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Abstract

We will show that automorphism group of any Riemann surface X of genus g > 2 is finite. We will
also give a bound to the cardinality of the automorphism group, depending on the genus, specifically
Aut(X) < 84(g—1). This bound will be obtained by applying Hurwitz formula to the natural holomorphic
map from a Riemann surface to it’s quotient under action of the finite group Aut(X). The finiteness
is proved by considering a homomorphism from Aut(X) to the permutation group of a finte set and
showing that the kernel is finite. The finte set under consideration is the set of Weierstass points. p is
a Weierstass point, if the set of integers n, such that there is no f € M(X) whose only pole is p with
order n, is not {1,---,g}. All these are explained in Chapter 4. Riemann-Roch Theorem is heavily
used which is proved in Chapter 3. Proof of Riemann-Roch Theorem requires existence of non-constant
meromorphic functions on a Riemann surface, which is proved in Chapter 2. Basics are dealt with in
Chapter 1. ‘ )
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CHAPTER 1

Riemann surface of any genus

1. Holomorphic maps
We define the objects and morphisms of the category we are going to study.
Definition 1.1. A Riemann surface is a connected 1 dimensional complex manifold.

Example The easiest examples are connected open subsets of C.

But these are not compact. Compact connected orientable smooth manifolds of dimension two can be
classified as surfaces of genus g, for g € N. If a manifold has complex structure then it must be orientable.
Can each of the genus g surfaces be given complex structure? Let us start with the genus zero case, S 4,
We recall that S? is a smooth manifold with charts being C\ {0} and inverse of stereographic projections,
one from the north pole and another from the south. We also recall that the transition map is z — 1/Z.
But this is not a holomorphic map. So compose one of the stereographic projections with a conjugation
map to get a new chart, so that the transition map is z — 1/z, which is holomorphic.

Example S? with the above described charts is a Riemann surface , called the Riemann Sphere and
denoted by Coo.

Next comes the genus 1 case. We know that genus 1 surface or the 2-torus can be constructed as the
quotient of the properly discontinuous group action of Z2 on R2. The smooth charts in this case are the
regions of R? on which the quotient map 7 is injective, and the chart maps being 7! restricted to such
regions. The transition maps are just translations of R?2 = C and hence holomorphic.

Example The torus with the above complex structure is called (quite unimaginatively) the complez
torus.

Is there a complex structure for surface of genus g, for each g? Before answering that question we
define what are the morphisms in the category of Riemann surfaces. In case of smooth manifolds,
the morphisms are set maps which when pre and post composed with chart maps of the respective
manifolds, give smooth maps between opens sets of euclidean spaces. Here we require the composition to
be holomorphic between open sets of the complex plane. Such morphisms are called holomorphic maps
between Riemann surfaces. They have a very nice local form.

Proposition 1.2. [Local Normal Form] Let F: X =Y bea non-constant holomorphic map between
two Riemann surfaces. Let p € X. Then there exists a unique integer n > 1 and charts (U1, ¢1) and
(Ua, ¢2) of X and Y respectively, such that #1(p) =0 and ¢2(F(p)) =0 and ¢p0 F'o ¢7 (2) = 2.

PROOF. Charts (U, #), such that ¢(p) = 0 are called charts centred at p. Such charts can always be
constructed by starting with any chart and composing with a suitable translation of the complex plane
to make ¢(p) = 0. So consider two charts (Vi,11) and (U, ¢2) centred at p and F(p), respectively.
Then by definition the map T := ¢20 F'o (I 1(z) is holomorphic and hence has a power series expansion
T(w) = S5°, a;w?, such that a, # 0. Note that n > 1, as T(0) = 0. Now T can be decomposed
as T(w) = w"S(w), where S is another holomorphic function such that S(0) # 0. Therefore there
exists a neighbourhood of 0 and a holomorphic function R on it, such that R™ = S. Then we have
T(w) = (wR(w))™. Define {(w) = wR(w). Note that €'(0) = R(0) # 0, and hence by Inverse Function
Theorem is invertible in a neighbourhood of 0. The composition ¢1 := € o9 defines a new chart on X.
Putting z := {(w) we have,

dr0Fodyl(z) =20 Fopyt o7 (2)
=T (=)
=T(w)
= (wR(w))"

:ZTL
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Uniqueness of n follows from the fact that the map z — z™ has n preimages for each non-zero point. Hence
so has F for each point in a neighbourhood of p and not equal to p. But this quantity is independent of
the charts chosen. Hence n is unique. O

Definition 1.3. Given a holomorphic map F : X — Y between two Riemann surfaces, and a point
p € X, the unique integer n such that F' is locally of the form z — 2™, is called the multiplicity of F at
the point p, and is denoted by mult,(F).

If F is locally represented by z — 2™ in some parametric disk (that is, image of some disk under
chart map), then we note that given any non-zero point z¢ in the disk, we can find a smaller disk within
the given disk, centred at zp, which is mapped injectively by z — 2™. Hence no other point in the
parametric disk has multiplicity greater than one. Thus points of multiplicity greater than one form a
discrete set in the domain Riemann surface.

Definition 1.4. Points with multiplicity greater than one are called ramification points and their images
are called branch points.

Thus on a compact Riemann surface there can be only finitely many ramification points. Consider
the map ¢ : D — D such that z — z". Any non-zero point has n preimages, each with multiplicity 1,
whereas the point 0 has only 0 as it’s preimage, with multiplicity n. Taking cue from this observation
we have the following proposition.

Proposition 1.5. Let F': X — Y be a non-constant holomorphic map between two compact Riemann

surfaces. Then the quantity 3 e p-1 g multy(F) is independent of g €Y.

First we prove some general results which will be used in the proof.

Lemma 1.6. Let FF: X - Y and G : X — Y be two holomorphic map between Riemann surfaces. If
F =G on a subset with limit point, then F' = G.

PRrROOF. Consider the set A := {z € X : F(z) = G(z)}. We will show that this set is both open
and closed in X, which is connected and so A will be the whole of X. That A is closed is clear from
the fact that Y is Hausdroff and A is the preimage of the diagonal of Y X Y under the continuous map
z +— (F(z),G(z)). Now we prove that A is open. Let the subset with limit point be S and p be a limit
point of S. Let (U, ¢1) and (Us, ¢2) be charts of X and YV around p and F(p) = G(p), respectively.
Then locally F' and G are represented by holomorphic functions f and g, respectively. Derivatives of
each order of f and g can be calculated from their values in ¢; (U3 N.S), where they are equal. But these
are the coefficients of power series representation of f and g in neighbourhood of ¢;(p). Hence f = g in
a neighbourhood of ¢, (p) and thus F = G in a neighbourhood of p. Therefore A is open too. O

Lemma 1.7. Let F : X — Y be a non-constant holomorphic map between two Riemann surfaces. Then
the preimage of any point is discrete. If X is compact then the preimage is finite non-empty.

PROOF. Let y € Y and F(z) = y. Let (U, ¢1) and (Us, ¢2) be charts of X and Y, centred at x
and y respectively. Then locally F' is represented by a holomorphic function g between the ¢;(U;) and
¢2(Uz), such that g(0) = 0. If g = 0, then F' is equal to a constant map on an open set, hence is constant,
by previous theorem. This is a contradiction. Therefore g is non-constant and by discreteness of zeros
of a holomophic function in the complex plane, there exists a punctured neighbourhood of 0, on which g
is non zero. Hence F' does not take the value y in a punctured neighbourhood of z. Therefore preimages
of y forms a discrete set. If X is compact then any discrete set must be finite. Also F is continuous, and
hence F(X) is compact and so it is closed in Y. But the Open Mapping Theorem in complex analysis
implies that any holomorphic map between Riemann surfaces is also open. Therefore F'(X) is open too.
Since Y is connected, we must have F(X) =Y. Thus F is surjective and hence preimage of any point
is non empty. 5 |

Now we prove Proposition 1.5

Proor. We wish to prove that the map ¢ — EpeF,l(q)multp(F) is locally constant. Since Y is
connected, this is enough to prove that the map is constant. Consider any point y € Y. We will use
Proposition 1.2 to find a neighbourhood of y on which the above map is constant. Notice in the proof of
Proposition 1.2, we started with charts in both domain and range, but modified only the domain chart.
So we can find disjoint parametric disks Uy, - - - , U,, centred at x4, - - , z,, respectively, and a parametric
disk V centred at y, such that near each z;, F' is represented by a map z — z™, in local coordinates, from
U; to V. We know that the proposition is true for maps D — D, z — z™ and hence for a disjoint union
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of such maps, [[; D; = D. Therefore it is true for F restricted to ][], U;. So the only thing to prove is
that preimage of V is contained in [, U;. We can hope to shrink V' to achieve this. That shrinking will
work is proved below.

Given a neighbourhoods Ui, ---, U, of zi1,---,z, respectively, we will prove that there exists a
neighbourhood V' of y, such that F~!(V) C [, U;. Suppose not, then there exists a sequence {y;}
converging to y, such that each y; has a preimage not lying in any of the U;’s. For each y;, choose such
a preimage pi. Since X is compact, therefore {p;} has a convergent subsequence which converges at a
point p, say. The image of this subsequence is a subsequence of y; and hence converges to y. Therefore
F(p) =y, hence p = x; for some 1 <! <n. This implies that a subsequence of {pk}, which lies outside
U, converges to x;, which is a contradiction. O

Now we. can define,

Definition 1.8. Let F' : X — Y be a non-constant holomorphic map between two compact Riemann
surfaces. Then the integer ZpeF_l(q)multp(F), which is independent of q, is called the degree of F' and

is denoted by deg(F').

2. Meromorphic functions

Meromorphic function on complex plane are holomorphic ones with special kind of singularities at
discrete points. We can similarly define meromorphic functions on a Riemann surface as functions to
C which near each point p, are holomorphic in a punctured neighbourhood and have either removable
singularity or a pole at p. We denote the set of such functions on a Riemann surface X, by M(X).
Corresponding to each f € M(X), there exits a holomorphic function F' : X — Cy,, defined as

[ f(z), ifzisnotapoleof f
Fie) = { 00, if z is a pole of f

We leave it to the readers to check that that F' is indeed a holomorphic function. This correspondence
is one to one. -

We know in complex analysis that every meromorphic function g can be represented by a Laurent
series near a point z and the exponent of the lowest non-zero term in the Laurent series is called the
order of g at p, denoted by ord,(g). The order can also be described as the only integer k, for which
,Him, (2 — p)~Fg # 0 or co. In a Riemann surface if a meromorphic function f is composed with the
" inverse of a chart map, then we get a meromorphic function in a region of the complex plane. Call it
g. g has a Laurent series expansion. If we take a different chart then we will get a different Laurent
series expansion. But we claim that the order is same in both cases. To see this note that if g; and
go are two local expressions of a meromorphic function f with respect to charts centred at p and 7T is
the transition map between the two charts, then go = g3 o T. We have T(0) = 0 and 77(0) # 0. Let
the local coordinate for g; and g, be z and w respectively. Then T(w) = z. Let ord,(g91) = k. Then
limy, 0w *go(w) = lim,, ow*g; o T(w) = limy, 0w *T (w)*(2~*g1(2)) = T'(0)* lim,, 02~ %g1(2) #0
or co. Therefore ord,(g2) = k. Hence we can define

Definition 2.1. The order of a meromorphic function at a point p, denoted by ord,(f), is the order of
any any local representation of it near p.

Order of f is non-zero only at preimages of 0 or co. Now we observe that for a point p in the
preimage of 0, ord,(f) is same as multiplicity of the corresponding F' : X — C. at p. This follows
from the proof of Proposition 1.2, where we saw that the multiplicity at p is the exponent of the least
non-zero term of the local representation of F' with respect to charts centred at p and F(p). In this
case the f is such a local representation of F' at the point p. Similarly if p is in the preimage of oo,
then 1/f is such a local represented of F. Hence mult,(F) = ord,(1/f) = —ord,(f), for all p in the
preimage of co. So suppose that zy,--- ,z, be the preimages of 0, and y1,--- , ¥m be preimages of co.
Then Y ;- mult,,(F) = deg(F) = 3_7*, mult,, (). Therefore

Z ord,(f) = Zordzi (f)+ Z ordy, (f)
= > multy, (F) = Y multy, (F)

=0

Therefore we have proved the following Proposition.
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Proposition 2.2. Let X be a compact Riemann surface and f € M(X) be non constant. Then
>_pordy(f) =0.

3. Hurwitz formula

Compact Riemann Surfaces are also smooth 2-manifolds. Therefore we can make sense of genus of a
compact Riemann surface. We have seen that a non-constant holomorphic map from a compact Riemann
surface forces the range to be compact. Existence of such a map also puts a restriction on genus of the
range. This restriction is described by the Hurwitz Formula.

Theorem 3.1. Let F' : X — Y be a non constant holomorphic map between two compact Riemann
surfaces. Then
29(X) — 2 = deg(F)(29(Y) — 2) + Y _ [mult,(F) — 1]
peEX

Proor. Consider a triangulation of Y, such that each branch point is a vertex. (That every Riemann
surface can be trangulated is explained in [5], Chapter 1, Section 8, we assume this fact here.) Notice
from the proof of Proposition 1.2 that F' : X \{ramification points} — Y\{branch points} is a covering
map. So we can lift the simplexes (minus some vertices) to X \ {ramification points}. Plugging in the
ramification point by vertices we have a triangulation of X. We know that the Euler number defined
as B = v —e+ f, where v,e and f are the number of vertices, edges and and faces respectively of a
triangulation, is independent of the triangulation. It is equal to 2—2g, where g is the genus of the surface.
Now we try to compute the Euler number of X in terms of that of Y. Let v,e and f be the number of
vertices, edges and and faces respectively of Y and v, ¢’ and f’ be those of X. Since branch points occur
only at vertices of Y, therefore the number of edges and faces of X are just deg(F') - e and deg(F) - f
respectively. Let g be a vertex of Y, then number of it’s preimages counting multiplicity is deg(F'). But
we have counted each point p € F~!(q), mult,(F) times. So we have to subtract mult,(F) — 1 for each
p. Hence |[F~(q)| = deg(F) — 3, p-1(ymulty(F) — 1. Then

V= > (deg(F)— > [multy(F)—1))

q vertex of Y peEF—1(q)

= deg(F)v — Z Z [mult, (F) — 1]
q vertex of Y pe F—1(q)

= deg(F)v — Z [mult, (F) — 1]

p vertex of X

Thus the Euler number of X can be calculated as
29(X)—-2=—v"+¢e —f
= —deg(F)v— > [multy(F)— 1] +deg(F) - e — deg(F) - f

p vertex of X

= deg(F)(29(X) —2) + Y _ [mult,(F) — 1]
peEX

where the last equality is because all ramification points are vertices. d

4. Branched covering space theory

Now we begin to see how to construct a Riemann surface of any genus. We note from proof of
Proposition 1.5, that except for finitely many points, a non-constant holomorphic map between two
Riemann surfaces is a covering map. The domain along with such a map is called a branched covering.
So we start with a familiar Riemann surface and construct a branched covering, specifying the number
of branch points and the multiplicity of their preimages in such a way that the Hurwitz formula yields
the desired genus for the constructed cover.

We know that given a permutation representation 7 (X,zo) — Sg, where Sy is the symmetric group
of order d and m(X,z¢) is the fundamental group of a connected, locally path connected, semilocally
simply connected topological space X, we can construct a d sheeted covering space p : X — X such
that the group action 7 (X,zo) — Perm(p~!(z()) is exactly the permutation representation we started
with. (See [1], pg. 68 for the construction.) Note that all the restrictions on X are satisfied if it is
a Riemann surface, since a Riemann surface is locally euclidean and connected. Also when X is a
Riemann surface, we would like the covering space X to be a Riemann surface again, such that, the
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covering map p is holomorphic. The charts of X are just lifts of charts of X, contained in some evenly
covered neighbourhood, via p~ L. Compatibility of charts follows from that of charts in X . The important
restriction is that X must be connected. Let us see how the connectivity of X affects the group action
(X, Tg) = Perm(p~!(z0))-

Lemma 4.1. Let p : X —» X be a d sheeted covering space, where X 1s path connected and let the
corresponding group action be p (X, zo) — Perm(p~(xo)). Then X is path connected if and only if
the action p is transitive.

ProOOF. We recall how 7(X,xo) acts on the set p~(z0). Let [4] € 7(X, Zo) and Zg € p~Y(zo). Let
7 be the lift of y starting from Zg. Then p([y])(zo) = 7(1). Now if X is path connected then given any
two points Z1,Z2 € p~(zg), there exists a path 7 : Z1 ~» Ta. Notice that v := po 7 is a loop based at
zo. Then [y] acting on Z7 gives us Z5. Hence the action is transitive.

Again suppose the action is transitive. Then all the preimages of p~!(zp) lie in the same component.
Let 7 € X. Since X is path connected, there exists a path 7 : p(Z) ~ zo. Let ¥ be a lift of «y starting at
%. Tt’s end point must be a point in p~1(zo). Therefore  lies in the same component as that of p~(zo)-

Thus X is path connected. O

This Lemma implies that whenever we have a transitive permutation representation (X, z0) =+ Sd,
we can construct a Riemann surface X and an unramified holomorphic map F : X — X, of degree d,
such that, the group action (X, zo) — Perm(F~(zo)) is exactly the permutation representation we
started with.

Now we try to extend this result for branched cover of a Riemann surface. Let Y be a Riemann
surface and choose finitely many points bi, -+ ,bn in Y. These are going to be our branch points.
Consider the Riemann surface V =Y \ {b1, -+ ,bn}. Givena permutation representation 7(V, yo) = Sd,
we can construct a Riemann surface ¥ and an unramified holomorphic map F: VoV , of degree d, such
that, the group action 7(V,vy0) = Perm(F~1(yo)) is exactly the permutation representation we started
with. Now we have to add points to 17, which will form preimages of the left out points by, - ,bn,
and also make the branched cover compact. Consider a parametrized unit disk W, with chart map P,
centred at b;, which does not contain any other b;’s. Let W* be the punctured neighbourhood W'\ {b:}.
Then F~1(W*) is a cover of W*, which is homeomorphic to punctured disk D*. We know n-sheeted
connected cover of D* is of the form D* — D*, z+» 2™ Hence F ~“1(W*) is a disjoint union of open sets
U*, 1< j<my, each homeomorphic to the unit punctured disk D* via a homeomorphism @;, such that
the following diagram commutes.

¢;

U;———)D*

U;l lz — 2k
Ylw-

W*—_’)D*

F

(1)
Notice that F lU; and 1|w~ are holomorphic, and z — 2% is locally biholomorphic, hence ¢; is also
holomorphic and hence can act as a chart map. Intuitively we feel there is a hole in this chart. A have
a precise definition for hole chart.

Definition 4.2. Let X be a Riemann surface. A hole chart on X isachart ¢ : U =V on X, such
that, V contains an open punctured disk B* = {z€C:0< ||z -z < e} with the following properties.

(1) 2B CU

(2) $@1(B) ={z€C:0< |z -2l <}

We see that U;’s are hole charts in 17, where B* can be taken as the punctured disk centred at 0
and with radius 1/2. We need to “plug these holes”. For that we need to “glue” a disk D onto this hole.
We first make the idea of “glueing” precise. Let X and Y’ be two Riemann surfaces and let U and V be
two non-empty open subsets of X and Y respectively. Assume that there exists a biholomorphic map
¢ : U — V. Then we can construct a quotient space of X [IY by identifying u ~ $(u), when u € U.
Call this quotient topological space Z. There is a minor technicality here. Z may not be Hausdorff. But
to have any hope of making it into a Riemann surface we must have Z Hausdorff. So we have to assume
this condition and remember to check it every time we make such a construction.

We can define a complex structure on 7 as follows. Letix : X = Z andiy : Y — Z be inclusions of
X and Y in Z. Note Z =ix(X) Uiy (V) and both ix and iy are homeomorphisms onto their image. For
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every chart (U, h) in X we specify that (ix(U),ho i%') is a chart of Z. Similar charts are constructed
for points in iy (Y). Now we have to check compatibility. Given a pair of charts there are two cases.
One in which both of them are constructed using charts of the same space, either X or Y7 and the
other in which the one chart is constructed from that of X and the other from that of Y. In the first
case we can assume without loss of generality that the two charts are of the form (ix (U),ho i}l) and
(ix(V),koix'). Then the transformation map is ko ix o (hoix') ™ R(U)NKk(V) = R(U)Nk(V). But
ko 7',}1 o(hoix!)t=ko 1',;(1 oix oh~l =koh !, which being a transformation map for charts in X, is
holomorphic. In the second case the two charts are of the form (ix (U), hoiy') and (iy (V), koiy"). Then
the transformation map simplifies to k o i;l oix oh~l. But i;l oix|U = ¢, which is holomorphic map
between U and V. Hence k oiy' oix o h™! is also holomorphic. Therefore the charts are all compatible.
So we have a complex structure on Z.

One more condition for Z to be a Riemann surface is that it should be connected.” X and Y are
connected. ix and iy are continuous. Therefore ix(X) and iy (Y') are also connected subsets of Z. Also
ix(X)Niy(Y) # 0. Hence Z is also connected. Therefore Z is a Riemann surface.

Returning to the case of hole charts U7, in the covering space 17, we glue V and the disk B centred

at 0 and of radius 1/2, via the map ¢;[4-1(p-y ¢;1(B*) — B*. That the new space is Hausdorff will
follow from the second condition of Definition 4.2. We do this for every hole chart in the preimage of a
punctured parametric disk around each b;. Let X be the new Riemann surface obtained by “plugging”
all these “holes”. We claim that X is compact. If the neighbourhoods W of b;, for each i, is removed
from Y, then the resulting Riemann surface remains compact, since it is a closed subset of compact Y.
Now X is the union of the preimage of this Riemann surface under F' and the closures of the images of
the finitely many glued disks. The first set in the union is a finite cover of a compact set, hence compact.
Others are also compact. Hence X being a finite union of compact sets, is itself compact.

We wish to extend F to a map F' : X — Y. Let a; be a newly added point. Then a = ip(0)
and ip(D) is a chart of X containing a;. Also if U7 was the hole chart corresponding to this glueing,
then ip(D) \ {0} = U;. So rename ip(D) as U;. From diagram (1), we see that ¢>j_l o Foplws =
iD 51 o Fo|ws : D* = D*, maps z to 2% Therefore this map can be extended holomorphically to D,
by sending 0 to 0. Basically this means that a is sent to the branch point b; which is contained in W.
Doing this for each new point induces a holomorphic extension of F' to X.

Notice that all the b;’s may not be branch points. If a; is in the preimage of b;, then F’ locally looks
like z — z¥3, where k; may be equal to 1. If this happens for every a; in the preimage of b;, then b; is
not a branch point. We can at most say that the branch points are a subset of {b1,---,bp}. Thereis a
way to determine whether b; is a branch point.

Let W* be the punctured neighbourhood of b; as before. W* is homeomorphic to a unit disk D*.
Consider the loop ¢ +—» 2€>™, 0 <t < 1in D*. Let 3 be its preimage in D* starting at ¢ € W*. Y
is path connected. Then, there exists a path a : yg ~ ¢ where yp is the base point of the fundamental
group of Y, not equal to any of the b;’s. Then, the loop afa~! represents an element of (Y, o). Call
such a loop small loop around b; and denote it by . Notice that the action of [y] on F~1(yo) is the same
as the action of [3] on F~1(q), where the identification of F~'(yo) and F~*(q) is via the end points of
lifts of y. As before, F~1(W*) = [[;Z, U; such that (1) holds. Then, 8 induces a cyclic permutation of
order k; for the preimages of ¢ in U}, for all j. Thus, the cyclic structure of the permutation induced
by B is (ki,...,km). Therefore, the same is true that for that of v. Thus, we arrive at the following
Lemma:

Lemma 4.3. Let F : X — Y be a branched cover of a compact Riemann surface Y. Let b € Y be a
branch point. Let F~1(b) = {a1,...,am}, such that multy, (F) = kj. Then, the cycle structure of the
permutation induced by a small loop around b is (k1s- -+ km)-

This lemma implies that in the construction of branched cover corresponding to a transitive permu-
tation representation of 71 (Y \ {b1, - ,bn}, o), a point b; is not a branch point if and only if the action
of a small loop around b; has the cyclic structure (1,---, 1).

5. Riemann surface of any genus

Take the simplest compact Riemann surface, the Riemann sphere. Given any g € N, we wish t0
construct a cover F : X — Cq, such that, genus of X will be g. Then the Hurwitz formula tells us

(2) 29 — 2 = —2deg(F) + Y [mult,(F) — 1]
peEX
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B ake deg(F) = 2, then a branch point can have only one preimage with multiplicity 2. Thus if
- pranch points, then from (2), we have 29 — 2 = —4 +n or n = 29 + 2. So choose 2g + 2
= (b ,bag42} in Coo. Let V =Ccq \ {b1," -+ ;b2gt+2}. The m1(V, o) is the quotient of the free
nts e;:arated by small loops 7; around each b;, with the relation [y1]---[y2g42] = 1. We define a
T mgorphiS mp:m(V, zo) — S2 by specifying [y] = (12), for each 7. Since 2g + 2 is an even number,
1 orefore p respects the relation [y1] - [y29+2] = 1, and hence is well defined. Clearly p is a transitive
Then we construct a degree 2 branched cover X of Cy corresponding to the permutation

jon. . .

resentation p s in the previous section. Note that small loop v; around each b; has cyclic structure
‘(:;;; Hence b;’s are all branch points. Thus X is a Riemann surface of genus g.
Definition 5.1. If there exists a non-constant holomorphic map F : X — Co of degree 2, then X 1is

called @ hyperelliptic Riemann surface.

See [6], pg- 60, for a concrete construction of hyperelliptic surface. A hyperelliptic surface has
a canonical automorphism which interchanges the two point in the fibre of any non-branch point of
F: X — Co and fixes the ramification points. Clearly this automorphism has order 2. It is called
hm;erelliptic involution and is generally denoted by o. Hyperelliptic involution will turn up later in
proving finiteness of automorphism groups Riemann surfaces of genus g > 2.



CHAPTER 2

Existence of Meromorphic Functions

1. Holomorphic and Harmonic Differentials

We wish to prove the existence of a non-constant meromorphic function on a Riemann surface- We
will assume familiarity with differential forms and integration on a manifold. (Chapter 2 and 4 of [2] is
a good reference.) In general a chain complex of smooth differential forms are considered. But here we
will be more lenient and allow any kind of differential forms. If differential operator is used on a form,
it will be specified that it belongs to class C k for some k > 1.

In local coordinates (z,y) a 1-form w looks like pdz + gdy. We define conjugate operation denoted
by * on w, as follows. In (z,y) coordinates *w is given by —qdz +pdy. We need to check that these local
1-forms piece together to give a global one. That is we need to check that if different local coordinate's are
chosen then the two local 1-forms represent the same form. Suppose (z',y') is another local coordlr:ate
and let ¢ = u + iv be the holomorphic transformation between them. Let p’(z/, y')dz' + g, y')dy' be
the the representation of w in these new coordinates. Then we know

7)= (s %) (%)
ql Uy Uy q0¢

Since ugz = vy and Uy = —Vz, by Cauchy-Riemann equations, we can write
v 4 uz —uy) (poé
3 p—rt y =
@ ()= ") Gd)
This implies that
<—‘q, == Uy —Uy (’_q o ¢>
p, Uy Uz pbo )

Thus #w is well defined. We note that the conjugation operation is function linear and * xw = —W-

We know that differentials of the form df, for some f € CY{(X), are called ezact differentials. We say
differentials of the form *df are coezact differentials.

Definition 1.1. A I-form w on a Riemann surface X is called a holomorphic differential if it 15 locally
given by df, where fis holomorphic.

Suppose w is a holomorphic differential. In local coordinates (z,y), wis the differential of.a holo-
morphic map f(z,y) = u(z,y) +iv(z, y), and hence looks like df = du + idv. Now by Cauch'y-Rmmann
dv = Qdz + §edy = —Sedor+ 9u — +du. Hence df = du+ixdu. Applying conjugate operation o Rt
sides *df = *du — idu = —idf. Therefore *w = —iw. In fact this criterion along with the property of
being closed (which is same as being locally exact, by Poincare lemma) is necessary and sufficient for a
1-form to be holomorphic.

Theorem 1.2. w € C! is holomorphic < dw = 0 and xw = —iw.

Suppose w = pdz-+qdy in some local coordinate (z,y), then xw = —qdaz+pdy and —w) — —ipdz—iqdy.
Hence the conditions #w = —iw, in local coordinate translates to the fact that ¢ = Zp'-athus we have
w = pdz + ipdy. The closure condition then implies d(pdx + ipdy) = 0 or %Zdy Adw +igeds Ady = B

which implies gﬁ = ig—g. If p = u + v, then this implies that ug = vy and uy = —Vz- Therefore p

is a holomorphic function. Now define dz := dzr + idy, then every holomorphic differential 1s 100%11}" of
the form pdz, where p is holomorphic. Also any differential of the form pdz with p holomorphic 15 &
holomorphic differential since a holomorhic function always has a primitive in a simply connected region-
Notice from (3), if we have a new complex coordinate w = ¢(z), then w = p'(w)dw = p(z)é‘%dw. .
Now if we ask for p meromorphic instead of holomorphic, then we will get a holomorphic 1-f<?rn1 i
X minus a discrete set. Such a differential is called a meromorphic differential on X. The p01.nt§ a
which the local meromorphic functions have singularities, are called singularities of w- Given two Fhstl‘nCt
meromorphic differentials w; and wa, we can make sense of a meromorphic function w1/w2, which just

9



CHAPTER 2

Existence of Meromorphic Functions

1. Holomorphic and Harmonic Differentials

We wish to prove the existence of a non-constant meromorphic function on a Riemann surface. We
will assume familiarity with differential forms and integration on a manifold. (Chapter 2 and 4 of [2] is
a good reference.) In general a chain complex of smooth differential forms are considered. But here we
will be more lenient and allow any kind of differential forms. If differential operator is used on a form,
it will be specified that it belongs to class C* for some k > 1.

In local coordinates (z,y) a 1-form w looks like pdz + qdy. We define conjugate operation denoted
by * on w, as follows. In (x,y) coordinates *w is given by —gdz +pdy. We need to check that these local
1-forms piece together to give a global one. That is we need to check that if different local coordinates are
chosen then the two local 1-forms represent the same form. Suppose (z',y") is another local coordinate
and let ¢ = u + v be the holomorphic transformation between them. Let p'(z',y")dz’ +¢' (=, y')dy' be
the the representation of w in these new coordinates. Then we know

(0)-( %))
d uy vy) \go9

Since ug = vy and Uy = —Vz; by Cauchy-Riemann equations, we can write
(3) (p', - (“z ‘“y) po¢
q Uy  Ug go¢
This implies that
_q/ - Ug _’uy =g O ¢
p/ Uy Uz po o

Thus *w is well defined. We note that the conjugation operation is function linear and * *x w = —w-.

We know that differentials of the form df, for some f € C(X), are called ezact differentials. We say
differentials of the form *df are coezact differentials.

Definition 1.1. A I-form w on a Riemann surface X is called a holomorphic differential if it is locally
given by df, where f is holomorphic.

Suppose w is a holomorphic differential. In local coordinates (z,y), w is the differential of a holo-
morphic map f(z,y) = u(z,y) +1v(z,y), and hence looks like df = du + idv. Now by Cauchy-Riemann
dv = %dm + g—;dy = —g—’;dm + % — xdu. Hence df = du+1ixdu. Applying conjugate operation on both
sides #df = *du —idu = —idf. Therefore *w = —uw. In fact this criterion along with the property of
being closed (which is same as being locally exact, by Poincare lemma) is necessary and sufficient for a

1-form to be holomorphic.

Theorem 1.2. w € C! is holomorphic < dw =0 and *w = —iw.

Suppose w = pdxz-+gdy in some local coordinate (z,y), then *w = —qdaz+pdy and —iw = —ipdz—iqdy.
Hence the conditions *w = —iw, in local coordinate translates to the fact that ¢ = ip. thus we have
w = pdz + ipdy. The closure condition then implies d(pdz + ipdy) = 0 or g—sdy Adz + i%gda: ANdy =0,
which implies % = igg. If p = u + iv, then this implies that uz = vy and uy = —Vg- Therefore p

is a holomorphic function. Now define dz := dx + idy, then every holomorphic differential is locally of
the form pdz, where p is holomorphic. Also any differential of the form pdz with p holomorphic is a
holomorphic differential since a holomorhic function always has a primitive in a simply connected region.
Notice from (3), if we have a new complex coordinate w = #(z), then w = p'(w)dw = p(z)g—gdw.

Now if we ask for p meromorphic instead of holomorphic, then we will get a holomorphic 1-form ir
X minus a discrete set. Such a differential is called a meromorphic differential on X. The points at
which the local meromorphic functions have singularities, are called singularities of w. Given two distinct
meromorphic differentials w1 and wq, we can make sense of a meromorphic function wy Jwa, which jus'

9
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means that if in a coordinate chart w; = pidz and wy = padz, then in that chart the meromorphic
function is p;/pz. Suppose we select another complex local coordinate w and express w; and ws as
pi(w)dw and py(w)dw respectively. Then we know pj(w) = pi(2)% and pj(w) = pi(2)%2. Then
p1(2)/p2(2) = p}(w)/ps(w), and hence the meromorphic function wi/wy is well defined. So 1f we can
prove the existence of two distinct meromorphic functions then existence of a non-constant meromorphic
function will immediately follow.

If f = u+iv is a holomorphic function on the complex plane then by Cauchy-Riemann equations,
the real part u and the complex part v, satisfy Uz + Uyy = 0 = vy + Uyy. The operator 6%27 + aa—; is
called the Laplacian and is denoted by A. Thus we have Au = 0 = Av. A function f € C? satisfying
this condition at each point in the domain of definition is called a harmonic function. Though here u
and v are real valued, there is no need for this restriction in a general definition of harmonic function

and we allow complex valued functions. We follow the definition of holomorphic 1-form to define

Definition 1.3. A I-form w € C' on a Riemann surface X is called a harmonic differential if it is
locally given by df, where f is harmonic.

Like in case of holomorphic differentials, a similar characterization of harmonic differentials exist.
Theorem 1.4. w € C! is harmonic < dw =0 and d * w = 0, that is, w is both ezact and coeract.

First we note that d « df = Afdx A dy. This is because

d*dfzd*(gid:c—{-a—fdy)

of (9f
9y da:—i—a )
52
__9f o
=52 dy/\dx—i——a—-—d:c/\dy

= Afdx Ady

=d(—

Now if w is harmonic, then locally w = df, where f is harmonic. Therefore locally dw = ddf = 0 and
dxw =dx*df = Afdr Ndy = 0. Conversely if dw = 0, then locally w = df. Then d * w = 0 implies
locally d * df = Afdx Ady =0 and hence Af = 0, proving w is a harmonic differential.

As we did for holomorphic differential, let us analyze what these two conditions mean in a local
setting. Let w = pdx + qdy in local coordinates (z,y). Then dw = 0 implies d(pdz + qdy) = (g% -
gy)da: Ady =0 and d*w = 0 implies d * (pdz + qdy) = d(—qdx +pdy) = (QE —q)dm/\dy = (. Hence we

9q
Oz

Rlemann equatlons for p— zq Now notice that locally w +i*w = (p — iq)dz + i(p — ig)dy = (p — iq)d=.
Hence w + i *w is holomorphic differential. So to lay hands on a holomorphic differential on any domain,
it is enough to find a real harmonic differential. Since real and imaginary part of harmonic differential
are also harmonic, therefore it is enough to find a harmonic differential.

have —E 22 and —2 = ———‘1 If w is real harmonic, that is p and g are real then, this is just the Cauchy-

2. The Hilbert Space of 1-forms

Given any measure space (X, M, ) we can define an inner product on the space of complex valued
measurable functions as follows
()= [ 1

L*(X, M,p) :=={f : X — C| f is measurable and ||f|| < co}

Then the space

is a Hilbert space provided we identify two functions which differ only on a measure zero set. Here we
have 2-forms as integrable objects and can define an inner product on the space of measurable 1-forms

N e

where the complex conjugate 7 of a 1-form +y is defined locally as follows. If in local coordinates (z,y), v
is represented by pdz + qdy, then 7 is represented by pdz + gdy. It is clear that such local 1-forms piece
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together to form a well defined global 1-form. Then locally w *7 looks like
(pdz + qdy) A x(p'dx + q'dy)
=(pdz + qdy) A (—q'dz +p'dy)
=(pp’ +q¢')dz A dy
Now we can easily check that this gives an inner product, except the condition that (w,w) = 0 implies
that w = 0. But this is easily rectified by identifying two differentials which differ only by a measure
zero set in any chart. Of course we have to restrict to 1-forms which are locally of the form pdx + qdy,

with p and ¢ measurable. We call such 1-forms measurable. Thus the wedge product of two measurable
1-forms is integrable. Now define the space

L*(X) :={f : X = C | w is measurable and |lw|| < oo}

The proof of completeness is analogous to the proof that LP spaces are complete and we omit it here.

(See [3], pg. 182, for the complete proof.)
Now we state a fact which is a direct consequence of the Stokes’ theorem. (See [2] pg. 148, for the

satement and proof.)

Theorem 2.1. Suppose f is a C! function and w is a C! 1-form in a Riemann surface X. If either F
or w has compact support in X, then

//xd(f/\w)://xf”w—//xwwf:0

Applying this to a harmonic form w € L*(X) and f for any f € C*(X) with compact support we

(4) //Xw/\dfz//xf/\dwzo
(5) Hence, (w,*df):—//xw/\dfzo

The space of C! functions with compact supports is denoted by Cg. If w is harmonic then so is . Again
applying Theorem 2.1 on #& for w € L*(X) harmonic and f € C(X), we get

(6) /X*w/\df://xf/\d*wzo
(M) Hloviem, i) = — / /X SN =D

Let the space of harmonic differentials in L?(X) be denoted by H. It is perpendicular to both spaces of
exact and coexact differentials in L2(X). In fact it is perpendicular to the closures of such spaces. This
follows from the simple Hilbert Space fact

Lemma 2.2. Ifz, — z and y, — y in a Hilbert Space H, then b, ) = Bty see &ns Y-
We define,
E = the closure in L?(X) of differentials of the form df, where f € s
E* = the closure in L*(X) of differentials of the form *df, where f € g

We required a differentiability of order 2 from f because we want the exact and coexact differentials to
be available for application of the differential operator d. This helps us to prove

Proposition 2.3. E and E* are orthogonal subspaces of LX)

PROOF. Let w € F and v € E*. Then there exists sequences of C2 functions f, and g, such that
dfp — w and *dg,, — v in L?>(X). Then by Lemma 2.2, it is enough to prove that (dfp, *dgn) = 0 for all
n. This a simple application of Theorem 2.1:

<dfna*dgn>:_ffxdfn/\d%:'_ffxfn/\dd%:o O
We have seen that H C ELX N E**. Are they equal? Let w € E+ N E*+. If further we assume it to

be C!, then w is harmonic. This follows from the lemma below.
Lemma 2.4. Ifw is C!, then

(a) dw =0 w e E**
(b)) dxw=0&weE+
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PROOF. We will only prove (a), (b) will follow similarly. (=) follows immediately from the calcu-
lation we did in (4) and (5) and Theorem 2.2. For (<), note that w € C' N E*! implies that for all
fecs,

(8) s o, welf) = //w/\df~ / F Adis

Suppose dw # 0 at a point p € X. Let Adz A dy represent dw in the local coordinates. Then either
ReA or ImA is not equal to zero near 0. Say ReA > 0 in a parametric unit disk U centred at p. Let
¢ : B(0,1) — U be the chart map. Construct a smooth bump function in B(0, 1) which is 1 at 0 and
vanishes outside B(0,1/2). Let this function composed with ¢~! be called f. f can be extended to
whole of X by specifying f = 0 in X \ ¢(B(0,1)). Then f € CZ(X). Therefore by (8), we must have

(w, *df) = 0. But again
Re(w, *df) = —Re // w A df
x

:—Re//xf/\dw
:—Re//XfAdm/\dy

—/ fReAdz ANdy <0
x

This is a contradiction O

3. Weyl’s Lemma

We saw that if a differential in E+ N E*L is C!, then it is harmonic. Are all such differentials C1?
This is the question addressed by the Weyl’s lemma. First we note that being C! is a local property.
So enough to show that w is C! in every chart. But that means we can as well work in a region in the
complex plane. Say the unit ball denoted by D. Also, a ball of radius r will be denoted by D,. Before
going into Weyl’s lemma, we will discuss a technique by which any 1-forms can be made C*, without
losing it’s essential properties. We concentrate on 1-forms in D. A 1-form looks like w = pdx + qdy. So
w is C' means that p and q are C'. So we will define a smoothing operator on functions first, and it can
be carried over to forms by applying the operator on the coefficients of dz and dy. Since w € LQ(X)
functions will be assumed to be integrable. Let p < 1. Define a function

Syt D= R
s (m y):{ k(p2—$2—y2)2, $2+y2</72
p\Z, 0, 22 +y? > p?
where k is chosen such that fpo sp(z,y)dzdy = 1. Calculating we find k = 3/(mp®). Note that s, is C*.
Now define the action of a smoothing operator M, on a L?(D) function f as follows:

)

2m P
9) M, f(z,y) = / / flz+7r cos 0,y + 7 sin 0)s,(r cos 0,7 sin @)rdrdd
o Jo

Note that M,f is defined in D;_,. Change of variable will yield the following two useful forms of

(9)-

(10) M,f(z,y) / flz+u,y +v)s,(u,v)dudv

(11) M,f(x,y) = // flu,v)sp(u— z,v — y)dudv
D

The operator M, acting on the subspace L2(D) of the space of 1-forms on D, has the following properties
Pl: M,(w) is C1
P2: w is harmonic in D = M,w =w in D1_,
P3: lim, gllw — M,w| =0
P4: If supp(y) € D;_,, then supp(M,7y) € D and

(Mpw,¥)p,_, = {(w, Mp¥)p

In the last property P4, M »7Y can be defined over whole of D, since 7 can be extended to the whole
plane by setting v = 0 outside D.
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PROOF. OF P1 Enough to prove this for functions instead of differentials. So let f € L?*(D) be a
function on D. We claim that

oM
pfwy //fut! £ (u—z,v—y)dudv

We wish to apply the Dominated Convergence Theorem on the sequence of functions

sp(u—2 — hn,v—y) —sp(u—=z,v

5 _y)},wherehn—>0asn—->oo

{/ (w,v)

these functions converge pointwise to

Fla ) S (= 2,0 =)

Now

)sp(u—x—hn,vﬂy)—sp(u—w,v‘y)l

|f(u,v e

1 u—z—hn a
Sl [ ety

<Uf ()l / 9% (4. v — y)dt)
<|f (u,v)|M

where M is the upper bound for continuous 8s,/0t in D. |f(u,v)|M is integrable and hence DCT applies.
Therefore we have

IM,f(z,y) _
ox

M,f(x+ hn) — M, f(z)

= i see

411mn%oo//fuv = oy — h)—sp(u—a:,v—y)

= N (y — z. v —
—/Df(uﬂ)az (u — z,v — y)dudv

Now we want to prove continuity of OM,f(x,y)/dz. That is, given any € > 0 and (z,y) € Di—,, we
want to find a § > 0, such that

OMyf , _ OMyf »
(O8] (11, 4) — 252 0,3 < &, whenever |(a', ') = (@:9)] < 6

Now

BM,, f aM f

l

@y — 2oL ()
P s,
// 1w, v)ll—(u~x v=of) = B0 y)ldude

ds,/0z is continuous in D and hence uniformly continuous. Hence there exists ¢ > 0, such that
€
[/ 1f (w,v)|dudv

whenever |(z/,y') — (z,y)| < 6. Then this is our required 6. The proof for oM, f(z,y)/dy follows
similarly. O

0+ 0s
|—Sﬁ(u—:c' v—y’)—l(u—m,v—y | &

oz ’ ox

PROOF. OF P2 w is harmonic and D is simply connected. Therefore there exists a single function
f € CY(D), such that w = df. Then Myw = M, ,df. Does M, commute with d 7 That is, we wish to
prove that
8 f 0 f 8]VI F oM, f
—dz + Mp,—— £ d L d
Myge @+ Mogy b = By @
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‘We will to show that M, ,,%E = gjg—li‘i, the proof for coefficients of dy follows similarly. Since s, has an
upper bound in D and f is C?, we can differentiate under the integral sign to get

3](;/1;f.($,y) = ‘j_m//D,, flx+u,y+v)s,(u, v)dudv

7]
— //Dp %f(a: +u,y +v)s,(u, v)dudv

0

Now we have M,w = M,df = dM,f. So now it is enough to prove that M,f = f in D,. Using the
definition (9) of M, f(z,y) and the definition of the function s, we have,

2 P
M, f(z.9) = / / f(x 47 cos 0,y +r sin 0)s,(r cos 0, r sin 0)rdrdd
o Jo

27 p
= / / f(x+7 cos 0,y +r sin 0)k(p? — r*)*rdrdd
o Jo

P 27
= / k(p® — r2)?r f(x + 7 cos 8,y +r sin §)dddr
0 0

By Mean Value Theorem of harmonic functions we have

0277 f(x+7cos 0,y +r sin 0)dd = 2n f(z,y)
Thus
M, f(z,y) =27 f(z,y) /Op k(p? — r*)2rdr = f(z,y)
since we had chosen k such that 27 [ k(p? — r?)?rdr = fpo sp(z,y)dzdy = 1. O

Proor. oF P3 Suppose w = pdx + qdy. Then
o — M|, = / /D (Ip— Mypl? + g — Mo,ql?)dzdy
1-p

We wish to show that this quantity goes to zero as p — 0. We will show that [f,,  |[p—M, op|2dzdy — 0
-p -
as p — 0, the other part will follow similarly. Further since p = p1 +ips, [[p, [P~ Myp|2dzdy =
—p
ffDl,,,ﬂpl — Myp1|? + |p2 — Myp2|*)dzdy. So enough to show that ffDl_p lp1 — M,p1|?dzdy — O as
p — 0. So may assume that p is real. We know that simple functions are dense in the function space
L?(D) and since we are in a Borel o-algebra, therefore continuous functions are dense in the simple ones.

Thus continuous functions are dense in L?(D). Therefore given ¢ > 0 there exists g continuous in D
such that ||p — g||p < e. Then

( / / Ip— M,p|dedy)'? = |p — Mypllp,._,
Dz

<llp = gllps_, + lg — Mygllp,, + [Mpg — Mpplipy_,

The first term is already less than e¢. We have to show that the other two are also less than ¢ for
sufficiently small p. Using definition (10) of M,g, we have

IM,g(z, ) — 9z, y)| = | / /D (9(z + 1y +v) — g(z,9))55(, v)dudv]

< //Dp |g(’U +u,y +U) — g(I,y)Isp(u7U)dudv

‘We know that g is continuous on compact D, hence uniformly continuous in D. therefore there exists
6 > 0, such that

lg(z',y") — 9(, y)| < €, whenever |(z',y') — (z,y)| < &
Therefore for p < 9,

|M,g(z,y) — g(z,y)| < e//D sp(u, v)dudv = €
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Therefore
lg — Mpglips-, = (//D M, g(z,y) — 9(z, y)[*dedy)*/? < V/me
1-p

whenever p < 9. So it only remains to prove that || M,g — M, pllp,_, <€ Again using definition (10)
|M,g — Mppl2 = | // (g(x +u,y +v) — p(z +u,y +v))s,(u, v)dudv|2
DP

Applying Sewartz inequality on g(z +u,y + v)—plz+u,y+ v))y/sp(u, v) and sp(u,v) we have

| / (g(z +u,y +v) —plz+u,y+ v))s,(u, v)dudv|®
DP
£ // lg(z +u,y +v) —plz +u,y + )%, (u, v)dudv x // 5, (u, v)dudv
Dp Dp

= //D lg(z +u,y +v) — p(z +u,y +v)|*sp(u, v)dudv

Therefore

M0 - Mol , = ([ 1Mog — MyplPdody
1-p

.7 // (// lg(z +u,y +v) —plz+u,y+ v)|?s,(u, v)dudv)dzdy
Dy, 49 Dp
Applying Fubini on RHS,
1M,g — M,plD,_,

< //Dp s,,(u,,'u)(//Dl_p l9(z +u,y +v) — p(z + u,y + v)|*dzdy)dudv

But ffDl,p l9(z +u,y +v) —plz +u,y+ v)2dzdy = [lp— gllB,_, < ¢2 for all (u,v) € D,. Therefore

Mg — J\[,,p]\%bp 2 g //D sp(u, v)dudv = g
' ]

PROOF. OF P4 First we show that supp(M,y) C D. For any & ¢ D, B(%,p) N D1, = &, hence
M,y(z) = 0. Therefore M,y is non-zero only in D. But support means the closure of the non-zero
region. So we will show that infact supp(y) C D1—p—s, for some § > 0, and hence the non zero region
will be inside D;_s, proving that supp(M,y) C D. supp(y) C Di—p, where supp(y) is closed and D1,
is open. Let 26 := d(supp(v), Di_,) > 0. Then supp(y) C Di—p—s-

Now we wish to prove that (M,w,¥)p,_, = (w, M,v)p- Let w = pdx +qdy and vy = adz +bdy. Then

(Mpw,7)Dy_, =// M,p(z,y)a(z,y) + Mpa(z,y)b(z, y)dzdy
Dy

(w,Mﬂ)D://Dp(z,y)Mpa(w;y)+Q(r,y)Mpb(r,y)dIdy

Using definition (11) of M,p(z, y) and applying Fubini thereafter, we have

/ /lep M,p(z, y)a(x,y)dzdy

_ / /D - e / /D P, )3, (u — 7,0 — y)dudv)dzdy
_ / /D sl / /D 2@ 9)5,(u — @, v — y)dady)dudv

- / /D oo a1l / /D 2l 9)s,(u — 2, v — y)drdy)dudv
_ / /D p(u, v) M a(z, y)dudy
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Similarly,

//D M,q(z,y)b(x, y)dzdy = // q(u, v)Mpb(z, y)dudv
1-p D
Thus (M,w,Y)p,_, = (W, MpY)D- D

Now we state and prove the Weyl’s Lemma.

Lemma 3.1. (Weyl’s lemma,) Let D be the unit disk in the complez plane. Letw € EJ'(D)QE*L(D)'
Then w is C! almost everywhere.

PROOF. The idea is to show that w = M,w a.e. in D;_,, for all 0 < p < 1. By P1, M,w is C1,
hence w is C! a.e. in D1_,, for all p, and hence in all of D.

First we prove that M,w is independent of p, that is, if p,o < 1/2, then Myw = Myw in Di—p—0-
P2 tells us that for w harmonic we have M,w = w in Dy_,. We wish to use this to show that Myw =
M,M,w = M,M;w = M,w in Dy_,_,. The middle equality requires a proof, but first we have to prove
that M,w is harmonic, for all p, so that P2 can be applied. We recall that if a 1-form belongs to E-NE*+
and is C!, then it is harmonic. By P1, M,w is C. We will prove that M,w € E+(D1-,) N E*L(Dy-p)-
Let f € C3(D,), by P4 we have,

(]\Jpw, df>D1,p = (w, ]\lpdf>p = (w, def)D
(Myw, %df) p,_, = (w, My * df)p = (w, *dM,f)p

where the last step in each is due to the fact that M, commutes with both d and *. This proves our
claim and hence M, w is harmonic in Di_,.

Proving M, M w = M,M,w is just an exercise in Fubibi. Let w = pdz + gdy. Using definition (10)
of M,p, we have,

M,Myp = // Myp(z + u,y +v)ss(u, v)dddv
= // sp(u,v)(// plz +u+u',y+v+0)s,(u, v')du'dv")dudv
Do D,

= // sp(u, "",)(// plz+u+u,y+v+v)s0(u, v)dudv)du'dv’
D, i
— M,M,p

Similarly M, M,q = M,M,q and we have proved that M,w is independent of p. Now fix a p. We wish
to prove that w = Mjyw a.e. in D1_p. We know by property P3, that limy_so|jw — Mow|p,_, = 0. We
have

lw - Mowlipy o, < llw = Mowllp; _,
Taking limit ¢ — 0 on both sides,
limg_sol|w — Mow|Dy_,_, =0
Now in D1_g—p, Mow = Mpw. Hence
limy _oljw — Mpwllplﬂ,_p =0

Now for all o < 4,
lw = Mpwllpy_,—s < llw = MypwllDy_,
Taking limit ¢ — 0 on both sides,
lw— Mowllpy_p-s < lim, o|lw — Mywl||p,_,_, =0

Therefore ||w — M,w|p, ,_, = 0 for all § > 0. That is w = M,w a.e in Dy_, 4 for all § > 0. Let
A = {z € D1_, : w(z) # M,w}. Let p be the measure. Then p(A N Di_,—1/n) = 0 for all large n.
Taking union over these sets p1(A N (UnD1—p—1/n)) =0, that is u(ANDy—p) =0 or w(A) = 0. O
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4. Decomposition of a 1-form into orthogonal components

Weyl’s lemma tells us that the space ELNE*+ is equal to the space of harmonic differentials H. But
E+NnE*L = (E@ E*)*. Now E and E* are orthogonal subspaces of Hilbert space L?(X). Therefore
E & E* is also a subspace. Therefore H = (E © E*)* is also subspace and L*(X) = (E® E*) & H. We
have the following theorem

Theorem 4.1. L2(X) = E® E*® H and hence every w € L*(X) can be written asw =y +7 +wh a.e.,
where v € E, 7 € E* and wy, 18 a harmonic differential.

We wish to know a condition on w such that in the decomposition w = v+ 7 +wp, a.e., the v is exact
and 7 is coexact. First we prove that,

Lemma 4.2. v € E is C'. Then it is ezact.
7 € E* is CL. Then it is coezact.

Before going to the proof of this lemma, we establish a checkable criterion for a closed differential to
be exact.

Theorem 4.3. A closed differential w is ezact < For any piecewise differentiable closed curve a in X,
J,w=0.

This is just Morera’s theorem in Complex Analysis and we leave the proof to the reader.

PROOF. of Lemma 4.2y € E C E*L. Sinceyis C*, by Lemma 2.4, dy = 0, that is y is closed. So in
light of the previous theorem, it is enough to show that integration of -y over any piecewise differentiable
closed curve is 0. So let o : [0,1] = X be such a curve. We wish to simplify the picture and work
with simple closed curve, instead of a highly entangled closed curve. Consider a triangulation of the
Riemann surface such that each triangle is inside a parametric disk and each edge is a differentiable
curve. Since a(I) is compact, it is contained in finitely many such triangles. By slightly shifting o at
places, if necessary, we can find a point in the interior of each of these triangles which is not in the image
of a. We can then project the intersection of a(I) with the interior of this triangle, to the edges of the
triangle. Bach triangle lie in a parametric disk and dy = 0, hence there exists a holomorphic function
f such that df = ~y locally. Hence integration of v over « inside the triangle is same as that over the
new curve. Call this new curve o from now on. Notice that this allows us to concentrate only on simple
piecewise differentiable closed curve, since finitely many application of the result f § T = 0, for simple 3,
will yield the result for general a. Hence we assume that « is a simple piecewise differentiable closed
curve.

The idea is to show that [ v = (y,w) for some w € EL. We know by Lemma 2.4, if w is C!, then
w € E+ & dxw=0. So we look for n which is C! and closed, so that we can take w = 1. The easiest
way to construct a closed differential is to start with a function and take it’s differential. So assume
n = df for some f. Since we are going to construct f by hand, using bump functions, therefore we may
as well assume that f is real and supp(n) is contained in a region R with nice boundary. Now let us try
to find the conditions on f such that fa v = (v,*n).

(12) (%*77>=—//Rv/\df: 6Rf/\v—//Rf/\d’y=/aﬂf7

Thus &R should have « as one of it’s components, on which f should have value 1, while [ should be
zero on the other components. Before starting the construction we quote this result from [2], pg. 11:

Proposition 4.4. Let M be a manifold. Let A and G be closed and open in M, respectively, such that,
A C U. Then there exists a smooth ¢ : M — R such that

(1) 0< $(p) < 1, for allpe M

(2) ¢(p)=1,ifpeA
(3) supp(¢) C G

For every t € I, consider a chart (Ug, ¢¢) centred at «(t). For small enough e, é7 (D) Na(I) has
only one component. Call By = ¢;1(D€/2) and Gy = ¢ (D). {B¢:t € I'} is an oven coper of compact
a(I). Let {B; : 1 <i < n} be a fine subcover. Define G := UL,G; and B := U™, B; . Note a(I) € G
divides @ into two components. Let the part of G to the right of a(I) in G be R and left of that be
L. Now a(I) € B C G, where B is closed and G is open. Therefore by Proposition 4.4, there exists
g : X — R which is 0 on B and has support inside G. Now define
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f:X—>R

9(p), PER
f®)={1  peLUa()

0, peX\G

This function is not differentiable throughout X. But df is defined within G and if we extend it by
specifying it’s value to be zero outside G, then this extended differential is Cg. This is our 7 and it has
support within R, where it is equal to df. Now we see that (12) hold for the function f, differential n
and the region R that we constructed. Therefore

0=<%n)=/6Rf7=/a'v

since on the other component of R, f is zero. Therefore v is exact.
Now m € E* implies there exists a sequence of CZ functions f,, such that limp—s oo™ — *df,|| = 0.
Now note that for any wy,ws € L(X)

)

<*W1>*W2>:_// *W1 /\w—2=// Wa A *wy = (wo,wr) = (w1, ws)
X X

Hence lim, || * 7 + df,|| = 0. Therefore *m € E. Thus 7 is exact and hence 7 is coexact. O

We will use the following result PDE result:
Lemma 4.5. Let ¢: C* — C be a CF function. Then Ay = ¢ has a solution 1 which is C2.

Lemma 4.6. Let X be a Riemann surface . If a 1-form w in X, is C3, then locally w = df + =dg, where
1,9 are local C? functions.

PROOF. Let p € X. Let (U, ¢) be a chart in centred at p, such that the unit disk D is contained in
¢(U). Let A :=¢1(Dy/2) and G := ¢~1(D). Then applying Proposition 4.4, there exists a function s
which is smooth and takes value 1 on A and 0 outside G. Now let v = sw. Then it is enough to show
that v =df +d* g in G, since w = v in ¢_1(D1/2). Let v = pdx + qdy in local coordinates (z,y). then
dy = ((0q/0x) — (9p/dy))dx A dy. the function (9g/dz) — (Op/dy) is C* and has a compact support in
D, and thus is extendible to the whole complex plane. Applying Lemma 4.5, the exists a C? function g
such that Ag = (0¢/0z) — (Op/dy). That is d x dg = d, hence d(y — *dg) = 0. Hence there exists a (2
function f such that df =~ — *dg. This proves our assertion. O

Theorem 4.7. Let X be a Riemann surface . If w € L(X) is C3, then w = df + xdg 4+ wyp a.e, where
f,g are C? functions in X and wy, is harmonic.

PROOF. We already know that w = v + 7 + wy, a.e, where v € E, 7 € E* and w is harmonic.
By Lemma 4.2, it is enough to prove that both v and 7 are C1. Being C! is a local property. So let
us concentrate on a parametric disk D. By Lemma 4.6, there exists C? functions f, g in D such that
w = df +*dg. Then we have y+m +wj, = df ++dg a.e in D. Rearranging we have Y+wp—df = —7+x*dg.
We call this quantity 6. Note that if ¢ is C', then so are y and 7. To prove 0 is C*, we use Weyl’s
lemma. Let h be any CZ function on D. We wish to show that (0,dh)p = 0 and (0, *dh)p = 0. Now,

(0,dh)p = (—m + *dg,dh)p = —(m,dh)p + (*dg, dh)p

We can extend h to the whole of X by setting A = 0 outside D. Then (r, dh)p = (m,dh)x. But
(m,dh)x =0, since 7 € E* and dh € E. Therefore we need to prove that (*dg,dh)p = 0. But this is
just an application of Theorem 2.1,

(xdg,dR)p = (dh, *dg)p = —// dh A dg = // h Addg =0
D D
Hence (0,dh)p = 0. Again
(0, *dh)p = (v +wp — df,*dh)p = (v, *dh)p + (wp, *dh)p — (df, *dh)p

As before (v, *dh) x = (v, *dh)p, but v € E and *dh € E*. Hence (v, *dh)p = 0. Similarly (wp, *dh)p =
0. A similar application of Theorem 2.1, shows that (df, *dh)p = 0. Hence (0,*dh)p = 0. Thus by
Weyl’s lemma, § is C', and hence so are y and n. Therefore 7 is exact and 7 is coexact. O
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5. Existence of meromorphic functions

Let p; and py be two distinct point in X. Our aim is to construct meromorphic function with a
pole at p; and a zero at p2. As we have discussed before, we will go about doing this by taking quotient
of two meromorphic differentials, say wj/wq. First we define what we mean by order of a meromorphic
differential w at a point p.

Definition 5.1. Letw = fdz in a local coordinate z centred at p. Then define ord,(w) := ord,(f).

To prove well definedness, consider another local coordinate w centred at p and let the transition
function be T : w — 2z. Then w = f o T(w)T"'(w)dw. T is an analytic isomorphism, therefore ord,(f) =
ordy,(f o T). Also ord,(T) = 1. Therefore, ord,((f o T) - T') = ordp(f o T) - ordp(7”) = ordp(f). Hence
ordy(w) is well defined.

Now we can say that if f = w1 /wo, then ord, f = ordp(w;1)—ordy(w2). Thus the condition of f having
a simple pole at p; and a simple zero at po, translates to the requirement: (—1)¢ = ord,, (w1) — ordy, (w2)
for ¢ = 1,2. Meromorphic differentials are obtained via construction of harmonic ones. We will construct
harmonic differentials with specified singularity at a point.

Theorem 5.2. Let X be a Riemann surface , and p be a point in X. Let z be a local coordinate centred
at p. Let n be an an integer greater than 0. Then there exists a 1-form w, such that

(1) w is harmonic in X \ {p}.
(2) w—d(1/z™) is harmonic in a punctured neighbourhood N of p.

PROOF. Let (U, ¢) be a chart in centred at p, such that the unit disk D is contained in ¢(U). The
singularity in local coordinate z is d(1/z™). We will extend this to a 1-form in X \ {p}, with the help of
a bump function. Let A := ¢_1(T/2) and G := ¢~(D). Then applying Proposition 4.4, there exists a
function s which is smooth and takes value 1 on A and 0 outside G. Define a differential ¥ on X \ {p}
as follows

. dEE, in G
Y= z .
0, in X\G

Let N := ¢~ (D1/2). Then ¢ = d(1/z™) in N \ {p}. Therefore 1 is holomorphic in N \ {p}. Hence by
Theorem 1.2, ¢ —i*1) = 0in N\ {p}. Therefore 1 — 1) is almost every where smooth. Hence Theorem
4.7 can be applied, yielding ¢ — i * ¢ = df + *dg + wp, a.e, where f, g are C? functions in X and wy, is
harmonic. Rearranging, we get ¥ — df =1 %% 4+ wp, + *dg a.e.. Let w = — df be a 1-form in X \ {p}.
We will show that w satisfies (1) and (2).

First we show that w is harmonic in N \ {p}. By Theorem 1.4, it enough to show that dw = 0 = d*w.
First note that w is C!, since wy, is harmonic and f is C2. Now dw = d(ip — df) = dy) — ddf = 0, since
¥ is exact in X \ {p}. Again d*w =d* (i *x ) + wp, + *dg) = —idy + d * wy, — ddg = 0 a.e.. Since w is
C*, therefore d * w is continuous and it is zero in a dense set (complement of a measure zero set), hence
d *w = 0. Therefore w is harmonic in N \ {p}.

In N\ {p}, ¥ = d(1/z"), hence w — d(1/z™) = —df. Also ¥ = i % in N \ {p}, which implies
w = wp, + *dg a.e.. Therefore d(w —d(1/z")) = —ddf =0 and d * (w — d(1/2")) =d * w, —ddg =0 a.e..
By same continuity argument as before we conclude that d * (w — d(1/z™)) = 0. Therefore w — d(1/z™)
is harmonic in V. O

Let w be as in the theorem and let v be it’s real part. Then « + i * v a meromorphic differential.
w—d(1/z") is harmonic in N, taking the real part, y— Re(d(1/2z™)) is harmonic in N. Again *(w—d(1/2z"))
is harmonic in N and consider it’s real part Re(x(w — d(1/2"))). This quantity is almost everywhere
equal to Re *w — Rexd(1/z™), and hence by continuity equal. Now Re xw = xRe w = #7. For the other
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part we do a general calculation for any f = u + ¢v holomorphic in place of 1/2".
a
f d )
5f

= Re(———-dm + ——d y)

Re(xdf) = Re * (Q—Jidx +

= Im(df)

Therefore i * v — ¢ Im{1/2") is harmonic in N. Hence v + ¢ x v — d(1/2™) is holomorphic in N. If
€ =y +1ix+, then { is a meromorphic differential with ord,(¢§) = —(n + 1). Thus we have obtained the
following corollary.

Corollary 5.3. Let X be a Riemann surface and p be any point in it. Let n be an integer greater than
1. Then there exists a meromorphic differential which has order —n at p and is holomorphic in X \ {p}.

Now we state and prove the existence theorem of meromorphic functions.

Theorem 5.4. Let X be a Riemann surface and p1, pe be any two distinct points in it. Then there exists
a meromorphic function f, such that, ordy, (f) =1 and ordy,(f) = —1.

PRroOOF. By Corollary 5.3, there exists meromorphic differentials v;, which are holomorphic in X\ {p;}
and have ordy, (;) = —(1 + 2'71), for i = 1,2. Then wy := v; + 72 is 2 meromorphic differential which
is holomorphic in X \ {p1,p2} and has ordp,(w1) = —(1 + 2°!) for i = 1,2. Similarly there exits a
meromorphic differential wy, which is holomorphic in X \ {p1,p2} and has ord,, (ws) = —(2* + (=1)*"1)
for i = 1,2. Now consider the meromorphic function f = wy/ws. f is holomorphic in X \ {p1,p2} and
has ord,, (f) = ordy, (w1)— ordy, (w2) = (1)1,



CHAPTER 3

Riemann-Roch Theorem

1. The Mittag-Leffler Problem

Given a compact Riemann surface X and points p1,---,px € X and ng, -, ng € Z, can we find
f € M(X) such that ord,,(f) =n; foralli € 1,-- _k? In fact we can be more specific and ask for a
meromorphic function with given Laurent tails in fixed local coordinates at each of finitely many points.
A Laurent tail here means a Laurent polynomials which is the tail of a Laurent series. Let us do this for
one point. ’

Suppose the given Laurent tail is r(z) = 3_i_,, ;2% with ¢n % 0 # cm. There are m —n + 1 terms.
We will proceed by induction on number of terms. Suppose there is only one term, that is, r(z) = cz".
We know the existence of a g € M(X) such that ord,(g) = 1. Then g™ multiplied by a suitable constant
will give us our desired function. Now suppose that ~ has more than one term. There exists h € M(X)
with Laurent tail ¢, z™. Let s be the Laurent tail of A —r upto 2™ term. Since s has fewer terms than r,
by induction there exists g € M(X) having s as Laurent tail. Therefore h — g has r as Laurent tail at p.

Now let us generalize this to k points p1,--- ,px € X with Laurent tails r;{z;), where z; are fixed local
coordinates centred at p;. For convenience we will assume, by adding zero coefficient terms if necessary,
that ri(z:) = Y 1w, cbz] for fixed m and n. By previous result we know for each 7, there exists g; € M(X)
with g; = r; +terms of order higher than m. We have to somehow combine these meromorphic functions
together, so that their Laurent tails at each p; is r;. Consider a combination of the form f = Zi;l gihi
for h; € M(X). For each i, if we can arrange to make h; = 1+ terms of degree higher than m —n, at p;
and h; = terms of degree higher than m —n, at py, for i # j, then f will have the desired Laurent tails
at each of the p;s. That means we want ordy, (h; — 1) > m —n and ordy, (hi) > m —n.

So our aim is to construct meromorphic function of the above form. For convenience write h in place
of h;. We have information about order of h — 1 at one point and about order of h itself at others. We
wish to combine these into information on orders of a single meromorphic function. The crucial point
to note here is that addition of a constant to a meromorphic function messes up it’s zeros but not it’s
poles. Here if we consider h — 1, then the information about zeros of h will be lost, but if we consider
H = ,% — 1, then we have

1
ordy, (H) = ordp, (E -1)

1 . 1
= ordy, (};) (since 7 has pole at p;)
= —ordy,h

<n—m
and

ord,, (H) = ordpi(% -1)

1—-h
= ordy, (1)
= ordy, (1 — h) (since ordy, (k) = 0)
>m—n

So we have to construct a meromorphic function with a zero of order greater than m — 7 at one point
and poles of order greater than m —n at others. Note that specification on order of zeros or poles does
not matter, if we can find a meromorphic function with zeros and poles at specified points, then raising
by power m —n + 1 will satisfy the desired condition on order at each point. This is what we will do.

~ We proceed by induction on number of poles. In the previous chapter we have constructed a mero-
morphic function with a zero and a pole at two specified points, say p and ¢. Suppose there exists a
meromorphic function which has a zero at p and poles at q1,--- ,gn—1. Callit g. If g has a pole also at

21
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qn, then we are done. Otherwise, let b € M(X) has a zero at p and a pole at g,. If we simply combine
these two as f = g + h, then clearly we have a zero at p and a pole at ¢y, but the poles of g and k may
cancel each other at the ¢;s. So we take f = g + h!, with I so large that even if i has a pole at one of
the g;s, for i € {1,--- ,n — 1}, then ordy, (h) < ordy,(g), making sure that f indeed has poles at g; for
ie{l,--,n—1}

For future reference we record the weaker version of this result as a lemma:

Lemma 1.1. Given a compact Riemann surface X and points p1,--- ,pr € X andna, -+ ,ni € Z, there
exists f € M(X) such that ordy, (f) =n; for alli €1, - , k.

We have constructed meromorphic functions with given Laurent tails at finitely many points, but in
doing so we had no control of it’s behaviour at the other points. A meromorphic function has zeros and
poles only at finitely many points. So specifying Laurent tails at finitely many points and demanding
that the function be holomorphic at others is a natural problem. Here we are demanding restriction
on two different properties of the meromorphic function, one it’s order at each point and the other it’s
Laurent tail at finitely many points. The order at each point of a non zero meromorphic function can
be described by the formal sum Zpé x 0rdp(f) - p. Note that all but finitely many coefficients are zero.
Making this into a formal definition we have:

Definition 1.2. A divisor is the free abelian group generated by points of a compact Riemann surface.

Group of divisors of a compact Riemann surface is denoted by Div(X). And an element in it is
generally denoted by D. We often view D as a function from X to Z, that is, if D = Zpe « Np © D, then
D(p) =n,, forall pe X.

Definition 1.3. A divisor of the form ZPGX ordy(f) - p, where f € M(X) is called a principal divisor.

‘We denote it by div(f). We can also define divisor of zeros of f, as divo(f) := Zordp(f)>0 ord,(f)-p
and divisor of poles of f, as divee (f) = > ora, ()<0 (—ord,(f))-p. Then div(f) = divo(f)— divee(f) with
divo(f) and dive.(f) having disjoint support. In fact given any D € Div(X), we can write D = P — N,
where both P and N takes non-negetive values for all p € X and have disjoint support. Just like with
meromorphic functions, we can also attach a divisor with meromorphic 1-forms.

Definition 1.4. If w is a meromorphic 1-form, then we define div(w) = szX ordy(w) - p. Such a
dwisor is called canonical divisor.

Similarly we can collect all Laurent tail divisors at finitely many points to form a group:

Definition 1.5. A Laurent tail divisor is a finite formal sum Zp rp(zp) - p, where v, is a Laurent
polynomial in pre-chosen local coordinate zp,, centred at p.

The group of Laurent tail divisors of a compact Riemann surface is denoted by 7(X). Now given
>, 7p(2p) - p € T(X) we attach a divisor to it in the following way. D(p) = one more than degree of
top term in rp, if p appears in the finite sum, and 0 otherwise. Then we are looking for a meromorphic
function which satisfies the following property at each point p:

Look at it’s Laurent series expansion in terms of z,. Consider it’s tail consisting of terms of degree
less than D(p). If p does not appear in the finite sum of the Laurent tail divisor, then this tail is
non-existent, otherwise it is .

In the above we started with a Laurent tail divisor, and then constructed a divisor from-it. Going
the other way, that is, choosing D € Div(X) first, we can define the following subgroup of 7(X):

T[D}(X) ;:{Z rp-p € T(X): top term of 7, has degree strictly less than
P
— D(p) , whenever p appears in the sum}
Now we define a map ap : M(X) — T[D](X) sending a meromorphic function f to > 7, - p, where rp
is the truncation of the Laurent series of f at p in terms of z,, removing all terms of degree —D(p) and

higher. We immediately notice that if D1 < Dy, that is Dy1(p) < Dy(p) for all p € X, then there is a
natural map tgf : TID1(X) = T1D:](X) by sending 3,7, - p to 3 s, - p where sp is the truncation of
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rp, by Temoving all terms of degree —D2(p) and higher. Then we have a commuting diagram:
ap,
M(X) —— TID1)(X)
D
OéD2 lth

Now, given an element of 7[D](X), our original question was: Does there exist a preimage under ap?
This is called the Mittag-Leffler Problem. Surjectivity of ap is too much to expect. Consider a complex
torus X and any point p in it. Suppose 21; -p € T[0](X) has a preimage f € M(X). Let F': X = C be
the corresponding holomorphic map. Then since f has a simple pole at p and no other poles, therefore
deg F = 1. Hence F' is an isomorphism. But torus and sphere are not even homeomorphic, so this is
absurd. Hence ap is not surjective in this case.

Note that T[D](X) is also a complex vector space and so is M(X) (in fact it is a field extension).
Then the map ap is a C linear map. Hence coker ap is also a vector space. We call it H'(D). This
space is a measure of obstruction in solving the Mittag-Leffler Problem. We wish to prove that this space
is finite dimensional.

2. Algebraic formulation

Let us expand the map T[D](X) — H'(D) into an exact sequence. For that we need to find out the
kernel of the map ap. Let f € Ker ap. Then at p € X the Laurent series of f has no terms less than
or equal to —D(p). That means at each p, div(f)(p) > —D(p). Thus the kernel of ap is the space:

L(D) := {f € M(X) : div(f) > =D}
We note in passing that a similar space can be defined for meromorphic 1-forms.
LY(D) = {w e MMV (X) : div(w) = =D}
L(D) is a C vector space. So we have the exact sequence:
0 — L(D) = M(X) = T[D)(X) = H (D) =0
We can make this into a short exact sequence as:
(14) 0 — M(X)/L(D) = T[D|(X) — HY(D) = 0

We first claim that L(D) is finite dimensional for all D € Div(X). To see this we first notice that L(0)
is the set of holomorphic functions. But only holomorphic functions on a compact Riemann surface are
the constant ones. Therefore dimL(0) = 1. A divisor D differs from the divisor 0 by a finite sum, so an
induction argument seems feasible here. The natural candidate that present itself for applying induction
on, is what we call degree of a divisor.

Definition 2.1. The degree of a divisor D on a compact Riemann surface is

deg(D) = Y D(p)

peX

Note this is a group homomorphism. Also for any f € M(X), with X compact, we have deg(div(f)) =
0. The precise result on dimension of L(D) is the following.

Lemma 2.2. Let X be a compact Riemann Surface, and D € Div(X ). Write D as D = P — N, where
P and N are non-negative divisors with disjoint support. Then dimL(D) < 1+ deg(P).

PROOF. We will apply induction on degree of the positive part P of D. deg(#) = 0 implies P = 0.
Therefore dimL(P) = 1. Also note that D < P implies L(D) C L(P). So we have dimL(D) < dimZL{P) =
1 = 14 deg(P) as required. Now suppose the statement is true for deg(P) =k — 1. Let D has positive
part P whose degree is k. Choose a point p in the support of P such that P(p) > 0. Then the positive
part of D — p, which is P — p has degree k — 1. By induction hypothesis dimL(D — p) < 1+deg(P —p)=
deg(P). We only need to show that dimL(D) < 1+dimL(D — p). This will be an application of rank-
nullity theorem. We wish to find a linear transformation from L(D) to a one dimensional vector space
over C, whose kernel is L{D — p). Define a local coordinate z centred at p. The Laurent series of a
meromorphic function f € L(D) is of the form f = ¢z~ P(®) 4 higher order terms. Define a function
¢ : L(D) — C, sending f to ¢, in the above notation. This is then our desired linear transformation
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as the kernel is clearly L(D — p). So now rank-nullity implies dimL(D) < 1+dimL{D — p) and we are
done. O

For future use we prove the following Corollary.
Corollary 2.3. Let P € Div(X) be a positive divisor. Then dimL(P) = 1+ deg(P) implies X = Coe.

PRrROOF. Let deg(P) =d. Let P = Zf‘:lpi, where p;’s may not be distinct. Consider the sequence
d
L(0) C L(py) € L(p1 +p2) C - C LD _ps)
i=1

dimL(0) = 1 and dimL(Z‘ii:1 pi} = d + 1. Thus the dimension increases from 1 to d + 1 in d steps.
Also by Lemma 2.2, the increase in dimension in each step can be atmost one. Therefore the increase
of dimension in each step is exactly 1. Hence dimL(p;) = 2. Therefore there exists a non constant
meromorphic function f in L(p;). Then the corresponding holomorphic function to C. has degree one,
and hence is an isomorphism. U

Since C is algebraically closed and M{X) is a non-trivial field extension of C, therefore transcendence
degree of M(X) over C is atleast one, hence M(X) is an infinite dimensional complex vector space.
Therefore so is M(X)/L(D). And clearly is T[D]}(X) is infinite dimensional too. So there is no hope of
getting any information about dimension of H!(D) directly from the short exact sequence (14). But the
the truncation map tgf gives a way to compare H(D;) and H'(D,), whenever D1 < Dy. We can have
the following chain map:

| s

0 ——— M(X)/L(D3) —= TIDa)(X) —2 H'(Da) —— 0

where the middle vertical map is tgf, the left vertical map is defined by starting with the quotient map
M(X) = M(X)/L(D3) and noting that L(D;) C L(D,) implies L(D;) is in it’s kernel. The left hand
square then commutes because of (13). For the right vertical map we send [ 7p- p] to m otgf (2p e D)
To check well definedness we note that (>, 75 0] = [3_, sp-p] implies that >~ - p— 30, 8 p = ap, (f)
for some f & M(X) Applying tlD)f on both sides we see, tgf Qe p)— tgf (O opspp) = tgf oap,(f) =
ap,(f). Hence my otgf (X prpp) = Wgotgi (3=, $p'p)- By definition the right hand square also commutes.

Note that the left vertical map is surjective, hence by Snake Lemma, we have a short exact sequence
of kernels of the vertical maps. Kernel of the left vertical map is L(D)/L(D;). Since L(D)’s are finite
dimensional,

(15) dim(L(D3)/L(D1)) = dimL(D3) — dimL{D,)
Kernel of tgf consists of Laurent tail divisors 3, 7, - p such that the top term of ry is less than — D1 (p)
and the bottom term greater than or equal to —Ds(p). The basis of T[D;](X) consists of 2z with

p € X and n < —Dy(p). Therefore basis of the kernel consists of z& for which —Da(p) < k < —D(p).
Do(p) — D;(p) basis elements for each p € X, therefore summing up the total dimension is:

(16) dim ker(tgf) = Z(Dg(p) — D1y(p)) = deg(D2) — deg(D;)
peX

The kernel of the third vertical map which we denote by H(D;/D,) can now be computed from the
short exact sequence
0 — L(Dg)/L(D1) = ker(t3?) = HY(D1/D3) — 0

We record this result as a lemma:
Lemma 2.4. Dy and Dy are arbitrary divisors on a compact Riemann surface X, with D1 < Dy. Then
(17) dimH(Dy/D3) = [deg(Dz) — dimL(D3)] — [deg(D1) — dimL(Dy)]

‘We have mentioned that the map «p may not in general be surjective. Can we find atleast one D
for which ap is surjective? It is same as asking for a divisor D, for which H}(D) = 0. We start with

an arbitrary divisor A. Suppose H1(A4) 5 0. Then there exists R € T[A)(X), such that [R] # 0 in
H(A). Increase A to a divisor B, such that t§(R) = 0. Then mp0tZ(R) = 0 and hence [R] € H'(A/B).
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Therefore H'(A/B) # 0. Then by Lemma 2.4, 1 < dimH'(A/B) = [deg(B) — dimL(B)] — [deg(A) —
dimL(A)]. Hence deg(B) — dimL(B) > deg(A) — dimL(A). Now if H'(B) is also not equal to zero then
we can find a C' € Div(X), such that deg(C) — dimL(C) > deg(B) — dimL(B). Thus we see that the
quantity deg(A) — dimL(A) will continue to strictly increase as long as we do not hit upon a A € Div(X)
with H'(A) = 0. So question is, does this quantity have any upper bound?

3. Upper bound for deg(4) — dim(L(4))

deg(A) has no upper bound. So we have to look for a lower bound of dimL(A). That is, we wish to
find a minimum number of linearly independent meromorphic functions in L(A). But we do not know
if we have even one for an arbitrary divisor A. So let us start with a meromorphic function and create
a divisor in whose L space it belongs. Fix a non-zero meromorphic function f and define D = divoo(f).
Then f € L(D). Note that f € L(mD) for all m > 0, infact 1, f,---, f™ € L{mD). Let us restrict
our attention at the moment to divisors of the form mD, for m € N. We will find a lower bound for
dimL(mD), for large m. We already have m+ 1 linearly independent functions in L{mD), but that gives
us an inequality: deg(mD) — dimL(mD) < mdeg(D) — m — 1, which is not independent of m, unless
deg(D) = 1, which we can have only if X = Cu. So let us try to find some more meromorphic function
in L(mD). Start with an arbitrary non-zero meromorphic function h. We first try to remove the poles
of h that do not coincide with that of f. If there is no such then note that h € L(mD), for some m.
Otherwise let p1, - - - , px be such points. Then the meromorphic function g := h~Hf:1 (f—f(pi))_"rdpi(h)
has poles only at poles of f, that is, only at poles of f we may have ord,(g) < 0. Hence there exists
m > 0 such that g € L(mD). Now suppose we take n many such different h; € M(X) and apply the
same procedure to get g; := hiri(f) € L(mD) where r; are polynomials with complex coefficients, for
large m. We want these to be linearly independent. Suppose they are not. Then we will have a complex
linear combination of such gi’s equal to zero. Absorbing the complex coefficients in the polynomials
ri(f), we have an equation of the form:

ri(fHh+ -4+ rp(flhn=0
This means that the meromorphic functions h; are linearly dependent as vectors over the field C(f). So

we have to pick only those h;s that are linearly independent over C(f). We can have [M(X) : C(f)]
many of them. So we wish to find this number or atleast a lower bound for it.

Proposition 3.1. Let f be a non-constant meromorphic function on a compact Riemann surface X and
D = dive(f). Then ‘
[M(X) : C(f)] = deg(D)
ProoF. Let D = }:;zl n;p;. By Lemma 1.1, we can construct a meromorphic function g;; which
has a pole of order j at p; and no zero or pole at any of the other pi’s. We claim that the set {9i5 :

1<i<m1<j<n} is linearly independent over C(f). Suppose not. Then there exists C(f)-linear
combination of such functions which is equal to 0.

> eii(f)gi; =0
i

ci;’s are rational functions of f. By clearing denominator we may assume that they are infact polynomial
functions of f. Let ¢;yj, has the maximum degree among these polynomials. Renumber such that 7o =1,
then divide the above expression throughout by cy;, to get

(18) Zdij(f)gij =0

where dyj, = 1. Since c;; is polynomial function in f, therefore it has poles only at poles of f and infact
it has a pole of order exactly deg(ci;)ni at pr. Now,

ordy, (di;) = ordp, (ci;) — ordp, (c150)
= (—deg(ci;) + deg(c1j0))nk
>0
Let us consider the Laurent series of the LHS of (18) in some local coordinates centred at p;. For the
terms with i # 1, ord,, (g;;) = 0 and ordy, (d;;) > 0, so they do not contribute to the negative exponent
part of the Laurent series. For terms with i = 1, ord,, (g1;) = —J, with 1 < j < ny and ord,, (dij)

is a non-negative multiple of n,. Therefore only way ordy, (di;(f)g1;) < 0, is if ord,, (di;) = 0 and in
this case ord,, (di;(f)g1;) = —j. Note that the j’s are all distinct. For j = jo, we have such a term:
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ordp, (d1j,(f)g15,) = ordy, (915,) = —jo. Consider all terms with ord,, (di;) = 0 and pick the one with
maximum j. Then this term contributes a negative exponent term in the Laurent series of LHS of (18)
which is not cancelled by any other terms. But the RHS of (18) is 0. Hence contradiction. O

Infact [M(X) : C(f)] = deg(D). We do not need this, but the interested reader will find the proof
of the other side inequality in [6], pg. 176. Coming back to the problem of finding an upper bound for
dimL(mD), we have the following result.

Lemma 3.2. X is a compact Riemann surface and f € M(X). Let D = diveo(f). Then there exists
mq > 0, such that for oll m > myg,

dimL(mD) > (m — mg + 1)deg(D)

Proor. Let deg(D) = k. Then we can find meromorphic functions hq,- - -, kg, which are linearly
independent over C(f). Then by the procedure described above we can find g; == h;r:(f) € L(moD),
where r; are polynomials with complex coefficients and a large enough myg. Since h;’s are linearly
independent over C(f), therefore g;s are independent over C. Now note that for m > myg, f7g; also belong
to L(mD), for 0 < j < m — mq. We claim that the set {f7g; € M(X):1<i<k0<j<m—mg}is
linearly independent over C. Suppose not. Then there is a C linear combination of such function which
is identically equal to zero.

Zcijf 79;=0
1

= Zcijfjri(f)hi =0
=3 (e f)hi =0

h;’s are linearly independent over C(f), therefore we must have

(Zcijfj)n-(f) =0,forall0<i<k

J

jzcijfj =0, since r; 5 0 for any ¢
J

Since C is algebraically closed, this means that f is a constant function, which is a contradiction.
Therefore {f7g; € M(X):1<4<k,0<j<m~—mg} is linearly independent over C, and hence for all
m > mg

dimL(mD) > (m -~ mg + 1)deg(D)
O

Now let us apply this result to the problem of finding an upper bound for deg(mD) — dimL(mD),
for D of the form D = divy, f, for a fixed f € M(X). We have, for a large enough m,

deg(mD) — dimL(mD) < m deg(D) — (m — mo + 1)deg(D)
= (mgo — 1)deg(D)
How do we generalize this to find a lower bound for deg(A) — dimL(A), for an arbitrary divisor A? For

this we have to study divisors a little more deeply. The set of principal divisors form a subgroup of
Div(X). This follows from the following lemma.

Lemma 3.3. Let f and g be non zero meromorphic functions on Riemann surface X. Then,
(a) div(fg) =div(f) + div(g)
(b) div(1/f) = —div(f)

Proor. (a) For any p € X,
div(fg)(p) = ord,(fg)

= ord,(f) + ord,(g)
div(f)(p) + div(g)(p)

I
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(b) For any p € X,

div(1/f)(p) = ordy(1/f)
= —ord,(f)
= —div(f)(p)
i

The subgroup of principal divisors is denoted by PDiv(X). Similarly the canonical divisors form a
subgroup denoted by KDiv(X). Now we can consider the quotient Div(X)/PDiv(X). We had noticed
in the last chapter that, if w; and wy are two meromorphic 1-forms, then there exists f € M(X) such
that wy = fws. Then it follows that KDiv(X) is a coset of PDiv(X). The cosets have the following two
properties, when X is compact:

(1) Dy ~ Da, implies deg(D1) = deg(D2)

(2) D1 ~ Dg, implies dimL(D;) = dimL(Dz)
The first property is obvious. We now prove the second one. Dy ~ D; implies there exists h € M(X)
such that D + Dy = div(h). Then define a map

pn s L(Dy) — L(D3)
frhf

hf indeed belongs to L(Ds) since div(hf) =div(h)+div(f) >div(h) — D1 = D,. Similarly py/, maps
L(Ds) to L(D1) and is inverse of . Therefore pp, is an isomorphism.

We return to denoting, for a fixed non zero meromorphic function f, dive (f) by D. Now if we can
show that any divisor A ~ mD for some m, then deg(A4) — dimL(A) = deg(mD) — dimL(mD). Infact
we require less. We had already noted that, by Lemma 2.4, whenever Dy < Dy, we have deg(D1) —
dimL(D;) < deg(Dy) — dimL(Dy). So it is enough to show that A ~ B, such that B < mD for some
m. That is we wish to find g € M(X) such that A—div(g) < mD, for some m > 0. But then we
essentially did the same thing at the beginning of this section, while constructing new meromorphic
functions for L(mD), starting from arbitrary A € M(X). There we constructed a polynomial r(f)
such that div(r(f))+div(h) > —mD, for some m. We wish to replace div(h) by —A in this inequality.
Following the same procedure we first list the points p1,- - -, px, for which A(p;) > 0, but D(p) = 0, that
is, f has no pole at p;’s. Then the function r(f) = fol( f—7 (pi))A(pi) has no poles other than that of
f and has ord,, (r(f)) > A(p;) for each 1. Thus ordy(r(f)) — A(p) =div(r(f))(p) ~ A(p) < 0 only if p is
a pole of f, that is D(p) < 0. Therefore there exists rn > 0, such that div(r(f)) — A > —mD. Summing
it all up, we have proved,

Lemma 3.4. Let X be a compact Riemann surface. Then for all A €Div(X), there exists M € Z, such
that
deg(A) — dimL(A) < M

4. Finite dimensionality of H!(D)

Recall the discussion at the end of Section 2. We were looking for a divisor A, for which a4 :
M(X) — T[A]J(X) is surjective and found out that we can have a sequence of divisors with strictly
increasing value of the quantity deg(A) — dimL(A), unless one of the divisors in the sequence satisfied
our desired property. But in the previous section we produced a uniform upper bound for this quantity
and hence the sequence of divisors with strictly increasing deg(A) — dimL(A) cannot go on, but has to
yield a divisor A for which a 4, is surjective, that is H'(A4¢) = 0. Now that we have produced atleast one
divisor whose ! space is finite dimensional and we already know the finite dimensionality of [ Y(A/B),
for A < B, it seems we can prove finite dimensionality of H'(A), for any divisor A, by comparing it with
the right divisor. Precisely, we have the following proposition.

Proposition 4.1. Let X be a compact Riemann surface. Then for any A € Div(X), HY(A) is a finite
dimensional vector space over C.

ProoF. We want to compare A with Ag, but they may not be comparable. So let us look at the
difference A — Ag = P — N, where P and N are positive divisors with compact support. We do not want
the P part, so club it with Ap to get Ag + P. Note that Ag < Ag + P and hence we have a surjective
map from H!(Ap) to H'(Ap + P), so that H'(Ap + P) = 0. A < Ap + P, therefore we have a surjective
map from H!(A) to H'(Ap + P) = 0. Hence H'(A) is equal to the kernel H'(A/Ag + P), which is finite
dimensional. 1
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Now that we have proved finite dimensionality of H!(A), we can apply rank-nullity theorem to
the map H'(D;) — H'(D2), where Dy < Do, to get dimH'(D1/D,) = dimH(D;) — dimH(D3).
Substituting this in the equation of Lemma 2.4,

dimH1(D;) — dimH(D3) = [deg(D2) ~ dimL(D5)] — [deg(D1) — dimL(D;)]
= dimL(D;) — deg(D;) — dimH*(D;) = diimL(D3) — deg(D3) — dimH*(D5)

Given any two divisors A; and As, there exists one which is greater than both, hence dimL({A)-deg(A)—
dimH'(A) is a constant for all A € Div(X). For A = 0, we have dimL(0) — deg(0) — dimH'(0) =
1 — dimH*(0). Hence we have:

Theorem 4.2. Let A be a divisor on a compact Riemann surface X. Then
dimL(A) — dimH(A) = deg(A) + 1 — dimH*(0)

This is the preliminary version of the Riemann-Roch Theorem.

5. Serre Duality

First a concept from complex analysis needs to be introduced in Riemann surface context, that of
residue. Residue of a meromorphic function at a point p in the complex plane is defined to be the
coefficient of % in the Laurent series of f at p. The Residue Theorem of complex analysis states that

Theorem 5.1. Let Q be an open set in C and let E be a discrete set in Q. Let « be a closed curve in
Q\ E which is null homotopic in Q. Then for any holomorphic f in Q\ E, the set {a € E : n(v,a) # 0)},
where n s the winding number of v at the point a, is finite and

é?lfi [, Jdz ="y resa(f) n(v,a)

aEE

In a Riemann surface line integrable entities are the l-forms. So following the complex analytic
definition we define

Definition 5.2. Let z be a local coordinate centred at p € X. Let w = fdz in this local coordinate. Then
the residue of a 1-form w at a point p € X is defined as

resy(w) = resy(f)

We have to prove well definedness. This is just an application of Theorem 5.1. Let the chart whose
local coordinate is z be (U, ¢). Consider a simple loop in U, enclosing p, but not any other pole of w.
By Residue theorem, fq,w = [ soy d (z)dz = 2mi res,(f) = 2mi resy(w). Since the RHS is independent of
the chart chosen, so is the LHS.

Now we state the residue theorem for a compact Riemann surface.

Theorem 5.3. Let w be a meromorphic 1-form on a compact Riemann surface X. Then,

Z resp(w) =0

peX

Proor. Poles of w is a discrete set in compact X. Therefore finite. Let us call them py, -, pk.-
For each ¢, choose a simple loop «; in a parametric disk enclosing p; and not any other pole. By Jordan
Curve Theorem, the parametric disk is divided into two disjoint components by «;. Let U; be the
component containing p;. By Theorem 5.1, fm w = resp, (w). Let Y = X \ U’ ,U;. Then as a 1-chain
Y = — > 7_, a;. Note that w is holomorphic, hence closed in Y. Therefore applying Stokes Theorem,

o< [l o2 o

n

resp, (W) = — Z res,(w)

peX

d

Let w be a meromorphic 1-form and f be a meromorphic function. Then fw is again a meromorphic
1-form. Let z be a local coordinate centred at p € X. Let w = h(z)dz locally. Let f =Y oo ,a;z* and
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h = Zf_i_ & ¢;7* be the Laurent series expansions of f and h, respectively, in terms of z. Let us calculate
the residue of fw at p.

res,( fw) = coefficient of (1/z)dz in (Z a;z" - Z ¢;j2l)dz

i=—l j=—k
oC
= E Ci 13

i=—k
We notice that res,(fw) depends only on those coeflicients of a;, for which ¢ < k, that is, only on the
Laurent tail of degree k — 1. Thus if w € LM (~D), then we can replace —k by D(p) above. Then
res,(fw) depends only on the Laurent tail of f truncated at —D(p), that is the residue depends only
on ap(f). Thus given a meromorphic 1-form w & LM (=D), this leads us to define a residue map on
TID|(X) as following

Res, : TID)(X) = C
Z Tp- P Z res, (rpw)
peEX peX

This is a linear map. For f € M(X), by above calculation,

Resy(ap(f)) = Z resp(rpw) = Z res, (fw)
peX peEX
Now we know by Theorem 5.3, that > . res,(fw) = 0. Therefore we have a linear map from
TID](X)/ap(M(X)) to C. By abuse of notation, we again call this map Res,, : HY(D) — C. Thus
Res,, € H1(D)*. So we have a map from L) (—D) to the dual of H'(D), again called the residue map.

Res: LW(-D) — HY(D)*
w — Res,
Easy to check that this map is also linear. Now we claim ,

Theorem 5.4. [Serre Duality] Let X be a compact Riemann surface and let D € Div(X). Then
Res : LW (=D) = HY(D)* is an isomorphism of compler vector spaces.

Let us prove injectivity of this map. Since this is a linear map, it is enough to prove that the kernel
is zero. So let w € Ker(Res). Then Res, (3 cx7p-p) =0, forall 35 cxmp-p € TID)(X). We wish
to prove that w = 0. Suppose not. Then there exists a point p, such that if w = (3 ¢;27)dz in local
coordinate z centred at p, then not-all ¢;’s are zero. Now all we need to do is find a suitable Laurent
polynomial 7, such that Res,,(rp-p) = resp(rpw) # 0, which will give the contradiction. Suppose k is the
least integer for which ¢ # 0. Take 7, = z~*~1, then res,(rpw) = cx # 0. Hence injectivity is proved.

Now let us look at surjectivity. Consider an element ¢ : H*(D) — C, of ' (D)*. We will think of ¢
as a linear functional on T[D](X) that vanishes on ap(M(X)). We want to find a preimage of ¢ under
Res. We had noticed in the last chapter that, if w; and wy are two meromorphic 1-forms, then there
exists f € M(X) such that w; = fws. So we start with any meromorphic 1-form w and try to multiply it
with suitable meromorphic function to get our desired preimage. Let K = div(w). Then w € LO(-K)
and hence Res, € T[K](X)*, whereas ¢ € T[D](X)*. To make these two comparable consider A €
Div(X), such that, A < K, D. Then diviw) > A and hence w € LM (—~A). Thus Res, € TIA|(X)".
Also, composing ¢ with t2, we have ¢4 := ¢ ot € T[A](X)*. But they may not be equal, for that we
wish to multiply w with a suitable meromorphic function and consider it’s residue map.

Given a meromorphic function f and any divisor D, we introduce a map

p : TIDIX) = TID - div(HI(X)
er P Zfrp - p truncated at — D + div(f)

The crucial property of this map is that the following diagram commutes.

TIDI(X) 2 7D = div(H))(X)

J Res,,
Resy,,

C
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In our case Res,, acts on T]A](X). To use the above factorization we have to choose a divisor of the
form D — div(f) on which Res,, can act. That is, we have to choose a divisor of the form D — div(/f)
which is smaller than A. If f € L(C), then A — C — div(f) is such a choice. Thus we can say that the
composition

TA-CIX) = T[A-C —div(f)}(X) = TIA(X) - C
given by daoth 4, (f) O #s 1s equal to Resy,,. This motivates the following lemma which we will apply
on ¢4 and Res,,.

Lemma 5.5. Let ¢1,¢1 € HY(A)* be non zero linear functionals. Then there erists a positive divisor C
and non-zero f1, fo € L{C) such that the following diagram commutes.

. tA-c_aivisy)
TIA = C — div(fi)}(X) ————— T[A|(X)

TIA - C)(X) c

Hfs o2
\ A
A Cndiv(f2)

TIA = C = div(f2)|[(X) ———— T[A|(X)

PRrROOF. For any positive divisor C', consider the map
L(C) x L(C) = HY(A - C)*

A ; A
(fi:f2) = P10 Ua_c giv(sy) O A — P29t 4_caiv(ss) © B2
Aim of the lemma is to show that there exists C such that for some non-zero fi, f2, this map is takes
the value zero. Suppose (f1, f2) belongs to the kernel such that one of them is zero, say f; = 0. Then
¢a0 tﬁ_o_div(h) oy, is also zero. If fy is non-zero, then py, is invertible and tﬁmo_div(h) is surjective,
hence ¢5 = 0, which contradicts the hypothesis. Therefore the statement that there exists non-zero f1, fa
for which the map takes zero value implies that the kernel is non-trivial. Suppose not. Then this map is
injective. Since both the domain and range are finite dimensional, injectivity implies

dim H*(A - C) > 2 dim L(C)

But we already have an expression for dim H'(A ~ C) in Theorem 4.2. Putting it we have
dim H'(A ~ C) = dimL(A — C) — deg(A — C) — 1 + dimH*(0)

< dimL(A) — deg(A) — 1 + dimH*(0) + deg(C),
This implies 2 dim L(C) < a + deg(C), for some constant a. Again applying Theorem 4.2 to dimL(C'),
we have

dimL(C) = dim HY(C) + deg(C) + 1 — dimH*(0)

> deg(C) 4 1 — dimH(0)

This implies 2 dim L(C) > b + 2deg(C), for some constant b. Therefore we have
b+ 2deg(C) < a + deg(C)
or deg(C)<a-—b

But we can take any positive divisor C, hence deg(C) cannot be bounded. This is a contradiction,
proving our lemma. O

Applying this lemma to ¢ and Res,, there exists a positive divisor C' and non-zero' f1, fo € L(C)

such that
A A
$ao LA—cediv(fy) O Hf = Res,, o LA—C~div(f2) O Ly,
We have seen that the RHS is equal to Resy,,,. Hence we have,
a0 tﬁfcbdiv(fl) ops = Respe

Now notice that p is invertible, it’s inverse being p,/y. Composing with p;,5 on both sides we have
Qa0 tﬁ_C_div(fl) = Resp,w 0 175, = Res(s,/p)w- This implies that Res(y, /). is 0 on element which
are in T[4 — C — div(f1)](X) but not in T{A](X), since such elements belong to Ker(tﬁ;cfdiv(h)) C
Ker(¢a o th_c_aiv(py) = Ker(Res(s,/p).). Hence ¢4 = Res(s,/p,), as an element of H'(A4)*. Now
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¢ o tg = ¢4 = Res(s,/)n- A similar argument then tells us that ¢ = Res(s,/5,). as an element of
HY(D)*. This finishes the proof of Serre Duality Theorem.

6. Riemann-Roch Theorem
Serre Duality and Theorem 4.2 implies,
(19) dim L(A) — dim L& (—A) = deg (4) + 1 — dim LM(0)

Let w be any meromorphic 1-form and let div(w) = K. Then we can construct a meromorphic 1-
form belonging to L((D) by multiplying w with a suitable f € M(X). div(fw) = div(f)+div(w) >
div(f) + K; if we take f € L(D + K), then div(fw) > —D — K + K = —D. Hence fw € LO(D) if
f € L(D + K). In fact these are all, that is, we have the following Lemma

Lemma 6.1. Let w be any meromorphic 1-form and let div(w) = K. Let D € Div(X), then the map
fo : L(D + K) = LY (D)
[ fw
15 C linear and is an isomorphism.

Proor. The linearity is obvious. Injectivity is also clear. For surjectivity, let v € LM (D), then there
exists f € M(X), such that fw = . Now div(f) = div(y)— div(w) > —D—K. Hence f € L(D+K). O

Thus dimL®(—A) = dimL(K — A) and dimZ(®)(0) = dimL(K). Putting this in (19), we have
(20) dimL{A) — dimL(K — A) = deg(A4) + 1 — dimL(K)

If A=K, we have dimL(K) — dimL(0) = deg(K) 4+ 1 — dimL(K) or 2dimL(K) = 2+deg(kK). Since
KDiv(X) is a coset of PDiv(X), therefore degree of a canonical divisor is constant. Therefore it is
enough to find the degree of any one of them. We know that any Riemann surface X has non-constant
meromorphic function. Let the corrésponding map to the Riemann sphere be F': X — Co. w=dz isa
meromorphic 1-form on C,,, whose divisor —2 - co. Then F*(w) is a 1-form on X. We wish to find the
degree of this divisor. There is a general result on order of a pulled back meromorphic 1-form.

Lemma 6.2. Let F : X — Y be a holomorphic map between two Riemann surfaces. Let w be a
meromorphic 1-form onY . Letp € X. Then

ord, (F*w) = (1 + ordp(w))mult, (F) — 1

PRrROOF. Consider the local normal form w = 2" of F, in coordinates z and w centred at p and
F(p) respectively, where n = mult,(F). w is locally equal to fdw, for some local meromorphic function
f. Let Laurent series of f in terms of w be Y o, a;w’, where k = ordpy)(w). Then locally F*w =
(3, a;z™)nz""tdz. Hence ord,(F'w) =nk+n—1= (1+k)n+1= (1 +ordy(w))mult,(F) - 1. [

Degree is the sum of the orders at each point. So we can apply this Lemma to calculate deg(f™w),
in the situation where ¥ = C., and w = dz. Following computation uses Hurwitz Formula in the 5tk
step.

deg(F w) = Z ord,(F*w)

peEX
= " [(1 + ordp(w))mult, (F) — 1]
pEX
= > [mult,(F) -1+ Y [-mult,(F) - 1]
q#oo pEF~1{c0)
pEF1(q)
=Y [mult,(F)~ 1= > 2 multy(F)
peX peF~1(c0)
=29 — 2+ 2 deg(F) — 2 deg(F)
=2g—2

Therefore we have deg(K) = 2¢g — 2, hence 2 dim L(K) = 2-+deg(K) = 2¢ or dim L(K) = g. Putting
this in (20), we have the following theorem.



32 3. RIEMANN-ROCH THEOREM

Theorem 6.3. [Riemann-Roch] Let X be a compact Riemann surface of genus g. Then for any A €
Div(X) and K € KDiv(X), we have

dim L{A) —dim L(K — Ay =deg (A)+1—g



CHAPTER 4

Automorphisms for genus g > 2

1. Weierstrass points

Let X be a compact Riemann surface and p € X. We have seen that if there exists f € M(X) non-
constant, such that f has only one pole of order 1 at p, then X is isomorphic to Co.. That is dimL(p) > 1
implies that X = C,,. From now on unless mentioned otherwise we will consider Riemann surfaces of
genus ¢ > 0. So we ask what are all integers n, such that, there does not exists any non-constant
f € M(X), such that, dive(f) = n-p ? From Riemann-Roch Theorem we know

(21) dim L(np) — dim L(K —np) =deg (np) +1 —g¢
The following lemma tells us that for n sufficiently large we can get rid of the dimL (K — np) term.

Lemma 1.1. Let X be a compact Riemann surface and let D € Div(X), with deg(D) < 0. Then
L(D) = 0.

PROOF. Let 0 # f € L(D). Then div(f) > —D. Then we can define a non-negative divisor E =
div(f) + D. Therefore deg(£) > 0. But deg(E) = deg (div(f))+deg(D) < 0, which is a contradiction,
hence L(D) = 0. O

Thus if we can ensure that deg(K — np) < 0, then dimL(K — np) = 0. But deg(K — np) =
deg(K) — np = 2g — 2 — n, since degree of a canonical divisor is always 2g — 2. Thus if n > 29 — 1,
dim L(np) = n+ 1 — g. Then dimL(2g-p) = g+ 1 > 2, which means L(2g - p) admits non-constant
meromorphic function. Now consider the sequence

L(0) C L(p) C --- C L(29 - p)

dimL(0) = 1 and dimZ(2g-p) = g+ 1, hence the dimension increases from 1 to g+1in 2g steps. Also we
had seen in the proof of 2.2, that dimL(D) < dimL(D — p) + 1. Hence the increase in dimension at each
step in the above sequence is atmost one. Thus there are ¢ integers 1 =n; < --- < ng < 2g, such that,
L((n; ~ 1)p) = L(n;). These numbers are called gaps and the set is denoted by Gp. Note that by the
formula for dimL(np), for n > 2g — 1, there are no such “gaps” for any n > 2g — 1. L{(n; — 1)p) # L(n),
means there exista a non-constant f € M(X), such that dive(f) = n; - p. Hence gap numbers are those
points for which there is no such meromorphic function. The complement of the set of gap numbers in
{1,---,2g} is called the set of non-gap numbers and is denoted by 1 <mj < --- < mgy = 2g. For each
i, there exists non-constant f; € M(X), such that dive.(f;) = m; - p. Now divee (fif;) = divee(fi)+
diveo(f;) = m; - p 4 m; - p. Thus if m; +m; < 2¢, then it is also a non-gap point.

We want to know how G, looks like for different p’s. We are looking at the difference dimL{np)~—
dimL({n—1)p). But (21) tells us we can as well look at the difference dimL(K —(n—1)p)— dimL{K —np).
What we mean is, put n and n — 1 in place of n in (21), and subtract them to get

dimL(K ~ (n —~ 1)p) — dimL(K — np) = 1 +dimL((n — 1)p) — dimL(np)

Thus 7 is a gap number at the point p, if and only if dimL (X — (n — 1)p) # dimL(K —np). Now consider
the vector space L(K). It follows from the above discussion that n is a gap number for p, means that
there exists f € L(K), such that ord,(f) =n —1— K (p). Let {f1,--- ., fq} be a basis of L(K). Choose a
local coordinate z centered at p. Multiply each f;, by zK®) to make them locally holomorphic functions,
say hi(z) == K@) fi(z). Then the power series of h; will be as follows

hi = hi0) + -+ A (0) 5 + -
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Now consider any element ¢ € L(K). Suppose ord,(¢) =n— 1~ K(p), for 1 <n < g, then we must
have ordp(zK(P)qé) =n—1. Let ¢ = Zle a;f;- Then we must have

0
hi(0) o he(0) \ fa

(22) : z : Cl =
RETV0) - mfTV(0)) \ag

where the right hand column vector has first n — 1 entries zero, a non zero entry at the nt* place
and anything after that. Call the matrix in left hand side M,. Thus if we have a ¢; € L(K) with
ordpg,) = j — 1 — K(p), such that ¢; = ST, aiifi, for each 1 < j < g, then putting A = (a;;)ij, we
note that M,A is invertible. Hence My, is invertible. Thus M,, is invertible is equivalent to the fact that
Gp=1{1,---,g}. If this does not happen for some p € X, then p is called a Weierstass point. Thus

Lemma 1.2. A point p € X is a Weirstass point < det(M,) = 0.

It is true that the matrix M, depends on the choice of local coordinates, but a change of coordinate
just multiplies M,, with an invertible matrix and hence the determinant does not change. Therefore the
condition det(M,) = 0, is independent of the coordinate chosen.

We can extend the function p + detM, to the coordinate neighbourhood U, by sending ¢ to

hi(z(g)) - he(z(9)
Wo(ha,- - hg)(2(q)) = det : : :

| M) T ()
Note that this function is holomorphic in U. It is not clear that this function helps us to determine
whether a point q € U™ is Weierstass. Notice that there exists a punctured neighbourhood V* := V'\ {p}
of p, such that K takes the value 0 in V*. Thus f;’s are holomorphic in V*. Shrink V*, if necessary,
to fit inside IJ. To determine whether a point ¢ € U* is Weierstass, we calculate the determinant of a
matrix M,, whose i*" column is the first g— 1 derivatives of f; at 2(g). Note that W.(hy, -, hg)(2(q)) =
z(q)9%®) detM,. Since z(g) # 0, for all ¢ € V*, detM, # 0 & W,(h1,--- ,hg)(2(q)) # 0. Henceg € V
is a Weierstass point <> W.(hy,- -+, hg)(2(q)) # 0. The function W, (hy,--- , hy) is called the Wronskian

of the functions hq, - - - , hy. We have the following fact about Wronskians
Lemma 1.3. Let hq,--- , hy, are linearly independent holomorphic functions in neighbourhood of 0 in C.
Then the Wronskian W(h1, -+, hg) s not identically zero near 0.

Before giving a proof we present the consequence of this fact
Corollary 1.4. There are finitely many Weierstrass points.

PRroOOF. We wish to prove that Weierstass points are discrete. Then by compactness of the Riemann
surface, we can conclude that there are finitely many Weierstass points. Suppose p is a Weierstrass
point. We have proved that in a neighbourhood V of p, a point ¢ is Weierstass if only if W (hy, -,
hg)(2(q)) # 0. Now hy,--- , hg are linearly independent, therefore by Lemma 1.3, Wo(hi, - hg) isa
holomorphic function which is not identically zero in a neighbourhood of 0. Hence there is a punctured
neighbourhood of p, where W, (hy,--- , hy) is not zero, that is p is the only Weierstass point in that
neighbourhood. O

PROOF. of Lemma 1.3 First we note that if we have a matrix function z — A(z) = (a4;(2))s5,
then the derivative of it’s determinant is given by

ayy 0 Glp
d : : .
a—;det(A(z)) = Z det | aly - al,

Anl o Ann

RHS is the sum over i of determinants of matrices which are same as A except that each entry of the
it" row is differentiated. Applying this on Wronskian we note that differentiation of any row, except the
last, will make it equal to the next one, and hence the determinant will become zero. We will prove that
W, (h1, - ,hy) is identically zero near 0 implies that the functions hy,-- -, hy, are linearly dependent.
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W,(h1, - ,hy) is identically zero near 0 means that all derivatives of W,(hy, -+ , hy,) at 0 is zero. First
derivative is zero means the vector (h,gg)(O) e hég)(())), ig linearly dependent on the first g — 1 rows of
W,(hy, - ,hn)(0). A little reflection will convince the reader that first, second, upto n** derivatives are

zero, will imply that the vector (h§n+g -U ) --- hg"*‘-" “1)(0)) is linearly dependent on the first g—1 rows

of W,(hy, - ,hpn)(0). Hence {(hﬁ’")(o) h')(q,m)(o)) € C9: m € N} is a subset of a n — 1 dimensional
subspace. Let (77 --- &) be perpendicular to this n — 1 dimensional subspace with respect to the usual

hermitian product. Then ), cihl(m)(O) =0, for all m € N. Hence Y, ¢;h; is identically zero. Therefore

hi, -, hy, are linearly dependent. O

2. Weierstrass weight

We saw that Wronskian tells us whether a certain point p is Weirstrass. Suppose p is not Weirstrass.
That is, the gap numbers are not the first ¢ positive integers. Suppose Gp = {ny,---,ngy}. Can the
Wronskian give some information about the n;’s? This question is addressed in the following Lemma.

Lemma 2.1. Let G, = {nq,--- ,ng}, and {f1, -+, fy} be a basis of L(K). Let z be a local coordinate

centerd at p. Then
g

ordp(Wz(zK(P)fl, .. ,zK(P)fg)) - Z('“ —-1)
i=1
Proor. First note that if we work with a different basis then the order does not change. This is
because, a change in basis amounts to multiplying the matrix of the Wronskian by the constant change of
basis matrix, and hence the Wronskian itself is just multiplied by the non-zero determinant of this matrix.
So the order is not affected. Now G, = {ny,--- ,n,} implies that for each i, there exists h; € L(K),
such that ord,(h;) = n; — 1 — K{(p). Infact by multiplying by appropiate scalars we can ensure that
the first non-zero term in the Laurent series of each h; has coefficient 1, that is, for each i, we have

hi =z~ 1=K®) 4 ... Clearly all the h;’s are linearly independent and since there are g many of them,
therefore they form a basis. So we consider W, (2% Phy,. oo 2K (p)hg) and look for the lowest term of
it’s power series. Notice that the lowest term of power series of W, (2X®hy, -, 2K®P)h ) is same as the
lowest term of the power series of W, (25K ®). zra=1=K(p) .. K({p) yne=1=K@)) = W (zm~1 ... z%~1)
which is equal to the determinant of
an—-l . anfl
(ng —1)zm2 (ng — 1)z™s—2
(23) ’
(1= 1)+ (= g + 129 o (= 1) (g — g +1)5" 0

The determinant of an n x n matrix (a;;);; can be expanded as ) .5 @15(1) " Qno(n)- 1D Our case
io(sy =(some constant)x 2™~ Multiplying over 4, for a fixed &, the exponent of z that we get is
2oi(oy — 1) = 2 Ne) — 2ot = DM — Pt = »_(ny —i). Hence (23) is a monoimal, with the
coeflicient matrix equal to

1 . 1

(1 —1) (ng —1)

(24) det , ) !
(= 1) (=g +1) o (o= 1) - (ny— g+ 1)
If we can show that (24) is non zero we are done. We can think of (24) as a polynomial in the variable
ny. Then putting 7y = n,, for any i, in (24), yeilds zero. Hence []7_,(ny — n;) divides (24). We can do
the same thing for each n;. Hence [[;_,(n; —n;) divides (24). Now thinking of (24) as a polynomial in g
variables n1, -+, ng, we note that the degree is g(g—1)/2. But degree of [, _;(n; ~n;) is also g(g—1)/2.
Hence (24) is equal to &[], ,;(n; — ny). Since n;’s are all distinct, therefore (24) is non-zero. O

The above Lemma leads us to the following definition.

Definition 2.2. Let X be a compact Riemann surface of genus g andp € X. Let Gp = {ny,--- ,ng} be
the set of gap numbers at p. Then the Weierstass weight of the point p is defined as

g

Wp = Z(”l - 1)

=1
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We want to know how many Weierstass points are there in a Riemann surface X of genus g. But
the “correct” quantitity to count is not the number of Weierstass point, but the number along with their
weight. That is, we will find out the quantity > pex Wp- Note that this sum is finite, since wy is non-zero
iff p is a Weierstass point. The strategy is to stitch up the locally defined Wronskians to a global entity,
very similar to forms. We will attach a divisor to such an entity which will contain the information of
the order of each of the local Wronskians. We will derive a formula for the degree of this divisor which
will then lead us to the value of 3y wp.

The global entity we have in mind is higher order diffentials.

Definition 2.3. A meromorphic n-differential on an open set U € C is an expression of the form
p = f(2)(dz)", where f € M(U).

Denote the set of meromorphic n-differentials on U by M@I(U). Let U and V be two open sets
of C and let T : U — V be a holomorphic function. Then define T : ME(V) - MM(U) sending
p = f(2)(d2)"™ to v = h(w)(dw)", where h(w) = fo T(w)T’(w)™. Now we can extend this concept to
Riemann surface.

Definition 2.4. Let X be a Riemann surface. A meromorphic n-differential on X is a collection of
meromorphic n-differentials {ys}, one for each chart ¢ : U — V, in the variable of V, such that if
#; : Uy = Vi, i = 1,2 have overlapping domains, then on Vi N Va, tig, = (¢20 (,251_1)*(,11%).

Lemma 2.5. Let X be a compact Riemann surface and fi1,---, fn € M(X). Then W,(f1,-, fn)
(dz)™"=1/2 is a meromorphic n(n — 1)/2-differentral.

PROOF. W_(fy, -+, fn) is holomorphic except at the finitely many poles of f1, -, fn. At those
points W, (f1,- -, fn) has pole or removable singularity. Hence W,(f1,--- , fn) is a meromorphic func-
tion. Now we just have to check compatibility. Suppose z and w are the local coordinates of two
overlapping charts and let T'(w) = z be the change of coordinate function. By abuse of notation we
think of f;’s as function of the coordinate z. Now Wy (f1, -, fa) = det(d*(fj o T(w))/dw")i;. By
induction we can show that

i1

difjoT(w) . d'fi(z) drf(2)
dw’ =T (w) dzt T;)alk dzk

for some holomorphic functions a;;. We know row operations do not change determinant. Thus by row
operations we can convert the matrix (d*(f; o T'(w))/dw");; to (1" (w)td* f;(z)/dz")i ;. Hence

Wl s fo) = det(T () T = iy - )

(2

d

Definition 2.6. Suppose an n-differential p is represented by f(z)(dz)" in some local coordinate z
centered at p. We define the order of p at the point p as

ord,(p) := ord,(f)

We have to check well definedness. Suppose g(w)(dw)™ be another representation of p1, in coordinate
w centered at p. Let T(w) = z. Note that 7(0) = 0 and T7(0) # 0. By compatibility glw) =
F(T (w))T" (w)™. ordy(f(2)) is the unique integer &, for which lim, o0z ¥ f(2) # 0 or co. Now

k
. . . z —kr
limyseow Fg(w) = hHMHwJZ k! (w)™

. T(w)e . -

= liMy 00 EUI‘) F/(U)) Clim, 0z kf(z)
= T'(w)**" - lim 002 f(2)

# 0 or oo

Therefore order of an n-differential is well defined. Now we attach a divisor to p as div(u) = > ex
ord,(u) - p. Once we have divisors we can organize MM (X) in partially ordered subspaces

L(D) = {p € MM™M(X):div(n) > -D}
Lemma 2.7. Let f1,- -, fn € L(D). Then W.(f1, -~ , fa)(d2)"*D/2 € LIMn=D/2 (D).
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PRrROOF. Let p € X and z be a local coordinate centered at p. ord,f; > —D(p), for each 4, hence

zP®) £, is holomorphic at p, for each i. Then W,(zP® f; ... | zP® ) is holomorphic at p. Notice that
W, (zP@ g, - 2P® f,) = 2nP®) W, (1, , fa), since row operation does not affect the determinant.
Therefore z"P®W,(f1,--- , fn) is holomorphic at p. Hence ord,(W,(f1, - , fa)) = —nD(p). O

We know for n =1, LU(D) = L(D + nK), where K is a canonical divisor. This is true for general
n.

Lemma 2.8. Let w € MW (X) and K = div(w). If w = g(2)dz locally then we define an n-differential
w™ which is locally g(z)™(dz)™. Now define a map

¢: L(D +nKk) — L™(D)
[ fw™
Then ¢ is an isomorphism of vector spaces.

PROOF. First of all we have to show that fw™ indeed belongs to L(™ (D). Locally fw™ is equal to
F(2)g(z)*(dz)™. Hence

ordy(fw™) = ord,(f) + nord,(g) > —~D(p) — nK (p) + nK(p) = —D(p)

Linearity and injectivity is clear. For surjectivity consider u € L{™ (D). We have to find a meromorphic
function f, such that fw™ = p. If z is the local coordinate in a neighbourhood then w = g(z)dz and
i = h(2)(dz)"™ locally. Define f locally as h(z)/g(z)™. A change of coordinate T'(w) = z will result
in multiplication of both numerator and denominator by non-zero T”(w)™. Hence f is a well defined
meromorphic function and satisfies fw™ = u. Herice ¢ is surjective and therefore an isomorphism. ]

Now we turn our attention to the particular type of Wronskian differential which is locally given by
W.(fy, - ,fg)(dz)g(g"l)/z, where {f1,---, fg} is a basis of L(K). We have seen that a change of basis
of L(K), does not affect the order of such a differential. So we denote such a differential by W (K'), and
it is unique upto scalar multiplication.

Corollary 2.9. deg(div(W(K))) = g(g — 1)?

PrOOF. By Lemma 2.8 there exists f € M(X) and w € MM(X), such that W(K) = fw9le=1/2,
Hence

deg(div(W (K))) = > ord, (W (K))

= Z ordp(fwg(g_l)m)
I3

= Yordy () + L9 S ordy )

:g_gg.éﬁ__}lxggwg
=g(g - 1)?

since ord,(f) =0 and ord,(w) = 2¢ — 2. O

Now we come to the main result of this section.

Theorem 2.10. Let X be a compact Riemann surface of genus g. Then

S =g

peEX
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PrOOF. Let {f1,---, fo} be a basis of L{(K). Then

pr = Zordp((Wz(zK(p)fl, -, 25®) £ 1)) (by Lemma 2.1)
» P

= ZOYdP(ZgK(p)(Wz(fla 5 fe)))

_ Z[QK(p) + ord, (W (K))]

= gdeg(K) + deg(div(W(K)))

= g(29 — 2) + g(g — 1)? (by Corollary 2.9)
=g*-g
Hence proved. 1

3. Bound for number of Weierstrass points

Now we are interested in counting the actual number of Weierstass points. By above theorem we
can have atmost g% — g Weierstass points for a Riemann surface of genus g. Can we get a lower bound?
The idea is to find an upper bound for the weight wy, so that dividing Ep wy = g® — g by this quantity
will yeild a lower bound for number of Weierstass points. For this we need to examine non-gap points
more deeply. We recall that the set of non-gap points is the complement of the set of gap points G, in
{1,---,2g} and we denote them by 1 <my < -+ < my = 2g.

Proposition 3.1. For each 0 <i < g, m; +my_; > 2g.

ProOOF. We had seen that if m; + m; < 2¢, then it is a non-gap point. Suppose m; + mg—; < 2g.
Then for each 7 < i, m; +my_; is non-gap point. Thus we have atleast ¢ non-gap points strictly between
mg_; and mgy = 2g. Hence total we have atleast (g —i) +i+ 1 = g + 1 non-gap points. This is a
contradiction. tl

Proposition 3.2. If m; = 2, then m; = 2i and m; + my_; = 2g, for all 0 < i < g.
Proor. If m; =2, then 2,4,--- ,2g are g non-gap points. Hence these are all. 1

Proposition 3.3. If my > 2, then there exists 0 < j < g such that m; +my_; > 2g.

PROOF. Let [ ] denote the greatest integer function. Then mi,2myq,---, [2¢/mi]m; are all gap
numbers. Now m; > 2 implies 2/m; < 1, which implies that [2g/m1] < g. Hence there exists atleast
one more non-gap number outside this sequence. Let ! be the least such number. There exists 1 < r <
[29/m1] < g such that rm; <[ < (r + 1)m;. Then the first » + 1 gap numbers are mq < mo = 2m; <
<o <my = rmy < Mpq1 = . Suppose the claim made in the Proposition is not true, then by Proposition
3.1, mi +mgy_; = 2g, for all 0 < i < g. Then the last » + 1 non-gap numbers except m, = 2g are

(25) Mgl =29 —m1 > > Mg =29 — M >My_(ry1) = 29 — |
Note that even if  + 1 = g, the last number in the sequence is mg, which we define to be zero. Now
my+mg rpyy =m1+29~1=29~ (1 —my)>29—rmy =mgy_,

Also 2g > 29 — (I —m1) = m1+mg_(r41), hence my +mMg_(r41) I8 a non-gap number greater than my_,.
Therefore it must appear in the list (25). Hence my +mgy_(r11) = 29 — kmy for some 0 < k < r. But
this implies { = (k — 1)my, which is a contradiction. O

Corollary 3.4. Zf’;ll m; > g(g — 1) with equality if and only if my = 2.

PRrROOF. Proposition 3.1, tells us m;+mg_; > 2g for 0<i< g. Summing over i, we get 2 Zf;ll m; >
2g(g — 1). Proposition 3.2 tells us that m; = 2 implies equality and Proposition 3.3 tells us that the
above inequality is strict if my > 2. |

Now we give an upper bound for Welerstass weight w,.

Theorem 3.5. Let X be a compact Riemann surface with genus g > 2. Then for allp € X, wp <
g(g — 1)/2. Equality occurs only for a point p whose sequence of non-gap numbers begin with 2.
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PROOF. If 1 =mn; < - < nyg < 2g is the seqiuence of gap numbers and 2 < my < <my=2g1is
the sequence of non-gap numbers then,

g

g 9
wp =) (=) =) mi= i
i=1 =1

i=1

2g g g 2g~1 g—1
=D iy mi= Y i= 3 i) m
i=1 =1 g=1

i= = i=g-+1 i=1

3g(g -1
< —”(](—92——— —g(g — 1) (by Corollary 3.4)
_glg=1)
2
The inequality in the above expression becomes an equality if and only if m; = 2. ]

Corollary 3.6. Let W be the number of Weierstass points on a compact Riemann surface of genus
g>2 Then29+2<W <g%~g.

We have already discussed the proof of this corollary.

Let us examine the condition mq = 2. If this is true for some point p in a compact Riemann surface
X, then it means that there exists a non constant meromorphic function f in L(2p). Thus the only
pole of f is at p. If the order of pole at p was 1, then f would have corresponded to a a holomorphic
function of degree 1, that is, an isomorphism. But since we assume that genus g > 2, the order must
be 2 at p. Thus f corresponds to a holomorphic function F' : X — C, which is of degree 2. Hence
X must be a hyperelliptic surface. Again suppose X is a hyperelliptic Riemann surface of genus g > 2
and F : X = C4 be a degree 2 holomorphic map and call the corresponding meromorphic function
f. Let p be a branch point of 7. If f(p) = oo, then f is a non-constant meromorphic function with
diveo(f) = 2 - p and the first non-gap number is m; = 2. Hence p is a Weierstass point. If f(p) # oo,
then the meromorphic function 1/(f — f(p)) has a double pole at p and no other poles. So again the first
non-gap number is 2. Therefore in any case p is a Weierstass point with first non-gap number m; = 2.
Hence w, = g(g — 1)/2. Summing over all the branch points we see that the total weight of all the
branch points is (2g - 2) x 3—("7_11 = ¢° — g. But this is equal to the total weight, so branch points are
all Weierstass points. '

Corollary 3.7. The number of Weierstass points is always greater than 2g + 2, unless the Riemann
surface is a hyperelliptic one, in which case the number is equal to 2g + 2.

4. g(X) > 2 implies Aut(X) is finite

Apart from it’s intrinsic interest, the main reason we made a detailed study of Weierstass points is
the following fact.

Theorem 4.1. Automorphisms of a compact Riemann surface permutes the Weierstass points.

We will prove this shortly, but first let us ask a natural question. Suppose F/ : X — Y is a
holomorphic map. Then we know F* : M(Y) — M(X) is a C-linear map. Now M(Y') is organized in
partially ordered finte dimensional subspaces L(D). Then how does F*(L(D)) look like? We will show
that F*(L(D)) ¢ L(D’), for a suitably chosen D’ € Div(X).

Definition 4.2. Let F : X — Y be a holomorphic map. The define F* : Div(Y) — Div(X) as
F*(D)(p) := mult, (F)D(F(p)).

Now we show that F*(L(D)) C L(F*(D)). Let f € L(D) and p € X. Then choosing charts (U, ¢)
and (V%) centered at p and F(p) respectively and contemplating the product power series of the local
holomorphic representations of F' and f, we see that ord,F*(f) = ordp(f o F) = mult,(F) - ord,(f) >
—mult,(F) - D(p) = F*(D)(p). Note if F' is an isomorphism, then L(D) = L(F*(D)). Now we proceed
to proof of Theorem 4.1.

PRrROOF. Suppose p is a Weierstass point. This is G, # {1,---,¢}. This means that dimL(kp) >
dimL((k — 1)p) for some k& < g. But this is equivalent to saying that dimL(gp) > 2. Since F' is
an automorphism, L(gp) = L(F*(gp)) = L(gF(p)). Hence dimL(gF(p)) > 2. Thus F(p) is also a
Weierstass point. 0
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Immediately we have a group homomorphism
(26) A Aut(X) —% S|H/(X)|7

where W (X) is the finite set of Weierstass points of X. If we can prove that the kernel of this map is a
finite subgroup, then Aut(X) must also be finite. An element in Ker()) fixes all the Weierstass points.
We have an estimate for the number of Weierstass points. So we try to find an upper bound for number
of fixed point of an automorphism.

Proposition 4.3. Suppose F is a non-identity automorphism. Then F has atmost 2g + 2 fized points.

PROOF. Suppose h is a non-constant meromorphic function. Then A — F*(h) =h —hoF is also
a non-constant meromorphic function unless F is the identity function. Now each fixed point of F is
a zero for A — h o F. Hence the fixed points are a subset of the zeros of a non-constant meromorphic
function. Therefore there can be only finitely many fixed points.

Let p be point which is not fixed by F. 7 is a gap number means there does not exists a non-
constant meromorphic function f such that diveo(f) = n - p. There are g many gap numbers. Hence
there exists a non-constant meromorphic function with diveo(f) == r - p, for some 1 < r < g + 1.
Thus f has a single pole p of order » and F*(f) has a single pole F(p) of order r. Since p # F(p),
deg(diveo(f ~ F*(f))) = 2r < 2g + 2. Hence there can be atmost 2g + 2 zeros of f — F*(f) and atmost
that many fixed point of F. O

Now by Corollary 3.7, X always has more than 2¢ + 2 Weierstass point, unless it is hyperelliptic.
Hence for non-hyperelliptic compact Riemann surface, A is an injection and hence the automorphism
group is finite.

What are all non-trivial automorphisms of a hyperelliptic Riemann surface X , which fixes all the
Weierstass points? We know one, the hyperelliptic involution. We will show that all other automorphisms
of X will have strictly less than 2g 4+ 2 fixed points, so that hyperelliptic involution is the only non-tivial
element of Ker(A). First we show:

Lemma 4.4. Given any two meromorphic functions f and h of degree 2 (that is, the corresponding
holomorphic maps to Co are of degree 2) on a hyperelliptic Riemann surface of genus g > 1, they are
related by h = M o f, where M is a mobius transformation.

PROOF. diveo(f) is a positive divisor of degree 2. By Corollary 2.3, dim(dive, (f)) < deg(divee (f))+
1 =3. Also f € L(diveo(f)) is non-constant, hence dim(dive,(f)) > 2. Therefore dim(dive (f)) = 2
and {1, f} is a basis. We claim that it is enough to show that dives(f) ~ diveo (R). This will imply that
L(diveo (f)) = L(divee(h)) via multiplication by some meromorphic function e. Hence {e,ef} will be a
basis of L(dives(f)). Therefore there will exist a,b,¢,d € C, such that, h = aef + be and 1 = cef + de.
Dividing we have h = (af 4+ b)/(cf + d) and we will be done.

We had shown at the end of the last section that branch points of any degree two holomorphic
function 1" : X — C,, are all the Weierstass points. Hence the branch points of the maps corresponging
to f and h are same. Let p be one of them. We will show that dives(f) ~ 2p ~ divee(h). We will
only show the first equivalence, the other will then follow. If f (p) = 0o, then we are done. Otherwise
2p = diveo(1/(f ~ f(p))). Now f~*(q), for any g € C U {00}, can be thought of as a divisor. We have
f71(o0) ~ f7(0) since their difference is div(f). Replacing f by f — ¢, we have 7 o0) ~ f~1{(c), for
all c € C. Now if A is a Mobius transformation then (Ao f)~!(c0) = f~1(A~(c0)) ~ f~1(c0). Here
1/(J— f(p)) = Ao f, for some Mobius transformation A. Hence 2p = diveo (1/(f = f(p))) ~ divee (f). O

Proposition 4.5. Let X be a hyperelliptic Riemann surface of genus g =2 Let ¢ € Aut(X). Assume
@ # o, where o is the hyperelliptic involution. Then ¢ has at most four fized points.

PROOF. Fix a degree 2 meromorphic function f on X. Given any automorphism ¢ of X, ¢*(f) = fo¢
is also a degree 2 meromorphic function. Hence by above lemma we must have &*(f) = M(f), for some
Mobius transformation M. This defines a function

A - Aut(X) — {Mobius transformations}

This is an anti-homomorphism. Suppose id # ¢ €Ker(A). Then f o = f. Now f has 2 preimages for
each point in CU{o0}, except the 2942 branch points of the corresponding holomorphic function to Cg.
On these 2g + 2 points ¢ must be constant. By Proposition 4.3, these are all. Therefore 1 interchanges
the two points in the fiber of every non-branch points. Hence v must be the hyperelliptic involution o.
Therefore Ker(A) = {1,0}. Solet ¢ # 0. Let p be a fixed point of ¢. Then

f(p) = f(d(p)) = M(f(p)),
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where M # id. Then f(p) is a fixed point of M. M being a Mobius transformation, can have atmost
2 fixed points. And each of them has atmost two preimages under f. Hence ¢ can have atmost 4 fixed
points. 0

Thus if X is a hyperelliptic surface the kernel of the map A in the map (26) must consist of the
identity function and the hyperelliptic involution. Therefore in hyperelliptic case also the automorphism
group is finite. Summing up,

Theorem 4.6. Let X be a compact Riemann surface of genus g > 2. Then Aut(X) is finite.

5. Hurwitz Theorem

We have established that automorphism group of Riemann surfaces of genus g > 2 is finite. Can we
give an estimate of it’s cardinality depending on the genus g7 This question is answered by the Hurwitz
theorem. The idea is to consider the quotient space formed by identifying points in same orbit under
action of elements of the automorphism group. This can be made into a Riemann surface and then
Hurwitz formula applied on the quotient map will yeild information on cardinality of the automorphism
group.

A reader familiar with properly discontinuous action of a group on manifold M will know how the
quotient space in that case is given a differentiable structure. The condition of properly discontinuous
action, that every point p has a neighbourhood U such that UNg(U) = 0, for all g s id, made it possible
to “project” charts of M to form a chart of M/G. We cannot expect that in general case since there
can be non-tivial stabilisers of a point p. But the holomorphic nature of the action in case of Riemann
surface forces the number of such points to be finite. Let X be a compact Riemann surface of genus
g > 2. We will denote Aut(X) by G. Let p € X. Let G, := {g € G : g(p) = p} be the stabiliser subgroup
of p.

Proposition 5.1. The set {p € X : |G,| > 1} is discrete and since X is compact, is finite.

PROOF. Suppose p is a limit point to the above set. Then there exists a sequence of distinct points
{pn}n with a non trivial stabiliser g, for each pn, such that p, — p. Now G is a finite subgroup.
Therefore there is one g, that stabilises a subsequence of {p,}». This subsequence also converges to p.
gm is continuous, hence it stabilises p too. But that means g, is a holomorphic map that fixes a set
with a limit point. Hence g, must be identity map. This is a contradiction. Therefore the set of points
with non-trivial stabiliser subgroups, is discrete and hence finite. [

The next proposition clears the way for defining charts on the quotient space X/G.

Proposition 5.2. Given any p € X, there exists a neighbourhood U of p, such that
(1) g(U)=U, for allg € G,
(2) Ung(U) =0, for all g ¢ Gp,
(3) the natural map o : U/G, — X/G, induced by sending a point in U to it’s orbil, is a homeo-
morphism onto an open subset of X/G,
(4) no point of U other than p is fized by any element of Gp.

Proor. Let G\ G, = {91, - ,gn}. X is Hausdorff. Therefore for cach 1 <z < n, there exists
open neighbourhoods U; of p and V; of g;{(p), such that U; NV, = §. Then W; :== U; N g;l(Vi) is a
neighbourhood of p, for each i. Let W :== N7, W,. Then define U := Myeq,gW. Then g(U) =U for all
g € Gp. This proves (1).

To prove (2), note that W, N g;W, = (; Ng ' (V;)) ngU; NV; C V; NU; = B. Therefore U N g;U =
(Ngec, dW) N (Nge, 9:9W) = Ngec,g(W Ng:W) = 0.

Let # : X — X/G be the quotient map. Restrict it to U, 7|y : U — X/G. This induces a map
a: U/Gp, = X/G. To prove injectivity let o([z]) = a([y]). This implies y = g(x), for some g € G.
If g € G\ Gy, then g(x) ¢ U, but y € U. Therefore g € G,. Hence [z] = [y]. Therefore « is
injective. U/G, has quotient topology from ¢ : U — U/G. To prove continuity of e, it is enough to
prove, by definition of quotient topology, that the composition avo ¢ : U — X/G is continuous. But
a o ¢ = 7|y, and hence continuous. Now we wish to prove that « is open. Let V be an open set in
U/Gp. We want to prove that o(V) is also open. Since X/G has quotient topology from 7 : X — X/G,
it is enough to prove that 7~ (a(V)) is open in X. We claim that 7~ *(a(V)) = Ugeggd™ (V). Let
z € 7 ((V)). Then n(z) € (V). This implies that there exists y € V, such that a(y) = 7 (z). Now ¢
is surjective, therefore there exists w € ¢~1(V), such that ¢(w) = y. Therefore a(y) = a o ¢(w) = 7(w).
Hence 7n(z) = m(w). Then there exists g € G, such that = = g(w). This implies, z € go~1(V).
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Therefore 71 (a(V)) C Ugeggp 2(V). Again let gz € g¢~1(V), where x € ¢~1(V). Then ¢(z) € V.

Applying o on both sides we have a0 ¢(z) € a(V) or n(z) € (V) or x € #~}(a(V)). This proves that

Ugeagep™ (V) C 77 Ha(V)). Therefore 7~ H(a(V)) = Ugeggd™ (V). Thus 77 (a(V)) is open. Therefore
« is an open map and we have proved (3).

(4) follows from discreteness of set of points with non tivial stabiliser groups. Shrink U if necessary.

O

Now we get down to the business of defining charts on X/Gp,. From now on unless otherwise
mentioned U will denote the neighbourhood described in Proposition 5.2. We will also assume, by
shrinking U, if necessary, that U lies within the domain of a chart with chart map ¥. We will define a
chart map on U/Gy, then it can be transferred to X/G via the homeomorphism «. Suppose |G,| = m.
Note that ¢ : U — U/G is exactly m to 1, except at p. So the idea is to construct a function from U to
C, which will take all the m points in a single orbit under G, action to one point, so that the induced
map from U/G,, is injective. Let z be the local coordinate in U. By abuse of notation we replace ¥~ (z)
by z. Take the function h(z) =[], cc, 9(z). Then h is holomorphic and G, invariant, hence induces an

injective continuous f : U/ /Gp — €. We will prove that h is open too. Let W be an open set in U/ Gp.
Therefore ¢~1(W) is open in U. h being holomorphic, h(¢~1(W)) is open. But h(¢~'(W)) = h(W).
Hence h is a homeomorphism and our construction of chart is complete. The chart map is hoa !

Now we have to check compatibility. Since points with non trivial stabiliser groups are discrete we
may assume that no two charts constructed two such points intersect. Note that if G, is trivial, then
h(z) = z and it follows that the chart map is just ¥ o ¢~ o &™! = ¢ o 7|;'. Thus we may assume the
two chart maps to be h o o' and 7r|{]21 o 1hy), where ag o ¢ = 7|y,. Now hoa Lo (o0 7r|{]21)”1 =
hoa™lo iy, 0y L= hogyo Py Y=ho (> ! which is holomorphic. Since bijective holomorphic maps are
biholomorphic, we need not check the other side. Thus the charts are all compatible. Therefore X/G is
a Riemann surface.

The following proposition follows from the construction.

Proposition 5.3. The quotient map w : X — X/G is holomorphic of degree |G| and mult,(7) = |G|
foranype X.

Let y € X/G be a branch point of m. The points in the inverse image 7 (y) = {z1, -+, 25} are
in the same orbit and hence have conjugate stabiliser subgroups. Let the cardinality of each stabiliser
subgroup be r. We know that number of points in the orbit of z; is |G/G,,|. Hence s = |G|/r. This
leads to the following lemma.

Lemma 5.4. For every branch point y, there exists an integer r > 2, such that w~1(y) consists of exactly
|G|/r points and at each of these preimages, m has multiplicity r.

Now applying the Hurwitz formula on n, we have the following Corollary.

Corollary 5.5. Suppose there are k branch points yi,--- ,yr with m# having multiplicity r; at each of the
|G|/r: points above y;. Then

k
20(X) ~ 2 = [61(20(X/€) - 2) + > r, 1)

3

= 61[20(X/G) ~ 2+ 3 (1- 2 )

We will denote the quantity » (1 — 1/r;) by R. We note that 1 — 1/r; > 1/2, for all 4, and in
particular if R # 0 then R > 1/2. Now we are ready to compute an upper bound for the cardinality of
Aut(X).

Theorem 5.6. [Hurwitz Theorem] Let X be a Riemann surface of genus g > 2. Then |[Aut(X)] <
84(g — 1).

Proor. We have from Corollary 5.5

(27) 29(X) - 2 = |G|[29(X/G) - 2 + H]

Case 1 g(X/G) > 1: Suppose R = 0. The LHS of (27) is strictly positive, hence so should be the
RHS. Therefore g(X/G) > 2. This implies |G] < g — 1. If R # 0, then R > 1/2. Then we have
29(X/G) — 2+ R > 1/2, therefore |G| < 4(g — 1).
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Case 2 g(X/G) = 0: In this case (27) reduces to 2¢(X) — 2 = |G|[-2+ R]. LHS is strictly positive,
therefore we must have R > 2. But R is of the form > ,(1 — 1/r;), where r;’s are integers. Hence we
can hope that the values of R are discrete, so that there exists a minimum value of the set {R: R > 2},
which is greater than R. Suppose there are k many r;’s. If k = 1 or 2, then R < 2. If kK > 4 then
R > Zle(l ~1/2) = k/2 > 2. In this case the least value is 2%. Consider £k = 4. If r; = 2 for all
1<i<4,then R =2. So the very next value 3 x (1 — 1) + (1 — £), is the least in k = 4 case. This
value is 2% < 2%. Now consider the case k = 3. Let 2 < r; < ry < 73. Suppose 7y > 3. If all three
are equal to 3, then R = 2. This will not serve. The next value is attained when ry = 3 = ro and
rs = 4, which gives R = 25 > 2. Putting r1 =2, r, = 3 and r3 = 7, we get R = 245 < 2. We
claim this is the least value of R greater than 2. At least we agree that the least value must occur in
the case k = 3 and 7 = 2. Suppose the least value is assumed for 2 = s; < s2 < s3. Then we must
have (1/s3 — 1/3) + (1/s3 — 1/7) > 0. If sp = 3, the condition R > 2, forces s3 = 7. Otherwise s2 > 4,
and hence (1/sy — 1/3) < —1/12. This negetive term must be ccompensated by (1/s3 — 1/7). But
s3 > s9 > 4, hence (1/s3 — 1/7) < 3/28 < 1/12. Hence we must have s; = 2,53 = 3 and s3 = 7. Thus
R > 2 implies R > 245. Therefore by 2g — 2 > |G|(-2 + 2-5) or |G| < 84(g — 1). O
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