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Summary

The core part of this thesis deals with computing higher order QCD and QED corrections

for the processes involving Higgs boson in the final states and the Drell-Yan (DY) process

by employing the perturbative theory within the SM.

In the first part, we discuss the fixed order approach to compute higher order corrections

concerning two kinds of observables: (1) QCD corrections for the di-Higgs production to

second order, and (2) mixed QCD-QED corrections to Higgs production at second order.

For both these processes, the dominant gluon contributions are known to unprecedented

accuracy, and hence our motive is to capture the corrections arising from the sub-dominant

bottom-quark annihilation channel. Computing di-Higgs production provides valuable

information on the trilinear self-coupling of Higgs boson and thereby on the shape of

Higgs potential. The computation of QCD-QED corrections involves dealing with the

interference effects of QCD and QED interactions. Using the exact NNLO result obtained

from the fixed order computations, we investigate their ultraviolet and infrared structure.

Numerical analysis on both these results at the LHC energy manifests the reduction in

unphysical scales, hence confirming the reliability of our results.

In the second half of the thesis, we address in detail the higher order QCD corrections

at the threshold approximation. We present a systematic framework for studying the cor-

rections arising from the threshold logarithms – also known as soft-virtual corrections –,

in particular, to the differential rapidity distribution for producing arbitrary colorless final

states. We also discuss a systematic way of resumming threshold logarithms to all orders

1



in double Mellin space. Resummation is required due to certain large logarithms at the

threshold limit, which may question the reliability of perturbative corrections.

While the singular structure of threshold logarithms dominate, the sub-dominant next-to-

threshold corrections are also vital for any precision studies as they give rise to numeri-

cally sizeable contributions. This topic is discussed in the last part of the thesis in great

detail. These sub-leading logarithms also spoil the reliability of the perturbation series

due to its significant contributions at every order. The canonical resolution through re-

summation for the next to SV terms is unfortunately hard to achieve. Nevertheless, we

propose a framework for the same, limiting only to the diagonal partonic channels. We

conclude by noting that the NSV logarithms demonstrates a rich perturbative structure

that needs to be explored further.
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Synopsis

The Standard Model (SM) of elementary particle physics is, perhaps, the pinnacle of hu-

man intellectual achievement (to date). It endured all the experimental challenges so far,

and its predictions are incredibly consistent with the measurements. Among its notable

successes are the observations of W and Z boson in 1983 at CERN, the discovery of top

quark in 1995 at Fermi lab, and the recent breakthrough discovery of Higgs boson in

2012 at CERN’s Large Hadron Collider (LHC). With its vast predictive successes, the

Standard Model is the closest we have for the complete description of the universe at the

fundamental level.

However, this is not the complete story: there is ample evidence that SM lacks explana-

tions for yet mysteries in physics. For instance, there is no suitable candidate in SM to

explain the dark matter content of the universe, it does not contain mass terms for the neu-

trinos to describe the neutrino oscillations, there are no explanations for the existence of

baryon asymmetry. More fundamentally, it is yet unclear how to incorporate the standard

model with the theory of gravity. These mysteries drive us to search for physics beyond

the standard model (BSM) hidden in dark processes of the universe. A decade of experi-

ments at LHC via Run-I and Run II phases hints that the effects of new physics might not

likely manifest as a direct signal. Instead, they might appear as small systematic devia-

tions from the SM behaviour. Hence, the new physics searches essentially depend on our

ability to obtain high-precision theoretical predictions within the Standard Model along

with high calibrated measurements at the colliders.
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At the experimental end, this undertaking is facilitated by constantly upgrading detectors

with large center-of-mass-energy and improved luminosity, thereby pushing down the sta-

tistical errors. The upcoming High-Luminosity LHC will further improve the precision,

allowing for per cent-level measurements. This scenario calls for immense efforts from

the theory side to produce (at least) the same level of precision as of data for a reliable

comparison between them both, which is crucial for several essential physics goals of the

LHC program.

In improving theoretical precision, higher order quantum chromodynamics (QCD) and

electroweak (EW) corrections play an essential role. Over the past few decades, several

attempts have been made to incorporate these higher order radiative corrections to observ-

ables at colliders. Often observables are expressed in terms of cross-sections, mainly by

either differential cross sections in one or more variables or by integrating over the fiducial

region of the detector surrounding the particle collision site. A successful methodology

to evaluate the cross-section in SM or BSM is based on perturbation theory, under which

any observable can be expanded in powers of coupling constants present in the underlying

Lagrangian. For instance, for QCD, the corresponding expansion parameter is the strong

coupling constant αs, and their perturbative corrections take the form:

σ = σ(0) + αsσ
(1) + αsσ

(2) + · · · (1)

Here, the first term is leading order (LO) or Born cross-section, second is called next-to-

LO (NLO) corrections to Born cross-section and so on so forth. Each new term in the

expansion (1.1) put forth new QCD interactions in the form of closed loops or radiations

of partons both suppressed by factors of αs. Despite this suppression, these higher order

radiative corrections are crucial for reaching the required precision as that of experiments.

Achieving a full QCD correction to any order is not easy, and with increasing perturba-

tive order, the complexity rises substantially. The non-Abelian nature of the theory and

relatively large coupling entails the inclusion of a plethora of sub-processes in the higher

4



orders, making the task non-trivial. Nevertheless, the tremendous efforts in these direc-

tions in the past few decades lead to remarkable achievements. Now we have advanced

techniques for the automation of NLO computations, and we are in good shape with next-

to-NLO (NNLO). Moreover, we achieved an incredible precision of next-to-next-to-NLO

(N3LO) for many important 2→ 1 processes at LHC.

However, with the increase of loops and legs, the complexity proliferates, making the

exact computation highly challenging. In this scenario, in the absence of exact fixed or-

der results, one could attempt various methods to capture the dominant contributions to

a physical observable by evaluating the quantity in certain limits. In general, the per-

turbative corrections get contributions from hard, soft and virtual parts corresponding to

those arising from energetic, soft and virtual gluons, respectively. For a heavy invariant

mass production at the hadron colliders, generically, the dominant contributions originate

from the soft regions, and hence these corrections are numerically significant at LHC. Be-

sides, the momenta of all the real emission diagrams in the soft region are assumed to be

infinitesimally small, leading to an all order exponentiation of this contribution. Hence,

capturing these corrections are crucial for theoretical understanding as well. We call these

corrections together with the virtual corrections, in general, soft-virtual (SV) corrections.

This thesis concerns the computations of higher order QCD corrections to inclusive and

differential observables for various scattering processes at the colliders. Besides, it also

addresses mixed QCD-QED corrections to the inclusive cross-section by considering a

specific process. For convenience, the topic is divided into two parts. The first part

addresses fixed-order computations, which capture the complete behaviour of a given

quantity at a fixed order in coupling constant. Whereas, in the second part, we discuss the

soft-virtual approximation for various Sudakov-type processes, by addressing not only the

correction but also the question of resummation, which is a necessary ingredient to obtain

reliable theoretical predictions at the soft limit. In addition to the leading term in SV cor-

rections, we focus on the structure of sub-leading terms as well. Perturbative corrections
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concerning both SV and NSV contributions are called next to SV (NSV) corrections. In

subsequent sections, we address the above topics with main focus on the corrections to

Higgs production through gluon fusion and/or bottom quark annihilation channel.

Fixed order approach

In this section, we deal with the fixed order calculations till the second order in coupling

constant and is comprises of two subsections. In the first, we address complete fixed order

corrections to an inclusive reaction associated with Higgs production at LHC. Whereas,

in the second part, we discuss a comparative study between QCD, mixed QCD-QED and

pure QED at the NNLO.

Di-Higgs production from bottom quark annihilation at NNLO

In all measurements explored so far at LHC, the rates and differential measurements are

remarkably consistent with the SM predictions. One of the significant challenges in next

LHC phase is constraining Higgs trilinear and quartic self-couplings. The Higgs self-

coupling is crucial to understand the Higgs field potential, thereby explaining the elec-

troweak symmetry breaking mechanism. A useful avenue to investigate the trilinear cou-

pling is the production of a pair of Higgs boson at hadron colliders.

Among various partonic channels that contribute to this process, gluon fusion is the dom-

inant one and is well studied both in effective theory as well as in full-QCD. As the

precision at the hadron collider improves, it is crucial to incorporate other sub-dominant

channels as well into the production mechanism. In this work, we have considered one

such channel, namely di-Higgs production in bottom quark annihilation, which is sensi-

tive to the trilinear coupling. For this process, QCD corrections at NLO exist in the liter-

ature [1], and hence our aim is to compute the corrections to the inclusive cross-section at
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NNLO accuracy.

There are mainly two classes of diagrams that contribute at NNLO, both in virtual and

real emission sub-processes. One category is the vertex type diagrams that belongs to

class-A. The latter one, we call class-B, are the t- and u-channel diagrams. The loop

corrections to class-A are known in the literature till the third order [2]. For class-B

diagrams, we produce the virtual corrections at NNLO using in-house routines based on

FORM and Mathematica packages. To check the consistency of these corrections, we

compared them with the well-known universal structure of two-loop infrared poles as

predicted by Catani [3].

Further, using these two-loop results at hand, we have performed the complete NNLO

corrections to the inclusive cross-section for the case of class-A diagrams. For class-B

diagrams, since the full computation is difficult to attain at present, we compute them

at the SV approximation. To obtain the former contributions, we suitably factorized the

scattering amplitudes and the phase space and used the available single Higgs production

cross-section. The latter one is highly non-trivial, nevertheless, considering the univer-

sal nature of soft and collinear components, we obtain the SV contributions till NNLO.

Further, we analyze these results numerically at LHC energy in order to estimate their

size, which demonstrates that the inclusion of higher-order terms in the perturbative ex-

pansion reduces the dependence of unphysical scales in the problem, thereby making the

predictions more reliable.

Mixed QCD-QED corrections to bb̄→ H at NNLO

The efforts to compute the observables related to Higgs production have been going on for

a while as those are very sensitive to high scale physics. Since the dominant contribution,

which is the gluon fusion channel, is known to unprecedented accuracy, the inclusion of

corrections originating from subdominant channels is essential for any consistent study.

7



One such subdominant channel is the Higgs production from bottom quark annihilation.

State-of-the-art for this channel in QCD reached an incredible accuracy of N3LO [4].

These QCD corrections are of the same order as that mixed QCD-EW predictions, de-

spite the smallness of EW coupling in SM. Current or future high-precision experimental

measurements and high-luminosity LHC, thus, demands the inclusion of equally precise

predictions in mixed QCD-EW theory.

In this context, we explore the possibility of including EW corrections to the aforemen-

tioned channel. Since the computation of full EW corrections is more involved, as a first

step, we compute all the QED corrections up to second order in the coupling constant

αe, taking into account the non-factorizable or mixed QCD×QED effects through αsαe

corrections. The computation involves dealing with QED soft and collinear singularities

resulting from photons and massless partons along with the corresponding QCD ones.

Understanding the structure of QED infrared (IR) singularities in the presence of QCD

ones is a challenging task. We have systematically investigated both QCD and QED IR

singularities up to second order in their couplings, taking into account the interference

effects. We demonstrate that the IR singularities from QCD, QED and QCD×QED inter-

actions factorize both at the loop corrections as well as at the cross-section level. Besides,

by computing the real emission processes in the SV limit, we have studied the structure

of the soft distribution function. Using the universal IR structure of the observable, we

have determined the mass anomalous dimension of the bottom quark and hence the renor-

malization constant for the bottom Yukawa. We also discussed the relation between the

results from pure QED and pure QCD as well as between QCD × QED through a set of

rules known as Abelianization. Using complete NNLO results from QCD, QED and QCD

× QED, we performed a systematic study to understand their impact at the LHC energy.

We find the corrections from mixed QCD × QED and QED are mild as expected, however

these higher order corrections improve the reliability of the predictions.
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Resummation at threshold and beyond

While the fixed order calculations are successful for many observables, they are reli-

able only if the perturbative behaviour of the series is retained. This criteria fails near

kinematic threshold due to certain logarithmic enhancements which, hence, has to be re-

summed to all orders in coupling constant to obtain a reliable approximation. Needless

to say, inclusion of such higher order QCD effects not only improves the accuracy of pre-

dictions but also reduces the unphysical scale dependence significantly. Moreover, those

terms at the kinematic threshold, namely soft-virtual corrections, are often the dominant

contributions to the inclusive cross sections, thus computing them in the absence of full

NNLO or next to NNLO corrections, is essential in the precision studies.

In this section we focus on the study of SV corrections for inclusive as well as differential

observables associated with the Higgs production. This section mainly comprises of two

parts. At first, we discuss the SV computations at the threshold addressing differential

rapidity distributions. And in the later part, we extend this studies to beyond threshold to

obtain so called next-to-SV corrections.

Rapidity resummation for a generic n-colorless final states

Despite its high importance, the differential rapidity distribution and its radiative correc-

tions are computed only for a limited number of scattering processes, unlike the inclusive

ones. This section concerns the differential cross-section with respect to the rapidity vari-

able, in particular, we address the question of computing the higher order QCD correc-

tions to this observable for any generic process at a hadron collider with all the final state

particles as colorless.

A formalism to incorporate the soft-gluon contribution to the rapidity distribution for the

production of a colorless final state in hadron collider is known in the literature [5]. In
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this work, we extended that formalism to the case of any number of final state colorless

particles. This formalism is based on QCD factorization, which dictates that the soft part

of the real emission diagrams factorizes from the hard contribution and renormalization

group (RG) invariance.

For the production of an arbitrary number of colorless particles in the hadronic collision,

the soft part remains identical to the case of the Sudakov type process since the real emis-

sion can only occur from the initial state partons. The main deviation from the Sudakov

type formalism arises from the virtual corrections, where the kinematic dependence is

much more involved. The rest of the formalism relies essentially on the collinear fac-

torization, the renormalization group invariance, universal IR structure of the scattering

amplitudes, and the process independence of the soft-collinear distributions. Besides this,

we also use an additional fact that the Nth Mellin moment of the differential distribution

has a relation with its inclusive counterpart in the large N-limit. The mere use of this fact

enables us to get an all order relation between the soft-collinear distribution of inclusive

cross-section and that of rapidity. Hence from the given quantity in the inclusive part,

we can determine it for rapidity, thereby avoiding the explicit computation of the real

emission processes for rapidity distribution.

In this work, we presented a general structure for the SV differential rapidity distribution

up to fourth order in the strong coupling constant and the resummed predictions until the

third leading logarithms in QCD. These results can be expressed in terms of universal

anomalous dimensions along with the process-dependent virtual matrix elements. The

former, which comprises of process independent finite segments of soft-collinear distri-

bution and the mass factorized kernels, remains unaltered irrespective of the number of

colorless particles in the final states. Furthermore, the soft-collinear distributions for the

quark and gluon initiated processes are found to be related to each other through sim-

ple quadratic Casimir scaling, known as the maximally non-Abelian property. This is

explicitly verified up to N3LO. In summary, to obtain the fixed order and resummed pre-
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diction for the differential rapidity distributions of a generic n-colorless final states, one

merely requires the form factor corresponding to the hard process under study provided

the soft-collinear distribution for Sudakov type process is known.

NSV corrections and Resummation beyond threshold

In this subsection, we focus on the computation of SV+NSV contributions for certain

Sudakov type processes, such as production of a pair of leptons in the Drell-Yan process

and Higgs boson in gluon fusion and in bottom quark annihilation. Since the leading term

at the SV limit, known as threshold corrections, are well established, in this work, our

concern is to study the structure of the next term, which is next to-SV contributions.

While SV contributions dominate, the next to SV contributions are also numerically size-

able, and hence computing them in the absence of complete result at a given order is es-

sential in precision studies. Lot of progress [6–8] has been made in recent times leading

to better understanding of NSV terms. In our work, using IR factorization and renor-

malization group invariance, we show that both SV and next-to-SV contributions satisfy

Sudakov differential equation whose solution provides an all order perturbative result in

strong coupling constant. Like SV, next-to-SV contributions also demonstrate IR structure

in terms of certain IR anomalous dimensions. However, NSV terms depend, in addition,

on certain process dependent functions. In z-space, we show that the next to SV contri-

butions do exponentiate allowing us to predict the corresponding NSV logarithms to all

orders. Further, we observe that the NSV part of the solution is invariant under gauge like

transformations allowing us to construct class of solutions, all giving identical fixed order

predictions for NSV terms of partonic coefficient functions.

The SV and NSV logarithms in the perturbative results, when convoluted with appropri-

ate parton distribution functions to obtain hadronic cross-section, give huge contributions.

The presence of these large corrections at every order may invalidate the predictions from
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the truncated perturbative series. For the leading SV corrections, resolution to this prob-

lem is found by suitably reorganizing the perturbative series, which is widely known as

threshold resummation [9, 10]. Whereas, for the subleading terms, a canonical resolution

through resummation is unfortunately hard to achieve. In this work, along with under-

standing the role of NSV terms, we attempt to develop a resummation formalism for

inclusive cross-sections, constraining only to the diagonal channels. We derived an inte-

gral representation in the z-space for the partonic coefficient function at the exponent level

which can be used to study these threshold logarithms in Mellin N-space. Unlike the SV

part of the resummed result, the resummation coefficients for NSV terms are found to be

controlled not only by process independent anomalous dimensions but also by process de-

pendent coefficients. Indeed, these observations might shed light to many future attempts

to understand the nature of NSV logarithms and their phenomenological importance to

inclusive observables.
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1 Introduction

The richness of diverse phenomena in our universe stems from the physical principles that

act at the level of elementary particles. Interaction of these particles constitutes the atoms

and molecules that define the objects in our everyday world. Search for these particles,

deciphering how they interact and what are their properties are centuries-long. The notion

of elementary particles has progressed through histories, from ‘the ancient five’ to the

concept of electrons, protons and neutrons. In the recent past, the protons and neutrons are

also found divisible in terms of entities called quarks. Today, with our current knowledge,

we sum up the fundamental constituents of nature as the matter particles – composed of

quarks and leptons – and force carrying particles – known as bosons. It is these quarks,

leptons and bosons, when cobbled together, account for all the complexity and beauty of

our visible world at the sub-atomic scale.

The theory that best describes (so far) the behaviour of these elementary particles and

almost all their interactions is called the Standard Model (SM) of particle physics. The

development to its current shape took several decades, driven by the collaborative efforts

of many brilliant minds around the world. Since its formulation, the SM predictions

have been scrutinized and verified through a series of discoveries and experimentation.

Among its significant successes are the observations of W and Z boson in 1983 at CERN,

the discovery of top quark in 1995 at Fermilab and the recent breakthrough discovery of

Higgs boson in 2012 at CERN’s Large Hadron Collider (LHC), which marks the inventory

of last, missing particle of SM.
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The SM relies on the mathematical framework of Quantum Field theory (QFT), in which

particles are described in terms of a dynamical field that pervades space-time. The dynam-

ics of this field are controlled by a Lagrangian constructed from underlying symmetries

of the system. These symmetries are primarily classified as global and local or gauge

symmetries that enforce the physical properties to be invariant under certain transfor-

mations. The global symmetries are associated with properties of the particle and are

inherent to the system as a whole. On the other hand, the local gauge symmetry is an in-

ternal symmetry related to particle interactions. The modern version of SM relies on the

local SU(3)C × SU(2)L × U(1)Y gauge symmetry: each of them manifestly gives rise to a

fundamental interaction. The SU(3)C describes the theory of strong interactions – Quan-

tum Chromodynamics (QCD) – with the conserved color charge. Whereas SU(2)L de-

scribes the weak isospin interaction acting only between left-handed fermions, and U(1)Y

is characterized by electromagnetic interactions. The weak and electromagnetic interac-

tions are partly unified in spontaneously broken electroweak (EW) interactions, described

by SU(2)L × U(1)Y. Each of these interactions is mediated by gauge bosons, which are

gluons for strong force and photons, W- and Z- bosons for EW interactions.

Three different families of elementary particles characterize the modern SM. The first

family are consists of matter particles – quarks and leptons of 6 each and comes with

half-spin – called fermions and are arising from the quantization of fermion fields. The

fermions appear in three generations, which are identical in every attributes except in their

masses. The first generation is responsible for all the stable matter in the universe, while

the second and third are less stable heavier particles. The second family of elementary

particles are the gauge bosons – quanta of bosonic fields – which are carriers of strong

and electroweak interactions. In addition to these gauge bosons, there is a third boson,

known as Higgs boson, arising from the excitations of Higgs field, which represent the

third family and the only known single scalar particle of SM. The Higgs field is brought

into the SM to explain the spontaneous breaking of electroweak symmetry. Unlike the

predictions from the gauge symmetries, which enforce the particles to be massless, the
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W- and Z- bosons are found to be massive in reality. This discrepancy is explained

through Brout-Englert-Higgs-Kibble mechanism [11–15] which implements spontaneous

breaking of electroweak symmetry to yield mass for these SM particles. This mechanism,

however, additionally predicts the existence of the Higgs field – as what we call it today.

Although originally conceived to explain the origin of W and Z boson masses, the BEH

mechanism later extended to account for the mass of any sub-atomic particles. Particles

that interact with the Higgs field acquire masses, and the strength of its coupling with

Higgs determines how massive the particle is. Those particles which do not interact with

the Higgs field – photons, gluons and possibly neutrinos – remains massless. Built on

spontaneously broken electroweak theory with the unbroken strong interaction and incor-

porating the Higgs mechanism, the SM completely account for the physical realities at

the sub-atomic level.

All those achievements obtain for the SM, however, do not stop the need for further

exploration. Despite its spectacular success, the SM in its current shape leaves many

observed phenomena unexplained. Presently the theory incorporates three out of funda-

mental forces, while the fourth force and the familiar one in our everyday lives, gravity,

as described by the general theory of relativity, is not part of the SM yet. Further, the

model fails to explain the existence of neutrino masses and their hierarchy and the origin

of matter-antimatter asymmetry in the universe. Also, it does not include a suitable can-

didate to explain the nature of dark matter and the dark energy content of the universe.

These mysteries motivate us to keep searching for physics beyond the standard model

(BSM) hidden in the dark recesses of the universe. However, neither any experimental

hints exist for the origin of these phenomena yet, nor we have any precise energy scale

or coupling strength for new physics to explain them. In parallel, many questions remain

unanswered about the origin of the Higgs boson: whether it is an elementary particle or a

composite state of confined particles, how does its mass generate, or what is the mecha-

nism behind its self-interactions.
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To address these questions requires precision measurements of Higgs boson properties

and EW interactions above the weak scale, for which the exclusive tools are the high

energy colliders. In the last fifty years, we have received an enormous wealth of in-

formation from experiments at particle colliders. From CERN’s Large Hadron Collider

(LHC), which is the largest among all the colliders till today, around fifteen million bil-

lion proton-proton collisions are already taken place in a decade. The experiments at LHC

via Run-I and Run II phase hint that the new physics effects probably do not appear as

clear resonance signals but as tiny systematic deviations from the SM predictions. Hence,

the searches for the new physics essentially depend on our ability to obtain high-precision

theoretical predictions within the Standard Model combined with the high calibrated mea-

surements at the colliders.

At the experimental end, this undertaking is facilitated by continuously upgrading the

detectors with improved collision energy and luminosity. Through LHC histories, the

collision energy has improved from 7 to 13 TeV, which possibly will increase to 14 TeV

in the next run. The upcoming High-Luminosity LHC will further enhance the preci-

sion, allowing for per cent-level estimations, hence providing better chances to track rare

phenomena and improve the statistically marginal measurements. This scenario calls for

immense efforts from the theory side to produce (at least) the same level of precision as

data for a reliable comparison between them both, which is crucial for several essential

physics goals of the LHC program.

In improving theoretical precision, higher order QCD and EW corrections play an essen-

tial role. Over the past few decades, several attempts have been made to incorporate these

higher order radiative corrections into the observables at colliders. Often observables are

expressed in terms of cross sections, mainly by either differential cross sections in one or

more variables or by integrating over the fiducial region of the detector surrounding the

particle collision site. A well-employed technique to perform the cross section in SM or

BSM is based on perturbation theory; under this prescription, an observable is expanded
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in powers of coupling constants present in the underlying Lagrangian. For QCD, the cor-

responding expansion parameter is the strong coupling constant αs, whose series plays

a dominant role for a large variety of processes at the typical LHC energy scales. For a

given process, perturbative QCD (pQCD) corrections take the form:

σ = σ(0) + αsσ
(1) + αsσ

(2) + · · · (1.1)

Here, the first term is leading order (LO) or Born cross section, the second is called

next-to-LO (NLO) corrections to Born cross section and so on so forth. Each new term

in the expansion (1.1) put forth new QCD interactions in the form of closed loops or

radiations of partons both suppressed by factors of αs. Despite this suppression, these

higher order radiative corrections are crucial for achieving the required precision as that

of experiments.

Achieving a full QCD correction to any order is not easy, and with increasing perturbative

order, the complexity rises substantially. The non-Abelian nature of the theory and rela-

tively large coupling entails the inclusion of a plethora of sub-processes in higher orders,

making the task non-trivial. Nevertheless, tremendous efforts in these directions in the

past few decades lead to remarkable achievements. Now we have advanced techniques

for automating NLO computations, and we are in (almost) good shape with next-to-NLO

(NNLO).

However, with the increase in loops and legs, the complexity proliferates, making the ex-

act computation highly challenging. Considering N3LO, the exact computation is avail-

able only for the simplest (2 → 1) processes [4, 16, 17]. In this scenario, in the absence

of exact fixed order results, one could attempt different methods to capture the domi-

nant contributions to a physical observable by evaluating the quantity in certain limits.

In general, the perturbative corrections get contributions from hard, soft and virtual parts

corresponding to those arising from energetic, soft and virtual gluons, respectively. For

a heavy invariant mass production at the hadron colliders, such as the Higgs or Z-boson
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productions, the dominant contributions originate from the soft regions. Hence, these

corrections are numerically significant at LHC. Besides, (almost) zero momenta of real

emissions at soft region lead to their all order exponentiation. Hence, capturing these

corrections are crucial for theoretical understanding as well. These contributions cob-

bled with the pure-virtual corrections, in general, known as soft-virtual (SV) or threshold

corrections. The term threshold is because these corrections are the ones contributing

at the extreme production threshold. It is also known as soft due to the soft emissions

in this kinematical region. These corrections play a crucial role in the absence of exact

predictions at a certain order in the coupling constant.

The core part of this thesis deals with computing higher order QCD and QED corrections

for the processes involving Higgs boson in the final states and the Drell-Yan (DY) process

by employing the perturbative theory within the SM. The thesis comprises three parts:

1. The fixed order approach – we compute the complete behaviour of inclusive observ-

ables at a fixed order in the coupling constant present in the underlying Lagrangian.

2. The threshold approximation – by addressing the QCD correction that appears at

the extreme production threshold, we study the general infrared (IR) and ultraviolet

(UV) structure of scattering cross sections, considering a differential observable.

Following these studies, we able to develop a framework for resumming the leading

power (LP) large logarithms at the production threshold.

3. The next-to-threshold or next-to-SV (NSV) approximation – In the last chapter, we

extend the study at threshold approximation by including sub-leading corrections

that arise from the next to leading large logarithms, also known as next to LP (NLP)

logarithms. By studying their UV and IR structure, we propose a framework for

resumming these NLP logarithms.
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Outline

The thesis comprises a selection of published works and preprints that provides a com-

prehensive picture of higher order computations of physical observables at LHC. A con-

densed outline of the thesis is as follows.

In chapter 2, we start with a brief overview of the basic principles of QCD and a discussion

on methods to compute higher order corrections in perturbative QCD. We also review a

framework to compute threshold corrections in great detail, which will play a notable role

in our later results.

In chapter 3, we discuss the NNLO computation of di-Higgs productions in the bottom

quark annihilation channel. This production channel is a valuable avenue to investigate

the trilinear coupling and Higgs potential, which is one of the significant challenges in the

next phase of LHC. At NNLO, two classes of diagrams contribute – vertex type diagrams

and t- and u- channel ones. For the computations, we use in-house routines based on

FORM and Mathematica packages. Since the complete result of t- and u- channels are

challenging (at present), we compute them at the SV approximation. Numerical analysis

at LHC energy illustrates the reliability of our predictions.

The state-of-the-art QCD corrections have reached such accuracy that requisites the in-

clusion of precise predictions of mixed QCD-EW theory. This possibility is explored

in chapter 4 for the bottom quark induced Higgs boson productions. Since the compu-

tation of complete EW corrections is more involved, as a first step, we compute all the

QED corrections up to second order in the coupling constant αe, taking into account the

non-factorizable or mixed QCD-QED effects through αsαe corrections. The computation

involves dealing with QED soft and collinear singularities resulting from photons and

massless partons, in addition to the QCD ones. We systematically investigate the struc-

ture of QCD and QED IR singularities up to second order in their couplings, taking into

account the interference effects. In the process, we obtain the mass anomalous dimension
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and renormalization constant of Yukawa coupling as a bonus point. We also discuss a set

of rules which connects the QCD, QED and mixed QCD-QED results.

In chapter 5, we discuss the threshold corrections for a differential rapidity observable

associated with the Higgs production. In particular, we address the higher order QCD

corrections to this observable for generic n-colorless final states. The formalism is based

upon the collinear factorization of differential scattering and RG invariance. The soft part

remains similar to Sudakov-type processes, while for the virtual corrections, the kinematic

dependence is much more involved. In addition to the threshold rapidity corrections, we

discuss a framework to resum the threshold logarithms in rapidity variables.

In the last chapter 6, our concern is to extend the threshold framework to include the next-

to-threshold or next-to-SV corrections, which attracted considerable attention in recent

time. While SV singular structure dominates, the next-to-SV ones are also large and pro-

duce numerically sizeable corrections. Hence computing them in the absence of complete

result at a given order is essential in precision studies. In this context, we propose a frame-

work with the logic of IR factorization and RG invariance. We show that similar to SV the

next-to-SV logarithms also exhibit an all order perturbative structure. This idea enables

us to propose a formalism to resum certain next-to-leading power logarithms, which is

the first of the kind in literature beyond leading logs.
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2 Review of perturbative QCD

To start with, let us review some basics of QCD. It is to be noted that this chapter is by no

means intended for a complete review, rather a short introduction to fix the conventions

and notations. For more details, the reader is referred to [18–21] and the standard texts.

2.1 Basics of QCD

Quantum Chromodynamics – or QCD – is the theory of quarks, gluons and their inter-

actions. This field theory is a non-Abelian gauge theory based on the SU(3) gauge sym-

metry. It has a similar structure as QED – electromagnetic interaction– but with a subtle

difference that the gauge boson – gluon – carries color charge. Hence in addition to the

interaction with quarks, gluons interact among themselves too. Consequent to this fact

comes the aspects of asymptotic freedom, which defines the success of QCD to describe

the strong interaction. The critical implication of asymptotic freedom is that it explains

the point-like behaviour of quark at short distances and offer a mechanism for the strong

confining force at large distances. The short distance physics is the realm of perturbative

QCD.

In the following, we briefly outline the QCD Lagrangian, followed by the aspects of

asymptotic freedom and the running coupling constant. We also discuss parton model and

how it modifies when the QCD radiative corrections are applied. In subsequent sections,

we briefly address fixed order computation techniques and the threshold framework.
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2.1.1 QCD Lagrangian

The perturbative analysis of any process in QFT requires the use of Feynman rules de-

scribing the interactions in theory, which can be derived from the underlying Lagrangian

density. For an SU(Nc) gauge group encapsulating the interaction of fermions with the

non-Abelian gauge bosons, the Lagrangian density is given by:

L = Lclassical +Lgauge− f ixing +Lghost (2.1)

The classical Lagrangian takes the form:

Lclassical = −1
4
Ga
µνGa,µν +

n f�

f=1

ψ
f
α,i

�
iγµαβDµ,i j − mfδαβδi j

�
ψ

f
β, j (2.2)

These terms represent the interaction of spin-1/2 quarks with mass mf and massless spin-1

gluons. The gamma matrices satisfy the anti-commutation relation: {γµ, γν} = 2gµν . The

field strength Ga
µν is derived from the gluon field Ga

µ

Ga
µν = ∂

µGa
ν − ∂νGa

µ + ĝs f abcGb
µG

c
ν (2.3)

and ψ f
α,i is the fermionic quark field. The third non-Abelian term in Eq.(2.3) distinguishes

QCD from QED, giving rise to triplet and quartic gluon self-interactions and ultimately to

the property of asymptotic freedom. The coupling constant ĝs determines the strength of

interaction between quarks and gluons, and f abc is the structure constants of the SU(Nc)

group. The indices in Eq.(2.2) dictates :

a, b, · · · : color indices in the adjoint representation⇒ [1, · · · ,N2
c − 1] ,

i, j, · · · : color indices in the fundamental representation⇒ [1, · · · ,Nc] ,

α, β, · · · : Dirac spinor indices⇒ [1, · · · , d] ,

µ, ν, · · · : Lorentz indices⇒ [1, · · · , d] . (2.4)
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where d is the space-time dimensions. The covariant derivative Di j
µ acting on the adjoint

and fundamental representations takes the form

Dµ,ab = δab∂µ − ĝs f abc Gc
µ

Dµ,i j = δi j∂µ − iĝs(T a)i j Ga
µ (2.5)

respectively. The T a are the generators of the fundamental representation of SU(Nc),

which are related to the structure function through

�
T a, T b

�
= i f abcT c . (2.6)

A representation for T a is provided by the Gell-Mann matrices, which are traceless and

Hermitian and are normalized with

tr T aT b = TFδ
ab with TF = 1/2 . (2.7)

They also satisfy the completeness relation given by:

�

a

T a
i jT

akl =
1
2

�
δilδk j − 1

Nc
δi jδkl

�
(2.8)

With the above choices, the color matrices obey the following relations, which are often

useful in simplifying the color algebra :

�

a

(T aT a)i j = CFδi j

f abc f abd = CAδ
cd (2.9)

where CF =
N2

c−1
2Nc

and CA = Nc are the quadratic Casimirs of the SU(Nc) group in the

fundamental and adjoint representation respectively. For QCD, the SU(Nc) group index

Nc = 3 and quark flavor n f = 6.
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The second term in the Lagrangian in Eq.(2.1) is the gauge fixing term, which is required

to perform the perturbation theory consistently. This term originates because, while quan-

tizing, the gluon propagator cannot take an unambiguous form without choosing a gauge.

The reason behind this is the presence of gauge degrees of freedom inherent in the classi-

cal Lagrangian. The choice of gauge is:

L = − 1
2ξ

�
∂µGa

µ

�2
, (2.10)

which fixes the gauge in a covariant way with an arbitrary gauge parameter ξ. A typical

choice of setting ξ = 1 in Eq.(2.10) gives Feynman gauge. In this thesis, we use the

Feynman gauge throughout unless we specify otherwise. However, we emphasize that

the choice f gauge do not alter the physical results. The immediate consequence of gauge

fixing in QCD is that it generates new particles called Faddeev-Popov ghosts – spin-0

particles but having Fermi statistics. The Lagrangian for the ghost field is given by

Lghost = (∂µχa∗)Dµ,ab χ
b (2.11)

where Dµ,ab is defined in Eq.(2.5). The ghost field χa cancel the unphysical degrees of

freedom, which would otherwise propagate in covariant gauges. These particles never

appear as external physical states but in closed loops interacting with gluons. Now we

have the full Lagrangian as given in Eq.(2.1), which can be used to derive all the Feynman

rules. See Appendix-A for the complete list of QCD Feynman rules.

There are essentially two first principle approaches to solving the QCD Lagrangian –

lattice QCD and perturbative QCD.1. The complete approach is lattice QCD, where one

discretizes the space-time and consider the values of quark and gluon fields at all the edges

of the resulting 4-dimensional lattice. The method has been successfully used in a range

1There are, in addition, effective field theory methods where one can solve the specific limits of QCD
with certain inputs taken from lattice or perturbative QCD. Also, there are yet another set of techniques
that makes use of AdS/CFT correspondence to relate the QCD-like models at the strong coupling to weakly
coupled gravitational models
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of contexts such as CKM matrix; however, it is implausible to use them for computations

of LHC scattering processes with the current knowledge along this direction.

The method that is widely used for collider physics is the perturbative QCD approach,

which is based on an order-by-order expansion in the strong coupling constant αs =
ĝ2

s
4π �

1. For a given observable σ, the expansion looks :

σ = σ0 + αsσ1 + α
2
sσ

2 + · · · , (2.12)

where computing lower-order terms of the series are sufficient, with an understanding

that the rest are negligibly small. The coefficients σi is computed using Feynman dia-

grammatic techniques. In this thesis, we deal with the perturbative applications of QCD.

2.1.2 Asymptotic freedom and running coupling

As mentioned earlier, QCD exhibit asymptotic freedom and confinement. Due to the

confinement, the quarks and gluons are strongly interacting at low energy, while at high

energy, they are asymptotically free and do not interact. Hence, the coupling constant

decreases for high energies, enabling the perturbative expansion around the free field

theory. The expansion parameter for QCD is the strong coupling constant,αs, and the

series takes the form given in Eq.(2.12). For computations, the standard methodology is

to use the Feynman diagrams that contribute to every order in the coupling constant. This

comprises loop and phase space integrals at higher orders, which involves divergences

beyond the leading order terms. The origin of these divergences can be traced from mainly

two categories. The first one is when the loop momenta approach infinity – so-called

ultraviolet (UV) divergences – and the other category arises when the emissions in the

scattering process go soft or collinear to external partons – commonly called infrared (IR)

divergences. In this section, we focus on UV divergences. Both of these divergences

can be regularized using dimensional regularization [22], in which the dimensionality of
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space-time is analytically continued from 4 to d = 4+ �. Hence divergences will show up

poles in �.

The UV divergences can be removed by performing a suitable redefinition of the coupling

constants and fields – the process is known as renormalization. This redefinition involves

absorbing the UV divergences into a few parameters – known as renormalization constant

–, and each consists of introducing some scale parameter that is not intrinsic to the theory

but tells how we did the renormalization. The new scale is called the renormalization

scale. It is to be noted that this scale is an unphysical one, and our physics is independent

of them. We denote the unrenormalized or bare physical quantity with a hat on the nota-

tion and the renormalized ones without the hat. Renormalization of a given bare quantity

F̂ can be represented in general as:

F̂ = ZF(µR) F(µR) . (2.13)

Here the ZF is the renormalization constant which absorbs all the UV divergences of F̂,

and the quantity F is UV finite2. For the renormalization procedure, we use minimal

subtraction (MS) scheme.

Running of QCD coupling

As we have seen, the theory must be renormalized, however, the physics is invariant to the

renormalization scale. Running coupling is a consequence of this renormalization group

invariance. The fact that the physical quantity âs ≡ α̂s
4π is independent of µR leading to the

renormalization group (RG) equation :

µ2
R

das

dµ2
R

= β
�
as(µ2

R)
�
, β

�
as(µ2

R)
�
= −

∞�

n=0

βn an+2
s (µ2

R) (2.14)

2 The dependence on the µR-scale comes only through the presence of gs
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where the available βi’s [23–30] are

β0 =
11
3

CA − 2
3

nf ,

β1 =
34
3

C2
A − 2nf CF − 10

3
nf CA ,

β2 =
2857
54

C3
A −

1415
54

C2
An f +

79
54

CAn2
f +

11
9

CFn2
f −

205
18

CFCAnf +C2
Fn f ,

β3 =

�
17152
243

+
448

9
ζ3

�
CACFT 2

Fn2
f +

�
−4204

27
+

352
9
ζ3

�
CAC2

FTFn f

+
424
243

CAT 3
Fn3

f +

�
7073
243

− 656
9
ζ3

�
C2

ACFTFn f +

�
7930
81
+

224
9
ζ3

�
C2

AT 2
Fn2

f

+
1232
243

CFT 3
Fn3

f +

�
−39143

81
+

136
3
ζ3

�
C3

ATFn f +

�
150653

486
− 44

9
ζ3

�
C4

A

+

�
1352

27
− 704

9
ζ3

�
C2

FT 2
Fn2

f + 46 C3
FTFn f +

�
512
9
− 1664

3
ζ3

�
nf

Nc(N2
c + 6)

48

+

�
−704

9
+

512
3
ζ3

�
n2

f
(N4

c − 6N2
c + 18)

96N2
c

+

�
−80

9
+

704
3
ζ3

�
N2

c (N2
c + 36)
24

(2.15)

where nf being the number of light quark flavors and TF = 1/2. Using only β0 and

ignoring the fact that the nf depends on µR we get a simple solution

as(µ2
R) =

as(µ2
0)

1 + β0as(µ2
0) ln µ

2
R
µ2

0

=
1

β0 ln µ
2
R
Λ2

, (2.16)

where µ0 is a reference scale. In the second solution, we chose non-perturbative constant Λ

as the reference scale. The negative sign in Eq.(2.14) is the origin of asymptotic freedom,

which is, in fact, the consequence of the color charge of gluons. As far as the n f <

11CA/2 ≡ 33/2, the negative sign retains and consequently, the coupling becomes weaker

with increasing scales. This essentially leads to a free theory with no interaction between

quarks and gluons at high energy or short distances. Conversely, the perturbative coupling

grows at low energies or long distance, causing the quarks and gluons to be tightly bound

into hadrons. With the large coupling, the perturbative expansion gets unreliable. The

scale at which it fails is known in the name of Λ or ΛQCD, which is typically the order of

some hundreds MeV, beyond which the realm of non-perturbative physics arises.
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Quark masses

Let us conclude this section with a brief discussion on quark masses. The quark masses

behave similarly to the gauge coupling itself. Running quark masses can be defined as

m(µ2
R) = m(µ2

0) exp
�
−
� µR

µ0

dλ
λ

�
1 + γm(as(λ))

��
(2.17)

Here γm(as) is a perturbative quantity, similar to the β(as). As µR increases, g(µR) de-

creases and hence m(µR) vanishes. Consequently, the perturbative theory becomes, effec-

tively, a massless theory. From the QCD phenomenology, the light quarks – up, down,

strange – can be taken effectively as massless theory, but for the case of heavy quarks –

charm, bottom, top – the running mass should be taken into account.

2.1.3 Parton model and Collinear factorization theorem

By itself, asymptotic freedom is a striking result and beautifully explains the behavior of

quark-gluon interactions. However, in nature, isolated quarks or gluons do not exist. Not

the partons, but protons involves in high energy colliders, but whose interactions cannot

be described by perturbative QCD (pQCD) methods. For studying these processes, in

general, we adopt Parton model, which describe how a hadron interacts via its constituent

partons.

The original parton model was proposed by Feynman, which relies on the basic assump-

tion that the hadron interactions are due to the interaction of its constituents. Hence, the

structure of the hadron may be described by an instantaneous distribution of partons. This

model is proposed in infinite momentum frame, where each parton is assumed to carry a

fraction of proton momentum, P. That is to say, the ith parton gets the momenta pi = xiP

following a distribution f̂i(xi), where xi is the fraction defined as 0 ≤ xi ≤ 1. The f̂i(xi)

is generally called the parton distribution functions or in short pdf’s. From this, the mo-
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mentum sum rules are expected as:

� 1

0
dx

�

i

x f̂i(x) = 1 (2.18)

which is a consequence of the momentum conservation. Also, the proton flavor conserva-

tion says: � 1

0
dx

�
f̂u(x) − f̂ū(x)

�
= 2,

� 1

0
dx

�
f̂d(x) − f̂d̄(x)

�
= 1 (2.19)

Based upon these assumptions, the hadronic cross section, σ, for a high energy process

can be expressed in terms of the cross section for partons σ̂ as:

σh1,h2(P1, P2) =
�

a,b

� 1

0
dx1dx2 f̂a(x1) f̂b(x2) σ̂ab(x1P1, x2P2) . (2.20)

Here, the partonic cross section is a perturbative quantity, while the pdf’s f̂i(x) are non-

perturbative objects.

The above picture is a naive parton model description, which will not survive when QCD

corrections are included. Accommodating radiative corrections modify the model to the

so-called improved parton model, where the pdf’s and the partonic cross section acquire

a new energy scale dependence. To understand this, let us briefly look into the details of

radiative corrections and the divergence structures.

Radiative corrections and factorization

In pQCD, the partonic cross section is expanded in terms of as:

σ̂i j =
�

l

al
s σ̂

(l)
i j . (2.21)

The coefficients σ̂(l)
i j are calculated using Feynman diagrammatic approach. In general,

these coefficients gets contributions from loop diagrams and real emissions for l ≥ 1,
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which give rise to UV and IR divergences. We have already discussed the origin of UV

divergences and how to remove them using UV renormalization.

On the other hand, the IR divergences appear due to soft gluons and massless collinear

partons in the loops. They respectively give rise to soft and collinear divergences. In

the physical observables, the soft and the collinear divergences coming from virtual dia-

grams cancel against those resulting from the phase space integrals of the real emission

processes. Due to the Kinoshita-Lee-Nauenberg (KLN) theorem [31, 32], the cancella-

tion takes place order by order in perturbation theory. While the soft divergences cancel

entirely, the collinear divergences resulting from initial massless states do not cancel at

the sub-process level and must be treated separately, which is done using the technique

called mass factorization. The logic is similar to the renormalization technique: to factor

out these initial state collinear divergences in a process independent way and absorb them

into the bare parton distribution functions. As in renormalization, this will introduce a

new energy scale dependence called factorization scale µF . The resulting finite pdf is a

measurable quantity. Schematically, we can express the redefined partonic cross section:

σ̂ab(x1P1, x2P2) =
�

c,d

ΓT
ac(µ

2
F) Δcd(x1P1, x2P2, µ

2
F) Γdb(µ2

F) . (2.22)

The Δab(µ2
F) is a finite quantity, called partonic coefficient function and the collinear sin-

gularities are encapsulated in Γ(µ2
F), namely mass factorization kernels or Altarelli-Parisi

(AP) [33] kernels. Absorbing them into bare pdf’s gives the finite pdf:

fi(x, µ2
F) =

�

j

Γ̂i j(µ2
F) f j(x) . (2.23)

The resulting finite pdf is a measurable quantity and are universal, which means that it

does not depend on the process under study.

Accommodating the radiative corrections and thereby factorization scale dependence in

the (naive) parton model modify them to the so-called improved parton model. We sum-
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marize the details of the improved parton model below.

Improved parton model

For a process:

h1(P1) + h2(P2)→ F({qi}) + X (2.24)

where two hadrons hi with momenta Pi, i = 1, 2 collide and produces the heavy final state

F, the cross section takes the general form in the improved parton model in terms of finite

quantities:

σh1,h2(P1, P2) =
�

a,b

�
dx1dx2 fa(x1, µ

2
F) fb(x2, µ

2
F) Δab(x1P1, x2P2, µ

2
F) + O

�
Λ

Q

�
. (2.25)

The X denotes any final inclusive hadrons. In the following we summarize the recipe of

improved parton model

• The incoming hadronic beam is equivalent to the incoherent sum of its constituent

beams, with its longitudinal momentum distribution defined by the parton distribu-

tion functions.

• The short distance partonic cross section is a perturbative quantity:

Δab(x1P1, x2P2, µ
2
F) =

∞�

l

al
s(µ

2
R) Δ(l)

ab(x1P1, x2P2, µ
2
F , µ

2
R) (2.26)

while the long distance pdf’s belongs to non-perturbative regime. However, the

pdf’s are universal, by which we mean that they do not depends on the process of

study.

• The evolution of the pdf’s with the scale µF can be expressed in terms of Dokshitzer-
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Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation

µ2
F
∂

µ2
F

fi(x, µ2
F) =

�

j

� 1

x

dz
z

Pi j

�
as(µ2

F), z
�

f j

� x
z
, µ2

F

�
. (2.27)

Here, the Pi j are called splitting functions.

Together they are called the collinear factorization theorem. The factorization scale µF is

an arbitrary scale whose dependence is compensated between the short and long distances.

Note that we have now two unphysical energy scales in the problem – renormalization

scale, µR, at which as is evaluated, and the factorization scale, µF , at which the collinear

singularities factorize. Both these scales should have the same order, and it has to be

chosen of the order of energy scale of the hard process to avoid large logarithms in the

perturbative expansion.

Our goal is to improve the accuracy of short distance partonic cross sections by com-

puting higher order radiative corrections, which is the topic of concern in this thesis. In

the next section, we briefly discuss different approaches for performing the higher order

corrections.

2.2 Fixed order computations in QCD

The primary approach to compute the higher order QCD effects is the fixed order expan-

sion. This amounts to expanding the desired observable in powers of the strong coupling

constant and then retaining only the first few orders. Being substantially small, each next

term in the expansion gives minor corrections to the previous one and hence, at least from

the naive comparison, the higher order corrections can be disregarded. In that case, the

result with the first few orders can be an excellent approximation to the complete result;

we call them fixed order approximation. Given that the perturbative expansion is well be-

haved, the fixed order approximation gets closer to the actual value by adding more terms
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in the expansion.

Retaining the perturbative expansion of bare partonic cross section to nth-order gives:

σ̂ab(x1P1, x2P2) =
n�

l

al
s(µ

2
R) σ̂(l)

ab(x1P1, x2P2, µ
2
R) + O(an+1

s ) (2.28)

Since as < 1, the contributions comes from O(an+1
s ) expected to be small and can be dis-

carded, provided that they are not large enough to surpass the suppression from an+1
s . The

first non-zero term in this expansion is called leading order (LO) or Born approximation,

and the consequent terms refer to next to LO (NLO), next to NLO (NNLO) corrections

and so on. In general, if the expansion is retained to kth order, we call them NkLO order

corrections to the Born.

The leading order term in a perturbative expansion may vary from process to process. For

instance, for the case gluon induced Higgs production cross section, the first non zero

terms come at a2
s order while for the case of Higgs production from bottom quark anni-

hilation, the leading term constitutes to O(a0
s) term. Hence the most general perturbative

expansion reads:

σ̂ab(x1P1, x2P2) = aλs (µ2
R)

n�

l=0

al
s(µ

2
R) σ̂(l)

ab(x1P1, x2P2, µ
2
R) + O(an+λ+1

s ) (2.29)

where the λ is decided by the LO process. Beyond the LO, the contribution appears from

virtual corrections and/or from real radiation corrections. These contributions give rise to

loop as well as multi-particle phase space integrals. Looking into more details, consider

a partonic sub-process:

a(p1) + b(p2)→ F(q) +
m�

j=1

r j(k j) . (2.30)

where the collision of partons a and b produce the final state F along with m partons
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through real radiation. The partonic cross section for this process has a general structure:

σ̂ab =
Fab

2ŝ

�
dPS 1+m |Mab→F |2 . (2.31)

Here theMab→F is constructed from the Feynman diagrams contributing to a + b → F

order by order in perturbation theory. The Fab refers to the numerical constant coming

from the symmetry factor and/or color and spin averaging. The dPS 1+m represents the

(1 + m)-particle phase space measure defined by

�
dPS 1+m =

�
dφ(q)

� m�

j=1

dφ(k j)
�

(2π)dδ(d)
�
pa + pb − q −

m�

j=1

k j

�
(2.32)

At LO, the contribution arises only from the born matrix square,
���M(0)

ab→F

���2, and from one

particle phase space. Whereas at NLO, corrections appear from emission of an additional

parton (σ̂R
ab) as well as from one-loop contributions (σ̂V

ab). This gives rise to :

σ̂(1)
ab =

1
2ŝ

�
dPS 1 σ̂

V
ab +

�
dPS 2 σ̂

R
ab . (2.33)

with

σ̂V
ab = 2 Re

�
M(0),†

ab→FM(1)
ab→F

�
, σ̂R

ab =
���M(0)

ab→F+1

���2 (2.34)

At NNLO, the contributions are more involved:

σ̂(2)
ab =

1
2ŝ

�
dPS 1 σ̂

VV
ab +

�
dPS 2 σ̂

RV
ab +

�
dPS 3 σ̂

RR
ab . (2.35)

where:

• double real (RR) corrections: σ̂RR
ab =

���M(0)
ab→F+2

���2

• real virtual (RV) corrections: σ̂RV
ab = 2 Re

�
M(0),†

ab→F+1M(1)
ab→F+1

�

• double virtual (VV) corrections: σ̂RV
ab = 2 Re

�
M(0),†

ab→FM(2)
ab→F

�
+
���M(1)

ab→F

���2
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We present the details of these computations in the subsequent chapters. As mentioned

earlier, these corrections show up divergences in UV and IR end, which is resolved by us-

ing renormalization and mass-factorization techniques and hence obtain a finite partonic

coefficient function. In the concluding note, we emphasize that, for the fixed order pertur-

bative theory to be applicable, the contributions at any order should satisfy σ̂(k)
ab � σ̂(k−1)

ab .

If the contributions are such that σ̂(k)
ab ≈ σ̂(k−1)

ab , then truncating that perturbative expansion

will give rise to unreliable theoretical predictions.

2.3 Effects of threshold corrections and Resummation

The fixed order predictions have limitation in their applicability due to several enhanced

logarithms, which are originating from mainly three categories: UV origin, Collinear

origin and Soft origin . As discussed in previous sections, the logarithms of UV origin

can be absorbed into the running coupling constant and collinear origin into the parton

distribution functions. While, for the soft regions, the large logarithms occurs due to

soft-gluon emissions. Despite the cancellation of divergences of these soft emissions

with those of virtual gluons, the soft gluons effects can still be significant in kinematic

configurations where high unbalance between real and virtual contributions persists. In

such cases, the fixed order convergence is questionable. An alternative approach to treat

these regions is by reorganizing the perturbative expansion by an all-order summation of

a class of large logarithms; the technique is known in the name of resummation.

In addition to the dominance at the partonic level, for certain observable, the pdfs also

get large at soft regions, hence improving their role at the hadronic level. These cor-

rections are, in general, known as soft corrections. Supplemented them with the virtual

contributions account for the soft-virtual or threshold corrections. This section briefly re-

views a formalism to capture the threshold corrections for the inclusive process and their

resummation framework.
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2.3.1 Threshold framework

The emission of soft gluons defines the threshold limit, where the final colorless state

carries almost all the incoming center of mass energy. Denoting the final state invariant

mass as q2 and ŝ ≡ (p1 + p2)2 as the center of mass energy of incoming partons, the

threshold limit can be defined in terms of the dimensionless partonic scaling variable:

z ≡ q2

ŝ
→ 1 . (2.36)

Recall from the factorization theorem that the finite partonic coefficient function can be

related to the bare partonic cross section and mass factorization kernels Γ as:

Δcd(z, q2, µ2
F)

z
=

�

a,b

�
ΓT

ca(z, µ2
F , �)

�−1 ⊗ σ̂ab(z, q2, �)
z

⊗ Γ−1
bd (z, µ2

F , �) (2.37)

In the threshold limit, this finite partonic coefficient function decomposes into :

Δi j(z, q2, µ2
F) = Δsv

i j (z, q
2, µ2

F) + Δhard
i j (z, q2, µ2

F) (2.38)

where the Δsv
i j (z, q

2, µ2
F) contain only distributions of the form:

�
δ(1 − z),Di(z) ≡

�
lni(1 − z)

1 − z

�

+

�
(2.39)

while the Δhard
i j (z, q2, µ2

F) constitutes to all the regular terms in z, which include logarithms

of the form lni(1 − z) and polynomial of (1 − z). Note that logarithms lni(1 − z) also give

rise to divergences, however they are suppressed to the threshold ones. The corresponding

contributions are often called next-to-soft or next-to-threshold corrections, which will be

discussed in detail in subsequent sections.

We focus on SV contributions, which arise only from Δqq for DY, Δbb for Higgs boson

production in bottom quark annihilation and Δgg for Higgs boson production in gluon
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fusion. For convenience, we denote these coefficient functions collectively by ΔI with

I = q, b, g respectively refers to DY, bb̄ → H and gg → H production processes. In this

context, it is sufficient to keep only those components of mass factorization kernels and

of σ̂ab that upon convolution gives δ(1 − z) and Di(z) terms in (2.37). These contribu-

tions only come from diagonal terms/channels. For instance, in the case of DY, the mass

factorized result Δqq̄ either have convolutions involving only diagonal terms/channels, like

σ̂qq̄⊗Γqq⊗Γq̄q̄ or those containing one diagonal and a pair of non-diagonal ones/channels,

for example σ̂qg ⊗ Γqq ⊗ Γgq. The former gives SV terms upon convolutions, while the

latter contributes only beyond SV terms. Hence the mass factorized result will be in

terms of only diagonal terms/channels, and the sum over different partonic channels can

be dropped. The diagonal terms are denoted with index I where I = q, b, g respectively

refers (σqq̄,Γqq), (σbb̄,Γbb), and (σgg,Γgg). This gives rise to:

Δsv
I (z, q2, µ2

F)
z

=
�
ΓT

I (z, µ2
F , �)

�−1 ⊗ σ̂
sv
I (z, q2, �)

z
⊗ Γ−1

I (z, µ2
F , �) (2.40)

The superscript sv indicates that we keep only those terms which gives δ(1 − z) and D j

after the aforementioned convolutions.

In constructing threshold enhanced cross section, we start with the decomposition of the

cross section in terms of pure virtual contributions F and soft-collinear distribution func-

tion S in the following way:

σ̂sv
I (z, q2, �) = σB(µ2

R)
�
ZI(µ2

R)
�2 |F I(q2)|2 δ(1 − z) ⊗ SI

sv(z, q2, �) . (2.41)

where σB is the born factor. The quantity lnSI
sv is obtained after factoring out the pure

virtual contributions from the total inclusive cross section and thus it embeds all the

contributions coming from real-virtual and real emission processes only. Consequently,

when combined with Eq.(2.40) we get an all-order decomposition formula for the mass-
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factorized partonic threshold cross section as,

Δsv
I (z, q2, µ2

F) = σB(µ2
R)
�
ZI(µ2

R)
�2 |F I(q2)|2δ(1 − z) ⊗ lnSI

sv(z, q2, �)

⊗
�
ΓT

I (z, µ2
F , �)

�−1 ⊗ Γ−1
I (z, µ2

F , �) . (2.42)

Here, the symbol⊗ denotes the Mellin convolution which is defined for functions fi(xi), i =

1, 2, · · ·, n as,:

( f1 ⊗ f2 ⊗ · · · ⊗ fn) (z) =
n�

i=1

� �
dxi fi(xi)

�
δ(z − x1x2 · · · xn) . (2.43)

In consequence to the above decomposition formula, the Δsv
I can be expressed in terms of

certain building blocks: form factor F I , soft collinear distribution SI
sv and mass factor-

ization Splitting kernels ΓI . The governing differential equation corresponding to each of

these building blocks paves the way to get an all-order structure for Δsv
I , which we will

unravel subsequently. Each of these building blocks has a perturbative expansion in pow-

ers of the bare strong coupling constant, which is related to the renormalized one through

renormalization constant Zas:

âsS � =
�
µ2

0

µ2
R

��
Zas(µ

2
R) as(µ2

R) , (2.44)

where S � = exp
�
(γE − ln4π)�/2)

�
with γE being the Euler Mascheroni constant. The scale

µ0 is an arbitrary mass scale introduced to make ĝs dimensionless in d-dimensions. From

RG equation, we get

Zas(µ
2
R) = 1 + as(µ2

R)
�
2
�
β0

�
+ a2

s(µ
2
R)
�

4
�2
β2

0 +
1
�
β1

�
+ a3

s(µ
2
R)
�

8
�3
β3

0 +
14
3�2
β0β1 +

2
3�
β2

�

+ a4
s(µ

2
R)
�
16
�4
β4

0 +
46
3�3
β2

0β1 +
1
�2

�
3
2
β2

1 +
10
3
β0β2

�
+

1
2�
β3

�
. (2.45)

In the subsequent sections, we discuss the building blocks in detail.
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Form factor

The virtual contribution is captured through the form factor, which is defined by the born

factorized square matrix element as

F I =

∞�

k=0

âk
s S k
�

�
Q2

µ2

�k �2

F I,(k) ≡
∞�

k=0

âk
s S k
�

�
Q2

µ2

�k �2 �M(0)
I |M(k)

I �
�M(0)

I |M(0)
I �
, (2.46)

where Q2 = −q2 andM(k)
I is the k-th order unrenormalized matrix element of the underly-

ing partonic process a(p1) + a(p2) → F(q). Form factor for the DY process is the matrix

element of vector current ψqγµψq between on-shell quark states, while for the Higgs bo-

son production in gluon fusion (bottom quark annihilation), it is the matrix element of

Ga
µνG

µνa (ψbψb) between on-shell gluon (bottom quark) states.

In dimensional regularization, the form factor satisfies the following first-order differential

equation [34–38]:

Q2 d
dQ2 lnF I(âs,Q2, µ2, �) =

1
2

�
KI

�
âs,
µ2

R

µ2 , �

�
+GI

�
âs,

Q2

µ2
R

,
µ2

R

µ2 , �

��
. (2.47)

which follows from the IR factorization, gauge and RG invariances. Here, all the singu-

larities are captured in Q2-independent function KI , whereas GI collects the remaining

terms which are finite as � → 0. Further, the RG invariance of F I leads to

µ2
R

d
dµ2

R

KI

�
âs,
µ2

R

µ2 , �

�
= −µ2

R
d

dµ2
R

GI

�
âs,

Q2

µ2
R

,
µ2

R

µ2 , �

�
= −AI(as(µ2

R)) (2.48)

where AI are the standard cusp anomalous dimensions and is a perturbative quantity.

AI =

∞�

k=1

ak
s

�
µ2

R

�
AI

k . (2.49)
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The solution to the RG Eq.(2.48) is obtained as [39, 40]:

KI

�
âs,
µ2

R

µ2 , �

�
=

∞�

k=1

âk
sS

k
�

�
µ2

R

µ2

�k �2

KI
k(�) (2.50)

with

KI
1(�) =

1
�

�
− 2AI

1

�
,

KI
2(�) =

1
�2

�
2β0AI

1

�
+

1
�

�
− AI

2

�
,

KI
3(�) =

1
�3

�
− 8

3
β2

0AI
1

�
+

1
�2

�
2
3
β1AI

1 +
8
3
β0AI

2

�
+

1
�

�
− 2

3
AI

3

�
,

KI
4(�) =

1
�4

�
4β3

0AI
1

�
+

1
�3

�
− 8

3
β0β1AI

1 − 6β2
0AI

2

�
+

1
�2

�
1
3
β2AI

1 + β1AI
2 + 3β0AI

3

�

+
1
�

�
− 1

2
AI

4

�
(2.51)

Similarly, RGE of GI gives the solution:

GI

�
âs,

Q2

µ2
R

,
µ2

R

µ2 , �

�
= GI

�
as(Q2), 1, �

�
+

� 1

Q2

µ2R

dλ2

λ2 AI
�
as(λ2µ2

R)
�

(2.52)

where the boundary term GI
�
as(Q2), 1, �

�
has a perturbative expansion:

GI
�
as(Q2), 1, �

�
=

∞�

k=1

ak
s(Q

2)GI
k(�) . (2.53)

Performing the integral in Eq.(2.52) results:

�
Q2

µ2
R

1 dλ2

λ2 AI
�
as(λ2µ2

R)
�
=

∞�

k=1

âk
s S k
�

�
µ2

R

µ2

�k �2

�

Q2

µ2
R

�k �2

− 1

KI
k(�) . (2.54)

Substituting Eq.(2.51),(2.53) and (2.54) in Eq.(2.47) gives the following general structure
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for the form factor:

lnF I(âs,Q2, µ2, �) =
∞�

k=1

âk
s S k
�

�
Q2

µ2

�k �2

L̂I
k(�) (2.55)

with

L̂I
1(�) =

1
�2

�
− 2AI

1

�
+

1
�

�
GI

1(�)
�
,

L̂I
2(�) =

1
�3

�
β0AI

1

�
+

1
�2

�
− 1

2
AI

2 − β0GI
1(�)

�
+

1
�

�
1
2

GI
2(�)

�
,

L̂I
3(�) =

1
�4

�
− 8

9
β2

0AI
1

�
+

1
�3

�
2
9
β1AI

1 +
8
9
β0AI

2 +
4
3
β2

0G
I
1(�)

�

+
1
�2

�
− 2

9
AI

3 −
1
3
β1GI

1(�) − 4
3
β0GI

2(�)
�
+

1
�

�
1
3

GI
3(�)

�
,

L̂I
4(�) =

1
�5

�
AI

1β
3
0

�
+

1
�4

�
− 3

2
AI

2β
2
0 −

2
3

AI
1β0β1 − 2β3

0G
I
1(�))

�

+
1
�3

�
3
4

AI
3β0 +

1
4

AI
2β1 +

1
12

AI
1β2 +

4
3
β0β1GI

1(�) + 3β2
0G

I
2(�))

�

+
1
�2

�
− 1

8
AI

4 −
1
6
β2GI

1(�) − 1
2
β1GI

2(�) − 3
2
β0GI

3(�)
�

+
1
�

�
1
4

GI
4(�)

�
. (2.56)

Here, the coefficients GI
i encapsulated the information about the hard process, while all

other factors are universal quantities. It is interesting to note that, at a given order in as,

coefficients of all the poles but the single one contains only information from the lower

orders, and hence can be predicted from the known lower orders. Comparing against

the explicit form factor results, it has been observed [41, 42] to satisfy the following

decomposition in terms of collinear (BI), soft ( f I) and UV (γI) anomalous dimensions:

GI
i (�) = 2

�
BI

i − γI
i−1

�
+ f I

i + χ
I
i +

∞�

k=1

�kgI,k
i , (2.57)
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where the constants CI
i is given by:

χI
1 = 0 ,

χI
2 = −2β0gI,1

1 ,

χI
3 = −2β1gI,1

1 − 2β0

�
gI,1

2 + 2β0gI,2
1

�

χI
4 = −2β2gI,1

1 − 2β1

�
gI,1

2 + 4β0gI,2
1

�
− 2β0

�
gI,1

3 + 2β0gI,2
2 + 4β2

0gI,3
1

�
. (2.58)

The anomalous dimensions are expanded in powers of as(µ2
R) as

YI(µ2
R) =

∞�

j=1

aj
s(µ

2
R)YI

j , (2.59)

where Y = A, B, f , γ. As a consequence of recent calculations, the light-like cusp anoma-

lous dimensions are available to four loops [43–47] in QCD. The soft and collinear

anomalous dimensions to three loops can be extracted [41, 42] from the quark and gluon

collinear anomalous dimensions [48, 49] through the conjecture [41]

γI = 2BI + f I . (2.60)

The partial results of the soft and collinear anomalous dimensions at four-loop can be

obtained from [47, 50–52]. For the reader’s convenience, we enlist the values of these

anomalous dimensions in Appendix B.

The constants gI,k
i can be extracted from the explicit results of form factors. The com-

putation of quark form factor for DY process and Higgs boson productions are partially

available to fourth order in QCD [2, 47, 53–59]. For completeness, we present the results

of gI,k
i for quarks in Drell-Yan process, gluon (bottom quark) in Higgs production from

gluon fusion (bottom quark annihilation) channel up to third order in Appendix C.
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Operator renormalization constant

In certain processes such as Higgs production from gluon fusion, it involves an effective

Lagrangian which manifests a non-conserved operator. In such cases, strong coupling

renormalization is not sufficient to preserve the UV finiteness of the theory, rather an

additional renormalization is required, which is generally called overall operator renor-

malization. This additional renormalization is performed through the operator renormal-

ization constant ZI . This is a property inherently associated with the operator and it should

not be mix with the UV renormalization constants for the couplings present in the theory.

For conserved operator, such as leptonic pair production in DY, this quantity is identically

one. The ZI satisfies the following RG equation:

µ2
R

d
dµ2

R

ln ZI
�
âs, µ

2
R, µ

2, �
�
=

∞�

i=1

ai
s(µ

2
R)γI

i . (2.61)

where γI
i ’s are the UV or mass anomalous dimension. We already come across this quan-

tities in the form factor and are given in Appendix B for I = q, g, b. Solving the above RG

equation, one obtain the solution for the ZI as given by:

ZI(âs, µ
2
R, µ

2, �) = 1 + âs

�
µ2

R

µ2

� �
2

S �

�
1
�

�
2 γI

0

��
+ â2

s

�
µ2

R

µ2

��
S 2
�

�
1
�2

�
2
�
γI

0

�2 − 2 β0 γ
I
0

�

+
1
�

�
γI

1

��
+ â3

s

�
µ2

R

µ2

�3 �2

S 3
�

�
1
�3

�
4
3

�
γI

0

�3 − 4 β0

�
γI

0

�2
+

8
3
β2

0 γ
I
0

�

+
1
�2

�
2 γI

0 γ
I
1 −

2
3
β1 γ

I
0 −

8
3
β0 γ

I
1

�
+

1
�

�
2
3
γI

2

��

+ â4
s

�
µ2

R

µ2

�2�

S 4
�

�
1
�4

�
2
3

�
γI

0

�4 − 4 β0

�
γI

0

�3
+

22
3
β2

0

�
γI

0

�2 − 4 β3
0 γ

I
0

�

+
1
�3

�
2
�
γI

0

�2
γI

1 −
4
3
β1

�
γI

0

�2 − 22
3
β0 γ

I
0 γ

I
1 +

8
3
β0 β1 γ

I
0 + 6 β2

0 γ
I
1

�

+
1
�2

�
1
2

�
γI

1

�2
+

4
3
γI

0 γ
I
2 −

1
3
β2 γ

I
0 − β1 γ

I
1 − 3 β0 γ

I
2

�
+

1
�

�
1
2
γI

3

��
(2.62)

47



Mass factorization Kernel

The collinear singularities resulting from the massless partons, when their emissions are

parallel to any initial states, are removed by absorbing them into bare parton distribution

functions. The resulting renormalized pdf’s are finite and measurable quantity. This

mass factorization procedure is performed at factorization scale µF . As discussed before,

it introduces mass factorization kernels ΓI’s which essentially absorbs the initial state

collinear singularities. These kernels, in MS scheme, satisfies following RG eq:

µ2
F

d
dµ2

F

Γi j(z, µ2
F , �) =

1
2

�

k

Pik

�
z, µ2

F

�
⊗ Γk j

�
z, µ2

F , �
�

(2.63)

where, Pi j

�
z, µ2

F

�
are Altarelli-Parisi splitting functions (matrix valued). Expanding Pi j

�
z, µ2

F

�

and Γi j(z, µ2
F , �) in powers of the strong coupling constant we get

Pi j(z, µ2
F) =

∞�

k=1

ak
s(µ

2
F)P(k−1)

i j (z) . (2.64)

As discussed before, since our focus is only SV part of cross section, only diagonal terms

of splitting function contributes to our analysis, and hence those give rise to beyond SV are

dropped. Hence, by conveniently expressed in terms of index I, we obtain the following

structure:

P(k)
I (z) = 2

�
BI

k+1δ(1 − z) + AI
k+1D0(z)

�
+ P(k)

reg,I(z) (2.65)

Note here that P(k)
reg,I(z) contains terms of the form ln(1 − z) and O(1 − z). We will come

across these terms in the subsequent chapters while discussing about the next-to-SV con-

tributions. For the time we focus only on the SV part of splitting functions. After solving

RG equation of the kernel in dimensional regularization, we get [39, 40]:

ΓI(z, µ2
F , �) = δ(1 − z) +

∞�

k=1

âk
s S k
�

�
µ2

F

µ2

�k �2

Γ̂(k)
I (z, �) , (2.66)
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The coefficients Γ̂(k)
I are expressed in terms of splitting functions:

Γ(1)
I (z, �) =

1
�

�
P(0)

I (z)
�
,

Γ(2)
I (z, �) =

1
�2

�
− β0P(0)

I (z) +
1
2

P(0)
I (z) ⊗ P(0)

I (z)
�
+

1
�

�
1
2

P(1)
I (z)

�
,

Γ(3)
I (z, �) =

1
�3

�
4
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β2

0P(0)
I − β0P(0)
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I +

1
6
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I

�

+
1
�2

�
− 1

3
β1P(0)

I +
1
6

P(0)
I ⊗ P(1)

I −
4
3
β0P(1)

I +
1
3

P(1)
I ⊗ P(0)

I

�

+
1
�

�
1
3

P(2)
I

�
,

Γ(4)
I (z, �) =

1
�4

�
− 2β3

0P(0)
I +

11
6
β2

0P(0)
I ⊗ P(0)

I −
1
2
β0P(0)

I ⊗ P(0)
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+
1
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4
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1
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+
1
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7
12
β0P(0)
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1
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P(0)
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1
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+
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1

12
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I −

1
2
β1P(1)

I +
1
8

P(1)
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I
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2
β0P(2)

I +
1
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P(2)
I ⊗ P(0)

I

�
+

1
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�
1
4

P(3)
I

�
. (2.67)

These quantities are universal and independent of the operator insertion.

Soft Collinear distribution

Since the IR behavior of the pure virtual amplitude is completely universal and indepen-

dent of the number of external colorless particles, the combined contributions from the

real emission diagrams and mass factorization must also exhibit the same universality to

get the finite cross section. By employing this universality and imposing the constraint of

the finiteness on the cross section, we determine the universal contribution from the latter

part to obtain the SV cross section, which we now turn to.
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Owing to the decomposition formula given in (2.42) and the universal factorization of

the IR singularities, one can write a first order differential equation, similar to the KG

equation of form factor, for the soft-collinear distribution function as,

q2 d
dq2 lnSI

sv =
1
2

�
K

I�
âs,
µ2

R

µ2 , �, z
�
+G

I
sv

�
âs,

q2

µ2
R

,
µ2

R

µ2 , �, z
��

(2.68)

Here the quantity K
I
embeds all the soft divergences from the real radiation, which cancels

with the ones coming from the virtual diagrams. The initial state collinear singularities,

which arise from both the virtual and real emission diagrams, are respectively present in

F I and SI
sv, and upon incorporating the mass factorization kernels, ΓI , all of these cease

to exist. The final state collinear singularities are guaranteed to cancel upon summing

over final states, as dictated by the KLN theorem. Consequently, the SV cross section

in (2.42) is free of all the divergences and the finite contributions coming from the soft

enhancements associated with the real emission processes are denoted by G
I
sv which is a

function of (z, �).

In addition, the RG invariance implies:

µ2
R

d
dµ2

R

K
I�

âs,
µ2

R

µ2 , z
�
= −µ2

R
d

dµ2
R

G
I
sv

�
âs,

q2

µ2
R

,
µ2

R

µ2 , z
�
= AI(as(µ2

R)) δ(1 − z) , (2.69)

This RG invariance and by demanding the finiteness of SV cross section, supplemented

with an understanding on the structure of Feynman integrals provide a unique solution for

the IR structure of soft distribution at threshold:

SI
sv(âs, q2, µ2, z, �) = C exp

�
2ΦI

sv(âs, q2, µ2, z, �)
�
. (2.70)

where the functional form of ΦI is:

ΦI
sv =

∞�

i=1

âi
s

�
q2(1 − z)2

µ2

�i �2

S i
�

� i�
1 − z

�
φ̂I

i (�). (2.71)
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The symbol C refers to “ordered exponential” which has the following expansion:

Ce f (z) = δ(1 − z) +
1
1!

f (z) +
1
2!

( f ⊗ f )(z) + · · · (2.72)

The symbol ⊗ refers to the Mellin convolution and f (z) is a distribution of the kind δ(1−z)

andDi(z), whereDi(z) is defined as,

Di(z) =
�
lni(1 − z)

(1 − z)

�

+

. (2.73)

Here the subscript +means thatDi(z) is a plus distributions. The term
�q2(1 − z)2

µ2

� �
2 in the

parenthesis of Eq.(2.71) results from two body phase space while
φ̂I(z, �)
(1 − z)

comes from the

square of the matrix elements for corresponding amplitudes. In general, the term q2(1−z)2

inside the parenthesis is the hard scale in the problem and it controls the evolution of ΦI

at every order. The explicit form of the solution in terms of anomalous dimensions and

certain universal quantities reads as the following [39, 40]:
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(2.74)
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where the finite quantity G
I
sv are related to its renormalized counterparts GI

i (�) in the

following way:

∞�

i=1

âi
s

�
q2(1 − z)2

µ2

�i �2

S i
�G

I
sv,i(�) =

∞�

i=1

ai
s

�
q2(1 − z)2

�
G I

i (�) (2.75)

we find

G
I
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2 (�) − 6β0G I

3 (�)
�
+ G I

4 (�) (2.76)

Through explicit determination of the quantity GI
i (�), it was found that it is dependent

only on the initial partons and can be further decomposed as:

G I
i (�) = − f I

i + χ
I
i +

∞�

k=1

�kG I,k
i , χI

i = χ
I
i

��� �
g I,k

i → G
I,k

i

� . (2.77)

The results of finite coefficients G I,k
i (�) are given in Appendix C :

One of the most salient features of the ΦI is that it satisfies the maximally non-Abelian

property:

Φg =
CA

CF
Φq , (2.78)

This property essentially signifies its universal behavior. Moreover, it is independent
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of the external quark flavors, as expected from the infrared behavior of the scattering

amplitudes. This is understood as the soft part of the cross section is always independent

of any quantum numbers such as spin, color and flavor once the born is factored out;

rather, it depends only on the gauge interaction, which is SU(Nc) for the current case. The

aforementioned non-Abelian property is explicitly verified to NNLO in refs. [39, 40] and

in ref. [60] it is conjectured to be valid even at N3LO QCD which is demonstrated through

explicit computations in refs. [61, 62]. The flavor dependence of the ΦI was exploited in

ref. [63] to calculate the SV cross section at N3LO for the Higgs boson production in

bottom quark annihilation. However, whether the validity of this property holds beyond

N3LO with generalized Casimir scaling [64] needs to be addressed in future.

The SV cross section

Having the IR structure of virtual contributions and real emissions, we get a general struc-

ture of SV cross section, with an expansion in powers of coupling constant:

Δsv
I (z, q2, µ2

F) =
∞�

i=1

ai
s(µ

2
R)Δsv,(i)

I (z, q2, µ2
F , µ

2
R) , (2.79)

where, Δsv,(i)
I defines the finite partonic coefficient function at each order. At the individual

level, the building blocks form factor, Splitting kernel and soft-collinear distribution con-

tain singularities. However, together they cancel and give rise to a finite partonic SV cross

section, expressed in terms of universal anomalous dimensions and process dependent

terms. Substituting explicit results of anomalous dimensions, β-functions and process de-

pendent terms, we obtain the results of Higgs production from gluon fusion and bottom

quark annihilation and for the DY process, which is available in [39, 40, 60–63, 65–67].
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2.3.2 Resummation

The threshold corrections dominate when the partonic scaling variable approaches its

kinematical limit, that is when z→ 1. They manifest in terms of distributions of the form

�
δ(1 − z),Di(z) ≡

�
ln(1 − z)

1 − z

�

+

�
(2.80)

This will be evident by noting:

1
1 − z

�
(1 − z)2

�k �2
=

1
k�
δ(1 − z) +

�
1

1 − z

�
(1 − z)2

�k �2
�

+

(2.81)

When z → 1, the ln(1 − z) become very large, on the other hand as very small so that the

product ≡ as ln(1−z) ∼ 1 . In such cases, fixed order truncation will not be justifiable, and

one needs to take care of these logarithms to all orders by doing resummation. The Re-

summation technique provides an alternative perturbative expansion that considers these

large logarithms in the expansion and produces reliable results while truncating. In fact,

the presence of large logarithms is an artefact of truncating the series. When we expand

the series to all orders, it should give a physically acceptable result.

In order to construct a resummation framework, we employ the structure of soft-collinear

distribution, which we obtained in last section. Using the relation (2.81), and by factoriz-

ing the soft divergences from Eq.(2.71), we obtain an integral representation for the soft

collinear distribution :
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� K
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Some remarks are in order. The third line in the above equation exactly cancels with the

D0 term of the mass factorization kernel. The φI
i in the second line contains both pole

and finite terms. The poles cancel with those of form factor and δ(1 − z) part of mass

factorization kernel.

Since the integrand involves many convolutions, it is convenient to solve it Mellin N-

space, where all the convolutions turn to normal products. The Mellin transformation of

a function f (z) is defined as:

M[ f ](N) =
� 1

0
dz zN−1 f (z) (2.83)

Also the Mellin transformation of convolutions given in Eq.(2.43) becomes:

M[A ⊗ B](N) = M[A](N) M[B](N) (2.84)

The threshold limit in N-space is defined as:

z→ 1 transforms to N → ∞ (2.85)

Similarly, the δ(1 − z) becomes a constant, and distributions of the form Di(z) become

logarithms of the form ln N.

Adding the form factor and mass factorization kernel with the soft factor given in Eq.(2.82)

and performing the coupling constant renormalization and finally solving them in Mellin

space we get the resummed formula. In Mellin the finite SV cross section reads as:

ΔI
N = CI

0(q2, µ2
R, µ

2
F) exp


� 1

0
dz

zN−1 − 1
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λ2 AI
�
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R, µ
2
F) exp

�
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0(as(µ2
R)) +GI

N(ω)
�

= gI
0(q2, µ2

R, µ
2
F) exp

�
GI

N(ω)
�

(2.86)
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where, ω = 2β0as ln N and DI
�
as(q2(1 − z)2)

�
are the well-known threshold exponent

in [68] which is related to the SV coefficients though:

DI
�
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�
q2(1 − z)2

��
=
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i=1

ai
s

�
q2(1 − z)2

�
DI

i

= 2 G
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�
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�
q2(1 − z)2

�
, �
� ������
�=0

(2.87)

The quantity CI
0 is dependent on the hard process under study, which is basically the

δ(1 − z) part of form factor and soft factor and is N-independent. The remaining part

in the above integral is universal. Mellin transformation in Eq.(2.86) produced an N-

dependent (GI
N(ω)) and N-independent part (ln gI

0). Adding the N-independent part with

the CI
0 produces gI

0.

gI
0(q2, µ2

R, µ
2
F) = CI

0(q2, µ2
R, µ

2
F) gI

0(as(µ2
R)) (2.88)

which can be expanded in terms of as(µ2
R) as,

gI
0(as(µ2

R)) =
∞�

i=0

ai
s(µ

2
R)gI

0,i . (2.89)

The above integral Eq.(2.86) is first employed in Seminar works by Stermann [69], Catani

and Trentedue [68]. The GI
N collects and resums all large-N logarithms to all orders and

can be expressed as a resummed perturbative series as:

GI
N(q2,ω) = ln N gI

1(q2,ω) + gI
2(q2,ω) + as gI

3(q2,ω) + a2
s gI

4(q2,ω) + · · · . (2.90)

The coefficients gI
0,i and gI

i are given in Appendix E. Each term in the above perturbative

expansion produces all order result. The first term resum every highest logarithm to all

orders, the next term resums next to highest logarithms and so on. These terms, together

with gI
0 in the same accuracy, gives leading logarithm (LL), next-to-leading logarithms

(NLL) and so on respectively. Adding each term in this perturbative expansion improves
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logarithmic accuracy.

We will discuss the resummation framework in great detail in subsequent chapters. In

addition to the resummation for threshold logarithms, we propose a framework for re-

summing the next-to-threshold logarithms in the last chapter.
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3 Higgs pair production from

bb̄-annihilation to NNLO in QCD

In this chapter, we present the cross section for bottom quark induced di-Higgs produc-

tions at NNLO. Among two kind of contributions, we present the exact NNLO corrections

for the dominant one. To compute the remaining ones, we adopt the threshold framework

that we discussed in last chapter. Numerical analysis establish that the inclusion of higher

order terms reduce the uncertainties resulting from the unphysical scales. The materials

presented in this chapter are the result of original research done in collaboration with

Pooja Mukherjee, V. Ravindran et.al and are based on the published article [70] .

3.1 Prologue

Ever since discovering the Higgs boson [71, 72], understanding this scalar particle’s na-

ture has been the critical objective of the LHC and future colliders. The measurements

explored so far at the LHC in the Higgs production and decay channels points out towards

the particle being the long-sought Higgs boson of SM of elementary particles [73–84].

For instance, the mass of Higgs (125.38 ± 0.14) GeV [85], its zero spin, its couplings to

vector bosons and fermions within 5% accuracy [86,87]. Despite of all these successes of

Higgs programme at the LHC, the nature of Higgs potential remains elusive. The relevant

parameters to constrain the Higgs potential are the self couplings of Higgs boson such as
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trilinear (λSM
3 ) and quartic couplings (λSM

4 ). As shown, within the SM, the Higgs potential

after the electro-weak symmetry breaking (EWSB) takes the form:

L ⊃ −m2
h

2
φ2(x) − λSM

3 vφ3(x) − λSM
4 φ

4(x), λSM
3 =

m2
h

2v2 , λ
SM
4 =

m2
h

8v2 , (3.1)

where φ(x) denotes the Higgs field and v ≈ 246 GeV is its vacuum expectation value (vev).

In the SM, the Higgs self couplings are related to its mass and the vev of Higgs field, which

is linked to the Fermi constant GF = 1.166378810−5 GeV−2 [88] by v = (
√

2GF)−1/2.

Hence, the SM values for λSM
3 and λSM

4 are found to be ∼ 0.13 and ∼ 0.03, respectively.

However, these values can be modified by the presence of beyond the SM (BSM) physics

scenarios, which, in turn, suggests their independent measurements.

While the quartic Higgs self-coupling (λSM
4 ) lies beyond the reach of LHC [89,90], various

studies shows that the trilinear self-coupling, (λSM
3 ) might be accessible via the Higgs pair

production processes [91–98]. Though this measurement is difficult due to the small

production cross section and the presence of large QCD backgrounds, the study for the

high luminosity LHC indicate that the Higgs boson pair production due to gluon fusion

can predict λSM
3 with O(1) accuracy. At present the most stringent constraint on the λ3 is

given by ATLAS and CMS within the range of (-2.3, 10.3) and (-3.3,8.5), respectively,

times the SM value [99] with the assumption that no other Higgs boson couplings deviate

from their SM value.

A direct way to access the trilinear coupling is the process of producing a pair of Higgs

bosons. This can be attained through several partonic channels, viz gluon fusion, vector

boson fusion, associated production with a vector boson or a pair of heavy quarks. Among

these, the gluon fusion channel has, by far, the largest cross section since it gets the large

gluon luminosity at the LHC. On the theoretical side, the state of the art for the gluon

fusion channel has reached an impressive accuracy of N3LO in strong coupling constant

and also next-to-next-to-leading logarithmic (NNLL) accuracy for the threshold resum-

mation. (See Fig.3.1 for the LO contributions to this channel and for a brief overview
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see [100–116] ). However, being heavy quark loop-induced (See Fig.3.1), this production

channel gets minuscule cross section in the SM. The total Higgs boson pair production

g

g

H∗
H

H

g

g

H

H

Figure 3.1: LO contributions to Higgs boson pair production from gluon fusion channel.

cross section is approximately three orders of magnitude smaller than that of single Higgs

production. In addition, the presence of extensive background makes its measurement

experimentally challenging. Hence unless contributions from BSM physics enhance the

production cross section, measurement of this channel will require a considerable inte-

grated luminosity. On the other hand, in such a scenario, the sub-dominant channels in

the SM could possibly become interesting as they would receive substantial contributions

from new physics. One such channel is the production of a pair of Higgs bosons in bottom

quark annihilation. In certain supersymmetric models, like the Minimal Supersymmetric

SM (MSSM) [117], the bottom quark Yukawa coupling is enhanced with respect to the

top quark Yukawa coupling, in the large tan β region, where tan β is the ratio of vev’s of up

and down type Higgs fields in the Higgs sector of the MSSM. Hence precise predictions

for this channel is of high importance.

While a plethora of work has been performed to reach ultimate precision for the gluon

channel, the sub-dominant channels have not received much attention. This chapter

mainly concerns the bottom quark annihilation channel where the Higgs boson couples to

bottom quarks through the Yukawa coupling. The NLO corrections for this channel was

first obtained in [1] and later in [118–120] considering several BSM scenarios. For the

latter, the bottom quark annihilation process dominates over the gluon fusion even at the

LO level. In addition, their NLO QCD corrections are not only sizeable but also larger

than the supersymmetric QCD corrections. To stabilize the cross section with respect to

higher order radiative corrections, NNLO corrections to this channel are desirable, which
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is the focus of this chapter.

The chapter is organized as follows. In Sec.[3.2], we discuss the Lagrangian, kinematics

and the classes of diagrams that are relevant for our computation. The computational de-

tails are mentioned in Sec.[3.3] with the structure of UV and IR divergences. We present

the relevant analytic results for the inclusive cross sections in Sec.[3.4] and their numeri-

cal impact in Sec.[3.5]. Finally, we summarize our findings in Sec.[3.6].

3.2 Theoretical Framework

To begin with, we briefly review the theoretical framework for the production of a pair

of Higgs bosons via bottom quark annihilation at hadron colliders. We work in dimen-

sional regularization (DR), in which all the fields and couplings of the Lagrangian and

the loop integrals that appear in the Feynman diagrams are analytically continued to

d = 4 + � space-time dimensions. In addition, we perform traces of Dirac γ-matrices

in d-dimensions.

3.2.1 The Yukawa interaction

Within SM, the interaction part of the Lagrangian that is responsible for the production is

given by,

L = −λbφ(x)ψ̄b(x)ψb(x) , (3.2)

where ψb(x) is the bottom quark field. λb is the Yukawa coupling which after the EWSB

is found to be mb/v, where mb is the bottom quark mass and v the vev of the Higgs field.

In the SM, the ratio of the top quark Yukawa coupling (λt) and the bottom quark Yukawa

coupling (λb) is found to be approximately 35 i.e. λt/λb ≈ 35. In addition, the bottom

quark flux in the proton-proton collision is much smaller than the gluon flux. Hence, the
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contribution from this channel is sub-dominant as compared to the gluon fusion channel.

However, in the MSSM [117], this ratio depends on the value of tan β, which can increase

the contribution resulting from the bottom quark annihilation channel. At LO,

λMSSM
t

λMSSM
b

= fφ(α)
mt

mb

1
tan β

, with fφ(α) =



− cotα for φ = h,

tanα for φ = H,

cot β for φ = A,

(3.3)

where h is the SM like light Higgs boson, H and A are the heavy and the pseudoscalar

Higgs bosons, respectively. The parameter α is the angle between weak and mass eigen-

states of the neutral Higgs bosons h and H. Since the bottom quark mass is much smaller

than the other energy scales that appear at the partonic level, we set the former to zero

except in the Yukawa coupling in perturbation theory [121–123]. In particular, the finite

mass effects from the bottom quarks are found to be suppressed by the inverse power

of the mass of the Higgs boson. The number of active flavors nf = 5 and we work in

Feynman gauge.

3.2.2 Kinematics

At the LO, the scattering process responsible for the di-Higgs production in bottom quark

annihilation channel is given by

b(p1) + b̄(p2)→ H(p3) + H(p4) , (3.4)

where p1, p2 are the momenta of incoming bottom, anti-bottom quarks with p2
1 = p2

2 = 0

and p3, p4 are the momenta of the final state Higgs bosons with p2
1 = p2

2 = m2
h. The

associated Mandelstam variables are,

s = (p1 + p2)2, t = (p1 − p3)2, u = (p2 − p3)2, (3.5)
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which satisfy the relation s + t + u = 2m2
h. For convenience, we use the dimensionless

variables x, y and z defined in [124] as follows

s = m2
h
(1 + x)2

x
, t = −m2

hy, u = −m2
hz . (3.6)

The variables x, y and z satisfy

(1 + x)2

x
− y − z = 2 . (3.7)

The final result will be expressed in term of logarithms and classical polylogarithms,

which are functions of these scaling variables.

3.2.3 Classification of Feynman diagrams

Two mechanisms contribute to the production of Higgs pairs through bottom quark anni-

hilation in the standard model. One is the vertex type of digrams, we call them class-A,

which contains single Yukawa and trilinear couplings. The latter kind of diagrams is

quadratic in Yukawa coupling. At LO, we have three Feynman diagrams, one class-A,

and rest class-B diagrams. The same classes of diagrams contribute beyond LO. We elab-

orate on these classes of diagrams below:

• Class-A: It contains diagrams where an off-shell Higgs boson is produced through

bottom quark annihilation, which then subsequently decays to double Higgs final

states (H∗ → HH). These diagrams are proportional to λSM
3 λb as can be seen from

Fig. 3.2. Note that, the decay part does not get any QCD corrections. Consequently,

the QCD corrections to class-A diagrams are identical to those for producing a

single Higgs boson in bottom quark annihilation, which is known up to three-loop

level in QCD [2]. (Various works on single Higgs production from bb̄-channel can

be seen in [2, 63, 125–132])
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Figure 3.2: Illustration of Class-A diagrams; Born, one and two-loop examples.

• Class-B: In this class of diagrams, both the Higgs bosons coupled directly to the

bottom quarks. Hence they are proportional to λ2
b as shown in Fig. 3.3. For this kind,

at two loops level, one encounters a new set of diagrams, the singlet contributions,

where the Higgs bosons are produced from a closed bottom quark loop as shown

in Fig. 3.4. In the singlet contributions, we have dropped the effects of top quark

loops and considered only those coming from bottom quark loops. The top quark

contributions are already included in the gluon initiated sub-processes obtained in

the heavy top limit in [106] for the Higgs pair production at the LHC.

b

b̄

H

H

b

b̄

H

H

b

b̄

H

H

Figure 3.3: Illustration of Class-B diagrams; Born, one and two-loop examples.

b

b̄

H

H

b

b̄

HH

Figure 3.4: Illustration of special set of Class-B diagrams, the singlet contributions.

3.2.4 General structure of amplitude

In this section, we describe how the general structure of amplitudes can be obtained us-

ing the projector technique for the process given in (3.4). The projectors are defined by

analyzing the tonsorial structure of the given amplitude, which is valid to all orders in
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perturbation theory. Each projector will isolate the coefficients of particular tensor struc-

tures. For the given amplitude, since it contains two fermions and two scalars, the general

structure takes the form:

Mi j = v̄(p2)
�
C1 + C2 /p3

�
u(p1)δi j

≡ (C1T1 + C2T2) δi j , (3.8)

where Tm are the independent tensor with and the Cm ≡ Cm(x, y, z) with m = 1, 2 are the

corresponding scalar coefficients. Here, the tensor structures Tm are defined as:

T1 = v̄(p2)u(p1) (3.9)

T2 = v̄(p2)/p3u(p1) .

The δi j in Eq.(3.8) is because, in color space, the amplitude is diagonal in the indices (i, j)

of the incoming quarks. We use symmetries such as Lorentz covariance, parity and time-

reversal invariances to parameterize the amplitude. In addition, we have dropped those

terms that vanish when the bottom quarks are massless. The coefficients Cm, m = 1, 2, can

be determined from the amplitudeMi j by using appropriate projection operators denoted

by P(Cm), i.e.,

Cm =
1
Nc

�
P(Cm)Mi jδi j , (3.10)

where the sum includes spin, flavors and colors of the external fermions and Nc is the

number of colors in SU(Nc) gauge theory. In d-space-time dimensions, the projectors that

satisfy
�P(Cm)Tm = 1 and

�P(Cm)Tn = 0 ∀m � n, are found to be

P(C1) =
1
2s
T †1 ,

P(C2) =
1

2[(m2
h − t)(m2

h − u) − sm2
h]
T †2 . (3.11)
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Since the application of projection operators on the amplitude gives only Lorentz scalar

functions, the algebraic manipulations with loop integrals become straightforward. The

square of the amplitudes that contributes to the total cross section can now be obtained

from the coefficients C1 and C2 using

|Mi j|2 = Nc

�
|C1|2T1T †1 + |C2|2T2T †2 + C1C†2T1T †2 + C†1C2T2T †1

�
. (3.12)

Note that these coefficients are, in general, complex due to the Feynman loop integrals.

We expand the amplitudeMi j as well as the coefficients Cm in powers of the strong cou-

pling constant defined by as = g2
s(µ

2
R)/16π2, where gs is the renormalized strong coupling

constant and µR is the renormalization scale:

Mi j =

∞�

l=0

al
sM(l)

i j , Cm =

∞�

l=0

al
s C(l)

m , (3.13)

and consequently

M(l)
i j =

�
C(l)

1 T1 + C(l)
2 T2

�
δi j . (3.14)

The coefficients M(l)
i j completely describe the amplitudes order by order in perturbation

theory. Our next task is to compute these coefficients C(l)
m , m = 1, 2, up to two loop level,

i.e., up to O(a2
s) in perturbative QCD.

3.3 Calculation of amplitudes

In this section we describe the computational details of the coefficients Cm for the process

bb̄→ HH up to two-loop level in QCD perturbation theory.
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3.3.1 Computational details

As can be seen from the form of Ti in Eq. (3.8), only Class-A diagrams contribute to C1

and Class-B to C2. Since the Class-A diagrams are already computed to three loops in

QCD [2], in this section, our focus is to discuss how the scalar function C2 in Eq. (3.10)

is computed order by order in perturbation theory. As we mentioned, we use dimensional

regularization, in which the space-time dimensions are taken to be d = 4 + � and perform

traces of Dirac γ-matrices and contraction of Lorentz indices in d-dimensions. For con-

venience, we work with the bare form of the Lagrangian and evaluate the coefficient C2

in powers of bare coupling constant âs, where âs = ĝ2
s/16π2, ĝs being the dimensionless

strong coupling constant. Beyond LO, one- and two-loop amplitudes containing massless

quarks, anti-quarks, and gluons develop UV and IR divergences. These divergences can

be regulated using dimensional regularization. We will come to this point in later sections.

To generate Feynman diagrams, we have used QGRAF [133] at every order in the strong

coupling constant. Beyond one-loop, a large number of Feynman diagrams contributes to

the amplitude. The number of diagrams contributes to tree level, one and two-loop are

2, 10, and 153 respectively, excluding tadpole and self-energy corrections to the external

legs. Multiply these amplitudes with the projection operator P(C2) defined in Eq. (3.11)

will give rise to the scalar function C2. Substitution of Feynman rules and computation of

various traces involving Dirac and Gell-Mann matrices are done using in-house routines

that use publicly available packages such as FORM [134] and Mathematica. At this stage,

we end up with a large number of one- and two-loop Feynman integrals. The projection

operators guarantee that all the tensor integrals are converted to scalar integrals. We

rearrange all the Feynman integrals into a few chosen integral families through shifting

of loop momentum. To achieve this, we use the package Reduze2 [135]. At one-loop, the

following three integral families can accommodate all the Feynman integrals

�P1,P1:i,P1:i,i+1,P1:i,i+1,i+2
�
, (3.15)
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where, i takes one of the values {1, 2, 3} whose elements are arranged cyclically. A typical

two-loop topology contains at most seven propagators. However, there are nine different

Lorentz invariants (ki.k j, ki.pj) which can appear in the numerator of an integral. Hence,

we introduce two auxiliary propagators in each of the two-loop integral families. The

following two sets describe the six integral families that we use at two-loops,

�P0,P1,P2,P1:i,P2:i,P1:i,i+1,P2:i,i+1P1:i,i+1,i+2,P2:i,i+1,i+2
�
,

�P0,P1,P2,P1:i,P2:i,P1:i,i+1,P2:i,i+1,P0:i+2,P1:i,i+1,i+2
�
. (3.16)

Here,

Pα = k2
α , Pα:i = (kα − pi)2 , Pα:i j = (kα − pi − pj)2 , Pα:i jk = (kα − pi − pj − pk)2 ,

P0 =(k1 − k2)2 , P0:i = (k1 − k2 − pi)2 .

This large number of Feynman integrals belonging to different integral families and can

be written in terms of a smaller set of integrals, so-called master integrals (MIs). This can

be achieved by using the integration-by-parts (IBP) [136,137] and the Lorentz Invariance

(LI) [138] identities, which are implemented in the Mathematica based package LiteRed

[139]. Finally, we obtain 10 and 149 MIs at one- and two-loops, respectively. These MIs

are analytically known from the seminal works of Gehrmann and Remiddi [124, 140].

We use them by systematic transformation and hence obtain the two-loop result for the

coefficient C2 which are expressed in terms of Laurent series in �. As mentioned before,

these unrenormalized coefficients contain both UV and IR divergences, which appear

as poles in � at every order in âs. In previous chapter, we briefly discussed how the

renormalization of the strong and the Yukawa couplings render these coefficients UV

finite, leaving only IR divergences. In the following section, we demonstrate them in

detail by considering the case of bb̄→ H process.
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3.3.2 Ultraviolet renormalization

Beyond LO, the scalar function C2 computed in powers of the bare coupling constant âs

encounters UV and IR divergences. In this section, we describe how to deal with UV

divergences. Perturbative expansion of the amplitude for the aforementioned process in

terms of the bare strong and Yukawa couplings is given by:

Mi j =


λ̂b

µ�/20

S �


2 �
M̂(0)

i j +

� âs

µ�0
S �
�
M̂(1)

i j +

� âs

µ�0
S �
�2

M̂(2)
i j + O(â3

s)
�
, (3.17)

where M̂(l)
i j is the lth loop unrenormalized amplitude. Note that the entire amplitude is

proportional to the square of λ̂b, the bare Yukawa coupling. Similarly, the coefficient C2

replicates similar perturbative expansion of the following form,

C2 =


λ̂b

µ�/20

S �


2 �
Ĉ(0)

2 +

� âs

µ�0
S �
�
Ĉ(1)

2 +

� âs

µ�0
S �
�2

Ĉ(2)
2 + O(â3

s)
�
. (3.18)

To perform the UV renormalization of the amplitudes we use the modified minimal sub-

traction (MS ) scheme, where the renormalized strong coupling constant as is related to

the bare strong coupling constant, âs, through the renormalization constant Z
�
µ2

R, �
�

at the

renormalization scale µR as

âs

µ�0
S � =

as

µ�R
Zas

�
µ2

R, �
�
, (3.19)

where The scale µ0 is an arbitrary mass scale introduced to make ĝs dimensionless in d-

dimensions. The coupling renormalization constant Z
�
µ2

R, �
�

up to four loop is given by

Eq.(2.45). The constants β0 and β1 are the coefficients of β function which, for nf light

quark flavors, are given in Eq.(2.15).

Similar to âs, the Yukawa coupling constant λ̂b needs to be renormalized as well, as ex-

plained in Sec.[2.3.1]. This has been done as shown below at the renormalization scale
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µR:

λ̂b

µ�/20

S � =
λb

µ�/2R

Zλ
�
µ2

R, �
�

=
λb

µ�/2R

�
1 + as

�1
�

Z(1)
λ,1

�
+ a2

s

� 1
�2

Z(2)
λ,2 +

1
�

Z(2)
λ,1

�
+ O(a3

s)
�
, (3.20)

where λb(µ2
R) is the renormalized Yukawa coupling and the coefficients Z(i)

λ, j are given by

Z(1)
λ,1 = 6CF , Z(2)

λ,2 = 18C2
F + 6β0CF , Z(2)

λ,1 =
3
2

C2
F +

97
6

CFCA − 10
3

CFnf TF . (3.21)

Having the strong as well as Yukawa coupling renormalized, now we can express the

coefficient C2 in terms of the renormalized couplings:

C2 =


λb

µ�/2R


2 �
C(0)

2 + as C(1)
2 + a2

s C(2)
2 + O(a3

s)
�
. (3.22)

where the coefficients C(l)
2 are obtained using Eq. (3.19) and (3.20) in Eq. (3.18) and

comparing with Eq. (3.22):

C(0)
2 = Ĉ(0)

2 ,

C(1)
2 =

12
�

CFĈ(0)
2 +

1
µ�R
Ĉ(1)

2 ,

C(2)
2 =

�
12
�2

�
6C2

F + β0CF

�
+

1
�

�
3C2

F +
97
3

CFCA − 20
3

CFnf TF

��
Ĉ(0)

2

+
2
µ�R

�
β0

�
+

6CF

�

�
Ĉ(1)

2 +
1
µ2�

R

Ĉ(2)
2 . (3.23)

These constants C(l)
2 , l = 0, 1, 2, are now UV finite. However, they are sensitive to IR

divergences which will be the topic of our next section.
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3.3.3 Infrared divergences and their factorization

Besides UV divergences, the amplitudes beyond LO suffer from infrared divergences,

particularly soft and collinear type divergences. The soft ones arise from the soft gluons

and the collinear from the massless quarks and gluons in the loops. The details of IR

divergences and how we resolve them are given in Sec.[2.1.3].

While all the IR divergences that appear in the amplitudes do not pose any problem for the

physical observables, they provide valuable information about the universal structure of

the IR divergences in QCD amplitudes. In fact, it can be shown that these divergences sys-

tematically factor out from the amplitudes to all orders in perturbation theory [141, 142].

These factored IR divergences demonstrate the universal structure in terms of certain soft

and collinear anomalous dimensions. An elegant proposal was put forth by Catani, who

predicted IR pole structure of the amplitudes up to two-loop level in non-abelian gauge

theory [3]. He demonstrated that the n-particle QCD amplitudes factorize in terms of

the universal IR subtraction operator denoted by I. This I-operator has a dipole struc-

ture [3] containing process independent universal cusp and collinear anomalous dimen-

sions. Thanks to the wealth of results from two-loop calculations of the three-parton

qq̄g amplitudes [143] and 2 → 2 scattering amplitudes [144–146], that involve non-

trivial color structures [146, 147], the I-operator is completely known up to two-loop

level. In [148], the authors provide further insight on the factorization and resummation

properties of QCD amplitudes in the light of Catani’s proposal and demonstrate a con-

nection between divergences governed by soft and collinear anomalous dimensions, see

also [149,150]. Following [3] we express one and two-loop UV renormalized amplitudes

in terms of the I-operator as

C(0)
2 (�) = C(0),fin

2 (�) ,

C(1)
2 (�) = 2I(1)

b (�)C(0)
2 (�) + C(1),fin

2 (�),

C(2)
2 (�) = 4I(2)

b (�)C(0)
2 (�) + 2I(1)

b (�)C(1)
2 (�) + C(2),fin

2 (�). (3.24)
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The matrix elements of the subtraction operator for the bottom quark, Ib are given by

I(1)
b (�) =

e−
�
2γE

Γ
�
1 + �/2

�
�
− 4CF

�2
+

3CF

�

��
− s
µ2

R

� �
2

,

I(2)
b (�) = −1

2
I(1)

b (�)
�
I(1)

b (�) − 2β0

�

�
+

e
�
2γEΓ(1 + �)
Γ(1 + �/2)

�
− β0

�
+ K

�
I(1)

b (2�) + 2H(2)
b (�),

(3.25)

with K [3] and H(2)
b [148] are given as follows:

K =
�
67
18
− π

2

6

�
CA − 10

9
nf TF ,

H(2)
b =

�
− s
µ2

R

�� e−
�
2γE

Γ
�
1 + �/2

� 1
�

�
CACF

�
−245

432
+

23
16
ζ2 − 13

4
ζ3

�

+C2
F

�
3
16
− 3

2
ζ2 + 3ζ3

�
+CFnf

�
25

216
− 1

8
ζ2

� �
. (3.26)

We simplified the expressions C(i),fin
2 (�) at the level of color factor and also for each color

factor, in terms of the uniform transcendentality. We find, the resulting expressions are

free of IR divergences and hence are finite as � → 0. This is following Catani’s predic-

tions for the IR poles, which serves as an important check on the correctness of our com-

putation. Although the singlet contributions, which are proportional to the color factor

CFnbTF , for nb = 1, develops IR divergences at the intermediate stages of the computa-

tion, they cancel among themselves to give rise to a finite piece. This is consistent with

the IR pole structure predicted by Catani. The finite coefficients, C(i),fin
2 , i = 1, 2, obtained

in Eq. (3.24) contain multiple classical polylogarithms, which are functions of the scal-

ing variables x and y. These polylogarithms can be attributed to different transcendental

weights. We present these finite finite coefficients C(l),fin
2 ,l = 0, 1, 2 in the attachment with

the arXiv submission of [70]

73



3.4 Inclusive Cross Section up to NNLO

In this section, we describe in detail the computation of inclusive cross section up to

NNLO level for producing a pair of Higgs bosons resulting from class-A and class-B

diagrams. The hadronic cross section can be expressed in terms of partonic cross sec-

tions appropriately convoluted with the corresponding bare parton distribution functions

f̂ai(xi), i = 1, 2 as

σHH =
�

a1,a2

�
dx1 f̂a1(x1)

�
dx2 f̂a2(x2)σ̂HH

a1a2
(x1, x2,m2

h) , (3.27)

where xi are the momentum fractions of initial state partons and a1,2 = q, q, g. σ̂HH
a1a2

is

the UV finite partonic cross section for producing a pair of Higgs bosons along with nX

number of colored particles (partons) through the reactions a1(p1) + a2(p2) → H(q1) +

H(q2) + X(kc) and is obtained using

σ̂HH
a1a2
=

1
2s

2�

n=1

�
dφ(qn)

nX�

c=1

�
dφ(kc)

�
|Ma1a2 |2(2π)dδd

�
p1 + p2 −

2�

n=1

qn −
nX�

c=1

kc

�

(3.28)

where pi, qi and kc are the momenta of incoming partons, final state Higgs bosons and

partons respectively. In d-dimensions, the phase space measure dφ(p) of a final state

particle with momentum p and mass m is given by

dφ(p) =
dd−1�p

(2π)d−12p0 (3.29)

where p0 =

�
m2 +

����p
���2. Ma1a2 is the amplitude for the process a1(p1) + a2(p2) →

H(q1) + H(q2) + X(kc) and is calculable order by order in perturbative QCD. The symbol
�

indicates that we have to sum over all the quantum numbers of final states, average over

initial states and finally include the symmetry factor for final state identical particles. For
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convenience, we classify the partonic channels that contribute toMa1a2 into class-A and

class-B. We find that these channels do not interfere for the case of inclusive cross sec-

tion and the invariant mass distribution of Higgs boson pairs. Hence, the hadronic cross

section in Eq.(3.27) decompose as:

σHH = σHH
A + σHH

B (3.30)

We treat them separately and are discussed in the following sections.

3.4.1 Cross section for class-A diagrams

For the class-A diagrams, the amplitudeMa1a2 factorizes into a product of two sub ampli-

tudes, where one of them describes the production of a single Higgs boson with virtuality,

q2 and the other encapsulates its decay to a pair of on-shell Higgs bosons. By suitably

factorizing the phase space we can describe the entire reaction as a continuous process of

producing a single off-shell boson with different virtualities, subsequently decaying to a

pair of on-shell Higgs bosons. In other words, we can write σ̂HH
a1a2

for class-A diagrams as

σ̂HH
A,a1a2

=

�
dq2

2π
σ̂H∗

A,a1a2
(x1, x2, q2)

���PH(q2)
���2 2qΓH∗→HH

A (q2) (3.31)

where the PH(q2) is the Higgs boson propagator, given by

PH(q2) =
i

q2 − m2
h + iΓhmh

(3.32)

with Γh, the decay width of the Higgs boson. The cross section that describes the produc-

tion of a Higgs boson with virtuality q2 is given by

σ̂H∗
A,a1a2

(x1, x2, q2) =
1
2s

nX�

c=1

�
dφ(kc)

�
dφ(q)

�
|MH∗

A,a1a2
|2(2π)dδd

�
p1 + p2 − q −

nX�

c=1

kc

�
.

(3.33)
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Here MH∗
A,a1a2

is the amplitude for the production of an off-shell Higgs boson with the

virtuality q2 and nX number of colored particles1. Similarly, the decay rate ΓH∗→HH
A is

given by

ΓH∗→HH
A (q2) =

1
2q

2�

n=1

�
dφ(qn)

����MH∗→HH
A

���2 (2π)dδd
�
q −

2�

n=1

qn

�
, (3.34)

withMH∗→HH
A describing its decay into a pair of on-shell Higgs bosons. The decay rate

ΓH∗→HH
A is straightforward to compute and in 4-dimensions it is found to be

ΓH∗→HH
A (q2) =

9β(q2)m4
h

32πv2q
, β(q2) =

�

1 − 4m2
h

q2 . (3.35)

Substituting Eq. (3.31) in Eq. (3.27) and using Eqs. (3.33, 3.34), we obtain σHH
A in

Eq. (3.30):

σHH
A =

�
dq2

2π
DH(q2)σH∗

A (q2) (3.36)

with

σH∗
A (q2) =

�

a1,a2

�
dx1 f̂a1(x1)

�
dx2 f̂a2(x2)σ̂H∗

A,a1a2
(z, q2)

DH(q2) =2q ΓH∗→HH
A (q2)

���PH(q2)
���2 (3.37)

where the partonic scaling variable z = q2/s. Note that σH∗
A is known exactly up to NNLO

level [130] and N3LO level [40, 63] in the soft plus virtual approximation for on-shell

production of single Higgs boson. Hence, following [130], we can express σH∗
A (q2) in

terms of IR finite coefficients convoluted with renormalized parton distribution functions

1Note here that, the notation q in the delta function in Eq.(3.33) denotes the momentum of system of
colorless states and do not confuse with the notation given to represent quarks
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fc(x, µ2
F) as

σH∗
A (q2) =σH∗

0 (q2, µ2
R)
�

a1,a2

�
dx1 fa1(x1, µ

2
F)
�

dx2 fa2(x2, µ
2
F) z ΔA,a1a2(z, q

2, µ2
F , µ

2
R)

(3.38)

where σH∗
0 (q2, µ2

R) = πm2
b(µ2

R)/(6q2v2). The partonic coefficient function ΔA,a1a2 can be

expanded in powers of strong coupling constant as

ΔA,a1a2(z, q
2, µ2

F , µ
2
R) =

∞�

i=0

ai
s(µ

2
R)Δ(i)

A,a1a2
(z, q2, µ2

F , µ
2
R) . (3.39)

Substituting Eq. (3.38) in Eq. (3.36) and making suitable change of variables, we obtain

σHH
A =

�

a1a2

� 1

τ

dx
2π
Φa1a2(x, µ2

F)
� 1

τ
x

dz
�
σH∗

0 (q2, µ2
R)DH(q2)ΔA,a1a2(z, q

2, µ2
F , µ

2
R)
�

q2=xzS

(3.40)

where τ = 4m2
h/S , S = s/x1x2, the hadronic center of mass energy of incoming hadrons

and the partonic flux Φa1a2(x, µ2
F) is given by

Φa1a2(x, µ2
F) =

� 1

x

dy
y

fa1(y, µ
2
F) fa2

�
x
y
, µ2

F

�
. (3.41)

In the next section, we use Eq. (3.40) to obtain the numerical impact of class-A diagrams

to the inclusive production cross section.

3.4.2 Cross section for class-B diagrams

We now describe how the contributions from class-B diagrams in Eq. (3.30) can be ob-

tained. Since class-B diagrams comprise t- and u- channels, the corresponding ampli-

tudes do not factorize like class-A diagrams. This makes the computation technically

more challenging beyond NLO level. However, one can obtain certain dominant contri-
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butions of class-B processes resulting from soft gluon emission as they are process inde-

pendent. Using the contributions from soft gluons, as described in Sec.[2.3.1], and those

from the two-loop virtual processes computed in the previous sections, we can readily cal-

culate the soft plus virtual contribution up to NNLO level, a first step towards obtaining

the total NNLO contribution from class-B.

For the class-B, the leading order contribution results from the Born process b+b→ H+H

contain t and u channels. At NLO, one loop virtual corrections to Born and real emission

processes b + b → H + H + g and b(b) + g → H + H + b(b) contribute. The UV

divergences that are present in the virtual processes to Born processes are removed using

MS renormalization scheme. The soft and final state collinear divergences in both virtual

as well as real emission processes cancel among each other while the initial state collinear

divergences are factored out and absorbed into bare bottom quark densities in the MS

scheme through the mass factorization. For the sub-process b(b) + g → H + H + b(b),

we encounter only collinear divergences, and they are removed by mass factorization.

We achieve this by using the semi-analytical method, namely the two cut off phase space

slicing [151], which is summarised in the section below.

NLO corrections to class B: Phase space slicing approach

In this section, we summarise the computation of NLO corrections of class-B diagrams

using the phase space slicing approach. The same approach has been used for the first

computation of NLO correction to the production of a pair of Higgs bosons in bottom

quark annihilation process [1]. In this method, for the real process b+b→ H+H+g, two

slicing parameters δs and δc are introduced to separate three-body phase space into soft,

hard collinear and hard non-collinear regions. Whereas, for the real process g + b(b) →
H + H + b(b), we need to introduce only δc as these are free from soft divergences. The

slicing parameter δs divides the real emission phase space into soft and hard regions. Soft

region is the part of phase space where the energy of gluon in the center-of-mass frame of
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incoming partons is required to be less than δs
√

s/2, and the rest is called hard region. The

latter contains collinear configurations where the two massless partons become collinear

to each other, leading to collinear singularities. Similarly, the δc is used to divide the

hard region into hard-collinear and hard non-collinear regions denoted respectively by

HC andHC. Keeping these slicing parameters δs and δc infinitesimally small, the virtual

loop integrals and the soft and collinear sensitive phase space integrals are computed

within the method of dimensional regularization. The corresponding singularities show

up as poles in dimensional regularization parameter �.

We describe below the essential steps that are followed in dealing with IR singularities

in phase space slicing method. We start with UV finite hadronic cross section at NLO

level, denoted by dσHH+1. It gets contribution from real emission partonic sub-process

a1 + a2 → HH + a3 where the final state consists of a pair of Higgs bosons HH and a3, a

single partonic state. We divide the phase space of a3 into three regions using two slicing

parameters as

dσHH+1(δs, δc, �) = dσHH,S(δs, �) + dσHH,HC(δs, δc, �) + dσHH,HC(δs, δc) . (3.42)

The soft (dσHH,S(δs, �)) and hard-collinear (dσHH,HC(δs, δc, �)) contributions can be com-

puted analytically when the slicing parameters are infinitesimally small within the dimen-

sional regularization. Soft and collinear singularities appear as poles in � and are cancelled

against those resulting from the virtual diagrams as well as from the counterterms that are

used to perform mass factorization. In other words, the following sum, denoted by dσHH
NLO

is finite as � → 0:

dσHH
NLO(µ2

F) = dσHH,V(�) + dσHH+1(δs, δc, �) + dσHH,CT(δs, δc, �, µ
2
F) (3.43)

where dσHH,V(�) is the contribution from virtual corrections to Born level processes. The

counter term dσHH,CT(δs, δc, �, µ
2
F) that removes the initial state collinear singularities is
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defined at the factorization scale µF . While the sum given by

dσS+V+HC+CT(δs, δc, µ
2
F) =dσHH,S(δs, �) + dσHH,V(�)

+ dσHH,HC(δs, δc, �) + dσHH,CT(δs, δc, �, µ
2
F) . (3.44)

is free from soft and collinear poles in �, it depends on the slicing parameters. However,

when the above sum is added to the hard non-collinear contributions (dσHH,HC), that is,

dσHH
NLO(µ2

F) = lim
δs,δc→0

�
dσS+V+HC+CT(δs, δc) + dσHH,HC(δs, δc)

�
(3.45)

the resulting contribution, Eq. (3.45), is guaranteed to be independent of the slicing pa-

rameters in the limit when they are taken to be infinitesimally small. For the sub-process,

g + b(b)→ H + H + b(b), we encounter only collinear divergences and hence we require

a single slicing parameter δc to obtain infrared safe observable.

For completeness, we present the individual contributions that are required in phase space

slicing method to obtain inclusive cross section up to NLO level from class B diagrams.

The virtual contribution for the sub-process initiated by b and b̄ is found to be

dσHH,V = as(µ2
F)
�

s
µ2

F

��
2 Γ(1 + �2 )
Γ(1 + �)

dx1dx2

�
CF

�
−16
�2
+

12
�

�

× dσHH,(0)
bb

(x1, x2, �)
�

fb(x1) fb(x2) + (x1 ↔ x2)
�

+ dσHH,V
bb,fin

(x1, x2, �)
�

fb(x1) fb(x2) + (x1 ↔ x2)
��

(3.46)

after setting renormalization scale µR = µF . The finite part of the virtual corrections,

dσHH,V
bb,fin

can be obtained in terms of C2 given in Eq. (3.14). The soft contribution is given

by

dσHH,S � as(µ2
F)
�

s
µ2

F

��
2 Γ(1 + �2 )
Γ(1 + �)

CF

�
16
�2
+

16 ln δs

�
+ 8 ln2 δs

�
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×
�

dσHH,(0)
bb

(x1, x2, �) fb(x1) fb(x2) + (x1 ↔ x2)
�

dx1dx2 . (3.47)

The sum of hard-collinear and counter term contributions from both bb̄ annihilation and

gb(b̄) scattering processes, is found to be:

dσHC+CT = as(µ2
F)
�

s
µ2

F

��
2 Γ(1 + �2 )
Γ(1 + �)

dx1dx2

×
�
dσHH,(0)

bb
(x1, x2, �)

�
1
2

fb(x1, µ
2
F) f̃b(x2, µ

2
F) +

1
2

f̃b(x1, µF) fb(x2, µ
2
F)

+ 2
�
−1
�
+

1
2

ln
s
µ2

F

�
Ab→b+g fb(x1, µF) fb(x2, µF) + (x1 ↔ x2)

��
. (3.48)

Using the diagonal splitting function Pbb(z), we find

Ab→b+g ≡
� 1

1−δs

dz
z

Pbb(z) =4CF

�
2 ln δs +

3
2

�
, (3.49)

and from the non-diagonal ones, we obtain

f̃b(x, µ2
F) =

� 1−δs

x

dz
z

fb

� x
z
, µ2

F

�
P̃bb(z) +

� 1

x

dz
z

fg

� x
z
, µ2

F

�
P̃bg(z), (3.50)

with

P̃i j(z) = Pi j(z) ln
�
δc

1 − z
z

s
µ2

F

�
+ 2P�i j(z) , (3.51)

where P�i j(z) [151] are � dependent part of splitting functions, that is

Pi j(z, �) = Pi j(z) + �P�i j(z) . (3.52)

Adding all the order as pieces together: the virtual cross section dσHH,V in Eq. (3.46),

the soft piece dσHH,S in Eq. (3.47) and the mass factorized hard-collinear contribution

dσHH,HC+CT as given in Eq. (3.48), we find that the poles in � cancel in the sum given in

Eq. (3.45) giving IR finite NLO contribution from class-B diagrams.
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NNLO corrections to class B: Soft-Virtual approach

Going beyond NLO for the class-B diagrams requires a dedicated computation taking

into account pure virtual contributions presented in last section, the double real and single

real-virtual contributions. The inclusion of the later contributions is beyond the scope of

the present work. However, we can compute the SV contribution resulting from class-

B diagrams. To achieve this, we follow the general formalism presented in Sec.[2.3.1],

which is applicable to both classes of diagrams.

We begin with the UV finite partonic cross section for producing a pair of Higgs bosons

and nX partons, namely for the process b(p1) + b(p2)→ H(q1) + H(q2) + X(kc),

σ̂bb =
1
2s

2�

n=1

�
dφ(qn)

nX�

c=1

�
dφ(kc)

�
|Mbb|2(2π)dδd

�
p1 + p2 −

2�

n=1

qn −
nX�

c=1

kc

�
(3.53)

where c counts the number of partons in the final state. The dominant soft gluon contri-

butions to partonic reactions are proportional to terms such as δ(1− z) and + distributions

of kind D j(z) ≡
�

ln(1−z)
1−z

�
+
. Such contributions result only from bottom quark annihilation

sub-processes. They themselves do not constitute infrared safe observables until we in-

clude pure virtual contributions and mass factorization counter-terms. The resulting one

is called SV contribution.

In the soft limit, the square of the real emission partonic matrix elements factorises into

hard and soft parts and similarly the phase space splits into their respective parts. The soft

part when combined with the pure virtual corrections and the mass factorization counter

terms, will give infrared safe SV part of the cross section:

σ̂sv
bb
=

�
dq2

q2

1
2s

2�

n=1

�
dφ(qn)

�
|M(0)

bb
|2(2π)dδd

�
p1 + p2 −

�

n

qn

�

×
�

dφ(q)
nX�

c=1

�
dφ(kc)

�
|Msv|2(2π)dδd

p1 + p2 − q −
�

c

kc

 (3.54)
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whereM(0)
bb

is the Born amplitude for producing a pair of Higgs bosons in bottom quark

annihilation and Msv is the SV part of amplitude Mbb. The second line of the above

equation can be computed order by order in perturbation theory for any colorless state

with momentum q in a process independent way as the amplitude for the production of a

pair of Higgs bosons factorises out at every order. Beyond LO, the virtual corrections to

Born amplitudes and multiple soft gluon emissions arising from tree level as well as from

loop corrected amplitudes contribute to the SV. While the singularities from soft gluons

cancel between real and virtual amplitudes, the initial state collinear singularities can be

removed only after adding appropriate mass factorization counter terms computed in the

soft limit at the factorization scale µF . The resulting hadronic cross section will be free of

soft and collinear singularities:

σHH,sv =

�
dq2

q2

�

b,b

�
dx1 fb(x1, µ

2
F)
�

dx2 fb(x2, µ
2
F)

1
2s

2�

n=1

�
dφ(qn)

× (2π)dδd
�
p1 + p2 −

2�

n=1

qn

�� �

i=A,B

Δsv
i,b

�
{pj · qk}, z, q2, µ2

F , µ
2
R

�
(3.55)

where z = q2/s, i runs over both the classes of diagrams. Following the threshold frame-

work in Sec.[2.3.1], the finite coefficients Δsv
i,b can be computed order by order in per-

turbation theory using one and two-loop virtual amplitudes, soft distribution function and

diagonal mass factorization kernels. We expand Δsv
i,b in powers of strong coupling constant

as,

Δsv
i,b =

∞�

j=0

aj
s(q

2) Δsv,( j)
i,b (q2) (3.56)

where we have set µ2
R = µ

2
F = q2. The coefficients, Δsv,( j)

i,b for j = 0, 1, 2 can be expressed

in terms of the cusp Aq
j , the soft f q

j and the collinear Bq
j anomalous dimensions that are

present in the virtual amplitudes and in the soft distribution function [40]:

Δsv,(0)
i,b =δ(1 − z) |M(0)

i,0 |2 ,
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Δsv,(1)
i,b =δ(1 − z)

�
|M(0)

i,0 |2
�
2Gq,1

1

�
+M(1)

i,0M�(0)
i,0 +M(0)

i,0M�(1)
i,0

�
+D0(z)|M(0)

i,0 |2
�
−2 f q

1

�

+D1(z)|M(0)
i,0 |2

�
4Aq

1

�
,

Δsv,(2)
i,b =δ(1 − z)

�
|M(1)

i,0 |2 + |M(0)
i,0 |2

�
Gq,1

2 + 2(Gq,1
1 )2 + 2β0Gq,2

1 − 8ζ3Aq
1 f q

1

− 2ζ2( f q
1 )2 − 4

5
ζ2

2 (Aq
1)2
�
+M(2)

i,0M�(0)
i,0 +M(1)

i,2M�(1)
i,−2

+M(1)
i,2M�(0)

i,0

�
4Aq

1

�
+M(1)

i,1M�(1)
i,−1 +M(1)

i,1M�(0)
i,0

�
− 2 f q

1 − 4Bq
1

�
+M(1)

i,−1M�(1)
i,1

+M(1)
i,−2M�(1)

i,2 +M(1)
i,0M�(0)

i,0

�
2Gq,1

1

�
+M(0)

i,0M�(2)
i,0 +M(0)

i,0M�(1)
i,2

�
4Aq

1

�

+M(0)
i,0M�(1)

i,1

�
− 2 f q

1 − 4Bq
1

�
+M(0)

i,0M�(1)
i,0

�
2Gq,1

1

��
+D0(z)

�
|M(0)

i,0 |2
�
− 2 f q

2 − 4 f q
1G

q,1
1

− 4β0Gq,1
1 + 16ζ3(Aq

1)2 + 8ζ2Aq
1 f q

1

�
+M(1)

i,0M�(0)
i,0

�
− 2 f q

1

�
+M(0)

i,0M�(1)
i,0

�
− 2 f q

1

��

+D1(z)
�
|M(0)

i,0 |2
�
4( f q

1 )2 + 4Aq
2 + 8Aq

1G
q,1
1 + 4β0 f q

1 − 16ζ2(Aq
1)2
�

+M(1)
i,0M�(0)

i,0

�
4Aq

1

�
+M(0)

i,0M�(1)
i,0

�
4Aq

1

��

+D2(z)|M(0)
i,0 |2

�
− 12Aq

1 f q
1 − 4β0Aq

1

�
+D3(z)|M0

i,0|2
�
8(Aq

1)2
�
, (3.57)

where ζ2 = 1.64493407 · · · , ζ3 = 1.20205690 · · · andM( j)
i,k are obtained from Eq. (3.14)

by definingMmn =Mδmn and expanding in powers of � as

M( j)
i (�) =

∞�

k=−2 j

�kM( j)
i,k . (3.58)

The cusp, collinear and soft anomalous dimensions are given in Appendix B. The univer-

sal constants Gq,( j)
k for the quark-initiated process are given by:

Gq,1
1 = CF (−3ζ2) ,

Gq,2
1 = CF

�
7
3
ζ3

�
,

Gq,1
2 = CFnf

�
−328

81
+

70
9
ζ2 +

32
3
ζ3

�
+CACF

�
2428

81
− 469

9
ζ2 + 4ζ22 − 176

3
ζ3

�
. (3.59)
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Finally, defining Δ
sv
b (z, q2, µ2

F , µ
2
R) by

Δ
sv
bb(z, q2, µ2

F , µ
2
R) =

1
2s

2�

n=1

�
dφ(qn)(2π)dδd

p1 + p2 −
2�

n=1

qn



×
�
|M(0)

bb
|2

2�

i=1

Δsv
i,b

�
{pj · qk}, z, q2, µ2

F , µ
2
R

�
, (3.60)

we obtain σHH,sv:

σHH,sv =

� 1

τ

dx Φa1a2(x, µ2
F)
� 1

τ
x

dz Δ
sv
a1a2

(z, q2, µ2
F , µ

2
R)
�������

q2=xzS

. (3.61)

We have used the above formula to study the numerical impact of SV part of the par-

tonic cross section resulting from class-B diagrams up to NNLO level on the inclusive

production of a pair of Higgs bosons.

3.5 Phenomenology

In this section, we present in detail the numerical impact of our analytical results obtained

in the previous sections. We mainly focus on the inclusive cross section for producing a

pair of Higgs bosons at the LHC with the center-of-mass energy
√

S = 14 TeV. We use

MMHT2014(68cl) PDF set [152] and the corresponding as through the LHAPDF-6 [153]

interface at every order in perturbation theory. We use the running bottom quark mass

renormalized in MS [130] scheme with the boundary condition mb(mb) = 4.7 GeV. Both

as(µ2
R) and mb(µ2

R) at various orders in perturbation theory are evolved using appropriate

QCD β-function coefficients and quark mass anomalous dimensions. Similarly, the PDFs

are evolved to factorization scale µF using the splitting functions computed to desired ac-

curacy in the perturbation theory. We choose the Higgs boson mass mh = 125 GeV and

its total decay width Γh = 0.001 GeV. In our analysis, we have included all the partonic

channels upto NNLO level for the class-A diagrams while for the class-B, we could do

this only up to NLO level, however, at NNLO level we have included SV contributions.
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Figure 3.5: The total cross section for di-Higgs production in bb̄ annihilation at various order in
as as a function of

�
µ2

R/µ
2
0

�
on left panel with µF = µ0 and as a function of

�
µ2

F/µ
2
0

�
on right panel

with µR = µ0 with central scale µ0 = 2mh and
√

s = 14 TeV.

We find that this approximation does not change our conclusion as the dominant contribu-

tion results from class-A. To illustrate this point we state some of our observations from

our numerical results. We find that the LO contributions from class-A diagrams are three

orders of magnitude larger than those from class-B diagrams. We also find that NLO

contributions change the LO cross section by −1.096% and at the NNLO level the change

is about −8.095%. The numerical result manifests the fact that the SV contribution pre-

sented in this work not only gets the dominant contribution from class-A but also the

stability of our NNLO result for di-Higgs production from the bb̄ annihilation channel.

We find that the contribution from bottom quark annihilation processes is three orders of

magnitude smaller than from the gluon fusion processes [110] (See Table 3.1). However,

former ones need to be included for the precision studies at the LHC.

Channel LO[fb] NLO[fb] NNLO[fb]

bb̄→ H 0.02821 0.03169 0.02970

gg→ H 17.06 31.89 37.55

Table 3.1: Inclusive total cross section for the di-Higgs production in dominant gluon fusion
chennale and sub-dominant bottom quark annihialtion channel for µR = µF = mh/2.

Having studied the size of the corrections both at NLO and NNLO level, it is important to
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Figure 3.6: The total cross section for di-Higgs production in bb̄ annihilation at various order in
as as a function of the mass scale µ with (µF = µR = µ) for

√
s = 14 TeV.

quantify the uncertainties resulting from the mass scales introduced in our calculations.

Recall that the renormalization of the UV and the initial state collinear divergences en-

forces the introduction of mass scales namely µR and µF respectively. The µR dependency

shows up in the coupling constant as(µ2
R), the mass mb(µ2

R) and in the mass factorized

partonic cross sections at various orders in perturbations theory. The coupling constants

are evolved using the appropriate QCD β-function coefficients and quark mass anomalous

dimensions. The µF scale dependency comes from the PDFs that are evolved using split-

ting functions computed in the perturbation series. But the cross section, like every other

physical observables, is expected to be independent of these arbitrary mass scales. This

crude fact manifests the scale independency if we sum the perturbative predictions to all

orders in perturbation theory. Since we have truncated the series, there is a residual scale

dependency. In the following we aim to study this by varying both µR and µF scales.

In Fig. 3.5, we show the variation of our fixed order predictions with respect to µR (on

the left panel) and µF (on the right panel) for a particular choice of central scale µ0 = 250

GeV. We can see that except for the small µR and µF region, which is in the region below

µR = mh, there is an overall reduction of the scale dependency with increasing order of

perturbation theory. We observe that both NLO and NNLO results attain a much faster
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stability against the variation of the scales than the LO cross section. At the leading order,

there are no µR or µF scale dependent logarithms that can compensate those coming from

the Yukawa coupling and parton distribution functions, and hence LO has large scale

dependency. However, the inclusion of higher order terms that contain logarithms of

� µR
κmh
, µF
κmh

�
LO[fb]×10−1 NLO[fb]×10−1 NNLO[fb]×10−1

(2,2) 0.3587 0.3416 0.3119
(2,1) 0.2951 0.3191 0.3098
(1,2) 0.3994 0.3384 0.2976
(1,1) 0.3286 0.3250 0.3020

(1,1/2) 0.2502 0.3032 0.3031
(1/2,1) 0.3704 0.3246 0.2879

(1/2,1/2) 0.2821 0.3169 0.2970

Table 3.2: 7-point scale variation for central scale at mh = 125GeV, κ = 1

these scales provide partial cancellation at every order in perturbation theory. Hence the

inclusion of NLO and NNLO pieces reduces the dependency on the scales considerably.

In Fig. 3.6, we have set µR = µF and varied the cross section with respect to a single

scale µ. It can be observed that LO attains stability much faster compared to the case

when µR is not equal to µF . This can be comprehended from Fig. 3.5, where the LO

contribution behaves exactly in an opposite way with respect to the variation of both the

mass scales. So the stability in the leading order seen in Fig. 3.6 attributes to the fact

that there is a significant cancellation happening between the µR and µF scale variations

of the cross section. We also show the 7-point scale variation for the central scale at

mh = 125 GeV in Table 3.2. This variation spans the entire region from µR, µF = mh/2 to

µR, µF = 2mh and hence captures the uncertainty in this region. The 7-point scale variation

for a different value of central scale is also shown in Table 6.4. Table 6.5 contains the %-

uncertainty from the scale variation at two different central scales. It can be seen that the

leading order cross section has a huge scale uncertainty which implies the unreliability of

the result. But the scale dependency starts to reduce when we include the higher order

corrections.
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� µR
κmh
, µF
κmh

�
LO[fb]×10−1 NLO[fb]×10−1 NNLO[fb]×10−1

(2,2) 0.3765 0.3617 0.3256
(2,1) 0.3254 0.3384 0.3210
(1,2) 0.4150 0.3594 0.3110
(1,1) 0.3587 0.3416 0.3119

(1,1/2) 0.2951 0.3191 0.3098
(1/2,1) 0.3994 0.3384 0.2976

(1/2,1/2) 0.3286 0.3250 0.3020

Table 3.3: 7-point scale variation for central scale at mh = 125GeV, κ = 2

Central
Scale(GeV)

LO[fb]×10−1 NLO[fb]×10−1 NNLO[fb]×10−1

125 0.3286+21.546%
−23.859% 0.3250+5.108%

−6.708%
0.3020+3.278%

−4.669%

250 0.3587+15.696%
−17.731% 0.3416+5.210%

−6.587%
0.3119+4.392%

−4.585%

Table 3.4: %-scale uncertainty at LO, NLO and NNLO

3.6 Summary

To summarize, we have systematically computed the inclusive cross section for the pro-

duction of a pair of Higgs bosons in the bottom quark annihilation up to NNLO level

in perturbative QCD. We find that the diagrams contributing at NNLO can be classified

to two classes, with no interference terms between them. For obtaining the corrections

coming from class-A, we use the result of single Higgs production from bottom annihila-

tion channel. For class-B, the evaluation of full NNLO inclusive corrections are hard to

achieve. However, we obtained the correction at the soft limit using the threshold frame-

work explained in chapter 3. We have analyzed these results numerically at the LHC

energy, which demonstrates that the inclusion of higher order terms reduces the renor-

malization and factorization scale uncertainties, and hence making the predictions more

reliable.
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4 NNLO QCD⊕QED corrections to

Higgs production in bb̄ annihilation

In this chapter, we investigate the NNLO corrections resulting from the interference of

QCD and QED interactions for the bottom quark induced Higgs productions. We also

discuss their general structure using the threshold framework presented in chapter 3. In

the process, we obtain the QED mass anomalous dimensions upto second order. The ma-

terials presented in this chapter are the result of original research done in collaboration

with Pooja Mukherjee, V. Ravindran et.al and are based on the published article [154].

4.1 Prologue

The efforts to compute the observables related to top quarks and Higgs bosons have been

going on for a while as these observables are sensitive to high scale physics. Since the

dominant contributions to these processes are known to unprecedented accuracy, the in-

clusion of sub-dominant contributions and radiative corrections is essential for any con-

sistent study. This chapter explores the possibility of including EW corrections to Higgs

boson production in bottom quark annihilation, which is sub-dominant. While this is a

sub-dominant process at the LHC, in certain BSM contexts, the rates are significantly

appreciable, leading to interesting phenomenological studies.

Unlike the dominant channel, which is gluon-induced Higgs boson production, the bot-
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tom quark annihilation channel has not received much attention in the context of EW

corrections, presumably because it is already sub-dominant at the LHC. The complete

EW corrections are much involved. Hence in this chapter, as a first step towards this, we

attempt to include the QED corrections to the inclusive production for the aforementioned

channel. Though these corrections are sub-dominating for the collider physics, however,

from the naive power counting the QED coupling constant α ∼ α2
s , where αs is the QCD

one. Hence we expect that, the corrections obtained from this work could be comparable

to the fixed [4] and resummed [155] results solely from third order in perturbative QCD.

Recently in [156], a suitable algorithm, called Abelianization, has been developed by

studying the group theory structure of QCD and QED amplitudes that contribute to the

partonic sub-processes of DY production. The algorithm contains a set of transformations

on the color factors/Casimirs of SU(Nc) that transforms QCD results for the partonic sub-

processes to the corresponding QED results. This way both pure QED and the mixed

QCD-QED contributions to inclusive production cross section for the Z boson in DY

process have been obtained in [156] at NNLO level. Following this approach, we can in

principle proceed to obtain pure QED and mixed QCD-QED contributions to the bottom

quark annihilation process from the QCD results. However, in order to scrutinize the very

approach of Abelianization, we explicitly compute the pure QED and mixed QCD-QED

corrections to inclusive production of the Higgs boson in bottom quark annihilation up

to NNLO level in U(1) and SU(Nc) × U(1). In addition, we reproduce the same for the

production of Z boson in DY process.

The computation beyond the leading order involves evaluation of virtual and real emission

processes. As discussed before, these contributions are sensitive to UV, soft and collinear

divergences. We compute them in dimensional regularization, hence divergences appear

as poles in dimensional parameter � = d−4, where d being the space-time dimension. The

UV divergences are removed in MS scheme. While the soft divergences cancel between

virtual and real emission processes in the inclusive cross section, the collinear divergences
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are removed by mass factorization. Both the UV and mass factorization counter terms are

determined using factorization property of the inclusive cross section and obtain collinear

finite contributions to the Higgs boson production in bottom quark annihilation and Z

boson production in DY. In the process, we also obtain the universal IR anomalous di-

mensions and consequently the renormalization constant for the Yukawa coupling up to

two-loop level in both QED and mixed QCD-QED ones.

We begin the chapter with a discussion on the theoretical framework in Sec.[4.2]. In

Sec.[4.3], we briefly describe the methodology to compute higher order QCD and QED

corrections to various partonic and photonic channels contributing to the inclusive cross

section. We also investigate the UV and IR structure of the form factors and cross sec-

tions using K+G equation and obtain the mass factorized cross sections, which is done

in Sec.[4.4]. Further the Abelianization procedure is discussed in Sec.[4.5]. Finally, the

phenomenological impact of our theoretical predictions are presented in Sec.[4.7] and

summarize in Sec.[4.8].

4.2 Theoretical framework

The Lagrangian corresponds to the gauge group SU(Nc) × U(1), where SU(Nc) is the

gauge group for strong interaction and U(1) for electromagnetic interaction, is given by:

L = ψ̄i
�
iγµD

µ
i j − mδi j

�
ψ j − 1

4
Ga
µνGaµν − 1

4
FµνF µν − 1

2ξ

�
∂µGa

µ

�2

. (4.1)

Here ψm represents the fermionic field in the fundamental representation of the SU(Nc)

group with m = 1, · · · ,Nc and ξ is the gauge fixing parameter. The covariant derivative

Dµi j = ∂
µδi j − igs

�
T c�

i jG
µ
c − ieAµδi j. The gluonic and photonic field strength tensors takes

the form in terms of gluon gauge field Ga
µ and photon gauge fields Aµ respectively as:

Ga
µν = ∂µG

a
ν − ∂νGa

µ + igs f abcGb
µG

c
ν ,
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Fµν = ∂µAν − ∂νAµ ,

Here both Ga
µ, (a = 1, · · · ,N2

c − 1) and Aµ belong to the adjoint representation. We

use the standard perturbation theory for our computations in which various quantities

are expressed in powers of as = g2
s/16π2 and ae = e2/16π2. Here gs and e are strong and

electromagnetic coupling constants respectively. We treat the quarks and leptons massless

as we are interested in quantities in the high energy limit. The computations beyond

LO involves virtual and real emission processes which are often sensitive to divergences

coming from UV and IR end. The IR divergences arises: (1) from massless gluons of

SU(Nc) and massless photons of U(1), and (2) (almost) massless collinear quarks and

leptons. We perform these higher order computations in dimensional regularisation where

the divergences appears in terms of � = d − 4, with d being the space-time dimension.

Also we use MS -scheme to renormalize the fields and the couplings in the theory. The

number of active flavors is taken to be nf = 5 and we work in the Feynman gauge.

For the Higgs boson production from bottom quark annihilation, the Lagrangian includes

additional interaction term described by the Yukawa interaction λb, which is given in

Eq.(3.2). The Yukawa coupling which, after the EW symmetry breaking, is found to be

mb/v, where v is the vacuum expectation value (vev) of the Higgs field φ(x). The ψb(x)

and mb denote the bottom quark field and mass, respectively.

As discussed in the previous chapter, in the SM, the Higgs boson production through

bottom quark annihilation is sub-dominant compared to gluon fusion through top quark

loop. One finds that the bottom Yukawa coupling is 35 times smaller than top quark

Yukawa coupling and in addition, the bottom quark flux in the proton-proton collision is

much smaller than the gluon flux. However, in certain BSM scenarios such as the MSSM

[117], the ratio of the vevs of Higgs doublets can increase the contributions resulting from

the bottom quark annihilation channel (See (3.2.1) for more details).

The inclusive cross section for the production of a colorless state, such as Higgs produc-
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tion from gluon fusion or bottom quark annihilation, in the hadronic collisions is given

by

σ(S , q2) = σB(µ2
R)
�

cd

�
dx1dx2 fc(x1, µ

2
F) fd(x2, µ

2
F) Δcd(s, q2, µ2

F , µ
2
R) , (4.2)

where σB is the Born cross section and fa(xi, µ
2
F) are pdf’s for a = q, q, g and photon

distribution function (phdf) if a = γ. The scaling variables xi is their momentum fractions.

The partonic sub-process contributions Δcd are normalized by the Born cross section. The

scales µR and µF are renormalization and factorization scales. S and s = x1x2S are

hadronic and partonic center of mass energy, respectively. q2 is the invariant mass of

the final colorless state. Δcd can be expanded in powers of the QCD coupling constant

as = g2
s(µ

2
R)/16π2 and QED coupling constant ae = e2(µ2

R)/16π2, gs and e being the strong

and electromagnetic coupling constants, respectively. That is, after suppressing µR and µF

dependence,

Δcd(z, q2, µ2
F , µ

2
R) =

∞�

i, j=0

ai
s(µ

2
R) aj

e(µ
2
R) Δ(i, j)

cd (z, q2, µ2
F , µ

2
R) , (4.3)

with Δ(0,0)
cd = δ(1 − z) and z = q2/s. Unlike the Δ(i)

cd given in Eq.(3.39), where the index

i dictates the perturbative order of QCD corrections, here we have two indices (i, j) to

represent the same for both QCD and QED respectively. In the following, we describe the

methodology to compute Δ(i, j)
cd up to second order in the couplings.

4.3 Methodology

In this section, we briefly describe how higher order perturbative corrections Δ(i, j)
cd in Eq.

(4.3)) are computed. Beyond LO, the partonic channels consists of one and two loop

virtual sub processes, real-virtual and single and double-real emissions (See Sec.[2.2]).

Some sample diagrams are are presented in Fig. 4.1. Sub-processes involving virtual di-
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Figure 4.1: Mixed QCD-QED contributions at NNLO. From left the sample diagrams of (1)
double virtual, (2) real virtual and (3) double real respectively have shown. Here the the wavy
line indicates the photon, curly ones the gluon and the dashed line the Higgs boson.

agrams are sensitive to UV singularities. Due to the presence of massless gluons and

photons, we encounter soft singularities in both virtual and real emission sub-processes.

In addition, we encounter collinear singularities as well, since the quarks are treated mass-

less. We use dimensional regularization to regulate all these singularities.

To generate Feynman diagrams we have used the program QGRAF [133]. An in-house

FORM [134] code is used to perform all the symbolic manipulations, e.g. performing

Dirac, SU(Nc) color and Lorentz algebra. We encounter a large number of loop integrals

at this stage coming from the virtual diagrams. In order to reduce them to a minimum set

of master integrals, we use IBP identities through a Mathematica based package, namely

LiteRed [139]. For the virtual processes, at two loop level, the form factors in QCD,

QED and mixed QCD×QED require four MIs. For those processes that involve pure real

emissions with or without virtual diagrams, we use the method of reverse unitarity that

allows one to use IBP identities to reduce the resulting phase-space integrals to a set of

few MIs. These MIs are matching with those given in [157]. For the RV type of processes

at NNLO level we need 9 MIs for QCD and 8 MIs for both QED and mixed QCD-QED.

Whereas, for the pure real emissions at NNLO, 24 MIs are required for QCD, QED and

mixed QCD-QED processes. Substituting these MIs, we obtain contributions to each sub-

process with their singularities expressed in terms of �. We discuss the structure of these

singularities in the following section.
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4.4 UV and IR structures in QED and QCD-QED

Having computed all the partonic channels that contribute to the hadronic cross sections in

QED and QCD-QED, now we can investigate the underlying UV and IR structure of U(1)

gauge theory and the mixed gauge groups with massless fermions, which is the focus of

this section. For the SU(Nc) group, similar studies can be find in [3,49,148,158–161]. In

order to explore the IR structure, we study the production of a Z-boson namely the Drell-

Yan process, in addition to Higgs productions, in hadron colliders to the same accuracy

in QCD, QED and QCD-QED.

To start with, we focus on the UV divergences coming from the virtual sub processes. In

order to avoid those divergences, we renormalize the coupling constants ac using suitable

renormalization constants Zac , where c = s, e corresponds to QCD and QED coupling

constants respectively. The Zac relate the bare couplings âc to the renormalized ones

ac(µ2
R) at the renormalization scale µR in the following way,

âc
�
µ2

0
� �

2
S � =

ac(µ2
R)

�
µ2

R
� �

2
Zac

�
as(µ2

R), ae(µ2
R), �

�
, (4.4)

where ac = {as, ae}. Recall: âs = ĝ2
s/16π2 and âe = ê2/16π2 and S � ≡ exp[(γE − ln 4π) �2 ].

µ0 is an arbitrary mass scale introduced to make âs and âe dimensionless in d-dimensions.

Since the bare coupling constants âc is independent of the renormalisation scale µR, the

couplings ac(µ2
R) satisfy the renormalisation group equations given by:

µ2
R

d
dµ2

R

ln Zac =
ε

2
+ βac(as(µ2

R), ae(µ2
R)) . (4.5)

When both the interactions are simultaneously present in the perturbation theory, the beta

functions βac will involve both the couplings as and ae, as given by:

βas = −
∞�

i, j=0

βi jai+2
s a j

e , βae = −
∞�

i, j=0

β�i ja
j+2
e ai

s . (4.6)
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As can be seen from above expressions, the mixing of both these couplings in the beta

functions start to appear from the third order onward, where (i+ j) ≥ 3 in Eq.(4.6). (More

details can be found in [162]).

Substituting Eq.(4.6) in Eq.(4.5) and solving for the renormalization constants Zac up to

two-loops, we obtain

Zas = 1 + as

�2β00

�

�
+ asae

�β01

�

�
+ a2

s

�
4β2

00

�2
+
β10

�

�

Zae = 1 + ae

�2β�00

�

�
+ aeas

�β�10

�

�
+ a2

e


4β

�2
00

�2
+
β�01

�

 (4.7)

In the present case, only one loop β i.e. β00 and β�00 appear. They, along with the other

β’s [162, 163], are given by1.

β00 =
11
3

CA − 4
3

nf TF , β�00 = −
4
3

Nc

�

q

e2
q +

�

l

e2
l

 ,

β01 = −2


�

q

e2
q +

�

l

e2
l

 , β�01 = −4

Nc

�

q

e4
q +

�

l

e4
l

 ,

β10 =

�
34
3

C2
A −

20
3

CAnf TF − 4CFnf TF

�
, β�10 = −4CF

Nc

�

q

e2
q +

�

l

e2
l

 . (4.8)

Recall that CA = Nc and CF = (N2
c −1)/2Nc. nf (nl) are the number of active quark (lepton)

flavors and eq, el refers to electric charge for quark q and lepton l respectively.

In addition to the QCD and QED coupling renormalization, we perform the renormaliza-

tion for the Yukawa coupling through overall operator renormalization constant Zb
λ(as, ae),

which satisfies the RG equation:

µ2
R

d
dµ2

R

ln Zb
λ =
�

4
+ γ

(i, j)
b (as(µ2

R), ae(µ2
R)) (4.9)

1Note that β j0 are pure QCD beta’s as given in Eq.(2.14). We define them again, since we need to take
care of both QCD and QED indices simultaneously.
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whose solution in terms of the anomalous dimensions γ(i, j)
b up to two loops is found to be

Zλb(as, ae, �) = 1 + as

�1
�

�
2γ(1,0)

b

��
+ a2

s

� 1
�2

�
2
�
γ(1,0)

b

�2
+ 2β00γ

(1,0)
b

�
+

1
�
γ(2,0)

b

�

+ ae

�1
�

�
2γ(0,1)

b

��
+ a2

e

� 1
�2

�
2
�
γ(0,1)

b

�2
+ 2β�00γ

(0,1)
b

�
+

1
�
γ(0,2)

b

�

+ asae

� 1
�2
�
4γ(1,0)

b γ(0,1)
b

�
+

1
�

�
γ(1,1)

b

��
. (4.10)

Note that while the UV singularities factorize through Zλb , singularities from QCD and

QED mix from two loop onward. For QCD, γ(i,0)
b is known to four loops [164]. Using

universal IR structure of the amplitudes and cross sections in QED, we determine γ(i, j)
b up

to two loops in QED i.e. for (i, j) = (0, 1), (0, 2) and in QCD-QED i.e. for (i, j) = (1, 1).

As discussed in Sec.[2.3.1], the IR structure of partonic cross section in the soft-virtual

limit is constructed using the form factors, soft distributions and mass factorization ker-

nels. We have already seen the structure of these quantities in the QCD perturbation

theory in previous chapters. Now in this section, we study their structure for the case of

mixed QCD-QED and pure QED.

4.4.1 Form factors

We begin with the discussion on the form factors (FF). The bare form factor is denoted by

F̂I(âs, âe,Q2, µ2), where I = q, b denotes the DY process and the Higgs boson production

in bottom quark annihilation respectively. As mentioned, our computations are performed

in the perturbative framework where both QCD as well as QED interactions are taken into

account simultaneously. Hence all the quantities,including form factor, depend on both

QCD and QED coupling constants. In addition, we find that the UV renormalized form

factors demonstrate the factorization of IR singularities. Using gauge and renormaliza-

tion group invariance, we propose Sudakov integro-differential equation for these FFs,
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analogous to the QCD one. In dimensional regularization, they take the following form:

Q2 d
dQ2 ln F̂I =

1
2

�
KI

�
{âc},

µ2
R

µ2 , �
�
+GI

�
{âc}, Q

2

µ2
R

,
µ2

R

µ2 , �
��
, (4.11)

where {ac} = {as, ae} and Q2 = −q2 is the invariant mass of the final state particle:

q2 =



m2
l+l− for Drell-Yan,

m2
h for Higgs production,

(4.12)

where ml+l− is the invariant mass of the lepton pairs. Explicit computation of the form

factors shows that IR singularities, resulting from QCD and QED interactions not only

factorize but also mix beyond one loop level. In other words, if we factorize IR singulari-

ties from the FFs, the resulting IR singular function can not be written as a product of pure

QCD and pure QED functions. More specifically, there will be terms proportional to ai
sa

j
e,

where i, j > 0, which will not allow factorization of QCD and QED ones. Hence, KI will

have IR poles in � from pure QED and pure QCD in every order in perturbation theory

and in addition, from QCD-QED for the orders starting from O(asae). On the other hand,

overall factorization of IR singularities implies that all the IR singularities contributes to

the constants KI , while the GIs will have IR finite contributions when � → 0. Since, the

IR singularities of FFs have dipole structure, KI will be independent of q2 while GIs are

contains logarithms in q2. Since the F̂I are renormalization group (RG) invariant, so does

the sum KI +GI . Thus, the RG invariance of F̂I implies

µ2
R

d
dµ2

R

KI

�
{âc},

µ2
R

µ2 , �
�
= −µ2

R
d

dµ2
R

GI

�
{âc}, Q

2

µ2
R

,
µ2

R

µ2 , �
�
= −AI({ac(µ2

R)}) , (4.13)

where AI are the cusp anomalous dimensions. The solutions to the above RG equations

for KI can be obtained by expanding the cusp anomalous dimensions (AI) in powers of
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renormalized coupling constants as(µ2
R) and ae(µ2

R) as

AI({ac(µ2
R)}) =

�

i, j

ai
s(µ

2
R)aj

e(µ
2
R)A(i, j)

I , A(0,0)
I = 0 , (4.14)

and KI as

KI(µ2
R, �) =

�

i, j

âi
sâ

j
e

�µ2
R

µ2

�(i+ j) �2 S (i+ j)
� K(i, j)

I (�) , K(0,0)
I = 0 , (4.15)

where A(i,0) and A(0,i) result from pure QCD and pure QED interactions and A(i, j) with

i, j > 0 from QCD-QED. The perturbative solutions to the RG equation for KI in Eq.(4.13)

are found using RG equations for the couplings as and ae:

K(1,0)
I =

1
�

�
− 2A(1,0)

I

�
, K(2,0)

I =
1
�2

�
2β00A(1,0)

I

�
+

1
�

�
− A(2,0)

I

�
,

K(0,1)
I =

1
�

�
− 2A(0,1)

I

�
, K(0,2)

I =
1
�2

�
2β�00A(0,1)

I

�
+

1
�

�
− A(0,2)

I

�
.

K(1,1)
I =

1
�

�
− A(1,1)

I

�
. (4.16)

Unlike KI , GI do not contain any IR singularities but depend only on Q2 and hence we

expand them as

GI

�
{âc}, Q

2

µ2
R

,
µ2

R

µ2 , �
�
= GI({ac(Q2)}, 1, �) +

� 1

Q2

µ2R

dλ2

λ2 AI({ac(λ2µ2
R)}) (4.17)

where the first term is the boundary condition on each GI at µ2
R = Q2. Expanding AI in

powers of as and ae and using RG equations for QCD and QED couplings, we obtain

� 1

Q2

µ2R

dλ2

λ2 AI({ac(λ2µ2
R)}) =

�

i, j

âi
sâ

j
e

�µ2
R

µ2

�(i+ j) �2 × S (i+ j)
�

��Q2

µ2
R

�(i+ j) �2 − 1
�
K(i, j)(�) . (4.18)

Expanding the finite function GI(as(Q2), ae(Q2), 1, �) as,

GI({ac(Q2)}, 1, �) =
�

i, j

ai
s(Q

2)aj
e(Q

2)G(i, j)
I (�) , (4.19)
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substituting the solutions of KI and GI in Eq.(4.11) and performing the integration over

Q2 we get

ln F̂I =
�

i, j

âi
sâ

j
e

�Q2

µ2

�(i+ j) �2 S (i+ j)
� L̂(i, j)

FI
(�) , (4.20)

where,

L̂(1,0)
FI
=

1
�2

�
− 2A(1,0)

I

�
+

1
�

�
G(1,0)

I (�)
�
.

L̂(0,1)
FI
=

1
�2

�
− 2A(0,1)

I

�
+

1
�

�
G(0,1)

I (�)
�
.

L̂(2,0)
FI
=

1
�3

�
β00A(1,0)

I

�
+

1
�2

�
− 1

2
A(2,0)

I − β00G
(1,0)
I (�)

�
+

1
2�

�
G(2,0)

I (�)
�
.

L̂(0,2)
FI
=

1
�3

�
β�00A(0,1)

I

�
+

1
�2

�
− 1

2
A(0,2)

I − β�00G
(0,1)
I (�)

�
+

1
2�

�
G(0,2)

I (�)
�
.

L̂(1,1)
FI
=

1
�2

�
− 1

2
A(1,1)

I

�
+

1
2�

�
G(1,1)

I (�)
�
. (4.21)

The derivations are followed the same way as the case of QCD, which in detail are given

in Sec.[2.3.1]. Similar to the QCD [41, 42], the finite coefficients G(i, j)
I (�) are observed to

satisfy the following decomposition in terms of collinear (B(i, j)
I ), soft ( f (i, j)

I ) and UV (γ(i, j)
I )

anomalous dimensions as

G(i, j)
I (�) = 2(B(i, j)

I − γ(i, j)
I ) + f (i, j)

I + χ
(i, j)
I +

�

k=1

�kgk
I,i j (4.22)

with

χ(1,0)
I = 0 , χ(0,1)

I = 0 , χ(1,1)
I = 0 ,

χ(2,0)
I = −2β00g1

I,10 , χ
(0,2)
I = −2β�00 g1

I,01 . (4.23)

Now we have the general structure of form factor up to second order in coupling constants

for QCD, QED and QCD-QED as given in Eq. (4.20) . Also we explicitly computed the

virtual corrections for Drell-Yan process and bottom quark induced Higgs production,
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which are performed using the methodology described in the previous section. By com-

paring the explicit computations with the general structure of form factor, we can obtain

many useful information which is our next focus.

The analytic expression for the unrenormalized form factor (F̂I) in powers of (âs) and (âe)

takes the following form:

F̂I = 1+ âs

�Q2

µ2

� �
2S�

�
CFF I

1

�
+ â2

s

�Q2

µ2

��S2
�

�
C2

FF I
2,0 +CACFF I

2,1 +CFnf TFF I
2,2

�

+ âe

�Q2

µ2

� �
2S�

�
e2

IF I
1

�
+ â2

e

�Q2

µ2

��S2
�

�
e4

IF I
2,0 + e2

I

�
N
�

q

e2
q +

�

l

e2
l

�
F I

2,2

�

+ âsâe

�Q2

µ2

��S2
�

�
2CFe2

IF I
2,0

�
. (4.24)

I = q, b denotes the Drell-Yan pair production and the Higgs boson production in bottom

quark annihilation, respectively. The coefficients F q
1 ,F q

2,0,F q
2,1 and F q

2,2 are

F q
1 = −

8
�2
+

6
�
− 8 + ζ2 + �

�
8 − 3

4
ζ2 − 7

3
ζ3

�
+ �2

�
− 8 + ζ2 +

47
80
ζ2

2 +
7
4
ζ3

�
+ �3

�
8 − ζ2

− 141
320
ζ2

2 −
7
3
ζ3 +

7
24
ζ2ζ3 − 31

20
ζ5

�
+ �4

�
− 8 + ζ2 +

47
80
ζ2

2 +
949

4480
ζ3

2 +
7
3
ζ3

− 7
32
ζ2ζ3 − 49

144
ζ2

3 +
93
80
ζ5

�
,

F q
2,0 =

32
�4
− 48
�3
+

1
�2

�
82 − 8ζ2

�
+

1
�

�
− 221

2
+

128
3
ζ3

�
+

1151
8
+

17
2
ζ2 − 13ζ2

2 − 58ζ3

+ �

�
− 5741

32
− 213

8
ζ2 +

171
10
ζ2

2 +
839

6
ζ3 − 56

3
ζ2ζ3 +

92
5
ζ5

�
+ �2

�
27911
128

+
1839

32
ζ2 − 3401

80
ζ2

2 +
223
20
ζ3

2 −
6989

24
ζ3 +

27
2
ζ2ζ3 +

652
9
ζ2

3 −
231
10
ζ5

�
,

F q
2,1 =

44
3�3
− 1
�2

�
332

9
− 4ζ2

�
+

1
�

�
4129
54
+

11
3
ζ2 − 26ζ3

�
− 89173

648
− 119

9
ζ2 +

44
5
ζ2

2

+
467
9
ζ3 + �

�
1775893

7776
+

6505
216
ζ2 − 1891

120
ζ2

2 −
3293
27
ζ3 +

89
6
ζ2ζ3 − 51

2
ζ5

�

+ �2
�
− 33912061

93312
− 146197

2592
ζ2 +

2639
72
ζ2

2 −
809
280
ζ3

2 +
159949

648
ζ3 − 397

36
ζ2ζ3

− 569
12
ζ2

3 +
3491

60
ζ5

�
,
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F q
2,2 = −

16
3�3
+

112
9�2
+

1
�

�
− 706

27
− 4

3
ζ2

�
+

7541
162

+
28
9
ζ2 − 52

9
ζ3 + �

�
− 150125

1944

− 353
54
ζ2 +

41
30
ζ2

2 +
364
27
ζ3

�
+ �2

�
2877653
23328

+
7541
648
ζ2 − 287

90
ζ2

2 −
4589
162
ζ3

− 13
9
ζ2ζ3 − 121

15
ζ5

�
. (4.25)

Similarly, the coefficients F b
1 ,F b

2,0,F b
2,1 and F b

2,2 are

F b
1 = −

8
�2
− 2 + ζ2 + �

�
2 − 7

3
ζ3
�
+ �2

�
− 2 +

1
4
ζ2 +

47
80
ζ2

2

�
+ �3

�
2 − 1

4
ζ2 − 7

12
ζ3

+
7

24
ζ2ζ3 − 31

20
ζ5

�
+ �4

�
− 2 +

1
4
ζ2 +

47
320
ζ2

2 +
949

4480
ζ3

2 +
7
12
ζ3 − 49

144
ζ2

3

�
,

F b
2,0 =

32
�4
+

1
�2

�
16 − 8ζ2

�
+

1
�

�
− 16 − 12ζ2 +

128
3
ζ3

�
+ 22 + 12ζ2 − 13ζ2

2 − 30ζ3

+ �

�
− 32 − 18ζ2 +

48
5
ζ2

2 +
202
3
ζ3 − 56

3
ζ2ζ3 +

92
5
ζ5

�
+ �2

�
48 +

53
2
ζ2 − 213

10
ζ2

2

+
223
20
ζ3

2 −
436

3
ζ3 +

1
2
ζ2ζ3 +

652
9
ζ2

3 −
63
2
ζ5

�
.

F b
2,1 =

44
3�3
+

1
�2

�
− 134

9
+ 4ζ2

�
+

1
�

�
440
27
+

11
3
ζ2 − 26ζ3

�
− 1655

81
− 103

18
ζ2 +

44
5
ζ2

2

+
305

9
ζ3 + �

�
6353
243

+
245
27
ζ2 − 1171

120
ζ2

2 −
2923

54
ζ3 +

89
6
ζ2ζ3 − 51

2
ζ5

�

+ �2
�
− 49885

1458
− 4733

324
ζ2 +

11819
720

ζ2
2 −

809
280
ζ3

2 +
7667
81
ζ3 − 127

36
ζ2ζ3

− 569
12
ζ3

3 +
2411

60
ζ5

�
,

F b
2,2 = −

16
3�3
+

40
9�2
+

1
�

�
− 184

27
− 4

3
ζ2

�
+

832
81
+

10
9
ζ2 − 52

9
ζ3 + �

�
− 3748

243
− 46

27
ζ2

+
41
30
ζ2

2 +
130
27
ζ3

�
+ �2

�
16870

729
+

208
81
ζ2 − 41

36
ζ22 − 598

81
ζ3 − 13

9
ζ2ζ3 − 121

15
ζ5

�
.

(4.26)

Compring these explicit form factor results with the general expression in Eq.(4.20), we

obtain the structure of the cusp anomalous dimensions (A(i, j)
I ) for the case of QED and

mixed QCD-QED. For QCD they are known to 4-loop and presented in Appendix B. We
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find A(i, j)
I up to two loops as:

A(1,0)
I = 4CF , A(2,0)

I = 8CACF

�67
18
− ζ2

�
+ 8CFnf TF

�
− 10

9

�
,

A(0,1)
I = 4e2

I , A(0,2)
I = 8e2

I

�
N

n f�

k=1

e2
k +

nl�

l=1

e2
l

��
− 10

9

�
,

A(1,1)
I = 0 . (4.27)

Unlike A(i, j)
I , the other anomalous dimensions B(i, j)

I , f (i, j)
I and γ(i, j)

I can not be disentangled

either from F̂q or F̂b alone. In order to disentangle B(i, j)
I and f (i, j)

I , we study the partonic

cross sections resulting from soft gluon and soft photon emissions, namely soft distribu-

tions, in the next section.

4.4.2 Soft distributions

Before going to the extraction of soft or collinear anomalous dimension, let us briefly de-

scribe how we obtain the soft contributions arises from the real emission sub-processes.

This has been discussed in detail for the case of QCD in Sec.[2.3.1]. The soft distribu-

tions, ΦJ, are governed by the cusp and soft anomalous dimensions , where J = q, b, g

refers to DY process, Higgs production from bottom quark annihilation and gluon fusion

respectively. For the case of QCD, one finds that the quark and gluon soft distributions

are related through Φb = Φq = (CF/CA) Φg, which is found to be true up to three loop

level [39, 40, 60]. This relation is expected to hold since the Φq and Φg are defined by the

expectation value of certain gauge invariant bi-local quark and gluon operators computed

between on-shell quark and gluons fields. The Wilson lines made up of gauge fields make

these bi-local operators gauge invariant. (See [68, 69, 165–169] for more details).

We can use the partonic sub-processes of either DY process or the Higgs boson production

in bottom quark annihilation namely σ̂qq or σ̂bb normalized by the square of the bare form

factor F̂q or F̂b to obtain ΦI . In general ΦI , which is function of the scaling variable
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z = q2/s, is defined as,

C exp
�
2ΦI(z)

�
=
σ̂II(z)

Z2
I

���F̂I

���2
I = q, b (4.28)

with Zq = 1 and Zb = Zλb being the overall renormalization constant. Recall that the

Drell-Yan process does not require additional operator renormalization and hence Zq = 1

and the corresponding UV anomalous dimensions γq = 0. Whereas, the Yukawa coupling

require additional renormalization which is dictated by nonzero γb’s. The symbol C refers

to “ordered exponential” as given in Eq.(2.72).

We can compute the UV finite σ̂II at every order in renormalized perturbation theory.

Since, we have not determined Zλb , we can only compute the unrenormalized partonic

cross section σ̃II = σ̂II/Z
2
I . From the explicit results for σ̃II and the form factors F̂I , using

Eq.(4.28) we obtain ΦI up to second order in as, ae and asae. We find Φq = Φb up to

second order in the couplings demonstrating the universality.

In [39, 40], it was shown that the soft distribution function ΦI satisfies Sudakov integro-

differential equation analogous to the form factor F̂I (See Eq.(4.11)) due to similar IR

structures that both of them have, order by order in perturbation theory. That is, ΦI

satisfies

q2 d
dq2ΦI =

1
2

�
KI

�
{âc},

µ2
R

µ2 , �, z
�
+Gsv,I

�
{âc}, q2

µ2
R

,
µ2

R

µ2 , �, z
��
, (4.29)

where, the IR singularities are contained in K and the finite part in G. The RG invariance

of ΦI implies

µ2
R

d
dµ2

R

KI = −µ2
R

d
dµ2

R

Gsv,I = AI({ac(µ2
R)})δ(1 − z) . (4.30)

Note that, the same anomalous dimensions govern the evolution of both KI and GI . This

ensures that the soft distribution function contains right soft singularities to cancel those
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from the form factor leaving bare partonic cross section to contain only initial state

collinear singularities. The later will be removed by mass factorization by appropriate

DGLAP kernels. Expanding KI({ac}) and Gsv,I({ac(q2)}, 1, �, z) in powers of {ac} as has

been done for KI({ac}) and GI({ac}) �see Eq.(4.15) and (4.19)
�
, with the replacements of

K(i, j)
I by K

(i, j)
I and

Gsv,I({ac(q2)}, 1, �, z) =
�

i, j

ai
s(q

2)aj
e(q

2)G
(i, j)
sv,I (�, z) , (4.31)

the solution to Eq.(4.29) is found to be

ΦI({âc}, q2, µ2,�, z) =
�

i, j

âi
s â j

e

�
q2(1 − z)2

µ2

�(i+ j) �2

S (i+ j)
�

�
(i + j)�
1 − z

�
φ̂

(i, j)
I (�) (4.32)

where,

φ̂
(i, j)
I (�) =

1
(i + j) �

�
K

(i, j)
I (�) +G

(i, j)
sv,I (�)

�
. (4.33)

The coefficients G
(i, j)
sv,I (�) are related to the finite function Gsv,I({ac(q2)}, 1, �, z) defined in

Eq.(4.31) through the distributions δ(1 − z) and D j(z). Thus expanding G
(i, j)

(�) in terms

of the as(q2(1 − z)2) and ae(q2(1 − z)2) we write,

�

i, j

âi
s â j

e

�q2
z

µ2

�(i+ j) �2 S (i+ j)
� G

(i, j)
sv,I (�) =

�

i, j

ai
s
�
q2

z
�

aj
e
�
q2

z
� G(i, j)

I (�) (4.34)

where q2
z = q2(1 − z)2. The IR finite G(i, j)

I (�) are observed [39, 40] to satisfy the following

relation:

G(i, j)
I (�) = − f (i, j)

I + χ
(i. j)
I +

�

k=1

�kG(k)
I,i j , (4.35)
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where, for up to two loops

χ(1,0)
I = 0 , χ(0,1)

I = 0 , χ(1,1)
I = 0 ,

χ(2,0)
I = −2β00 G(1)

I,10 , χ
(1,0)
I = −2β�00 G

(1)
I,01 . (4.36)

The constants G(k)
I,i j up to two loops are found to be:

G(1)
I,10 = CF

�
− 3ζ2

�
, G(2)

I,10 = CF

�7
3
ζ3
�
, G(3)

I,10 = CF

�
− 3

16
ζ2

2

�
,

G(1)
I,01 = e2

b

�
− 3ζ2

�
, G(2)

I,01 = e2
b

�7
3
ζ3
�
, G(3)

I,01 = e2
b

�
− 3

16
ζ2

2

�
,

G(1)
I,11 = 0 ,

G(1)
I,20 = CFnf TF

�
− 656

81
+

140
9
ζ2 +

64
3
ζ3
�
+CACF

�2428
81
− 469

9
ζ2 + 4ζ2

2 −
176
3
ζ3
�
,

G(1)
I,02 = e2

b

�
N
�

q

e2
q +

�

l

e2
l

��
− 656

81
+

140
9
ζ2 +

64
3
ζ3
�
. (4.37)

Comparing the soft distribution functions ΦI , I = q, b, obtained from the explicit com-

putation up to second order in coupling constants against the formal solution given in

Eq.(4.32), we can obtain A(i, j)
I and f (i, j)

I for (i, j) = (1, 0), (0, 1), (1, 1), (2, 0), (0, 2). We

obtain:

f (1,0)
I = f (0,1)

I = f (1,1)
I = 0

f (2,0)
I = CACF

�
− 22

3
ζ2 − 28ζ3 +

808
27

�
+CFnf TF

�8
3
ζ2 − 224

27

�
,

f (0,2)
I = e2

I

�
N
�

q

e2
q +

�

l

e2
l

��8
3
ζ2 − 224

27

�
. (4.38)

Now that we have f (i, j)
I , it is straightforward to obtain B(i, j)

q in Eq. (4.22) from the explicit

results on G(i, j)
q as γ(i, j)

q = 0 for DY. This way we obtain,

B(1,0)
q = 3CF , B(0,1)

q = 3e2
q , B(1,1)

q = CFe2
q

�
3 − 24ζ2 + 48ζ3

�
,

B(2,0)
q =

1
2

�
C2

F
�
3 − 24ζ2 + 48ζ3

�
+CACF

�17
3
+

88
3
ζ2 − 24ζ3

�
+CFnf TF

�
− 4

3
− 32

3
ζ2
��
,
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B(0,2)
q =

1
2

�
e4

q
�
3 − 24ζ2 + 48ζ3

�
+ e2

q

�
N
�

q�
e2

q� +
�

l

e2
l

��
− 4

3
− 32

3
ζ2
��
. (4.39)

Considering B(i, j)
b = B(i, j)

q , we determine the UV anomalous dimension
�
γ

(i, j)
b

�
from G(i, j)

b

of Eq.(4.22) which is known to second order. They are found to be:

γ(1,0)
b = 3CF , γ

(0,1)
b = 3e2

b , γ
(1,1)
b = 3CFe2

b ,

γ(2,0)
b =

3
2

C2
F +

97
6

CACF − 10
3

CFnf TF ,

γ(0,2)
b =

3
2

e4
b −

10
3

e2
b

�
N
�

k∈Q
e2

k +
�

l

e2
l

�
. (4.40)

Alternatively, taking B(i, j)
b = B(i, j)

q and f (i, j)
b = f (i, j)

q , we can determine γ(i, j)
b by comparing

the difference G(i, j)
b −G(i, j)

q obtained using DY and Higgs boson form factors F̂q and F̂b at

� = 0 against the formal decomposition of G(i, j)
I given in Eq.(4.22). Substituting the above

UV anomalous dimensions in Eq.(4.10), we obtain Zλb to second order in the couplings.

Using the renormalization constants Zas , Zae and Zλb for the coupling constants as, ae and

the Yukawa coupling, we obtain UV finite partonic cross sections. The soft and collinear

singularities arising from gluons/photons/fermions in the virtual sub-processes cancel

against those from the real sub-processes when all the degenerate states are summed

up. The remaining initial state collinear singularities are removed by mass factorization.

Collinear factorization allows us to determine the mass factorization kernels Γqq and Γqg

up to two-loop level for U(1) and SU(Nc) ×U(1) cases. Since Γqq and Γqg are governed by

the splitting functions Pqq and Pqg, we extract them to second order in couplings. In [170],

these splitting functions up to NNLO level, both in QED and QCD×QED, were obtained

using the Abelianization procedure. The splitting functions that we have obtained by de-

manding finiteness of the mass factorised cross section, agree with those in [170]. The

resulting expression for the finite partonic cross section is presented in later sections. Be-

fore going to that, let us briefly discuss the abelianization procedure which is the focus of

next section.
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4.5 Abelianization procedure

In [156], QCD-QED corrections to the DY process were obtained by studying the SU(Nc)

color factors in Feynman diagrams that contribute to QCD corrections. This led to an

algorithm namely Abelianization procedure which provides a set of rules that transform

QCD results into pure QED and mixed QCD×QED results. Unlike in [156], without

resorting to Abelianization rules, we have performed explicit calculation to obtain the

contributions resulting from all the partonic and photonic channels taking into account

both UV and mass factorization counter terms. Using these results at NNLO in QCD,

QCD-QED and in QED, we find a set of rules that can relate QCD and QED results. Note

that if there is a gluon in the initial state, averaging over its color factor gives a factor
�
1/(N2

c − 1)
�
. This is absent for the processes where photon is present instead of gluon

in the initial state. Also, for pure QCD or QED, the gluons or photons are degenerate

and hence one needs to account for a factor of 2. Taking this in account, we obtain a

set of relations among QCD and QED results, which are found to be consistent with the

procedure used in [156]. These relations are listed in the following tables for various

scattering channels:

Rule 1 : quark-quark initiated cases

QCD QCD-QED QED

C2
F 2CFe2

b e4
b

CFCA 0 0
CFnf TF 0 e2

b

�
Nc

�
q e2

q +
�

l e2
l

�

CFTF 0 Nce2
be2 ∗

q

∗e2
q = e2

b when both initial quarks are bottom quarks.

Rule 2 : quark-gluon initiated cases: After multiplying 2CACF for the initial state gluon

QCD QCD-QED QED

CAC2
F CACFe2

b CAe4
b

C2
ACF 0 0
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Rule 3 : gluon-gluon initiated cases After multiplying 2CACF for each initial state gluon

QCD QCD-QED QED

C2
AC2

F C2
ACFe2

b C2
Ae4

b

C3
ACF 0 0

4.6 Mass factorized partonic cross sections

In this section, we present the finite partonic cross sections Δ(i, j)
cd that we obtained af-

ter mass factorization. Expanding these cross section in powers of strong and electro-

magnetic coupling constants:

Δcd(z, q2, µ2
F , µ

2
R) =

∞�

i, j=0

ai
s(µ

2
R) aj

e(µ
2
R) Δ(i, j)

cd (z, q2, µ2
F , µ

2
R) , (4.41)

In QCD, Δi,0
cd for bottom quark annihilation is known [130, 171], but we present here for

completeness. In the following, Δi,0
cd , i = 1, 2 is in SU(Nc) gauge theory, while Δ0, j

cd , j = 1, 2

is in U(1) gauge theory.

Δ(0,0)
bb̄
=δ(1 − z) ,

Δ(1,0)
bb̄
=CF

�
δ(1 − z)

�
− 4 + 8ζ2

�
+ 16D1(z) +

�
4(1 − z) − 8(1 + z) ln(1 − z)

− 4
�
1 + z2�

(1 − z)
ln(z)

��
.

Δ(1,0)
bg = −

1
2

(−1 + z)(−3 + 7z) + 2
�
1 − 2z + 2z2

�
ln(1 − z) +

�
− 1 + 2z − 2z2

�
ln(z) ,

Δ(2,0)
bb̄
=C2

F

�
δ(1 − z)

�
16 +

8
5
ζ2

2 − 60ζ3

�
+ 256D0(z)ζ3 +D1(z)

�
− 64 − 128ζ2

�

+ 128D3(z) +
�
− 4

�
− 26 + 11z + 13z2

�
+

8
1 − z

�
− 7 − 10z + 11z2

�
ln(1 − z) ln(z)

− 4
1 − z

�
23 + 39z2� ln2(1 − z) ln(z) +

2
1 − z

�
7 + 30z − 34z2 + 12z3� ln2(z)

+
16

1 − z
�
2 + 5z2� ln(1 − z) ln2(z) − 2

3(1 − z)
�
1 + 15z2 + 4z3� ln3(z)
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+
8

1 − z
� − 16 + 13z − 6z2 + 6z3�Li2(1 − z) +

8
1 − z

�
7 − 9z2� ln(1 − z)Li2(1 − z)

− 16
1 − z

�
3 + z2 + 2z3� ln(z)Li2(1 − z) +

48
1 − z

� − 1 + 2z2�Li3(1 − z)

− 8
1 − z

�
9 + 9z2 + 8z3�S1,2(1 − z) + 8(11 − 10z)ζ2 − 16

1 − z
� − 2 − 7z2 + z3� ln(z)ζ2

− 128(1 + z)ζ3 + 12(−4 + 9z) ln(1 − z) + 64(1 + z)ζ2 ln(1 − z)

− 32(1 − z) ln2(1 − z) − 64(1 + z) ln3(1 − z) +
4

1 − z
�
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+
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(−40 + 299z) ln(1 − z) + 16(1 + z)ζ2 ln(1 − z)
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8
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− 64
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�
1 + z2� ln(1 − z) ln(z) +

4
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�
5 + 7z2� ln2(z) +
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� − 7 − 5z + 3z2�Li2(1 − z)

− 16
1 + z

� − 3 − 2z2 + z3� ln(z)Li2(1 − z) − 64
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+
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+
16

1 + z
�
1 + z2� ln(1 − z)ζ2 +
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�
1 + z2�ζ3

+ 32(−1 + z) ln(1 − z) − 2(−8 + 5z) ln(z) − 8
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�
1 + 2z2�ζ2 ln(z) − 8Li2(−z)

− 16(1 + z) ln(1 − z) ln(z) + 2
�
1 + 2z + 3z2� ln2(z) − 8 ln(z) ln(1 + z)
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3z
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3
�
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8
3z
�
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16
3z
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�
4 + 7z + 4z2�ζ2

+
4
9
�
93 − 264z + 20z2� ln(z) − 32(1 + z)ζ2 ln(z) + 32(1 + z) ln2(1 − z) ln(z)

− 32(1 + z) ln(1 − z) ln2(z) +
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3

(1 + z) ln3(z) − 16(1 + z) ln(z)Li2(1 − z)
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+
2
9
�
93 − 264z + 20z2� ln(z) − 16(1 + z)ζ2 ln(z) + 16(1 + z) ln2(1 − z) ln(z)

− 16(1 + z) ln(1 − z) ln2(z) +
10
3

(1 + z) ln3(z) − 8(1 + z) ln(z)Li2(1 − z)
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− 32
3
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3
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�
7 − 32z + 27z2� ln(1 − z) ln(z) − 3

�
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+
1
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�
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+
1
6
� − 9 + 18z − 52z2� ln3(z) − 4(1 + z)(1 + 3z) ln(z) ln(1 + z)
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�
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�
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�
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�
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2
�
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�
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1
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+
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�
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�
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1
6
� − 3 + 108z − 292z2� ln2(z)
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− 8(−1 + z)2 ln(z)Li2(1 − z) + 2(1 + z)(3 + 5z)Li2(−z)

− 8
�
1 + 2z + 2z2� ln(1 − z)Li2(−z) + 8

�
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�
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�
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�
1 − z + 2z2� ln(1 − z)ζ2 − 2

�
1 + 4z + 2z2�ζ3

+
1
9
�
102 − 66z − 565z2� ln(z) + 8z(−5 + 2z)ζ2 ln(z) +

1
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gg = 2(−1 + z)(10 + 59z) − (2(−1 + z)(23 + 75z) ln(1 − z))

+ 16(−1 + z)(1 + 3z) ln2(1 − z) − 4
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+ 8
�
1 + 2z + 2z2�S1,2(−z)

�
. (4.42)

The corresponding results from the QED and QCD×QED are found to be

Δ(1,1)
bb̄
= Δ(2,0)

bb̄

����
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(4.43)
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bb

����
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F→2CFe2
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(4.44)

Δ(1,1)
ub = 0 (4.45)
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uū = 0 (4.46)
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(4.49)

Partonic cross sections contributing to pure NLO and NNLO QED corrections:
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The constants ζi =
�∞

k=1
1
ki , k ∈ N denote the Riemann’s ζ-functions. In our results, we
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have ζ2 and ζ3 which take the values:

ζ2 =1.64493406684822643647 . . .

ζ3 =1.20205690315959428540 . . . . (4.58)

Also, the Spence functions [172, 173] Li2(x) and Li3(x) are defined by

Li2(x) =
∞�

k=1

xk

k2 = −
� x

0

ln(1 − t)
t

dt ,

Li3(x) =
∞�

k=1

xk

k3 =

� x

0

Li2(t)
t

dt , (4.59)

and the Nielson function S1,2(x) as

S1,2(x) =
1
2

� 1

0

dt
t

ln2(1 − tx) . (4.60)

In the next section, we study the numerical impact of the these partonic cross sections at

the LHC energies.

4.7 Numerical Impact

In this section, we study the numerical impact of pure QED and mixed QCD-QED cor-

rections over the dominant QCD corrections up to NNLO level to the production of the

Higgs boson in bottom quark annihilation at the LHC. We focus mainly for the center of

mass energy of
√

S = 13 TeV. Since we include QED effects, we need phdf inside the

proton in addition to the standard pdfs. For this purpose, we use NNPDF 3.1 LUXqed

set [174], MRST [175], CT14 [176] and PDF4LHC17. The pdfs, phdfs and the strong

coupling constant as can be obtained using the LHAPDF-6 [153] interface. We have used

the following input parameters for the masses and the couplings:
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mW = 80.4260 GeV mb(mb) = 4.70 GeV

mZ = 91.1876 GeV αs(mh) = 0.113

mh = 125.09 GeV αe = 1/128.0

Both as(µR) and mb(µR) are evolved using appropriate QCD β-function coefficients and

quark mass anomalous dimensions respectively. However, we have considered fixed αe =

4πae throughout the computation.
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Figure 4.2: The total cross section at various perturbative orders at energy scales varying from
6 to 22 TeV at LHC. The index ‘ij’ indicates that QCD at ‘i’-th order and QED at ‘j’-th order in
perturbative theory are included.

The Higgs boson production cross section from bottom quark annihilation at the present

energy of LHC is not substantial. For example, at 13 TeV, the third order QCD cor-

rections contribute almost 1% to the NNLO, while the mixed QCD-QED corrections

contribute around 0.1% on top off the NNLO contributions. However, for the high lu-

minosity LHC, measuring them at higher center of mass energy would give larger con-

tributions and it will improve the precision. Hence, we have first studied how the cross

section varies with the center of mass energy of LHC. In Fig. 4.2, we plot the inclu-

sive production cross sections at various orders in perturbative QCD and QED for the

range of CM energies between
√

S = 6 to 22 TeV. In the inset, the index ‘ij’ indi-

cates that QCD at ‘i’-th order and QED at ‘j’-th order in perturbative theory are included.

In Fig. 4.2, we have used NNPDF31_lo_as_0118, NNPDF31_nlo_as_0118_luxqed and

119



NNPDF31_nnlo_as_0118_luxqed for LO, NLO and NNLO, respectively. The scales (µR)

and (µF) are kept fixed at mh and mh/4, respectively. We note that in Fig. 4.2, the pure

QED contributions are large. This is due to the fact that we consider leading order QCD

running of Yukawa coupling which gives larger Born contribution compared to pure QCD.

However, if we consider same running of Yukawa coupling, the NLO QCD effects are 50

- 500 times larger than NLO QED effects, depending on the scale choice.

Δ(0,0) Δ(1,0) Δ(0,1) Δ(2,0) Δ(1,1) Δ(0,2) Total

Δ00 1.0181 1.0181
Δ10 1.1362 -0.1810 0.9552
Δ01 1.2219 0.0030 1.2249
Δ20 1.1433 -0.1683 -0.1935 0.7816
Δ11 1.1542 -0.1699 0.0029 -0.0005 0.9867
Δ02 1.2422 0.0031 -3 10−5 1.2453

Table 4.1: Individual contributions in (pb) to various perturbative orders at
√

S=14 TeV.

Δ0,0 Δ1,0 Δ0,1 Δ2,0 Δ1,1 Δ0,2 Total

Δ00 0.3911 0.3911
Δ10 0.4588 0.1557 0.6145
Δ01 0.4935 0.0003 0.4938
Δ20 0.4726 0.1614 0.0220 0.6561
Δ11 0.4771 0.1630 0.0003 1.5 10−4 0.6406
Δ02 0.5135 0.0003 6 10−6 0.5139

Table 4.2: Individual contributions in (pb) to various perturbative orders at
√

S=13 TeV.

In order to understand this in more detail, we study the impact of different contributions

to the cross sections resulting from QCD, QED and mixed QCD-QED at various orders

in perturbation theory. The results are tabulated in Table 4.1 for
√

S = 14 TeV and for the

scale choice µR = µF = mh. The Δ(i, j) indicates sole i-th order QCD and j-th order QED

corrections to the total contribution. Whereas the Δi j indicates the total contribution. For

instance, Δ11 means Δ(0,0) + Δ(1,0) + Δ(0,1) + Δ(1,1), or in other figures which is denoted by

either LO, NLO or NNLO e.g. Δ11 means NNLO11. In Table 4.2, a similar study has been

performed for
√

S = 13 TeV and the scales µR = mh , µF = mh/4.
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As we discussed, the fixed order predictions depend on the renormalization and factoriza-

tion scales. The uncertainty resulting from the choice of the scales quantify the missing

higher order contributions. We have studied their dependency by varying them indepen-

dently around a central scale. Fig. 4.3 shows the dependence of the cross section on the

renormalization scale for the fixed choice of the factorization scale µF = mh/4. It clearly

demonstrates the importance of higher order corrections as the µR variation is much more

stable at NNLO20 compared to the lower orders.
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Figure 4.3: The renormalization scale variation of the total cross section at various perturbative
orders in QCD.
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Figure 4.4: The factorization scale variation of the total cross section at various perturbative
orders in QCD.
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In Fig. 4.4, we present the dependence on the factorization scale keeping the renormal-

ization scale fixed at mh. Similar to the µR variation, µF variation improves after adding

higher order corrections. To illustrate their dependence when both the scales are changed

simultaneously, we present the cross section by performing 7-point scale variation and the

results are listed in Table 4.3. We used NNPDF31_nnlo_as_0118_luxqed for this study.

�
µR
mh
, µF

mh

� �
2,1

2

� �
2,1

4

� �
1,1

2

� �
1,1

4

� �
1,1

8

� �
1
2 , 1

4

� �
1
2 , 1

8

�

NNLO20 (pb) 0.707 0.643 0.690 0.656 0.562 0.661 0.606
NNLO11 (pb) 0.759 0.602 0.780 0.641 0.445 0.682 0.498
NNLO02 (pb) 0.728 0.465 0.804 0.514 0.250 0.574 0.279

Table 4.3: 7-point scale variation at
√

S=13 TeV.

The perturbative predictions also depend on the choice of pdfs and phdfs. There are sev-

eral groups which fit them and are widely used in the literature for the phenomenological

studies. In order to estimate the uncertainty resulting from the choice of pdfs and phdfs

we present the NNLO results from various pdf sets in Table 4.4 for
√

S=14 TeV and

µR = µF = mh. In Table 4.5, we repeat the study for
√

S=13 TeV and µR = mh and

µF = mh/4.

MRST NNPDF CT14 PDF4LHC

NNLO20 (pb) 0.7805 0.7816 0.7574 0.8546
NNLO11 (pb) 0.9691 0.9867 0.9644 1.0625
NNLO02 (pb) 1.2020 1.2453 1.2288 1.3123

Table 4.4: Result using different pdfs at
√

S=14 TeV.

MRST NNPDF CT14 PDF4LHC

NNLO20 (pb) 0.6610 0.6561 0.6398 0.7178
NNLO11 (pb) 0.6451 0.6406 0.6259 0.6996
NNLO02 (pb) 0.5252 0.5139 0.5030 0.5605

Table 4.5: Result using different pdfs at
√

S=13 TeV.
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We have also studied the uncertainties resulting from the choice of pdf set [153]. Using

NNPDF31, in Fig 4.5, we plot the variation of the cross section with respect to different

choices of pdf and phdf replica. The central value and pdf uncertainties are given by the

average and standard deviation over the replica sample, and are denoted in Fig 4.5 by the

thick line and shaded region, respectively.
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Figure 4.5: pdf uncertainties.

4.8 Summary

In this chapter we explored the possibility of including mixed QCD-QED as well as pure

QED corrections to Higgs boson production in bottom quark annihilation channel. The

computation involves dealing with QED soft and collinear singularities resulting from

photons and the massless partons along with the corresponding QCD ones. We have sys-

tematically investigated the structure of these singularities up to second order in the QCD

and QED couplings, taking into account the interference effects. We observe that, while

the IR singularities factorize as a whole, the IR singularities from QCD do not factorize

from that of QED leading to mixed/non-factorizable QCD-QED IR singularities. In addi-

tion, by computing the real emission processes in the limit when the photons/gluons be-

come soft, we have studied the structure of soft distribution function. Using the universal
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IR structure of the observable, we have determined the mass anomalous dimension of the

bottom quark and hence the renormalization constant for the bottom Yukawa. We also dis-

cussed the relation between the results from pure QED, pure QCD and mixed QCD-QED

through a set of rules which is found to be consistent with the so-called Abelianization

procedure given in [156] for the case DY. Having obtained the complete NNLO results

from QED and QCD-QED, we have systematically included them in the NNLO QCD

study to understand their impact at the LHC energy. We find that the corrections are mild

as expected, however, these higher order corrections from QED and mixed QCD-QED

improve the reliability of the predictions.
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5 Threshold rapidity corrections for

n-colorless particles in QCD

In this chapter, we extend the threshold framework to obtain threshold rapidity distribu-

tion for a generic n-number of colorless productions. We present a universal soft collinear

operator, which when applied to the virtual corrections of any colorless production pro-

cess will give rise to SV or threshold corrections. Besides, we also provide a universal

operator to perform the threshold resummation to N3LL logarithmic accuracy. The ma-

terials presented in this chapter are the result of original research done in collaboration

with Pooja Mukherjee, V. Ravindran et.al and are based on the article [177]

5.1 Prologue

Among different observables, the differential cross-section allows a wider range of com-

parisons with the experimental data. Over the past few decades several attempts have

been made to incorporate the higher order QCD and EW radiative corrections to this ob-

servable. The topic of this chapter is concerning the differential cross-section with respect

to rapidity, in particular, we address the question of computing the higher order QCD cor-

rections to this observable for any generic process at hadron colliders with all the final

state particles as colorless.

Despite its high importance, unlike the inclusive cross-section, the differential rapidity
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distribution and its radiative corrections are computed only for a limited number of scat-

tering processes. The rapidity distributions in Drell-Yan and of the scalar Higgs boson

were computed to NNLO QCD in [178,179] and [180], respectively. In case of the scalar

Higgs boson produced through gluon fusion, the N3LO QCD correction was incorporated

in [181]. Shortly before, it was approximated in [182] in the formalism of qT -subtraction.

For the Higgs boson production through bottom quark annihilation, it was computed to

NNLO in [183].

Needless to say, achieving a full QCD correction to any order is not easy and with increas-

ing perturbative order, the complexity level increase substantially which often prevents us

from achieving it. In this context, SV approximation play an essential role, to obtain large

contributions. In previous chapters, we discussed the threshold framework in the context

of inclusive corrections. In this chapter we focus on the structure of differential scattering

cross sections. These topic is studied in the past in [5, 184], where the authors present

a formalism to incorporate the soft-gluon contribution to the rapidity distribution for the

production of a single colorless final state. In the present work, we extend this formalism

to the case of any number of final state colorless particles in hadronic collisions.

The formalism is based on QCD factorization, which dictates that the soft part of the real

emission diagrams factorizes from the hard contribution, and renormalization group (RG)

invariance. The factorized soft part is conjectured to fulfil a Sudakov type KG differ-

ential equation with respect to the final state invariant mass square. As a consequence,

it is found to get exponentiated which not only provides us with the fixed order result

under soft limit but also enables us to perform a resummation in the soft limit. For the

production of arbitrary number of colorless particles in hadronic collision, the soft part

essentially remains identical to the case of Sudakov type (2 → 1)-process since the real

emission can only takes place from the initial state partons. Using this idea, we extend the

formalism [5] to the case of 2 → n scattering, where n denotes the number of final state

colorless particles. For this purpose, we combine the virtual matrix element that captures
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the process dependence, the universal soft part and the mass-factorization kernels in an el-

egant way. In addition, we also show how naturally it leads to the threshold resummation

for the same observable.

In the literature, several results for the rapidity resummation employing different meth-

ods are available. In [185], following the conjecture given in [186], the resummation of

rapidity of W± gauge boson and in [187] of Drell-Yan are computed in Mellin-Fourier

(M-F) space. A detailed theoretical underpinnings and phenomenological implications

of threshold resummation of rapidity are examined in [188] emphasizing the role of pre-

scriptions that take care of diverging series at a given logarithmic accuracy. Our method

belongs to a category, so called direct QCD approach [68], which is based on [5,184,189],

where we resums the soft gluons in two dimensional Mellin space (M-M). In [190], the

merits of different approaches are discussed in details.

One of the salient features of our formalism is that the soft part that enters into the rapidity

distribution is shown to be connected to the respective part of inclusive cross-section

through a very simple relation involving gamma function of the dimensional regulator.

This relation was used to extract the required soft part from the respective quantity of

the SV cross-section [60, 191]. The main goal of this chapter is to present the formal

methodology of computing threshold rapidity corrections for any generic process of 2→
n kind at hadron collider.

The chapter is organized as follows: in Sec.[5.2], we introduce the notion of soft-virtual

correction in the context of differential rapidity distribution and then describe our formal-

ism in details in Sec.[5.2.1]. The universality of soft part leads us to define a quantity

called the differential soft-collinear operator that essentially captures the process inde-

pendent part, is also introduced in Sec. 5.2.1. In Sec.[5.4], we extend our formalism to

incorporate the threshold resummation of the rapidity distribution.
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5.2 Soft-virtual rapidity distribution

We begin by introducing the regime of soft gluon contribution to differential rapidity dis-

tribution for the production of n-number of colorless particles in hadron collisions within

the framework of perturbative QCD. Our prescription that we will develop subsequently

to capture this contribution is within the scope of QCD improved parton model where the

collinear divergences factorize to all orders in strong coupling constant αs = g2
s/4π. We

consider a generic hadronic collision between two hadrons H1,(2) having momentum P1(2)

that produces a final state consisting of n-number of colorless particles, denoted as Fi(qi)

H1(P1) + H2(P2)→
n�

i=1

Fi(qi) + X . (5.1)

Through the quantity X, we represent an inclusive hadronic state. qi stands for the mo-

mentum of corresponding colorless particle Fi. We denote the invariant mass square of

the final state by q2 which is related to the momenta {qi} through q2 = (
�

i qi)2. Without

loss of generality, the rapidity of the final state invariant mass system is defined as

y ≡ 1
2

ln
�

P2 · q
P1 · q

�
. (5.2)

The differential rapidity distribution at the hadronic level can be written as

d2

dydq2σ
�
τ, q2, y

�
= σB(τ, q2) W(τ, q2, y) with

W =
�

a,b=q,q̄,g

� 1

0
dx1

� 1

0
dx2 fa

�
x1, µ

2
F

�
fb

�
x2, µ

2
F

� � 1

0
dzδ(τ − zx1x2)

×
�

[dPS m]
����Mab

����
2
δ

�
y − 1

2
ln
�

P2 · q
P1 · q

��
. (5.3)

Here, σB is the LO contribution normalized by the delta function. The dimensionless

variables, τ ≡ q2

S and z ≡ q2

ŝ , where S and ŝ are respectively the hadronic and partonic

center-of-mass energies. We denote the fraction of the initial state hadronic momentum
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carried by the partons (a, b) that take part in the scattering at the partonic level as x1(2),

and these are constrained through the relation τ = zx1x2 as reflected by the presence of

the respective δ-function in the definition of W. The fa(b) are the pdf’s renormalized at

the factorization scale µF and the coupling constant is renormalized at the scale µR. The

mass-factorized scattering matrix element is denoted throughMab containing an overline

to signify the sum and average over all the quantum numbers for the final and initial state

particles, respectively. The corresponding m-particle phase space is [dPS m]. Note that

the numerical value of the integer m depends on the number of radiated partons which is

solely controlled by the perturbative order we are interested in.

We confine ourselves to the regime where the leading order processes can only be initiated

through color neutral quark or gluon channels,

q(p1) + q̄(p2)→
n�

i=1

Fi(qi) and g(p1) + g(p2)→
n�

i=1

Fi(qi) (5.4)

with the corresponding momenta p1(2). Moreover, we are interested in computing the

differential rapidity distribution only in the soft limit which constrained all the partonic

radiation to be only soft. In order to define the soft limit for the rapidity distribution, we

choose to work with a set of symmetric scaling variables x0
1(2) instead of y and τ which are

related through

y ≡ 1
2

ln
�

x0
1

x0
2

�
and τ ≡ x0

1x0
2 . (5.5)

Note that unlike the inclusive cross-section, the choice of variables which one needs to

take in order to define the soft limit is not unique and as it turns out, our choice of these

new set of variables is crucial for our prescription. In terms of these variables, the partonic

contributions arising from the subprocesses are found to depend on the ratios

zi ≡
x0

i

xi
, (5.6)
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which play the role of scaling variables at the partonic level. After evaluating the δ-

function integration over z, the W(τ, q2, y) in (5.3) can be rewritten as

W(x0
1, x

0
2, q

2) =
�

a,b

� 1

x0
1

dz1

z1

� 1

x0
2

dz2

z2
fa

�
x0

1

z1
, µ2

F

�
fb

�
x0

2

z2
, µ2

F

�
Δd,ab

�
z1, z2, q2, {pj · qk}, µ2

F

�

(5.7)

with the coefficient function defined as:

Δd,ab

�
z1, z2, q2, {pj · qk}, µ2

F

�
=

�
[dPS m]

����Mab

����
2
δ

�
y − 1

2
ln
�

P2 · q
P1 · q

��
. (5.8)

Being a scattering process containing n-number of final state colorless particles, the par-

tonic coefficient function does, in fact, depend on the Mandelstam variables constructed

out of all the independent external momenta which is concisely denoted through {pj · qk}.
In order to find the definition of soft limit in terms of the new partonic scaling variables,

we take the double Mellin moment of W with respect to the variables N1(2) which turns

out to be

W(N1,N2) ≡
�

dx0
1(x0

1)N1−1
�

dx0
2(x0

2)N2−1W(x0
1, x

0
2)

=
�

ab

fa(N1) fb(N2) Δd,ab(N1,N2) . (5.9)

All the quantities with functional dependence of N1(2) are in Mellin space where the soft

limit is defined by the simultaneous limit of N1(2) → ∞. In terms of partonic scaling

variables this condition gets translated to z1(2) → 1. Note that we normalize the coefficient

function Δd,ab in such a way that at the leading order W satisfies

W(x0
1, x

0
2, q

2, µ2
R) = WB ≡ δ(1 − x0

1)δ(1 − x0
2) . (5.10)

In the following section, we will present the prescription to calculate the infrared safe SV

differential rapidity distribution to N4LO in QCD for any 2→ n scattering process which
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can be computed order by order in perturbation theory in terms of as(µ2
R) ≡ αs(µ2

R)/4π:

Δsv
d,ab

�
z1, z2, q2, {pj · qk}, µ2

F

�
= aλs (µ2

R)
∞�

k=0

ak
s(µ

2
R)Δ(k),sv

d,ab

�
z1, z2, q2, {pj · qk}, µ2

F , µ
2
R

�
. (5.11)

λ is the order of strong coupling constant at the leading order partonic process.

5.2.1 Soft-collinear operator for SV rapidity distribution

In this section, we setup a framework to compute the soft-virtual corrections to the rapidity

distribution to all orders in strong coupling constant. The infrared safe SV rapidity distri-

bution can be obtained by combining the UV renormalized virtual matrix elements with

the soft gluon contribution and performing appropriate mass factorization to get rid of

initial state collinear singularities. It is well-known that the combined soft and collinear

divergences, conveniently denoted as IR, in virtual matrix elements factorize from the

corresponding UV renormalized part to all orders in perturbation theory. In dimensional

regularization we can write

Mab,fin

�
{pj}, {qk}, µ2

R

�
= lim
�→0

Z−1
ab,IR(q2, µ2

R, �)Mab

�
{pj}, {qk}, �

�
(5.12)

with the space-time dimensions d = 4 + �. Without loss of generality, we choose the

renormalization scale to be equal to the scale of aforementioned factorization which, of

course, in general can be different. Upon multiplying the renormalization constant Zab,IR,

the IR divergent part of the UV renormalized matrix elementMab gets compensated and

we end up with the finite part of the matrix elementMab,fin. The renormalization constant

is a universal quantity as it is independent of the details of the process, it only depends on

the nature of external color particles. It is fully independent of the number and nature of

external colorless particles.

131



Expanding the ZI,IR(q2, µ2
R, �) in powers of as(µ2

R)1:

ZI,IR(q2, µ2
R, �) = 1 +

∞�

k=1

ak
s(µ

2
R) Z(k)

I,IR(q2, �) (5.13)

with the coefficients Z(k)
I,IR up to four loops by setting µ2

R = q2:
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The anomalous dimensions that appear in the aforementioned results are expanded as:

XI(µ2
R) =

∞�

j=1

aj
s(µ

2
R)XI

j , (5.15)

where X = A, B, f . For processes involving only conserved operator, such as Drell-Yan,

the coupling constant renormalization is sufficient to get rid of all the UV divergences.

However, for other processes, such as the Higgs boson production in heavy quark effective

theory, additional operator renormalization is required. This is a property inherent to the

operator itself.

In order to get the infrared safe and finite differential rapidity distribution, we need to

combine the UV renormalized virtual matrix element to the real emission contributions in

the soft limit and perform mass factorization which ensures the removal of collinear sin-

gularities arising from the initial state colored particles. Therefore, the universal nature of

IR divergences in virtual matrix element implies that the combined contribution from the

real emission diagrams and mass-factorization kernels must exhibit the same universality.

By employing the criteria of universal IR structure and imposing the finiteness property of

the rapidity distribution, we develop the prescription to compute the rapidity distribution

under SV approximation for any generic 2 → n scattering process and present the re-

sult in terms of universal quantities to N4LO QCD. Once the pure virtual matrix element

for any process of the kind under consideration becomes available, our expression can

immediately be employed to calculate the SV rapidity distribution at that order in QCD.

We propose that the coefficient function for the rapidity distribution in Eq.(5.11) can be

written as a Mellin convolution of the pure virtual contribution F , soft-collinear distribu-
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tion Φd and mass-factorization kernel Γ, which read as

Δsv
d,I

�
z1, z2, q2, {pj · qk}, µ2

F

�
= |M(0)

I |2 |F I({pj · qk}, q2, �)|2 δ(1 − z1) δ(1 − z2)

⊗ C exp
�
2ΦI

d,sv

�
z1, z2, q2, �

�
− C lnΓI(z1, µ

2
F , �)δ(1 − z2)

− C lnΓI(z2, µ
2
F , �)δ(1 − z1)

�
. (5.16)

Since we are confining our discussion to only those scattering processes with initial state

quark-antiquark pair of same flavours or a pair of gluon, we conveniently use the index

I, where I = q, b, g respectively refers to Drell-Yan process, Higgs production via bot-

tom quark annihilation and from gluon fusion channel. The pure virtual contribution is

captured through the form factor Faā that is defined as

F I = 1 +
∞�

k=1

ak
sF I,(k) ≡ 1 +

∞�

k=1

ak
s

�M(0)
I |M(k)

I �
�M(0)

I |M(0)
I �
, (5.17)

where M(k)
I represents the k-th order UV renormalized matrix element of the underly-

ing partonic level process a(p1) + a(p2) → �n
i=1 Fi(qi). The symbol “C” stands for the

convolution whose actions on a distribution g(z1, z2) is defined as

Ceg(z1,z2) = δ(1 − z1)δ(1 − z2) +
1
1!

g(z1, z2) +
1
2!

(g ⊗ g) (z1, z2) + · · · , (5.18)

where ⊗ denotes Mellin convolution. In the context of SV corrections, we encounter only

δ(1 − zi) andD j(zi), where

D j(zi) ≡
�
ln j(1 − zi)

(1 − zi)

�

+

. (5.19)

The contribution from the real emission diagrams is contained in soft-collinear distribu-

tionΦI
d,sv. The soft divergences arising from the real emission and virtual diagrams, which

are respectively encapsulated in Φd,sv and F , get cancelled. The final state collinear sin-

gularity is guaranteed to go away, as dictated by KLN theorem, once the sum over all
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the final states is performed. The mass factorization kernel takes care of the initial state

collinear singularities. As a result, the coefficient function Δsv
d,I in (5.16) becomes finite.

By demanding the finiteness of this quantity we can put a constraint on the soft-collinear

distribution which turns out to be a Sudakov type RG equation. This has profound im-

plications which not only reveals a significant amount of insights about the IR world but

also it enables us to perform threshold resummation as we will see in the next section. To

be more precise, the solution of the RG equation results an all order exponentiation of the

soft-collinear distribution. So, the whole job of computing the SV correction depends on

our ability to determine and explore the unknown distribution ΦI
d,sv to which we now turn

to.

As we have discussed, the soft-collinear distribution essentially captures the contribution

arising from real emission diagrams which only can occur from colored partons. Natu-

rally, ΦI
d,sv for Sudakov form factor i.e. 2 → 1 and 2 → n scattering should essentially

be identical. The presence of more Mandelstam variables in the latter process just makes

it more involved in its kinematic dependence when it is expressed in terms of {pj · qk}.
However, in terms of the total invariant mass square of the final state colorless particles

i.e. q2, it has to be exactly same as that of Sudakov process. In [5], it was conjectured to

satisfy a integro-differential RG equation to all orders in QCD coupling constant. The un-

derlying reason behind this all order conjecture is inspired by the akin integro-differential

Sudakov equation [35–37] fulfilled by the form factor whose solution is present explicitly

to five loops order in massless QCD in [39, 40, 42, 194]. By integrating the differential

rapidity distribution, we get the inclusive cross-section. Upon taking the Mellin moment

with respect to the same Mellin variable N of this relation we get

� 1

0
dx0

1

� 1

0
dx0

2(x0
1x0

2)N−1 dσ
dy
=

� 1

0
dττN−1σ . (5.20)

By taking the limit N → ∞ on both sides of this relation, we can relate the soft-collinear

distributions in rapidity and that of inclusive cross-section. This is remarkable in a sense
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that given the soft-collinear distribution for inclusive cross-section, we can automatically

calculate it for the rapidity. Since this is the only quantity that is unknown in comparison

to the ingredients for the computation of SV cross-section, we can immediately calculate

the SV rapidity distribution. TheΦI
d,sv for the Sudakov form factor is determined to NNLO

in [5] and in [195] at N3LO in QCD. In the work presented in this chapter, for the first

time, we present the general analytical form of ΦI
d,sv in terms of universal quantities at

N4LO for any generic 2→ n scattering. One of the most notable features of this quantity

is it satisfies the maximally non-Abelian property:

ΦI
d,sv =

CA

CF
Φ

g
d,sv , (5.21)

where the CA and CF are the quadratic Casimirs in Adjoint and fundamental representa-

tions of SU(Nc), respectively. This essentially signifies the universality of the real emis-

sion in the soft limit. Needless to say, it is also quark flavour blind. This relation was

explicitly verified to NNLO in [5] and at N3LO in [195]. We expect the Casimir scaling

to hold true to all orders in perturbation theory since it originates entirely from the soft-

collinear part of the differential cross-section, and therefore it would indeed be interesting

to see whether truly it holds beyond N3LO with generalised Casimir scaling [64].

We decompose all the quantities into its singular (sing) and finite (fin) parts as

ΦI
d,sv = Φ

I
d,sing +Φ

I
d,fin ,

lnΓI = lnΓI,sing + lnΓI,fin , (5.22)

Then, Eq.(5.16) can be recast into

Δsv
d,I =|M(0)

I |2|F I
fin({pj · qk}, q2, µ2

R)|2δ(1 − z1)δ(1 − z2)

⊗ C exp
�
2ΦI

d,fin

�
z1, z2, q2, µ2

R

�
− C lnΓI,fin(z1, µ

2
F , µ

2
R)δ(1 − z2)

− C lnΓI,fin(z2, µ
2
F , µ

2
R)δ(1 − z1)

�
⊗ Isv

d,I , (5.23)
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where

Isv
d,I =|ZI,IR(q2, µ2

R, �)|2δ(1 − z) ⊗ C exp
�
2ΦI

d,sing

�
z1, z2, q2, µ2

R, �
�

− C lnΓI,sing(z1, µ
2
R, �)δ(1 − z2) − C lnΓI,sing(z2, µ

2
R, �)δ(1 − z1)

�
. (5.24)

Through the decomposition of the quantities into singular and finite parts in Eq.(5.22), we

put together all the singular components of the rapidity distribution into Isv
d,I which must

be unit distribution δ(1 − z1)δ(1 − z2) in order to get a finite Δsv
d,I . In Eq. (5.23), the form

factor and the leading order matrix element are the only process dependent quantity. The

remaining part which comprises of the finite segments of the soft-collinear distribution

and mass factorization kernel is a process independent universal quantity which we call

as differential soft-collinear operator

SI
d(z1, z2, q2, µ2

R, µ
2
F) ≡ C exp

�
2ΦI

d,fin

�
z1, z2, q2, µ2

R

�
− C lnΓI,fin(z1, µ

2
R, µ

2
F)δ(1 − z2)

− C lnΓI,fin(z2, µ
2
R, µ

2
F)δ(1 − z1)

�
. (5.25)

The expression of SI
d being process independent can be used for any generic 2 → n

scattering process. Hence Eq. (5.23) reads as

Δsv
d,I = |M(0)

I |2 |FI,fin|2 δ(1 − z1) δ(1 − z2) ⊗ SI
d (5.26)

We can calculate the SV coefficient function for the rapidity distribution order by order

in perturbation theory by expanding it in powers of as according to Eq.(5.11). The results

of SI
d for any generic process up to N4LO QCD is given in Appendix D for µ2

R = µ
2
F = q2.

Also, the universal light-like cusp-, soft- and collinear anomalous dimensions are given

in Appendix B. The anomalous dimensions are expanded in powers of as(µ2
R) as

XI(µ2
R) =

∞�

j=1

aj
s(µ

2
R)XI

j , (5.27)
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where X = A, B, f . Thanks to recent calculations, the light-like cusp anomalous dimen-

sions are available to four loops [43–47] in QCD. The soft and collinear anomalous di-

mensions can be extracted [41,42] from the quark and gluon collinear anomalous dimen-

sions [48, 49] through the conjecture [41]

γI = 2BI + f I (5.28)

to three loops. At four loop, only partial results are available in [47, 50–52].

5.3 Results of SV rapidity distribution

In this section, we present the explicit results of Δsv
d,I defined in (5.26) for the Drell-Yan

(I = q), and the Higgs boson productions through gluon fusion (I = g) as well as bottom

quark annihilation (I = b) at fourth order in coupling constant. Expanding them in powers

of as(µ2
R) through

Δsv
d,I

�
{pj · qk}, z1, z2, q2, µ2

F

�
= δ(1 − z1)δ(1 − z2)|M(0)
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+
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R)Δsv,(i)

d,I

�
{pj · qk}, z1, z2, q2, µ2

F , µ
2
R

�
. (5.29)

Setting µ2
F = µ

2
R = q2, in the following, we provide only the new results, and the old

results for Drell-Yan and Higgs boson productions can be found in [5, 132, 195]. The

results with explicit dependence on µR and µF are provided up to N4LO in the ancillary

files supplied with the arXiv submission of [177].
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(5.32)

The symbols χq
j and χg

j denote the unknown coefficients of the color factors in four loop

form factors of the Drell-Yan and of the Higgs boson production through gluon fusion,

respectively. For the case of Higgs boson production in bottom quark annihilation, only

the n3
f and n2

f contributions to the four loop form factor are available in the literature [56].

As a result, the unknown coefficients corresponding to O(nf ) and O(n0
f ) color factors

are denoted by χb
1 and χb

2, respectively. Also the symbols f q
4,dabcd

F dabcd
A

and bq
4, j, where

j =
�
dabcd

F dabcd
F , nf C3

F , nf C2
FCA, dabcd

F dabcd
A ,C2

FC2
A,C

3
FCA,C4

F
�

are the unknown coefficients

of the color factors in four loop soft and collinear anomalous dimensions. In the afore-

mentioned equations, nf v is proportional to the charge weighted sum of the quark flavours

and N4 = (n2
c − 4)/nc [58]. Following [46], we have

dabcd
A dabcd

A

NA
=

N2
c (N2

c + 36)
24

,
dabcd

F dabcd
A

NA
=

Nc(N2
c + 6)

48
,

dabcd
F dabcd

F

NA
=

N4
c − 6N2

c + 18
96N2

c
,

(5.33)

CA = Nc , CF =
N2

c − 1
2Nc

, NA = N2
c − 1 , NF = Nc. (5.34)
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5.4 Soft-collinear operator for threshold resummation

In this section, we develop the resummation formalism for the differential distribution

with respect to the rapidity variable y, for the production of n-colorless particles. Earlier

we have seen that differential soft-collinear operator, SI
d in Eq.(5.25), embeds universal-

ity of all the soft enhancements associated with the soft gluon emissions. Besides being

the process independent operator, interestingly it also exhibits an exponential behaviour.

Recall that the threshold resummation [196] relies on the fact that the soft contribution

exponentiates to all orders in perturbation theory, owing to the Sudakov differential equa-

tion and the renormalization group invariance. Following the same argument we proceed

towards the resummation formalism for differential cross-section as well.

The relevance of resummation of differential cross-section arises from the fact that, in

the limit z1(2) → 1, the logarithms of type
�
an

s lnm1(1 − z1) lnm2(1 − z2)
�
/
�
(1 − z1)(1 − z2)

�

for m1 + m2 ≤ 2(n − 1), give rise to large contributions which could potentially spoil

the reliability of the perturbative series. Hence a systematic way of exponentiating these

large logarithms and resumming them to all orders in perturbation theory becomes in-

dispensable. In [68] it was shown, in the context of differential distribution with respect

to the Feynman variable xF , that the potential logarithms which give dominant contribu-

tions in certain kinematic regions can be resummed to all orders in perturbation theory

in Mellin-Mellin (M-M) space approach. This approach was also extended to rapidity

distributions in the earlier works (See [189, 197] for details). Note that this approach is

different from the Mellin-Fourier (M-F) approach [186] proposed by Laenen & Sterman.

In M-F formalism partonic cross-section is expressed in terms of scaling variable z and

rapidity variable y and then the threshold limit is taken only for z→ 1 which resums delta

(δ(1 − z)) and distributions (Di(z)), but for rapidity variable y only delta (δ(y)) piece is

resummed. In [197], a detailed numerical comparison has been made in between M-M

and M-F approach and found that both the approaches converges to a few percent correc-
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tion to the fixed order prediction at NNLL level. In the following we further extend the

M-M approach and derive the resummation formalism for the production of n-colorless

particles in a partonic collision.

Within the framework of M-M approach, both the partonic scaling variables z1(2) are si-

multaneously taken to the threshold limit 1 and the corresponding delta, δ(1 − zi), and

plus distributions, Dl(zi) ≡
�

lnl(1−zi)
1−zi

�
+
, are resummed to all orders in perturbation theory.

Due to the involvement of convolutions in the z1(2) space, the resummation is performed

in two dimensional Mellin space where the differential cross-section is expressed in terms

of simple normal products. In the following we derive the generic formalism in terms

of the Mellin variables N1 and N2 corresponding to the z1 and z2 variables, respectively.

Hence the threshold limit z1(2) → 1 translate to N1(2) → ∞ in Mellin space and the large

logarithms proportional to ln N1(2) are resummed to all orders in perturbation theory.

To derive the all order behaviour of the SV differential cross-section, Δsv
d,I(z1, z2), in the

two dimensional Mellin space with N̄i = NieγE , we begin with the Mellin moment of the

same, which takes the following form:

Δ̃sv
d,I(N̄1, N̄2) =

��

i=1,2

� 1

0
dziz

Ni−1
i

�
Δsv

d,I({pj · qk}, z1, z2) . (5.35)

γE is the Euler-Mascheroni constant. In the previous section in (5.16), Δsv
d,I is decomposed

into constituents corresponding to the virtual as well as the soft-collinear real emission

contributions. Now in this section, we further decompose those contributions into a pro-

cess dependent and a process independent quantities. We denote the process dependent

coefficient CI
d,0 in the context of 2→ n scattering process as,

CI
d,0

�
{pj · qk}, q2, µ2

F

�
= |M(0)

I |2|FI,fin({pj · qk}, q2, µ2
R)|2S I,res

d,δ (q2, µ2
R, µ

2
F). (5.36)

Here CI
d,0 accounts for all the finite contributions coming from the virtual corrections

and the coefficients proportional to δ(1 − z1)δ(1 − z2) of the real emission contributions.

150



Besides, it also contains the finite part of the mass factorized kernel ΓI,fin in terms of

ln(µ2
F/µ

2
R) which results from the coupling constant renormalization. The quantity S I,res

d,δ

which we name as the differential soft-collinear operator for threshold resummation, em-

beds the δ(1 − zi) contributions from the soft distribution function ΦI
d,sv and from ΓI,fin in

the following way:

S I,res
d,δ (q2, µ2

R, µ
2
F) = exp

�
2ΦI

d,δ(q
2, µ2

R, µ
2
F) − 2 lnΓI,δ(µ2

F)
�
. (5.37)

The subscript δ indicates δ(1 − z1)δ(1 − z2) coefficients of the aforementioned quantities.

Expanding in powers of as(µ2
R), it takes the form in z-space with q2 = µ2

R = µ
2
F :

S I,res
d,δ (q2, µ2

R, µ
2
F) = 1 +

∞�

i=1

ai
s(µ

2
R)S I,res

d,δ, i(q
2, µ2

R, µ
2
F) . (5.38)

with

SI,res
d,δ,1 = 2G̃I,1

d,1 ,

SI,res
d,δ,2 = G̃I,1

d,2 + 2(G̃I,1
d,1)2 + 2β0G̃I,2

d,1 ,

SI,res
d,δ,3 =

2
3
G̃I,1

d,3 + 2G̃I,1
d,1G̃I,1

d,2 +
4
3

(G̃I,1
d,1)3 +

4
3
β1G̃I,2

d,1 +
4
3
β0G̃I,2

d,2 + 4β0G̃I,1
d,1G̃I,2

d,1 +
8
3
β2

0G̃I,3
d,1 ,

SI,res
d,δ,4 =

1
2
G̃I,1

d,4 +
1
2

(G̃I,1
d,2)2 +

4
3
G̃I,1

d,1G̃I,1
d,3 + 2(G̃I,1

d,1)2G̃I,1
d,2 +

2
3

(G̃I,1
d,1)4 + β2G̃I,2

d,1 + β1G̃I,2
d,2

+
8
3
β1G̃I,1

d,1G̃I,2
d,1 + β0G̃I,2

d,3 + 2β0G̃I,2
d,1G̃I,1

d,2 +
8
3
β0G̃I,1

d,1G̃I,2
d,2 + 4β0(G̃I,1

d,1)2G̃I,2
d,1

+ 4β0β1G̃I,3
d,1 + 2β2

0G̃I,3
d,2 + 2β2

0(G̃I,2
d,1)2 +

16
3
β2

0G̃I,1
d,1G̃I,3

d,1 + 4β3
0G̃I,4

d,1.

(5.39)

where G̃I,k
d,i are given in Appendix C.

In a similar way, we denote the process independent contributions to Δsv
d,I as ΦI,res

d which

comprises of the terms proportional to plus distributions from ΦI
d,sv and ΓI,fin. Mathemat-
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ically it can be written as,

ΦI,res
d (z1, z2, q2, µ2

F) = 2ΦI
d,D(z1, z2, q2) − C lnΓI,D(z1, µ

2
F)δ(1 − z2)

− C lnΓI,D(z2, µ
2
F)δ(1 − z1) , (5.40)

where the subscriptD indicates the terms proportional to plus distribution which includes,

Di(z1)δ(1− z2) ,Di(z2)δ(1− z1), andDi(z1)D j(z2). Similar to the inclusive case, following

the approach given in [5], ΦI,res
d can be expressed in an integral form given as,

ΦI,res
d (z1, z2, q2, µ2

F) =
�
δ(z2)

�
1
z1

�� q2z1

µ2
F

dλ2

λ2 AI
�
as(λ2)

�
+ DI

d

�
as(q2z1)

� ��

+

+
1
2

�
1

z1z2

�
AI(as(z12)) +

dDI
d(as(z12))
d ln z12

��

+

+ (z1 ↔ z2)
�
, (5.41)

here the subscript + indicates the standard plus distribution and the other constants are

defined as z̄i = (1 − zi) and z12 = q2z1z2. The finite functions, DI
d =

�∞
i=1 ai

sD
I
d,i, are

related to the threshold exponent DI
i of inclusive cross section owing to the relation given

in (5.20) ( See Eq.(2.87) and [5,189] for more details). For completeness, we provide the

coefficients AI
i and DI

d,i in the Appendix B and C respectively.

Consequently the SV differential cross-section decomposes into a process dependent and

a process independent way and can be re-written in the following form:

Δsv
d,I

�
{pj · qk}, z1, z2, q2, µ2

F

�
= CI

d,0

�
{pj · qk}, q2, µ2

F

�
δ(1 − z1)δ(1 − z2)

⊗ C exp(ΦI,res
d (z1, z2, q2, µ2

F)) ⊗ Isv
d,I . (5.42)

Substituting (5.42) in (5.35) and after doing the two dimensional Mellin transformation

systematically, we obtain

Δ̃sv
d,I(N̄1, N̄2) = CI

d,0

�
{pj · qk}, q2, µ2

F

�
exp

�
ln gI

d,0(q2, µ2
F) +GI

d,N̄(q2, µ2
F ,ω)

�
, (5.43)
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with ω = β0as(µ2
R) ln(N̄1N̄2). The first coefficient of QCD β-function is denoted by β0 ≡

(11CA − 2nf )/3, nf is the number of active light quark flavours. Here, the decomposition

in the exponent is done in such a way that the coefficient GI
d,N̄ contains N1(2) dependent

terms, and the remaining ones are embedded in (ln gI
d,0). Besides this, GI

d,N̄(q2, µ2
F ,ω) also

vanishes in the limit ω→ 1. Needless to say that both of these coefficients has a universal

structure in terms of the anomalous dimensions AI and process independent coefficients

DI and thus are dependent only on the incoming partons. Further we combine the N1(2)

independent coefficients gI
d,0 with CI

d,0 from (5.43) and define,

gI
d,0({pj · qk}, q2, µ2

F) = CI
d,0

�
{pj · qk}, q2, µ2

F

�
gI

d,0

�
q2, µ2

F

�
(5.44)

which can be expanded in terms of as(µ2
R) as,

gI
d,0({pj · qk}, q2, µ2

F) =
∞�

i=0

ai
s(µ

2
R) gI,i

d,0({pj · qk}, q2, µ2
F , µ

2
R) . (5.45)

From (5.44) it can be seen, that the coefficient gI
d,0 contains finite contribution from virtual

corrections, differential soft-collinear operator for threshold resummation and N indepen-

dent terms coming from Mellin transformation of plus distribution. Consequently, (5.43)

gets modified as,

Δ̃sv
d,I(N̄1, N̄2) = gI

d,0

�
{pj · qk}, q2, µ2

F

�
exp

�
GI

d,N̄

�
q2, µ2

F ,ω
� �
. (5.46)

where the exponent GI
d,N̄ can be organized as a resummed perturbation series in Mellin

space as,

GI
d,N̄(q2, µ2

F ,ω) = gI
d,1(ω) ln(N̄1N̄2) +

∞�

i=0

ai
s(µ

2
R) gI

d,i+2(ω, q2, µ2
F , µ

2
R) . (5.47)

The explicit form in (5.46) when expanded till k-th order in powers of as(µ2
R), gives the

logarithmically enhanced contributions to the fixed order results Δ̃sv
d,I(N̄1, N̄2) up to the
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same order. The successive terms in the above series given in (5.47) along with the cor-

responding terms in (5.45) define the resummed accuracy as LL, NLL, NNLL, N3LL and

so on. In general for NkLL accuracy, terms up to gI
d,k+1 must be included along with gI

d,0

up to order ak
s(µ

2
R). The general expression for the coefficients gI,i

d,0 and gI
d,i up to N3LL are

provided in the Appendix E.

The coefficients GI
d,N̄ remains unaltered even for 2 → n scattering process owing to its

universality. However, the process dependent coefficient function gI
d,0 changes for the

production of n-colorless particles due to the inclusion of process specific form factor via

(5.36) and (5.44). The results of these coefficients appear as a product of N1 and N2 in the

Mellin space, and all those terms which are only function of N1 or N2 cancel internally.

We have also observed that the coefficients gI
d,0 and GI

d,N̄ coincides with their inclusive

counterparts gI
0 and GI

N̄ respectively in the limit N1 → N2 → N, provided the coeffi-

cients DI
d in (5.41) is expressed in terms of DI of inclusive soft distribution function (See

Eq.(2.87)) using the relation (5.20). Hence we infer that all the above observations which

hold true for 2→ 1 scattering processes are further extended and verified for any generic

system of n-colorless particles in the final state.

5.5 Summary

To summarize, through this chapter we presented a systematic framework for the study

of soft-plus-virtual corrections to the differential distribution with respect to the rapidity

variable y, for the production of n-colorless particles in the hadron collider. The infrared

structure of rapidity distribution which was earlier studied in ref. [5] for Sudakov type

processes is further extended to the case of 2→ n scattering. We employ the universality

of the soft enhancements associated with the real emission diagrams. The main deviation

from the Sudakov type formalism comes from the virtual corrections where the kinematic

dependence is much more involved. The rest of the formalism relies on the collinear
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factorization of the differential cross section, the renormalization group invariance, uni-

versality of perturbative infrared structure of the scattering amplitudes, and the process

independence of the soft-collinear distribution. Besides this, we also use an additional

fact that the N-th Mellin moment of the differential distribution has a relation with its

inclusive counterpart in the limit N → ∞. The mere use of this fact enables us to to get

an all order relation between the soft-collinear distribution of inclusive cross-section and

that of rapidity.
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6 On next to soft corrections to

Drell-Yan and Higgs Boson production

Till this point, our center of discussion was on computing higher order corrections at the

threshold approximation, the resulting contributions are the threshold corrections. In the

last chapter, we go beyond the threshold, and look into the structure of next-to-threshold

logarithms. We address not only the next-to-threshold corrections, but also attempt to

study the structure of next-to-leading power resummation. The materials presented in this

chapter are the result of original research done in collaboration with Pooja Mukherjee

and V. Ravindran and are based on the article [198]

6.1 Prologue

Before going to the discussion on next-to-threshold formalism, let us briefly summarize

the details of threshold framework that we discussed in previous chapters.

The higher order quantum effects from QCD and EW theory provide theoretical labora-

tory to understand the ultraviolet and infrared structure of the underlying quantum field

theory. This is due to certain factorisation properties of scattering amplitudes in UV and

IR regions. The consequence of the factorisation is the RG invariance which demon-

strates the structure of logarithms of the renormalisation scale µR from UV and of the

factorisation scale µF from IR to all orders in perturbation theory. The renormalisation

157



scale separates UV divergent part from the finite part of the Green’s function or on-shell

amplitudes, quantifying the arbitrariness in the finite part. While the parameters of the

renormalised version of the theory are functions of the renormalisation scale, the physical

observables are expected to be independent of this scale. This is the consequence of RG

invariance. The anomalous dimensions of the RG equations govern the structure of the

logarithms of renormalisation scale in the perturbation theory to all orders.

Like UV sector, the infrared sectors of both SM and QCD are also very rich. Massless

gauge fields such as photons in QED and gluons in QCD and light matter particles at high

energies give soft and collinear divergences, collectively called IR divergences, in scat-

tering amplitudes. The IR divergences are shown to factorise from on-shell amplitudes

and from certain cross sections respectively in a process independent way at an arbitrary

factorisation scale. The resulting IR renormalisation group equations are governed by IR

anomalous dimensions. The IR renormalisation group equations are peculiar in the sense

that the resulting evolution is not only controlled by the factorisation scale but also by

the energy scale(s) in the amplitude or in the scattering process. Unlike the UV diver-

gences which are removed by appropriate renormalisation constants, the IR divergences

do not require any such renormalisation procedure as they add up to zero for infrared safe

observables thanks to KLN theorem [31, 32]. The structure of resulting IR logarithms

at every order in the perturbation theory is governed by the IR anomalous dimensions.

Hence, most of the logarithms present at higher orders are due to UV and IR divergences

present at the intermediate stages of the computations.

The logarithms of renormalisation and factorisation scales present in the perturbative ex-

pansions often play important role to estimate the error that results due to the truncation of

the perturbative series. Lesser the dependence on these scales, more the reliability of the

truncated results. Note that there are also logarithms that are functions of physical scales

or the corresponding scaling variables in the observables. In certain kinematical regions,

these logarithms that are present at every order can be large enough to spoil the reliability
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of the truncated perturbative series. Since the structure of these logarithms at every order

is controlled by anomalous dimensions of IR renormalisation group equations, they can

be systematically summed up to all orders. This procedure is called resummation. There

are classic examples in QCD. For example, the threshold logarithms of the kind

Di(z) =
�
lni(1 − z)

1 − z

�

+

(6.1)

are present in the perturbative results of invariant mass distribution of pair of leptons in

Drell-Yan process. The scaling variable for the DY is z = M2
l+l−/ŝ. Tthe invariants ŝ and

M2
l+l− denote the center of mass energy of incoming partons and invariant mass of final

state leptons respectively. The distributions Di(z) are often called threshold logarithms

as they dominate in the threshold region namely z approaches 1. In this limit, the entire

energy of the incoming particles in the scattering event goes into producing a set of hard

particles along with infinite number of soft gluons each carrying almost zero momentum.

In particular, the logarithms of the form lni(1 − z)/(1 − z) result from the processes in-

volving real radiations of soft gluons and collinear particles. While these contributions

are ill defined in 4 space-time dimensions in the limit z→ 1, the inclusion of pure virtual

contributions gives distributions Di(z) and δ(1 − z). The terms that constitute these dis-

tributions and δ(1 − z) are called the SV contributions. ( For SV results up to third order,

see [39, 40, 60–63, 65–67]).

The threshold logarithms in the perturbative results when convoluted with appropriate

parton distribution functions to obtain hadronic cross section can not only dominate over

other contributions but also give large contributions at every order. Presence of these large

corrections at every order spoil the reliability of the predictions from the truncated series.

The seminal works by Sterman [69] and Catani and Trentedue [68] provide resolution

to this problem through reorganisation of the perturbative series called threshold resum-

mation. Since z-space results involve convolutions of these distributions, Mellin space

approach using the conjugate variable N is used for resummation. The large logarithms
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of the kindDi(z) become functions of ln j+1(N), j ≤ i with O(1/N) suppressed terms in the

corresponding N-space threshold limit, namely N → ∞. Threshold resummation allows

one to resum ω = 2as(µ2
R)β0 ln(N) terms to all orders in ω and then to organise the result-

ing perturbative result in powers of coupling constant as(µ2
R) = g2

s(µ
2
R)/16π2, where gs is

the strong coupling constant. Here, β0 is the leading coefficient of QCD beta function. If

ON is an observable in Mellin N-space, with N being the conjugate variable to z of the

observable O(z) in z-space, then the resummation of threshold logarithms gives

ln (ON) = ln(N) gO1 (ω) +
∞�

i=0

ai
s(µ

2
R) gOi+2(ω) + gO0 (as(µ2

R)) , (6.2)

where gO0 (as(µ2
R)) is N independent and is given by

gO0 (as(µ2
R)) =

∞�

i=0

ai
s(µ

2
R)gO0,i . (6.3)

Inclusion of more and more terms in Eq.(6.2) predicts the LL, NLL etc logarithms of O
to all orders in as. The functions gOi (ω) are functions of process independent universal

IR anomalous dimensions while gO0 depend on the hard process. For the invariant mass

distribution of lepton pairs in DY, Higgs boson productions in various channels, all the

ingredients to perform the resummation of threshold logarithms in N-space up to N3LL

accuracy are available.

While the resummed results provide reliable predictions that can be compared against

the experimental data, it is important to find out the role of sub leading terms namely

lni(1 − z), i = 0, 1, · · ·, We call them by next-to-SV (NSV) contributions. In literature

they are also known in names of next-to-threshold or next-to-leading-power corrections

In addition to understand the role of NSV terms, the question on weather these terms can

also be resummed systematically to all orders exactly like the way the leading SV terms

are resummed remains unanswered satisfactorily. These questions have already been ad-

dressed in great detail and remarkable progress has been made in recent times leading to a
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better understanding of NSV terms. (See, [6–8,199–208] for more other works on NSV in

the literature). Motivating from the parallel works, in this chapter, we make an attempt to

study the structure of NSV logarithms by exploiting collinear factorisation, RG invariance

and with an understanding on the logarithmic structure of higher order perturbative results

coming from Feynman and phase space integrals. Through the formalism, we propose an

all order result both in z-space and in N-space, which can predict NSV terms for DY and

Higgs boson production to all orders in perturbation theory.

6.2 Next to SV in z-space

In the following, we study the inclusive cross-sections for the production of a pair of

leptons in DY and the production of a single scalar Higgs boson in gluon fusion as well

as in bottom quark annihilation. Let us denote the corresponding inclusive cross sec-

tions generically by σ(q2, τ). In the QCD improved parton model, σ is written in terms

of parton level coefficient functions (CF) denoted by Δab(q2, µ2
R, µ

2
F , z) convoluted with

appropriate pdfs, fc(xi, µ
2
F), of incoming partons:

σ(q2, τ) = σB(µ2
R)
�

ab

�
dx1dx2 fa(x1, µ

2
F) fb(x2, µ

2
F) Δab(q2, µ2

R, µ
2
F , z) , (6.4)

where σB is the born level cross section. The scaling variable τ is defined by τ = q2/S ,

S is hadronic center of mass energy. For DY, q2 = M2
l+l− , the invariant mass of the final

state leptons and q2 = m2
h for the Higgs boson productions, with mh being the mass of the

Higgs boson. The subscripts a, b in Δab and c in fc collectively denote the type of parton

(quark,antiquark and gluon), their flavour etc. The scaling variable xi is the momentum

fraction of the incoming partons. In the CF, z = q2/ŝ is the partonic scaling variable

and ŝ is the partonic center of mass energy and is related to hadronic S by ŝ = x1x2S

which implies z = τ/x1x2. The factorisation scale µF results from mass factorisation and

the renormalisation scale µR from UV renormalisation of the theory. Both σB and Δab
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depend on the renormalisation scale, however their product is independent of the scale if

we include Δab to all orders in perturbation theory.

The partonic cross section is computable order by order in QCD perturbation theory. Be-

yond leading order, one encounters UV, soft and collinear divergences at the intermediate

stages of the computation. If we use dimensional regularisation to regulate all these di-

vergences, the partonic cross sections depend on the space time dimension n = 4 + � and

the divergences show up as poles in �. The UV divergences are removed by QCD renor-

malisation constants in modified minimal subtraction (MS ) scheme. The soft divergences

from the gluons and the collinear divergence resulting from final state partons cancel in-

dependently when we perform the sum over all the degenerate states. Since the hadronic

observables under study are infrared safe, these partonic cross sections are factorisable in

terms of collinear singular Altarelli-Parisi [33] kernels Γab and finite CFs at an arbitrary

factorisation scale µF . The factorised formula that relates the collinear finite CFs Δab and

the parton level subprocesses is given by

1
z
σ̂ab(q2, z, �) = σB(µ2

R)
�

a�b�
ΓT

aa�(z, µ
2
F , �) ⊗

�
1
z
Δa�b�(q2, µ2

R, µ
2
F , z, �)

�
⊗ Γb�b(z, µ2

F , �) .

(6.5)

These kernels are then absorbed into the bare pdfs to define collinear finite pdfs. Note

that the singular AP kernels do not depend on the type of partonic reaction but depend

only on the type of partons in addition to the scaling variable z and scale µF . The symbol

⊗ refers to convolution, which is defined as in Eq.(2.43).

The partonic cross section in perturbation theory in QCD can be expressed in powers of

strong coupling constant as:

σ̂ab(q2, z, �) =
∞�

i=0

ai
s(µ

2
R)σ̂(i)

ab(q2, µ2
R, z, �) . (6.6)

We restrict ourselves to Δqq for DY, Δbb for Higgs boson production in bottom quark an-
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nihilation and Δgg for Higgs boson production in gluon fusion to investigate the structure

of NSV terms. We call these CFs collectively by Δcc with cc = qq, bb, gg.

To obtain SV and NSV terms in Δcc using the mass factorised result given in Eq.(6.5), it is

sufficient to keep only those components of AP kernels Γabs and of σ̂ab that upon convo-

lution gives SV and/or NSV terms. In the mass factorised result, if we express Δqq for DY

in terms of σ̂abs and Γabs, we either have convolutions with terms involving only diagonal

terms/channels, for example σ̂qq ⊗Γqq ⊗Γq q or with terms containing one diagonal and a

pair of non-diagonal ones/channels, for example σ̂qg⊗Γqq⊗Γgq. The former gives SV plus

NSV terms upon convolutions while the latter will give only beyond the NSV terms. The

diagonal Γccs also contain convolutions with only diagonal AP splitting functions, Pcc, or

one diagonal and a pair of non-diagonal AP splitting functions Pab, a � b. We again drop

those terms in diagonal Γccs that contain pair of non-diagonal Pabs. This results in Γcc

containing only diagonal Pccs. Similar argument will go through for Δbb and Δgg as well.

This allows us to write mass factorised result given in Eq.(6.5) in terms of only diagonal

terms σ̂cc, Δcc and AP kernels Γcc and the sum over ab is dropped.

In summary, since our main focus here is on SV and NSV terms resulting from quark

initiated processes for DY and gluon or bottom quark initiated processes for Higgs boson

production, we drop contributions from non-diagonal partonic channels in the mass fac-

torised result of Δcc. In addition, gluon-gluon initiated channels which start contributing

at NNLO onwards for DY and quark antiquark initiated channels for Higgs boson pro-

duction are also dropped as they do not contribute to NSV of Δcc. Since our discussion

is confined to only diagonal terms or channels, we collectively use the index I here after,

where where I = q, b, g respectively refers to Drell-Yan process, Higgs production via

bottom quark annihilation and from gluon fusion channel:

ΔI(q2, µ2
R, µ

2
F , z) = Δsv+nsv

cc (q2, µ2
R, µ

2
F , z) .

σI(q2, µ2
R, µ

2
F , z) = σsv+nsv

cc (q2, µ2
R, µ

2
F , z) . (6.7)

163



Beyond the leading order, the partonic channels that contribute to σ̂(i)
I gets contributions

from virtual corrections – denoted in terms of form factor (FF) – and the real emission

contributions. In FFs, the entire partonic center of mass energy goes into producing a

pair of leptons in DY or Higgs boson in Higgs boson production. While in real emission

processes, the initial state energy is shared among all the final state particles. We denote

FF of DY by F̂ q and FF of Higgs boson productions by F̂ b, F̂ g.

Our next step is to factor out the square of the UV renormalised FF (ZI F̂ I) from the

partonic channels σ̂I and write the resulting normalised real emission contribution as

SI(âs, µ
2, q2, z, �) =

�
σB(µ2

R)
�−1 �

ZI(âs, µ
2
R, µ

2, �)
�−1 |F̂ I(âs, µ

2,Q2, �)|−1

×δ(1 − z) ⊗ σ̂sv+nsv
cc (q2, z, �)

= C exp
�
2ΦI(âs, µ

2, q2, z, �
�
, (6.8)

where âs is the bare strong coupling constant, Q2 = −q2 and ZI is overall renormalisation

constant that is required for Higgs boson production from gluon fusion and bottom quark

annihilation. Note that SI does not depend on µ2
R and hence, SI is RG invariant. The

function SI is computable in perturbation theory in powers of as and it gets contribution

from cc initiated processes containing at least one real radiation. The symbol “C" refers

to convolution and are defined in Eq.(2.72).

Substituting for σ̂I from Eq.(6.8) in terms of ΦI in Eq.(6.5) and keeping only diagonal

terms in AP kernels, we find

ΔI(q2, µ2
R, µ

2
F , z) = C exp

�
Ψ I�q2, µ2

R, µ
2
F , z, �

�������
�=0
, (6.9)

where Ψ I is a finite in the limit � → 0 and is given by

Ψ I�q2, µ2
R, µ

2
F , z, �

�
=

�
ln
�
ZI�âs, µ

2, µ2
R, �

��2

+ ln
���F̂ I�âs, µ

2,Q2, �
����2
�
δ
�
1 − z

�

+2ΦI�âs, µ
2, q2, z, �

� − 2C lnΓI
�
âs, µ

2, µ2
F , z, �

�
. (6.10)
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It contains only the distributions and the logarithms of the form lni(1 − z), i = 0, 1, · · · .
The all order result given in Eq.(6.9) is the master formula which can be used for obtain-

ing SV+NSV contributions to ΔI order by order in perturbation theory provided various

functions that appear in Eq.(6.10) are known to desired accuracy. In particular, it can

predict certain SV and NSV terms to all orders in as in terms of lower order terms. In

the above formula, we keep the entire FF and overall renormalisation constant as they are

proportional to only δ(1 − z). However, in the functions SI and ln(ΓI), we keep only SV

and NSV terms.

In the master formula, Eq.(6.9), the form factor for the DY process is the matrix element of

vector current ψqγµψq between on-shell quark states and for the Higgs boson production

in gluon fusion (bottom quark annihilation), it is the matrix element of Ga
µνG

µνa (ψbψb)

between on-shell gluon (bottom quark) states. Here ψc is the c type quark field operator

and Gµνa is the gluon field strength operator with a being the S U(Nc) gauge group index in

the adjoint representation. These FFs are known in QCD up to third order in perturbation

theory, [2,41,42,47,53,55,58,59,209–213]. The overall renormalisation constant for the

vector current is one to all orders in QCD while for the Higgs boson productions, ZIs are

non-zero. For I = b, see [164] and for I = g, it is expressed in terms of QCD beta function

coefficients to all orders [214].

Perturbative results of FF in renormalisable quantum field theory demonstrate rich struc-

ture, in particular, one finds that they satisfy certain differential equations. The simplest

one is the RG equation that FFs satisfy, namely µ2
R

dF̂ I
dµ2

R
= 0, using which we can predict the

logarithms resulting from the UV sector, i.e., the logarithms of the form lnk(µ2
R), k = 1, · · ·

at every order in perturbation theory. In addition, these FFs satisfy Sudakov differential

equation [34, 37–39, 148, 215–217] which is used to study their IR structure in terms of

certain IR anomalous dimensions such as cusp AI ,collinear BI and soft f I anomalous
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dimensions. In dimensional regularisation, the equation takes the following form:

Q2 d
dQ2 ln F̂ I�âs,Q2, µ2, �

�
=

1
2

�
KI
�
âs,
µ2

R

µ2 , �
�
+GI

�
âs,

Q2

µ2
R

,
µ2

R

µ2 , �
��
, (6.11)

where Q2 = −q2. The unrenormalised FFs contain both UV and IR divergences. UV

divergences go away after UV renormalisation. The IR divergences of the FFs can be

shown to factorise. The divergence of FFs are such that the factorised IR divergent part is

q2 dependent. The consequence of these facts is that the right hand side of the differential

equation can expressed in terms of two functions KI and GI in such a way that KI accounts

for all the poles in � whereas GI is finite term in the limit � → 0. The RG invariance of

FFs implies, in the limit � → 0,

µ2
R

d
dµ2

R

KI
�
âs,
µ2

R

µ2 , �
�
= −µ2

R
d

dµ2
R

GI
�
âs,

Q2

µ2
R

,
µ2

R

µ2 , �
�
= −AI(as(µ2

R)). (6.12)

The solutions to Eq.(6.12) are given in Sec.[2.3.1]. Substituting these solutions in Eq.(6.11)

one can find the structure of FF in terms of IR anomalous dimensions and the pro-

cess dependent quantities. A more elaborate discussion on the structure of FF can be

found in [39]. The IR anomalous dimensions are known to three loops in QCD, see

[41, 42, 44, 45, 52, 55, 218, 219] and for beyond three loops, see [47].

The fact that the initial state collinear divergences in parton level cross sections factorises

in terms of splitting kernels Γab(z, µ2
F , �) implies RG evolution equation with respect to

the scale µF:

µ2
F

d
dµ2

F

Γab
�
z, µ2

F , �
�
=

1
2

�

a�=q,q,g

Paa�
�
z, as(µ2

F)
� ⊗ Γa�b

�
z, µ2

F , �
�
, a, b = q, q, g . (6.13)

Since we are interested only in diagonal splitting kernels for our analysis, the correspond-

ing splitting functions Pcc
�
z, µ2

F
�

are expanded around z = 1 and all those terms that do

not contribute to SV+NSV are dropped. The AP splitting functions near z = 1 take then
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the following form:

PI
�
z, as(µ2

F)
�
= 2BI(as(µ2

F)) δ(1 − z) + P�I
�
z, as(µ2

F)
�
, (6.14)

where,

P�I
�
z, as(µ2

F)
�
= 2

�
AI(as(µ2

F))D0(z) +CI(as(µ2
F)) ln(1 − z) + DI(as(µ2

F))
�

+O((1 − z)) . (6.15)

The above equation limited to only SV part is identical to the one given in Eq.(2.65). In

the rest of this chapter, we drop the terms in P�I proportional to O((1 − z)) for our study.

The constants CI and DI can be obtained from the the splitting functions P�I which are

known to three loops in QCD [44, 45] (see [44, 45, 204, 220–226] for the lower order

ones). Similar to the cusp and the collinear anomalous dimensions, the constants CI and

DI are also expanded in powers of as(µ2
F) as:

CI(as(µ2
F)) =

∞�

i=1

ai
s(µ

2
F)CI

i , DI(as(µ2
F)) =

∞�

i=1

ai
s(µ

2
F)DI

i , (6.16)

where CI
i and DI

i to third order are available in [44,45]. Our next task is to study the func-

tion SI defined in Eq.(6.8) order by order in QCD perturbation theory. It should contain

right IR divergences to cancel those resulting from FF and AP kernels to give IR finite ΔI .

Recall the IR structure of SI in the SV limit that we discussed in previous chapters. It was

found that the function SI’s demonstrate rich infrared structure in the SV approximation.

It provides framework to obtain SV contribution order by order in perturbation theory.

We have also seen that it demonstrate an all order result in z-space which allows one to

write the integral representation suitable for studying resummation in Mellin N-space.

In the following, we proceed along this direction to study NSV contributions in z-space

to all orders in perturbation theory and to provide an integral representation that can be

used for performing Mellin N-space resummation. Using Eqs.(6.9),(6.10) and the K+G
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equation of FFs as given in Eq. (6.11), it is straightforward to show that the functions SI

equivalently, ΦI satisfy K+G type of first order differential equation:

q2 d
dq2Φ

I =
1
2

�
K

I�
âs,
µ2

R

µ2 , �, z
�
+G

I�
âs,

q2

µ2
R

,
µ2

R

µ2 , �, z
��
, (6.17)

where the right hand side of the above equation is written as a sum of K
I

which accounts

for all the divergent terms and G
I

which is a finite function of (z, �). In addition, ΦIs

satisfy renormalisation group invariance namely µ2
R

dΦI

dµ2
R
= 0 which implies

µ2
R

d
dµ2

R

K
I
(as(µ2

R), z) = −µ2
R

d
dµ2

R

G
I
(as(µ2

R), z) = −A
I
(as(µ2

R))δ(1 − z) , (6.18)

where A
I

is analogous of cusp anomalous dimension that appears in K+G equation of FFs.

Integrating Eq.(6.17) after substituting the solutions of RGs for K
I

and G
I
, the solution

ΦI takes the most general form1

ΦI(âs, q2, µ2, z,�) =
∞�

i=1

âi
s

�q2(1 − z)2

µ2z

�i �2 S i
�

� i�
1 − z

�
φ̃I

i (z, �). (6.19)

where S � = exp( �2 [γE − ln(4π)]) with γE being the Euler Mascheroni constant. The form

of the solution given in Eq.(6.19) is inspired by the result for the production of a pair

of leptons in quark antiquark channel or Higgs boson in gluon fusion at next to leading

order in as. The term
�

q2(1−z)2

µ2z

� �
2 in the parenthesis results from two body phase space

while φ̂I
i (z, �)/(1 − z) comes from the square of the matrix elements for corresponding

amplitudes. In general, the term q2(1 − z)2/z inside the parenthesis is the hard scale in

the problem and it controls the evolution of ΦI at every order. The function φ̃I
i (z, �) is

regular as z→ 0 but contains poles in �. We have factored out 1/(1 − z) explicitly so that

it generates all the distributions D j(z) and δ(1 − z) and NSV terms lnk(1 − z), k = 0, · · ·
when combined with the factor ((1 − z)2)i�/2 and φ̃I

i (z, �) at each order in âs. Note that the

1Note here that the solution (6.19) is different from the one given in Eq.(2.71) in the context of threshold
framework. Here, φ̃I

i (z, �) is a general function which depends on (z, �), while the latter, φ̂I
i contains only

SV coefficients.
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term z−i�/2 inside the parenthesis does not give distributions D j(z) and δ(1 − z), however

they can contribute to NSV terms ln j(1−z), j = 0, 1, · · · when we expand around z = 1. In

addition the terms proportional to (1− z) in φ̃I
i near z = 1 also give NSV terms for ΦI . We

rewrite the solution ofΦI in a convenient form which separates SV terms from the NSV in

ΦI . Hence, we decompose ΦI as ΦI = ΦI
sv + Φ

I
nsv in such a way that ΦI

sv contains only SV

terms and the remaining ΦI
nsv contains next to soft-virtual terms in the limit z → 1. The

distribution ΦI
sv satisfies K+G equation given in (2.68), also see [39, 40] for details. An

all order solution for ΦI
sv in powers of âs in dimensional regularisation is given Eq.(2.71).

For convenience, we present it here:

ΦI
sv(âs, q2, µ2,�, z) =

∞�

i=1

âi
s

�q2(1 − z)2

µ2

�i �2 S i
�

� i�
1 − z

�
φ̂I

i (�) , (6.20)

where,

φ̂I
i (�) =

1
i�

�
K

I
i (�) +G

I
sv,i(�)

�
, (6.21)

the result of which are presented in Eq.(2.74). Similarly the integral representation for

ΦI
sv as given in Eq.(2.82) is:

Φ I
sv(âs, q2, µ2, z, �) =

�
1

1 − z

�� q2(1−z)2

µ2
R

dλ2

λ2 AI
�
as(λ2)

�
+G

I
sv

�
as

�
q2(1 − z)2

�
, �
� ��

+

+δ(1 − z)
∞�

i=1

âi
s

�
q2

µ2

�i �2

S i
� φ̂

I
i (�)

+

�
1

1 − z

�

+

∞�

i=1

âi
s

�
µ2

R

µ2

�i �2

S i
� K

I
i (�) (6.22)

Having all the information about the SV coefficients, let us now study in detail the struc-

ture of ΦI
nsv using Eq.(6.17). Subtracting out the K+G equation for the SV part ΦI

sv from
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(6.17), we find that ΦI
nsv satisfies

q2 d
dq2Φ

I
nsv(q2, z, �) =

1
2

�
GI

L

�
âs,

q2

µ2
R

,
µ2

R

µ2 , �, z
��
, (6.23)

where GI
L = G

I −G
I
sv,

GI
L

�
âs,

q2

µ2
R

,
µ2

R

µ2 , z, �
�
=

∞�

i=1

ai
s
�
q2(1 − z)2�GI

L,i(z, �) (6.24)

Now integrating Eq.(6.23) we obtain the following structure for ΦI
nsv:

ΦI
nsv(âs, µ

2, q2, z, �) =
∞�

i=1

âi
s

�q2(1 − z)2

µ2

�i �2
S i
� ϕ

I
i (z, �) . (6.25)

The coefficients ϕI
i (z, �) in Eq.(6.25) can be expressed as a sum of singular and finite part

in � given by,

ϕI
i (z, �) = ϕ

I
s,i(z, �) + ϕ

I
f ,i(z, �) , (6.26)

where the singular coefficients ϕI
s,i has an analogous structure to Eq.(2.50) with the sub-

stitution:

ϕI
s,i(z, �) = KI

i (�)
�����
AI→−LI (z)

, (6.27)

where LI(as(µ2
R), z) can be expanded in powers of as(µ2

R) as

LI�as(µ2
R), z

�
=

∞�

i=1

ai
s(µ

2
R)LI

i (z) . (6.28)

The coefficients ϕI
f ,i(z, �) are finite in the limit � → 0 and can be written in terms of the

finite coefficients GI
L,i(z, �) as,

ϕI
f ,1(z, �) =

1
�
GI

L,1(z, �) ,

ϕI
f ,2(z, �) =

1
�2

(−β0GI
L,1(z, �)) +

1
2�
GI

L,2(z, �) ,
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ϕI
f ,3(z, �) =

1
�3

�4
3
β2

0GI
L,1(z, �)

�
+

1
�2

�
− 1

3
β1GI

L,1(z, �) − 4
3
β0GI

L,2(z, �)
�
+

1
3�
GI

L,3(z, �) ,

ϕI
f ,4(z, �) =

1
�4

(−2β3
0GI

L,1(z, �)) +
1
�3

�4
3
β0β1GI

L,1(z, �) + 3β2
0GI

L,2(z, �)
�

+
1
�2

�
− 1

6
β2GI

L,1(z, �) − 1
2
β1GI

L,2(z, �) − 3
2
β0GI

L,3(z, �)
�
+

1
4�
GI

L,4(z, �) , (6.29)

with

GI
L,i(z, �) = χ

I
L,i(z) +

∞�

j=1

� jGI, j
L,i(z) (6.30)

where the coefficients χI
L,i(z) are:

χI
L,1(z) = 0 ,

χI
L,2(z) = −2β0GI,1

L,1(z) ,

χI
L,3(z) = −2β1GI,1

L,1(z) − 2β0

�
GI,1

L,2(z) + 2β0GI,2
L,1(z)

�
,

χI
L,4(z) = −2β2GI,1

L,1(z) − 2β1

�
GI,2

L,1(z) + 4β0GI,1
L,2(z)

�

− 2β0

�
GI,3

L,1(z) + 2β0GI,2
L,2(z) + 4β2

0GI,1
L,3(z)

�
. (6.31)

The coefficients GI, j
L,i(z) in the above equations are parametrised in terms of lnk(1 − z), k =

0, 1, · · · and all the terms that vanish as z→ 1 are dropped

GI, j
L,i(z) =

i+ j−1�

k=0

GI,( j,k)
L,i lnk(1 − z) . (6.32)

The highest power of the ln(1− z) at every order depends on the order of the perturbation,

namely the power of as and also the power of � at each order in as. Hence the summation

runs from 0 to i + j − 1.

Decomposing into divergent and finite part, the ΦI
nsv in Eq.(6.25) can be rewrite as:

ΦI
nsv(âs, µ

2, q2, z, �
�
=

� q2(1−z)2

µ2
F

dλ2

λ2 LI(as(λ2), z) + ϕI
f
�
as(q2(1 − z)2), z, �

������
�=0

+ ϕI
s
�
as(µ2

F), z, �
�
, (6.33)
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with,

ϕI
a
�
as(λ2), z

�
=

∞�

i=1

âi
s

�
λ2

µ2

�i �2
S i
�ϕ

I
a,i
�
z, �

�
. a = f , s (6.34)

Here the first line of (6.33) is finite when � → 0 while ϕI
s in the second line is a divergent

term.

The fact that ΦI
nsv is RG invariant implies, from Eq.(6.33):

µ2
F

d
dµ2

F

ϕI
s(as(µ2

F), z) = LI(as(µ2
F), z). (6.35)

The fact that Ψ I in Eq.(6.10) is finite at every order in as in the limit � → 0 allows us to

determine the coefficients LI
i :

LI
i = CI

i ln(1 − z) + DI
i , (6.36)

which is nothing but the NSV part of AP splitting function at every order in perturbation

theory. This completely fix the divergent piece of ΦI
nsv. These coefficients are related

to the cusp AI
i and collinear BI

i anomalous dimensions in the following way up to third

order:

DI
1 = − AI

1 , DI
2 = −AI

2 + AI
1

�
BI

1 − β0

�
,

DI
3 = − AI

3 − AI
1

�
−BI

2 + β1

�
− AI

2

�
−BI

1 + β0

�
,

CI
1 =0 , CI

2 =
�
AI

1

�2
, CI

3 = 2AI
1AI

2 . (6.37)

To see the structure of finite piece ϕI
f , we first expand them in powers of renormalised

coupling as:

ϕI
f (as(q2(1 − z)2), z) =

∞�

i=1

ai
s(q

2(1 − z)2) ϕ̄I
i

=

∞�

i=1

ai
s(q

2(1 − z)2)
i�

k=0

ϕ̄I,(k)
i lnk(1 − z) , (6.38)
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where the highest power of ln(1−z) are in accord with the same in Eq.(6.30). We will dis-

cuss more on this structure in subsequent sections. The coefficients ϕ̄I,(k)
i can be expressed

in terms of their unrenormalized counter part GI,( j,k)
L,i ’s as:

ϕ̄I,(k)
1 = GI,(1,k)

L,1 , k = 0, 1

ϕ̄I,(k)
2 =

�1
2
GI,(1,k)

L,2 + β0GI,(2,k)
L,1

�
, k = 0, 1, 2

ϕ̄I,(k)
3 =

�1
3
GI,(1,k)

L,3 +
2
3
β1GI,(2,k)

L,1 +
2
3
β0GI,(2,k)

L,2 +
4
3
β2

0GI,(3,k)
L,1

�
, k = 0, 1, 2, 3

ϕ̄I,(k)
4 =

�1
4
GI,(1,k)

L,4 +
1
2
β2GI,(2,k)

L,1 +
1
2
β1GI,(2,k)

L,2 +
1
2
β0GI,(2,k)

L,3 + 2β0β1GI,(3,k)
L,1 + β2

0GI,(3,k)
L,2

+2β3
0GI,(4,k)

L,1

�
, k = 0, 1, 2, 3, 4 (6.39)

with GI,(2,3)
L,1 ,GI,(2,4)

L,1 ,GI,(2,4)
L,2 ,GI,(3,4)

L,1 are all zero.

Knowing the structure of divergent and finite pieces of Φnsv
I , let us see how to obtain

the unknown coefficients GI,( j,k)
L,i (z). At every order ai

s, the coefficients GI,( j,k)
L,i for various

values of k, j can be determine from ΔI , F̂ I, ZI ,ΦI
sv, and ΓI known to order ai

s expanded in

double series expansion of � j lnk(1−z). In order to do this we use the available information

up to two loop level.

The explicit results for GI,( j,k)
L,i for bottom quark annihilation is found to be same as of

Drell-Yan till second order in âs, which are given by:

Gb,(1,0)
L,1 = 4CF , Gb,(2,0)

L,1 = 3CFζ2, Gb,(3,0)
L,1 = −CF

�3
2
ζ2 +

7
3
ζ3

�
,

Gb,(1,0)
L,2 = CACF

�2804
27
− 290

3
ζ2 − 56ζ3

�
+CFnf

�
− 656

27
+

44
3
ζ2

�
− 64C2

Fζ2,

Gb,(1,1)
L,2 = 20CF(CA −CF), Gb,(1,2)

L,2 = −8C2
F , (6.40)

and for the Higgs boson production in gluon fusion:

Gg,(1,0)
L,1 = 4CA , Gg,(2,0)

L,1 = 3CAζ2, Gg,(3,0)
L,1 = −CA

�3
2
ζ2 +

7
3
ζ3

�
,

Gg,(1,0)
L,2 = C2

A

�2612
27
− 482

3
ζ2 − 56ζ3

�
+CAnf

�
− 392

27
+

44
3
ζ2

�
,
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Gg,(1,1)
L,2 =

4
3

CA(CA − nf ), Gg,(1,2)
L,2 = −8C2

A. (6.41)

The remaining coefficients up to second order are identically zero. Unlike the SV finite

coefficients GI, j
i that appear in ΦI

sv

�
see Eq.(C.17) and more details in Sec.[2.3.1]

�
, the

quark and gluon coefficients GI,( j,k)
L,i do not satisfy maximal non-abelian relation beyond

one loop. Recall that GI, j
i satisfy Gq, j

i = (CF/CA)Gg, j
i , confirmed up to third order in as as

shown in [39, 40].

Third order contributions to ΔI for DY became available very recently in [16] and for

the Higgs boson productions in gluon fusion as well as in bottom quark annihilation the

third order results were presented in [4, 227, 228]. The analytical results for FFs, over

all renormalisation constants, the functions ΦI
sv and ΓI are all available up to third order

in the literature. Using these results, we can in principle extract the relevant coefficients

Gq,( j,k)
L,i to third order. In the absence of analytical results for second order corrections to

Δq for positive powers of �, we can not determine the coefficients Gq,( j,k)
L,i at the third order.

However, the combination of these coefficients namely ϕI
f can be extracted for I = q (DY)

and I = b (bbH) and I = g (ggH)
�

up to third order using the available results to third

order. We find for DY:

ϕ̄
q,(0)
1 = 4CF , ϕ̄

q,(1)
1 = 0 ,

ϕ̄
q,(0)
2 = CFCA

�1402
27
− 28ζ3 − 112

3
ζ2

�
+C2

F(−32ζ2) + nf CF

�
− 328

27
+

16
3
ζ2

�
,

ϕ̄
q,(1)
2 = 10CFCA − 10C2

F , ϕ̄
(2)
q,2 = −4C2

F ,

ϕ̄
q,(0)
3 = CFC2

A

�727211
729

+ 192ζ5 − 29876
27
ζ3 − 82868

81
ζ2 +

176
3
ζ2ζ3 + 120ζ2

2

�

+C2
FCA

�
− 5143

27
− 2180

9
ζ3 − 11584

27
ζ2 +

2272
15
ζ2

2

�
+C3

F

�
23 + 48ζ3

−32
3
ζ2 − 448

15
ζ2

2

�
+ nf CFCA

�
− 155902

729
+

1292
9
ζ3 +

26312
81
ζ2 − 368

15
ζ2

2

�

+nf C2
F

�
− 1309

9
+

496
3
ζ3 +

2536
27
ζ2 +

32
5
ζ2

2

�
+ n2

f CF

�12656
729

−160
27
ζ3 − 704

27
ζ2

�
,
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ϕ̄
q,(1)
3 = CFC2

A

�244
9
+ 24ζ3 − 8

9
ζ2

�
+C2

FCA

�
− 18436

81
+

544
3
ζ3 +

964
9
ζ2

�

+C3
F

�
− 64

3
− 64ζ3 +

80
3
ζ2

�
+ nf CFCA

�
− 256

9
− 28

9
ζ2

�

+nf C2
F

�3952
81
− 160

9
ζ2

�
,

ϕ
q,(2)
3 = CFC2

A

�
34 − 10

3
ζ2

�
+C2

FCA

�
− 96 +

52
3
ζ2

�
+C3

F

�16
3

�

+nf CFCA

�
− 10

3

�
+ nf C2

F

�40
3

�
,

ϕ̄
q,(3)
3 = C2

FCA

�
− 176

27

�
+ nf C2

F

�32
27

�
, (6.42)

and for the Higgs boson production:

ϕ̄
g,(0)
1 = 4CA , ϕ̄

g,(1)
1 = 0 ,

ϕ̄
g,(0)
2 = C2

A

�1306
27
− 28ζ3 − 208

3
ζ2

�
+ nf CA

�
− 196

27
+

16
3
ζ2

�
,

ϕ̄
g,(1)
2 = C2

A

�2
3

�
+ nf CA

�
− 2

3

�
, ϕ̄

g,(2)
g,2 = −4C2

A ,

ϕ̄
g,(0)
3 = C3

A

�563231
729

+ 192ζ5 − 34292
27
ζ3 − 113600

81
ζ2 +

176
3
ζ2ζ3 +

3488
15
ζ2

2

�

+nf C2
A

�
− 117778

729
+

1888
9
ζ3 +

26780
81
ζ2 − 232

15
ζ2

2

�

+nf CFCA

�
− 2653

27
+

616
9
ζ3 +

40
3
ζ2 +

32
5
ζ2

2

�
+ n2

f CA

�1568
729

− 160
27
ζ3 − 152

9
ζ2

�
,

ϕ̄
g,(1)
3 = C3

A

�
− 18988

81
+

448
3
ζ3 +

1280
9
ζ2

�
+ nf C2

A

�1528
81
− 8ζ3 − 248

9
ζ2

�

+nf CFCA

�
4 − 8

3
ζ2

�
+ n2

f CA

�56
27

�
,

ϕ̄
g,(2)
3 = C3

A

�
− 1432

27
+

40
3
ζ2

�
+ nf C2

A

�164
27
+

2
3
ζ2

�
+ n2

f CA

� 8
27

�
,

ϕ̄
g,(3)
3 = C3

A

�
− 176

27

�
+ nf C2

A

�32
27

�
. (6.43)

While the NSV function ΦI
nsv for quarks and gluon are not related, they are found to be

universal up to second order in the sense that they do not depend on the hard process. For

example, to second order in as, Φ
q
nsv of DY is found to be identical to that of Higgs boson

production in bottom quark annihilation [130]. In addition, we find that they agree with

that of Graviton (G) production in quark annihilation processes [229–234]. In terms of
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ϕ̄
q,(k)
i it translates to

ϕ̄
q,(k)
i

����
q+q→l+l−+X

= ϕ̄
q,(k)
i

����
b+b→H+X

= ϕ̄
q,(k)
i

����
q+q→G+X

i = 1, 2, k = 0, i (6.44)

Similarly, to second order in as, Φ
g
nsv from Higgs boson production in gluon fusion is

found to be identical to that of graviton production in gluon fusion channel and pseudo

scalar Higgs boson production [235–240] in gluon fusion. That is,

ϕ̄
g,(k)
i

����
g+g→H+X

= ϕ̄
g,(k)
i

����
g+g→A+X

= ϕ̄
g,(k)
i

����
g+g→G+X

i = 1, 2, k = 0, i (6.45)

However, the universality breaks at third order, namely, we find that the ϕ̄b,(k)
3 for k = 0, 1

differs from that of DY production while for k = 2, 3 they agree.

ϕ̄b,(0)
3 = ϕ̄

q,(0)
3 − 16CACF

�
CA − 2CF

�
,

ϕ̄b,(1)
3 = ϕ̄

q,(1)
3 + 8CACF

�
CA − 2CF

�
,

ϕ̄b,(k)
3 = ϕ̄

q,(k)
3 k = 2, 3. (6.46)

The origin of this violation for k = 0, 1 at third order, which has been evaluated using

the state-of-art results [4, 16, 227, 228], needs to be understood within the framework of

factorisation.

6.3 All order predictions for ΔI

In this section, we discuss the predictive power of the master formula (6.9). In other

words, given ZI ,F̂ I, ΦI and the ΓI up to a certain order in perturbation theory, we show

that the master formula can predict certain SV and NSV terms to all orders in pertur-

bation theory. The partonic coefficient function ΔI can be expanded order by order in
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perturbation theory in powers of as(µ2
R) as

ΔI(q2, µ2
R, µ

2
F , z) =

∞�

i=0

ai
s(µ

2
R)Δ(i)

I (q2, µ2
R, µ

2
F , z) , (6.47)

where the coefficient Δ(i)
I can be obtained by first expanding the exponential given in (6.10)

in powers of as(µ2
R) and then performing all the resulting convolutions in z-space. Note

that Δ(0)
I = δ(1 − z). We have dropped all those terms that are of order O((1 − z)α),α > 0.

Finally, we write the following decomposition ,

Δ(i)
I (q2, µ2

R, µ
2
F , z) = Δsv,(i)

I (q2, µ2
R, µ

2
F , z) + Δnsv,(i)

I (q2, µ2
R, µ

2
F , z). (6.48)

Here Δsv,(i)
I contains only SV terms, such as the distributions Di(z), (i = 0, 1, · · · ) and

δ(1 − z) and next-to-SV terms, i.e., the logarithms lni(1 − z), (i = 0, 1, · · · ) are embedded

within Δnsv,(i)
I . Now given the distribution function ΦI, upto a certain order in as, there are

several SV and NSV logarithms which can be predicted to all orders in as. For example,

we observe that if Ψ I is known at leading order in as, we can predict all the leading

distributions Di(z) and leading NSV terms lni(1 − z) to all orders in as. In the following,

we elaborate on this by comparing our predictions with the available N3LO results and

also predict N4LO and some higher order results for few observables.

Given Ψ I at order as, by expanding the master formula given in Eq.(6.9) in powers

of strong coupling constant, we obtain the leading SV terms such as
�
D3(z),D2(z)

�
,

�
D5(z),D4(z)

�
, · · · ,

�
D2i−1(z), D2i−2(z)

�
and the leading NSV terms ln3(1 − z), ln5(1 −

z), · · · , ln2i−1(1 − z) at a2
s , a

3
s , · · · , ai

s respectively for all i. Since CI
1 is identically zero,

ln2i(1 − z) terms do not contribute for all i. Hence we predict,

Δnsv
I = as Δ

nsv,(1)
I + a2

s

�
− 128C2

RL3
z + O(L2

z )
�
+ a3

s

�
− 512C3

RL5
z + O(L4

z )
�

+a4
s

�
− 4096

3
C4

RL7
z + O(L6

z )
�
+ O(a5

s) (6.49)

Here we write lni(1−z) ≡ Li
z for brevity. Also CR = CF for I = {q, b} i.e. for DY and Higgs
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production through bottom quark annihilation. And for Higgs production through gluon

fusion i.e. I = g, we have CR = CA. Thus with the knowledge of one loop anomalous di-

mensions {CI
1,D

I
1, A

I
1, B

I
1, f I

1 } and one-loop ϕ̄I,(k)
1 , we predicted the above NSV logarithms

and the known NNLO, N3LO results [4, 227, 228] for DY and Higgs boson productions

confirm this.

Similarly from Ψ I to order a2
s , we can predict the tower consisting of (D3,D2), (D5,D4),

· · · ,(D2i−3(z),D2i−4(z)) and of L4
z , L

6
z , · · · , L2i−2

z at a3
s , a

4
s , · · · , ai

s respectively for all i. For

the DY and Higgs production in bottom quark annihilation, our prediction reads as:

Δnsv
q(b) = as Δ

nsv,(1)
q(b) + a2

s Δ
nsv,(2)
q(b) + a3

s

�
− 512C3

F L5
z +

�7040
9

C2
FCA − 1280

9
nf C2

F

+ 1728C3
F

�
L4

z + O(L3
z )
�
+ a4

s

�
− 4096

3
C4

F L7
z +

�39424
9

C3
FCA +

19712
3

C4
F

− 7168
9

nf C3
F

�
L6

z + O(L5
z )
�
+ O(a5

s) (6.50)

and for the Higgs production in gluon fusion,

Δnsv
g = as Δ

nsv,(1)
g + a2

s Δ
nsv,(2)
g + a3

s

�
− 512C3

AL5
z +

�22592
9

C3
A −

1280
9

nf C2
A

�
L4

z

+ O(L3
z )
�
+ a4

s

�
− 4096

3
C4

AL7
z +

�98560
9

C4
A −

7168
9

nf C3
A

�
L6

z + O(L5
z )
�
+ O(a5

s) (6.51)

Our predictions for Li
z, i = 5, 4 agree with the those obtained by explicit computation

[4, 241]. For the comparison purpose, we have presented the logarithms only upto or-

der a4
s , however, the master formula can predict such logarithms to all orders in as.

Thanks to [4, 16, 241], the third order results are now available for all these processes

allowing us to determine ϕI
f for I = q, b, g till third order. Using this, we can predict

a tower of (D3(z),D2(z)) , (D5(z),D4(z)) · · · , (D2i−5(z),D2i−6(z)) and of L5
z , · · · , L2i−3

z at

a4
s , a

5
s , · · · , ai

s respectively for all i. In the following for the illustrative purpose, we have

presented the NSV terms Lz till seventh order in as. For DY, we find

Δnsv
q = as Δ

nsv,(1)
q + a2

s Δ
nsv,(2)
q + a3

s Δ
nsv,(3)
q + a4

sa4
sa4
s

��
− 4096

3
C4

F

�
L7

z +

�39424
9

C3
FCA +

19712
3

C4
F
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− 7168
9

n f C3
F

�
L6

z +

�
− 123904

27
C2

FC2
A −

�805376
27

− 3072ζ2
�
C3

FCA +

�
9088 + 20480ζ2

�
C4

F

+
45056

27
n f C2

FCA +
139520

27
n f C3

F −
4096
27

n2
f C

2
F

�
L5

z + O
�
L4

z
��

+ a5
sa5
sa5
s

��
− 8192

3
C5

F

�
L9

z +

�51200
3

C5
F −

8192
3

C4
Fn f +

45056
3

C4
FCA

�
L8

z

+

��72704
3
+

229376
3
ζ2

�
C5

F −
�1120256

9
− 32768

3
ζ2

�
C4

FCA − 81920
81

C3
Fn2

f

+
194560

9
C4

Fn f +
901120

81
C3

FCAn f − 2478080
81

C3
FC2

A

�
L7

z + O
�
L6

z
��

+ a6
sa6
sa6
s

��
− 65536

15
C6

F

�
L11

z +

�167936
5

C6
F −

180224
27

C5
Fn f +

991232
27

C5
FCA

�
L10

z

+

��145408
3

+ 196608ζ2
�
C6

F +
5054464

81
C5

Fn f − 327680
81

C4
Fn2

f −
�28997632

81

− 81920
3
ζ2

�
C5

FCA +
3604480

81
C4

FCAn f − 9912320
81

C4
FC2

A

�
L9

z + O
�
L8

z
��

+ a7
sa7
sa7
s

��
− 262144

45
C7

F

�
L13

z +

�2392064
45

C7
F −

1703936
135

C6
Fn f +

9371648
135

C6
FCA

�
L12

z

+

��1163264
15

+
5767168

15
ζ2

�
C7

F +
55115776

405
C6

Fn f −
�315080704

405
− 262144

5
ζ2

�
C6

FCA

− 917504
81

C5
Fn2

f +
10092544

81
C5

FCAn f − 27754496
81

C5
FC2

A

�
L11

z + O
�
L10

z
��
+ O�a8

s) , (6.52)

for the Higgs production in bottom quark annihilation,

Δnsv
b = as Δ

nsv,(1)
b + a2

s Δ
nsv,(2)
b + a3

s Δ
nsv,(3)
b + a4

sa4
sa4
s

�
Δnsv,(4)

q − 6144C4
F L5

z + O
�
L4

z
��

+ a5
sa5
sa5
s

�
Δnsv,(5)

q − 16384C5
F L7

z + O
�
L6

z
��
+ a6

sa6
sa6
s

�
Δnsv,(6)

q − 32768C6
F L9

z + O
�
L8

z
��

+ a7
sa7
sa7
s

�
Δnsv,(7)

q − 262144
5

C7
F L11

z + O
�
L10

z
��
+ O�a8

s
�
, (6.53)

and for the Higgs production in gluon fusion,

Δnsv
g = as Δ

nsv,(1)
g + a2

s Δ
nsv,(2)
g + a3

s Δ
nsv,(3)
g

+ a4
sa4
sa4
s

��
− 4096

3
C4

A

�
L7

z +

�98560
9

C4
A −

7168
9

n f C3
A

�
L6

z +

��
− 298240

9
+ 23552ζ2

�
C4

A

+
174208

27
n f C3

A −
4096
27

n2
f C

2
A

�
L5

z + O
�
L4

z
��
+ a5

sa5
sa5
s

��
− 8192

3
C5

A

�
L9

z +

�96256
3

C5
A

− 8192
3

C4
An f

�
L8

z +

��
− 12283904

81
+

262144
3
ζ2

�
C5

A +
2569216

81
C4

An f − 81920
81

n2
f C

3
A

�
L7

z

+ O�L6
z
��
+ a6

sa6
sa6
s

��
− 65536

15
C6

A

�
L11

z +

�9490432
135

C6
A −

180224
27

C5
An f

�
L10

z +

��671744
3
ζ2

− 4261888
9

�
C6

A +
8493056

81
C5

An f − 327680
81

n2
f C

4
A

�
L9

z + O
�
L8

z
��
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+ a7
sa7
sa7
s

��
− 262144

45
C7

A

�
L13

z +

�3309568
27

C7
A −

1703936
135

C6
An f

�
L12

z +

��
− 449429504

405

+
1310720

3
ζ2

�
C7

A +
11583488

45
C6

An f − 917504
81

n2
f C

5
A

�
L11

z + O
�
L10

z
��
+ O�a8

s) . (6.54)

Our predictions for L7
z , L

6
z and L5

z terms at fourth order for ΔI agree with those of [8, 52,

204, 205] predicted using physical evolution equations. As can be seen from Eqs.(6.52-

6.54), given the third order results, our master formula can predict three highest loga-

rithms for fifth order onwards in as. For instance at a5
s , we can predict L9

z , L
8, L7

z . General-

ising this, if we know Ψ I up to nth order, we can predict (D2i−2n+1(z),D2i−2n(z)) and L2i−n
z

at every order in ai
s for all i. Table[6.1] is devoted to summarise the predictions from the

master formula for any given order of as. The explicit structure of ΔI till four loop are pre-

sented in the ancillary files submitted with the arXiv submission [198]. The predictive

power of the master formula to all orders in as in terms of distributions and ln(1− z) terms

in ΔI is due to the all order structure of the exponent Ψ I and this can be further exploited

to resum them. We devote a separate section for this.

GIVEN PREDICTIONS

Ψ I,(1) Ψ I,(2) Ψ I,(3) Ψ I,(n) Δ(2)
I Δ(3)

I Δ(i)
I

D0,D1, δ D3,D2 D5,D4 D(2i−1),D(2i−2)

L1
z , L

0
z L3

z L5
z L(2i−1)

z

D0,D1, δ D3,D2 D(2i−3),D(2i−4)

L2
z , L

1
z , L

0
z L4

z L(2i−2)
z

D0,D1, δ D(2i−5),D(2i−6)

L3
z , · · · , L0

z L(2i−3)
z

D0,D1, δ D(2i−(2n−1)),D(2i−2n)

Ln
z , · · · , L0

z L(2i−n)
z

Table 6.1: Towers of Distributions (Di ≡ Di(z)) and NSV logarithms (Li
z ≡ lni(1 − z)) that can

be predicted for ΔI using Eq.(6.9). Here Ψ I,(i) and Δ(i)
I denotes Ψ I and ΔI at order ai

s respectively.

So far, we have compared our higher predictions for SV and NSV logarithms obtained

using the lower order results against those available in the literature and found that our all

order master formula correctly predicts these logarithms. For example, from the knowl-

180



gg→ H Drell-Yan (DY) bb→ H

C3
A

−111008
27 +

3584ζ2

−110656
27 +

3584ζ2 +
η1

C3
F 2272 +

3072ζ2
2272 +
3072ζ2

736 +
3072ζ2

736 +
3072ζ2

C2
An f

6560
9

19616
27 + η2 C2

Fn f
19456

27
6464

9 + η3
19456

27
6464

9 + η3

CAn2
f

−256
27

−256
27 CAC2

F
−111904

27 +

512ζ2

−37184
9 +

512ζ2+η4

−111904
27 +

512ζ2

−37184
9 +

512ζ2+η4

CFn2
f

−256
27

−256
27

−256
27

−256
27

CACFn f
2816

27
2816
27

2816
27

2816
27

C2
ACF

−7744
27

−7744
27

−7744
27

−7744
27

Table 6.2: Comparison of ln3(1 − z) coefficients at the third order against exact results. The left
column stands for the exact results and the right column gives the respective contributions when
Ψ I is taken till two loop.

edge of the second order result for Ψ I , we can correctly predict ln5(1 − z) and ln4(1 − z)

terms at third order. Even though this second order information is not sufficient to predict

the lower order NSV logarithms, namely lnk(1−z) for k = 3, 2, 1, 0 at a3
s level, we observe

that our predictions for these logarithms agree with the known results for several color

factors. In Table [6.2] we compare our predictions for ln3(1 − z) terms at the third order,

which are obtained using Ψ I considered till a2
s , against the known results for the DY pro-

duction, Higgs productions in bottom quark annihilation and gluon fusion. As can be seen

from the table, the master formula correctly predicts the results for many color factors.

For instance, for DY, the predictions for color factors C3
F ,CFn2

f ,CACFnf and C2
ACF are

matching with the exact results. However for the other color factors, certain third order

information are required, which is represented as ηi which when taken into account will

reproduce the exact ln3(1 − z) terms at third order.
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6.4 More on the z-space NSV Solution ΦI
nsv

6.4.1 On the form of the solution

In this section, we discuss in detail the peculiar structure of SV and NSV solutions given in

Eq.(6.20) and Eq.(6.25) respectively, that satisfy the K+G equation (6.17). Both of them

contain divergent as well as finite terms at every order. For example, the SV part of the

solution,ΦI
sv, contains the right soft and collinear divergences proportional to distributions

δ(1 − z) andD0(z) to cancel those from the FF entirely and from the AP kernels partially

and the z dependent finite terms to correctly reproduce all the distributions in the SV part

of CFs ΔI . The NSV part, ΦI
nsv, removes the remaining collinear divergences of the AP

kernels. The finite part of it when combined with SV counterpart of ΦI
sv contributes to

next-to-SV terms to CFs ΔI . As we mentioned in the previous section, the z dependence

of the solution is inspired from the structure of various contributions that constitute the

next to leading order contributions to variety of inclusive reactions, namely production

of a pair of leptons in quark anti-quark annihilation, a Higgs boson in gluon fusion or

in bottom quark annihilation at hadron colliders. In addition, the renoramalisation group

equation, Eq.(6.35), brings in additional z dependent logarithmic structure through the

anomalous dimensions CI(as) and DI(as).

Note that the solution given in (6.19) is organised in such a way that the term ΦI
sv contains

only leading contributions namely the distributions such as δ(1−z) andD j(z), the so called

SV terms and the term ΦI
nsv, the sub-leading terms, i.e., the NSV logarithms lnk(1 − z).

Even though ΦI
sv does not contain next-to-SV terms, they contribute to next-to-SV terms

to ΔI , when the exponential is expanded in powers of as. Not only do distributions result

from the convolutions of two or more distributions, they also give next-to-SV logarithms.

In addition, the convolution of distributions with next-to-SV terms in turn give pure NSV

logarithms. Hence, the leading solution ΦI
sv plays an important role for generating next-
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to-SV terms for the CFs ΔI at every order in perturbation theory.

The solution ΦI
sv (see Eq.(6.20)) at every order in âs is found to factorise into z dependent

piece,
�
(1−z)m�i�/2 1

1−z with m = 2, and the z independent coefficients φ̂I
i (�). The peculiarity

of this solution is that we can retain the independence of φ̂I
i (�) with respect to the variable

z at every order in âs, thanks to presence of the factor
�
(1 − z)m�i�/2 1

(1−z) which not only

ensures the finiteness of SV part of CFs ΔI but also gives right distributions at every

order. The factor m takes the value m = 2 for DY and Higgs productions as observed

in Eq.(6.20) and the origin of it can be traced to the number of external legs that require

mass factorisation [40]. It was observed in [40, 242] that the parameter m takes the value

m = 1 for the SV part of the solutions to CFs of structure functions of Deep Inelastic

Scattering (DIS) and of Semi-Inclusive Annihilation (SIA) of hadron production and the

reason is that only one of the external legs requires mass factorisation. The uniqueness of

the structure of φ̂I
i may be attributed to the fact that the entire z dependence of the solution

factorises at every order as
�
(1 − z)m�i�/2 1

1−z leaving φ̂I
i (�) z-independent.

Like SV part, the NSV part of the solution is also determined by demanding that it should

contain the right divergences to cancel those present in AP kernels. The structure of the

finite part of the solution is determined by Eq.(6.33), which when combined with SV part

of the solution, reproduces the correct NSV terms for ΔI . The perturbative structure of

higher order results allows only certain powers of logarithms at every order in perturba-

tion theory thanks to inherent transcendentality structure of Feynman integrals that appear

at every order in as and in � in the dimensionally regularised theory. We find that the coef-

ficients ϕI
i (z, �) are consistent with this expectaion. In addition, the solution demonstrates

an interesting structure that deserves a mention. We find that the K+G equation allows us

to construct not just one solution but a class of solutions, a minimal class, satisfying the

right divergent structure as well as the dependence on lnk(1 − z), k = 0, 1, · · · :

ΦI
nsv,α =

∞�

i=1

âi
s

�
q2(1 − z)α

µ2

� i�
2

S i
�ϕ

I
α,i(z, �) . (6.55)
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The predictions from the solutionsΦI
nsv,α are found to be independent of choice of α owing

to the explicit z-dependence of the coefficients ϕI
α,i(z, �) at every order in âs and in �. It

is straightforward to show that any variation of α in the factor (1 − z)iα� can always be

compensated by suitably adjusting the z independent coefficients of ln(1 − z) terms in

ϕI
α,i(z, �) at every order in âs. The reason for this is the invariance of the solution under

certain “gauge like" transformations on both (1 − z)iα� and ϕI
f ,α(z, �) at every order in âs.

Note that the logarithmic structure of ϕI
α,i(z, �) plays an important role. Because of this

invariance, these transformations neither affect the divergent structure nor the finite parts

of ΦI
nsv,α. We find that the invariance can be realised through the renormalisation group

equation of strong coupling constant. To end, the solution given in Eq.(6.55) takes the

following integral form:

ΦI
nsv,α =

� q2(1−z)α

µ2
F

dλ2

λ2 LI(as(λ2), z) + ϕI
f ,α
�
as(q2(1 − z)α), z, �

�|�=0

+ϕI
s
�
as(µ2

F), z, �
�
, (6.56)

The finite part ϕI
f ,α can be expanded as

ϕI
f ,α(as(q2(1 − z)α), z) =

∞�

i=1

ai
s(q

2(1 − z)α)
i�

k=0

ϕ̄I,(k)
α,i lnk(1 − z) . (6.57)

The fact that the predictions are insensitive to α relates the coefficient ϕ̄I,(k)
α,i to ϕ̄I,(k)

i , the

solution corresponding to α = 2, through

ϕ̄I,(0)
α,1 = ϕ̄I,(0)

1 , ϕ̄I,(1)
α,1 = −DI

1α̃ + ϕ̄
I,(1)
1 , ϕ̄I,(0)

α,2 = ϕ̄
I,(0)
2

ϕ̄I,(1)
α,2 = −α̃

�
DI

2 − β0ϕ̄
I,(0)
1

�
+ ϕ̄I,(1)

2 ,

ϕ̄I,(2)
α,2 = −1

2
α̃2β0DI

1 − α̃
�
CI

2 − β0ϕ̄
I,(1)
1

�
+ ϕ̄I,(2)

2

ϕ̄I,(0)
α,3 = ϕ̄I,(0)

3 , ϕ̄I,(1)
α,3 = −α̃

�
DI

3 − β1ϕ̄
I,(0)
1 − 2β0ϕ̄

I,(0)
2

�
+ ϕ̄I,(1)

3

ϕ̄I,(2)
α,3 = −α̃2

�1
2
β1DI

1 + β0DI
2 − β0

2ϕ̄I,(0)
1

�
− α̃

�
CI

3α̃ − β1ϕ̄
I,(1)
1 − 2β0ϕ̄

I,(1)
2

�
+ ϕ̄I,(2)

3

ϕ̄I,(3)
α,3 = β0

2
�
− 1

3
DI

1α̃
3 + α̃2ϕ̄I,(1)

1

�
+ β0α̃

�
−CI

2α̃ + 2ϕ̄I,(2)
2

�
+ ϕ̄I,(3)

3
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ϕ̄I,(0)
α,4 = ϕ̄I,(0)

4 , ϕ̄I,(1)
α,4 = −DI

4α̃ + β2α̃ϕ̄
I,(0)
1 + 2β1α̃ϕ̄

I,(0)
2 + 3β0α̃ϕ̄

I,(0)
3 + ϕ̄I,(1)

4

ϕ̄I,(2)
α,4 = −CI

4α̃ −
1
2
β2DI

1α̃
2 − β1DI

2α̃
2 − 3

2
β0DI

3α̃
2 +

5
2
β0β1α̃

2ϕ̄I,(0)
1

+β2α̃ϕ̄
I,(1)
1 + 3β0

2α̃2ϕ̄I,(0)
2 + 2β1α̃ϕ̄

I,(1)
2 + 3β0α̃ϕ̄

I,(1)
3 + ϕ̄I,(2)

4

ϕ̄I,(3)
α,4 = β0

3α̃3ϕ̄I,(0)
1 + β0

2α̃2
�
− DI

2α̃ + 3ϕ̄I,(1)
2

�
− 1

6
β1α̃

�
6CI

2α̃ + 5β0α̃
�
DI

1α̃ − 3ϕ̄I,(1)
1

�

−12ϕ̄I,(2)
2

�
− 3

2
β0α̃

�
CI

3α̃ − 2ϕ̄I,(2)
3

�
+ ϕ̄I,(3)

4

ϕ̄I,(4)
α,4 = β0

3
�
− 1

4
DI

1α̃
4 + α̃3ϕ̄I,(1)

1

�
+ β0

2α̃2
�
−CI

2α̃ + 3ϕ̄I,(2)
2

�
+ 3β0α̃ϕ̄

I,(3)
3 + ϕ̄I,(4)

4 (6.58)

where α̃ = α − 2. The above relations are the transformations for ϕ̄I,(k)
α,i that are required

to compensate the contributions resulting from the change in the exponent of (1− z) from

i� to iα�. This invariance property with repect to the parameter α makes the solution a

peculiar one compared to SV counter part.

We would like to point out that the class of solutions parametrized by α is not the only

one that satisfies K+G equation. For example, if we do not restrict z-dependence, we can

obtain different kinds of solution. Then for such solution, we need to add more terms on

the right hand side of (6.55) in such a way that all the requirements are fulfilled. In other

words if we assume the following form for the solution,

Φ̃I
nsv =

�

α

∞�

i=1

âi
s

�
q2(1 − z)α

µ2

� i�
2

S i
� ℵI
α,i(�) (6.59)

with various ℵI
α,i(�)’s to containing right divergent as well as finite terms and then sum

them up over αs, we can obtain ΔI that agrees with the known result.

In the present work, we use the minimal solution with the choice α = 2 in Eq.(6.55)

so that the solution resembles more like the SV part. Thanks to the invariance property

of the solution, the different choices for α neither alter the qualitative behaviour nor the

quantitative predictions for ΔI to all orders. For example, an alternate choice, say α = 1

can only change the coefficients of lnk(1 − z) in the ϕI
f without affecting the all order

structure and the predictions for ΔI . With our choice of α = 2, the all order solution,
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equivalently integral respresentation resembles that of SV part. We will see later that this

choice will allow us to study N-space resummation for both SV and NSV terms with

single order one term namely ω = 2asβ0 ln N.

6.4.2 On the Logarithmic Structure

In the last section, we derived z space result that can correctly predict certain SV and

NSV terms to all orders from the knowledge of previous orders. This was possible due to

a peculiar logarithm structure of the solution to K+G equation at every order in âs and �,

see Eq. (6.32). In this sub section, we present an explicit result for Φc, c = b to second

order in perturbation theory in order to explain the structure of SV and NSV logarithms

at a given order in âs with an accuracy of �n. We have used inclusive cross section for the

production of Higgs boson in bottom quark annihilation for this purpose. The conclusions

remain unchanged as long as color neutral production in diagonal channels are considered.

To order â2
s , the inclusive cross section for the production of Higgs boson in bottom quark

annihilation receives contributions from a) pure real emissions

b + b→ H + g, b + b→ H + g + g, b + b→ H + b + b̄, b + b→ H + q + q̄,

b) pure virtual corrections through one and two loop corrections to leading order b+ b→
H and c) interference of pure real emission process b + b → H + g with the loop cor-

rected process b + b → H + g. Here, q refers light quarks leaving t- and b-quarks. We

compute these parton level sub processes using the standard Feynman diagram approach.

Beyond the leading order in strong coupling, all these sub processes develop UV and

IR divergences and they are regulated in dimensional regularisation. As we encounter

large number of Feynman diagrams, we use QGRAF to generate them and an in-house

FORM routine to perform all the symbolic manipulations, e.g. for Dirac, S U(N) color and

Lorentz algebra. We use the integration-by-parts identities through a Mathematica based

package, LiteRed, to reduce Feynman integrals to a minimum set of master integrals. In
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addition, for real emission and real-virtual processes the method of reverse unitarity is

used along with IBP identities to reduce the resulting phase-space integrals to a set of few

master integrals. The master integrals for the virtual processes can be found in [59, 157]

and for the real emission in [157] up to desired accuracy in �. While individual sub pro-

cesses contain UV, soft and collinear divergences, after renormalising the strong coupling

constant âs and the Yukawa coupling λ, the sum becomes UV finite. In addition, the soft

and final state collinear divergences cancel in real and virtual sub processes leaving only

initial state collinear divergences in σ̂bb̄.

Since we are interested only in those terms that are proportional to distributions and NSV

logarithms lnk(1 − z), we expand σ̂bb̄ around z = 1 and drop those terms that vanish

when z → 1. In order to extract Φc from the latter, we follow (6.8), where the virtual

contributions are factored out from σ̂I giving rise to the function SI . Owing to (6.17), SI

has an exponential structure

Sb(z, q2, �) = C exp
�
2Φb(z, q2, �)

�
(6.60)

where Φb = Φb
sv + Φ

b
nsv. Expanding Φb

nsv in powers of âs as

Φb
nsv(âs, µ

2, q2, z, �) =
∞�

i=1

âi
s

�q2(1 − z)2

µ2

�i �2
S i
�ϕ

b
i (z, �)

=

∞�

i=1

âi
s

�q2

µ2

�i �2
S i
� Φ̂

b
nsv,i(z, �) , (6.61)

and using explicit results for σ̂sv+nsv
bb̄

, Zb and F̂ b, we obtain Φ̂(i)
nsv,b for i = 1, 2 in powers of

�. They are given by

Φ̂b
nsv,1 =CF

�1
�

�
− 8

�
+

�
− 8Lz + 4

�
+ �

�
− 4L2

z + +4Lz + 3ζ2
�
+ �2

�
− 4

3
L3

z + 2L2
z

+ 3ζ2Lz −
�7
3
ζ3 +

3
2
ζ2

��
+ �3

�
− 1

3
L4

z +
2
3

L3
z +

3
2
ζ2L2

z −
�7
3
ζ3 +

3
2
ζ2

�
Lz

+

�7
6
ζ3 +

3
16
ζ2

2

���

187



Φ̂b
nsv,2 =CFCA

� 1
�2

�88
3

�
+

1
�

�176
3

Lz + 8ζ2 − 664
9

�
+

�176
3

L2
z +

�
16ζ2 − 1238

9

�
Lz

+
1402

27
− 28ζ3 − 178

3
ζ2

�
+ �

�352
9

L3
z +

�
16ζ2 − 2341

18

�
L2

z +

�2750
27

− 56ζ3 − 356
3
ζ2

�
Lz +

934
9
ζ3 − 4021

81
+

982
9
ζ2 − 4ζ2

2

��
+C2

F

�1
�

�
16Lz

+ 12
�
+

�
28L2

z + 14Lz − 32ζ2
�
+ �

�74
3

L3
z +

13
2

L2
z +

�
6 − 76ζ2

�
Lz

− 8 + 48ζ3 − ζ2
��
+CFn f

� 1
�2

�−16
3

�
+

1
�

�−32
3

Lz +
112
9

�
+

�−32
3

L2
z

+

�224
9

�
Lz +

28
3
ζ2 − 328

27

�
+ �

�−64
9

L3
z +

224
9

L2
z +

�56
3
ζ2 − 656

27

�
Lz

+
1030
81
− 124

9
ζ3 − 196

9
ζ2

��
. (6.62)

As can be seen from the above results, at order âs, the leading pole in � is of order one and

it is two at â2
s and the increment of one unit for the leading poles is expected to continue with

the order of perturbation. However, the pole structure for σ̂bb̄ shows an increment of two units.

In addition, at every order in âs, for a given color factor, the combination of � and the leading

logarithm shows uniform transcendentality weight. In other words, if we assign n� weight for �−n�

and nL for lnnL(1 − z), then the highest weight at every order in � shows uniform transcendentality

w = n� + nL. For instance, at one loop, we find w = 1 at every order of � and at two loops it is two

(w = 2). This clearly explains that the highest power of ln(1 − z) at every order in � is constrained

by the order of âs and the accuracy in � and is found to be i + j for the term âi
s�

j. This translates

to i + j − 1 for GI, j
L,i in Eq.(6.32) as the latter is the coefficient of � j−1. This exercise provides an

explanation for the logarithmic structure given in Eq.(6.32), in particular the upper limit of the

summation. This logarithmic structure determines the structure of ϕI
f given in Eq.(6.38).

Precisely because of the logarithmic structure of the exponents, namely, increment by one unit,

we get logarithms in CFs with increment of two units. It is easy to understand this structure if

we observe that when we expand the exponents containing Dk(z) and lnk(1 − z) to obtain CFs,

the resulting convolutions between various orders in as will be of the form Dk(z) ⊗Dl(z) and/or

Dk(z) ⊗ lnl(1 − z) which will result in leading distributionsDk+l+1(z) and leading NSV logarithms

lnk+l+1(1 − z).
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6.5 Resummation of next-to-SV in N-space

To study all order behavior of ΔI in Mellin space, it is convenient to use the integral representations

of both ΦI
sv and ΦI

nsv given in (2.71) and (6.33) respectively. Substituting the solutions for F̂ I, ZI

and lnΓI along with the integral representations for ΦI
sv and ΦI

nsv in (6.9), we find

ΔI(q2, µ2
R, µ

2
F , z) = CI

0(q2, µ2
R, µ

2
F) C exp

�
2Ψ I
D(q2, µ2

F , z)
�
, (6.63)

where

Ψ I
D(q2, µ2

F , z) =
1
2

� q2(1−z)2

µ2
F

dλ2

λ2 P�I(as(λ2), z) + QI(as(q2(1 − z)2), z) , (6.64)

with

QI(as(q2(1 − z)2), z) =
�

1
1 − z

G
I
sv(as(q2(1 − z)2))

�

+

+ ϕI
f (as(q2(1 − z)2), z). (6.65)

The coefficient CI
0 is z independent coefficient and is expanded in powers of as(µ2

R) as

CI
0(q2, µ2

R, µ
2
F) =

∞�

i=0

ai
s(µ

2
R)CI

0,i(q
2, µ2

R, µ
2
F) , (6.66)

The CI
0, being z-independent, is identical to the one in threshold limit and can find CI

0 for DY and

Higgs production in [62]. The Eq.(6.63) is our z-space resummed result for ΔI in integral repre-

sentation which can be used to predict SV and NSV terms to all orders in perturbation theory in

terms of universal anomalous dimensions, AI , BI ,CI ,DI , f I , SV coefficientsGI, j
i , NSV coefficients

GI,( j,k)
L,i and process dependent CI

0,i . We have few comments in order. The next-to-SV corrections

to various inclusive processes were studied in a series of papers [6, 199–201, 207, 208, 243] and

lot of progress have been made which lead to better understanding of the underlying physics. Our

result has close resemblance with the one which was conjectured in [6] and indeed there are few

terms which are common in both the results. Our result, (6.64) differs from Eq.(31) in [6], in the

upper limit of the integral, the presence of extra term ϕI
f and the dependence on the variable z.

These differences do not alter the SV predictions but will give NSV terms different from those
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obtained using Eq.(31) of [6].

The Mellin moment of ΔI is now straight forward to compute using the integral representation

given in Eq.(6.64). Note that the (6.64) is suitable for obtaining only SV and NSV terms while the

predictions beyond NSV terms such as those proportional toO((1−z)n ln j(1−z)); n, j ≥ 0 in z-space

and terms of O(1/N2) in N-space will not be correct! Hence, we compute the Mellin moment of

(6.63) in the appropriate limit of N such that the resulting expression in N-space correctly predicts

all the SV and NSV terms. The limit z→ 1 translates to N → ∞ and if one is interested to include

NSV terms, we need to keep O(1/N) corrections in the large N limit. The Mellin moment of ΔI is

given by

ΔI
N(q2, µ2

R, µ
2
F) = CI

0(q2, µ2
R, µ

2
F) exp

�
Ψ I

N(q2, µ2
F)
�
, (6.67)

where

Ψ I
N(q2, µ2

F) = 2
� 1

0
dzzN−1Ψ I

D(q2, µ2
F , z). (6.68)

The computation of Mellin moment in the large N limit which retains SV and NSV terms involves

two major steps: (1) Following [6] and we replace
�

dz(zN−1 − 1)/(1 − z) and
�

dzzN−1 by a theta

function θ(1−z−1/N) and apply the operators ΓA(N d
dN ) and ΓB(N d

dN ) on the integrals respectively;

(2)We perform the integrals over λ2 after expressing as(λ2) in terms of as(µ2
R) obtained using

resummed solution to RG equation of as in (F.5). Step 1 makes sure that we retain only ln j(N) and

(1/N) ln j(N) terms and step 2 guarantees the resummation of 2β0as(µ2
R) ln(N) terms to all orders

and also the organisation of the result in powers of as(µ2
R) . The details of the computation are

described in the Appendix F . The Mellin moment of the exponent takes the following form:

Ψ I
N = Ψ

I
sv,N + Ψ

I
nsv,N (6.69)

where we have split Ψ I
N in such a way that all those terms that are functions of ln j(N), j = 0, 1, · · ·

are kept in Ψ I
sv,N and the remaining terms that are proportional to (1/N) ln j(N), j = 0, 1, · · · are

190



contained in Ψ I
nsv,N. Hence,

Ψ I
sv,N = ln(gI

0(as(µ2
R))) + gI

1(ω) ln(N) +
∞�

i=0

ai
s(µ

2
R)gI

i+2(ω) , (6.70)

where gI
i (ω) are identical to those in [68, 155, 244] obtained from the resummed formula for SV

terms. For completeness, we present them in Appendix E. It is to be noted that gI
i (ω) vanishes in

the limit ω→ 0. The coefficients gI
0(as) is expanded in powers of as as (see [244])

ln(gI
0(as(µ2

R))) =
∞�

i=1

ai
s(µ

2
R)gI

0,i . (6.71)

The N-independent coefficients CI
0 and gI

0 are related to the coefficients gI
0 given in the paper

[155, 245] using the following relation,

gI
0(q2, µ2

R, µ
2
F) = CI

0(q2, µ2
R, µ

2
F) gI

0(as(µ2
R)) (6.72)

which can be expanded in terms of as(µ2
R) as,

gI
0(as(µ2

R)) =
∞�

i=0

ai
s(µ

2
R)gI

0,i . (6.73)

The coefficient gI
0,i are presented in the Appendix E, which are solely coming from the SV part.

Now let us discuss NSV piece. The function Ψ I
nsv,N is given by

Ψ I
nsv,N =

1
N

∞�

i=0

ai
s(µ

2
R)
�
ḡI

i+1(ω) + hI
i (ω,N)

�
, (6.74)

with

hI
i (ω,N) =

i�

k=0

hI
ik(ω) lnk(N). (6.75)
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where ḡI
i (ω) are given by 2:

ḡI
1(ω) =

AI
1

β0
Lw ,

ḡI
2(ω) =

1
(1 − ω)

�DI
1

2
− AI

2
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��
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2
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. (6.76)

Here L̄ω = ln(1 − ω), Lqr = ln( q2

µ2
R
), L f r = ln(µ

2
F
µ2

R
) and ω = 2β0as(µ2

R) ln(N). Also, DI
i are the

threshold exponent defined in terms of G
c

S V :

DI
�
as
�
q2(1 − z)2

��
=

∞�

i=1

ai
s

�
q2(1 − z)2

�
DI

i

2 ḡI
5(ω)are given in the ancillary files submitted with the arXiv submission [198]
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= 2 G
I

sv

�
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�
q2(1 − z)2

�
, �
� ������
�=0

(6.77)

Also the resummation constants hI
ik(ω) are given by 3:
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3The results of (hI
20(ω), hI

30(ω), hI
31(ω), hI

40(ω), hI
41(ω)) are provided in the ancillary files of [198].
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+ 8γB
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We can see that in each coefficient, say gI
i (ω), gI

i (ω), hI
ik(ω) from the SV as well as the NSV, we

are resumming in Mellin space “order one" term ω to all orders in perturbation theory. This is the

consequence of the argument in the coupling constant as(q2(1 − z)2) resulting from the integral

over λ and the function QI . The peculiarity of the series is that the SV gI
1(ω) comes with ln N

and hence it starts with a double logarithm. This extra ln N arises from the Mellin moment of the

factor 1/(1 − z)+ appearing in the exponent. Similarly for Ψ I
nsv,N we note that it is proportional

to 1/N at every order as expected. Explicit ln N that appear with hI
ik(ω) results from the explicit

ln(1 − x) appearing in the exponent. The sum containing ḡI
i , i = 1, 2, · · · results entirely from AI

coefficients of P�I and from the function G
I
sv of (6.65). We find that none of the coefficients ḡI

i (ω)

contains explicit ln(N). The second sum comes from CI ,DI coefficients of P�I and from ϕI
f and

each term in this expansion contains explicit lnk(N), k = 0, · · · , i. We find that coefficient of hI
01 is

proportional to CI
1 which is identically zero. Hence, at order a0

s , there is no (1/N) ln(N) term.

Summarising, we find that in Mellin N-space one obtains compact expression for the exponent in

terms of quantities that are functions of ω = 2as(µ2
R)β0 ln(N) as we use resummed as to perform

the integral. In addition, the resummed as allows us to organise the N-space perturbative expansion

in such a way that ω is treated as order one at every order in as(µ2
R). Both integral representation in

z-space and Mellin moment of the integral in N-space contain exactly same information and hence

predict SV and NSV logarithms to all orders in perturbation theory. The all order structure is more

transparent in N-space compared to z-space result and it is technically easy to use resummed result

in N-space for any phenomenological studies.

Let us first consider Ψ I
sv,N given in (6.70). If we keep only g0,0 and g1 terms in (6.70) and expand

the exponent in powers of as = as(µ2
R), we can can predict leading ai

s ln2i(N) terms for all i > 1.

This happens because of the all order structure of ΦI
sv in z-space. For example if we know ΦI

sv

to order as, we can predict rest of the other terms of the form ai
sD2i−1(z) in ΦI

sv for all i > 1. If
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we further include g0,1 and g2 terms, then we can predict next to leading ai
s ln2i−1(N) terms for all

i > 2. Again this is due to the fact that in z-space, knowing ΦI
sv to second order one can predict

ai
sD2i−2(z) terms for all i > 3. In general, resummed result with terms gI

0,0, · · ·gI
0,n−1 and gI

1, · · ·, gI
n

can predict ai
s ln2i−n+1(N) or ai

sD2i−n(z) terms for i > n.

The inclusion of sub leading terms through exp
�
Ψ I

nsv,N

�
gives additional (1/N) ln j(N) terms in

N-space or ln j(1 − z) terms in z-space. In perturbative QCD, CI
1 = 0, where I = q, g and we use

this in the rest of our analysis. Like the Ψ I
sv,N exponent, Ψ I

nsv,N also organises the perturbation

theory by keeping 2as(µ2
R)β0 ln(N) terms as order one at every order in as. However these terms

are suppressed by 1/N factor at every order in as.

We find that if we keep {gI
0,0, g

I
1} in Ψ I

sv,N and {ḡI
1, h

I
0} in Ψ I

nsv,N and drop the rest, one can predict

(ai
s/N) ln2i−1(N) terms for CFs for all i > 1. We call this tower of logarithms by NSV-Leading

Logarithm (NSV-LL). Similarly, knowing, along with the previous ones, {gI
0,1,gI

2} in Ψ I
sv,N and

{ḡI
2, h

I
1} inΨ I

nsv,N, one can predict (ai
s/N) ln2i−2(N) for CFs for all i > 2. This belongs to NSV-Next-

to-Leading Logarithm (NSV-NLL). In general, resummed result with ḡI
1, · · · , ḡI

n+1 and hI
0, · · ·, hI

n

in Ψ I
nsv,N along with gI

0,0, · · ·, gI
0,n and gI

1, · · ·, gI
n+1 in Ψ I

sv,N can predict (ai
s/N) ln2i−(n+1)(N) for all

i > n in Mellin space N and it is NSV-NnLL. We summarise our findings in the Table [6.3] below.

GIVEN PREDICTIONS

Logarithmic
Accuracy

Resummed
Exponents

Δ(2)
I,N Δ(3)

I,N Δ(i)
I,N

NSV-LL gI
0,0, g

I
1, ḡ

I
1, h

I
0 L3

N L5
N L2i−1

N

NSV-NLL gI
0,1, g

I
2, ḡ

I
2, h

I
1 L4

N L2i−2
N

NSV-N2LL gI
0,2, g

I
3, ḡ

I
3, h

I
2 L2i−3

N

NSV-NnLL gI
0,n, g

I
n+1, ḡ

I
n+1, h

I
n L2i−(n+1)

N

Table 6.3: The all order predictions for 1/N coefficients of ΔI
N for a given set of resummation

coefficients
�
gI

0,i, g
I
i (ω), ḡI

i (ω), hI
i (ω)

�
at a given order. Here Li

N =
1
N lni(N)

We find that unlike SV resummed terms, which result from only D0(z) and as(q2(1 − z)2), the

resummation of NSV terms is controlled in addition by ln(1− z) at each order in as as can be seen
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from (6.64). This logarithmic dependence in ΦI
nsv at each order along with resummed as(q2(1 −

z)2), allows one to reorganize order one terms differently from SV case. Hence, the resulting NSV

resumed result has different logarithmic structure in terms of order one ω compared to that of SV.

Few remarks on the resummed result are in order in the light of previous section. Note that we

considered a particular solution ΦI
nsv that corresponds to the case α = 2 and summed up order

one terms ω in Mellin N-space using the resummed solution to RGE of as. While the SV part is

insensitive to α, the NSV terms, namely the resummation exponents hI(ω) depend on α (α = 2)

through ω resulting from as(q2/Nα) and the coefficients ϕ̄I,(k)
α,i . We had already seen how ϕ̄I,(k)

α,i

transforms with respect to α. The resummed result in the N-space for arbitrary α will be function

of as(q2/Nα). This will lead to resummation of order one ωα = αβ0as(µ2
R) ln N to all orders in as.

Hence, the summation of order one ωα terms with α dependent coefficients ϕI,(k)
α,i leads variety of

resummed predictions each depending on the choice of α. However, the fixed order predictions

for the CFs ΔI will be unaffected, thanks to the invariance in NSV solution. This invariance has

allowed us to choose α = 2 to resum order one ω terms analogous to SV counterpart.

There have been several attempts [7, 203, 206–208] in the past to understand the structure of NSV

logarithms of inclusive cross sections and its all order structure and in this context, we compare

our prediction at LL level for CF of DY, Δq,LL
N against that of [206]. Note that the [206] contains

NSV terms only to LL accuracy. In [206] , within the framework of soft-collinear effective the-

ory (SCET), the authors have obtained leading logarithmic terms at NSV for the quark-antiquark

production channel of the DY process to all orders in as. This was achieved by extending the fac-

torisation properties of the cross section to NSV level and using renormalisation group equations

of NSV operators and soft functions. Using our N-space result, in the LL approximation, that is

for DY

ΔI,LL
N = gI

0,0 exp
�

ln N gI
1(ω) +

1
N

�
ḡI

1(ω) + hI
0(ω,N)

�������
LL

(6.79)

we obtain,

ΔI,LL
N = exp

�
8CFas

�
ln2 N +

ln N
N

��
(6.80)
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where we have expanded the exponents in powers of as and kept only terms of O(1/N). The above

N-space result can be Mellin transformed to z-space and it reads as

ΔI,LL
N = ΔI,LL

N,sv − 16CFas exp
�
8CFas ln2(1 − z)

�
ln(1 − z) (6.81)

The above result agrees exactly with Eq.(4.2) of [206] for µ = Q. Our result given in (6.69) con-

tains terms that can in principle resum NnLL, n ≥ 0 provided the universal anomalous dimensions

and process dependent coefficients are available to desired accuracy in as. Hence given three loop

results, which are available for several observables, we can perform N2LL resummation taking

into account NSV logarithms.

The numerical effects of the SV+NSV logartihms have been studied in [?] for the invariant mass

distribution of a pair of leptons in DY process at the LHC. The numerical significance of these

contributions for fixed order calculations in QCD till N3LO is shown in [241] for Drell-Yan pro-

cess. We find the similar trend for the SV+NSV resummed results as well, wherein a significant

enhancement could be observed when the resummed NSV corrections are taken into account. This

is illustrated in Table 6.4 where we quote the SV and SV+NSV resummed results along with the

fixed order ones for the central scales Q = µR = µF = 1000 and 2000 GeV.

Q = µR = µF NNLO NNLO +NNLL NNLO+NNLL

1000 3.2876+0.20%
−0.31% 3.2993+0.36%

−0.29% 3.3191+1,13%
−0.86%

2000 0.0684+0.37%
−0.62% 0.0687+0.32%

−0.27% 0.0692+0.89%
−0.78%

Table 6.4: Values of SV and SV+NSV resummed cross section in 10−5 pb/GeV at second
logarithmic accuracy in comparison to the fixed order results at different central scales .

Here NNLO+NNLL denotes the SV resummed cross section, while NNLO + NNLL refers to

the SV+NSV resummed results. Also, the uncertainity arising from renormalization, µR, and

factorization, µF , scales are depicted in terms of percentage errors, which are calculated using

7-point scale variation approach. From these values, it can be observed that the uncertainity band

starts widening when we include the NSV corrections. A detailed investigation on this leads to

the fact that these large variations are mostly arising due to the µF uncertainity. Note that we
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have not included resummed contributions from other channels such as qg which are numerically

comparable to the diagonal channel. The inclusion of them can reduce the µF dependence because

different partonic channels mix under µF variations when they are convoluted with the appropreate

PDFs. However, for the case of renormalization scale variations, the partonic channels do not mix,

leading to less sensitivity of our predictions to this scale. This is evident from the Table 6.5 where

we depict the µR variations of SV+NSV resummed results focusing only the contribution coming

from qq̄-channel.

Q = µR = µF NNLOqq̄ NNLOqq̄ + NNLL NNLOqq̄ + NNLL

1000 3.5260+0.49%
−0.58% 3.5376+0.25%

−0.39% 3.5576+0.006%
−0.20%

2000 0.0717+0.54%
−0.62% 0.0721+0.19%

−0.33% 0.0725+0.0%
−0.15%

Table 6.5: Comparison of SV and SV+NSV resummed cross section in 10−5 pb/GeV for
qq̄-channel at different central scales.

6.6 Physical Evolution Kernel

In the past, in [246], the scheme invariant approach through physical evolution equation was ex-

plored to understand the structure of NSV terms for the coefficient functions of DIS cross section.

The physical evolution kernel that controls the evolution of the physical obervables with respect

to external scale q2 is invariant under scheme transformations with respect to renormalisation and

factorisation. This property can be exploited to understand certain universal structure of pertur-

bative predictions. By suitably modifying physical evolution kernel (PEK) [246] with the help of

scales in the strong coupling constant and using the renormalisation group invariance, predictions

at second and third orders for the CFs of DIS structure functions were made, given the known

lower order results for CFs. Even though, the predictions did not agree for some of the color fac-

tors, it was found that they were very close to the known results. Using the second order results

for DIS, semi-inclusive e+e− annihilation and DY, a striking observation was made by Moch and

Vogt in [8] (and [52,205]) on the PEK namely the enhancement of a single-logarithms at large z to

198



all order in 1 − z. It was found that if one conjuctures that it will hold true at every order in as, the

structure of corresponding leading ln(1 − z) terms in the kernel can be constrained. This allowed

them to predict certain next-to-SV logarithms at higher orders in as which are in agreement with

the known results up to third order.

Motivated by this approach, we use our formulation that describes next-to-SV logarithms both in z

and N-spaces to study the structure of physical evolution equation and present our findings on the

structure of leading logarithms in the PEK. For convenience we work in Mellin space. The Mellin

moment of hadronic cross section σ(q2, τ) is given by

σN(q2) =
� 1

0
dττN−1σ(q2, τ) (6.82)

The hadronic observable σ(q2, τ) is renormalisation scheme (RS) independent namely it does not

depend on the scheme in which CFs Δab and the structure functions fc are defined. The fact that fc

is independent of q2, the first derivative of σ with respect to q2 will not depend on fc. Restricting

ourselves to SV and NSV terms, we can define physical evolution kernel K I by

K I(as(µ2
R),N) = q2 d

dq2 ln
�
σN(q2)
σB(q2)

� ������
sv+nsv

,

= q2 d
dq2 lnΔI

N(q2). (6.83)

which is independent of any renormalisation scheme. The kernel K I(as(µ2
R),N) can be computed

order by order in perturbation theory using lnΔI
N .

K I(as(µ2
R),N) =

∞�

i=1

ai
s(µ

2
R)K I

i−1(N) (6.84)

As in [8], the leading (1/N) lni(N) terms at every order defined by K I:

K I
i = K I

i

�����
(1/N) lni(N)

(6.85)

can be obtained. Using (6.67), we find that these terms can be obtained directly from Ψ I
nsv,N alone
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and are given by

K I
0 = AI

1 + 2DI
1 ,

K I
1 = 2AI

1β0 − 2CI
2 + 4β0 DI

1 + 2β0 ϕ̄
I,(1)
1 ,

K I
2 = 4AI

1β
2
0 − 8β0 CI

2 + 8β2
0 DI

1 + 8β2
0 ϕ̄

I,(1)
1 − 4β0 ϕ̄

I,(2)
2 ,

K3 = 8AI
1β

3
0 − 24β2

0 CI
2 + 16β3

0 DI
1 + 24β3

0 ϕ̄
I,(1)
1 − 24β2

0 ϕ̄
I,(2)
2 + 6β0 ϕ̄

I,(3)
3 ,

K I
4 = 16AI

1β
4
0 − 64β3

0 CI
2 + 32β4

0 DI
1 + 64β4

0 ϕ̄
I,(1)
1 − 96β3

0 ϕ̄
I,(2)
2 + 48β2

0 ϕ̄
I,(3)
3 − 8β0 ϕ̄

I,(4)
4 . (6.86)

We find that the structure of K I
i resembles very much like that of [8]. Interestingly, the leading

logarithms at every order depends only on the universal anomalous dimensions AI
1,D

I
1 and CI

2, and

the diagonal coefficients ϕ̄I,(k)
k with k < i, where i is the order of the perturbation. In addition, if

we substitute the known values for these quantities in the (6.86), we obtain

K I
1 = −8β0CR − 32C2

R

K I
2 = −16β2

0CR − 112β0C2
R

K I
3 = −32β3

0CR − 896
3
β2

0C2
R

K I
4 = −64β4

0CR − 2176
3
β3

0C2
R − 8β0ϕ̄

I,(4)
4 (6.87)

where CR = CF for I = q, b and CR = CA for I = g.

The reason for the agreement of our predictions for PEK to third order with those of [8] is simply

because of the K+G equation that ΦI satisfies. In fact, K+G equation is partonic version of the

physical evolution equation and the partonic PEK given by K
I
+ G

I
. The logarithm sturcture of

PEK is controlled by the upper limit i in the summation over the index k in (6.38). In N-space,

the highest power of corresponding ln(N) in the 1/N coefficient of K I is in turn controlled by the

upper limit on the summation in (6.32). Our predictions based on the inherent transcendentality

structure of perturbative results are in complete agreement with the logarithmic structure of CFs

or PEKs obtained from explicit results. Note that the structure of PEK (6.86) expressed in terms

of AI
1,C

I
2, DI

1 and ϕ̄I,(i)
i is straightforward to understand from K+G equations and renormalisation

group invariance. However, as was already noted in [8], the coefficient of the leading logarithms

200



contains peculiar structure containing only βi
0 and βi−1

0 at every order in ai
s. In addition, if the

structure continues to be true at every order, the coefficients ϕ̄I,(i)
i has to be proportional to βi−2

0 for

every i which can be tested when results beyond third order become available.

6.7 Summary

To summarise, in this chapter, we discussed in detail the structure of SV and next-to-SV logarithms

that arises in the inclusive cross section for 2 → 1 processes, focusing on the diagonal partonic

channels. The NSV contributions are as important as the SV ones for any precision studies, as

they give rise to numerically sizeable corrections. Using IR factorisation and UV renormalisa-

tion group invariance, we show that SV+NSV contributions satisfy Sudakov differential equation

whose solution provides an all order perturbative result in strong coupling constant. We show that

like SV contributions, next-to-SV contributions also demonstrate IR structure in terms of certain

infrared anomalous dimensions. However, NSV terms depend, in addition, on certain process

dependent functions. The underlying universal IR structure of NSV terms can be further unrav-

elled when results for variety of inclusive reactions become available. In z-space, we show that

the next-to-SV contributions do exponentiate allowing us to predict the corresponding next-to-SV

logarithms to all orders. We also develop an integral representation for the exponent in the z-space,

which can further use to study these threshold logarithms in Mellin N-space. This in turn give rise

a framework for resumming the NSV logarithms in N-space. Unlike the SV part of the resummed

result, the resummation coefficients for NSV terms are found to be controlled not only by process

independent anomalous dimensions but also by process dependent ϕ̄I,(k)
i .

The master formula that we obtain in z-space demonstrates a perturbative structure which can

predict certain SV and NSV logarithms to all orders in strong coupling constant as, given the

lower order results. From the available results at as and at a2
s for the CFs, our predictions for third

order NSV logarithms are in complete agreement with the known results available for variety of

inclusive reactions, namely DY production and Higgs productions in bottom quark annihilation

and gluon fusion. Using the corresponding CFs that are known to third order, our formalism

allows us to predict three leading NSV logarithms to all orders starting from fourth order, of
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which, we reported here the results to order a7
s . We have studied the logarithmic structure of

physical evolution kernel, in particular the leading logarithms, and found that they are controlled

only by process independent anomalous dimensions β0, AI
1,C

I
2,D

I
1 and diagonal coefficients ϕ̄I,(i)

i

at every order ai
s. We conclude by noting that the structure of NSV logarithms demonstrates a rich

perturbative structure that need to be explored further.
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A QCD Feynman rules

The QCD Feynman rules derived from quantised Lagrangian Eq.(2.1) is given below. The solid,

curly and dotted lines refers to quarks, gluons and ghosts respectively. The ξ denotes the gauge

fixing parameter. Note that, symmetry factor is multiplied appropriately and also quark and ghost

loops are multiplied by a factor of (-1).

• quark propagator

j, β i,α

p2 p1
i (2π)4 δ(4) (p1 + p2) δi j

�
1

/p1 − mf + i�

�

αβ

• gluon propagator

b, ν a, µ

p2 p1
i (2π)4 δ(4) (p1 + p2) δab

1
p2

1

�
−gµν + (1 − ξ) p1µp1ν

p2
1

�

• ghost propagator

b a

p2 p1
i (2π)4 δ(4) (p1 + p2) δab

1
p2

1

• The interacting vertices:
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p1p2

p3

i,αj, β

a, µ

iĝs (2π)4 δ(4) (p1 + p2 + p3) T a
i j (γµ)αβ

p1p2

p3

a, µb, ν

c, ρ

1
3!

ĝs (2π)4 δ(4) (p1 + p2 + p3) f abc

× �gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gρµ(p3 − p1)ν
�

p1p2

p3

bc

a, µ

−gs (2π)4 δ(4) (p1 + p2 + p3) f abc pµ1

p1p2

p3 p4

a, µb, ν

c, ρ d,σ
− 1

4!
ĝ2

s (2π)4 δ(4) (p1 + p2 + p3 + p4)
� �

f acx f bdx − f adx f cbx
�

gµνgρσ

+
�

f abx f cdx − f adx f bcx
�

gµρgνσ

+
�

f acx f dbx − f abx f cdx
�

gµσgνρ
�
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B Anomalous dimensions

Here we present available cusp AI , collinear BI , soft f I and mass γI anomalous dimensions.

Cusp anomalous dimension

The cusp anomalous dimensions are available to four loop. Since they exhibit generalised Casimir

scaling principle, we can write them together with: CR = CA for I = g and CR = C f for I =

q, b.

AI
1 = CR

�
4
�
,

AI
2 = CRCA

�
268

9
− 8ζ2

�
+CRn f

�
−40

9

�
,

AI
3 = CRC2

A


490

3
− 1072ζ2

9
+

88ζ3
3
+

176ζ2
2

5

 +CRCFn f

�
−110

3
+ 32ζ3

�

+CRCAn f

�
−836

27
+

160ζ2
9
− 112ζ3

3

�
+CAn2

f

�
−16

27

�

AI
4 =

dabcd
A dabcd

R

NR

�3520
3
ζ5 +

128
3
ζ3 − 384ζ2

3 − 128ζ2 − 7936
35
ζ3

2

�

+ n f
dabcd

F dabcd
R

NR

�
− 1280

3
ζ5 − 256

3
ζ3 + 256ζ2

�
+CRn3

f

�
− 32

81
+

64
27
ζ3

�

+CFCRn2
f

�2392
81
− 640

9
ζ3 +

64
5
ζ2

2

�
+C2

FCRn f

�572
9
− 320ζ5 +

592
3
ζ3

�

+CACRn2
f

�923
81
+

2240
27
ζ3 − 608

81
ζ2 − 224

15
ζ2

2

�
+CACFCRn f

�
− 34066

81
+ 160ζ5 +

3712
9
ζ3

+
440
3
ζ2 − 128ζ2ζ3 − 352

5
ζ2

2

�
+C2

ACRn f

�
− 24137

81
+

2096
9
ζ5 − 23104

27
ζ3 +

20320
81
ζ2

+
448
3
ζ2ζ3 − 352

15
ζ2

2

�
+C3

ACR

�84278
81

− 3608
9
ζ5 +

20944
27
ζ3 − 16ζ2

3 −
88400

81
ζ2

− 352
3
ζ2ζ3 +

3608
5
ζ2

2 −
20032
105

ζ3
2

�
. (B.1)
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where the quartic casimirs are given by

dabcd
F dabcd

A

NA
=

Nc(N2
c + 6)

48
,

dabcd
F dabcd

F

NA
=

(N4
c − 6N2

c + 18)
96N2

c
, (B.2)

with NA = N2
c − 1 and NF = Nc where Nc = 3 for QCD.

Soft anomalous dimension

The soft anomalous dimensions f I’s are obtained as follows. They also satisfy Casimir scaling.

Hence, below we denote CR = CA for I = g and CR = C f for I = q, b.

f I
1 = 0 ,

f I
2 = CACR

�
−22

3
ζ2 − 28ζ3 +

808
27

�
+CRn f

�
4
3
ζ2 − 112

27

�
,

f I
3 = CA

2CR

�
352

5
ζ2

2 +
176
3
ζ2ζ3 − 12650

81
ζ2 − 1316

3
ζ3 + 192ζ5 +

136781
729

�

+CACRn f

�
−96

5
ζ2

2 +
2828
81
ζ2 +

728
27
ζ3 − 11842

729

�

+CRCFn f

�
32
5
ζ2

2 + 4ζ2 +
304
9
ζ3 − 1711

27

�
+CRn f

2
�
−40

27
ζ2 +

112
27
ζ3 − 2080

729

�
. (B.3)

Collinear anomalous dimension

Similarly, the collinear anomalous dimension (BI)’s are given as follows. They do not satisfy

Casimir scaling. However, they depends only on the incoming partons, hence Bq
i = Bb

i .

Bg
1 = CA

�
11
3

�
− n f

�
2
3

�
,

Bg
2 = C2

A

�
32
3
+ 12ζ3

�
− n f CA

�
8
3

�
− n f CF

�
2
�
,

Bg
3 = CACFn f

�
−241

18

�
+CAn2

f

�
29
18

�
−C2

An f

�
233
18
+

8
3
ζ2 +

4
3
ζ2

2 +
80
3
ζ3

�

+C3
A

�
79
2
− 16ζ2ζ3 +

8
3
ζ2 +

22
3
ζ2

2 +
536
3
ζ3 − 80ζ5

�
+CFn2

f

�
11
9

�
+C2

Fn f
�
1
�
, (B.4)

206



Bq
1 = CF

�
3
�
,

Bq
2 = C2

F

�
3
2
− 12ζ2 + 24ζ3

�
+CACF

�
17
34
+

88
6
ζ2 − 12ζ3

�
+ n f CFTF

�
− 2

3
− 16
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Mass or UV anomalous dimension

The process dependent UV anomalous dimension γ’s are obtained as:

γH
b,1 = 3CF ,

γH
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3
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γH
q,1 = 0 , γH

q,2 = 0 , γH
q,3 = 0 (B.7)

γH
g,1 = β0 , γH

g,2 = 2β1 , γH
g,3 = 3β2 (B.8)

207



C The relevant coefficients for form

factor and Soft-collinear distributions

Here, we present the relevant coefficients required for form factor and soft-collinear distributions,

which are extracted from the available explicit results. In the following, CR = CF for I = q, b and

CR = CA for I = g, where CA ≡ Nc and CF ≡ N2
c−1

2Nc
are the Casimirs of adjoint and fundamental

representations.

Inclusive

Coefficients gI, j
i ’s :

The finite coefficients gI, j
i s coming from the explicit calculation of the form factor are given as

below. For the gluon form factor:
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1 = CA
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For the quark form factor in Drell-Yan:
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Here N4 = (N2
c−4)/Nc and n f v is proportional to the charge weighted sum of the quark flavors [58].
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For the bottom quark form factor in bb̄→ H process:
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The coefficients GI,k
i s:

The SV coefficients GI,k
i that appear in soft-collinear distributions in Eq.(2.77) are found to be:
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Rapidity

The coefficients G̃I,(k)
d,i that appear in soft-collinear operator in Eq.(D.1) of differential rapidity

distributions is given by:
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Threshold exponents DI
ds:

The threshold exponent DI
d that appear in the rapidity resummation formula as given in Eq.(5.41)
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D Soft-collinear distribution for

rapidity distribution

In this section, we present soft-collinear distribution Sd,I , as defined in (5.25), in powers of as(µ2
R)

up to N4LO. Expanding the quantity in powers of as as

Sd,I(z1, z2, q2, µ2
R, µ
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we present the results for µ2
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where
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In the aforementioned equations, we define
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, (D.4)
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where |M(n)
I � is the UV renormalized pure virtual amplitude at n-th order in as as introduced in

(5.12). Also, G̃I,k
d,i are the finite coefficients coming from soft-collinear distribution, whose values

are given in Appendix C.
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E Resummation coefficients

Inclusive

Here we present the relevant resummation coefficients for the threshold resummation in the context

of inclusive corrections. For the N-space resummation formula:
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For standard N̄ = N exp(γE), the general expressions for these resummation coefficients in terms of

anomalous dimensions and process dependent constants (gI, j
i s) and β-functions are given below.
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Similarly, the universal N-dependent resummation coefficients have following structure.
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where Lqr = ln
�

q2

µ2
R

�
, L f r = ln

�
µ2

F
µ2

R

�
.

Differential rapidity

Here we present the relevant resummation coefficients for the threshold resummation in the context

of differential rapidity distributions till N3LL. The resummation formula is given by:

lnΔI
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d,N) (E.10)

with gI
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The general expression for these coefficients in terms of universal anomalous dimensions and the

process dependent matrix elementsMI, f in are given below.
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In the above equations, G̃I,(k)
d,i are the finite coefficients coming from soft distribution, whose values

are given in Appendix C. AlsoM(m,n)
I, f in is defined in Eq.(D.4).

Similarly, the universal N-dependent resummation coefficients have following structure. These

coefficients are identical for any number of colorless productions. Rescaling them by appropriate
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where Lqr = ln
�

q2

µ2
R

�
and L f r = ln

�
µ2

F
µ2

R

�
.

1gq
d,4 is provided in the ancillary files supplemented with the arXiv submission [177].
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F Deriving resummation formula for

SV and NSV logarithms

In this section, we evaluate the Mellin moment of ΨI,D in the following way. At first, following

Eq. (6.68) we decompose ΨI,N into Σ I
sv,N and Σ I

nsv,N. So, we begin with
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We follow the method described in [6] to perform Mellin moment. In the large N, keeping 1
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where ΓA(N d
dN ) is given in Appendix[G]. We expand ΓA in powers of Nd/dN and apply on the

integral. We then make appropriate change of variables and interchange of integrals to obtain
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Here β(as(λ2)) is defined as, β(as(λ2)) = −
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where l = 1 − β0as(µ2
R) ln(µ2

R/λ
2) and performing the integrals over λ2 we obtain the result. The

entire result is decomposed into two parts. The one proportional to 1
N , are expressed in terms of

ḡI
i (ω) given in Eq. (6.74). And the remaning part is embedded in Eq. (6.70).
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Following [6], in the large N and keeping 1
N corrections, we replace
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where ΓB(N d
dN ) is given in Appendix[G] and we replace Nd/dN by
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to deal with N appearing in the argument of as(q2/N2) and also the explicit ones present in ϕI
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After a little algebra, we obtain
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where

ξ̃I(as,N) =
�
DI(as) −CI(as) ln(N)

�
,

ϕI
f (as(λ2),N) =

∞�

i=1

i�

k=0

ai
s(λ

2)ϕ̄I,(k)
i (− ln(N))k , γ̃B =

∞�

i=4

γB
i

�
N

d
dN

�i−3

. (F.12)

Using Eq.(F.5), we perform λ2 integration to obtain the result in terms of hI
i j(ω) given in Eq.

(6.74).
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G Expansion coefficients ΓA(x) and

ΓB(x)

In the section, we present the expansion coefficients of ΓA(x) and ΓB(x) used in the Eqs.(F.2,F.7)

of the Appendix[F] . As in [6], the operators ΓA(x) and ΓB(x) are expanded in powers of x as

ΓA
�
x
�
=
�

k=0

−γA
k xk, (G.1)

where coefficients γA
k are given by [6]

γA
k =
Γk(N)

k!
(−1)k−1 , (G.2)

See Eq.(25) of [6] for the definition of Γk(N). We find,
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0 = 1 ,
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�

229



+
1

18
ζ2

3 +
1
5
γEζ5 − 1

240N

�
5γ4

E + γ
5
E + 10γ3

Eζ2 + 27ζ2
2 + 20ζ2ζ3 + 10γ2

E

�
3ζ2 + 2ζ3

�

+ γE
�
27ζ2

2 + 40ζ3
�
+ 24ζ5

�
,

γA
7 =

1
5040

γ7
E +

1
240

�
γ5

Eζ2

�
+

3
80

�
γ3

Eζ
2
2

�
+

61
560

�
γEζ

3
2

�
+

1
72

�
γ4

Eζ3

�

+
1

12

�
γ2

Eζ2ζ3

�
+

3
40

�
ζ2

2ζ3

�
+

1
18

�
γEζ

2
3

�
+

1
10

�
γ2

Eζ5

�
+

1
10

�
ζ2ζ5

�
+

1
7
ζ7

− 1
10080N

�
42γ5

E + 7γ6
E + 105γ4

Eζ2 + 549ζ3
2 + 840ζ2ζ3 + 140γ3

E

�
3ζ2 + 2ζ3

�

+ 21γ2
E

�
27ζ2

2 + 40ζ3
�
+ 56

�
5ζ2

3 + 18ζ5
�
+ 42γE

�
27ζ2

2 + 20ζ2ζ3 + 24ζ5
��
, (G.3)

and similarly ΓB
�
x
�

is given by [6]

ΓB
�
x
�
=
�

k=1

γB
k xk, (G.4)

where γB
k+1 are given by [6]
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k+1 =
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(−1)k , (G.5)

explicitly we find,
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