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Preface

The main aim of this thesis is to determine the maximal C* quotient of the
Temperley-Lieb algebra T,,(7).

In chapter 1, we define 7,,(7) for every n € N and for every non zero com-
plex number 7. The algebra T,,(7) is defined as the universal C algebra
generated by 1,e1,e9, - e, satisfying the following relation:

e?=¢ fori€{1,2,---,n—1}
eiej =¢eje; if [i—j] 22

eieje; =Te; if |i—j| =1

We prove that T,,(7) is a * algebra by identifying T, (7) with the diagram
algebra D, (3) when 7 = 317

In chapter 2, Jones- Wenzl idempotents are defined. Wenzl’s theorem, which
states that if TL(7) = U2, T(7) admits a non-trivial C* representation
then 7 € (0, 1] U {}sec*(557) : n > 2}, is proved.

In chapter 3, we obtain C* representations of TL(7) when the parameter
€ (03U {$sec®(747) : n > 2}. Jones’ basic construction for inclusion
N C M of finite dimensional C* algebras together with a faithful trace
is explained. When the trace is Markov of modulus 7, we can repeat the
Jones’ basic construction and obtain a tower of finite dimensional C* alge-
bras called the Jones tower and a sequence of projections e;] called the Jones

projections and consequently a sequence of quotients J,,(7) for T, (7).

In chapter 4, we obtain the maximal C* quotient of Ty(7). If 7 < %, the
quotient map ¢ : Tp(7) — Jg(7) is » algebra isomorphism. When the pa-
rameter T = %secz(ﬁ%i), the map ¢ : T (7) — Jp(7) is an isomorphism for
1<k<n-—1. Fork>n, Let I:Ti(r) — C be the trivial map for which
1(e;) = 0. Then we prove that (Jx(7)®C, @ 1) is the maximal C* quotient
of Tyx(r) when k > n. Much of the material in this thesis can be found in
[Jon].
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Chapter 1

The Temperley-Lieb Algebra

1.1 The Temperley-Lieb algebra T,,(7)

We consider only C algebras. Let 7 be a nonzero complex number.

Definition 1. Forn > 2, let T,(7) be the C algebra generated by 1,e1,€2- - en—1
subject to the following relations :

e?=e fori €{1,2,---,n—1}
€iej = €5€; 7,f Il ——]] > 2
€,€j€; = TE; Zf ]i-—jt‘—'—l
T,.(T) has the following universal property. Let A be a unital € algebra.
Let f1, fo, -, fa—1 € A be such that

ff=f; forie{i,2,---,n—1}
fifi=ff if li—j]>2
Lfifi=7f if li—jl=1

Then there exists a unique algebra homomorphism ¢ : T5,(7) — A such that
#(e;) = f; and $(1) = 14 where 14 denotes the multiplicative identity of A.

We now proceed to prove that Tp,(7) is finite dimensional. By a word on

1,e1,€9, - ,en—1 we mean a product e; e;, - -é€;,. By convention empty
product denotes 1. Note that words on 1,e;3,€9,--- ,en—1 span To(T).
Lemma 1. Let w be a word on 1,e1,e0--+ ,en—1. Then

w = Tk(eileil—l e ejl)(eizeig—-l N €j2) . (eipeip—l v ejp)



where k € NU {0} and

1§i1<i2<---ip§n—-1
I1<pn<jp<-jp<n-1
12 J1,02 2 Jo, 000 s ip 2 Jp

Proof. The proof can be found in [Jon]. We prove this by induction on
n. Clearly the result is true for n = 2. Now assume that any word in
1,e1,€ea, - ,en_1 is of the required form. Let w be awordin 1,e1,e9, - , €,.
If w does not contain e, then we are done. So suppose that w contains e,,.

Assertion. w = T8we,ws where w1, wy are words in 1,eq,e9, - ,€p-1.
w has the form vie,ve,vy where vy, vo are words in 1,e1,e9,+-- ,e, and
v is a word in 1,e1,e9, - ,€5_1.

If v does not contain e,_; then e, commutes with v and hence w = vyve,vs.
If v contains e,,_1 then by induction hypothesis v = 7"uje,_1us where uy, us
are words in 1,e1,e9,--- ,€,_9. Now

W = T V11 Enen—1En U2V
T ‘

w = 1’Ulul€n’u,2’02

In any case w is 7! multiple of a word which has one e,, less. Repeating this
process proves the assertion.

Hence w = t*w,e,wy where wi,w are words in 1,e),e9,--- ,e,_1. By
induction hypothesis

P )

we = T Va(en—1€n—2-" ,€j,)

where vz is a word in 1,eq,e2, -+ ,ep_2. ( The product (e,_1€,_3- “ej5,)
could be empty). Hence

w = Twivg(enen_1---€j5,)

where wyvg is a word in 1,e1,e9, -+ ,e,_1

Hence by induction hypothesis,
w = Tk(eilei1~1”'€j1>(€i2€i2——1 gy (€ip€ip—1 - €5,)
where k € NU {0} and
1<iy <ipg<-ip<n—1
112 J1,02 2 J2, 0 L 0p 2 Jp



Hence we have written w in the form needed with i's increasing. Now
consider such an expression which has the least length. Then we claim that
j's are also increasing. Let

k
w = T"(eir€iy 1 €jy) (€inin—1 " €j5) + (€ip€ip—1 - €jp)
be such an expression. Suppose j; > j2. Then

w == Tk(eileil'—l o e €j1)(eizei2—l .. 6J2) .. (ei,,eip—l P ejp)

k
w=T7"(e €51 €541)(€iy €515, 11€5, - €5) - (€ €ip—1 " €5y)
k+1(

w= """ (e €1 €5,)(€i€n -1 €j1i2) - (€5, €1p-17 0 €5;)

which has length decreased by one which is a contradiction. Hence 71 < jo.
Similarly j, < jr+1. This completes the proof. Cl

Now we consider the following combinatorial problem. Consider Z2 C R2.
Consider paths on Z2. The only allowed moves are either up or right i.e.
from (a, b) one can go to either (a+1,b) or (a,b+1).

Proposition 1. The number of paths from (0,0) to (n,n) where n € N
which lie in the region y < x 13 nil (27:‘) Let p, = n»h(zg) Then py, satisfy
the following recurrence

pp=1
n
Pn = Zpi—-lpn—i>f07" n=2.
i=1
For a proof,we refer to [GHJ]. O

The relevance of proposition 1 in our context is as follows:
Given (41,12, ,%p) and (J1,J2, - ,Jp) such that

I<ip<ig< Zpgn_]-a 1<hn<g< Jp <n-1, 11 2 J1,% > g2, ,'I:ijp
one can associate the path from (0,0) to (n,n) given by

(070) - (7'170) - (ihjl) — (i27j1) o (Z.Ihjp) — (n7jp) - <n>n)
This is clearly a bijection from the set of paths from (0, 0) to (n,n) to the set
of ordered pairs ((i1,72, ,ip), (J1,J2,"* Jp)) Which satisfies the following
condition.

1<ij<ip<-ip<n—=1,1<j1 <jo<--jp<n—1,d1 2> J1,%2 2 J2,  »ip 2 Jp
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Hence we get an onto map from the set of paths from (0,0) to (n,n) to

{(es -1 ep)(eneip1 - e5) - (epe—1--€5,)

ISi<ig<-ip<n—-L1<i<p<-gp<n—10 > 1,00 > jo, -,

which spans T, (7) by Lemma 1. Hence we have proved the following result.

Proposition 2. The algebra T,,(7) is finite dimensional and it’s dimension
is atmost n+1 (2")

1.2 Diagram algebra D,(3)

Fix a non-zero complex number 5. Let m,n be nonegative integers such
that m —n is even. By an (m,n) Kauffman diagram we mean a rectangle
in the plane with m points on the top and n points on the bottom and 7”——2—”1
curves which connect pairs of points such that the curves do not intersect.

A (3,5) diagram is shown below

A

Let a be an (m,n) diagram and b be an (n, p) diagram. Let b® a denote the
(m,p) diagram obtained by placing a on the top and & on the bottom and
removing the loops. Define

ba=06"bGa

where r denotes the number of loops removed.
For example,

N
a =
N
N
b=
N
J
ba =0
JARY

Let Hom(m,n) denote the € vector space with (m,n) Kauffman diagrams
as basis. The ‘multiplication’ that we have defined on diagrams extends to
a bilinear map

ip = Jpt



Hom(m,n) x Hom(n,p) — Hom(m,p)
which is associative.
For a an (m, n) diagram and b a (p, ¢) diagram, a®b denote the (m+p, n+q)

diagram obtained by horizontal juxtaposition.
For example,

a=|"
~
N
b= ‘
NI,
a®b=
/2

Let 1 € Hom(1,1) denote the (1,1) diagram shown below:

Let 1, =1®1®1---®1, the (n,n) diagram with all strands coming verti-
cally down.

Define D,(8) = Hom(n,n). Then D,(8) is a unital C algebra with 1,
as the multiplicative identity. The map a — a®1 is an embedding of D, ()
into Dpy1(8). With this embedding in mind, we write D,,(3) C Dy11(8).

Let E; denote the following diagram in D,(3)
i+

\_/

£

Then we have the following relations:

E}=BE; fori €1,2,---,n—1
EE;=E;E; ifli—j| 22
E,E;E; = E; if i—jl=1



Let CiD = %Ez
Then we have the following relations:

ePV2 = (eP) forie1,2,---,n—1
D.D _ DD ¢ - _ -
efef =eje; if [i—jlZ2
1
D D g s
e?eJDei =—e; if [i—j|=1

For 0 # 7 € €, a nonzero complex number, let 3 be such that 32 = % Then
by the universal property of T,,(7), there exists a unique unital homomor-
phism ¢ : T,,(7) — Dp(f) such that ¢(e;) = eP. We now proceed to prove
that ¢ is an isomorphism.

Lemma 2. The dimension of Dp(0) is ;{}q(?)

Proof. Let p, denote the number of (n,n) Kauffman diagrams. Think of an
(n,n) Kauffman diagram as a disk with 2n points on the boundary with n
curves connecting pairs of points without any intersection. Then we have
the following recurrence relation

po=p1 =1
k(3

Pn =Y Pi-1Pn-i,for n > 2.
f==1

Hence, by proposition 1, p, = 5%(2;) d

Lemma 3. {1,E;:i=1,2,--- ,n— 1} generate the algebra D,(3)

Proof. We prove this result by induction on n. If n = 2 the result is clear.
Let a be an (n,n) Kauffman diagram. If that ¢ has a strand that comes
straight down then a = db®1®c with b € D, () and ¢ € Ds(5) with r, s < n.
Hence by induction hypothesis a can be written as a scalar multiple of E] s
and we are done. Now we consider two cases.

Case 1. a has a through string i.e a string which joins a top point with a bot-
tom point. Let us call a strand that comes vertically down a vertical string.
Pick the rightmost through string. Let v(a) be the number of vertices to
the right of the rightmost through string of a(inclusive of the vertices that
the rightmost through string joins).

We prove that a can be written as a scalar multiple of a product of E]s by
induction on v(a). If v(a) = 2 then the rightmost through string is ver-
tical and we are through. Assume that it slants from right to left. Then

7



a=b®1®c®dwith b € Hom(l,k), c € Hom(0,2r) , d € Hom(t, s) for
some non negative integers I, k, 7, s, ¢ with 7 > 0 . R

Let U € Hom(2,0) and N € Hom(0,2) be the following diagrams.

_/

1
!
{
!
{
i
|
I
J

£

Let U = UQU® -+ @U (r times). Similarly N" is defined. Note that
loe= (1eUr@c)(®1). Letb=1,010U" ®c®l and ¢ = baN" ®1®d.
Then a = b where b has a vertical string and v(¢) < v(a). Hence by induc-
tion @ can be written as a scalar multiple of a product of E] s. The proof is
similar when the rightmost through string slants from left to right.

Case 2. a has no through strings. By a concentric loop we mean a Kauffman
diagram which is either U o(1@a®N™1@l) where a is a (2r—2, 0) Kauffman
diagram (r > 2) or (1®@7® U2s—2®1)0N® where v is a (0,25 — 2) Kauffman
diagram (s > 2). An example of a concetric loop is given below:

R
| |

If a does not have a concentric loop, then a = E;E3---. Hence assume
that o has concentric loops. Then a = b® ¢ ® d where ¢ is a concetric
loop in Hom(2k + 2,0) (assuming ¢ is on top ) and where b € Hom(r, s)
and d € Hom(p,q) for some nonegative integers p,q,7, 8,k with & > 0.
Then ¢ = U (1®@a®@N*) ®1). Let ¢ = L,®l®e®Nf®1®1, Let
b=be Ul ®d Thena= be where both b, ¢ has one concentric loop less
than that of a. Therefore, by induction on the number of concetric loops
that a has, it follows that a can be written as a product of diagrams which
have no concentric loop. Hence a is a product of E;s. This completes the
proof. O

Theorem 1. Let 3 be a nonzero comples number. Let T = -517 Then
the unigque unital algebra homomorphism ¢ = Tn(T) — D, (B) such that
#(e;) = eP is an isomorphism.



Proof. By Lemma 3, ¢ is onto. By rank-nullity theorem,

2
rank(¢) + nullity(¢) = dim Tp(7) < n -1F 1 (:)

1 2n 1 2n
. < L
n+1<n> + nullity(¢) < n+1<n>

Hence nullity(¢) = 0. Thus ¢ is one-one. Therefore ¢ is an isomorphism. [J

From now on we will identify Ty (7) with D,(38) when 7 = 317 and e; with

eP. Note that the natural map i : Tp(r) — Tnqa(7) is injective since
o(ia) = ¢(a) @ 1 for a € T,(7).

1.3 Trace and Conditional expectation on D,(5)

Definition 2. Let N € M be unital C algebras such that 1y = 1py. A
linear map £ : M — N is said to be a conditional expectation if

1. E(nm) =nE(m) and E(mn) = E(m)nYn € Nym e M
2. E(n)=nVYneN

Now we describe a conditional expectation €, : Dy 11(3) — Dp(53) as follows:
Let €, : Dypy1(8) — Dp(B3) be defined by €y(a) = (1, @ U)(a® 1)(1, ®N).
Ifais an (n+ 1,n + 1) diagram, then €,(a) is obtained by just closing up
the last strand. Hence if a € D,(8) then €,(a) = Ba. Let e,(a) = %{n(a)
for a € Dy(). Then ¢, is a conditional expectation.

Definition 3. Let M be a unital C algebra. Let p: M — C be linear. Then
p is said to be a trace if p(ab) = p(ba)Va,b € M. The functional p 1s said
to be unital if p(1) = 1.

Let try, : D,(3) — C be defined by trp(a) = (eje2- - €n—1)(a). Note that
trp(a) = trpe1(a) if a € D, (3). Hence we can and will denote tr, by tr. If
a is a diagram, let c(a) be the number of loops one gets when one closes all
the strands. Then tr(a) = %@

tr : D,(3) — C is a unital trace and satisfy the following properties:
1. tr(z) = tr(en(z)) YV 2 € Dpi1(B).
2. enze, = €n-1(z)en ¥ x € Dp(5).

3. tr(e;) = 7 where 7 = —f}g



1.4 * structure on D,(0)

Definition 4. Let M be a C algebra. A % structure on M is a function
«: M — M (We write x(a) = a*) such that the following holds

1. (a+bF=a*+b*VabeM
2. (aa)* =aa*Vaec M,aeC
3. (ab)* =ba*VabeM

4. (@) =aVaeM

A * algebra is a C algebra together with a x structure.

Now we make Dy (3) a * algebra. The * structure is defined on the level of
diagrams (and then extends conjugate linearly) as follows:

For a diagram a, a* denotes the diagram obtained by reflecting along the
horizontal middle line. Then E} = E;. If 8 is real, then (ef) = eZD . Thus
for T > 0, Tp(7) is a x algebra with e; selfadjoint.

10



Chapter 2

C* representations of T'L(7)

In this chapter we will prove Wenzl's result. It characterises the values of 7
for which TL(T) admits a nontrivial C* represntation.

Definition 5. Let M be a + algebra. By a C* representation of M we mean
an algebra homomorphism © : M — A where A is a C* algebras such that

m(a*) = (w(a))"
By a non-trivial reprsentation of 7, (7) we mean a C* representation 7
such that 7(e;) # 0 for some i € {1,2,--- ,n —1}.

First we define Jones-Wenzl idempotents in T5,(7). See [Wen].

Define a sequence of polynomials recursively by

Py(\) =1 = Pi(N)
Pk(k) = Pk—l(/\) — /\Pkﬁg()\_\),for k>2

The basic properties of Py()\) are summarised in the following proposition.
Proposition 3. Let k be a non-negative integer and let m = [%] Then

1. The polynomial Py is of degree m. It’s leading coefficient is (=)™ if
k=2m and (-1)"(m+1) if k =2m+ 1.

2. The polynomial Py has m distinct roots given by

{fsec®(fh) 1 =12 ,m}.
3. Assumek > 1. Let A € R be such that %sec®(zl5) <A< 7 sec?(g)-
P(A\) >0 fori €{1,2,--- ,k} and Pg1(A) <0
Proof. For a proof, we refer to [GHIJ]. O

Let TL(7) = |, Tn(7). Then TL(7) is a x algebra generated by 1, ey, €2, -...
When 7 > 0, ¢;’s are self adjoint.

i1



Proposition 4. Let 7 be a nonzero complex number such that P(t) # 0
for k=1,2,--- ,n. Define fy in TL(T) recursively as follows.

fo=1=f1
Pp_1(7)
firs = fi - j;kg(} frenfi: 1<k <n
Then,
1. fr €Tp(r) for1<k<n+1l.

2. 1—fy, is in the algebra generated by {e1, €2, -+ ,ex—1} for2 <k < n+1.

o

P o _ P :
(enhi)? = e i, (faer)® = POL frer forl<k<n+1.

4. fi is an idempotent for 1 <k <n+1.

[

. frei =0, eifi =011 <k—1wherel <k<n+l1l

j=

Ctr(fg) = Pe(r) for L<k<n+1.

When 7 > 0, fr is selfadjoint.

Proof. This is due to Wenzl and we include a proof here for completeness.
The proof is by induction on k. 1,2---,6 are clearly true for k < 2. Now
assume that 1,2--- ,6 are true for 1 < k < [ where [ > 2. We will show the
result is true for k = [+ 1.

Since f; is in the algebra generated by 1,ei1,e2, - ,€-1 by definition it

follows that fi1, is in the algebra generated by 1,e1,eq,---,e;. Hence
fis1 € Ti41(7). Since 1 — f; is in the algebra genrated by e1, e, ,€-1, by
definition, it follows that 1— f;.; is in the algebra generated by e, e2,--- , €.

Now note that fir1fi = fir1 and fifix1 = fiq1 since fj is an idempotent.
Since f; € Ty(T), €141 commutes with f;. Hence we have,

H_ﬂ:T)
errfirieis = e fi— B fiereertfi
[

P
= *;%éq%iel-f-lfl

P‘
Hence (eip1fi41)” = “‘L}%%"T(;T’)‘el+1fi+lo

12



The proof that (fi11€141)% = Pg(lg) fi+1€141 is similar. Now

fto =1t~ pesi+ (%5282) e
-2 e (S5 e
= - =t i = g
Hence fiy s an idempotent. Since fi1e: = fisfics, it fllows that fi1c; =
0ifi < 1=1 Now frae = fier = “52 5 (fien)®. But (fier)? = 2L ey,
Hence fi 1e; = 0. Hence fryie; = O for ¢ < L. Similarly e froy = 0. Now
tr(fun) = () = Tt er
= tr(f) = " trafen )
=tr(fi) - Pll:,é\;)t?“(fzﬁz(ez)fz)
=tr(f;) — —P_l—(——Tg)—)tr(Tfl)

= P(7) — TP_1(1) = P4 (7)

If 7 > 0 then Py(7) is real. Hence by induction it follows that fis are self-
adjoint. O

The idempotents described in the previous proposition are called Jones-
Wenzl idempotents.

Let 7 be positive. The following result due to Wenzl restricts the values
of 7 for which TL(7) has a nontrivial C* representation. The proof can be
found in [Wen]. We include the proof for completeness.

Theorem[Wenzl]. Let 7 be a positive real number. If TL(r) has a non-
trivial C* representation, then T < ;11- or T = %56(12(?1—17) for some n > 2.

We begin the proof with the following lemma.

Lemma 4. Let 7 be such that isec2( ) < T < isecQ(—ﬁ%) for some

n € N, with n > 2. Suppose = : TL( ) — B(H) be a x homomorphism,
where H is a Hilbert space. Let el denote the idempotents in TL(T). Then
the Jones-Wenzl idempotents f 's are defined for k = 1,2,---n+2. Suppose
fe=7(fL) fork <n+2. Then

13



(1) 1—fr=e1VeaV---epq1 fork<n+2.

(2) ent1fnt1 =0.

(8) en+1 is orthogonal to f,.

Proof. Note that Py(r) > 0 for k = 1,2,---n and Pn41(7) < 0. Hence the
Jones-Wenzl idempotents are defined for k =1,2,---n + 2.

By proposition 4, it follows that fye; = 0 for ¢ < k — 1. Hence we have
etVeyV: Ve, <1~ fr. Since 1 — f is in the algebra generated by
e1,€9, - ,ep_1, it follows that 1 — fr < e; Vea V---ex_1. This proves (i).

Observe that ep i1 forient1 = %t%?

ent1fn. But eniifoiinsr is positive
and en41fn is a projection. Since P,y1(7) < 0, it follows that epy1fn = 0
and (fnai1eni1)*far1€nt1 = 0. Hence fniiept1 = 0 and enqq is orthogonal

to f,. By taking adjoints, we get e,11fne1 = 0. This proves (2) and (3). O

Proposition 5. Let H be a Hilbert space. Suppose ej,eg, - 18 a sequence
of non-zero projections in B(H) satisfying the following relation :

el =e; = ef
€,€5 =€4€; = 0 'Lf %Z “ji > 2

eieje; =Te; if i—gl=1
Then 7 € (0, §] U {}sec?(;55) - n > 2}
Proof. There exists a nontrivial C* representation of T'L(7) say m which is
unital and for which 7(e]) = e; where e denote the idempotents in T'L(7).
By taking norms on the third relation, it follows that 7 < 1. Suppose that
T is not in the set given in the proposition. Then there exists n > 2 such
that 3sec’(zi5) < 7 < isec’(-Z). Then Pi(r) > 0 for k = 1,2,---n
but P,,1(7) < 0. Hence, the Jones Wenzl idempotents f; ’s are defined for
k=1,2,---n+2 Let fy =n(ff) for k<n+2.

From lemma 4, it follows that e,;; is orthogonal to f,. But epy1 is or-
thogonal to e; V ez V ---e,—1 which is, again by lemma 4, 1 — f,. Hence
ent1 = eni1fn + ent1(l = fr) = 0 which is a contradiction. This completes
the proof. O
Now we will prove the previous conclusion without the orthogality assump-
tion of e}s.

14



Proposition 6. Let H be a Hilbert space. Suppose e1, ez, is a sequence
of non-zero projections in B(H) satisfying the following relation :

2
€

=e; = €]
eiej =eje;  if [i—j]>2

eieje; =Te;  if [i—j] =1

Then T € (0, 3] U {sec?( :n > 2}

n+1)

Proof. Suppose that 7 is not in the set described above. Then there
ex1sts n > 2 such that Isec?( 2h) < T < }lsecz(nﬂ) From lemma

4, it follows that eji1fp31 = 0. Also e;f,p1 = 0 for i < n. Hence
frnt1 S1—e1VeV---Vep = fn+2- But frni2 < fag1. Hence frig = fryo.
Let k£ be the least element in {2,3,--- ,n} for which fry1 = firo. Let
Gi = exxifr-1 for ¢ > 0. We will derive a contradiction by showing that g/s
satisfy the hypothesis of proposition 5.
Since ej4; commutes with fi_y for i > 0, it follows that gi’s are projec-
tions. For the same reason, gjs satisfy the third relation of proposition 5.
First, we show that go # 0. By the choice of k, fi, # fr41. Hence frexfr # 0.
Since fi < fr—1, it follows that fr_iex = go # 0.

Now we show that g;g; = 0 if |i — j| > 2. We begin by showing gogs = 0.
Observe that since fy1 = fri0, we have

eet+1fk = exr1(fo—for1)entr = €k+1( (1 ; Jrer fi)ers1 = T-}—jl%j—g) k1 k-

Since Fei1(r) # 0, it follows that exi1fy = 0. By premultiplying and
postmultiplying by ey, we see that eofr = 0. Hence we have,

9092 = exepyafr-1
= epersa(fu—1 — fr)erroek
= ep2ek (-1 — fr)erekyo
Py
= €k+2€k( E ;fk 18k—1fk—1)€ker12
Doa(T) (T) gog2
Py ()

Since Pg(T) # 0, it follows that gggo = 0. Let i > 2. Let us consider the par-
tial isometry w = (i)2 ey ti€haso1 - epro. Since w commutes with e, and
fr—1, wek fr—1 is a partial isometry. Note that {(weg fr_1)*wey, fr_1 = goga =

0. Thus, gigo = weg fr—1{weg fy—1)* = 0. Hence g;go = 0 if i > 2. Let i, j be
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such that j > i+ 2. Now let u = (%)i+1€k+iek+i~1 ---eg. Then u is a partial
isometry which commutes with f;_1 and ejy;. Let v = uegq;jfr—1. Then v
is a partial isometry such that v*v = gog; and vv* = g;g;. Since v*v =0, it
follows that vv* = 0. Thus g;g; = 0. Therefore g; ’s satisfy the assumptions
of proposition 5. Hence we have a contradiction. This completes the proof.

O

Now Wenzl’s theorem follows from proposition 6.
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Chapter 3

Existence of C*
representations of T},(7)

In this chapter we will describe C* representations of T},(7) when the pa-
rameter 7 € (0, 1] U {isecQ(m—jLH) :m > 2}. First we describe the basic
construction for a pair of finite dimensional C* algebras due to Jones. We
refer to [Jon] for most of the material in this chapter. But first let us recall

some basic facts about finite dimensional C* algebras.

3.1 Finite dimensional C* algebras

Let M be a finite dimensional C* algebra. Then M is unital. Let {py,p2, - ,ps}
be the set of minimal central projections of M.

Let p;Mp; = {x € M : pjx = xp; = x} and p; = /dim p; Mp;.

Then M is isomorphic to M, (C) @ --- & M, (C) as C* algebras. The al-
gebra M is called a factor if it's center is trivial. Let @ = (g, g2, - - , ps).
The vector /i is called the dimenstion vector of M.

Definition 6. Let M be a C* algebra. A linear functional p : M — C is
said to be a trace if p(ab) = p(ba) Va,b € M. The functional p is said to
be positive if p(x*z) > 0 VYo € M and faithful if p(x*z) = 0 implies x = 0.
If M is unital then p is said to be unital if p(1) = 1.

Any trace on M,(C) is just a multiple of the usual matrix trace i.e. if
p: Mp(C) — C is a trace then p({aiy)) = AY_1; ai. If p is a minimal
projetion in My, (C) then p(p) = A. Hence p is determined by it’s value on
any minimal projection.

Let M be a finite dimensional C* algebra. Let {py,pa2,--- ,ps} be the set of

minimal central projections of M and let i be the dimension vector of M.
Suppose p: M — C is a trace. Suppose e; is a minimal projection in p; Mp;
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~ 2 -
and let t; = p(e;). Let t= i . Then t is calles the trace vector
tn
associated to p. Then p is positive if and only if ¢; > 0 Vi. The trace p is
faithful if and only if ¢; > 0 Vi and it is unital if and only if 7.6 = 1.

Let N and M be finite dimensional C* algebras such that N C M. We
always assume that the inclusion is unital i.e. 1y = 1. Let {p1,pa2, - ,Ds}
and {q1,42, - ,gr} be the minimal central projections of M and N respec-

. di 3 .1M2. .
tively. Then ¢;p; M q;p; and q;p; Nq;p; are factors. Define A;; = W
it pjq; # 0. If pjg; = O then define A;; = 0. Then A is an r x s matrix svch
that i = 7.A. The matrix A is called the inclusion matrix for the inclusion

N CM.

Let N € M be a unital inclusion with inclusion matrix A. Let pps be a
trace on M with trace vector t and py be a trace on N with trace vector 5.
Then pps |nv= pw if and only if At = 3.

The inclusion N C M can also be described by it’s Bratelli diagram.
Let N C M be a unital inclusion of finite dimensional C* algebras with
inclusion matrix A. Let {¢1,42, - ,¢-} and {p1,p2, -+ ,ps} be the minimal
central projections of N and M respectively. The Bratelli diagram for the
pair N C M is a bipartite graph with verices {q1, 92, - ¢} [ [{p1,p2, - , s}
where p; is joined to g; with A;; bonds.

Let us recall the finite dimensional version of von Neumann’s double com-
mutant theorem whose proof can be found for instance in [GHIJ]. Let H be
a Hilbert space. Let B(H) denote the space of bounded linear operators on
H. For S ¢ B(H), it’s commutant denoted by ' is defined as follows:

S = {r € B(H) :zs = sz Vs € S}.
Note that S ¢ S".

Theorem [von Neumann]. Let H be a finite dimensional Hilbert space.
Let M C B(H) be a * closed algebra such that M contains the identity oper-
ator. Then M" = M. If M is a factor then M ® M is isomorphic to B(H).
and Hence dimM dimM’' = (dim H)?.

We end this section with the following lemma. Let M C F be a unital inclu-
sion of finite dimensional C* algebras with F as factor. Then the commutant
of M in F is denoted by Cr(M).
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Lemma 5. Let M C F be a unital inclusion of finite dimensional C* al-
gebras. Assume that F is a factor. Suppose ¢ € M U Cp(M) is a nonzero
projection. Then

(1) qFq is a factor.

(2) CyrglaMq) = qCr(M)q.

Suppose N C M be a unital inclusion of finite dimensional C* algebras with
the inclusion matriz A. Then the inclusion matriz for Cp(M) C Cp(N) is
At

Proof. If F = B(H) for some finite dimensional Hilbert space then ¢Fq =
B(gH). Hence (1) is true.

Let us first consider the case when g € M. Let z € M andy € Cp(M). Then
(qzq)(qyq) = qryq = quzq = (qyq)(qzq). Hence ¢Cr(M)q C Cyrq(gMq).
Now let s € Cyrq(¢Cr(M)q) be given. Then sq = gs = s. Let t € Cr(M).
Then st = sqqt = sqtq = qtqs = tqqs = ts. Hence s € Cp(Cp(M)) = M.
Hence Cyrq(qCr{M)q) C qMq. Hence taking commutants and using von-
Neumann’s double commutant theorem Cyrqe(¢Mq) C qCrp(M)q. Hence
Cqrq(qgMq) = qCr(M)q. The case g € Cp(M) follows from von Neumann’s
double commutant theorem.

Suppose N C M be a unital inclusion of finite dimensional C* algebras with
the inclusion matrix A. Let I be the inclusion matrix for Cr(M) C Cr(N).
Let ¢1,qo, - - gr be the minimal central projections of N and py,pa - ,ps
be that of M. Since the center of Cp(M) and M are the same, it follows
that p's and ¢'s are the minimal central projections of Cp(M) and Cr(N)
respectively. Suppose p;g; # 0. Then

dim p;q;Cr(N)piq;
dim p;q;Cr(M)pig;
dim Cp,qjFpig, (Pig; NpPig;)
dim Cp,q;Fpig; (pig; Mpigj)

2 _

For X = M or N, Since p;q; Xp;q; is a factor in p;q;F'p;g;, it follows, from

? ; (e r7 - . dim p.q; Fpig;
von Neumann’s theorem, that dim Cp,q,Fp,q; (pig; X pigj) T P Xpia.

Hence I‘?j = Agj. Hence I = A’. This completes the proof. O

3.2 Basic construction

In this section, We describe the Jones’ basic construction for a unital inclu-
sion N C M of finite dimensional C* algebras with a faithful unital trace.
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We refer to [Jon] for this section. But we include the proofs for completeness.

Let N C M be a unital inclusion of finite dimensional C* algebras. Suppose
tr + M — © is a faithful unital positive trace. Then for z,y € M, define
{(z,y) = tr(y*x). Then {,) defines an inner product on M. We denote this
Hilbert space by L?(M,tr). Let E: M — N be the orthogonal projection.

Proposition 7. E is the unique trace preserving conditional expectation of
M onto N. That is

(1) E(azb) = aE(x)b fora,b € N and z € M.
(2) E(n)=n forne N.
(8) tr{E(x)) = tr{x).
Further (1},(2) and (3) determine E uniquely.
Proof. Let a,b &€ N and z € M be given. For n € N, we have

(aE(x)b,n) = tr(n*aE(x)b)
= tr(bn*aE(x))
= (E(z),a"nb*)
= (x,a*nb*)
= tr(bn*ax) = tr(n"axb)
= (axbh,n) = (axb, E(n)}

~ (E(aab),n)

Hence (aE(x)b,n) = (E(azb),n) for every n € N. Thus E(azb) = aE(xz)b.
This proves (1). Since E is the orthogonal projection of M onto N, (2) is
true. Let x € M. Now tr(E(z)) = (E(z),1) = {(z, E(1)) = (z,1) = tr(z).
Hence (3) is true.

Let ' : M — N be linear such that (1), (2) and (3) are satisfied for E'. Let
z € M be given. Then for n € N, (E'(z),n) = tr(n*E (z)) = tr(E (n*z)) =
tr(n*z). A similar calculation with F shows that (E(z),n) = tr(n*z). Hence
(E'(z),n) = (E(z),n) for every n € N. Hence E(z) = E'(z). Hence
E=E. O

We denote E by ey when we think of E as an element in B(L?(M, tr)). For
x € M, define m(z)(y) = zy for y € M and 7.(z)(y) = yzx for y € M. Then
m(z), 7r(x) € B(L*(M,tr)) for £ € M. The map m; : M — B(L*(M,tr)) is
a faithful unital * homomorphism. But 7, is an anti homomorphism in the
sense that m,(z*) = (7, (x))* and 7 (zy) = m-(y) 7 (2).

Lemma 6. The commutant of 7,(M) in B(L*(M,tr)) is m;(M).
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Proof. 1t is clear that m(M) commutes with 7,(M). Let T € m.(M)". Let
2 = T(1). Now T(y) = Tmy(y)(1) = m(y)(T(1)) = 2y = m(x)(y). Hence
T = m(z) € m(M). This completes the proof. O

Henceforth we identify M with m(M). Now 7.(N) C n.(M). Note that
m(M) = (M) C m(N). Hence starting with a unital inclusion N ¢ M
together with a unital faithful positive trace on M, we obtain another unital
inclusion M C m.(N)'.

Definition 7. Suppose N C M be a unital inclusion of finite dimensional
C* algebras. Let tr be a faithful, unital, positive trace on M. Then the inclu-
sion M C m,(N)" is called the basic construction for the pair (N C M, tr).

The main properties of the basic construction are summarised in the follow-
ing porposition.

Proposition 8. Suppose N C M be a unital inclusion of finite dimensional
C* algebras. Let tr be a faithful, unital, positive trace on M. Then,

1. The C* algebra generated by M and en in B(L*(M,tr)) is mp(N) .
2. The central support of ey in m(N) is 1.
3. enxzeny = F(x)en forx € M.

4. If A is the inclusion matriz for N C M then At is the inclusion matriz
for M C m.(N)'.

Proof. Let (M, en) denote the C* algebra generated by M and ey. We
prove that the commutant of (M, en) is m(N). Let T € ((M,en)) . Since
T commutes with ey, 1" leaves NV invariant. Let z = T'(1). Then x € N.
Now T'(y) = Tm(y)(1) = m(y)T(1) = yz = 7 (z)(y). Hence T € m.(N).
This implies (M,en) < 7,(N) On the other hand, m(N) commutes with
M. Since N is invariant under =, (IV), it follows that m,(N) commutes with
en. Hence 7, (N) commutes with (M, ey). This implies ((M, ey)) = m.(N).
By von Neumann’s double commutant theorem, ({(M,ey)) = m,.(N)'.

Let q1,q2," -+ ,qr denote the minimal central projections in N. Then the
minimal central projections of (m.(N)) are m,(q1), 7(ga), - - - , 7r(gr). Since
7 (q:)en(q)) = ¢l qi, we have 7.(q:)eny # 0. Thus the central support of ey
in (M,en) is 1.

Let z € M be given. On N+, eyzey = 0 = E(z)en. Let n € N be given.
Then eyzen(n) = E(zn) = E(x)n = E(z)en(n). Hence eyzey = E(x)en.

For a C* algebra A, Let AP denote the C* algebra whose underlyind set and
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the invloution are that of A but the multiplication is changed to z.y = yx.
Now the center of A% is same as the center of A. Hence the minimal central
projections of A°? are the same as that of A. Now 7, : M — B(L2(M, tr))
is a unital inclusion. Now the inclusion matrix of N% < M®P is the same as
that of N C M since the minimal central projections of N°° and M are the
same as that of NV and M. Now by Lemma 5, it follows that the inclusion
matrix for M = (m.(M)) < (7,(N))') = (M, en) is A'. This complétes the
proof. O

Definition 8. Suppose N C M is a unital inclusion of finite dimensional
C* algebras. Let tr : M — C be a faithful, unital, positive trace on M. Let
M C (M, en) be the basic construction associated to the pair (N C M,ir).
Then tr is called a« Markov trace of modulus T if there exists a positive
trace Tr : (M, en) — C such that

1. Tr(zey) = 1tr(z) for x € M.
2. Tr(z)=tr(z) forz € M.

Proposition 9. Let N C M be a unital inclusion of finite dimensional C*
algebras with a faithful positive trace tr. Suppose that tr is a Markov trace of
modulus 7. Then there exists a unique positive trace Tr on (M, en) satisfying
(1) and (2) of definition 8.

Proof. By definition, there exists a positive trace Tr on (M, en) such that
(1) and (2) holds. Let T'r; be another trace for which (1) and (2) holds.
Let 2,y € M. Now Tr(zeny) = Tr(yzen) = 7ir(yz) = Tri(yzen) =
Tri(xeny). Consider the set I = {2 i zienyi : @i,y € M ,n € N}. Then
proposition 8 implies that I is an ideal in (M, ex) which contains ey. Since
the central support of ey is 1, it follows that I = (M, en). The preceeding
calculations show that T'ry = Tr on I. Hence Tr = Try. O

The following proposition determines when a trace for the pair N ¢ M
is a Markov trace of modulus 7. Before that we need the following Lemma.

Lemma 7. Let N C M be a unital inclusion of finite dimensional C* al-
gebras with o faithful, unital, positive trace tr. Suppose q1,q2,+ -+ ,qr are
‘the minimal central projections in N. Then mr(g1)s 7r(q2), -, 7r(gr) are
the minimal central projections in (M, en). If f is a minimal projection in
q:Ng; then fex is minimal in m.(q;)(M, en).

Proof. Since N commutes with ey, the map = — zey from N — (M, en)
is a homomorphism. We assert that this map is 1-1 and it’s range is
en{M,en)en. Suppose that zey = 0 for some z € N. Then mi(z)en(1) = 0.
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Hence z = 0. Hence x — zey is 1-1. Let T € ey (M, en)en be given. Since
T commutes with ep, T leaves N invariant. Let z = 'T(l). Then z € N.
Since T(1 — ex) = 0 it follows that 7= 0 on N+. Hence T = zey on Nt
Since T is right N linear, it follows that for n € N, T'(n) = T(1)n. Hence
T(n) = zey(n)forn € N. Hence T' = zey on N. HenceT' = zen. It is clear
that the map x — xen has range in e (M, en)en. This proves the assertion.

Let f be aminimal projection in ¢; N¢;. Note that m,(¢;)eny = m(gi)en. Note
that feym.(q;) = fgien = fen. Hence fey < m,(¢;). Let p be a nonzero
projection in (M, eyn) such that p < fenx. Now p = fexypfen = enfpfen.
Hence p = xey for some ¢ € N. By the 1-1 ness of the map = — zepy, it
follows that z is a nonzero projection. Now zey = zenfeny = zfey. Thus
z = zf. Similarly x = fz. Hence by the minimality of f, it follows that
z = f and hence p = fey. Therefore fey is minimal. This completes the
proof. O

Proposition 10. Suppose N C M be a unital inclusion of finite dimen-
sional C* algebras with a faithful, unital, positive trace tr. Let A be the
inclusion matriz for N C M. Let i and U be the dimension vectors for
M and N respectively. Suppose ¥ and § are the trace vectors for tr |y and
tr |ar respectively. Then tr is a Markov trace of modulus 7 if and only if
APAS = %s“ and AAN'F = %—F

Proof. Tet tr be Markov of modulus 7 and Let Tr be the corresponding
trace on (M, ey). Let t be the trace vector for Tr on (M, ey). By lemma 7,
we have t = 77. Since the traces are consistent, we have 7= A5 = AA}(t) =

AAY(r7) = TAALF). Also, §= AL(E) = At(r7) = TATA(3).

Suppose the inclusion matrix satisfies the condition in the proposition. De-
fine Tr on (M,ey) by letting it’s trace vector be £ = 77. Then A'(f) =
TAYF) = TA'AF = & Hence Tr(z) = tr(z) for z € M. Also by defi-
nition of 7'r, it follows that T'r(pen) = 7ir(p} for every minimal projec-
tion p in N and hence Tr{zey) = 7tr(z) for x € N. Let x € M. Now
Tr(zey) = Tr(enzey) = Tr(E(z)en) = 1tr(E(z)) = 7tr(z). This proves
that tr is a Markov trace of modulus 7. O

Corollary 1. Let N C M be a unital inclusion of finite dimensional C* al-
gebras with a faithful, unital, positive trace tr. Suppose that tr is a Markov
trace of modulus 7. Then the unique trace Tr on (M, en)which extends tr
and for which Tr(xey) = Ttr(x) is a Markov trace of modulus 7 for the pair
M c (M, en).

Proof. Let 7, 8,1 be as in proposition 10. Let A be the inclusion matrix for
the pair N C M. Then f = 77. Now AA't = TAAW = 71(F) = -i—(f} Hence
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by proposition 10, it follows that Tr is a Markov trace of modulus 7. [

We end this section with a lemma which characterises the basic constructlon
for a pair N C M whose proof can be found in {JS].

Lemma 8. Let A C B be a unital inclusion of finite dimensional C* algebras
with a faithful, unital, positive trace tr. Let E be the unique trace preserving
conditional expectation of B onto A. Let By = (B,e) denote the result of
the basic construction. Let B C C be a unital inclusion of finite dimensional
C* algebras. Suppose C contains a projection f satisfying

(1) C= (B, f);
(2) fbf = E(b)f forbe B; and

(8) f commutes with A and a — af is an injective * homomorphism of A
o C.

(4) The central support of f in C is 1.

Then there exists a unique isomorphism ¥ : By — C such that ¥(b) = b for
be B and ¥(e) =

3.3 Jones Tower

Let N C M be a unital inclusion of finite dimensional C* algebras with a
faithful, unital, positive trace tr. Suppose that tr is Markov of modulus 7.
Then there exists a unique faithful, positive trace which extends #r which
we continue to denote by ¢r such that ¢r(zey) = 7tr(z) for z € M. Then
tr is a Markov trace of modulus 7 for the pair M C (M, en). Let e; = en.

Iterating the basic construction for the pair M C (M, e;1), we get a tower
of finite dimensional C* algebras N ¢ M C (M,e1) C (M,ej,e9) C ---
with faithful, unital, positive trace on | J, (M, e1, ez, -, en) which we again
denote by tr. This tower is called the Jones tower. Let Mg =N , My =M
and My, = (M,e1,€e2, -+ ,en—1). Mp41 is obtained by the basic construction
for the pair (M,_1; C My, tr). Let E,,_y : M,, — M,_1 be the corresponding
conditional expectation. Then we have the following,

(1) tr(z) = tr(Ep—1(x)) if z € M,.
(2) tr(ze,) = 1tr(z) if x € M,.
(3) en commutes with M,_;.

(4) epzen = En_q(2)e, if € M,.

24



Now tr(En(en)z) = tr(En(enz)) = tr(eyz) = ttr(z) = tr(rz) for z € M,
Since tr is faithful, E,(e,) = 7.

The next proposition says that the sequence of projections e, satisfy the
T'L relations.

Proposition 11. Suppose N C M is a unital inclusion of finite dimensional
C* algebras and Let tr be a Markov trace of modulus 7. If {en} denote the
sequence of projections in the Jones tower, then

e?=e =€ VieN
eie; =eje;  if |i—j|>2
eieje; = Te; if i—gl=1
Proof. Only the third relation requires proof. Let n € N be given. Now

enti1eneni1 = Ep(en)ent1 = Tent1. Consider the previous relation in Mo
Then, gﬂ‘\/%’i is a partial isometry.

Hence (e”\*/l;" )*e”j/];" = et g a projection. Clearly rfndlfn < g,

Now tr(=2=ntn) = tr(e,). Since tr is faithful, it follows that fnfnilfn — ¢,

This completes the proof. O
p

3.4 Jones quotient

We will describe a. C* quotient for T'L(7) called the Jones quotient for every
€ (0,4 U {ﬁsecz(m—frq :om > 2},
First we show that for 7 € {isecQ(H% : m > 2} there exists an inclu-
sion N C M of finite dimensional C* algebras which admits a Markov trace
of modulus 7. We need the following proposition for that. We say that
the inclusion N C M is connected if the Bratelli diagram for the inclusion

N C M is connected.

Proposition 12. Let N C M be a unital inclusion which is connected. Then
there exists a uniqgue Markov trace of modulus 7 if and only if T =[| A |2

For a proof we refer to [GHJ] O

2;171——1. It is enough to exhibit a Bratelli diagiam or a bipartite

graph whose corresponding matrix A satisfies Al = = First suppose

Let 7 = %sec

that n is even, say n = 2I. Note that the norm of a matrix won’t change
by changing rows and columns. Consider the following bipartite graph with
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20 = [ + | vertices.

AN

Let A be the corresponding matrix. Let Y = At 0 ) Then Y is the

adjacency matrix of the following path with 2{ vertices.

Then

010.00¢9

1 1 0 0

0 10 0 0

Y = .

000 .01

000 .10
For j =1,2,---n, one checks that Y¢; = X;&; where \; = 2605(;;7—;5)
& = (SZH(%—_%)) kel -Since Y is symmetric, it follows that ||Y|] = 2cos(;57).

t AAT O 12 t 2

Now note that YY* = 0 AA | Hence ||Y|[* = |[YY!]] = [|A|]°.

Hence [JA|]2 = 1.

When n is odd say n = 20 + 1, considering the following bipartite graph
with 20 +1 = [ + (I 4+ 1) vertices and arguing as above will do the job.

AVAN

We now define the Jones quotient J,(7) for 7 € {1sec? (o + om > 2}
Suppose T € {%secg(;ﬁ—l— : m > 2}. Let N C M be an inclusion of finite
dimensional C* algebras which admits a Markov trace of modulus 7. Let
Mo C My C My C --- be the Jones tower. Let J,(7) C M, be the C* al-
gebra generated by 1,e;,e9, -+ ,ep—1. We set J;(7) = C for i = 0,1. Then
En—1(Jn(7)) C Ju—1(7). Then we have a tower J,,(7) C Jp41(7) of finite di-
mensional C* algebras and a faithful unital positive trace on {J,, Jn(r). We
refer to [Jon] for the Bratelli diagram of the tower J,,(7) C Jp41(7). From
the Bratelli diagram it follows that the tower J,,(7) C J,41(7) together with
the conditional expectations E,_; and the trace depends only on 7 and is
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independent of the initial inclusion N C M.

Let 7 < é— It is shown in [Jon] that, in this case, there exists a unital
inclusion of type I1; factors with index 77!, and that here too, just as in
the finite dimensional case, one may, by iterated basic construction, obtain
the Jones” tower N C M C (M, e1) C (M, e1,ep) of type II; factors and
conditional expectations E,, : : Myy1 — M, where My = N ,M; = M and
M, = (M,ey,ea, - en_1). The tower M,, C My, 41 has a faithful positive
trace tr on | J,, M,.

Then we have the following,
(1) tr(z) = tr(En_1(x)) if x € M,,.
(2) tr(zen) = 7tr(z) if € M,
(3) en commutes with M,,_.
(4) enzen = Ep_1(x)e, if z € M,,.

Also the ey, s satisfy the TL relations. Now J,(7) is defined as in the finite di-
mensional case. As in the finite dimensional case, the tower J, (1) ¢ Jnt1(1)
together with the conditional expectations E,, : Jny1(7) — Jp(7) and the
trace depends only on 7 and is independent of the initial inclusion N C M.
We refer to [JS] for the definition of type II; factors and the basic construc-
tion for type Il factors.

From now on Let el,el,---el | denote the idempotents in T,(r) and
el‘],ezj, --€,_1 denote the 'Jones’ projections in J, (7). Suppose ¢! and

J denote the corresponding conditional expectation and let T;(t) = C for
t = 0,1. By the universal property of T, (7) there exists a unique map
&n @ Tu(1) — Jo(7) such that ¢, is unital and dnlel) = e/. Note that
$nt1(a) = ¢n(a) if a € T,,(7). Hence we can and will denote the maps ¢n,
by ¢. The algebra J,(7) is called the Jones quotient of 7T, (1)

Note the following properties of ¢:
(1) The map ¢ is + preserving.
(2) dlen(a) = 61(6(a)) if a € Tnya (7).
(3) d(trT(a)) = tr'(¢(a)) if a € Tn(7).

(1),(2) and (3) can be proved by induction on n and by noting the fact that
{e+ i mely, cx,2,y, € T(7) and r € N} = Thia (7).
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Recall the polynomials Pk()\) and the Jones Wenz! projections fk deﬁned
in chapter 2. Let f = ¢(f%).

Proposition 13. If Py(7) # 0 for k =1,2,--- ,n~1 then f{ = 1— f 11 e
for2 <k <mn. S

Proof. Let k; > 2. Since f =0fori e {1 2, — 1}, it follows that
1- f,;’ > el v eJ V.- v ek ;- But 1 — fk is in the algebra generated by
€1,62, - €h_1. Thusl-»fkj<61\/€ \/eiC 1

Hence 1 — fk =elVvelv...v ek_l. This completes the proof. O

We refer to [Jon] for the following proposition.

Proposition 14. If Pk T) # 0 for k = 1,2,---n— 1 then dim Jip(7) =

qu (Qk) fm" k=1,2,--- ,n—1. Hence ¢ : Ty (1) — Jp(7) is an isomorphism
fork=1,2--- n—1,

Hence if v < % any C* representation of Ti(7) is a C* representation of
Jk(7). In the next chapter, we will prove that if 7 = Xsec?( 1), any CF

representation 7 for which w(el) v mw(el)--- v w(ef_,) = 1 factors through
Ji(7) when k > n.

Let us recall the Murray von Neumann equivalence. Let M be a finite
dimensional C* algebra. Let p, ¢ be projections in M. We say p is Murray
von Neumann equivalent to ¢ if there exists w € M such that w*w = p and
ww* = ¢. Note that in J,(7) all the e;s are Murray von Neumann equivalent.

Let 7 = 45662(n+1) where n > 2. Then Pp(r) #0fork=1,2,---n—1 but

P.() = 0. Note that tr/(fJ) = B,(r) = 0. Since ¢r is faithful, f/ = 0.
Hence ef Veg V- Vel , = 1in J(7) for k > n. We will prove in the next
chapter that the kernel of the map ¢ : T(7) — Ji(7) is the ideal generated
by fI in Ty(7) for k > n. We need the following proposition for that.

Proposition 15. Let 7 = 48662(n+1) for some n > 2. Then Jyi1(7)
together with ej is the basic construction of the pair (Jp—1(T) C Jx(7),tr)
fork > n~1. That is, if (Ji(7),€) denotes the basic construction then there
exists a unique 1somorphism W : (J(7),e) — Jii1(7) such that ¥(a) = a if
a € Jp(7) and ¥(e) = ef .

Proof. Let k > n — 1 be given. We apply Lemma 8 with f = eg to prove
this. €] , is the unique trace preserving conditional expectation of Ji(7)
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onto Ji_1(7). Clearly (1), (2) of lemma 8 are true. Also, e] commutes with

Ji—1(7). Now let zej = 0 for some & € Jy_1(7). Then yxe] = 0 for ev-
ery y € Jy_1(7). Hence for y € Jp_1(7), Ttr(yz) = tr(yze]) = 0. Hence
tr(yz) = 0 for every y € Jy_1(7). Since tr is faithful, it follows that = = 0.
Hence (3) of lemma 8 is satisfied.

Let p be a central projection in Jy41(7) such that p > ef. Leti€ {1,2,--- ,k}
be given. Let w € Ji41(7) be such that w*w = ey and ww* = e]. Now
e;’p = ww*p = wpw* = weipw* = we’lgw* = ww* = eiJ. Hence p > e;-] for

every i € {1,2,--- ,k}. Hence p > elVejVv---Vel >1—f] =1 by the
observation preceeding this proposition. Hence (4) of lemma 8 is satisfied.
The proof is complete by applying lemma 8. O
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Chapter 4

Maximal C* quotient of T,(7)

4.1 Maximal C* qoutient of a x algebra

Let A be a unital C algebra. For a € A, it’s spectrum, denoted c4(a) is
defined by ca(a) = {A € € : a — Al is not invertible in A}. Let B be
a unital finite dimensional C algebra. Let 7 : A — B be a unital algebra
homomorphism. Then og(n(a)) C o4(a) for a € A.

Suppose A is a unital finite dimensional C algebra. For a € A, let m(a)
be defined by m;(a)(b) = ab. Let End(A) denote the space of C linear endo-
morphisms of A. Then m; : A — End(A) is a unital algebra homomorphism
which is 1-1. Since ogpq(4)(m(a)) is nonempty, it follows that o4(a) which
contains o gpgca)(mi(a)) is nonempty. Now we will show that o4(a) is fi-
nite by showing o4(a) is contained in the set of zeros of the characteristic
polynomial of m(a).

Lemma 9. Let A be a unital finite dimensional C algebra. Leta € A. Then
oala) is nonempty and finite.

Proof. We have already shown that o4(a) is nonempty. Now for a polyno-
mial p(z) over C, p(m(a)) = m(p(a)). Since 7;(a) satisfies it’s characteristic
polynomial, it follows that 3 a polynomial p(z) over C such that p(a) = 0.
Now we show that A € o4(a) implies p(A) = 0. Let A € € be such that
p(A) # 0. Then p(z) — p(A) = (z — A)q(z) for some polynomial q. Now
—p(A) = pla) — p(A) = (a — A)g(a) = q(a)(a— A). Hence :p?—gfﬁ is the inverse
of a — A. Thus A ¢ v4(a). Therefore o 4(a) is contained in the zero set of p.
As a result we conclude that o4(a) is finite. -

Let A be a finite dimensional unital x algebra. Let m : A — B be a C*
representation where B is a C* algebra. Then for a € A,

Im(@)II* = lIn(a*a)|| < sup{|A| : A € op(n(aa))}
< sup{|A\|: A€ oa(a*a)} since op(w(a*a)) C oa(a*a) .
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For a € A, define
llall = sup{||w(a)|| : m: A — B is a * algebra homomorphism where B is a C* algebra}

Then |la|] < oo Va € A. Let I = {a € A :||a|| = 0}. Then [ is an ideal in
A.

For a € A, note that ||a + I|| = ||a|| depends only on a + I. Then A/I be-
comes a C* algebra with the above norm. Let ¢ : A — A/I be the qoutient
map.

A/I has the following universal property:

Let B be a C* algebra and let 7 : A — B be a x homomorphism. Then
3 a unique » homomorphism 7 : A/I — B such that 7 o q = 7.

Definition 9. Let A be a unital finite dimensional x algebra. A C* algebra
B together with a * algebra homomorphism q : A — B is said to be a maxi-
mal C* quotient of A if it has the following universal property:

Given a x homomorphism 7 : A — C where C is a C* algebra, 3 a unique %
homomorphism 7 : B — C such that 7o q = .

Note that maximal C* quotient of a unital finite dimensional x algebra exists
and is unique upto a unique isomorphism.

Let 7 € (0, %]U{%secz(;l—}-l—) :n > 2}, Nowif Pp(r)#0fork=1,2,---n—1
then the natural map ¢ : Typ(r) — Jx(7) is a % isomorphism. Hence if
Py(r)#0for k=1,2,--- ,n—1 then (Ji(7), ¢) is the maximal C* quotient
of Tp(7) for k=1,2,--- ,n — 1. In particular, if 7 < % then (Ji(7), @) is the
maximal C* quotient of Tp(7) V k > 1.

Let 7 = i—secQ(n—i—T) where n > 2. Let 1 : Ti(r) — C be the * homo-
morphism defined by 1(ef) =0 for i <k — 1 and 1(1) = 1 (which exists by
the universal property of T;(7)). We will prove that (Ji(7)®C, @ 1) is the
maximal C* quotient of T (7) when k£ > n. This requires the determination
of the kernel of the map ¢ : Ty(7) — Jp(7) when k > n. We need the

following lemma for that.

Lemma 10. Let N C M be a unital inclusion of finite dimensional C* alge-
bras with a faithful, unital, positive trace tr. Then M is a N — N bimodule.
Let (M, en) denote the basic construction. Then the M — M bimodule ho-
momorphism ¥ : M ®n M — (M, en) defined by ¥(x ® y) = zeyy is an
isomorphism.

Proof. The map ¥ is well defined since ey commutes with N. Consider

M as a right N module. Then (M, epy) is just the space of right N linear
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maps of M. Let E : M — N be the unique trace preserving conditional
expectation. Let M* dente the space of right N linear maps from M to N.
Then M* is a left N module. For b € M, define Ey(x) = E(bz) for z € M.
Then E, € M*. Define 8 : M — M* by 6(b) = Ej. Clearly § is left N linear.

Assertion: 6 is an isomorphism.

Suppose 0(b) = 0 for some b € M. Then tr(bz) = ir(E(bx)) = tr(Ep(z)) =
0 Vz € M. Since #r is faithful,we have b = 0. Hence 6 is one one. Now let o €
M* be given. Then ¢r oo is a linear functional on M. Since M is a Hilbert
space, 3 b € M such that tr oo = {, b*). Hence tr(o(z)) = tr(bz) Yz € M.
Hence tr(o(z)n) = tr(o(zn)) = tr(ban) = tr(E(bzn)) = tr(E(bx)n) for
z € M,n € N. Since tr is faithful on N , o(z) = E(bxz) Yz € M. Hence
o = 0(b). Therefore, 6 is onto. This proves the assertion.

Since C* algebras are semisimple, M as a right NV module is semisimple.
M is also finitely generated as an N module. Hence M is finitely genrerated
projective and hence flat. Hence id ® 0: Moy M— MeSy M"is an iso-
morphism. Since M is finitely generated and projective, the canonical map
x : M @y M* — Endn(M) given by x(z ® y*)(m) = zy*(m) is one one.
Hence x ¢ id ® 8 is one one.

Assertion: ¥ = y o (id ® 0). Let z,y,m € M be given. Now
(x o (id ® 8))(z @ y)(m) = z6(y)(m) = zE(ym) = zeny(m).

Hence x o (id ® §) = ¥. This proves the assertion. Hence ¥ is one one,

The image of ¥ is clearly an ideal which contains ey. Since the central
support of ey in (M, en) is 1, it follows that ¥ is onto. Hence ¥ is an
isomorphism. O

Now We compute the kernel of the map ¢ : Ti(r) — Jp(r) for K 2 n

when 7 = %secQ(ﬁ—I) where n > 2. The proof of the following proposition

can be found in [JR]. We include the proof for completeness.

Proposition 16. Let 7 = %secz(ﬁ%) where n > 2. Then the kernel of the
natural map ¢ : Ti(T) — Je(r) for k > n is the ideal generated by fL in

Ti(7) for k> n.
Proof. By induction, 1(f{) =1 for 0 < k < n. Hence fF 0. We will write
Ty, for Ty (7).

Let Ak = Tk for 0 < k <n-— 1. Let Ak = Ak_le%:lAkw.l for k > n.
Then Ay C Tk.
Assertion: For every k > 0,
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(1) Ay is a subalgebra of 7.
(2) ‘5;{_1(Ak) C Ag-1.
(3) Ay is a Ag_1 — Ak-1 bimodule.

We prove this by induction on k. Clearly (1), (2) and (3) holds for k& <
n — 1. Now assume (1), (2) and (3) holds for k. Let z,y,z,w € Ay. Now
(zery)(zerw) = wel_(yz)epw. Now (1), (2), (3) for Ay, implies zel_(yz) €
Ay, Hence (zely)(zefw) € Agy1. Hence Ay is a subalgebra of Ty Let
z,y € Ay. Then el (zeyy) = 7oy € Ay since Ay is a subalgebra of Tj.. Hence
ef(AkH) C Aj. Since Ay is a subalgebra of Tk, it follows that Ai4q is a
Ay, — Ap bimodule. This proves the assertion.

Assertion : The map ¢ : Ay — Ji is an isomorphism.

We prove the assertion by induction on k. The map ¢ : Ay — Ji is an
isomorphism for & < n — 1 is exactly propositionl4. Now assume that ¢
is an isomorphism for 0 < [ < k. Let ¢ ® ¢ denote the isomorphism from
Ap®a,_, A to Jy @y, Jr when one identifies A; with J; when [ < k via ¢.
Let x : Ak ®4,_, Ax — Aki1 be defined by x(z®y) = $e£y. Let ¥ be the
map of Lemma 10 where N = Ji_1, M = J; and the projection ey = e{
Now ¥ 0 ¢ ® ¢ = ¢ o x. By induction hypothesis, ¢ ® ¢ is an isomorphism.
Since ¥ is also an isomorphim, it follows that ¢ o x is an isomorphism. By
definition, x is onto. Hence ¢ is one-one. Since ¢ o x is onto, ¢ is onto.
Hence ¢ : Agy1 — Ji41 is an isomorphism. This proves the assertion.

For k > n, Let I denote the ideal in Ty(7) generated by fF. Clearly
I C Iyy1. Observe that TkefT . is an ideal in Tjpy; which contains eg.
Since e{_l = :11:(6{“16,{6{_1) it follows that TkefT % contains e{_l. Similarly
it contains elT,eg, “e- ,e{_g. Hence 1 — f;{ € Tke{Tk for k > n— 1. Hence
Ty +Tkeng = Tgy1 for k > n—1. We claim that Iy + Ax = Ty for k > n.
We prove this by induction on k. We have just proved that the claim is true
for k = n. Now assume the claim is true for k. Since Ty41 = Ixy1 + Tke;{Tk,
it is enough to show that if 2,y € T} then :L'egy € Iy1+ Apy1. By induction
hypotheis, 3z,w € I} and u,v € Ay such that z = z +w and y = w + v.
Now me{y = ze{w + ue{w + zezv + ue{v. Since Iy C Ipy1 , it follows
that zegw + uegw + zezv € Ixy1. By definition uegv € Agi1. Hence
Iii1+ Akr1 = Tg+1. Thus completes the induction and proves the claim.

Now we prove that the kernel of the map ¢ is I for K > n. Let £ > n
be given. Since fJ = 0, it follows that I C ker(¢). Now let z € Ker(¢)
be given. Let z € Iy and w € Ay be such that z = z + w. Then 0 = ¢(w).
Since ¢ : A, — Ty is an isomorphism, it follows that w = 0. Hence = € Ij.
Thus ker(¢) C Ix. Therefore ker(¢) = I. This completes the proof. O
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Now We prove the much promised fact that when 7 = $sec?(;5y) where
n>2, (Ju(r) ®C,¢ @ 1) is the maximal C* quotient of Tx(r) when k 2 7.
We begin with the following theorem. '

Theorem 2. Let 7 = isecz(nH) wheren > 2. Letk > n. Let A bea
C* algebra. Let m : Ty(t) — A be a x algebra homomorphism such that

\/i’:}l1 m(e;) = 1. Then 3 a unique  algebra homomorphism 7 : Ji(T ) —
Ty (1) such that 7o ¢ = m.

Proof. Tt is enough to show that = = 0 on ker(¢). Since ker(¢) is the ideal
generated by fI, it is enough to show that 7(f) = 0.

Assertion: w(f)m(ef) =0for 1 <i<k—1.

Note that fgeiT =0for 1 < i< n-—1. Henceif k = n then we are
done. Hence assume k& > n. Now

2 T}
eT n = nfn 17 Pn 1E )fn_lezeg 1‘5ng—1
-
_ Po(1) 1.1
- Pn_‘l(,r)enfn—l
=0

Hence w((e;";fn )L fTy)) = 0. Hence n(el fI) = 0. Hence taking adjoints

T
m(flel) = 0. Now let ¢ be such that n < i < k. Let w; = efel |- enyre
Then wzeTw* = T””ie?. But w; commutes with 7},. Hence we have
r(ffel) = ,,rl (w7 (fEel)m(w?) = 0. This proves the assertion.

Since \/*=! 7(el) = 1, it follows that 7(fL) = 0 which completes the proof.
O

Theorem 3. Let 7 = %secz(;f:i) where n > 2. Let k > n. Then the mazi-
mal C* quotient of Ti(7) is (Ju(7) ® C, ¢ @ 1).

Proof. We will show that (Jp(7)®C, ¢® 1) satisfies the universal property of
the maximal C* quotient. Suppose A be a C* algebra and Let 7 : Tr(7 ) — A
be a x algebra homomorphism. By considering the image of 7, if necessary,
we can assume that 7 is onto. Then = is unital. Let p = \/Z 1T (e )-
Then p is a central prOJecmon in A. Let m : Tp(r) — pA be defined by
m1(a) = pw(a). Then \/z ! 71(el) = 1. Hence by Theorem 2, 3 a map
71 : Ti(7) — pA such that 77 0 ¢ = 7;. Now define 7 : Ji(7) @ C — A by
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7(a,A) = 71(a) + A(1 — p). Since 1 together with nonempty reduced words
form a basis for Tj(r), it follows that m(a)(1 — p) = 1(a)(1 — p). Hence
7o (p® i) = 7. That such a map is unique follows from the ontoness of
¢ @ 1. This completes the proof. O
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