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Synopsis

Entropy is often regarded as a measure of disorder or randomness in a system. In thermo-

dynamic systems, the ordered state has usually lower entropy than the disordered state.

Phase transitions from such disordered to ordered phases are driven by a lowering of en-

ergy, and are often referred to as energy driven phase transitions. Well-known examples

include paramagnetic-ferromagnetic transition, gas-liquid transition, etc. However, there

are many systems for which the opposite is true, i.e., the ordered state has higher entropy

compared to the disordered state. These transitions are driven by a gain in entropy, and

are often referred to as entropy driven phase transitions.

There are many examples of entropy driven phase transitions. These include freezing

transition in a system of hard spheres, disordered-nematic-smectic transition in a sys-

tem of long rods, ordering transitions in adsorbed layer of gases on metallic surface, etc.

Hard Core Lattice Gas (HCLG) models are minimal models to study entropy driven phase

transitions and are the simplest systems to study critical phenomena. In HCLG models,

particles are constrained to be on lattice sites and interact through only excluded volume

interaction, i.e., no two particles may overlap. Since the interaction energy is either zero

or infinity, temperature does not play any role. Thus, the phases and phase transitions,

if any, depend only on the shape and density of the particle. Various particle shapes that

have been studied in literature include triangles, squares, dimers, mixture of squares and

dimers, Y-shaped particles, tetrominoes, rods, rectangles, discs, hexagons, etc. Among

these, the only model that is exactly solvable model is the hard hexagon model on a trian-
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gular lattice. In general, one has to resort to Monte Carlo simulations or use approximate

analytical methods to provide estimates for the different thermodynamic quantities.

Despite a long history of study, a general understanding of the dependence of the nature

of the emergent phases on the shapes of the particles, as well as the order of appearance

of the phases with increasing density, is lacking. Thus, studying in detail the phase be-

haviour of specific models of differently shaped particles will help in building a more

general understanding. However, Monte Carlo simulations with only local moves have

difficulty in equilibrating systems near close packing or when the excluded volume per

particle is large, thus limiting to the kind of shapes that can be studied. In recent years,

more sophisticated Monte Carlo algorithms that involve cluster moves have overcome

this difficulty, opening up the study of particles with large excluded volume, as well as

on three dimensional lattices. In this thesis we study in detail the phase behaviour of four

different models using Monte Carlo algorithms with cluster moves as well as analytical

methods. These are (1) hard square model on a square lattice, (2) mixture of hard squares

and dimers on a square lattice, (3) hard 2 × 2 × 1 plates on a cubic lattice, and (4) hard

Y-shaped particles on a triangular lattice. The results that we have obtained for these

different models are summarized below.

Hard square lattice gas

Consider hard 2 × 2 squares on a two dimensional square lattice. Particles interact only

through excluded volume interaction. The hard square model is known to undergo a con-

tinuous entropy driven phase transition from a low density fluid-like phase to a high den-

sity phase with columnar order. In the columnar phase, the particles preferentially occupy

even or odd rows with all columns being equally occupied, or preferentially occupy even

or odd columns with all rows being equally occupied. The columnar phase breaks trans-

lational symmetry only along one of the two directions. The disorder-columnar transition

2



Table 1: Estimates of critical activity zc and critical density ρc for columnar-disordered
transition of the hard square model.

zc ρc Method Used
97.50 0.932 Numerical [3, 8, 9, 10]
6.25 0.64 High density expansion (order one) [2, 1]

11.09 0.76 Flory type mean field [11]
11.09 0.76 Approximate counting [12]
11.13 0.764 Density Functional theory [4, 5]
14.86 0.754 High density expansion (order two) [2]
17.22 0.807 Rushbrooke Scoins approximation [1]
48.25 0.928 Interfacial tension with no defect [7]
52.49 0.923 Interfacial tension with one defect [7]
54.87 0.9326 Interfacial tension with overhang [7]

135.63 - Interfacial tension in antiferromagnetic Ising model [6]
105.35 0.947 Result in this thesis

has been shown numerically to belong to the Ashkin Teller universality class. Different

analytic and combinatorial techniques have been used to estimate the critical parameters.

The estimates for critical activity, zc, and critical density, ρc, obtained from different meth-

ods are summarized in Table 1. Analytical approaches like high density expansion [1, 2],

Flory-type approximations [3], density functional theory [4, 5] etc., underestimate the

critical activity by more than a factor of 7 compared to the numerical Monte Carlo re-

sult zc ≈ 97.5 and ρc ≈ 0.932. The calculations based on estimating the interfacial

tension [6, 7] between two ordered phases have been more successful, but the error in

estimating the activity is still about 50%.

In this thesis, we significantly improve the estimate for critical activity zc by calculating,

within an approximation scheme, the interfacial tension between two differently ordered

columnar phases, and then setting it to zero. For determining the interfacial tension, we

have used a pairwise approximation, similar to that used in liquid state theory, that allows

for the ordered phases to have multiple defects and the interface between the ordered

phases to have overhangs. We estimate zc = 105.35, which is in good agreement with

existing Monte Carlo simulation results, and is a significant improvement over earlier

best estimates of zc = 54.87 and zc = 135.63.
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x

y

Figure 1: Schematic diagram of an interface between two columnar-ordered phases in the
square-dimer model. Green and blue represent particles on even and odd rows respec-
tively. Overhangs are indicated by yellow lines while the rest of the interface is indicated
by red lines. The boundary conditions are periodic in the y-direction.

Mixture of hard squares and dimers

The hard square lattice gas model may be generalized to a mixture of squares and dimers.

In this model, a mixture of hard 2×2 squares, 2×1 horizontal dimers, 1×2 vertical dimers

and 1 × 1 vacancies co-exist on a Lx × Ly square lattice. We associate activities zs, zh, zv

and z0 with each square, horizontal dimer, vertical dimer and vacancy respectively. This

system is known to undergo a phase transition from a disordered phase to a columnar

ordered phase with increasing the density of squares [8]. The critical line has continu-

ously varying exponents. Along the fully packed square-dimer line, the system undergoes

an Kosterliz-Thouless type transition to a phase with power law correlations. Thus, this

model is an example of a system where two critical line with continuously varying expo-

nents meet at a point. By writing an effective Hamiltonian for the two dimensional height

field, it was possible to theoretically explain the numerically obtained results along the

fully packed line [8]. However, the height mapping does not allow the phase boundary to

be determined as the relation between the rigidity and the microscopic parameters is not

easy to establish.
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In this thesis, we estimate the phase boundary separating the ordered columnar phase and

disordered phase by calculating the interfacial tension σ between two differently ordered

columnar phases. We create an interface by fixing, the particle on the left half-boundaries

and right half-boundaries of the system to be on even and odd rows respectively. A

schematic diagram of an interface in the presence of overhangs is shown in Fig. 1. The

interfacial tension σ may be defined as

e−σLy =

∑
I Z(I)

Z(0) , (1)

where Z(I) and Z(0) are the partition functions of the system in the presence and absence

of interface respectively. We calculate the σ(zs, zh, zv, z0) using combinatorial techniques

within two different approximation schemes and equate it to zero to obtain the phase

boundary. In first case we do not consider the presence of overhangs at the interface. The

estimate of the phase boundaries obtained from modelling the interface without overhangs

is shown by magenta line in Fig. 2(a) and (b). Here, we have normalized the activities

using

z1/4
s + z1/2

d + z0 = 1, (2)

where zd = zh = zv, such that a two dimensional phase diagram may be obtained. The

symbols S , D and V represents fully packed lattice by squares, fully packed lattice by

dimers and empty lattice respectively. Numerical results obtained from extensive Monte

Carlo simulations are represented by red circles.

Secondly, we consider the presence of overhangs in the interface [see Fig. 1] to improve

the estimated results. The estimates of the phase boundaries for the interface with over-

hangs are represented by blue line in Fig. 2(a) and (b) for both activity and density planes.

The analytically obtained phase boundary, with both approximations, is in reasonable

agreement with the Monte Carlo simulations. Introducing defects systematically should

further improve the estimate.
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Figure 2: Phase diagram of the square-dimer model in (a) activity z-plane and (b) density
ρ-plane. S and D represents the state where the lattice is fully packed by squares and
dimers respectively. V represents the empty lattice. The estimates of the phase boundaries
obtained from modelling the interface without overhangs is shown by magenta line while
that obtained by including overhangs of height one are shown by blue lines. The data
points (red circles) are obtained from Monte Carlo simulations.

Hard 2 × 2 × 1 plates in cubic lattice

The generalization of square to three dimensions is the problem of hard 2 × 2 × 1 plates

on a L × L × L cubic lattice. Three types of plates are possible: x-plate, y-plate and z-

plate, having normals along the three principal directions of the cubic lattice. A schematic

diagram of three types of particles are shown in Fig. 3.

x

y zz-plate y-plate

x-plate

Figure 3: Schematic diagram of three types of particles in the hard plate model: x-plate,
y-plate and z-plate, where x, y and z are three principal directions of the cubic lattice.
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There are very few detailed studies for the HCLG models in three dimensions. One ex-

ample is the model of rods [13, 14]. The main cause behind this scarcity is the lack of an

efficient Monte Carlo algorithm. The algorithm using local movements of particles fails

to equilibrate the system. An efficient algorithm that implements cluster movement of

particles is needed to study the phase diagram of models in three dimensions.

We study the different phases and the phase transitions using transfer matrix based Monte

Carlo algorithm which works through the following steps. First, we randomly choose a

2 × 2 × L track and remove all the particles that are completely inside the track. After

evacuating the track, we determine the morphology of each 2 × 2 × 1 rung that can be of

16 different types. Using the morphologies we calculate the partition function of the track

and refill it with new equilibrium configurations.

The system undergoes two entropy driven phase transitions with increasing the particle

density. These are from disordered phase to a layered phase and from a layered phase to

sublattice phase. We divide the full lattice into eight appropriate sublattices to character-

ize different phases obtained in the simulation. In layered phase particles preferentially

occupies even or odd planes in a randomly chosen direction. In this phase the symmetry

of particle number density is also broken as densities of two of them become higher com-

pared to the density of the third particle. In the high density sublattice phase each type

of particle breaks the translational invariance in two directions. In this phase the symme-

try of the particle number density is again restored. We have shown that the disordered

to layered transition is of second order with the universality class of three dimensional

Heisenberg model with cubic anisotropy, while the layered to sublattice transition is first

order in nature. Schematic phase diagram in density ρ-plane is shown in Fig. 4.
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ρ=1.0ρ=0.0 0.941 0.974

disordered layered sublattice

Figure 4: Phase diagram of the hard plate model, where ρ is the density. The continuous
phase transition is denoted by red circle, while in the discontinuous phase transition, the
co-existence region is shown by dotted line with blue circles denoting the end points.
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Figure 5: (a) Schematic diagram of a triangular lattice and the two types of Y-shaped
particles. A- and B-type particles are represented by blue and red colors respectively. (b)
The lattice sites are labeled as 1, 2, 3, 4 depending on the sublattice they belong to.

Hard Y-shaped particles

Y-shaped particles are observed in physical systems such as Immunoglobulin-G in human

blood and trinaphthylene molecules in molecular logic gates. We consider a system of

hard Y-shaped particles on a triangular lattice. Each particle consists of a central site and

three of its six nearest neighbours chosen alternately, such that there are two types of

particles which are mirror images of each other. Schematic diagram of the two types of

particles is shown in Fig. 5(a). We associate the chemical potential µ to each particle.

We study the equilibrium properties of the system using grand canonical Monte Carlo

simulations that implements an algorithm with cluster moves that is able to equilibrate the

system at densities close to full packing. We show that, with increasing density, the system

undergoes two entropy-driven phase transitions with two broken-symmetry phases. We

8



(a) (b) (c)

Figure 6: Snapshots of equilibrated configurations of the system of Y-shaped particles,
when both types of particles are present, obtained from grand canonical Monte Carlo
simulations for different values of µ: (a) disordered phase with µ = 4.5 (ρ ≈ 0.88),
(b) sublattice phase with µ = 5.4 (ρ ≈ 0.947), and (c) columnar phase with µ = 6.0
(ρ ≈ 0.967). The particles on the four sublattices 1, 2, 3 and 4 are represented by yellow,
olive, cyan and orange for type A and by green, red, blue and magenta for type B. The
data are for a system of size L = 300.

divide the full lattice into four sublattices to characterize different high density phases as

shown in Fig. 5(b). At low densities, the system is in a disordered phase. At intermediate

densities, there is a solid-like sublattice phase in which one type of particle is preferred

over the other and the particles preferentially occupy one of four sublattices. The system

breaks both particle-symmetry as well as translational invariance in the sublattice phase.

At even higher densities, the phase is a columnar phase, where the particle-symmetry

is restored, and the particles preferentially occupy even or odd rows along one of the

three directions. This phase has translational order in only one direction. Snapshots of

equilibrated configurations of the system in disordered, sublattice and columnar phase are

shown in Fig. 6(a), (b) and (c) respectively.

From finite size scaling, we demonstrate that both the transitions are first order in nature.

We also show that the simpler system with only one type of particles undergoes a single

discontinuous phase transition from a disordered phase to a solid-like sublattice phase

with increasing density of particles. These results are in contradiction to earlier studies

which found only a single transition [15, 16].
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Chapter 1

Introduction

Understanding different phases and phase transitions in thermodynamic systems is one of

the central problems of Statistical Physics. A phase transition is a sudden change in phys-

ical properties of matter with a small change in a control parameter such as temperature,

chemical potential, pressure, etc. The changes may be smooth or abrupt depending on the

values of the control parameters as well as the interactions in the system. It also depends

on the symmetry of the system and the dimension. There are two types of phase transi-

tions observed in nature. These are discontinuous or first order transition and continuous

or second order transition. The nature of phase transition is determined by observing the

behavior of the order parameter near the transition. The order parameter is mainly used to

capture the visible order or symmetries present in the system. It is zero in the disordered

phase and takes non-zero values only in the ordered phase. For first order transitions,

the order parameter show discontinuity at the critical point. Both disordered and ordered

phases coexist at the critical point resulting a finite value of the correlation length. On

the other hand, for second order phase transitions while going from disordered to ordered

phase, the order parameter increases continuously from zero to non-zero values. In this

case, the correlation length diverges at the critical point. One of the well-known examples

of phase transitions that are observed in nature is liquid–solid transition, where density
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is used as order parameter. Since the density exhibits a discontinuous jump while going

from liquid phase to solid phase, the liquid–solid transition is first order in nature.

For the continuous transitions, the scaling behavior obeyed by different thermodynamic

quantities, like susceptibility, compressibility, etc., near the transition point are character-

ized by critical exponents. Although the microscopic properties of two different systems

may vary, their critical exponents will be unique if they have same universality class. The

universality does not depends on the microscopic details of the system, it only depends

on the underlying symmetries present in the system.

1.1 Entropy driven phase transitions

In a thermodynamic system, at constant volume and temperature T , the equilibrium phase

is obtained by minimizing the Helmholtz free energy, F = E−TS , where E is the internal

energy and S is the entropy. Entropy is often regarded as the measure of randomness or

disorder in the system. Usually the ordered phase has less entropy than the disordered

phase, and the phase transitions from a disordered phase to a ordered phase are driven by

lowering the internal energy that outweigh the loss in entropy. These transitions are often

referred as the energy driven phase transitions. Examples of energy driven phase transi-

tions include paramagnetic–ferromagnetic transition, gas-liquid transition, etc. However,

there are many examples for which the opposite is true, i.e., ordered phase has more en-

tropy compared to the disordered phase. The phase transitions from disordered to ordered

phase are driven by gain in entropy, and are often referred as entropy driven phase tran-

sitions. Well-known examples of entropy driven phase transitions include liquid–solid

transition, disordered–nematic–smectic transition in the system of long rods, freezing

transition in the system of hard spheres, etc.

Entropy driven phase transitions for the system of differently shaped particles have been

observed in experiments. Examples of these are as follows. The system of spherical par-
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ticles of PMMA (poly methyl methacrylate) shows freezing transition from fluid phase to

crystalline phase with increasing particle density [17]. The system of Brownian square

plates undergoes multiple entropy driven phase transitions from low density isotropic

phase to intermediate density hexagonal rotator crystal phase to high density rhombic

crystal phase [18]. Phase transitions to a smectic or nematic phase in the colloidal solu-

tion of tobacco mosaic virus [19], fd virus [20], rod-like silica colloids [21] and boehmite

colloids [22], banana shaped molecules [23], etc. are also observed in experiments. Or-

dering transition in adsorbed layer of gas particles on metal surface [24, 25] is another

example of entropy driven phase transition.

System of differently shaped particles with only hard core or excluded volume interaction

serve as minimal models to study entropy driven phase transitions. Since the interaction

energy between two particles are zero in hard core models, every allowed configurations

have equal energy and temperature does not play any role. The phases and phase tran-

sitions, if any, depends on the shape and density of the particles, and are completely

entropy driven. Hence, they are often been termed as geometrical phase transitions. De-

spite simplicity, the models can recreate the complicated phases observed in experiments,

where there are other interactions than excluded volume interactions. For example, the

disordered–nematic transition in the system of colloidal long rods was first shown by

Onsager [26]. Likewise the discontinuous transition from liquid phase to solid phase in

hard spherical particles of PMMA [17] may be modeled as the system of hard spheres

that undergoes transition from liquid to crystalline phase with increasing particle den-

sity [27]. Various complex phases, e.g., liquid, nematic, smectic, etc., that are often

observed in liquid-crystals, may be reproduced by studying the system of hard rods or

sphero-cylinders [28, 29]. The phases observed in system of Brownian hard squares [18]

may be obtained by studying the Monte Carlo simulation of rounded hard square [30].

Hard core models find applications in self-assembly [31, 32, 33], effectiveness of drug

delivery [34, 35], design of novel materials with specific optical and chemical proper-
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ties [36, 37, 38], adsorption of gas on metallic surfaces [24, 39, 40], molecular logic

gates [41, 42, 43], etc.

Hard core models in lattice, also known as hard core lattice gas (HCLG) models are

discrete version of hard exclusion models. In HCLG models, particles sit on lattice sites

and interact only through excluded volume interaction. Unlike the continuum models,

the ordered phase of HCLG models have discrete symmetry. Although the interaction is

simple, HCLG models exhibit different broken-symmetry phases like solid-like sublattice

order, columnar or smectic phase with partial translational order, and nematic phase with

orientational order, depending on the particle shape. The study of the phases and critical

behavior of lattice systems of hard particles having different geometrical shapes has been

of continued interest in classical statistical mechanics, not only from the point of view

of how complex phases arise from simple interactions, but also for understanding how

different universality classes of continuous phase transitions depend on the shape of the

particles. Such HCLG models have also been of interest in the context of the freezing

transition [44, 45], directed and undirected lattice animals [46, 47, 48], the Yang-Lee

edge singularity [49], and in absorption of molecules onto substrates [50, 39, 51, 52, 25].

HCLG models, specially the models in two dimensions have a long and detailed history.

The model was first introduced in 1958 to demonstrate the melting transition [53]. After

that, full packing of dimer model in which each particle occupies 1 × 2 or 2 × 1 sites

on the square lattice, was rigorously solved using combinatorial method in 1961 [54].

The model [54, 55, 56, 57, 58, 59] is the simplest model for anisotropic particles that

has exact solution in the fully packed limit. In this limit, the system is critical and the

correlations between dimers decay with separation r as r−2 [56]. At densities different

from the fully packed limit, the system is disordered [57, 59]. Soon after that the existence

of phase transition in hard square model in which each particle exclude up to second

nearest neighbor on square lattice, was numerically shown in 1966 [60]. Later the exact

solution of the hard hexagon model on triangular lattice came in 1980 [61]. This is the
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only exactly solved HCLG model. Different geometrical shapes have been studied in

literature, which include triangles [62], squares [1, 60, 63, 2, 7, 64], dimers [54, 55, 58,

65], trimers [66], tetrominoes [67, 68], mixture of squares and dimers [8, 69], Y-shaped

molecules [16], rods [70, 71, 13, 14], rectangles [72, 73, 74, 75], cubes [76], discs [3, 77],

and hexagons [61].

Although, there are a large number of studies of HCLG models, it is not clear what is the

exact dependence between the shape of the particles and the emergent phase is. In this

thesis, we have studied four different types of particles both in two and three dimensions,

which are: (1) hard 2 × 2 squares on square lattice, (2) mixture of hard 2 × 2 squares,

horizontal and vertical dimers on square lattice, (3) hard 2 × 2 × 1 hard plates on cubic

lattice and (4) hard Y-shaped particles on triangular lattice. Below, we summarize what is

known about these models, and the new results obtained in this thesis.

1.2 Hard square lattice gas

The hard square model [1, 60, 63, 2, 7, 64] in which each particle occupies 2×2 sites on the

square lattice is the prototypical model to show columnar order. The model is equivalent

the 2-NN model in which a particle excludes the nearest and next-nearest neighbor from

being occupied by another particle. It is a well-studied HCLG model, which undergoes a

continuous transition from disordered to columnar phase with increasing particle density.

The continuous transition belongs to the Ashkin-Teller universality class with the corre-

lation length exponent ν ≈ 0.92 [10, 9, 8]. Ashkin-Teller model is a spin model in which

two Ising spins are coupled through a variable interaction strength. The Hamiltonian H

of the Ashkin-Teller model may be written as

H =
∑
〈i, j〉

J1σiσ j +
∑
〈i, j〉

J2τiτ j +
∑
〈i, j〉

J3σiσ jτiτ j, (1.1)
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Table 1.1: Previous estimates of critical activity zc and critical density ρc for columnar-
disordered transition of the hard square model.

zc ρc Method Used
97.50 0.932 Numerical [3, 8, 9, 10]
6.25 0.64 High density expansion (order one) [2, 1]

11.09 0.76 Flory type mean field [11]
11.09 0.76 Approximate counting [12]
11.13 0.764 Density Functional theory [4, 5]
14.86 0.754 High density expansion (order two) [2]
17.22 0.807 Rushbrooke Scoins approximation [1]
48.25 0.928 Interfacial tension with no defect [7]
52.49 0.923 Interfacial tension with one defect [7]
54.87 0.9326 Interfacial tension with overhang [7]

135.63 - Interfacial tension in antiferromagnetic Ising model [6]

where σi and τi are Ising spins at site i and Js are the interaction strength. The model

has a line of critical points with continuously varying critical exponents. The hard square

system has found application in modeling adsorption [50, 25], in combinatorial problems

and tilings [78, 79, 80], and has been the the subject of recent direct experiments [18, 81].

In the high density columnar phase, the squares preferentially occupy either even or odd

rows or even or odd columns, thus breaking translational order in only one of the two

directions. The columnar phase has four-fold symmetry. The study of entropy driven

transition in the hard square lattice gas model has a long history [53, 1, 27, 82, 83, 84, 85].

Since the model can not be solved exactly, different sophisticated analytic and rigorous

methods have been used to estimate the critical parameters over the last few decades [1,

60, 2, 4, 5, 6, 7, 3, 12]. The best numerical estimates of the critical parameters, obtained

from large scale Monte Carlo simulations, are critical activity zc ≈ 97.5, critical density

ρc ≈ 0.932. The estimates for zc and ρc obtained from different methods are summarized

in Table 1.1. Analytical approaches like high density expansion [1, 2], Flory-type ap-

proximations [3], density functional theory [4, 5] etc., underestimate the critical activity

by more than a factor of 7 compared to the numerical Monte Carlo result zc ≈ 97.5 and

ρc ≈ 0.932. The calculations based on estimating the interfacial tension [6, 7] between
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Figure 1.1: Schematic diagram of mixture of 2 × 2 squares, 2 × 1 horizontal and 1 × 2
vertical dimers on square lattice with periodic boundary along horizontal and vertical
directions.

two ordered phases have been more successful, but the error in estimating the activity is

still about 50%.

Questions addressed

Previous estimates of the critical activity have an error of nearly 50%. Can a more accurate

estimate be found? In particular, for determining the interfacial tension, can the effect of

multiple defects and overhangs be incorporated?

1.3 Mixture of hard squares and dimers

Polydispersity can hardly be avoided in experiments. However, compared to the monodis-

persed systems, the phenomenology of HCLG models of mixtures of particles of different

shapes is less understood. Amongst mixtures, the best studied example is that of deple-

tion interaction in mixtures of particles with small excluded volume and particles with

larger excluded volume. When the excluded volumes are on site and first nearest neigh-

bor, then in two dimensions, it is known from different numerical studies that there is

a critical line ending in a tricritical point separating a low-density disordered fluid-like

phase from a high-density solid-like sublattice phase [86, 87, 88, 89, 90, 91]. The na-

ture of the transition is similar to that of the transition observed in the system with only

larger particles. Similar demixing transition occurs in binary mixture of large and small
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cubes [91, 92, 4]. Other examples of mixtures that have been studied on lattices include

bidispersed rods [93, 94] in which the phase diagram is richer than the monodispersed

case, but without the appearance of any new phase.

The hard square lattice gas model may be generalized to a mixture of squares and dimers.

In this model, a mixture of hard 2 × 2 squares, 2 × 1 horizontal dimers, 1 × 2 vertical

dimers and 1 × 1 vacancies co-exist on a Lx × Ly square lattice. Schematic diagram of

the square-dimer model is shown in Fig. 1.1. In a recent paper [8], a mixture of hard

squares and dimers was studied. Very interestingly, it was demonstrated that the phase

diagram consists of two critical lines with continuously varying exponents that meet at a

point called as the Askin-Teller-Kosterlitz-Thouless point. It provided the first example

of a HCLG whose critical properties vary with the composition. On the fully packed

line, it was shown that the system undergoes a Korterlitz-Thouless type transition from a

columnar phase to a power law correlated phase as the dimer density is increased.

Questions addressed

Along the fully packed line, the configurations of dimers and squares may be mapped

onto a height field. By writing an effective Hamiltonian for the two dimensional height

field, it is possible to theoretically explain the numerically obtained results, along the fully

packed line [8]. However, the height mapping does not allow the phase boundary to be

determined in the presence of vacancies, as the relation between the rigidity and micro-

scopic parameters is not easy to establish. Is it possible to estimate the phase boundary

separating the disordered and columnar phase by calculating the interfacial tension be-

tween two differently ordered columnar phase? If possible, how close are the estimates to

the Monte Carlo results?
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1.4 Hard plates on a cubic lattice

The generalization of square to three dimensions is the problem of hard 2 × 2 × 1 plates

on a cubic lattice. Three types of plates are possible: x-plate, y-plate and z-plate, having

normals along the three principal directions of the cubic lattice. Recently analytical as

well as numerical studies have been performed to get the phase diagram for the system

of hard plates with varying aspect ratio in continuum. For example, rigorous calculation

using coarse graining procedure proves the existence of nematic phase in the system of

anisotropic 1 × kα × k, α ∈ [0, 1] hard plates [95] in three dimensional continuum. In this

model only restricted number of particle configurations are allowed. Numerical studies

of the system of board-like particles [96, 97, 98] in the continuum indicate the presence

of various high density phases like smectic, biaxial smectic, uniaxial and biaxial nematic,

prolate and oblate columnar, etc. The phase diagram of the system is very rich, showing

multiple phase transitions with changing particle densities and varying aspect ratios.

Comparatively less is known about the HCLG models in three dimensions. Detailed phase

diagram that encompasses all densities is known for only rods of shape k × 1× 1 [14, 13].

The system of hard rods shows multiple entropy driven phase transitions with increas-

ing particle densities. For k ≥ 7, numerically observed phase transitions are isotropic

to nematic to layered-nematic to layered-disordered. In layered-nematic phase, system

breaks up into layers, with nematic order in each layer. In the layered-disordered phase,

unlike the layered-nematic phase, the rods within a plane, perpendicular to the layering

direction, do not have nematic order.

The numerical study of HCLG models are constrained by difficulties of equilibrating the

system when the density is close to full-packing, and/or the volume excluded by each

particle is large. These constraints may be overcome by using Monte Carlo algorithms

that include cluster moves [72, 73, 8], which significantly decrease the autocorrelation

times.
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Figure 1.2: Schematic diagram of Y-shaped particles on triangular lattice with periodic
boundary along three directions.

Questions addressed

Can a Monte Carlo algorithm be implemented that is able to equilibrate the system even

at full packing? What is the phase diagram of the system of hard plates on a cubic lattice?

1.5 Hard Y-shaped particles

Y-shaped particles with this shape arise in different contexts. A well known example is

Immunoglobulin-G (IgG), an antibody present in human blood, consisting of four pep-

tide chains, two identical heavy chains and two identical light chains [99]. IgG has many

therapeutic usages and study of different phases of Y-shaped particles [15, 100, 16] is im-

portant to understand the effect of density on the viscosity of the liquid. Another example

of a Y-shaped particle that is relevant for applications is trinaphthylene. It has been useful

to create a NOR logic gate on Au(111) surface [101, 102], in which napthylene branches

of the molecule comes in contact of Au atom and act as input of logic gate.

Motivated by these applications, there have been a few numerical studies [16, 15] of sys-

tems of Y-shaped particles on a triangular lattice. Each particle constitutes of a central

site and three of its nearest neighbors chosen alternately. There are two types of particles

possible depending on which of the neighbors are chosen. Schematic diagram of the sys-

tem of Y-shaped particles is shown in Fig. 1.2. In Refs. [16, 15], in addition to the hard
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core constraint, there are additional attractive interactions between the arms of neighbor-

ing particles. At low temperatures, a single first order phase transition from a disordered

phase to a high-density ordered phase was observed. The high density phase consists of

mostly only one of the two types of Y-shaped particles, and has a solid-like sublattice

order. For temperatures above a critical temperature, there are no density-driven phase

transitions [16, 15]. At the critical temperature, the transition has been argued to belong

to the Ising universality class [16]. For Y-shaped particles with larger arm lengths, other

phases are also seen [15].

Questions addressed

Is there any phase transition in hard core limit for the system of Y-shaped particles on

triangular lattice with arm length one, if yes, what are the equilibrium phases and the

nature of transitions?

1.6 Overview of the thesis

We have used sophisticated analytical techniques as well as large-scale Monte Carlo sim-

ulations to study these systems. The results that have been obtained in this thesis are

summarized below.

In Chapter 2, we estimate the transition point separating the disordered phase and colum-

nar phase in the system of hard 2 × 2 squares by calculating the interfacial tension sepa-

rating two differently ordered columnar phase and equating it to zero. The obtained result

improves previous estimates of critical activity and is the best estimate till date.

In Chapter 3, we consider mixture of 2 × 2 hard squares and dimers on square lattice.

We have estimated the phase boundary separating the disordered and columnar phase

using the interfacial tension method. The results show good agreement with Monte Carlo

results.
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In Chapter 4, we extend the system of hard squares to three dimensions. We consider

system of 2 × 2 × 1 square plates in cubic lattice. Three types of plates are possible, x-

plate, y-plate and z-plate, having normals along x, y and z directions respectively. Particles

interact only through excluded volume interaction. Using transfer matrix based Monte

Carlo simulations, we have shown that the system undergoes two entropy driven phase

transitions with increasing particle density. At low density the system is in disordered

phase, with increasing density the system goes to a layered phase breaking translational

symmetry along one of the three possible directions. At very large density, even at full

packing, the equilibrium phase is sublattice ordered. In sublattice phase the system breaks

translational invariance along all three directions.The nature of the phase transitions are

characterized in detail.

In Chapter 5, we consider the system of hard Y-shaped particles on triangular lattice. Two

types of particles are possible which are mirror images of each other. Performing grand

canonical Monte Carlo simulation, we have shown that the system undergoes two entropy

driven phase transitions with increasing particle density, when both types of particles

are present. These are transition from disordered to sublattice phase and transition from

sublattice to columnar ordered phase. Using finite size scaling, We have also shown that

both transitions are discontinuous in nature. The simplified system of Y-shaped particles,

when only one type of particles are present, shows a single discontinuous transition from

disordered phase to sublattice phase.

In Chapter 6, we summarize the obtained results and give future outlook.
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Chapter 2

Hard square lattice gas

2.1 Introduction

In this chapter, we describe the hard square lattice gas model and estimate the critical

activity of the hard square model by calculating the interfacial tension between two differ-

ently ordered columnar phases. The hard square model is known to undergo a continuous

transition from a disordered fluid-like phase to an ordered phase with columnar order as

the density ρ or activity z is increased. The best numerical estimates for the critical be-

havior, obtained from large scale Monte Carlo simulations, are critical activity zc ≈ 97.5,

critical density ρc ≈ 0.932, and critical exponents belonging to the Ashkin Teller uni-

versality class with critical exponents ν ≈ 0.92, β/ν = 1/8 and γ/ν = 7/4 [3, 8, 9, 10].

Unlike the hard hexagon model [103], the hard square model is not exactly solvable. Dif-

ferent analytic and rigorous methods have been used to estimate the critical parameters

over the last few decades [1, 60, 2, 4, 5, 6, 7, 3, 12]. The estimates for zc and ρc obtained

from different methods are summarized in Table 1.1. Analytical approaches like high

density expansion [1, 2], Flory-type approximations [3], density functional theory [4, 5],

etc., result in estimates that underestimate the critical activity by more than a factor of

7. Calculations based on estimating the interfacial tension [6, 7] between two ordered

31



phases have been more successful. By utilizing the mapping of the hard square model to

the antiferromagnetic Ising model with next nearest neighbor interactions, a fairly good

estimate zc = 135.63, that overestimates the critical activity, was obtained, but it is not

clear how this approach may be extended [6]. In a recent paper [7], we introduced a sys-

tematic way of determining the interfacial tension as an expansion in number of defects

in the perfectly ordered phase. While including a single defect improves the estimates for

the critical parameters (zc = 52.49), the calculation of the two-defect contribution appears

to be too difficult to carry out. We also estimated the effect of introducing overhangs of

height one in the interface for defect-free phases (zc = 54.87). However, it is not clear

how defects and overhangs may be combined in a single calculation. In this chapter, we

determine the interfacial tension using a pairwise approximation [104, 105], similar to

that used in liquid state theory. This approximation scheme allows us to take into account

multiple defects as well as overhangs. By determining the activity at which this interfa-

cial tension vanishes, we estimate zc = 105.35, in reasonable agreement with numerical

results (zc ≈ 97.5), and which is a significant improvement over earlier estimates. The

content of this chapter is published in Ref. [64].

2.2 Model and Outline of Calculation

Consider a square lattice of size Nx × Ny. The sites may be occupied by particles that are

hard squares of size 2× 2. The squares interact through only excluded volume interaction

i.e. two squares can not overlap but may touch each other. We associate an activity z to

each square.

At low activities z or equivalently at low densities ρ, the system is in a disordered phase.

For activities larger than critical value zc, the system is in a broken-symmetry phase with

columnar order, which we define more precisely below. Let the lower left corner of a

square be denoted as its head. In the columnar phase, the heads preferentially occupy
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(a) (b)

Figure 2.1: Snapshot of a typical configuration of the system of hard squares at equilib-
rium in two different representations. The data are for activity z = 110, when the density
is ρ ≈ 0.937, and the system is in an ordered phase. A square is colored blue or green
depending on whether its head (bottom left point) is in even or odd (a) row and (b) col-
umn. The dominance of one color in (a) implies that the system is a row-ordered phase.
The snapshot was generated using Monte Carlo simulation by implementing the cluster
algorithm introduced in [106, 71].

even or odd rows with all columns being equally occupied, or preferentially occupy even

or odd columns with all rows being equally occupied. An example of a row-ordered

phase is shown in Fig. 2.1. The snapshot of a equilibrated configuration is shown in two

different representations. When the squares are colored according to whether their heads

are in even or odd rows [see Fig. 2.1(a)], one color is predominantly seen. However,

when the same configuration is colored according to whether the heads of the squares

are in even or odd columns [see Fig. 2.1(b)], then both colors appear in roughly equal

proportion. There are clearly 4 ordered phases possible.

The aim of this paper is to estimate the critical activity zc and critical density ρc separating

the disordered phase from the ordered columnar phase. To do so, we determine, within

an approximation scheme, the interfacial tension σ(z) between two differently ordered

columnar phases and equate it to zero to obtain the transition point. Consider boundary

conditions where the left edge of the square lattice is fixed to the occupied by squares with

heads in even row and the right edge is fixed to be occupied by squares in odd row. For

large z, this choice of boundary condition ensures that there is an interface running from
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top to bottom separating a left phase or domain constituted of squares predominantly in

even rows from a right phase or domain constituted of squares predominantly in odd rows.

A schematic diagram of the interface is shown in Fig. 2.2. We will refer to the two phases

as left and right phases or domains from now on. Let Z(0) be the partition functions of the

system without an interface and Z(I) be the partition function when an specified interface

I is present. The interfacial tension σ(z) is defined as

e−σNy =

∑
I Z(I)

Z(0) . (2.1)

As the interactions between the squares are only excluded volume interactions, the par-

tition function in the presence of an interface may be written as a product of partition

function of the left and right phases, i.e.

Z(I) = Z(I)
L Z(I)

R , (2.2)

where Z(I)
L and Z(I)

R denote the partition functions of the left and right phases in the pres-

ence of an specified interface I. It is not possible to determine Z(I)
L , Z(I)

R or Z(0) exactly.

In what follows, we calculate these partition functions within certain approximations.

First, we assume that the interface between the left and right phases is a directed walk from

top to bottom, i.e. the interface does not have any upward steps. We define the position

of the interface to be the right boundary of the rightmost squares of the left phase. The

interface is specified by its x-coordinates, ηi as shown in Fig. 2.2. We also define ξi to be

the x-coordinates of the left most position that a square in the right phase may occupy on

row i, as shown in Fig. 2.2. Clearly,

ξi = max(ηi−1, ηi), i = 1, 2, ..,Ny/2. (2.3)

Given an interface, we compute the partition function within an approximation. The sim-

plest approximation is it to write the partition function as a product of partition functions
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Figure 2.2: Schematic diagram of a configuration in the presence of an interface. The
boundary conditions are such that the left (right) edge of the square is fixed to be occupied
by even (odd) squares. The interface, constituted of the right edges of the right-most
squares of the left domain is denoted by the red line and its x-coordinates are labeled by
ηi. ξi denotes the x-coordinate of the left-most position possible for a square belonging to
the right domain. An overhang of height one in the interface is denoted by magenta line.

of tracks of width two, corresponding to two consecutive rows. This approximation has

the drawback that the ordered left and right phases do not have any defects, where the

squares of wrong type i.e. odd squares in left or even phase and even squares in the right

or odd phase will be called defects (denoted by yellow in Fig. 2.2). The calculation of

interfacial tension then reduces to the special case of zero-defects of [7]. The simplest

approximation that allows defects to be present is the pairwise approximation [104, 105].

Here, we approximate the the full partition function of Ny rows as a product over partition

function of tracks made up of four consecutive rows, suitably scaled to avoid overcount-

ing. We write

Z(I)
L ≈

ω(L)
2 (η1, η2)ω(L)

2 (η2, η3) ... ω(L)
2 (ηNy/2, η1)

L(L)(η1)L(L)(η2) ... L(L)(ηNy/2)
, (2.4)

Z(I)
R ≈

ω(R)
2 (Nx − ξ1,Nx − ξ2) ... ω(R)

2 (Nx − ξNy/2,Nx − ξ1)
L(R)(Nx − ξ1) ... L(R)(Nx − ξNy/2)

, (2.5)

Z(0) ≈
[ω2(Nx,Nx)]Ny/2

[L(Nx)]Ny/2
, (2.6)

where ω2(`1, `2) is the partition function of a track of width 4 where first two rows are
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of length `1 and third and fourth rows of length `2, and L(`) is the partition function of

a track of width 2 where both rows have length `. The superscripts (L) and (R) denote

left and right phases. The choice of the denominator is motivated by the fact that in the

absence of defects, ω2(`1, `2) = L(`1)L(`2). In this case, the overall partition function

should reduce to a product over L’s, and the choice of the denominator ensures this. The

exponent Ny/2 in eq. (2.6) follows from the fact that though there are Ny rows, in the

columnar phase, the heads are either in even or odd rows resulting in Ny/2 tracks of width

2.

The partition function of the system having vertical width Ny is effectively the ratio of

Ny/2 partition functions of tracks of width four, made up of four consecutive rows and

Ny/2 partition functions of tracks of width two.

The partition functions for the left and right phases are different, and also not the same

as the partition function of the system without an interface, because the presence of the

interface imposes introduces constraints on the positioning of squares near the interface.

The constraints are as follows. For the left partition function ω(L)
2 (`1, `2), there must be

even squares (non-defects) present whose right edges are aligned with the position of the

interface in both sets of two rows each corresponding to `1 and `2. This is because the

position of the interface has been defined as the right edge of the rightmost square of the

left phase. For the right partition function ω(L)
2 (`1, `2), the constraint is that there must at

least one odd square (non-defect) between the interface and the left-most defect square.

Otherwise, the interface can be redefined to include the defect square into the left phase.

In addition, there is the question of whether defects can be placed between `1 and `2 for

the left and right phases. Placing defects here is equivalent to allowing the interface to

have overhangs. To prevent overcounting, we will disallow such defects for the left phase,

but allow them for the right phase. Equivalently, a defect in the left phase may be placed

only in the region to the left of min(`1, `2), and a defect in the right phase can be placed

to the right of min(Nx − `1,Nx − `2).
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It is convenient to shift to a notation where (see Fig. 2.3)

ω2(`1, `2) = Ω2
[
min(`1, `2), |`1 − `2|

]
(2.7)

Then, the partition function Z(L), Z(R) and Z(0) may be rewritten as

Z(I)
L =

∏Ny/2
i=1 Ω

(L)
2

[
min(ηi, ηi+1), |ηi − ηi+1|

]∏Ny/2
i=1 L

(L)(ηi)
, (2.8)

Z(I)
R =

∏Ny/2
i=1 Ω

(R)
2

[
Nx −max(ξi, ξi+1), |ξi − ξi+1|

]∏Ny/2
i=1 L

(R)(Nx − ξi)
, (2.9)

Z(0) =
[Ω2(Nx, 0)]Ny/2

[L(Nx)]Ny/2
, (2.10)

For large `, the partition functions Ω2 and L diverge exponentially with the system size.

We define

Ω2(`,∆) = a2(∆)λ2`+∆
2 , (2.11)

Ω
(L)
2 (`,∆) = a(L)

2 (∆)λ2`+∆
2 , ` � 1, (2.12)

Ω
(R)
2 (`,∆) = a(R)

2 (∆)λ2`+∆
2 , (2.13)

and

L(`) = a1λ
`
1, (2.14)

L(L)(`) = a(L)
1 λ`1, ` � 1, (2.15)

L(R)(`) = a(R)
1 λ`1. (2.16)

Note that we have used the same exponential factor for all Ω2 (as well as for all L), since

the free energy is independent of constraints arising from the boundary conditions. It is

easy to determine a(L)
1 and a(R)

1 in terms of a1. In the left domain, for a track of width

2, the constraint is that the rightmost square must touch the interface. This means that

L(L)(`) = zL(` − 2) ≈ za1λ
`−2
1 . In the right domain, defects cannot be present in a track

37



L( )Ω ( )

(a) (b)

Figure 2.3: Schematic diagram of a (a) track of width 4 (four rows) with partition function
Ω2(`,∆) and (b) track of width 2 (two rows) with partition function L(`).

of width 2, and hence there are no constraints, implying that L(R)(`) = L(`) ≈ a1λ
`
1.

Therefore,

a(L)
1 =

za1

λ2
1

, (2.17)

a(R)
1 = a1. (2.18)

Using the asymptotic forms for the partition functions, the partition functions of the left

[see eq. (2.8)] and right [see eq. (2.9)] phases may be rewritten as

Z(I)
L =

∏Ny/2
i=1 a(L)

2
(
|ηi − ηi+1|

)
λ

2 min(ηi,ηi+1)+|ηi−ηi+1 |

2∏Ny/2
i=1 za1λ

ηi−2
1

, (2.19)

Z(I)
R =

∏Ny/2
i=1 a(R)

2
(
|ξi − ξi+1|

)
λ

2Nx−2 max(ξi,ξi+1)+|ξi−ξi+1 |

2∏Ny/2
i=1 a1λ

Nx−ξi
1

. (2.20)

Using the relations 2 min(m, n) = m + n− |m− n| and 2 max(m, n) = m + n + |m− n|, taking

product of Z(L) and Z(R) and simplifying, we obtain

Z(I) =
λ

NxNy

2

∏Ny/2
i=1 a(L)

2
(
|ηi − ηi+1|

)
a(R)

2
(
|ξi − ξi+1|

)
λ
−|ηi−ηi+1 |

2(
za2

1
λ2

1

)Ny/2

λ
NxNy/2
1

∏Ny/2
i=1 λ

− 1
2 |ηi−ηi+1 |

1

. (2.21)

Likewise, the partition function of the system without an interface [see eq. (2.10)] may be
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written for large Nx as

Z(0) =

[a2(0)λ2Nx
2

a1λ
Nx
1

]Ny/2

. (2.22)

Knowing the partition functions eq. (2.21) and eq. (2.22), the interfacial tension in eq. (2.1)

may be expressed in terms of a’s, λ1 and λ2 as

e−σNy =

[ λ2
1

za1a2(0)

]Ny/2 ∑
I

Ny/2∏
i=1

a(L)
2

(
|ηi − ηi+1|

)
a(R)

2
(
|ξi − ξi+1|

)
λ
−|ηi−ηi+1 |

2

λ
− 1

2 |ηi−ηi+1 |

1

. (2.23)

We note that all arguments are in terms of differences between consecutive ηi’s or ξi’s. It

is therefore convenient to introduce new variables

η̃i = ηi − ηi−1. (2.24)

In terms of these new variables, it is straightforward to derive

ξi+1 − ξi = η̃i+1θ(̃ηi+1) + η̃i(1 − θ(̃ηi)), (2.25)

where θ(x) is the Heaviside step function defined as θ(x) = 1 for x ≥ 0 and θ(x) = 0

for x < 0. In terms of these new variables η̃i, the interfacial tension eq. (2.23) may be

rewritten as

e−σNy =

[ λ2
1

za1a2(0)

]Ny/2 ∑
[̃ηi]

Ny/2∏
i=1

( √
λ1
λ2

)|̃ηi |

a(L)
2

(
|̃ηi|

)
×

a(R)
2

(
|̃ηi+1θ(̃ηi+1) + η̃i(1 − θ(̃ηi))|

)
, (2.26)

where the sum over η̃i varies from −∞ to +∞.

The summation over η̃i is not straightforward to do as they are not independent due to

terms coupling η̃i and η̃i+1. To do the sum, we define an infinite dimensional transfer

39



matrix T with coefficients

Tη̃i ,̃ηi+1 =

( √
λ1

λ2

)|̃ηi |

a(L)
2

(
|̃ηi|

)
a(R)

2
(
|̃ηi+1θ(̃ηi+1) + η̃i(1 − θ(̃ηi))|

)
. (2.27)

Let Λ2 be the largest eigenvalue of the transfer matrix T . For large Ny, we may then write

eq. (2.26) as

e−σNy =

[ λ2
1

za1a2(0)

]Ny/2 ∑
[̃ηi]

Ny/2∏
i=1

Tη̃i ,̃ηi+1 =

[ λ2
1Λ2

za1a2(0)

]Ny/2

. (2.28)

At the transition point,σ vanishes, and the critical activity zc therefore satisfies the relation

λ2
1Λ2

zca1a2(0)
= 1, (2.29)

where Λ2 depends on a(R)
2 and a(L)

2 . These unknown parameters are calculated exactly in

section 2.3 and section 2.4.

2.3 Calculation of Eigenvalue of T

In this section, we determine the largest eigenvalue of the transfer matrix T with compo-

nents as defined in eq. (2.27). Let the largest eigenvalue of T be denoted by Λ2 corre-

sponding to an eigenvector Ψ with components ψi, i = −∞, . . . ,∞. In component form,

the eigenvalue equation is

∞∑
j=−∞

Ti, jψ j = Λ2ψi, i = −∞, . . . ,∞. (2.30)

Substituting for T from eq. (2.27), we obtain

( √
λ1

λ2

)|i|
a(L)

2 (|i|)
[
a(R)

2 (0)
0∑

j=−∞

ψ j +

∞∑
j=1

a(R)
2 (| j|)ψ j

]
= Λ2ψi, i ≥ 0, (2.31)
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( √
λ1

λ2

)|i|
a(L)

2 (|i|)
[
a(R)

2 (|i|)
0∑

j=−∞

ψ j +

∞∑
j=1

a(R)
2 (| j + i|)ψ j

]
= Λ2ψi, i < 0. (2.32)

First consider the case for i ≥ 0. Eq. (2.31) may be re-written as

( √
λ1

λ2

)|i|
a(L)

2 (|i|)
[
a(R)

2 (0)β +

∞∑
j=1

a(R)
2 (| j|)ψ̃ j

]
= Λ2ψ̃i, i ≥ 0, (2.33)

where

ψ̃i =
ψi

ψ0
; β =

0∑
i=−∞

ψ̃i. (2.34)

Since ψ̃0 = 1, from eq. (2.33) with i = 0, we immediately obtain the eigenvalue Λ2 to be

Λ2 = a(L)
2 (0)

a(R)
2 (0)β +

∞∑
j=1

a(R)
2 (| j|)ψ̃ j

 . (2.35)

with components of the eigenvector being

ψ̃i =

( √
λ1

λ2

)|i|a(L)
2 (|i|)

a(L)(0)
, i ≥ 0. (2.36)

Now, consider the case i < 0. In terms of ψ̃i, eq. (2.32) may be written as

( √
λ1

λ2

)|i|
a(L)

2 (|i|)
[
a(R)

2 (|i|)β +

∞∑
j=1

a(R)
2 (| j + i|)ψ̃ j

]
= Λ2ψ̃i, i < 0. (2.37)

Substituting ψ̃ j for j ≥ 0, from eq. (2.36), we obtain

( √
λ1

λ2

)|i|
a(L)

2 (|i|)F(i) = Λ2ψ̃i, i < 0, (2.38)

where, the function F(i) is defined as

F(i) = a(R)
2 (|i|)β +

∞∑
j=1

( √
λ1

λ2

)| j|a(R)
2 (| j + i|)a(L)

2 (| j|)

a(L)
2 (0)

. (2.39)
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The solution to eq. (2.38) is clearly

Λ2 = a(L)
2 (0)F(0), (2.40)

which is consistent with eq. (2.35), and

ψ̃i =

( √
λ1

λ2

)|i| a(L)
2 (|i|)F(i)

a(L)
2 (0)F(0)

, i < 0. (2.41)

Eq. (2.35), eq. (2.36), and eq. (2.41) determine Λ2 and the components of the eigenvector.

To solve for Λ2 in terms of a(L)
2 (∆) and a(R)

2 (∆), it is convenient to define three quantities

k1 =

∞∑
i=1

( √
λ1

λ2

)|i|
a(L)

2 (|i|)a(R)
2 (|i|), (2.42)

k2 =

0∑
i=−∞

( √
λ1

λ2

)|i|
a(L)

2 (|i|)a(R)
2 (|i|), (2.43)

k3 =

0∑
i=−∞

∞∑
j=1

( √
λ1

λ2

)|i|+| j|a(L)
2 (|i|)a(R)

2 (|i + j|)a(L)
2 (| j|)

a(L)
2 (0)

. (2.44)

Solving for β in eq. (2.34) and eq. (2.35) by substituting for ψ̃i from eq. (2.41) and

eq. (2.36) respectively, we obtain

β =
k3

Λ2 − k2
, (2.45)

β =
Λ2 − k1

a(L)
2 (0)a(R)

2 (0)
. (2.46)

Equating eq. (2.45) and eq. (2.46) to eliminate β, we find that Λ2 satisfies the quadratic

equation

Λ2
2 − (k1 + k2)Λ2 + k1k2 − k3a(L)

2 (0)a(R)
2 (0) = 0, (2.47)

whose largest root is

Λ2 =
k1 + k2 +

√
(k1 − k2)2 + 4a(L)

2 (0)a(R)
2 (0)k3

2
. (2.48)
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= 1 + +G1(y) G1(y) G1(y)

Figure 2.4: Diagrammatic representation of the recursion relation obeyed by the generat-
ing function G1(y) defined for a track of width 2 [see eq. (2.52) for definition]. The first
column of the track may be occupied by two vacancies (open 1×1 square) or a square
(filled 2×2 square).

The largest eigenvalue may be further simplified using

k2 − k1 = a(L)
2 (0)a(R)

2 (0), (2.49)

k̃ = k2 + k1 =

∞∑
i=−∞

( √
λ1

λ2

)|i|
a(L)

2 (|i|)a(R)
2 (|i|). (2.50)

After simplification we get the largest eigenvalue

Λ2 =
k̃ +

√[
a(L)

2 (0)a(R)
2 (0)

]2
+ 4a(L)

2 (0)a(R)
2 (0)k3

2
, (2.51)

with k3 as in eq. (2.44) and k̃ as in eq. (2.50).

2.4 Calculation of Partition Functions of Tracks

2.4.1 Partition function of track of width 2

In this subsection, we determine the asymptotic behavior of the partition function L(`) of

a track of width 2 and length ` [the shape of the track is shown in Fig. 2.4(b)]. We define

the generating function

G1(y) =

∞∑
`=0

L(`)y`, (2.52)

where the power of
√

y is the number of sites present in the system. The recursion relation

obeyed by G1(y) is shown diagrammatically in Fig. 2.4 and can be written as

G1(y) = 1 + yG1(y) + zy2G1(y), (2.53)
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which may be solved to give

G1(y) =
1

1 − y − zy2 . (2.54)

Let y1 be the smallest root of the denominator 1 − y − zy2 of eq. (2.54), i.e.

y1 =

√
1 + 4z − 1

2z
. (2.55)

By finding the coefficient of y` for large `, it is straightforward to obtain

L(`) = a1λ
`
1[1 + O(exp(−c`))], c > 0, ` � 1, (2.56)

where

λ1 =
1
y1
, a1 =

1
2 − y1

. (2.57)

2.4.2 Partition functions of tracks of width 4

In this subsection, we determine the partition functions of tracks of width 4 without any

constraints. The shape of a generic track of width 4 is characterized by parameters ` and

∆, and is shown in Fig. 2.3 (a). Calculating these partition functions will allow us to

determine a2(∆) as defined in eq. (2.11).

Consider the following generating function.

G2(y,∆) =

∞∑
`=0

Ω2(`,∆)y2`+∆, (2.58)

where the power of
√

y is the number of sites in the system. G2(y, 0) and G2(y, 1) obey

simple recursion relations which are shown diagrammatically in Fig. 2.5. In equation
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= 1 + + +

+ +

= +

G2(y,0) G2(y,1)G2(y,0)

G2(y,0) G2(y,0)

G2(y,1)

G2(y,1)G2(y,1) G2(y,0)

(a)

(b)

Figure 2.5: Diagrammatic representation of the recursion relation obeyed by the gen-
erating functions (a) G2(y, 0) and (b) G2(y, 1) for a track of width 4 [see eq. (2.58) for
definition]. Right hand side enumerates the different ways the first column of the track
may be occupied by vacancies (open 1×1 square), square (filled 2×2 green square) and
defect (filled 2×2 yellow square).

form, they are

G2(y, 0) = 1 + y2G2(y, 0) + 2zy3G2(y, 1) + (z2y4 + zDy4)G2(y, 0), (2.59)

G2(y, 1) = yG2(y, 0) + zy2G2(y, 1), (2.60)

where zD is the activity associated with each defect square. These relations are easily

solved to give

G2(y, 0) =
1 − zy2

f (y2)
, (2.61)

G2(y, 1) =
y

f (y2)
, (2.62)

where

f (y) = z(z2 + zD)y3 − (z2 + z + zD)y2 − (1 + z)y + 1.

Let y2 be the smallest root of f (y) = 0. For very large `, we may write Ω2(`,∆) as

Ω2(`,∆) = a2(∆)λ2`+∆
2 [1 + O(exp(−c`))], ` � 1, c > 0, (2.63)
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where

λ2 =
1
√

y2
. (2.64)

Calculating coefficient of y2`+∆, the prefactor a2(∆) for ∆ = 0, 1 is obtained to be

a2(0) =
−(1 − zy2)
y2 f ′(y2)

, (2.65)

a2(1) =
−1

√
y2 f ′(y2)

. (2.66)

We now consider ∆ ≥ 2. The recursion relation obeyed by Ω2(`,∆) for ∆ ≥ 2 is shown

diagrammatically in Fig. 2.6, and may be written mathematically as

Ω2(`,∆) = Ω2(`,∆ − 1) + zΩ2(`,∆ − 2), ∆ = 2, 3, ... (2.67)

We define the generating function

F(`, x) =

∞∑
∆=0

Ω2(`,∆)x∆. (2.68)

Multiplying eq. (2.67) by x∆ and summing from 2 to ∞, we obtain a linear equation

obeyed by F(`, x) which is easily solved to give

F(`, x) =
Ω2(`, 0) + x

[
Ω2(`, 1) −Ω2(`, 0)

]
1 − x − zx2 , (2.69)

where Ω2(`, 0) and Ω2(`, 1) have already been determined [see eq. (2.61), eq. (2.62)].

F(`, x) has two simple poles at

x± =
−1 ±

√
1 + 4z

2z
. (2.70)

Expanding the denominator about its two roots x±, we determine Ω2(`,∆) by calculating
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= +Ω ( , ) Ω ( , −1 ( ,∆ −

Figure 2.6: Diagrammatic representation of the recursion relation obeyed by the partition
function Ω2(`,∆) with ∆ ≥ 2, for a track of width 4. The first column of the track may be
occupied by two vacancies (open 1×1 square) or a square (filled 2×2 square).

the coefficient of x∆. We obtain

a2(∆) = A+(x+λ2)−∆ + A−(x−λ2)−∆, ∆ = 0, 1, 2..., (2.71)

where

A± =
±
[
λ2a2(1) − (zx∓ + 1)a2(0)

]
√

1 + 4z
. (2.72)

2.4.3 Calculation of a(L)
2 (∆)

In this subsection, we calculate the pre-factor a(L)
2 (∆) that characterizes the asymptotic

behavior of the partition function of track of width 4 [see eq. (2.12)] for the left phase.

The left phase has the constraint that the right edge of the rightmost square must touch

the interface [see discussion in the paragraph following eq. (2.6)]. Thus

Ω
(L)
2 (`,∆) = z2Ω2(` − 2,∆), (2.73)

where the factor z2 accounts for the two squares adjacent to interface. Once these two

squares are placed the occupation of the rest of the track has no constraints and hence

enumerated by Ω2(` − 2,∆). Using eq. (2.73), eq. (2.12) and eq. (2.63), for very large `

we obtain

a(L)
2 (∆) =

z2

λ4
2

a2(∆), (2.74)

where a2(∆) is given in eq. (2.71).
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2.4.4 Calculation of a(R)
2 (∆)

In this subsection, we calculate a(R)
2 (∆) for ∆ ≥ 0, as defined in eq. (2.13). Consider the

track labeled by (ξi, ξi+1) [see Fig. 2.2]. The constraint on the right phase is that a defect

is allowed to be present only to to the right of min(ξi, ξi+1) and there must be at least one

non-defect square present to its left [see discussion in the paragraph following eq. (2.6)].

First consider ∆ = 0, 1. The recursion relation obeyed by the partition functions Ω
(R)
2 (`, 0)

and Ω
(R)
2 (`, 1) for right phase are shown diagrammatically in Fig. 2.7 and may be written

as

Ω
(R)
2 (`, 0) = Ω

(R)
2 (` − 1, 0) + 2zΩ2(` − 2, 1) + z2Ω2(` − 2, 0), (2.75)

Ω
(R)
2 (`, 1) = Ω

(R)
2 (`, 0) + zΩ2(` − 1, 1). (2.76)

Using the asymptotic expressions for the partition functions as given in eq. (2.11) and

eq. (2.13), we obtain two linear equations for a(R)
2 (0) and a(R)

2 (1), which are easily solved

to give

a(R)
2 (0) =

z
[
2a2(1)λ2 + za2(0)

]
λ2

2(λ2
2 − 1)

, (2.77)

a(R)
2 (1) =

λ2a(R)
2 (0) + za2(1)

λ2
2

. (2.78)

Now consider ∆ ≥ 2. The recursion relation obeyed by Ω
(R)
2 (`,∆) for ∆ ≥ 2 may be

written as

Ω
(R)
2 (`,∆) = Ω

(R)
2 (`,∆ − 1) + zΩ̃2(`,∆ − 2) (2.79)

where Ω̃2(`,∆) is the partition function for a generalization of the shape for Ω
(R)
2 (`, 1) in

the left hand side of Fig. 2.7. The lack of the subscript (R) means that there are no con-

straints. The first term in the right hand side of eq. (2.79) corresponds to placing vacancies

48



= +

+ +

= +

Ω
R)
2 (ℓ,0) ( )

2 (ℓ 1,0)

( )
2 (ℓ,1) 2(ℓ 1,1)

2(ℓ 2,1) 2(ℓ 2,0)

( )
2 (ℓ,0)

2(ℓ 2,1)

Figure 2.7: Diagrammatic representation of the recursion relation obeyed by the partition
functions Ω

(R)
2 (`, 0) and Ω

(R)
2 (`, 1) for the track of width 4. Right hand side enumerates

the different ways the first column of the track may be occupied by vacancies (open 1×1
square) or squares (filled 2×2 square).

in first column, and the second term to a non-defect square being placed. Ω
(R)
2 (`,∆− 1) in

the right hand side of eq. (2.79) may be iterated further to yield

Ω
(R)
2 (`,∆) = Ω

(R)
2 (`, 1) + z

∆−2∑
i=0

Ω̃2(`, i), (2.80)

To solve eq. (2.80), consider the generating function G̃2(y,∆) defined as

G̃2(y,∆) =

∞∑
`=0

Ω̃2(`,∆)y2`+3∆/2, (2.81)

where power of
√

y gives total number of sites in the system. The diagrammatic represen-

tation of the recursion relation obeyed by G̃2(y, 1) is shown in Fig. 2.8 and may be written

as

G̃2(y, 1) = y3/2G2(y, 0) + zy5/2G2(y, 1) + zDy7/2G2(y, 0), (2.82)

where zD is the activity associated with each defect, and G2(y, 0) and G2(y, 1) are as in

eq. (2.61) and eq. (2.62). The generating function G̃2(y, 1) is then easily solved to give

G̃2(y, 1) =
(1 + zDy2 − zzDy4)y3/2

f (y2)
. (2.83)
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= + +G2(y,0) G2(y,1)eG2(y,1) G2(y,0)

Figure 2.8: Diagrammatic representation of the recursion relation obeyed by the generat-
ing function G̃2(y, 1) [see eq. (2.81) for definition] for a track of width 4. Right hand side
enumerates the different ways the first column of the track may be occupied by vacancies
(open 1×1 square), square (filled 2×2 square of color green) and defect (filled 2×2 square
of color yellow).

For large ` the partition function may be written asymptotically as

Ω̃2(`,∆) = ã2(∆)λ2`+∆
2 , ∆ ≥ 0, ` � 1. (2.84)

Calculating the coefficient of y2`+3/2 from eq. (2.83) and using eq. (2.84), we obtain the

prefactor

ã2(1) =
−(1 + zDy2 − zzDy2

2)
√

y2 f ′(y2)
. (2.85)

Now calculate the partition function Ω̃2(`,∆) for ∆ ≥ 2. The diagrammatic representation

of the recursion relation obeyed by the partition function Ω̃2(`,∆) for ∆ ≥ 2 is shown in

Fig. 2.9 and may be written mathematically as

Ω̃2(`,∆) = Ω̃2(`,∆ − 1) + (z + zD)Ω̃2(`,∆ − 2), ∆ = 2, 3, .... (2.86)

We define the generating function

H(`, t) =

∞∑
∆=0

Ω̃2(`,∆)t∆. (2.87)

Multiplying eq. (2.86) by t∆ and performing summation over ∆ from 2 to ∞, we obtain a

linear equation obeyed by H(`, t) which is solved to give

H(`, t) =
Ω̃2(`, 0) + t

[
Ω̃2(`, 1) − Ω̃2(`, 0)

]
1 − t − (z + zD)t2 . (2.88)
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= +

+

eΩ ( , ) eΩ ( , −1

e ( ,∆ −

eΩ (ℓ,∆ −

Figure 2.9: Diagrammatic representation of the recursion relation obeyed by the partition
function Ω̃2(`,∆) with ∆ ≥ 2 for a track of width 4. Right hand side enumerates the
different ways the first column of the track may be occupied by vacancies (open 1×1
square), square (filled 2×2 square of color green) and defect (filled 2×2 square of color
yellow).

H(`, t) has two simple poles determined by the roots of the quadratic equation 1− t − (z +

zD)t2 = 0

t± =
−1 ±

√
1 + 4(z + zD)

2(z + zD)
. (2.89)

Expanding the denominator about t± and calculating the coefficient of t∆, we get the ex-

pression for Ω̃2(`,∆) and using eq. (2.84) the prefactor is obtained to be

ã2(∆) = B+(t+λ2)−∆ + B−(t−λ2)−∆, ∆ ≥ 0, (2.90)

where

B± =

±

[
λ2ã2(1) − [(z + zD)t∓ + 1]a2(0)

]
√

1 + 4(z + zD)
. (2.91)

We now return to eq. (2.80) and replace the partition functions Ω
(R)
2 (`,∆) and Ω̃2(`, i) by

their asymptotic forms given in eq. (2.13) and eq. (2.84) respectively, and do the summa-

tion over Ω̃2(`, i) from i = 0 to (∆ − 2), to obtain the prefactor

a(R)
2 (∆) = v1λ

−∆
2 + v2(t+λ2)−∆ + v3(t−λ2)−∆, ∆ ≥ 2, (2.92)
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where

v1 = a(R)
2 (1)λ2 + z

( B+t+
t+ − 1

+
B−t−

t− − 1

)
,

v2 = −
zB+t2

+

t+ − 1
,

v3 = −
zB−t2

−

t− − 1
.

2.5 Results

In this section we determine the interfacial tension σ(z) between two ordered phases as a

function of the activity z. From eq. (2.28), σ(z) may be written as

σ(z) = −
1
2

log
[ λ2

1Λ2

za1a2(0)

]
, (2.93)

where Λ2, λ1, a1 and a2(0) are as in eq. (2.51), eq. (2.57), and eq. (2.65). Λ2 depends on

a(L)
2 (∆) and a(R)

2 (∆), which in turn have been calculated in eq. (2.74) and eq. (2.92). We

also set zD = z, where zD is the activity of a defect.

The variation of σ(z) with activity z is shown in Fig. 2.10. It decreases monotonically

with decreasing z and becomes zero at a finite value of z, which will be our estimate of

the critical activity zc. We find that zc = 105.35 for the interface with overhangs. As a

check for the calculation, we confirm that if we set zD = 0, then we obtain the results for

the estimated zc in the absence of defects [7]. The result for zc compares well with the

numerical estimate from Monte Carlo simulations of zc ≈ 97.5 [see table 1.1].

The occupied area fraction or density ρ may be calculated from the partition function Z(0)

as:

ρ =
4z

NxNy

∂

∂z

[
log

(
Z(0))], (2.94)

where the factor 4 accounts for the area of a square. Substituting for Z(0) from eq. (2.22),
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Figure 2.10: The variation of the interfacial tensionσ(z) with activity z. Interfacial tension
σ(z) vanishes at the critical activity z = zc.

the density ρ in eq. (2.94), in the thermodynamic limit Nx → ∞, Ny → ∞, reduces to

ρ = 4z
[ 1
λ2

∂λ2

∂z
−

1
2λ1

∂λ1

∂z

]
. (2.95)

We thus obtain the critical density to be ρc = 0.947. This estimate compare well with the

Monte Carlo results of ρc ≈ 0.932 [see table 1.1].

2.6 Conclusion

In this paper, we estimated the transition point of the disordered-columnar transition in in

the hard square model by calculating the interfacial tension between two ordered phases

within a pairwise approximation. This calculation allows for multiple defects to be present

as well as the interface to have effective overhangs. We obtain the critical activity zc =

105.35 and critical density ρc = 0.947, which agrees reasonably with the numerically

obtained results of zc ≈ 97.5 and ρc ≈ 0.932. Our estimate for the critical activity is a

considerable improvement over earlier estimates based on many different approaches [see
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table 1.1].

We calculated the prefactor a(R)
2 (∆) by allowing defects to be present as overhangs [see

section 2.4.4]. The calculation can be repeated when defects are present only in regions

which do not correspond to overhangs. This corresponds to a defect in the right phase

being present only to the right of max(ξi, ξi+1) [see Fig. 2.2]. This calculation leads to an

estimate of zc = 43.28, which is about half the value of the numerical result of zc ≈ 97.5.

The decrease in the value of zc on excluding overhangs is consistent with the fact that the

entropy of the system with interface decreases while the entropy of the system without

interface remains unchanged. We, thus, conclude that the presence of overhangs in the

interface is important for the calculation of interfacial tension.

A similar analysis for determining the phase boundary may be done for other kind of sys-

tems, which show a transition from disordered to columnar ordered phase with increasing

density. The mixture of hard squares and dimers [8] shows such a transition, and so does

the system of (d × 2) hard rectangles [73, 74, 7]. It would be interesting to see whether

the approximation scheme used in this paper is useful in obtaining reliable estimates for

the phase boundaries in these problems.
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Chapter 3

Mixture of hard squares and dimers

3.1 Introduction

In this chapter, we estimate the phase boundary separating the disordered and columnar

phase for the mixture of hard squares and dimers. The mixture of hard squares and dimers

was studied both numerically and analytically in Ref. [8]. The system undergoes a transi-

tion from a square-rich columnar phase to a dimer-rich disordered phase across a critical

line along which the critical exponents continuously vary depending on the composition

of the mixture, consistent with the Ashkin-Teller universality class. On the fully packed

line, it was shown that the system undergoes a Korterlitz-Thouless type transition from a

columnar phase to a power law correlated phase as the dimer density is increased. Along

the fully packed line, the configurations of dimers and squares may be mapped onto a

height field. By writing an effective Hamiltonian for the two dimensional height field,

it was possible to theoretically explain the numerically obtained results, along the fully

packed line [8]. However, the height mapping does not allow the phase boundary to be

determined, as the relation between the rigidity and microscopic parameters is not easy

to establish. In this chapter, we determine the phase diagram within an approximation

scheme, and compare with the numerically obtained phase boundary.
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Estimates of phase boundaries in systems showing columnar order, obtained from stan-

dard approximation schemes like density functional theory, high density expansions, Flory-

type approximations, etc., are quite poor [see Ref. [64] for a tabulation of results for the

hard square model]. In recent work [7, 64], we described a systematic way of determining

the interfacial tension between two differently ordered columnar phases in terms of num-

ber of defects and overhangs in the interface. The estimates obtained from the interfacial

tension are in good agreement with the numerical results for the hard square gas [7, 64]

as well as the hard rectangle gas [7]. In this thesis, we use the same method to obtain the

phase boundary for the mixture of squares and dimers. We estimate the interfacial ten-

sion between two different columnar ordered phases and by setting it to zero, we obtain

limiting condition for the stability of columnar phase. First, we assume that the interface

between the two ordered phases has no overhangs and that the ordered phases have per-

fect order. We improve the estimate for the phase boundary by allowing the interface to

have overhangs of height one. The results are summarized in Fig. 3.6. For instance, along

the fully packed line our estimates for the critical density for squares are within 8% of the

numerical result. The content of this chapter is published in Ref. [69].

3.2 Model and outline of calculation

Consider a square lattice of size Lx × Ly. The lattice may be occupied by particles of three

different shapes: squares, horizontal dimers and vertical dimers of size (2×2), (2×1) and

(1 × 2) respectively. The particles interact only through excluded volume interaction, i.e.

no two particles may overlap. We associate with each square, horizontal dimer, vertical

dimer and vacancy (1 × 1) activities zs, zh, zv and z0 respectively. We will refer to the

bottom left corner of a particle as its head.

Depending on the values of the activities, the system may exist in a disordered fluid like

phase or in an ordered phase which has columnar order [8]. In the columnar phase, the
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heads of squares and vertical (horizontal) dimers preferably occupy either even or odd

rows (columns) with equal fraction on an average in even or odd columns (rows).

The aim of the chapter is to determine the phase boundary between the columnar and dis-

ordered phases. This is done by estimating the interfacial tension σ(zs, zh, zv, z0) between

two ordered columnar phases, and by equating it to zero, we obtain estimates for the criti-

cal activities and densities. Let the phase in which majority of heads of squares and verti-

cal dimers are in even (odd) rows be called even (odd) phase. To compute σ(zs, zh, zv, z0),

we impose an interface in the system by fixing squares at the left boundary to be even and

those at the right boundary to be odd. A snapshot of a typical equilibrium configuration

seen in a Monte Carlo simulation of a system with these boundary conditions is shown

in Fig. 3.1. There is a left phase with even squares and vertical dimers separated from a

right phase with odd squares and vertical dimers by an interface. The horizontal dimers

could be even or odd in both phases. To define an unique position of the interface for any

allowed configuration of particles, we adopt the convention that the boundary between

the left or even phase and right or odd phase is placed as far left as possible. With this

convention, there is a well-defined interface. The bulk phases have only few defects. By

defects, we mean particles of the wrong type (odd in even phase or even in odd phase).

When the defects are removed, a fully ordered columnar phase is recovered.

Let Z(0) and Z(I) be the partition function of the system without and with an interface I

respectively. The interfacial tension σ is defined as

e−σLy =

∑
I Z(I)

Z(0) , (3.1)

Due to the nature of interactions between particles being hard core, we can write the

partition function of the system in the presence of an interface as a product of the partition

functions of the left and right phases, i.e.

Z(I) = Z(I)
L Z(I)

R , (3.2)
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Figure 3.1: Snapshot of a typical equilibrium configuration of a system where the squares
at the left boundary are fixed to be on even rows (green) and the squares at the right
boundary are fixed to be on odd rows (blue). At high enough activity zs (as in the figure),
a sharp interface separates the left even phase from the right odd phase.

where L and R denote left and right.

Z(I) cannot be calculated for an arbitrary interface I. We therefore calculate it within

two approximations. As a first approximation, we consider the simplest case where we

ignore overhangs in the interface and defects in the bulk. In this simplified model, the

interface is defined by the position of right boundary of the left phase, and denoted by ηi

(see Fig. 3.2). Since we assume perfect columnar order for the left and right phases, the

partition functions for both left and right phases are a product of partition functions of

tracks made up of two adjacent rows (Ly/2 of them):

Z(I)
L =

Ly/2∏
i=1

[
zvΩ(ηi − 1, 0) + zsΩ(ηi − 2, 0)

]
, (3.3)

Z(I)
R =

Ly/2∏
i=1

Ω(Lx −max(ηi, ηi+1), |ηi − ηi+1|), (3.4)

where Ω(`,∆) is the partition function of a track of two rows with a shape as shown in

Fig. 3.3. In the region corresponding to ∆, only horizontal dimers can be placed. The right

hand side of Eq. (3.3) follows from the fact that, for the left phase, there must be either
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Figure 3.2: A schematic diagram of an interface that has no overhangs. The interface is
indicated by the red line and its x-coordinates are denoted by ηi. The boundary conditions
are periodic in the y-direction.

ℓ

Δ
Figure 3.3: The shape of a generic track of two rows. It is characterized by two lengths `
and ∆ and has partition function Ω(`,∆).

a vertical dimer or square touching the interface. The partition function of the system

without an interface is

Z(0) =

Ly/2∏
i=1

Ω(Lx, 0). (3.5)

In the second approximation, we allow the interface to have overhangs of height one. We

still do not allow defects in the bulk. The calculation is on the same lines as that described

above. This allows us to obtain an improved estimate of the critical parameters.
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The calculation of the interfacial tension involves determining the partition function Ω(`,∆)

of a track of two rows, and is done in the next section.

3.3 Calculation of two-row partition function Ω(`,∆)

In this section we calculate Ω(`,∆), the partition function of a track of two rows with

shape as shown in Fig. 3.3. Consider the generating function defined as

G(y,∆) =

∞∑
`=0

Ω(`,∆)y`+∆/2, (3.6)

where the power of
√

y is the number of sites in the system.

First, consider the case ∆ = 0, 1. G(y, 0) and G(y, 1) obey simple recursion relations which

are shown diagrammatically in Fig. 3.4 and may be written as

G(y, 0) = 1 + z2
0yG(y, 0) + zvyG(y, 0) + zsy2G(y, 0) +

2z0zhy3/2G(y, 1) + z2
hy2G(y, 0), (3.7)

G(y, 1) = zhyG(y, 1) + z0y1/2G(y, 0). (3.8)

These are easily solved to yield

G(y, 0) =
1 − zhy

f (y)
, (3.9)

G(y, 1) =
z0
√

y
f (y)

, (3.10)

where the function f (y) in the denominator is

f (y) =zh(zs + z2
h)y3 − (zs + z2

h + zhz2
0 − zhzv)y2

− (zh + zv + z2
0)y + 1, (3.11)
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G(y,0) G(y,0) G(y,0)G(y,0) =   1 + 

G(y,0)+2+

++

+G(y,1) G(y,1)

G(y,1)

=   G(y,0)

Figure 3.4: Diagrammatic representation of the recursion relations obeyed by the generat-
ing functions G(y, 0) and G(y, 1) [see Eq. (3.6) for definition]. The left-most column may
be occupied by vacancies, dimers or squares.

a third order polynomial in y. Let y1 be smallest root of f (y) = 0. Then, it is clear that

Ω(`,∆) = a(∆)λ`[1 + O(e−c`)], ` � 1, (3.12)

where

λ =
1
y1
. (3.13)

The prefactor a(∆) for ∆ = 0, 1 is determined by calculating the coefficient of y`+∆/2. It is

easily checked that

a(0) =
−(1 − zhy1)

y1 f ′(y1)
, (3.14)

a(1) =
−z0

y1 f ′(y1)
. (3.15)

Equations (3.12)–(3.15) determine Ω(`,∆) for ∆ = 0, 1.

We now calculate Ω(`,∆) for ∆ ≥ 2. The recursion relation obeyed by Ω(`,∆) is shown

diagrammatically in Fig. 3.5, and may be written as

Ω(`,∆) = z0Ω(`,∆ − 1) + zhΩ(`,∆ − 2), ∆ ≥ 2. (3.16)
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=

+Δ

ℓ

Figure 3.5: Diagrammatic representation of the recursion relation obeyed by Ω(`,∆), the
partition function of a track of two rows as shown in Fig. 3.3, for ∆ ≥ 2. The left-most
column of the may be occupied by a vacancy or a horizontal dimer.

To solve Eq. (3.16), define the generating function

H(`, x) =

∞∑
∆=0

Ω(`,∆)x∆. (3.17)

Multiplying Eq. (3.16) by x∆ and summing over ∆, we obtain a linear equation for H(`, x)

that may be solved to yield

H(`, x) =
Ω(`, 1)x + Ω(`, 0)(1 − z0x)

1 − z0x − zhx2 . (3.18)

The generating function H(`, x) has two simple poles determined by the zeros of the

quadratic equation 1 − z0x − zhx2 = 0. These are

x± =
−(z0 ±

√
z2

0 + 4zh)

2zh
. (3.19)

Expanding the denominator of Eq. (3.18) about x+ and x− we obtain the coefficient of x∆

to be

Ω(`,∆) =
∑
i=±

a(1) + a(0)zhxi

(z0 + 2zhxi)x∆
i

λ`, ` � 1. (3.20)
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Using Eqs. (3.12) and (3.20), we can write

a(∆) =
p+

x∆
+

+
p−
x∆
−

,∆ ≥ 0, (3.21)

where

p± =
a(1) + a(0)zhx±

z0 + 2zhx±
.

3.4 Interfacial tension and critical parameters

We now calculate interfacial tension σ(zs, zh, zv, z0). The results for the interface without

overhangs is in Sec. 3.4.1 and for the interface with overhangs in Sec. 3.4.2.

3.4.1 Without overhangs

For large Lx and ηi, using Eqs. (3.3), (3.4) and (3.12), the partition functions of the left

and right domains may be written as

Z(I)
L =

[a(0)
λ

(
zv +

zs

λ

)]Ly/2
Ly/2∏
i=1

ληi , (3.22)

Z(I)
R =

Ly/2∏
i=1

a(|ηi − ηi+1|)λLx−max(ηi,ηi+1). (3.23)

Taking the product of Eqs. (3.22) and (3.23) and using the relation

max(ηi, ηi+1) =
|ηi − ηi+1| + ηi + ηi+1

2
, (3.24)
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we obtain the partition function of the system with interface

Z(I) =

[a(0)
λ

(zv +
zs

λ
)
]Ly/2

×∏ Ly/2
i=1

[
λLx−|ηi−ηi+1 |/2a(|ηi − ηi+1|)

]
. (3.25)

Note that Z(I) depends only on the difference |ηi − ηi+1| and not on ηi. Summing over all

configurations I is equivalent to summing over all differences (ηi − ηi+1). Performing the

sum and using Eq. (3.21), we obtain

∑
I

Z(I) =

[
a(0)λLx−1(zv +

zs

λ
)×

(
p+

x+

√
λ + 1

x+

√
λ − 1

+ p−
x−
√
λ + 1

x−
√
λ − 1

)]Ly/2

. (3.26)

The partition function of the system without an interface can be easily calculated using

Eq. (3.5)

Z(0) =

[
Ω(Lx, 0)

]Ly/2

=

[
a(0)λLx

]Ly/2

. (3.27)

The interfacial tension, as defined in Eq. (3.1) may be determined from Eqs. (3.26) and

(3.27) to be

e−σLy =

[
(
zv

λ
+

zs

λ2 )
(
p+

x+

√
λ + 1

x+

√
λ − 1

+ p−
x−
√
λ + 1

x−
√
λ − 1

)] Ly
2

. (3.28)

The phase boundary corresponds to the values of the parameters at which the interfacial

tension vanishes. This immediately gives

[zv

λ
+

zs

λ2

] p+

x+

√
λ + 1

x+

√
λ − 1

+ p−
x−
√
λ + 1

x−
√
λ − 1

 = 1. (3.29)

The phase boundary obtained from Eq. (3.29) is shown by the magenta line in Fig. 3.6(a)

and Fig. 3.6(b). Here, the activities have been normalized using

z1/4
s + z1/2

d + z0 = 1, (3.30)
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Figure 3.6: Phase diagram of the square-dimer model in (a) activity z-plane and (b) den-
sity ρ-plane. S and D represents the state where the lattice is fully packed by squares and
dimers respectively. V represents the empty lattice. The estimates of the phase boundaries
obtained from modelling the interface without overhangs is shown by magenta line while
that obtained by including overhangs of height one are shown by blue lines. The data
points (red circles) are obtained from Monte Carlo simulations.

where zd = zh = zv, such that a two dimensional phase diagram may be obtained. It

shows transitions at z1/4
s = 0.725 along square-vacancy (SV) line and at z1/4

s = 0.616

along square-dimer (SD) line. These should be compared with results from Monte Carlo

simulations [8]: z1/4
s = 0.759 along SV line and at z1/4

s = 0.692 along SD line.

The density of sites occupied by squares ρs, horizontal dimers ρh and vertical dimers ρv

may be calculated from the partition function Z(0) as:

ρs =
4zs

LxLy

∂ ln Z(0)

∂zs
, (3.31)

ρi =
2zi

LxLy

∂ ln Z(0)

∂zi
, i = h, v, (3.32)

where the factor 4 and 2 accounts for the area of a square and a dimer respectively. Sub-

stituting for Z(0) from Eq. (3.27), the densities may be written in the thermodynamic limit
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Lx → ∞, Ly → ∞ as:

ρs =
2zs

λ

∂λ

∂zs
, (3.33)

ρi =
zi

λ

∂λ

∂zh
, i = h, v, (3.34)

where total dimer density ρd = ρh + ρv and density of vacancy ρ0 = 1 − ρd − ρs.

In the density plane, it shows transitions at ρs = 0.928 along SV line and at ρs = 0.714

along SD line. The Monte Carlo results show transitions at ρs = 0.932 along SV line and

at ρs = 0.843 along SD line. Our estimation of critical activities along SV and SD lines

agree satisfactorily with the numerical results (see Sec. 3.4.3).

3.4.2 With overhangs

In the calculation presented in Sec. 3.4.1, the interface was modelled as having no over-

hangs. We now allow the interface to have a certain subclass of overhangs, and obtain an

improved estimate for the phase boundary. To be able to do the calculation in the presence

of overhangs, we first reformulate the calculation in the absence of overhangs in terms of

a weighted, directed walk.

The interface with no overhang (see Fig. 3.2) may be visualized as a partially directed

self avoiding walk (PDSAW) from top to bottom, where the walk is not allowed to take

a step in the upward direction, but allowed to take steps in the leftward, rightward, and

downward directions as long as the walk is self avoiding. We denote a downward step by

D, a leftward step of length ∆ by L∆ and rightward step of length ∆ by R∆. To maintain

self avoidance, every set of consecutive leftward or rightward steps must be preceded

(or followed) by a downward step. Thus, the different PDSAWs may be enumerated by

arbitrary concatenation of substrings D, DL∆, and DR∆ where ∆ = 1, 2, . . ., and the length

of the walk in the vertical direction is given by the number of Ds in the string. The formal
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generating function of these strings may be written as

G0 =
∑

Ly=0,2,4,...

(D + DR̃ + DL̃)Ly/2, (3.35)

=
1

1 − (D + DR̃ + DL̃)
, (3.36)

where

L̃ =

∞∑
∆=1

L∆, (3.37)

R̃ =

∞∑
∆=1

R∆. (3.38)

The generating function G0 generates all possible walks of all possible lengths along the

vertical direction. However, it does not assign weights to a walk.

To assign weights to each walk, we have to determine the weights D, L∆ and R∆ that

correspond to the substrings D, L∆, and R∆. To do so, we determine the weight of a

PDSAW by taking the ratio of Eq. (3.25) and Eq. (3.27) to obtain

Z(I)

Z(0) =

[a(0)
λ

(
zv +

zs

λ

)]Ly/2

×∏ Ly/2
i=1

[
λ−|ηi−ηi+1 |/2 a(|ηi − ηi+1|)

a(0)

]
, (3.39)

= DLy/2
Ly/2∏
i=1

(R, L)|ηi−ηi+1 |, (3.40)

where R or L in Eq. (3.40) is chosen depending on whether the step is in the rightward or

leftward direction. From Eqs. (3.39) and (3.40), we immediately read out

D = a(0)
( zs

λ2 +
zv

λ

)
, (3.41)

L∆ =
a(∆)
a(0)

λ−∆/2, (3.42)

R∆ =
a(∆)
a(0)

λ−∆/2. (3.43)
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Consider now the weighted generating function

G0 =
1

1 − (D + DR̃ + DL̃)
, (3.44)

where

R̃ =

∞∑
∆=1

R∆ =

∞∑
∆=1

L∆ = L̃,

=
1

a(0)

( p+

x+

√
λ − 1

+
p−

x−
√
λ − 1

)
. (3.45)

It is straightforward to see that, in terms of the interfacial tension σ, G0 may be written as

G0 =

∞∑
Ly=0

e−2σLy , (3.46)

Equation (3.46) is convergent for all σ > 0, and diverges at σ = 0, corresponding to the

transition point. From Eq. (3.44), the divergence of G0 corresponds to the condition

D + DR̃ + DL̃ = 1, (3.47)

Substituting for D, R̃ and L̃ from Eqs. (3.41) and (3.45), we obtain the same same equation

for the phase boundary as obtained earlier in Eq. (3.29).

We now allow the interface to have overhangs of height one. If an overhang is present,

then a horizontal line on the dual lattice will intersect the interface more than once. A

schematic diagram of an interface with overhangs is shown in Fig. 3.7. The interface with

overhangs can no longer be interpreted as a PDSAW, as the walk is now allowed to take

upward steps. However, restricting the overhangs to height one implies that each upward

step has to followed by a downward step before another upward step can be taken. We

now generalize the PDSAW to take into account these upward steps.

An overhang will be termed as right or left overhang depending on whether it appears in
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Figure 3.7: Schematic diagram of an interface with overhangs. Overhangs are indicated
by yellow lines while the rest of the interface is indicated by red lines. Overhangs could
be of type right (shown by A) or left (shown by B). The boundary conditions are periodic
in the y-direction.

the right (as shown by yellow with index A in Fig. 3.7) or left phase (as shown by yellow

with index B in Fig. 3.7). We now separately determine the generating function of all

possible walks with right and left overhangs of height one.

3.4.2.1 Right Overhangs

There are two kinds of right overhangs depending on whether the first downward step is

followed by rightward steps [see Fig. 3.8(a)] or leftward steps [see Fig. 3.8(b)]. We split

each of these into two parts: the initial part shown by red and the remaining part shown

by yellow in Fig. 3.8. This amounts to restricting to configurations where a horizontal

dimer does not cross the right boundary of shaded region in Fig. 3.8. We denote these

parts of the walk by W(1)
R (n), W(2)

R (n) and OR(n1, n2) respectively, where the superscript

refer to the two types of right overhangs and subscript R stands for right. Thus a generic
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Figure 3.8: The two kinds of right overhang in which the first downward step is followed
by (a) rightward or (b) leftward step. Overhangs are indicated by yellow lines.

right overhang is represented by

W(i)
R (n)OR(n1, n2)OR(n3, n4)..., i = 1, 2. (3.48)

We now determine the weights for these overhangs. It is clear that

W (1)
R =

∞∑
n=1

wt[W(1)
R (n)] = D2

∞∑
n=1

ω(n)λ−n/2, (3.49)

W (2)
R =

∞∑
n=0

wt[W(2)
R (n)] = D2

∞∑
n=0

[
ω(n)λ−n/2

]2

, (3.50)

where the weight of W(i)
R (n) may be determined by considering an interface with only

one overhang. Here ω(∆) is the partition function of a track of width one and length ∆,

and appears in the weights because the shaded region in Fig. 3.8 may be occupied by

horizontal dimers.

The partition function ω(∆) is easily determined. Define the generating function

ω̃(x) =

∞∑
∆=0

ω(∆)x∆, (3.51)

where the power of x represents the number of sites in the system. The recursion relation

obeyed by ω̃(x) is shown diagrammatically in Fig. 3.9 and may be written as

ω̃(x) = 1 + z0ω̃(x)x + zhω̃(x)x2, (3.52)
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Figure 3.9: Diagrammatic representation of the recursion relation satisfied by the gener-
ating function ω̃(x) [see Eq. (3.51) for definition]. The left-most column may be occupied
by a vacancy or by a horizontal dimer.

with solution

ω̃(x) =
1

1 − z0x − zhx2 . (3.53)

Expanding the denominator about its two roots x± [see Eq. (3.19)] and using Eq. (3.51),

we can write

ω(∆) =
b+

x∆
+

+
b−
x∆
−

,∆ ≥ 0, (3.54)

where

b± =
1

2 − z0x±
. (3.55)

Using Eq. (3.54), the weights W (1)
R and W (2)

R may be rewritten as

W (1)
R = D2

( b+

x+

√
λ − 1

+
b−

x−
√
λ − 1

)
, (3.56)

W (2)
R = D2

( b2
+

1 − (x2
+λ)−1 +

b2
−

1 − (x2
−λ)−1

+
2b+b−

1 − (x+x−λ)−1

)
. (3.57)

Now consider the weight OR defined as

OR =
∑

n1

∑
n2

wt[OR(n1, n2)]

= O(A)
R + O(B)

R + O(C)
R + O(D)

R , (3.58)

where O(i)
R depends on the different ways the particles at the edge of the overhangs may be
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Figure 3.10: For each right overhang, there are four possible configurations (A–D) de-
pending on whether the particles adjacent to the downward steps are squares or vertical
dimers.

placed (see Fig. 3.10). The weight of these four kinds of overhangs may be determined

in a straightforward manner by considering example of an interface with only downward

step and one overhang :

O(A)
R =

∞∑
n1=1

∞∑
n2=1

[
z2

vω(n1)ω(n2)Ω(n1 − 1, 0)Ω(n2 − 1, 0)λ−3(n1+n2)/2
]
, (3.59)

O(B)
R =

∞∑
n1=2

∞∑
n2=1

[
zvzsω(n1)ω(n2)Ω(n1 − 1, 0)Ω(n2 − 2, 0)λ−3(n1+n2)/2

]
, (3.60)

O(C)
R =

∞∑
n1=1

∞∑
n2=2

[
zszvω(n1)ω(n2)Ω(n1 − 2, 0)Ω(n2 − 1, 0)λ−3(n1+n2)/2

]
, (3.61)

O(D)
R =

∞∑
n1=2

∞∑
n2=2

[
z2

sω(n1)ω(n2)Ω(n1 − 2, 0)Ω(n2 − 2, 0)λ−3(n1+n2)/2
]
. (3.62)

The sums over ni may be expressed in term of the generating function G(y, 0) [see Eq. 3.6].

This gives

OR =

[
G(x−1

+ λ
−3/2, 0)

b+

x+λ3/2

( zs

x+λ3/2 + zv

)
+ G(x−1

− λ
−3/2, 0)

b−
x−λ3/2

( zs

x−λ3/2 + zv

)]2

. (3.63)
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The total weight of all walks with right overhang may now be computed. LetUR represent

all possible walks with right overhang and having total weight UR. Then

UR = [W (1)
R + W (2)

R ][OR + O2
R + O3

R + ...]

×[1 + R1 + R2 + ...], (3.64)

where the second term in right hand side represent possible multiple overhang and the

third term, the possibility of right steps after the overhang. UR may be rewritten as

UR =

[
W (1)

R + W (2)
R

][ OR

1 − OR

][
1 + R̃

]
, (3.65)

where R̃ is defined in Eq. (3.45).

3.4.2.2 Left Overhangs

The weight for left overhangs may be calculated in a manner similar to that for right over-

hangs. There are two kinds of left overhangs depending on whether the first downward

step is followed by leftward steps [see Fig. 3.11 (a)] or rightward steps [see Fig. 3.11

(b)]. We split each of these into three parts, where the initial red line represents the first

two downward steps and the intervening region, the middle yellow line represents over-

hangs and final red line represents leftward steps. We denote these parts symbolically by

W(1)
L (n),W(2)

L (n), OL(n1, n2) and L′(n′) respectively, where the superscript (1) and (2) refer

to the two kinds of left overhangs, and subscript L stands for left. Thus, a generic left

overhang of first kind [see Fig. 3.11 (a)] is represented by

W(1)
L (n)OL(n1, n2)OL(n3, n4)...L′(n′), (3.66)
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Figure 3.11: Schematic diagram of two ways of taking two downward steps before the
beginning of an left overhang. The first downward step may be followed by (a) left or (b)
right step. Overhangs are denoted by yellow line.

and that of the second kind [see Fig. 3.11 (b)] is represented by

W(2)
L (n)OL(n + n1, n2)OL(n3, n4)...L′(n′). (3.67)

We now determine the weights of the different parts constituting the left overhangs. For

the overhang of first kind, the total weight associated with the initial red partW(1)
L (n) may

be written as

W (1)
L =

∞∑
n=1

wt[W(1)
L (n)] = D2

∞∑
n=1

L∆ = D2L̃, (3.68)

where L∆ and L̃ are given respectively in Eqs. (3.42) and (3.45). The weight OL associated

with the left overhang is identical to that of the right overhang of similar shape, i.e.,

OL =
∑

n1

∑
n2

wt[OL(n1, n2)] = OR, (3.69)

where OR is given in Eq. (3.63).
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Now, consider the left overhangs of the second kind [see Fig. 3.11 (b)]. The total weight

associated with the first two downward steps and the first overhang may be written as

W
(2)
L =

∑
n

∑
n1

∑
n2

wt[W(2)
L (n)OL(n + n1, n2)]

=

∞∑
n=0

∞∑
n1=1

D2Lnω(n + n1)
[
zvΩ(n + n1 − 1, 0)

+ zsΩ(n + n1 − 2, 0)
]
λ−3(n+n1)/2

√
OL, (3.70)

where the summation over n2 contributes
√

OL. It is convenient to change the variable to

m = n + n1. In this new variable Eq. (3.70) may be rewritten as

W
(2)
L =

∞∑
m=1

m−1∑
n=0

D2Lnmω(m)
[
zvΩ(m − 1, 0)

+ zsΩ(m − 2, 0)
]
λ−3m/2

√
OL. (3.71)

We define the functions

Fi(y) = y1+i d
dy′

[
G(y′, 0)

]
y′=y

+ iyiG(y, 0), (3.72)

where i = 1, 2 and G(y, 0) is the generating function as determined in Eq. (3.7). Doing the

sums in Eq. (3.71), we obtain

W
(2)
L = D2

a(0)

[(
p+x+

√
λ

x+

√
λ−1

+
p−x−

√
λ

x−
√
λ−1

)
J

(
1

x+λ3/2 ,
1

x−λ3/2

)
−

p+x+

√
λ

x+

√
λ−1
J

(
1

x2
+λ

2 ,
1

x+x−λ2

)
−

p−x−
√
λ

x−
√
λ−1
J

(
1

x+x−λ2 ,
1

x2
−λ

2

)]√
OL, (3.73)
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where

J(x1, x2) = zs

[
b+F2(x1) + b−F2(x2)

]
+ zv

[
b+F1(x1) + b−F1(x2)

]
. (3.74)

with b± as defined in Eq. (3.55).

Finally, we calculate the total weight associated with the final set of leftward steps that

may be taken after the overhangs:

L̃′ =

∞∑
n′=0

wt[L′(n′)] =

∞∑
n′=0

ω(n′)λ−n′/2

=

( b+x+

√
λ

x+

√
λ − 1

+
b−x−

√
λ

x−
√
λ − 1

)
. (3.75)

The total weight of all walks with left overhang may now be computed. Let UL represent

all possible walks with at least one left overhang. Let the total weight associated with

these walks be UL. Then we obtain

UL = [W (1)
L OL +W

(2)
L ][1 + OL + O2

L + ...][L̃′], (3.76)

where the second term in the right hand side represents multiple overhangs and the third

term accounts for the leftward steps after the final overhang. Rewriting,

UL =

[
W (1)

L OL +W
(2)
L

][ 1
1 − OL

][
L̃′

]
. (3.77)

3.4.2.3 Phase boundary

The formal generating function of all possible walks including those with overhangs may

be written as

Gov =
1

1 − (D + DR̃ + DL̃ + UR + UL)
. (3.78)
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For every term in the expansion, one may uniquely identify a walk from top to bottom.

The weighted generating function corresponding to Gov may be written as

Gov =
1

1 − (D + DR̃ + DL̃ + UR + UL)
(3.79)

As discussed earlier [see discussion following Eq. (3.46)], the generating function Gov

diverges at the transition point when the interfacial tension σ vanishes, and this condition

is equivalent to

D + DR̃ + DL̃ + UR + UL = 1, (3.80)

where D, R̃, L̃, UR and UR are given in Eqs. (3.41), (3.45), (3.65) and (3.77) respectively.

In Fig. 3.6(a), blue line represents the critical line for activity with overhang. It shows

transitions at z1/4
s = 0.733 along SV line and at z1/4

s = 0.642 along SD line. The density

plot of critical line with overhang is shown in the Fig. 3.6(b) by blue line. It shows

transitions at ρs = 0.934 along SV line and at ρs = 0.779 along SD line.

3.4.3 Monte Carlo simulations

In this section we determine the phase boundary numerically using grand canonical Monte

Carlo simulations. Conventional algorithms that include only local evaporation and de-

position moves often do not equilibrate the system, within available computer time, at

high densities due to long-lived metastable states. Here, we implement an algorithm that

updates two rows at a time using a transfer matrix based Monte Carlo algorithm [8]. The

algorithm not only succeeds in equilibrating the system at high densities, but also at full

packing. This algorithm is a generalization of a cluster algorithm that is able to equili-

brate systems of particles with large excluded volume at high densities [71, 107]. In this

Monte Carlo scheme [8], all particles that are fully contained in a 2 × L track, consisting
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of two adjacent rows or columns of length L, are evaporated. The track is refilled with

particles according to the correct weights in the partition function for the track, subject

to the constraints induced by particles protruding into the track. The calculation of the

restricted partition function is done using standard transfer matrix technique, details of

which may be found in the Supplemental Information of Ref. [8].

The order parameter Q is defined as

Q =
√

(ρer − ρor)2 + (ρec − ρoc)2, (3.81)

where ρer, ρec, ρor and ρoc are the densities of heads of particles (including both dimers and

squares) in even rows, odd rows, even columns and odd columns respectively. Consider

the second moment of the order parameter Q, defined as

χ = L2〈Q2〉, (3.82)

where L × L is the system size. Near the transition point χ obeys following scaling law

χ ' Lγ/ν f (εL1/ν), (3.83)

where ε is the deviation from critical point ε = zs − zc, and f is the finite size scaling

function, and γ and ν are the usual critical exponents. Since the model belongs to Ashkin-

Teller universality class, one knows that the exponent γ/ν = 7/4 [8], independent of the

parameters. From Eq. (3.83), we see that χ/L7/4 for different L should cross at ε = 0,

allowing the critical point to be estimated. An example is shown in Fig. 3.12. We fix the

activity of dimer zd and vary the activity of square zs to get its critical value zc. Critical

value of z0 may be obtained from the normalization condition given in Eq. (3.30). The

data of full phase boundary for activity plane and density plane are shown by blue dots in

Fig. 3.6(a) and Fig. 3.6(b) respectively.
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Figure 3.12: Variation of of χ/L7/4 with activity of squares z1/4
s for fixed activity of dimer

zd = 0.031 for different system sizes. The curves cross at z1/4
c ≈ 0.684. Critical value of

z0 may be calculated from Eq. (3.30).

3.5 Discussion

To summarize, we calculated the interfacial tension between two differently ordered phases

in a mixture of hard squares and dimers, within two approximation schemes. The esti-

mates for the phase boundary between the ordered columnar phase and disordered fluid-

like or power law correlated phase was obtained by setting the interfacial tension to zero.

In the first calculation, we modeled the interface as having no overhangs. The estimates

were improved by extending the calculations to an interface where overhangs of height

one were allowed. The estimates that we obtain for critical parameters are shown in

Fig. 3.6(a) and 3.6(b), and are in good agreement with results from Monte Carlo simula-

tions. The deviation from the numerical results are largest along the fully packed square-

dimer (SD) line. Along this line, we obtain the critical parameters to be z1/4
s = 0.616,

ρs = 0.714 for interfaces without overhang, and z1/4
s = 0.642, ρs = 0.779 for interfaces

with overhangs. These are to be compared with results from Monte Carlo simulations:

z1/4
s = 0.692 and ρs = 0.843. Along the square vacancy (SV) line, the calculation repro-
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duces the results in Ref. [7] for interfaces without overhangs, but corrects the result for

interfaces with overhangs. For the latter case, it was erroneously assumed in Ref. [7] that

the contributions from left and right interfaces are identical.

In our calculations we assumed that the ordered phases have perfect order, thereby ignor-

ing the presence of defects in the bulk phases. Defects may be included in a systematic

manner, as was done for the case of 2 × d rectangles [7]. However, it was found that

the corrections appearing from including overhangs were more dominant than that arising

from including defects when d was small as is the case for hard squares. At the same time,

the calculations for including defects is involved and including the effect of two defects

appears a formidable task. We have, therefore, ignored the corrections due to the presence

of defects.

The calculations could also be improved by taking into account multiple defects using

the pairwise approximation [64]. Such an approach could improve the estimates for the

phase boundary along the fully packed square-dimer line. This is a promising area for

future study.

It will also be interesting to study mixtures of m×m squares and m× 1 rods, m = 2 being

the square-dimer problem. Along the fully packed line, it would be possible to map the

configurations to a vector height field. The ordered phase has a 2m fold symmetry. This

will possibly change the nature of the transition from the ordered to disordered phases.

Also, along the fully packed line, it raises the possibility of an intermediate hexatic phase.

For m > 2, the correlations even the fully packed m-mer problem is not known [66]. Thus,

m = 3 system (trimers+squares) would be a good starting point.
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Chapter 4

Hard plates on cubic lattice

4.1 Introduction

The numerical studies of HCLG models become difficult when the density is close to full

packing, and/ or the excluded volume is large. We require sophisticated Monte Carlo

algorithms [72, 73, 8], that implement cluster movements of particles to overcome this

issue. In this chapter, we apply such an algorithm to study a collection of particles with the

smallest non-trivial shape in three dimensions, namely a mixture of 2×2×1 plates which

could orient in any of the three orthogonal directions. The corresponding problem of

plates or board-like particles in the continuum have been studied numerically [96, 97, 98].

The phase diagram of the system is very rich, showing multiple transitions with increasing

particle densities, and varying aspect ratios. Different phases like smectic, biaxial smectic,

uniaxial and biaxial nematic, prolate and oblate columnar etc., arise. However, less is

known for the lattice model. If the orientations of the plates are restricted to the orthogonal

directions, then it is possible to obtain some rigorous results regarding the nature of the

phases, in particular for a system of hard parallelepipeds of size 1× kα × k, α ∈ [0, 1]. For

plate like objects (1/2 < α < 1), it is possible to show rigorously, for k � 1, the existence

of a uniaxial nematic phase, where only minor axes of plates are aligned parallel to each
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other, and there is no translational order [95].

A different motivation for studying plates in three dimensions arise from the correspond-

ing problem in two dimensions. When only one kind of plate is present, then a two

dimension section corresponds to the well-studied hard square model [1, 60, 63, 2, 7, 64],

which undergoes a transition from disordered to columnar phase with increasing particle

density. When all three kinds of plates are present, then a two dimensional section, maps

onto a problem of hard squares and dimers. This model has a very rich phase diagram

including two lines of critical points meeting at a point [8, 69]. Given the richness of the

phase diagram, one may expect the phase diagram of plates to be also complex.

In this chapter we show that the system of hard plates on the cubic lattice undergoes two

entropy driven transitions with increasing density of particles. The different phases that

we observe are disordered, layered and sublattice phases. In the layered phase, in one

of the three directions, particles preferentially occupies either even or odd planes, also

the density of one the three types of plates is suppressed. In the sublattice phase, particles

preferentially occupy one sublattice position and each type of particle breaks translational

symmetry along two directions (see Sec. 4.3 for more precise definitions). The disordered

to layered transition occurs at density ρDL ≈ 0.941. From finite size scaling, we show that

this transition is continuous and consistent with the universality class of three dimensional

Heisenberg model with cubic anisotropy. The transition from layered to sublattice phase

occurs at density ρLS ≈ 0.974. We show that this second transition is discontinuous. The

content of this chapter is under preparation.

4.2 Model & Algorithm

Consider a L × L × L cubic lattice with periodic boundary along the three orthogonal

directions. The lattice sites may be empty or occupied by 2 × 2 × 1 plates. Three types

of plates are possible depending on the orientation of the normal to the larger side, i.e.,
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x

y zz-plate y-plate

x-plate

Figure 4.1: Schematic diagram of three types of particles: x-plate y-plate and z-plate
having normals along three principal directions of the cubic lattice in hard plate model.

x, y and z-plates corresponding to plates lying in the yz, zx and xy planes respectively,

as shown in Fig. 4.1. The plates interact through excluded volume interaction i.e., no

two particles may overlap. We associate activity zs and z0 to each plate and vacancy

respectively. These are normalised through

z1/4
s + z0 = 1, (4.1)

where the power 1/4 accounts for the volume of a plate.

We study the system using grand canonical Monte Carlo simulations. Conventional

Monte Carlo simulations involving local evaporation, deposition, diffusion, and rotation

moves are inefficient in equilibrating such systems especially when the packing fraction

approaches full packing. These difficulties may be over come by algorithms that include

cluster moves. In particular, an algorithm that updates strips of sites of size proportional

to L using transfer matrices has been particularly useful for hard core lattice gas mod-

els [107, 71, 8, 77]. We briefly describe the algorithm and give details of its implemen-

tation for the system of hard plates. The implementation and terminology closely follow

that followed in Ref. [8] where the phase diagram was obtained for a mixture of dimers

and squares at all packing densities.

Let a track be defined as a 2 × 2 × L subsystem of the lattice, made up of L rungs of size

2×2×1. Choose a track at random in any one of the three orthogonal directions. Remove
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all the plates that are completely contained within the track. There may be some plates that

are not fully contained within the track, but partially protrude into the track. Due to this

protrusion, the shape of the track (after removal of fully contained plates) is complicated

and can be characterised by assigning different morphologies to each rung depending on

the protrusion. There are are 16 such morphologies possible for each rung and they are

listed in Fig. 4.2(a). The aim is to refill the track with a new configuration of plates that

are fully contained within the track, but with the correct equilibrium probability. The

probability of this new configuration may be calculated using transfer matrices. Any

2 × 2 × 1 rung with a given morphology may be filled by plates in at most eight different

ways. The possible states for a rung is listed in Fig. 4.2(b). Among the sixteen possible

morphologies, there are fifteen morphologies with partially blocked sites. The remaining

one morphology [morphology-16 as shown in Fig. 4.2 (a)] represents a complete blockage

in the chosen track. We have to thus calculate 152 = 225 different transfer matrices of size

8× 8. Let Tm1,m2 be the transfer matrix where the system is transferring from morphology

m2 to morphology m1. The matrix element may be written as

Tm1,m2(i, j) = cm1,m2(i, j)WpW0, (4.2)

where cm1,m2(i, j) is the compatibility factor, Wp is the weight associated with the particle

that sits on morphology m1 and W0 is the weight of vacancies present on morphology m2

after depositing particle on morphology m1. The compatibility factor cm1,m2(i, j) is 1 if the

states i and j are compatible on morphologies m1 and m2, otherwise it equals zero. The

weights associated with the particles and vacancies may be written as

Wp = zns
s , ns = 0, 1, 2, (4.3)

W0 = zn0
0 , n0 = 0, 1, 2, 3, 4. (4.4)
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Examples of few transfer matrices are given in Eqs. (4.5)–(4.7).

T1,1 =



z4
0 z2

0 z2
0 z2

0 z2
0 1 1 1

zsz2
0 0 zs 0 0 0 0 0

zsz2
0 zs 0 0 0 0 0 0

zsz2
0 0 0 0 zs 0 0 0

zsz2
0 0 0 zs 0 0 0 0

z2
s 0 0 0 0 0 0 0

z2
s 0 0 0 0 0 0 0

zsz4
0 zsz2

0 zsz2
0 zsz2

0 zsz2
0 zs zs zs



(4.5)

T1,3 =



z3
0 0 z0 0 z0 0 0 0

0 0 0 0 0 0 0 0

zsz0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

zsz0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

zsz3
0 0 zsz0 0 zsz0 0 0 0



(4.6)

T3,1 =



z4
0 z2

0 z2
0 z2

0 z2
0 1 1 1

0 0 0 0 0 0 0 0

zsz2
0 zs 0 0 0 0 0 0

0 0 0 0 0 0 0 0

zsz2
0 0 0 zs 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(4.7)

The partition function of a closed 2 × 2 × L track with morphology m1, . . . ,mL may be
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Figure 4.2: Schematic diagram of (a) sixteen possible morphologies and (b) eight possible
states, that are used to construct the transfer matrix. To represent different states we have
taken the projection of particles in xy-plane. Black represent blocked site and brown, red,
green respectively represents projection of y, x and z-particles.

written as

Zc =
∑

i

〈i|TmL,m1Tm1,m2 . . . TmL−1,mL |i〉, (4.8)

where |i〉 is the state vector of state i. The partition function for the open track of length

X < L may be written as

Zo = 〈Lm1 |Tm1,m2Tm2,m3 . . . TmX−1,mX |RmX〉, (4.9)

where 〈Lm1 | and |RmX〉 are respectively left and right vectors that may be written as

Lm1(n) = T16,m1(1, n), (4.10)

RmX (n) = TmX ,16(n, 1). (4.11)

Calculating the partition function, we deposit particles one by one in each rung so that the

detailed balance is obeyed.

For each value of activity, we ensure that equilibration has been achieved by starting the

86



x

y
z

0 1

2 3

4 5

6
7

Figure 4.3: Division of the full lattice into eight sublattices 0, 1, . . . , 7, depending on
whether each coordinate is odd or even. The arrows show the orientation of the three axes
x, y and z.

simulations with configurations that correspond to different phases, and ensuring that the

final equilibrium state is independent of the initial state.

4.3 Different Phases

We observe three different phases in our simulations as density is varied. To characterize

them, it is convenient to divide the full lattice into eight sublattices depending on whether

the x, y, and z coordinates of a site are even (0) or odd (1), as shown in Fig. 4.3. A lattice

site (x, y, z) belongs to the sublattice constructed out of the binary number zyx where each

coordinate is modulo two. We define the head of a particle to be at the centre of the

square in the transverse direction, and the smaller of the coordinate in the perpendicular

direction.

At low densities, the plates are in a disordered phase and the particles are uniformly dis-

tributed, i.e. each of the sublattice densities are equal for the three different types of plates.

With increasing density, we observe that the system undergoes a transition into a layered
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phase, in which the plates preferentially occupy either even or odd planes along one of the

three directions, while occupying all planes in the other two directions. Also, the symme-

try among the three types of plates is broken, and the density of plates whose normal is

in the direction of layering is suppressed compared to the other two types of plates. thus,

translational symmetry is broken in one direction simultaneously breaking rotational and

particle symmetry. The layering may be visualised through the snapshots of cross sections

of the equilibrated layered phase as shown in Fig. 4.4(a)–(f), where red squares represent

particles whose heads are on the plane and blue squares represent shadows or protrusions

of particles whose heads are on neighbouring planes. Figure 4.4(a) and (b) are snapshots

of a randomly chosen even and odd xy planes respectively. Likewise, Fig. 4.4(c) and

(d) are snapshots of randomly chosen even and odd xz planes and Fig. 4.4(e) and (f) are

snapshots of randomly chosen odd and even yz planes. In Fig. 4.4(a)–(d), there are ap-

proximately equal number of red and blue squares, showing both odd and even xy and xz

planes are equally occupied. On the other hand, it can be seen that Fig. 4.4(e) has much

larger number of red squares than blue squares and vice-versa in Fig. 4.4(f), showing that

plates preferably occupy even yz planes.

To characterize the phases quantitatively, we define sublattice ρ j
i as the volume fraction of

plates of type j = x, y, z whose heads are in sublattice i = 0, . . . , 7. We also define three

particle densities ρ j and eight sublattice densities ρi as

ρ j =

7∑
i=0

ρ
j
i , j = x, y, z, (4.12)

ρi =
∑

j=x,y,z

ρ
j
i , i = 0, . . . , 7. (4.13)

The time evolution of the sublattice densities, when the system is in a layered phase, with

layering in x-direction, is shown in Fig. 4.5. Fig. 4.5(a) compares the densities of the

three types of plates. It is clear that the density of x-plates is suppressed compared to y-

and z-plates, when the layering is in the x-direction, i.e., ρy ≈ ρz � ρx. At the same time,

Fig. 4.5(b)–(d) show that while x-plates occupy all sublattices equally, y- and z- plates
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Snapshot of cross sections of equilibrated layered phase, where layering is in
the x-direction, and the cross sections are of randomly chosen (a) even-xy, (b) odd-xy, (c)
even-xz, (d) odd-xz, (e) even-yz and (f) odd-yz planes. Plates whose heads are on the plane
are coloured in red and the projections of the plates which protrude onto the plane from
nearby planes are coloured in blue. (a)–(d) look similar, while (e) is mostly red and (f) is
mostly blue, showing a layering in the x-direction. The data are for system size L = 120
with activity zs = 0.380, and density ρ ≈ 0.970.
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preferentially occupy planes with even x (corresponding to ρ0, ρ2, ρ4, and ρ6).

At higher densities including full packing, we observe a sublattice phase. Snapshots of

six cross-sections of the system in sublattice phase is shown in Fig. 4.6(a)–(f), where

grey represents the projection of particles coming from nearby plane, and eight differ-

ent colours represent the particles with heads in eight different sublattices. Fig. 4.6(a)

and (b) are snapshots of a randomly chosen even and odd xy planes respectively. Like-

wise, Fig. 4.6(c) and (d) are snapshots of randomly chosen even and odd xz planes and

Fig. 4.6(e) and (f) are snapshots of randomly chosen odd and even yz planes. Fig. 4.6(a),

(d) and (f) are dominated by grey particles, while very few gray particles are present in

Fig. 4.6(b), (c) and (f), which indicates breaking of translational invariance in all three

directions. In this phase, particle symmetry is restored, however translational symmetry

is broken in two orthogonal directions by each kind of particle, and rotational symmetry

is restored. Breaking of translational symmetry may be seen in the time evolution of the

sublattice densities, as shown in Fig. 4.7. Fig. 4.7(a)-(c) shows the time evolution of the

eight sublattice densities of individual types of plates, where we see two sublattices are

preferentially occupied for each type of particles. Time evolution of the eight sublattice

densities (summing over three types of particle densities at each sublattice position) is also

shown in Fig. 4.8, where we see that particles preferentially occupy sublattice 3 positions.

Other seven sublattice densities break up into three layers.

Also, from Fig. 4.7(a)–(c), it is clear that the three types of particles occur with the same

density. To capture this broken symmetry in sublattice phase, it is convenient to define

the quantity

η̃(kx, ky, kz) =
4
L3

∑
x,y,z

η(x, y, z)ei(kx x+kyy+kzz), (4.14)

where η(x, y, z) is 1 if the site is occupied by the center of a plate and zero otherwise. The
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Figure 4.5: Temporal evolution of (a) three particle densities ρx, ρy, ρz, and eight sublattice
densities (b) ρx

i for x-plates, (c) ρy
i for y-plates, (d) ρz

i for z-plates, where the subscripts
i = 0, . . . , 7 represents the sublattice positions and the superscript x, y, z represents type
of plates. The time profiles are for the system in the layered phase with activity of each
plate zs = 0.380 and system size L = 120.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Snapshot of cross sections of equilibrated sublattice phase, where the cross
sections are of randomly chosen (a) even-xy, (b) odd-xy, (c) even-xz, (d) odd-xz, (e)
even-yz and (f) odd-yz planes. Grey represents the projection of particles coming from
nearby plane, and eight different colors represent the particles with heads in eight different
sublattices. The data are for system size L = 120 with activity zs = 0.460, and density
ρ ≈ 0.987.
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order parameters qi for i = 1, 2, 3, may be defined as

q1 =
√
η̃(π, 0, 0)2 + η̃(0, π, 0)2 + η̃(0, 0, π)2, (4.15)

q2 =
√
η̃(0, π, π)2 + η̃(π, 0, π)2 + η̃(π, π, 0)2, (4.16)

q3 = |η̃(π, π, π)|. (4.17)

Time evolution of order parameters q2 and q3 are shown in Fig. 4.7(d), where we see that

q2 is non-zero whereas q3 is exactly zero in sublattice phase.

In our simulations ranging up to the fully packed system, we do not observe any other

phases other than those listed above.

4.4 Phase transitions

In this section, we study the nature of the disordered-layered and layered-sublattice phase

transitions.

4.4.1 Disordered to Layered Transition

To capture the symmetry breaking in the different transitions, we consider the order pa-

rameter q1, q2, and q3 as defined in Eqs. (4.15)–(4.17). In the disordered phase all three

translational order parameters qi ≈ 0, i = 1, 2, 3, while in a pure layered phase q1 ≈ 1 and

q2 ≈ q3 ≈ 0. On the other hand, since each type of particle breaks translational invariance

along two directions, in a pure sublattice phase q2 ≈ 1 and q3 ≈ 0. The variation of qi

for i = 1, 2, 3 with activity zs for different system size is shown in Fig. 4.9(a). We clearly

observe a layered phase (q1 , 0, q2 = 0, q3 = 0) and a sublattice phase (q1 , 0, q2 , 0,

q3 = 0).

We also define the nematic order parameter qn to capture the breaking of particle number
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Figure 4.7: Temporal evolution of eight sublattice densities: (a) ρx
i for x-plates, (b) ρy

i for
y-plates, (c) ρz

i for z-plates and (d) order parameter qk, with k = 2, 3, where the subscripts
i = 0, . . . , 7 represents the sublattice positions and the superscript x, y, z represents type
of plates. The time profiles are for the system in the sublattice phase with activity of each
plate zs = 0.460 and system size L = 120.
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activity of each plate zs = 0.460 and system size L = 120.

symmetry. The order parameter qn is defined as

Qn = qneiθp = ρz + ρyei 2π
3 + ρxei 4π

3 . (4.18)

The variation of qn as a function of zs is shown in Fig. 4.9(b). qn is zero in both disordered

and sublattice phase, and takes nonzero values only in the layered phase, which indicates

asymmetric densities of three types of particles in the layered phase.

We now study the disordered-layered transition using the order parameter q1. We define

the susceptibility χi and Binder cumulant ui associated with qi, and compressibility κ as

χi = L3(〈q2
i 〉 − 〈qi〉

2), i = 1, 2, n, (4.19)

ui = 1 − ci
〈q4

i 〉

〈q2
i 〉

2
, i = 1, 2, n, (4.20)

κ = L3(〈ρ2〉 − 〈ρ〉2), (4.21)

where c1 = 9/15 and c2 = cn = 1/2, and n refers to nematic. We study the critical be-

haviour using finite size scaling. Near the critical point, it is well known that the singular
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part of the different thermodynamic quantities obey

ui(ε, L) ' fu(εL1/ν), (4.22)

qi(ε, L) ' L−β/ν fq(εL1/ν), (4.23)

χi(ε, L) ' Lγ/ν fχ(εL1/ν), (4.24)

where ε = zs − zc is the deviation from the critical point, β, γ, and ν are critical exponents,

and fu, fq, and fχ are scaling functions.

We now show that the data near the disordered-layered transition are consistent with the

universality class of three dimensional Heisenberg model with cubic anisotropy having

critical exponents ν = 0.704, β = 0.362, and γ = 1.389. The variation of u1 with zs for dif-

ferent system sizes is shown in Fig. 4.10(a). The data for different system sizes cross each

other at the critical point zDL
s ≈ 0.323. The data for different L collapse onto one curve

when the variables are scaled as in Eq. (4.22) with ν = 0.704, as shown in Fig. 4.10(b).

From Fig. 4.10(c), we obtain that the corresponding critical density is ρDL ≈ 0.940. The

data for different system sizes for q1 [see Fig. 4.10(d)], χ1 [see Fig. 4.10(e)] collapse

onto a single curve when the thermodynamic variables are scaled as in Eqs. (4.23)–(4.24)

with exponents ν = 0.704, β = 0.362, and γ = 1.389. From the excellent data collapse,

we conclude that the transition, most likely, belongs to the universality class of the three

dimensional Heisenberg model with cubic anisotropy.

4.4.2 Layered to Sublattice Transition

In this section, we study the nature of the second transition from layered to sublattice

phase. Suitable order parameters are q2 and qn as defined in Eqs. (4.16) and (4.18) respec-

tively. The associates susceptibility and Binder cumulants are defined in Eqs. (4.19) and

(4.20) respectively. We show that the transition is discontinuous.

The variation of q2 and qn with zs, for different system sizes, is shown in Fig. 4.11(a)
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Figure 4.10: Data for different thermodynamic quantities near the disordered-layered tran-
sition. (a) Binder cumulant u1 for different system sizes intersect close to zDL

s ≈ 0.323. (b)
The Binder cumulant for different system sizes collapse onto a curve when the parameter
are scaled as in Eq. (4.22). (c) Variation of average density 〈ρ〉 with zs. The data for
different system sizes for (d) order parameter q1 and (e) susceptibility χ1 collapse onto a
single curve when the data are scaled as in Eqs. (4.23)– (4.24) with exponents ν = 0.704,
β = 0.362, and γ = 1.389. (f) Variation of q1 as a function of average density 〈ρ〉.
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Figure 4.11: Data for different thermodynamic quantities near the layered-sublattice tran-
sition. The variation of the order parameters (a) q2 and (b) qn with density for different
system sizes. The different curves intersect each other and become steep with increasing
system size. (c) and (d): The data for susceptibility for different system sizes collapse
onto a curve when scaled as shown in the figure. (e) and (f) Binder cumulants for differ-
ent system sizes. The cumulants become negative near the transition. (g) and (h): The
probability distributions for the order parameters close to the transition point for L = 150.
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and (b) respectively. We observe that both order parameters have a sharp variation across

the transition point, and the data for different system sizes intersect each other with the

curves becoming steeper with increasing system size. These are signatures of a discontin-

uous transition. More evidence of the discontinuous nature may be found by examining

susceptibility and Binder cumulants. The data for susceptibility for different system sizes

collapse onto a curve [see Fig. 4.11(c) and (d)] with the following scaling: χL−3 and εL3,

as expected for a first order transition, where zLS
s ≈ 0.393 and ρLS ≈ 0.974. The variation

of Binder cumulant u2 and un are shown in Fig. 4.11(e) and (f) respectively, for different

system sizes. Clearly, both cumulants negative near the transition, a clear signature of a

first order transition. Finally, as in a discontinuous transition, we see the typical double

peaked distribution for the order parameters as the activity crosses the critical activity,

showing coexistence [see Fig. 4.11(g) and (h)]. The jump in density across the transition

is presumably small because we are unable to detect it upto a system size L = 200. We,

thus, conclude that the layered-sublattice transition is discontinuous.

4.5 Summary and discussion

In this chapter we studied the phases and phase transitions in a system of 2 × 2 × 1 hard

plates on the three dimensional cubic lattice using Monte Carlo simulations. Three types

of plates are possible depending on its orientation. We showed, that the system undergoes

two entropy driven transitions with increasing density of particles: first from disordered to

layered and second from layered to sublattice, as shown in Fig. 4.12. In the fully packed

limit, the system has sublattice order. We showed that the disordered to layered transition

is continuous and the critical behaviour is consistent with the universality class of the

three dimensional Heisenberg model with cubic anisotropy. On the other hand, we find

the transition from layered to sublattice phase is discontinuous.

In the layered phase, the density of one type of plate is suppressed, and translational
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ρ=1.0ρ=0.0 0.941 0.974

disordered layered sublattice
Figure 4.12: Schematic phase diagram of 2 × 2 × 1 hard plate model. Red dot represent
second order transition and dotted line represent first order transition.

symmetry is broken in only direction. This phase is similar to the biaxial smectic phase

seen in simulations of hard boards in the continuum [96]. In the sublattice phase, the

system has translational order in two of the three directions. Each type of particle has

sublattice order in the direction normal to the plane of the particle. On the other hand, if

one looks at the densities of sublattices [see Fig. 4.7], then one sublattice is preferentially

occupied, as in crystalline-sublattice order. However, the order parameter q3 is zero for

all densities, while q2 is non-zero for the sublattice phase, showing that crystalline order

is not present.

Although, numerous analytical [108, 109, 95], experimental [110, 111] and computer

simulation [112, 113, 98] studies indicate the presence of biaxial nematic phase in the

system of anisotropic plate like objects in three dimensions, there is long standing debate

regarding the existence of this phase. In this study we have not found any biaxial nematic

phase in the system of plates with side length k = 2. It would be very interesting to check

the existence and stability of biaxial nematic phase for the lattice models of plates with

larger side length. The system of rectangular plates with different aspect ratio having hard

core and/or attractive interaction are also promising area for future study.

A two dimensional section of the system of hard plates corresponds to a problem of hard

squares and dimers. This model, when the activities of dimers and squares can be varied

independently, has a very rich phase diagram including two lines of critical points meeting

at a point [8, 69]. Thus, one can expect that if the activities of the three kinds of plates

in three dimensions can be independently varied, then a very rich phase diagram can be

expected, especially at full packing, where regions of power-law correlated phases should

exist.
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Chapter 5

Y-shaped particles on triangular lattice

5.1 Introduction

In this chapter, we determine the different phases and nature of the phase transitions for

the system of hard Y-shaped particles on the triangular lattice. We study the system by

considering excluded volume interactions between particles which corresponds to the in-

finite temperature limit of the model studied in Refs. [16, 15]. We show that the sublattice

phase at high densities which breaks particle symmetry is unstable to a sliding instability

in the presence of vacancies. This results in the phase near full packing having columnar

order, where there is translational order only in one of the three directions. This phase

also has roughly equal number of both types of particles. In the presence of attractive in-

teractions between the arms of the particles, we argue, using a high density expansion at

finite temperatures, that this result continues to hold. Thus, irrespective of whether attrac-

tive interactions are present, neither does the high density phase have sublattice order nor

is there a critical temperature above which there is no phase transition in contradiction to

the results reported in Refs. [16, 15]. We also demonstrate the presence of an intermediate

phase, and that there are two entropy-driven phase transitions with increasing density of

particles: first from a disordered phase to an intermediate density sublattice phase where
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the symmetry between the two kinds of particles are broken and second from the sublat-

tice phase to a high density columnar phase where the symmetry between the two types

of particles is restored. In addition, we also study the special case of the model when

only one kind of Y-shaped particle is present, and show that it undergoes a single first

order transition from a disordered phase to an ordered sublattice phase. The content of

this chapter is published in Ref. [114].

5.2 Model and algorithm

Consider a two dimensional triangular lattice of linear dimension L with periodic bound-

ary, as shown in Fig. 5.1(a). A lattice site may be empty or occupied by one of two types

of particles. Particles are Y-shaped and occupy four lattice sites, consisting of a central

site and three of its six neighbors chosen alternately. The three neighbors can be chosen

in two different ways, and hence there are two types of particles, examples of which are

shown in Fig. 5.1(a). We will refer to the two types as A- and B-type particles. The parti-

cles interact through excluded volume interaction, i.e., a site may be occupied by at most

one particle. Activities zA = exp(µA) and zB = exp(µB) are associated with each A- and

B-type particle respectively, where µA and µB are the reduced chemical potentials. We

will refer to the central site of a particle as its head.

We study the system using grand canonical Monte Carlo simulations. Conventional al-

gorithms involving local evaporation and deposition of a single particle are inefficient in

equilibrating the system at densities close to full packing. We implement an improved

version of a recently introduced algorithm with cluster moves that is able to efficiently

equilibrate systems of particles with large excluded volume interactions at densities close

to full packing [107, 71], as well as at the fully packed density [8].

We briefly describe the algorithm. First, a row is chosen at random (the row can be in

any of the three directions of the triangular lattice). Then all the A-type (or equivalently
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Figure 5.1: (a) Schematic diagram of a triangular lattice and the two types of Y-shaped
particles. A- and B-type particles are represented by blue and red colors respectively. (b)
The lattice sites are labeled as 1, 2, 3, 4 depending on the sublattice they belong to.

B-type) particles with heads on this row are evaporated. The row now consists of empty

intervals separated from each other by B-type particles with heads on the same row as

well as A- and B-type particles with heads on neighbouring rows. These empty intervals

are now re-occupied with A-type particles with the correct equilibrium probabilities. The

calculation of these probabilities reduces to determining the partition function of a one-

dimensional system of dimers. Details may be found in Refs. [107, 71, 77, 8]. For each

row, we choose at random whether A- or B-type particles are to be evaporated. A Monte

Carlo move is completed when 3L rows are updated.

Though the above algorithm is able to equilibrate the system at densities close to full

packing, we find that the equilibration times as well as the autocorrelation times are large.

In order to improve the efficiency of the algorithm, we introduce a sliding move in addition

to the evaporation-deposition move. The first step in the sliding move is to select a site at

random. If the site is not occupied by the head of a particle, then another site is chosen.

If the site is occupied by the head of a particle, then one direction out of six possible

directions is chosen, and we identify a cluster of same type of particles, defined as a set

of consecutive particles separated by two sites, starting from the randomly chosen site
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before slide after slide

(a) (b)

Figure 5.2: Schematic diagram to illustrate the sliding move. A cluster is identified [high-
lighted box in (a)] by choosing randomly a site and one of the six directions (shown by
arrow). The cluster is slid by one lattice site in the chosen direction and the particle type
is switched from A↔ B to obtain a new configuration as shown in (b).

along the chosen direction. An example of such a cluster is shown by the highlighted box

in Fig. 5.2(a). The cluster of particles is slid by one lattice site in the chosen direction

and the particle type is changed from A ↔ B [see Fig. 5.2(b)]. The new configuration is

accepted if it does not violate the hard core constraint. It is straightforward to confirm that

the sliding move obeys detailed balance as the reverse move occurs with exactly the same

probability. A Monte Carlo move is completed when 3L rows are updated through the

evaporation-deposition and L2/10 sliding moves are attempted. We have chosen a ratio of

sliding to evaporation/deposition moves that is efficient but have not optimized the ratio.

We compare the efficiency of the algorithm with and without the sliding move in Fig. 5.3.

Starting from a disordered phase, the system is evolved in time at a value of chemical

potential µ = µA = µB for which the equilibrium density is high (≈ 0.967), and the system

is ordered. From Fig. 5.3, we see that the density reaches the equilibrium value in 105

steps when the sliding move is present compared to 4 × 106 steps when the sliding move

is absent. Second, we calculate the density-density autocorrelation function, defined as

C(t) =
〈ρ(t + t0)ρ(t0)〉 − 〈ρ〉2

〈ρ2〉 − 〈ρ〉2
, (5.1)
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Figure 5.3: The increase in density ρ to its equilibrium value for a system of size L = 300
and µ = µA = µB = 6.0 for the algorithms with (blue) and without (red) the sliding move.
The initial condition is disordered and the equilibrium configuration has ρ ≈ 0.967, and
is ordered. Logarithmic scale has been used for the t-axis. Inset: Equilibrium density-
density autocorrelation function C(t) as a function of time t. When fitted to an exponential
as in Eq. (5.2), we obtain τws ≈ 82 when the sliding move is present and τns ≈ 731 when
the sliding move is absent.

where ρ(t) is the density at time t, and the average is over t0. We determine the autocorre-

lation time τ by fitting the correlation function to an exponential

C(t) ≈ e−t/τ. (5.2)

From the inset of Fig. 5.3, we find the autocorrelation time, τws, for the algorithm with

sliding move is τws ≈ 82, while the autocorrelation time, τns, for the algorithm with no

sliding move is τns ≈ 731. Thus, the inclusion of the sliding move results in considerable

shorter equilibration times as well as autocorrelation times, and results in much better

statistics. We have also checked that the autocorrelation function is independent of dif-

ferent choices of t0, showing that time translational invariance has been achieved and the

system has equilibrated.

The evaporation and deposition of particles along a row depends only on the configuration

107



of the four neighbouring rows. Thus, rows that are separated by three can be updated

simultaneously, and the implementation of the algorithm is easily parallelizable. All the

results presented in this paper are obtained using the parallelized algorithm. Equilibration

is checked by starting the simulations with different initial conditions, corresponding to

different phases, and confirming that the equilibrated phase is independent of the initial

condition.

5.3 One type of particle (zA = 0)

We first obtain the phase diagram for the case when only B-type particles are present,

corresponding to zA = eµA = 0 and zB = eµB > 0. To demonstrate the different types

of phases present in the system, we divide the lattice into four sublattices as shown in

Fig. 5.1(b). A particle occupies four sites that belong to four different sublattices. We

color the four sites occupied by a particle by one of four colors depending on the sublattice

that the head of the particle belongs to. Snapshots of typical equilibrated configurations

are shown in Fig. 5.4 for both small densities [Fig. 5.4(a)] and high densities [Fig. 5.4(b)].

From the snapshots, it is clear that at small densities, all four colors are roughly equally

present. We will refer to this phase as the disordered phase, in which

ρB
1 ≈ ρ

B
2 ≈ ρ

B
3 ≈ ρ

B
4 , disordered phase, (5.3)

where ρB
i is the fraction of sites in sublattice i that are occupied by B-type particles.

The snapshot of the system at higher densities, as shown in Fig. 5.4(b) is predominantly

of one color, implying that the heads of the particles preferably occupy one of the four

sublattices. We will refer to this solid-like phase as the sublattice phase. The sublattice

phase has translational order.

To quantify the phase transition from the disordered phase to sublattice phase, we define
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(a) (b)
Figure 5.4: Snapshot of typical equilibrated configurations of the system obtained from
grand canonical Monte Carlo simulations with only one type of particle (zA = 0) for two
different values of chemical potential: (a) disordered phase at µB = 1.420 (ρB ≈ 0.710)
and (b) sublattice phase at µB = 1.765 (ρB ≈ 0.775). The particles on the four sublattices
1, 2, 3 and 4 are represented by green, red, blue and magenta respectively. The data are
for a system of size L = 300.

the vector

QB = |QB|eiθB =

4∑
n=1

ρB
n ei(n−1)π/2, (5.4)

where the sublattice densities ρB
i are as defined in Eq. (5.3). We define the sublattice order

parameter QB to be

QB = 〈|QB|〉, (5.5)

where the average 〈. . .〉 is over equilibrium configurations. Clearly, QB is zero in the

disordered phase and non-zero in the sublattice phase.

The variation of QB with chemical potential µB is shown in Fig. 5.5(a) for different sys-

tem sizes. It increases sharply from zero to a non-zero value as µB crosses a critical value

µBc ≈ 1.75 and critical density ρB
c ≈ 0.750. The transition becomes sharper with increas-

ing system size. The total density of the system ρB has a system size dependence for
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intermediate densities [see Fig. 5.5(b)]. We also study the Binder cumulant UB defined as

UB = 1 −
〈|QB|

4
〉

2〈|QB|
2
〉2
. (5.6)

The variation of UB with µB is shown in Fig. 5.5(c) for three different system sizes. For

small µB, it is zero for the disordered phase and close to 0.5 for the ordered phase as

expected. Near the transition point, UB becomes negative and the minimum value de-

creases with increasing system size. This is a clear signature of a first order transition,

as for a continuous transition UB is positive and the data for different system sizes inter-

sect at the critical point. We conclude that the transition is first order. Now, consider the

susceptibility χ defined as

χ = L2(〈|QB|
2
〉 − QB2). (5.7)

For a first order transition, the singular behaviour of χ near the transition obeys the finite

size scaling χ ∼ L2 f [(µB − µBc)L2], where f is a scaling function. The data for χ for

different system sizes collapse onto one curve when scaled as above with µBc ' 1.756 as

shown in Fig. 5.5(d).

We now give further evidence of the transition being first order. At a first order phase

transition, the system keeps transiting from the disordered phase to the sublattice phase.

This results in the probability distributions for the order parameter and density having

multiple peaks. The probability distribution for |QB| and the density ρB are shown in

Figs. 5.5(e) and (f) respectively for values of µB near the transition point. The plots shows

two clear peaks for µB ≈ 1.75, one corresponding to the disordered phase and the other

to the sublattice phase, consistent with a first order transition. The two dimensional color

plot of the probability distribution of the complex order parameter QB near the critical

point is shown in Fig. 5.6, and is consistent with the above observation.

To further establish the first order nature of the transition, we show coexistence of the

disordered phase and sublattice phase at the transition point. To do so, we do simula-
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Figure 5.5: Plot of (a) order parameter QB, (b) total density ρB, (c) Binder cumulant
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Figure 5.7: Snapshot of a typical equilibrated configuration of the system obtained from
canonical Monte Carlo simulations with one type of particle having fixed density ρB =

0.740. The particles on the four sublattices 1, 2, 3 and 4 are represented by green, red,
blue and magenta respectively. The snapshot shows the co-existence of the sublattice and
disordered phases. The data are for a system of size L = 300.

tions in the canonical ensemble, conserving density, of a system having density that lies

between the density of disordered system just below the transition and the density of the

sublattice phase just above the transition. We choose ρB = 0.74, which lies between the

two maxima of the probability distribution for density as shown in Fig. 5.5(f). The sys-

tem is evolved in time through an algorithm that conserves the density of the system. A

lattice site is chosen at random. If it is occupied by the head of a particle, the particle

is removed and deposited at another randomly chosen lattice site. If the deposition does

not violate the hard core constraint, the move is accepted, else the particle is placed at its

original position. The algorithm obeys detailed balance as each move is reversible and

occurs at the same rate. The snapshot of a typical equilibrated configuration of the system

is shown in Fig. 5.7. There are regions where the colour is uniform (blue), showing a sub-

lattice phase, while there are other regions where all four colours appears, corresponding

to a disordered phase. We conclude that there is phase segregation and coexistence, both

signatures of a first order transition.
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5.4 Two types of Particles (zA = zB)

Now consider the case where both types of particles are present with equal activity zA =

zB = z. It is natural to expect that the fully packed phase has a sublattice order where the

heads of particles occupy only one sublattice. We first argue that at densities close to full

packing, sublattice order is not stable due to the presence of vacancies, and the system

prefers a columnar order with densities of both types of particles being roughly equal. We

illustrate this instability through an example.

Consider a fully packed configuration with sublattice order. Such a configuration can have

only one type of particle (say B-type). Removal of a single particle creates single vacancy

made of four empty sites as shown by the filled circles in Fig. 5.8(a). These empty sites

may be split into two unbound pairs of half-vacancies by sliding a number of consecutive

particles adjacent to the empty sites and flipping their type to A, each of these config-

urations having the same weight. An example of two particles being slid is shown in

Fig. 5.8(b). Introducing more vacancies results in destabilizing the sublattice phase. Slid-

ing results in restoring translational invariance along two of the three directions. However,

translational order is still present in the third direction. We will refer to this phase as the

columnar phase. We note that in this phase, two sublattices are preferentially occupied,

one with A-type particles and the other with B-type particles. The stabilization of the

columnar phase by creating vacancies is an example of order by disorder, prototypical

example being the hard square gas [1, 60, 63, 2, 7, 64].

If additional attractive interactions are present between neighbouring arms, then the above

argument may also be extended to account for the energy cost of creating vacancies. It

may then be shown that even for this case, that at high densities, the columnar phase is

preferred over the sublattice phase, at all finite temperatures. To preserve continuity of

presentation, we postpone the description of the generalized argument to Sec. 5.5.

We now give numerical evidence for the high density phase being columnar and also de-
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(a) (b)

Figure 5.8: (a) Schematic diagram showing the creation of a vacancy consisting of four
empty sites (black solid circles), when a particle is removed from the fully packed sublat-
tice phase. (b) The vacancy may be split into two half-vacancies, and separated along a
row by sliding particles along the row and changing the type.

termine numerically the different phases of the system at densities away from full packing.

Snapshots of equilibrated configurations of the system for different values of µ are shown

in Fig. 5.9. Here, the lattice sites are colored using eight colors depending on the type of

the particle (2 types) and the sublattice (4 sublattices) that the head belongs to. For small

values of µ, the snapshot contains all eight colours distributed uniformly [see Fig. 5.9(a)],

corresponding to the disordered phase. For intermediate values of µ, the snapshot shown

in Fig. 5.9(b) is predominantly of one color. This phase corresponds to a sublattice phase.

The sublattice phase breaks the A-B symmetry and one type of particle is preferred over

the other. Finally, for larger values of µ, the snapshot shown in Fig. 5.9(c) has mostly

two colors that appear in strips. This phase corresponds to the columnar phase. This is

in agreement with our argument presented above that the phase close to full packing is

columnar due to the sublattice phase being unstable due to a sliding instability. We thus

identify two phase transitions, the critical values of µ being denoted as µDS and µS C.

The sublattice phase has an 8 fold degeneracy. To quantify it, consider the vector Qs:

Qs = |QA| − |QB|, (5.8)
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(a) (b)

(c)
Figure 5.9: Snapshots of equilibrated configurations of the system with two types of
particles obtained from grand canonical Monte Carlo simulations for different values of
µ: (a) disordered phase with µ = 4.5 (ρ ≈ 0.88), (b) sublattice phase with µ = 5.4
(ρ ≈ 0.947), and (c) columnar phase with µ = 6.0 (ρ ≈ 0.967). The particles on the four
sublattices 1, 2, 3 and 4 are represented by yellow, olive, cyan and orange for type A and
by green, red, blue and magenta for type B. The data are for a system of size L = 300.
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where QB is given in Eq.(5.4) and QA has a similar definition with ρB
n replaced by ρA

n . We

define the sublattice order parameter Qs to be

Qs = 〈|Qs|〉. (5.9)

Qs is zero in the disordered phase and non-zero in the sublattice phase. It is also straight-

forward to check that Qs ≈ 0 in the columnar phase. We characterize the fluctuations of

Qs through the susceptibility χs defined as

χs = L2(〈|Qs|
2〉 − Q2

s). (5.10)

We also define the Binder cumulant associated with Qs as Us:

Us = 1 −
〈|Qs|

4〉

2〈|Qs|
2〉2
. (5.11)

To characterize the symmetry breaking between the two types of the particles in the dis-

ordered phase, we introduce an order parameter ρd defined as

ρd = 〈|ρA − ρB|〉, (5.12)

where ρA and ρB are the fraction of sites occupied by A and B-type particles respectively.

We denote the associated susceptibility as χd and Binder cumulant as Ud:

χd = L2
[
〈(ρA − ρB)2〉 − ρ2

d

]
, (5.13)

Ud = 1 −
〈|ρA − ρB|4〉

2〈|ρA − ρB|2〉2
. (5.14)

The variation of the order parameters Qs and ρd with µ is shown in Fig. 5.10(a) and (b)

respectively. They increase from close to zero to a nonzero value, showing the presence
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Figure 5.10: Plot of (a) sublattice order parameter Qs and (b) density difference ρd as
a function of µ. Plot of probability distribution: (c) P(|QA| − |QB|) and (d) P(ρA − ρB)
near disorder to sublattice transition for the system of size L = 300. Plot of rescaled
susceptibilities: (e) χsL−2 and (f) χdL−2 associated with Qs and ρd respectively about the
critical point µDS . Plots are for the systems of size L = 300, 450 and 600.
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of the sublattice phase. The curves for different system sizes cross close to µ ≈ 5.07, and

density ρ ≈ 0.930. While a clear discontinuity in the order parameters is not discernable

from Fig. 5.10(a) and (b), we now present evidence for the transition being first order in

nature. The probability distributions for (|QA| − |QB|) and (ρA − ρB) near the transition

point are shown in Fig. 5.10(c) and (d) respectively. As µ is increased, the probability

distributions change from being single peaked, corresponding to the disordered phase, to

a three-peaked distribution, corresponding to coexistence of the sublattice and disordered

phase, to a symmetric double-peaked distribution, corresponding to the sublattice phase.

Coexistence close to the transition is a clear signature of the first order nature of the tran-

sition. We note that the distributions sharpen with increasing system size. The variation

of Binder cumulant Us and Ud with µ is shown in Fig. 5.10(g) and (h) respectively. It be-

comes negative for certain values of µ, which is a clear signature of first order transition.

In a first order transition, the susceptibilities scale as

χ ∼ L2 f [(µ − µc)L2]. (5.15)

When scaled as described with µDS ≈ 5.07, ρDS ≈ 0.930 , the data for different system

sizes collapse onto a single curve, as shown in Fig. 5.10(e) and (f). We conclude that the

disordered to sublattice transition is first order in nature.

In the columnar phase, two sublattices are preferentially occupied by the particles. This

selection can be done in six different ways and each way has two possibilities of fill-

ing, as A-type and B-type particles can choose either one of the selected two sublattices.

Thus, the columnar phase has a 12 fold degeneracy. To quantify this phase illustrated in

Fig. 5.9(c), we define a columnar order parameter Qc as follows. In the columnar phase,

the particles occupy alternate rows along one of the three orientations, and occupy all

rows in the other two orientations. The breaking of the translational invariance in a direc-

tion is reflected in the difference in density of heads between even and odd rows and is
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captured by

Q1 = |ρ1 + ρ2 − ρ3 − ρ4|,

Q2 = |ρ1 + ρ3 − ρ2 − ρ4|, (5.16)

Q3 = |ρ1 + ρ4 − ρ3 − ρ2|,

where ρi is the fraction of sites belonging to sublattice i that is occupied by a particle,

irrespective of the type. In Q1, (ρ1 +ρ2) measures the density of occupied sites in odd hor-

izontal rows [see Fig. 5.1(b)] and (ρ3 +ρ4) the density of occupied sites in even horizontal

rows. Thus, Q1 is non-zero only when there is translational order along the horizontal

rows, and similar interpretations hold for Q2 and Q3. Now, consider the vector

Qc = |Qc|eiθc = Q1 + Q2e2πi/3 + Q3e4πi/3. (5.17)

We define the columnar order parameter to be

Qc = 〈|Qc|〉. (5.18)

In the columnar phase, Qc is non-zero. In the disordered phase Qc ≈ 0, as each of the Qi

in Eq. (5.16) is approximately zero. In the sublattice phase, one sublattice is preferentially

occupied and each of the Qi in Eq. (5.16) becomes non-zero but approximately equal in

magnitude, and hence again Qc ≈ 0. Thus, a non-zero Qc is a signature for the columnar

phase. We define the corresponding susceptibility as

χc = L2(〈|Qc|
2〉 − Q2

c). (5.19)

In the columnar phase the sublattice order parameter Qs [see Eq. (5.9)] and the density dif-

ference ρd [see Eq. (5.12)] both becomes zero. The variation of Qs and ρd with µ is shown
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Figure 5.11: Plot of (a) sublattice order parameter Qs and (b) density difference ρd as
a function of µ. Plot of probability distribution: (c) P(|QA| − |QB|) and (d) P(ρA − ρB)
near sublattice to columnar transition for the system size L = 300. Plot of rescaled
susceptibilities: (e) χsL−2 and (f) χdL−2 associated with Qs and ρd respectively about the
critical point µS C. Plot of (g) columnar order parameter Qc and (h) associated rescaled
susceptibility χcL−2 as a function of µ and (µ−µS C) respectively. Plots are for the systems
of size varying from L = 300 to 900.
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in Fig. 5.11(a) and (b) respectively. The probability distributions for Qs and (ρA − ρB)

near the transition point are shown in Fig. 5.11(c) and (d) respectively. As µ is increased,

the probability distributions change from symmetric double-peaked, corresponding to the

sublattice phase, to a three-peaked distribution, corresponding to coexistence of the sub-

lattice and columnar phase, to a dominant single-peaked distribution, corresponding to

the columnar phase. The coexistence of both columnar phase and sublattice phase is a

signature of first order transition. For the first order transition susceptibilities follow the

scaling law as described in Eq. (5.15). With this scaling we get the collapse of suscepti-

bilities χs and χd onto single curve as shown in Fig. 5.11(e) and (f), for critical value of

chemical potential µS C ≈ 5.61 with density ρS C ≈ 0.956.

The variation of the order parameter Qc with µ for different system size is shown in

Fig. 5.11(g). It acquires nonzero value in the columnar phase. The susceptibility χc also

obeys the scaling law as described in Eq. (5.15). This is confirmed from the Fig. 5.11(h)

in which collapse of curves for different system sizes with described scaling is shown.

5.5 Conclusion

In this paper we studied the different phases and phase transitions of hard Y-shaped par-

ticles on a two dimensional triangular lattice. There are two types of Y-shaped particles

depending on their orientation on the lattice, which are mirror images of each other. By

incorporating cluster moves, we were able to equilibrate the system at densities close to

full packing, allowing us to unambiguously determine the phases at all densities. In ad-

dition to the low-density disordered phase, we find two other phases. At intermediate

phases, the phase has a solid-like sublattice order. In this phase, the symmetry between

the two types of particles is broken resulting in a majority of one type of particle. In

addition, these particles preferentially occupy one of the four sublattices of the lattice.

At high densities, the phase has columnar order. In this phase, the symmetry between
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the two types of particles is restored. However, there is translational order in one of the

three directions, wherein particles preferentially occupy either even or odd rows. The first

transition from disordered to sublattice phase occurs at µDS ≈ 5.07 and the second tran-

sition from sublattice to columnar phase occurs at µS C ≈ 5.61. Both the transitions are

first order in nature. Y-shaped particles give a simple example of a system where small

number of vacancies destabilize the sublattice phase into a columnar phase while a larger

number of vacancies again stabilizes the sublattice phase. When only one type of particle

is present, the model undergoes a single first order phase transition from a low density

disordered phase to high density sublattice phase, and occurs at µBc ≈ 1.756.

The high density phase that we observe in this paper has columnar order with both types

of particles equally present, which is in contradiction to the results obtained from Monte

Carlo simulations of Y-shaped particles with attractive interactions in Refs. [16, 15],

wherein it was shown that the high density phase has sublattice order in which only one

kind of particle is present. For only excluded volume interactions, we argued in Sec. 5.4

that the introduction of vacancies results in the destabilization of the sublattice phase

into a columnar phase, because the vacancies split into two unbound half-vacancies that

can be separated away from each other resulting in a gain in entropy. We now argue

that this instability is present even in the presence of attractive interaction between the

nearest-neighbour arms of different particles. Consider the case when vacancy is cre-

ated by removing a single particle from a sublattice phase at full packing, as shown in

Fig. 5.12(a). If −ε is the energy of each nearest neighbour pair of arms, then this vacancy

costs an energy 12ε. On splitting the vacancy into two half-vacancies and sliding them

away from each other by one, two, or three particles [see Figs. 5.12(b)–(d)], the energy

cost increases to 13ε, but does not increase with separation between the half-vacancies.
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Thus, the partition function Z of the system may be written as

Z = 4zN/4e3Nβε/2
[
1 +

Ne−12βε

4z

+
3N( L

2 − 1)e−13βε

8z
+ O(z−2)

]
, (5.20)

where β = (kT )−1 is the inverse temperature. The free energy β f = − ln Z is then

β f =
− ln z

4
−

3βε
2
−

e−12βε

4z
−

3Le−13βε

16z
+ O(z−2). (5.21)

Clearly, the first order correction term proportional to z−1 diverges with system size, as is

indicative of systems with columnar order. If the divergent terms are resummed correctly,

taking into account the columnar nature of the phase, then the first correction term be-

comes O(z−1/2) [2, 115]. The term of order z−1 being divergent implies that the expansion

about the sublattice phase is not convergent and, thus, we conclude that the high density

phase is columnar even when interactions are present. We note that in Ref. [15], attractive

interactions were included for neighbouring central sites too. However, it may be easily

checked that the above expansion is true for this case also, albeit with a energy cost of 2ε

for half-vacancy when compared to bound vacancy. From Eq. (5.21), it may also be seen

that for temperatures less than or order of ε/ ln L, it would be possible to see a sublattice

phase, but this is purely a finite-size effect.

In addition, it was argued in Refs. [16, 15] that, for the model with attractive interactions

and hard core constraints, there is no phase transition above a critical temperature. In the

limit of infinite temperature, the attractive interactions play no role, and the model reduces

to a problem with only hard core interactions between the particles, which is the model

studied in the current paper. For the latter model, we established the presence of two

density driven phase transitions, in contradiction to the results implied in Refs. [16, 15].

Re-analysing the model with interactions to make the results consistent with those in the

current paper is a promising area for future study. Another area for future study is the
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(a) (b)

(c) (d)

Figure 5.12: Schematic diagrams to calculate, in a fully packed sublattice phase of B-type
particles, the energy cost to create: (a) a vacancy consisting of four empty sites (black
solid circle) vacancy), (b) two half-vacancies separated by one A-type particle, (c) two
half-vacancies separated by two A-type particles, and (d) two half-vacancies separating
three A-type particles. Compared to the background sublattice phase, green bonds in-
crease the energy by ε while black bonds decrease the energy by ε. The energy cost is 12ε
for (a), and 13ε for (b)-(d).
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system of Y-shaped particles with larger arm lengths which could be symmetric [15]. For

these systems with only excluded volume interaction, we expect the high density phase to

be columnar [15].

It is tempting to analyse the high density columnar phase using high density expansions

as developed for squares and rectangles [1, 60, 63, 2, 7, 64, 8, 69]. These expansions are

in terms of number defects (which could be extended). However the columnar phase of

Y-shaped particles is different from that of these simpler models, in which the type of

particles occupy preferred sublattices in the columnar phase. This makes it difficult to

even write the zeroth order term for the partition function corresponding to no defects.

One may also consider kinds of lattices like the honeycomb lattice. The honeycomb lat-

tice (see Fig. 5.13) is different from the triangular lattice in that the site decides what type

of Y-molecule may be placed on it. We argue that the nature of the high density phase is

different on the honeycomb lattice as compared to the triangular lattice. Consider a fully

packed phase, as shown in Fig. 5.13(a), in which translational order is broken, and the

system is in a solid-like phase. Four vacancies may be created by removing one particle

from site S 1 as shown in Fig. 5.13(b). The four vacant sites that are created remain bound

to each other, and the solid-like order is stable. To next order in perturbation, consider

creating eight vacant sites by removing two adjacent particles as shown in Fig. 5.13(c).

These eight vacancies may be split into two sets and moved arbitrarily far from each other

by sliding particles along the direction shown by dotted lines in Fig. 5.13(c). This insta-

bility will lead to the phase becoming columnar (as argued by the high density expansion

for the triangular lattice). Thus, we have the following interesting scenario. As density

is decreased from one, the system will first undergo a transition from a solid-like phase

to a columnar phase. Further decrease in density may result in a transition to a solid-like

phase as in the triangular lattice followed by a disorder phase, or directly into a disordered

phase. It would be interesting to verify these conjectures in Monte Carlo simulations.

HCLGs sometimes show multiple phase transitions with increasing density, but only when
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(a) (b) (c)

S1

S
2

Figure 5.13: Schematic diagrams of configurations on a honeycomb lattice when: (a)
no vacancy is present (full packing), (b) four bound vacancies are created by removing
a particle from the site labelled S 1, and (c) eight unbounded vacancies are created by
removing two particles from the sites labeled S 1 and S 2 followed by sliding particles in
the directions shown by the dotted magenta lines. Black dots represent empty sites.

the excluded volume per particle is large. For instance, for multiple phase transitions to be

present, the minimum range of interaction is seventh nearest neighbour for rods [71, 14],

fifth nearest neighbour for rectangles [72, 73], fourth nearest neighbour for HCLG models

for discs [77, 115] while nearest neighbour exclusion models like the 1-NN model on the

square lattice [1, 116, 117, 3, 118, 119, 120, 121, 122, 63, 123, 124, 125, 126, 127, 128,

129, 130, 131, 132] or the hard hexagon model on the triangular lattice [61] show only

one transition from a disordered phase to a sublattice phase. The excluded volume of Y-

shaped particles consists of nearest neighbour sites, as in the hard hexagon model and half

of the next-nearest neighbour sites depending on the pair of particles being considered.

It is quite surprising that despite the short ranged nature of the interaction, the system

undergoes two density-driven phase transitions. It is possible that this feature may also

be extended to mixtures on a square lattice. From the insights gained from the current

paper, we expect that if there are two kinds of particles A and B on a square lattice, where

the A-A and B-B excluded volume interactions are upto second nearest neighbour, but the

A-B excluded volume interaction is upto the third nearest neighbour, then the high density

phase will be columnar and there will be multiple transitions. Confirming this conjecture

in simulations would be interesting.
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Chapter 6

Conclusions

In this thesis we have studied, in detail, the phase diagram of system of particles having

different geometrical shapes both in two and three dimensions. The particles sit on lattice

sites and interact only through excluded volume interaction, i.e., no two particles may

overlap. The HCLG models that we have studied include: (1) hard 2 × 2 squares on

square lattice, (2) mixture of hard 2 × 2 squares, horizontal and vertical dimers on square

lattice, (3) hard 2 × 2 × 1 hard plates on cubic lattice and (4) hard Y-shaped particles on

triangular lattice.

In Chapter 1, we have given a brief introduction and previous studies of HCLG models.

In Chapter 2, we have estimated the critical activity for hard square model with pair-

wise approximation by calculating the interfacial tension between two differently ordered

columnar phase and equating it to zero. In this calculation, we have considered the pres-

ence of multiple defect particles in both ordered phase and overhangs of height two in the

interface. We have estimated the critical activity zc = 105.35, which is in good agree-

ment with existing Monte Carlo simulation results, and is a significant improvement over

earlier best estimates of zc = 54.87 and zc = 135.63. The calculation of interfacial ten-

sion in the presence of overhangs of height greater than two may be the future extension

of current work. It would be interesting to perform the interfacial tension calculation in
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antiferromagnetic Ising model [6] in the presence of overhangs and defects.

In Chapter 3, we have estimated the phase boundary separating the disordered phase and

columnar ordered phase by calculating the interfacial tension between two columnar or-

dered phase in the mixture of hard squares and dimers. We have calculated the interfacial

tension for two different cases. In first case, we have ignored the presence of overhangs in

the interface. In secondly case, we have considered the presence of overhangs of height

two in the interface. Both estimates show reasonable agreement with the Monte Carlo

results. In both calculations, we assumed that the ordered phases are perfectly columnar,

i.e., no defect particles are present. The calculation could be improved by considering the

presence of single defect or multiple defect at both sides of the interface. Another promis-

ing area of future research is the mixture of 3×3 squares and trimers (both horizontal and

vertical).

In Chapter 4, we have studied the phase diagram for the system of hard 2 × 2 × 1 plates

in cubic lattice. Three types of plates are possible x-plate, y-plate and z-plate, having

normals along three principal directions of the cubic lattice. Using transfer matrix based

Monte Carlo simulations we have shown that the system undergoes two entropy driven

phase transitions with increasing density. These are disordered phase to layered phase

and layered phase to sublattice phase. Using finite size scaling we have demonstrated

that disordered–layered transition is continuous with the universality class of three di-

mensional Heisenberg model with cubic anisotropy, while layered–sublattice transition in

discontinuous in nature. System of k × k × 1 plates with k > 2 is an interesting area for

pursuing future research. Another interesting area could be the system of interacting hard

plates in cubic lattice.

In Chapter 5, we have studied system of hard Y-shaped particles on triangular lattice. Two

types of particles are possible which are mirror images of each other. Using large scale

Monte Carlo simulation, we have shown that the system undergoes two phase transitions

with increasing particle density. At low density the system is disordered. With increasing
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density the system goes to sublattice phase by breaking translational symmetry in all three

directions. At very high density the equilibrium phase is columnar ordered. Using finite

size scaling, we have shown that both transitions are discontinuous in nature. In real

system along with the excluded volume effect, other effects, e.g., coulomb interaction,

spin interaction, etc. are present. The study of Y-shaped particles in the presence of

interaction is an open area for future study.
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