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Summary

The content of this thesis is based on the papers [11] and [13]. It mainly deals

with the mathematical objects known as planar algebras and their connection to

quantum information theory. We mainly focus on the construction of subfactors

from some objects that arise in quantum information theory. Our objects of interest

include Hadamard matrices, Latin squares, quantum Latin squares, unitary error

bases and biunitary matrices which provide the mathematical foundation for the

quantum computational phenomena. We construct appropriate subfactor planar

algebras from these objects and in fact, the construction is described in a much

more general situation.

This thesis is divided into three parts. In the �rst part, we de�ne a generalized

notion of a biunitary element in a planar algebra and we will identify our objects

of interest in quantum information theory as some particular biunitary elements in

the well known spin planar algebra.

In the second part we describe the construction of subfactor planar algebras from

these objects. More generally, given a biunitary element u in a C�-planar algebra

P , to this data we will associate another C�- planar algebra Q. For some partic-

ular biunitary elements, this Q will be a C�- planar subalgebra of P . Surprisingly

this construction yields plenty of subfactor planar subalgebras from the spin planar

algebra even though the spin planar algebra is not a subfactor planar algebra.

In the �nal part, we examine the subfactor planar algebras associated to Latin

21



squares. We will prove that the subfactor planar algebra associated to a Latin square

is the subgroup-group planar algebra associated to the subfactor RG � RH , see [4],

where the pair H � G is explicitly calculated from the Latin square.
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Chapter 1

Introduction

1.1 History & Motivation

A II1- subfactor N � M of a type II1 factorM is a subalgebra N � M which is itself

a type II1 factor and contains the identity element of M . The theory of subfactors

mainly originated in the seminal work of Vaughan Jones in [6]. The central object

of interest is the standard invariant of a given subfactor. This invariant has many

equivalent descriptions, including Ocneanu’s paragroups, bimodule endomorphisms

and 2 � C�-tensor categories. Popa’s axiomatization of the standard invariant of a

�nite index II1 subfactor in terms of standard �-lattices, [21], was a major advance in

the �eld. In [7] Jones introduced subfactor planar algebras, another axiomatization

of the standard invariant of the subfactor which has a diagrammatic formulation

and this planar algebra machinery has been a powerful tool in proving results on

the combinatorial structure of the standard invariant. The fundamental theorem of

Jones in [7] states that associated to any extremal subfactor with index [M : N ] =

�2 < �, there exists a unique subfactor planar algebra P = PN�M of modulus �

and conversely any subfactor planar algebra of modulus � arises from an extremal

subfactor of index �2.
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The notion of a biunitary element was introduced by Ocneanu([20]) in 1989 as

a central tool in the study and classi�cation of subfactors. Later Jones introduced

these concepts via planar algebras, see [7]. The main motivation for this work comes

from the beautiful results of Reutter and Vicary in [22] in which planar algebraic

constructions are used to treat a variety of objects in quantum information theory.

While pictorial and planar algebraic techniques are used throughout that paper, no

planar algebra actually makes an appearance, leading to the question as to where

these objects actually live. We de�ne an equivalent formulation of the notion of

a biunitary element in a planar algebra and some objects in quantum information

theory will correspond to certain biunitary elements. Our objects of interest in quan-

tum information theory are Hadamard matrices, quantum Latin squares, biunitary

matrices and unitary error bases. They provide the mathematical foundation for

an extremely rich variety of quantum computational phenomena, amongst them the

study of mutually unbiased bases, quantum key distribution,quantum teleportation,

dense coding and quantum error correction, see [3],[10]. This thesis mainly describes

the uni�cation of these quantum structures into a single notion of biunitary elements

in the well known spin planar algebra, see [7], and the construction of subfactors

out of these objects. The construction of subfactors from biunitary matrices is well

known [5] [23]. Our results naturally suggest that there might be subfactors associ-

ated to our biunitary elements and it is indeed shown by constructing appropriate

subfactor planar algebras.

1.2 About the thesis

In this section we will describe the arrangement of this thesis. The content of

this thesis is divided into four chapters. Chapter 2 is devoted to a discussion of

preliminary notions of planar algebras and other important terminologies which may

occur later in this thesis. The main content of this thesis is contained in Chapters
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3 and 4. A more detailed description of the chapters is as follows:

Chapter 2: The goal of this chapter is to provide the basic de�nitions, examples

and certain properties and terminologies of subfactor planar algebras which we shall

use later in this thesis. A brief description of the presentation of the spin planar

algebra is also given in this chapter.

Chapter 3: We will divide the contents of chapter 3 into three parts. In the

�rst part we will generalize the notion of biunitary elements and will show that the

objects arising in quantum information theory such as Hadamard matrices, quantum

Latin squares and unitary error bases correspond to certain biunitary elements in the

spin planar algebra. In the second part, we describe the construction of subfactors

from biunitary elements in a planar algebras by constructing appropriate subfactor

planar algebras. In the �nal part we will �nd the planar algebra associated to the

Latin squares arising from �nite group tables and will prove that this is nothing but

the well known group planar algebra.

Chapter 4: This concluding chapter is devoted to studying the subfactor associ-

ated to Latin squares. Our results show that the subfactor planar algebra associated

to a Latin square is the subgroup-group planar algebra of the subfactorRG � RH , see

[4], where the subgroup-group pair is explicitly constructed from the Latin square.
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Chapter 2

Preliminaries

This chapter is a survey of some facts about planar algebras which we shall be

using in the sequel. First we give the de�nition of planar tangles and then present

a brief description of planar algebras and discuss some properties like sphericality,

connectedness and irreducibility. Next we will de�ne the notion of universal planar

algebras and presentations by generators and relations. Finally we will brie�y recall

the presentation of the spin planar algebra [12].

The notion of planar algebras has been evolving since its de�nition in [7]. To �x

the notations and de�nitions for the version of planar algebras that we use here, we

refer to [1] or [2]. The equivalence of this new convention with the older version is

shown in [2]. Other notions such as universal planar algebras are treated carefully

in [14] and these cover all of the notions that are used in this thesis.

2.1 Planar tangles

In this section we will brie�y describe notion of planar tangles, operations on tangles

and some important examples.
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First de�ne the set Col = {0, 1, 2, . . .}×{±1}. We refer the pair (k, ") of elements

of Col as colours where " is either + or � and it stands for +1 or �1.

De�nition 2.1.1 (Planar tangle). A planar tangle is a subset of the plane R2

de�ned by the following data.

1. It consists of one external disc D0 and a collection of �nitely many non inter-

secting internal discs Di, i = 1, · · · , k ( k can be zero also)

2. Each disc Di(external as well as internal) has an even number (again possibly

0) of marked points on its boundary circles which we refer to as distinguished

points.

3. It has a collection of non intersecting strings(again possibly empty) such that

each string is either simple closed curve or it has endpoints the distinguished

points on the boundary circles �i of the internal as well as external discs. Also

each marked point on the discs must be the end point one of the open string

and these strings intersect the marked points only transversely.

4. For each disc, one of its boundary arcs (connected components of the comple-

ment of the marked points on the boundary circle) is chosen as distinguished

one and a � mark is placed near it.

5. Finally, there is a chequerboard shading of the regions (connected components

of the complement of the curves) such that across any curve, the shading re-

verses.

We say a disc with 2n(n can be zero) marked points on its boundary has colour

(n,+) or (n,�) accordingly as its distinguished �- arc is adjacent to a white or

black region. We de�ne the colour of a tangle to be the colour of its external disc.

We will usually denote a tangle T of colour (k0, "0) with b internal discs (b may be

zero) such that ith internal disc has colour (ki, "i) by T
(k0,"0)
(k1,"1),...,(kb,"b)

. The tangles are
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de�ned only upto a planar isotopy preserving all the data of the tangle given in the

de�nition. Also we write Di(T ) to denote the ith internal disc of T . A strand in

a tangle with a non-negative integer, say !, written adjacent to it will indicate a

parallel cable of ! strands together, instead of the one and is called as the !-cable of

that strand. We will dispense with shading �gures in most cases since the shading

is uniquely determined the sub- and superscripts of the tangle. Also, in most of the

�gures of tangles, discs are drawn as boxes.

2.1.2 Some examples of tangles

In this section we will give examples of several important tangles. See Figure 2.1

for some general class of basic tangles. The next example illustrates one important

class of planar tangles namely rotation tangles.

Example 2.1.3 (Rotation tangles). For each k � N, de�ne the rotation tangle

R(k, ") = R(k, ")
(k,�")
(k,") and its !-fold iteration R(k, ", !) given as in Figure 2.2.

*

* *

*

k � 1

k � 1

1

1

k � !

k � !!

!

R(k, ") = R(k, ")
(k,�")
(k,") R(k, ", !) = R(k, ", !)

(k,(�1)!")
(k,")

Figure 2.2: Rotation tangles

In Figure 2.2 and in the sequel we adopt two conventions: (i) (�)! denotes ±

according to the parity of !, and (ii) In view of the di�culty of shading diagrams

which depend on the parity of !, we will dispense with shading �gures.
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*
*

*

*

*

*

*

*

*
*

*

*

*

*

I
(n+1,")
(n,") : Inclusion

n

n

n

n

n

n

n

n

n

n

n

M
(n,")
(n,"),(n,"): MultiplicationTR

(0,")
(n,") : Trace

U (n,") : Unit

1(0,�)

I
(n,")
(n,") : Identity 1(0,+)

ER
(n,")
(n+1,"): Right conditional expectation

EL
(0,�)
(1,+): Left conditional expectation

Figure 2.1: Some important tangles

2.1.4 Operations on tangles

Here we will describe two basic operations on tangles which produces new tangles

from the old ones.

1. Renumbering: This operation produces new tangle just by renumbering the

internal discs of the original one. More precisely we can describe it as follows.

Let T = T
(k0,"0)
(k1,"1),...,(kb,"b)

be a tangle. Let � be a permutation in Sb which is the

collection of all permutations on the set {1, 2, . . . , b}. Then �(T ) is de�ned to

be the tangle that is same as T except the numbering of internal discs of �(T )

is permutated by �. That is the ith internal disc of T is the �(i)th internal disc

of �(T ), i.e., Di(�(T )) = D��1(i)(T ).
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2. Substitution: Consider the tangles T = T
(k0,"0)
(k1,"1),...,(kb,"b)

and S = S
(k̃0, ˜"0)

(k̃1,"̃1),...,(k̃b̃,"̃b̃)

such that the colour of the ith internal disc of T is same as the colour of the

external disc of S i.e., (k̃0, "̃0) = (ki, "i). Then we can form the composite of

T and S denoted by T �i S by substituting the tangle S into the ith internal

disc of T in such a way that the �-arc of the external disc of S agrees with the

�-arc of the ith internal disc of T and then deleting the boundary circle of S.

Thus the composite tangle T �i S is a tangle with colour (k0, "0) such that it

has b+ b̃�1 internal discs and the numbering of the internal discs is as follows.

If b̃ > 0, for each 1 � j � b+ b̃� 1, the jth internal disc of T �i S is the

�
�����
�����

j � th disc of T, if 1 � j � i� 1

j � i+ 1� th disc of S, if i � j � i� 1 + b̃

j � b̃+ 1� th disc of T, if i� 1 + b̃ < j � b+ b̃� 1.

If b̃ = 0, then T �i S has b � 1 internal discs and the jth internal disc of

T �i S is the

�
��

��

j � th disc of T if 1 � j � i� 1

j + 1� th disc of T if i � j � b� 1

2.2 Planar algebras

In this section we will �rst give the de�nition of planar algebras and will discuss

some of its important properties and terminologies which may occur in the later

part of this thesis.

A planar algebra is a collection {P(k,") : (k, ") � Col} of vector spaces over a

�eld K(we usually assume it to be C) which has an action by tangle. More precisely

given any tangle T = T
(k0,"0)
(k1,"1),(k2,"2),··· ,(kb,"b)

, there is an associated linear map ZT also
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called as the partition function from:

�
��

��

P(k1,"1) � P(k2,"2) � · · ·� P(kb,"b) �� P(k0,"0) if b > 0,

K �� P(k0,"0) if b = 0.

such that the following three axioms are satis�ed.

1. Compatibility with composition of tangles: Let T = T
(k0,"0)
(k1,"1),(k2,"2),··· ,(kb,"b)

and

S = S
(k̃0,"̃0)

(k̃1,"̃1),(k̃2,"̃2),··· ,(k̃b̃,"̃b̃)
be two planar tangles such that colour of the i-th

internal disc of T is same as the colour of the external disc of S i.e., (k̃0, "̃0) =

(ki, "i). Consider the composite T �i S. Then the compatibility axiom states

that the following diagram should commute.

When b̃ > 0 :

(�i�1
j=1P(kj ,"j))� (�b̃

j=1P(k̃j ,"̃j)
)� (�b

j=i+1P(kj ,"j))

(�i�1
j=1IdP(kj,"j )

)�ZS�(�b
j=i+1IdP(kj,"j )

)

!!

ZT�iS

""!!
!
!
!
!
!
!
!!

!
!
!
!
!
!
!!

!
!
!
!

(�b
j=1P(kj ,"j))

ZT
## P(k0,"0)

Figure 2.3: Substitution axiom when b̃ > 0

When b̃ = 0 :

(�i�1
j=1P(kj ,"j))� C� (�b

j=i+1P(kj ,"j))
�=

##

(�i�1
j=1IdP(kj,"j )

)�ZS�(�b
j=i+1IdP(kj ,"j)

)

!!

�b
j=1,
j &=i

P(kj ,"j)

ZT�iS

!!

(�b
j=1P(kj ,"j))

ZT
## P(k0,"0)

Figure 2.4: Substitution axiom when b̃ = 0

2. Compatibility with renumbering of the internal discs: Let T = T
(k0,"0)
(k1,"1),(k2,"2),··· ,(kb,"b)

be a tangle with b > 0 and � be a permutation on the set {1, 2, · · · , b}. Con-

sider the tangle �(T ). The renumbering axioms says that the following diagram
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should commute.

P(k1,"1) � P(k2,"2) � · · ·� P(kb,"b)
U�

##

ZT

!!

P(k��1(1),"��1(1))
� · · ·� P(k��1(b),"��1(b))

Z�(T )
$$""""

""
""
""
""
""
""
""
""
""
""
""

P(k0,"0)

Figure 2.5: Renumbering compatibility

where U� : �b
j=1P(kj ,"j) �� �b

j=1P(k��1(j),"��1(j))
is the linear isomorphism de-

�ned by U�(�b
j=1xj) = �b

j=1x��1(j) for �b
j=1xj � �b

j=1P(kj ,"j).

3. Non-degeneracy axiom: This axiom states that if I
(k,")
(k,") denotes the identity

tangle given in Figure 2.1, then ZP

I
(k,")
(k,")

= IdP(k,")
, for all (k, ") � Col.

Shortly,

De�nition 2.2.1 (Planar algebra). A planar algebra is a family of vector spaces

P = (P(n,±))n�N�{0} indexed by the colours (n, "), called n -box spaces on which the

planar tangle acts as multilinear maps.

Let us now de�ne the notion of morphism between planar algebras.

De�nition 2.2.2. If P,Q are planar algebras, a morphism from P to Q is a collec-

tion {�(k,") : P(k,") �� Q(k,")}(k,")�Col of linear maps between the vector spaces such

that given any tangle T = T
(k0,"0)
(k1,"1),(k2,"2),··· ,(kb,"b)

, the following diagram commutes:

�b
j=1P(kj ,"j)

ZP
T

##

�b
j=1�(kj,"j )

!!

P(k0,"0)

�(k0,"0)

!!

�b
j=1Q(kj ,"j)

Z
Q
T

## Q(k0,"0)

Figure 2.6: Planar algebra morphism
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Further, the morphism � is said to be a planar algebra isomorphism if the maps

�(k,") are all linear isomorphisms. An automorphism of a planar algebra P is a *-

preserving planar isomorphism from P into itself and the set of all automorphisms

of a planar algebra P will be denoted by Aut(P ).

Now the following proposition illustrates the unital algebra structure on each

vector space P(k,") of a planar algebra P . Please refer to Figure 2.1 for the tangles

mentioned in the following proposition.

Proposition 2.2.3. Let P be a planar algebra. Then for every colour (k, ") � Col,

the vector space P(k,") has the natural structure of an associative unital algebra with

multiplication speci�ed by the (k, ")-multiplication tangle M
(k,")
(k,"),(k,") and unit given

by ZU (k,")(1) where U (k,") is the unit tangle. Furthermore, inclusion tangles induce

homomorphisms of unital algebras.

2.2.4 Some properties of planar algebras

Now we will brie�y describe certain important properties of planar algebras.

• Connectedness: A planar algebra P is said to be connected if dimP(0,±) = 1.

If the planar algebra P is connected, then we can canonically identify P(0,±)
�=

C.

• Modulus: A connected planar algebra P is said to have modulus � if there

is a scalar � such that ZP
T (0,±) = �IdC where T (0,+) (resp., T (0,�)) denotes the

(0,+) (resp., (0,�)) tangle having no internal discs and a single closed loop.

• Finite-dimensionality: A planar algebra P is said to be �nite dimensional

if dimP(k,") < �, for all (k, ") � Col.

• Sphericality: A connected planar algebra P is said to be spherical if for any

(0,±) tangle T , ZT depends only on the isotopy class of T on the 2-sphere
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compacti�cation of R2.

We have some remarks regarding the properties de�ned above.

Remark 2.2.5. 1. If a connected planar algebra has nonzero modulus �, then

inclusion tangles I
(n+1,")
(n,") induce injective maps from P(n,") to P(n+1,").

2. Now if P is a connected planar algebra with a positive modulus � > 0, then

� = ��kZTR0
(k,")

gives a normalized trace map from P(k,±) � P(0,")
�= C, where

TR(0,") are the trace tangles given in 2.1.

3. A connected planar algebra is spherical if and only if ZP

EL
0,�
1,+

= ZP

TR
0,+
1,+

(see

�gure 2.1 for de�nitions of EL0,�
1,+ and TR0,+

1,+), where both ZP

EL
0,�
1,+

and ZP

TR
0,+
1,+

are regarded as linear functionals on P(1,+).

De�nition 2.2.6. For any planar tangle T , we de�ne the ‘adjoint of T ’ denoted by

T � to be the planar tangle obtained by applying an orientation reversing di�eomor-

phism (such as re�ection) of R2 to T and all its data.

De�nition 2.2.7 (�- Planar algebra). A �- planar algebra is a planar algebra P

with each P(k,") equipped with a conjugate linear involution map � such that for any

tangle T with b input discs with colours (k1, "1), (k2, "2), . . . (kb, "b) and output disc

of colour (k0, "0),

(ZT (x1 � . . .� xn))
� = ZT �(x�

1 � . . .� x�
n), for xi � P(ki,"i)

De�nition 2.2.8 (C�- planar algebra). A �-planar algebra P is said to be a C�-

planar algebra if there exist positive normalized traces �± : P(0,±) � C such that all

the traces �± �ZTR(0,±) de�ned on P(k,±) are faithful and positive. Thus all the spaces

equipped with the trace innerproduct are Hilbert spaces.

Now let us de�ne the most important class of planar algebras:
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De�nition 2.2.9 (Subfactor planar algebra). Let P be a �nite dimensional,

connected, spherical �-planar algebra with positive modulus � > 0. Then P is said to

be a subfactor planar algebra if the normalized trace map � = ��kZTR0
(k,±)

is positive

and faithful, i.e., �(x�x) � 0 and �(x) = 0 if and only if x = 0.

2.3 Universal planar algebras and presentations

In this section let us brie�y describe the presentation of a planar algebra by gener-

ators and relations.

Let L = .(k,")�ColL(k,") (L(k,") can very well be empty) be a ‘label set’. We

de�ne an L-labelled tangle to be a pair (T, f) such that T = T
(k0,"0)
(k1,"1),(k2,"2),··· ,(kb,"b)

is a planar tangle and f is a function from {D1(T ), D2(T ), · · · , Db(T )} to L such

that f(Di(T )) � L(ki,"i) for all i. Thus an L-labelled tangle is simply a usual planar

tangle each of its internal discs of colour (k, ") consists of an input from L(k,"). Hence

if L(k,") = � for some colour (k, "), then no L-labelled tangle can have an internal

disc of colour (k, ").

The universal planar algebra on L, denoted by P (L), is described as follows.

For each colour (k, "), we have the vector space P (L)(k,") with basis consists of all

L-labelled (k, ") tangles with the action of a planar tangle on a tensor product of

basis vectors is given by the obvious L-labelled tangle obtained by substituting these

basis vectors into the appropriate internal discs to get another basis vector.

Let us now introduce the notion of a planar ideal in a planar algebra.

De�nition 2.3.1. A planar ideal I of a planar algebra P is a collection {I(k,") :

(k, ") � Col} of vector spaces where each I(k,") is a linear subspace of P(k,") such

that given any tangle T = T
(k0,"0)
(k1,"1),(k2,"2),··· ,(kb,"b)

, ZT (�b
j=1xj) � I(k0,"0) whenever xj �

I(kj ,"j) for some j, 1 � j � b.
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Let P be a planar algebra P and let R = {R(k,") : (k, ") � Col} be a subset

of P (i.e., each R(k,") is a subset of P(k,")). Then the planar ideal generated by R,

denoted by I(R), is the smallest planar ideal in P containing R. Or equivalently, if

we set I(k,") to be the span of all ZT (x1 � · · · � xb) where T is a (k, ")-tangle, say

T = T
(k,")
(k1,"1),(k2,"2),··· ,(kb,"b)

, and at least one xi � R, then I = {I(k,") : (k, ") � Col} is

the planar ideal generated by R.

Given a planar ideal I in a planar algebra P , there is a natural planar algebra

structure on the quotient P/I = {(P/I)(k,") := P(k,")/I(k,") : (k, ") � Col} together

with a surjective planar algebra morphism from P to P/I. We now describe the

notion of planar algebra presented with generators and relations.

De�nition 2.3.2 (Presentation of a planar algebra). Given a label set L =

.(k,")�ColL(k,"), consider the universal planar algebra P (L) on L. Let R be a subset

of P (L) and suppose I(R) denotes the planar ideal generated by R. The quotient

planar algebra P (L)/I(R) is said to be the planar algebra presented with generators

L and relations R and is usually denoted by P (L,R).

The following simple lemma allows us to de�ne a �-structure on a planar algebra

with a presentation by de�ning it on the label set. That is,

Lemma 2.3.3. Let P = P (L,R) for some label set L and some set of relations R in

P (L). Suppose that L is equipped with an involution �(by which we mean each L(k,")

is) such that for every relation in R, its adjoint is also in the planar ideal generated

by R. Then P has a natural �- planar algebra structure.

2.4 Spin planar algebra

The spin planar algebra is well known from the very �rst paper of Jones [7] on

planar algebras. Recently, it was shown in [12] that the spin planar algebra has a
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presentation in terms of generators and relations. The purpose of this section is

to brie�y describe this presentation by stating the main results without giving the

proofs.

Let S = {s1, s2, · · · , sn} be a �nite set. We de�ne an abstract planar algebra over

C by generators and relations, carefully study various aspects of its structure and

�nally identify it with the spin planar algebra. Begin with the label set L = L(0,�) =

S equipped with the identity involution �. Consider the quotient P = P (L,R) of

the universal planar algebra P (L) by the set R of relations in Figures 2.7 and 2.8

(where �ij denotes the Kronecker delta).

=
�
n =

1�
n

si

Figure 2.7: The white and black modulus relations

** si

si

si

si sj

%

i

=
1�
n

= �ij

Figure 2.8: The multiplication relation and the black channel relation

Lemma 2.4.1 (Lemma 2 of [12]). The relations in Figure 2.9 and Figure 2.10 hold

in P .

=
�
n=

%

i

si

Figure 2.9: The unit and modulus relations

Next theorem gives various properties of the planar algebra P de�ned above.

This is the main result of [12].
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* *

si
%

i

=

Figure 2.10: Another unit relation

Theorem 2.4.2. (Theorem 1 of [12]). The planar algebra P is a �nite-dimensional

C�-planar algebra with modulus
�
n and such that dim(P(0,+)) = 1 and dim(P(0,�)) =

n. For k > 0, dim(P(k,±)) = nk with bases as in Figures 2.11 and 2.12 for k even

and odd respectively.

*

* si1

si1

si2

si2 sim

sj1

sj1

sj2

sjm

sjm

sp sq

sim

sj2

· · ·

· · ·

· · ·

· · ·

Figure 2.11: Bases B(2m,+) for m � 1 and B(2m+2,�) for m � 0

We will need some notation for the normalized version of the bases for P(k,±) for

k = 1, . . . given in Figures 2.11 and 2.12. We denote (
�
n)m times the elements on

the top and bottom in Figure 2.11 by ei1···imj1···jm
and e[p)i1···imj1···jm

(q] respectively. Similarly,

we denote (
�
n)m times the elements on the top and bottom in Figure 2.12 by

ei1···imj1···jm
(q] and e[p)i1···imj1···jm

. The multiplication relation among these elements is given

in the following lemma and justi�es the notation.
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*

* si1

si1

si2

si2 sim

sj1

sj1

sj2

sq

sp

sj2 sjm

sim

sjm

· · ·

· · ·

· · ·

· · ·

Figure 2.12: Bases B(2m+1,±) for m � 0

Lemma 2.4.3. (Lemma 10 of [12]). The following relations hold in P .

ei1···imj1···jm
.ek1···kml1···lm

= �j1k1 · · · �jmkme
i1···im
l1···lm

e[p)i1···imj1···jm
(q].e[r)k1···kml1···lm

(s] = �pr�j1k1 · · · �jmkm�qse[p)
i1···im
l1···lm

(s]

ei1···imj1···jm
(q].ek1···kml1···lm

(s] = �j1k1 · · · �jmkm�qse
i1···im
l1···lm

(q]

e[p)i1···imj1···jm
.e[r)k1···kml1···lm

= �pr�j1k1 · · · �jmkme[p)
i1···im
l1···lm

.

Action of the rotation tangle R(k, ") given in Figure 2.2 on the basis elements

given in Figures 2.11 and 2.12 is stated in the following lemma:

Lemma 2.4.4. (Lemma 16 of [13]). With notation as above,

ZR(2m,+)(e
i1···im
j1···jm

) =
�
n e[j1)

i1···im�1

j2···jm
(im]

ZR(2m+2,�)(e[p)
i1···im
j1···jm

(q]) =
1�
n

ep i1···imj1···jmq

ZR(2m+1,+)(e
i1···im
j1···jm

(q]) = e[j1)
i1 ··· im
j2···jmq

ZR(2m+1,�)(e[p)
i1···im
j1···jm

) = e
pi1···im�1

j1 ··· jm
(im].
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In the following �nal result, the planar algebra P is identi�ed with the planar

algebra of the bipartite graph � with one even vertex and one odd vertex given in

�gure 2.13 which in turn can be identi�ed with the spin planar algebra, see Example

4.2 in [9].

v1

v2

vn�1

vn

w ...

Figure 2.13: The bipartite graph �

Proposition 2.4.5. (Proposition 13 of [13]). Let � be the bipartite graph in Figure

2.13. With S = {v1, · · · , vn}, the planar algebra P of Theorem 2.4.2 is isomorphic

to P (�) by the map that takes vi � P(0,�) to the loop of length 0 based at vi in

P (�)(0,�).
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Chapter 3

Planar algebras, quantum

information theory and subfactors

This chapter is devoted to studying the relation between subfactor planar algebras

and quantum information theory. We will �rst formulate the notion of a biunitary

element in a planar algebra and establish a correspondence between certain biunitary

elements in the spin planar algebra and some objects in quantum information theory.

In the later section, we will describe the construction of subfactor planar algebras

from biunitary elements and in particular, this naturally associates subfactors - say

via the GJS construction - to these objects of interest.

3.1 Biunitary elements in a planar algebra

In this section we de�ne the notion of biunitary elements in a planar algebra and

some objects of interest in quantum information theory. A more generalized notion

of biunitarity involving annular tangles will be de�ned in Section 3.2. Recall the

rotation tangle de�ned in Figure 2.2.

De�nition 3.1.1. Let P be a �-planar algebra and let u � P(k,"). For 0 < ! < k,
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the element u is said to be a {0, !}-biunitary element if the elements u � P(k,") and

ZR(k,",!)(u) � P(k,"(�)!) are both unitary.

Lemma 3.1.2. (Lemma 4 of [13]). The element u � P(k,") is {0, !}-biunitary if and

only if the relations in Figure 3.1 hold in P(k,").

*

*

*

*

*

*

*

*

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

u

u

u

u

u�

u�

u�

u�

=

=

=

=

Figure 3.1: {0, !}-biunitarity relations

Proof. After choosing the external �-arc appropriately, the relations on top in Fig-

ure 3.1 are equivalent to the unitarity of u while the relations on the bottom are

equivalent to the unitarity of ZR(k,",!)(u).

Remark 3.1.3. Observe that if u � P(k,") is a {0, !}-biunitary element, then so are

ZR(k,",k)(u) � P(k,"(�)k) and ZR(k,",�!)(u
�) � P(k,"(�)!).

In the rest of this section we will de�ne certain objects which arise in quantum

information theory.

De�nition 3.1.4 (Hadamard matrix). An n× n complex matrix H = ((hij)) is

said to be a complex Hadamard matrix if HH� = nI and |hij | = 1 for each i, j.
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Example 3.1.5. Let � � C be a primitive nth-root of unity. The matrix

H =

�
�����������

1 1 · · · 1

1 � · · · �n�1

1 �2 · · · (�2)n�1

...
... · · · ...

1 �n�1 · · · (�n�1)n�1

�
�����������

is a complex Hadamard matrix which is a multiple of the so-called Fourier matrix.

De�nition 3.1.6 (Latin Squares). A Latin square is an n× n array �lled with n

di�erent symbols, each occurring exactly once in each row and in each column.

Example 3.1.7. The multiplication table of a �nite group is a Latin square. The

smallest example which is not (equivalent to one) of this type is of size 5 and is given

by: �
�����������

1 2 3 4 5

2 4 1 5 3

3 5 4 2 1

4 1 5 3 2

5 3 2 1 4

�
�����������

.

De�nition 3.1.8 (Quantum Latin Squares). A quantum Latin square of size

n is an n × n matrix of vectors in Cn such that each row and each column is an

orthonormal basis for Cn.

Example 3.1.9. Any Latin square gives a quantum Latin square in the following

simple-minded way by choosing the symbol set to be {e1, . . . , en}, the standard or-

thonormal basis of Cn. Consider the 5 × 5 Latin square in the Example 3.1.6. It

49



gives the following quantum Latin square:

�
�����������

e1 e2 e3 e4 e5

e2 e4 e1 e5 e3

e3 e5 e4 e2 e1

e4 e1 e5 e3 e2

e5 e3 e2 e1 e4

�
�����������

.

But not every quantum Latin square arises in this way. For more on quantum

Latin squares and non-trivial examples see [19].

De�nition 3.1.10 (Biunitary Matrix). A matrix U = ((uij
kl)) � Mn2(C) (for

i, j, k, l � {1, · · · , n}) is said to be a biunitary matrix if both U and its block trans-

pose, say V = ((vijkl)), de�ned by vijkl = ukj
il , are unitary matrices.

Example 3.1.11. For examples of biunitary matrices of size 9 which are, in addi-

tion, permutation matrices, and their applications in subfactor theory see [16].

De�nition 3.1.12 (Unitary error basis). A unitary error basis for Mn(C) is a

collection of n2 unitary matrices which form an orthonormal basis with respect to the

normalized trace inner product given by 0A|B1 = Tr(B�A)

n
, where Tr is the usual

matrix trace.

Example 3.1.13. The matrices {U iV j : 1 � i, j � n}, where U is the n×n Fourier

matrix and V is the permutation matrix corresponding to the cycle (1 2 · · · n), form

a unitary error basis.
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3.2 Planar algebras and quantum information the-

ory

Recall the spin planar algebra P = P (S) presented in terms of generators and

relations in section 2.4. In this section we identify various biunitary elements in

spin planar algebra with the objects de�ned in section 3.1. The main result of this

section is the following theorem.

Theorem 3.2.1. (Theorem 17 of [13]). There are natural 1-1 correspondences

between the following sets:

1) {0, 1}-biunitary elements in P(2,+) and Hadamard matrices of size n× n,

2) {0, 1}-biunitary elements in P(3,+) and quantum Latin squares of size n× n, and

3) {0, 2}-biunitary elements in P(4,+) and biunitary matrices of size n2 × n2.

Proof. 1) Let u =
%

i,j

aij eij � P(2,+). Then,

uu� = 1 �
%

j

aij apj = �i,p � i, p = 1, . . . , n, (3.1)

and

ZR(2,+)(u)(ZR(2,+)(u))
� = 1 � n aij aij = 1 � i, j = 1, . . . , n. (3.2)

Let H = ((
�
naij)). Then Equation 3.1 is equivalent to HH� = n I and Equation

3.2 is equivalent to |�naij | = 1. Thus the association of u with H is a 1-1 corre-

spondence between {0, 1}-biunitary elements of P(2,+) and Hadamard matrices of

size n× n.

2) Now let u =
%

i,j,k

akij eik(j] � P(3,+). Then,

uu� = 1 �
%

k

akij akpj = �i,p, � j, i, p = 1, . . . , n, (3.3)

51



and

ZR(3,+)(u)(ZR(3,+)(u))
� = 1 �

%

j

akij akpj = �i,p, � k, i, p = 1, . . . , n. (3.4)

Let Q = ((Qi
j)) where Qi

j = (ai1j , a
i
2j , . . . , a

i
nj) � Cn. Then, Equation 3.3 is equiva-

lent to the column vectors of Q forming an orthonormal basis for Cn and Equation

3.4 is equivalent to the row vectors of Q forming an orthonormal basis for Cn. Thus

the association of u with Q is a 1-1 correspondence between {0, 1}-biunitary ele-

ments of P(3,+) and quantum Latin squares of size n× n.

3) Let u =
%

i,j,k,!

aijk!e
ij
!k � P(4,+). Then,

uu� = 1 �
%

k,!

aijk! apqk! = �i,p �j,q, � i, j, p, q = 1, . . . , n (3.5)

and

ZR(4,+,2)(u)(ZR(4,+,2)(u))
� = 1 �

%

j,k

aijk! apjks = �i,p �!,s, � i, p, !, s = 1, . . . , n

(3.6)

Here let U = ((aijk!)). Then, Equation 3.5 is equivalent to U being unitary and

Equation 3.6 is equivalent to the block transpose of U being unitary. Thus the

association of u with U is a 1-1 correspondence between {0, 2}-biunitary elements

of P(4,+) and biunitary matrices of size n2 × n2.

An analogous 1-1 correspondence result for unitary error bases requires a modi-

�ed version of the notion of biunitary element which we will now de�ne. Recall that

a labelled annular tangle in a planar algebra P is a tangle A all of whose internal

boxes except for one have been labelled by elements of the appropriate P(k,")’s. Ac-

tually we would like to consider linear extensions of the de�nition and of the vector
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operations to linear combinations of such tangles, provided of course that all the

annular tangles involved yield maps between the same spaces. We will use the term

modi�ed annular tangle for such linear combinations.

De�nition 3.2.2. Let P be a �- planar algebra and A,B be modi�ed annular tangles

with their unlabelled box of colour (k, "). An element u � P(k,") is said to be an

{A,B}-biunitary element if ZA(u) and ZB(u) are both unitary.

Remark 3.2.3. Note that a {0, !}-biunitary element in P(k,") is nothing but an

{I, R(k, ", !)}-biunitary element, where I denotes the identity tangle of colour (k, "),

see Figure 2.1.

In order to state the analogue of Theorem 3.2.1 for unitary error bases we will

need the modi�ed annular tangle A = A
(4,+)
(4,+), with labelled internal boxes coming

from the spin planar algebra P , de�ned by Figure 3.2.

si

si

sj

sj

n

n%

i,j=1

�

�

Figure 3.2: The annular tangle A

Observe that ZA(e
ij
kl) = eilkj.

Proposition 3.2.4. (Proposition 20 of [13]). There is a natural 1-1 correspondence

between {A,R(4,+)}-biunitary elements in P(4,+) and unitary error bases in Mn(C).

Proof. Let u =
%

i,j,k,!

aijk! eij!k � P(4,+). Then,

ZR(4,+)(u) =
%

i,j,k,!

�
n aijk! e[!)ik(j], and

ZA(u) =
%

i,j,k,!

aijk! eik!j .
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by Lemma 2.4.4 and the observation above. Hence

(ZA(u))
�ZA(u) = 1 �

%

i,k

aijk! aiqks = �!s �jq � !, s, j, q = 1, . . . , n (3.7)

and

ZR(4,+)(u)(ZR(4,+)(u))
� = 1 �

%

k

aijk! apjk! =
1

n
�ip �j, !, i, p = 1, . . . , n (3.8)

Let B(j, !) be the n×n matrix given by B(j, !) = ((
�
naijk!)). Then Equation 3.8

is equivalent to B(j, !) being a unitary matrix for all j, ! and Equation 3.7 is equiv-

alent to the collection {B(j, !)}j,! forming an orthonormal basis for Mn(C). Thus

the association of u with {B(j, !)}j,! is a 1-1 correspondence between {A,R(4,+)}-

biunitary elements of P(4,+) and unitary error bases of Mn(C).

3.3 From biunitary elements to subfactor planar

algebras

In this section we will describe the construction of subfactor planar algebras from

biunitary elements and this, in turn, associates subfactors to the objects mentioned

in Section 3.1.

Throughout this section, P will be a spherical C�-planar algebra with modulus �

and u � P(k,") will be a {0, !}-biunitary. To this data, we will associate a C�-planar

subalgebra Q of the (!, ")th cabling (!,")P of P . The notion of cabling that we use

here is a generalized version of the one de�ned in [2]. A careful de�nition is as

follows.

De�nition 3.3.1. Let (!, ") � N×{±}. De�ne (n, �)(!,") to be (n!, "�!). Next, de�ne

the (!, ")-cable of a tangle T , denoted by T (!,"), as follows. Consider the tangle T

54



ignoring its shading and replace each of its strands (including the closed loops) by

a cable of ! parallel strands without changing the �-arcs. Introduce shading in this

picture such that an (n, �)-box of T becomes an (n, �)(!,")-box of T (!,").

It can be proved that this extends uniquely to a chequerboard shading of T (!,")

making it a tangle and that T 4� T (!,") is an ‘operation on tangles’ in the sense of

[14]. The corresponding operation on planar algebras will be denoted by P 4�(!,")P .

To give an example of cabling, note that the (!, ")-cable of the rotation tangle R(n, �)

of Figure 2.2 is given as in Figure 3.3 below. The shading of the �-arc of the external

box is given by "(��)!.

*

*

(n � 1)!

(n � 1)!!

!

Figure 3.3: The (!, ")-cabling of the rotation tangle R(n, �)

De�nition 3.3.2. For (!, ") � N × {±}, the planar algebra (!,")P has underlying

vector spaces given by (!,")P(n,�) = P(n,�)(!,") with the tangle action given by Z
(!,")P
T =

ZP
T (!,").

Before proceeding to de�ne subspaces Q(n,�) of
(!,")P(n,�), we begin with the in-

evitable notation. For n = 0, 1, . . ., de�ne the elements u(n,�) � P(n!+k�!,"�!) as in

Figure 3.4 - where the label in the last box is u or u� depending on the parity of n.

Proposition 3.3.3. (Proposition 23 of [13]). For (n, �) � Col and x � P(n!,"�!), the

following three conditions are equivalent.

(1) There exists y � P(n!,"�!(�)k�!) such that the equation in Figure 3.5 holds.

(2) There exists y � P(n!,"�!(�)k�!) such that the equations in Figure 3.6 hold.

(3) The equation in Figure 3.7 holds.
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*

* * *

*

* *

u(0,±)

u(n,�) : n > 0

u(n,+) : n > 0

!!

! ! !

!

!

!! !

!!

k � !k � !k � !k � !k � !

k � !

k � ! k � !k � !k � ! k � !

u

u

u�

u�

. . .

. . .

Figure 3.4: The elements u(n,±)

*

*

*
=

*

u(n,�)

u(n,�)

n!

n!

n!

n!

n!

n!

k � !

k � ! k � !

k � !

x

y

Figure 3.5: Relation between x � P(n!,"�!) and y � P(n!,"�!(�)k�!)

*
=

*

*

*

*
*

*

=
*

u(n,�)

u(n,�)u�(n,�)

u�(n,�)

x xy y�k�! �k�!

n!

n!

n!

n!

n!

n!

n!

n!

k � !k � ! k � !k � !

Figure 3.6: Expressions for x and y in terms of each other

The proof of Proposition 3.3.3 that we give here is an adaptation of the one in

[7] with a few more details included. Our proof seems to show that the assumption

of sphericality of P made there (or of a weakening) is is not really required. We

pave the way for the proof by de�ning and proving some properties of a map from

P(n!,"�!) to P(n!+k�!,"�!).

Lemma 3.3.4. (Lemma 24 of [13]). The map � : P(n!,"�!) � P(n!+k�!,"�!) de�ned
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*
=

*
*

*

*

*
u(n,�)

u(n,�)

u�(n,�)

u�(n,�)

��2(k�!)

n!

n!

n!

n!

k � !k � !k � !k � ! x x

Figure 3.7: The double circle relation

as in the left of Figure 3.8 is an isometry with adjoint �� given as in the right of

Figure 3.8. Further, both � and �� are equivariant for the �-operations on P(n!,"�!)

*

*

*

*

*

*

��(k�!)

n!

n!

n!

n!

n!

n!

n!

n!

k � !

k � !

k � !k � !

k � !

k � !

x z

u(n,�)

u(n,�)

u�(n,�)

u�(n,�)

Figure 3.8: �(x) and ��(z) for x � P(n!,"�!) and z � P(n!+k�!,"�!)

and P(n!+k�!,"�!).

Proof. Consider the maps � and �� de�ned by the left and right side pictures in

Figure 3.8 respectively. It is clear that they are equivariant for the �-operations

on P(n!,"�!) and P(n!+k�!,"�!). To show that they are actually adjoints of each other,

it su�ces to verify the equality of Figure 3.9 for arbitrary x � P(n!,"�!) and z �

P(n!+k�!,"�!). This is clear by isotopy. Finally, that ��� = id is a simple pictorial

veri�cation using the equalities of Figure 3.1.
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*

*

*

*

*

*

*

=

n!

n!

n!

n!

n!

n!

n!

n!

k � !

k � !

k � !

k � !

k � !

k � !

x

x

z�

z�

u(n,�)

u(n,�)

u�(n,�)

u�(n,�)

Figure 3.9: Equality to be veri�ed

From Lemma 3.3.4 it follows that E = ��� is a projection onto ran(�) �

P(n!+k�!,"�!) that is equivariant for the �-operations. Pictorially E is given by the

picture on the left in Figure 3.10. We will also the need the picture on the right in

Figure 3.10 which is the projection onto the subspace P(k�!,n!+k�!,"�!) of P(n!+k�!,"�!),

which also is �-equivariant.

Proof of Proposition 3.3.3. (1) � (2) Using the relations in Figure 3.1, it is easy to

see that the equation in Figure 3.5 implies those of Figure 3.6.

(2) � (3) This is clear.

(3) � (1) We need to see that the double circle relation of Figure 3.7 implies the

existence of a y satisfying the equation in Figure 3.5.

Observe that the picture on the left in Figure 3.7 is given by ��F�(x). Thus
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*

*

*

*

*

*
��(k�!)��(k�!)

n!

n!

n!

n!

n!

n!

n!

n!

k � !

k � !

k � !

k � !

k � !

k � !

k � !

k � !

u(n,�)

u(n,�)

u�(n,�)

u�(n,�)

Figure 3.10: The projections E and F

the double circle relation implies that ��F�(x) = x and hence (applying � on

both sides and using the de�nition of E) that EF�(x) = �(x). Since E and F

are projections, norm considerations imply that ||EF�(x)|| � ||F�(x)|| � ||�(x)||.

Therefore equality holds throughout and so F�(x) = �(x). Now de�ne y by the �rst

equality in Figure 3.6. The equation F�(x) = �(x) then implies that the equation

on the left of Figure 3.11 holds and therefore also the equation on the right.

Finally, using the relations of Figure 3.1, this completes the proof.

We now de�ne subspaces Q(n,�) of
(!,")P(n,�) by Q(n,�) = {x � (!,")P(n,�) = P(n!,"�!) : The equivalent c

The main result of this section is the following theorem.

Theorem 3.3.5. (Theorem 26 of [13]). The subspaces Q(n,�) yield a C�-planar

subalgebra Q of (!,")P .

Proof. In order to prove that Q is a C�-planar subalgebra of (!,")P it is enough to

prove that it is a planar subalgebra of (!,")P and that it is closed under �. Closure
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*

*

*

=
*

*

*

*

=
*

*

x

x

y

y
n!

n!

n!

n!

n!

n!

n!

n!

n!

n!

n!

n!

k � !

k � !

k � !

k � !k � !

k � !

k � !

u(n,�)

u(n,�)

u(n,�)

u(n,�)

u�(n,�)

u�(n,�)

Figure 3.11: Expressions for x and y in terms of each other

under � is clear from the double circle condition of Figure 3.7.

To verify that Q is a planar subalgebra of (!,")P , it su�ces to see that it is closed

under the action of any set of ‘generating tangles’. A set of such generating tangles,

albeit for the class of ‘restricted tangles’ - see [2] - was given in Theorem 3.5 of [14].

It follows easily from that result that a set of generating tangles for all tangles is

given by {1(0,±)} � {M (n,�)
(n,�),(n,�), I

(n+1,�)
(n,�) , ER

(n,�)
(n+1,�) : n � 0} � {R(n,��)

(n,�) : n � 1}. Here

ER, M ,I and 1(0,±) refers to to the tangles given in Figure 2.1. We will show, case

by case, that Q is closed under the action of each of these tangles.

Closure under 1(0,±): We need to check that Z
((!,")P )

1(0,±) (1) = 1(0,"(±)!) � Q(0,±). This

follows directly from the double circle relation of Figure 3.7.

Closure under M = M
(n,�)
(n,�),(n,�): We need to check that if x1, x2 � Q(n,�), then

Z
((!,")P )
M (x1�x2) = ZP

M (!,")(x1�x2) � Q(n,�). Observe that M (!,") is the multiplication

tangle of color (n!, "�!). Now suppose that y1, y2 � P(n!,"�!(�)k�!) are such that the

equation in Figure 3.5 holds for x1, y1 and for x2, y2. It is easy to see that then the

same equation also holds for x1x2, y1y2.

Closure under I = I
(n+1,�)
(n,�) : We need to see that if x � Q(n,�), then Z

((!,")P )
I (x) =
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ZP
I(!,")

� Q(n+1,�). Observe that the tangle I(!,") is the !-fold iterated inclusion tangle

from P(n!,"�!) to P((n+1)!,"�!). Suppose that y � P(n!,"�!(�)k�!) is such that the equation

in Figure 3.5 holds for x, y. Again, an easy veri�cation shows that the equation in

Figure 3.5 also holds for ZI(!,")(x), ZĨ(!,")(y), where Ĩ
(!,") is the !-fold iterated inclusion

tangle from P(n!,"�!(�)k�!) to P((n+1)!,"�!(�)k�!)).

Closure under E = E
(n,�)
(n+1,�): We need to see that if x � Q(n+1,�), then Z

((!,")P )
E (x)

= ZP
E(!,")(x) � Q(n,�). Observe that the tangle E(!,") is the !-fold iterated conditional

expectation tangle from P((n+1)!,"�!) to P(n!,"�!). Take y � P((n+1)!,"�!(�)k�!) such that

the equation in Figure 3.5 holds for x, y. We will verify that then, the equation

in Figure 3.5 also holds for ZE(!,")(x), ZẼ(!,")(y), where Ẽ(!,") is the !-fold iterated

conditional expectation tangle from P((n+1)!,"�!(�)k�!) to P(n!,"�!(�)k�!)).

First note that, it is an easy consequence of the relations in Figure 3.1 that the

relations of Figure 3.12 hold for all (n, �). Now, these relations, in turn, imply the

n!

n!

n!

n!

n!

n!

n!

n!

�

�

�

�

!

!

!

!!

!

!!

u(n,�)

u(n,�)

u(n+2,�)

u(n+2,�)
k � !

k � !

k � !

k � !

k � ! k � !

k � !k � ! =

=

Figure 3.12: Consequence of {0, !}-biunitarity relations

equations in Figure 3.13. In this �gure, the �rst and the third equalities follow from

Figure 3.12 while the second equality is a consequence of the proof of closure under

I.

Closure under R = R
(n,��)
(n,�) : We need to see that if x � Q(n,�), then Z

((!,")P )
R (x) =

ZP
R(!,")(x) � Q(n,��). We illustrate how this is done when (n, �) = (3,+). It should
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u(n+2,�)

k � !

k � ! k � !k � !k � !

k � !k � ! k � !

==

=

Figure 3.13: Proof of closure under E

be clear that the proof of the general case is similar. Begin by observing that since

x � Q(3,+) � P(3!,"), it satis�es the double circle relation of Figure 3.14.

�

�

�

�

�

�

�

��

��

��

�

��

u

uu

u

uu

u�

u�

u�u�

u� u�

!

!

!

!

!

!

! !

!!

! !

!!

! !

!!

!!!

!!!

k � !k � !
k � !k � !

xx =

Figure 3.14: Double circle relation for x � Q(3,+)

Now, moving the external � ! -steps counterclockwise and redrawing yields the

equation in Figure 3.15.

A little thought now shows that this is precisely the double circle relation for

ZP
R(!,")(x) � P(3!,"(�)!), establishing that ZP

R(!,")(x) indeed belongs to Q(3,�) as desired.
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Figure 3.15: Rotated double circle relation for x � Q(3,+)

Next we will consider conditions under which Q is a subfactor planar algebra.

Proposition 3.3.6. (Proposition 26 of [13]). Let P be the spin planar algebra on n

generators and Q be the planar subalgebra of (!,")P corresponding to a {0, !}-biunitary

element u � P(k,"). Then, Q is a subfactor planar algebra with modulus (
�
n)!.

Proof. Given Theorem 3.3.5, what remains to be seen is that Q is connected, has

modulus (
�
n)! and is spherical with positive de�nite picture trace. Since P has

modulus
�
n, the cabling (!,")P has modulus (

�
n)! and so does Q. The other asser-

tions need a little work.

Note that Q(0,�) is a subspace of ((!,")P )(0,�) = P(0,"�!) and so if "�! = +, then

Q(0,�) is 1-dimensional since P(0,+) is so. If "�! = �, then, Q(0,�) is the subspace of

all x � P(0,�) such that the double circle relation of Figure 3.7 holds for x. From

Theorem 2.4.2, a basis of P(0,�) is given by all S(i) for i = 1, · · · , n and by the black

and white modulus relations, a double circle around these gives a scalar multiple

of 1(0,�). It follows that x is necessarily a scalar multiple of 1(0,�) so that Q(0,�) is

1-dimensional, in this case as well. Hence Q is connected.
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To see that Q is spherical, observe �rst that on any P(n,�) the composites of

the left and right picture traces with the traces �± on P(0,±) (which specify its C�-

planar algebra structure - see De�nition 2.2.8 ) are equal. This is seen by explicit

computation with the bases of P(n,�) and can be regarded as a version of sphericality

for P . It is clear that this property descends to Q.

Finally observe that the picture trace on Q(n,�) is exactly the composite of �±

with the picture trace on P(n!,"�!) and is consequently positive de�nite.

Remark 3.3.7. An even easier proof than that of Proposition 3.3.6 shows that if P

is a subfactor planar algebra and Q is the planar subalgebra of (!,")P corresponding

to a {0, !}-biunitary element u � P(k,"), then, Q is a subfactor planar algebra with

modulus (
�
n)!.

In case ! = 1, the planar algebra Q is even irreducible.

Proposition 3.3.8. (Proposition 29 of [13]). Let P be the spin planar algebra on

n generators and Q be the planar subalgebra of (1,")P corresponding to a {0, 1}-

biunitary element u � P(k,"). Then, Q is an irreducible subfactor planar algebra.

Proof. Only the irreducibility of Q needs to be seen and we will show using explicit

bases computations that dim(Q(1,+)) = 1. We only consider the " = + case, the proof

in the other case being similar. Thus Q(1,+) � P(1,+). Begin with x =
,

i �ie(i] �

Q(1,+). The double circle relation for x implies that the equation of Figure 3.16

holds.

Now, using the biunitarity relations of Figure 3.1 together with the black and

white modulus relations, the left hand side of Figure 3.16 simpli�es to 1
n

,
i �i1(1,+),

�nishing the proof.

Remark 3.3.9. The proof of Theorem 3.3.5 relies heavily on Proposition 3.3.3,

and in particular, the double circle relation, which uses the assumption that P is a
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�
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k � 1 k � 1

k � 1 xsi

Figure 3.16: Equation satis�ed by x

spherical C�-planar algebra. However, even if P is just a �-planar algebra, without

the positivity conditions or sphericality holding, Q can still be shown to be a �-planar

subalgebra of P . The proof is a little longer using a di�erent larger set of generating

tangles.

3.4 The planar algebra associated to a �nite group

Latin square

The most familiar example of a Latin square is the multiplication table of a �nite

group and any Latin square gives a quantum Latin square as mentioned in Example

3.1.9 . It was shown in Theorem 3.2.1 that quantum Latin squares corresponds to

{0, 1}-biunitary elements in P(3,+), where P is the spin planar algebra. Now, by

Proposition 3.3.8 we have an irreducible subfactor planar subalgebra of the spin

planar algebra. In this section we will show this planar algebra is nothing but the

group planar algebra P (G) , see [17]. A more general construction of subfactor

planar algebras from any Latin square is described in the next chapter.

We begin with a notational convention. The generating set for the spin pla-

nar algebra is the underlying set of the group G and we will use notation such as
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e[g)h1···hm

k1···km
(!] for g, hi, kj, ! � G to denote basis elements of P . With this notation,

the {0, 1}-biunitary element u � P(3,+) corresponding to the multiplication table of

the group G is seen to be given by

u =
%

h,k

ekhk (h] � P(3,+),

according to Theorem 3.2.1(2).

Let Q be the planar subalgebra of P corresponding to the biunitary element u

as in Proposition 3.3.8 . The next proposition identi�es Q with P(G). First let us

recall the presentation of the group planar algebra P (G) interms of generators and

relations, see [15]. That is, P (G) is de�ned to be the planar algebra P (L,R) where

L(k,") =

�
���

���

G, if (k, ") = (2,+)

�, otherwise

and R being given by the set of relations in Figures 3.17 - 3.21 .

=
�
n=

�
n

Figure 3.17: Modulus relations

*

**

1G =
*

* *%

g�G

�
ng =

Figure 3.18: Unit and Integral relation
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*

* *

g =
*

* *

�g,e
�
ng =

Figure 3.19: Counit and Trace relations

*

*

*

*

g g�1=

*

*

*

*

*g

h

gh=

Figure 3.20: Antipode and Multiplication relations

*

* *

g

gg

=

Figure 3.21: Comultiplication relation

Proposition 3.4.1. (Proposition 31 of [13]). The planar algebra Q is isomorphic

to P (G).

Proof. We will prove the proposition in a series of steps - (1) computing the dimen-

sions of the spaces of Q and observing that these are equal to those of the spaces of

P (G), (2) by specifying a map from the universal planar algebra on L = L(2,+) = G

to Q and checking that the relations hold in Q, thereby yielding a planar algebra

map from P (G) to Q and (3) verifying that this map is surjective.

Step 1: We �rst observe that for m � 1, the elements u(2m,+) and u(2m+1,+) are
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given explicitly by:

u(2m,+) =
%

g,h1,··· ,hm

e
g,h�1

1 ,··· ,h�1
m

gh1,gh2,··· ,ghm,g

u(2m+1,+) =
%

g,h1,··· ,hm+1

e
g,h�1

1 ,··· ,h�1
m

gh1,gh2,··· ,ghm+1
(h�1

m+1]

Now consider elements x, y � P(2m,+) given by:

x =
%

k1,··· ,km,!1,··· ,!m

�(k1,··· ,km,!1,··· ,!m)e
k1,··· ,km
!1,··· ,!m

y =
%

k1,··· ,km,!1,··· ,!m

�(k1,··· ,km,!1,··· ,!m)e
k1,··· ,km
!1,··· ,!m

,

for �(k1,··· ,km,!1,··· ,!m), �(k1,··· ,km,!1,··· ,!m) � C. The condition that x, y satisfy the condi-

tion in Figure 3.5 is seen to imply that for all g � G,

�(k1,··· ,km,!1,··· ,!m) = �(gk1,··· ,gkm,g!1,··· ,g!m).

Conversely, if this condition holds, setting �(k1,··· ,km,!1,··· ,!m) = �(k�1
1 ,··· ,k�1

m ,!�1
1 ,··· ,!�1

m ),

the elements x and y are checked satisfy the condition in Figure 3.5.

Thus, a basis of Q(2m,+) is given by the set of all

%

g�G

egk1,··· ,gkmg!1,··· ,g!m

as (k1, · · · , km, !1, · · · , !m) vary over the representatives of the diagonal action of G

on G2m. It follows that the dimension of Q(2m,+) is given by n2m�1 and a similar

proof shows that the dimension of Q(2m+1,+) is given by n2m.

Step 2: Next we de�ne a map from the universal planar algebra on the label set
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L = L(2,+) = G to Q given by sending g � G to

Xg =
%

q�G

eqqg � Q(2,+).

It is a long but routine veri�cation that all relations satis�ed by the g � G in the

planar algebra P (G) also hold for their images Xg in Q thus giving a planar algebra

map from P (G) to Q. We will do the veri�cation of few relations omitting the rest.

The relation in Figure 3.17 holds in the spin planar algebra by the de�nition itself

and so descends to Q.

Let us consider the unit relation in Figure 3.18 . By the de�nition of the map,

LHS goes to Xe =
%

q

eqq and it equals the image of the RHS by the black channel

relation (see Figure 2.8) in the spin planar algebra, thus verifying the unit relation.

The veri�cation of counit relation in Figure 3.19 is just an application of the map

and the unit relation given in Figure 2.9. We omit the remaining veri�cations.

* * * *

****

k1 k2 k3 km�1 km

!1 !2 !3 !m�1 !m

· · ·

· · ·

Figure 3.22: An element of P(2m,+)

Step 3: To verify that P (G) � Q is surjective, it su�ces to see that P (G)(2m,+) �

Q)(2m,+) is surjective for all m > 0. A routine calculation shows that the element

in Figure 3.22 goes to the basis element
,

g�G egk1,··· ,gkmg!1,··· ,g!m
of Q(2m,+), �nishing the

proof.
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Chapter 4

Planar algebras and Latin squares

This chapter is devoted to examining the subfactor planar algebra associated to a

general Latin square. We have already seen in Section 3.4 that when the Latin

square is the multiplication table of a �nite group G, then the associated subfactor

planar algebra is nothing but the group planar algebra P (G). Our main result shows

that the subfactor planar algebra associated to a Latin square is the one associated

to a certain subgroup-group pair which is constructed explicitly from the given Latin

square.

Recall �rst that a Latin square is an n× n array �lled with n di�erent symbols,

usually from a set S = {s1, s2, · · · , sn}, with each occurring exactly once in every

row and in every column, see De�nition 3.1.6. A quantum Latin square of size

n is an n × n matrix of vectors in Cn such that each row and each column is an

orthonormal basis for Cn, see 3.1.8 and any Latin square gives a quantum Latin

square in a natural way, see 3.1.9. Recall also the presentation of the spin planar

algebra P = P (S), S = {s1, . . . , sn} described in Section 2.4.

Remark 4.0.1. Let us choose the symbols for the Latin square from the �nite set S =

{s1, . . . , sn}. Now if the (j, k)th entry of a Latin square L is si, then we write si =

sjsk. This makes L the multiplication table of a (not necessarily associative) binary
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operation on the set S which will be simply denoted by concatenation, appropriately

bracketed.

De�nition 4.0.2. Let L be as above and x, y � S. De�ne,

1. x�1y to be the unique element a � S such that xa = y.

2. xy�1 to be the unique element b � S such that by = x.

Now Theorem 3.2.1(2) implies that there is a natural 1-1 correspondence between

{0, 1}-biunitary elements in P(3,+) and quantum Latin squares of size n × n. Let u

denote the biunitary element associated to L.

De�ne the elements u(n,�) � P(n+2,�) as in Figure 3.4 - where the label in the last

box is u or u� depending on the parity of n.

*

*

* *

*

* *

2 2 2 2 2 2

22222

u(0,±)

u(n,�) : n > 0

u(n,+) : n > 0

u

u

u�

u�

. . .

. . .

Figure 4.1: The elements u(n,±)

We now de�ne subspaces Q(n,�) of P(n,�) by Q(n,�) = {x � P(n,�) : there exists y �

P((n,�)) satisfying the pictorial relation of Figure 4.2}.

With the foregoing notations, Proposition 3.3.8 implies that the subspaces Q(n,�)

yield a planar subalgebra Q of P which is an irreducible subfactor planar algebra.
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*
u(n,�)

u(n,�)

n

n

n

n

n

n

2

2

2

2

x

y

Figure 4.2: De�ning relation of elements of Q(n,�)

4.1 Main theorem

Throughout this section, let L be a Latin square of size n and P = P (S) be the spin

planar algebra on the set S = {s1, · · · , sn} . We will regard L as the multiplication

table of a binary operation on the set S as described in Remark 4.0.1.

Associated to L is a {0, 1}-biunitary element u � P(3,+) given by u =
%

i,j,k

akij eik(j]

where

akij =

�
��
��

1 if si = sksj,

0 otherwise.

The biunitary element u determines a planar subalgebra Q = P (L) of P as in

Theorem 3.3.5. Our aim is to show that Q is a subgroup-group planar algebra,

which is the planar algebra of the subgroup-subfactor R!G � R!H , for a pair of

subgroups H � G and R is a hyper�nite II1 factor, see [4].

We will �rst use the Latin square L to de�ne a pair of subgroups of the symmetric

group Sn. To do this, we begin by de�ning an equivalence relation � on the m-fold

Cartesian product S×m for any m � N. The relation � is de�ned to be the transitive

closure of the re�exive, symmetric relation � on S×m de�ned by (a1, · · · , am) �
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(a*1, · · · , a*m) if there exists (t1, · · · , tm) � S×m such that

a1t1 = a2t2 = · · · = amtm and

a*1t1 = a*2t2 = · · · = a*mtm.

In the sequel, the following observations about the relations � and � will be used

freely.

Lemma 4.1.1. (Lemma 10 of [11]). Let -� denote either of the relations � or �

on S×m. Suppose that (a1, · · · , am) -� (a*1, · · · , a*m). Then

1. ai = aj i� a*i = a*j.

2. For any permutation � � Sm, (a�(1), · · · , a�(m)) -� (a*�(1), · · · , a*�(m)).

3. For any k, (b1, · · · , bk) -� (b*1, · · · , b*k) where each bi is some aj and b*i is the

corresponding a*j.

Proof. We will prove the above assertions when (a1, · · · , am) � (a*1, · · · , a*m) and the

case where (a1, · · · , am) � (a*1, · · · , a*m) will follow easily.

(1) By de�nition there exists (t1, · · · , tm) � S×m such that

a1t1 = a2t2 = · · · = amtm and

a*1t1 = a*2t2 = · · · = a*mtm.

Now,

ai = aj � aiti = aitj

� ti = tj (Latin square condition)

� a*iti = a*jti

� a*i = a*j (Latin square condition)
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(2) It follows directly from the de�nition of � by taking the tuple (t�(1), · · · , t�(m)).

(3) Since (a1, · · · , am) � (a*1, · · · , a*m), we have (a1, · · · , ak) � (a*1, · · · , a*k) for any

k � m and (1) and (3) together implies (2). Now for k > m, some ai’s are repeating

and so a*i are also repeating by (1) and this can be reduced to the case with k =

k* � m and so the result follows.

Now, let G = {� � Sn : (s1, s2, · · · , sn) � (s�(1), s�(2), · · · , s�(n))}.

Lemma 4.1.2. (Lemma 11 of [11]). G is a subgroup of Sn and the restricted action

of G on {1, 2, · · · , n} is transitive.

Proof. Suppose that � � G. Then, (s1, · · · , sn) � (s�(1), s�(2), · · · , s�(n)). Hence by

Lemma 4.1.1(3), for any � � Sn, (s�(1), · · · , s�(n)) � (s��(1), · · · , s��(n)). If further

� � G, then (s1, · · · , sn) � (s�(1), · · · , s�(n)) and so by transitivity (s1, · · · , sn) �

(s��(1), · · · , s��(n)). Hence �� � G showing that G is a group.

To see that G acts transitively on {1, 2, · · · , n}, we need to see that given any

k � {1, 2, · · · , n} there is an element of S×n of the form (sk, u2, · · · , un) with all

these being distinct such that (s1, s2, · · · , sn) � (sk, u2, · · · , un). To do this, �rst

choose a t1 � S arbitrarily. Then solve the equations s1t1 = s2t2 = · · · = sntn for

t2, · · · , tn. Because of the Latin square condition, all ti’s exist and are distinct. Now

solve skt1 = u2t2 = · · ·untn for u2, · · · , un. Again, by the Latin square condition,

all of u2, · · · , un exist and are distinct and di�erent from sk.

We regard Sn�1 as the subgroup of Sn of permutations �xing n and de�ne H =

G � Sn�1. We will refer to the pair H � G as the associated subgroup-group

pair of the Latin square L and show that a planar algebra associated to this pair is

isomorphic toQ. Note that since H is the stabilizer of n for the restricted (transitive)

action of G on {1, 2, · · · , n}, the coset space G/H as a G-set may be identi�ed with

{s1, s2, · · · , sn} with the natural restricted action of G.
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The following example illustrates the explicit computation of this subgroup-

group pair in a 5× 5 Latin square.

Example 4.1.3. Consider the smallest non-group type Latin square. This is of size

5 and is given by the array below. This is taken from the combinatorial data page

maintained by McKay - see [18].

�
�����������

s1 s2 s3 s4 s5

s2 s4 s1 s5 s3

s3 s5 s2 s1 s4

s4 s3 s5 s2 s1

s5 s1 s4 s3 s2

�
�����������

We will compute the associated subgroup-group pair for this Latin square. First we

observe from the square above that

s1s1 = s2s3 = s3s4 = s4s5 = s5s2 = s1.

Next observe that

s2s1 = s3s3 = s4s4 = s5s5 = s1s2 = s2, and

s4s1 = s5s3 = s1s4 = s3s5 = s2s2 = s4.

By de�nition then, (s1, s2, s3, s4, s5) is � related to (s2, s3, s4, s5, s1) and (s4, s5, s1, s3, s2).

This says that the associated group, say G, of this Latin square is a subgroup of S5

containing the permutations (in cycle notation) (1 2 3 4 5) and (1 4 3)(2 5). Since

these generate S5, it follows that G = S5 and hence H = S4. Explicit calculation

with this example using the classi�cation of subfactors of index 5 in [8] was the

initial motivation for this paper.
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We have seen in Proposition 2.4.5 that the spin planar algebra P = P (S) is

isomorphic to the planar algebra of the bipartite graph given in Figure 2.13. The

main result of [4] shows that the subgroup-group planar algebra associated to the

subfactor RG � RH is the invariant planar algebra for the G action on the spin

planar algebra P (S), see Corollary 5.16 in [4]. We will denote this planar algebra

by -Q = P (H � G). It is this which we need to see is isomorphic to Q. The way

we have set things up, we will show that -Q = Q as planar subalgebras of P . The

main computational proposition is the following explicit identi�cation of Q(2m,+) as

a subset of P(2m,+). We will use the following notation. An element

%

a1,··· ,a2m

�a1,··· ,a2me
a1,··· ,am
am+1,··· ,a2m

of P(2m,+) is said to respect � if �a1,··· ,a2m = �a$1,··· ,a
$
2m

whenever (a1, · · · , a2m) �

(a*1, · · · , a*2m) or equivalently, whenever (a1, · · · , a2m) � (a*1, · · · , a*2m).

We will also require the explicit identi�cation of u(2m,+) in terms of the standard

basis of P(2m,+). Computing in the planar algebra P using the relations, we see that

u(2m,+) =
%

p,k1,k2,··· ,km

e
p,k�1

1 p,··· ,k�1
m p

k1,··· ,km,p .

Proposition 4.1.4. (Proposition 13 of [11]). Q(2m,+) is the set of elements of

P(2m,+) that respect �.

Proof. By de�nition Q(2m,+) = {x � P(2m,+) : there exists y � P(2m,+) satisfying the

pictorial relation of Figure 4.3}.

In the rest of the proof, x will always denote
,

a1,··· ,a2m
�a1,··· ,a2me

a1,··· ,am
am+1,··· ,a2m

while

y will denote
,

b1,··· ,b2m
�b1,··· ,b2me

b1,··· ,bm
bm+1,··· ,b2m

.

Calculation using Lemma 2.4.3 shows that the pictures on the left and right in
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u(2m,+)
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2m

2m
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2m
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22

22

x

y

Figure 4.3: Relation between x, y � P(2m,+)

Figure 3.5 evaluate to

%

p,a1,··· ,a2m

�a1,··· ,a2me
p,a�1

1 p,··· ,a�1
m p

am+1,··· ,a2m,p and
%

p,b1,··· ,b2m

�b1,··· ,b2me
p,b1,··· ,bm
pb�1

m+1,··· ,pb
�1
2m,p

respectively. Thus x, y � P(2m,+) are related as in Figure 3.5 i� �a1,··· ,a2m = �b1,··· ,b2m

whenever a1b1 = a2b2 = · · · = a2mb2m.

Suppose that x � Q(2m,+) so that there exists y � Q(2m,+) satisfying the relation

in Figure 3.5. We need to see that x respects �. So suppose that (a1, · · · , a2m) �

(a*1, · · · , a*2m). Then there exist b1, · · · , b2m such that

a1b1 = a2b2 = · · · = a2mb2m and

a*1b1 = a*2b2 = · · · = a*2mb2m,

and so �a1,··· ,a2m = �b1,··· ,b2m = �a$1,··· ,a
$
2m
, as needed.

Conversely suppose that x � P(2m,+) and respects �. We need to construct

y � P(2m,+) so as to satisfy the relation in Figure 3.5. Take b1, · · · , b2m and an

arbitrary p � S and solve for a1, · · · , a2m in a1b1 = a2b2 = · · · = a2mb2m = p.

De�ne �b1,··· ,b2m = �a1,··· ,a2m . This is easily checked to be well-de�ned since x respects

�, and x, y do satisfy the relation of Figure 3.5, so that x � Q(2m,+) as needed.
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We will also need the following observation about the relation � on S×m and

the group G.

Lemma 4.1.5. (Lemma 14 of [11]). For any m � N, (a1, · · · , am) � (a*1, · · · , a*m)

if and only if there is a � � G such that (a*1, · · · , a*m) = �(a1, · · · , am) (with the

diagonal action of G).

Proof. (�) We may reduce to the case (a1, · · · , am) � (a*1, · · · , a*m). If b1 =

ai1 , · · · , bk = aik are the distinct ones among a1, · · · , am, then (b1, · · · , bk) � (b*1, · · · , b*k),

where b*1 = a*i1 , · · · , b*k = a*ik , by Lemma 4.1.1(2). Extend b1, · · · , bk to b1, · · · , bn
such that {b1, · · · , bn} = {s1, · · · , sn}. We claim that there exist b*k+1, · · · , b*n � S

such that (b1, · · · , bn) � (b*1, · · · , b*n). This is done as in the proof of Lemma 4.1.5.

By assumption we have t1, · · · , tk such that b1t1 = · · · = bktk and b*1t1 = · · · = b*ktk.

Using the Latin square condition determine tk+1, · · · , tn such that b1t1 = · · · = bntn.

Then again using the Latin square condition determine b*k+1, · · · , b*n such that b*1t1 =

· · · = b*ntn. Note that {b*1, · · · , b*n} = {s1, · · · , sn}.

Suppose (b1, · · · , bn) = (s�(1), · · · , s�(n)) and (b*1, · · · , b*n) = (s�(1), · · · , s�(n)).

Then (s�(1), · · · , s�(n)) � (s�(1), · · · , s�(n)) and so � = ���1 � G. Now for any j

between 1 and k, a*ij = b*j = s�(j) = ���1(s�(j)) = �(bj) = �(aij ). Now an appeal to

Lemma 4.1.1(1) shows that (a*1, · · · , a*m) = �(a1, · · · , am).

(�) Again, let b1 = ai1 , · · · , bk = aik be the distinct ones among a1, · · · , am
and extend them to b1, · · · , bn such that {b1, · · · , bn} = {s1, · · · , sn}. For j be-

tween 1 and n, let b*j = �(bj). Then {b*1, · · · , b*n} = {s1, · · · , sn}. Suppose that

(b1, · · · , bn) = (s�(1), · · · , s�(n)) and (b*1, · · · , b*n) = (s�(1), · · · , s�(n)). It follows that

� = ��. Since � � G, (s1, s2, · · · , sn) � (s�(1), s�(2), · · · , s�(n)). Now, by Lemma

4.1.1(3), (b*1, · · · , b*n) � (b1, · · · , bn). Finally appeal to Lemma 4.1.1(2) to conclude

that (a*1, · · · , a*m) � (a1, · · · , am).

We now prove our main result.
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Theorem 4.1.6. (Theorem 15 of [11]). Let L be a Latin square and H � G be its

associated subgroup-group pair. The planar subalgebras Q = P (L) and -Q = P (H �

G) of P are identical.

Proof. Since both Q and -Q are connected planar subalgebras of P , to see that

they are equal, it is enough to show that Q(2m,+) = -Q(2m,+) for m � N. For then,

by applying appropriate tangles it will follow that Q(m,µ) = -Q(m,µ) for all colours

(m,µ).

By de�nition -Q(2m,+) = {,a1,··· ,a2m
�a1,··· ,a2me

a1,··· ,am
am+1,··· ,a2m

: �a1,··· ,a2m = �a$1,··· ,a
$
2m

whenever (a1, · · · , a2m) = �(a*1, · · · , a*2m) for some � � G}.

But now an appeal to Proposition 4.1.4 and Lemma 4.1.5 completes the proof.

Remark 4.1.7. It was shown in section 3.4 that if L is the multiplication table of

a �nite group G, then the associated subfactor planar algebra is the planar algebra

P (G) associated to G. This is an easy special case of Theorem 4.1.6 in which the

subgroup-group pair is {1} � G. It can be seen as follows. Here � itself is an

equivalence relation since G is a group. Let G̃ denote the group described in Lemma

4.1.2. Then by de�nition, G̃ = {� � Sn : (s1, s2, · · · , sn) � (s�(1), s�(2), · · · , s�(n))}

and H̃ = G̃ � Sn�1.

Claim: H̃ = {id}. Let � � H̃. Then �(n) = n. Now � � G̃ implies that there exists

(t1, · · · , tn) � S×n such that

g1t1 = g2t2 = · · · = gntn = p (say) and

g*1t1 = g*2t2 = · · · = g*ntn = q.

Now �(n) = n implies p = q which in turn will imply subsequently that �(i) = i for

all i < n, that is � = id. Hence the claim. It is now easy to prove that that G̃ is

isomorphic to G and the subgroup-group pair is {1} � G.
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Remark 4.1.8. One important thing is to note that the subgroup-group pair cer-

tainly does not recognize the Latin square. For instance, the following non-equivalent

Latin squares of size 6 all have associated subgroup-group pair to be S5 � S6, as can

be shown by computation similar to the one in Example 4.1.3. The data of these

Latin squares is taken from [18].

�
���������������

s1 s2 s3 s4 s5 s6

s2 s6 s4 s3 s1 s5

s3 s5 s6 s1 s2 s4

s4 s3 s5 s2 s6 s1

s5 s4 s1 s6 s3 s2

s6 s1 s2 s5 s4 s3

�
���������������

�
���������������

s1 s2 s3 s4 s5 s6

s2 s5 s6 s3 s1 s4

s3 s6 s2 s1 s4 s5

s4 s3 s5 s2 s6 s1

s5 s4 s1 s6 s3 s2

s6 s1 s4 s5 s2 s3

�
���������������

�
���������������

s1 s2 s3 s4 s5 s6

s2 s4 s5 s1 s6 s3

s3 s6 s4 s2 s1 s5

s4 s3 s6 s5 s2 s1

s5 s1 s2 s6 s3 s4

s6 s5 s1 s3 s4 s2

�
���������������

�
���������������

s1 s2 s3 s4 s5 s6

s2 s4 s5 s1 s6 s3

s3 s5 s6 s2 s4 s1

s4 s6 s1 s3 s2 s5

s5 s1 s4 s6 s3 s2

s6 s3 s2 s5 s1 s4

�
���������������

�
���������������

s1 s2 s3 s4 s5 s6

s2 s3 s1 s6 s4 s5

s3 s4 s5 s2 s6 s1

s4 s1 s6 s5 s2 s3

s5 s6 s2 s3 s1 s4

s6 s5 s4 s1 s3 s2

�
���������������
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