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Preface

The main aim of this thesis is to determine the maximal C* quotient of the 
Temper ley-Lieb algebra Tn(r).

In chapter 1, we define Tn(r) for every n  €  N  and for every non zero com­
plex number r .  The algebra Tn(r) is defined as the universal <D algebra 
generated by 1 , e \ ) 6 2 , • • • en_i satisfying the following relation:

ef = €i for i € {1 , 2 , • • • , n — 1}
ejCj =  Cj-ej if |i — j\ ^  2

ejejCj =  re j if | i - j |  =  l

We prove that Tn(r) is a * algebra by identifying Tn(r ) with the diagram 
algebra D n{0) when r  =

In chapter 2, Jones- Wenzl idempotents are defined. Wenzl’s theorem, which 
states tha t if T L{t ) =  U ^ T /^ r )  admits a non-trivial C* representation 
then r  <E (0, |]  U { |sec 2 ( ~ y )  : n > 2}, is proved.

In chapter 3, we obtain C* representations of T L ( t ) when the parameter 
t  G (0, |]  U { |sec 2 (^p j) : n > 2}. Jones’ basic construction for inclusion 
N  C M  of finite dimensional C* algebras together with a faithful trace 
is explained. When the trace is Markov of modulus r ,  we can repeat the 
Jones’ basic construction and obtain a tower of finite dimensional C* alge­
bras called the Jones tower and a sequence of projections called the Jones 
projections and consequently a sequence of quotients Jn (r) for Tn ( r ) .

In chapter 4, we obtain the maximal C* quotient of Tf.(r). If r  < the 
quotient map </> : 7fe(r) —> Jfc(r) is * algebra isomorphism. When the pa­
rameter r  =  \sec 2 { ^ i ) ,  the map $ : Tk(r) -* Jk{r) is an isomorphism for 
1 < k < n — 1. For k >  n, Let 1 : Jfc(r) —> C be the trivial map for which 
1 (ei) =  0. Then we prove tha t (Jfc(r) © C, </>© 1) is the maximal C* quotient
of Tfc(r) when k > n. Much of the material in this thesis can be found in
[Jon].
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Chapter 1

The Temperley-Lieb Algebra

1 .1  The Temperley-Lieb algebra Tn(r)

We consider only €  algebras. Let r  be a nonzero complex number.

D efin ition  1. Forn > 2, let Tn(r) be the C  algebra generated by 1, ei, e-z • • • en_i 
subject to the following relations :

ef =  ei f o r i  6 {1,2,-•• , n -  1} 
eiej = ejBi i f  | i - j | > 2

— rei if  \ i - j \  = 1

Tn(r) has the following universal property. Let A be a unital C algebra.
Let / i ,  / 2, - • • , / n - i  G be such that

f t  = fi  for i G {1,2,--- , n  — l} 

f i f j  = f j f i  if 

f i f j f i  = Tfi  if = l

Then there exists a unique algebra homomorphism <f) : Tn{r) —»■ A  such that 
4>(ei) = fi  and 0(1) =  1a where 1a denotes the multiplicative identity of A.

We now proceed to prove tha t Tn(r ) is finite dimensional. By a word on
1, ex, e2 , • • • , e n - \  we mean a product • • • e^ . By convention empty
product denotes 1. Note tha t words on 1, ei, 62, • • • , en_i span Tn(r).

L em m a 1. Let w be a word on 1, e\, ■ • • , en_i. Then

W  —  T  ( e i 1 6 i 1 - l  • • • 6 j 1 ) ( 6 j2 6 i 2 — 1  ' ’ ' ^ 2 )  ’ ' ’ — l  ® ? p )
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1 < i\ < i2 < ■ ■ ■ ip < n — 1

1 < j i  < 32 < ■ ■ ■ jp < n  -  1

h  > j u h  > 32, ■ ■ ■ ,iP > j P

Proof.The proof can be found in [Jon], We prove this by induction on 
n. Clearly the result is true for n — 2. Now assume that any word in 
1) ei, e2 , ■ ■ ■ , en~i is of the required form. Let w be a word in 1, e\, ■ • • , en .
If w does not contain en then we are done. So suppose tha t w contains e„.

Assertion, w = Tkw\enw2 where W\,W2 are words in 1 , ei, 6 2 , ■ ■ ■ , en_i.

w has the form Vienvenv2 where V\,V2 are words in l , e i , e 2 ,-- - ,en and 
1? is a word in 1 , ei, e2 , • • • , en~i-
If v does not contain en_i then en commutes with v and hence w = v\venv2 - 
If v contains en_i then by induction hypothesis v = Tru\en^ iu 2 where u\,U 2 

are words in 1, ei, ■ ■ ■ , en_2 . Now

w = TrviUienen^ ienU2V2 

w = Tr+1VlUienU2V2

In any case w is r l multiple of a word which has one en less. Repeating this 
process proves the assertion.

Hence w =  r kw\enw2 where w\./W2 are words in 1 , e \ ,e 2 , - ■ ■ , en„ i. By 
induction hypothesis

W2 = Tlv2 {en- i e n - 2 • • • , ejp)

where v2 is a word in 1, ei, e2, ■ ■ ■ , en~2 - ( The product (en_ ie n „ 2 • • • eJp) 
could be empty). Hence

w = Tswiv2 (enen- i  ■ ■ ■ ejp) 

where W1V2 is a word in 1 , ei, e2, - ■ ■ , en_i

Hence by induction hypothesis,

w T {ei ieii — 1 ' ‘ ' ej i ) (ei2eJ2- l  ' ' ‘ ^72) ' ' ' ieipeip~ 1 ' ' ' ejp) 

where k G jN U {0} and

1 < ii < *2 < ■ ■ ■ ip < n — 1 

h  > j i , *2 > 3 2 , ■ ■ • , ip > jp

where k £ N U  {0} and
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Hence we have written w in the form needed with i's increasing. Now 
consider such an expression which has the least length. Then we claim tha t 
j ' s  are also increasing. Let

W =  T  ) ( e j 2612-—1 ' ' ‘ ^ 72) ’ ' ' i^ip^ip — 1 ' ' ’ ^ jp )

be such an expression. Suppose j \  > j 2- Then

w = r k{eh eh - 1 • • • ej l )(ei2ei2_i • • • ej2) • • • (eipeip_i • • • ejp) 

w = Tk(elleh ^  1 • • • ejl+1)(ei2 • • • en ejl+1eh  • • • eh ) - • • ( e ^ e ^ - i  • • • ejp)

W  —  T  ' ( e j j C j j  — l  • • • C j2 )  (G'i -2 6 * 2 — 1 ' ' ’ ® j l + 2 )  " * ' —1 ' " ' ®?p)

which has length decreased by one which is a contradiction. Hence j i <  j'2 . 
Similarly j r < j r+i- This completes the proof. □

Now we consider the following combinatorial problem. Consider H? C R 2. 
Consider paths 011 Z2. The only allowed moves are either up or right i.e. 
from (a, b) one can go to either (a +  1, b) or (a, b +  1).

P ro p o s itio n  1. The number of paths from  (0,0) to (n, n) where n € N  
which lie in the region y < x  is (2”) . Let pn = (2" ) . Then pn satisfy
the following recurrence

Pi = 1
n

Pn = 'Y^P i-iPn-h  for n >  2.
1 = 1

For a proof,we refer to [GHJ], □

The relevance of proposition 1 in our context is as follows:
Given (h , i2, , ip) and (ji, j 2, • • • , j p) such that

1 <  h  <  *2 <  • • • i p  <  I < J 1 < J 2 < - - -  j p  <  h  >  J i , h  >  32,  ■ ■ ■ , i p  >  j p

one can associate the path from (0,0) to (n, n) given by

(0 ,0)  - f  ( i i , 0 )  -*■ ( i i , j i )  -»• ( i2, j i )  • • • ( i p . j p )  -+ 0 , J p ) —• («>«)

This is clearly a bijection from the set of paths from (0, 0) to (n, n) to the set 
of ordered pairs , ip), ( j i , 32 , • • • , 3p)) which satisfies the following
condition.

1 <  h  <  h  <  ■ • • i p  <  n - l ,  1 <  j i  <  32 <  ■■■ j p <  n - 1 ,  h  >  j'i , *2 >  32,  ■ • • , i p >  Jp
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Hence we get an onto map from the set of paths from (0,0) to (n ,n ) to 

{ ( e il 1 — 1 ■ ' ' C j i  ) ( e 82 e i2  — 1 ' ■ ‘ ^ J 2  )  ' ' ' ( e i p e i p — 1 ' ■ ' e j p )  •

1 < h  < h  < ■ ■ • ip < n -  1; 1 < j x <  j 2 < ■ ■ ■ j p < n  -  1; i x > j ±, i2 > j 2! • • • ,i 

which spans Tn[r) by Lemma 1. Hence we have proved the following result.

P ro p o s itio n  2. The algebra Tn(r) is finite dimensional and it's dimension 
is almost ^ ( 2nn).

1.2 Diagram algebra Dn((3)

Fix a non-zero complex number (3. Let m ,n  be nonegative integers such 
tha t m  — n  is even. By an (m, n) K au ffm an  diagram we mean a rectangle 
in the plane with m  points on the top and n points on the bottom and 
curves which connect pairs of points such that the curves do not intersect.

A (3, 5) diagram is shown below

Let a be an (m, n) diagram and b be an (n,p) diagram. Let b0 a  denote the 
(m,p)  diagram obtained by placing a on the top and b on the bottom and 
removing the loops. Define

ba =  f3rb © a

where r denotes the number of loops removed.
For example,

ba = (3

Let H o m (m ,n ) denote the (D vector space with (m, n) Kauffman diagrams 
as basis. The ‘multiplication’ tha t we have defined on diagrams extends to 
a bilinear map
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H o m (m ,n ) x H om (n ,p ) —> H o m (m ,p ) 
which is associative.

For a an (m, n) diagram and 6 a (p, q) diagram, a®6 denote the (m +p, n+ g) 
diagram obtained by horizontal juxtaposition.
For example,

Let 1 € Hom{  1,1) denote the (1,1) diagram shown below:

1

Let l n =  l® l< g)l---< g)l, the (n, n) diagram with all strands coming verti­
cally down.

Define D n(J3) = Hom(n, n). Then Dn(f3) is a unital C algebra with l n 
as the multiplicative identity The map a -> a<g> 1 is an embedding of D n((3) 
into Dn+i(P). W ith this embedding in mind, we write Dn(j3) C D n+1 (/3).

Let Ei denote the following diagram in D n((3)

i i + 1

Then we have the following relations:

E f  = (3Ei for % e  1, 2, - • • , n -  1 
EiEj =  EjEi i f  \i — j\ It 2  

E jEjE i = Ei i f  |% -  j ] =  1
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Let e f  =  j;Ei.
Then we have the following relations:

(e f  )2 =  ( e f ) for j € 1,2, ••• , n - 1

e f =  e f  e f  i f  \i — j( ^  2

e f  ef  e f  =  — e f  i f  \i -  j |  =  1

For O ^ r  € € ,  a nonzero complex number, let /3 be such tha t (32 — Then 
by the universal property of Tn(r), there exists a unique unital homomor­
phism 4> '■ Tn{r ) —*■ Dn((3) such that <p{ei) — e f . We now proceed to prove 
tha t (f> is an isomorphism.

L em m a 2. The dimension of Dn{(3) is ^j-j- (2̂ ) .

Proof. Let pn denote the number of (n, n) Kauffman diagrams. Think of an 
(n, n ) Kauffman diagram as a disk with 2n  points on the boundary with n 
curves connecting pairs of points without any intersection. Then we have 
the following recurrence relation

Po =  Pi =  1
n

Pn =  n > 2.
i=l

Hence, by proposition 1, (2”) • □

L em m a 3. {1, Ei : i — 1, 2, • • • , n — 1} generate the algebra Dn(f3)

Proof. We prove this result by induction on n. If n = 2 the result is clear. 
Let a be an (n, n) Kauffman diagram. If tha t a has a strand tha t comes 
straight down then a = b® 1® c with b € Dr (/3) and c € Ds{0) with r , s < n .  
Hence by induction hypothesis a can be written as a scalar multiple of E[ s 
and we are done. Now we consider two cases.

Case 1 . a has a through string i.e a string which joins a top point with a bot­
tom point. Let us call a strand tha t comes vertically down a vertical string. 
Pick the rightmost through string. Let u(a) be the number of vertices to 
the right of the rightmost through string of a (inclusive of the vertices that 
the rightmost through string joins).
We prove tha t a can be written as a scalar multiple of a product of E[s by 
induction on v{a). If u{a) — 2 then the rightmost through string is ver­
tical and we are through. Assume tha t it slants from right to left. Then
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a = z 6 <g>l®c<g)d with b G H om (l,k),  c G Hom(0,2r)  , d G H om (t,s)  io r 
some non negative integers l ,k ,r ,  s , t  with r  > 0 .

Let U G H om{2,0) and D G Hom{0,2) be the following diagrams.

Let Lf =  U (g> U <g) • • • <g> U (r times). Similarly fY is defined. Note tha t 
1® C =  (l® U r ® c)(nr ® l). Let b =  l fe® l® U r ®c<g>ls and c =  6® nr ® l® d . 
Then a = be where b has a vertical string and u(c) < v{a). Hence by induc­
tion a can be written as a scalar multiple of a product of E[ s. The proof is 
similar when the rightmost through string slants from left to right.

Case 2. a has no through strings. By a concentric loop we mean a Kauffman 
diagram which is either Ur o (l® a® n r - 1® 1) where a  is a ( 2 r - 2 ,0 Kauffman 
diagram (r > 2) or (1® 7®  U2s“ 2 <g> 1) o n s where 7  is a (0, 2s -  2) Kauffman 
diagram (s > 2). An example of a concetric loop is given below.

If a does not have a concentric loop, then a = E iE 3 ■■■■ Hence assume 
tha t a has concentric loops. Then a = b ® c ® d  where c is a concetric 
loop in Horn,(2k +  2,0) (assuming c is on top ) and where b G H om (r,s)  
and d G Hom(p,q) for some nonegative integers p ,q ,r , s ,k  with k >  0 
Then c =  Ufe+1(l ® a <g> flfe) <g> 1)- Let c =_lr ® 1 ® a <8> H <g> 1 ® l p- Let 
b =  b ® Ufc+1 ® d. Then a = bc where both b, c has one concentric loop less 
than tha t of a. Therefore, by induction on the number of concetric loops 
tha t a has, it follows tha t a can be written as a product of diagrams which 
have no concentric loop. Hence a is a product of E[s. This completes the
proof.

T h e o re m  1. Let (3 be a nonzero complex number. Let r  =  jp . Then 
the unique unital algebra homomorphism <f> : Tn(r) -*■ Dn{(3) such that 
^(ej) =  e f  is an isomorphism.



Proof. By Lemma 3, 4> is onto. By rank-nullity theorem,

1 /2n
rank(cb) + nullity(d>) = dim Tn(r) < ----- - In + 1 \  n

1 f 2 n \  ^ 1 ( 2 n \—  ( n ) + n u U , t y W < ~

Hence nullity(^) =  0. Thus (j) is one-one. Therefore <f> is an isomorphism. D

From now on we will identify Tn(r) with Dn(f3) when r  =  J? and e* with 
e f . Note tha t the natural map i : Tn(r) —>• Tn+i(r)  is injective since 
<p(ia) =  (f){a) <8 > 1 for a G Tn(r).

1.3 Trace and Conditional expectation on Dn{j3)

D efin ition  2. Let N  Cl M  be unital C  algebras such that ljv =  1m- A 
linear map E  : M  ^  N  is said to be a conditional expectation if

1 . E (nm ) = n E (m ) and E (m n) = E {m )n  \/n € N ,m  €. M

2. E(n) = n \/n £ N

Now we describe a conditional expectation en : D n+i((3) —> Dn{(5) as follows: 
Let en : Dn+i((3) -> Dn{0) be defined by en(a) = (1„ <g> U)(a <g> 1)(1„ <g> D). 
If a is an (n +  1, n +  1) diagram, then en(a) is obtained by just closing up 
the last strand. Hence if a € Dn {f3) then e~„(a) =  /3a. Let en(a) = ^en(a) 
for a G D n{f3). Then en is a conditional expectation.

D efin itio n  3. Let M  be a unital C  algebra. Let p : M  —»• C be linear. Then 
p is said to be a trace i f  p{ab) =  p(5a)Va, b £ M . The functional p is said 
to be unital if  p( 1) =  1.

Let trn : Dn{j3) —> C be defined by trn (a) =  • • • €n-i) (a )- Note that
trn (a) = trn+i{a) if a G Dn(f3). Hence we can and will denote trn by tr. If 
a is a diagram, let c(a) be the number of loops one gets when one closes all 
the strands. Then tr(a) =  (3c^ '~ n

tr : Dn((3) —> C is a unital trace and satisfy the following properties:

1. tr(x) = tr(en (x)) V x  G Dn+i(f3).

2. enxen =  e„_i(x')en V x  G Dn {(3).

3. t r (e i )  — t  where r  =  - ^ ■
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1.4 * structure on Dn((3)
D efin itio n  4. Let M  be a €  algebra. A  * structure on M  is a function
* . m  -*• M (W e write *(a) =  a*j such that the following holds

1. (a +  b)* =  a* +  b* V a, b € M

2. (aa)* = aa* V a  €  M , a  G C  

5 . (aft)* =  b*a* V a, 6 € M

(a*)* =  a V a € M  

A ~k algebra is a C  algebra together with a * structure.

Now we make D n((3) a * algebra. The * structure is defined on the level of 
diagrams (and then extends conjugate linearly) as follows:
For a diagram a, a* denotes the diagram obtained by reflecting along the
horizontal middle line. Then E* = E,:. If (3 is real, then (et )* -  % ■ Thus
for r  > 0, Tn (r) is a * algebra with e{ selfadjoint.
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Chapter 2

C* representations of T L (r )

In this chapter we will prove Wenzl’s result. It characterises the values of r  
for which T L i r ) admits a nontrivial C* represntation.

D efin ition  5. Let M  be a * algebra. By a C* representation of M  we mean
an algebra homomorphism it : M  —► A where A  is a C* algebras such that
7r (a*) =  (7r(a))*.

By a n o n -tr iv ia l r e p rs e n ta tio n  of Tn( r ) we mean a C* representation tt 
such tha t 7r(ej) ^  0 for some i G {1, 2, • • • , n  -  1}-

First we define Jones-W enzI id e m p o te n ts  in Tn(r). See [Wen].

Define a sequence of polynomials recursively by 

P0(A) =  1 =  Pi (A)
Pfc(A) =  Pfe_i(A) -  APfc_2(A), for k > 2 

The basic properties of Pfc(A) are summarised in the following proposition. 

P ro p o s itio n  3. Lei k be a non-negative integer and let m =  [ |] . Then

1. The polynomial Pk is of degree m. I t ’s leading coefficient is ( - l ) m if
k = 2m and ( -1  )rn(m  +  1) if k = 2m  +  1 .

2. The polynomial Pk has m  distinct roots given by

{ i sec2(¥+l) : J =  ’m ) ’

3. Assume k > 1. Let A G IR, be such that \  sec2(fe+2 ) <  A < 4 sec;2(k+i)•
Pi (A) > 0 for i G {1 , 2, • • • , k} and Pk+i( A) < 0

Proof. For a proof, we refer to [GHJ]. d

Let T L (r)  = U n Tn{r)- Then T L ( t ) is a * algebra generated by l , e i , e 2, ....
When r  > 0, ej’s are self adjoint.

Then
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P ro p o s itio n  4. Let t  be a nonzero complex number such that Pfc(r) ^  0 
for k = 1, 2, • • • ,n . Define fk in T 'L (t) recursively as follows.

fo =  1 =  f i  

fk+i  =  fk  -  ? j = ^ - f k e k f k ,  l < k < n .

Then,

1- fk  € Tfc(r) for 1 < k < n + 1.

2. l —fk is in the algebra generated by {e i,e2, • • • , efc_i} for  2 < k < n + 1 .

3. <*/*)» =  , ( /s e t!2 =  /o r 1 < < n  +  1.

f k is an idempotent for 1 < k < n + 1.

5. f k ei — 0 , Cj/fe =  0 i f  i < k — 1 w/iere 1 < k < n  +  1

6. t r ( f k) = Pk(r)  for  1 < A; <  n + 1.

WTien r  > 0 , fk  is selfadjoint.

Proof. This is due to Wenzl and we include a proof here for completeness. 
The proof is by induction on k. 1,2 • • * , 6 are clearly true for k < 2. Now
assume tha t 1,2 • • • , 6 are true for 1 < k < I where I > 2 .  We will show the
result is true for k = I +  1.

Since fi  is in the algebra generated by l , e i , e 2,--- , e*_i by definition it 
follows tha t f i+i is in the algebra generated by l , e i , e 2,--- ,e*. Hence 
f i + 1 G 2)+i( t ) .  Since 1 -  fi  is in the algebra genrated by ei, e2, • • • , e;_i , by 
definition, it follows tha t 1 -  / ;+ 1 is in the algebra generated by ei, e2, • • • , et.

Now note tha t fi+ifi  — fi+i and fifi+i = fi+i since fi is an idempotent. 
Since fi € T;(r), e^+i commutes with f t . Hence we have,

Pi- i (t )
ei+ifi+iei+i =  ei+i f i ---- fiei+1etei+1fi

-  -^+ i(T) . f 
o ( \ I
p l (T )

Hence (ei+ i/j+ i)2 =  el+ifl+i-
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The proof tha t ( /m em )2 =  f l+1el+1 is similar. Now

f l +1 = f l  ~  f e l f l  + { PPi(rT) ) )  f l e l f l e l f l

__ f 2 0 P l ~ l ( T )  t  „ ,  , ( P[_i(r) \ 2 -Pi(r ) r r
_ / i  2_^ r /ie i/j +  p ^ r ) fieifl

— f l -----r f i e i f i  = fi+i
n i T)

Hence f l+1 is an idempotent. Since / m ej =  f i+if ieh it follows tha t f t+1ei =
0 if i < I -  1. Now f M et =  f e  -  But ( / ,e,)2 =
Hence fi+±ei = 0. Hence /j+ iej =  0 for i < I. Similarly ej/;+1 =  0. Now

H fl+ i)  = tr(f{) -  trifie, fi)
Pl{r)

=  M /0  -  Pp ^  HtiUie-lfi))

= tr(fl) ~  H M i(e i ) f i )

= *r(/,) -

=  Pi{t ) -  rP i- i ir )  = Pi+i {t )

If r  > 0 then Pfc(r) is real. Hence by induction it follows tha t f'ks are self- 
adjoint. □

The idempotents described in the previous proposition are called Jones- 
W enzl id e m p o ten ts .

Let t  be positive. The following result due to Wenzl restricts the values 
of r  for which TL (r)  has a nontrivial C* representation. The proof can be 
found in [Wen], We include the proof for completeness.

T h eo re m  [W enzl]. Let r  be a positive real number. I fT L ( r )  has a non­
trivial C * representation, then t  < \  or r  =  f  sec2( ^ T) for some n  > 2.

We begin the proof with the following lemma.

L em m a 4. Let r  be such that I seC2( ^ )  < r  < |s e c 2( ^ T) for some 
n £ IN’, with n > 2. Suppose tx : T L (r)  —> B {H ) be a * homomorphism, 
where H  is a Hilbert space. Let e[  denote the idempotents in T L (r) .  Then 
the Jones- Wenzl idempotents / J ’s are defined for k =  1 ,2, • • • n + 2. Suppose 
fk  =  7r ( /J )  for k < n +  2. Then
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(1) 1 -  fk  =  ex V e2 V • • • ek- i  for k < n  +  2.

(% )  &n + l f n + l  =  0-

(3) en+\ is orthogonal to f n .

Proof. Note tha t -Pfc(r) > 0 for k = 1,2, • • • n and Pn+\{r) < 0. Hence the 
Jones-Wenzl idempotents are defined for k =  1, 2, • • • n + 2.

By proposition 4, it follows tha t fk&i =  0 for i < k — 1. Hence we have 
ei V 62 V • • • V ek- \  < 1 — fk- Since 1 -  fk  is in the algebra generated by 
ei, e-2 , ■■■ , efc_i, it follows tha t 1 -  fk  < e\ V e2 V • • • ek~\- This proves (I).

Observe tha t en+i f n+ien+i =  en+ifn- But en+i / „ +]en+i is positive
and en+i f n is a projection. Since Pn+i(r)  < 0, it follows tha t en+i f n — 0 
and ( /n+ie„+i)*/n+ien+i =  0. Hence f n+ien+i = 0 and en+i is orthogonal 
to f n. By taking adjoints, we get en+i f n+i =  0. This proves (2) and (3). □

P ro p o s itio n  5. Let H  be a Hilbert space. Suppose e \ ,e 2 ,--- is a sequence
of non-zero projections in B ( H ) satisfying the following relation :

p}t =e* =  e* 
ete3 =ej6i =  0 i f  ji — j\  > 2

BiCjCi =rei i f  \i — j\  =  1

Then r  e  (0, |]  U { \sec2{ - ^ l ) : n  > 2}.

Proof. There exists a nontrivial C* representation of T L ( t ) say 7r which is 
unital and for which 7r(ef) =  e, where e f  denote the idempotents in T L { t) .  
By taking norms on the third relation, it follows tha t r  < 1. Suppose tha t 
r  is not in the set given in the proposition. Then there exists n >  2 such 
tha t | s e c 2( ^ < r  < \sec 2 { ~ i ) .  Then Pk (r) > 0 for k = 1,2, ■■■n 
but Pn+\( j )  < 0. Hence, the Jones Wenzl idempotents / J ’s are defined for 
k =  1, 2, • • - n + 2. Let //; =  t t ( /J )  for k < n + 2.

From lemma 4, it follows tha t en+\ is orthogonal to f n . But e„+i is or­
thogonal to e\ V e2 V • • • en_i which is, again by lemma 4, 1 — f n - Hence 
en+i = en+i f n + en+i ( l  — f n) =  0 which is a contradiction. This completes 
the proof. D
Now we will prove the previous conclusion without the orthogality assump­
tion of e's.
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P ro p o s itio n  6. Let H  be a Hilbert space. Suppose ej, e2, ■ ■ ■ is a sequence 
of non-zero projections in B (H ) satisfying the following relation :

4  =  e*
de j =ejei i f  |i — j\ > 2 

eieja  =rei i f  \ i ~ j \  = l

Then t  € (0, | ]  U {±sec2( ^ )  : n  > 2}.

Proof. Suppose tha t r  is not in the set described above. Then there 
exists n  > 2 such that |s e c 2( ^ )  < r  < I sec2( ^ ) .  From lemma
4, it follows tha t en+1f n+1 = 0. Also e i fn+1 =  0 for i < n. Hence 
/n+ i fi 1 — ex Ve2 V • • • Ven4_x =  fn+2- But fn+2 ^  fn+i- Hence / n+i =  f n+2- 
Let fc be the least element in {2, 3, • • • ,n }  for which fk+i = fk+2 - Let 
9i =  ek+ifk-i for i > 0. We will derive a contradiction by showing tha t g 's 
satisfy the hypothesis of proposition 5.

Since ek+i commutes with f k^  for i > 0, it follows tha t gSs are projec­
tions. For the same reason, g[s satisfy the third relation of proposition 5. 
First, we show tha t g0 ^  0. By the choice of k, f k ̂  f k+1. Hence f kekf k ^  0.
Since f k < f k- i ,  it follows tha t f k- i e k — go ^ 0 .

Now we show tha t gigj = 0 if ji — j\ > 2. We begin by showing gog<2 = 0.
Observe tha t since /j,+1 =  f k+2, we have

e-k+xfk =  ek+i ( f k~ fk+i)ek+i =  ek+i ( ~ ~ ~  f kekf k)ek+i =  T ^ ~ ~ e k+i f k .
Fk(j)  Pk(T)

Since Pk+i ( r )  ^  0, it follows that et+ifk  =  0. By premultiplying and 
postmultiplying by ek+2 , we see tha t ek+2 fk = 0. Hence we have,

9092 =  e k e k+2f k ~  l

= ekek+2 ( fk - i  -  fk )^ k \2^k 
=  efc+2efc(/fc_i -  /fc)efeefc+2 

=  ek+2ek(jy~2̂^ f k - ie k - i f k - i ) e k e k + 2

Pk-2(r)
T Pk^ ( r ) 9092

Since Pfc(r) ^  0, it follows tha t 5052 =  0. Let i >  2. Let us consider the par­
tial isometry w =  (■~)t~~1ek+iek+i^i ■ ■ ■ ek+2 - Since w commutes with ek and 
f k - 1 , wekfk~i  is a partial isometry. Note that (wekf k^i)*wekf k - i  =  g0g2 =
0. Thus, gig0 = wekf k~i(wekfk-~i)* =  0. Hence gigo =  0 if i > 2. Let i , j  be
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such th a t j  > i +  2. Now let u = (^ )J+1efc+iefc+i-i • • • e*. Then u is a partial 
isometry which commutes with f k - i  and +j. Let v = uek+jfk-i- Then v 
is a partial isometry such tha t v*v =  gogj and vv* = g%gj- Since v*v =  0, it 
follows tha t vv* — 0. Thus gigj = 0. Therefore g i ’s satisfy the assumptions 
of proposition 5. Hence we have a contradiction. This completes the proof.
□
Now Wenzl’s theorem follows from proposition 6.
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Chapter 3

Existence of C* 
representations of Tn(r)

In this chapter we will describe C* representations of Tn(r) when the pa­
rameter r  G (0, |]  U { \sec2{ ~ [) : rn > 2}. First we describe the basic 
construction for a pair of finite dimensional C* algebras due to Jones. We 
refer to [Jon] for most of the material in this chapter. But first let us recall 
some basic facts about finite dimensional C* algebras.

3.1 Finite dimensional C* algebras

Let M  be a finite dimensional C* algebra. Then M  is unital. Let {p \ ,p 2 , - • • ,p s} 
be the set of minimal central projections of M.
Let PiMpi =  {x  G M  : pix = xpi =  x}  and pi =  y/dim PiMpi.
Then M  is isomorphic to AfMl(C) © • • • © MMs(C) as C* algebras. The al­
gebra M  is called a fac to r  if i t’s center is trivial. Let jl =  ( p i,/x2, • • • , p s). 
The vector jl is called the dimenstion vector of M .

D efin ition  6. Let M  be a O' algebra. 4̂ linear functional p : M  —> C is 
said to be a trace if p(ab) = p(ba) Va, b G M . The functional p is said to 
be positive if  p(x*x) > 0  Vx G M  and faithful if  p(x*x) = 0 implies x  = 0.
I f  M  is unital then p is said to be unital i f  p( 1) =  1.

Any trace on M n (C) is just a multiple of the usual matrix trace i.e. if
p : M n(<D) -> C is a trace then p((ciij)) = ^J2 il= ian- If p is a minimal
projetion in M n(<C) then p(p) = A. Hence p is determined by it’s value on 
any minimal projection.

Let M  be a finite dimensional C* algebra. Let {p \,p 2 , ■■ ■ ,p s} be the set of 
minimal central projections of M  and let jj, be the dimension vector of M .  
Suppose p  : M  —» © is a trace. Suppose e, is a minimal projection in PiM pi
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and let ti = p(ei).  Let t =

(  i\ \
h

Then t is calles the trace vector

\ tn J
associated to p. Then p is positive if and only if t,; >  0 Vi. The trace p is 
faithful if and only if ti >  0 Vi and it is unital if and only if jl.t =  1.

Let N  and M  be finite dimensional C* algebras such tha t N  C M . We 
always assume tha t the inclusion is unital i.e. I n  — 1m- Let {Pi,P2 , • • • ,p s} 
and {<?i, <?25 • •' j Qr} be the minimal central projections of M  and N  respec­
tively. Then qiPjMqiPj and qiPjNqiPj are factors. Define A„ =  
if pjqi ^  0. If pjqi =  0 then define A^ =  0. Then A is an r x s matrix such 
tha t fl =  U.K. The m atrix A is called the inclusion matrix for the inclusion 
N  C.M.

Let N  C M  be a unital inclusion with inclusion matrix A. Let pM be a 
trace on M  with trace vector t and pN be a trace on N  with trace vector s. 
Then p u  |jv= Pn  if and only if A.t — s.

The inclusion N  C M  can also be described by it’s B ra te lli  d iag ram . 
Let TV C M  be a unital inclusion of finite dimensional C* algebras with 
inclusion m atrix A. Let {qi,q-2 , • • • , qr} and {p i,p 2 , • • • ,p s} be the minimal 
central projections of N  and M  respectively.The Bratelli diagram for the 
pair N  C M  is a bipartite graph with verices {qi,q2 , ' • • qr} U{Pi,P 2 , • • • ,p s} 
where pj is joined to qi with A^ bonds.

Let us recall the finite dimensional version of von Neumann’s double com- 
m utant theorem whose proof can be found for instance in [GHJ]. Let H  be 
a Hilbert space. Let B (H )  denote the space of bounded linear operators on
H . For S  C B (H ),  i t’s commutant denoted by S  is defined as follows:

S  := {x  € B (H ) : xs  = sx  Vs € S}.

Note tha t S  C S " .

T h e o re m  [von N eu m an n ]. Let H  be a finite dimensional Hilbert space. 
Let M  C B (H ) be a * closed algebra such that M  contains the identity oper­
ator. Then M  = M . I f  M  is a factor then M  0  M  is isomorphic to B(H) 
and Hence d im M  d im M '=  (dim H )2.

We end this section with the following lemma. Let M  C F  be a unital inclu­
sion of finite dimensional C* algebras with F  as factor. Then the commutant 
of M  in F  is denoted by Cf (M).
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L em m a 5. Let M  C F  be a unital inclusion of finite dimensional C* al­
gebras. Assume that F  is a factor. Suppose q G M  U Cp(M ) is a nonzero 
projection. Then

(1) qFq is a factor.

(2) CqFq(qMq) =  qCF(M)q.

Suppose N  C M  be a unital inclusion of finite dimensional G* algebras with 
the inclusion matrix A. Then the inclusion matrix for Cf (M)  C Cf (N ) is 
A*.

Proof. If F  = B (H )  for some finite dimensional Hilbert space then qFq = 
B{qH). Hence (1) is true.

Let us first consider the case when q € M. Let x  € M  and y  € Cf {M). Then 
(■qxq)(qyq) =  qxyq = qyxq = (qyq)(qxq). Hence qCF{M)q C CqFq{qMq). 
Now let s & CqFq{qCp(M)q) be given. Then sq = qs = s. Let t € CF{M). 
Then st =  sqqt = sqtq =  qtqs — tqqs =  ts. Hence s € Cf (Cf (M )) =  M .  
Hence CqFq(qCF(M)q) C qMq. Hence taking commutants and using von- 
Neumann’s double commutant theorem CqFq{qMq) C qCF{M)q. Hence 
CqFq{qMq) =  qCp{M)q. The case q € CF(M)  follows from von Neumann’s 
double commutant theorem.

Suppose N  C M  be a unital inclusion of finite dimensional C* algebras with 
the inclusion matrix A. Let F be the inclusion matrix for Cf (M) C Cf (N). 
Let qi, q2, • • • qr be the minimal central projections of N  and p i ,p 2 • • • ,p s 
be tha t of M .  Since the center of Cf (M)  and M  are the same, it follows 
tha t p's and q's are the minimal central projections of Cf {M) and Cp{N)  
respectively. Suppose piqj /  0. Then

r 2 =  dim PiqjCF{N)Piqj 
13 dim piqjCF(M)piqj

_ dim CPiqjFpiqj (PiqjNpiqj)
dim CPiq~Fpiqj(PiqjMpiqj)

For X  =  M  or N ,  Since piqjXpiqj is a factor in PiqjFpiqj, it follows, from 
von Neumann’s theorem, that dim C p^Fp^iP iq jXpiq j)  =
Hence F^- =  Afj. Hence F =  A*. This completes the proof. □

3.2 Basic construction

In this section, We describe the Jones’ basic construction for a unital inclu­
sion J V c M o f  finite dimensional C* algebras with a faithful unital trace.
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We refer to [Jon] for this section. But we include the proofs for completeness.

Let N  C M  be a unital inclusion of finite dimensional C* algebras. Suppose
tr : M  —+ <■D is a faithful unital positive trace. Then for x, y G M , define
(x, y) =  tr(y*x). Then {,} defines an inner product on M .  We denote this 
Hilbert space by L 2(M, tr). Let E  : M  —► N  be the orthogonal projection.

P ro p o s itio n  7. E  is the unique trace preserving conditional expectation of 
M  onto N . That is

(1) E(axb) =  aE(x)b for a,b G N  and x  G M .

(2) E(n)  =  n for n € N .

(3) tr (E (x)) — tr(x).

Further (1), (2) and (3) determine E  uniquely.

Proof. Let a,b £ N  and x  G M  be given. For n G N ,  we have

{aE (x)b ,n ) — tr(n*aE(x)b)
=  tr(bn*aE(x))
= (E(x), a*nb*)
=  {x,a*nb*)
=  tr(hn*ax) = tr(n*axb)
= {axb , n) =  (axb, E(n))
=  (E(axb),n)

Hence (aE(x)b, n) — (E(axb), n) for every n  G N.  Thus E(axb) =  aE(x)b. 
This proves (1). Since E  is the orthogonal projection of M  onto N ,  (2) is 
true. Let x  G M .  Now tr(E (x))  =  (E (x ) , l)  = (x ,E (l)}  = (x , l )  — tr(x). 
Hence (3) is true.

Let E  : M  —» N  be linear such that (1), (2) and (3) are satisfied for E ' . Let 
x  G M  be given. Then for n G N , {E  (x),n) — tr(n*E'(x)) = tr(E'(n*x)) = 
tr(n*x). A similar calculation with E  shows tha t (E(x), n) =  tr(n*x). Hence 
(E  (x),n)  =  (E(x), n) for every n  G N.  Hence E(x)  =  E ’ (x). Hence 
E  = E '.  □

We denote E  by e^r when we think of E  as an element in B (L 2(M, tr)). For 
x  G M ,  define 7Ti(x)(y) = xy  for y G M  and ixT(x)(y) — yx  for y G M .  Then 
TTi(x),Txr (x) G B (L 2(M, tr)) for x  G M .  The map tt| : M  —+ B (L 2(M ,tr))  is 
a faithful unital * homomorphism. But nr is an anti homomorphism in the 
sense tha t 7rr (x*) =  (nr(x))* and Tvr (xy ) =  irr (y)TTr (x).

L em m a 6. The commutant of irr (M) in B (L 2(M, tr)) is tti(M).

20



Proof. It is clear tha t iri(M) commutes with nr(M). Let T  G irr (M ) ' . Let 
x. = T( 1). Now T(y)  =  T-Kr (y)(l) =  7rr (y)(T(l)) = xy = iri(x)(y). Hence 
T  — it i (x ) G 7ti(M). This completes the proof. □

Henceforth we identify M  with 717 (M ). Now irr (N)  C Note tha t
7r;(M) =  7rr (M) C 7ir (N ) ' . Hence starting with a unital inclusion N  C M  
together with a unital faithful positive trace on M ,  we obtain another unital 
inclusion M  C TTr[N ) '.

D efin ition  7. Suppose N  C M  be a unital inclusion of finite dimensional 
C* algebras. Let tr be a faithful, unital, positive trace on M . Then the inclu­
sion M  C 7rr (iV) is called the basic  c o n s tru c tio n  for the pair (N  C M, tr).

The main properties of the basic construction are summarised in the follow­
ing porposition.

P ro p o s itio n  8. Suppose N  C M  be a unital inclusion of finite dimensional 
C* algebras. Let tr be a faithful, unital, positive trace on M . Then,

1. The C* algebra generated by M  and en  in B (L 2(M ,tr )) is ixr(N ) ' .

2. The central support of ejy in Tir (N) is 1.

3. ejssxe^ =  E (x )e ^  for x  G M .

4- I f  A is the inclusion matrix for N  C M  then At is the inclusion matrix 
for M  C irr ( N ) ' .

Proof. Let (M, ejy) denote the C* algebra generated by M  and ejy. We 
prove tha t the commutant of (M, ejv) is 7rr (N). Let T  G ((M, ejsr))'■ Since 
T  commutes with e^ , T  leaves N  invariant. Let x =  T( 1). Then x  G AT. 
Now T(y) = Tni(y)(l)  =  7r/(y)T(l) =  yx  =  TTr (x)(y). Hence T  G nr (N). 
This implies (M, e^ )  C 7tr (N)  On the other hand. 7Tr(N)  commutes with 
M. Since N  is invariant under nr(N), it follows that nr(N)  commutes with 
epf. Hence ivr (N) commutes with (M, e^v). This implies ((M, e^)) '  =  irr (N). 
By von Neumann’s double commutant theorem, ((M ,e jv)) =  7Tr(N)'.

Let qi,q2 ,--- ,qr denote the minimal central projections in N .  Then the 
minimal central projections of (nr (N))' are Trr (qi), /Kr (q2 ), • • • ,7rr (gr ). Since 
nriq^eNiqf)  =  q*Qi, we have tTr(qi)epr #  0. Thus the central support of e ^  
in (M, e^v) is 1.

Let x  G M  be given. On N 1 , ejvxejy =  0 =  E (x )e ^ .  Let n  G N  be given. 
Then eN xe^in )  =  E(xn)  =  E (x)n  =  E(x)ei>j(n). Hence e ^ x e ^  =  E(x)eN-

For a C* algebra A, Let A ^  denote the C* algebra whose underlyind set and
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the invloution are tha t of A  but the multiplication is changed to x.y  =  yx. 
Now the center of AP^ is same as the center of A. Hence the minimal central 
projections of A°p are the same as tha t of A. Now 7rr : M°p -> B (L 2(M, tr)) 
is a unital inclusion. Now the inclusion matrix of N°v c  M op is the same- as 
tha t of N  C M  since the minimal central projections of N op and M 0̂  are the 
same as that of N  and M . Now by Lemma 5, it follows tha t the inclusion 
matrix for M  =  (irr (M))' c  (7rr (7V))') =  (M, eN) is A4. This completes the 
proof. □

D efin itio n  8. Suppose N  c  M  is a unital inclusion of finite dimensional 
C* algebras. Let tr : M  —-*■ (D be a faithful, unital, positive trace on M . Let 
M  c  (M,epf) be the basic construction associated to the pair (N  C M, tr). 
Then tr is called a IVIarkov tra c e  of modulus t  if  there exists a positive
trace T r  : (M, eN ) C  such that

1. Tr(xepf) =  r tr(x) for x  £ M .

2. Tr(x)  =  tr(x) for x  £ M .

P ro p o s itio n  9. Let N  C M  be a unital inclusion of finite dimensional C* 
algebras with a faithful positive trace tr. Suppose that tr is a Markov trace of
modulus t .T hen there exists a unique positive trace T r  on (M, e ^ )  satisfying
(1) and (2) of definition 8.

Proof. By definition, there exists a positive trace T r  on (M, ejy) such that
(1) and (2) holds. Let T r i  be another trace for which (1) and (2) holds. 
Let x, y £ M .  Now T r(xeNy) = Tr(yxeN) = r tr(yx) — T r ^ y x e ^ )  = 
T n ( x e Ny). Consider the set I  = { £ ”=1 XieNyi : x uyi  £ M  , n £ N}. Then 
proposition 8 implies tha t I  is an ideal in (M, e^ )  which contains ejy- Since 
the central support of ê v is 1, it follows tha t I  =  (M ,e jv). The preceeding 
calculations show tha t T r x = T r  on I.  Hence Tr  =  Tr±. □

The following proposition determines when a trace for the pair N  c  M  
is a Markov trace of modulus r .  Before tha t we need the following Lemma.

L em m a 7. Let N  C M  be a unital inclusion of finite dimensional C* al­
gebras with a faithful, unital, positive trace tr. Suppose q i,q2 ,-"  , qr are 
the minimal central projections in N . Then 7rr (gi), 7rr (<?2), • • • ,vrr (qr) are 
the minimal central projections in (iW, e/v)- I f  f  is a minimal projection in 
q%Nqi then fe w  is minimal in nr (qi)(M, e/v).

Proof Since N  commutes with ejv, the map x  —> xejy from N  (M, ejv) 
is a homomorphism. We assert that this map is 1-1 and i t ’s range is 
eN (M, eN )eN . Suppose tha t xeN = 0 for some x  £ N.  Then -Ki(x)eN {\) = 0.
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Hence x  =  0. Hence x  —+ xen  is 1-1. Let T  € ejv(M, ejq)efq be given. Since 
T  commutes with e ^ v ,  T leaves N  invariant. Let x  — T(  1). Then x  € E  N.  
Since T( 1 — ejv) =  0 it follows tha t T  =  0 on iV1-. Hence T  = xen  on N 1 . 
Since T  is right N  linear, it follows tha t for n  6  N, T ( n )  =  T (l)n . Hence 
T(n) =  xei\f(n) for n € AT. Hence T  =  xejy on iV. Hence T  =  xejv- It is clear 
that the map £ —>■ x e ^  has range in ejy(M, e ^ ^ N -  This proves the assertion.

Let /  be a minimal projection in qiNqi. Note that irr (qi)e^ — tti{qi)e^. Note 
tha t fe]yirr(qi) = fq ien  = fe-N- Hence /ejv < ^r(qi)- Let p be a nonzero 
projection in (M, e^ )  such tha t p < fejy. Now p = f&NPfe-N =  e/v/p/ejv. 
Hence p =  xejv for some x  € N.  By the 1-1 ness of the map x  —> xen , it 
follows tha t x  is a nonzero projection. Now x e ^  = x e ^ f e ^  =  xfejy.  Thus 
x = x f .  Similarly x  =  f x .  Hence by the minimality of / ,  it follows tha t 
x = f  and hence p =  f e n - Therefore fe w  is minimal. This completes the 
proof. □

P ro p o s itio n  10. Suppose N  C M  be a unital inclusion of finite dimen­
sional C* algebras with a faithful, unital, positive trace tr. Let A be the 
inclusion matrix for N  C M . Let ft and v be the dimension vectors for  
M  and N  respectively. Suppose f  and s are the trace vectors for tr  jjv and 
tr  | m respectively. Then tr is a Markov trace of modulus r  i f  and only if  
AtAs = As and AAtf  = ^ f .

T  T

Proof. Let tr be Markov of modulus r  and Let T r  be the corresponding 
trace on (M, ejv). Let t be the trace vector for T r  on (M, ejv). By lemma 7, 
we have t =  r f .  Since the traces are consistent, we have f  =  As =  A A J(t) =  
AAt (r f)  =  rA A t {r). Also, s =  At (t) =  At (rr) =  rA tA(s).

Suppose the inclusion matrix satisfies the condition in the proposition. De­
fine T r  on {M, e/v) by letting i t ’s trace vector be t =  r f .  Then At (t) = 
rA t (f) =  r A tAs  =  s. Hence Tr(x )  — tr(x)  for x  € M . Also by defi­
nition of Tr,  it follows that Tr(pejv) =  r tr (p ) for every minimal projec­
tion p in N  and hence T r(xe jy) =  rtr(x') for x  € N .  Let x  € M .  Now 
Tr(xeiv) =  T r(e n x ^n ) = Tr(E(x)epf)  =  rtr{E{x))  =  rtr(x).  This proves 
tha t tr  is a Markov trace of modulus r .  □

C o ro lla ry  1. Let N  C M  be a unital inclusion of finite dimensional C* al­
gebras with a faithful, unital, positive trace tr. Suppose that tr is a Markov 
trace of modulus r .  Then the unique trace T r  on (M, cm) which extends tr 
and for which Tr(xejy) =  r tr(x) is a Markov trace of modulus r  for the pair 
M  C (M, ejv).

Proof. Let r, s, t be as in proposition 10. Let A be the inclusion m atrix for 
the pair N  C M .  Then t =  r f .  Now AAl t =  rA A tf  = r~ (r j  = ±(t). Hence
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by proposition 10, it follows tha t T r  is a Markov trace of modulus r .  □

We end this section with a lemma which characterises the basic construction 
for a pair N  C  M  whose proof can be found in [JS]. . : :

L em m a 8. Let A  C B  be a unital inclusion of finite dimensional C* algebras 
with a faithful, unital, positive trace tr. Let E  be the unique trace preserving 
conditional expectation of B  onto A. Let B \  =  (B,e) denote the result of 
the basic construction. Let B  d  C be a unital inclusion of finite dimensional 
C* algebras. Suppose C contains a projection f  satisfying

(1) C  =  (B,  f ) ;

(2) f b f  = E (b )f  for b € B; and

(3) f  commutes with A  and a —> a f  is an injective * homomorphism of A  
into C .

(4) The central support- of f  in C is 1.

Then there exists a unique isomorphism : B i —> C such that \&(6) =  6 for 
b £ B  and 'ffe) =  / .

3.3 Jones Tower

Let N  C M  be a unital inclusion of finite dimensional C* algebras with a 
faithful, unital, positive trace tr. Suppose tha t tr  is Markov of modulus r . 
Then there exists a unique faithful, positive trace which extends tr  which 
we continue to denote by tr such tha t tr (xen) = r tr (x)  for x  G M .  Then 
tr  is a Markov trace of modulus r  for the pair M  C (M, ejy). Let e\ =  e^ .

Iterating the basic construction for the pair M  C (M ,e i ) ,  we get a tower 
of finite dimensional C* algebras N  C M  C (M .e  j) C (M, e\, e2) C ••• 
with faithful, unital, positive trace on \Jn{M, e\, e2, ■ ■ ■ , en) which we again 
denote by tr. This tower is called the Jones tower. Let Mq =  N  , M i = M  
and M n =  {M , ex, e2, ■ • • , e„_i). M n+i is obtained by the basic construction 
for the pair (Mn_x C M n, tr). Let En- \  : M n —* M n- \  be the corresponding 
conditional expectation. Then we have the following,

(1) tr{x) =  tr{En^i{x))  if £ € M n.

(2) tr(xen) =  Ttr(x) if x  G M n .

(3) en commutes with M n^\.

(4) enxen = E n-\{x )en if x £ M n.
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Now tr (E n(en)x) =  tr (E n(enx)) = tr(enx ) =  Ttr(x)  = t r ( r x )  for x  € M n. 
Since tr  is faithful, E n(en) = t .

The next proposition says that the sequence of projections en satisfy the 
T L  relations.

P roposition  11. Suppose N  c  M  is a unital inclusion of finite dimensional 
C* algebras and Let tr be a Markov trace of modulus t .  I f  {en} denote the
sequence of projections in the Jones tower, then

e2 = ei =  e* V i € N
ei€j =  ejei i f  | i - j | > 2

EiBjei = T6i i f  \i — j\  =  1

Proof Only the third relation requires proof. Let n G N  be given. Now 
en+iGnen+i =  En (en)en+i — ren + Consider the previous relation in ikfn+2. 
Then, ~ ^ n is a partial isornetry.
T—Tr-,1-, \ - k  C n -f-1  C-n.C-n - f l 6 r ,  • . , . ,  p  p  , , ,  p  ,nence { -  ---- f —  is a projection. Clearly —- r,rfien < en .
Now t r ( -"e"r+ien) =  tr(en). Since tr  is faithful, it follows tha t =  e,n.
This completes the proof. □

3.4 Jones quotient

We will describe a C* quotient for T L ( t ) called the Jones quotient for every 
T €  (0, j] u  { \s e c 2( ^  : m > 2}.

First we show tha t for r  G { I Sec2( ^ T : m  > 2} there exists an inclu­
sion N  C  M  of finite dimensional C* algebras which admits a Markov trace 
of modulus r . We need the following proposition for that. We say that
the inclusion N  c  M  is connected if the Bratelli diagram for the inclusion
N  c  M  is connected.

P ro p o s itio n  12. Let A C M  be a unital inclusion which is connected. Then 
there exists a unique Markov trace of modulus r  i f  and only i f  r  = || A ||~2.

For a proof we refer to [GHJ] □

Let r  =  \sec2^ ~ .  It is enough to exhibit a Bratelli diagram or a bipartite 
graph whose corresponding matrix A satisfies ||A|| =  4=. First suppose 
that n is even, say n  =  21. Note that the norm of a matrix won’t change 
by changing rows and columns. Consider the following bipartite graph with
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21 = 1 + 1 vertices.

Let A be the corresponding matrix. Let Y  = ^ 0 )  ' ^ ien ^ ’s

adjacency m atrix of the following path with 21 vertices.

Then

Y  =

/  0 1 0 
1 0 1 
0 1 0

0 0 \  
0 0 
0 0

0 0 0 

\  o o o
0 1
1 0

For j  =  1, 2, • • • n, one checks tha t Y£?- =  \ j£ j  where Aj = 2c o s (^ _ )  , 

i j  = ( s in ( J ~ Y j  i<k<l ■ Since Y  is symmetric, it follows tha t | |y | |  =  2cos( 7T '
n+1 '

Now note that Y Y l =  

Hence ||A ||2 =

AAf 0 
0 A* A Hence ]|Y ||2 =  ||Y Y 4|| =

When n  is odd say n =  21 +  1 , considering the following bipartite graph 
with 21 +  1 =  I +  (7 +  1) vertices and arguing as above will do the job.

We now define the Jones quotient J„ (r)  for r  G { \ sec2{ ^ f l  : rn > 2 } .  
Suppose r  6 ( l sec2(^+T : m  >  2}. Let N  C M  be an inclusion of finite 
dimensional C* algebras which admits a Markov trace of modulus r .  Let 
Mq C M i  C M 2 c  • • • be the Jones tower. Let Jn (r) C M n be the C* al­
gebra generated by 1, e1; e2, ■ • • , en_i. We set J j(r)  =  C for i =  0,1. Then 
Bn—i{Jn(r )) C Jn—i ( r ). Then we have a tower J n(r) C Jn+i(r) of finite di­
mensional C* algebras and a faithful unital positive trace on Un J„ (r) . We 
refer to [Jon] for the Bratelli diagram of the tower J„ (r)  C Jn+i( r ) .  From 
the Bratelli diagram it follows tha t the tower J n (r) C Jn+ i(r)  together with 
the conditional expectations E n- \  and the trace depends only on r  and is
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Let r  < It is shown in [Jon] that, in this case, there exists a unital 
inclusion of type II] factors with index t -1 , and tha t here too, just as in 
the finite dimensional case, one may, by iterated basic construction, obtain 
the Jones tower N  C M  c  (M, e\) c  {M,e 1^ 2 ) of type H i  factors and 
conditional expectations E n : M n+1 -> M n where Mq =  N  ,Mi =  M  and
M n =  (M ,e1,e2,- - -e n_i). The tower M n c  Mn+1 has a faithful positive 
trace tr  on \Jn M n .

Then we have the following,

(1) tr(x)  = tr (E n-!(x ))  if a; € M n.

(2) tr(xen) =  r tr (x )  if x € M n.

(3) en commutes with Mn_x.

(4) enxen =  P n„ 1(x)e„ if a; G M n.

Also the ens satisfy the TL relations. Now Jn{ j ) is defined as in the finite di­
mensional case. As in the finite dimensional case, the tower Jn (r) C Jn+i(r)  
together with the conditional expectations E n : J n+1(r) J n (r) and the 
trace depends only on r  and is independent of the initial inclusion N  C M. 
We refer to [JS] for the definition of type I I X factors and the basic construc­
tion for type H i  factors.

independent of the initial inclusion N  C M .

From now on, Let e f , , ■ ■ ■ e^’_1 denote the idempotents in Tn(r ) and
ey e2 > '" en - i  denote the ’Jones’ projections in J„ ( t) . Suppose and 
en denote the corresponding conditional expectation and let T-(r) =  C for
* =  0,1. By the universal property of Tn(r) there exists a unique map 
<j)n ■ Tn(r) ~y Jn(T) such that cpn is unital and </>n(ef)  = e{ . Note that 
<t>n+i(a) = d>n(a) if a G Tn(r). Hence we can and will denote the maps (j)n 
by 4>. The algebra J„ (r)  is called the Jones quotient of Tn(r)

Note the following properties of <p:

(1) The map <fi is * preserving.

(2) </>OnO)) =  £n(^(«)) if a € r n+i(r) .

(3) 4>(trT (a)) = )) if a G Tn(r).

(1), (2) and (3) can be proved by induction on n  and by noting the fact that
i x  +  E[= 1 Xifily, : x, Xi,Vi G T J t )  and r £ N} =  Tn+1(r).
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Recall the polynomials Pk(X) and the Jones Wenzl projections / J  defined 
in chapter 2. Let fj!  =  4>Uk )- '

P roposition  13. I f  Pk(j)  ^  0 for k =  1,2, • • • , n — 1 tfien =  1 — Vf=i ei
/o r  2 < k < n.

Proof. Let fc >  2. Since / / e f  =  0 for i G {1, 2, • • • , k -  1}, it follows that
1 — / /  > ef V e2 V • • • V e^_x. But 1 — is in the algebra generated by
e i , e 2, • • • 6fe-i- Thus 1 -  / fcJ <  e{  V V • • • V e^_r
Hence 1 — fj! = e f  V e f  V • • • V eJk_ l . This completes the proof. □

We refer to  [Jon] for the following proposition.

P ro p o s itio n  14. I f  Pk (r) ^  0 for k =  1,2, • ••n — 1 then dim  Jfc(r) =
fc  +  1  (  fc

;) /or  fc =  1,2,--- , n — 1. Hence <p : Tfc(r) Jfc(r) is an isomorphism 
for  k = 1,2, • • • , n — 1.

Hence if r  < any C* representation of Tk(r) is a C* representation of 
Jk {r). In the next chapter, we will prove tha t if r  =  |s e c 2( ^ ~ ) ,  any C* 
representation ix for which 7r(ef) V Trfef) • • • V Tx{e .̂_x) =  1 factors through 
Jfc(r) when k > n.

Let us recall the Murray von Neumann equivalence. Let M  be a finite 
dimensional C* algebra. Let p, q be projections in M .  We say p is Murray 
von Neumann equivalent to q if there exists w € M  such tha t w*w — p and 
ww* =  q. Note tha t in Jn (r) all the eis are Murray von Neumann equivalent.

Let t — \sec2{ - ~ )  where n  > 2. Then Pk(r) ^  0 for k — 1,2, ■ • • n  -  1 but 
Pn("r) =  0. Note tha t t r J ( f^ )  = Pn(r) =  0. Since tr  is faithful, f £  =  0. 
Hence e f  V e2 V • • • V e^_1 =  1 in Jfc(r) for k > n. We will prove in the next 
chapter tha t the kernel of the map <p : Tk(r) —> Jk(j)  is the ideal generated 
by fn  in 2fc(r) for k > n. We need the following proposition for that.

P ro p o s itio n  15. Let r  =  |s e c 2( ^ )  for some n > 2. Then Jk+i( r )  
together with e( is the basic construction of the pair (Jfc_i(r) C Jkir ) , tr )  
for k > n — 1. That is, if (Jk (r), e) denotes the basic construction then there 
exists a unique isomorphism ^  : (Jk (r),e) —>■ J fc+i(r)  suc/i i/zai ^>(o) = a i /  
a € Jfc(r) and ’J'(e) =  e(.

Proof. Let A; > n  — 1 be given. We apply Lemma 8 with /  =  ejjf to prove 
this. e^_x is the unique trace preserving conditional expectation of -Jfc(r)
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onto Jfe-i(r). Clearly (1), (2) of lemma 8 are true. Also, ef commutes with 
Jfe_i(r). Now let xef =  0 for some x  G Jfe_i(r). Then yxe f  =  0 for ev­
ery y G Jfc-x(r). Hence for y G J fc- i ( r ) ,  r ir(y x ) =  tr{yxeJk ) = 0. Hence 
tr (y x ) =  0 for every y € Jfc_i(r). Since tr  is faithful, it follows tha t x =  0. 
Hence (3) of lemma 8 is satisfied.

Let p  be a central projection in such tha t p >  e f . Let i G {1,2, • • • , fc}
be given. Let w G Jfc+i(r ) be such tha t w*w =  ef and wm* =  e f . Now 
e/p  =  ww*p = wpw* =  weJkpw* =  =  w *  =  e f . Hence p > ef for
every i G {1, 2, • • • , fc}. Hence p > e f V e f  V • • • V e f > 1 — — 1 by the
observation preceeding this proposition. Hence (4) of lemma 8 is satisfied. 
The proof is complete by applying lemma 8. □
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C hapter 4

Maximal C* quotient of Tn(r)

4.1 M aximal C* qoutient of a * algebra

Let A  be a unital C  algebra. For a £  A, it ’s spectrum, denoted <7,4(0) is 
defined by ga(o) = {A € © : a — A1 is not invertible in A}.  Let B  be 
a unital finite dimensional C  algebra. Let tt : A  —» B  be a unital algebra 
homomorphism. Then erg(7r(a)) C <7a(o) for a £  A.

Suppose A  is a unital finite dimensional C  algebra. For a £  A, let 717(a) 
be defined by iri(a)(b) =  ab. Let End(A)  denote the space of © linear endo- 
morphisms of A. Then 7r; : A  —> End(A)  is a unital algebra homomorphism 
which is 1-1. Since <JEnd(A)(7Tl ( a )) is nonempty, it follows that <7,4(0) which 
contains cr E ^ A ^ l i p ) )  is nonempty. Now we will show that aa{o) is fi­
nite by showing cja{o) is contained in the set of zeros of the characteristic 
polynomial of tti(a).

L em m a 9. Let A  be a unital finite dimensional C algebra. Let a £ A. Then 
a a (o) is nonempty and finite.

Proof. We have already shown that cr^(a) is nonempty. Now for a polyno­
mial p(x) over ©, p(7Ti(a)) = 7r;(p(a)). Since 777(a) satisfies it ’s characteristic 
polynomial, it follows that 3 a polynomial p(x) over C  such that p(a) = 0 . 
Now we show that A £  <7,4(0) implies p(A) = 0 . Let A £  C  be such that 
p(A) ^ 0 . Then p(x) — p(A) = (x — A)q(x) for some polynomial q. Now 
—p(A) = p(a) — p(A) = (a — X)q(a) = q(a)(a — A). Hence is the inverse 
of a — A. Thus A  ̂ <7,4(0). Therefore <7,4(0) is contained in the zero set of p. 
As a result we conclude that is finite. □

Let A  be a finite dimensional unital * algebra. Let 7r : A —* B  be a C* 
representation where B  is a C* algebra. Then for a £  A,

ll7r(a)l |2 =  IM 0*0)!! < SUP{|'M : A G crs(7r(a*a))}
< snp{|A| : A € cr^(a*a)} since <7jg(7r(o*a)) C <7,4 (a*a) .
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For a G A, define

||a || := swp{||7r(a)|| : tt : A —> B  is a * algebra homomorphism where B is a C* algebra}

Then |ja|| < oo Va G A. Let I  = {a G A  : ||a || =  0}. Then I  is an ideal in 
A.
For a G A, note tha t ||a +  7|| =  ||a || depends only on a +  I .  Then A /1  be­
comes a C* algebra with the above norm. Let q : A  —► A /1  be the qoutient 
map.
A /1  has the following universal property:

Let B be a C* algebra and let tt : A  —* B  be a * homomorphism. Then
3 a unique * homomorphism it : A / I  —> B  such tha t n o q = n.

D efin ition  9. Let A  be a unital finite dimensional * algebra. A O  algebra 
B  together with a * algebra homomorphism q : A  —► B  is said to be a maxi­
mal O  quotient of A  if  it has the following universal property:
Given a * homomorphism tt : A  —> C where C  is a O  algebra, 3 a unique * 
homomorphism, tt : B  —► C such that tt o q = tt.

Note tha t maximal C* quotient of a unital finite dimensional * algebra exists 
and is unique upto a unique isomorphism.

Let r  G (0, \] U {| s ec2( : n > 2}. Now if Pk(r ) ±  0 for k = 1,2, • • • n -  1 
then the natural map <f> : Tfe(r) —» Jfc(r) is a * isomorphism. Hence if 
-Pfe(T) 7̂  0 for A: =  1,2,-*- , n  — 1 then (Jfc(r), </>) is the maximal C* quotient 
°f Tk{r) for k =  1, 2, • • • , n — 1. In particular, if r  < |  then (Jk(r),<j>) is the 
maximal C* quotient of Tfc(r) V k > 1.

Let r  =  \sec2( ^ ~ )  where n > 2. Let 1 : Tk(r) —> C be the * homo­
morphism defined by l ( e f ) =  0 for i < k -  1 and 1 (1 ) =  1 (which exists by 
the universal property of Tfc(r)). We will prove tha t (J^(r) ® C, 0 ® 1) is the 
maximal C* quotient of Tk(r ) when k > n. This requires the determination 
of the kernel of the map 0 : Tk(r) —> Jk(r) when k > n. We need the 
following lemma for that.

Lem m a 10. Let N  C M  be a unital inclusion of finite dimensional C* alge­
bras with a faithful, unital, positive trace tr. Then M  is a N  — N  bimodule.
Let (M, ejv) denote the basic construction. Then the M  — M  bimodule ho­
momorphism : M  ig>Ar M  (M, ejsi) defined by $ ( j 8  y ) =  x e ^ y  is an 
isomorphism.

Proof. The map is well defined since cn commutes with N .  Consider 
M as a right N  module. Then (M, e^)  is just the space of right N  linear
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maps of M. Let E  : M  -» N  be the unique trace preserving conditional 
expectation. Let M* dente the space of right N  linear maps from M  to N .  
Then M* is a left N  module. For b e  M ,  define Eb(x) =  E(bx) for x € M .  
Then E b G M * . Define 9 : M  — M* by 0(b) =  Eb. Clearly 9 is left N  linear.

Assertion: 9 is an isomorphism.

Suppose 9(b) = 0 for some b G M .  Then tr(bx) =  tr(E(bx)) = tr (E b(x)) =
0 Vs G M. Since tr  is faithful,we have 6 =  0. Hence 6 is one one. Now let a  G 
M* be given. Then tr o a  is a linear functional on M .  Since M  is a Hilbert 
space, 3 b e  M  such tha t tr  o a = ( , b*), Hence tr(a(x)) = tr(bx) Vx G M. 
Hence tr(a(x)n)  =  tr (a (xn )) = tr(bxn) =  tr (E (bxn )) =  tr(E(bx)n)  for
x  G M ,n  G N .  Since tr  is faithful on N , a(x)  =  E(bx) Vx G M .  Hence 
a =  9(b). Therefore, 9 is onto. This proves the assertion.

Since C* algebras are semisimple, M  as a right N  module is semisimple. 
M  is also finitely generated as an A?- module. Hence M  is finitely genrerated 
projective and hence flat. Hence % d ® 9 : M  <S>n  M  —» M  y M* is an iso­
morphism. Since M  is finitely generated and projective, the canonical map 
X : M  <g>jv M* —> E ndN (M)  given by X\x ® y*)(m ) =  xy*(m) is one one. 
Hence x ° ' ld®  9 is one one.

Assertion: 'I' =  x 0 (id® 9). Let x, y, m  G M  be given. Now

(X o (id ® 9))(x ® y)(m) =  x9(y)(m) =  xE (ym )  =  xeNy(m).

Hence x 0 (id ® 9) =  . This proves the assertion. Hence is one one.

The image of #  is clearly an ideal which contains eN . Since the central
support of ejy in {.M, ejy) is 1, it follows tha t 'J/ is onto. Hence W is an 
isomorphism. ^

Now We compute the kernel of the map $ : Tk(r) -> J fc(r) for fe >  n 
when r  =  \sec2( ^ )  where n >  2. The proof of the following proposition 
can be found in [JR]. We include the proof for completeness.

P roposition  16. Let r =  lsec2(7̂ l ) where n > 2. Then the kernel of the 
natural map <t> : Tfc(r) —> Jk (T) f or k > n is the ideal generated by  f n in 
Tfc(r) for k > n.
Proof. By induction, 1 ( /J )  =  1 for 0 < k < n. Hence / J  ^  0. We will write 
Tfe for Tk(r).

Let Ak =  Tfc for 0 < k < n  — 1. Let A k =  A k-ie^_ 1Ak~i for k > n. 
Then A k C Tk.
Assertion: For every k > 0,
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(1) Ak is a subalgebra of

(2)'-e|’_1(Afc) C A k- i .

(3) Ak is a Ak - 1  -  Afe-i bimodule.

We prove this by induction on k. Clearly (1), (2) and (3) holds for k < 
n — 1. Now assume (1), (2) and (3) holds for k. Let x , y , z ,w  G A k. Now 
(;xeky)(zekw ) =  xe1k__l (yz)ekw. Now (1), (2), (3) for A k implies x e ^ i y z )  G 
Ak- Hence (xe jy)(ze^w )  G Ak+i- Hence Ak+i is a subalgebra of Tfc+1. Let 
x ,y  G A k. Then ef (xeky) =  Txy G A k since Ak is a subalgebra of Tk- Hence 
ek (Ak+i) C A k. Since A k is a subalgebra of Tk, it follows tha t A k+i is a 
Ak — Ak bimodule. This proves the assertion.

Assertion : The map $ : A k —*■ Jk is an isomorphism.

We prove the assertion by induction on k. The map 4> : Ak —> Jk is an 
isomorphism for k < n — 1 is exactly proposition].4. Now assume that <f> 
is an isomorphism for 0 < I < k. Let <j> ® <p denote the isomorphism from 
A k A k to Jk Jk when one identifies Ai with J; when I < k via (f>.
Let x : A k <8ufc_! A k -» A k + 1 be defined by x{x  ® y) = xek y. Let be the 
map of Lemma 10 where N  =  Jk-i ,  M  = Jk and the projection ejv =  ek . 
Now '&o<fi®4> = <f>ox- By induction hypothesis, </> <g> (/> is an isomorphism. 
Since ^  is also an isomorphim, it follows that ^  o ^  is an isomorphism. By 
definition, x  i® onto. Hence <p is one-one. Since (f> o x  is onto, 4> is onto. 
Hence <j> : Ak+i —> Jk+i is an isomorphism. This proves the assertion.

For k > n, Let I k denote the ideal in Tk{r) generated by / J .  Clearly 
I k c  Ik+1 - Observe tha t Tkek Tk is an ideal in Tk + 1 which contains ek - 
Since = :^ eL i efcefc-i) it follows tha t Tk&lTk contains e[_v  Similarly 
it contains e f , eST, ■ ■ • , e^_2- Hence 1 — G Tke^Tk for k > n — 1. Hence 
Ik+i + The£Tk = Tk + 1 for k > n  -  1. We claim that Ik +  A k = Tk for k > n. 
We prove this by induction on k. We have just proved tha t the claim is true 
for k =  n, Now assume the claim is true for k. Since Tk+ 1 =  Ik+i + Tkek Tk, 
it is enough to show tha t if x, y G Tk then x e j y  G I k+\ + A k+\- By induction 
hypotheis, 3z ,w  G Ik and u, v G A k such that x  =  z +  u and y =  w +  v. 
Now xe^y  =  ze^w  +  ue[w  + ze^v  +  ue£v. Since I k C I k+ 1 , it follows 
tha t zek w +  uek w + ze[v  G I k+i- By definition ue^v  G A k+i- Hence 
Ik+i + A k+ 1 =  Tfc+i. Thus completes the induction and proves the claim.

Now we prove tha t the kernel of the map (f> is I k for k > n. Let k > n 
be given. Since f l  =  0, it follows that I k C ker{4>). Now let x  G Ker(<f>) 
be given. Let z £ I k and w G A k be such tha t x = z + w. Then 0 =  <p(w). 
Since <j> : Ak —» Tk is an isomorphism, it follows tha t w = 0. Hence x  G Ik- 
Thus ker(4>) C I k- Therefore ker(<f>) =  Ik- This completes the proof. □
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Now We prove the much promised fact tha t when r  =  \sec2( - ^ i )  where 
n >  2 , (Jfe(r) © ©, <f> © 1) is the maximal C* quotient of Tfc(r) when fc > 11 ■ 
We begin with the following theorem.

T h e o re m  2. Let r  =  fsec2(^ r i )  w^ ere n > 2. Let k > n. Let A be a
C* algebra. Let 1r : T \{ t)  —* A  be a * algebra homomorphism such that 
\/*T11vr(ej) =  1. ITien 3 a unique * algebra homomorphism, if : Jk{T) 
Tfc(r) such that if o <j> =  7r.

Proof. It is enough to show tha t tt =  0 on fcer (</>). Since ker{<f>) is the ideal
generated by / J ,  it is enough to show tha t tt ( / J )  =  0.

Assertion: 7r(/,f)7r(ef) =  0  for 1 <  i  <  A; — 1.

Note tha t / J e f  =  0  for 1 < % <  n — 1 . Hence if k =  n then w e  are
done. Hence assume k > n. Now

T xT T  T  jcT P n - 2(T ) *T T T  T  rT
^ n f n ^ n  f n —l ~  T> 7 \ f n ~ l ^ n ^ n —l ^ n f n —lr n ~ i { r )

Pn(T) T t T
Pn- i ( r )  

=  0

6 f  i cnJn—1

Hence 7r ( ( e f / J ) ( e f / J ) * ) )  =  0 .  Hence 7r(e f / J )  =  0 .  Hence taking adjoints 
7r(/^ e f ) =  0. Now let i be such tha t n < i < k. Let =  e fe f . j  • • • •
Then u>jefw* =  Tn~%eJ.  But Wi commutes with Tn . Hence we have 
7r(/J e f ) = z f b ^ ' ^ { w i)'n { f n  en ) 7r(w i )  = 0- This proves the assertion.
Since V t i  7r(eD  =  ^  follows tha t t t ( /J )  =  0 which completes t h e  proof.
□

T h e o re m  3. Let r  =  fsec2( ^ r i )  w^ ere n > 2 .  Let k > n. Then the maxi­
mal C* quotient of 2fc(r) is (Jfc(r) © (D, ^  © 1).

Proof. We will show tha t (Jfc(r)ffiC, ^ffil) satisfies the universal property of 
the maximal C* quotient. Suppose A  be a C* algebra and Let tt : Tfc(r) —* -A 
be a * algebra homomorphism. By considering the image of tt, if necessary, 
we can assume tha t tt is onto. Then tt is unital. Let p =  V i=i 7F̂ ei 
Then p is a central projection in A. Let tt\ : 2fe(r) —>■ be defined by
TTi(a) = prr(a). Then V t i  ^ ( e f ) =  1- Hence by Theorem 2, 3 a map 
tti : Tfc(r) —> pA  such tha t iti o (f> = tti. Now define tt : Jyc(r) © <D —1f -A by
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7f(a, A) — T?i(a) +  A(1 — p). Since 1 together with nonempty reduced words 
form a basis for Tk(r), it follows tha t 7r(o)(l -  p) = l(a)(l -  p). Hence 
Tr o (j) © 1 ) =  7r. T hat such a map is unique follows from the ontoness of 
4> © 1. This completes the proof. □
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