A diagrams

to the inclusive production cross section.

3.4.2 Cross section for class-B diagrams

We now describe how the contributions from class-B diagrams in Eq. (3.30) can be ob-
tained. Since class-B diagrams comprise #- and u- channels, the corresponding ampli-
tudes do not factorize like class-A diagrams. This makes the computation technically

more challenging beyond NLO level. However, one can obtain certain dominant contri-
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butions of class-B processes resulting from soft gluon emission as they are process inde-
pendent. Using the contributions from soft gluons, as described in Sec.[2.3.1], and those
from the two-loop virtual processes computed in the previous sections, we can readily cal-
culate the soft plus virtual contribution up to NNLO level, a first step towards obtaining

the total NNLO contribution from class-B.

For the class-B, the leading order contribution results from the Born process b+b — H+H
contain ¢ and u channels. At NLO, one loop virtual corrections to Born and real emission
processes b + b —> H+H+ g and b(E) +¢g > H+H+ b(E) contribute. The UV
divergences that are present in the virtual processes to Born processes are removed using
MS renormalization scheme. The soft and final state collinear divergences in both virtual
as well as real emission processes cancel among each other while the initial state collinear
divergences are factored out and absorbed into bare bottom quark densities in the MS
scheme through the mass factorization. For the sub-process b(E) +g > H+H+ b(z),
we encounter only collinear divergences, and they are removed by mass factorization.
We achieve this by using the semi-analytical method, namely the two cut off phase space

slicing [151], which is summarised in the section below.

NLO corrections to class B: Phase space slicing approach

In this section, we summarise the computation of NLO corrections of class-B diagrams
using the phase space slicing approach. The same approach has been used for the first
computation of NLO correction to the production of a pair of Higgs bosons in bottom
quark annihilation process [1]. In this method, for the real process b+b — H+ H +g, two
slicing parameters ¢, and J. are introduced to separate three-body phase space into sofft,
hard collinear and hard non-collinear regions. Whereas, for the real process g + b(b) —
H+H+ b(E), we need to introduce only ¢, as these are free from soft divergences. The
slicing parameter d, divides the real emission phase space into soft and hard regions. Soft

region is the part of phase space where the energy of gluon in the center-of-mass frame of
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incoming partons is required to be less than 8, v/s/2, and the rest is called hard region. The
latter contains collinear configurations where the two massless partons become collinear
to each other, leading to collinear singularities. Similarly, the ¢, is used to divide the
hard region into hard-collinear and hard non-collinear regions denoted respectively by
HC and HC. Keeping these slicing parameters d; and ¢, infinitesimally small, the virtual
loop integrals and the soft and collinear sensitive phase space integrals are computed
within the method of dimensional regularization. The corresponding singularities show

up as poles in dimensional regularization parameter €.

We describe below the essential steps that are followed in dealing with IR singularities
in phase space slicing method. We start with UV finite hadronic cross section at NLO

HH+1

level, denoted by do . It gets contribution from real emission partonic sub-process
a, + a, » HH + a; where the final state consists of a pair of Higgs bosons HH and a3, a
single partonic state. We divide the phase space of aj into three regions using two slicing

parameters as

do(S,, 6., €) = da5(5,, €) + do™TC(S 5., €) + doTC(5,5,) . (3.42)

The soft (do"™5(8,, €)) and hard-collinear (do"#HC(§,, 5., €)) contributions can be com-
puted analytically when the slicing parameters are infinitesimally small within the dimen-
sional regularization. Soft and collinear singularities appear as poles in € and are cancelled
against those resulting from the virtual diagrams as well as from the counterterms that are
HH

used to perform mass factorization. In other words, the following sum, denoted by do;,

is finite as € — O:

dofifty(u2) = do'™V (e) + do"™*' (6, 6., €) + Ao (8, 8. €, 117 (3.43)

where do"V(¢) is the contribution from virtual corrections to Born level processes. The

counter term do"?CT(§

6 Op,y €, ,u%) that removes the initial state collinear singularities is
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defined at the factorization scale yr. While the sum given by

d0_8+(V+7‘{C+CT(6 HH,S((S HH,(V(E)

5 0cs ,u%“) =do 5 €) + do

+ dO'HH;HC((Ss, (sc’ E) + dO'HH’CT(ds, 50 €, ,U%—) . (344)

is free from soft and collinear poles in €, it depends on the slicing parameters. However,
when the above sum is added to the hard non-collinear contributions (dO'HH’%), that is,

do-gflo %) = lim (do_S+W+7{C+CT(6S’6C) +d0'HH’WC(6S,6C)) (345)

05,0,—0

the resulting contribution, Eq. (3.45), is guaranteed to be independent of the slicing pa-
rameters in the limit when they are taken to be infinitesimally small. For the sub-process,
g + b(b) = H + H + b(b), we encounter only collinear divergences and hence we require

a single slicing parameter J. to obtain infrared safe observable.

For completeness, we present the individual contributions that are required in phase space
slicing method to obtain inclusive cross section up to NLO level from class B diagrams.

The virtual contribution for the sub-process initiated by b and b is found to be

€ €
HHY NEARRACES) 16 12
do = as(/JF) (IJ—%) mdxld)(fz CF —g + ?

X da':';’(o)(xl, X7, e)(fb(xl)fg(m) +(x; & xz))

+do !V (xy, xa, ) f(r) f(02) + (1 © 1) )] (3.46)

bb.fin

after setting renormalization scale ug = ur. The finite part of the virtual corrections,

dotiv

. can be obtained in terms of C, given in Eq. (3.14). The soft contribution is given

by

€
Sra+9) (1_6 1616,

N
dO'HH’S ~ as(ﬂ%‘) (’u_%) m F + 8 1112 65)

€2 €
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X (dot Oy, x, ) fy(x) f(0) + (11 © X)) dnidxs.  (347)

The sum of hard-collinear and counter term contributions from both b annihilation and

gb(b) scattering processes, is found to be:

S+

HC+CT _ 'NIEAE
do =a,(uy) (,u%) —F(l To dxidx;

X

1 ~ 1.
do M (x1, 2, e>{5fb(x1, HEo o2, 1) + 5 T30, ) oo, )

1 s

1
+2 (—— +=In— )Ab_>h+g To(xn, ur) fo(x2, pip) + (X1 © x2) }] (3.48)
€ 2 u

Using the diagonal splitting function Pp,(z), we find

1
d 3
Apsprg = f ZP(z) =4C (2 Iné, + 5), (3.49)
1

—5,

and from the non-diagonal ones, we obtain
1-6 1
. tdz (X ~ dz . (x -
Folx, uz) = f ?fb (Z,lhzv) Ppy(z) + f ?fg (E,#%)Pbg(z)’ (3.50)

with
~ 1 -2 S ,
Pij(z) = P;j(z)In 60——2 + 2Pij(z) , (3.51)
Z 1953

where P;(z) [151] are € dependent part of splitting functions, that is
Pij(z,€) = P;j(2) + €P{{(2) . (3.52)

Adding all the order a;, pieces together: the virtual cross section do™V in Eq. (3.46),

HH.S

the soft piece do in Eq. (3.47) and the mass factorized hard-collinear contribution

doTHCCT a5 given in Eq. (3.48), we find that the poles in € cancel in the sum given in

Eq. (3.45) giving IR finite NLO contribution from class-B diagrams.
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NNLO corrections to class B: Soft-Virtual approach

Going beyond NLO for the class-B diagrams requires a dedicated computation taking
into account pure virtual contributions presented in last section, the double real and single
real-virtual contributions. The inclusion of the later contributions is beyond the scope of
the present work. However, we can compute the SV contribution resulting from class-
B diagrams. To achieve this, we follow the general formalism presented in Sec.[2.3.1],

which is applicable to both classes of diagrams.

We begin with the UV finite partonic cross section for producing a pair of Higgs bosons

and ny partons, namely for the process b(p;) + E(pz) — H(q) + H(qo) + X(k.),

2
é-bE = 2is 1:1[ fd¢(Qn) 1—[ fd¢(k )Zlebl (Zﬂ)déd Pl + Py — an Z (3.53)

c=1

where ¢ counts the number of partons in the final state. The dominant soft gluon contri-
butions to partonic reactions are proportional to terms such as (1 — z) and + distributions
of kind Dj(z) = [l“(l Z)] . Such contributions result only from bottom quark annihilation
sub-processes. They themselves do not constitute infrared safe observables until we in-
clude pure virtual contributions and mass factorization counter-terms. The resulting one

is called SV contribution.

In the soft limit, the square of the real emission partonic matrix elements factorises into
hard and soft parts and similarly the phase space splits into their respective parts. The soft
part when combined with the pure virtual corrections and the mass factorization counter

terms, will give infrared safe SV part of the cross section:

f dg ] ﬂ f do(gn) > IMOPn ' (py +P2—an)
f d¢<q>ﬂ f dg(ko) Y M| <2n)“6d( L+ pr-q- Z ] (3.54)

82



where M;%) is the Born amplitude for producing a pair of Higgs bosons in bottom quark
annihilation and M® is the SV part of amplitude M,;. The second line of the above
equation can be computed order by order in perturbation theory for any colorless state
with momentum ¢ in a process independent way as the amplitude for the production of a
pair of Higgs bosons factorises out at every order. Beyond LO, the virtual corrections to
Born amplitudes and multiple soft gluon emissions arising from tree level as well as from
loop corrected amplitudes contribute to the SV. While the singularities from soft gluons
cancel between real and virtual amplitudes, the initial state collinear singularities can be
removed only after adding appropriate mass factorization counter terms computed in the
soft limit at the factorization scale ur. The resulting hadronic cross section will be free of

soft and collinear singularities:

d 2 1 2
O'HH’SVqu—qzZfdxlfb(xla/"%)deZfb(XZ,,u%)z_sl_lfd¢(q'1)
bb n=l

2 N
x Qo (pr+pa= D @)D, D AN (- ah o i) (359

n=1 i=A,B

where z = ¢*/s, i runs over both the classes of diagrams. Following the threshold frame-
work in Sec.[2.3.1], the finite coeflicients 47} can be computed order by order in per-
turbation theory using one and two-loop virtual amplitudes, soft distribution function and
diagonal mass factorization kernels. We expand 47} in powers of strong coupling constant

as,

A3 =" al@ 43,9 (3.56)

J=0

§V,(j)

where we have set uz = p;. = ¢*. The coefficients, 4},

for j = 0, 1,2 can be expressed
in terms of the cusp A?, the soft qu and the collinear B? anomalous dimensions that are

present in the virtual amplitudes and in the soft distribution function [40]:
sv,0 0)2
A7 =51 = 2) IMGI,
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A =5(1 - 2) {|M§f’0>|2 (2@‘1”1) + MM + MﬁfQM:(g”} + Do(IMG I (-217)
+ DiIMG I (4A1)
AP =5(1 - z){|M§}O)|2 HIMOP(G +2@G) ) +280G) - 85:A1SY
- 200 - SEA) + MIME + MOMD
+ MOMEO(447) + MOMED + MOME (= 27 - 4BY) + MP M
= MUME + MM (2G)) + MM + MOMD(447)
+ MOMO( =27 - 4BY) + Mg?gM;(g“(zé‘f")} + @o(z){wf.fi;lz( 2 - 4f(G)
S4B 6T 8T) + MM (287 M (~217)
+ D (z>{|M§f3}|2(4(ff)2 FAAL L BATG) + 4By f7 - 164,(A7Y?)
+ MOMO(447) + M;?gM;(gw(m)}

+ Dz(z)wfgﬁ{ — 1249f0 - 4/30Af} + D3(2)IM,{8(AD?. (3.57)

where {, = 1.64493407--- ,{ = 1.20205690 - - - and ijk) are obtained from Eq. (3.14)

by defining M,,, = MJ,,, and expanding in powers of € as
M= > EMY. (3.58)

k=—2j

The cusp, collinear and soft anomalous dimensions are given in Appendix B. The univer-

—4-() o .
sal constants QZ " for the quark-initiated process are given by:

q,

G
—q. 7
§[112 =Cr (553) ,

L= Cr(-30)

328 70 32

—q,1
Qg = Cpny (—H + 3(2 + ?53) + CACF(

2428 469
81 g 2

176
+45% - Té) . (3.59)
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Finally, defining 4, (z, ¢%, u2, 3) by

—SV
i@ @ 1 13

1 2 2
51 f de(g,)(2n)" 5" [m +p-y qn]
n=1

n=1

- 2
XD UIMOP D A (105 ah 2o kpabiz) » (3.60)
i=1

we obtain o H7s;

(3.61)

1 1
O_HH,SV — f dx @maz(x’ﬂ%) f dZ A;IGZ(Z’ q2’ ,U%-, ,Lli))

q*=xz8

We have used the above formula to study the numerical impact of SV part of the par-
tonic cross section resulting from class-B diagrams up to NNLO level on the inclusive

production of a pair of Higgs bosons.

3.5 Phenomenology

In this section, we present in detail the numerical impact of our analytical results obtained
in the previous sections. We mainly focus on the inclusive cross section for producing a
pair of Higgs bosons at the LHC with the center-of-mass energy VS = 14 TeV. We use
MMHT2014(68cl) PDF set [152] and the corresponding a, through the LHAPDF-6 [153]
interface at every order in perturbation theory. We use the running bottom quark mass
renormalized in MS [130] scheme with the boundary condition m,(m;) = 4.7 GeV. Both
as(u%) and my,(u%) at various orders in perturbation theory are evolved using appropriate
QCD p-function coefficients and quark mass anomalous dimensions. Similarly, the PDFs
are evolved to factorization scale yr using the splitting functions computed to desired ac-
curacy in the perturbation theory. We choose the Higgs boson mass m;, = 125 GeV and
its total decay width I, = 0.001 GeV. In our analysis, we have included all the partonic
channels upto NNLO level for the class-A diagrams while for the class-B, we could do

this only up to NLO level, however, at NNLO level we have included SV contributions.
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Figure 3.5: The total cross section for di-Higgs production in bb annihilation at various order in
ag as a function of (/,ti/u(z)) on left panel with ur = uy and as a function of (,u% //J%) on right panel
with pug = uo with central scale g = 2my, and s = 14 TeV.

We find that this approximation does not change our conclusion as the dominant contribu-
tion results from class-A. To illustrate this point we state some of our observations from
our numerical results. We find that the LO contributions from class-A diagrams are three
orders of magnitude larger than those from class-B diagrams. We also find that NLO
contributions change the LO cross section by —1.096% and at the NNLO level the change
is about —8.095%. The numerical result manifests the fact that the SV contribution pre-
sented in this work not only gets the dominant contribution from class-A but also the
stability of our NNLO result for di-Higgs production from the bb annihilation channel.
We find that the contribution from bottom quark annihilation processes is three orders of
magnitude smaller than from the gluon fusion processes [110] (See Table 3.1). However,

former ones need to be included for the precision studies at the LHC.

Channel LO[fb] NLO[fb] NNLO[fb]
bb — H 0.02821 0.03169 0.02970
0g > H 17.06 31.89 37.55

Table 3.1: Inclusive total cross section for the di-Higgs production in dominant gluon fusion
chennale and sub-dominant bottom quark annihialtion channel for ug = urp = my, /2.

Having studied the size of the corrections both at NLO and NNLO level, it is important to
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Figure 3.6: The total cross section for di-Higgs production in bb annihilation at various order in
ay as a function of the mass scale p with (up = ug = ) for /s = 14 TeV.

quantify the uncertainties resulting from the mass scales introduced in our calculations.
Recall that the renormalization of the UV and the initial state collinear divergences en-
forces the introduction of mass scales namely ug and pr respectively. The pg dependency
shows up in the coupling constant as(,ufe), the mass mb(plze) and in the mass factorized
partonic cross sections at various orders in perturbations theory. The coupling constants
are evolved using the appropriate QCD g-function coeflicients and quark mass anomalous
dimensions. The ur scale dependency comes from the PDFs that are evolved using split-
ting functions computed in the perturbation series. But the cross section, like every other
physical observables, is expected to be independent of these arbitrary mass scales. This
crude fact manifests the scale independency if we sum the perturbative predictions to all
orders in perturbation theory. Since we have truncated the series, there is a residual scale

dependency. In the following we aim to study this by varying both pg and pp scales.

In Fig. 3.5, we show the variation of our fixed order predictions with respect to g (on
the left panel) and ur (on the right panel) for a particular choice of central scale oy = 250
GeV. We can see that except for the small ug and pp region, which is in the region below
Ur = my, there is an overall reduction of the scale dependency with increasing order of

perturbation theory. We observe that both NLO and NNLO results attain a much faster
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stability against the variation of the scales than the LO cross section. At the leading order,
there are no ug or ur scale dependent logarithms that can compensate those coming from
the Yukawa coupling and parton distribution functions, and hence LO has large scale

dependency. However, the inclusion of higher order terms that contain logarithms of

| (&4 | LOIfb]x10™" | NLO[fb]x10~" | NNLO[fb]x10™|
(2,2) 0.3587 0.3416 0.3119
2.1) 0.2951 0.3191 0.3098
(1,2) 0.3994 0.3384 0.2976
(1,1) 0.3286 0.3250 0.3020
(1,12) 0.2502 0.3032 0.3031
(1/2,1) 0.3704 0.3246 0.2879
(1/2,1/2) 0.2821 0.3169 0.2970

Table 3.2: 7-point scale variation for central scale at my, = 125GeV, k = 1

these scales provide partial cancellation at every order in perturbation theory. Hence the
inclusion of NLO and NNLO pieces reduces the dependency on the scales considerably.
In Fig. 3.6, we have set ug = ur and varied the cross section with respect to a single
scale . It can be observed that LO attains stability much faster compared to the case
when pg is not equal to ur. This can be comprehended from Fig. 3.5, where the LO
contribution behaves exactly in an opposite way with respect to the variation of both the
mass scales. So the stability in the leading order seen in Fig. 3.6 attributes to the fact
that there is a significant cancellation happening between the ugz and up scale variations
of the cross section. We also show the 7-point scale variation for the central scale at
my, = 125 GeV in Table 3.2. This variation spans the entire region from ug, ur = my/2 to
Ur, ur = 2my, and hence captures the uncertainty in this region. The 7-point scale variation
for a different value of central scale is also shown in Table 6.4. Table 6.5 contains the %-
uncertainty from the scale variation at two different central scales. It can be seen that the
leading order cross section has a huge scale uncertainty which implies the unreliability of
the result. But the scale dependency starts to reduce when we include the higher order

corrections.
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Hr - HE

H LO[fb]x107! \NLO[fb]xlo-1 H NNLO[fb]xlo-l\

Kkmy > kmy,
(2,2) 0.3765 0.3617 0.3256
(2,1) 0.3254 0.3384 0.3210
(1,2) 0.4150 0.3594 0.3110
(1,1) 0.3587 0.3416 0.3119
(1,1/2) 0.2951 0.3191 0.3098
(1/2,1) 0.3994 0.3384 0.2976
(1/2,1/2) 0.3286 0.3250 0.3020

Table 3.3: 7-point scale variation for central scale at my, = 125GeV, « =2

Central LO[fb]x10™" | NLO[fb]x10™" || NNLO[fb]x10"!
Scale(GeV)
466 o8 || 0.302073278%
125 0.32861 313505 | 0.325073308% ~4.669%
4.392%
250 0.3587+139%% | 0.3416*3210% || 031197554

Table 3.4: %-scale uncertainty at LO, NLO and NNLO

3.6 Summary

To summarize, we have systematically computed the inclusive cross section for the pro-
duction of a pair of Higgs bosons in the bottom quark annihilation up to NNLO level
in perturbative QCD. We find that the diagrams contributing at NNLO can be classified
to two classes, with no interference terms between them. For obtaining the corrections
coming from class-A, we use the result of single Higgs production from bottom annihila-
tion channel. For class-B, the evaluation of full NNLO inclusive corrections are hard to
achieve. However, we obtained the correction at the soft limit using the threshold frame-
work explained in chapter 3. We have analyzed these results numerically at the LHC
energy, which demonstrates that the inclusion of higher order terms reduces the renor-
malization and factorization scale uncertainties, and hence making the predictions more

re