
LOWER BOUNDS FOR READ-ONCE AND
TROPICAL FORMULAS

By

ANUJ TAWARI

MATH10201205003

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

February, 2019

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for

an advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in

the Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission

for extended quotation from or reproduction of this manuscript in whole or in part

may be granted by the Competent Authority of HBNI when in his or her judgement

the proposed use of the material is in the interests of scholarship. In all other

instances, however, permission must be obtained from the author.

ANUJ TAWARI

DECLARATION

I hereby declare that the investigation presented in the thesis has been carried

out by me. The work is original and has not been submitted earlier as a whole or

in part for a degree / diploma at this or any other Institution / University.

ANUJ TAWARI

LIST OF PUBLICATIONS ARISING FROM THE THESIS

Journal

1. Sums of read-once formulas: How many summands are necessary?

with Meena Mahajan.

In Theoretical Computer Science, 708:34-45, 2018.

2. Shortest path length with bounded-alternation (min,+) formulas

with Meena Mahajan and Prajakta Nimbhorkar.

In International Journal of Advances in Engineering Sciences and Applied Mathe-

matics, https://doi.org/10.1007/s12572-018-0229-6, 2018.

Conferences

1. Computing the maximum using (min,+) formulas

with Meena Mahajan and Prajakta Nimbhorkar.

Proceedings of 42nd International Symposium on Mathematical Foundations of

Computer Science MFCS 2017 (Aalborg, Denmark, 21-25 August).

2. Sums of read-once formulas: How many summands su�ce?

with Meena Mahajan.

Proceedings of 11th Computer Science Symposium in Russia CSR 2016

(St. Petersburg, Russia, 9-13 June).

Others

1. Computing the maximum using (min,+) formulas

with Meena Mahajan and Prajakta Nimbhorkar.

in Electronic Colloqium on Computational Complexity (ECCC TR18-020)

ANUJ TAWARI

DEDICATIONS

To my parents.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof. Meena Mahajan for her invaluable

guidance during the course of this thesis. Besides her expertise, her patience, clarity

of thoughts and systematic way of working have greatly influenced me. I would also

like to thank her for all the support and freedom that she gave me. I also thank

Prajakta Nimbhorkar for many helpful discussions.

I also thank all the other faculty members at IMSc for their wonderful teaching,

guidance and support.

I would like to thank all my friends at IMSc for making my stay at IMSc a

very fun-filled and memorable one. Many thanks to my o�ce-mates over the years:

Roohani, Pratik, Swaroop, Anantha and Garima. O�ce was a lot of fun in your

company.

Special thanks to Swaroop, Ramnathan, Roohani, Shraddha, Lawqueen and San-

jukta for accompanying me to countless food trips. Thank you all for your help and

support as well.

Finally, but most importantly, I would like to thank my parents for their support

and encouragement. Thank you for supporting all my decisions. Without their

support, taking up a research career would have been impossible.

Contents

Synopsis i

List of Figures iii

1 Introduction 1

1.1 Arithmetic circuits . 2

1.2 Our main results . 7

1.3 Organisation of thesis . 11

2 Sums of read-once formulas: How many summands are necessary? 13

2.1 Highlights . 13

2.2 Preliminaries . 14

2.3 Background . 16

2.4 Upper bounds . 20

2.5 Existence of hard polynomials . 22

2.6 Some useful operators . 24

2.7 A proper separation in the
P

k ·ROP hierarchy 27

2.8 A family of 4-variate multilinear polynomials not in
P2 ·ROP 32

2.9 Discussion . 41

3 Computation over semirings 43

4 Computing max using (min,+) formulas 45

4.1 Highlights . 45

4.2 Introduction . 46

4.2.1 Background . 46

4.2.2 Motivation . 48

4.2.3 Our results and techniques . 49

4.3 Transformations and Upper bounds 51

4.4 Graph entropy . 54

4.5 Computing max over N . 55

4.6 Upper bounds . 56

4.7 The main lower bound . 57

4.8 The Monus operation . 64

4.9 Discussion . 66

5 Computing shortest paths via bounded depth (min,+) formulas 67

5.1 Highlights . 67

5.2 Introduction . 68

5.2.1 The Shortest Path problem 68

5.2.2 Motivation . 69

5.2.3 Known upper bounds . 71

5.2.4 Lower bounds implied from known work 72

5.3 New Lower Bounds . 74

5.4 Conclusion . 81

6 Conclusion 83

Bibliography 85

Synopsis

One of the major aims of theoretical computer science is to understand what is the

most e�cient way to perform a given task with limited computational resources.

In this thesis, some absolutely tight lower bounds are shown for certain restricted

models of computation. More specifically, this thesis studies the questions of proving

tight lower bounds for sums of read-once formulas, and of proving tight lower bounds

for tropical formulas.

An arithmetic read-once formula (ROF) is a formula (circuit of fan-out 1) over

+,⇥ where each variable labels at most one leaf. Every multilinear polynomial can

be expressed as the sum of ROFs. We prove, for certain multilinear polynomials, a

tight lower bound on the number of summands in such an expression.

We then proceed to study computation by tropical formulas or formulas over

(min,+). Many dynamic programming algorithms can be modeled using (min,+)

formulas. We consider the computation of max(x1, x2, . . . , xn) over N as a di↵erence

of (min,+) formulas, and show that size n+ n log n is su�cient and necessary. Our

proof also shows that any (min,+) formula computing the minimum of all sums of

n� 1 out of n variables must have n log n leaves; this too is tight. Our proofs use a

complexity measure for (min,+) functions based on minterm-like behaviour and on

the entropy of an associated graph.

Next, we consider the well-studied shortest paths problem shortest-path:

Given a graph on vertex set [n] = {1, 2, . . . , n} with an assignment of non-negative

i

integer weights to its edges, we want to find a (min,+) formula which computes

the weight of the shortest path from s = 1 to t = n. We study bounded-depth

(min,+) formulas solving the shortest paths problem. For depth 2d with d � 2, we

obtain lower bounds parameterized by certain fan-in restrictions on + gates except

those at the bottom level. For the special case of depth four, in two regimes of the

parameter, the bounds are tight.

ii

List of Figures

1.1 Arithmetic circuit computing f(x1, x2, x3, x4) = x1x2x3 + x1x2x4 +

2x1x2 + 2x3x4 + x1x3 + x1x4 + x2x3 + x2x4 4

2.1 Normal form for ROFs . 15

2.2 Not a multiplicative ROF . 25

4.1 (min,+) formula . 52

iii

iv

Chapter 1

Introduction

The goal of theoretical computer science, and in particular, complexity theory, is to

understand the power of e�cient computation. That is, it asks what is the most

e�cient way to perform a task with limited computational resources, say, time, space

or randomness. To answer this question we need to (1) find a way to perform the

given task and (2) show that any other way, no matter how clever it may be, cannot

do any better. In other words, we need to give upper and lower bounds on the

complexity of the given task. In this thesis, we will mainly be interested in proving

lower bounds.

When proving lower bounds, we need to argue about all possible ways of per-

forming the given task. Such arguments are hard to find: we do not seem to know

the techniques needed to prove strong lower bounds. Due to this lack of progress,

research has focused on proving lower bounds for certain restricted models of com-

putation, in the hope that such results may give us some insight into the general

case. The purpose of this thesis is to point out some interesting directions to proving

such lower bounds.

Specifically, we study the questions of proving lower bounds for the model of sums

of read-once formulas, lower bounds for di↵erence of tropical formulas computing the

1

maximum function, and lower bounds for bounded depth tropical formulas solving

the shortest paths problem. Below, we introduce these problems in greater detail.

1.1 Arithmetic circuits

A large class of problems can be expressed as the task of computing some specific

polynomials: Such problems include matrix multiplication, computing the determi-

nant, permanent, Fast Fourier transform (FFT) as well as many other linear algebra

problems. Several algorithms have been designed for these problems but we still do

not know whether the currently best known algorithm is indeed the best one.

One of the most natural ways to capture many of such algorithms is via an

arithmetic circuit. In this model, the circuit is fed as input some input variables and

constants from the underlying field. The circuit is allowed to add and multiply two

previously computed polynomials. The two main complexity measures associated

with such circuits are its size and depth. The size corresponds to the number

of processors running in parallel to perform the given computational task while

the depth corresponds to the parallel time taken. We will mostly be interested

in a special type of circuits called formulas, which are circuits whose underlying

computation graph is a tree.

We now fix some notation. Unless otherwise specified, we work over a fixed,

arbitrary algebraic structure S = (S,+,⇥, 0, 1) where S is a set of elements, + and

⇥ are commutative binary operations acting on S and 0 and 1 are members of S. 0

is the identity for + and 1 is the identity for ⇥: a + 0 = a and a⇥ 1 = a holds for

all a 2 S. Our main algebraic structure of interest is that of fields which satisfy the

following additional properties:

1. (S,+) and (S \ 0,⇥) are abelian groups.

2

2. ⇥ distributes over +: a⇥ (b+ c) = (a⇥ b) + (a⇥ c) for all a, b, c 2 S.

Specific examples of fields include the set of all rational numbers Q, the set of

all real numbers R, and the set of all complex numbers C.

Sometimes, we will be interested in computations over rings where (S \0,⇥) may

not be an abelian group, or even semirings where even (S,+) need not be a group.

A special case is that of the boolean semiring, B = ({0, 1},^,_, 0, 1).

Now we formally define arithmetic circuits.

Definition 1. An arithmetic circuit C over the algebraic structure S and set of

variables X is a directed acyclic graph G = (V,E). We use u, v, w to denote vertices

in G and uv to denote a directed edge in E. The role of any vertex falls in one of

the following cases:

• If v has in-degree zero, v is called an input of the arithmetic circuit and is

labeled with one of the variables from X or an element from S.

• Otherwise v is labeled with either + or ⇥.

• If v has out-degree zero, then v is called an output of the arithmetic circuit.

Given an arithmetic circuit C, let the polynomial computed by C at the vertex v 2 V

be denoted by Cv. We define Cv inductively as follows:

1. If v is an input, then Cv is the label of v .

2. If v is labeled with a + gate, then,

Cv =
X

u:uv2E

Cu

3

3. If v is labeled with a ⇥ gate, then,

Cv =
Y

u:uv2E

Cu

An arithmetic circuit is said to be a formula if the underlying undirected graph

is a tree.

Unless otherwise mentioned, we will be working with fan-in 2 circuits: each of

the internal nodes has at most two children.

The size of the circuit C, denoted by size(C), is the total number of vertices in

the underlying graph of C. The depth of the circuit C, denoted by depth(C), is the

length of the longest directed path in C.

Below is an example of an arithmetic circuit which computes the polynomial

f(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + 2x1x2 + 2x3x4 + x1x3 + x1x4 + x2x3 + x2x4 :

x1
v1

x2
v2

x3
v3

x4
v4

x1
v5

x4
v6

x2
v7

x3
v8

x1
v9

x3
v10

x2
v11

x4
v12

⇥

v13
+

v14
+

v15
+

v16
+

v17
+

v18

⇥

v19
⇥ v20 ⇥

v21

+ v22

f (x1, x2, x3, x4)

Figure 1.1: Arithmetic circuit computing f(x1, x2, x3, x4) = x1x2x3 + x1x2x4 +
2x1x2 + 2x3x4 + x1x3 + x1x4 + x2x3 + x2x4

It is easy to see that in the above figure, the arithmetic circuit considered is a

formula with size 22 and depth 3.

Research in arithmetic complexity theory is mainly focused on proving explicit

4

circuit lower bounds. Below, we explain this problem in detail.

Explicit arithmetic circuit lower bounds

The task of proving explicit arithmetic circuit lower bounds is the following problem:

Come up with an explicit family of polynomials F = {fn | n 2 N} which cannot be

computed by any family of circuits of small size, say polynomial, or quasi-polynomial

in n. This problem is easy if we allow polynomials of arbitrary degree. For instance,

consider the polynomial f = x2d . It is easy to verify that any circuit computing

f must have at least d gates. Hence we will be interested in polynomials with

reasonable bounds on their degree and the size of the smallest circuit computing it.

This is captured by the notion of p�bounded polynomials. The following definition

is from [44].

Definition 2. A family of polynomials {fn} is p-bounded if there exists some poly-

nomial t : N ! N such that both the number of variables in fn and the degree of

fn are bounded by t(n). Also, there is an arithmetic circuit of size at most t(n)

computing fn.

This class of polynomials is more popularly known as the class V P .

Example 3. An important family of p-bounded polynomials is the family of deter-

minants, DETn, defined below:

DETn(X) =
X

�2Sn

sgn(�)
Y

i2[n]

xi,�i

Here X = [xij] is a n ⇥ n matrix, Sn is the set of permutations of n elements and

sgn(�) corresponds to the sign of the permutation �.

We can now formally state the question of proving explicit circuit lower bounds:

We wish to find an explicit family of polynomials F = {fn(x1, x2, . . . , xt(n)) | n 2 N}

5

where the number of variables and degree in fn are bounded by some polynomial in

n but any arithmetic circuit computing fn requires size super-polynomial in n. By

an explicit family, we mean the following: there is a deterministic Turing machine

which when given an integer n and a monomial m = xc1
1 · xc2

2 · · · xct(n)

t(n) finds the

coe�cient of m in time polynomial in n.

We are very far from solving this question: The best explicit lower bound known

is only ⌦(n log n) due to [47] and [4]. It might be interesting to note that the above

⌦(n log n) lower bound is absolutely tight. This raises the following natural question:

Question 1. Can one prove a tight lower bound, better than ⌦(n log n), for some

n-variate explicit family of polynomials?

Even for restricted circuits, although strong (superpolynomial, or even exponen-

tial) lower bounds are known, not many are known to be tight. Below, we survey

lower bound results for circuits with two types of restrictions: (1) number of times

an input variable is read and (2) nature of polynomials computed at individual nodes

(for instance, multilinear). First, we define multilinear polynomials and circuits.

Definition 4. A polynomial is said to be multilinear if the individual degree of each

variable appearing in it is at most one. For instance, x1x2 + 2x1x3 + 5x2x4. Many

well-studied polynomials, including the determinant and permanent are multilinear.

Definition 5. A circuit (or formula) is said to be multilinear if at every individual

gate of the circuit, the polynomial computed is multilinear.

For the model of multilinear formulas, superpolynomial lower bounds are already

known [39]. However, the best known formulas for computing those polynomials

(including the permanent and determinant) have exponential size, leaving a big gap

between the upper and lower bounds.

6

1.2 Our main results

A useful model for computing multilinear polynomials is that of sum of read-once

formulas (ROFs). A formula is said to be read-once if every variable is the label

of at most one leaf. Any polynomial that depends on all its variables must read

every variable at least once, Therefore, this model computes some of the simplest

polynomials. Despite being a very simple and restrictive model of computation,

read-once formulas have attracted a lot of attention, both in the boolean as well as

the arithmetic world [6, 7, 17, 42, 43].

We study the model of sums of read-once formulas in the arithmetic world. Ex-

ponential lower bounds on the number of summands are known for this model For

instance, it was shown in [9] that a certain polynomial, defined by Raz and Yehuday-

o↵ [40], when expressed as a sum of ROFs, requires 2⌦(n
1
3 / logn) summands, while 2n

summands is anyway su�cient. We show that any random multilinear polynomial

when expressed as a sum of ROFs requires exponentially many summands. Our

lower bound is better than the one proved in [9], though it is not for an explicit

polynomial.

Result 1. Fix any field F. There exists a family of multilinear polynomials (fn)n>0

with each fn 2 F[x1, . . . , xn] such that any sums-of-ROPs representation for fn

requires ⌦
�
2n

n2

�
many summands.

As noted above, a significant gap exists between the lower bound and upper

bound for the model of sums of ROPs. On the other hand, we prove an absolutely

tight lower bound for a specific polynomial. Our target polynomial is a member of

the well-studied family of elementary symmetric polynomials.

Result 2. For any n � 1, the n-variate degree n� 1 elementary symmetric polyno-

mial Sn�1
n

cannot be expressed as the sum of fewer than dn/2e ROPs but it can be

written as the sum of dn/2e ROPs.

7

This result implies a strict hierarchy among sums-of-k-ROFs (⌃k ·ROF , in short).

In other words, for any k, ⌃k+1 · ROF is a strictly stronger model than ⌃k · ROF .

This result separates
P3 ·ROP from

P2 ·ROP via the polynomials S4
5 and S5

6 . Our

next main result shows that
P3 ·ROP is also separated from

P2 ·ROP by a 4-variate

multilinear polynomial. Since every trivariate multilinear polynomial is expressible

as the sum of two ROP’s, the number of variables cannot be reduced further.

Result 3. There is an explicit 4-variate multilinear polynomial f which cannot be

written as the sum of 2 ROPs over R.

We next consider the model of tropical formulas. A tropical formula, or more

specifically, a (min,+) formula, is a formula (tree) in which the leaves are labeled

by variables or constants. The internal nodes are gates labeled by either min or +.

A min gate computes the minimum value among its inputs while a + gate simply

adds the values computed by its inputs. Such formulas can compute any function

expressible as the minimum over several linear polynomials with non-negative integer

coe�cients.

(min,+) circuits share an intimate connection with dynamic programming (DP,

in short) algorithms. We focus on the shortest path problem, which we denoted

by shortest-path : Let G be an edge-weighted graph with every edge given a

non-negative integral weight and two special vertices s and t. The goal is to find

the weight of the shortest path from s to t. Note that the weight of a path is the

sum of the weight of its edges The classical dynamic programming algorithm for this

problem due to Bellman and Ford [5, 15] gives a (min,+) circuit of O(n3) size and

depth ⇥(n). Whether ⌦(n3) is necessary is still open. However, the Bellman-Ford

algorithm produces skew circuits, and for skew circuits, this bound is shown in [27]

to be optimal. A divide-and-conquer approach gives a bounded fan-in circuit of

poly(n) (O(n4)) size and depth ⇥(log2 n).

Another interesting problem for us is the graph reachability problem, which we

8

will denote by reach : Given a directed graph G and two special vertices s and t,

decide whether t can be reached from s. It is known that over the Boolean semiring,

any bounded fan-in monotone (_,^) circuit for reach must have depth ⌦(log2 n)

[29]. Using a natural mapping from (min,+) semiring to the boolean semiring, this

result also implies that any bounded fan-in (min,+) circuit for shortest-path

must have ⌦(log2 n) depth, no matter what size. The divide-and-conquer approach

shows that this depth lower bound is tight.

Many DP algorithms correspond to (min,+) circuits. Notable examples include

the Bellman-Ford-Moore (BFM) algorithm for the single-source-shortest-path prob-

lem (SSSP) [5,15,37], the Floyd-Warshall (FW) algorithm for the All-Pairs-Shortest-

Path (APSP) problem [13,49], and the Held-Karp (HK) algorithm for the Travelling

Salesman Problem (TSP) [19]. All these algorithms are just recursively constructed

(min,+) circuits. For example, both the BFM and the FW algorithms give O(n3)

sized (min,+) circuits while the HK algorithm gives a O(n2 · 2n) sized (min,+)

circuit.

We consider the following problem: Given n input variables x1, x2, . . . , xn with

values ranging over natural numbers, compute the maximum value taken by them.

We first observe that for n � 2, no (min,+) formula over N can compute max(x1, x2, . . . , xn).

Hence to compute the maximum, we must strengthen this model. An obvious way

is by allowing minus gates as well. It turns out that just a single minus gate, at the

top, su�ces. The maximum can be computed by di↵erence of two (min,+) formulas

with total size O(n log n). We also give a matching lower bound.

Result 4. Any di↵erence of (min,+) formulas which computes max(x1, x2, . . . , xn)

must have size ⌦(n log n).

Note that this result is tight even on considering constants, and not just asymp-

totically tight.

9

We now move on to results on the complexity of the shortest paths problem.

First, we briefly describe some lower bounds which follow easily from known results.

We consider the alternation depth of (min,+) circuits. This corresponds to

allowing unbounded fan-in in some cases. In this setting, exponential lower bounds

are easy to prove. One way to do so is to use the reduction (via projections)

from parity to reach, and use known lower bounds for (non-monotone) circuits for

parity [18]; see Proposition 58. We are looking for lower bounds better than those

obtained this way.

In [10], such small-depth lower bounds are obtained for the decision version of

”short distance connectivity”: is there a path using at most k edges? These lower

bounds can also be transferred to (min,+) circuits computing the corresponding

optimization problem: Compute the weight of the shortest path which uses at most

k edges. Now, we describe our results.

For depth 2d with d � 2, we obtain lower bounds parameterized by certain fan-

in restrictions on + gates except those at the bottom level. For the special case of

depth 4, in two regimes of the parameter, the bounds are tight. The restrictions we

study are of two types: (1) all gates have low fan-in or (2) not too many gates have

large fan-in.

Let L(F) denote the total number of leaves in the formula F . L(F) is indicative

of the size of the formula.

Result 5. If F is a depth 2d formula for shortest-path where all + gates except

those in the bottom level have fanin at most k, then

L(F) � exp

✓
⌦

✓
n log n

kd�1

◆◆
.

For the special case of depth 4 formulas,

10

1. If k = O(1), then L(F) = 2⌦(n logn). This size is achievable even with a depth-2

formula and so this bound is tight

2. If k = O(
p
n), then L(F) = 2⌦(

p
n logn). This size is achievable with the depth-

4 formula constructed by dynamic programming with all + gates having fanin

O(
p
n) and so this bound is tight.

Result 6. For natural numbers n, r, k, let L(n, k, r) denote the (leaf-)size of the

smallest depth-4 formula that solves shortest-path on n-vertex graphs, and where

at most r of the + gates at the second level have fan-in exceeding k.

L(n, 2, r) � exp
⇣
⌦
⇣ n

2r
log

n

2r

⌘⌘
.

The above result gives a non-trivial size lower bound for depth-4 formulas when

at most say, O(log log n) of the second level + gates have fanin more than 2.

The results described above have appeared or are to appear in [34–36].

1.3 Organisation of thesis

We present our results in the same order as they are described above. In Chapter 2,

we consider sums of read-once formulas and show a strict hierarchy for this model. In

Chapter 3, we introduce some basic definitions corresponding to the computational

model used in the rest of the thesis. In Chapter 3, we consider the computation of

the maximum function using (min,+) formulas. This is followed, in Chapter 5, by

results on the complexity of the shortest path problem in the context of bounded

depth (min,+) formulas. Finally, in Chapter 6, we conclude by stating some open

questions.

11

12

Chapter 2

Sums of read-once formulas: How

many summands are necessary?

2.1 Highlights

In this chapter, we present our results on lower bounds for sums of read-once for-

mulas. We start by defining read-once formulas. We then define the problem of

establishing a hierarchy among sums-of-ROFs and also provide our own motivation

for studying this problem. We then discuss some related work and finally our results

on this problem. Our main results are as follows:

• There exists a multilinear polynomial, which when expressed as a sum of read-

once polynomials (ROPs, in short), requires exponentially many summands.

(Theorem 15).

• The hierarchy among sums of ROPs is proper. That is, for any positive integer

k,
P

k ·ROP is a strictly stronger model than
P

k�1 ·ROP (Theorem 9).

• Over certain fields, the separation between
P3 ·ROP and

P2 ·ROP is wit-

nessed by an explicit 4-variate multilinear polynomial.(Theorem 31).

13

Organization of chapter

In Section 2.2, we introduce some basic preliminaries and definitions useful for us.

In Section 2.3, we introduce our problem of interest. In Section 2.4, we present

some upper bounds for expressing any multilinear polynomial as a sum of ROPs. In

Section 2.5, we show the existence of polynomials which when expressed as a sum

of ROPs, require exponentially many summands. In Section 2.6, we introduce some

useful operators need for the proof of our main theorem. In Section 2.7, we establish

Theorem 9, showing that the hierarchy of k-sums of ROPs is proper. In Section 2.8

we establish Theorem 10, showing an explicit 4-variate multilinear polynomial that

is not expressible as the sum of two ROPs. Finally, we conclude in Section 2.9 with

some further questions that are still open.

2.2 Preliminaries

Recall the definition of arithmetic formulas from Chapter 1 (Definition 1).

A formula is said to be read-k if each variable appears as a leaf label at most k

times.

For read-once formulas, it is more convenient to use the following “normal form”

from [43].

Definition 6 (Read-once formulas [43]). A read-once arithmetic formula (ROF)

over a field F in the variables {x1, x2, . . . , xn} is a binary tree as follows. The leaves

are labeled by variables and internal nodes by {+,⇥}. In addition, every node is

labeled by a pair of field elements (↵, �) 2 F2. Each input variable labels at most

once leaf. The computation is performed in the following way. A leaf labeled by xi

and (↵, �) computes ↵xi+�. If a node v is labeled by ? 2 {+,⇥} and (↵, �) and its

children compute the polynomials f1 and f2, then v computes ↵(f1 ? f2) + �.

14

x1 �1 1 x2 �2 1 �1 1 x1 x2

(�1, 1)(�2, 1)

(�1, 1)
⇥

+

⇥

+

⇥

⇥

⇥

+

f (x1, x2)

Figure 2.1: Normal form for ROFs

Below is an example of a read-once formula and its ”normal form”.

We say that f is a read-once polynomial (ROP) if it can be computed by a ROF,

and is in
P

k ·ROP if it can be expressed as the sum of at most k ROPs. Note that

any polynomial, whether a ROP or in
P

k ·ROP, must be multilinear.

Definition 7. Let F be a field, and let f be a polynomial in F[x1, . . . , xn].

By SummandsROP(f) we denote the minimum k 2 N such that f 2
P

k ·ROP.

For a positive integer n, we denote [n] = {1, 2, . . . , n}. For a polynomial f , by

Var(f) we mean the set of variables occurring in f . For a polynomial f(x1, x2, . . . , xn),

a variable xi and a field element ↵, we denote by f |xi=↵ the polynomial resulting

from setting xi = ↵. Let f be an n-variate polynomial. We say that g is a k-variate

restriction of f if g is obtained by setting some variables in f to field constants and

|Var(g)|  k. A set of polynomials f1, f2, . . . , fk over the field F is said to be linearly

dependent if there exist constants ↵1,↵2, . . . ,↵k such that
X

i2[k]

↵ifi = 0.

Example 8. The polynomials f1 = x1 + x2, f2 = 2x2 + x3 and f3 = 2x1 +6x2 +2x3

are linearly dependent as f1 + f2 � 2f3 = 0.

15

The n-variate degree k elementary symmetric polynomial, denoted Sk

n
, is defined

as follows:

Sk

n
(x1, . . . , xn) =

X

A✓[n],|A|=k

Y

i2A

xi.

2.3 Background

Read-once formulas (ROF) are formulas (circuits of fan-out 1) in which each variable

appears at most once. A formula computing a polynomial that depends on all its

variables must read each variable at least once. Therefore, ROFs compute some of

the simplest possible functions that depend on all of their variables. The polynomials

computed by such formulas are known as read-once polynomials (ROPs). Since every

variable is read at most once, ROPs are multilinear. (A polynomial is said to be

multilinear if the individual degree of each variable is at most one.) But not every

multilinear polynomial is a ROP. For example, x1x2 + x2x3 + x1x3 [41].

We investigate the following question: Given an n-variate multilinear polynomial,

can it be expressed as a sum of at most k ROPs? It is easy to see that every bivariate

multilinear polynomial is a ROP. Any tri-variate multilinear polynomial can be

expressed as a sum of two ROPs. With a little thought, we can obtain a sum-of-3-

ROPs expression for any 4-variate multilinear polynomial. An easy induction on n

then shows that any n-variate multilinear polynomial, for n � 4, can be written as a

sum of at most 3⇥ 2n�4 ROPs; see Proposition 11. Also, the sum of two multilinear

monomials is a ROP, so any n-variate multilinear polynomial with M monomials

can be written as the sum of dM/2e ROPs (Proposition 12). We ask the following

question: Does there exist a strict hierarchy among k-sums of ROPs? Formally,

Problem 1. Consider the family of n-variate multilinear polynomials. For 1 < k 

3⇥ 2n�4, is
P

k ·ROP strictly more powerful than
P

k�1 ·ROP? If so, what explicit

polynomials witness the separations?

16

We answer this a�rmatively for k  dn/2e. In particular, for k = dn/2e, there

exists an explicit n-variate multilinear polynomial which cannot be written as a sum

of less than k ROPs but it admits a sum-of-k-ROPs representation.

Note that n-variate ROPs are computed by linear sized formulas. Thus if an n-

variate polynomial p is in
P

k ·ROP, then p is computed by a formula of size O(kn)

where every intermediate node computes a multilinear polynomial. Since superpoly-

nomial lower bounds are already known for the model of multilinear formulas [39],

we know that for those polynomials (including the determinant and the permanent),

a
P

k ·ROP expression must have k at least quasi-polynomial in n. However the best

upper bound on k for these polynomials is only exponential in n, leaving a big gap

between the lower and upper bound on k. A lesser but still significant gap also

exists in the known exponential lower bound for sums of ROPs; in [9] it is shown

that a certain polynomial, explicitly described in [40], requires 2⌦(n1/3
/ logn) ROP

summands, while 2n summands is anyway su�cient. On the other hand, our lower

bound is provably tight.

A counting argument (see Proposition 14) shows that there exists a multilinear

polynomial which requires exponentially many ROPs; there are multilinear polyno-

mials requiring k = ⌦(2n/n2). Our general upper bound on k is O(2n), leaving a

gap between the lower and upper bound. One challenge is to close this gap.

A natural question to ask is whether stronger lower bounds than the above result

can be proven. In particular, to separate
P

k�1 ·ROP from
P

k ·ROP, how many

variables are needed? Our hierarchy result says that 2k � 1 variables su�ce, but

there may be simpler polynomials (with fewer variables) witnessing this separation.

We demonstrate another technique which improves upon the previous result for

k = 3, showing that 4 variables su�ce. In particular, we show that over the field

of reals, there exists an explicit multilinear 4-variate multilinear polynomial which

cannot be written as a sum of 2 ROPs. This lower bound is again tight, as there is

17

a sum of 3 ROPs representation for every 4-variate multilinear polynomial.

Our results and techniques

We now formally state our main results.

The first main result establishes the strict hierarchy among k-sums of ROPs.

Theorem 9. For each n � 1, the n-variate degree n�1 symmetric polynomial Sn�1
n

cannot be written as a sum of less than dn/2e ROPs, but it can be written as a sum

of dn/2e ROPs.

The idea behind the lower bound is that if g = Sn�1
n

can be expressed as a sum

of less than dn/2e ROFs, then one of the ROFs can be eliminated by taking partial

derivative with respect to one variable and substituting another by a field constant.

We then use the inductive hypothesis to arrive at a contradiction. This approach

necessitates a stronger hypothesis than the statement of the theorem, and we prove

this stronger statement in Lemma 26 as part of Theorem 29.

This result separates
P3 ·ROP from

P2 ·ROP via the polynomials S4
5 and S5

6 .

Our second main result shows that
P3 ·ROP is also separated from

P2 ·ROP by a

4-variate multilinear polynomial.

Theorem 10. There is an explicit 4-variate multilinear polynomial f which cannot

be written as the sum of two ROPs over R.

The proof of this theorem mainly relies on a structural lemma (Lemma 34) for

sum of two read-once formulas. In particular, we show that if f can be written as a

sum of two ROPs then one of the following must be true:

1. Some 2-variate restriction is a linear polynomial.

18

2. There exist variables xi, xj 2 Var(f) such that the polynomials xi, xj, @xi(f),

@xj(f), 1 are linearly dependent.

3. We can represent f as f = l1 · l2 + l3 · l4 where (l1, l2) and (l3, l4) are variable-

disjoint linear forms.

Checking the first two conditions is easy. For the third condition we use the com-

mutator of f , introduced in [42], to find one of the li’s. The knowledge of one of

the li’s su�ces to determine all the linear forms. Finally, we construct a 4-variate

polynomial which does not satisfy any of the above mentioned conditions. This

construction does not work over algebraically closed fields. We do not yet know how

to construct an explicit 4-variate multilinear polynomial not expressible as the sum

of two ROPs over such fields, or even whether such polynomials exist.

Related work

Despite their simplicity, ROFs have received a lot of attention both in the arithmetic

as well as in the Boolean world [6–8,17,42,43]. The most fundamental question that

can be asked about polynomials is the polynomial identity testing (PIT) problem:

Given an arithmetic circuit C, is the polynomial computed by C identically zero or

not. PIT has a randomized polynomial time algorithm: Evaluate the polynomial

at random points. It is not known whether PIT has a deterministic polynomial

time algorithm. In [28], a connection between PIT algorithms and proving general

circuit lower bounds was established. Similar results are known for some restricted

classes of arithmetic circuits, for instance, constant-depth circuits [1, 12]. However,

consider the case of multilinear formulas. Even though strong lower bounds are

known for this model, there is no e�cient deterministic PIT algorithm. (Notice

that multilinear depth 3 circuits are a special case of this model.) For this reason,

PIT was studied for the weaker model of sum of read-once formulas.

19

In [43], a deterministic PIT algorithm for the sum of a small number of ROPs

was given. Interestingly, their proof uses a lower bound for a weaker model, that of

0-justified ROFs (setting some variables to zero does not kill any other variables).

In particular, they show that the polynomial Mn = x1x2 · · · xn, consisting of just a

single monomial, cannot be represented as a sum of less than n/3 weakly justified

ROPs. More recently, Kayal showed that if Mn is represented as a sum of powers

of low degree (at most d) polynomials, then the number of summands is at least

exp(⌦(n/d)) [30]. This lower bound, along with the arguments in [43], yields a sub-

exponential time PIT algorithm for multilinear polynomials. This can be further

extended to arbitrary polynomials written as sum of powers of low degree polynomi-

als, using the ideas in [14]. Our lower bound from Theorem 9 is independent of both

these lower bounds (0-justified ROFs from [43], and sums of powers of low-degree

polynomials from [30]) and is provably tight. An interesting question is whether it

can be used to give a PIT algorithm for sums of k ROPs, when k is linear in n.

Similar to ROPs, one may also study read-restricted formulas. For any number

k, RkFs are formulas that read every variable at most k times. For k � 2, RkFs need

not be multilinear, and thus are strictly more powerful than ROPs. However, even

when restricted to multilinear polynomials, they are more powerful; in [3], Anderson,

Melkebeek and Volkovich show that there is a multilinear n-variate polynomial in

R2F requiring ⌦(n) summands when written as a sum of ROPs.

2.4 Upper bounds

Proposition 11. For every n-variate multilinear polynomial f ,

SummandsROP(f)  d3⇥ 2n�4e.

Proof. For n = 1, 2, 3 this is easy to see.

20

For n = 4, let f(X) be given by the expression
P

S✓[4] aSxS, where xS denotes

the monomial
Q

i2S xi. We want to express f as f1 + f2 + f3, where each fi is an

ROP. If there are no degree 2 terms, we use the following:

f1 = a; + a1x1 + a2x2 + a3x3 + a4x4

f2 = x1x2(a123x3 + a124x4)

f3 = x3x4(a134x1 + a234x2 + a1234x1x2)

Otherwise, assume without loss of generality that a13 6= 0. Then define

f1 =

2

4
X

S✓[2]

aS
Y

i2S

xi

3

5+

2

4
X

;6=S✓{3,4}

aS
Y

i2S

xi

3

5

f2 = (a13x1 + a23x2 + a123x1x2) ·
✓
a14
a13

x4 + x3 +
a134
a13

x3x4

◆

f3 = x2x4

✓
a24 �

a14a23
a13

◆
+ x1

✓
a124 �

a14a123
a13

◆

+ x3

✓
a234 �

a134a23
a13

◆
+ x1x3

✓
a1234 �

a134a123
a13

◆�

Since any bivariate multilinear polynomial is a ROP, each fi is indeed an ROP.

For n > 4, express f as xng + h where g = f |xn=1 �f |xn=0 and h = f |xn=0,

and use induction, along with the fact that g does not have variable xn.

Proposition 12. For every n-variate multilinear polynomial f with M monomials,

SummandsROP(f)  dM2 e.

Proof. For S ✓ [n], let xS denote the multilinear monomial
Q

i2S xi. For any S, T ✓

[n], the polynomial axS + bxT equals xS\T (axS\T + bxT\S) and hence is an ROP.

Pairing up monomials in any way gives the dM2 e bound.

21

2.5 Existence of hard polynomials

First, we show the existence of hard polynomials over finite fields. The proof is

via a combinatorial argument. The idea behind the proof is that the number of

multilinear polynomials with 0� 1 coe�cients is strictly larger than the number of

di↵erent possible sums of small number of ROFs. Then we conclude that there exists

some multilinear polynomial which when expressed as a sum of ROFs requires large

number of summands. To this end, we first compute the total number of multilinear

polynomials with 0� 1 coe�cients.

Observation 13. Let M denote the set of multilinear polynomials in F[x1, . . . , xn]

where each coe�cient is either zero or one. Then |M| = 22
n
.

Proposition 14. Fix any finite field F. There exists a family of multilinear polyno-

mials (fn)n>0 with each fn 2 F[x1, . . . , xn] such that SummandsROP(fn) = ⌦
⇣

2n

n log n

⌘
.

Proof. A single ROF is a binary tree with at most n leaves, and with labels at each

node. A leaf is labeled by a single x variable and a pair of field elements, and an

internal node is labeled by a gate type (+ or ⇥) and a pair of field elements. The

number of binary trees with at most n leaves is 2O(n). If the field size is q, then the

number of labelings per tree is at most (nq2)n(2q2)n. Hence the number of ROFs is

no more than 2O(n logn). A
P

s ·ROF formula can be obtained by choosing an ROF

for each of the s positions; hence there are at most 2O(sn logn) distinct formulas. This

is less than |M| unless s = ⌦
⇣

2n

n logn

⌘
.

Next, we establish the existence of hard polynomials over any field, not neces-

sarily finite.

Theorem 15. Fix any field F. There exists a family of multilinear polynomials

(fn)n>0 with each fn 2 F[x1, . . . , xn] such that SummandsROP(fn) = ⌦
�
2n

n2

�
.

22

Proof. We will show that unless s 2 ⌦
�
2n

n2

�
, the number of polynomials in M

computable by
P

s ·ROF is strictly less than |M|.

We use the strategy from [20]; a similar strategy was also used in [44]. Using

notation from [20], we call a circuit or formula with no field constants a skeleton.

From any circuit or formula, we can obtain a skeleton by simply replacing each

occurrence of a field element by a fresh variable. Our counting proceeds as follows:

Fix any s 2 N. Define the following quantities.

N1: the number of distinct skeletons arising from
P

s ·ROF formulas on n variables.

Each skeleton computes a polynomial in the variables X [Z, where X = {xi |

i 2 [n]} and Z = {zi | i 2 [t]} for some t 2 O(ns).

N2: the number of polynomials from M computable by a single skeleton on appro-

priate instantiation of the z variables.

Then
P

s ·ROF expressions can compute at most N1 ⇥N2 polynomials in M.

First, we estimate N1. Note that a
P

s ·ROF formula has at most 3ns gates apart

from the top + gates. (We implicitly unfold an ROF gate f labeled (�,↵, �) and

with children g, h into a small sub-formula ↵⇥ (g � h) + �, and then replace ↵, � by

fresh z variables.) We use a generous over-estimate for N1, namely, the number of

skeletons of circuits of size 3ns. We have n variables in X and t variables in Z. Each

node in the skeleton can be labeled in at most n + t + 2 ways (a variable or a gate

type), and its children can be chosen in at most (3ns)2 ways. Hence the number of

skeletons is no more than [(n+ t+ 2)(3ns)2]3ns. Since t = O(ns), we conclude that

N1 = 2O(ns(logn+log s)).

Estimating N2 is trickier because the field may not be finite, and thus a single

skeleton can give rise to infinitely many polynomials. However, we are interested

only in polynomials from the finite set M. This can be bounded using a dimension

23

argument as used in [20]. In particular, we use the following result proved in [20]:

Lemma 16 (Lemma 3.5 in [20]). Let F be a field. Let F : Fn ! Fm be a polynomial

map of degree d > 0, that is, F = (F1, . . . , Fm), each Fi is a n-variate polynomial of

degree d. Then |F (Fn) \ {0, 1}m|  (2d)n

We have a given fixed skeleton corresponding to some
P

s ·ROF. It computes

some polynomial (X,Z), with |X| = n, |Z| = t, t = O(ns). By the nature of ROF,

 is multilinear, and hence can be written in the form

 (X,Z) =
X

S✓[n]

cS(Z)

Y

i2S

xi

!

where each coe�cient cS(Z) is a multilinear polynomial. These 2n coe�cient poly-

nomials form our polynomial map F : Ft ! F2n . Since each coe�cient polynomial

is multilinear, it has total degree at most t. Hence, from Lemma 16, we conclude

that at most (2t)t 0-1 tuples are produced by this map. Thus the given skele-

ton can compute at most (2t)t polynomials from M. Since t = O(ns), we obtain

N2 = 2O(ns(logn+log s)).

Now that we have estimated N1 and N2, we can bound SummandsROP. Assume

that for all polynomials f 2 M, SummandsROP(f)  s. Then
P

s ·ROF contains

all of M. Hence N1 ⇥N2 � |M|, implying s � ⌦
�
2n

n2

�
.

2.6 Some useful operators

The partial derivative of a polynomial is defined naturally over continuous domains.

The definition can be extended in more than one way over finite fields. However,

for multilinear polynomials, these definitions coincide. We consider only multilinear

polynomials, and the following formulation is most useful for us: The partial deriva-

tive of a polynomial p 2 F[x1, x2, . . . , xn] with respect to a variable xi, for i 2 [n], is

24

given by @xi(p) , p |xi=1 �p |xi=0. For multilinear polynomials, the sum, product,

and chain rules continue to hold.

Fact 17 (Useful Fact about ROPs [43]). The partial derivatives of ROPs are also

ROPs.

Proposition 18 (3-variate ROPs). Let f 2 F[x1, x2, x3] be a 3-variate ROP. Then

there exists i 2 [3] and a 2 F such that deg(f |xi=a)  1.

Proof. Assume without loss of generality that f = f1(x1) ? f2(x2, x3) + c where

? 2 {+,⇥} and c 2 F. Here f1 is linear while f2 is multilinear. If ? = +, then for

all a 2 F, deg(f |x2=a)  1. If ? = ⇥, deg(f |f1=0)  1.

We will also be dealing with a special case of ROFs called multiplicative ROFs

defined below:

Definition 19 (Multiplicative Read-once formulas). A ROF is said to be a multi-

plicative ROF if it does not contain any addition gates. We say that f is a multi-

plicative ROP if it can be computed by a multiplicative ROF.

For instance, in Figure 2.1, the formula is a multiplicative ROF because the

equivalent normal form has no + gates. Below, we give an example of a ROF which

is not multiplicative.

x1 x2 x3 x4

⇥ +

⇥

Figure 2.2: Not a multiplicative ROF

Fact 20 ([43] (Lemma 3.10)). A ROP p is a multiplicative ROP if and only if for

any two variables xi, xj 2 Var(p), @xi@xj(p) 6= 0.

25

Multiplicative ROPs have the following useful property, observed in [43]. (See

Lemma 3.13 in [43]. For completeness, and since we refer to the proof later, we

include a proof sketch here.)

Lemma 21 ([43]). Let g be a multiplicative ROP with |Var(g)| � 2. For every

xi 2 Var(g), there exists xj 2 Var(g) \ {xi} and � 2 F such that @xj(g) |xi=�= 0.

Proof. Let ' be a multiplicative ROF computing g. Pick any xi 2 Var(g). As

|Var(')| = |Var(g)| � 2, ' has at least one gate. Let v be the unique neighbour

(parent) of the leaf labeled by xi, and let w be the other child of v. We denote by

Pv(x̄) and Pw(x̄) the ROPs computed by v and w. Since v is a ⇥ gate and we use

the normal form from Definition 6, Pv is of the form (↵xi+�)⇥Pw for some ↵ 6= 0.

Replacing the output from v by a new variable y, we obtain from ' another mul-

tiplicative ROF in the variables {y} [Var(g) \ Var(Pv). Let compute the

polynomial Q; then g = Q |y=Pv .

Note that the sets Var(Q), {xi},Var(Pw) are non-empty and disjoint, and form a

partition of {y, x1, . . . , xn}.

By the chain rule, for every variable xj 2 Var(Pw) we have:

@xj(g) = @y(Q) · @xj(Pv) = @y(Q) · (↵xi + �) · @xj(Pw)

It follows that for � = ��/↵, @xj(g) |xi=�= 0.

Along with partial derivatives, another operator that we will find useful is the com-

mutator of a polynomial. The commutator of a polynomial has previously been used

for polynomial factorization and in reconstruction algorithms for read-once formulas,

see [42].

Definition 22 (Commutator [42]). Let P 2 F[x1, x2, . . . , xn] be a multilinear poly-

nomial and let i, j 2 [n]. The commutator between xi and xj, denoted 4ijP , is

26

defined as follows.

4ijP =
�
P |xi=0,xj=0

�
·
�
P |xi=1,xj=1

�
�
�
P |xi=0,xj=1

�
·
�
P |xi=1,xj=0

�

The following property of the commutator will be useful to us.

Lemma 23. Let f = l1(x1, x2) · l2(x3, x4) + l3(x1, x3) · l4(x2, x4) where the li’s are

linear polynomials. Then l2 divides 412(f).

Proof. First, we show that 412(l3 · l4) = 0. Assume l3 = Cx1 +m and l4 = Dx2 + n

where C,D 2 F and m,n are linear polynomials in x3, x4 respectively. By definition,

412(l3 · l4) = mn(C +m)(D + n)�m(D + n)(C +m)n = 0.

Now we write 412f explicitly. Let l1 = ax1 + bx2 + c. By definition,

412f = 412(l1l2 + l3l4)

= (cl2 +mn)((a+ b+ c)l2 + (C +m)(D + n))�

((b+ c)l2 +m(D + n)) · ((a+ c)l2 + n(C +m))

= l22(c(a+ b+ c)� (a+ c)(b+ c))

+ l2(c(C +m)(D + n) +mn(a+ b+ c)� n(b+ c)(C +m)�m(a+ c)(D + n))

It follows that l2 divides 412f .

2.7 A proper separation in the
Pk ·ROP hierarchy

This section is devoted to proving Theorem 9.

We prove the lower bound for Sn�1
n

by induction. This necessitates a stronger

induction hypothesis, so we will actually prove the lower bound for a larger class of

polynomials. For any ↵, � 2 F, we define the polynomial M↵,�

n
= ↵Sn

n
+ �Sn�1

n
.

27

Proposition 24. M↵,�

n
has the following recursive structure:

(M↵,�

n
) |xn=� = M↵�+�,��

n�1 .

@xn(M↵,�

n
) = M↵,�

n�1 .

Proof.

M↵,�

n
= ↵Sn

n
+ �Sn�1

n
= ↵

0

@
Y

j2[n]

xj

1

A+ �

0

@
X

i2[n]

2

4
Y

j2[n]\{i}

xj

3

5

1

A

= ↵xn

0

@
Y

j2[n�1]

xj

1

A+ �

0

@
X

i2[n�1]

xn

2

4
Y

j2[n�1]\{i}

xj

3

5

1

A+ �

0

@
Y

j2[n�1]

xj

1

A

= ↵xnS
n�1
n�1 + �xnS

n�2
n�1 + �Sn�1

n�1 .

Hence (M↵,�

n
) |xn=� = (↵� + �)Sn�1

n�1 + ��Sn�2
n�1 = M↵�+�,��

n�1

and @xn(M↵,�

n
) = ↵Sn�1

n�1 + �Sn�2
n�1 = M↵,�

n�1

We show below that eachM↵,�

n
is expressible as the sum of dn/2e ROPs (Lemma 25);

however, for any non-zero � 2 F, M↵,�

n
cannot be written as the sum of fewer than

dn/2e ROPs (Lemma 26). At ↵ = 0, � = 1, we get Sn�1
n

, the simplest such

polynomials, establishing Theorem 9.

First we establish the upper bound.

Lemma 25. For any field F and ↵, � 2 F, the polynomial f = ↵Sn

n
+ �Sn�1

n
can be

written as a sum of at most dn/2e ROPs.

Proof. For n odd, this follows immediately from Proposition 12.

28

If n is even, say n = 2k, then define the following polynomials:

for i 2 [k � 1], fi = (x2i�1 + x2i) ·

0

BB@
Y

k2[n]
k 6=2i,2i�1

xk

1

CCA

fk = (�x2k�1 + �x2k + ↵x2k�1x2k) ·

0

BB@
Y

m2[n]
k 6=2k,2k�1

xm

1

CCA .

Then we have f = �(f1 + f2 + . . .+ fk�1) + fk.

Note that each fi is an ROP; for i < k this is immediate, and for i = k, the factor

involving x2k�1 and x2k is bivariate multilinear and hence an ROP. Thus we have a

representation of f as a sum of k = dn/2e ROPs.

The following lemma shows that the above upper bound is indeed optimal.

Lemma 26. Let F be a field. For every ↵ 2 F and � 2 F \ {0}, the polynomial

M↵,�

n
= ↵Sn

n
+ �Sn�1

n
cannot be written as a sum of k < n/2 ROPs.

Proof. The proof is by induction on n. The cases n = 1, 2 are easy to see. We

now assume that k � 1 and n > 2k. Assume to the contrary that there are ROPs

f1, f2, . . . , fk over F[x1, x2, . . . , xn] such that f ,
X

m2[k]

fm = M↵,�

n
. The main steps

in the proof are as follows:

1. Show using the inductive hypothesis that for all m 2 [k] and a, b 2 [n],

@xa@xb
(fm) 6= 0.

2. Conclude that for all m 2 [k], fm must be a multiplicative ROP. That is, the

ROF computing fm does not contain any addition gate.

3. Use the multiplicative property of fk to show that fk can be eliminated by

taking partial derivative with respect to one variable and substituting another

by a field constant. If this constant is non-zero, we contradict the inductive

hypothesis.

29

4. Otherwise, use the sum of (multiplicative) ROPs representation of M↵,�

n
to

show that the degree of f can be made at most (n� 2) by setting one of the

variables to zero. This contradicts our choice of f since � 6= 0.

We now proceed with the proof.

Proposition 27. For all m 2 [k] and a, b 2 [n], @xa@xb
(fm) 6= 0.

Proof. Suppose to the contrary that @xa@xb
(fm) = 0. Assume without loss of gener-

ality that a = n, b = n� 1, m = k, so @xn@xn�1(fk) = 0. Then,

M↵,�

n
= f =

kX

m=0

fm (by assumption)

@xn@xn�1(M↵,�

n
) =

kX

m=0

@xn@xn�1(fm) (by additivity of partial derivative)

M↵,�

n�2 =
k�1X

m=0

@xn@xn�1(fm) (recursive structure of Mn from Proposition 24,

and since @xn@xn�1(fk) = 0)

Thus M↵,�

n�2 can be written as the sum of k�1 polynomials, each of which is a ROP

(by Fact 17). By the inductive hypothesis, 2(k � 1) � (n� 2). Therefore, k � n/2

contradicting our assumption.

From Proposition 27 and Fact 20, we can conclude:

Observation 28. For all m 2 [k], fm is a multiplicative ROP.

Observation 28 and Lemma 21 together imply that for each m 2 [k] and a 2 [n],

there exist b 6= a 2 [n] and � 2 F such that @xb
(fm) |xa=�= 0. There are two cases

to consider.

First, consider the case when for some m, a and the corresponding b, �, it turns out

that � 6= 0. Assume without loss of generality that m = k, a = n� 1, b = n, so that

30

@xn(fk) |xn�1=�= 0. (For other indices the argument is symmetric.) Then

M↵,�

n
=
X

i2[k]

fi (by assumption)

@xn(M↵,�

n
) |xn�1=� =

X

i2[k]

@xn(fi) |xn�1=� (by additivity of partial derivative)

M↵,�

n�1 |xn�1=� =
X

i2[k]

@xn(fi) |xn�1=� (recursive structure of Mn from Proposition 24)

M↵,�

n�1 |xn�1=� =
X

i2[k�1]

@xn(fi) |xn�1=� (since � is chosen as per Lemma 21)

M↵�+�,��

n�2 =
X

i2[k�1]

@xn(fi) |xn�1=� (recursive structure of Mn from Proposition 24)

Therefore, M↵�+�,��

n�2 can be written as a sum of at most k� 1 polynomials, each of

which is a ROP (Fact 17). By the inductive hypothesis, 2(k � 1) � n� 2 implying

that k � n/2 contradicting our assumption.

(Note: the term M↵�+�,��

n�2 is what necessitates a stronger induction hypothesis than

working with just ↵ = 0, � = 1.)

It remains to handle the case when for all m 2 [k] and a 2 [n], the corresponding

value of � to some xb (as guaranteed by Lemma 21) is 0. Examining the proof of

Lemma 21, this implies that each leaf node in any of the ROFs can be made zero

only by setting the corresponding variable to zero. That is, the linear forms at all

leaves are of the form aixi.

Since each 'm is a multiplicative ROP, setting xn = 0 makes the variables in the

polynomial computed at the sibling of the leaf node anxn redundant. Hence setting

xn = 0 reduces the degree of each fm by at least 2. That is, deg(f |xn=0)  n � 2.

But M↵,�

n
|xn=0 equals M�,0

n�1 = �Sn�1
n�1 , which has degree n � 1, contradicting the

asusmption that f = M↵,�

n
.

Combining the results of Lemma 26 and Lemma 25, we obtain the following theorem.

At ↵ = 0, � = 1, it yields Theorem 9.

31

Theorem 29. For each n � 1, any ↵ 2 F and any � 2 F \ {0}, the polynomial

↵Sn

n
+ �Sn�1

n
is in

P
k ·ROP but not in

P
k�1 ·ROP, where k = dn/2e.

2.8 A family of 4-variate multilinear polynomials

not in
P2 ·ROP

This section is devoted to proving Theorem 10. We want to find an explicit 4-variate

multilinear polynomial that is not expressible as the sum of 2 ROPs.

Note that the proof of Theorem 9 does not help here, since the polynomials sepa-

rating
P2 ·ROP from

P3 ·ROP have 5 or 6 variables. One obvious approach is to

consider other combinations of the symmetric polynomials. This fails too; we can

show that all such combinations are in
P2 ·ROP.

Proposition 30. For every choice of field constants ai for each i 2 {0, 1, 2, 3, 4},

the polynomial
P4

i=0 aiS
i

4 can be expressed as the sum of two ROPs.

Proof. Let g =
P

i
aiSi

4. We obtain the expression for g in di↵erent ways in 4

di↵erent cases.

Case Expression

a2 = a3 = 0 g = a0 + a1S1
4 + a4S4

4

a2 = 0; g =
⇣
a1 + a3x1x2)(x3 + x4 +

a4
a3
x3x4)

⌘

a3 6= 0 +
⇣
(a1 + a3x3x4)(x1 + x2 � a1a4

a23
)
⌘
+ c

a2 6= 0; a2g = (a1 + a2(x1 + x2) + a3x1x2)(a1 + a2(x3 + x4) + a3x3x4)

a2a4 = a23 +(a22 � a1a3)(x1x2 + x3x4)) + c

a2 6= 0; a2g = (a1 + a2(x1 + x2) + a3x1x2)(a1 + a2(x3 + x4) + a3x3x4)

a2a4 6= a23 +
⇣
x1x2 +

a
2
2�a1a3

a2a4�a23

⌘
((a2a4 � a23)x3x4 + a22 � a1a3) + c

In the above, c is an appropriate field constant, and can be added to any ROP.

Notice that the first expression is a sum of two ROPs since it is the sum of a linear

32

polynomial and a single monomial. All the other expressions have two summands,

each of which is a product of variable-disjoint bivariate polynomials (ignoring con-

stant terms). Since every bivariate polynomial is a ROP, these representations are

also sums of 2 ROPs.

Instead, we define a polynomial that gives carefully chosen weights to the monomials

of S2
4 . Let f

↵,�,� denote the following polynomial:

f↵,�,� = ↵ · (x1x2 + x3x4) + � · (x1x3 + x2x4) + � · (x1x4 + x2x3).

To keep notation simple, we will omit the superscript when it is clear from the

context. In the theorem below, we obtain necessary and su�cient conditions on

↵, �, � under which f can be expressed as a sum of two ROPs.

Theorem 31 (Hardness of representation for sum of 2 ROPs). Let f be the polyno-

mial f↵,�,� = ↵ · (x1x2 + x3x4) + � · (x1x3 + x2x4) + � · (x1x4 + x2x3). The following

are equivalent:

1. f is not expressible as the sum of two ROPs over F.

2. ↵, �, � satisfy all the three conditions C1, C2, C3 listed below.

C1: ↵�� 6= 0.

C2: (↵2 � �2)(�2 � �2)(�2 � ↵2) 6= 0.

C3: None of the equations X2 � di = 0, i 2 [3], has a root in F, where

d1 = (+↵2 � �2 � �2)2 � (2��)2

d2 = (�↵2 + �2 � �2)2 � (2↵�)2

d3 = (�↵2 � �2 + �2)2 � (2↵�)2

33

Remark 32. 1. It follows, for instance, that 2(x1x2 + x3x4) + 4(x1x3 + x2x4) +

5(x1x4 + x2x3) cannot be written as a sum of 2 ROPs over reals, yielding

Theorem 10.

2. If F is an algebraically closed field, then for every ↵, �, �, condition C3 fails,

and so every f↵,�,� can be written as a sum of 2 ROPs. However we do not know

if there are other examples, or whether all multilinear 4-variate polynomials

are expressible as the sum of two ROPs.

3. Even if F is not algebraically closed, condition C3 fails if for each a 2 F, the

equation X2 = a has a root.

Our strategy for proving Theorem 31 is a generalization of an idea used in [48]. While

Volkovich showed that 3-variate ROPs have a nice structural property in terms of

their partial derivatives and commutators, we show that the sums of two 4-variate

ROPs have at least one nice structural property in terms of their bivariate restric-

tions, partial derivatives, and commutators. Then we show that provided ↵, �, � are

chosen carefully, the polynomial f↵,�,� will not satisfy any of these properties and

hence cannot be a sum of two ROPs.

To prove Theorem 31, we first consider the easier direction, 1) 2, and prove the

contrapositive.

Lemma 33. If ↵, �, � do not satisfy all of C1,C2,C3, then the polynomial f can be

written as a sum of 2 ROPs.

Proof. C1 false: If any of ↵, �, � is zero, then by definition f is the the sum of at

most two ROPs.

C2 false: Without loss of generality, assume ↵2 = �2, so ↵ = ±�. Then f is

computed by f = ↵ · (x1 ± x4)(x2 ± x3) + � · (x1x4 + x2x3).

C1 true; C3 false: Without loss of generality, the equation X2�d1 = 0 has a root

34

⌧ . We try to express f as

↵(x1 � ax3)(x2 � bx4) + �(x1 � cx2)(x3 � dx4).

The coe�cients for x3x4 and x2x4 force ab = 1, cd = 1, giving the form

↵(x1 � ax3)(x2 �
1

a
x4) + �(x1 � cx2)(x3 �

1

c
x4).

Comparing the coe�cients for x1x4 and x2x3, we obtain the constraints

�↵
a
� �

c
= �; � ↵a� �c = �

Expressing a as ����c

↵
, we get a quadratic constraint on c; it must be a root of the

equation

Z2 +
�↵2 + �2 + �2

��
Z + 1 = 0.

Using the fact that ⌧ 2 = d1 = (�↵2 + �2 + �2)2 � (2��)2, we see that indeed this

equation does have roots. The left-hand size splits into linear factors, giving

(Z � �)(Z � 1

�
) = 0 where � =

↵2 � �2 � �2 + ⌧

2��
.

It is easy to verify that � 6= 0 and � 6= � �

�
(since ↵ 6= 0). Further, define µ = �(�+��)

↵
.

Then µ is well-defined (because ↵ 6= 0) and is also non-zero. Now setting c = � and

a = µ, we have satisfied all the constraints and so we can write f as the sum of 2

ROPs as follows:

f = ↵(x1 � µx3)(x2 �
1

µ
x4) + �(x1 � �x2)(x3 �

1

�
x4).

Now we consider the harder direction: 2) 1. Again, we consider the contrapositive.

35

We first show (Lemma 34) a structural property satisfied by every polynomial in
P2 ·ROP: it must satisfy at least one of the three properties C10, C20, C30 described

in the lemma. We then show (Lemma 35) that under the conditions C1, C2, C3

from the theorem statement, f does not satisfy any of C10, C20, C30; it follows that

f is not expressible as the sum of 2 ROPs.

Lemma 34. Let g be a 4-variate multilinear polynomial over the field F which can

be expressed as a sum of 2 ROPs. Then at least one of the following conditions is

true:

C1’: There exist i, j 2 [4] and a, b 2 F such that g |xi=a,xj=b is linear.

C2’: There exist i, j 2 [4] such that xi, xj, @xi(g), @xj(g), 1 are linearly dependent.

C3’: g = l1 · l2+ l3 · l4 where lis are linear forms, l1 and l2 are variable-disjoint, and

l3 and l4 are variable-disjoint.

Proof. Let ' be a sum of 2 ROFs computing g. Let v1 and v2 be the children of

the topmost + gate. The proof is in two steps. First, we reduce to the case when

|Var(v1)| = |Var(v2)| = 4. Then we use a case analysis to show that at least one

of the aforementioned conditions hold true. In both steps, we will repeatedly use

Proposition 18, which showed that any 3-variate ROP can be reduced to a linear

polynomial by substituting a single variable with a field constant. We now proceed

with the proof.

Suppose |Var(v1)|  3. Applying Proposition 18 first to v1 and then to the resulting

restriction of v2, one can see that there exist i, j 2 [4] and a, b 2 F such that

g |xi=a,xj=b is a linear polynomial. So condition C10 is satisfied.

Now assume that |Var(v1)| = |Var(v2)| = 4. Depending on the type of gates of v1

and v2, we consider 3 cases.

Case 1: Both v1 and v2 are ⇥ gates. Then g can be represented as M1 ·M2+M3 ·M4

where (M1,M2) and (M3,M4) are variable-disjoint ROPs.

36

Suppose that for some i, |Var(Mi)| = 1. Then, g |Mi!0 is a 3-variate restriction of

f and is clearly an ROP. Applying Proposition 18 to this restriction, we see that

condition C10 holds.

Otherwise each Mi has |Var(Mi)| = 2.

Suppose (M1,M2) and (M3,M4) define distinct partitions of the variable set. As-

sume without loss of generality that g = M1(x1, x2) · M2(x3, x4) + M3(x1, x3) ·

M4(x2, x4). If all Mis are linear forms, it is clear that condition C30 holds. If

not, assume that M1 is of the form l1(x1) ·m1(x2) + c1 where l1,m1 are linear forms

and c1 2 F. Now g |l1!0= c1 · M2(x3, x4) + M 0
3(x3) · M4(x2, x4). Either set x3 to

make M 0
3 zero, or, if that is not possible because M 0

3 is a non-zero field constant,

then set x4 ! b where b 2 F. In both cases, by setting at most 2 variables, we

obtain a linear polynomial, so C10 holds.

Otherwise, (M1,M2) and (M3,M4) define the same partition of the variable set.

Assume without loss of generality that g = M1(x1, x2) · M2(x3, x4) + M3(x1, x2) ·

M4(x3, x4). If one of the Mis is linear, say without loss of generality that M1 is a

linear form, then g |M4!0 is a 2-variate restriction which is also a linear form, so C10

holds. Otherwise, none of the Mis is a linear form. Then each Mi can be represented

as li · mi + ci where li,mi are univariate linear forms and ci 2 F. We consider a

2-variate restriction which sets l1 and m4 to 0. (Note that Var(l1) \ Var(m4) = ;.)

Then the resulting polynomial is a linear form, so C10 holds.

Case 2: Both v1 and v2 are + gates. Then g can be written as f = M1+M2+M3+M4

where (M1,M2) and (M3,M4) are variable-disjoint ROPs.

Suppose (M1,M2) and (M3,M4) define distinct partitions of the variable set.

Suppose further that there exists Mi such that |Var(Mi)| = 1. Without loss Of

generality, Var(M1) = {x1}, {x1, x2} ✓ Var(M3), and x3 2 Var(M4). Any setting to

x2 and x4 results in a linear polynomial, so C10 holds.

So assume without loss of generality that g = M1(x1, x2)+M2(x3, x4)+M3(x1, x3)+

M4(x2, x4). Then for a, b 2 F, g |x1=a,x4=b is a linear polynomial, so C10 holds.

37

Otherwise, (M1,M2) and (M3,M4) define the same partition of the variable set.

Again, if say |Var(M1)| = 1, then setting two variables from M2 shows that C10

holds. So assume without loss of generality that g = M1(x1, x2) + M2(x3, x4) +

M3(x1, x2) + M4(x3, x4). Then for a, b 2 F, g |x1=a,x3=b is a linear polynomial, so

again C10 holds.

Case 3: One of v1, v2 is a + gate and the other is a ⇥ gate. Then g can be written

as g = M1+M2+M3 ·M4 where (M1,M2) and (M3,M4) are variable-disjoint ROPs.

Suppose that |Var(M3)| = 1. Then g |M3!0 is a 3-variate restriction which is a ROP.

Using Proposition 18, we get a 2-variate restriction of g which is also linear, so C10

holds. The same argument works when |Var(M4)| = 1. So assume that M3 and M4

are bivariate polynomials.

Suppose that (M1,M2) and (M3,M4) define distinct partitions of the variable set.

Assume without loss of generality that g = M1 +M2 +M3(x1, x2) ·M4(x3, x4), and

x3, x4 are separated by M1,M2. Then g |M3!0 is a 2-variate restriction which is also

linear, so C10 holds.

Otherwise (M1,M2) and (M3,M4) define the same partition of the variable set.

Assume without loss of generality that g = M1(x1, x2) + M2(x3, x4) + M3(x1, x2) ·

M4(x3, x4). If M1 (or M2) is a linear form, then consider a 2-variate restriction of g

which sets M4 (or M3) to 0. The resulting polynomial is a linear form. Similarly if

M3 (or M4) is of the form l ·m + c where l,m are univariate linear forms, then we

consider a 2-variate restriction which sets l to 0 and some xi 2 Var(M4) to a field

constant. The resulting polynomial again is a linear form. In all these cases, C10

holds.

The only case that remains is that M3 and M4 are linear forms while M1 and M2 are

not. Assume that M1 = (a1x1 + b1)(a2x2 + b2) + c and M3 = a3x1 + b3x2 + c3. Then

@x1(g) = a1(a2x2 + b2) + a3M4 and @x2(g) = (a1x1 + b1)a2 + b3M4. It follows that

b3 · @x1(g)� a3 · @x2(g) + a1a2a3x1 � a1a2b3x2 = a1b2b3 � b1a2a3 2 F, and hence the

polynomials x1, x2, @x1(g), @x2(g) and 1 are linearly dependent. Therefore, condition

38

C20 of the lemma is satisfied.

Lemma 35. If ↵, �, � satisfy conditions C1, C2, C3 from the statement of Theo-

rem 31, then the polynomial f↵,�,� does not satisfy any of the properties C10, C20, C30

from Lemma 34.

Proof. C1) ¬C10: Since ↵�� 6= 0, f contains all possible degree 2 monomials.

Hence after setting xi = a and xj = b, the monomial xkxl where k, l 2 [4]\{i, j} still

survives.

C2) ¬C20: The proof is by contradiction. Assume to the contrary that for

some i, j, without loss of generality say for i = 1 and j = 2, the polynomials

x1, x2, @x1(f), @x2(f), 1 are linearly dependent. Note that @x1(f) = ↵x2 + �x3 + �x4

and @x2(f) = ↵x1+�x3+�x4. This implies that the vectors (1, 0, 0, 0, 0), (0, 1, 0, 0, 0),

(0,↵, �, �, 0), (↵, 0, �, �, 0) and (0, 0, 0, 0, 1) are linearly dependent. This further im-

plies that the vectors (�, �) and (�, �) are linearly dependent. Therefore, � = ±�,

contradicting C2.

C1 ^C2 ^C3) ¬C30: Suppose, to the contrary, that C30 holds. That is, f can

be written as f = l1 · l2 + l3 · l4 where (l1, l2) and (l3, l4) are variable-disjoint linear

forms. By the preceding arguments, we know that f does not satisfy C10 or C20.

First consider the case when (l1, l2) and (l3, l4) define the same partition of the

variable set. Assume without loss of generality that Var(l1) = Var(l3), Var(l2) =

Var(l4), and |Var(l1)|  2. Setting the variables in l1 to any field constants yields a

linear form, so f satisfies C1’, a contradiction.

Hence it must be the case that (l1, l2) and (l3, l4) define di↵erent partitions of the

variable set. Since all degree-2 monomials are present in f , each pair xi, xj must

be separated by at least one of the two partitions. This implies that both partitions

have exactly 2 variables in each part. Assume without loss of generality that f =

l1(x1, x2) · l2(x3, x4) + l3(x1, x3) · l4(x2, x4).

At this point, we use properties of the commutator of f ; recall Definition 22. By

39

Lemma 23, we know that l2 divides 412f . We compute 412f explicitly for our

candidate polynomial:

412f = (↵x3x4)(↵ + (� + �)(x3 + x4) + ↵x3x4)

� (�x4 + �x3 + ↵x3x4)(�x3 + �x4 + ↵x3x4)

= ���(x2
3 + x2

4) + (↵2 � �2 � �2)x3x4

Since l2 divides412f ,412f is not irreducible but is the product of two linear factors.

Since 412f(0, 0) = 0, at least one of the linear factors of 412f must vanish at (0, 0).

Let x3��x4 be such a factor. Then 412(f) vanishes not only at (0, 0), but whenever

x3 = �x4. Substituting x3 = �x4 in 412f , we get

��2�� � �� + �(↵2 � �2 � �2) = 0

Hence � is of the form

� =
�(↵2 � �2 � �2)±

p
(↵2 � �2 � �2)2 � 4�2�2

�2��

Hence 2��� � (↵2 � �2 � �2) is a root of the equation X2 � d1 = 0, contradicting

the assumption that C3 holds.

Hence it must be the case that C30 does not hold.

With this, the proof of Theorem 31 is complete.

The conditions imposed on ↵, �, � in Theorem 31 are tight and irredundant. Below

we give some explicit examples over the field of reals.

1. f = 2(x1x2 + x3x4) + 2(x1x3 + x2x4) + 3(x1x4 + x2x3) satisfies conditions C1

and C3 from the Theorem but not C2; ↵ = �. A
P2 ·ROP representation for

f is f = 2(x1 + x4)(x2 + x3) + 3(x1x4 + x2x3).

40

2. f = 2(x1x2 + x3x4) � 2(x1x3 + x2x4) + 3(x1x4 + x2x3) satisfies conditions

C1 and C3 but not C2; ↵ = ��. A
P2 ·ROP representation for f is f =

2(x1 � x4)(x2 � x3) + 3(x1x4 + x2x3).

3. f = (x1x2+x3x4)+2(x1x3+x2x4)+3(x1x4+x2x3) satisfies conditions C1 and

C2 but not C3. Note that in this case, d1 = (12 � 22 � 32)2 � (2 · 2 · 3)2 = 0.

Clearly X2� d1 = X2 = 0 has a real root. A
P2 ·ROP representation for f is

f = (x1 + x3)(x2 + x4) + 2(x1 + x2)(x3 + x4).

2.9 Discussion

1. We have seen in Proposition 11 that every n-variate multilinear polynomial

(n � 4) can be written as the sum of 3⇥ 2n�4 ROPs. The counting argument

from Proposition 14 shows that there exist multilinear polynomials f requiring

exponentially many ROPs summands; if f 2
P

k ·ROP then k = ⌦(2n/n2).

Our general upper bound on k is O(2n), leaving a small gap between the

lower and upper bound. What is the true tight bound? Can we find explicit

polynomials where exponentially large k is necessary and su�cient in any
P

k ·ROP expression? One such example is the polynomial defined by Raz and

Yehudayo↵ in [40]; as shown in [9], k must be exponential in ⌦(n1/3/ log n).

But we do not know whether this value of k is asymptotically tight.

2. We have shown in Theorem 9 that for each k,
P

k ·ROP can be separated from
P

k�1 ·ROP by a polynomial on 2k�1 variables. Can we separate these classes

with fewer variables? Note that any separating polynomial must have ⌦(log k)

variables.

3. In particular, can 4-variate multilinear polynomials separate sums of 3 ROPs

from sums of 2 ROPs over every field? If not, what is an explicit example?

4. We now understand ROPs and ROFs very well, [48]. However, our understand-

41

ing of sums of ROPs is not so good. Can we at least characterise
P2 ·ROPs?

42

Chapter 3

Computation over semirings

In this chapter, we give some preliminaries needed for the rest of this thesis.

Recall the definition of circuits from Chapter 1. In the rest of this thesis, we will

be interested in circuits over a particular semiring instead of fields. We will mainly

consider circuits over the tropical semiring.

A circuit C syntactically produces a polynomial pC over the semiring S = (S,�,⌦)

in a natural way; at a leaf, the polynomial produced is the leaf label, and at in-

termediate nodes, the polynomial produced is obtained by combining polynomials

produced at the children using the operation labeling the gate. Using the distribu-

tivity of ⌦ over �, the polynomial produced at the output gate can be represented

as a � sum of monomials, where within each monomial we use the ⌦ product.

A circuit C computes a polynomial p if the polynomial pC produced by C agrees with

the polynomial p at all input settings. Over the arithmetic semiring A = (N,+,⇥),

computing and producing are equivalent in terms of the size of the circuit required.

However, over other semirings, there can be significant di↵erences. In particular,

this is the case for the tropical semiring Min, the focus of this paper. We use the

notation S(p) to denote the size of the smallest circuit computing (not producing)

p over the semiring S.

The tropical semiring Min is the semiring Min = (N,min,+), with 0 being the iden-

43

tity for + and1 the identity for min. A circuit over Min, with variables x1, . . . , xn,

produces a polynomial of the form min{`1, `2, . . . , `t} where each monomial `r is of

the form c0 + c1x1 + . . .+ cnxn, for non-negative integers ci.

For a polynomial p(X), Mon(p) denotes the set of monomials of p. Let � be the fol-

lowing (partial) ordering amongst monomials over the variable setX = {x1, . . . , xn}:

c0 + c1x1 + . . . + cnxn � d0 + d1x1 + . . . + dnxn if ci  di for all i. Then Monle(p),

the lower envelope of monomials of p, denotes the set of those monomials in Mon(p)

that are minimal with respect to �, and the lower envelope of p, denoted ple, is

the minimum (the � sum) of these monomials. For instance consider the polyno-

mial p(X) = min(x1, x2, x1 + x2, 2x1 + 3x2 over the Min semiring. In this case,

Mon(p) = {x1, x2, x1 + x2, 2x1 + 3x2}, Monle(p) = {x1, x2} and ple = min(x1, x2).

Over the semiring Min, if polynomials p and q have the same lower envelope, then

they compute the same values everywhere. Thus for a polynomial p, Min(p) is the

size of the smallest (min,+) circuit producing a polynomial whose lower envelope is

ple.

Computation over the semiring Min lies somewhere in between monotone Boolean

computation and monotone arithmetic computation. For any polynomial p described

as an � sum of ⌦ monomials, the following relation holds: B(p)  Min(p)  A(p).

Here B and A denote the Boolean and arithmetic semirings respectively.

For convenience in describing the upper bounds, we may use the values 0,1 at the

leaves, but these can be propagated upwards without increasing the size.

44

Chapter 4

Computing max using (min,+)

formulas

4.1 Highlights

In this chapter, we present our results on lower bounds for di↵erence of (min,+)

formulas. We start by defining (min,+) formulas. We then define the problem of

computing the maximum value among n variables using (min,+) formulas and also

provide our own motivation for studying this problem. We then discuss some related

work and finally our results on this problem. Our main results are as follows:

• No (min,+) formula over N or Z can compute the maximum value among n

variables.

• Any di↵erence of (min,+) formulas that computes the maximum of n variables

must have size at least ⇥(n log n).

Organization of chapter

The rest of this chapter is organized as follows. In Section 4.2, we introduce our

problem of interest. In Section 4.3, we discuss some useful transformations and

45

easy upper bounds. Then in Section 4.4, we introduce our main technical tool for

proving lower bounds, that is, graph entropy. In Section 4.5 and Section 4.6, we

further discuss some upper bounds for computing the maximum. In Section 4.7, we

discuss the proof of our main lower bound. In Section 4.8, we discuss the case when

the model of (min,+) formulas is strengthened using a monus operation. Finally, in

Section4.9, we conclude with stating some still open questions.

4.2 Introduction

4.2.1 Background

Let X denote the set of variables {x1, . . . , xn}. We use x̃ to denote (x1, x2, . . . , xn, 1).

We use ei to denote the (n + 1)-dimensional vector with a 1 in the ith coordinate

and zeroes elsewhere. For i 2 [n], we also use ei to denote an assignment to the

variables x1, x2, . . . , xn where xi is set to 1 and all other variables are set to 0.

Definition 36. For 0  r  n, the n-variate functions Sumn, MinSumr

n
and

MaxSumr

n
are as defined below.

Sumn =
nX

i=1

xi

MinSumr

n
= min

(
X

i2S

xi | S ✓ n, |S| = r

)

MaxSumr

n
= max

(
X

i2S

xi | S ✓ n, |S| = r

)

Note that MinSum0
n
and MaxSum0

n
are the constant function 0, and MinSum1

n
and

MaxSum1
n
are just the min and max functions respectively.

Observation 37. For 1  r < n, MinSumn

n
= MaxSumn

n
= Sumn = MinSumr

n
+

MaxSumn�r

n
.

We consider the following setting. Suppose we are given n input variables

46

x1, x2, . . . , xn and we want to find a formula which computes the maximum value

taken by these variables, max(x1, x2, . . . , xn). If variables are restricted to take non-

negative integer values, it is easy to show that no (min,+) formula can compute

max. (See the proof of Theorem 45 for details.) Hence to compute the maxi-

mum, we must strengthen this model – an obvious way is by allowing minus gates

as well. Now we have a very small linear sized formula: max(x1, x2, . . . , xn) =

0 � min(0 � x1, 0 � x2, . . . , 0 � xn). However, this solution is not satisfactory for

two reasons: firstly, it uses many minus gates, and secondly, intermediate gates

in this formula can compute negative integer values even though we are working

over natural numbers. Is this necessary? Addressing the first question, it turns

out that just a single minus gate, appearing at the top, su�ces. That is, we can

compute the maximum as the di↵erence of two (min,+) expressions. Here is one

such computation:

(Sum of all variables) �mini (Sum of all variables except xi).

The second expression can be computed by a linear-size (min,+) circuit or by a

(min,+) formula of size n log n (see Lemma 48). And this computation addresses

the second question as well; all intermediate values are non-negative. Can we do

any better? We show that this simple di↵erence formula is indeed the best we can

achieve in this model.

The main motivation behind studying this question is the following question: Does

there exist a naturally occurring function f for which (min,+) circuits are super-

polynomially weaker than (max,+) circuits? There are two possibilities:

1. Show that max can be implemented using a small (min,+) circuit.

2. Come up with an explicit function f which has small (max,+) circuits but

requires large (min,+) circuits.

Since we show that no (min,+) formula (or circuit) can compute max, option 1

is ruled out. In the weaker model of formulas instead of circuits, we show that

47

any di↵erence of (min,+) formulas computing max should have size at least n log n.

This yields us a slight, super-linear, separation between (max,+) formulas and dif-

ference of (min,+) formulas. Note that a similar question was also asked in [24]:

Does there exist a naturally occurring polynomial for which the (min,+) semir-

ing is super-polynomially weaker than the (max,+) semiring? Note that the same

polynomial can have di↵erent interpretations over di↵erent semirings. For instance,

consider the polynomial f(x1, x2) = x2
1 + x1x2 + x3

2. Over the (min,+) semiring,

it is interpreted as min{2x1, x1 + x2, 3x2} while over the (max,+) semiring, it is

interpreted as max{2x1, x1 + x2, 3x2}.

4.2.2 Motivation

Many dynamic programming algorithms correspond to (min,+) circuits over an

appropriate semiring. Notable examples include the Bellman-Ford-Moore (BFM)

algorithm for the single-source-shortest-path problem (SSSP) [5, 15, 37], the Floyd-

Warshall (FW) algorithm for the All-Pairs-Shortest-Path (APSP) problem [13, 49],

and the Held-Karp (HK) algorithm for the Travelling Salesman Problem (TSP) [19].

All these algorithms are just recursively constructed (min,+) circuits. For example,

both the BFM and the FW algorithms give O(n3) sized (min,+) circuits while the

HK algorithm gives a O(n2 · 2n) sized (min,+) circuit. Matching lower bounds

were proved for TSP in [22], for APSP in [24], and for SSSP in [27]. So, proving

tight lower bounds for circuits over (min,+) can help us understand the power and

limitations of dynamic programming. We refer the reader to [24,25] for more results

on (min,+) circuit lower bounds.

Apart from the many natural settings where the tropical semiring Min= (min,+,N[

{1}, 0,1) crops up, it is also interesting because it can simulate the Boolean semir-

ing for monotone computation. The mapping is straightforward: 0, 1,_,^ in the

Boolean semiring are replaced by 1, 0,min,+ respectively in the tropical semir-

ing. Proving lower bounds for (min,+) formulas could be easier than for monotone

48

Boolean formulas because the (min,+) formula has to compute a function correctly

at all values, not just at 0,1. In particular, we draw attention to the following

observation in [24]: “The power of tropical circuits lies somewhere between that

of monotone Boolean circuits and monotone arithmetic circuits, and the gaps may

even be exponential.” Thus, over the tropical semiring Min, lower bounds can be

inherited from the monotone Boolean setting, and upper bounds from the monotone

arithmetic setting.

Note that algorithms for problems like computing the diameter of a graph are nat-

urally expressed using (min,max,+) circuits. This makes the cost of converting a

max gate to a (min,+) circuit or formula an interesting measure.

A related question arises in the setting of counting classes defined by arithmetic

circuits and formulas. Circuits over N, with specific resource bounds, count accept-

ing computation paths or proof-trees in a related resource-bounded Turing machine

model defining a class C. The counting function class is denoted #C. The di↵erence

of two such functions in a class #C is a function in the class Di↵C. On the other

hand, circuits with the same resource bounds, but over Z, or equivalently, with sub-

traction gates, describe the function class GapC. For most complexity classes C, a

straightforward argument shows that that Di↵C and GapC coincide upto polynomial

factors. See [2] for further discussion on this. In this framework, we restrict attention

to computation over N and see that as a member of a Gap class over (min,+), max

has linear-size formulas, whereas as a member of a Di↵ class, it requires ⌦(n log n)

size.

4.2.3 Our results and techniques

We now formally state our results and briefly comment on the techniques used to

prove them.

1. For n � 2, no (min,+) formula over N can compute max(x1, x2, . . . , xn). (The-

orem 45)

49

The proof is simple: apply a carefully chosen restriction to the variables and

show that the (min,+) formula does not output the correct value of max on

this restriction.

2. max(x1, x2, . . . , xn) can be computed by a di↵erence of two (min,+) formulas

with total size n+ ndlog ne. (Theorem 47)

One of the formulas computes just the sum of all n variables and is clearly of

linear size. The other formula computes the minimum sum of n � 1 distinct

variables; using recursion, we obtain the claimed size bound.

3. Let F1, F2 be (min,+) formulas over N such that F1�F2 = max(x1, x2, . . . , xn).

Then F1 must have at least n leaves and F2 at least n log n leaves. (Theo-

rem 50)

A major ingredient in our proof is the definition of a measure for functions

computable by constant-free (min,+) formulas, and relating this measure to

formula size. The measure involves terms analogous to minterms of a mono-

tone Boolean function, and uses the entropy of an associated graph under the

uniform distribution on its vertices. In the setting of monotone Boolean func-

tions, this technique was used in [38] to give formula size lower bounds. We

adapt that technique to the (min,+) setting.

The same technique also yields the following lower bound: Any (min,+) for-

mula computing the minimum over the sums of n� 1 variables must have at

least n log n leaves. This is tight. (Lemma 48 and Corollary 55) Note that for

the corresponding Boolean function Thn�1
n

, a lower bound of n log n is known

for monotone Boolean formulas [21], and hence by [24], this lower bound au-

tomatically carries over to the (min,+) semiring. However, transferring the

lower bound seems to require the use of 1. Our argument shows that the

lower bound holds even if we are interested in computation over N without

the element 1.

50

4. Arguably, over totally ordered monoids that are not groups, a monus operation

is a more appropriate version of the inverse than minus. In Section 4.8, we

briefly discuss augmenting (min,+) formulas with gates computing monus as

opposed to minus.

4.3 Transformations and Upper bounds

We consider the computation of max{x1, . . . , xn} over N using (min,+) formulas.

To start with, we describe some properties of (min,+) formulas that we use repeat-

edly. The first property, Proposition 39 below, is expressing the function computed

by a formula as a depth-2 polynomial where + plays the role of multiplication and

min plays the role of addition. The next properties, Proposition 40 and 41 be-

low, deal with removing redundant sub-expressions created by the constant zero or

moving common parts aside.

Definition 38. Let F be a (min,+) formula with leaves labeled from X [N. For

each gate v 2 F , we construct a set Sv ✓ Nn+1 as described below.

We construct the sets inductively based on the depth of v.

1. Case 1. v is a leaf labeled ↵ for some ↵ 2 N. Then Sv = {↵ · en+1}. (Recall,

ei is the unit vector with 1 at the ith coordinate and zero elsewhere).

2. Case 2: v is a leaf labeled xi for some i 2 [n]. Then Sv = {ei}.

3. Case 3: v = min{u, w}. Then Sv = Su [Sw.

4. Case 4: v = u + w. Then Sv = {ã + b̃ | ã 2 Su, b̃ 2 Sw} (coordinate-wise

addition).

Let r be the output gate of F . We denote by S(F) the set Sr so constructed.

Below we give an example of a (min,+) formula along with the sets corresponding

to each gate.

51

x1 x2 x3 x4 x1 x4 x2 x3 x1 x3 x2 x4

min

min(x1, x2)

10000 01000

min

min(x3, x4)

00100 00010

min

min(x1, x4)

10000 00010

min

min(x2, x3)

01000 00100

min

min(x1, x3)

10000 00100

min

min(x2, x4)

01000 00010

+

min(x1 + x3, x1 + x4, x2 + x3, x2 + x4)

10100, 10010, 01100, 01010

+

min(x1 + x2, x1 + x3, x2 + x4, x3 + x4)

11000, 10100, 01010, 00110

+

min(x1 + x2, x1 + x4, x2 + x3, x3 + x4)

11000, 10010, 01100, 00110

min

f (x1, x2, x3, x4)
= min(x1 + x3, x1 + x4, x2 + x3, x2 + x4, x1 + x2, x3 + x4)

= MinSum2
4

10100, 10010, 01100, 01010, 11000, 00110

Figure 4.1: (min,+) formula

It is straightforward to see that if F has no constants (so Case 1 is never invoked),

then an+1 remains 0 throughout the construction of the sets Sv. Hence if F is

constant-free, then for each ã 2 S(F), an+1 = 0.

By construction, the set S(F) describes the function computed by F . (In the lan-

guage of [24], it represents the unique polynomial “produced” by the formula.) Thus

we have the following:

Proposition 39. Let F be a formula with min and + gates, with leaves labeled

by elements of {x1, . . . , xn} [N. For each gate v 2 F , let fv denote the function

computed at v.

Then fv = min{hã · x̃i | ã 2 Sv}.

One can easily verify the above proposition in Figure 4.1.

The following proposition is an easy consequence of the construction in Definition 38.

Proposition 40. Let F be a (min,+) formula over N. Let G be the formula obtained

from F by replacing all constants by the constant 0. Let H be the constant-free

formula obtained from G by eliminating 0s from G through repeated replacements of

0 + A by A, min{0, A} by 0. Then

52

1. L(H)  L(G) = L(F),

2. S(G) = {b̃ | bn+1 = 0, 9ã 2 S(F), 8i 2 [n], ai = bi}, and

3. G and H compute the same function min{hb̃ · x̃i | b̃ 2 S(G)}.

(Note: It is not the claim that S(G) = S(H). Indeed, this may not be the case. For

instance, let F = x + min{1, x + y}. Then S(F) = {101, 210}, S(G) = {100, 210},

S(H) = {100}, However, the functions computed are the same.)

The next proposition shows how to remove “common” contributors to S(F) without

increasing the formula size.

Proposition 41. Let F be a (min,+) formula computing a function f .

If, for some i 2 [n+1], ai > 0 for every ã 2 S(F), then f �hei · x̃i can be computed

by a (min,+) formula F 0 of size at most size(F). Furthermore, S(F 0) = {b̃ | 9ã 2

S(F), b̃ = ã� ei}.

Proof. First consider i 2 [n]. Let X be the subset of nodes in F defined as follows:

X = {v 2 F | 8ã 2 Sv : ai > 0}

Clearly, the output gate r of F belongs to X. By the construction of the sets Sv,

whenever a min node v belongs to X, both its children belong to X, and whenever a

+ node belongs to X, at least one of its children belongs to X. We pick a set T ✓ X

as follows. Include r in T . For each min node in T , include both its children in T .

For each + node in T , include in T one child that belongs to X (if both children are

in X, choose any one arbitrarily). This gives a sub-formula of F where all leaves are

labeled xi. Replace these occurrences of xi in F by 0 to get formula F 0. It is easy

to see that S(F 0) = {ã� ei | ã 2 S}. Hence F 0 computes f � xi.

For i = an+1, the same process as above yields a subformula where each leaf is

labeled by a positive constant. Subtracting 1 from the constant at each leaf in T

gives the formula computing f � 1.

53

4.4 Graph entropy

The notion of the entropy of a graph or hypergraph, with respect to a probability

distribution on its vertices, was first defined by Körner in [31]. In that and subse-

quent works (e.g. [11,32,33,38]), equivalent characterizations of graph entropy were

established and are often used now as the definition itself, see for instance [45, 46].

In this paper, we use graph entropy only with respect to the uniform distribution,

and simply call it graph entropy. We use the following definition, which is exactly

the definition from [46] specialised to the uniform distribution.

Definition 42. Let G be a graph with vertex set V (G) = {1, . . . , n}. The vertex

packing polytope V P (G) of the graph G is the convex hull of the characteristic

vectors of independent sets of G. The entropy of G is defined as

H(G) = min
~a2V P (G)

nX

i=1

1

n
log

1

ai
.

It can easily be seen thatH(G) is a non-negative real number, and moreover,H(G) =

0 if and only if G has no edges. We list non-trivial properties of graph entropy that

we use.

Lemma 43 ([32,33]). Let F = (V,E(F)) and G = (V,E(G)) be two graphs on the

same vertex set. The following hold:

1. Monotonocity. If E(F) ✓ E(G), then H(F)  H(G)

2. Subadditivity. Let Q be the graph with vertex set V and edge set E(F) [

E(G). Then H(Q)  H(F) +H(G).

Lemma 44 (see for instance [45,46]). The following hold:

1. Let Kn be the complete graph on n vertices. Then H(Kn) = log n.

2. Let G be a graph on n vertices, whose edges induce a bipartite graph on m (out

of n) vertices. Then H(G)  m

n
.

54

4.5 Computing max over N

It is intuitively clear that no (min,+) formula can compute max. A formal proof

using Proposition 39 appears below.

Theorem 45. For n � 2, no (min,+) formula over N can compute

max{x1, . . . , xn}.

Proof. This theorem can be proved in multiple ways. One way to do so is by

applying a carefully chosen restriction to the variables, and by showing that the

(min,+) formula does not compute the correct value of max on this restriction. We

now give the details.

Suppose, to the contrary, some formula C computes max. Then its restriction D to

x1 = X, x2 = Y , x3 = x4 = . . . = xn = 0, correctly computes max{X, Y }. Since all

leaves of D are labeled from {x1, x2}[N, the set S(D) is a set of triples. Let S ✓ N3

be this set. For all X, Y 2 N, max{X, Y } equals E(X, Y) = min{AX + BY + C |

(A,B,C) 2 S}.

Let K denote the maximum value taken by C in any triple in S. If for some

B,C 2 N, the triple (0, B, C) belongs to S, then E(K + 1, 0)  C  K < K + 1 =

max{0, K + 1}. So for all (A,B,C) 2 S, A 6= 0, so A � 1. Similarly, for all

(A,B,C) 2 S, B � 1. Hence for all (A,B,C) 2 S, A+B � 2.

Now E(1, 1) = min{A+ B + C | (A,B,C) 2 S} � 2 > 1 = max{1, 1}. So E(X, Y)

does not compute max(X, Y) correctly.

Remark 46. Another way to prove this theorem was given in [26]: The idea is to

use a general property of (min,+) circuits: functions f : Nn ! N computable by

(min,+) circuits follow midpoint concavity. : f(2u + 2v) � 2f(u) + 2f(v) holds

for all u, v 2 Nn , but max can be shown to not follow midpoint concavity by

choosing an appropriate substitution to the variables. For instance, say u = (0, 1)

and v = (1, 0). Then f(2u+ 2v) = max(2, 2) = 2. But 2f(u) + 2f(v) = 2 + 2 = 4.

However, if we also allow the subtraction operation at internal nodes, it

55

is very easy to compute the maximum in linear size; max(x1, . . . , xn) =

�min{�x1,�x2, . . . ,�xn}. Here �a is implemented as 0� a, and if we allow only

variables, not constants, at leaves, we can compute �a as (x1 � x1)� a.

Thus the subtraction operation adds significant power. How much? Can we compute

the maximum with very few subtraction gates? As mentioned before in Section 4.2,

the max function can be computed as the di↵erence of two (min,+) formulas. Equiv-

alently, there is a (min,+,�) formula with a single � gate at the root, that computes

the max function. This formula is not linear in size, but it is not too big either; we

show that it has size O(n log n).

4.6 Upper bounds

Theorem 47. The function max{x1, . . . , xn} can be computed by a di↵erence of two

(min,+) formulas with total size n+ ndlog ne.

Proof. Note that max{x1, . . . , xn} = Sumn � MinSumn�1
n

. Lemma 48 below shows

that MinSumn�1
n

can be computed by a formula of size n(dlog ne). Since Sumn can

be computed by a formula of size n, the claimed upper bound for max follows.

Lemma 48. The function MinSumn�1
n

can be computed by a (min,+) formula of

size n(dlog ne).

Proof. Let m0 = bn/2c, m00 = dn/2e, Let X, Xl, Xr denote the sets of variables

{x1, . . . , xn}, {x1, . . . , xm0}, {xm0+1, . . . , xn}. Note that |Xl| = m0, |Xr| = m00, m0 +

m00 = n. Let p denote dlog ne. Note that dlogm0e = dlogm00e = p� 1.

To compute MinSumn�1
n

on X, we recursively compute Summ0 and MinSumm
0�1

m0 on

Xl and Summ00 and MinSumm
00�1

m00 on Xr. Now MinSumn�1
n

(X) can be computed as

min
n
Summ0(Xl) +MinSumm

00�1
m00 (Xr), MinSumm

0�1
m0 (Xl) + Summ00(Xr)

o

For the sub-expressions appearing above, the sizes are as claimed by induction. Thus

56

the number of leaves in the resulting formula is given by m0 +m00(p � 1) +m0(p �

1) +m00 = np as claimed.

Remark 49. A straightforward generalisation of this approach allows us to compute

MinSumn�k

n
by formulas of size n(dlog ne)k for 1  k < n, and MinSumk

n
by formulas

of size n(dlog ne)k�1 for 1  k < n. But these are not the right bounds in general.

For instance, for k 2 O(1), it is known from constructions in [16] that MinSumk

n

has (min,+) formulas of size O(n log n). (The constructions there are for monotone

boolean formulas but hold for (min,+) and monotone arithmetic computations too

because all they use are set schemes.) For k = 2, our formula above has the same

size as that of [16], and is essentially the same formula, presented di↵erently.

Similarly, for k = n/2, the recursive construction described above seems to need

exponential size ((log n)n/2). But this is because we count ine�ciently. If we instead

consider the depth of the constructed formula, we see that it is O(log2 n), and hence

the formula has at most quasi-polynomial 2O(log2 n) size.

In the rest of this chapter, our goal is to prove a matching lower bound for the max

function. Note that the constructions in Theorem 47 and Lemma 48 yield formulas

that do not use constants at any leaves. Intuitively, it is clear that if a formula

computes the maximum correctly for all natural numbers, then constants cannot

help. So the lower bound should hold even in the presence of constants, and indeed

our lower bound does hold even if constants are allowed.

4.7 The main lower bound

In this section, we prove the following theorem:

Theorem 50. Let F1, F2 be (min,+) formulas over N such that F1 � F2 =

max(x1, . . . , xn). Then L(F1) � n, and L(F2) � n log n.

If F1 and F2 actually compute Sumn and MinSumn�1
n

, then the lower bound on L(F1)

is obvious, and the lower bound on L(F2) too seems “morally” clear since it holds

57

for monotone Boolean formulas computing the threshold function Thn�1
n

(see [21]).

However, the given F1, F2 may not be of this form at all. Also if constants are

allowed at leaves of the formula, reasoning becomes a bit messy.

Our proof proceeds as follows: we first transform F1 and F2 over a series of steps

to formulas G1 and G2 no larger than F1 and F2, such that G1 �G2 equals F1 � F2

and hence still computes max, and G1 and G2 have some nice properties. These

properties immediately imply that L(F1) � L(G1) � n. We further transform G2 to

a constant-free formula H no larger than G2. We then define a measure for functions

computable by constant-free (min,+) formulas, relate this measure to formula size,

and use the properties of G2 and H to show that the function h computed by H has

large measure and large formula size.

Transformation 1: For b 2 {1, 2}, let Sb denote the set S(Fb). For i 2 [n+ 1], let

Ai be the minimum value appearing in the ith coordinate in any tuple in S1 [S2.

Let Ã denote the tuple (A1, . . . , An, An+1). By repeatedly invoking Proposition 41,

we obtain formulas Gb computing Fb � hÃ · x̃i, with L(Gb)  L(Fb). For b 2 {1, 2},

let Tb denote the set S(Gb).

We now establish the following properties of G1 and G2.

Lemma 51. Let F1, F2 be (min,+) formulas such that F1�F2 computes max over

N. Let G1, G2 be obtained as described above. Then

1. L(G1)  L(F1), L(G2)  L(F2),

2. max(X) = F1 � F2 = G1 �G2,

3. For every i 2 [n], for every ã 2 T1, ai > 0. Hence L(G1) � n.

4. For every i 2 [n], there exists ã 2 T2, ai = 0.

5. There exist ã 2 T1, b̃ 2 T2, an+1 = bn+1 = 0.

6. For every i, j 2 [n] with i 6= j, for every ã 2 T2, ai + aj > 0.

58

Proof. 1. This follows from Proposition 41.

2. Obvious; we decrease F1 and F2 by the same amount to get G1 and G2 respec-

tively, so the di↵erence remains the same.

3. Suppose for some ã 2 T1 and for some i 2 [n], ai = 0. Consider the

input assignment d̃ where di = 1 + an+1 and dj = 0 for j 2 [n] \ {i}.

Then max{d1, . . . , dn} = 1 + an+1. However, hã · d̃i = an+1. Therefore

on input d̃, G1(d̃)  an+1. Since G2 � 0 on all assignments, we get

G1(d̃) � G2(d̃)  an+1 < max(d̃), contradicting the assumption that G1 � G2

computes max.

4. This follows from the previous point and the choice of Ai for each i.

5. From the choice of An+1, we know that there is an ã in T1 [T2 with an+1 = 0.

Suppose there is such a tuple in exactly one of the sets T1, T2. Then exactly

one of G1(0̃), G2(0̃) equals 0, and so G1 �G2 does not compute max(0̃).

6. Suppose to the contrary, some ã 2 T2 has ai = aj = 0. Consider the input

assignment d̃ where di = dj = 1 + an+1 and dk = 0 for k 2 [n] \ {i, j}.

Then max{d1, . . . , dn} = 1 + an+1. Since every xk figures in every tuple of T1,

G1(d̃) � di + dj = 2an+1 + 2. But G2(d̃)  an+1. Hence G1(d̃) � G2(d̃) does

not compute max(d̃).

We have already shown above that L(F1) � L(G1) � n. Now the more tricky part:

we need to lower bound L(G2). Note that property 3 shows that F1 and G1 must

be computing something of the form Sumn + F 0
1, or Sumn + G0

1, respectively. If G
0
1

were to be 0, we know that G2 must be MinSumn�1
n

. However, G0
1 may have been

carefully chosen to make the computation of MinSumn�1
n

+G0
1 easy. We need to rule

out this possibility.

59

Transformation 2: Let H 0 be the formula obtained by simply replacing every

constant in G2 by 0. Let H be the constant-free formula obtained from H 0 by

eliminating the zeroes, repeatedly replacing 0 + A by A, min{0, A} by 0. Let h be

the function computed by H. Then, Lcf (h)  L(H)  L(H 0) = L(G2)  L(F2).

It thus su�ces to show that Lcf (h) � n log n. To this end, we define a complexity

measure µ, relate it to constant-free formula size, and show that it is large for the

function h.

Definition 52. For an n-variate function f computable by a constant-free (min,+)

formula, we define

(f)1 = {i | f(ei) � 1, f(0) = 0}.

(f)2 = {(i, j) | f(ei + ej) � 1, f(ei) = 0, f(ej) = 0}.

We define G(f) to be the graph whose vertex set is [n] and edge set is (f)2.

The measure µ for function f is defined as follows:

µ =
|(f)1|
n

+H(G(f))

The following lemma relates µ(f) with L(f). This relation has been used before, see

for instance [38] for applications to monotone Boolean circuits. Since we have not

seen an application in the setting of (min,+) formulas, we (re-)prove this in detail

here; however, it is really the same proof.

Lemma 53. Let f be an n-variate function computable by a constant-free (min,+)

formula. Then Lcf (f) � n · µ(f).

Proof. The proof is by induction on the depth of a witnessing formula F that com-

putes f and has Lcf (F) = Lcf (f).

Base case: F is an input variable, say xi. Then (f)1 = {xi}, and G(f) is the empty

graph, so µ(f) = 1
n
. Hence 1 = Lcf (f) = nµ(f).

60

Inductive step: F is either F 0 + F 00 or min{F 0, F 00} for some formulas F 0, F 00

computing functions f 0, f 00 respectively. Since F is an optimal-size formula for f ,

F 0 and F 00 are optimal-size formulas for f 0 and f 00 as well. So Lcf (f) = L(F) =

L(F 0) + L(F 00) = Lcf (f 0) + Lcf (f 00).

Case a. F = F 0 +F 00. Then (f)1 = (f 0)1 [(f 00)1 and G(f) ✓ G(f 0)[G(f 00). Hence,

µ(f)  |(f 0)1 [(f 00)1|
n

+H(G(f 0) [G(f 00)) (Lemma 43)

 |(f 0)1|
n

+
|(f 00)1|

n
+H(G(f 0)) +H(G(f 00)) (Lemma 43)

= µ(f 0) + µ(f 00)

 1

n
· Lcf (f

0) +
1

n
· Lcf (f

00) (Induction)

=
1

n
· Lcf (f) (Lcf (f) = Lcf (f

0) + Lcf (f
00))

Case b. F = min(F 0, F 00). Let (f 0)1 = A and (f 00)1 = B. Then (f)1 = A \ B and

G(f) ✓ G(f 0)[G(f 00)[G(A \B,B \A). Here, G(P,Q) denotes the bipartite graph

G with parts P and Q. Hence,

µ(f)  1

n
(|A \ B|) +H(G(f 0) [G(f 00) [G(A \B,B \ A)) (Lemma 43)

 1

n
(|A \ B|) +H(G(f 0)) +H(G(f 00)) +H(G(A \B,B \ A)) (Lemma 43)

 1

n
(|A \ B|) +H(G(f 0)) +H(G(f 00)) +

1

n
(|A \B|+ |B \ A|) (Lemma 44)

 1

n
(|A|+ |B|) +H(G(f 0)) +H(G(f 00))

= µ(f 0) + µ(f 00)

 1

n
· Lcf (f

0) +
1

n
· Lcf (f

00) (Induction)

=
1

n
· Lcf (f) (Lcf (f) = Lcf (f

0) + Lcf (f
00))

Hence, µ(f)  1
n
· Lcf (f).

Using this measure, we can now show the required lower bound.

Lemma 54. For the function h obtained after Transformation 2, µ(h) � log n.

61

Proof. Recall that we replaced constants in G2 by 0 to get H 0, then eliminated the

0s to get constant-free H computing h. By Proposition 40, we know that S(H 0) =

{b̃ | bn+1 = 0, 9ã 2 T2, ai = bi8i 2 [n]} and that h = min{x̃ · b̃ | b̃ 2 S(H 0)}.

From item 4 in Lemma 51, it follows that (h)1 = ;. (For every i, there is a b̃ 2 S(H 0)

with bi = 0. So h(ei)  hei · b̃i = 0.)

Since (h)1 is empty, (i, j) 2 G(h) exactly when h(ei + ej) � 1. From item 6 in

Lemma 51, it follows that every pair (i, j) is in G(h). Thus G(h) is the complete

graph Kn.

From Lemma 44 we conclude that µ(h) = log n.

Lemmas 53 and 54 imply that Lcf (h) � n log n. Since Lcf (h)  L(H)  L(H 0) =

L(G2)  L(F2), we conclude that L(F2) � n log n.

This completes the proof of Theorem 50.

A major ingredient in this proof is using the measure µ. This yields lower bounds

for constant-free formulas. For functions computable in a constant-free manner, it is

hard to see how constants can help. However, to transfer a lower bound on Lcf (f) to

a lower bound on L(f), this idea of “constants cannot help” needs to be formalized.

The transformations described before we define µ do precisely this.

For the MinSumn�1
n

function, applying the measure technique immediately yields the

lower bound Lcf (MinSumn�1
n

) � n log n. Transferring this lower bound to formulas

with constants is a corollary of our main result, and with it we see that the upper

bound from Lemma 48 is tight for MinSumn�1
n

.

Corollary 55. Any (min,+) formula computing MinSumn�1
n

over N must have size

at least n log n.

Proof. Let F be any formula computing MinSumn�1
n

. Applying Theorem 50 to F1 =

x1 + . . .+ xn and F2 = F , we obtain L(F) � n log n.

It is worth noting that this lower bound for (min,+) formulas computing MinSumn�1
n

62

holds in the presence of 1, and also holds over integers, that is over the semiring

Min�.

Corollary 56. Any (min,+) formula computing MinSumn�1
n

over Z [{1} must

have size at least n log n.

Proof. Consider any formula F computing MinSumn�1
n

. If all constants appearing

at any of the leaves are finite and non-negative, then Corollary 55 already tells us

that F must have size at least n log n, otherwise it will err on some inputs with no

negative values or1. If some leaf is labeled by the constant1, we can remove such

constants through repeated applications of the rules min(1, A) = A, 1 + A =1.

It remains to show that negative constants cannot help.

Consider the set S(F) as in Definition 38. Here is an easy-to-see property: For

any ã 2 S(F), an+1 � 0. This is because F (0̃) = MinSumn�1
n

(0, 0, . . . , 0) = 0. But

F (0̃) = min{an+1 | ã 2 S(F)}, so this minimum is 0. This also shows that for at

least one ã 2 S(F), an+1 = 0.

Apply Proposition 40 to get formulas G and H. (Replace all constants at leaves of

F by 0 to get G, then eliminate the 0s to get H.) Let g, h be the function computed

by G,H respectively. Then g = h. Also Lcf (h)  L(H)  L(G) = L(F). So it

su�ces to lower-bound Lcf (h).

By the property of S(F) described above, for every x̃ 2 Nn, 0  G(x̃)  F (x̃).

Now note that for all i 2 [n], F (ei) = 0, and hence G(ei) = 0. For all i, j 2 [n]

with i 6= j, F (ei + ej) = 1, and hence 0  G(ei + ej)  1. We can rule out 0 as

follows. Suppose G(ei + ej) = 0. Then there exists an ã 2 S(F) with ai = aj = 0;

let this an+1 be c � 0. Now F ((c + 1)(ei + ej))  (c + 1)(ei + ej) · ã = c, but

MinSumn�1
n

((c+1)(ei+ ej)) = c+1, a contradiction. So for all i 6= j, G(ei+ ej) = 1.

It now follows from Lemma 44 that µ(g) = log n. Since h = g, Lemma 53 implies

that Lcf (h) � n log n.

A natural question to ask is whether the main lower bound can be be proved without

63

using graph entropy. Note that a structural property of (min,+) circuits (and

formulas) implies that lower bounds on the monotone boolean circuit/formula size

remain valid also for (min,+) circuits/formulas, even when only non-negative integer

weights are allowed. So, the lower bound for MinSumn�1
n

can be alternatively derived

from lower bounds on the monotone formula complexity of the threshold- 2 function.

The details of this argument can be found in [26]. However, the proof of the lower

bound for the threshold-2 function also makes use of graph entropy.

4.8 The Monus operation

In general, over a monoid (S,+), the operation of minus is not defined. If the set

of monoid elements is totosed under this operation. This is why we considered the

setting above where it is “required” that whenever the minus operation is used, it

indeed yields a non-negative value. This is a semantic condition on a formula with

minus gates. However, there is also a syntactic way of defining subtraction in totally

ordered monoids, via the monus operation, denoted . For all a, b, a b is simply

the smallest c such that a  b+ c. Over the monoid (N,+) (this monoid sits inside

the Min semiring), it amounts to this: for all a, b 2 N, a b equals a � b if a � b,

otherwise it equals 0. That is, a b = max{0, a � b}. As another example, over

the monoid (N+,⇥), the above definition of the monus operation as an inverse of ⇥

gives a b = da
b
e.

Since max cannot be computed within the Min semiring, we augmented it with

minus. We could also have augmented it with monus instead of minus. Notice that

both min and max are easily expressible using monus:

min(a, b) = a (a b); max(a, b) = (a b) + b

Thus any circuit with min, max and + gates can be transformed to a (,+) circuit

with just a doubling of size. However, for formulas, the cost of replacing min and

64

max by could be more.

Let us consider just the maximum of n variables, as before. Again, with no restriction

on monus gates, max can be computed by a linear-sized formula using the identity

max(a, b) = (a b) + b recursively: max(x1, x2, . . . , xn) = (max(x1, x2, . . . , xn�1)

xn) + xn. Unfolding this recursive construction yields a formula of size 2n � 1.

But it uses many monus gates. If we allow only one monus gate, at the top, then

there is no di↵erence between monus and minus; thus we have linear-sized circuits,

n+n log n size formulas, and our lower bound for the di↵erence of (min,+) formulas

(Theorem 50) continues to hold.

We show that in general, one gate always su�ces; any (min,+,) formula can

be equivalently computed by a (min,+,) formula with a single gate at the top.

However, this transformation comes at some expense in size. The blow-up is linear

for circuits but can be substantial for formulas.

Proposition 57. Let F be any (min,+,) formula, computing a function f . Then

there are (min,+) formulas F1, F2 such that f = F1 F2.

Proof. We prove this by induction on the depth of F .

For the base case at depth 0, we just set F1 = F and F2 = 0.

Let F = G1 � G2 where � 2 {min,+, }. Inductively, assume that G1 and G2 are

already in the desired form; i.e. each of them has a single gate at the top. Let

G1 = x y and G2 = z w, where x, y, z, w are all (min,+) formulae. The expression

F1 F2 in each of the three cases below can be verified to be equivalent to F .

F F1 F2

G1 +G2 x+ z min(x, y) + min(z, w)

min(G1, G2) min(y + z, x+min(z, w)) y +min(z, w)

G1 G2 x+min(z, w) y + z

Note that in the last case, although F already has a gate at the top in this case,

a transformation is still needed since G1 and G2 also have gates at the top and

65

we want a single gate.

4.9 Discussion

Our results hold when variables take values from N. In the standard (min,+) semi-

ring, the value1 is also allowed, since it serves as the identity for the min operation.

The proof of our main result Theorem 50 does not carry over to this setting. The

main stumbling block is the removal of the “common” part of S(F). However, if we

allow 1 as a value that a variable can take, but not as a constant appearing at a

leaf, then the lower bound proof goes through. However, the upper bound no longer

works; while taking a di↵erence, what is1�1? So the question remains: how can

we compute max over N [{1} as the di↵erence of (min,+) formulas? Note that

the monus formulation for max still works, since 1 a =1 for any a <1.

The lower bound method uses graph entropy which is always bounded above by

log n. Thus this method cannot give a lower bound larger than n log n. It would be

interesting to obtain a modified technique that can show that all the upper bounds

in Theorem 47 and Lemma 48 and Remark 49 are tight. It would also be interesting

to find a direct combinatorial proof of our lower bound result, without using graph

entropy. Note that [26] shows how to get this lower bound by transferring the

lower bound for monotone boolean formulas for a related function. The proof of the

corresponding lower bound for monotone boolean formulas again uses graph entropy.

66

Chapter 5

Computing shortest paths via

bounded depth (min,+) formulas

5.1 Highlights

In this chapter, we present our results on lower bounds for bounded depth (min,+)

formulas. We first define the problem of proving lower bounds for computing shortest

paths in the setting of bounded depth (min,+) formulas and also provide motivation

for studying this problem. We then discuss some related work and finally our results

on this problem. Our main results are the following:

1. Any depth 3 circuit(or formula) for computing shortest path must have size

at least 2⌦(n logn) (Theorem 65).

2. If F is a depth 2d formula for shortest-path, where all + gates except those

in the bottom level have fanin at most k, then F must have size at least

exp

✓
⌦

✓
n log n

kd�1

◆◆
.

(Theorem 67).

3. For natural numbers n, r, k, let F be the smallest depth-4 formula that solves

67

shortest-path on n-vertex graphs, and where at most r of the + gates at

the second level have fan-in exceeding k. Then F must have size at least

exp
⇣
⌦
⇣ n

2r
log

n

2r

⌘⌘
.

(Theorem 70).

Organization of chapter

The rest of this chapter is organized as follows. In Section 5.2.1, we define our

problem of interest, that is, the shortest paths problem. In Section 5.2.2, we provide

some motivation. This is followed by upper bounds in Section 5.2.3 and some lower

bounds which follow easily from previous work in Section 5.2.4. Then in Section 5.3,

we discuss some new lower bounds and finally conclude in Section 5.4.

5.2 Introduction

5.2.1 The Shortest Path problem

Let G be a directed graph on a set of n vertices. Edges are labeled with costs that are

non-negative and integer-valued. The cost of a path is the total cost of all edges in

the path. For designated source vertex s and target vertex t, the shortest-pathn

problem is to find the minimum cost of a path from s to t. (The subscript n indicates

the graph size; we drop it when implicit from context.)

To compute shortest-path by (min,+) circuits or formulas, we assume that G is

the complete directed graph with vertex set [n], and for each i, j 2 [n] with i 6= j, the

variable xi,j is the cost of the edge directed from vertex i to vertex j. All variables

take values in the set N[{1}. While solving shortest-path on any input graph,

we will set xi,j to be the actual cost of the edge from i to j. We will set xi,j to 1

for edges absent in G. We may also assume that there are variables xi,i for i 2 [n];

68

these variables are all set to 0. With these conventions, the following expression is

the desired shortest-path value.

shortest-path = min {cost(⇢) | ⇢ is a simple s-to-t path} ,

where

cost(⇢) =
X

hi,ji2⇢

xi,j.

We denote by reachn the decision problem of deciding whether an n-vertex graph

has an s-to-t path.

5.2.2 Motivation

Recall the definition of (min,+) circuits from Chapter 3. This model captures the

complexity of “pure” dynamic programming algorithms; see for instance [23–25].

A naive approach towards solving shortest-path using (min,+) circuits would

be as follows: Compute the weights of all possible paths from 1 to n and take the

minimum of these weights. This yields a (min,+) circuit of size 2O(n logn) size. For

depth 2 (min,+) circuits, it is easy to see that this naive approach is indeed the best

possible. We show that this is also the case for depth 3 circuits (Theorem 65). We

would expect the lower bounds to degrade as we allow more depth, and the question

we are interested in is, how fast do they degrade? We provide partial answers to

this question, exploring restricted cases of (min,+) formulas (circuits of fan-out 1).

We study restrictions of two types. In the first restriction, except at the bottom-

most level, + gates do not have very large fan-in. (Note that since paths in an

n-vertex graph have at most n� 1 edges, the fanin of useful + gates will not exceed

n.) Our lower bound is parameterized by the depth d and the permitted + fanin

k (Theorem 67). For the depth-4 case, the lower bound is tight when k = O(1)

and also when k = O(
p
n). In the second restriction, which applies only to depth-4

formulas, most + gates just below the top gate have fan-in 2. Our lower bound here

69

is parameterized by the the number of + gates with fan-in exceeding 2 (Theorem 70).

Note that any constant-depth circuit can be simulated by a formula of the same

depth, with at most a polynomial blow-up in size. Therefore, our result also im-

plies an exponential lower bound for the corresponding subclass of constant depth

(min,+) circuits.

Background

Many known algorithms for solving shortest-path are essentially recursively con-

structed (min,+) circuits. For instance, the classical dynamic programming algo-

rithm by Bellman and Ford [5, 15] gives a bounded fan-in circuit of O(n3) size and

depth ⇥(n). Whether ⌦(n3) is necessary is still open. However the Bellman-Ford

algorithms produce skew circuits, and for skew circuits, this bound is shown in [27]

to be optimal. A divide-and-conquer approach gives a bounded fan-in circuit of

poly(n) (O(n4)) size and depth ⇥(log2 n).

A natural question to ask is whether one can prove strong size lower bounds for

bounded depth (min,+) circuits or formulas.

It is known that over the Boolean semiring, any bounded fan-in monotone (_,^)

circuit for reach must have depth ⌦(log2 n) [29]. Using a natural mapping from

(min,+) semiring to the boolean semiring, this result also implies that any bounded

fan-in (min,+) circuit for STCON must have ⌦(log2 n) depth, no matter what size.

The divide-and-conquer approach shows that this depth lower bound is tight.

In this work, we consider the alternation depth of (min,+) circuits. This corresponds

to allowing semi-unbounded fan-in and even unbounded fan-in in some cases. In this

setting, exponential lower bounds are easy to prove. One way to do so is to use the

reduction (via projections) from parity to reach, and use known lower bounds for

(non-monotone) circuits for parity [18]; see Proposition 58. We are looking for lower

bounds better than those obtained this way.

In [10], such small-depth lower bounds are obtained for the decision version of ”short

70

distance connectivity”: is there a path using at most k edges? These lower bounds

can also be transferred to (min,+) circuits computing the corresponding optimi-

sation problem: Compute the weight of the shortest path which uses at most k

edges.

5.2.3 Known upper bounds

Viewed as a polynomial over the semiring Min, the shortest-path polynomial has

the set of monomials

Mon(shortest-path) = {cost(⇢) | ⇢ is a simple s-to-t path} .

It is known that any circuit producing the shortest-path polynomial must be

exponentially large [24]. However, to compute this polynomial, it su�ces to design

a circuit producing a polynomial whose lower envelope has exactly the monomials

in Mon(shortest-path), and this is a considerably easier task.

Incremental dynamic programming, extending sub-paths by a single edge at a time,

gives a bounded fanin circuit of O(n3) size and depth ⇥(n).

Dynamic programming, merging roughly equal-length sub-paths (equivalently, di-

viding each path roughly mid-way), gives a bounded fanin circuit of poly(n) (O(n4))

size and depth ⇥(log2 n).

Here we are concerned with alternation depth, or equivalently, unbounded fanin

circuits and formulas. Dynamic programming, where r sub-paths are merged in

each merge step for some parameter r, gives a recurrence as follows. Let f(i, j, `)

denote the minimum cost of a path from i to j amongst all paths with at most `

edges. Our goal is to compute f(s, t, n � 1), we have f(i, i, `) = 0 forall `, and we

71

have the following expressions for i 6= j:

f(i, j, 0) = 1

f(i, j, 1) = xi,j

f(i, j, `) = min
k1,...,kr�1

⇢
f

✓
i, k1,

`

r

◆
+ f

✓
k1, k2,

`

r

◆
+ . . .+ f

✓
kr�1, j,

`

r

◆�

The depth of recursion is given by p = logn
log r . Each level of recursion corresponds to

a layer of min gates followed by a layer of + gates. Thus the corresponding circuit

has depth d = 2p. Conversely, to get a (min,+) circuit of depth d = 2p, it su�ces

to take r = n
2
d . The fanin of the min gates is at most nr�1 whereas the fanin of

+ gates is at most r. It is easily verified that this gives rise to a circuit of size

exp(O(n
2
d log n)), or a formula of size exp(O(dn

2
d log n)). In particular, the depth-2

formula is of size exp(O(n log n)).

5.2.4 Lower bounds implied from known work

The shortest-path polynomial, interpreted over the Boolean ring B, de-

cides reach. Hence B(shortest-path)  Min(shortest-path); any mono-

tone Boolean circuit size lower bound for reach is also a lower bound for

Min(shortest-path).

For bounded (alternation) depth, one lower bound for Boolean circuits for reach is

derived from the lower bound for circuits for parity [18]. Although this is folklore,

for completeness we include a full proof here.

Proposition 58 (folklore). Depth d Boolean circuits (and hence also monotone

Boolean circuits) for reach2n must be of size exp(⌦(n
1

d�1)). Hence any depth

d (min,+) circuit computing shortest-path2n must have size exp(⌦(n
1

d�1)).

Proof. Given n bits y1, . . . , yn, the Parityn function outputs 1 if an odd number

of yi’s are set to 1, and 0 otherwise. In [18] it is shown that Boolean circuits for

Parityn with alternation depth d must have size exp(⌦(n
1

d�1)).

72

The Parityn function reduces to reach2n by projections as follows. The reach2n

instance is a graph G with 2n vertices, and it is convenient to think of the vertex set

as {(i, b) | i 2 [n� 1], b 2 {0, 1}} [{(0, 0), (n, 1)}, with source vertex s = (0, 0) and

sink vertex t = (n, 1). The edges of the graph are determined as follows: There is

an edge from a vertex (i� 1, b) to (i, b) for b 2 {0, 1} if and only if yi = 0. Similarly,

there is an edge from (i�1, b) to (i, 1�b) for b 2 {0, 1} if and only if yi = 1. That is,

x(i�1,b),(i,b) = ȳi, and x(i�1,b),(i,1�b) = yi. If i 6= j � 1, then x(i,b),(j,b0) = 0. It is easy to

see that there is a path from (0, 0) to (n, 1) in G if and only if y1+. . .+yn ⌘ 1 mod 2.

Hence any Boolean circuit for reach2n, with alternation depth d, must also have

size exp(⌦(n
1

d�1)).

In [10], the restriction of reach to short path lengths is studied. We denote by

shortest-pathn,k the restriction of the shortest-pathn polynomial to the mono-

mial set

{cost(⇢) | ⇢ is a simple s-to-t path of length at most k} ,

and let reachn,k denote the corresponding decision version (decide whther the graph

has an s-to-t path of length at most k). In [10], the following result is shown:

Proposition 59 (Theorem 1 in [10]). 1. For any k(n)  n1/5 and any d = d(n),

any depth-d circuit computing reachn,k must have size n⌦(k1/d/d).

2. For any k(n)  n and any d = d(n), any depth-d circuit computing reachn,k

must have size n⌦(k1/5d/d).

Note that this bound applies for any Boolean circuit, not just monotone circuits.

At k = n, it gives a lower bound of exp(⌦(n
1/5d logn

d
)) for depth-d circuits computing

reachn. Hence

Corollary 60. Any depth-d (min,+) circuit for shortest-path must have size

exp(⌦(n
1/5d logn

d
)).

73

5.3 New Lower Bounds

The following fact is easy to verify.

Fact 61. Let P (n) denote the number of distinct st paths in the complete n-vertex

directed graph. Then P (n) = 2⇥(n logn). More specifically,

2((n� 2)!) < P (n) < e((n� 2)!).

For any formula F computing shortest-path, the polynomial produced by F

must have exactly the monomials of shortest-path in its lower envelope. A direct

graph-theoretic way to see this is given in the following proposition. In its proof, as

well as later in this thesis, we use the notation G⇢ to denote the graph with only

the edges of ⇢, for any simple st path ⇢.

Proposition 62. Let F be a formula computing shortest-path. Let p be the poly-

nomial syntactically produced by F , and Monle(p) be the set of minimal monomials

of this polynomial (the lower envelope). Then Monle(p) equals the set of monomials

of shortest-path, {cost(⇢) | ⇢ is a simple s-to-t path}.

Proof. Let ⇢ be any simple st path, and let G⇢ be the graph with only the edges of

⇢. On setting xi,j to 1 for (i, j) 2 ⇢ and to 1 for all other edges, F should evaluate

to |⇢|. So at least one linear form (recall, in the semiring Min, monomials are linear

forms) should use only the variables from ⇢ (otherwise it evaluates to1). However,

if for any such linear form, `, var(`) is a proper subset of var(⇢), then some variable

xuv with value 1 does not appear in `. Deleting edge uv from G⇢ (changing the value

of xuv to1) disconnects s and t in the resulting graph, so F should now evaluate to

1. But ` is still finite on this modified graph, a contradiction. Hence every linear

form using only variables from ⇢ must use all variables from ⇢. Since the correct

value on G⇢ is ⇢, at least one such linear form must use all variables from ⇢ exactly

once, producing the monomial cost(⇢). By the above argument, this linear from is

74

minimal, and hence in Monle(p).

To show the other direction, let m be a monomial in Monle(p). Consider the setting

where variables in m are set to 1, and all other variables are set to 1; let this be

the graph H. On H, F evaluates to a finite value, so H must have an s-to-t path.

Let ⇢ be a shortest such path. By construction, the variables on edges of ⇢ are all

in m. Hence for the monomial cost(⇢) we have the order cost(⇢) � m. We have

already proved that cost(⇢) 2 Monle(p). Since m is also in Monle(p) ie minimal, it

follows that m = cost(⇢).

This gives us the following useful property.

Property 63. Let F be a minimal (min,+) formula computing shortest-path.

The top gate of F must be a min gate.

Proof. By Proposition 62, the polynomial produced by F must have exactly the

monomials of shortest-path in its lower envelope. One of the monomials is the

single variable xst, which cannot be further split by addition. If the top gate of F

is a + gate with more than one child (since F is minimal, it has no gates with fanin

1), then to produce this monomial, all but one of the children must return the value

0, making them redundant.

We start o↵ with some simple lower bounds in the very special case when the depth

is 2 or 3.

Proposition 64. Any depth-2 formula computing shortest-path must have size

2⌦(n logn).

Proof. Let F be a depth-2 formula computing shortest-path. By Property 63,

the top gate of F must be a min gate. Let this gate have ` children. Then the

polynomial produced by F has at most ` monomials. Hence, by Proposition 62 and

Fact 61, ` � P (n).

75

Theorem 65. Any depth-3 circuit computing shortest-path must have size

2⌦(n logn).

Proof. Let F be a depth-3 formula for shortest-path. Let p be the polynomial p

produced by F . By Proposition 62, Monle(p) equals Mon(shortest-path), which

by Fact 61 has size P (n). Further, by Property 63, the top gate of F must be a min

gate. Let this gate have ` children. We prove below that each + gate can produce

at most one monomial from Monle(p). Hence ` � P (n).

Consider a + gate g with fanin k. Every monomial produced by g has degree k (i.e.

k summands). Hence g cannot produce monomials corresponding to paths of length

greater than k. In fact, it cannot even produce monomials corresponding to simple

paths of length less than k – a shorter path has fewer than k variables while the

monomial has exactly k summands, so at least one variable will have to appear with

coe�cient greater than 1, whereas the monomials cost(⇢) for simple paths have 0-1

coe�cients.

Suppose g produces monomials corresponding to two distinct paths ⌘ 6= ⇢, both of

length k. We will consider the two graphs G⇢ and G⌘.

Let g1, . . . , gk be the children of g and let Si be the set of children of gi, 1  i  k.

Since the circuit has depth 3, each element of Si is a variable. Let ⇢ = hi0 =

s, i1, . . . , ik = ti, and without loss of generality, let the variable xip�1xip 2 Sp for

1  p  k.

First, we show that for each variable xab in Sp, it must be the case that a 2

{i0, . . . , ip�1} and b 2 {ip, . . . , ik}. To see this, consider the graph G0 = G⇢ \

{(ip�1, ip)} [(a, b). Each gi still evaluates to 1, and hence g evaluates to k on

G0. Therefore G0 must be connected, which implies that a 2 {i0, . . . , ip�1} and

b 2 {ip, . . . , ik}.

Since the path ⌘ is constructed using the variables in the sets Si, this implies that ⌘

cannot have a vertex that is not present in ⇢. However, ⌘ has the same length as ⇢,

by assumption, so it uses all the vertices of ⇢. Then it must use them in a di↵erent

76

order.

Let p be the smallest index where ⌘ and ⇢ di↵er. Thus the sub-path hi0, . . . , ip�1i of ⇢

is also a sub-path of ⌘, and the edge (ip�1, ip) 2 ⇢, and (ip�1, ip) /2 ⌘. Let the edge in

⌘ from Sp be (iq, ir). By the argument above, q 2 {0, . . . , p� 1} and r 2 {p, . . . , k},

and furthermore, r 6= q+1. There are two cases to consider. One possibility is that

q < p� 1. Then ⌘ has two edges out of iq, contradicting the assumption that ⌘ is a

simple path. The other possibility is that q = p� 1 but r > p. Then, to eventually

visit vertex ip, ⌘ must use an edge that is a “back-edge” with respect to ⇢. But we

have shown above that the variable sets Si prohibit such back-edges.

Therefore such a path ⌘ does not exist. This completes the proof.

We now consider formulas of depth 2d. By Property 63, the top gate is a min gate,

and hence the gates at the lowest level are + gates. Without loss of generality,

we assume that all paths from the root to the leaves are of length exactly 2d. (If

necessary, add dummy gates with fanin 1; this at most doubles the formula size.)

Let G denote the set of all + gates in C except those at the leaf level. That is, a

+ gate is in G if and only if it has as a child another gate of the formula. Let Gk

denote the set of gates in G with fanin bounded by k.

Lemma 66. Let F be an alternating formula, with a min gate on top, and of depth 2d

for some d � 1. Let the polynomial syntactically produced by F have M monomials.

If for some k 2 N, all + gates except those at the leaves have fanin at most k (that

is, G ✓ Gk), then M  (L(F))k
d�1

.

Proof. The proof is by induction on d.

Base Case: d = 1. In this case, to syntactically produce M monomials, the top

gate of F must have fanin M , and so L(F) �M .

Inductive Step: d > 1.

Let gi be the + gates just below the output gate, and let hi,j be the min gates feeding

into gi. (Note that j  k, by assumption.) Let si and si,j denote the leaf-sizes of

77

the formulas rooted at gi and hi,j respectively.

M = number of monomials produced by F


X

i

(number of monomials produced by gi)


X

i

Y

j

(number of monomials produced by hi,j)


X

i

Y

j

(si,j)
k
d�2

(by induction)


X

i

Y

j

(si)
k
d�2 

X

i

(si)
k
d�1 

X

i

si

!k
d�1

= (L(F))k
d�1

.

Combining Proposition 62 and Fact 61 with Lemma 66, we obtain the following

lower bound.

Theorem 67. If F is a depth 2d formula for shortest-path, where all + gates

except those in the bottom level have fanin at most k, then

L(F) � exp

✓
⌦

✓
n log n

kd�1

◆◆
.

Proof. By Proposition 62, the polynomial p(F) produced by F must have the mono-

mials of shortest-path as its lower envelope. By Fact 61, shortest-path has

P (n) monomials. Lemma 66 bounds the number of monomials of p(F) from above.

Hence

(L(F))k
d�1 � number of monomials of p(F) � P (n) = 2⌦(n logn),

giving the claimed bound on formula size.

Corollary 68. Let F be a depth 4 formula for shortest-path, where all + gates

78

below the top min gate have fanin at most k. Then

L(F) � exp

✓
⌦

✓
n log n

k

◆◆
.

Remark 69. 1. If k = O(1), then L(F) = 2⌦(n logn). This size is achievable even

with a depth-2 formula and so this bound is tight

2. If k = O(
p
n), then L(F) = 2⌦(

p
n logn). This size is achievable with the depth-

4 formula constructed by dynamic programming with all + gates having fanin

O(
p
n) and so this bound is tight.

A special case of Corollary 68 is when k = 2. That is, each path (monomial of

shortest-path) of length more than 1 is broken at the second level into just two

parts. In this case, Corollary 68 tells us that 2⌦(n logn) size is necessary; by the remark

following it, this is also su�cent. What if we relax the condition slightly, and allow a

few second-level + gates to have fanin more than 2? Can we get non-trivial savings

in size? We explore this question next.

For natural numbers n, r, k, let L(n, k, r) denote the (leaf-)size of the smallest depth-

4 formula that solves shortest-path on n-vertex graphs, and where at most r of

the + gates at the second level have fan-in exceeding k.

Theorem 70.

L(n, 2, r) � exp
⇣
⌦
⇣ n

2r
log

n

2r

⌘⌘
.

To prove this theorem, we gradually decrease r while reducing the size of the graphs

handled, in Lemma 71 below. This works for any value of k. Finally when k = 2

and r has been brought down to 0, we use the bound given by Corollary 68, namely

L(n, 2, 0) = exp(⌦(n log n)).

79

Lemma 71. For r � 1, L(n, k, r) � L(n(k�1
k
), k, r � 1). In particular,

L(n, 2, r) � L
⇣n
2
, 2, r � 1

⌘
.

Proof. Let F be the smallest depth-4 formula solving shortest-path on n-vertex

graphs, where the number of + gates at the second level with fan-in exceeding k is

at most r. Let g be the + gate at level 2 that has the largest fan-in. Without loss

of generality, assume fan-in of g to be q � k + 1, otherwise the lemma statement

trivially holds. Let g1, . . . , gq be the children of g. Let Li be the set of monomials

produced by gi.

For a monomial `, let E(`) = {(u, v) | xuv 2 `}. By minimality of F , and Propo-

sition 62, g must produce at least one monomial from Mon(shortest-path), say

corresponding to an st path ⇢. Then there exist `i 2 Li such that [q

i=1E(`i) gives

exactly the edges of G⇢.

Define Si = {u | 9v, (u, v) 2 E(`i)}. Without loss of generality, the vertex s is in

the set Si.

Claim 72. For every path ⌘ such that g produces the monomial cost(⌘), and for

every i 2 [q], the path ⌘ visits at least one vertex in Si.

Proof. For i = 1, this is trivially true because the path ⌘ starts at vertex s which is

in S1.

For some i > 1, suppose ⌘ avoids the set Si. Suppose g constructs cost(⌘) by using,

for each j 2 [q], the monomial `0
j
2 Lj; hence [q

i=j
E(`0

j
) = G⌘. Consider the graph

H = G⌘ \E(`0
i
) [E(`i). Clearly, g(H) <1. However, since E(`i) is vertex-disjoint

from ⌘, H cannot have an st path, contradicting the correctness of F .

The above claim implies that for each i > 1, g does not produce any monomial

corresponding to a path avoiding Si (i.e. a path on [n] \ Si). Thus, if we remove g

from F to get F 0, then F 0 still correctly computes shortest-path on the vertex

set [n] \ Si. We now show that there is i > 1 such that |Si|  (n� 2)/(q � 1).

80

The set S = [q

i=1Si contains all the vertices of ⇢ except t, so |S|  n � 1 and

|S \ {s}|  n � 2. Further, the sets Si are disjoint, thereby partitioning S into q

parts. Among the q � 1 parts that do not contain s, by an averaging argument,

the smallest part contains no more than (n� 2)/(q � 1) vertices. Thus F 0 correctly

computes shortest-path on m � n � (n � 2)/(q � 1) vertices. Since q > k,

m � n(k � 1)/k.

Proof. (of Theorem 70) Using Lemma 71 r times and then Corollary 68, we get

L(n, 2, r) � L
⇣n
2
, 2, r � 1

⌘
� . . . � L

⇣ n

2r
, 2, 0

⌘
= exp

⇣
⌦
⇣ n

2r
log

n

2r

⌘⌘
.

Theorem 70 gives a non-trivial size lower bound for depth-4 formulas when at most

say, O(log log n) of the second level + gates have fanin more than 2.

5.4 Conclusion

Understanding the limits of dynamic programming is an interesting and challeng-

ing exercise. In particular, it is surprising that we do not yet know whether with

bounded fan-in (min,+) circuits, ⌦(n3) is necessary to compute shortest-path.

In this paper we have focussed on unbounded fan-in (min,+) formulas. We still

do not have a complete understanding of how to optimally exploit additional depth

but we have obtained some partial results. A complete characterisation of the exact

complexity of shortest-path in this setting, parameterised by depth, as is known

for Boolean circuits computing the parity function [18] remains open.

81

82

Chapter 6

Conclusion

As we mentioned in the introduction, the main aim of this thesis has been to give

new techniques for proving lower bounds on restricted models of circuits, in the hope

that it sheds light on more general lower bound questions. Below, we state some

questions that still remain open. These questions have been mentioned at the end

of each individual chapter. We state only the more important ones below.

In Chapter 2, we considered the model of sums of read-once formulas (ROFs). We

were able to prove a strict hierarchy among sums-of-ROFs. One open question is

to obtain separating polynomials with fewer variables. Also, lower bounds similar

to the one we proved have turned out to be useful in designing e�cient Polynomial

Identity Testing (PIT) algorithms. It is an interesting question whether our lower

bound can also be turned into a PIT algorithm.

In Chapter 4, we considered the model of di↵erence of (min,+) formulas. We were

able to prove tight lower bounds for computing the maximum among n variables

using di↵erence of (min,+) formulas. A natural question to ask is whether one can

obtain tight lower bounds for computing similar functions such as the kth largest

element or the sum of topmost k elements. We used the technique of graph entropy

which cannot yield lower bounds better than n log n. As a first step, it would be

interesting to obtain a direct combinatorial proof of our result which avoids the use

83

of graph entropy.

In Chapter 5, we considered bounded depth (min,+) formulas. We were able to

prove tight lower bounds for bounded depth (min,+) formulas with certain fan-in

restrictions for the shortest paths problem. it would be nice to obtain lower bounds

for bounded depth (min,+) formulas without any fan-in restrictions.

84

Bibliography

[1] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four.

49th Annual IEEE Symposium on Foundations of Computer Science, FOCS

2008, pages 67–75, 2008.

[2] Eric Allender. Arithmetic circuits and counting complexity classes. In Jan Kra-

jicek, editor, Complexity of Computations and Proofs, Quaderni di Matematica

Vol. 13, pages 33–72. Seconda Universita di Napoli, 2004. An earlier version

appeared in the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997)

pp. 2-15.

[3] Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Deterministic

polynomial identity tests for multilinear bounded-read formulae. Computational

Complexity, 24(4):695–776, 2015.

[4] Walter Baur and Volker Strassen. The complexity of partial derivatives. The-

oretical Computer Science, 22:317–330, 1983.

[5] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,

16:87–90, 1956.

[6] Daoud Bshouty and Nader H. Bshouty. On interpolating arithmetic read-once

formulas with exponentiation. Journal of Computer and Sysytem Sciences,

56(1):112–124, 1998.

85

[7] Nader H. Bshouty and Richard Cleve. Interpolating arithmetic read-once for-

mulas in parallel. SIAM Journal on Computing, 27(2):401–413, 1998.

[8] Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning Boolean

read-once formulas over generalized bases. Journal of Computer and System

Sciences, 50(3):521–542, 1995.

[9] Ramya C. and B. V. Raghavendra Rao. Sum of products of read-once formulas.

36th IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2016, pages 39:1–39:15, 2016.

[10] Xi Chen, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang Tan. Near-

optimal small-depth lower bounds for small distance connectivity. Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing, 2016,

Cambridge, MA, USA, June 18-21, 2016, pages 612–625, 2016.

[11] Imre Csiszár, János Körner, László Lovász, Katalin Marton, and Gábor Si-

monyi. Entropy splitting for antiblocking corners and perfect graphs. Combi-

natorica, 10(1):27–40, 1990.

[12] Zeev Dvir, Amir Shpilka, and Amir Yehudayo↵. Hardness-randomness trade-

o↵s for bounded depth arithmetic circuits. SIAM Journal on Computing,

39(4):1279–1293, 2009.

[13] Robert W Floyd. Algorithm 97: Shortest path. Communications of the ACM,

5(6):345, 1962.

[14] Michael A. Forbes. Deterministic divisibility testing via shifted partial deriva-

tives. IEEE 56th Annual Symposium on Foundations of Computer Science,

FOCS 2015, pages 451–465, 2015.

[15] Lester R Ford Jr. Network flow theory. Technical Report P-923, Rand Corpo-

ration, 1956.

86

[16] J. Friedman. Constructing o(n log n) size monotone formulae for the k-th ele-

mentary symmetric polynomial of n boolean variables. Proceedings, 25th An-

nual Symposium on Foundations of Computer Science (FOCS), pages 506–515,

1984.

[17] Thomas R. Hancock and Lisa Hellerstein. Learning read-once formulas over

fields and extended bases. Proceedings of the Fourth Annual Workshop on

Computational Learning Theory, COLT 1991, pages 326–336, 1991.

[18] Johan H̊astad. Computational Limitations of Small-depth Circuits. MIT Press,

Cambridge, MA, USA, 1987.

[19] Michael Held and Richard M Karp. A dynamic programming approach to

sequencing problems. Journal of the Society for Industrial and Applied Mathe-

matics, 10(1):196–210, 1962.

[20] Pavel Hrubes and Amir Yehudayo↵. Homogeneous formulas and symmetric

polynomials. Computational Complexity, 20(3):559–578, 2011.

[21] Radhakrishnan J. Better lower bounds for monotone threshold formulas. Jour-

nal of Computer and System Sciences, 54:221–226, 1997.

[22] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line

computations over semirings. Journal of the ACM (JACM), 29(3):874–897,

1982.

[23] Stasys Jukna. Limitations of incremental dynamic programming. Algorithmica,

69(2):461–492, 2014.

[24] Stasys Jukna. Lower bounds for tropical circuits and dynamic programs. Theory

of Computing Systems, 57(1):160–194, 2015.

[25] Stasys Jukna. Tropical complexity, Sidon sets, and dynamic programming.

SIAM Journal on Discrete Mathematics, 30(4):2064–2085, 2016.

87

[26] Stasys Jukna. (Min, Plus) is not stronger than (And, Or). Comment 1 on

Electronic Colloquium on Computational Complexity (ECCC), 25:20, 2018.

[27] Stasys Jukna and Georg Schnitger. On the optimality of Bellman-Ford-Moore

shortest path algorithm. Theoretical Computer Science, 628:101–109, 2016.

[28] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial iden-

tity tests means proving circuit lower bounds. Computational Complexity, 13(1-

2):1–46, 2004.

[29] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectiv-

ity require super-logarithmic depth. SIAM Journal on Discrete Mathematics,

3(2):255–265, 1990.

[30] Neeraj Kayal, Pascal Koiran, Timothée Pecatte, and Chandan Saha. Lower

bounds for sums of powers of low degree univariates. Automata, Languages,

and Programming - 42nd International Colloquium, ICALP 2015, pages 810–

821, 2015.

[31] János Körner. Coding of an information source having ambiguous alphabet and

the entropy of graphs. Transactions of 6th Prague Conference on Information

Theory, pages 411–425, 1973.

[32] János Körner. Fredman-Komlós bounds and information theory. SIAM. J. on

Algebraic and Discrete Methods, 7(4):560–570, 1986.

[33] János Körner and Katalin Marton. New bounds for perfect hashing via infor-

mation theory. European Journal of Combinatorics, 9(6):523–530, 1988.

[34] Meena Mahajan, Prajakta Nimbhorkar, and Anuj Tawari. Computing the max-

imum using (min, +) formulas. 42nd International Symposium on Mathematical

Foundations of Computer Science, MFCS 2017, pages 74:1–74:11, 2017.

88

[35] Meena Mahajan, Prajakta Nimbhorkar, and Anuj Tawari. Shortest path length

with bounded-alternation (min,+) formulas. International Journal of Advances

in Engineering Sciences and Applied Mathematics, 2018.

[36] Meena Mahajan and Anuj Tawari. Sums of read-once formulas: How many

summands are necessary? Theoretical Computer Science, 708:34–45, 2018.

[37] Edward F Moore. The shortest path through a maze. Bell Telephone System.,

1959.

[38] Ilan Newman and Avi Wigderson. Lower bounds on formula size of boolean

functions using hypergraph entropy. SIAM Journal on Discrete Mathematics,

8(4):536–542, 1995.

[39] Ran Raz. Multi-linear formulas for permanent and determinant are of super-

polynomial size. Journal of the ACM (JACM), 56(2), 2009.

[40] Ran Raz and Amir Yehudayo↵. Lower bounds and separations for constant

depth multilinear circuits. Computational Complexity, 18(2):171–207, 2009.

[41] Amir Shpilka and Ilya Volkovich. Improved polynomial identity testing for

read-once formulas. Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques, 12th International Workshop, APPROX

2009, and 13th International Workshop, RANDOM 2009,, pages 700–713, 2009.

[42] Amir Shpilka and Ilya Volkovich. On reconstruction and testing of read-once

formulas. Theory of Computing, 10:465–514, 2014.

[43] Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Com-

putational Complexity, 24(3):477–532, 2015.

[44] Amir Shpilka and Amir Yehudayo↵. Arithmetic circuits: A survey of recent

results and open questions. Foundations and Trends in Theoretical Computer

Science, 5(3-4):207–388, 2010.

89

[45] Gábor Simonyi. Graph entropy: A survey. Combinatorial Optimization, 20:399–

441, 1995.

[46] Gábor Simonyi. Perfect graphs and graph entropy: An updated survey. In

Perfect Graphs, chapter 13, pages 293–328. John Wiley and Sons, 2001.

[47] Volker Strassen. Berechnungen in partiellen algebren endlichen typs. Comput-

ing, 11(3):181–196, 1973.

[48] Ilya Volkovich. Characterizing arithmetic read-once formulae. ACM Transac-

tions on Computation Theory, 8(1):2:1–2:19, February 2016.

[49] Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM

(JACM), 9(1):11–12, 1962.

90

	Synopsis
	List of Figures
	Introduction
	Arithmetic circuits
	Our main results
	Organisation of thesis

	Sums of read-once formulas: How many summands are necessary?
	Highlights
	Preliminaries
	Background
	Upper bounds
	Existence of hard polynomials
	Some useful operators
	A proper separation in the k ROP hierarchy
	A family of 4-variate multilinear polynomials not in 2ROP
	Discussion

	Computation over semirings
	Computing max using (min, +) formulas
	Highlights
	Introduction
	Background
	Motivation
	Our results and techniques

	Transformations and Upper bounds
	Graph entropy
	Computing max over N
	Upper bounds
	The main lower bound
	The Monus operation
	Discussion

	Computing shortest paths via bounded depth (min, +) formulas
	Highlights
	Introduction
	The Shortest Path problem
	Motivation
	Known upper bounds
	Lower bounds implied from known work

	New Lower Bounds
	Conclusion

	Conclusion
	Bibliography

