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A bstract

We will show th a t automorphism group of any Riemann surface X  of genus g > 2 is finite. We will 
also give a bound to the cardinality of the automorphism group, depending on the genus, specifically 
A ut(X ) <  84(5—1)- This bound will be obtained by applying Hurwitz formula to  the natural holomorphic 
map from a Riemann surface to  i t ’s quotient under action of the finite group A ut(X ). The finiteness 
is proved by considering a homomorphism from A ut(X ) to  the perm utation group of a finte set and 
showing th a t the kernel is finite. The finte set under consideration is the set of Weierstass points, p  is 
a Weierstass point, if the set of integers n, such th a t there is no /  e  M { X )  whose only pole is p with 
order n, is not {1,••• ,<?}• All these are explained in Chapter 4. Riemann-Roch Theorem is heavily 
used which is proved in Chapter 3. Proof of Riemann-Roch Theorem requires existence of non-constant 
meromorphic functions on a Riemann surface, which is proved in C hapter 2. Basics are dealt with in 
Chapter 1.
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2 1. RIEMANN SURFACE OF ANY GENUS

Uniqueness of n  follows from the fact th a t the map z  » z n has n  preimages for each non-zero point. Hence 
so has F  for each point in a neighbourhood of p  and not equal to  p. But this quantity  is independent of 
the charts chosen. Hence n  is unique. □

D e fin itio n  1.3. Given a holomorphic map F  : X  —> Y  between two Riemann surfaces, and a point 
p  € X , the unique integer n  such that F  is locally of the form  z  h-> z n , is called the multiplicity of F  at 
the point p, and is denoted by m ultp(i?).

If F  is locally represented by z >->■ zn in some param etric disk (tha t is, image of some disk under 
chart map), then we note th a t given any non-zero point zq in the disk, we can find a smaller disk within 
the given disk, centred at zq, which is mapped injectively by z 4  z n . Hence no other point in the 
param etric disk has multiplicity greater than  one. Thus points of multiplicity greater than  one form a 
discrete set in the domain Riemann surface.

D e fin itio n  1.4. Points with multiplicity greater than one are called ramification points and their images 
are called branch points.

Thus on a compact Riemann surface there can be only finitely many ramification points. Consider 
the map <j> : D  —> D  such th a t m z " .  Any non-zero point has n  preimages, each w ith multiplicity 1, 
whereas the point 0 has only 0 as i t ’s preimage, w ith multiplicity n. Taking cue from this observation 
we have the following proposition.

P ro p o s it io n  1.5. Let F  : X  —» Y  be a non-constant holomorphic map between two compact Riemann  
surfaces. Then the quantity ^ p6F _ i^ m u l tp(F ) is independent of q e  F .

F irst we prove some general results which will be used in the proof.

L e m m a  1.6. Let F  : X  —> Y  and G  : X  —» Y  be two holomorphic map between Riemann surfaces. I f  
F  = G on a subset with limit point, then F  = G.

P r o o f .  Consider the set A := {x  £ X  : F{x)  =  G(x)}. We will show th a t this set is bo th  open 
and closed in X ,  which is connected and so A  will be the whole of X .  T h a t A  is closed is clear from 
the fact th a t Y  is Hausdroff and A  is the preimage of the diagonal of Y  x Y  under the continuous map 
x  i-J- (F (x) ,G (x)) .  Now  we prove th a t A  is open. Let the subset w ith limit point be S  and p  be a limit 
point of S.  Let ( U and (f/2, ^ 2) be charts of X  and Y  around p and F{p) = G(p), respectively. 
Then locally F  and G are represented by holomorphic functions /  and g, respectively. Derivatives of 
each order of /  and g can be calculated from their values in 4>\(Ui PI S),  where they are equal. But these 
are the coefficients of power series representation of /  and g in neighbourhood of <f>i(p). Hence /  =  g in 
a neighbourhood of 4>i(p) and thus F  =  G  in a neighbourhood of p. Therefore A  is open too. □

L e m m a  1.7. Let F  : X  —> Y  be a non-constant holomorphic map between two Riemann surfaces. Then 
the preimage of any point is discrete. I f  X  is compact then the preim,age is finite non-em,pty.

P r o o f .  Let y e  y  and F{x)  =  y. Let (Ui,<j>i) and (C/2, 02) be charts of X  and V, centred at x  
and y respectively. Then locally F  is represented by a holomorphic function g between the 0i(C/i) and 
^ 2(^ 2), such th a t g(0) = 0 .  If g = 0, then F  is equal to  a constant map on an open set, hence is constant, 
by previous theorem. This is a contradiction. Therefore g is non-constant and by discreteness of zeros 
of a holomophic function in the complex plane, there exists a punctured neighbourhood of 0, on which g 
is non zero. Hence F  does not take the value y in a punctured neighbourhood of x. Therefore preimages 
of y forms a discrete set. If X  is compact then any discrete set must be finite. Also F  is continuous, and 
hence F ( X )  is compact and so it is closed in Y .  B ut the Open M apping Theorem in complex analysis 
implies th a t any holomorphic map between Riemann surfaces is also open. Therefore F ( X )  is open too. 
Since Y  is connected, we must have F ( X )  = Y .  Thus F  is surjective and hence preimage of any point 
is non empty. , □

Now we prove Proposition 1.5

P r o o f .  We wish to  prove th a t the map q h-> ^ peF_i^^m ultp(i7') is locally constant. Since Y  is 
connected, this is enough to prove th a t the map is constant. Consider any point y £ Y .  We will use 
Proposition 1.2 to  find a neighbourhood of y on which the above map is constant. Notice in the proof of 
Proposition 1.2, we started  with charts in both  domain and range, but modified only the domain chart. 
So we can find disjoint param etric disks U\, ■ ■ ■ ,U n centred at x i ,  ■ ■ ■ , x n , respectively, and a param etric 
disk V  centred at y, such th a t near each Xi, F  is represented by a map z z Ui, in local coordinates, from 
Ui to V.  We know th a t the proposition is true for maps D  —> D, z  i->- zn and hence for a disjoint union
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of such maps, F>i —> D. Therefore it is true for F  restricted to  ] J i Ui. So the only thing to prove is 
that preimage of V  is contained in Ui. We can hope to  shrink V  to  achieve this. T hat shrinking will 
work is proved below.

Given a neighbourhoods Ui, • ■ ■ , Un of , x n respectively, we will prove th a t there exists a
neighbourhood V  of y, such th a t F - 1 (V) C U i^ i-  Suppose not, then there exists a sequence {y^} 
converging to y, such th a t each yk has a preimage not lying in any of the Ui s. For each y^ choose such 
a preimage pk • Since X  is compact, therefore {pfc} has a convergent subsequence which converges at a 
point p, say. The image of this subsequence is a subsequence of j/fc and hence converges to  y. Therefore 

hence p = xi for some 1 < I < n. This implies th a t a subsequence of {pk}, which lies outside 
Ui converges to x;, which is a contradiction. □

Now we. can define,

D e f in i t io n  1.8. Let F  : X  —>• Y  be a non-constant holomorphic map between two compact Riemann  
surfaces. Then the integer S p g f - i ( 9)m ultp(F), which is independent of q, is called the degree of F  and 
is denoted by deg(F).

2. M e ro m o rp h ic  fu n c tio n s

Meromorphic function on complex plane are holomorphic ones w ith special kind of singularities a t 
discrete points. We can similarly define meromorphic functions on a Riemann surface as functions to 
C which near each point p , are holomorphic in a punctured neighbourhood and have either removable 
singularity or a pole a t p. We denote the set of such functions on a Riemann surface X ,  by M ( X ) .  
Corresponding to  each /  £ M .(X ) ,  there exits a holomorphic function F  : X  —> C ^ ,  defined as

, . _  J  f ( x ) ,  if x  is not a pole of /
*X \  oo, if a; is a pole of /

We leave it to the readers to check th a t th a t F  is indeed a holomorphic function. This correspondence 
is one to one.

We know in complex analysis th a t every meromorphic function g can be represented by a Laurent 
series near a point x  and the exponent of the lowest non-zero term  in the Laurent series is called the 
order of g a t p, denoted by ordp(<?). The order can also be described as the only integer k, for which 
limz->p(z — p)~kg ^  0 or co. In a Riemann surface if a meromorphic function /  is composed w ith the 
inverse of a chart map, then we get a meromorphic function in a region of the complex plane. Call it 
g. g has a Laurent series expansion. If we take a different chart then we will get a different Laurent 
series expansion. But we claim th a t the order is same in both  cases. To see this note th a t if g\ and 
52 are two local expressions of a meromorphic function /  w ith respect to charts centred at p and T  is 
the transition map between the two charts, then <72 =  <?i ° T.  We have T (0) = 0  and T '{0) 7̂  0. Let 
the local coordinate for g\ and g2 be z and w respectively. Then T(w) = z. Let ordj,(<7i) =  k. Then 
limI1,_).oW~,c32(w) =  limUĴ o w _fc3i o T (w )  = \imw^ 0w ~ kT (w )k ( z - kg1(z)) = T ' ( 0)fc limw^ o z ~ kg1(z) ±  0 
or 00. Therefore o r d p ^ )  =  k. Hence we can define

D e fin itio n  2.1. The order of a meromorphic function at a point p, denoted by ordp( f ) ,  is the order of
any any local representation of it  near p.

Order of /  is non-zero only at preimages of 0 or 00. Now we observe th a t for a point p in the 
preimage of 0, ordp( /)  is same as multiplicity of the corresponding F  : X  a t p. This follows
from the proof of Proposition 1.2, where we saw th a t the multiplicity a t p  is the exponent of the least 
non-zero term  of the local representation of F  with respect to charts centred at p and F(p). In this 
case the /  is such a local representation of F  a t the point p. Similarly if p is in the preimage of 00, 
then 1 / /  is such a local represented of F .  Hence m ultp(F ) =  ordp( l / / )  =  —ordp( /) ,  for all p in the 
preimage of 00. So suppose th a t x i, • ■ • , x n be the preimages of 0, and y  1, • ■ • , ym be preimages of 00. 
Then m ultx ,(F ) =  deg(F) =  YlJLi  m ultyi(F ). Therefore

Y ,  ordp ( /)  =  ord:c‘ ̂ ) +  ordw w
V  i  j

= ^ 2  m ultXi (F) -  ^ 2  multw (F)
i  j

= 0

Therefore we have proved the following Proposition.
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P ro p o s it io n  2 .2 . Let X  be a compact Riemann surface and f  6 M ( X )  be non constant. Then
E  p ordp( / )  = 0.

3. H u rw itz  fo rm u la

Compact Riemann Surfaces are also smooth 2-manifolds. Therefore we can make sense of genus of a 
compact Riemann surface. We have seen th a t a non-constant holomorphic map from a compact Riemann 
surface forces the range to be compact. Existence of such a map also puts a restriction on genus of the 
range. This restriction is described by the Hurwitz Formula.

T h e o re m  3.1. Let F  : X  —> Y  be a non constant holomorphic map between two compact Riemann  
surfaces. Then

2g(X )  -  2 =  deg(F)(2g(Y)  -  2) +  [multp(F ) -  1]
pex

P r o o f .  Consider a triangulation of Y ,  such th a t each branch point is a vertex. (T hat every Riemann 
surface can be trangulated  is explained in [5], C hapter 1, Section 8, we assume this fact here.) Notice 
from the proof of Proposition 1.2 th a t F  : X \{ram ification points} —¥ Y \{branch points} is a covering 
map. So we can lift the simplexes (minus some vertices) to  X  \  {ramification points}. Plugging in the 
ramification point by vertices we have a triangulation of X .  We know th a t the Euler number defined 
as E  = v — e + / ,  where v, e and /  are the number of vertices, edges and and faces respectively of a 
triangulation, is independent of the triangulation. It is equal to  2 — 2g, where g is the genus of the surface. 
Now we try  to compute the Euler number of X  in term s of th a t of Y .  Let v, e and /  be the number of 
vertices, edges and and faces respectively of Y  and v', e' and / '  be those of X .  Since branch points occur 
only a t vertices of V, therefore the number of edges and faces of X  are just deg(F) ■ e and deg(F) ■ f  
respectively. Let g b e a  vertex of Y ,  then  number of i t ’s preimages counting multiplicity is deg(F). But 
we have counted each point p £  F ~ 1(q), m ultp(F ) times. So we have to  subtract m ultp(F ) — 1 for each 
p. Hence |F _1(?)| =  deg(F) -  J2pEf  _ i^ m u ltp(F ) — 1. Then

v' =  (dee(i?) “  [muM F ) - 1])
q vertex of Y  P ^ F ~ 1{q)

=  deg ( F ) v -  [multp( F ) - l ]
q vertex of Y  p £ F ~ 1(q)

=  deg(F)v -  [multp(F ) -  1]
p  vertex of X

Thus the Euler number of X  can be calculated as

2g (X )  -  2 =  - v '  +  e ' - f

= - d e g (F)v -  [multp(F ) -  1] +  deg(F) • e -  deg(F) ■ /
p  vertex of X

= deg(F)(25 (X) -  2) +  [multp(F ) -  1]
pex

where the last equality is because all ramification points are vertices. □

4. B ra n c h e d  co v e rin g  sp a c e  th e o ry

Now we begin to  see how to construct a Riemann surface of any genus. We note from proof of 
Proposition 1.5, th a t except for finitely many points, a non-constant holomorphic map between two 
Riemann surfaces is a covering map. The domain along w ith such a map is called a branched covering. 
So we start w ith a familiar Riemann surface and construct a branched covering, specifying the number 
of branch points and the multiplicity of their preimages in such a way th a t the  Hurwitz formula yields 
the desired genus for the constructed cover.

We know th a t given a perm utation representation n (X ,  x q )  -» Sd, where Sd is the symmetric group 
of order d and t t (X ,xq)  is the fundamental group of a connected, locally pa th  connected, semilocally 
simply connected topological space X ,  we can construct a d sheeted covering space p : X  —► X  such 
th a t the group action ir(X, x q )  —> Perm (p- 1(:ro)) is exactly the perm utation representation we started  
with. (See [1], pg. 68 for the construction.) Note th a t all the restrictions on X  are satisfied if it is 
a Riemann surface, since a Riemann surface is locally euclidean and connected. Also when X  is a 
Riemann surface, we would like the covering space X  to be a Riemann surface again, such tha t, the
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: : r i r i  r ; i  1 .  l  l *  -  »ee h » w « » — 1̂  „ t x  ^  « »  ^ « « » »

7r(X ,a :o )-> Perm (P H^o))-
T m a  4 i  Let p • x  -> X  &e a d sheeted covenng space, where X  is path connected and let the 
L e m m a  4 .1 . L p  ■ Penn(p_ 1(x0)). Then X  is path connected i f  and only if
corresponding group action be p . i t{X ,xa)  ™  yp \ a))
the action p is transitive. _  _

P r o o f  We recall how ^ X .a o )  acts on the set p ~ \ x 0). Let M  £ n ( X , x 0) and x 0 £ p (*o). Let 
P r o o f .  We recall now k ^  o; =  ( , Nqw if x  is path  connected then given any

t b; pt t s  r S  S“  S  3 E  Notice th a t - P  based a t

E f t l  « fd  poinTmust C a p Z t T ^ t 7 -  Therefore f  lies in the same component as th a t of p ' 1 (*oV

Thus X  is pa th  connected.
This Lemma implies th a t whenever we have a  transitive perm utation representation a (X , *„) a,

we can construct a Riemann surface X  and perm utation representation we
such th a t, the group action k \ X , xq) re rm ^ r j

started with. ,  t j ;™ -™  qnrface Let Y  be a Riemann
Now we try  to  extend this resnit tor branched cove,, 0^ ™ “ ”  ^  be  m  point,

surface and choose finite y many^poin s 1 , ^  n ̂  p ^ ^ a t i o n  representstion ir(V, so) -> S d,

w e c ^ T o n s tru c t^ ^ e m a rm  ^ ^ ^ p ^ n n ^ t io n 'r e p r e s e n ta t io i f v r e  stOTt^i

v - i n v * )  iq n cover of W* which is homeomorphic to  punctured disk . we suu 
Then F  [W  ) is a cove , n « n Hence F _ 1( W )  is a disjoint union of open sets
connected cover of -D is of the form , , ,. , • homcomorphism </>,-, such th a t
U*, 1 <  j  <  m ,, each homeomorphic to the unit punctured disk D  via a homeomorpi
the following diagram commutes.

0

F \u *

U* ---- D*

0 M- Zfĉ

a precise definition for hole chart.

D e fin itio n  4 , .  «  X  h  a « . -  ! " ,*  “ ej  S t
that, V  contains an open punctured disk B  -  {z  6 «_ . U < || oil

w  m  C E7
tW -H B *))  =  {z £ c  : 0 <  II* -  zoll < £}

W e see th a t ^  are hole charts in V , can be

and with radius a „ T r 1 1“  “ em an^sm faces and let V and V be
We first make the ,dea of glu.rng p rec ise^L * tx  AwulI1,  , ha t the,e  exists a  biholomorpl.ie map
two non-empty open subsets v P , , y  v,v identifying u ~  0 (u), when u £  U .
j  . r ; y  Then we can construct a quotient space o i a I J i  y X, r . u x j  Rut

^ e Z ^ e l So w l h ^ t o  assume

this condition and remember to check it every time we make such a « t m c m  ^  ^  inclusionS of

X a n d V m  bo th  and ®  homeomorphisms onto their image. For

v v *  *
w * --------* D
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every chart (U,h) in X  we specify th a t (i x {U),h  o i ^ 1) is a chart of Z.  Similar charts are constructed 
for points in iy (Y ). Now we have to check compatibility. Given a pair of charts there are two cases. 
One in which bo th  of them  are constructed using charts of the same space, either X  or Y; and the 
other in which the one chart is constructed from th a t of X  and the other from th a t of Y .  In the first 
case we can assume w ithout loss of generality th a t the two charts are of the form (ix (U), h ° i ^ )  and
( i x ( V ) , k o i ~ l ). Then the transform ation map is fcoi" 1 o (fto f" 1) - 1 : h(U) n/c(V) -> h(U) C k (V ) .  But
k o i ” 1 o (ft o =  k o i ' 1 o ix  o h r 1 = k o ft.- 1 , which being a transform ation map for charts in X ,  is
holomorphic. In the second case the two charts are of the form (ix (U ), f to i" 1) and (iy (V ), k o i y 1). Then 
the transform ation map simplifies to k o i y 1 o i x o f t - 1. B ut i y 1 o i x \U = <j>, which is holomorphic map 
between U and V.  Hence k o i~ l o ix  o ft-1 is also holomorphic. Therefore the charts are all compatible.
So we have a complex structure on Z.

One more condition for Z  to  be a Riemann surface is th a t it should be connected. X  and Y  are 
connected. ix  and iy  are continuous. Therefore iX {X )  and iy (Y )  are also connected subsets of Z.  Also 
ix {X)  H iy  (Y) ^  0. Hence Z  is also connected. Therefore Z  is a Riemann surface.

Returning to the case of hole charts [/*, in the covering space V , we glue V  and the disk B  centred 
at 0 and of radius 1/2, via the map < p j : &*■ T hat the new space is Hausdorff will
follow from the second condition of Definition 4.2. We do this for every hole chart in the preimage of a 
punctured param etric disk around each bi. Let X  be the new Riemann surface obtained by plugging 
all these “holes” . We claim th a t X  is compact. If the neighbourhoods W  of bu  for each i, is removed 
from Y, then the resulting Riemann surface remains compact, since it is a closed subset of compact Y. 
Now X  is the union of the preimage of this Riemann surface under F  and the closures of the images of 
the finitely many glued disks. The first set in the union is a finite cover of a compact set, hence compact. 
Others are also compact. Hence X  being a finite union of compact sets, is itself compact.

We wish to  extend F  to  a map F '  : X  Y . Let a,j be a newly added point. Then a = i D{0) 
and iD(D) is a chart of X  containing a3. Also if U* was the hole chart corresponding to  this glueing, 
then i D{D) \  {0} =  U*. So rename i D{D) as Uj. Prom diagram (1), we see th a t rfrj1 o F  o ip\w . = 
iD |~i o F  o ip \w  ■ D* D*, maps z to  z k j . Therefore this map can be extended holomorphically to D, 
by sending 0 to  0. Basically this means th a t a is sent to  the branch point bt which is contained in W .  
Doing this for each new point induces a holomorphic extension of F  to X .

Notice th a t all the h ’s may not be branch points. If aj is in the preimage of bh  then F '  locally looks 
like z h4 z ki , where kj  may be equal to 1. If this happens for every aj in the preimage of bi, then 6* is 
not a branch point. We can at most say th a t the branch points are a subset of {&i, ■ • • , bn}. There is a 
way to  determine whether bi is a branch point.

Let W*  be the punctured neighbourhood of bi as before. W* is homeomorphic to a unit disk D . 
Consider the loop t M- \ e 27vit, 0 <  t  < 1 in D *. Let /? be its preimage in D* starting a t q £ W * . Y 
is pa th  connected. Then, there exists a pa th  a : y0 q where y0 is the base point of the fundamental 
group of Y, not equal to  any of the bi s. Then, the loop a f i o r x represents an element of m {Y , y0). Call 
such a loop small loop around bi and denote it by 7 . Notice th a t the action of [7 ] on F ~ l {y0) is the same 
as the action of \J3\ on F _ 1(g), where the identification of F _ 1(y0) and F ~ 1(q) is via the end points of 
lifts of 7 . As before, F ~ l {W m) = U7=i Uj  such th a t (X) holds' T llen’ ^  induces a cyclic Perm utation of 
order kj for the preimages of q in U*, for all j .  Thus, the cyclic structure of the perm utation induced 
by 0  is (Jfci,. . . ,  km ). Therefore, the same is true th a t for th a t of 7 . Thus, we arrive a t the following 
Lemma:

L e m m a  4 .3 . Let F  : X  ->• Y be a branched cover of a compact Riemann surface Y .  Let b £ Y  be a 
branch point. Let F - ^ b )  = {ax, . . . , am} , such that m ulta j(F) =  kj.  Then, the cycle structure of the 
permutation induced by a small loop around b is (fci,. . . ,  km).

This lemma implies th a t in the construction of branched cover corresponding to a transitive permu­
tation  representation of ir\ (Y \  {&i, • • ■ , bn}, xo), a point bi is not a branch point if and only if the action 
of a small loop around bi has the cyclic structure (1, • • • , 1).

5. R ie m a n n  su rfa c e  o f  a n y  g enus

Take the simplest compact Riemann surface, the Riemann sphere. Given any g £  N, we wish to 
construct a cover F  : X  -> such tha t, genus of X  will be g. Then the Hurwitz formula tells us

(2) 2g -  2 =  - 2deg(F) +  [multp(F) -  1]
pGX



5. RIEMANN SURFACE OF ANY GENUS 7

(F)  =  2 then a branch point can have only one preimage with multiplicity 2. Thus if 
If We take degt ; > then from (2) ] we have 2g -  2 =  - 4  +  n  or n  =  2g +  2. So choose 25 +  2
there are n b  ̂ ^  Lefc y  =  Coo \  {& 1 ; ;  &2ff+2}. The tti(V;x0) is the quotient of the free
p o in ts  {bi. • ■ ‘ \ 2£  gmall i00pS 7i around each bu  w ith the relation [71] • • • [729+2] =  1- We define a 
group sene.r.  ̂ . 7ri(V ,x0) -> S 2 by specifying [7 ;] =  (12), for each i. Since 2g + 2 is an even number,
hom°®o rp l* tg the reiation [71] • • ■ [723+2] =  1, and hence is well defined. Clearly p is a transitive
therefor ? ^  we construct a degree 2 branched cover X  of Cx  corresponding to  the perm utation
a c t io n .  ag -n t ^e previous section. Note th a t small loop 7j around each 6* has cyclic structure
^  H e n c e  b-’s are all branch points. Thus X  is a Riemann surface of genus g.

5 1- I f  there exists a non-constant holomorphic map F  : X  —»• of degree 2, then X  is
^alleTahyperelliptic Riemann surface.

rgi pg go, for a concrete construction of hyperelliptic surface. A hyperelliptic surface has 
^ lical automorphism which interchanges the two point in the fibre of any non-branch point of 

Coo and fixes the ramification points. Clearly this automorphism has order 2. It is called 
'erelliptic°involution and is generally denoted by o. Hyperelliptic involution will tu rn  up later in 

roving finiteness of automorphism groups Riem ann surfaces of genus g >  2.



CH A PTER 2

E xistence of M erom orphic Functions

1. H o lo m o r p h ic  a n d  H a r m o n ic  D if f e r e n t ia ls

' • s z -  -  -  * -
it will be specified th a t it belongs to  class C k for some k >  1. rn niueate operation denoted

In local coordinates (x, y) a 1-form u  looks like pdx  +  g i(- e ^ eed ^  check th a t these local
by * on w, as follows. In (x, y) coordinates is given by qdx + p  V- different local coordinates are
1-forms piece together to  give a global one. T hat is we need to c , r) ig another local coordinate
chosen then the two local 1-forms represent the same fo™ . Suppose ( y )  y ,)dyl be
and let cfr =  u  +  iv be the holomorphic transform ation between them . Let p {x  , y , 
the the representation of u  in these new coordinates. Then we know

\ q ’J  \ u y vyJ \ q ° ‘

Since ux = vy and u y = - v x , by Cauchy-Riemann equations, we can write
~ U y \  ( p O ^P’ \  _  (Ux ~Uy

(3) \ q ' J  \ U y  ux J  \ q °

This implies th a t .. ■
/ - a ’\  ux - u v\  ( ~ q ° 4 >q

p' J \ u y Ux J V P ° 1y y  j  \  V x /  \  '  " m (J * C<J _ _^
Thus ™  is well defined. We note th a t the conjugation ^ Z a c T d ^ n t ' l  We say
We know th a t differentials of the form d f , for some /  6 ( ),
differentials of the form *df are coexact differentials. nrnilv
D efin itio n  1.1. A 1-Jbm u, on a Ricmann surface X  is called a holamcrpUc d.ffcrcnt.a . /  . 

given by df, where f  is holomorphic. ^  rentia l of a holo-
Suppose to is a holomorphic differential. In local coordinates (x ,y ) ,  w is “ T uchy-R iem ann

morphic map / (* ,  y) =  u(«, y) +  * ( * ,  v), ^  looks like d / =  ^ ^ J o p e r a t i o n  on bo th

*  =  +  i  =  *d u - Hence df = dlt + ;  w ith  the  property  of
sides *df =  *du -  idu =  - i d f . Therefore =  - « j .  In  fact this necessary and  sufficient for a
being closed (which is same as being locally exact, by Poincare lemma) is necess y
1-form to be holomorphic.

Theorem 1.2. w € C 1 is holomorphic &  duj =  0 and * u j  =  - i o j -  ___ i p f a - i q d y .

Suppose u> =  pdx+qdy  in some local coordinate (x, y), then  *a;' =  J ^ ip .  thus we have
Hence the conditions =  —iu>, in local coordinate trans a es °  _  ag , / \ d x  +  iy&dx  A dy =  0, 
w = p d x  + ipdy. The closure condition then implies d{pdx + ipdy)  -  0 o g y  ^  ^  T h erefore p 
which implies |£  =  i f f .  If P =  u  +  iv,  then  this implies th a t ux -  vy an ig localiy of
is a holomorphic function. Now define dz  :=  dx + idy,  then  every o om holom orphic is a
the form pdz,  where p is holomorphic. Also any differential of the fo m  pdz w ith  p ^
holomorphic differential since a holomorhic function always las a p n m i. ^  , , s dw  _  p ( z ) j ^ d w .
Notice from (3), if we have a new complex coordinate w  = ^ ( z )  , then  W ( hoiom0rphic 1-form m  

Now if we ask for p  meromorphic instead of holomorphic, len  w  ̂ on  x  x h e  points a t
X  minus a discrete set. Such a differential is called a meromorphic f  G i v e n  t w o  d istinc t
which the local meromorphic functions have singularities, are ca e sm gu f tio n  Wl/w 2, which ju s t
meromorphic differentials Wl and W2) we can make sense of a m erom orphic function  x/

9



CH A PTER 2

E xistence of M erom orphic Functions

1. Holomorphic and Harmonic Differentials
We wish to  prove the existence of a  -on-constant mesomorphic fmrction on^a *

will assume familiarity w ith differential forms and B ut here we

^ —  “  -  “  * 

by ,  on u , as follows. In (*, y) « » £ ” «  “  f w e  need L  cheek L t  if different local coordinates are
1-forms piece together to give a global . S11Dr.0se (x1 y') is another local coordinate

isziz :h:
the the representation of w in these new coordinates. Then we know

vx\  fp  °<£ 
\q°4>

Since ux = vy and u y = - v t , by Cauchy-Riemann equations, we can write

( p ' \  _  (UX - U y \ ( p ° < t > \
(3) {q'J  \ u y ux ) \ q °  4>)

This implies th a t . ,
/ _ 0' \  /V ,  - uv\  f - qq ' \  =  ( u  

p ' )  \ u v'  1 '  U„ ux )  \ P '

Thus „  is well defined. We note th a t the c o n ju g a te  op»urio .£
We know th a t differentials of the form df,  for some /  6 C { X ), are called u
differentials of the form *df are coexact differentials.
D e f in i t io n  1 .1 . A 1 -fo rm  to on a R ie m a n n  surface X  is called a ho lom orph ic  d ifferen tia l i f  i t  is locally 

given  by df, where f  is holom orphic.

Suppose u  is a  holomorphic differential. In local coordniates j i ,  p), "  ® ^ b y 'c m A y - R i e m a n n

r ^ r : i {z  -  i ■=. x  “™ »t=  **+< * **• r f *“  °° “
r  777 7  ~A„ -  id f  Therefore ™  =  -in .. fn fact this criterion along w ,th  the property of

^ g l s i  ( l ^ t  same as being locally exact, by Poincare lemma) is necessary and sufficient fo, a

1-form to be holomorphic.

T h e o r e m  1 .2 . u  £ C 1 is holomorphic «=> dto =  0 and *u) =  - t w .

Suppose a, -  p d * + ,d „  i„ some local coordinate (*, „ U h e n  »  -  ^  Z % = ^  t t
Hence the conditions = -tu>, m local coordma e r ^  / \ d x  + i ^ - d x  A dy =  0,
u  =  pdx  +  ipdy. The closure condition then implies d(pdx + ipdy) dy V ^  d*

u- i, • r  dv — ;§£. Tf r> — u + iv then this implies th a t ux — vy and uy vx .

" : „ r p h f c » t a c S »  Now define ^  dr  S l l

X  minus a discrete set. Such a different,al is called a  on
which the local meromorphic functions have singularities, are called n , which jus1
meromorphic differentials ^  and u,a, we can make sense of a meromorphic function a,l/Wa, w
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means th a t if in a coordinate chart uji = p^dz  and uj2 =  p%dz, then  in th a t chart the meromorphic 
function is p i / p 2- Suppose we select another complex local coordinate w and express u>i and ui2 as 
p'1(w)dw and p'2(w)dw respectively. Then we know p\ (w) = P \ ( z ) j ^  and Pi(w) = P i ( z ) - ^ .  Then 
Pi{z ) /p 2{z) = p ' i ^ / p ^ w ) ,  and hence the meromorphic function l ji/uj2 is well defined. So if we can 
prove the existence of two distinct meromorphic functions then existence of a non-constant meromorphic 
function will immediately follow.

If /  =  u +  iv is a holomorphic function on the complex plane then by Cauchy-Riemann equations, 
the real part u  and the complex part v, satisfy uxx + uyy =  0 =  vxx +  vyy. The operator ^  is
called the Laplacian and is denoted by A. Thus we have A u =  0 =  Av .  A function /  e  C 2 satisfying 
this condition at each point in the domain of definition is called a harmonic function.  Though here u 
and v are real valued, there is no need for this restriction in a general definition of harmonic function 
and we allow complex valued functions. We follow the definition of holomorphic 1-form to define

D e fin itio n  1.3. A 1-form uj E C 1 on a Riemann surface X  is called a harmonic differential i f  it is 
locally given by df, where f  is harmonic.

Like in case of holomorphic differentials, a similar characterization of harmonic differentials exist. 

T h e o re m  1.4. to €  C 1 is harmonic duj =  0 and d * uj =  0, that is, 10 is both exact and coexact.

First we note th a t d*  df  — A  f d x  A dy. This is because

Now if uj is harmonic, then locally w =  df,  where /  is harmonic. Therefore locally doj = ddf =  0 and 
d * u = d * d f  = A  f d x  A dy = 0 .  Conversely if du =  0, then locally uj = d f . Then d * uj = 0 implies 
locally d *  df  = A  f d x  A dy = 0 and hence A /  =  0, proving w is a harmonic differential.

As we did for holomorphic differential, let us analyze what these two conditions mean in a local 
setting. Let uj = pdx + qdy in local coordinates (x,y) .  Then duj =  0 implies d(pdx +  qdy) =  ( |^  — 
^ ) d x  Ady  =  0 and d*uj  =  0 implies d* (pdx +  qdy) = d ( - q d x  +pdy) = { ^  + ^ ) d x A d y  =  0. Hence we 
have and | |  =  — |^ .  If uj is real harmonic, th a t is p  and q are real then, this is just the Cauchy-
Riemann equations for p  — iq. Now notice th a t locally uj + i*io =  ( p — iq)dx +  i(p -  iq)dy =  (p — iq)dz. 
Hence co+i*uj  is holomorphic differential. So to lay hands on a holomorphic differential on any domain, 
it is enough to  find a real harmonic differential. Since real and imaginary part of harmonic differential 
are also harmonic, therefore it is enough to  find a harmonic differential.

2. The Hilbert Space of 1-forms
Given any measure space ( X , M , n )  we can define an inner product on the space of complex valued 

measurable functions as follows

is a Hilbert space provided we identify two functions which differ only on a measure zero set. Here we 
have 2-forms as integrable objects and can define an inner product on the space of measurable 1-forms
as

where the complex conjugate 7  of a 1-form 7  is defined locally as follows. If in local coordinates (x, y), 7 
is represented by pdx + qdy, then 7  is represented by pdx  + qdy. I t is clear th a t such local 1-forms piece

d *  d f  =  d *  ( -^ -dx  + dy) 
o x  dy

= A  f d x  A dy

Then the space

L 2(X,  M , n )  :=  { /  : X  —>■ C | /  is measurable and ||/ | |  <  00}
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together to  form a well defined global 1-form. Then locally w *7  looks like
(pdx + qdy) A *(p'dx + q’dy)

=(pdx  +  qdy) A ( - q'dx + p'dy)

=(pp' + qq')dx A dy

Now we can easily check th a t this gives an inner product, except the condition th a t ( u j ,  u j )  = 0 implies 
t jjat w =  0 But this is easily rectified by identifying two differentials which differ only by a measure 
zero set in any chart. Of course we have to restrict to  1-forms which are locally of the form pdx  +  qdy, 
w ith p and q measurable. We call such 1-forms measurable. Thus the wedge product of two measurable 
1-forms is integrable. Now define the space

L 2(X)  :=  { /  : X  —> C | u j  is measurable and ||w|| <  00}

The proof of completeness is analogous to the proof th a t Lp spaces are complete and we omit it here.
(See [3], pg. 182, for the complete proof.)

Now we state a fact which is a direct consequence of the Stokes’ theorem. (See [2] pg. 148, for the
satement and proof.)
T h e o r e m  2.1. Suppose f  is a C 1 function and id is a C 1 1-form in a Riemann surface X .  I f  either f  
or u j  has compact support in X, then

J J  d{ f  A u j )  =  J J  f  A d u j -  J J  u j  A df =  0

Applying this to  a harmonic form u j  £ L 2(X)  and /  for any /  G C 1(X )  w ith compact support we
get

(4)

(5) Hence, ( u j ,  *df) = — J J  u j  A d f  = 0

The space of C 1 functions w ith compact supports is denoted by Cq . If u  is harmonic then so is u j . Again 
applying Theorem 2.1 on for u j  (E harmonic and f  G we get

J J  * u j  A df = J J  f  A d * u j  = 0(6)

(7) Hence, (df, u j )  = — J  J  *uJ A df = 0

Let the space of harmonic differentials in L 2(X )  be denoted by H.  I t is perpendicular to both  spaces of 
exact and coexact differentials in L 2(X) .  In fact it is perpendicular to  the closures of such spaces. This 
follows from the simple Hilbert Space fact

Lemma 2.2. I f  x n -»• x  and yn -)• y in a Hilbert Space H,  then (x, y) = limn —too (pm  Vn) ■

We define,
E  = the closure in L 2(X)  of differentials of the form df,  where / e C q

E* =  the closure in L 2(X)  of differentials of the form *df, where /  G Cq

We required a differentiability of order 2 from /  because we want the exact and coexact differentials to
be available for application of the differential operator d. This helps us to  prove

Proposition 2.3. E  and E* are orthogonal subspaces of L 2 (X)

PROOF. Let w 6 E  and 7  G E*. Then there exists sequences of Cq functions f n and gn , such th a t 
dfn —> u j  and *dgn —> 7  in L 2 (X) .  Then by Lemma 2.2, it is enough to  prove th a t (dfn , *dgn) =  0 for all 
n. This a simple application of Theorem 2.1:

(dfn , *dgn) = -  f f x  dfn A dg^ = -  J f x  f n A ddgn =  0 D

We have seen tha t H  C E L n E*-1 . Are they equal? Let u j  6 E x  n E*x . If further we assume it to
be C 1, then u j  is harmonic. This follows from the lemma below.

Lemma 2.4. I f  u j  is C 1, then
(a) duj =  0 w G E*1-
(b) (j*w  =  0 &  w 6 E
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PROOF. We will only prove (a), (b) will follow similarly. (=>) follows immediately from the calcu­
lation we did in (4) and (5) and Theorem 2.2. For (<=), note th a t u  € C 1 D E *± implies th a t for all
/  e  c l

(8) 0 =  (w, *df) = -  J J  uj A  d f  =  -  J J  f  A duj

Suppose dio ^  0 a t a point p E X .  Let Adx A dy represent dio in the local coordinates. Then either 
ReA or ImA is not equal to zero near 0. Say ReA > 0 in a param etric unit disk U centred at p. Let 
<j) : B ( 0 , 1) —» U be the chart map. Construct a sm ooth bum p function in B ( 0,1) which is 1 a t 0 and 
vanishes outside B (0 ,1 /2). Let this function composed w ith <̂_1 be called / .  /  can be extended to 
whole of X  by specifying /  =  0 in X  \  4>{B(0,1 )). Then /  E Cq(X) .  Therefore by (8), we must have 
( u j ,  *df) =  0. But again

Re(uj, *df) =  —Re J J  u> A 

i
df

x

= —Re I J  f  A duj

= —Re J  J  f A d x  A dy

= — J J  f R e A d x  A dy < 0

This is a contradiction □

3. Weyl’s Lemma
We saw th a t if a differential in E 1- H E *-L is C 1, then it is harmonic. Are all such differentials C 1? 

This is the question addressed by the Weyl’s lemma. F irst we note th a t being C 1 is a local property. 
So enough to  show th a t w is C 1 in every chart. B ut th a t means we can as well work in a region in the 
complex plane. Say the unit ball denoted by D.  Also, a ball of radius r will be denoted by D r. Before 
going into Weyl’s lemma, we will discuss a technique by which any 1-forms can be made C 1, w ithout 
losing i t ’s essential properties. We concentrate on 1-forms in D.  A 1-form looks like u j  =  pdx  +  qdy. So 
u j  is C 1 means th a t p  and q are C 1. So we will define a smoothing operator on functions first, and it can 
be carried over to forms by applying the operator on the coefficients of dx  and dy. Since u j  E L 2 (X) ,  
functions will be assumed to be integrable. Let p < 1. Define a function

s p '. D  —̂ M

* ,(* ■ * )= {  x i + y 2 < p\M \  0, x 2 + y 2 > p2

where k is chosen such th a t f f D sp(x ,y)dxdy  =  1. Calculating we find k =  3/ ( 7rp6). Note th a t sp is C 1.
Now define the action of a smoothing operator M p on a L 2( D ) function /  as follows:

j- 2n rp
(9) M pf ( x ,  y ) =  / f ( x  +  r cos 6 , y  + r sin 0)sp(r cos 6 , r sin 9)rdrd9

Jo Jo
Note th a t M pf  is defined in D \ - p. Change of variable will yield the following two useful forms of

(9).

(10) M ,, f ( x ,y )  — J J  f ( x  + u , y  + v)sp(u,v)dudv

(11) M pf ( x ,  y) =  J J  f { u * v)sp(u -  x, v -  y)dudv

The operator M p acting on the subspace L 2(D ) of the space of 1-forms on D , has the following properties 
PI: M p(u) is C 1
P2: u j  is harmonic in D  => M pui — u j  in D \ _ p 
P3: lim^ollw -  MpUj|| = 0
P4: If supp(7 ) 6 D i- p ,  then  supp(AfP7 ) E D  and

{MpUj, 7 ) / >, „ =  {uj, M p i ) D

In the last property P 4 , M p"f can be defined over whole of D,  since 7  can be extended to  the whole 
plane by setting 7  =  0 outside D.



P r o o f ,  o f  P I  Enough to  prove this for functions instead of differentials. So let /  G L 2(D ) be a 
function on D.  We claim th a t

dMpf(x,y)  [  f  .dsp . ,
---- dx =  J J  l ’) (“  y)dudv

We wish to  . apply the Dominated Convergence Theorem on the sequence of functions
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y ( u , V) ^ __ -  kn '- — —— — — — — — }, where hn -> 0 as n  -> oo
fan

these functions converge pointwise to

f ( u , v ) ^ { u - x , v - y )

Now
, r / ^ s0(u — x  hn ,v  y ) sp(u x , v  y ) ,
| / ( « ,« ) --------------------------- ^ -------------------------- 1

< l / ( « . w ) l ( r -  f  \ ^ - ( t , v - y ) \ d t )
Th u li—X /in

< |/ ( u ,u ) |M

where M  is the upper bound for continuous in D. \f(u,  v ) \M  is integrable and hence DCT applies.
Therefore we have

d M p f  (x, y) M p f ( x  + hn) - M pf ( x )
------ —-------  — lmin^oo 7

O X  i ^ n

f f  r ,  s S p { u - x - h n , v - y ) ~  sp{u - x , v - y )
— limn^oo J J  /(^> ^) ’

= I I  f ( u’v^~fa(u ~ x , v ~ y d̂udv

Now we want to  prove continuity of d M pf ( x , y ) / d x .  T h a t is, given any e >  0 and (x , y ) 6 D \ - p, we 
want to  find a <5 >  0, such tha t

\d ^ p- (x' , y' )  -  dM.—  {x,y)\ < e, whenever \{x' ,y') -  {x,y)\ < 6 
dx  ox

Now

~ H  \ f (U’V) \ \ ^ ( U ~ X' ’V ~ y ' } ~ l t e ( U ~ X’V ~ yS>\dUdV

dsp/ dx  is continuous in D  and hence uniformly continuous. Hence there exists 6 > 0, such th a t

, | t ( «  | l < «  -  X, „ -  <  JSd  l f ( l  v)]dudv

whenever \{x',y') -  {x,y)\ < 6 . Then this is our required <5. The proof for d M pf ( x , y ) / d y  follows 
similarly. ^

P r o o f ,  o f  P 2  w is harmonic and D  is simply connected. Therefore there exists a single function 
f  e C l {D),  such th a t w =  df. Then M pu  =  M pdf.  Does M p commute w ith d ? T h a t is, we wish to
prove th a t

d f  , d f  , d M p f  d M p f  j
A /f J  A r ~  I 71 /f J  A n ,  --- I t '  A n .



We will to  show th a t M p§£ =  the proof for coefficients of dy follows similarly. Since sp has an
upper bound in D  and /  is C 1, we can differentiate under the integral sign to get

dAQrf ~  (x > y ) =  J J  f { x +  u , y +  v)sp(u,v)dudv

= J J  ~ f ( x  + u , y  + v)sp(u,v)dudv  

d f
=  m p^ v )

Now we have M pui =  M pdf  = d M pf .  So now it is enough to prove th a t M pf  =  /  in D p. Using the 
definition (9) of M pf ( x , y )  and the definition of the function sp we have,
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1*27r i>p
f ( x , y ) =  / / f ( x  +  r  cos 0 , y  +  r  sin 0 )sp(r cos 0, r sin 9)rdrd0

Jo Jo
T rp

=  /  f { x  +  r  cos 9, y +  r sin 6 )k(p2 — r2) rdrdO
Jo Jo

M p

rP r27r
=  / fc(p2 — r 2)2r  / f ( x  + r cos 9, y +  r  sin 9)d6dr

Jo Jo

By Mean Value Theorem of harmonic functions we have
/*27T
/ f ( x  + r  cos 9, y +  r sin 9)d9 =  2 n f  (x, y) 

Jo

Thus

M pf { x , y ) = 2t r f (x ,  y) [  k(p2 -  r2)2rdr = f  (x,y)
Jo

since we had chosen k such th a t 2n J0P k(p2 — r 2)2rdr =  f 'fD sp(x, y)dxdy  =  1. □

P r o o f .  OF P 3  Suppose w =  pdx + qdy. Then

]|w -  M pu\\2Dl =  [ [  (|p -  M pp\2 +  |q -  M pq\2)dxdy
J JDi — p

We wish to  show th a t this quantity  goes to  zero as p -» 0. We will show th a t f f Dl_ \p — M pp\ dxdy  —> 0 
as p —J- 0, the other p art will follow similarly. Further since p  =  p\  +  ip2, f f D±_ \p ~  M pp\2dxdy — 
f f D ( b i  _  M pp i \2 + \p2 -  Mpp2 \2)dxdy.  So enough to  show th a t f fDl_p |Pi _  M pp\ \2dxdy  ->■ 0 as 
p —»■ 0. So may assume th a t p is real. We know th a t simple functions are dense in the function space 
L 2(D) and since we are in a Borel c-algebra, therefore continuous functions are dense in the simple one^ 
Thus continuous functions are dense in L 2{D). Therefore given e > 0 there exists g continuous in D 
such th a t ||p —s||x) <  £■ Then

( [ [  IP ~  M pp\2dxdy ) 1/2 =  ||p -  M pp\\Dl_p
J JDx-,,

< lb  -  5llr>i-„ +  lb  “  m p 9 \ \d 1- i, + IIM pg -  M pp\\Dl_p

The first term  is already less th an  e. We have to  show th a t the other two are also less than  e for 
sufficiently small p. Using definition (10) of M pg, we have

\Mpg(x ,y )  -  g (x ,y)  \ = \ / /  (g(x + u , y  + v) -  g ( x ,y ) ) sp{u,v)dudv\
J J D p

< J J  |g{x + u , y + v )  -  g{x,y) \sp{u,v)dudv

We know th a t g is continuous on compact L>, hence uniformly continuous in D.  therefore there exists 
5 > 0, such th a t

\g{x',y') -  g(x,y)\  < c, whenever \{x',y') -  {x,y) \ < S

Therefore for p <  S,
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Theref ||<7 -  M pg\\Dl- P =  ( / /  I M pg[x,y)  -  g (x ,y )\2dxdy )1/2 <
J  J  D \ —p

whenever p <  5. So it only remains to  prove th a t \\Mpg -  M pP\\Dl_,  <  e. Again using definition (10) 

\Mpg — M pp \2 =  | JJ {g(x + u , y  + v ) - p ( x  + u , y  + v) )sp{u,v)dudv \2

Applying Scwartz inequality on g(x + u, y +  v) -  p(x + u, y +  v) )y / sp{u,v)  and y /sp(u,v)  we have

| f f  (g(x +  u , y  + v) — p(x +  u,y + v))sp(u,v)dudv|
J  J  Dp

< J J  \g(x + u, y + v) - p ( x  + u , y  + v)\2sp(u,v)dudv  x J J ^  sp(u,v)dudv

=  [ f  \aix  + u , y  + v ) - p { x  + u , y  + v)\2sp(u, v)dudv
J  JD„

Therefore

||M pg -  M pP\\2Dl_p = f f  |M pg -  M pp\2dxdy  
J  J  D \ —p

< f [  ( f f  \g(x +  u,y +  v) — p(x +  u,y +  v)\2sp(u,v)dudv)dxdy
J  JD i-p  J  J Dp

Applying Fubini on RHS,

||M pg -  M pP\\2Dl_p

< J J  sp(u,v)(JJ \ g ( x  +  u , y  +  v ) - p ( x  + u , y  +  v)\2dxdy)dudv

But f f Di_p \g(x + u ,y  + v ) -  p(x + u,y + v)\2dxdy =  ||p -  A _ ,  <  *2 ^  all («, t,) G D p. Therefore

IIMpg -  M pp\\2Dl_p < e2 JJd sp(u, v)dudv =  e2

□

P r o o f  o f  P 4  First we show th a t supp(M p7) C D.  For any x  £ D, B ( x , p ) n  £>i_p 0 ,  hence
M  M£)  =  o Therefore Mp7 is non-zero only in D.  B ut support means the closure of the non-zero 
region So we will show th a t infact supp(7 ) C £>i-P- 5, for some d > 0, and hence the non zero region 
will be inside D ^ s , proving th a t suPP(Mp7) C D.  supp(7 ) C £>i_„, where supp(7 ) is closed and
i s o p e n .  Let 2<5:=d(supp(7 ), £> !% )>  0. Then supp(7 ) c D i - P_5. _

Now we wish to prove tha t (Mpw ,7 ) d w  =  (w, M p7 )d- Let w =  p dx + qdy  and 7  -  adx + bdy.

(Mplj, 7) = JJ MpP(x ’ V)a(x'•2/) +  Mpq(x, y)b{x, y)dxdy

(uj, M p"/)d  =  JJ v{x, y )M pa(x,  y ) +  q(x, y ) M pb(x, y)dxdy  

Using definition (11) of M pp { x , y ) and applying Fubini thereafter, we have

/  /  M pp(x, y)a(x,  y)dxdy
J  J D \ — p

= J J  a[x^y){JJ p( u , v ) sp( u - x , v - y ) d u d v ) d x d y  

=  J J  p ( u , v ) ( J J  a(x, y ) sp(u -  x , v  -  y)dxdy)dudv  

=  J J  p(u, v ) { J J  a(x, y )sp(u - x , v -  y)dxdy)dudv  

= J J  p( u ,v )M pa(x,y)dudv
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Similarly,

ff M pq(x,y)b(x, y)dxdy = JJ q(u,v)Mpb(x,y)dudv
J  J D \ - p ^

Thus (Mpid, 7 >r>1_p =  (w ,M p7)d- D

Now we sta te  and prove the Weyl's Lemma.

Lemma 3.1 . ( W e y l ’s l em m a)  Let D be the unit disk in the complex plane. Letui € E J-(D)nE*-L(D). 
Then uj is C 1 almost everywhere.

P r o o f .  The idea is to show th a t u  = M pu  a.e. in £>i_p, for all 0 <  p < 1. By P I ,  M pu> is C 1, 
hence w is C 1 a.e. in L>i_p, for all p, and hence in all of D.

First we prove th a t M plj is independent of p, th a t is, if p ,a  <  1/2, then M pw =  M cru  in -Di-p-o- 
P2 tells us th a t for w harmonic we have M plj = u  in £>i_p. We wish to use this to show th a t M pw -  
M aM pui = M pM au  = M au  in D X- p- a . The middle equality requires a proof, but first we have to  prove 
th a t M puj is harmonic, for all p, so th a t P 2  can be applied. We recall th a t if a 1-form belongs to £  n E  
and is C 1, then it is harmonic. By P I ,  M puj is C 1. We will prove th a t M puj €  E ^ { D X- P) n  E*
Let /  6 Cq(Dp), by P 4  we have,

(MpUJ, df)D1-„ =  (u, M pdf)n  =  (w, dMp/ ) c  

(Al pu), *df)u1_p =  (w, M p * df)n  =  (w> *dMpf ) d

where the last step in each is due to the fact th a t M p commutes w ith bo th  d and *. This proves our
claim and hence MpW is harmonic in D i-p . , c ... man

Proving M aM puj =  M pM auj is just an exercise in Fubibi. Let w =  pdx  +  qdy. Using definition ( J 
of M pp, we have,

M aM pp =  J L  M pp{x + u , y  + v)sa {u, v)dudv

=  J J  sp(u ,v )(JJ  p{x  +  u + u', y +  v + v')sp(u , v )du dv )dudv

=  J J  sp(u',v')(JJ p(x +  u +  u ' ,y+  v +  v')sa(u,v)dudv)du dv 

— Adp M ap

Similarly M aM pq =  M pM aq and we have proved th a t M pw is independent of p. Now fix a p. We wish 
to  prove th a t w =  M pu  a.e. in D X- P. We know by property P 3 , th a t lim ^o llw  -  M M \ d-x_. -  0. We 
have

||w -  <  l|w -  l|r*x_ .

Taking limit a —> 0 on both  sides,

lmv-x>||w -  M *u \\dx-„ - p =  0

Now in D i - a- p, M auj =  M pw. Hence

limCT_>o||w -  M pu\\Dl_"_p =  0

Now for all cr <  <5,

||w -  M pu <  llw -  M PU \\Di - p- .

Taking limit a  —» 0 on both  sides,

||w -  M pu\\Dl- Ps  < limCT̂ 0||w -  M pui\\Dl_p_„ =  0

Therefore ||w -  M pu,\\Dl_p^  = 0 for all <5 >  0. T hat is w =  M pu> a.e in D 1. p s for all 6 >  0. Let 
A  = {x e  D i -p  : l u ( x )  J- MpUj}. Let p  be the measure. Then p,(A n  D i_ p- i / „ )  -  0 for a11 larSe n - 
Taking union over these sets p(A  n  (U„L>i-p- i / „ ) )  =  0, th a t is p{A  fl L>i_p) =  0 or n(A)  =  0.
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4. Decomposition of a 1-form into orthogonal components
Weyl’s lemma tells us th a t the space E ^ n E * 1- is equal to  the space of harmonic differentials H . But 

E 1- fl E*1- =  (E  © S*)-1-. Now E  and E* are orthogonal subspaces of Hilbert space L 2{X).  Therefore 
E  © E* is also a subspace. Therefore H  = {E ffi E*)1- is also subspace and L 2( X )  =  (E  © E")  © H.  We 
have the following theorem

Theorem 4.1. L 2{X) = E ® E * ® H  and hence every w £ L 2(X )  can be written as cu = 'y  + n+u}h a.e., 
where 7  £ E,  tt £ E* and u>h is a harmonic differential.

We wish to  know a condition on ui such th a t in the decomposition w =  7  +  7r a.e., the 7  is exact 
and n  is coexact. F irst we prove that,

Lemma 4.2. 7 £ E  is C 1. Then it is exact.
7T £ E* is C 1. Then it is coexact.

Before going to  the proof of this lemma, we establish a checkable criterion for a closed differential to 
be exact.

Theorem 4.3. A closed differential ui is exact <=> For any piecewise differentiable closed curve a  in X ,
L u  =  0.Joe

This is just M orera’s theorem in Complex Analysis and we leave the proof to  the reader.

P r o o f ,  o f  Lemma 4.2 7  £ E  C E*L . Since 7 is C 1, by Lemma 2.4, d j  = 0, th a t is 7 is closed. So in 
light of the previous theorem, it is enough to  show th a t integration of 7 over any piecewise differentiable 
closed curve is 0. So let a  : [0,1] —> X  be such a curve. We wish to simplify the picture and work 
with simple closed curve, instead of a highly entangled closed curve. Consider a triangulation of the 
Riemann surface such tha t each triangle is inside a param etric disk and each edge is a differentiable 
curve. Since oc(I) is compact, it is contained in finitely many such triangles. By slightly shifting a  a t 
places, if necessary, we can find a point in the interior of each of these triangles which is not in the image 
of a.  We can then project the intersection of a(I )  w ith the interior of this triangle, to  the edges of the 
triangle. Each triangle lie in a param etric disk and d’y = 0, hence there exists a holomorphic function 
/  such th a t df =  7 locally. Hence integration of 7 over a  inside the triangle is same as th a t over the 
new curve. Call this new curve a  from now on. Notice th a t this allows us to  concentrate only on simple 
piecewise differentiable closed curve, since finitely many application of the result 7  =  0, for simple /?, 
will yield the result for general a.  Hence we assume th a t a  is a simple piecewise differentiable closed 
curve.

The idea is to  show th a t f a 'Y =  (7 :w) f°r some ui £ E~*~. We know by Lemma 2.4, if ui is C 1, then 
u> £  E 1- d *  uj =  0. So we look for rj which is C 1 and closed, so th a t we can take u> = *r). The easiest 
way to  construct a closed differential is to s ta rt w ith a function and take i t ’s differential. So assume 
77 =  df  for some / .  Since we are going to construct /  by hand, using bump functions, therefore we may 
as well assume th a t /  is real and supp(?7) is contained in a region R  w ith nice boundary. Now let us try  
to  find the conditions on /  such tha t f a 7 =  (7 , *rj).

(12) (7 , « ? ) = - / /  7 A df  =  /  /  A 7  -  [ [  f  A d7  =  [  f 'y
J  J R  Jd R  J J R  Jd R

Thus d R  should have a  as one of i t ’s components, on which /  should have value 1, while /  should be 
zero on the other components. Before starting the construction we quote this result from [2], pg. 11:

Proposition 4.4. Let M  be a manifold. Let A  and G be closed and open in M ,  respectively, such that, 
A  C U . Then there exists a smooth cf> : M  —>■ R such that

(1) 0 <  4>{p) <  1, for all p £ M
(2)  </>(p) =  1, i fP  £ A
(3) supp(^) C G

For every t £ / ,  consider a chart (Uu (j>t) centred at a{t).  For small enough e, n a ( / )  has
only one component. Call B t =  (pi1{De/2) and G t =  ^ - 1(£>e)- { B t : t £ 1} is an ovtm coper of compact
a(I ) .  Let {Bi  : 1 <  i < n} be a fine subcover. Define G :=  U"=1Gj and B  := U£LjBi  . Note a(I )  £ G 
divides G into two components. Let the part of G  to  the right of a(I )  in G be R  and left of th a t be 
L. Now a( I )  C B  C G, where B  is closed and G is open. Therefore by Proposition 4.4, there exists
g : X  M which is 0 on B  and has support inside G. Now define
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/  : X  -> R 
f  g(p), p e  R

f ( p ) ~ \  1, p € L U  a( I )
[ o, P e X \ G

This function is not differentiable throughout X .  But df  is defined within G and if we extend it by
specifying i t ’s value to  be zero outside G, then this extended differential is Cq. This is our 77 and it has
support within R , where it is equal to d f . Now we see th a t (12) hold for the function f ,  differential 1j
and the region R  th a t we constructed. Therefore

0 =  <7, t?) =  f  f j  =  f  7 
Jd R  Ja

since on the other component of dR,  f  is zero. Therefore 7  is exact.
Now 7: e  E* implies there exists a sequence of Cg functions /„ , such th a t l in ^ ^ l lT r  -  *dfn \\ =  0. 

Now note th a t for any w i.w 2 £ 1 ( 1 ) ,

(*W l, W 2 ) =  — J  J  *W l A  U>2 =  J  J  W2 A *U U l  =  (w 2 , W l) =  ( U J \ , U J  2 )

Hence lim,!^,-^! * 7r +  d/n || =  0. Therefore *7r € £?. Thus *n is exact and hence n  is coexact. □

We will use the following result PD E result:

Lemma 4.5. Let 4>: C 2 C be a Cq function. Then /Sip =  <j> has a solution ip which is C 2.

Lemma 4.6. Let X  be a Riemann surface . I f  a 1-form uj in X, is C 3, then locally uj = d f  + *dg, where 
f ,  g are local C 2 functions.

P r o o f .  Let p  g X .  Let (U, <f>) be a chart in centred at p, such th a t the unit disk D  is contained in 
<j>{U). Let A := 1/2) and G :=  D ). Then applying Proposition 4.4, there exists a function s
which is smooth and takes value 1 on A  and 0 outside G. Now let 7  =  sui. Then it is enough to  show 
th a t 7  =  df + d * g in G, since lo =  7  in ^ _ 1(Z3i/2). Let 7  =  pdx  +  qdy in local coordinates (x, y). then  
d-y =  ({dq/dx) -  (dp/dy) )dx  A dy. the function (d q / d x ) -  (d p / d y ) is C 2 and has a compact support in 
D,  and thus is extendible to the whole complex plane. Applying Lemma 4.5, the exists a C 2 function g 
such th a t A g =  (dq/dx) — (dp/dy).  T hat is d *  dg = d'y, hence d(7  — *dg) =  0. Hence there exists a C 2 
function /  such th a t df  =  7  — *d.g. This proves our assertion. □

Theorem 4.T. Let X  be a Riemann surface . I f  uj g L ( X )  is C 3, then uj — df  *dg -t- uj^ a.e, where 
/ ,  g are C 2 functions in X  and uih is harmonic.

P r o o f .  We already know th a t w =  7  +  tt +  ujh a.e, where 7  g E, n  g E* and w is harmonic. 
By Lemma 4.2, it is enough to prove th a t both 7  and 7r are C 1. Being C 1 is a local property. So let 
us concentrate on a param etric disk D.  By Lemma 4.6, there exists C 2 functions f , g  in D  such th a t 
u  — df  +  *dg. Then we have 7 + 7r + uj^ = df + *dg a.e in D.  Rearranging we have 7 +u>h — df  = — tt + *dg. 
We call this quantity 6 . Note th a t if 6 is C 1, then so are 7  and 7r. To prove 9 is C 1, we use Weyl’s 
lemma. Let h be any Cq function on D.  We wish to  show th a t (9,dh)D = 0 and (9, *dh)D = 0. Now,

(9,dh)D =  ( - 7T +  *dg,dh)D = - ( i r , d h ) D +  (*dg,dh)D

We can extend h to the  whole of X  by setting h =  0 outside D. Then (n ,dh)D = (n,dh)X - But 
(tt, dh)x  = 0, since n € E* and dh g  E.  Therefore we need to prove th a t (*dg,dh)D =  0. But this is 
just an application of Theorem 2.1,

(*dg,dh)D =  (dh,*dg)D J J  d h A d g  = J  J  h A ddg = 0

Hence (9, dh) D =  0. Again

(9, *dh)D =  (7 + ujh -  df, *dh)D =  (7 , *dh)D + (ujh, *dh)D -  (df, *dh)D

As before (7 , *dh)x  =  (7 , *dh)D, but 7  g E  and *dh g E * . Hence (7 , *dh)D = 0. Similarly (uh, *dh)D =
0. A similar application of Theorem 2.1, shows th a t (df ,*dh)D =  0. Hence (9,*dh)D =  0. Thus by 
Weyl’s lemma, 9 is C 1, and hence so are 7  and it. Therefore 7  is exact and 7r is coexact. □
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5. Existence of meromorphic functions
Let pi and P2 be two distinct point in X .  Our aim is to construct meromorphic function with a 

pole a t pi and a zero at p 2- As we have discussed before, we will go about doing this by taking quotient 
of two meromorphic differentials, say ui/u>2- F irst we define w hat we mean by order of a meromorphic 
differential ui a t a point p.

D e fin itio n  5 .1 . Let ui = f d z  in a local coordinate z  centred at p. Then define ordp(w) :=  ordp( /) .

To prove well definedness, consider another local coordinate w centred a t p and let the transition 
function be T  : w z . Then u  = f  o T(w)T' (w)dw.  T  is an analytic isomorphism, therefore ordp( / )  =  
ordp( /  o T).  Also ordp(T) =  1. Therefore, ordp( ( /  o T)  ■ T' )  = ordp( f  o T)  - ordp(T ') =  ordp( /) .  Hence 
ordp(w) is well defined.

Now we can say th a t if /  =  101/ 0J2 , then ordp/  =  ordp(oji) —ordp(cj2)- Thus the condition of /  having 
a simple pole at p i and a simple zero at P2, translates to  the requirement: (—1)* =  ordPi(wi) — ordPi(w2) 
for i =  1,2. Meromorphic differentials are obtained via construction of harmonic ones. We will construct 
harmonic differentials with specified singularity a t a point.

T h e o re m  5 .2 . Let X  be a Riemann surface , and p be a point in X . Let z  be a local coordinate centred 
at p. Let n  be an an integer greater than 0. Then there exists a 1-form lj, such that

(1)  l o  is harmonic in X  \  {p}.
(2) l o  — d ( l / z n) is harmonic in a punctured neighbourhood N  of  p.

P r o o f .  Let (U, cp) be a chart in centred at p, such th a t the unit disk D  is contained in </>(£/). The 
singularity in local coordinate 2 is d ( l / z n). We will extend this to  a 1-form in X  \  {p}, w ith the help of 
a bum p function. Let A  :=  0 _ 1(£)i / 2) and G := cp~1 (D).  Then applying Proposition 4.4, there exists a 
function s which is smooth and takes value 1 on A and 0 outside G. Define a differential ip on X  \  {p} 
as follows

ip f d ( ^ ) ,  in G
' \  0, i n X \ G

Let N  := 4>~1(D i / 2). Then ip =  d ( l / z n ) in TV \  {p}. Therefore ip is holomorphic in N  \  {p}. Hence by 
Theorem 1 .2 ,1p — i*ip =  0 in N \ { p } .  Therefore ip — i*ip is almost every where smooth. Hence Theorem 
4.7 can be applied, yielding i p - i * i p = d f  + *dg + ujh a.e, where / ,  g are C 2 functions in X  and is 
harmonic. Rearranging, we get ip — df  = i * ip + Uh + *dg a.e.. Let co = ip — df  be a 1-form in X  \  {p}. 
We will show th a t w satisfies (1) and (2).

F irst we show th a t lo is harmonic in N \ { p } .  By Theorem 1.4, it enough to  show th a t du> =  0 — d*uj. 
First note th a t uj is C 1, since ujh is harmonic and /  is C 2. Now dui = d{ip — df)  =  dip — ddf  =  0, since 
ip is exact in X  \  {p}. Again d*u j  = d * ( i * i p + u ) h  + *dg) =  —idip + d * u>h — ddg =  0 a.e.. Since ui is 
C 1, therefore d * ui is continuous and it is zero in a dense set (complement of a measure zero set), hence 
d* u.i =  0. Therefore ui is harmonic in N \  {p}.

In N  \  {p}, ip =  d ( l /z ” ), hence w — d { l / z n ) =  —df. Also ip = i * i p  in N  \  {p}, which implies 
w =  u>k + *dg a.e.. Therefore d(uj — d ( l / z n)) =  — ddf = 0 and d *  (ui — d ( l / z n)) =  d*u>h~ ddg =  0 a.e.. 
By same continuity argument as before we conclude th a t d *  (co — d { l / z n)) =  0. Therefore ui — d ( l / z n) 
is harmonic in N .  □

Let u j  be as in the theorem and let 7  be i t ’s real part. Then 7  +  1* 7  a meromorphic differential. 
l o — d ( l / z n) is harmonic in N ,  taking the real part, 7 —R e ( d ( l / z n )) is harmonic in N . Again *(cj — d { l / z n)) 
is harmonic in N  and consider i t ’s real part Re{*{uj — d { l / z n))). This quantity is almost everywhere 
equal to  Re* to — Re* d ( l / z n), and hence by continuity equal. Now Re*ui  =  *Re ui = *7 . For the other
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part we do a general calculation for any f  =  u + iv holomorphic in place of l / z n .
d f  d f 

Re(*df) = R e *  ( g ^ d x  +  g ^ dy)

p  ( A d f  a \=  R e { - —- d x  + — dy) 
ay  ox

du  ,
=  - - z ~ d x  + T~dy  

ay  ox
dv  dv

=  —  dx  +  —  dy 
o x  ay

=  Im (d f )

Therefore i * 7  — i I m ( l / z n) is harmonic in N .  Hence 7  +  1 * 7  — d ( l / z n) is holomorphic in N .  If 
C =  7  +  i * 7 , then f  is a meromorphic differential with ordp(£) =  — (n +  1). Thus we have obtained the 
following corollary.

C o ro lla ry  5.3. Let X  be a Riemann surface and p be any point in it. Let n  be an integer greater than 
1. Then there exists a meromorphic differential which has order —n at p and is holomorphic in X \  {p}.

Now we state and prove the existence theorem of meromorphic functions.

T h e o re m  5.4. Let X  be a Riemann surface a n d p \ , p 2 be any two distinct points in it. Then there exists 
a meromorphic function f ,  such that, ordPl( f )  = 1 and ordp2( f )  =  —1.

PROOF. By Corollary -5.3, there exists meromorphic differentials 7 i, which are holomorphic in X \{pi} 
and have ordPi(7i) =  —(1 +  2*-1 ), for i = 1,2. Then u> 1 :=  71 +  72 is a meromorphic differential which 
is holomorphic in X  \  {p i,p 2} and has ordPi(wi) =  — (1 +  21" 1) for i =  1,2. Similarly there exits a 
meromorphic differential 012, which is holomorphic in X  \  {P1.P 2} and has ordp^a^) =  —(2l +  (—l)*- 1 ) 
for i = 1,2. Now consider the meromorphic function /  =  w i/w 2- /  is holomorphic in X  \  { p i,p 2} and 
has ordPi( f )  = ordPi(w i)— ordPi(w2) =  (— D
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R iem ann-R och Theorem

1, T h e  M itta g -L e ffle r  P ro b le m

Given a compact Riemann surface X  and points p i, • • ■ ,p fc € X  and n 1, ■ ■ ■ , n k €  Z, can we find 
f  £ M ( X )  such th a t ordPi( / )  =  n* for all i £ 1, • • • , fc? In fact we can be more specific and ask for a 
meromorphic function with given Laurent tails in fixed local coordinates at each of finitely many points. 
A Laurent tail here means a Laurent polynomials which is the tail of a Laurent series. Let us do this or
one point. J

Suppose the given Laurent tail is r(z)  =  w ith ^  0 ^  c-  There are m  -  n  +  1 terms.
We will proceed by induction on number of terms. Suppose there is only one term , th a t is, r(z) cz . 
We know the existence of a g £ M ( X )  such th a t ordp(<?) =  1. Then gn multiplied by a suitable constant 
will give us our desired function. Now suppose th a t r  has more than  one term . There exists h £ M (  ) 
w ith Laurent tail cnzn . Let s be the Laurent tail of ft, -  r  upto z m term. Since s has fewer term s than  r, 
by induction there exists g € M ( X )  having s as Laurent tail. Therefore ft -  g has r  as Laurent tail a t p 

Now let us generalize this to  k points pi,  ■ ■ ■ ,Pk £ X  with Laurent tails rj(z i), where are fixed oca 
coordinates centred at pt. For convenience we will assume, by adding zero coefficient term s if necessary

th a t r-(z-) =  Y .m~ ci'z j  for fixed m  and n ■ By Previous result we know for each there 6X1StS 9i
with gt = n  +  term s of order higher than  m.  We have to somehow combine these meromorphic functions
together, so th a t their Laurent tails at each p; is r;. Consider a combination of the form /  =  ]T\=i 9ihi 
for hi £ M i X ) .  For each i, if we can arrange to  make hi = 1 +  term s of degree higher than  m  -  n, at Pi 
and hi = term s of degree higher than  m  -  n,  a t Pj , for i ^ j ,  then  /  will have the desired Laurent tails 
at each of the  piS. T hat means we want ord Pi(hi -  1 ) >  m - n  and ord Pj{hi) > m - n .

So our aim is to  construct meromorphic function of the above form. For convenience write h m place 
of hi. We have information about order of h -  1 at one point and about order of h itself a t others. We 
wish to  combine these into information on orders of a single meromorphic function. The crucial point 
to  note here is th a t addition of a constant to  a meromorphic function messes up it 's  zeros bu t not it s 
poles. Here if we consider h -  1, then the information about zeros of h will be lost, but if we consider 
H  =  A — 1, then we have

ordPi(if )  = o rd ft. ( i  -  1)

1 1
=  ordPj (—) (since -  has pole a t pj)  

tl 11
= —ordV:jh 
< n  — to

ordPi(H) =  ordPi( -  -  1)

=  ord

=  ordPi( l  -  h) (since ordPi(/i) =  0)

>  m  — n

So we have to construct a meromorphic function w ith a zero of order greater than  m - n  a t one point 
and poles of order greater than  m - n  at others. Note th a t specification on order of zeros or poles does 
not m atter, if we can find a meromorphic function w ith zeros and poles at specified points, then raising 
by power m  -  n  + 1 will satisfy the desired condition on order at each point. This is w hat we will do.

We proceed by induction on number of poles. In the previous chapter we have constructed a mero­
morphic function w ith a zero and a pole at two specified points, say p and q. Suppose there exists a 
meromorphic function which has a zero a t p and poles at qi, ■ ■ ■ ,qn- 1- Call it g. If g has a pole also a

21
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qn, then we axe done. Otherwise, let h € M { X )  has a zero a t p and a pole at qn. If we simply combine 
these two as f  = g + h, then clearly we have a zero at p  and a pole at qn, but the poles of g and h  may 
cancel each other a t the g;s. So we take f  = g + h l , w ith I so large th a t even if h has a pole a t one of 
the <?!s, for i £ {1, • ■ • , n  -  1}, then ordPi(h) <  ordPi(g), making sure th a t /  indeed has poles at <?; for 
* £ { !,••■  , n -  1}.

For future reference we record the weaker version of this result as a lemma:

Lemma 1.1. Given a compact Riemann surface X  and points pi ,  ■ ■ ■ ,pk € X  and ni,  ■ ■ ■ ,nk  eZ, there 
exists f  £ M { X )  such that ordPi{f)  =  rii for all i £  1, ■ • - , k.

We have constructed meromorphic functions with given Laurent tails at finitely many points, but in 
doing so we had no control of i t ’s behaviour at the other points. A meromorphic function has zeros and 
poles only at finitely many points. So specifying Laurent tails a t finitely many points and demanding 
th a t the function be holomorphic at others is a natural problem. Here we are demanding restriction 
on two different properties of the meromorphic function, one i t ’s order a t each point and the other i t ’s 
Laurent tail a t finitely many points. The order at each point of a non zero meromorphic function can 
be described by the formal sum J2pe x  ordp ( /)  ' P- Note tllat a11 but finitely many coefficients are zero. 
Making this into a formal definition we have:

Definition 1.2. A divisor is the free abelian group generated by points of a compact Riemann surface.

Group of divisors of a compact Riemann surface is denoted by Div(X). And an element in it is 
generally denoted by D.  We often view D as a function from X  to Z, th a t is, if D = J2Pe x  np ' P> then 
D{p) = n p, for all p € X .

Definition 1.3. A divisor of  the form Y ,Pe x  ordp (/)  ' P> where f  £ M ( X )  is called a principal divisor.

We denote it by d iv (/). We can also define divisor of zeros of  f ,  as div0( /)  :=  ]Cordp(/)>0 ordp( / ) -p 
and divisor of poles o f f ,  as di v00( / )  := J2 Ordp(f )< 0  (~~ordp( f) )-p.  Then d iv (/)  =  div0( / ) — di vDO( / )  w ith 
div0( /)  and divco( / )  having disjoint support. In fact given any D £  D iv(X ), we can write D = P  — N ,  
where both P  and N  takes non-negetive values for all p £ X  and have disjoint support. Just like with 
meromorphic functions, we can also attach a divisor w ith meromorphic 1-forms.

Definition 1.4. I f  to is a meromorphic 1-form, then we define div(oj) =  orcW ‘i;) ' P- Such a
divisor is called canonical divisor.

Similarly we can collect all Laurent tail divisors at finitely many points to form a group:

Definition 1.5. A Laurent tail divisor is a finite formal sum Y2p rp(zp) ' P> where rp is a Laurent  
polynomial in pre-chosen local coordinate zp, centred at p.

The group of Laurent tail divisors of a compact Riemann surface is denoted by T ( X ) .  Now given 
Y ^ P r p ( z p )  ' P e  T ( x ) we attach a divisor to it in the following way. D(p)  =  one more than  degree of 
top term  in rp, if p appears in the finite sum, and 0 otherwise. Then we are looking for a meromorphic 
function which satisfies the following property at each point p:

Look a t i t ’s Laurent series expansion in term s of zp. Consider i t ’s tail consisting of term s of degree 
less than  D(p).  If p does not appear in the finite sum of the Laurent tail divisor, then this tail is 
non-existent, otherwise it is rp.

In the above we started  with a Laurent tail divisor, and then constructed a divisor from it. Going 
the other way, th a t is, choosing D  e  Div(X) first, we can define the following subgroup of T ( X ) :

T[D](X)  : = { J 2 rP ■ p £ T { X )  : top term  of rp has degree strictly less than  
p

— D(p)  , whenever p appears in the sum}

Now we define a map a D : M ( X )  T \D]{X)  sending a meromorphic function /  to Ylp rv ' where rp 
is the truncation of the Laurent series of /  at p  in term s of zp, removing all terms of degree —D(p)  and 
higher. We immediately notice th a t if Di < D 2, th a t is Di(p)  < D 2{p) for all p £ X ,  then  there is a 
natural map tp \  : T[Di](X)  -> T [ D 2](X)  by sending rp ■ p to  ^ p sp ■ p  where sp is the truncation  of
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0, by removing all terms of degree — Z?2(p) and higher. Then we have a commuting diagram:

4-D2
ZDX

(13) T i m X )
Now, given an element of T[D](X) ,  our original question was: Does there exist a preimage under a n ?  
This is called the Mittag-Leffler Problem. Surjectivity of ax> is too much to expect. Consider a complex 
torus X  and any point p in it. Suppose — 'P  £ T[0]PO  has a preimage /  £ A4(X) .  Let F : X  —» be 
the corresponding holomorphic map. Then since /  has a simple pole a t p and no other poles, therefore 
deg F  =  1. Hence F  is an isomorphism. But torus and sphere are not even homeomorphic, so this is 
absurd. Hence a D is not surjective in this case.

Note th a t T[D](X)  is also a complex vector space and so is M ( X )  (in fact it is a field extension). 
Then the map a D is a C linear map. Hence coker a D is also a vector space. We call it ^ ( D ) .  This 
space is a measure of obstruction in solving the Mittag-Leffler Problem. We wish to  prove that this space 
is finite dimensional.

2. Algebraic formulation
Let us expand the map T[D](X)  -» H 1(D) into an exact sequence. For th a t we need to find out the

kernel of the map a D. Let /  € Ker a D. Then at p £ X  the Laurent series of /  has no term s less than
or equal to  - D ( p ) .  T hat means at each p, d iv (/)(p ) > -D(j>). Thus the kernel of a D is the space:

L(D)  :=  { /  G M ( X )  : div(.f) > —D}

We note in passing th a t a similar space can be defined for meromorphic 1-forms.

L ^ ( D )  :== {lu € M W (X)  : div(w) >  - D }

L(D)  is a C vector space. So we have the exact sequence:

0 -»■ L(D)  -»■ M ( X )  ->■ T[D}(X)  -> H l {D) 4  0

We can make this into a short exact sequence as:

(14) 0 - ^ M ( X ) / L ( D ) ^ T [ D } ( X ) - ^ H 1 ( D ) ^ 0

We first claim that L(D)  is finite dimensional for all D  e  Div(X). To see this we first notice tha t L(0) 
is the set of holomorphic functions. B ut only holomorphic functions on a compact Riemann surface are 
the constant ones. Therefore dimL(O) =  1. A divisor D differs from the divisor 0 by a finite sum, so an 
induction argument seems feasible here. The natural candidate th a t present itself for applying induction 
on, is w hat we call degree of a divisor.

Definition 2.1. The degree of a divisor D on a compact Riemann surface is

deg(D) = D{p)
Pe x

Note this is a group homomorphism. Also for any /  £ M ( X ) ,  with X  compact, we have deg(div(/)) =
0. The precise result on dimension of L(D)  is the following.

Lemma 2.2. Let X  be a compact Riemann Surface, and D  6 Div(X) .  Write D as D = P — N , where 
P  and N  are non-negative divisors with disjoint support. Then dimL(D)  < 1+ deg(P).

P r o o f .  We will apply induction on degree of the positive part P  of D.  deg(P) =  0 implies P  — 0. 
Therefore dim L(P) =  1. Also note th a t D < P  implies L(D)  c  L{P).  So we have dimL(D) < dimL(P)  =
1 =  1-1- deg(P) as required. Now suppose the statem ent is true for deg(-P) =  k — 1. Let D  has positive 
part P  whose degree is k. Choose a point p in the support of P  such th a t P(p) > 0. Then the positive 
part of D  — p, which is P  — p has degree k — 1. By induction hypothesis dim L(D -  p) <  l+ d eg (P  -  p)= 
deg(P). We only need to show th a t dim L(D) < l+dimL(£> -  p). This will be an application of rank- 
nullity theorem. We wish to find a linear transform ation from L(D)  to  a one dimensional vector space 
over C, whose kernel is L(D -  p). Define a local coordinate z centred at p. The Laurent series of a 
meromorphic function /  € L(D)  is of the form /  =  cz“ 'D(p)+  higher order terms. Define a function 
<f> : L(D)  —> C, sending f  to c, in the above notation. This is then our desired linear transform ation
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as the kernel is clearly L(D  — p). So now rank-nullity implies dim L(D) <  l+dim L(.D  -  p) and we are 
done. n

For future use we prove the following Corollary.

C o ro lla ry  2,3. Let P  e  D iv(X ) be a positive divisor. Then d im L (P) =  1+ deg(P) implies X  =  Coo-

P r o o f .  Let deg(-P) =  d. Let P  =  J2i=iPii  where pi s may not be distinct. Consider the  sequence
d

L{0) C L{Pl) C L(pi +p2) C • ■ ■ C LiY^Pi)
i = 1

dimL(O) =  1 and dimL(J2f=1 Pi) = d + 1. Thus the dimension increases from 1 to  d + 1 in d steps. 
Also by Lemma 2.2, the increase in dimension in each step can be atm ost one. Therefore the increase 
of dimension in each step is exactly 1. Hence dim L(pi) =  2. Therefore there exists a non constant 
meromorphic function /  in L(pi) .  Then the corresponding holomorphic function to  has degree one, 
and hence is an isomorphism. □

Since C is algebraically closed and M ( X )  is a non-trivial field extension of C, therefore transcendence 
degree of M { X )  over C is atleast one, hence M ( X )  is an infinite dimensional complex vector space. 
Therefore so is M ( X ) / L ( D ) .  And clearly is T[D)(X)  is infinite dimensional too. So there is no hope of 
getting any information about dimension of H l (D)  directly from the short exact sequence (14). B ut the 
the truncation map I ^  gives a way to compare H 1{Di)  and H 1(D2), whenever £>i < D 2. We can have 
the following chain map:

Q  n ,  7Ti

0  ► M ( X ) / L ( D 1) ------U  T [ D i ] p O -------- > F 1^ ) -------- * 0

0  > M ( X ) / L ( D 2) T [ D 2}(X) H 1 (D2) ---------► 0

where the middle vertical map is t the left vertical map is defined by starting  with the quotient map 
M ( X )  -)■ M ( X ) j L ( D 2) and noting th a t L(Z?i) C L ( D 2) implies L(Di)  is in i t ’s kernel. The left hand 
square then commutes because of (13). For the right vertical map we send [Y^Prp'P\ to ^ 2 ° ^  ( E p rp ■?)■ 
To check well definedness we note that [£) rp -p\ =  SP -p] implies th a t ]Tp rv'P~~ s p  'P =  a D x ( /)  
for some /  € M ( X ) .  Applying t ^ \  on bo th  sides we see, t ^ ( E P r P ’P) ~  *£>1 ( E p -sp ’P) =  o a D 1 ( . f )  = 
a D2{f)- Hence 7r2of^=Q ^p rp-p) =  n 2 sp -p). By definition the right hand square also commutes.

Note th a t the left vertical map is surjective, hence by Snake Lemma, we have a short exact sequence 
of kernels of the vertical maps. Kernel of the left vertical map is L ( D 2) /L (D \) .  Since L ( D ) ,s are finite 
dimensional,

(15) dim(L(Z?2)/L(jD i)) =  dimL(£>2) — dim L(D i)

Kernel of t®* consists of Laurent tail divisors J2p t p  ' V such th a t the top term  of rv is less than  —Di(p)  
and the bottom  term  greater than  or equal to ~ D 2 {p). The basis of T[D \ \{ X)  consists of z™ with 
p 6 A' and n  <  - D 1(p). Therefore basis of the kernel consists of z£ for which —D 2(p) < k < ~~D1 (p). 
D 2(p) — Di(p)  basis elements for each p  € X ,  therefore summing up the to tal dimension is:

(16) dim k e r ( t^ )  =  ]P (£ > 2(p) -  Di(p))  = deg(D 2) -  deg(I?1)
Pe x

The kernel of the th ird  vertical map which we denote by H 1 (D 1/ D 2) can now be computed from the 
short exact sequence

0 -»■ L{D 2) / L { D 1) ke r(ig j) -+ H 1 (D 1/ D 2) -»• 0
We record this result as a lemma:

Lemma 2 .4 . D \ and D 2 are arbitrary divisors on a compact Riemann surface X ,  with Di  < D 2. Then

(17) d i m H 1( D i / D 2) =  [deg(£>2) -  dim L(D 2)] -  [deg(Di) -  dimL(£>i)]

We have mentioned th a t the map a n  may not in general be surjective. Can we find atleast one D  
for which a p  is surjective? It is same as asking for a divisor D , for which H 1 (D) =  0. We sta rt with 
an arbitrary  divisor A.  Suppose I I *(A) ^  0. Then there exists 72. € T[A}(X) ,  such th a t [7Z] ^  0 in 
H 1(A). Increase A to a divisor B , such th a t t^( lZ)  = 0. Then Tr2 o t Î {TZ) =  0 and hence [R] e  H 1 (A /B ) .
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Therefore H 1 (A / B )  0. Then by Lemma 2.4, 1 <  d i m H 1 ( A / B )  = [deg(fi) — dim L(S)] — [deg(A) —
dimL(A)]. Hence deg(B) -  dim L(B) > deg(^l) -  dimL(^l). Now if f f ^ S )  is also not equal to  zero then 
we can find a C £  D iv(X), such th a t deg(C) -  dimL(C) > deg(B) -  dim L(B). Thus we see th a t the 
quantity deg(.A) -  dimL(A) will continue to strictly increase as long as we do not hit upon a A  £ Div(X) 
w ith H 1 (A) =  0. So question is, does this quantity  have any upper bound?

3. Upper bound for deg(yl) — dim(L(̂ 4))
deg(v4) has no upper bound. So we have to  look for a lower bound of dimL(A). T hat is, we wish to 

find a minimum number of linearly independent meromorphic functions in L(A).  B ut we do not know 
if we have even one for an arbitrary divisor A.  So let us s ta rt with a meromorphic function and create 
a divisor in whose L  space it belongs. Fix a non-zero meromorphic function /  and define D  =  divocl( /) . 
Then /  € L(D).  Note th a t /  e L(rnD)  for all rn > 0, infact 1 ,/ ,  , f m € L(m,D).  Let us restrict
our attention at the moment to divisors of the form m D ,  for m  £ N. We will find a lower bound for 
dimL( mD ),  for large m.  We already have m + 1 linearly independent functions in L(m D),  bu t th a t gives 
us an inequality: deg (mD)  -  dim L{mD )  <  m deg(D) -  m -  1, which is not independent of m , unless 
deg(£)) =  1, which we can have only if X  =  Cqq. So let us try  to find some more meromorphic function 
in L(m D).  S tart with an arbitrary non-zero meromorphic function h. We first try  to  remove the poles 
of h th a t do not coincide with th a t of / .  If there is no such then note th a t h  £ L(m D) ,  for some m.  
Otherwise let pi,  ■ ■ ■ ,Pk be such points. Then the meromorphic function g := h-Yl i=i{ f  ~  f  (Pi))_ordpi^  
has poles only at poles of / ,  th a t is, only a t poles of /  we may have ordp(g) <  0. Hence there exists 
m  > 0 such th a t g £ L(mD) .  Now suppose we take n  many such different hi £ M ( X )  and apply the 
same procedure to  get gt := h i n ( f )  € L ( m D )  where n  are polynomials w ith complex coefficients, for 
large m.  We want these to be linearly independent. Suppose they are not. Then we will have a complex 
linear combination of such giS  equal to zero. Absorbing the complex coefficients in the polynomials 
r i(/)> we have an equation of the form:

n ( f ) h l H------- Vrn { f ) h n = 0

This means th a t the meromorphic functions hi are linearly dependent as vectors over the field C (/) . So 
we have to pick only those /ijS th a t are linearly independent over C ( /) .  We can have [M {X )  : C (/)] 
many of them. So we wish to  find this number or atleast a lower bound for it.

Proposition 3.1. Let f  be a non-constant meromorphic function on a compact Riemann surface X  and 
D = divoo( / ) .  Then

[M {X )  : C (/)] >  deg(D)

P r o o f .  Let D = Y T ^ \ n iPi- Lemma 1.1, we can construct a meromorphic function gij which 
has a pole of order j  a t pi and no zero or pole a t any of the other pk s. We claim th a t the set {g^ :
1 < i < m,  1 <  j  < n i } is linearly independent over C(f ) .  Suppose not. Then there exists C (/)-linear 
combination of such functions which is equal to  0.

= °

d j ’s are rational functions of / .  By clearing denominator we may assume th a t they are infact polynomial 
functions of / .  Let Ci0j0 has the maximum degree among these polynomials. Renumber such th a t io =  1, 
then divide the above expression throughout by C\j0 to get

(18) 'y ]dj j ( f )gi j  = 0
i j

where d\j0 =  1. Since cy is polynomial function in / ,  therefore it has poles only a t poles of /  and infact 
it has a pole of order exactly deg(c.y)nfc a t pk- Now,

ordPk{dij) =  ordPfc(cy) -  ordPfc(ciio)

=  (—deg(cij) + d eg (c ijo))n fc

> 0

Let us consider the Laurent series of the LHS of (18) in some local coordinates centred at pi.  For the 
terms with i ^  1, ordPl(gij) = 0 and ordPl(dij) >  0, so they do not contribute to  the negative exponent 
part of the Laurent series. For term s with i =  1, ordP l(gij) =  - j , w ith 1 <  j  < rii and ordPl(dij) 
is a non-negative multiple of m . Therefore only way ordPl (d1:j( f )gi j )  < 0, is if ordP l(dij) =  0 and in 
this case ordPl(d i j ( f )g i j )  =  —j.  Note th a t the j ’s are all distinct. For j  = j 0, we have such a term:
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ordpi {d\j0 ( f )gi jo) =  °rd Pl (gij0) =  - jo -  Consider all term s w ith o rd p ^ d ^ ) =  0 and pick the one w ith 
maximum j .  Then this term  contributes a negative exponent term  in the Laurent series of LHS of (18) 
which is not cancelled by any other terms. But the RHS of (18) is 0. Hence contradiction. □

Infact \ M ( X )  : C (/)] =  deg(D). We do not need this, but the interested reader will find the proof 
of the other side inequality in [6], pg. 176. Coming back to the problem of finding an upper bound for 
dimL(mD),  we have the following result.

L e m m a  3 .2 . X  is a compact Riemann surface and f  e  M ( X ) .  Let D = divco( /) .  Then there exists 
mo > 0, such that for all m  > mo,

dimL (m D )  >  (m  -  m 0 +  l)deg(D )

PROOF. Let deg(£>) =  k. Then we can find meromorphic functions hi,  - ■ ■ , hk, which are linearly 
independent over C ( /) .  Then by the procedure described above we can find gt := h ir i ( f )  € L(moD) ,  
where ?-* are polynomials with complex coefficients and a large enough mo- Since h i 's are linearly 
independent over C ( /) , therefore gis are independent over C. Now note th a t for m  > mo, f i g i  also belong 
to  L(mD),  for 0 <  j  < m  — m 0. We claim th a t the set { f j gi € M { X )  : 1 < i < k ,0  < j  < m  -  m 0} is 
linearly independent over C. Suppose not. Then there is a C linear combination of such function which 
is iden tical^  equal to zero.

'Y^Cij f^g,  = 0
i j

=  0
hj 

i j

hi s are linearly independent over C ( /) ,  therefore we must have

(Y 2 ci j f J)ri ( f )  =  0 , for all 0 <  i < k 
j

=> ^ 2  Cijf i =  0 , since r; ^  0 for any i
i

Since C is algebraically closed, this means th a t /  is a constant function, which is a contradiction.
Therefore {f^gi  6 M ( X )  : 1 < * < k ,0  < j  < m  — m o} is linearly independent over C, and hence for all
m  > mo

dimL (m D )  > (m  -  m 0 +  l)deg(Z?)

□
Now let us apply this result to  the problem of finding an upper bound for deg(rrijD) — dim L(mD),  

for D  of the form D  =  divoo/ ,  for a fixed /  6 A4(X).  We have, for a large enough m,

deg(mD)  — dimL(rnD) < m  deg(D) — (m — mo +  l)deg(/J>)

=  (m0 -  l)deg(-D)

How do we generalize this to find a lower bound for deg(yl) -  dimL(^l), for an arbitrary  divisor A? For 
this we have to study divisors a little more deeply. The set of principal divisors form a subgroup of 
Div(X). This follows from the following lemma.

L e m m a  3.3. Let f  and g be non zero meromorphic functions on Riemann surface X .  Then,
(a) div( fg )  = d iv (/)  + div(g)
(b) d iv (l/ / )  =  —d iv (/)

P r o o f , (a) For any p e l ,

di v(fg)(p)  = ord p( fg)
= o rdp(/) + o rd p(5)

=  d iv (/)(p ) + d iv (5)(p)
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(b) For any p e l ,

d iv ( l / f ) (p)  =  ordp( l / / )
=  — ordp( /)

=  —div(/)(p)
□

The subgroup of principal divisors is denoted by PD iv(X ). Similarly the canonical divisors form a 
subgroup denoted by KDiv(X). Now we can consider the quotient D iv(X )/P D iv(X ). We had noticed 
in the last chapter tha t, if wi and oj2 are two meromorphic 1-forms, then there exists /  € M ( X )  such 
th a t wi = f u 2. Then it follows th a t KDiv(X) is a coset of PD iv(X ), The cosets have the following two 
properties, when X  is compact:

(1) D i  ~  D 2, implies deg(D i) =  deg(D 2)
(2) D\  ~  £>2, implies dim L(D 1) =  dimL(Z?2)

The first property is obvious. We now prove the second one. D\  ~  D 2 implies there exists h G A i { X )
such th a t Di + D 2 =  div(/z). Then define a map

Hh '■ L (D i)  — L{ D2) 
f ^ h f

h f  indeed belongs to L ( D 2) since div ( h f )  = d iv (/i)+ d iv (/) >div(/i) — Di  = D 2. Similarly ) i i /h maps 
L ( D 2) to L (D i)  and is inverse of fih. Therefore nn is an isomorphism.

We return to denoting, for a fixed non zero meromorphic function / ,  diVoo(/) by D.  Now if we can
show th a t any divisor A  ~  m D  for some m,  then  deg(v4) — dimL(j4) =  deg(mD) -  dimL(mD).  Infact
we require less. We had already noted th a t, by Lemma 2.4, whenever D± < D 2, we have deg(D i) — 
dim L(D i) < deg(Z?2) — dimL(£>2). So it is enough to show th a t A  ~  B,  such th a t B  < m D  for some 
m.  T hat is we wish to  find g € M { X )  such th a t y l-d iv (^) < m D , for some m  > 0. But then we 
essentially did the same thing at the beginning of this section, while constructing new meromorphic
functions for L(mD),  starting from arbitrary  h G M ( X ) .  There we constructed a polynomial r ( f )
such th a t d iv (r(/))+ d iv (/i) >  - m D , for some m.  We wish to replace div(h)  by - A  in this inequality. 
Following the same procedure we first list the points pi,  ■ ■ ■ ,Pk, for which A(pi) > 0, but D(p) = 0, tha t 
is, /  has no pole a t p , 1 s. Then the function r(.f) =  I I i= i ( /  ~  f{Pi))A[Pi) has no Poles other than th a t of 
/  and has ordPi( r ( /) )  >  A(pi)  for each i. Thus ordp( r ( /) )  -  A(p) = d iv (r( /))(p )  -  A{p) < 0 only if p is 
a pole of / ,  th a t is D(p) < 0. Therefore there exists m  > 0, such tha t d iv (r( /) )  — A  > —mD.  Summing 
it all up, we have proved,

L e m m a  3 .4 . Let X  be a compact Riemann surface. Then for  all A  eD iv(X ), there exists M  6 Z, such 
that

deg(.A) -  dimL(.A) < M

4. F in ite  d im e n s io n a lity  o f H 1(D)

Recall the discussion at the end of Section 2. We were looking for a divisor A,  for which : 
M { X )  —>■ T[A}(X)  is surjective and found out th a t we can have a sequence of divisors w ith strictly 
increasing value of the quantity deg(^4) — dimL(yl), unless one of the divisors in the sequence satisfied 
our desired property. But in the previous section we produced a uniform upper bound for this quantity 
and hence the sequence of divisors with strictly increasing deg(A) — dimL(^4) cannot go on, but has to 
yield a divisor Aq for which ola0 is surjective, th a t is H 1(Ao) = 0. Now th a t we have produced atleast one 
divisor whose I I 1 space is finite dimensional and we already know the finite dimensionality of I I 1 ( A / B ), 
for A  <  B,  it seems we can prove finite dimensionality of H 1(A), for any divisor A,  by comparing it with 
the right divisor. Precisely, we have the following proposition.

P ro p o s i t io n  4 .1 . Let X  be a compact Riemann surface. Then for any A  € D iv(X ), i? 1(/l) is a finite 
dimensional vector space over C.

P r o o f .  We want to  compare A  w ith t4o, bu t they may not be comparable. So let us look a t the 
difference A ~ A 0 = P - N ,  where P  and N  are positive divisors with compact support. We do not want 
the P  part, so club it with A 0 to get A 0 +  P.  Note th a t A 0 < A 0 + P  and hence we have a surjective 
map from H 1^ )  to H l {A0 +  P),  so th a t H 1^ 0 + P) = 0. A < A 0 + P,  therefore we have a surjective 
map from H 1 (A) to  H 1(A0 + P) = 0. Hence H X{A) is equal to  the kernel H 1( A / A 0 + P ) ; which is finite 
dimensional. ^
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Now th a t we have proved finite dimensionality of H 1 (A),  we can apply rank-nullity theorem  to 
the map H 1(Di)  -» H 1 {D2), where D x < D 2, to  get d i m H 1 (D 1/ D 2) =  dimH 1 (Di)  -  d i m H 1(D2). 
Substituting this in the equation of Lemma 2.4,

d i m H 1(Di)  -  d i m H 1 (D2) =  [deg(D2) -  dinxL(D2)] -  [deg(Di) -  d i m L ^ ) ]

=$■ d im L(D i) — deg(£>i) — dim i?1(D i) =  dimL(J92) -  deg(I>2) — dimH 1 (D2)

Given any two divisors A i  and A 2, there exists one which is greater than  both, hence dimL(A) — deg(A) — 
dim# 1 (A) is a constant for all A  6 D iv(X ). For A = 0, we have dimL(O) -  deg(0) -  d im i/^O ) =
1 — dimJcir l (0). Hence we have:

Theorem 4.2. Let A  be a divisor on a compact Riemann surface X. Then

dimL(A)  -  dimH 1 (A)  =  deg(A) +  1 -  dimH 1 (0)

This is the preliminary version of the Riemann-Roch Theorem.

5. Serre Duality
First a concept from complex analysis needs to  be introduced in Riemann surface context, th a t of 

residue. Residue of a meromorphic function a t a point p  in the complex plane is defined to  be the
coefficient of ~ in the Laurent series of /  a t p. The Residue Theorem of complex analysis states tha t

T h e o re m  5.1. Let  fi be an open set in C and let E  be a discrete set in ft. Let a  be a closed curve in 
Q \ E  which is null homotopic in fI. Then for  any holomorphic f  i n f l \ E ,  the set {a, € E  : n(-y,a) ^  0)}, 
where n  is the winding number of  7  at the point a, is finite and

I  f d z = Y ]  r e s<>(/) ' n (% a )
2m A

In a Riemann surface line integrable entities are the 1-forms. So following the complex analytic 
definition we define

Definition 5.2. Let z be a local coordinate centred a tp  € X .  Let uj =  f d z  in this local coordinate. Then 
the residue of a 1-form uj at a point p € X  is defined as

reSp(ui) :=  resp( /)

We have to prove well definedness. This is just an application of Theorem 5.1. Let the chart whose 
local coordinate is z  be (U,<j>). Consider a simple loop in TJ, enclosing p ,  but not any other pole of uj.  

By Residue theorem, f  cj = f ( z ) d z  =  2m  resp( f )  =  2iri resp(w). Since the RHS is independent of 
the chart chosen, so is the LHS.

Now we sta te  the residue theorem for a compact Riemann surface.

Theorem 5.3. Let uj be a meromorphic 1-form on a compact Riemann surface X .  Then,

resp (uj) = 0
J)&X

P r o o f .  Poles of w is a discrete set in compact X .  Therefore finite. Let us call them  pi,  ■ ■ ■ ,Pk- 
For each i, choose a simple loop a,; in a param etric disk enclosing Pi and not any other pole. By Jordan 
Curve Theorem, the param etric disk is divided into two disjoint components by a*. Let Ui be the 
component containing p*. By Theorem 5.1, Ja uj =  resPi(w). Let Y  :=  X  \  U"= 1t/j. Then as a 1-chain 
8 Y  =  — Note th a t uj is holomorphic, hence closed in Y . Therefore applying Stokes Theorem,

□

Let uj  be a meromorphic 1-form and /  be a meromorphic function. Then f u j  is again a meromorphic 
1-form. Let 2 be a local coordinate centred at p G X .  Let uj  = h(z)dz  locally. Let /  =  and
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h = Cizl Laurent series expansions of /  and h, respectively, in term s of a. Let us calculate
the residue of f w  a t p.

OO OO
resp(/w ) =  coefficient of (1 / z)dz  in ( ] T  atz l ■ Y ,  cj z 3)dz

i——l j  — — k
cc

i——k
We notice th a t resp(/w ) depends only on those coefEcients of ait for which i < k, th a t is, only on the 
Laurent tail of degree k — 1. Thus if w 6 L ^ ( —D),  then we can replace —k by D(p)  above. Then 
resp(fuj) depends only on the Laurent tail of /  truncated a t - D(p), th a t is the residue depends only 
on a D(f ) .  Thus given a meromorphic 1-form u  e  L ^ ( - D ) ,  this leads us to define a residue map on 
T[D](X)  as following

Resw : T[D]{X)  C

E  r ? ' ?  ^  E  res p{rpuj)
pGX p£X

This is a linear map. For /  £ M ( X ) ,  by above calculation,

ResU a D(f ))  =  E  resp(rpuj) =  J J  resp( f u )  
pex  pex

Now we know by Theorem 5.3, th a t E Pg * resp ( /w) =  Therefore we have a linear map from 
T { D \ ( X ) / oid{M-(X))  to  C. By abuse of notation, we again call this map Resw : H 1(D) —► C. Thus 
Resw 6 I I 1 (£>)*. So we have a map from L ^ i - D )  to the dual of I I 1 (£>), again called the residue map.

Res : L ^ \ ~ D )  —> I11 (D)* 
tu i—̂ Res^

Easy to  check th a t this map is also linear. Now we claim ,

Theorem 5.4. [Serve Dual i ty]  Let X  be a compact Riemann surface and let D  6 D iv(X). Then 
Res : L ^ ( ~ D )  —¥ H 1(D)* is an isomorphism of complex vector spaces.

Let us prove injectivity of this map. Since this is a linear map, it is enough to  prove th a t the kernel 
is zero. So let u  e  Ker(Res). Then ResU T , Pe x  rp ' p) =  °> for a11 T , Pe x rP ' P e  T[D](X) .  We wish 
to  prove th a t w =  0. Suppose not. Then there exists a point p, such th a t if uj = {J2cj z:,)dz  in local 
coordinate 2  centred at p, then not all q ’s  are zero. Now all we need to do is find a suitable Laurent 
polynomial rp such th a t Resw(rp -p) =  resp{rpuj) ^  0, which will give the contradiction. Suppose k is the 
least integer for which ck ±  0. Take rp =  z - fe~ \  then resp(rpw) = ck ^  0. Hence injectivity is proved.

Now let us look at surjectivity. Consider an element <j> : H l (D)  ->■ C, of I I 1 (D)“. We will think of <f> 
as a linear functional on T[D](X)  th a t vanishes on a o { M ( X ) ) .  We want to find a preimage of tp under 
Res. We had noticed in the last chapter th a t, if loi and uj2 are two meromorphic 1-forms, then there 
exists /  € M ( X )  such th a t u>i = f u 2. So we s ta rt with any meromorphic 1-form ui and try  to  multiply it 
w ith suitable meromorphic function to get our desired preimage. Let K  =  div(w). Then u> e  L ^ ( - K )  
and hence Resw € T[K}(X)*,  whereas (p £ T [ D ] ( X f . To make these two comparable consider A e  
Div(X) ,  such tha t, A < K , D .  Then div(oj) >  A and hence oj 6 L^l \ ~ A ) .  Thus Resw 6 T \A }(X)* . 
Also, composing (j> with t j ,  we have (f>A '■= 4> ° ta  ^  T \ A ] ( X y . they may not be equal, for th a t we 
wish to  multiply to w ith a suitable meromorphic function and consider it s residue map.

Given a meromorphic function /  and any divisor D,  we introduce a map

Hf : T [ D } ( X ) ^ T [ D ~ - d i v ( f ) } ( X )

E ^ - E  f r p ■ p  truncated at — D + d iv (/)

The crucial property of this map is th a t the following diagram commutes.

T{D](X)  T[D -  d iv (/)](X )

Reso,
Res ..

C
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In our case Resw acts on T[A](X) .  To use the above factorization we have to  choose a divisor of the 
form D  — d iv (/)  on which Res^ can act. T hat is, we have to  choose a divisor of the form I) — d iv (/)  
which is smaller than  A.  If /  € L(C) ,  then  A  — C  — d iv (/)  is such a choice. Thus we can say th a t the 
composition

T \ A  -  C]{X)  -» T[A -  C  -  d iv (/)](X ) -► T[A](X)  -» C 

given by <̂ 4 ° ^ _ c - d i v(/) ° ^ /  equal to  R es/W. This motivates the following lemma which we will apply 
on 4>a  and Resw.

L e m m a  5 .5 . Let 4>i,<j>i £ H 1(A )* be non zero linear functionals. Then there exists a positive divisor C  
and non-zero f i , f 2 £ L(C)  such that the following diagram commutes.

jA
T [ A - C -  d i v i h M X ) ------------- i U  T[A](X)

jA
LA - C - d i v ( f 2)

T [ A - C ~  d iv (/2) ] ( X ) -----------------+ T[A]{X)

P r o o f .  For any positive divisor C, consider the map 

L(C)  x L{C) ^  H l ( A ~ C y

( / l>  / 2 )  |- 5> <Al 0 ^ - C - d i v C / O  °  M /i  “  <?2 °  ^ _ C - d i v ( / 2) °  M /2

Aim of the lemma is to  show th a t there exists C  such th a t for some non-zero f i ,  f 2, this map is takes 
the value zero. Suppose ( / i , / 2) belongs to the kernel such th a t one of them  is zero, say f \  =  0. Then 
(f>2 o 1 4_c_d iv(j,) ° / i /2 is also zero. If f 2 is non-zero, then /j,f2 is invertible and ^ _ c -d iv ( /2) 1S surjective, 
hence <p2 =  0, which contradicts the hypothesis. Therefore the statem ent th a t there exists non-zero f i ,  f 2 
for which the map takes zero value implies th a t the kernel is non-trivial. Suppose not. Then this map is 
injective. Since both  the domain and range are finite dimensional, injectivity implies

dim H l (A -  C) > 2 dim L(C)

B ut we already have an expression for dim H 1(A — C)  in Theorem 4.2. P u tting  it we have

dim H \ A  -  C)  =  dim L(J4 -  C) -  deg(A -  C)  -  1 +  dim /71 (0)

< dim L(/l) — deg(j4) — 1 +  dim /71 (0) +  deg(C),

This implies 2 dim L(C)  < a + deg(C), for some constant a. Again applying Theorem 4.2 to dim L(C), 
we have

dimL(C) =  dim H ^ C )  + deg(C) +  1 -  dim-ff^O)

> deg(C) +  1 -  dim ff^O )

This implies 2 dim L(C)  > b  + 2deg(C), for some constant b. Therefore we have

b +  2deg(C) < a +  deg(C) 

or deg(C') <  a — b

But we can take any positive divisor C,  hence deg(C) cannot be bounded. This is a contradiction, 
proving our lemma. □

Applying this lemma to d> and Res^, there exists a positive divisor C  and non-zero f i , f 2 £ L(C)  
such tha t

4>A °  ^A—C —div(fi)  °  M /i =  R e s w o  t A - C - d iv ( f 2) °  V h

We have seen th a t the RHS is equal to  Res/2W. Hence we have,

<pA ° tA-C-divif i)  ° M/i =  Resf2W 

Now notice th a t Hf is invertible, i t ’s inverse being Mi//- Composing with on both sides we have
4>a 0 ^a - c ~div(/i) =  Res/ 2̂  0 M1//1 =  Res(/2//i)w- This implies th a t Res(/2/ / 1)w is 0 on element which 
are in T[A — C  — d iv (/i)](X ) but not in T[A\(X) ,  since such elements belong to  K er(^_c_d iv (/i)) <-  
K er(<^ o <A -c-d iv(/i)) =  Ker(Res(/2/ / 1)w). Hence 4>a  =  R-es(/2//i)w as an element of f / 1(A)*. Now
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0 o t% — 4>a = R-es(/2//i)w  -A- similar argument then tells us th a t cj> =  R e s as an element of 
H 1(D)*. This finishes the proof of Serre Duality Theorem.

6. R ie m a n n -R o c h  T h e o re m

Serre Duality and Theorem 4.2 implies,

(19) dim L(A)  -  dim L ^ ^ —A) = deg (A) +  1 -  dim L^^(O)

Let l o  be any meromorphic 1-form and let div(w) =  K .  Then we can construct a meromorphic 1- 
form belonging to  L ^ ( D )  by multiplying u> w ith a suitable /  £ M ( X ) .  div( fw )  =  div(/)+div(w ) > 
d iv (/) +  K ; if we take /  £ L( D + K) ,  then  div(/w ) >  —D  -  K  +  K  =  —D.  Hence fui £ L ^ { D )  if 
/  £ L (D  + K) .  In fact these are all, th a t is, we have the following Lemma

L e m m a  6.1. Let ui be any meromorphic 1-form and let div(w) =  K . Let D  £ D iv p f), then the map

fiu : L ( D + K )  ^ L ^ ( D )

/  ^  /w

is C linear and is an isomorphism.

PROOF. The linearity is obvious. Injectivity is also clear. For surjectivity, let 7  £  L ^ ^ ( D ) ,  then there 
exists /  £ M ( X ) ,  such th a t f u  =  7 . Now d iv (/)  =  div(7 )— div(w) > — D — K .  Hence /  £ L ( D + K ) .  □

Thus dim L(1) ( -A )  =  dim L(K  -  A)  and dim L(1)(0) =  dimL(i<r). P u tting  this in (19), we have

(20) dimL(A) -  dimL ( K  -  A)  =  deg(y4) +  1 -  dimL(Tf)

If A = K ,  we have dimL (K )  — dirnL(O) =  deg(K)  + 1 — dimL (K )  or 2dimL(A') =  2+ deg(if). Since 
KDiv(X) is a coset of PD iv(X ), therefore degree of a canonical divisor is constant. Therefore it is 
enough to  find the degree of any one of them. We know tha t any Riemann surface X  has non-constant 
meromorphic function. Let the  corresponding map to the Riemann sphere be F  : X  —> Coo- lo = dz  is a 
meromorphic 1-form on Coo, whose divisor —2 ■ 00. Then F*(ui) is a 1-form on X .  We wish to find the 
degree of this divisor. There is a general result on order of a pulled back meromorphic 1-form.

L e m m a  6 .2 . Let F  : X  —> Y  be a holomorphic map between two Riemann surfaces. Let l o  be a 
meromorphic 1-form on Y .  Let p  £ X .  Then

ord p (F*lo) = (1 +  ordp(w))niultp(F) — 1

P r o o f . Consider the local normal form w = z n of F,  in coordinates z and w centred at p  and 
F(p)  respectively, where n  =  multp(F ). cj is locally equal to  fd w ,  for some local meromorphic function 
/ .  Let Laurent series of /  in term s of w  be J2 i ^ k aiw l ’ where k = o rd f(p)(w). Then locally F*ui =  
(E S fe  a i z ^ n z ^ d z .  Hence ordp{F*lo) = n k  + n  -  1 =  (1 +  k)n  +  1 =  (1 +  ordp(w))multp(F) -  1. □

Degree is the sum of the orders a t each point. So we can apply this Lemma to calculate deg(F*w), 
in the situation where Y  =  Cm and l o  = dz. Following com putation uses Hurwitz Formula in the 5th 
step.

deg(F*w) =  ^ 2  °rd p ( F * lo) 
pex

= ^ [ ( 1  +  ordp(w))multp(F ) -  1]
pex

=  [multp(F) -  1] +  [—m ultp(F) -  1]
00 p € F - 1(oo)

peF~1(q)

=  y ^ [m u ltp (F ) -  1] -  2 m ultp(F)
p E X  p G F ^ 1 (  oo)

= 2 g ~ 2  + 2 deg(F) -  2 deg(F)
= 2g - 2

Therefore we have deg(-fiT) = 2g -  2, hence 2 dim L ( K )  = 2+deg (K)  =  2g or dim L (K )  = g. Pu tting  
this in (20), we have the following theorem.



32 3. RIEM ANN-ROCH THEOREM

Theorem 6.3. [ R i e m a n n - R o c h ]  Let X  be a compact Riemann surface of genus g. Then for any A  € 
Div(X) and K  6 KD iv(X ), we have

dim L(A)  — dim L ( K  — A)  =  deg (^4) +  1 ~~ g
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1. Weierstrass points
Let X be a compact Riemann surface and p e X .  We have seen th a t if there exists /  € M ( X )  non­

constant, such th a t /  has only one pole of order 1 a t p, then X  is isomorphic to  Coo. T hat is dimL(p) > 1 
implies th a t X  =  C ^ .  From now on unless mentioned otherwise we will consider Riemann surfaces of 
genus g >  0. So we ask what are all integers n,  such tha t, there does not exists any non-constant 
/  <E M( X ) ,  such tha t, divoo(/) =  n ■ p  ? From Riemann-Roch Theorem we know

(21) dim L(np)  — dim L ( K  — np) = deg (np ) +  1 — g

The following lemma tells us th a t for n  sufficiently large we can get rid of the dim L ( K  — np) term.

Lemma 1.1. Let X  be a compact Riemann surface and let D  € D iv p f), with deg(D) < 0. Then 
L(D)  = 0.

PROOF. Let 0 7- /  € L(D) .  Then d iv (/)  >  —D.  Then we can define a non-negative divisor E  = 
d iv (/)  +  D.  Therefore deg(£) > 0. But deg(£) =  deg (div(/))+deg(£>) < 0, which is a contradiction, 
hence L(D)  =  0. □

Thus if we can ensure th a t deg( K  -  np) <  0, then dimL(I< -  np)  =  0. But deg(K  -  np) = 
deg(K)  -  np = 2g -  2 — n,  since degree of a canonical divisor is always 2g -  2. Thus if n > 2g ~~ 1, 
dim L(np) = n + 1 — g. Then dimL(2g ■ p) = g + 1 >  2, which means L(2g ■ p) admits non-constant 
meromorphic function. Now consider the sequence

L(0)  C L(p)  C C L(2g-p)

dimL(0) =  1 and dimL(2g ■ p) = g + 1, hence the dimension increases from 1 to  g + 1 in 2g steps. Also we 
had seen in the proof of 2.2, th a t dimL(D)  <  dim L(D — p) +  1. Hence the increase in dimension at each 
step in the above sequence is atm ost one. Thus there are g integers 1 =  n x <  ■ • • <  n g <  2g, such that, 
L((ni  -  1 )p) = L(ni).  These numbers are called gaps and the set is denoted by Gp. Note th a t by the 
formula for dimL(np), for n  > 2g -  1, there are no such “gaps” for any n > 2g - l .  L((ui  -  1 )p) ^  L{ni),  
means there exista a non-constant /  6 M ( X ) ,  such th a t divoo(/) = m - p .  Hence gap numbers are those 
points for which there is no such meromorphic function. The complement of the set of gap numbers in 
{ V "  1 25} is called the set of non-gap numbers and is denoted by 1 <  m i  < ■ ■ ■ <  m g =  2g. For each
i, there exists non-constant fr € M( X ) ,  such th a t divoc( / i) =  m , - p. Now div00( / i / i ) =  div00( / i)+  
div00( / 7) = m-i ■ p + m,j ■ p. Thus if mi  +  m,j < 2g, then it is also a non-gap point.

We want to know how Gp looks like for different p ’s. We are looking at the difference d im l,(np)— 
dim L ((n— l)p). But (21) tells us we can as well look at the difference d i m L ( K ~  (n - l ) p) ~-  dimL(K~~np).  
W hat we mean is, pu t n  and n — 1 in place of n  in (21), and subtract them  to get

dimL ( K  — (n — 1 )p) -  dimL ( K  — np) — 1 +  dim L((n — 1 )p) — dimL(np)

Thus n  is a gap number a t the point p, if and only if dimL { K  -  (n -  l)p) ^  dim L ( K  -  np). Now consider 
the vector space L(K) .  It follows from the above discussion th a t n  is a gap number for p, means tha t 
there exists /  G L(K) ,  such th a t ordp( /)  =  n  -  1 - K ( p ) .  Let { f \ ,  • • • , f g} be a basis of L(K) .  Choose a 
[ocal coordinate 2 centered at p. M ultiply each / j ,  by z K (p\  to make them  locally holomorphic functions, 
;ay hi ( z ) :=  z K ^ f i ( z ) .  Then the power series of hi will be as follows

A utom orphism s for genus g >  2

h i = h i (0 ) + - - - + h ^ ( 0 ) ~  + 
n\
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Now consider any element <j> G L(K ) .  Suppose ordp(<£) =  n  -  1 -  K(p) ,  for 1 < n < g, then we must 
have ordp(zfC(p^ )  = n  -  1. Let <p =  Y h=i aifi- Tlien we m ust have

/ 0\

l (0) hg{0) \

(22 )

\h (5- 1)(0)
(5- 1) (0) /

W
where the right hand column vector has first n  -  1 entries zero, a non zero entry at the n th place 
and anything after tha t. Call the m atrix in left hand side M p. Thus if we have a (pj G L ( K )  w ith 
o rd p ^ )  =  j  -  1 -  K(p) ,  such th a t (pj =  J 2 i ai j f u  f°r each 1 <  j  < 9 , then putting A  =  ( , we 
note th a t M PA  is invertible. Hence M p is invertible. Thus M p is invertible is equivalent to  the fact th a t 
Gp = { 1, ■ ■ ■ ,g}.  If this does not happen for some p G X ,  then p  is called a Weierstass point. Thus

Lemma 1.2. A point p € X  is a Weirstass point  d e t(Mp) = 0.

It is true th a t the m atrix M p depends on the choice of local coordinates, bu t a change of coordinate 
just multiplies M p w ith an invertible m atrix and hence the determ inant does not change. Therefore the 
condition det(M p) =  0, is independent of the coordinate chosen.

We can extend the function p  i-> detM p to the coordinate neighbourhood U, by sending q to

/  hi(z(q))  ••• hg(z(q)) \

W z(hly --- , h g)(z(q)) = det

W r ^ i z i q ) )  ■■■ h ' f ^ W q ) ) /

Note th a t this function is holomorphic in U. I t is not clear th a t this function helps us to determine 
whether a point q € U* is Weierstass. Notice th a t there exists a punctured neighbourhood V * :=  ^ \{ p }  
of p, such th a t K  takes the value 0 in V*. Thus f i  s are holomorphic in V * . Shrink V*, if necessary, 
to  fit inside U. To determine whether a point q G U* is Weierstass, we calculate the determ inant of a 
m atrix M q, whose i th column is the first g — 1 derivatives of f i  a t z(q). Note th a t W z (h\,  • • ■ , hg){z{q)) = 
z(q)9K (p) de tMq. Since z(q) ^  0, for all q G V"*, detM , ^  0 W z (hi, ■ ■ ■ , h g)(z(q)) ^  0. Hence q G V  
is a Weierstass point W z(hl r  ■ ■ , hg){z{q)) ±  0. The function W z (hi, ■■■ , h g) is called the Wronskian 
of the functions hi,  ■ - ■ , h g. We have the following fact about Wronskians

L e m m a  1.3. Let hi,  ■ ■ - , h n are linearly independent holomorphic functions in neighbourhood of  0 in C.

A s - 1)/

Then the Wronskian W z (hi ,h„) is not identically zero near 0.

Before giving a proof we present the consequence of this fact 

Corollary 1.4. There are finitely many Weierstrass points.

P r o o f .  We wish to  prove th a t Weierstass points are discrete. Then by compactness of the Riemann 
surface, we can conclude tha t there are finitely many Weierstass points. Suppose p  is a Weierstrass 
point. We have proved th a t in a neighbourhood V  of p, a point q is Weierstass if only if W z (hi, ■■■ , 
h g)(z(q)) ^  0. Now hi,  ■■■ , h g are linearly independent, therefore by Lemma 1.3, W z (h\, ■■■ , h g) is a 
holomorphic function which is not identically zero in a neighbourhood of 0. Hence there is a punctured 
neighbourhood of p, where W z(hi,  - ■ - ,h  
neighbourhood.

P r o o f ,  of Lemma 1.3 First we note th a t if we have a m atrix function 2 n- A(z)  :=  (a y (z )) ij  
then the derivative of i t ’s determ inant is given by

/  a n  ■ ■ ■ a in \

gl is not zero, th a t is p is the only Weierstass point in tha t
□

dz
det(i4(z)) =  y~^det

' ‘ ' OnnJ
RHS is the sum over i of determ inants of matrices which are same as A  except th a t each entry of the 
i th row is differentiated. Applying this on Wronskian we note th a t differentiation of any row, except the 
last, will make it equal to the next one, and hence the determ inant will become zero. We will prove th a t 
W z (hi,  ■ ■ • , hn) is identically zero near 0 implies th a t the functions hi,  ■ ■ ■ , hn are linearly dependent.
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W 2 (hi,  • • • , hn) is identically zero near 0 means th a t all derivatives of W z (hi, • ■ ■ , hn) a t 0 is zero. F irst 
derivative is zero means the vector { h ! f \ 0) ■ ■ ■ hg9\ 0)), is linearly dependent on the first g — 1 rows of 
W z (hi, ■ ■ ■ , hn)(0). A little reflection will convince the reader th a t first, second, upto n th derivatives are 
zero, will imply th a t the vector ^(O) • • • hg™"1 s - 1̂ (0)) is linearly dependent on the first g — 1 rows
of W z (hi, ■ ■ ■ , hn)(0). Hence {(^"^(O ) • ■ ■ h ^ \ 0)) 6 Cs : m  £ N} is a subset of a n  — 1 dimensional 
subspace. Let (cj" • • • c£) be perpendicular to  this n  — 1 dimensional subspace w ith respect to the usual 
herm itian product. Then Cih\m\ o )  = 0, for all m  e  N. Hence E i  c^7'j is identically zero. Therefore 
hi,  ■ ■ ■ , h n are linearly dependent. □

2. Weierstrass weight
We saw th a t Wronskian tells us whether a certain point p  is W eirstrass. Suppose p  is not Weirstrass. 

T hat is, the gap numbers are not the first g positive integers. Suppose Gp =  {n i,---  ,% } . Can the 
Wronskian give some information about the rij’s? This question is addressed in the following Lemma.

Lemma 2.1. Let Gp =  {ni, • • ■ , n g}, and { /i , ■ • • , f g} be a basis of L (K ) .  Let z  be a local coordinate 
centerd at p. Then

ovdp(Wz (zK^ f i ,  ■ ■ ■ , z K W f g)) =  -  1)
i=i

PROOF. First note tha t if we work with a different basis then the order does not change. This is 
because, a change in basis amounts to  multiplying the m atrix of the W ronskian by the constant change of 
basis m atrix, and hence the Wronskian itself is just multiplied by the non-zero determ inant of this matrix. 
So the order is not affected. Now Gp =  {ni, • • • , n g} implies th a t for each i, there exists hi £ L(K),  
such th a t ordp(/ij) =  n; — 1 — K(p) .  Infact by multiplying by appropiate scalars we can ensure th a t 
the first non-zero term  in the Laurent series of each hi has coefficient 1, th a t is, for each i, we have 
hi = z ni~ 1~ K (p') +  ■ • ■. Clearly all the hi s are linearly independent and since there are g many of them, 
therefore they form a basis. So we consider W z {zK^ h \ ,  ■ ■ ■ , z K ^ h g) and look for the lowest term  of 
i t ’s power series. Notice th a t the lowest term  of power series of W z (zK ^ h i ,  ■ ■ ■ , z K^ h g) is same as the 
lowest term  of the power series of W z {zK ^  ■ z ni~ 1^ K '̂p\  ■ ■ ■ , z K^  ■ zng~~1~K (p')) = W z (zn i~ 1, • • • , z ns~ l ) 
which is equal to the determ inant of

/  2ni_1 zns - 1 \
(ni  — l ) z n i~ 2 (n„ — l ) z n<>~2

(23) : : :

\ ( n i  -  1) • ■ ■ (m  -  g + l ) z n i ~ 9 ■■■ (ng -  1) • ■ • (ng -  g + l ) z n<>~9J

The determ inant of an n  x n  m atrix (a^ ) i j  can be expanded as E<jes„ a icr(i) ' ’ ' ana{n)• In our case 
aicr(i) =(som e constant) x z raerW "\ Multiplying over i, for a fixed a, the exponent of z th a t we get is 
E i k w  -  i) =  E i ^ f s )  -  E i*  =  Y , i n t ~  J 2 i i =  E i K  -  *)• Hence (23) is a monoimal, with the 
coefficient m atrix equal to

( I  ■■■ 1 \
(ni  -  1) • • ■ (ng -  1)

(24) det

\ ( m  -  1) ■ ■ • {ri! -  g +  1) (ng -  1) ■ ■ ■ (ng ~  g + I ) )

If we can show th a t (24) is non zero we are done. We can think of (24) as a polynomial in the variable 
n\.  Then putting  n\  =  rij, for any i, in (24), yeilds zero. Hence I l i= i ( n i — n i) divides (24). We can do 
the same thing for each n,j. Hence r i i< j (n i ~ n j) divides (24). Now thinking of (24) as a polynomial in g 
variables ri\, ■■ ■ , n g, we note th a t the degree is g{g— l) /2 . B ut degree of Yli<j(n i ~~nj)  is also 5(5 —l)/2 . 
Hence (24) is equal to ±  ~  n j)- Since n^’s are all distinct, therefore (24) is non-zero. □

The above Lemma leads us to  the following definition.

D e fin itio n  2.2. Let X  be a compact Riemann surface of genus g and p  £ X .  Let Gp = {ni ,  ■ ■ ■ , n g} be
the set of gap numbers at p. Then the Weierstass weight of the point p is defined as

9

wp = ^ ~ 2(rn -  i) 
i=1
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We want to  know how many Weierstass points are there in a Riemann surface X  of genus g. But 
the “correct” quantitity  to count is not the number of Weierstass point, but the number along w ith their 
weight. T hat is, we will find out the quantity wp. Note th a t this sum is finite, since wp is non-zero
iff p is a Weierstass point. The strategy is to  stitch up the locally defined Wronskians to a global entity, 
very similar to  forms. We will a ttach a divisor to  such an entity which will contain the information of 
the order of each of the local Wronskians. We will derive a formula for the  degree of this divisor which 
will then lead us to  the value of J 2 Pe x  wv

The global entity we have in mind is higher order diffentials.

Definition 2.3. A meromorphic n-differential on an open set U e  C is an expression of the form  
H =  f ( z ) ( d z ) n , where f  G M ( U ) .

Denote the set of meromorphic n-differentials on U by M ^ ( U ) .  Let U and V  be two open sets 
of C and let T  : U -> V  be a holomorphic function. Then define T* : M ^ i y )  M ^ n\ U )  sending 
H = f{z ) ( d z ) n to  1/ =  h{w){dw)n , where h{w) = f o  T (w )T ' ( w )n . Now we can extend this concept to 
Riemann surface.

Definition 2.4. Let X  be a Riemann surface. A meromorphic n-differential on X  is a collection of  
meromorphic n-differentials one for each chart <j> '■ U —> V , in the variable of V ,  such that if
(pi : Ui —> Vi; i =  1, 2 have overlapping domains, then on V\ fl V^, =  (<f>2 ° 4>\ ) (/V2)-

L e m m a  2.5 . Let X  be a compact Riemann surface and / i , • - - , / „  € M ( X ) .  Then W z { f  i ,- -  - , /„ )  
(dz)n(" “ 1)/2 is a meromorphic n(n  — 1 ) / 2-differential.

P r o o f . W z (f i ,  • ■ ■ , / „ )  is holomorphic except a t the finitely many poles of / i ,  ■■■, / „ .  At those 
points W z (f i ,  ■■■ , f n ) has pole or removable singularity. Hence W z(f i ,  ■■•,/„) is a meromorphic func­
tion. Now we just have to check compatibility. Suppose z  and w are the local coordinates of two 
overlapping charts and let T (w) = z  be the change of coordinate function. By abuse of notation we 
think of f i ' s  as function of the coordinate z. Now W w(f i ,  ■ ■ ■ , f n ) =  det(d (f j  o T(ui)) /dw ) i j .  By 
induction we can show tha t

+ Y Jatkd̂ t 1dwl dz l ^  dzk

for some holomorphic functions a,n-- We know row operations do not change determ inant. Thus by row 
operations we can convert the m atrix (dl ( f j  o I  [w))/dw%)i,j to  (2 (w) d f j ( z ) / d z  )i,j. Hence

W w( h , - • ■ , / „ )  =  d e t ( T 'M i:̂ P k ,  =  T ' ^ - W w ^ h ,  • • ■ , /„ )

□
Definition 2.6. Suppose an n-differential /i is represented by f ( z ) ( d z ) n in some local coordinate z 
centered at p. We define the order of /x at the point p as

ordp(X) :=  ordp(/)

We have to check well definedness. Suppose g(w){dw)n be another representation of fi, in coordinate 
w centered at p. Let T(w)  =  z. Note th a t T (0) =  0 and T '(0) ^  0. By compatibility g(w) = 
f ( T ( w ) ) T ' (w ) n . ordp(/(z ))  is the unique integer k, for which lim ^ooZ  kf ( z )  ^  0 or oo. Now

- k
limu,_>ocw~fcg(iu) =  Y\mw-^oo~^z kT ' (w )n

=  lim ^^oc 1 ^ — T' (w )n ■ \ imz^ 00z ~ kf ( z )
W K

= T ' ( w ) k+n • l im ^ o 0 z~~kf ( z )
^  0 or oo

Therefore order of an n-differential is well defined. Now we attach  a divisor to as div(/i) .=  Y^Pe x  
ordp(/i) • p. Once we have divisors we can organize in partially ordered subspa.ces

L {n){D) := {n  £ M (n}(X)  : div(/x) > - D }

L e m m a  2.7 . Let h r -  J n & L ( D ) .  Then W z ( h ,  ■ ■ ■ , /„)(<fe)" (n- 1)/2 € L (n(n- 1) /2)(n£>).
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P r o o f .  Let p e l  and z  be a local coordinate centered at p. ord > —D(p),  for each i, hence 
z DW f i  is holomorphic a t p, for each i. Then W z (zD^ h ,  ■■■ , z D^ f n) is holomorphic a t p. Notice tha t 
W z (zD(p\ f i ,  ■ ■ ■ , z D^  f n) = z nD^  W z (f i ,  ■ ■ ■ , f n ), since row operation does not affect the determ inant. 
Therefore z nD^ W z (f i ,  ■ ■ ■ , /„ )  is holomorphic a t p. Hence ordp(IF2( / i ,  ■ • • , /„ ) )  >  —nD(p).  □

We know for n =  1, L ^ ( D )  =  L (D  +  n K ) ,  where K  is a canonical divisor. This is true for general
n.

L e m m a  2.8. Let uj £ M ^ ^ ( X )  and I< =  div(w). I f  uj = g{z)dz locally then we define an n-differential 
UJn which is locally g(z)n (dz)n . Now define a map

<f>: L( D  + n K )  ^  L {n){D) 

f  ->■ f u n

Then 4> is an isomorphism of  vector spaces.

P r o o f .  First of all we have to  show th a t /w ” indeed belongs to  L^n\ D ) .  Locally fcon is equal to 
f ( z ) g ( z ) n (dz)n . Hence

ordp(/w ” ) =  ordp(/) +  nordp(p) > —D{p)  — nK(p)  + n K ( p )  =  —D(p)

Linearity and injectivity is clear. For surjectivity consider /j  £ L ^ ( D ) .  We have to  find a meromorphic 
function f ,  such th a t fujn =  fj,. If z is the local coordinate in a neighbourhood then uj =  g{z)dz  and 
H =  h(z) (dz)n locally. Define /  locally as h( z ) /g(z )n . A change of coordinate T(w)  = z  will result 
in multiplication of both  num erator and denominator by non-zero T ' ( w )n . Hence /  is a well defined 
meromorphic function and satisfies fujn =  Hence <j> is surjective and therefore an isomorphism. □

Now we turn  our attention to the particular type of Wronskian differential which is locally given by 
W z ( h ,  - ■ ■ , f a) { d z ) ^ ) / \  where { /i, - • - , f g} is a basis of L (K ) .  We have seen th a t a change of basis 
of L(K ) ,  does not affect, the order of such a differential. So we denote such a differential by W ( K ) ,  and 
it is unique upto scalar multiplication.

C o ro lla ry  2.9. deg(div(W (X ))) =  g(g -  l )2

P r o o f .  By Lemma 2.8 there exists /  £ M ( X )  and ui € M ^ ^ X ) ,  such th a t W ( K )  =  fuiaig-1)/^. 
Hence

deg(div(l'F (K ))) =  J ^ o r d p(W (K ))
P

=  X > d  P(fujg(9- 1)/2)
P

= E ord, ( / )  + g^ 9 . 1}E ordp H
p

g{g~ i)
2

: 9(9 ~  I )2

2

x 2(? -  2

since ordp( /)  =  0 and ordp(w) = 2g -  2. □

Now we come to the main result of this section.

T h e o re m  2.10. Let X  be a compact Riemann surface of  genus g. Then

E  wp =  g3 ~  s-
p £ X
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P r o o f ,  Let { /i, • • • , f g} be a basis of L (K ) .  Then

$ > p =  Y , ordp( (Wz (zK ^ h ,  • • ■ , z K W f g))) (by Lemma 2.1)
P  P

= j 2 0 Tdp(Z9K ^ ( W Z( f l r -- Jg ) ) )
P

= Y s l 9 K ( p ) + o r d p(W(K))}  
p

=  pdeg(i^) +  deg(div( W  (K)))

=  ff(2p -  2) +  g(g -  l )2 (by Corollary 2.9)

=  g3 - g

Hence proved. □

3. Bound for number of Weierstrass points
Now we are interested in counting the actual number of Weierstass points. By above theorem we 

can have atm ost gz — g Weierstass points for a Riemann surface of genus g. Can we get a lower bound? 
The idea is to find an upper bound for the weight wp, so th a t dividing J 2 p w p =  9 3 ~  9  by this quantity 
will yeild a lower bound for number of Weierstass points. For this we need to  examine non-gap points 
more deeply. We recall th a t the set of non-gap points is the complement of the set of gap points G q in 
{1, ■ • ■ , 2g}  and we denote them  by 1 <  m i < • ■ ■ < m g =  2g.

Proposition 3.1. For each 0 <  i < g, mi  +mg„i > 2g.

PROOF. We had seen th a t if m ; + m,j <  2g, then it is a non-gap point. Suppose m* +  m 9_i <  2g. 
Then for each j  <  i, m j  +  is non-gap point. Thus we have atleast i non-gap points strictly between 
TOs_j and m g =  2g. Hence to tal we have atleast {g -  i) + i + 1 =  g +  1 non-gap points. This is a 
contradiction. □

Proposition 3.2. I f  m i  = 2, then m t =  2i and mi  + m g- i  =  2g, for all 0 < i < g.

PROOF. If m i =  2, then 2,4, • • • ,2g are g non-gap points. Hence these are all. □

Proposition 3.3. I f  m i  > 2, then there exists 0 < j  < g such that m j  + m g^j  >  2g.

P r o o f .  Let [ ] denote the greatest integer function. Then m i, 2m i, • • ■ , \2g/mi]m,i  are all gap 
numbers. Now m i > 2 implies 2 /m i < 1, which implies th a t [2g/mi] < g. Hence there exists atleast 
one more non-gap number outside this sequence. Let I be the least such number. There exists 1 <  r  <  
[2g/mi] <  g such th a t rrti\ < I < (r +  l)m i. Then the first r +  1 gap numbers are m i  < m 2 = 2mi <
• ■ ■ <  m r =  rm i <  'm-r+i =  I- Suppose the claim made in the Proposition is not true, then by Proposition 
3.1, m,i +  rrig-i =  2g, for all 0 < i < g. Then the last r  +  1 non-gap numbers except rng = 2g are

(25) m g-1 = 2g — m i  > ■ ■ ■ > m g^ r = 2g — r m i  > m 3_(r+ i) =  2g — I

Note th a t even if r + 1 =  g, the last number in the sequence is m 0, which we define to be zero. Now

m i +  m 9_(r+ i) =  m i +  2g -  I = 2g -  (I -  rni) >  2g -  rrn 1 = m g_r

Also 2g > 2g — (I — m i)  = m i  + m ff_(r+ 1), hence m i + m g_(r+1) is a non-gap number greater than  m g^ r . 
Therefore it must appear in the list (25). Hence m i +  m 9_(r+ i) = 2 g — k m i  for some 0 < k < r. But 
this implies I = (k — l)m i, which is a contradiction. □

Corollary 3.4. E f= i ~  9(9 ~  with, equality i f  and only i f  m i  =  2.

P r o o f .  Proposition 3.1, tells us m,i+rng^i > 2 g for 0 < i  < g. Summing over i, we get 2 E f= i > 
2g{g -  1)- Proposition 3.2 tells us th a t m j =  2 implies equality and Proposition 3.3 tells us th a t the 
above inequality is strict if m i >  2. □

Now we give an upper bound for Weierstass weight wp.

Theorem 3.5. Let X  be a compact Riemann surface with genus g >  2. Then for  all p  £ X , wp < 
g{g -  l ) /2 .  Equality occurs only for  a point p whose sequence of  non-gap numbers begin with 2.
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PROOF. If 1 =  rii < ■ ■ ■ < n g < 2g is the seqiuence of gap numbers and 2 < m i  < ■ ■ ■ < m g = 2g is 
the sequence of non-gap numbers then,

9 9 9

w p  =  =  Y l n i  ”  X /
i = l  i ~  1 i ~  1

29 9 9 2 g - l  g - 1

i — 1 i = 1 z = l  z = p + l  i— 1

<  3//%  .^  -  s ( s  -  1) (by Corollary 3.4)

= ~ X)
2

The inequality in the above expression becomes an equality if and only if m \  = 2. □

Corollary 3.6. Let W  be the number of Weierstass points on a compact Riemann surface of  genus 
g >  2. Then 2g + 2 < W  < g3 — g.

We have already discussed the proof of this corollary.
Let us examine the condition m i  =  2. If this is true for some point p in a compact Riemann surface 

X ,  then it means th a t there exists a non constant meromorphic function /  in L(2p).  Thus the only 
pole of /  is at p. If the order of pole a t p was 1, then /  would have corresponded to  a a holomorphic 
function of degree 1, th a t is, an isomorphism. But since we assume th a t genus g >  2, the order must 
be 2 at p. Thus /  corresponds to  a holomorphic function F  : X  —)■ C,*, which is of degree 2. Hence 
X  must be a hyperelliptic surface. Again suppose A  is a hyperelliptic Riemann surface of genus g > 2 
and F  : X  -> CTC be a degree 2 holomorphic map and call the corresponding meromorphic function 
/ .  Let p be a branch point of F.  If f (p )  =  oo, then /  is a non-constant meromorphic function with 
divoo(/) =  2 ■ p and the first non-gap number is m i  = 2. Hence p is a Weierstass point. If f (p )  ^  oo, 
then the meromorphic function 1 / ( /  -  f (p) )  has a double pole a t p and no other poles. So again the first 
non-gap number is 2. Therefore in any case p is a Weierstass point w ith first non-gap number m i =  2. 
Hence wp = g(g -  l) /2 . Summing over all the branch points we see th a t the to tal weight of all the 
branch points is (2g -  2) x — g3 __ g g ut this is equal to  the to tal weight, so branch points are
all Weierstass points.

Corollary 3.7. The number of Weierstass points is always greater than 2g + 2, unless the Riemann  
surface is a hyperelliptic one, in which case the number is equal to 2g + 2.

4. g{X)  > 2 implies Aut(X) is finite
A part from it’s intrinsic interest, the main reason we made a detailed study of Weierstass points is 

the following fact.

Theorem 4.1. Automorphisms of  a compact Riemann surface permutes the Weierstass points.

We will prove this shortly, but first let us ask a natural question. Suppose F  : X  —► Y  is a 
holomorphic map. Then we know F* : M ( Y )  -> M ( X )  is a C-linear map. Now M ( Y )  is organized in 
partially ordered finte dimensional subspaces L(D) .  Then how does F*(L(D))  look like? We will show 
th a t F* ( L ( D )) C L(D'),  for a suitably chosen D'  6 D iv(X).

Definition 4.2. Let F  : X  —> Y  be a holomorphic map. The define F * : Div(Y”) —> Div(X) as
F*(D)(p)  := m u \tp(F)D(F(P)).

Now we show th a t F*(L{D))  c  L{F*(D)).  Let /  € L(D)  and p e  X .  Then choosing charts (C/,0) 
and (V,ip) centered at p  and F(p)  respectively and contemplating the product power series of the local 
holomorphic representations of F  and / ,  we see th a t ordpF * ( /)  =  ordp( /  o F)  =  m ultp(F ) • ordp( /)  >  
—m ultp(F ) • D{jp) =  F*(D)(p).  Note if F  is an isomorphism, then L(D)  = L(F*(D)).  Now we proceed 
to proof of Theorem 4.1.

P r o o f .  Suppose p is a Weierstass point. This is Gp ^  {1, ■ ■ ■ , <;}. This means th a t dimL(fcp) >  
dimL((A: — 1 )p) for some k < g. But this is equivalent to  saying th a t dimL(gp) >  2. Since F  is
an automorphism, L(gp) =  L(F*(gp))  =  L(gF(p)).  Hence dimL{gF(p))  >  2. Thus F(p)  is also a
Weierstass point. □
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Immediately we have a group homomorphism

(26) \  ; A ut(X ) —» S’n^jsqi,

where W ( X )  is the finite set of Weierstass points of X . If we can prove th a t the kernel of this map is a 
finite subgroup, then A ut(X ) must also be finite. An element in Ker(A) fixes all the Weierstass points. 
We have an estim ate for the number of Weierstass points. So we try  to  find an upper bound for number 
of fixed point of an automorphism.

Proposition 4.3 . Suppose F  is a non-identity automorphism. Then F  has atmost 2g + 2 fixed points.

P r o o f .  Suppose h  is a non-constant meromorphic function. Then h -  F*(h)  =  h -  h o  F  is also 
a non-constant meromorphic function unless F  is the identity function. Now each fixed point of F  is 
a zero for h  — h o F.  Hence the fixed points are a subset of the zeros of a non-constant meromorphic 
function. Therefore there can be only finitely many fixed points.

Let p  be point which is not fixed by F.  n  is a gap number means there does not exists a non­
constant meromorphic function /  such th a t div00( /)  = n ■ p. There are g many gap numbers. Hence 
there exists a non-constant meromorphic function w ith divQO( f )  =  r ■ p, for some 1 <  r < g + 1. 
Thus /  has a single pole p of order r and F * ( f )  has a single pole F(p)  of order r . Since p ^  F (p ), 
deg(divoc( /  -  F*( f ) ) )  = 2r < 2g + 2. Hence there can be atm ost 2g + 2 zeros of /  -  F *( f )  and atm ost 
th a t many fixed point of F.  □

Now by Corollary 3.7, X  always has more than  2g + 2 Weierstass point, unless it is hyperelliptic. 
Hence for non-hyperelliptic compact Riemann surface, A is an injection and hence the automorphism 
group is finite.

W hat are all non-trivial automorphisms of a hyperelliptic Riemann surface X ,  which fixes all the 
Weierstass points? We know one, the hyperelliptic involution. We will show th a t all other automorphisms 
of X  will have strictly less than  2g + 2 fixed points, so th a t hyperelliptic involution is the only non-tivial 
element of Ker(A). F irst we show:

L e m m a  4.4 . Given any two meromorphic functions f  and h of degree 2 (that is, the corresponding 
holomorphic maps to ore of degree 2) on a hyperelliptic Riemann surface of genus g > 1 , they are 
related by h =  M  o f ; where M  is a mobius transformation.

P r o o f ,  d i v ^ / )  is a positive divisor of degree 2. By Corollary 2.3, dim(divco ( /) )  <  deg(divoo(/)) +
1 =  3. Also /  G L(diVoo(/)) is non-constant, hence dim(div00( /) )  >  2. Therefore dim(diVoo(/)) =  2 
and {1, /  } is a basis. We claim th a t it is enough to show th a t div::xv.( j ) ^  divOQ(/x). This will imply tha t 
L(divoo(/)) ^  L(div00(/i)) via m ultiplication by some meromorphic function e. Hence {e, e /}  will be a 
basis of L(divoc(/) ) .  Therefore there will exist a, b,c,d e  C, such tha t, h =  a e f  + be and 1 = ce f  + de. 
Dividing we have h = ( a f  + b) / (c f  + d) and we will be done.

We had shown at the end of the last section th a t branch points of any degree two holomorphic 
function T  : X  ->• CM are all the Weierstass points. Hence the branch points of the maps corresponging 
to  /  and h are same. Let p  be one of them. We will show th a t d i v ^ / )  ~  2p ~  div00(fe). We will 
only show the first equivalence, the other will then follow. If f ( p )  =  oo, then we are done. Otherwise 
2p =  diV oo(l/(/ -  /(p ))) . Now f ~ 1(q), for any q 6 C U  {oo}, can be thought of as a divisor. We have 
/ ~ 1 (oo) ~  /^ ( O )  since their difference is d iv (/) . Replacing /  by /  -  c, we have / _ 1(oo) -  f ~ x(c), for 
all c G C. Now if A is a Mobius transform ation then (A o f ) ~ 1(oo) = f ~ 1(A ~ 1 (oo)) ~  / ~ 1(oo). Here 
V ( / - / ( p ) )  =  A o f ,  for some Mobius transform ation A.  Hence 2p =  divQO( l / ( f - f ( p ) ) )  ~  divoo(/). □

Proposition 4.5 . Let X  be a hyperelliptic Riemann surface of genus g >  2. Let (j) G A ut(X ). Assume  
where a  is the hyperelliptic involution. Then <f> has at most four fixed points.

P r o o f .  Fix a degree 2 meromorphic function /  on X . Given any autom orphism  cf> of X , <p* ( / )  =  fo(j> 
is also a degree 2 meromorphic function. Hence by above lemma we must have <j>*{f) = M ( f ) ,  for some 
Mobius transform ation M . This defines a function

A : A ut(X ) -»■ {Mobius transformations}

This is an anti-homomorphism. Suppose id ^  ip GKer(A). Then /  o -0 =  / .  Now /  has 2 preimages for 
each point in CU{oo}, except the 2g + 2 branch points of the corresponding holomorphic function to  Coc. 
On these 2g +  2 points xp must be constant. By Proposition 4.3, these are all. Therefore ip interchanges 
the two points in the fiber of every non-branch points. Hence -ip m ust be the hyperelliptic involution a. 
Therefore Ker(A) =  {1, a}.  So let <p ^  a.  Let p be a fixed point of <j>. Then

f { p )  =  f { < t > ( p ) )  =  M (/(p ) ) ,
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where M  ^  id. Then f (p)  is a fixed point of M . M  being a Mobius transformation, can have atm ost
2 fixed points. And each of them  has atm ost two preimages under / .  Hence 4> can have atm ost 4 fixed 
points. O

Thus if X  is a hyperelliptic surface the kernel of the map A in the map (26) must consist of the 
identity function and the hyperelliptic involution. Therefore in hyperelliptic case also the automorphism 
group is finite. Summing up,

T h e o re m  4.6 . Let X  be a compact Riemann surface of  genus g > 2. Then A ut(X ) is finite.

5. H u rw itz  T h e o re m

We have established th a t automorphism group of Riemann surfaces of genus g > 2 is finite. Can we 
give an estimate of i t ’s cardinality depending on the genus g? This question is answered by the Hurwitz 
theorem. The idea is to  consider the quotient space formed by identifying points in same orbit under 
action of elements of the automorphism group. This can be made into a Riemann surface and then 
Hurwitz formula applied on the quotient map will yeild information on cardinality of the automorphism 
group.

A reader familiar w ith properly discontinuous action of a group on manifold M  will know how the 
quotient space in th a t case is given a differentiable structure. The condition of properly discontinuous 
action, th a t every point p  has a neighbourhood U such th a t UC\g(U) =  0, for all g ^  id, made it possible 
to “project” charts of M  to form a chart of M / G .  We cannot expect th a t in general case since there 
can be non-tivial stabilisers of a point p. B ut the holomorphic nature of the action in case of Riemann 
surface forces the number of such points to be finite. Let X  be a compact Riemann surface of genus 
g >  2. We will denote A ut(X ) by G. Let p € X .  Let Gv :=  {g £ G : g(p) =  p}  be the stabiliser subgroup 
of p.

P ro p o s it io n  5.1. The set {p € X  : \GP\ >  1} is discrete and since X  is compact, is finite.

P r o o f .  Suppose p is a limit point to the above set. Then there exists a sequence of distinct points 
{'Pn}n w ith a non trivial stabiliser gn for each pn, such th a t pn —> p. Now G is a finite subgroup. 
Therefore there is one gm th a t stabilises a subsequence of {pn}n- This subsequence also converges to p. 
gm is continuous, hence it stabilises p  too. But th a t means gm is a holomorphic map th a t fixes a set 
w ith a limit point. Hence gm must be identity map. This is a contradiction. Therefore the set of points 
with non-trivial stabiliser subgroups, is discrete and hence finite. □

The next proposition clears the way for defining charts on the quotient space X / G .

P ro p o s it io n  5.2. Given any p £ X ,  there exists a neighbourhood U o fp,  such that
(1) g{U) = U , for all g £ Gp
(2) U n  g(U) = 0, for all g Gp,
(3) the natural map a  : U /G p X / G ,  induced by sending a point in U to i t ’s orbit, is a homeo- 

morphism onto an open subset of X / G ,
(4) no point of U other than p is fixed by any element of Gp.

PROOF. Let G \ G P = {pi,-- - ,gn}- X  is Hausdorff. Therefore for each 1 <  i < n,  there exists 
open neighbourhoods Ui of p and Vi of gi(p), such th a t Ui fi Vt =  0. Then Wi := Ui D g~ 1(Vi ) is a 
neighbourhood of p, for each i. Let W  := n "=1 Wj. Then define U := C\geGpg W . Then g(U) = U for all 
g £ Gp. This proves (1).

To prove (2), note th a t W.h fl giWi  =  (Ui fl g~ 1 (V*)) fl giUi fl Vi C Vi fl Ui =  0. Therefore U Pi giU = 
(n 9e c PgW )  n (ngeGpgt9 w )  = n geGpg ( w  n 9iw)  =  0.

Let 7r : X  —> X / G  be the quotient map. Restrict it to  U, n\u : U —> X / G .  This induces a map 
a  : U / G p —> X / G .  To prove injectivity let a([x}) = a([y]). This implies y =  g(x),  for some g £ G. 
If g £ G \  Gp, then g(.x) £ U, but y £ U. Therefore g £ Gp. Hence \x\ = [y]. Therefore a  is 
injective. U / G p has quotient topology from <\> : U —> U/G.  To prove continuity of a,  it is enough to 
prove, by definition of quotient topology, tha t the composition a  o (p : U -¥ X / G  is continuous. But 
a  o <(> — 5rjj/, and hence continuous. Now we wish to prove th a t a  is open. Let V  be an open set in 
U/Gp.  We want to  prove th a t a( V )  is also open. Since X / G  has quotient topology from 7r : X  —> X / G ,  
it is enough to  prove th a t 7r_ 1(a(V )) is open in X . We claim th a t ix_ 1(a(K )) =  UgeGg<t>~1 (V).  Let 
x  £ n ~ l (®-(y))- Then n(x)  £ a(V) .  This implies th a t there exists y £ V,  such th a t a(y)  =  tt(x). Now <p 
is surjective, therefore there exists w  £ ^ _ 1(K), such th a t 4>(w) = y. Therefore a(y) = a  o <f>(w) = 7r(w). 
Hence it ( x )  = n(w).  Then there exists g € G, such th a t x  = g(w).  This implies, x  £ gt fr^iV) .
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Therefore n ^ 1 (a(V))  C UgeGg4> l {y)-  Again let gx  G g fa ^^ V ) ,  where x  G 0 ~ 1(V). Then fax)  € V.  
Applying a  on both  sides we have a  o fax)  G a ( V )  or ir(x) € cx(V) or x  G i t~l {a(V)).  This proves th a t 
U geG9<t>~1 ( y )  C 7r"~1(Q;(l/ )). Therefore n ^ 1 (a(V))  =  U 9eGS,0 ^ 1( /̂ )- Thus 7r_ 1(a(V )) isopen. Therefore 
a  is an open map and we have proved (3).

(4) follows from discreteness of set of points w ith non tivial stabiliser groups. Shrink U if necessary.
□

Now we get down to the business of defining charts on X / G p. From now on unless otherwise 
mentioned U will denote the  neighbourhood described in Proposition 5.2. We will also assume, by 
shrinking U, if necessary, th a t U lies within the domain of a chart w ith chart map ip. We will define a 
chart map on U /G p, then  it can be transferred to  X / G  via the homeomorphism a.  Suppose \GP\ =  to. 
Note tha t <j> : U —> U /G  is exactly to to  1, except at p. So the idea is to  construct a function from U to 
C, which will take all the  m  points in a single orbit under Gp action to  one point, so th a t the induced 
map from U /G p is injective. Let z  be the local coordinate in U . By abuse of notation we replace i/>” 1(z) 
by 2. Take the function h(z)  =  flgeGj, #(2)- Then h is holomorphic and Gp invariant, hence induces an 
injective continuous h : U / G p —>■ C. We will prove th a t h  is open too. Let W  be an open set in U / G v . 
Therefore tj>~1 (W)  is open in U. h being holomorphic, h(4>~l {W))  is open. But h(<p~1 (W))  = h(W) .  
Hence h is a homeomorphism and our construction of chart is complete. The chart map is h o a ~ 1.

Now we have to  check compatibility. Since points w ith non trivial stabiliser groups are discrete we 
may assume th a t no two charts constructed two such points intersect. Note th a t if Gp is trivial, then 
h(z) = z  and it follows th a t the chart map is just o  <f>-1 o  a " 1 =  ijj o . Thus we may assume the 
two chart maps to  be h o a ± l and °  VJ2), where a i  o ^  =  tt | ux. Now h o a r 1 o (ijj2 o ■ x i v l r 1 = 
ho a  1 o n\u2 o ip2 1 =  h o fa o ip2 1 =  h  ° ip2 1 which is holomorphic. Since bijective holomorphic maps are 
biholomorphic, we need not check the other side. Thus the charts are all compatible. Therefore X / G  is 
a  Riemann surface.

The following proposition follows from the construction.

P ro p o s it io n  5.3. The quotient map tt : X  —> X / G  is holomorphic of  degree jG| and m ultp(7r) =  \GP\
for  any p G X .

Let y G X / G  be a branch point of tt. The points in the inverse image ir~x(i/) =  {x\ ,  ■ ■ ■ ,.xs} are 
in the same orbit and hence have conjugate stabiliser subgroups. Let the cardinality of each stabiliser 
subgroup be r. We know th a t number of points in the orbit of x \  is |G / G X1\. Hence s = \G\/r. This 
leads to the following lemma.

L e m m a  5.4. For every branch point y , there exists an integer r > 2, such that 7T" 1 (y) consists of exactly 
\G\/r points and at each of these preimages, tt has multiplicity r .

Now applying the Hurwitz formula on tt, we have the following Corollary.

C o ro lla ry  5.5. Suppose there a,re k branch points y±, • ■ ■ , y k with tt having multiplicity ri at each of the
\G\jri points above yi. Then

2g( X )  -  2 =  \G\(2g(X/G) -  2) + J 2 ^ ( r t ~  1)
i = l  T% 

fc
=  |G|[2ff( X / G ) - 2  +  E ( l - -  )]--- r ̂

We will denote the quantity X ^ (l — 1/Vi) by R.  We note th a t 1 — l/r*  > 1/2, for all i, and in 
particular if R  ^  0 then R >  1/2. Now we are ready to compute an upper bound for the cardinality of 
A ut(X ).

T h e o re m  5.6. [ H u r w i t z  T heo rem]  Let X  be a Riemann surface of genus g > 2. Then jA ut(X )| < 
8 4 (3 -1 ) .

P r o o f .  We have from Corollary 5.5

(27) 2g(X)  -  2 =  \G\[2g(X/G)  - 2  + R]

C ase  1 g (X /G )  > 1: Suppose R  = 0. The LHS of (27) is strictly positive, hence so should be the 
RHS. Therefore g ( X / G )  > 2. This implies |G| < 5 — 1. If R  ^  0, then R  > 1/2. Then we have
2 g( X /G )  - 2  + R >  1/2, therefore ]Gj <  4 (g -  1).
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Case 2 g (X /G )  =  0: In this case (27) reduces to 2g( X)  -  2 =  |G |[-2  +  ft]. LHS is strictly positive, 
therefore we must have R  > 2. B ut R  is of the form E » ( l  “  V r i): where n ’s are integers. Hence we 
can hope tha t the values of R  are discrete, so th a t there exists a minimum value of the set { R : R  > 2}, 
which is greater than  R.  Suppose there are k many ?Vs. If k =  1 or 2, then R  <  2. If k > 4 then 
R  >  5^^_1(1 — 1/2) =  fc/2 > 2. In this case the least value is 2 | .  Consider k = 4. If r, =  2 for all
1 < i <  4, then ft =  2. So the very next value 3 x ( l - | )  +  ( l -  | ) ,  is the least in k =  4 case. This 
value is 2|  <  2-|. Now consider the case k = 3. Let 2 < r i  <  r 2 <  ^3. Suppose r i  >  3. If all three 
are equal to 3, then R: = 2. This will not serve. The next value is attained when n  =  3 =  r 2 and 
r 3 =  4, which gives ft =  2 ^  > 2 | .  P u tting  n  =  2, r 2 =  3 and r 3 =  7, we get ft =  2 ^  < 2yg. We 
claim this is the least value of ft greater than  2. At least we agree th a t the least value must occur in 
the case k =  3 and r i  =  2. Suppose the least value is assumed for 2 =  si  < s 2 < S3 . Then we must 
have ( l / s 2 -  1/3) +  ( l / s 3 -  1/7) > 0. If s2 =  3, the condition ft >  2, forces s3 =  7. Otherwise s2 > 4, 
and hence ( l /«2 — 1/3) < -1 /1 2 . This negetive term  must be ccompensated by ( l / s 3 -  1/7). But 
S3 > s 2 > 4, hence ( l / s 3 -  1/7) < 3/28 <  1/12. Hence we m ust have si =  2, s 2 =  3 and s 3 =  7. Thus 
ft >  2 implies ft >  2jg. Therefore by 2g -  2 >  |G |(—2 +  2 ^ )  or |G| <  84(^ -  1). □
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