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Abstract

The exact renormalization group is used to study the RG flow of

quantities in field theories. The basic idea is to write an evolution

operator for the RG flow and evaluate it in perturbation theory. This

is easier than directly solving the differential equation. This is illus-

trated by reproducing known results in the four dimensional φ4 field

theory and the two dimensional Sine-Gordon theory. It is shown that

the calculation of beta function is somewhat simplified. The technique

is also used to calculate the c-function in two dimensional Sine-Gordon

theory. This agrees with other prescriptions for calculating c-functions

in the literature. If one extrapolates the connection between central

charge of a CFT and entanglement entropy in two dimensions, to the

c-function of the perturbed CFT, then one gets a value for the en-

tanglement entropy in Sine-Gordon theory that is in exact agreement

with earlier calculations. Next, the Sine Gordon theory is generalized

to include many scalar fields and several cosine terms. This is similar

to the world sheet description of a string propagating in a tachyon

background. This model is studied as a (boundary) 2d euclidean field

theory and also using an AdS3 holographic bulk dual. The beta func-

tions for the cosine vertex of this modified theory are first computed

in the boundary using techniques based on the exact RG. The beta

functions are also computed holographically using position space and

momentum space techniques. The results are in agreement with each

other and with earlier computations. The cosine perturbation is of

the form cos bX. Due to wave function renormalisation the parameter

b, and thus the dimension of the cosine, get renormalised. The beta
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function for this parameter is thus directly related to the anomalous

dimension of the X field. We compute this beta function in position

space. They match with the earlier results in [22].
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SYNOPSIS

Introduction

The exact renormalisation group (ERG), first written down by Wilson [1, 2, 3]

has been an object of much study. It has been developed further [4] and

different versions suitable for different purposes have been written down since

then [5, 6, 7].

In the first paper we studied the application of the ERG to the Sine-

Gordon model. Many calculations are tractable in two dimensions and there-

fore two dimensional theories are a good laboratory to try new ideas. The

Sine-Gordon is one such model. Therefore we apply the ERG to two dimen-

sional field theories- the emphasis being on a simple way of writing down the

solution to the ERG in terms of an evolution operator. We reproduced some

known results of Amit [8] and also obtained a new result on the flow of the

c-function in the Sine-Gordon theory.

An attempt has been made in [9] to make a connection between the ERG

and the holographic RG by showing that an ERG evolution operator in a

boundary theory can be mapped directly to a scalar field action in AdS space

time without ever invoking the AdS-CFT correspondence. Here, a specific

transformation is chosen to map the ERG evolution operator to the free

scalar action in AdS. Some suggestions for how the interactions should work

out were given there. To do this for the more complicated case of composite

operators it is important to understand RG equations in the boundary theory

and obtain them from some bulk computations. Then the precise connection
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between these equations and what is called “holographic RG” - which is

really a radial evolution equation of the bulk theory - could be understood

better. A step towards this goal: take a specific composite operator, (we

choose the Sine-Gordon theory), invoke the AdS-CFT correspondence and

compute its beta functions in as many ways as you can. This was the goal of

the second paper. Use this fully worked out example to make some precise

statements about the direct transformations for the more general cases. This

computation also serves as a check on the AdS-CFT correspondence and it

shows the agreement between the ERG and the holographic RG.

The Sine-Gordon theory is interesting for many reasons. Since it is two

dimensional many calculations are tractable. It has an interesting and non

trivial RG flow - the famous Kosterlitz-Thouless flow which is of great in-

terest in condensed matter physics. It also has relevance in string theory.

It describes a bosonic string propagating in specific tachyonic background.

The model can be generalized to include several cosines so that it describes

a more general tachyonic background. The beta functions of this theory are

in fact the space-time equations of motion of the tachyon. A calculation

was done by [10] to compute the equations of motion upto a cubic term. In

the second paper we do a calculation to reproduce the beta function of the

tachyon at the cubic order using both ERG and holographic techniques. This

computation is a good check on the ERG.

Now we will introduce the ERG.
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ERG

The original Wilsonian form of the ERG had the following structure (Ġ =

∂G
∂τ

):

∂ψ

∂τ
= −1

2
Ġ
∂

∂y
(
∂

∂y
+ 2G−1y)ψ (0.0.1)

We separate out the kinetic and interaction part by substituting ψ =

e−
1
2
G−1y2

ψ′ in the above equation to get the Polchinski equation:

∂ψ′

∂τ
= −1

2
Ġ
∂2ψ′

∂y2
(0.0.2)

(2.1.29) can be written as (using t instead of τ)

∂ψ

∂t
= −Hψ (0.0.3)

with H = 1
2
Ġ ∂2

∂X2 . (We relabel ψ′ → ψ.)

The formal solution is

ψ(X, t) = e−
∫ t
0 dt
′Hψ(X, 0) = e−

1
2

(G(t)−G(0)) ∂2

∂X2ψ(X, 0) (0.0.4)

ψ(X, t) = e−
1
2

(F (t)) ∂2

∂X2ψ(X, 0) (0.0.5)

The evolution operator e
− 1

2

∫
d2x1d2x2Fx1x2t

δ
δX1

δ
δX2 acting on ψ(X, 0) upto

some scale t, gives ψ(X, t), thus implementing the RG. Here,

Fx1x2t = −1
2
ln (x1−x2)2+a(t)2

(x1−x2)2+a(0)2 is the ERG high energy ”propagator”. t is the

scale upto which you are doing the RG transformations. a(0) is the UV

cutoff, a(t) is the IR cutoff. a(t) = a(0)et. Which implies t = ln(a(t)/a(0),
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the log of the ratio of the scales whose coefficient is the beta function.

The Sine-Gordon theory

The action for the theory is

S =
1

4π

∫
d2x

a(0)2

(
(∂X)2 +m2X2 + F cos(bX)

)
(0.0.6)

Computing beta functions

To compute the beta function we bring down appropriate powers of cosine

from the exponential and act on it with the ERG operator. The calculation

can then be organised as the ERG operator acting on a power series of cosines.

We want corrections to the cos bX term. The ERG operator acting on

the power series reduces to

(c1 + c2 + c3)t

∫
d2x1

a(t)2
cos bX(x1) (0.0.7)

c1, c2 and c3 are the coefficients obtained after the ERG operator acts

on the power series term by term.

The derivative of the coefficient w.r.t to t is the beta function.

The Beta functions

The ERG operator acting on cosine gives the leading term of the beta func-

tion. The sub-leading term is given by the ERG operator acting on the
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appropriate powers of cosines. The leading term in the β-function for F is,

−2δF (0.0.8)

δ = b2/4 − 1 is the anomalous dimension of the cosine. At marginality

b2 = 4. As the theory starts to flow δ becomes non-zero and this is the

leading contribution to the beta function for F. The sub-leading contribution

to the Sine-Gordon comes from a third order term. The third order term

is made of two positive exponentials and one negative one or vice versa and

there are three such terms that can combine to give a cosine as the leading

term in the OPE. Therefore the contribution to the beta function from the

third order term is

−F
3

8
(0.0.9)

The full βF

The full beta function is

βF = −2Fδ − F 3

8
(0.0.10)

Beta function for δ

The ERG operator acting on the term (cos(bX(x1))cos(bX(x2)))c, where the

c is for connected, gives the beta function for the parameter δ. This is a

correction to the kinetic term therefore we pick out the coefficient of the
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term 1
4π

∫
d2x1 ∂aX∂

aX(x1). The beta function is given by

βδ = −
(
δ + 1

8

)
F 2 (0.0.11)

The generalized Sine-Gordon model

The action for the generalized theory is

Sboundary =
1

4π

∫
d2x[(∂µ ~X).(∂µ ~X) +m2 ~X. ~X +

F

a(0)2
cos (~b1. ~X) (0.0.12)

+
G

a(0)2
cos (~b2. ~X) +

H

a(0)2
cos (~b3. ~X)]

This is in euclidean d=2. There are three cosines with three different

parameters~bi’s instead of the usual Sine-Gordon where we have one b. Powers

of a(0), the UV cutoff, have been added so that the engineering dimension

of the cosine term is zero. All bi’s and X’s are vectors, in the d-dimensional

target space. The quantum scaling dimension of the cosine is b2
i /2. b2

i /2 = 2

for a marginal cosine.

We can view this model as the world sheet action for a string and the

ei
~bi. ~X , therefore, can be interpreted as the tachyon vertex operator with a

definite momentum ~bi. Here, the metric gMN (for the d-dimensional space in

which the string theory resides) in the dot product bMbNgMN has Minkowski

signature. By doing this we have an additional freedom to tune the norm

of the vector bM to the required value by modifying the individual compo-

nents of the vector. This is important, for example, for the massless string
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modes(when b2 = 0). This is an additional structure in this model. Another

advantage of generalizing the model is that the sub-leading term for the beta

function of F appears at the quadratic order, as against, in the usual case,

where it appears at the cubic order. Although the generalized model is more

complicated, the computational complexity of getting the beta functions is

greatly reduced. This might help significantly when we try to get the direct

transformations, as stated in the introduction.

Beta functions

The beta functions of the generalized Sine-Gordon are a dual power series in

F and ~b1.

The leading term in the β-function for F,

−2δF (0.0.13)

As before.

To calculate the sub-leading contribution we will bring down one power of

G
a(0)2 cos b2.X(x) and H

a(0)2 cos b3.X(x) each. We act with the ERG operator,

impose b2 + b3 = b1 and exponentiate(taking only the connected pieces). The

beta function for the coupling F is the t-derivative of the coefficient of the

cosb1.X term. The contribution at this order is

GH

4
(0.0.14)

A similar calculation was done by [10]. This result is a good check on the
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ERG.

The full beta function is

βF = −(2Fδ − GH

4
) (0.0.15)

The beta function for the ~b1 parameter is the same as for b.

C-function of the Sine Gordon

Lagrangians have a set of parameters(couplings). Generically, when various

parameters in the Lagrangian of a theory are set to zero one finds that the

symmetries of the theory are enhanced. If one reintroduces the parameters,

this enhanced symmetry breaks explicitly to the actual symmetry of the

theory. To get the enhanced symmetry, instead of setting the parameters

to zero, we can always assign transformation rules to the coupling constants

such that, if the field transformations are accompanied by transformations

of the coupling constants, the full enhanced symmetry is preserved. Some of

these extended symmetries of the Lagrangian could have quantum anomalies.

Then, under a simultaneous transformation of the fields and the coupling

constants by this extended symmetry one picks up only the anomaly of the

symmetry transformations. Then, if we path integrate over the dynamical

fields and remain with a functional of the background parameters, then this

functional of the background parameters reproduces the anomaly. In our

case the anomaly comes from the violation of the conformal symmetry from

some quantum effects.

We consider a 2d RG flow from a CFT in the UV(with central charge
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CUV ) to a CFT in the IR(with central change CIR). In a general CFT the

trace anomaly under Weyl transformations has the form

δσS =
CUV
24π

∫
d2x
√
gσR (0.0.16)

Here gµν → e2σgµν is the Weyl transformation of the background metric

gµν . To make a general theory Weyl invariant we introduce a background

field τ such that under Weyl transformations τ → τ + σ. Then e−2τgµν

is Weyl invariant. We also replace every mass scale M , that breaks Weyl

invariance, by Me−τ . After doing all this the full theory is invariant under

Weyl transformations. Thus we have extended the symmetries of the theory.

The anomaly, δσS = CUV
24π

∫
d2x
√
gσR, is a property of the full quantum

theory, it must be reproduced at all scales. In the deep IR one obtains the

contribution CIR to the anomaly from CFTIR. Therefore after one flows to

the IR, the rest of the anomaly has to come from an explicit functional of

the form

CUV − CIR
24π

∫
d2x(∂τ)2 (0.0.17)

Because the simultaneous variation of this action and the effective IR

action, add up together to reproduce the anomaly of the UV theory. This

term gives us a notion of the central charge. We calculate this term.

The interaction term is

S =

∫
d2x

a(0)2
F cos bX

27



We act with the ERG operator on it and introduce a dilaton field φ

to restore conformal invariance. The action is invariant when t → t + ξ

and φ → φ − ξ are done simultaneously. Now we go to 1
2!
< S2 >c.

Here we operate the ERG operator on O(cos2 bX) term. The coefficient

of − 1
24π

∫
d2x ∂aφ(x)∂aφ(x) is the central charge.

∆c = 3π2F 2δ

Beta functions for the generalized theory from

the bulk–position space calculation

[11] argued that for near marginal operators in d=2 the coefficient of the

leading logarithmic deviation from 1/R4 scaling behaviour for correlation

functions is the beta function. The leading term for the beta function of

F comes from the two point function of the cosine term. We compute this

correlator from the bulk. For the sub-leading term, we take the two point

function, insert another operator and look at the deviation in the scaling

behaviour of this object from the 1/R4 behaviour. This gives us the sub-

leading term in the beta function for F. We compute a suitable three point

correlator from the bulk.

Bulk action

To construct an action that reproduces the appropriate two and three point

correlators we take bulk scalar fields such that their masses match the scaling

28



behaviour of the cosine operators on the boundary. We also have to intro-

duce an interaction vertex in the bulk theory to reproduce the three point

boundary correlator.

The bulk action:

Sbulk =

∫
d3x
√
g[

1

2
(∂φ)2 +

1

2
(mφφ)2 +

1

2
(∂χ)2 +

1

2
(mχχ)2 (0.0.18)

+
1

2
(∂γ)2 +

1

2
(mγγ)2 − λ3φγχ]

φ, γ and χ are massive scalar bulk fields(m2 = ∆(∆− d)) with boundary

conditions

φ(z0, ~z) = 0 for z0 →∞ and φ(z0, ~z)→ zd−∆
0 φ0(~z) as z0 → 0.

∆’s are the mass dimension of the dual operators(in our case the cosine’s).

∆ = b2/2. Similar relations hold for γ and χ. The kinectic term plus the

mass term give the two point boundary correlator. The λ3φγχ interaction

vertex is chosen so that the boundary three point correlator of the three

cosines is reproduced. λ3 is fixed by computing the three point correlator

from both sides. φ0, γ0 and χ0 are related to the boundary couplings F, G

and H by a relative normalization. This is fixed by computing two point

correlators from both sides.

Beta function for F

The generating function for the two point function can be obtained from the

kinetic plus the massive term. The generating function for the three point

29



function can be obtained from the λ3φγχ vertex. Substitute the solution to

the free equation of motion in these. Fix the relations between φ0, γ0, χ0 and

F,G,H and compute the value of λ3 by comparing the appropriate two and

three point functions from the bulk and in the boundary theory. Substitute

these and pick out the log divergent part. We get,

βF = −
(

2δF − GH

4

)
(0.0.19)

which matches our result from the boundary calculation.

Beta function for δ

To compute the beta function for δ we look at

Sbulk =

∫
d3x
√
g[

1

2
(∂φ)2 +

1

2
(mφφ)2 (0.0.20)

+
1

2
(∂σ)2 +

1

2
m2
σσ

2 − 1

2
λσσḡ

µν∂µφ∂νφ]

To compute this beta function we want to calculate the generating func-

tion for the three point function from the vertex −1
2
λσσḡ

µν∂µφ∂νφ. Putting

in all the relative normalizations and the value of λσ, the log divergent term

gives us the beta function

βδ =
−F 2(1 + δ)

8
(0.0.21)

This matches with earlier results of Amit et al.
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Beta functions for the generalized theory from

the bulk–momentum space calculation

We start with the bulk action with the term Φχγ (here we relabel the field

φ from earlier to Φ for this section for notational clarity).

Sbulk =

∫
d3x
√
g[

1

2
(∂Φ)2 +

1

2
(mΦΦ)2 +

1

2
(∂χ)2 +

1

2
(mχχ)2 (0.0.22)

+
1

2
(∂γ)2 +

1

2
(mγγ)2 − λ3Φγχ]

For small λ3, we expand the field Φ in power of λ3, and obtain the equa-

tions of motion order by order in λ3. γ and χ have similar expansions. We

fourier transform along all directions parallel to the boundary at z = 0. We

solve the equations of motion upto O(λ3) and then pick out the log divergent

parts of the solutions. To renormalize these the source terms of the bulk

fields start running. These terms cancel off the divergent parts and give the

beta function. The beta function is

βF = −(2δF − GH

4
) (0.0.23)

which matches all earlier results.

Conclusion

In this thesis wwe study the Beta fucntions of the Sine-Gordon model. We

also calculate the central charge. We show that this quantity is consistent
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with calculations that others have done using standard techniques and also

holographically. Then we construct a bulk AdS3 dual which reproduces some

specific correlators and use this to compute the beta functions of the Sine-

Gordon on the boundary theory holographically. We do this in position and

momentum space. All results are in agreement.

Plan of the thesis

An approximate plan of the thesis is as follows.

1. We start with a detailed discussion of the ERG technique and how to

use it for computing beta functions.

2. In the second chapter we will describe the Sine-Gordon model, the

generalized model and show the beta function computations for both.

3. In the third chapter we will describe the C-function calculation and

obtain a form for the C-function of the Sine-Gordon term using the

Exact RG.

4. In the fourth chapter we will construct a bulk action that reproduces

specific correlators which we will use to compute beta functions using

position and momentum space techniques.
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1 Introduction

The exact renormalisation group (ERG), first written down by Wilson [1, 2, 3]

has been an object of much study. It has been developed further [4] and

different versions suitable for different purposes have been written down since

then [5, 6, 7]. There are a large number of good reviews [13, 14, 15, 16]. A

lot of work has been done on the RG of the Sine-Gordon model over the last

few years and many computations have been carried out analytically and

numerically [56, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,

79, 80, 81, 82, 83, 84].

This thesis studies the application of ERG mainly to two dimensional

field theories - the emphasis being on a simple way of writing down the

solution to the ERG in terms of an evolution operator. Some known results

are reproduced and a new result is obtained on the flow of the c-function

in Sine-Gordon theory. While the main application of the ERG has been in

the study of critical phenomena - to obtain the numerical value of critical

exponents, our motivation comes from string theory. In the context of string

theory the renormalisation group has been used as a formal tool. Recently,

the ERG was used to obtain the equations of motion for the fields of the string

somewhat as in string field theory[17]. In this approach string propagation

in a general background is described as a completely general two dimensional

field theory - all relevant, irrelevant and marginal terms are included. This

is a natural generalization of the idea that a conformal field theory describes

a consistent string background1. The condition of conformal invariance is

1See [17] for references to earlier papers on this topic.
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imposed on the action. Thus the exact renormalisation group equation for

this two dimensional theory is written down and the fixed point equations for

the couplings are identified with the space time equations of motion of the

background fields. One has to further generalise the original RG approach

to obtain equations that are gauge invariant. The new ingredient is the

use of loop variables. In order to make the equations gauge invariant the

two dimensional field theory is written in terms of loop variables [18]. Loop

variables have also been incorporated into the ERG - and gauge invariant and

interacting equations have been written down. Furthermore these equations

are background independent [17].

Again within string theory, but now in the context of the AdS/CFT cor-

respondence the idea of the renormalisation group has emerged in the guise

of holographic RG [19, 20]. The RG flow of quantities has been equated with

the evolution of the holographic dual bulk fields in the radial direction. Thus

a flow of renormalised coupling constants in the boundary is compared to the

flow of the bulk field, which also requires renormalization. Many details of

this comparison have been worked out in [21]. In field theory there are quan-

tities such as the c-function of Zamolodchikov in two dimensions[50] and the

c and a-functions in four dimensions [52] that are monotonic along the flow.

There have been attempts to find analogous quantities in the holographic

dual in the bulk. One such quantity is the entanglement entropy which has

also been shown to be monotonic along the flow - both in the field theory and

its holographic dual. (Although the precise connection with Zamolodchikov’s

c-function is not established.)

Besides being interesting due to the connection with string theory, two
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dimensional models have some advantages as an arena where these ideas can

be developed. They are simpler to work with and their holographic dual

AdS3 equations are often exactly solvable. This motivates us to explore two

dimensional field theories using ERG. An interesting and very non trivial

field theory is the Sine-Gordon theory. The Sine-Gordon β-functions in fact

are closely related to equations of motion of the bosonic string tachyon [10].

The equations of motion of the generalized version of the Sine-Gordon theory

describes the bosonic string propagating in a tachyonic background and the

β-function equations are proportional to the tachyon equation of motion.

This is a special case of the connection to string theory mentioned above.

In the context of critical phenomena also this model has been related to

a very interesting two dimensional model - the X-Y model. The X-Y model

has an interesting phase transition first noticed by Kosterlitz and Thouless.

It is possible to rewrite the X-Y model as a Sine-Gordon model. This theory

has been studied in great detail in [8] who obtained the phase diagram as

well as the Kosterlitz-Thouless flow equations using continuum field theory

techniques. They also showed that the model is renormalizable when physical

quantities are written as a power series in terms of two coupling constants2.

In this thesis we use the ERG to obtain the β function equations of

Sine-Gordon theory using the ERG. A particular form of the ERG due to

Polchinski is used here. This ERG is reformulated as a linear evolution

operator. Although this reformulation has been noticed [5, 6], it has not

received much attention in practice. We show that it is very convenient

2In the string theory context one of these couplings corresponds to the tachyon and the
other to the dilaton.
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to work out the flow of objects in a systematic perturbation series. In the

usual continuum calculations β-functions are calculated as a byproduct of

the renormalization program. As first explained by Wilson [2], when one

obtains the flow of a marginal coupling, in the limit that the UV cutoff is

taken to infinity, the β-function has the property that it depends only on

the value of the coupling and not explicitly on the scale. This also implies

that the logarithmic divergence has the information about the β-function and

higher orders in the logarithm are determined by the coefficient of the leading

logarithmic divergence. Thus if we have an evolution equation one needs

to only evaluate the leading divergence. Furthermore this is different from

actually solving the ERG equation which gives a coupled differential equation

involving an infinite number of couplings. The process of eliminating the

irrelevant couplings and solving for the marginal coupling is automatically

implemented during the perturbative evaluation of the evolution operator.

Thus mathematically one can imagine a set of coupled recursion equa-

tions [2] for a marginal coupling gl, a relevant coupling µl and an irrelevant

coupling wl obtained in a blocking transformation that implements the RG.

We reproduce a summary of the discussion in [2](The factors of 4 and 1/4

are illustrative):

gl+1 = gl +Ng[gl, µl, wl]

µl+1 = 4µl +Nµ[gl, µl, wl]

wl+1 =
1

4
wl +Nw[gl, µl, wl] (1.0.24)

Here Ng, Nw, Nµ are the nonlinear terms. As explained in [2] one can re-
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organize the equations and solve them iteratively so that it depends on w0

(initial condition for wl) and µL (final value of µl) and then one finds that on

solving this iteratively, and when 1 << l << L is very large, so the memory

of the initial conditions have been lost, one can set µL = w0 = 0 and obtain

a recursion equation for gl alone

gl+1 = V (gl) (1.0.25)

The crucial point is that in this limit V (gl) has no explicit dependence

on l. One can now extract from this a β-function βg = dg
dt

(l is replaced by a

continuous variable t) which depends only on g(t).

Now imagine using the evolution equation to obtain g(t+τ) starting from

g(t). One obtains a series of the form

g(t+ τ) = g(t) + τ
dg(t)

dt
+
τ 2

2!

d2g(t)

dt2
+ .. (1.0.26)

Now dg(t)
dt

= β(g(t)). Thus

d2g(t)

dt2
=
dβ(g(t))

dt
=
dβ(g(t))

dg

dg(t)

dt
=
dβ(g(t))

dg
β(g(t))

Thus when t = 0, τ = ln Λ0

Λ
is what we call the logarithmic divergence in

perturbation theory. What we are seeing is that the leading term decides

the β-function and the higher powers of τ are fixed in terms of the leading

term.3 The application of the evolution operator in powers of the evolution

3This is the counterpart of the statement for dimensional regularization, that the 1
ε

pole determines the beta function, when only marginal couplings are present. The higher
order pole residues are fixed in terms of the leading residue.
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Hamiltonian, gives us a series as above in τ . It automatically gives the

solution of the ERG recursion equations and one can extract a power series

for the evolution of the marginal coupling. Thus β -functions are obtained in

a simple way without worrying about the technicalities of renormalization.

We illustrate this method with some examples such as the computation

of the central charge of a free scalar field theory and calculating the flow

of the coupling in φ4 theory in four dimensions. We then apply it to the

more interesting case of the Sine-Gordon theory. We find that the equations

obtained are consistent with those obtained in [8]. While the precise coef-

ficients are not the same, the combination of coefficients identified in [8] as

being universal, matches exactly. In addition to flow of couplings, one can

study the flow of the c-function [50, 51, 49, 53]. In particular we do the

calculation of the c-function for the Sine-Gordon theory.

Recently the entanglement entropy of this theory has been calculated

both in the field theory and in the holographic dual and the answers are

shown to agree to lowest order [55]. The central charge calculation done here

also gives results in exact agreement with these calculations - if we assume

that the relation between entanglement entropy and central charge function

persists at least to lowest non trivial order away from the fixed point. This

computation is a first attempt towards developing an understanding of a

precise connection between the ERG in the boundary theory and Holographic

RG in the bulk.

Another interesting computation, to understand better the holographic

RG, would be to reproduce the β- functions for the Sine-Gordon model holo-

graphically. It has been shown in [9] that an ERG equation in a boundary
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theory can be mapped to a scalar field action in AdS space time. The main

results are for a free theory. Some suggestions for how the interactions should

work out were given there. To understand these issues better it is impor-

tant to understand RG equations in the boundary theory and obtain them

from some bulk computations. The precise connection between these equa-

tions and what is called “holographic RG” - which is really a radial evolution

equation of the bulk theory - needs to be understood better. These com-

putations are a step towards that goal. There is extensive literature on the

AdS/CFT correspondence and holographic RG, [23]–[46], [85]–[92] to name

a few.

The boundary theory is a free CFT perturbed by some composite (cosine)

operators. The bulk theory that reproduces the leading two and three point

correlators is a cubic theory. Of course there are any number of composite

operators with definite scaling dimension and so the bulk theory should have

a field of definite mass corresponding to each of these - we are assuming

that an AdS dual exists for the free scalar theory in 2 dimensions. One

can study the RG flow of this theory and one should be able to reproduce

the β - function of the cosine operator of the boundary theory. We do this

calculation also in this thesis.

However, motivated by the string theory tachyon connection we consider

a generalized Sine-Gordon theory. In string theory, instead of one scalar

field, there are D scalar fields (D = 26 for the bosonic string). The tachyon

perturbation is of the form

∫
d2z

∫
k

φ(k)ei
~k. ~X
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φ(k) is the tachyon field in momentum space. We can consider a continuum

of values of ~k. For each value of k it corresponds to a Sine-Gordon like theory.

In [10] this theory was considered and shown to reproduce the leading non

linear terms in the tachyon - dilaton system equations of motion in string

theory.

Holographic techniques in position space are well suited for calculating

correlation functions. In [11] a proper time method was used to evaluate the

tachyon equation of motion starting from two point functions. We will use

this technique here. For near marginal operators the two point function has

the form

〈Oi(R)Oj(0)〉 =
Gij

R4
+
Hij

R4
ln
R

a

Gij is the Zamoldchikov metric. A similar formula exists for the open string

boundary CFT, with R4 replaced by R2. In [11] it was shown (in the context

of the open string) that

Hijφ
j = 0

is the tachyon equation of motion to all orders in perturbation theory. Fur-

thermore, it was argued by Polyakov [56] (for closed strings) that the equation

of motion and β-function are related simply:

∂Γ[φ]

∂φi
= Gijβ

j

This was also shown to all orders in perturbation theory in the open string
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context in [11]. Thus we can conclude [12] that

Hijφ
j = Gijβ

j

Thus to extract the beta function we can compute the two point function,

corrected by interactions, and obtain the leading logarithmic deviation from

the 1
R4 scaling to obtain the β function. In the position space holographic

calculation we employ this technique.

Once the perturbation is turned on it is no longer a CFT. This should re-

flect itself in the bulk deviations from AdS. This requires taking into account

the gravitational back reaction. This back reaction in the bulk can be seen

to manifest itself in the field strength renormalization of the boundary scalar

fields. This gives us the beta function for the field strength renormalization.

To compute this we look at the fluctuations of the graviton about the AdS.

This contribution comes from another cubic vertex in the bulk. This is also

equivalent to the dilaton equation in the string theory context.

This thesis is organised as follows. Chapter 2 introduces the ERG and

gives some background material on it. We first obtain the specific form

of the Polchinski equation that we use to implement the ERG. Next we

describe the evolution operator approach and illustrate it with a calculation

of the c-function in a free massive scalar field theory. Then we illustrate the

method by calculating the β-function for φ4 field theory in four dimensions.

In Chapter 3 we start with a brief overview of the Sine-Gordon model. We fix

propagators and other normalizations. Finally the β-functions for the Sine-

Gordon theory are calculated. It is shown that the results are in agreement
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with those of [8]. In Chapter 4 we motivate and detail the modification

of the Sine-Gordon model and compute the sub-leading(quadratic) term for

the generalized theory. This concludes our boundary calculation for the

Sine-Gordon beta functions. In Chapter 5 the central charge calculation is

described and the c-function for the sine Gordon theory is calculated.

In Chapter 6 we give a brief overview of AdS-CFT computations using po-

sition space techniques. Then we compute the leading and sub-leading terms

for the beta function from the bulk. In Chapter 7 we start by briefly intro-

ducing computational techniques in AdS-CFT in momentum space. Then we

calculate beta functions for the tachyon using momentum space techniques.

All calculations are found to be in agreement with the boundary calcula-

tions. In Chapter 8 we compute the beta function for the running of the field

strength renormalization. This calculation is done in position space. This is

found to be in agreement with previous results[8, 22].

The calculations done in Chapters 2,3 and 5 are done in [22]. The calcu-

lations done in Chapters 4,6,7 and 8 can be found in [26].
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2 Exact Renormalization Group

2.1 The Polchinski Equation

Renormalization Group is integrating out high momentum modes leaving

an effective theory of the low momentum modes. This is what is called

”incomplete integration”. Wilson observed that the equation(Ġ = ∂G
∂t

)

∂ψ(X, t)

∂t
= −1

2
Ġ

∂

∂X
(
∂

∂X
+ 2G−1X)ψ(X, t) (2.1.27)

realizes the notion of incomplete integration. The heat kernel of this

equation gives a smooth interpolation of ψ(X, t) between a completely un-

integrated function ψ(X, 0) and its completely integrated form. Thus the

equation is a possible candidate for an exact RG equation.

Substituting ψ = e−S in the above equation, we get

∂S

∂t
= −1

2
Ġ[
∂2S

∂X2
− (

∂S

∂X
)2 + 2G−1X

∂S

∂X
] + ĠG−1︸ ︷︷ ︸

fld indep

(2.1.28)

From here on we drop all field independent terms as they contain no

dynamics and are vacuum bubles. Adding such terms shifts the energy level

of the Lagrangian, like a cosmological constant, and does not change anything

till you couple it to gravity.

If we substitute ψ = e−
1
2
G−1X2

ψ′ we get an equation:

∂ψ′

∂t
= −1

2
Ġ
∂2ψ′

∂X2
(2.1.29)

Here ψ′ = e−Sint , Sint is the interaction part of the action. Again in terms of
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Sint it becomes an equation in the form first written by Polchinski [20]

∂S

∂t
= −1

2
Ġ[
∂2S

∂X2
− (

∂S

∂X
)2] (2.1.30)

In these equations one can replace X by φ(p) and easily generalise to field

theory. In a field theory RG t is the logarithm of the ratio of scales: the short

distance cutoff a(0) is changed to a(0)et. In a field theory action 1
2
G−1X2

would stand for the kinetic term (and G for the Green function) and then S

would be the interaction part of the action. Polchinski’s equation is usually

used in the form (2.1.30) (or in the form (2.1.28) for the full action).

In this paper however we use it in the form (2.1.29). This is a linear equa-

tion and is just a free particle Schroedinger equation. The formal solution of

this equation in terms of an evolution operator can easily be written down.

Writing a formal solution in this form is useful in some situations: The ERG

as is usually written down is an infinite number of equations that give the

β-function of one coupling parameter in terms of all the other infinite number

of coupling parameters. The usual continuum beta function involves only a

few of the parameters involving the lower dimensional operators. To go from

the first form to the second form one has to solve these infinite number of

equations iteratively [2]. The evolution operator method does this operation

in a convenient way (as will be shown). It thus acts as a bridge between the

ERG and the continuum field theoretic β-function.
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2.2 Free Theory

Let us understand the connection between the ERG equation and the evolu-

tion operator by considering the free theory as a pedagogical exercise. The

first step is to construct the field theoretic version of Polchinski’s ERG:

2.2.1 ERG and β-function

The ERG acting on Ψ is:

∂Ψ

∂t
= −1

2

∫
dz

∫
dz′ Ġ(z, z′, t)

δ2Ψ

δX(z)δX(z′)
≡ −H(t)Ψ(t) (2.2.31)

with Ψ = e−
∫
du L(u,t). This can be written as an ERG for L.

Let us write the Wilson interaction as S ≡ −
∫
du L(u, t). We get

∂S

∂t
= −1

2

∫
dz1

∫
dz2 Ġ(z1, z2, t)[

δ2S

δX(z1)δX(z2)
+

δS

δX(z1)

δS

δX(z2)
]

(2.2.32)

We could start with a local bare action:

S = −
∫
du

1

2
δm2(u)X(u)2

where δm2(u) = (e2φ(u) − 1)m2 is a position dependent coupling(mass), but

in general even if we start with a local action, after one iteration of the RG

it becomes non-local. So we start with a non-local action

S = −
∫
du

∫
dv

1

2
z(u, v, t)X(u)X(v)−m0(t) (2.2.33)

Substituting this in (2.2.32) we get
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ṁ0(t) = −1

2

∫
z1

∫
z2

Ġ(z1, z2, t)z(z1, z2, t)

ż(u, v, t) =

∫
z1

∫
z2

Ġ(z1, z2, t)z(z1, u, t)z(z2, v, t) (2.2.34)

The set of β-function equations (2.2.34) is exact. But the simplicity is

a little misleading because z(u, v, t) is a function of two locations u, v and

actually represents an infinite number of local (position dependent) coupling

functions, which can be defined by Taylor expansions. Note that even for

the free field case we get a non local Wilson action.

2.2.2 Evolution Operator

(2.1.29) can be written as

∂ψ

∂t
= −Hψ (2.2.35)

with H = 1
2
Ġ ∂2

∂X2 , for which the solution is formally

ψ(X, t) = e−
∫ t
0 dt
′Hψ(X, 0) = e−

1
2

(G(t)−G(0)) ∂2

∂X2ψ(X, 0) = e−
1
2

(F (t)) ∂2

∂X2ψ(X, 0)

(2.2.36)

Consider the Schroedinger equation:

∂ψ

∂T
= −1

2
F (t)

∂2

∂X2
ψ

which is solved formally as
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dψ

ψ
= −1

2

(∫
dT

)
F (t)

∂2

∂X2

logψ(X, t, T ) = −1

2
TF (t)

∂2

∂X2
+ logψ(X, 0)

ψ(X, t, T ) = e−T
1
2
F (t) ∂2

∂X2ψ(X, 0)

With T = 1 we get our solution (2.2.36). The solution to the schrodinger

equation is known in terms of a kernel

ψ(X, t, T ) =

∫
dX ′ e

1
2F (t)

(X−X′)2
T ψ(X ′, 0)

So setting T = 1 we get the solution to our original problem:

ψ(X, t) =

∫
dX ′ e

1
2F (t)

(X−X′)2

ψ(X ′, 0) (2.2.37)

If we write ψ = e−S we get

e−S(X,t) =

∫
dX ′ e

1
2F (t)

(X−X′)2

e−S(X′,0) (2.2.38)

which can also be written in a well known standard form as [58, 5, 6, 16]

e−S(X,t) =

∫
dX ′ e

1
2F (t)

X′2e−S(X+X′,0) (2.2.39)

We can convert the above solution to a field theoretic case and in the free

theory, obtain an exact form of the solution to ERG evolution. Working in
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momentum space, all we need to do is to replaceX byX(p). The integral over

X ′ becomes a functional integral over X(p) and in the action we need to sum

over all p. The ”propagator” F (t) becomes F (p, t) = G(p, a(0)et)−G(p, a(0)):

∫
DX ′e

1
2

∫ d2p

(2π)2
F−1(p)X′(p)X′(−p)

e−S[X+X′] (2.2.40)

In this form it looks a free particle (field) calculation where the propagator

is F (p, t) ≡ G(p, a(t))−G(p, a(0)) with a(t) = a(0)et the moving cutoff. Thus

the propagator only propagates the modes that are being integrated out. So,

for e.g., when t = 0 it vanishes because no integration has been done.

2.2.3 Free Field Theory: Exact Solution of ERG

In the case of the free field the integrations can be carried out exactly.

∫
DX ′e

1
2

∫ d2p

(2π)2
F−1(p)X′(p)X′(−p)

e−
1
2

∫
z(p)(X+X′)(p)(X+X′)(−p) (2.2.41)

=

∫
DX ′e

1
2

∫ d2p

(2π)2
(F−1(p)−z(p))X′(p)X′(−p)

e−
1
2

∫
p z(p)X(p)X(−p)+2z(p)X(p)X′(−p)

(2.2.42)

=

∫
DX ′e

1
2

∫ d2p

(2π)2
(F−1(p)−z(p))X′(p)X′(−p)

e−
1
2

∫
p z(p)X(p)X(−p)+2z(p)X(p)X′(−p)

(2.2.43)
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=

∫
DX ′e

− 1
2

∫ d2p

(2π)2
(z(p)− F−1(p))︸ ︷︷ ︸

F−1(p)

X′(p)X′(−p)

e−
1
2

∫
p z(p)X(p)X(−p)+2z(p)X(p)X′(−p)

(2.2.44)

Completing squares

1

2

(
X ′2
√
F−1 + 2zXX ′

)
=

1

2

(
X ′2
√
F−1 + 2zXX ′ + z2X2F − z2X2F

)

=
1

2

(
Y ′F−1Y ′

)
− 1

2
XzFzX

where

Y ′ = X ′ + zXF

and

F =
F

Fz − 1

So for (2.2.44) we get

= Det
1
2 [F ] exp[

1

2

∫
p

X(p)(zFz − z)X(−p)] (2.2.45)

= Det
1
2 [F ] exp[−1

2

∫
p

X(p) (
z

1− Fz
)︸ ︷︷ ︸

−z(t)

X(−p)] (2.2.46)

Here
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z(t) = − z

1− Fz

Thus we have an exact solution for the Wilson action.

Furthermore,

dz

dt
= z2dF

dt
= z2dG

dt

which is the second eqn in (2.2.34). We thus make contact with the differen-

tial version of ERG.

2.3 β-function of φ4 theory in four dimensions

Now we illustrate the method of calculating the β function for the φ4 theory

using the ERG. We use the Polchinski equation with all the corrections to

kinetic term being put into the interactions. Since we are only integrating

modes with p > Λ we do not need a mass as a regulator. So we can put

m2 = 0.

The evolution operator is

e
− 1

2

∫
x1

∫
x2

(G(x1,x2,Λ(t))−G(x1,x2,Λ(0))) δ2

δφ(x1)δφ(x2)

We set

ψ(0) = e−S[φ,0] = e

− λ
4!

∫
x

φ(x)4︸ ︷︷ ︸
′′V ′′

The action of the evolution operator on eV is,

e
− 1

2

∫
x1

∫
x2
F (x1,x2) δ2

δφ(x1)δφ(x2) e−
λ
4!

∫
φ4
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=

∫
Dφ′e

1
2

∫
x1

∫
x2
F−1(x1,x2)φ′(x1)φ(x′2)

e−
λ
4!

∫
(φ′+φ)4

=

∫
Dφ′e

1
2

∫
x1

∫
x2
F−1(x1,x2)φ′(x1)φ(x′2)

e−
λ
4!

∫
(φ4+4φ3φ′+6φ2φ′2+4φφ′3+φ′4)

We can keep some terms in the exponent and bring down the rest:

=

∫
Dφ′e

1
2

∫
x1

∫
x2
F−1(x1,x2)φ′(x1)φ(x′2)

e−
λ
4!

∫
(φ4+4φ3φ′+6φ2φ′2)

[1− λ

4!

∫
(4φφ′3 + φ′4) +

1

2!
(
λ

4!
)2[

∫
(4φφ′3 + φ′4)]2 + ...]

Let us evaluate:

∫
Dφ′e

∫
x1

∫
x2

(
1

2
F−1(x1, x2)− λ

4!
δ(x1 − x2)6φ2(x1))︸ ︷︷ ︸

1
2H
−1(x1,x2)

φ′(x1)φ(x′2)−
∫
x J(x)φ′(x)

= Det−
1
2H−1(x1, x2)e

1
2

∫
x1

∫
x2
J(x1)H(x1,x2)J(x2)

Det
1
2H = e

1
2
Tr ln[ 1

F−1− 2λ
4!

6φ2I
]

= e
1
2
Tr lnF− 1

2
Tr ln[1−λ

2
φ2F ]

Expand the log:

1

2
Tr ln[1− λ

2
φ2F ] =

1

2

(
− λ

2

∫
x

φ2(x)F (x, x)− 1

2
(
λ

2
)2

∫
x1

∫
x2

φ2(x1)F (x1, x2)φ2(x2)F (x2, x1)+ ...

)
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In momentum space F can be understood as a propagator with momen-

tum restricted in the range Λ < p < Λ0. Thus

φ2(x)F (x, x) = φ2(x)

∫
d4p

(2π)4

1

p2

This is the usual quadratically divergent mass correction. To get the correc-

tion to the φ4 term we consider the next term in −1
2
Tr ln[1 + λ

2
φ2F ],

−1

2
× 1

2

λ2

4
× 1

(4π)2

∫ Λ2

Λ2
0

p2dp2 1

p4
φ(0)4

The external momentum is set to zero i.e. φ(x) is uniform. This is a correc-

tion to λ
4!

so we factor out 4! to get,

−4!

4!
× 1

2
× 1

2

λ2

4
× 1

(4π)2

∫ Λ2

Λ2
0

dp2 1

p2

= − 1

4!

3

2

λ2
0

(4π)2
ln

Λ2

Λ2
0

Since Λ = e−tΛ0 we get

− 1

4!

3

2

λ2

(4π)2
(−2t)

Thus

−λ(t) = − λ
4!

+
3

(4π)2
λ2t

λ̇ = − 3

16π2
λ2

This is the well known β function of the φ4 theory in four dimensions.
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What about contributions to β function from 〈 λ
3!
φφ′3〉? For this we calculate,

∫
Dφ′[− λ

3!
φφ′3]e

∫
x1

∫
x2

1
2
H−1(x1,x2)φ′(x1)φ(x′2)−

∫
x J(x)φ′(x)

where J will be set to λ
3!
φ3 in the end. Thus one evaluates

− λ
3!
φ

δ3

δJ(x)3
[Det−

1
2H−1(x1, x2)e

1
2

∫
x1

∫
x2
J(x1)H(x1,x2)J(x2)

]

All terms necessarily have one factor of the form HJ . To lowest order in λ,

H = F . When we set J = λ
3!
φ3 the external momentum is zero (for constant

φ) and thus we have an F propagator with zero momentum. This is zero

because F is non zero only for momenta greater than Λ. Thus this correction

is zero to lowest order.
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3 The Sine-Gordon theory.

We now turn to the Sine-Gordon theory. We compute the β-functions for

this theory using the ERG evolution operator.

The action for the theory is

S =
1

4π

∫
d2x

a(0)2

(
(∂X)2 +m2X2 + F cos(bX)

)
(3.0.47)

a(0) is the UV cut-off.

3.1 The Green’s Function.

The Green function for the Klein Gordon field in two dimensions in Euclidean

space is

G(x2, t2;x1, t1) =

∫ ∞
0

ds (
1

4πs
)e−m

2se−
(x2−x1)2+(t2−t1)2

4s (3.1.48)

The small t region gets contribution from x2 = 0 region. This is the UV. A

way to regularise this is to cutoff the integral:

G(x2, x1, ε) =

∫ ∞
ε

ds (
1

4πs
)e−m

2se−
(x2−x1)2

4s (3.1.49)

∫ ∞
0

ds (
1

4πs
)e−m

2se−
(x2−x1)2+(t2−t1)2

4s =
1

2π
K0(mx) (3.1.50)

Here x =
√

(x2 − x1)2 + (t2 − t1)2.
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=
1

2π

√
π

2mx
e−mx + .... : mx >> 1

=
1

2π
[−ln (mx/2)(1 +

∞∑
k=1

(mx/2)2k

(k!)2
)] + ψ(1) +

∞∑
k=1

(mx)2k

22k(k!)2
ψ(k + 1) : mx << 1

We will do our calculations in the mx << 1 regime.

3.2 Reproducing the continuum β-functions.

We would like to reproduce the flow for F and b. For the kinetic term

SKinetic =
1

α′

∫
d2z ∂zX∂z̄X =

1

2α′

∫
d2x ∂aX∂

aX

the Green’s function in complex coordinates is

G =< X(z)X(w) >= − α
′

2π
ln
|z − w|+ a(0)

R

and we choose α′ = 2π and substitute that when we carry out calculations

in the later sections. Here R is some scale.

< X(0)X(0) >= − α
′

2π
ln

a(0)

R

In real coordinates

G =< X(x1)X(x2) >= − α
′

4π
ln |(x1 − x2)2 + a(0)2

R2
| (3.2.51)
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The evolution operator acting on the unintegrated theory gives

ψ(t) = e
−
∫ t
t0
H(t′)dt′

ψ(0)

= e
− 1

2

∫ t
t0
dt′
∫
d2x1

∫
d2x2 Ġ(x1,x2,t′)

δ2

δX(x1)δX(x2) e−S[X,0]

=

∫
DX ′′e

1
2

∫
d2x1

∫
d2x2 F−1(x1,x2)X′′(x1)X′′(x2)e−S[X+X′′](3.2.52)

Here

S[X, 0] =

∫
d2x

a(0)2

F

4π
[
eibX + e−ibX

2
]

and

F (x1, x2, t) = G(x1, x2, a(t))−G(x1, x2, a(0)) = G(x1, x2, a(0)et)−G(x1, x2, a(0))

Thus

F (x1, x2, t) = − α
′

4π
ln [

(x1 − x2)2 + a(t)2

(x1 − x2)2 + a(0)2
] (3.2.53)

is like a propagator. Note F (x1, x2, t) will also be denoted by Fx1x2t which

are distinct from F, which is the coupling of the cos b1.X(x) term. Also

F (x, x, t) = − α
′

4π
ln

a(t)2

a(0)2
= − α

′

2π
t (3.2.54)

Thus the evolution operator acting on the e−Sint gives

ψ(t) = exp[
∞∑
n=0

(−1)n

n!
< Sn >c] (3.2.55)

where 〈Sn〉c stands for the connected part of < Sn > and < ... > stands for
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doing the X ′′ integral. This is the cumulant expansion for the Wilson action

at scale t.

3.2.1 Leading Order β function for F (t).

Let us bring down one power of (S[X, 0])c = (
∫
L)c, where the sub-script

c signifies that only the connected parts for all terms will be retained from

e−S[X,0] and act on it with the evolution operator. Writing the cosine as a

sum of exponentials, and noting that the action of the evolution operator

gives the same factor for both exponentials, we get:

(

∫
L)c ≡

∫
d2x1

a(0)2

F

4π
e

1
2

(b)2(F (x1,x1,t))cos(bX(x1))

Powers of a(0) have been added for dimensional consistency. We can use

the form given in (3.2.54) to get

(

∫
L)c ≡

∫
d2x1

a(0)2

F

4π
(
a(0)2

a(t)2
)
b2

4 cos(bX(x1))

The factor (a(0)2

a(t)2 )
b2

4 is the effect of self contractions in a range of energies

(Λ,Λe−t). This is also the normal ordering factor that one usually obtains

which has a(t) replaced by the IR cutoff 1/m. The usual normal ordering

integrates out self contractions of all fields, i.e up to the IR cutoff. In the

ERG only some fields are integrated out and after the ERG evolution the

field X only has lower momentum modes in it, and the pre-factor is the effect

of integrating out the rest. One more difference is that normal ordering takes

care of only self interactions. The ERG removes all interactions between high
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momentum modes because the modes themselves are integrated out. This

is the origin of terms of the form b2F (x1, x2, t) in the exponent(which will

be seen in the later calculations). This is like the correlator between two

exponentials, but with only some modes - high momentum - participating.

This can be written as

∫
d2x1

a(t)2

F

4π

(
a(0)2

a(t)2

) b2

4
−1

cos(bX(x1))

which shows that it is exactly marginal for b2 = 4. If b2

4
− 1 << 1 we can

expand (
a(0)2

a(t)2

) b2

4
−1

≈ 1− 2t

(
b2

4
− 1

)
Thus F (t) = F (0)(1 − 2t( b

2

4
− 1)) + ... valid for small t. This also gives

the leading term in the β-function:

βF = Ḟ (t) = −2(
b2

4
− 1)F0 = −2(

b2

4
− 1)F (t) = −2δF (3.2.56)

where we have approximated F (0) by F (t) to this order in t and F . Here

δ = b2/4 − 1 is the deviation of the mass dimension of the cosine from

marginality as the theory begins to flow. Thus for ( b
2

4
− 1) > 0 it goes to

zero in the infrared and for ( b
2

4
− 1) < 0 it is a relevant variable that goes to

infinity in the IR. This is the lowest order K-T flow.

The third order contribution, (O(F 3)), to the β function is calculated in

Appendix (A).
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3.2.2 βδ – β function for b

Since b multiplies X the latter flow is equivalent to field strength renormal-

ization. So we would like to get terms on the RHS of the ERG involving

cos(bX) or ∂X∂X. One has to bring down the term

1

2!
(

∫
L)2

c

Thus we need to evaluate the action of the ERG operator on

(cos(bX(x1))cos(bX(x2)))c =
1

4
(eibX(x1) + e−ibX(x1))(eibX(x2) + e−ibX(x2))c

(3.2.57)

It is clear that the product can only give terms whose leading term is 1

or e2ibX . The anomalous dimension of e2ibX is 4b2/2 = 2b2. For cos bX to be

marginal, b2 has to be set to 4. This gives 2b2 ≈ 8. For the operator cos 2bX,

the deviation from marginality is given by 2b2 − 2 ≈ 6.(The marginality

condition for cos bX is b2/2− 2 ≈ 0). Thus it is a highly irrelevant operator.

The term starting with 1 can have terms involving the marginal
∫
d2x ∂X∂X.

This corrects the kinetic term which gives the flow for the b parameter in

terms of δ.

The action of ERG evolution operator on the marginal combination gives

1

2!

F 2

4(4π)2

∫
d2x1

a(0)2

∫
d2x2

a(0)2
eb

2F (x1,x2)+ b2

2
(F (x1,x1)+F (x2,x2))(eibX(x1)−ibX(x2)+e−ibX(x1)+ibX(x2))

where only the contributing terms have been retained.
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Replacing x2 − x1 = y we get

− b
2

16

F 2

(4π)2
(
a(0)2

a(t)2
)
b2

2
−2

∫
d2x1

a(t)2

∫
d2y

a(t)2
(
y2 + a(t)2

y2 + a(0)2
)
b2

2 y2(∂X)2

We are interested in the logarithmically divergent part in order to match

with the continuum calculation. (In the above equation one can also replace

a(0) by a(t0) and pick terms proportional to ln ( a(t)
a(t0)

).) We also take the

limit a(0)→ 0 so that all powers of a(0) can be set to zero. But in the limit

a(0)→ 0 there is translation invariance in time (t = ln( a(t)
a(0)

))in the evolution

equation and as explained in the introduction the beta function cares only

about the linear term in t. Furthermore if we assume that a(t) ≈ 1
m

, which

is the IR cutoff, we can replace y2 + a(t)2 by a(t)2. Thus we get for the y

integral:

π(a(t)2)
b2

2
−2

∫
d(y2)(

1

y2 + a(0)2
)
b2

2 y2

Putting back the prefactors:

= −(
δ + 1

16
)
F 2

4π
[
( a(t)2

a(0)2 )−2δ − 1

−2δ
−

( a(t)2

a(0)2 )−2δ−1 − 1

−2δ − 1
]

∫
d2x1 ∂aX∂

aX(x1)

(3.2.58)

Let us take the limit δ → 0 and keep leading terms:

= −(
δ + 1

16
)
F 2

4π
[2t+O(t2δ)+((

a(0)2

a(t)2
)(1−4tδ+...)−1)(1−2δ+...)]

∫
d2x1 ∂aX∂

aX(x1)

If we now take a(0) → 0 we get only the first term. The beta function only

cares about the leading logarithm, which is the linear term in t. This is a
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correction to the kinetic term 1
4π

∫
d2x1 ∂aX∂

aX(x1). Therefore the beta

function is

βδ = −(
δ + 1

8
)F 2

3.3 The Beta functions.

Collecting all the beta functions we get

βF = −2Fδ − F 3

8
(3.3.59)

βδ = −F
2

8
(1 + δ) (3.3.60)

The O(F 3) piece for βF is calculated in Appendix (A).

3.4 Comparing with Amit et al [8].

In their notation β2

8π
= b2

4
. Thus β2

8π
= δ + 1. This is the same δ that they

use. FA
β2 = F

4π
where FA is the variable used in [8]. Thus we have

F =
FA

2(δ + 1)

If we write F = FA
2

, (which is not quite the same as FA
2(1+δ)

) we get the

beta functions in their notation

βFA = −2FAδ −
F 3
A

32
(3.4.61)

βδA = −F
2
A

32
(1 + δ) (3.4.62)
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to first order in δ. We can compare this with the beta functions obtained

by Amit et al.

βF = 2FAδ +
5F 3

A

64
(3.4.63)

βδ =
F 2
A

32
(1− 2δ) (3.4.64)

(Their beta functions are given by the flow to the UV and have the

opposite sign.)

The zero-eth order terms agree with [8]. The first order terms are not

universal. It is shown in their paper that B + 2A is a universal quantity

where A and B are the non-leading coefficients. B + 2A = 5
32
− 2

32
= 3

32
. It

can be checked that we get the same (2+1
32

).
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4 The ERG beta function calculation of the

generalized Sine-Gordon model.

4.1 The generalized Sine-Gordon model

The action for the generalized theory is

Sboundary =
1

4π

∫
d2x[(∂µ ~X).(∂µ ~X) +m2 ~X. ~X +

F

a(0)2
cos (~b1. ~X) (4.1.65)

+
G

a(0)2
cos (~b2. ~X) +

H

a(0)2
cos (~b3. ~X)]

in euclidean d=2. Powers of a(0), the UV cutoff, have been added so that

the engineering dimension of the action is zero. The mass term acts like an

IR regulator in the propagator. In our calculations we cut off all integrals

in the IR by a moving scale, therefore we encounter no IR divergences. At

marginality all b2
i = 4. This can be viewed as a world sheet action for a string

in the presence of a background tachyon field with some definite momentum

[10]. The marginality condition is the “on-shell” condition for the tachyon.

In that case the metric, gMN , for the dot product of bMbNgMN has Minkowski

signature. By doing this we have an additional freedom to tune the norm

of the vector to the required value by modifying the individual components

of the vector. This is important for the massless and higher string modes

though it is not required for the tachyon. From here on all bi’s and X’s are

understood to be vectors - bMi , X
M , in the N-dimensional target space where

the string is propagating. We will drop all arrows on the top and suppress
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the vector index.

We want to calculate beta functions for the flow of F and b1. Due to

wave function renormalisation the parameter b1, and thus the dimension of

the cosine, get renormalised. The beta function for this parameter is thus

directly related to the anomalous dimension of the X field. This is the same

calculation as was done in the previous section and the beta functions for b1

is the same as before with δ =
b21
4
−1 in this case. F gets corrections from the

self interaction of the cosine and corrections from higher order terms. We

have calculated the leading order term in an earlier section. From the string

point of view, we are computing scattering amplitudes for the zeroeth mode

of the closed strings with momenta bi at position X(x), where exp ibi.X(x) is

the vertex operator for the tachyon. exp ibiX(x) is a tachyon vertex operator

for a distinct closed string, each with momentum bi, where now instead of

b being continuous, as in the introduction, we choose a discrete set of bi’s.

We will choose b1 + b2 + b3 = 0 for reasons that will become clear. It has

been shown in [8] that the Sine-Gordon theory is renormalizable with a well

defined expansion in F and a parameter δ = b2

4
− 1.

We will also reproduce the beta functions of the Sine-Gordon model from

the bulk. In the boundary theory we will look at the action of the generalized

Sine-Gordon theory and use that to compute the beta function. In the cos b.X

term, the dot product is over an N dimensional vector space and as such the

b’s and the X’s all are vectors under some Lie group, such as SO(N). With

N scalar fields, the central charge, c, of the free CFT is N . In AdS3 a

large c-expansion plays the role of large N in the more familiar AdS5 case.

We could do an expansion of the boundary theory in this N. Thus we can
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invoke the AdS-CFT correspondence to, as explained in the introduction,

compute the appropriate multi-point boundary correlators from the bulk, to

get the beta functions. These correlators diverge when some or all of these

points coincide. Thus, to extract the beta function we compute the leading

logarithmic deviation from the 1
R4 scaling of these correlators. In the position

space holographic calculation we employ this technique.

When b1 + b2 + b3 = 0, the first non vanishing higher point correlator is

the cubic one involving all three cosines. From the point of view of the string

theory tachyon, this constraint on the bi’s is just momentum conservation.

From the CFT viewpoint, this comes from integrating over the zero mode of

X(x). In this case the beta function for F starts at quadratic order

βF ≈ O(GH)

This is the cubic term in the tachyon equation of motion [10]. At higher

orders the four point correlator is always non zero and there is a contribution

of O(F 3). (This is the first sub-leading term in the usual Sine-Gordon model

that we computed earlier.)

4.2 The propagator, other preliminaries.

We start with the kinetic term

SKinetic =
1

2α′

∫
d2x ∂µX∂

µX (4.2.66)
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α′ is like the string tension. The propagator is

GMN(x1, x2) =< XM(x1)XN(x2) >= −gMN α
′

2π
ln
|~x1 − ~x2|

L
(4.2.67)

Set α′ = 2π. L is an arbitrary scale to make the argument of log dimen-

sionless.

Therefore,

〈: cos b.X(x1) :: cos b.X(x2) :〉 =
1

2

(
|~x1 − ~x2|

L

)−b2
(4.2.68)

The mass dimension of a marginal operator in d=2 is 2. Therefore, b2/2 =

2. The beta functions are a power series expansion in the two couplings F

and ~b. F is a small number, F → 0. b2 = 4 is a large number, therefore we

will look for a suitable expansion parameter which is small. Both parameters

get corrections. When F is non zero, the theory is interacting and wave

function renormalization causes δ to run.

4.3 The ERG calculation.

The ERG can be described by

ψ(X, t) = e
− 1

2

∫
d2x1d2x2Fx1x2t

δ
δX(x1)

δ
δX(x2)ψ(X, 0) (4.3.69)

Here

Fx1x2t ≡ F (x1, x2, t) == −1
2
ln (x1−x2)2+a(t)2

(x1−x2)2+a(0)2 is the ERG high energy ”prop-

agator”. t is the scale upto which you are doing the RG transformations,
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a(0) is the UV cutoff, a(t) is the IR cutoff. a(t) = a(0)et. Which implies

t = ln(a(t)/a(0), the log of the ratio of the scales whose coefficient is the

beta function.

ψ(X, 0) = e
−
∫
d2x 1

4π
[ F
a(0)2

cos (~b1. ~X)+ G
a(0)2

cos (~b2. ~X)+ H
a(0)2

cos (~b3. ~X)]
(4.3.70)

is the un-integrated ”partition function” of the theory and the evolution

operator e
− 1

2

∫
d2x1d2x2Fx1x2t

δ
δX1

δ
δX2 acting on ψ(X, 0) upto some scale t, gives

ψ(X, t), thus implementing the RG.

One can bring down appropriate powers of cosine from the exponential

and act on it with the ERG operator. The calculation can then be organised

as the ERG operator acting on a power series

e
− 1

2

∫
d2x1d2x2Fx1x2t

δ
δX(x1)

δ
δX(x2) [

∫
d2x1

a(0)2
(a1) cos bi.X(x1) (4.3.71)

+

∫
d2x1

a(0)2

d2x2

a(0)2
(a2) cos bi.X(x1) cos bj.X(x2)

+

∫
d2x1

a(0)2

d2x2

a(0)2

d2x3

a(0)2
(a3) cos bi.X(x1) cos bj.X(x2) cos bk.X(x3)]

the ai’s, most generally, being the different corresponding coefficients. We

look for corrections to cos bX which is a term of the form

(c1 + c2 + c3)t

∫
d2x1

a(t)2
cos bi.X(x1) (4.3.72)

where c1, c2 and c3 are the coefficients obtained after the ERG operator

71



acts on the power series term by term. The final expression can be reorga-

nized such that (c1 + c2 + c3) t is the correction to the coupling(the above

equation) and its derivative w.r.t to t is the beta function. Further details

can be found in [22] and [48].

For our case, to calculate the leading contribution we bring down one

power of Fcosb1.X and apply the ERG operator to it.

4.4 Leading term in βF .

The ERG operator acting on the interaction term gives

∫
d2x1

a(0)2

F

4π
exp(−1

2

∫
d2xid

2xjFxixjt
δ2

δX(xi)δX(xj)
) cos(b1.X(x1))

Simplifying we get,

∫
d2x1

a(t)2

F

4π
(1− 2δt) cos(b1.X(x1)) (4.4.73)

The leading term in the β-function for F is,

βF = −2δF (4.4.74)

δ =
b21
4
− 1 is the other small expansion parameter in terms of which we

will calculate beta functions. We have done this calculation in an earlier

section.
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4.5 The sub-leading term.

To calculate the sub-leading contribution we will bring down one power of

G
a(0)2 cos b2.X(x) and H

a(0)2 cos b3.X(x) each.

GH

(4π)2

∫
d2x1d

2x2

a(0)4
exp

(
−1

2

∫
d2xid

2xjFxixjt
δ2

δX(xi)δX(xj)

)
cos b2.X(x1) cos b3.X(x2)

(4.5.75)

=
GH

4
t

1

(4π)

∫
d2x

a(t)2
cos b1.X(x) (4.5.76)

Refer to Appendix (B) for further details.

4.6 The beta function.

We can organize the calculation as follows,

(
F (1− 2δt) +

GH

4
t

)
1

4π

∫
d2x1

a(t)2
cos(b1.X(x1)) (4.6.77)

Therefore, the full beta function, the t-derivative of the coefficient of the

above expression, is,

βF = −(2Fδ − GH

4
) (4.6.78)
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5 The Central Charge

We can use the ERG to compute the central charge of a theory using the

method described in [49, 53]. For completeness we review the basic ideas.

Later the same ideas will be used for the sine-Gordon theory.

5.1 Discussion of Central Charge Calculation

Let ĝαβ = e2σδαβ. As is well known 4

∫
DĝXe−

1
2

∫
d2x (∂X)2

= e
1

24π

∫
d2x(∂σ)2

(5.1.79)

Proof:

We start with the action

S[g,X] =
1

4πα′

∫
d2x
√
g
(
gαβ∂αXµ∂βX

µ
)

(5.1.80)

We will analyze how the partition function changes under Weyl rescalings.

consider two metric related by the transformation

ĝαβ = e2σgαβ (5.1.81)

On varying σ the partition function Z[ĝ] changes as

1

Z[X, ĝ]

∂Z[X, ĝ]

∂σ
=

1

Z[X, ĝ]

∫
DĝXe

−S[X,ĝ]

(
−∂S[X, ĝ]

∂ĝαβ

∂ĝαβ
∂σ

)
(5.1.82)

4See for instance [56, 57].
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=
1

Z[X, ĝ]

∫
DĝXe

−S[X,ĝ]

(
− 1

2π

√
ĝTαα

)
(5.1.83)

Since

Tαα = − c

12
R (5.1.84)

1

Z

∂Z

∂σ
=

c

24π

√
ĝR̂ (5.1.85)

For two metrics related by a Weyl transformation ĝαβ = e2σgαβ, their

Ricci scalars are related by

√
ĝR̂ =

√
g
(
R− 2∇2σ

)
(5.1.86)

Therefore,

1

Z

∂Z

∂σ
=

c

24π

√
g
(
R− 2∇2σ

)
(5.1.87)

This is a differential equation that expresses the partition function, Z[ĝ],

defined on one worldsheet, in terms of Z[g], defined on another. Solving this

we get

Z[ĝ] = Z[g] exp

[
− 1

4πα′

∫
d2x
√
g

(
−cα

′

6
(gαβ∂

ασ∂βσ +Rσ)

)]
(5.1.88)

If we set gαβ = δαβ and α′ = 1
2π

, to match with the kinetic term on the

LHS of the statement(where
√
ĝ has been suppressed throughout), then the
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above equation becomes

Z[ĝ] = exp

[
− c

24π

∫
d2x (∂σ)2

]
(5.1.89)

where
√
g = 1, c = 1 for a single scalar and R = 0.

QED.

Even though g drops out of kinetic term, the information about ĝ comes

from defining the operator:

∆ =
1
√
g
∂α
√
ggαβ∂β = e−2σ�

And what we are calculating is Det−
1
2 ∆. It is thus there in the measure.

It is implicit in the above that the UV cutoff is taken to infinity. Thus

we can write ∫
Λ→∞

DĝXe−
1
2

∫
d2x (∂X)2

= e
1

24π

∫
d2x(∂σ)2

(5.1.90)

On the other hand because of scale invariance, we do not have to take

Λ→∞. We can also write

∫
Λ→0

DĝXe−
1
2

∫
d2x (∂X)2

= e
1

24π

∫
d2x(∂σ)2

(5.1.91)

without modifying the action, i.e. it is not the Wilson action obtained by

integrating out modes from (5.1.90).

In flat space we can set σ = 0 in the above to get:

∫
Λ→∞

DXe−
1
2

∫
d2x (∂X)2

= 1 =

∫
Λ→0

DXe−
1
2

∫
d2x (∂X)2

(5.1.92)
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Thus we can say that for Λ→∞, the following statement about integra-

tion measures is true:

DĝX e−
1
2

∫
d2x (∂X)2

= DX e−
1
2

∫
d2x (∂X)2

e
1

24π

∫
d2x(∂σ)2

(5.1.93)

We cannot take finite values of Λ because we may have to integrate over

expressions that contain a scale.

Now consider adding a mass term : 1
2

∫
d2x
√
ĝm2X2 = 1

2

∫
d2x e2σm2X2.

This term explicitly violates scale invariance. We can add a dilaton to make

it Weyl invariant: 1
2

∫
d2x e2σ+2φm2X2. So if we set δφ = −δσ, it is invariant.

Thus the invariance is spontaneously broken rather than explicitly. Because

of this if we now integrate over X we expect the anomaly to remain the same.

Thus we expect

∫
Λ→∞

DĝXe−
1
2

∫
d2x (∂X)2+m2e2σ+2φX2

= e
1

24π

∫
d2xR̂φ−(∂φ)2

= e
1

24π

∫
d2x 2φ�σ−(∂φ)2

(5.1.94)

Therefore on setting the variation δφ = −δσ we get−δσ 1
12π

�σ = δ
(

(∂σ)2

24π

)
.

Thus we have obtained the original anomaly.

For Λ << m,

∫
Λ<<m

DĝXe−
1
2

∫
d2x (∂X)2+m2e2σ+2φX2

= 1 (5.1.95)

because all the modes are frozen - effectively there is no scalar field.
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Both equations in flat space (σ = 0) give:

∫
Λ→∞

DXe−
1
2

∫
d2x (∂X)2+m2e2φX2

= e−
1

24π

∫
d2x(∂φ)2

(5.1.96)

and ∫
Λ<<m

DXe−
1
2

∫
d2x (∂X)2+m2e2φX2

= 1 (5.1.97)

Here, the coefficient of the dilaton kinetic term (∂φ)2

24π
in e−

1
24π

∫
d2x(∂φ)2

in (5.1.96) is the anomaly of the defining UV theory because of the Weyl

violating mass term m2X2. Under an RG flow from Λ = ∞ to Λ = 0 we

should get the anomaly, that we get for the defining theory in the UV, from

the Wilsonian action in the IR. Thus we should get

∫
Λ<<m

DXe−
1
2

∫
d2x (∂X)2+m2e2φX2+∆L[φ] = e−

1
24π

∫
d2x (∂φ)2

(5.1.98)

Here ∆L(φ) are all the additional terms in the Wilson action that are

generated under an RG flow to the IR. But since effectively there is no

integration and all degrees are frozen, we must have

∆L = − 1

24π
(∂φ)2

This gives the expected result ∆c = 1 for a free massive scalar as you flow

from the UV to the IR.
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5.2 Central Charge for Free Scalar:

Let us now apply the ERG evolution operator to obtain the φ dependence

along the RG trajectory. This gives us a definition of the c-function.

We start with a non-local action

S = −
∫
d2u

∫
d2v

1

2
z(u, v, t)X(u)X(v)−m0(t) (5.2.99)

But then we choose z(u, v, 0) = δm2(u)δ(u−v) as our bare action at t = 0

and then set δm2(u) = (e2φ(u) − 1)m2 where φ is the external dilaton field.

S[φ] =

∫
d2x

1

2
m2X2(e2φ − 1)

We act with the evolution operator on the interaction term.

∫
DX ′e−

1
2

∫
d2x1

∫
d2x2F−1(x1,x2)X′(x1)X′(x2)e−S[X+X′]

This is the integral form of the evolution operator obtained in (2.2.37).

We are interested in the coefficient of (e2φ − 1)2 because one has to extract

the coefficient of the dilaton kinetic term which gives the c function and this

is the term which will contribute to the leading order. We set X = 0 and

evaluate

∫
DX ′e−

1
2

∫
d2x1

∫
d2x2[F−1(x1,x2)X′(x1)X′(x2)+m2X′2(e2φ−1)]
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Path integrating we get

e−
1
2
TrLn[F−1+m2(e2φ−1)] = e−

1
2

(TrLn[F−1]+TrLn[1+Fm2(e2φ−1)])

Expanding the logarithm one gets for the quadratic (in φ ) term:

1

4
Tr[(Fm2(e2φ − 1))2]

=
1

4
m4

∫
d2x1

∫
d2x2φ(x1)(x1−x2)2∂2φ(x1)(G(x1, x2, a(t))−G(x1, x2, a(0)))2

(5.2.100)

G(x1, x2, a(t)) is understood to be evaluated with a cutoff equal to a(t) =

a(0)et. t → ∞ corresponds to a(t) = ∞. All modes have been integrated

out. So the propagator vanishes: G(x1, x2,∞) = 0. This is also clear from

(3.1.49). When t = 0 we get the propagator at the UV scale a(0). So we go

from the completely unintegrated theory at a(t = 0) to one with everything

integrated out at a(t→∞). Integrating by parts we get,

−1

4

∫
d2x1

∫
d2x2[G(x1, x2, 0)]2m4(x1 − x2)2(∂φ)2 (5.2.101)

Now

G(x1, x2, 0) =
1

2π
K0(m |x1 − x2|)

81



Substituting in (5.2.101) we get

− 1

24π

∫
d2x (∂φ)2 (5.2.102)

What we have calculated is −L(u,∞) +L(u, 0) = −∆L = 1. The change

in c is thus 1. The final theory where the scalar field is infinitely massive has

c = 0. The initial theory therefore had c = 1. The anomalous transformation

under scale changes is provided by the (∂φ)2 term - this is the argument used

by [49, 53]. We have obtained it using the ERG.

(5.2.100) defines a c-function for any value of t along the flow. It is also

clear that it is monotonic.

5.3 Central Charge of the Sine-Gordon Theory

In this section we calculate yet another flow - the c-function defined by

Zamolodchikov. We calculate it using the ERG first. We also compare this

with a calculation using a prescription given in [53].

5.3.1 The C-function using the ERG flow equation

Let us begin with some normalization details. The interaction vertex is,

∫
d2x

F

a(0)2
cos bX

then. This term violates Weyl invariance and therefore one introduces a

dilaton to restore Weyl invariance.
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∫
d2xe2φ F

a(0)2
cos bX

Therefore, under σ → σ + ξ and φ → φ − ξ the theory is invariant.

a(0)→ a(0)e−φ gives the dilaton coupling. Instead of associating the dilaton

with a(0) we associate it to the coupling constant F or equivalently to the

dimensionful operator cos bX. When we do RG evolution a(0) → a(0)et ≡

a(t) and as usual and there is no φ associated with it.

The dilaton coupling:

The normal ordered interaction term is

S =

∫
d2x

a(0)2
F

(
a(0)

a(t)

) b2

2

: cos bX :

=

∫
d2x

a(t)2
F

(
a(0)2

a(t)2

)δ
: cos bX :

and δ = b2

4
− 1 as before. Now we introduce a φ dependence, we get

S =

∫
d2x

a(t)2
F e−2δ(t+φ(x,t))cos bX

To this order

F (t, φ) = F (φ)e−2δt = Fe−2δ(t+φ(x))

Note that the coupling constant has become x-dependent and has to be
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placed inside the integral:

∫
d2x

a(t)2
F (t, x) cos bX(x)

Thus we have determined the dilaton coupling. This has the information

of the contribution of the anomalous scaling behaviour of the cosine operator

under an RG flow to the central charge.

Extracting the anomaly:

As discussed before, the anomaly is the coefficient of the dilaton kinetic

term. One has to go to over to the 1
2!
< S2 >c term, where the subscript c

signifies taking only the connected parts, to extract the anomaly. We act on

this term by the ERG operator and extract the dilaton kinetic term. The

calculation proceeds as follows,

1

2!

∫
DX ′′e

1
2

∫
d2x1

∫
d2x2 F−1(x1,x2,t)X′′(x1)X′′(x2)

F 2

∫
x

[
eibX(x)+ibX′′(x) + e−(ibX(x)+ibX′′(x))

2
]

∫
y

[
eibX(y)+ibX′′(y) + e−(ibX(y)+ibX′′(y))

2
]

Here
∫
x

=
∫

d2x
a(0)2 . We replace F by F (t, φ) as before. a(t) is the IR scale

for the action. The propagator has an exponential fall off beyond the IR

scale. So when |y − x| ≈ a(t) the propagator is highly damped. So we are

justified in assuming that a < |x− y| < a(t). Thus the total contribution is

(letting z = y − x)

= 2
F 2

8

∫
d2x

a(t)2

∫
d2z

a(t)2
e−2δ[2t+φ(x,t)+φ(y,t)]e

b2

2
ln

(
a(t)2

z2+a(0)2

)
(1 + izb∂X...)
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Now,

e−2δ(φ(x)+φ(y)) = 1− 2δ(φ(x) + φ(y)) + 2δ2(φ(x) + φ(y))2 + ...

The relevant part is

2δ22φ(x)φ(y) = 2δ2φ(x)(y − x)a(y − x)b∂a∂bφ(x) (5.3.103)

Inserting (5.3.103) for e−2δ(φ(x)+φ(y)) we get for the term in the Wilson action

involving φ�φ:

=

∫
d2x

F 2(t)

4
δ2φ(x)∂2φ(x)(a(t)2)2δ

∫
d2z z2(z2 + a(0)2)

−b2
2 (5.3.104)

Here we have used rotational symmetry to replace zazb by z2 δab

2
. The

integral is log divergent and the divergent piece can be extracted by intro-

ducing the regulator a(0) in the limits rather than in the integrand: (The IR

end is cutoff anyway by a(t).)

∫
d2z z2(z2 + a(0)2)

−b2
2 = π

[(a(0)2)−2δ − (a(t)2)−2δ]

−2δ

Inserting in (5.3.104) and expanding for small δ we get

−π
∫
d2x

F 2

2
δ2φ(x)∂2φ(x)t (5.3.105)

The answer depends on the logarithmic range t. The calculation can be
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improved if we realise that F is a function of t. We assume that the range

of RG evolution t is infinitesimal - dt. Then we can replace t →
∫ t

0
dt and

acknowledge the functional dependence of F on t explicitly, F (t). Then we

can write (5.3.105) as

−π
∫
d2x δ2φ(x)∂2φ(x)

∫
dt
F 2(t)

2

Noting that dF
dt

= −2δF we can write dt = − dF
2δF

to get

= −3π2F 2δ × 1

24π

∫
d2x ∂aφ(x)∂aφ(x)

The coefficient of − 1
24π

∫
d2x ∂aφ(x)∂aφ(x) gives the change in the central

charge. Thus

∆c = c(F (0))− c(F (t)) = 3π2F 2δ

Here c(F (0)) if the central charge of the UV theory. c(F (t)) is the central

charge of the IR theory. When δ > 0 we have an irrelevant operator - F flows

to zero under an RG evolution. So c(F (0)) > c(F (t)) - which is correct.

5.3.2 A confirmation with a result from Entanglement Entropy

At the conformal point the entanglement entropy for a single interval is

related to the central charge of the CFT[54] by

EE =
c

3
ln(l/ε) (5.3.106)

where l is the length of the interval and ε is the short distance cutoff. If

you identify a(t) with l and a(0) with ε and then analyze the behaviour of
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this expression as an RG flow, then to leading order, one would expect the

change in entanglement entropy when one goes slightly away from the fixed

point to be

∆EE =
∆c

3
ln

(
a(t)

a(0)

)
+H.O.T. (5.3.107)

Substituting the ∆c above we get,

∆EE = π2F 2δ ln

(
a(t)

a(0)

)
(5.3.108)

If we set F = λ
8π

and 2δ = ∆− 2 we get

∆EE =
λ2

128
(∆− 2) ln

(
a(t)

a(0)

)

∆EE has recently been calculated holographically in [55]. We show that

this expression is in agreement with their results.

5.3.3 The c-function from Komargodski’s prescription

Now we will calculate the c-function of the Sine-Gordon using a technique by

Komargodski and show that the results match with our earlier calculation.

This is a check on both techniques. The interaction term for the Sine-Gordon

action is

S =

∫
d2x

a(0)2
Fcos(bX(x)) (5.3.109)
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S =

∫
d2x

a(0)2
F : cos(bX(x)) : (ma(0))(b2/2) (5.3.110)

Here the scale dependence to the lowest order from normal ordering has

been explicitly factored out. m will be identified with 1
a(t)

, where a(t) is the

UV cutoff after several RG transformations have been performed and is thus

the IR scale.

S =

∫
m2d2xF : cos(bX(x)) : (ma(0))(b2/2−2) (5.3.111)

If under scaling a(0)→ λa(0), then under scaling, a dilaton exp(φ), would

transform as exp(φ)→ exp(φ)
λ

, thus leaving the action invariant under scaling.

We introduce the dilaton in the action and take its effect under scalings into

account,

S =

∫
m2d2xF : cos(bX(x)) : (ma(0) exp(φ))(b2/2−2) (5.3.112)

The Green’s function for a massive scalar is

G(x1, x2) = − ln
(
m2((x2 + a(0)2)

)
(5.3.113)

where x = x1 − x2. The trace of the Energy-Momentum tensor, T = T aa
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is

T =
δS

δφ
=

∫
m2d2xF : cos(bX(x)) : (ma(0) exp(φ))(b2/2−2)(b2/2− 2)

(5.3.114)

< T (y)T (0) >= F 2
(
b2/2− 2

)2
(ma(0))2(b2/2) < cos bX(y) cos bX(0) >

(5.3.115)

Komargodski’s prescription [53] for the change in the central charge under

an RG flow gives,

∆c = −3π

∫
d2yy2 < T (y)T (0) >

=
3

2
π2F 2(ma(0))b

2−4(b2/2− 2) (5.3.116)

Substituting b2/2− 2 = 2δ and identifying m−1 → a(t) ,

∆c = 3/2π2F 2(a(0)/a(t))4δ2δ (5.3.117)

Then,

F 2(a(t)/a(0))−4δ2δ = F 22δ

(
1 + (−4δ) ln(a(t)/a(0))

)
(5.3.118)

Now we can write a(t) = a(0)et where a(0) is the UV cut-off. So we can

write ln(a(t)/a(0)) as
∫ t

0
dt for t infinitesimal and then promote F → F (t).
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We get

F 22δ(−4δ) ln(a(t)/a(0))→ −8δ2

∫ t

0

F (t)2dt (5.3.119)

Therefore we get

∆c = −12π2δ2

∫
F 2(t)dt (5.3.120)

The Beta function is given by,

dF

dt
= βF = −2Fδ (5.3.121)

to leading order. Substituting this in (5.3.119) we get

∆c = 3π2F 2δ (5.3.122)

as before.

5.4 Higher order terms for ∆c

Under a change in renormalization δ goes to(equation 7.6[8])

δ = δ0 + aF 2 (5.4.123)

Therefore

βδ =
dδ

dt
= 2Fa

dF

dt
= 2FaβF (5.4.124)
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We know

βδ =
dδ

dt
= −F

2

32
+
F 2δ

16
(5.4.125)

and

βF = −2Fδ − 5

64
F 3 (5.4.126)

where βF and βδ are the β functions as obtained in [8]. Substitute

(5.4.126), (5.4.125) and (5.4.123) in (5.4.124) we get

F 2

32
− F 2δ0

16
= 2Fa(2Fδ0 +

5

64
F 3) (5.4.127)

Comparing coefficients

a =
−1

64
(5.4.128)

So

δ = δ0 −
1

64
F 2 (5.4.129)

where the F dependence of δ has been determined to leading order. So,

∫
δ2F 2dt = −

∫
δ2FdF

2δ + 5
64
F 2

(5.4.130)

where (5.4.126) has been substituted in the above. Substituting (5.4.129)

in the above expression, simplifying and resubstituting this expression in
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(5.3.120) we get

∆c = 12π2

(
δ0F

2

4
− 7F 4

1024
+H.O.T.

)
(5.4.131)

To lowest order (5.4.131) matches (5.3.122).
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6 AdS/CFT and holographic RG - a brief re-

view.

6.1 The AdS/CFT correspondence.

The AdS/CFT correspondence relates field theories on AdS spacetimes to

CFT’s. The AdS/CFT is an important realisation of the holographic prin-

ciple. This principle states that in a gravitational theory, the number of

degrees of freedom in a given volume V scales as the surface area of that

volume [96]. The theory of quantum gravity involved in the AdS/CFT cor-

respondence is defined on a manifold of the form AdS x M, where M is a

compact manifold. The QFT may be thought of as being defined on the

conformal boundary of this AdS space. The most prominent example relates

N = 4 Super Yang–Mills theory in 3+1 dimensions and type IIB superstring

theory on AdS5xS5.

The strongest form of the correspondence AdS5/CFT4 [23], states that

the N = 4 SYM with the gauge group SU(N) and the Yang-Mills coupling

gYM is dynamically equivalent to the type IIB superstring theory with string

length ls =
√
α′ and coupling constant gs on AdS5xS5 with radius of curva-

ture L. The free parameters on the field theory side, gYM and N, are related to

the free parameters, gs and L/
√
α′, on the string theory side by g2

YM = 2πgs

and 2g2
YMN = L4/α′2. The information of the five dimensional theory ob-

tained from Kaluza-Klein reduction of the type IIB string theory on the S5

is mapped to a four-dimensional theory which lives on the conformal bound-

ary of the five-dimensional spacetime. The correspondence therefore states
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that the two different theories describe the same physics from two different

perspectives.

Although the two theories are equivalent for arbitrary values of the pa-

rameters, it is very difficult to do these calculation in the strong coupling

regime. We, therefore, restrict ourselves to specific coupling regimes to make

the calculations more tractable. One can use this duality to obtain new in-

sights into the strong coupling dynamics of one theory from the computable

weak coupling behaviour of the other. String theory is currently best under-

stood in the perturbative regime, therefore we could take the weak coupling

limit, gs << 1 and L/
√
α′ constant, in which case at the leading order in gs,

the AdS side reduces to a classical string theory, in the sense that we take

only tree level diagrams. All higher order terms in the genus expansion are

dropped.

For the CFT side, since gs << 1, therefore gYM << 1, while g2
YMN could

be kept finite. Thus we have to take the ’t Hooft limit where N → ∞ for

a fixed λ. Thus a 1/N expansion on the field theory side can be mapped

to a genus expansion of the worldsheet since 1/N ∝ gs for fixed λ. Thus

the leading term from the string theory side are tree level string scattering

amplitudes. All terms higher order in gs are higher genus(loop level) terms

in the string amplitudes.

If in addition to N → ∞ we want to take λ → ∞, that corresponds to

L/
√
α′ → 0. This is the point particle limit of the type IIB string theory

which is the type IIB SUGRA onAdS5xS5 [93, 94, 95]. We do our calculations

in this limit.

Precise forms of the conjecture have been stated and prescriptions for
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computations have been given in [23, 27, 33, 39].

6.2 Bulk computations.

We look at the Euclidean continuation of AdSd+1 which is the Y−1 > 0 sheet

of the hyperboloid

−Y 2
−1 + Y 2

0 + Σd
i=1Y

2
i = − 1

a2
(6.2.132)

It has curvature R = −d(d+ 1)a2. The change of coordinates

zi =
Yi

a(Y0 + Y−1)
(6.2.133)

z0 =
1

a2(Y0 + Y−1)
(6.2.134)

brings the induced metric to the form of the Lobachevsky upper half plane

ds2 =
1

a2z2
0

(
Σd
µ=0dz

2
µ

)
=

1

a2z2
0

(
dz2

0 + Σd
i=0dz

2
µ

)
=

1

a2z2
0

(
dz2

0 + d~z2
)

(6.2.135)

This is the AdS metric in the Poincare patch

ds2 =
1

z2
[dz2 + d~x2] (6.2.136)

~x are boundary euclidean coordinates and z is the radial coordinate. a

has been set to 1.
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According to the AdS-CFT correspondence

∫
DΦ exp(−S[Φ]) =

〈
exp

(
−
∫
∂AdS

φ0O

)〉
(6.2.137)

which to leading order is

Sbulk[φ0] = −WQFT [φ0] (6.2.138)

where Sbulk[φ0] is the bulk action and WQFT [φ0] is the connected gener-

ating functional of the boundary theory.

The correlation funtions from the bulk are calculated by taking variations

w.r.t φ0 on both sides. A general n point correlation function is given by

〈O1(x1)...On(xn)〉 = (−1)n+1 δnSbulk
δφ0(x1)...δφ0(xn)

|φ0=0 (6.2.139)

To compute beta functions from the bulk we start with the bulk action

with the φχγ term,

Sbulk =

∫
d3x
√
g[

1

2
(∂φ)2 +

1

2
(mφφ)2 +

1

2
(∂χ)2 +

1

2
(mχχ)2 (6.2.140)

+
1

2
(∂γ)2 +

1

2
(mγγ)2 − λ3φγχ]

The φ, γ and χ correspond to cos b1X, cos b2X, cos b3X respectively.

The free equation of motion is

1
√
g
∂µ
(√

ggµν∂νφ)−m2φ = 0 (6.2.141)
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with boundary conditions

φ(z0, ~z) = 0 for z →∞ and φ(z0, ~z)→ zd−∆
0 φ0(~z) as z0 → 0

The normalized bulk to boundary Green’s function is

K∆(z0, ~z, ~x) =
Γ(∆)

πd/2Γ(∆− d/2)

(
z0

z2
0 + (~z − ~x)2

)∆

(6.2.142)

The solution to (6.2.141) is

φ(z0, ~z) =
Γ(∆)

πd/2Γ(∆− d/2)

∫
d2x

(
z0

z2
0 + (~z − ~x)2

)∆

φ0(~x) (6.2.143)

6.3 Holographic RG.

In holographic RG, one identifies the bulk radial coordinate with the RG

scale via, as we will see t = log R
x0

. Here t = log a(t)
a(0)

as before. R → ∞

and will denote the deep interior. x0 → 0 and will be interpreted as the UV

cutoff [97].

There are many approaches to implement the holographic RG. One ap-

proach is to look at domain wall flows which interpolate between the station-

ary points of the potential of some supergravity theory in the bulk, [98, 99].

At the stationary points, the potential reduces to the cosmological constant

of the AdS and the metric becomes AdS. We want to obtain an RG equation

as a gradient flow equivalent to the supergravity EoM. These will give us the

first order equations which can be interpreted as beta functions. We consider
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a toy model which has a scalar field and a graviton, both dynamical.

S =

∫
dd+1x

√
−g
(

R

16πG
− 1

2
(∂φ)2 − V (φ)

)
(6.3.144)

The potential V (φ) is chosen so that it has one or more stationary points

(V ′(φ) = 0). The equations of motion for φ and gmn are

1√
−g

∂µ(
√
−ggµν∂νφ)− V ′(φ) = 0 (6.3.145)

and

Rµν −
Rgµν

2
= 8πG

(
∂µφ∂νφ−

1

2
gµν(∂φ)2 − gµνV (φ)

)
≡ 8πGTµν (6.3.146)

At stationary points φ(r) = φi the solution to the scalar equation of

motion is trivial and the Einstein’s equation reduces to

Rµν −
1

2
Rgµν = −8πGgµνV (φi) (6.3.147)

If we identify Λi = 8πGV (φi) = −d(d−1)

L2
i

, then this is the Einstein’s

equation of AdS space. Then the constant scalar fields with AdSd+1 geometry

of scale Li are the solutions which correspond to CFT’s at the RG fixed

points. A more general ansatz for the metric, with a warp factor A(r), is

ds2 = e2A(r)ηµνdx
µdxν + dr2 , φ = φ(r) (6.3.148)

This is called the domain wall ansatz. For A(r) = r/L we recover the AdS

99



metric. For constant φ we get the bulk dual of the CFT at a fixed point. We

want to solve the equations of motion for this metric and φ as before. One

obtains a system of differential equations which are solved by considering an

auxiliary function W (φ) which is called the superpotential. Substituting this

in the system of differential equations obtained above one gets two first order

flow equations whose solution can shown to be the solution to the equations

of motion. This is the domain wall solution that interpolates between an

AdS space of radius LUV at the boundary and another AdS space of radius

LIR in the deep interior. The scalar φ flows from a constant φUV in the UV

to a constant φIR in the IR. This domain wall solution is expected to be dual

to the boundary RG flow.

[20] have developed parallels between holographic RG and the Wilsonian

RG of the boundary theory. This has been further fleshed out by [21].

Another approach [19], is to mimic the conventional Wilsonian paradigm.

Here formulating a holographic Wilsonian flow involves integrating out the

bulk degrees of freedom between a UV hypersurface on which our field theory

is defined and an IR hypersurface which explores the energy scales of interest.

The specifics of doing this are as follows. A boundary theory defined with

a cutoff scale Λ0 is identified with the bulk theory defined in the spacetime

region z > ε0 for some ε0. Integrating out degrees of freedom in the boundary

theory from Λ0 to some lower scale Λ′ is then identified with integrating out

the bulk degrees of freedom between z = ε0 and some z = ε′ > ε0. Integrat-

ing out the bulk degrees of freedom in the region ε0 < z < ε′ results in a

boundary action SB(z = ε′) at the z = ε′ hypersurface. SB provides bound-

ary conditions for bulk modes in the region z > ε′ and can be considered
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as specifying a “boundary state” for the bulk theory in that region. This

effective action can be identified with the Wilsonian effective action of the

boundary theory at the scale Λ′. Requiring that physical observables be inde-

pendent of the choice of the cut-off scale then determines a flow equation for

the Wilsonian action and associated couplings. This gives a flow equation for

the boundary action SB. One should contrast this with similar approaches

proposed by others, for example [98, 99], as discussed earlier. Here one gets

flow equations for the bulk Scl, as against for SB in the approach discussed.

In an approach by Bzowski et al [100], they present a scheme for holo-

graphic RG in which the boundary renormalization scheme is dimensional

regularisation.

Skenderis et al [30], use momentum space techniques to compute beta

functions from the bulk. This method is more closely related to the conven-

tional way of obtaining beta functions, namely, picking out the log divergence,

introducing a renormalization scale and extracting the beta function from the

derivative w.r.t the scale. They obtain a flow equation in the boundary val-

ues of the bulk fields which correspond to couplings of operators(composite

and otherwise) on the boundary. This technique will be used to compute the

beta functions for the tachyons in the generalized theory in a later chapter.

[12] have proposed another approach where one starts with an ERG flow

equation which is similar to the Schroedinger equation and then a transfor-

mation, akin to a coordinate change, transforms the ERG flow equation in

the boundary to an evolution equation in the bulk fields. This is done with-

out invoking the AdSCFT correspondence and is an attempt to establish a

direct connection between the ERG and the holographic RG. They have some
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results for the free boundary theory. The purpose of the papers in this thesis

is to compute beta functions for some composite operators in the boundary

and from the bulk. Then, as was mentioned earlier, one can use this worked

out example to extend this approach for writing direct transformations of

the ERG boundary composite operator to the bulk theory.

To extract the beta function using position space techniques from the

bulk, we first regulate the generating function for the correlators of the

boundary theory to be calculated from the bulk by inserting x0 which acts

as the UV cutoff. Then we compute the generating function for the two

point function with one particle offshell and then, as was described in the

introduction, obtain the leading logarithmic deviation from the 1
R4 scaling

which comes, at the leading order, from taking the particle offshell. Then

we extract terms which are logarithmically divergent in terms of x0, the UV

scale. All these ideas will become clear in the calculations below.
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7 Position space calculation of the beta func-

tion from the bulk.

~b~x1
~b ~x2

Fig. 1.
The leading order Witten diagram

~x1

~b1

λ3

~x2

~b2

~x3

~b3

Fig. 2.
Witten diagram for

the sub-leading contribution

7.1 Leading order

The bulk action for the free massive scalar is

S =

∫
dd+1y

√
g

[(1

2
gµν∂µφ(y)∂νφ(y) +

1

2
m2φ2(y)

)]
(7.1.149)

Evaluating the free action on-shell we get,

1

2
φ2

0

∫
ddx1d

dx3d
dydy0

[
∂µ
(
y−d+1

0 K∆(y0, ~y; ~x1)∂µK∆(y0, ~y; ~x3)
) ]

(7.1.150)

Choose the outward pointing normal along the radial direction and by

the Gauss’s divergence theorem, do the surface integral.
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S = −1

2
φ2

0

∫
ddx1d

dx3d
dy

[
y−d+1

0 K∆(y0, ~y; ~x1)∂0K∆(y0, ~y; ~x3)

]∣∣∣∣
y0=ε

(7.1.151)

where ε → 0, therefore y0 is close to the boundary, y0 → 0. We identify

y0 with x0, the UV regulator. The minus sign comes from choosing the

convention for the outward pointing normal nµ = (−ε,0). Therefore, using

lim
x0→0

x∆−d
0 K∆(x0, ~y; ~xi)→ δ(d)(~y − ~xi) (7.1.152)

S = −1

2
φ2

0C∆

∫
ddx1d

dx3d
dy

[
∆δ(d)(~y − ~x1)

(x2
0 + (~y − ~x3))∆

− (2∆)x2
0δ

(d)(~y − ~x1)

(x2
0 + (~y − ~x3))∆+1

]
(7.1.153)

This is the action for the free massive term. A general n-point correlation

function is given by

〈O1(x1)...On(xn)〉 = (−1)n+1 δnSbulk
δφ0(x1)...δφ0(xn)

|φ0=0 (7.1.154)

Therefore the generating function of a two point function will have an-

other minus. The two point functions from the bulk and the boundary now

match. The generating function for the two point function is,
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S2 = −(−1)
1

2
φ2

0C∆

∫
ddx1d

dx3

[
∆

(x2
0 + (~x1 − ~x3))∆

− (2∆)x2
0

(x2
0 + (~x1 − ~x3))∆+1

]
(7.1.155)

The log divergent term comes from the first term and is retained. The

second term is x2
0 suppressed. In the limit x0 → 0, it vanishes. We drop this

term. C∆i
= Γ(∆i)

πd/2Γ(∆i−d/2)
, therefore

S2 =
Γ(∆ + 1)

πd/2Γ(∆− d/2)

∫
ddx1d

dx3
1

(x2
0 + ( ~x1 − ~x3)2)∆

φ2
0

2!
(7.1.156)

This is the generating functional for the two point function with the UV

regulator x0. Setting d = 2, ∆ = 2(1 + δ), x1 to zero and x3 to R, R → ∞,

the expression becomes,

φ2
0

2!
π∆(∆− 1)

∫
d

(
x2

1

x2
0

)
d

(
x2

3

x2
0

)
1

((x2
0 +R2)/x2

0)2(1+δ)
(7.1.157)

Multiply and divide by R and expand the denominator for δ � 1 such

that (R/x0)−4δ = 1− 4δ logR/x0, we get

φ2
0π

∫
d

(
x2

1

R2

)
d

(
x2

3

R2

)(
1− 4δ log

R

x0

)
(7.1.158)

We will extract the leading term of the beta function from this.
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7.2 Order φγχ

The beta function is the change in the couplings of the theory under scal-

ing transformations. To determine the deviation from the canonical scaling

dimension we look at the behaviour of the two point function slightly away

from marginality and determine the leading term of the beta function. This

was the calculation we did above. To calculate the sub-leading term we start

with a two point function, insert another operator, therefore now we have

a three point function, and look for the log deviation from 1/R4 scaling for

this object. We first calculate the generating function for the three point

function. To do this we start with

S3 = −λ3

∫
dd+1y

√
g φ(y) γ(y) χ(y) (7.2.159)

where

φ(z) = φ(z0, ~z) =

∫
ddxK∆(z0, ~z, ~x)φ0(~x) (7.2.160)

and substitute this for φ(y), γ(y), χ(y) in S3. Here
√
g = y

−(d+1)
0 , d = 2,

C∆i
= Γ(∆i)

πd/2Γ(∆i−d/2)
. φ0, γ0 and χ0 are the couplings of the boundary theory

(boundary values of the bulk fields, they have no coordinate dependence).

This becomes(details in Appendix (D)),

S3 = −λ3πφ0γ0χ0

∫
d

(
x2

1

R2

)
d

(
x2

3

R2

)
log

R

x0

(7.2.161)
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7.3 The Beta function

The full generating function can be organized as

S = S2 + S3 (7.3.162)

= π

∫
dx2

1dx
2
3

(
φ2

0 − 2φ0(2φ0δ +
λ3γ0χ0

2
) log

R

x0

)
(7.3.163)

Substituting the relations between φ0, γ0, χ0 and F,G,H((C.1.227), (C.1.228),

(C.1.229)) and the value of λ3(C.2.233) we get,

=
1

64

∫
dx2

1dx
2
3

(
F 2 − 2F (2δF − GH

4
) log

R

x0

)
(7.3.164)

We have calculated the correction to F 2. To get the beta function we

want to isolate the change in F . To do this we note,

F 2 → F ′2 = F 2 + δ(F 2) = F 2 + 2Fδ(F ) (7.3.165)

F 2 + (−4δF 2 + FGH/2) log
R

x0

= F 2 − 2F (2δF −GH/4) log
R

x0

(7.3.166)
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and comparing the above two expressions we see

δ(F ) = −
(

2δF − GH

4

)
log

R

x0

(7.3.167)

In the Poincare patch (6.2.136) a physical distance s between two points

is s = scoord/z0, where scoord is the coordinate distance between the points at

the boundary at z = z0. x0 is the physical UV cutoff scale on the boundary

where the metric is δµν . On the boundary at z = z0, the coordinate distance

becomes R = x0z0. If one identifies this with a(t) = a(0)et, the moving

IR scale of the boundary theory, and one further identifies x0 with a(0),

then one can naturally identify the boundary position z0 with et and then

moving along the z direction is the same as scaling transformations of the

boundary theory, thus implying that moving along the z direction is the same

as doing RG transformations. Therefore log R
x0

gets identified with t. Then

the t-derivative of (7.3.167) gives us the beta function

βF = −
(

2δF − GH

4

)
(7.3.168)

which matches our result from the boundary calculation (4.6.78).
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8 Beta function computation using momen-

tum space techniques from the bulk.

We will now compute the results obtained in earlier sections using momentum

space techniques. This method is more closely related to the conventional

way of obtaining beta functions, namely, picking out the log divergence,

introducing a renormalization scale and extracting the beta function from

the derivative w.r.t the scale. Although using the previous approach, one

can do computations for a larger class of bulk vertices, doing the calculation

by this method is much simpler in some of the cases of interest. We will start

with a brief introduction to AdS-CFT computations in momentum space.

8.1 A brief summary of AdS/CFT and holographic RG

from the momentum space perspective.

The bulk action with the term Φχγ is (here we relabel the field φ from earlier

to Φ for this section for notational clarity),

Sbulk =

∫
d3x
√
g[

1

2
(∂Φ)2+

1

2
(mΦΦ)2+

1

2
(∂χ)2+

1

2
(mχχ)2+

1

2
(∂γ)2+

1

2
(mγγ)2−λ3Φγχ]

(8.1.169)

The equation of motion is

(−�G +m2)Φ = λ3γχ (8.1.170)
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Φ can be expanded in powers of λ

Φ = Φ0 + λ3 Φ1 + ... (8.1.171)

Φ0 = φ00 + z2φ02 + z4φ04 + ... (8.1.172)

Φ1 = φ10 + z2φ12 + z4φ14 + ... (8.1.173)

γ and χ have similar expansions.

The equations of motion can be solved perturbatively order by order in

λ3.

(−�G +m2)Φ0 = 0 (8.1.174)

and

(−�G +m2)Φ1 = γχ (8.1.175)

We fourier transform along all directions parallel to the boundary at z =

0. We write the Fourier transform of Φ(z, ~x) as Φ(z, ~p). The free equation of

motion becomes

Ld,∆(z, p)Φ(z, p) = 0 (8.1.176)
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where

Ld,∆(z, p) = −z2∂2
z + (d− 1)z∂z +m2 + z2p2 (8.1.177)

The bulk to boundary propagator is given by

Kd,∆(z, p) =
2
d
2
−∆+1

Γ(∆− d
2
)
p∆− d

2 zd/2K∆− d
2
(pz) (8.1.178)

The bulk to bulk propagator is

Gd,∆(z, p; ζ) = (zζ)d/2I∆−d/2(pz)K∆−d/2(pζ) (8.1.179)

for z ≤ ζ

and

Gd,∆(z, p; ζ) = (zζ)d/2I∆−d/2(pζ)K∆−d/2(pz) (8.1.180)

for z ≥ ζ

We saw earlier that for small λ3, Φ can be expanded in powers of λ3

Φ = Φ0 + λ3 Φ1 + ... (8.1.181)

Φ has a near boundary(small z) expansion

Φ = (φ00 + λ3φ10 +O(λ3
3)) + z2(φ02 + λ3φ12 +O(λ3

3)) +O(z3) (8.1.182)
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Therefore,

φ0 = φ00 + λ3φ10 + λ2
3φ20 + ... (8.1.183)

should be considered the full source(all z independent terms). The solu-

tions to the equations of motion order by order in λ3 are,

Φ0(z, ~p) = Kd,∆(z, p)φ0 (8.1.184)

To begin with we turn off the higher order terms in the source φ0. We

only keep the leading term φ00 in Φ0 here. Later we will see that the higher

orders will have to be turned on.

The solution to the second equation is

Φ1 =

∫
ddk1d

dk2

(2π)2d
γ0χ0δ

(d)(k1 + k2 + k3) (8.1.185)∫ ∞
0

dζ

ζd+1
Gd,∆(z, k1; ζ)Kd,∆(ζ, k2)Kd,∆(k3, ζ)

Further details can be found in [30].

8.2 Leading order

For d = 2 and ∆ = 2 + 2δ, the solution to the free equation of motion is

Φ0 = p1+2δzK1+2δ(pz)φ0 (8.2.186)
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We expand about z = 0 and then expand for δ � 1, we get

Φ0 = (1− 2δ log z)φ0 (8.2.187)

At z = x0 where x0 → 0, −2δφ0 log x0 is divergent. Therefore φ0 would

have to change to

φ0 → φ0 + 2δφ0 log
x0

R
(8.2.188)

to cancel the divergent term. Here R is an IR scale introduced on dimen-

sional grounds. Thus we see that a change in the canonical scaling dimension

of Φ0, induces a flow in φ0.

8.3 Order Φγχ

To get the contribution at this order we look at the solution of Φ1.

We want to solve the integral

Iδ,<d=2,∆=2 =

∫ R

x0

dζ

ζd+1
Gd,∆(z, p1; ζ)Kd,∆(ζ, p2)Kd,∆(p3, ζ) (8.3.189)

in the near boundary region ζ ≤ R. x0 is the UV cut-off and R is an IR

scale.
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Φ1 = γ0χ0

∫ R

x0

dζ

ζd+1
(zζ)d/2I∆1−d/2(p1ζ)K∆1−d/2(p1z) (8.3.190)

2d/2−∆2+1

Γ(∆2 − d/2)
p

∆2−d/2
2 ζd/2K∆2−d/2(p2ζ)

2d/2−∆3+1

Γ(∆3 − d/2)
p

∆3−d/2
3 ζd/2K∆3−d/2(p3ζ)

Since the δ has no effect at this order all ∆’s are set to 2. The log

divergent part of Φ1 is,

1

2
γ0χ0p1zK1(p1z)(− log x0) (8.3.191)

We can expand Φ in powers of λ3. Therefore we can write the log divergent

terms of Φ,

Φ = Φ0 + λ3
1

2
γ0χ0p1zK1(p1z)(− log x0) (8.3.192)

This diverges as x0 → 0. p1zK1(p1z) is the solution to the leading order

equation of motion Φ0, therefore to make the full Φ finite we can turn on a

subleading O(λ3) term in the expansion of the source φ0 in Φ0 (as mentioned

before we are turning on subleading coefficients).

φ0 = φ00 + λ3φ10 + ... (8.3.193)

The modified source φ0 is

φ0 = (1 + 2δ log x0)φ00 + λ3φ10 (8.3.194)
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set

φ10 =
1

2
γ0χ0(log x0) (8.3.195)

The modified source becomes

φ0 =
(

1 + 2δ log
x0

R

)
φ0 + λ3

1

2
γ0χ0(log

x0

R
) (8.3.196)

where we have again introduced the IR length scale R.

8.4 The beta function.

As before, we make the identification log R
x0
→ t, substitute the relations

between φ0, γ0, χ0 and F,G,H((C.1.227), (C.1.228), (C.1.229)) and the value

of λ3(C.2.233). Therefore we get the beta function

βF = −(2δF − GH

4
) (8.4.197)

which matches all earlier results.
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9 Beta function for δ.

9.1 Overview of the calculation.

As mentioned before b multiplies X inside the cosine and therefore runs with

the field strength renormalization. b2 is close to 4. This is large compared to

F which is close to zero. It was mentioned that the beta functions of the Sine-

Gordon are a power series expansion in two parameters, δ = b2/4− 1 is the

other appropriate small parameter in which the expansion can be carried out.

From the perspective of the boundary theory the correction to this modified

coupling δ comes from two cosines combining together to give (∂X)2, this

is the anomalous dimension and gives this beta function. This has been

calculated before in [22].

From the bulk theory the leading contribution to the beta function has to

come from a vertex of the type gµν∂
µφ∂νφ so that we have a structure similar

to the boundary calculation and we can see that the two φ’s correct the gµν

which is associated to the (∂X)2 term. Next we note that the boundary

kinetic term involves only diagonal components and therefore we can attempt

to model the graviton by a dilaton which takes into account only the diagonal

degress of freedom and is a scalar, thus simplifying the problem enormously.

119



~x3

~b3

λσ

~x2

~b2

~x1

~b1

Fig. 3.

Witten diagram for the graviton-scalar-scalar vertex

for the beta function of the field strength renormalization.

9.2 Fixing the coupling of the graviton-scalar-scalar

vertex in the bulk.

To compute the graviton-scalar-scalar vertex we want to look at the fluctu-

ation about AdS

gµν = ḡµν + hµν (9.2.198)

ḡµν is AdS. We want to simplify this by modeling the graviton as a dilaton.

Therefore,

gµν = e−λσσḡµν = (1− λσσ)ḡµν (9.2.199)
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Therefore the kinetic term 1
2
gµν∂µφ∂νφ becomes

1

2
gµν∂µφ∂νφ =

1

2
(1− λσσ)ḡµν∂µφ∂νφ (9.2.200)

We treat the dilaton as a massive scalar with mσ → 0, the full action

therefore becomes,

Sbulk =

∫
d3x
√
g[

1

2
(∂φ)2 +

1

2
(mφφ)2 +

1

2
(∂χ)2 +

1

2
(mχχ)2 (9.2.201)

+
1

2
(∂γ)2 +

1

2
(mγγ)2 − λ3φγχ−

1

2
λσσḡ

µν∂µφ∂νφ+
1

2
(∂σ)2 +

1

2
m2
σσ

2]

The kinetic term in the boundary action is modified

Sboundary =
1

4π

∫
d2x[(1 + ξ0)(∂µ ~X).(∂µ ~X) +m2 ~X. ~X +

F

a(0)2
cos (~b1. ~X)

(9.2.202)

+
G

a(0)2
cos (~b2. ~X) +

H

a(0)2
cos (~b3. ~X)] (9.2.203)

ξ0 is related to the bulk field σ whose boundary value σ0 is equal to ξ0

upto normalization. We vary the action with respect to ξ0 to compute various

correlators.

9.3 The 3-point correlator calculation.

To compute the beta function we want to calculate the generating func-

tional for the three point function as before, but this time for the vertex
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−1
2
λσσḡ

µν∂µφ∂νφ. To do this we again start with

Sσ3 = −1

2
λσ

∫
dd+1y

√
g ḡµν∂µφ(y) ∂νφ(y) σ(y) (9.3.204)

We, as before, put in the expressions for the bulk to boundary propagators

for all the fields and simplify. Details in Appendix (E). We get,

Sσ3 =− 2π(1 + δ)λσσ0φ
2
0

∫
d

(
x2

1

R2

)
d

(
x2

3

R2

)
log

R

x0

(9.3.205)[
Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d

2
)

Γ(∆2)Γ(∆3)
−

Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d+2

2
)

Γ(∆2)Γ(∆3 + 1)

]

Sσ3 is non-zero offshell but vanishes onshell where the square bracket is

zero. This is resolved when λσ is fixed ((C.4.250) and the comment there-

after).

Putting in all the relative normalizations((C.1.227), (C.3.240)) and the

value of λσ and we get,

Sσ3 =
−F 2(1 + δ)

8

ξ0

4π

∫
d2
(x1

R

)
d

(
x2

3

R2

)
log

R

x0

(9.3.206)

9.4 The Beta function.

The kinetic term in the boundary theory, whose correction we are computing

is

1 + ξ0

4π

∫
d2x (∂X(x))2 (9.4.207)
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Comparing this with the expression for Sσ3 above and as before, making

the identification log R
x0
→ t, we immediately see the beta function(the t-

derivative) is,

βδ =
−F 2(1 + δ)

8
(9.4.208)

which matches 5.2.46 in [22]. This computation is correct upto O(F 2δ).

There are higher order corrections to it. The computation for the boundary

theory using the usual field theoretic approach has been done by Amit et

al [8]. In their paper(Section 7) they have a detailed analysis of the higher

order corrections. These can be easily obtained by an order by order double

expansion in F and δ. Therefore the next term would be O(F 3).
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10 Summary and Conclusions

In this thesis we have studied the RG flow of quantities in field theories. The

idea is to use Polchinski’s ERG written in terms of an evolution operator. The

advantage is that one can directly obtain quantities such as the beta function

by looking at the linear dependence on the RG time t. In the limit of cutoff

going to infinity this coefficient gives the beta function. This technique was

illustrated with a few examples such as the φ4 theory in four dimensions

and also the Sine-Gordon theory in two dimensions - which is the main

interest in the first paper [22]. We also show that another flow calculation

that this method is suited for is that of the c-function. We illustrate it

with the case of the free field. We then calculate it for the Sine-Gordon

theory. Interestingly, if we assume, that the relation between entanglement

entropy and the central charge continues to hold even for the c-function, we

can evaluate the entanglement entropy of the Sine Gordon theory for small

values of the perturbation. This has been done using other field theoretic

and also holographic methods and there is complete agreement for the lowest

order term - which is all that has been calculated [55]. For the Sine-Gordon

theory the detailed results of [8] for the solution of the RG equations have

been used in this paper to calculate the c-function to higher orders.

There are many open questions. It would be interesting to extend the

ideas in this paper to more basic issues in holographic RG and in particular

the connection with the RG on the boundary theory. In the context of

entanglement entropy, it would be interesting to check the agreement between

the entanglement entropy and the central charge to higher orders. Since the
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c-function is presumably not a universal quantity (there should be some

scheme dependence) at higher orders, these checks have to be made keeping

these caveats in mind.

In the second paper [26], the beta functions of a generalized Sine-Gordon

theory have been calculated using a bulk holographic dual. The boundary

theory is a free theory deformed by a term F cos b.X. The anomalous di-

mension is proportional to F and goes to zero as F → 0. The bulk theory

is dual to a free field theory in the boundary for F=0. The bulk fields (in

addition to the graviton) introduced correspond to the Cosine perturbation.

The calculations have been done both in position space as well as momentum

space. The boundary calculation is also done and it is shown that the results

agree.

To compute the beta functions, two and three point correlation functions

were computed from the bulk. We are in fact constructing the bulk dual of the

free theory and including just those bulk fields and interaction vertices that

are necessary to reproduce correlators of some specific boundary operators

(cos b.X) which would give us the beta functions. The correlators computed

from the bulk match the boundary calculations upto normalization. These

normalizations and the bulk interaction vertex coupling were further fixed by

comparing the two and three point correlators on both sides, which is done in

the appendix. The bulk theory was constructed in such a way as to reproduce

the correlators in the boundary theory, therefore agreement between results

was expected.

The main motivation for doing this calculation is to understand the re-

sults of [9] better when interactions are involved. There the main example
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used was the free scalar theory and in this situation interactions are between

composite operators. In 1+1 dimension, the cosine is one of the most inter-

esting example of such operators and besides being related to string theory,

has applications in 1+1 dimensional condensed matter systems, such as the

X-Y model [8].

The model is also motivated by the first quantized description of a string

propagating in a tachyon background. The beta function gives the equation of

motion for the tachyon. The model also has a wave function renormalization

which results in a beta function for the string theory dilaton coupling. The

boundary calculation in this paper uses techniques derived from the exact

RG, as used in [22] for the usual Sine-Gordon model. The main idea for the

bulk calculation in position space is to identify the beta function with the

coefficient of a logarithmic deviation from the canonical scaling of a two point

function. This is based on the technique described in [11, 56] and is suitable

for holographic computations. In the bulk momentum space calculation the

technique is to first solve the fourier transformed equations of motion order

by order in the coupling of the bulk interaction vertex and then identify the

log divergent terms in the solutions as described in [28]. All the results agree

to the order calculated.

There are many further problems that need to be addressed. One tech-

nically interesting issue of course is to go to higher orders. This should

constrain the bulk dual much more. The precise bulk dual of the free scalar

theory considered here, in particular, the connection to higher spin theory

in AdS3, needs to be understood better. It would be interesting if one can

say something about the UV fixed point of this theory by studying the bulk.
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One should remember that the underlying theory in the boundary is a free

scalar theory. The interactions in the bulk involve fields dual to composite

operators. There are an infinite number of them - they can be identified with

the momentum modes of the string theory tachyon. One expects that there

should be a corresponding simple way to package these in the bulk also. This

needs to be understood better. Finally, the ERG description of composite

operators and also the map to a holographic theory in the presence of these

operators, is another one of many other complications. These can be studied

in a controlled way in this model.

We hope to return to all these questions.
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Appendix A Third Order term in the Sine-

Gordon β-function

The third order term is made of two positive exponentials and one negative

one or vice versa and there are three such terms that can combine to give a

cosine as the leading term in the OPE:

3× 1

3!

F 3

(4π)3

∫
d2x1

a(0)2

∫
d2x2

a(0)2

∫
d2x3

a(0)2

1

4
e
b2

2
(F (x1,x1)+F (x2,x2)+F (x3,x3))

e−b
2(F (x1,x2)+F (x1,x3)−F (x2,x3))cos (bX(x1)) (A.0.209)

We will set b2 = 4 without further ado. We choose x1 = 0 (by translational

invariance) and for notational simplicity set x2 = x, x3 = y. As before we

choose a(t) ≈ 1
m

so the integral in this approximation becomes (suppressing

all prefactors 1
8

F 3

(4π)3 ):

∫
d2x

a(t)2

∫
d2y

a(t)2
[

a(t)2

x2 + a(0)2
]2[

a(t)2

y2 + a(0)2
]2e

2ln [
(x−y)2+a(0)2

a(t)2
]

(A.0.210)

There are three regions of divergences:

1. I : x→ 0, y > ∆

2. II:y → 0, y > ∆

3. III: x, y → 0

When both x, y > ∆ and x → y there is a divergence, but it is of the

same form as I or II and is merely a permutation of indices: In the
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above we have kept x1 = 0 fixed, but there are other choices which will

produce three similar regions and this region (x, y > ∆ and x → y)

will be one of those.

Here ∆ is some finite arbitrary length. The coefficient of the divergence

cannot depend on ∆ because it is an arbitrary way to split up the region

of integration.

Region I: Let us Taylor expand the log in the last factor, about y2, which

is large:

e
2ln [

(x−y)2+a(0)2

a(t)2
]
= e

2ln [
y2+a(0)2+

X︷ ︸︸ ︷
x2 − 2x.y
a(t)2

]

= e
2(ln [

y2+a(0)2

a(t)2
]+ X

y2+a(0)2
− 1

2!
X2 1

(y2+a(0)2)2
+...)

Insert this into (A.0.210) and we get:

∫
d2x

a(t)2

∫
d2y

a(t)2
[

a(t)2

x2 + a(0)2
]2{1 +

2X

y2 + a(0)2︸ ︷︷ ︸
(i)

+X2 1

(y2 + a(0)2)2︸ ︷︷ ︸
(ii)

+..}

The leading term in this expansion corresponds to a disconnected graph

where x and 0 are connected and y is not connected to either of these. This

has to be subtracted out since, the cumulant expansion prescription is to

calculate connected graphs. So we are left with (i) and (ii). The x4 term is

finite (on doing the x integral). We get for Region I

−4π2ln [m2∆2]ln [
∆2

a(0)2
]
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Region II: Gives the same as above.

Thus the total contribution from Region I and II =

−8π2ln [m2∆2]ln [
∆2

a(0)2
]

Notice that there is no ∆ independent contribution to ln a(0). That can

come only when all three vertices are together. This will come from region

III.

Region III:

We go back to (A.0.210) in this region of integration.

∫ ∆

0

d2x

a(t)2

∫ ∆

0

d2y

a(t)2
[

a(t)2

x2 + a(0)2
]2[

a(t)2

y2 + a(0)2
]2[

(x− y)2 + a(0)2

a(t)2
]2 (A.0.211)

We expand

[
1

x2 + a(0)2
][

1

y2 + a(0)2
][(x−y)2+a(0)2] =

1

x2 + a(0)2
+

1

y2 + a(0)2
−

Y︷ ︸︸ ︷
a(0)2 + 2x.y

(x2 + a(0)2)(y2 + a(0)2)

Squaring it produces six terms:

(a)

(
1

x2 + a(0)2
)2

(b)

(
1

y2 + a(0)2
)2

(c)

Y 2

(x2 + a(0)2)2(y2 + a(0)2)2
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(d)

2

(x2 + a(0)2)(y2 + a(0)2)

(e)

−2Y

(x2 + a(0)2)(y2 + a(0)2)2

(f)

−2Y

(x2 + a(0)2)2(y2 + a(0)2)

Terms (a) and (b) correspond to disconnected diagrams that are subtracted

out.

(c)

= 2π2[ln2 (
∆2

a(0)2
) + 1− 2ln (

∆2

a(0)2
) +O(a2)]

(d)

= 2π2ln2 ∆2

a(0)2

(e)

= −2π2ln
∆2

a(0)2

(f)=(e)

= −2π2ln
∆2

a(0)2

Any renormalizable theory cannot have divergences of the type ln∆2ln a(0)2.

Because ∆ is like momentum and the counter terms would have derivative

interactions to all orders. Thus the theory would be non-local.
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We can now check that the coefficient of ln ∆2ln a(0)2 is zero.

8π2 (from I + II) − 4π2 (from (c)) − 4π2 (from (d) = 0

The coefficient of ln a(0)2 is 8π2. Thus we get putting back the prefactors

1

8

F 3

(4π)3
8π22 ln

a(0)

∆

Since any value of ∆ is safe for extracting the divergence, we can extend the

region of integration to its full value which is ∆ = a(t) ≈ 1
m

.

This the modified F
4π

. So

F (t) =
F 3

8
ln

a(0)

a(t)

Thus the beta functions at this order is

βF = −F
3

8
(A.0.212)

134





Appendix B The sub-leading term for βF us-

ing ERG on the boundary

The action of the evolution operator is

∫
d2x1d

2x2Fx1x2t
δ2

δX1δX2

[
eib3.X3 + e−ib3.X3

2

][
eib2.X4 + e−ib2.X4

2

]
(B.0.213)

Here Xi means X(xi). We will drop the dot’s henceforth. Keeping terms

that contribute we get,

∫
d2x1d

2x2Fx1x2t
δ2

δX1δX2

[
e−ib3X3−ib2X4 + eib3X3+ib2X4

4

]
(B.0.214)

In the last expression the two terms that conserve momenta have been

retained. We look at the action of the evolution operator on the first term.

The second term gives an identical contribution.

∫
d2x1d

2x2Fx1x2t
δ2

δX1δX2

[
eib3X3+ib2X4

]
(B.0.215)

= (−b2
3F33t − b2.b3F34t − b2.b3F34t − b2

2F44t)e
i(b3+b2)X4 (B.0.216)

Here X3 has been taylor expanded and brought to X4. Therefore,

136



[
eib3X3+ib2X4 + e−ib3X3−ib2X4

4

]
(B.0.217)

becomes

1

2
cos(b2 + b3)X4 =

1

2
cosb1X4 (B.0.218)

Substituting (B.0.217) and (B.0.218) in (4.5.75) we get

GH

(4π)2

∫
d2x1d

2x2

a4
exp[−1

2
(−b2

3 − b2
2)F11t + b2.b3F12t] (B.0.219)

1

2
cos b1X(x2)

where F12t = −1
2
ln (x1−x2)2+a(t)2

(x1−x2)2+a(0)2

now we relabel x2 − x1 → y and x2 → x we get

=
GH

8

∫
dy2

a(t)2
e4t− b

2
3+b22

2
t

(
y2 + a(t)2

y2 + a(0)2

)−b2.b3
2 1

(4π)

∫
d2x

a(t)2
cos b1X(x)

(B.0.220)

a(t) is the IR cutoff therefore we drop y2 from the numerator and inte-

grate.

137



=
GH

8
e4t− b

2
3+b22

2
ta(t)−b2.b3−2 (a(t)2 + a(0)2)

b2.b3
2

+1 − a(0)2(
b2.b3

2
+1)

b2.b3
2

+ 1
(B.0.221)

1

(4π)

∫
d2x

a(t)2
cos b1X(x)

dropping a(0)2 from the first term.

=
GH

8
e4t− b

2
3+b22

2
t

1−
(
a(t)
a(0)

)−2(
b2.b3

2
+1)

b2.b3
2

+ 1

1

(4π)

∫
d2x

a(t)2
cos b1X(x) (B.0.222)

For b2.b3 close to –2 and for b2
2 = b2

3 = 4 we get,

GH

4
t

1

(4π)

∫
d2x

a(t)2
cos b1X(x) (B.0.223)
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Appendix C Fixing relative normalization of

the bulk and the boundary cou-

plings and computing λ3

C.1 Fixing relative normalizations between φ0, γ0, χ0

and F, G, H.

To compute the relative normalization between the bulk and the boundary

for the couplings φ0 and F we compare the generating functionals of the two

point functions calculated for both sides.

The generating function for the two point function for the boundary the-

ory is

GF2 =
A2

4

F 2

(4π)2
(C.1.224)

A2 =

∫
d2x1d

2x2
1

(~x1 − ~x2)2∆
(C.1.225)

The generating function for the two point function for the bulk is

S2 =
2

π
A2φ

2
0/(2!) (C.1.226)

Comparing S2 and GF2 we get

φ0 =
1

8
√
π
F (C.1.227)
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Similarly,

γ0 =
1

8
√
π
G (C.1.228)

χ0 =
1

8
√
π
H (C.1.229)

C.2 Computing λ3

To compute λ3 we compare the generating function for the three point func-

tion of the boundary theory and for the bulk theory.

The generating function for the three point function of the boundary

theory is

GF3 =
A3

4

FGH

(4π)3
(C.2.230)

A3 =

∫
d2x1d

2x2d
2x3

1

(~x1 − ~x2)∆123(~x2 − ~x3)∆231(~x3 − ~x1)∆312
(C.2.231)

Here ∆ijk = ∆i + ∆j −∆k.

For the bulk theory

S3 = − λ3

2π2
A3φ0γ0χ0 (C.2.232)
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Comparing GF3 and S3 we get

λ3 = −4(π)1/2 (C.2.233)

C.3 Relative normalization between σ0 and ξ0

To fix this we calculate the generating function of 〈(∂X(x1))2(∂X(x2))2〉 from

the bulk and boundary and compare them.

Bulk:

GFσ2
0

=
1

2
σ2

0

Γ(∆ + 1)

πd/2Γ(∆− d/2)

∫
d2x1d

2x2
1

x2∆
12

(C.3.234)

GFσ2
0

=
σ2

0

π
A2 (C.3.235)

Boundary:

GFξ2
0

=
1

2!

ξ2
0

(4π)2

∫
d2x1d

2x2

〈
(∂X(x1))2(∂X(x2))2

〉
(C.3.236)

〈
(∂X(x1))2(∂X(x2))2

〉
=

2

x4
12

(C.3.237)

Therefore

GFξ2
0

=
1

2!

ξ2
0

(4π)2

∫
d2x1d

2x2
2

x4
12

(C.3.238)
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GFξ2
0

=
ξ2

0

(4π)2
A2 (C.3.239)

Comparing,

σ0 =
ξ0

4
√
π

(C.3.240)

C.4 Fixing λσ

To fix λσ we will compute 〈(∂X(x1))2 cos bX(x2) cos bX(x3)〉 from the bulk

and the boundary and compare them.

Bulk:

From (E.0.280)

Sσ3 =
−λσ
π2

σ0φ
2
0(1 + δ)A3[ ] (C.4.241)

where [ ] =

[
Γ(

∆2+∆3−∆1
2

)Γ(
∆2+∆3+∆1−d

2
)

Γ(∆2)Γ(∆3)
− Γ(

∆2+∆3−∆1
2

)Γ(
∆2+∆3+∆1−d+2

2
)

Γ(∆2)Γ(∆3+1)

]
Boundary:

We want to compute 〈(∂X(x1))2 cos bX(x2) cos bX(x3)〉

〈
(∂X(x1))2 cos bX(x2) cos bX(x3)

〉
non−vanishing = 2/4

〈
(∂X(x1))2 exp ibX(x2) exp−ibX(x3)

〉
(C.4.242)

We change to complex coordinates. (∂X(x1))2 → 4∂X1∂̄X1. We get,

2
〈
∂X1∂̄X1 exp ibX(x2) exp−ibX(x3)

〉
(C.4.243)

143



We consider the product exp iα∂X1 exp iβ∂̄X1, where α and β are close

to zero.

〈
exp iα∂X1 exp iβ∂̄X1 exp ibX(x2) exp−ibX(x3)

〉
(C.4.244)

= −αβ
〈
∂X1∂̄X1 exp ibX(x2) exp−ibX(x3)

〉
(C.4.245)

is the part to linear order in αβ. The coefficient of the −αβ/2 term will

give us the correlator (C.4.242).

Now,

〈
exp iα∂X1 exp iβ∂̄X1 exp ibX(x2) exp−ibX(x3)

〉
(C.4.246)

= exp

[
1

4

∫
d2zd2z′

(
δ(z − z1)δ(z̄ − z̄1)α∂ + δ(z − z1)δ(z̄ − z̄1)β∂̄

(C.4.247)

+ δ(z − z1)δ(z̄ − z̄1)b+ δ(z − z1)δ(z̄ − z̄1)(−b)
)(

ln(z − z′)(z̄ − z̄′)
)

(
δ(z − z1)δ(z̄ − z̄1)α∂ + δ(z − z1)δ(z̄ − z̄1)β∂̄

+ δ(z′ − z1)δ(z̄′ − z̄1)b+ δ(z′ − z1)δ(z̄′ − z̄1)(−b)
)]
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For b2 = 4(1 + δ) the expression becomes

(−αβ/2)
−2b2

4

1

z2
12z

2
13z

2
23

(C.4.248)

Therefore, the generating function from the boundary theory is,

GFσ3 =
1

2!

−2ξ0F
2(1 + δ)

(4π)3
A3 (C.4.249)

Comparing (C.4.241) and (C.4.249),

λσ =
4
√
π[

Γ(
∆2+∆3−∆1

2
)Γ(

∆2+∆3+∆1−d
2

)

Γ(∆2)Γ(∆3)
− Γ(

∆2+∆3−∆1
2

)Γ(
∆2+∆3+∆1−d+2

2
)

Γ(∆2)Γ(∆3+1)

] (C.4.250)

Thus the square brackets cancel out in Sσ3. The correlator remains finite

on-shell.
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Appendix D Position space calculation for βF

from the bulk for the sub-leading

term.

S3 = −λ3

∫
ddx1

∫
ddx2

∫
ddx3

∫
dd+1y y

−(d+1)
0 C∆1C∆2C∆3 (D.0.251)

φ0 γ0 χ0
y∆1+∆2+∆3

0

(y2
0 + (~y − ~x1)2)∆1(y2

0 + (~y − ~x1)2)∆2(y2
0 + (~y − ~x2)2)∆3

After Feynman parameterization we get,

= −λ3

∫
ddx1

∫
ddx2

∫
ddx3

∫
dd+1y C∆1C∆2C∆3 φ0 γ0 χ0 (D.0.252)∫

dα1dα2dα3α
∆1−1
1 α∆2−1

2 α∆3−1
3 δ(Σ3

i=1αi − 1)
Γ (Σ3

i=1∆i)

Π3
i=1Γ (∆i)

y
−(d+1)+∆1+∆2+∆3

0

(y2
0 + (~y − Σn

i=1αi~xi)
2 + Σ3

i<j=1αiαj(~xi − ~xj)2)∆1+∆2+∆3

We do the y0 and ~y integrals

S3 = −λ3

πd/2Γ
(

Σ3
i=1∆i

2

)
Γ
(

Σ3
i=1∆i−d

2

)
2Π3

i=1Γ (∆i)

∫
ddx1

∫
ddx2

∫
ddx3 C∆1C∆2C∆3 φ0 γ0 χ0

(D.0.253)∫
dα1dα2dα3

α∆1−1
1 α∆2−1

2 α∆3−1
3 δ(Σ3

i=1αi − 1)

(Σ3
i<j=1αiαj(~xij)

2)
∆1+∆2+∆3

2

Now we transform from αi’s to βi’s. αi = β1βi for i ≥ 2, α1 = β1. The
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Jacobian for n parameters is βn−1
1 . Here n = 3.

S3 = −λ3

πd/2Γ
(

Σ3
i=1∆i

2

)
Γ
(

Σ3
i=1∆i−d

2

)
2Π3

i=1Γ (∆i)

∫
ddx1

∫
ddx2

∫
ddx3 C∆1C∆2C∆3 φ0 γ0 χ0

(D.0.254)∫
dβ1dβ2dβ3

β∆2−1
2 β∆3−1

3 [δ(β1 − 1/(1 + β2 + β3))]/(1 + β2 + β3)

β1(β2x2
12 + β3x2

13 + β2β3x2
23)

∆1+∆2+∆3
2

After doing the β1 integral we get

S3 = −λ3

πd/2Γ
(

Σ3
i=1∆i

2

)
Γ
(

Σ3
i=1∆i−d

2

)
2Π3

i=1Γ (∆i)

∫
ddx1

∫
ddx2

∫
ddx3 C∆1C∆2C∆3 φ0 γ0 χ0

(D.0.255)∫
dβ2dβ3

β∆2−1
2 β∆3−1

3

(β2x2
12 + β3x2

13 + β2β3x2
23)

∆1+∆2+∆3
2

S3 = −λ3

πd/2Γ
(

Σ3
i=1∆i

2

)
Γ
(

Σ3
i=1∆i−d

2

)
2Π3

i=1Γ (∆i)

∫
ddx1

∫
ddx2

∫
ddx3 C∆1C∆2C∆3 φ0 γ0 χ0

(D.0.256)∫
dβ2dβ3

β∆2−1
2 β∆3−1

3

(β2(x2
0 + x2

12) + β3(x2
0 + x2

13) + β2β3(x2
0 + x2

23))
∆1+∆2+∆3

2

Here we have introduced x2
0’s in the denominator(x2

0 → 0). These act as

UV regulators. We do the β2 and β3 integrals. Any factors of δ coming from

the two beta functions from the two beta integrals contribute at O(δφ0γ0χ0).
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Therefore they are dropped. We set d = 2 and ∆2 = 2(1 + δ), particle 2 is

offshell. We substitue C∆i
’s. We set ~x1 to zero using translation invariance,

multiply and divide by R, the IR cut-off. Therefore, the integral simplifies

to

S3 = − λ3

2π2

∫
d2x1d

2x2d
2x3

R6

φ0γ0χ0(
x2

0+x2
2

R2

)(1+δ) (
x2

0+x2
3

R2

)(1−δ) (
x2

0+x2
23

R2

)(1+δ)

(D.0.257)

We will now calculate the log divergent term. The x2 integral is,

∫
d2x2

R2

1(
x2

0+x2
2

R2

)(1+δ) (
x2

0+x2
3

R2

)(1−δ) (
x2

0+x2
23

R2

)(1+δ)
(D.0.258)

The log divergent contributions come from the two regions, when (i)

~x2 → ~x3, (ii) ~x2 → 0.

(i)~x2 → ~x3.

Set ~y = ~x2 − ~x3. At ~x2 = ~x3, ~y = 0.

∫
d2y

R2

1(
x2

0+(~y+~x3)2

R2

)(1+δ) (
x2

0+x2
3

R2

)(1−δ) (
x2

0+y2

R2

)(1+δ)
(D.0.259)

We taylor expand the first term in the denominator. We get,
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∫
d2y

R2

1− (1 + δ)
(
~y2−2~x3.~y
x2

0+~x2
3

)
(
x2

0+~x2
3

R2

)(1+δ) (
x2

0+x2
3

R2

)(1−δ) (
x2

0+y2

R2

)(1+δ)
(D.0.260)

We drop the δ term. It is higher order. We look at,

∫
d2y

R2

−
(
~y2−2~x3.~y
x2

0+~x2
3

)
(
x2

0+~x2
3

R2

)(
x2

0+x2
3

R2

)(
x2

0+y2

R2

) (D.0.261)

Add and subtract x2
0.

∫
d2y

R2

−
(
x2

0+~y2−x2
0−2~x3.~y

x2
0+~x2

3

)
(
x2

0+~x2
3

R2

)(
x2

0+x2
3

R2

)(
x2

0+y2

R2

) (D.0.262)

The x2
0 +~y2 term cancels in the numerator and the denominator. We drop

that.

∫
d2y

R2

−
(
−x2

0−2~x3.~y

x2
0+~x2

3

)
(
x2

0+~x2
3

R2

)(
x2

0+x2
3

R2

)(
x2

0+y2

R2

) (D.0.263)

∫
d2y(−2~x3.~y) = −2

∫ 2π

0

ydydθ3yx3y cos θ3y = 0 (D.0.264)

Therefore we drop this term. We get
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∫
d2y

R2

−
(
−x2

0

x2
0+~x2

3

)
(
x2

0+~x2
3

R2

)(
x2

0+x2
3

R2

)(
x2

0+y2

R2

) (D.0.265)

which in the limit x0 → 0 goes to zero.

We look at

(
x2

0 + y2

R2

)(1+δ)

=

(
x2

0 + y2

R2

)(
1 + δ log

(
x2

0 + y2

R2

))
(D.0.266)

in the denominator. Again drop the δ term. Set ~x3 = ~R,

∫
d2y

R2

1(
x2

0+R2

R2

)(1+δ) (
x2

0+R2

R2

)(1−δ) (
x2

0+y2

R2

)(1+δ)
(D.0.267)

The log divergent part is

= π

∫ R2

x2
0

dy2

R2

1(
x2

0+y2

R2

)(1+δ)
(D.0.268)

= π log
R2

x2
0

(D.0.269)

A similar computation for ~x2 → 0 gives an identical contribution. The
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total contribution from both regions is,

= 2π log
R2

x2
0

(D.0.270)

The partition function becomes

S3 = −1

2
4λ3πφ0γ0χ0

∫
d

(
x2

1

R2

)
d

(
x2

3

R2

)
log

R

x0

(D.0.271)

This expression corrects b1 when x2 → x3 and b3 when x2 → x1 . These

are both equal in magnitude. We only want the correction to b1, therefore

we divide the expression above by 2 to get the contribution of the generating

functional to the beta function for cos b1X.

S3 = −λ3πφ0γ0χ0

∫
d

(
x2

1

R2

)
d

(
x2

3

R2

)
log

R

x0

(D.0.272)
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Appendix E Calculation for βδ.

We start with

Sσ3 = −1

2
λσ

∫
dd+1y

√
g ḡµν∂µφ(y) ∂νφ(y) σ(y) (E.0.273)

=− 1

2
λσσ0φ

2
0C∆1C∆2C∆3

∫
dd+1y

√
g y2

0 ∂µ

(
y0

(y2
0 + (~y − ~x1)2)

)∆1

(E.0.274)

∂µ
(

y0

(y2
0 + (~y − ~x2)2)

)∆2
(

y0

(y2
0 + (~y − ~x3)2)

)∆3

Set ~x1 = 0. Under inversion [27],

y0

y2
0 + (~x− ~y)2

→ ~x′2
y′0

y
′2
0 + (~x′ − ~y′)2

(E.0.275)

∂′µy′0
∆ = ∂′0y′0

∆ = ∆y′0
∆−1.

∂′
µ=0

(
y′0

(y′0
2 + (~y′ − ~x′i)

2)

)∆i

=

(
∆iy

′
0

∆i−1

(y′0
2 + (~y′ − ~x′i)

2)∆i

)
−

(
∆iy

′
0

∆i 2y0

(y′0
2 + (~y′ − ~x′i)

2)∆i+1

)
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Sσ3 =− 1

2
λσσ0φ

2
0C∆1C∆2C∆3∆1∆2x

′2∆2

2 x′
2∆3

3

∫
dd+1y′ y′0

−(d+1)+2+∆1−1+∆3+∆2−1

(E.0.276)(
1

(y′0
2 + (~y′ − ~x′3)2)

)∆3
(

1

(y′0
2 + (~y′ − ~x′2)2)∆2

)

+
1

2
λσσ0φ

2
0C∆1C∆2C∆3∆1∆2x

′2∆2

2 x′
2∆3

3

∫
dd+1y′ y′0

−(d+1)+2+∆1−1+∆3+∆2+1

(
1

(y′0
2 + (~y′ − ~x′3)2)

)∆3
(

2

(y′0
2 + (~y′ − ~x′2)2)∆2+1

)

Thus, setting ~x1 to zero and using inversion we have reduced the number

of factors in the denominator from 3 to 2. This simplifies Feynman parameter

integrals significantly. Now we Feynman parameterize and do y′ integrals.

Doing the integrals and dropping pre-factors we get,

π

2

Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d

2
)

Γ(∆3 + ∆2)

Γ(∆3 + ∆2)

Γ(∆2)Γ(∆3)
(E.0.277)∫

dα3 dα2 δ(α3 + α2 − 1)α∆3−1
3 α∆2−1

2

1(
α2α3

~x′
2

23

)∆2+∆3−∆1
2

− 2
π

2

Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d+2

2
)

Γ(∆3 + ∆2 + 1)

Γ(∆3 + ∆2 + 1)

Γ(∆2)Γ(∆3 + 1)∫
dα3 dα2 δ(α3 + α2 − 1)α∆3

3 α∆2−1
2

1(
α2α3

~x′
2

23

)∆2+∆3−∆1
2

The α integrals are:

The first,
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∫
dα3 dα2 δ(α3 + α2 − 1)α∆3−1

3 α∆2−1
2

1

(α2α3)
∆2+∆3−∆1

2

= 1 (E.0.278)

The second,

∫
dα3 dα2 δ(α3 + α2 − 1)α∆3α∆2−1 1

(α2α3)
∆2+∆3−∆1

2

= 1/2 (E.0.279)

Use (~x′
2∆

= 1/~x2∆) and

(~x′−~y′)2(∆1+∆2−∆3)/2 = (~x−~y)2(∆1+∆2−∆3)/2/(~x2(∆1+∆2−∆3)/2~y2(∆1+∆2−∆3)/2).

Sσ3 =− π

4
λσσ0φ

2
0C∆1C∆2C∆3∆1∆2

∫
d2x1d

2x2d
2x3 (E.0.280)

1

(~x2
23)

∆2+∆3−∆1
2

1

(x2
2)

∆2−∆3+∆1
2

1

(x2
3)
−∆2+∆3+∆1

2[
Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d

2
)

Γ(∆2)Γ(∆3)
−

Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d+2

2
)

Γ(∆2)Γ(∆3 + 1)

]

Where now we have explicitly written integrals over the boundary coor-

dinates(which were suppressed earlier). We insert a UV cutoff x2
0 as before

and multiply and divide by powers of R2, we get
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Sσ3 =− π

4
λσσ0φ

2
0C∆1C∆2C∆3∆1∆2

∫
d

(
x2

1

R2

)
d

(
x2

2

R2

)
d

(
x2

3

R2

)
(E.0.281)

1(
x2

0+~x2
23

R2

)∆2+∆3−∆1
2

1

(
x2

0+~x2
2

R2 )
∆2−∆3+∆1

2

1

(
x2

0+~x2
3

R2 )
−∆2+∆3+∆1

2[
Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d

2
)

Γ(∆2)Γ(∆3)
−

Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d+2

2
)

Γ(∆2)Γ(∆3 + 1)

]

C∆i
= 1/π. The square bracket vanishes. This gets renormalized when

we fix λσ. We have taken particle 2 offshell. Therefore ∆2 = 2(1+δ). ∆1 = 2.

We get the same x2 integral as before (D.0.258). The contribution from

the x2 integral from before is

4π log
R

x0

(E.0.282)

The contribution to the generating function is half of this as before.

2π log
R

x0

(E.0.283)

Therefore Sσ3 becomes

Sσ3 =− 2π(1 + δ)λσσ0φ
2
0

∫
d

(
x2

1

R2

)
d

(
x2

3

R2

)
log

R

x0

(E.0.284)[
Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d

2
)

Γ(∆2)Γ(∆3)
−

Γ(∆2+∆3−∆1

2
)Γ(∆2+∆3+∆1−d+2

2
)

Γ(∆2)Γ(∆3 + 1)

]
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