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Synopsis

In this thesis we explore the connection between root multiplicities of infinite di-

mensional Lie algebras and graph colorings. We show that certain root multiplicities

of Borcherds-Kac-Moody algebras (Borcherds algebras in short) can be obtained in

terms of generalized chromatic polynomials of the associated graph.

We use this result together with the Lyndon basis of free Lie algebras to produce

a basis of the corresponding root spaces. As a further application, we prove that the

generalized chromatic polynomials evaluated at negative integers arise naturally as

coefficients of the Hilbert series of tensor powers of the universal enveloping algebra

of free partially commutative Lie algebras.

Finally, we study the linear coefficient of the chromatic polynomial of a graph

(the so-called chromatic discriminant). We state a recurrence formula for this num-

ber, first proved using Lie theoretic methods in [32]. We give two purely combina-

torial (bijective) proofs of this recurrence using the interpretations of the chromatic

discriminant in terms of acyclic orientations and spanning trees without broken

circuits.

The results of this thesis appear in [1, 2]. This thesis contains five chapters.

The first chapter deals with the preliminaries.

In chapter 2 we derive an expression for the generalized chromatic polynomial

of a graph G in terms of certain root multiplicities of the corresponding Borcherds
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algebra.

In chapter 3 we address the problem of finding right normed bases for (certain)

root spaces of Borcherds algebras.

In chapter 4 we establish a connection between the generalized chromatic poly-

nomial of a finite graph G and the Hilbert series of the q-fold tensor product of the

universal enveloping algebra of the free partially commutative Lie algebra associated

to G.

The absolute value of the coefficient of q in the chromatic polynomial of a graph

G is known as the chromatic discriminant of G and is denoted α(G). In chapter 5

we give a bijective proof of a recurrence formula for the chromatic discriminant of a

graph G.

We now give an extended description of our main results, which appear in chap-

ters 2–5.

The generalized chromatic polynomial and root mul-

tiplicities of Borcherds algebras

Borcherds algebras

We recall the definition of Borcherds algebras (also called generalized Kac–Moody

algebras). For more details, we refer the reader to [5, 14, 16] and the references

therein. A real matrix A = (aij)i,j∈I indexed by a finite or countably infinite set,

which we identify with I = {1, . . . , n} or Z+, is said to be a Borcherds–Cartan

matrix if the following conditions are satisfied for all i, j ∈ I:

1. A is symmetrizable
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2. aii = 2 or aii ≤ 0

3. aij ≤ 0 if i 6= j, and aij ∈ Z if aii = 2

4. aij = 0 if and only if aji = 0.

Recall that a matrix A is called symmetrizable if there exists a diagonal matrix

D = diag(εi, i ∈ I) with positive entries such that DA is symmetric. Set Ire = {i ∈

I : aii = 2} and I im = I\Ire.

The Borcherds algebra g = g(A) associated to the Borcherds–Cartan matrix A is

the Lie algebra generated by {ei, fi, hi : i ∈ I} with the following defining relations:

(R1) [hi, hj] = 0 for i, j ∈ I

(R2) [hi, ek] = aikek, [hi, fk] = −aikfk for i, k ∈ I

(R3) [ei, fj] = δijhi for i, j ∈ I

(R4) (ad ei)
1−aijej = 0, (ad fi)

1−aijfj = 0 if i ∈ Ire and i 6= j

(R5) [ei, ej] = 0 and [fi, fj] = 0 if i, j ∈ I im and aij = 0.

We define h to be the span of the hi; the simple roots are the αj ∈ h∗ satisfying

(αj, hi) = aij for all i, j ∈ I. We associate a graph G with the Lie algebra g as

follows: the vertex set of G is I, and there is an edge between the vertices i, j if

aij 6= 0.

Vertex multicoloring

Next, we define the notion of a proper vertex multicoloring of a graph; this is a

generalization of the well-known notion of graph coloring. For more details about

multicoloring of a graph we refer to [13].

25



Definition. Let G be an undirected graph, with (possibly infinite) vertex set I and

edge set E.

In this thesis , k = (ki : i ∈ I) will always mean a tuple of non-negative integers

in which all but finitely many of the ki are zero.

For q ∈ N, we let [q] := {1, 2, · · · , q} and P([q]) be the set of all subsets of [q].

A map τ : I → P([q]) satisfying the following conditions will be called a proper

vertex multicoloring of G of weight k with q colors:

(i) For all i ∈ I we have |τ(i)| = ki.

(ii) For all i, j ∈ I such that {i, j} ∈ E we have τ(i) ∩ τ(j) = ∅.

We let πGk (q) be the number of such maps τ . This turns out to be a polynomial

in q, and is called the k-generalized chromatic polynomial (or simply the generalized

chromatic polynomial, when k is fixed). When I is finite and all ki = 1, this reduces

to the usual chromatic polynomial of G.

k-weighted bond lattice

To state our main theorem, we need another definition:

Definition. The k-weighted bond lattice LG(k) of G is the set of all J = {J1, . . . , Jk}

satisfying the following properties:

(i) J is a multiset, i.e. we allow Ji = Jj for i 6= j.

(ii) Each Ji is a finite multisubset of I, i.e., a finite multiset whose underlying set

is a subset of I.

(iii) The subgraph of G induced by the underlying set of Ji is connected for each i.
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(iv) The disjoint union of J1 t · · · t Jk = {i, . . . , i︸ ︷︷ ︸
ki times

: i ∈ I}.

Let J = {J1, J2, · · · , Jk} ∈ LG(k) and J be a finite multisubset of I. We denote

by D(J,J) the number of 1 ≤ i ≤ k such that Ji = J .

Main theorem

Now suppose that g is a Borcherds algebra and G is its graph, with vertex set I.

For a finite multisubset J of I, we let β(J) :=
∑

i∈J αi and mult(β(J)) := dim gβ(J).

Finally, let η(k) :=
∑

i∈I kiαi and ε(k) := (−1)
∑
ki .

Given these notions we have our first main theorem, which expresses the gener-

alized chromatic polynomial of G in terms of root multiplicities of g:

Theorem 0.1. Assume that k satisfies:

(1) ki ∈ {0, 1} for all i ∈ Ire.

Then, we have:

πGk (q) = ε(k)
∑

J∈LG(k)

(−1)|J|
∏
J∈J

(
qmult(β(J))

D(J,J)

)
.

where |J| is the number of parts (counted with multiplicity) in the partition J.

Remark 0.2. When g is a Kac–Moody algebra and ki = 1 for all i, this reduces to

the expression for the chromatic polynomial obtained in [32].

We deduce the following corollary which gives a combinatorial formula for certain

root multiplicities.
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Corollary 0.3. If k satisfies (1), then:

(2) mult(η(k)) =
∑
`|k

µ(`)

`

∣∣πGk/`(q) [q]
∣∣ ,

where
∣∣πGk (q) [q]

∣∣ denotes the absolute value of the coefficient of q in πGk (q), µ is the

Möbius function, and `|k means that `|ki for each i.

Assume k satisfies (1) and ki 6= 0 (ki = 1) for some i ∈ Ire, then mult(η(k)) =∣∣πGk (q) [q]
∣∣. Note that the same formula holds true if ki = 0 for all i ∈ Ire and if

gcd({ki : i ∈ I}) = 1.

We note that if g is a Borcherds algebra with I = I im, then its positive part n+

is isomorphic to the free partially commutative Lie algebra associated to the graph

G. We remark that, in view of the previous statement, the above formlula can be

used to find the dimensions of certain grade spaces of these Lie algebras. In the

following examples we explain this method in detail.

Example

The generalized chromatic polynomial πGk (q) can be computed explicitly for many

families of graphs, and in such cases, equation (2) gives us a way of computing

certain root multiplicities of the associated Borcherds algebra. The case of the

complete graph is illustrated below.

Let G = Kn be the complete graph with n vertices and k = (k1, . . . , kn) be a

tuple of positive integers. We take g to be a Borcherds algebra with graph G and

having no real simple roots. In this case, it is well known that the positive part n+

of g (the Lie subalgebra generated by the {ei : i ∈ I}) is a free Lie algebra.

To compute the generalized chromatic polynomial of G, observe that vertex 1

can receive any k1 colors from the given q colors. Vertex 2 can receive any color
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other than the k1 colors that were assigned to vertex 1. Continuing in this way, we

obtain:

πKnk (q) =

(
q

k1

)(
q − k1

k2

)(
q − (k1 + k2)

k3

)
· · ·
(
q − (k1 + · · ·+ kn−1)

kn

)
.

In particular |πKnk (q)[q]| = (k1+···+kn−1)!
k1!···kn!

. Hence we recover Witt’s formula [34] for

the dimensions of the graded spaces in a free Lie algebra:

mult η(k) =
1

ht k

∑
`|k

µ(`)
(ht k/`)!

(k/`)!

where ht k :=
∑

i∈I ki and k! :=
∏

i∈I ki!.

Bases for certain root spaces of Borcherds algebras

If g is a free Lie algebra then it has a classical Lyndon basis indexed by Lyndon

words [26]. This has been extended to the case of free partially commutative Lie

algebras in [19] and [20]. For free Lie algebras we also have a special type of basis

known as a right normed basis [7]; however, a right normed basis for free partially

commutative Lie algebras is not known in general. We note that if g is a Borcherds

algebra with I = I im, then its positive part n+ is isomorphic to a free partially

commutative Lie algebra. Hence finding right normed bases for root spaces of g will

in turn give us right normed bases for the corresponding graded spaces of the free

partially commutative Lie algebra.

Lyndon basis

We use the notation of the previous chapter. Let g be a Borcherds algebra, with

graph G. The vertex set of G is I. We let I∗ be the free monoid generated by I.
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The free partially commutative monoid associated with G is denoted by M(I,G) :=

I∗/ ∼, where ∼ is generated by the relations

ab ∼ ba, (a, b) /∈ E(G).

Fix a word w ∈ M(I,G). For i ∈ I, its initial multiplicity in w is defined to be

the largest k ≥ 0 for which there exists u ∈M(I,G) such that w = uik. We define

the initial alphabet IAm(w) of w to be the multiset in which each i ∈ I occurs as

many times as its initial multiplicity in w. The underlying set is denoted by IA(w).

Let Xi = {w ∈ M(I,G) : IAm(w) = {i}}. We denote by FL(Xi) the free Lie

algebra generated by Xi. Let X ∗i be the free monoid on X . To each Lyndon word

w ∈ X ∗i we associate a Lie word L(w) in FL(Xi) as follows. If w ∈ Xi, then

L(w) = w and otherwise L(w) = [L(u), L(v)], where w = uv is the standard

factorization of w. The following result can be found in [26] and is known as the

Lyndon basis for free Lie algebras.

Proposition 0.4. The set {L(w) : w ∈ X ∗i is a Lyndon word} forms a basis of

FL(Xi).

Remark. This proposition holds true for the free Lie algebra FL(X) associated to

any arbitrary set X.

Main theorem

For w = i1 i2 · · · ir in M(I,G), the corresponding right normed Lie word is defined

by e(w) = [ei1 , [ei2 , [. . . [eir−2 , [eir−1 , eir ]] . . .]]] ∈ g. Using the Jacobi identity, it is

easy to see that the association w 7→ e(w) is well defined.

Fix i ∈ I and let gi be the Lie subalgebra of g generated by {e(w) : w ∈ Xi}.
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By the universal property of FL(Xi) we have a surjective homomorphism

(3) Φ : FL(Xi)→ gi, w 7→ e(w) ∀ w ∈ Xi.

Proposition 0.4 implies that the image of the set {L(w) : w ∈ X ∗i is a Lyndon word}

under the map Φ generates gi. The main theorem of this chapter (Theorem 0.5)

shows that suitable subsets of this generating set will in fact form bases for certain

root spaces.

To state our theorem, fix a tuple k of non-negative integers such that ki > 0 (for

our fixed i) and satisfying the hypothesis of Theorem 0.1. For our fixed i define:

Ci(k, G) = {w ∈ X ∗i : w is a Lyndon word, wt(w) = η(k)}

where wt(w) is the tuple which counts the number of times an alphabet from I

appeared in w.

Theorem 0.5. The set {Φ (L(w)) : w ∈ Ci(k, G)} is a basis of the root space gη(k).

Moreover, if ki = 1, the set

{e(w) : w ∈ Xi, wt(w) = η(k)}

forms a right–normed basis of gη(k) and

Ci(k, G) = {w ∈ Xi : e(w) 6= 0, wt(w) = η(k)}.
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Sketch of the proof

In chapter 1, we give a combinatorial proof of the above theorem. The following

combinatorial model is important for the proof. We set

B̃i(k, G) := {w ∈M(I,G) : wt(w) = η(k) and IA(w) = {i}} .

Let w ∈ B̃i(k, G), then one can write w = w1 · · ·wki ∈ X ∗i in its i-form. We say w

is aperiodic if the elements in the cyclic rotation class of w are all distinct, i.e. all

elements in

C(w) := {w1 · · ·wki , w2 · · ·wkiw1, · · · , wkiw1 · · ·wki−1}

are distinct. We naturally identify Ci(k, G) with the set

Bi(k, G) := {w ∈ B̃i(k, G) : w is aperiodic}/ ∼,

where w ∼ w′ ⇔ C(w) = C(w′).

The following proposition shows that our generating set has cardinality equal to

the dimension of gη(k), thereby proving Theorem 0.5.

Proposition. We have

(i) The root space gη(k) is contained in gi.

(ii) Let w ∈M(I,G) and wt(w) = η(k). Then

e(w) 6= 0⇐⇒ IAm(w) = {i}.

(iii) We have

mult η(k) = |Bi(k, G)| = |Ci(k, G)|.
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We finish chapter 1 with the proof of the above proposition.

Generalized chromatic polynomials and free par-

tially commutative Lie algebras

Let Γ be an abelian semigroup with at most countably infinite elements and a be a

Γ-graded Lie algebra with finite dimensional homogeneous spaces, i.e.

a =
⊕
α∈Γ

aα and dim(aα) <∞ for all α ∈ Γ.

The Γ-grading of a induces a Γ ∪ {0}-grading on the universal enveloping algebra

U(a) and we define the Hilbert series:

HΓ(U(a)) = 1 +
∑
α∈Γ

(dim U(a)α) eα.

Let g be a Borcherds algebra with no real simple roots whose associated graph

is G. As remarked previously, in this case, n+ is isomorphic to the free partially

commutative Lie algebra associated to the graph G. Further n+ is graded by Γ :=

Q+\{0}, where Q+ := ⊕ni=1Z≥0αi, with n the number of vertices of G.

The main result of this chapter states that the Hilbert series of U(n+)⊗q is

determined by the evaluation of the generalized chromatic polynomials of G at −q.

More precisely, we have:

Theorem 0.1. Let q ∈ N. Then the Hilbert series of U(n+)⊗q is given by

HΓ(U(n+)⊗q) =
∑
α∈Γ

(−1)ht(α)πGα (−q) eα.
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In particular,

dim(U(n+)⊗q)α = (−1)ht(α)πGα (−q) for all α ∈ Γ.

As an application of Theorem 0.1, we give a different proof of the following

reciprocity theorem due to Stanley for chromatic polynomials [29, Theorem 1.2].

For a map σ : I → {1, 2, . . . , q} and an acyclic orientation O of G, we say (σ,O) is

a q-compatible pair if for each directed edge i → j in O we have σ(i) ≥ σ(j). We

prove by an alternate method,

Theorem 0.2. The number of q–compatible pairs of G is equal to (−1)|I|πα(I)(−q).

In particular, (−1)|I|πα(I)(−1) counts the number of acyclic orientations of G.

A recurrence formula for the chromatic discrimi-

nant of a graph

The absolute value of the coefficient of q in the chromatic polynomial of a graph G

is known as the chromatic discriminant of G and is denoted α(G). A well-known

recurrence formula for α(G) (see for instance [10]) is the following:

(4) α(G) = α(G\e) + α(G/e),

where e is any edge of G. Here, G\e denotes G with e deleted and G/e denotes the

simple graph obtained from G by identifying the two ends of e ( i.e., contracting e to

a single vertex) and removing any multiple edges that result. This is an immediate

consequence of the deletion-contraction rule for the chromatic polynomial.

Yet another recurrence formula for α(G) was obtained in [32] via the connection

to root multiplicities of Kac–Moody Lie algebras and using the Peterson recurrence
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formula for these multiplicities.

Proposition. [32]

(5) 2 e(G) α(G) =
∑

(G1,G2)

α(G1) α(G2) e(G1, G2).

Here the sum ranges over pairs (G1, G2) of non-empty induced subgraphs of G whose

vertex sets partition the vertex set of G, e(G) is the total number of edges in G and

e(G1, G2) is the number of edges that straddle G1 and G2. We say that an edge e

straddles G1 and G2 if one end of e is in G1 and the other in G2.

We give two new proofs of this recurrence which are purely combinatorial. We

demonstrate explicit bijections between sets whose cardinalities equal the left and

right hand sides of (5.2), using the interpretations of α(G) in terms of (i) acyclic

orientations and (ii) spanning trees of G.
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Chapter 1

Preliminaries

1.1 Borcherds algebras

Borcherds–Kac–Moody algebras were introduced by R. Borcherds in [5] as a natural

generalization of Kac–Moody algebras.

The structure theory of Borcherds–Kac–Moody algebras is very similar to the

structure theory of Kac–Moody algebras; however the main point of difference is that

one is allowed to have imaginary simple roots. The most important step in under-

standing the structure of these algebras is to study roots and root multiplicities; the

imaginary roots being the most mysterious ones. In this thesis we call Borcherds–

Kac–Moody algebras as Borcherds algebras in short. Effective closed formulas for

the root multiplicities are unknown in general, except for the affine Kac–Moody

algebras and some small rank Borcherds algebras; see for example [6,18,24,30] and

the references therein. All these papers deal with some particular examples of small

rank Borcherds algebras.
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1.2 Definition of Borcherds algebras

We denote the set of complex numbers by C and, respectively, the sets of integers,

non-negative integers, and positive integers by Z, Z+, and N. Unless otherwise

stated, all the vector spaces considered in this paper are C–vector spaces.

We recall the definition of Borcherds algebras, also called generalized Kac–Moody

algebras. For more details, we refer the reader to [5,14,16] and the references therein.

A real matrix A = (aij)i,j∈I indexed by a finite or countably infinite set, which we

identify with I = {1, . . . , n} or Z+, is said to be a Borcherds–Cartan matrix if the

following conditions are satisfied for all i, j ∈ I:

1. A is symmetrizable

2. aii = 2 or aii ≤ 0

3. aij ≤ 0 if i 6= j and aij ∈ Z if aii = 2

4. aij = 0 if and only if aji = 0.

Recall that a matrix A is called symmetrizable if there exists a diagonal matrix

D = diag(εi, i ∈ I) with positive entries such that DA is symmetric. Set Ire =

{i ∈ I : aii = 2} and I im = I\Ire. The Borcherds algebra g = g(A) associated to a

Borcherds–Cartan matrix A is the Lie algebra generated by ei, fi, hi, i ∈ I with the

following defining relations:

(R1) [hi, hj] = 0 for i, j ∈ I

(R2) [hi, ek] = aikek, [hi, fk] = −aikfk for i, k ∈ I

(R3) [ei, fj] = δijhi for i, j ∈ I

(R4) (ad ei)
1−aijej = 0, (ad fi)

1−aijfj = 0 if i ∈ Ire and i 6= j
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(R5) [ei, ej] = 0 and [fi, fj] = 0 if i, j ∈ I im and aij = 0.

Remark. Note that there are no further relations of the form

(ad ei)
1−aijej = 0, (ad fi)

1−aijfj = 0

for j ∈ Ire , i /∈ Ire and k > 1.

Remark. If i ∈ I is such that aii = 0, the subalgebra spanned by the elements

hi, ei, fi is a Heisenberg algebra and otherwise this subalgebra is isomorphic to sl2

(possibly after rescaling ei, fi and hi).

1.3 Elementary properties of Borcherds algebras

We collect some elementary properties of the Borcherds algebras g; see [14, Proposi-

tion 1.5] for more details and proofs. We have that g is ZI–graded by giving hi degree

(0, 0, . . . ), ei degree (0, . . . , 0, 1, 0, . . . ) and fi degree (0, . . . , 0,−1, 0, . . . ) where ±1

appears at the i-th position. For a sequence (n1, n2, . . . ), we denote by g(n1, n2, . . . )

the corresponding graded piece; note that g(n1, n2, . . . ) = 0 unless finitely many of

the ni are non-zero. Let h be the abelian subalgebra spanned by the hi, i ∈ I and

let E be the space of commuting derivations of g spanned by the Di, i ∈ I, where

Di denotes the derivation that acts on g(n1, n2, . . . ) as multiplication by the scalar

ni. Note that the abelian subalgebra En h of En g acts by scalars on g(n1, n2, . . . )

and Di’s are added to make the αi’s linearly independent. Given this, we have a

root space decomposition:

(1.1) g =
⊕

α∈(Enh)∗

gα, where gα := {x ∈ g | [h, x] = α(h)x for all h ∈ En h}.
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Define Π := {αi}i∈I ⊂ (En h)∗ by αj((Dk, hi)) := δk,j + aij and set

Q :=
⊕
i∈I

Zαi, Q+ :=
∑
i∈I

Z+αi.

Denote by ∆ := {α ∈ (E n h)∗\{0} | gα 6= 0} the set of roots, and by ∆+ the set

of roots which are non-negative integral linear combinations of the α
′
is, called the

positive roots. The elements in Π are called the simple roots; we call Πre := {αi : i ∈

Ire} the set of real simple roots and Πim = Π\Πre the set of imaginary simple roots.

One of the important properties of Borcherds algebras is that ∆ = ∆+ t −∆+ and

g0 = h, gα = g(n1, n2, . . . ), if α =
∑
i∈I

niαi ∈ ∆.

Moreover, we have a triangular decomposition

g ∼= n− ⊕ h⊕ n+,

where n+ (resp. n−) is the free Lie algebra generated by ei, i ∈ I (resp. fi, i ∈ I)

with defining relations

(ad ei)
1−aijej = 0 (resp. (ad fi)

1−aijfj = 0) for i ∈ Ire, j ∈ I and i 6= j

and

[ei, ej] = 0 (resp. [fi, fj] = 0) for i, j ∈ I im and aij = 0.

In view of (1.1) we have

n± =
⊕

α∈±∆+

gα.

Finally, given γ =
∑

i∈I niαi ∈ Q+ (only finitely many ni are non-zero), we set

ht(γ) :=
∑
i∈I
ni. The following lemma has been proved in [16, Corollary 11.13.1] for

a finite index set I and the same proof remains valid without any modification for

42



countable I. We will need this result in Chapter 2.

Lemma 1.1. Let i ∈ I im and α ∈ ∆+\{αi} such that α(hi) < 0. Then α+jαi ∈ ∆+

for all j ∈ Z+.

Remark. Although Kac–Moody algebras are constructed similarly as Borcherds alge-

bras using generalized Cartan matrices (see [16] for details), the theory of Borcherds

algebras includes examples which behave in a very different way from Kac–Moody

algebras. The main point of difference is that one is allowed to have imaginary

simple roots.

1.4 Weyl group of a Borcherds algebra

We denote by R = Q ⊗Z R the real vector space spanned by Π. There exists a

symmetric bilinear form on R given by (αi, αj) := εiaij for i, j ∈ I. For i ∈ Ire,

define the linear isomorphism si of R by

si(λ) := λ− λ(hi)αi = λ− 2
(λ, αi)

(αi, αi)
αi, λ ∈ R.

The Weyl group W of g is the subgroup of GL(R) generated by the simple reflections

si, i ∈ Ire. W is a Coxeter group with canonical generators si, i ∈ Ire . Moreover

the above bilinear form is W–invariant. We denote by `(w) := min{k ∈ N : w =

si1 · · · sik} the length of w ∈ W and any decomposition w = si1 · · · sik with k = `(w)

is called a reduced expression. We denote by ∆re = W (Πre) the set of real roots and

∆im = ∆\∆re the set of imaginary roots. Equivalently, a root α is imaginary if and

only if (α, α) ≤ 0 and else real. We can extend (., .) to a symmetric form on (Enh)∗

satisfying (λ, αi) = λ(εihi) and also si to a linear isomorphism of (En h)∗ by

si(λ) = λ− λ(hi)αi, λ ∈ (En h)∗.
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Let ρ be any element of (E n h)∗ satisfying 2(ρ, αi) = (αi, αi) for all i ∈ I. The

following denominator identity has been proved in [5], see also [14, Theorem 3.16].

The denominator identity

U :=
∑
w∈W

(−1)`(w)
∑
γ∈Ω

(−1)ht(γ)ew(ρ−γ)−ρ =
∏
α∈∆+

(1− e−α)dim gα(1.2)

where Ω is the set of all γ ∈ Q+ such that γ is a finite sum of mutually orthogonal

distinct imaginary simple roots. Note that 0 ∈ Ω and α ∈ Ω, if α is an imaginary

simple root.
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Chapter 2

Generalized chromatic

polynomials and root multiplicities

of Borcherds algebras

The results of this chapter have appeared in [2].

The aim of this chapter is to give a combinatorial formula for certain root mul-

tiplicities of Borcherds algebras using tools from algebraic graph theory.

In what follows we associate a graph G to a given Borcherds algebra g and

establish a connection between certain root multiplicities of g and the generalized

chromatic polynomials of G. The main results of this chapter are Theorem 2.1 and

the closed form formula stated in Corollary 2.10.

2.1 Vertex multicoloring of G

In this section we discuss the notion of proper vertex multicoloring of a graph,

which is a generalization of the usual notion of graph coloring. For more details

45



about multicoloring of a graph we refer to [13]. Let G be a graph with vertex set I

(finite or infinite). For a tuple of non-negative integers k = (ki : i ∈ I), we define

supp (k) := {i ∈ I : ki 6= 0} and ht k :=
∑

i∈I ki whenever supp (k) is finite.

Definition 2.1. Let G be an undirected graph, with (possibly infinite) vertex set I,

edge set E and {i, j} denotes the edge between the nodes i and j. Let k = (ki : i ∈ I)

be a tuple of non-negative integers, such that all but finitely many of the ki are zero.

For q ∈ N, we let [q] := {1, 2, · · · , q} and P([q]) be the set of all subsets of [q].

A map τ : I → P([q]) satisfying the following conditions will be called a proper

vertex multicoloring of G of weight k with q colors:

(i) For all i ∈ I we have |τ(i)| = ki.

(ii) For all i, j ∈ I such that {i, j} ∈ E we have τ(i) ∩ τ(j) = ∅.

We let πGk (q) be the number of such maps τ . This turns out to be a polynomial

in q, and is called the k-generalized chromatic polynomial (or simply the generalized

chromatic polynomial, when k is fixed). When I is finite and all ki = 1, this reduces

to the usual chromatic polynomial of G.

Example 2.2. We consider the graph with numbered vertices :

Figure 2.1: An example

1 2
3

4

We allow 3 colors, say blue, red and green and fix k = (2, 1, 1, 1).

Below we have listed all proper vertex multicolorings
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Figure 2.2: Graph Multicoloring

Multicoloring plays an important role in algebraic graph theory. One of its

important applications is to the problem of scheduling dependent jobs on multiple

machines. When all jobs have the same execution times, this is modeled by a graph

coloring problem and as a graph multicoloring problem for arbitrary execution times.

The vertices in the graph represent the jobs and an edge in the graph between two

vertices forbids scheduling these jobs simultaneously. For more details and examples

we refer to [13].

2.2 Generalized chromatic polynomial πGk (q)

We retain the notations of the previous section. The generalized chromatic polyno-

mial πGk (q) has the following well-known description [13]. We denote by Pm(k, G)

the set of all ordered m-tuples (S1, . . . , Sm) such that:

(i) each Si is a non-empty independent subset of I, i.e. no two vertices have an

edge between them,

(ii) the disjoint union of S1, · · · , Sm is equal to the multiset {i, . . . , i︸ ︷︷ ︸
ki times

: i ∈ I}.

Then we have

(2.1) πGk (q) =
∑
m≥0

|Pm(k, G)|
(
q

m

)
.
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2.3 Ordinary and Generalized chromatic polyno-

mials

There is a close relationship between the ordinary chromatic polynomials and the

generalized chromatic polynomials. We have

πGk (q) =
1

k!
χ(G(k), q) =

1

k!
π
G(k)
1 (q)

where χ(G(k), q) = π
G(k)
1 (q) is the chromatic polynomial of the graph G(k) and k! =∏

i∈I ki!. The graph G(k) is the join of G with respect to k which is constructed as

follows: For each j ∈ supp(k), take a clique (complete graph) of size kj with vertex

set {j1, . . . , jkj} and join all vertices of the r–th and s–th cliques if {r, s} ∈ E(G).

Note that since |supp k| <∞, G(k) is a finite graph, even if G is not.

2.4 Graph associated to a Borcherds algebra

Let A = (aij)i,j∈I be a Borcherds-Cartan matrix defined in (1.2) and let g = g(A)

be the corresponding Borcherds algebra. We associate a graph G to g as follows: G

has vertex set I with an edge between two vertices i and j if aij 6= 0 for i, j ∈ I,

i 6= j. G is a simple (finite or infinite) graph; we call it the graph of g.

A finite subset S ⊆ I is said to be connected if the subgraph induced by S is

connected.
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2.5 Bond Lattice

Let g be a Borcherds algebra and G be its graph. We make the following important

assumption on k for the rest of the thesis:

(2.2) ki ∈ Z≥0 for all i ∈ I im, ki ∈ {0, 1} for i ∈ Ire.

To state our main theorem, we need the following definition:

Definition 2.3. Let k satisfy (2.2). The k-weighted bond lattice LG(k) of G is the

set of all J = {J1, . . . , Jk} satisfying the following properties:

(i) J is a multiset, i.e. we allow Ji = Jj for i 6= j.

(ii) Each Ji is a multisubset of I, i.e., a multiset whose underlying set is a subset

of I.

(iii) The subgraph of G induced by the underlying set of Ji is connected for each i.

(iv) The disjoint union of J1ṫ · · · ṫJk = {i, . . . , i︸ ︷︷ ︸
ki times

: i ∈ I}.

Let J = {J1, J2, · · · , Jk} ∈ LG(k) and J be a finite multisubset of I. We denote

by D(J,J) the number of 1 ≤ i ≤ k such that Ji = J .

For a finite multisubset J of I, we let β(J) :=
∑

i∈J αi and mult(β(J)) :=

dim gβ(J). Finally, let η(k) :=
∑

i∈I kiαi and ε(k) := (−1)
∑
ki .

We record the following lemma which will be needed later.

Lemma 2.4. Let k satisfy (2.2). Let P be the collection of multisets γ = {β1, . . . , βr}

(we allow βi = βj for i 6= j) such that each βi ∈ ∆+ and β1 + · · ·+ βr = η(k). The

map Ψ : LG(k)→ P defined by {J1, . . . , Jk} 7→ {β(J1), . . . , β(Jk)} is a bijection.
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Proof. If α ∈
(
Q+ ∩

∑
j∈Πre Z≤1αj

)
is non-zero and the support of α is connected,

then α ∈ ∆re
+. Moreover, if α ∈ ∆+ and αi ∈ Πim is such that the support of α+ αi

is connected, then by Lemma 1.1 we have that α + αi ∈ ∆+. This shows that each

β(Jr) is a positive root and hence the map is well–defined. The map is obviously

injective and since α ∈ ∆+ implies that α has connected support, we also obtain

that Ψ is surjective.

2.6 Main theorem

The following is our main theorem which provides a Lie theoretic interpretation of

generalized chromatic polynomials.

Theorem 2.1. Let G be the graph of a Borcherds algebra g and let k be as in (2.2).

Then

πGk (q) = ε(k)
∑

J∈LG(k)

(−1)|J|
∏
J∈J

(
qmult(β(J))

D(J,J)

)

where |J| is the number of parts (counted with multiplicity) in the partition J.

Remark. The above theorem is a generalization of [32, Theorem 1.1] where the

authors considered the special case when g is a Kac–Moody algebra and ki = 1 for

all i ∈ I.

The rest of this chapter is devoted to the proof of Theorem 2.1.

2.7 Main lemma

Let W be the Weyl group of g [Section 1.4] and let w ∈ W . We fix a reduced ex-

pression w = si1 · · · sik and let I(w) = {αi1 , . . . , αik}. Note that I(w) is independent

of the choice of the reduced expression of w. Let Ω be the set of all γ ∈ Q+ such
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that γ is a finite sum of mutually orthogonal distinct imaginary simple roots (see

equation (1.2)). For γ ∈ Ω we set I(γ) = {α ∈ Πim : α is a summand of γ}. Note

that α is a summand of such γ iff α ∈ supp γ. We naturally identify I(w) and I(γ)

as subsets of the vertex set I of G and by using this identification we define

J (γ) = {w ∈ W\{e} : I(w) ∪ I(γ) is an independent set in G}.

Note that J (0) gives the set of independent subsets of Πre. The following lemma is

the generalization of [32, Lemma 2.3] in the setting of Borcherds algebras.

Lemma 2.5. Let w ∈ W and γ ∈ Ω. We write ρ−w(ρ) +w(γ) =
∑

α∈Π bα(w, γ)α.

Then we have

(i) bα(w, γ) ∈ Z+ for all α ∈ Π and bα(w, γ) = 0 if α /∈ I(w) ∪ I(γ),

(ii) I(w) = {α ∈ Πre : bα(w, γ) ≥ 1} and bα(w, γ) = 1 if α ∈ I(γ),

(iii) If w ∈ J (γ), then bα(w, γ) = 1 for all α ∈ I(w) ∪ I(γ) and bα(w, γ) = 0 else,

(iv) If w /∈ J (γ) ∪ {e}, then there exists α ∈ Πre such that bα(w, γ) > 1.

Proof. We start proving (i) and (ii) by induction on `(w). If `(w) = 0, the statement

is obvious. So let α ∈ Πre such that w = sαu and `(w) = `(u) + 1. Then

ρ− w(ρ) + w(γ) = ρ− sαu(ρ) + sαu(γ)

= ρ− u(ρ) + u(γ) + 2
(ρ, u−1α)

(α, α)
α− 2

(γ, u−1α)

(α, α)
α.(2.3)

So by our induction hypothesis we know ρ−u(ρ)+u(γ) has the required property and

since `(w) = `(u) + 1, we also know u−1α ∈ ∆re ∩∆+. Note that (ρ, αi) = 1
2
(αi, αi)

for all αi ∈ Πre implies 2 (ρ,u−1α)
(α,α)

∈ N. Furthermore, γ is a sum of imaginary simple

roots and aij ≤ 0 whenever i 6= j. Hence −2 (γ,u−1α)
(α,α)

∈ Z+ and the proof of (i) and

(ii) is done, since I(w) = I(u) ∪ {α}. If w ∈ J (γ) and α ∈ I(w) ∪ I(γ), we have
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(ρ, u−1α) = (ρ, α) = 1
2
(α, α) and (γ, u−1α) = (γ, α) = 0. So part (iii) follows from

(2.3) and an induction argument on `(w) since I(w) = I(u)∪ {α} and u ∈ J (γ). It

remains to prove part (iv), which will be proved again by induction. If w = sα we

have

ρ− w(ρ) + w(γ) = α + γ − 2
(γ, α)

(α, α)
α.

Since w /∈ J (γ)∪{e} we get −2 (γ,α)
(α,α)

∈ N. For the induction step we write w = sαu.

We have sα /∈ J (γ)∪{e} or u /∈ J (γ)∪{e}. In the latter case we are done by using

the induction hypothesis and (2.3). Otherwise we can assume that u ∈ J (γ) ∪ {e}

and hence (γ, u−1α) = (γ, α) < 0 and 2 (ρ,u−1α)
(α,α)

∈ N. Now interpreting this in (2.3)

gives the result.

2.8 Denominator identity and the generalized chro-

matic polynomial

The following proposition is an easy consequence of Lemma 2.5 and will be needed

in the proof of Theorem 2.1. Recall that U is the sumside (left hand side expression)

of the denominator identity (1.2).

Proposition 2.6. Let q ∈ Z. We have

U q[e−η(k)] = (−1)ht(η(k)) πGk (q),

where U q[e−η(k)] denotes the coefficient of e−η(k) in U q.

Proof. If q = 0, then there is nothing to prove. So assume that 0 6= q ∈ Z. We have

U q =
∑
k≥0

(
q

k

)
(U − 1)k, where

(
q

k

)
=
q(q − 1) · · · (q − (k − 1))

k!
.
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Note that (
−q
k

)
= (−1)k

(
q + k − 1

k

)
, for q ∈ N.

From Lemma 2.5 we get

w(ρ)− ρ− w(γ) = −γ −
∑
α∈I(w)

α, for w ∈ J (γ) ∪ {e}

and thus (U − 1)k[e−η(k)] is equal to

( ∑
w∈J (0)

(−1)`(w)e−
∑
α∈I(w) α+

∑
γ∈Ω\{0}

(−1)ht(γ)
∑

w∈J (γ)∪{e}

(−1)`(w)e−γ−
∑
α∈I(w) α

)k

[e−η(k)].

Hence the coefficient is given by

∑
(γ1,...,γk)
(w1,...,wk)

(−1)
∑k
i=1 ht(γi)(−1)`(w1···wk),

where the sum ranges over all k–tuples (γ1, . . . , γk) ∈ Ωk (repetition is allowed) and

(w1, . . . , wk) such that

• wi ∈ J (γi) ∪ {e}, 1 ≤ i ≤ k,

• I(w1) ṫ · · · ṫ I(wk) = {αi : i ∈ Ire, ki = 1},

• I(wi) ∪ I(γi) 6= ∅ for each 1 ≤ i ≤ k,

• γ1 + · · ·+ γk =
∑
i∈Iim

kiαi.

It follows that
(
I(w1)∪ I(γ1), . . . , I(wk)∪ I(γk)

)
∈ Pk

(
k, G

)
and each element is

obtained in this way. So the sum ranges over all elements in Pk(k, G). Since w1 · · ·wk

is a Coxeter element we get

(−1)`(w1···wk) = (−1)|{i∈I
re:ki=1}|,
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and hence (U − 1)k[e−η(k)] is equal to (−1)ht(η(k))|Pk(k, G)| which finishes the proof.

2.9 Proof of the main theorem

Now we are able to prove Theorem 2.1 by using the denominator identity (1.2).

Proposition 2.6 and (1.2) together imply that the generalized chromatic polynomial

πGk (q) is given by the coefficient of e−η(k) in

(2.4) (−1)ht(η(k))
∏
α∈∆+

(1− e−α)q dim gα .

Expanding (2.4) and using Lemma 2.4 finishes the proof.

2.10 Root multiplicity formula for Borcherds al-

gebras

In this section we prove a corollary of Theorem 2.1 which gives a combinatorial

formula for certain root multiplicities. We consider the algebra of formal power

series A := C[[Xi : i ∈ I]]. For a formal power series ζ ∈ A with constant term 1,

its logarithm log(ζ) = −
∑

k≥1
(1−ζ)k
k

is well–defined.

Corollary. We have

(2.5) mult η(k) =
∑
`|k

µ(`)

`
|πGk/`(q)[q]|,

where |πGk (q)[q]| denotes the absolute value of the coefficient of q in πGk (q) and µ is

the Möbius function.

54



Proof. We consider U as an element of C[[e−αi : i ∈ I]]. From the proof of Proposi-

tion 2.6 we obtain that the coefficient of e−η(k) in −log U equals

(−1)ht(η(k))
∑
k≥1

(−1)k

k
|Pk(k, G)|

which by (2.1) is equal to |πGk (q)[q]| by a stright forward computation. Now applying

−log to the right hand side of the denominator identity (1.2) gives

(2.6)
∑
`∈N
`|k

1

`
mult η (k/`) = |πGk (q)[q]|.

The corollary is now an easy consequence of the Möbius inversion formula.

Remark. The generalized chromatic polynomial πGk (q) can be computed explicitly

for many families of graphs and hence (2.5) gives an effective method to compute

the root multiplicities; the case of complete graphs and trees is treated at the end

of this section.

2.11 Examples

1. Let G = Kn be the complete graph with n vertices and k = (k1, . . . , kn) be a

tuple of positive integers. Vertex 1 can receive any k1 colors from the given q

colors. Vertex 2 cannot receive those k1 colors that were assigned to vertex 1

and that is the only restriction that we have. Hence vertex 2 can receive any

k2 colors from the remaining q − k1 colors. Similarly the vertex 3 can receive

any k3 colors from the remaining q− (k1 + k2) colors. Continuing in this way,

we get that the generalized chromatic polynomial is given by

πKnk (q) =

(
q

k1

)(
q − k1

k2

)(
q − (k1 + k2)

k3

)
· · ·
(
q − (k1 + · · ·+ kn−1)

kn

)
.
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In particular |πKnk (q)[q]| = (k1+···+kn−1)!
k1!···kn!

. Hence we recover Witt’s formula

proved in [34]:

mult η(k) =
1

ht k

∑
`|k

µ(`)
(ht k/`)!

(k/`)!
.

2. Let G = Tn be a tree with n vertices and k = (k1, . . . , kn) a tuple of positive

integers. Assume that the vertex set I = {1, . . . , n} of G is ordered in such a

way that the vertex i is a leaf of the subgraph of G spanned by the vertices

{i, i + 1, . . . , n}. Further, let i′ the unique vertex adjacent to i for each 1 ≤

i ≤ n− 1. We denote by G′ the subgraph obtained from G by deleting vertex

1 and claim that each vertex multicoloring of G′ gives
(
q−k1′
k1

)
distinct vertex

multicolorings of G. Fix a multicoloring of G′, then vertex 1 is colored with

k1 distinct multicolors. Now it is easy to see that vertex 1 cannot be colored

by the colors which are used to color vertex 1′ and this is the only restriction

that we have. Hence we can choose any k1 colors among the q− k1′ remaining

colors to color vertex 1. This proves that

πTnk (q) =

(
q − k1′

k1

)
πG
′

k′ (q),

where k′ = (k2, . . . , kn). Now we can repeat this procedure and obtain together

with π
{n}
kn

(q) =
(
q
kn

)
that

πTnk (q) =

(
q − k1′

k1

)(
q − k2′

k2

)
· · ·
(
q − k(n−1)′

kn−1

)(
q

kn

)
.

In particular we get a Witt type formula for trees:

mult η(k) =
∑
`|k

µ(`)

(k1+k1′
`
− 1

k1
`

)(k2+k2′
`
− 1

k2
`

)
· · ·
(kn−1+k(n−1)′

`
− 1

kn−1

`

)
(1/kn).

3. Let G be a graph obtained from the complete graph Kn by removing the edges

(1, j + 1), . . . , (1, n) for some 2 ≤ j ≤ n− 1 and k = (k1, . . . , kn) be a tuple of
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positive integers. Vertex 1 can receive any k1 colors from the given q colors.

As before vertex 2 cannot receive those k1 colors that were assigned to vertex

1 and that is the only restriction that we have. Hence vertex 2 can receive any

k2 colors from the remaining q − k1 colors. Continuing this way, we see that

vertex j can receive any kj colors from the remaining q−(k1 + · · ·+kj−1) colors

and vertex j+ 1 cannot receive those k2 + · · ·+kj colors that were assigned to

vertices 2, . . . , j and that is the only restriction that we have since the vertex

j + 1 is not connected with the vertex 1. So vertex j + 1 can receive any kj+1

colors from the remaining q−(k2+· · ·+kj) colors. Similarly vertex j+2 cannot

receive those k2+· · ·+kj+1 colors that were assigned to vertices 2, . . . , j+1. So

vertex j+2 can receive any kj+2 colors from the remaining q− (k2 + · · ·+kj+1)

colors. Again continuing this way we see that vertex n cannot receive those

k2 + · · ·+ kn−1 colors that were assigned to vertices 2, . . . , n− 1. So vertex n

can receive any kn colors from the remaining q − (k2 + · · ·+ kn) colors. Thus

the generalized chromatic polynomial is given by

πGk (q) =

(
q

k1

)(
q − k1

k2

)
· · ·
(
q − (k1 + · · ·+ kj−1)

kj

)(
q − (k2 + · · ·+ kj)

kj+1

)
(
q − (k2 + · · ·+ kj+1)

kj+2

)
· · ·
(
q − (k2 + · · ·+ kn−1)

kn

)
.

In particular,

|πGk (q)[q]| = (k1 + · · ·+ kj − 1)!(k2 + · · ·+ kn − 1)!

(k2 + · · ·+ kj − 1)!k1! · · · kn!
.

Hence we get a Witt type formula for the graph G:

(2.7) mult η(k) =
∑
`|k

µ(`)

`

(k1
`

+ · · ·+ kj
`
− 1)!(k2

`
+ · · ·+ kn

`
− 1)!

(k2
`

+ · · ·+ kj
`
− 1)!(k1

`
)! · · · (kn

`
)!

.
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4. As our final example, we shall apply Corollary 2.10 to an important ex-

ample of a Borcherds algebra g(M) defined in [15, Section 5.3]. It is well

known that if c denotes the center of g(M), then g(M)/c is the Monster

Lie algebra (see for example [15]). Let c(n) be the coefficients of the q–

expansion of the normalized modular invariant j(q) = q−1 +
∑
n≥1

c(n)qn and let

I = {−1, 11, 12, . . . , 1c(1), 21, . . . , 2c(2), . . . } be the countably infinite set where

each i occurs c(i) times. We denote by M the symmetric matrix indexed by I

where the (ij, kl)–th entry equals −i− k. Thus M is of the form:

M =



2 0 · · · 0 −1 · · · −1 · · ·

0

...

0

−2 · · · −2

...
. . .

...

−2 · · · −2

−3 · · · −3

...
. . .

...

−3 · · · −3

· · ·

−1

...

−1

−3 · · · −3

...
. . .

...

−3 · · · −3

−4 · · · −4

...
. . .

...

−4 · · · −4

· · ·

...
...

...


Given k = (ki : i ∈ I), we know that mult η(k) can be easily computed from

the formula (2.5) by computing the generalized chromatic polynomial of the

corresponding graph. We remind the reader that our formula is applicable

provided k−1 ≤ 1. It is clear that the subgraph of the graph of g(M) spanned

by supp(k) is obtained from a complete graph by removing a finite number of

edges from the fixed vertex −1. We have calculated the generalized chromatic

polynomials for graphs of this type in the previous example. Hence equation

(2.7) is a formula for calculating the root multiplicities of the Monster Lie

algebra. However it is not an effective formula in the sense that it does not

allow for easy computation. Further, the modularity property of these Lie

algebras [5] is not evident in this formula.

58



Chapter 3

Bases for certain root spaces of

Borcherds algebras

The results of this chapter have appeared in [2].

In this chapter we will use the combinatorics of Lyndon words to construct a

basis for the root space gη(k) associated to the root η(k) (where again all coefficients

of the real simple roots are assumed to be less or equal to one). Indeed we will give

a family of bases, one for each fixed index i ∈ I.

Since gη(k) 6= 0 implies that supp(k) := {i ∈ I : ki 6= 0} is connected, we will

assume without loss of generality for the rest of this chapter that I is connected and

I = supp(k) and in particular I is finite. We freely use the notations introduced in

the previous chapters.

3.1 The free partially commutative monoid

Let us first fix some notations. Let I∗ be the free monoid generated by I. Note

that I∗ has a total order given by the lexicographical order. The free partially
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commutative monoid associated with G is denoted by M(I,G) := I∗/ ∼, where ∼

is generated by the relations

ab ∼ ba, {a, b} /∈ E(G).

Remark. The motivation to look at these monoids has come from the fact: [ei, ej] = 0

in g if aij = 0.

We associate to each element a ∈ M(I,G) the unique element ã ∈ I∗ which is

the maximal element in the equivalence class of a with respect to the lexicographical

order. A total order on M(I,G) is then given by

(3.1) a < b :⇔ ã < b̃.

Let w ∈ M(I,G) and write w = i1 · · · ir. Define |w| = r, i(w) = |{j : ij = i}| for

all i ∈ I and supp(w) = {i ∈ I : i(w) 6= 0}. The weight of w is denoted by

wt(w) =
∑
i∈I

i(w)αi.

For i ∈ I, its initial multiplicity in w is defined to be the largest k ≥ 0 for which

there exists u ∈M(I,G) such that w = uik. We define the initial alphabet IAm(w)

of w to be the multiset in which each i ∈ I occurs as many times as its initial

multiplicity in w. The underlying set is denoted by IA(w).

For example IAm(1233) = {3, 3}, and IA(1233) = {3} for the complete graph

G = K3.

The right normed Lie word associated with w is defined by

(3.2) e(w) := [ei1 , [ei2 , [· · · [eir−2 , [eir−1 , eir ]] · · · ]]] ∈ g.
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Using the Jacobi identity and the other defining relations of g, it is easy to see that

the association w 7→ e(w) is well defined.

3.2 Right subword connectedness and initial al-

phabets

The following lemma is straightforward.

Lemma. Let w = i1 · · · ir ∈M(I,G). Then |IAm(w)| = 1 if and only if w satisfies

the following condition:

given any 1 ≤ k < r there exists k + 1 ≤ j ≤ r such that (ik, ij) ∈ E(G)

or equivalently ir−1 6= ir and the subgraph generated by ik, . . . , ir is connected for

any 1 ≤ k < r.

3.3 i-form of a commuting class

For i ∈ I, we introduce the so-called i–form of a given word w ∈M(I,G).

Proposition. Let w ∈ M(I,G) with IA(w) = {i}. Then there exists unique

w1, . . . ,wi(w) ∈M(I,G) such that

1. w = w1 · · ·wi(w)

2. IAm(wj) = {i}, i(wj) = 1 for each 1 ≤ j ≤ i(w).

Proof. We prove this result by induction on i(w). If i(w) = 1, there is nothing to

prove; so assume that i(w) > 1. We choose an expression w = i1 · · · ir−1i ∈M(I,G)
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of w such that ik = i, i` 6= i for all k < ` < r and k is minimal with this property.

To be more precise, if w = i′1 · · · i′r−1i is another expression of w, with ik′ = i and

i` 6= i for all k′ < ` < r, then k′ ≥ k. We set wi(w) = ik+1 · · · ir−1i. It is clear that

IAm(wi(w)) = {i} and w = uwi(w) where u = i1 · · · ik. The minimality of k implies

that IA(u) = {i}. Since i(u) = i(w)− 1 we get by induction

u = w1 · · ·wi(w)−1

such that IAm(wj) = {i} for each 1 ≤ j ≤ i(w)− 1.

Now we prove the uniqueness part; assume that w = w′1 · · ·w′i(w) = u′w′i(w)

is another expression such that IAm(w′j) = {i} for all 1 ≤ j ≤ i(w). Suppose

wi(w) 6= w′i(w) in I∗, which is only possible if there exists ip in u, say ip ∈ wp with

p < i(w) which we can pass through ip+1, ip+2, . . . , it−1, it = i ∈ wp. This contradicts

|IAm(wp)| = 1. Hence wi(w) = w′i(w) and the rest follows again by induction.

The factorization of w in Proposition 3.3 is called the i–form of w.

3.4 A combinatorial model for the root multiplic-

ity

Here we will recall the combinatorics of Lyndon words, and using this we define an

important combinatorial model. For more details about Lyndon words we refer the

reader to [26].

Consider the set Xi = {w ∈ M(I,G) : IAm(w) = {i}} and recall that Xi (and

hence X ∗i ) is totally ordered using (3.1). We denote by FL(Xi) the free Lie algebra

generated by Xi. A non–empty word w ∈ X ∗i is called a Lyndon word if it satisfies

one of the following equivalent definitions:
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• w is strictly smaller than any of its proper cyclic rotations

• w ∈ Xi or w = uv for Lyndon words u and v with u < v.

There may be more than one choice of u and v with w = uv and u < v but if v is

of maximal possible length we call it a standard factorization.

To each Lyndon word w ∈ X ∗i we associate a Lie word L(w) in FL(Xi) as follows.

If w ∈ Xi, then L(w) = w and otherwise L(w) = [L(u), L(v)], where w = uv is the

standard factorization of w. The following result can be found in [26] and is known

as the Lyndon basis for free Lie algebras.

Proposition 3.1. The set {L(w) : w ∈ X ∗i is a Lyndon word} forms a basis of

FL(Xi).

Let gi be the Lie subalgebra of g generated by {e(w) : w ∈ Xi} where e(w) is as

in (3.2) . By the universal property of FL(Xi) we have a surjective homomorphism

(3.3) Φ : FL(Xi)→ gi, w 7→ e(w) ∀ w ∈ Xi.

Using Proposition 3.1 we immediately get that the image of the above defined set

{L(w) : w ∈ X ∗i is a Lyndon word} under the map Φ generates gi. It is natural to

ask if in fact this procedure gives a basis for the root space gη(k); the main theorem

of this chapter gives an answer to this question. Set

Ci(k, G) = {w ∈ X ∗i : w is a Lyndon word, wt(w) = η(k)}, ι(w) = Φ ◦ L(w).

Theorem 3.1. The set {ι(w) : w ∈ Ci(k, G)} is a basis of the root space gη(k).

Moreover, if ki = 1, the set

{e(w) : w ∈ Xi, wt(w) = η(k)}
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forms a right–normed basis of gη(k) and

Ci(k, G) = {w ∈ Xi : e(w) 6= 0, wt(w) = η(k)}.

So if ki = 1, the above theorem implies that the root space gη(k) has a very

special type of basis, namely the set of non-zero right-normed Lie words e(w) of

weight η(k) (cf. 3.2). Hence, in this case e(w) is either zero or a basis element.

3.5 Main proposition

Here we prove Theorem 3.1 with the help of the following proposition. We set

B̃i(k, G) := {w ∈M(I,G) : wt(w) = η(k) and IA(w) = {i}} .

Let w ∈ B̃i(k, G) and write w = w1 · · ·wki ∈ X ∗i in its i-form (see §3.3). We say w

is aperiodic if the elements in the cyclic rotation class of w are all distinct, i.e. all

elements in

C(w) := {w1 · · ·wki ,w2 · · ·wkiw1, · · · ,wkiw1 · · ·wki−1}

are distinct. We naturally identify Ci(k, G) with the set

Bi(k, G) := {w ∈ B̃i(k, G) : w is aperiodic}/ ∼,

where w ∼ w′ ⇔ C(w) = C(w′). The following proposition is crucial for the proof

of Theorem 3.1.

Proposition. We have

(i) The root space gη(k) is contained in gi.
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(ii) Let w ∈M(I,G) and wt(w) = η(k). Then

e(w) 6= 0⇐⇒ IAm(w) = {i}.

(iii) We have

mult η(k) = |Bi(k, G)|.

The proof of the above proposition is postponed to the next section. We first

show how this proposition proves Theorem 3.1. Since gη(k) is contained in gi we

get with Proposition 3.1 and (3.3) that {ι(w) : w ∈ Ci(k, G)} is a spanning set

for gη(k) of cardinality equal to |Ci(k, G)|. Therefore Proposition 3.5 (iii) shows

that this is in fact a basis. So in the special case when ki = 1 we get that

{e(w) : w ∈ Xi, wt(w) = η(k)} is a basis. In order to finish the theorem we have

to observe when a Lie word e(w) is non–zero, which is exactly answered by part (ii)

of the proposition.

3.6 Proof of Proposition 3.5(i)

This part of the proof is an easy consequence of the following lemma.

Lemma. Fix an index i ∈ I. Then the root space gη(k) is spanned by all right normed

Lie words e(w), where w ∈M(I,G) is such that wt(w) = η(k) and IAm(w) = {i}.

Proof. We fix w = i1 · · · ir and claim that any element

e(w, k) =
[
[[[ei1 , ei2 ], ei3 ] · · · , eik ], [eik+1

, [eik+2
, . . . [eir−1 , eir ]]

]
, 0 ≤ k < r

can be written as a linear combination of right normed Lie words e(w′) with w′ =

j1 · · · jr−1i. The claim finishes the proof since e(w) = e(w, 0) and e(w′) 6= 0 only if
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IAm(w′) = {i}. If k = r−1 this follows immediately using repeatedly [x, y] = −[y, x]

for all x, y ∈ g. If k < r − 1 we get from the Jacobi identity

e(w, k) = e(w, k + 1) +
[
eik+1

,
[
[[[ei1 , ei2 ], ei3 ] · · · , eik ], [eik+2

, . . . [eir−1 , eir ]]
]]

= e(w, k + 1) +
[
eik+1

, e(w̃, k + 1)
]

(3.4)

where w̃ = (i1, . . . , îk+1, · · · , ir). An easy induction argument shows that each term

in (3.4) has the desired property.

3.7 Proof of Proposition 3.5(ii)

Now we want to analyze when a right normed Lie word e(w) is non–zero. One has

for w ∈M(I,G), e(w) 6= 0 implies |IAm(w)| = 1. Indeed we prove that the converse

is also true.

Lemma. The right normed Lie word e(w) with wt(w) = η(k) is non–zero if and

only if |IAm(w)| = 1.

Proof. Using Lemma 3.2 we prove that, for w = i1 · · · ir ∈ M(I,G), the right

normed Lie word e(w) is non–zero if and only if w satisfies the following condition:

(3.5) given any 1 ≤ k < r there exists k + 1 ≤ j ≤ r such that [eik , eij ] 6= 0.

The only if part will be proven by induction on r, where the initial step r = 2

obviously holds. So assume that r > 2 and e(w) satisfies (3.5). We choose p ∈

{1, . . . , r − 1} to be minimal such that ij 6= ip for all j > p. Note that p exists,

since ir−1 6= ir. Let I(p) = {p1, . . . , pkip} be the elements satisfying ip = ipj for

1 ≤ j ≤ kip . Note that pj 6= p implies pj < p by the choice of p. For a subset

S ⊂ I(r) let w(S) be the tuple obtained from w by removing the vertices iq for
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q ∈ S. The proof considers two cases.

Case 1: We assume that p < r− 1. We first show that e(w(S)) satisfies (3.5). If

(3.5) is violated, we can find a vertex ik such that k < p, ik 6= ip and [eik , ei` ] = 0 for

all ` > k with i` 6= ip. We choose k maximal with that property. By the minimality

of p we get ik ∈ {ik+1, . . . , ir}\{ip} ⊃ {ir−1, ir}, say ik = im for some k+ 1 ≤ m ≤ r.

If m > p, we get [eik , eit ] = [eim , eit ] 6= 0 for some k + 1 ≤ t ≤ r with it 6= ip, since

e(w) satisfies (3.5) and p < r − 1. This is not possible by the choice of ik. Hence

m < p and the maximality of k implies the existence of a vertex it such that t > m,

it 6= ip and [eik , eit ] = [eim , eit ] 6= 0, which is once more a contradiction. Hence

e(w(S)) satisfies (3.5) and is therefore non–zero by induction.

We consider the element (ad fip)
kipe(w). If ip is a real node, by our assumption

on k we have kip = 1 and therefore

(ad fip)e(w) = −(αip+1 + · · ·+αir)(hip)e(w({p})) = (aip,ip+1 + · · ·+aip,ir)e(w({p})).

Since (aip,ip+1 + · · · + aip,ir) < 0 (e(w) satisfies (3.5)) and e(w({p})) 6= 0 by the

above observation we must have e(w) 6= 0. If ip is not a real node then we have

aip,s ≤ 0 for all s ∈ I. We get

(ad fir)
kir e(w) = Ce(w(I(r))),

for some non-zero constant C. Again we deduce e(w) 6= 0.

Case 2: We assume that p = r − 1. In this case the rank of our Lie algebra is

two. So ij ∈ I = {1, 2} for all 1 ≤ j ≤ r. If Ire 6= ∅, say 1 ∈ Ire, we can finish the

proof as follows. If k2 = 1, there is nothing to prove. Otherwise, since e(w) satisfies

(3.5) we must have (up to a sign) e(w) = (ad e2)k2e1. Now k2 > 1 implies 2 ∈ I im

and thus gη(k) 6= 0 which forces e(w) 6= 0. So it remains to consider the case when
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Ire = ∅. In this case n+ is the free Lie algebra generated by e1, e2 and the lemma is

proven.

3.8 A recursion formula

The rest of this chapter is dedicated to the proof of Proposition 3.5(iii). First we

prove that |B̃i(k, G)| satisfies a recursion relation which is similar to the one in (2.6).

More precisely,

Proposition. We have

|B̃i(k, G)| =
∑
`|k

ki
`

∣∣∣∣Bi

(
k

`
,G

)∣∣∣∣ .
Proof. There exists a subset B̂i (k, G) of B̃i (k, G) such that

{w ∈ B̃i(k, G) : w is aperiodic} =
⊔̇

w∈B̂i(k,G)

C(w).

We clearly have |B̂i (k, G) | = |Bi (k, G) |. Let ` ∈ Z+ such that `|k and let k = ki
`
.

We consider the map Φ` : B̂i
(
k
`
, G
)
→ B̃i(k, G) defined by

w = w1 · · ·wk (i-form) 7→ (w1 · · ·wk) · · · (w1 · · ·wk)︸ ︷︷ ︸
`−times

.

Since w is aperiodic it follows that from the uniqueness of the i–form that Φ`(w)

has exactly k distinct elements in its cyclic rotation class. Choose another divisor

`
′

of k and an element w′ ∈ B̂i
(
k
`′
, G
)

such that C(Φ`(w)) ∩ C(Φ`′(w
′)) 6= ∅. We

set k′ = ki
`′

and assume without loss of generality that k ≥ k′; say k = pk′ + t with
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0 < t ≤ k′, p ∈ Z+. Let v = v1 · · ·vk ∈ C(w) and v′ = v′1 · · ·v′k′ ∈ C(w′) such that

vv · · ·v︸ ︷︷ ︸
`−times

= v′v′ · · ·v′︸ ︷︷ ︸
`′−times

∈ C(Φ`(w)) ∩ C(Φ`′(w
′)).

By the uniqueness property we get v1 · · ·vk = vk−t+1 · · ·vkv1 · · ·vk−t. Since v is

aperiodic we must have t = k ≤ k′ and thus ` = `′. Using once more the uniqueness

property we obtain that C(w) = C(w′) and hence w = w′. It follows that

|B̃i(k, G)| ≥
∑
`|k

ki
`

∣∣∣∣Bi

(
k

`
,G

)∣∣∣∣ .
Now we prove that any element in w ∈ B̃i(k, G) can be obtained by this procedure,

i.e. we have to show that there exists ` ∈ Z+ with `|k such that Im(Φ`)∩C(w) 6= ∅.

In what follows we construct an element in the aforementioned intersection. Let

w = w1 · · ·wki (i-form) ∈ B̃i(k, G) arbitrary. Note that the statement is clear if w

is aperiodic. So let 1 ≤ r < s ≤ ki such that

wr · · ·wkiw1 · · ·wr−1 = ws · · ·wkiw1 · · ·ws−1

and suppose that k := s − r is minimal with this property. Write ki = `k + t,

0 ≤ t < k. Again by the uniqueness of the i–form we obtain

w1 = wk+1 = · · · = w`k+1 = wki−k+1,

w2 = wk+2 = · · · = w`k+2 = wki−k+2,

...
...
...

wt = wk+t = · · · = w`k+t = wki−k+t,

wt+1 = wk+t+1 = · · · = w(`−1)k+t+1 = wki−k+t+1,

...
...
...

wk = w2k = · · · = w`k = wki .
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Thus w1 = · · ·wki = wt+1 = · · ·wkiw1 · · ·wt and the minimality of k implies t = 0.

Therefore,

w = (w1 · · ·wk) · · · (w1 · · ·wk)︸ ︷︷ ︸
`−times

.

If w1 · · ·wk is aperiodic we can choose the unique element in B̂i
(
k
`
, G
)
∩C(w1 · · ·wk)

whose image is obviously an element of Im(Φ`)∩C(w). If not, we continue the above

procedure with w1 · · ·wk. This completes the proof.

Remark. From the proof of Proposition 3.8 we get that any element of Bi(k, G) is

aperiodic if ki, i ∈ I are relatively prime.

3.9 Proof of the theorem for the case k = 1

In this section we prove Theorem 3.1 for the special case k = 1 = (ki = 1 : i ∈ I)

which will be needed later to prove Proposition 3.5(iii). We need the notion of

an acyclic orientation for this. An acyclic orientation of a graph is an assignment

of a direction to each edge that does not form any directed cycle. A node j is

said to be a sink of an orientation if no arrow is incident to j at its tail. We

denote by Oi(G) the set of acyclic orientations of G with unique sink i. Greene

and Zaslavsky [12, Theorem 7.3] proved a connection between the number of acyclic

orientations with unique sink and the chromatic polynomial. In particular, up to a

sign

(3.6) |Oi(G)| = the linear coefficient of the chromatic polynomial of G.

Now we are able to prove,

Proposition. The set

{e(w) : w ∈ B̃i (1, G)}
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is a basis of the root space gη(1).

Proof. Given any w ∈ B̃i(1, G), we associate an acyclic orientation Gw as follows.

Draw an arrow from the node u to v (u 6= v) if and only if u appears on the left

of v in w. Note that the assignment w 7→ Gw is well defined, i.e. Gw does not

depend on the choice of an expression of w. It is easy to see that the node i is the

unique sink for the acyclic orientation Gw. Thus the assignment w 7→ Gw defines

a well–defined injective map B̃i(1, G)→ Oi(G). Since {e(w) : w ∈ B̃i(1, G)} spans

gη(1) we obtain together with Corollary 2.10

|Oi(G)| ≥ |B̃i(1, G)| ≥ dim gη(1) = |πG1 (q)[q]|.

Now the proposition follows from (3.6).

We discuss an example,

Example 3.2. Let G be the triangle graph and k = (1, 1, 1). Hence η(k) is the

unique non–divisible imaginary root of the affine Kac–Moody algebra g; it is well–

known that the corresponding root space is two dimensional. We have B̃3(k, G) =

{123, 213} and hence a basis is given by the right–normed Lie words

[e1, [e2, e3]], [e2, [e1, e3]].

As a corollary of the above proposition we get,

Corollary. The number of acyclic orientations of G with unique sink i ∈ I is equal

to mult η(1).
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3.10 Join of a graph and an another recursion for-

mula

We use the join graph associated to the pair (G,k), defined in the Section 2.3, to

determine the cardinality of B̃i(k, G). The notion of join of a graph is the important

tool in this section and hence we are giving here the definition of the same again.

For each j ∈ I, take a clique (complete graph) of size kj with vertex set {j1, . . . , jkj}

and join all vertices of the r–th and s–th clique if {r, s} ∈ E(G). The resulting graph

is called the join of G with respect to k, denoted by G(k).

We consider the set of vertices {i1, . . . , iki}

M(i1, . . . , iki) := B̃i1(1, G(k)) ṫ · · · ṫ B̃iki (1, G(k))

and define a map φ : M(i1, . . . , iki) → B̃i(k, G) by sending the vertices of the j–th

clique {j1, . . . , jkj} to the vertex j for all j ∈ I. This map is clearly surjective.

Let w ∈ M(i1, . . . , iki) and let σ ∈ Skj , j ∈ I which acts on w by permuting

the entries in the j–th clique. It is easy to show that |IAm(σ(w))| = 1 and thus

σ(w) ∈M(i1, . . . , iki). Therefore there is a natural action of the symmetric group

Sk =
∏
j∈I

Skj on M(i1, . . . , iki).

It is clear that this action induces a bijective map,

φ : M(i1, . . . , iki)/Sk → B̃i(k, G).

We will conclude our discussion by proving that the above action is free. Let σ ∈ Sk

and w ∈M(i1, . . . , iki) such that σw = w. If σ is not the identity we can find j ∈ I

and 1 ≤ ` < s ≤ kj such that σ(`) > σ(s). So if j` appears on the left of jk in w,
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then jk appears on the left of j` in σ(w). Since σ(w) = w, this is only possible if

(j`, jk) ∈ E(G(k)) which is a contradiction. Thus we have proved that

(3.7) |B̃i(k, G)| =
ki∑
r=1

1

k!
|B̃ir(1, G(k))|.

3.11 Proof of Proposition 3.5(iii)

We complete the proof of Proposition 3.5(iii). We have

∑
`|k

1

`
|Bi (k, G) | = 1

ki
|B̃i(k, G)| by Proposition 3.8

=
1

ki

ki∑
r=1

1

k!
|B̃ir(1, G(k))| by (3.7)

=
|πG(k)

1 (q)[q]|
k!

by Proposition 3.9

= |πGk (q)[q]|

=
∑
`|k

1

`
mult η

(
k

`

)
by (2.6).

Now induction on g.c.d. of k implies that |Bi (k, G) | = mult η(k) for all k.

Example 3.3. We finish this section by determining a basis for the root space gη(k)

where G is the graph defined in Example 2.1 and k = (2, 1, 1, 1). The following is a

list of acyclic orientations of G(k) with unique sink i = 2

Figure 3.1: Acyclic orientations

1’
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So we have mult η(k) = 2 and if i = 2, the following right–normed Lie words
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form a basis of gη(k)

[e4, [e3, [e1, [e1, e2]]]], [e3, [e4, [e1, [e1, e2]]]].

Similarly if i = 1 we have the basis

[e1, [e3, [e4, [e2, e1]]]], [e1, [e4, [e3, [e2, e1]]]].
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Chapter 4

The Hilbert series of tensor

powers of the Universal enveloping

algebra of Free partially

commutative Lie algebras

The results of this chapter have appeared in [2].

In this chapter we study the evaluation of the generalized chromatic polynomial

at negative integers. We show that these numbers show up in the Hilbert series

of the q-fold tensor product of the universal enveloping algebra associated to free

partially commutative Lie algebras. We use this interpretation to give a simple Lie

theoretic proof of Stanley’s reciprocity theorem of chromatic polynomials [29].

In what follows, we assume that the Borcherds algebra g has only imaginary

simple roots. In this case, it is easy to see that n+ is isomorphic to the free partially

commutative Lie algebra associated to G, which is by definition the Lie algebra

freely generated by ei, i ∈ I and defining relations [ei, ej] = 0, whenever there is no
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edge between the vertices i and j.

4.1 Hilbert series

We first recall the definition of Hilbert series. Let Γ be a semigroup with at most

countably infinite elements and a be a Γ–graded Lie algebra with finite–dimensional

homogeneous spaces, i.e.

a =
⊕
α∈Γ

aα and dim(aα) <∞ for all α ∈ Γ.

The Γ–grading of a induces a Γ ∪ {0}–grading on the universal enveloping algebra

U(a) and we define the Hilbert series as

HΓ(U(a)) = 1 +
∑
α∈Γ

(dim U(a)α) eα.

The proof of the following proposition is standard using the Poincaré–Birkhoff–Witt

theorem.

Proposition 4.1. The Hilbert series of U(a) is given by

HΓ(U(a)) =
1∏

α∈Γ

(1− eα)dim aα
.

4.2 Hilbert series of U(n+)

Set Γ = Q+\{0}. Since n+ is Γ–graded, the following statement is a straightforward

application of the denominator identity given in (1.2).
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Corollary 4.2. The Hilbert series of U(n+) is given by

HΓ(U(n+)) =

(∑
γ∈Ω

(−1)ht(γ)eγ

)−1

.

Proof. Since all the simple roots of g are imaginary, the denominator identity (1.2)

(applied to n+) becomes

∑
γ∈Ω

(−1)ht(γ)eγ =
∏
α∈∆+

(1− eα)dim gα

Using Proposition 4.1 we see that

HΓ(U(n+)) =
1∏

α∈Γ

(1− eα)dim gα
=

1∏
α∈∆+

(1− eα)dim gα

where the last equality follows from ∆+ = {α ∈ Q+\{0} : dim gα 6= 0}. Now the

result is immediate from the denominator identity.

4.3 Hilbert series and the generalized chromatic

polynomial

In this section, we show that the Hilbert series of the q–fold tensor product of the

universal enveloping algebra U(n+) is determined by the evaluation of the gener-

alized chromatic polynomial at −q. We naturally identify α ∈ Q+ with a tuple of

non-negative integers. We prove,

Theorem 4.1. Let q ∈ N. Then the Hilbert series of U(n+)⊗q is given by

HΓ(U(n+)⊗q) =
∑
α∈Q+

(−1)ht(α)πGα (−q) eα.
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where πGα (q) is the generalized chromatic polynomial defined in section 2.2.

In particular,

dim (U(n+)⊗q)α = (−1)ht(α)πGα (−q), for all α ∈ Q+.

Proof. We obviously have HΓ(U(n+)⊗q) = HΓ(U(n+))q. From Proposition 2.6, we

get

(∑
γ∈Ω

(−1)ht(γ)eγ

)−q
=

∑
α∈Q+

(−1)ht(α)πGα (−q) eα.(4.1)

A straightforward application of Corollary 4.2 finishes the proof.

4.4 Values of the generalized chromatic polyno-

mial at negative integers

The following is an immediate consequence of Theorem 4.1. For a multisubset S of

I we let α(S) =
∑

i∈S αi.

Corollary 4.3. Let q ∈ N and α =
∑

i∈I kiαi ∈ Q+. Then the generalized chromatic

polynomial of G satisfies,

πGα (−q) =
∑

(S1,...,Sq)

πGα(S1)(−1) · · · πGα(Sq)(−1)

where the sum runs over all ordered partitions (S1, . . . , Sq) of the multiset

(4.2) {i, . . . , i︸ ︷︷ ︸
ki times

: i ∈ I}.
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Proof. By Theorem 4.1, we get dim (U(n+)⊗q)α = (−1)ht(α)πGα (−q). But

(U(n+)⊗q)α =
⊕

(S1,...,Sq)

U(n+)α(S1) ⊗ · · · ⊗U(n+)α(Sq)

where the sum runs over all ordered partitions (S1, . . . , Sq) of the multiset (4.2).

Again by Theorem 4.1 we know that dim (U(n+))α(Si) = (−1)ht(α(Si))πGα(Si)
(−1) for

all Si. Putting all this together we get the desired result.

4.5 Stanley’s reciprocity theorem

We give another application of Theorem 4.1, namely we show how this can be used to

give a different proof of Stanley’s reciprocity theorem of chromatic polynomials [29,

Theorem 1.2] (see Theorem 4.2). Note that the universal enveloping algebra of n+

is isomorphic to the free associative algebra generated by ei, i ∈ I with relations

eiej = ejei for all (i, j) /∈ E(G). Assume for the rest of this chapter that G is a finite

graph with vertex set I.

An acyclic orientation of G is an assignment of arrows to its edges such that

there are no directed cycles in the resulting directed graph. Suppose we are given

an acyclic orientation O of G. Let

eO = ei1 · · · ein

be the unique monomial in U(n+) determined by the following two conditions:

(i1, . . . , in) is a permutation of I and if we have an arrow ir → is in O, then we

require r < s. See the below image for an example.

Clearly, this gives a bijective correspondence between the set of acyclic orienta-

tions of G and a vector space basis of U(n+)α(I). For a map σ : I → {1, 2, . . . , q},
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Figure 4.1: Acyclic orientation corresponds to the word e1e4e5e2e3

1’

4
3

2

5

we say (σ,O) is a q–compatible pair if for each directed edge i → j in O we have

σ(i) ≥ σ(j).

Theorem 4.2. The number of q–compatible pairs of G is equal to (−1)|I|πα(I)(−q).

In particular, (−1)|I|πα(I)(−1) counts the number of acyclic orientations of G.

Proof. Let (σ,O) be a q–compatible pair. For O we consider the unique monomial

eO = ei1 · · · ein .

Set Sq−i+1 = {v ∈ S : σ(v) = i} for 1 ≤ i ≤ q and let Oi the acyclic orientation of

the subgraph spanned by Si which is induced by O. Then (S1, . . . , Sq) is a partition

of S and since (σ,O) is q–compatible pair, it is easy to see that

eO = eO1 · · · eOq .

On the other hand, suppose (S1, . . . , Sq) is a partition of S and let Oi be an

acyclic orientation of the subgraph spanned by Si for 1 ≤ i ≤ q. We extend the

acyclic orientations to an acyclic orientation of G. If (i, j) ∈ E(G) such that i ∈ Sr

and j ∈ Sk and r < k, then we give the orientation i → j. This defines an acyclic

orientation O of G. Further, define σ : S → {1, · · · , q} by σ(Si) = q − i + 1 for all

1 ≤ i ≤ q. Then it is easy to see that (σ,O) is a q–compatible pair. Thus we proved,

# of q–compatible pairs of G =
∑

(S1,...,Sq)

(−1)|S1|πGα(S1)(−1) · · · (−1)|Sq |πGα(Sq)(−1)
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where the sum runs over all (S1, . . . , Sq) partitions of S. Now Corollary 4.3 completes

the proof.

4.6 Dimension formula for the graded spaces of

n+

We consider the height grading on n+

n+ =
∞⊕
k=1

gk, gk =
⊕
ht α=k
α∈∆+

gα

and show that in this case the Lucas polynomials show up as coefficients of the

Hilbert series when the complement graph is triangle free. The height grading

naturally arises in the study of lower central series of right-angled Artin groups; for

more details see [25, Theorem 3.4].

In the rest of this chapter we relate Mk := dim gk to the independent set poly-

nomial of G defined by

I(X,G) :=
∑
i≥0

ciX
i

where c0 = 1 and ci, i ≥ 1 is the number of independent subsets of size i. Using

U =
∏
k≥1

(1−Xk)Mk =
∑
j≥0

(−1)j cj X
j

we get by comparing coefficients of Xk on both sides in −log (U) that

Nk =
1

k

∑
d|k

k

d
M k

d
=

1

k

∑
d|k

d Md,
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where

Nk := (−1)k+1ck +
1

2
(−1)k+2


∑

j1+j2=k

j1,j2≥1

cj1cj2

+(4.3)

1

3
(−1)k+3


∑

j1+j2+j3=k

j1,j2,j3≥1

cj1cj2cj3

+ · · ·(4.4)

Using the Möbius inversion formula we recover a result of [8, Theorem 3],

(4.5) Mk =
∑
d|k

µ(d)

d
N k

d
.

4.7 Lucas polynomials

In this section, we consider a graph G such that Gc (the complement graph of G) is

triangle free and determine explicitly the numbers Nk. In this case, these numbers

are related to the Lucas polynomials
〈
`
〉
s,t

in two variables s and t. The Lucas

polynomials are defined by the recurrence relation

〈
`
〉
s,t

= s
〈
`− 1

〉
s,t

+ t
〈
`− 2

〉
s,t

for ` ≥ 2

with the initial values
〈
0
〉
s,t

= 2 and
〈
1
〉
s,t

= s. There is a closed formula (see [31,

Proposition 2.1]) 〈
`
〉
s,t

=
∑
j≥0

`

`− j

(
`− j
j

)
tjs`−2j.

Proposition. Let G be a graph such that Gc is triangle free. Let v be the number

of vertices of Gc and e the number of edges of Gc. Then for k ≥ 1, we have

Nk =
1

k

〈
k
〉
v,−e, Mk =

1

k

∑
d|k

µ

(
k

d

)〈
d
〉
v,−e.
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Proof. We have I(−X,G) = 1− vX + eX2. Hence applying −log we get,

∞∑
k=1

(vX)k

k
(1− (e/v)X)k =

∞∑
k=1

1

k

(
k∑
r=0

(−1)r
(
k

r

)
ervk−rXk+r

)
.

The coefficient of Xk in −log (1− vX + eX2) is

Nk =
∑
p+r=k
p≥r≥0

(−1)r

p

(
p

r

)
ervp−r =

∑
j≥0

(−1)j

k − j

(
k − j
j

)
ejvk−2j =

1

k

〈
k
〉
v,−e.

The rest follows from (4.5).
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Chapter 5

Recurrence formula for the

chromatic discriminant of a graph

The results of this chapter have appeared in [1].

Let G be a simple graph and let χ(G, q) denote its chromatic polynomial. The

absolute value of the coefficient of q in χ(G, q) is known as the chromatic discrimi-

nant of the graph G [22,28] and is denoted α(G). It is an important graph invariant

with numerous algebraic and combinatorial interpretations. For instance, letting v0

denote a fixed vertex of the graph G, it is well known that each of the following sets

has cardinality α(G):

1. Acyclic orientations of G with unique sink at v0 [12],

2. Maximum G-parking functions relative to v0 [3],

3. Minimal v0-critical states [11, Lemmas 14.12.1 and 14.12.2],

4. Spanning trees of G without broken circuits [4],

5. Conjugacy classes of Coxeter elements in the Coxeter group associated to

G [9, 23,27],
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6. Multilinear Lyndon heaps on G [20, 21,33].

In addition, α(G) is also equal to the dimension of the root space corresponding

to the sum of all simple roots in the Kac–Moody Lie algebra associated to G [2,32].

We have the following recurrence formula for α(G) (see for instance [10]) which

is an immediate consequence of the well-known deletion-contraction rule for the

chromatic polynomial:

(5.1) α(G) = α(G\e) + α(G/e),

where e is any edge of G. Here, G\e denotes G with e deleted and G/e denotes the

simple graph obtained from G by identifying the two ends of e (i.e., contracting e

to a single vertex) and removing any multiple edges that result.

Yet another recurrence formula for α(G) was obtained in [32] using its connection

to root multiplicities of Kac–Moody Lie algebras. To state this, we introduce some

notation: for a graph G, we let V (G) and E(G) denote its vertex and edge sets

respectively. We say that the ordered pair (G1, G2) is an ordered partition of G,

if G1 and G2 are non-empty subgraphs of G whose vertex sets form a partition of

V (G), i.e., they are disjoint and their union is V (G). When we don’t care about

the ordering of G1, G2, we call the set {G1, G2} an unordered partition of G. We say

that an edge e straddles G1 and G2 if one end of e is in G1 and the other in G2.

We then have:

Proposition. [32]

(5.2) 2 e(G) α(G) =
∑

(G1,G2)
ordered partition of G

α(G1) α(G2) e(G1, G2).

Here e(G) is the total number of edges in G, e(G1, G2) is the number of edges that

straddle G1 and G2, and the sum ranges over ordered partitions of G.
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We note that the recurrence formula (5.2) does not seem to follow directly from

(5.1). In [32], (5.2) was derived from the Peterson recurrence formula [17] for root

multiplicities of Kac–Moody Lie algebras. The goal of this paper is to give a purely

combinatorial (bijective) proof of (5.2).

To construct a bijective proof, we need sets whose cardinalities are the left and

right hand sides of (5.2). We in fact give two bijective proofs, starting with the

interpretations of α(G) in terms of acyclic orientations and spanning trees.

5.1 Acyclic orientations with unique fixed sink

In this section we give a bijective proof of the recurrence formula (5.2) in terms of

acyclic orientations.

We recall that an acyclic orientation of G is an assignment of arrows to its edges

such that there are no directed cycles in the resulting directed graph. A sink in

an acyclic orientation is a vertex which only has incoming arrows. The set of all

acyclic orientations of G is denoted A(G). For a vertex v0 of G, the set of all acyclic

orientations in which v0 is the unique sink is denoted A(G, v0). It is well-known that

the cardinality of A(G, v0) is independent of v0 and equals α(G) [12]. The following

characterization of A(G, v0) is immediate.

Lemma. Fix a vertex v0 of G and let λ ∈ A(G). Then λ ∈ A(G, v0) if and only if

for every u0 ∈ V (G), there is a directed path in λ from u0 to v0.

This motivates the following:

Definition. Given a vertex v0 and an acyclic orientation λ of G, let V (λ, v0) denote

the set of all vertices u0 for which there is a directed path in λ from u0 to v0. We

call this the set of v0-reachable vertices in λ.

We record the following simple observation:
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Lemma. Let x be a vertex of G.

(a) If x 6∈ V (λ, v0), then x 6∈ V (λ, u0) for all u0 ∈ V (λ, v0).

(b) In particular, an edge joining u0 and x with u0 ∈ V (λ, v0) and x 6∈ V (λ, v0) is

directed from u0 to x in λ.

Our next goal is to construct sets A and B whose cardinalities are respectively

equal to the left and right hand sides of (5.2) and to exhibit a bijection between

them. To this end, we first consider the set ~E of oriented edges of G; an element of

~E is an edge of G with an arrow marked on it (in one of two possible ways). Thus

~E has cardinality 2 e(G). If ~e is an element of ~E corresponding to an edge joining

vertices u0 and v0 with the arrow pointing from u0 to v0, we call u0 the tail of ~e and

v0 its head.

We now define A to be the set consisting of pairs (~e, λ) ∈ ~E × A(G) such that

the head of ~e is the unique sink of λ. For a fixed ~e, there are α(G) choices for λ

since λ ranges over A(G, q) where q is the head of ~e. It is now clear that A has

cardinality exactly 2 e(G)α(G).

To define B, we first take an ordered partition (G1, G2) of G. Let E(G1, G2)

denote the set of edges straddling G1 and G2. Let B(G1, G2) denote the set of

triples (e, λ1, λ2) where e ∈ E(G1, G2), say e joins p1 and p2 with pi a vertex of Gi,

i = 1, 2, and λi is an acyclic orientation ofGi with unique sink at pi, i = 1, 2. Arguing

as before, one concludes that B(G1, G2) has cardinality α(G1)α(G2) e(G1, G2). We

now let B denote the disjoint union of the B(G1, G2) over all ordered partitions

(G1, G2) of G. It clearly has cardinality equal to the right hand side of (5.2).

We now define a map ϕ : A → B which will turn out to be the bijection we

seek. Given (~e, λ) ∈ A, let u0 and v0 denote the tail and head of ~e respectively.

Note that λ ∈ A(G, v0). Let V1 = V (λ, u0) denote the set of u0-reachable vertices

in λ (definition 5.1) and let V2 = V (G)\V1. Observe that u0 ∈ V1 and v0 ∈ V2.
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For i = 1, 2, let Gi denote the subgraphs of G induced by Vi, and let λi denote the

restriction of λ to Gi.

We claim that λ1 has a unique sink at u0 and λ2 has a unique sink at v0. The first

assertion follows simply from Lemma 5.1. For the second assertion, observe that if

x ∈ V2 ⊂ V (G), then there is a directed path from x to v0 in λ. Since x /∈ V (λ, u0),

Lemma 5.1(a) implies that no vertex of this directed path can lie in V1. In other

words this directed path is entirely within G2, and we are again done by Lemma

5.1.

Let e denote the undirected edge joining p and q. We have thus shown that the

triple (e, λ1, λ2) is in B(G1, G2) ⊂ B. We define ϕ(~e, λ) = (e, λ1, λ2).

To see that ϕ is a bijection, we describe its inverse map. Let (G1, G2) be an

ordered partition of G; given a triple (e, λ1, λ2) ∈ B(G1, G2), we construct an acyclic

orientation λ of G as follows: on G1 and G2, we define λ to coincide with λ1 and λ2

respectively. It only remains to define an orientation for the straddling edges (this

includes e); we orient all of them pointing from G1 towards G2, i.e., such that their

tails are in G1 and their heads in G2. We let ~e denote the edge e with the above

orientation.

We claim (~e, λ) ∈ A. First observe that λ is in fact acyclic; since λ extends λi

for i = 1, 2, any directed cycle of λ must necessarily involve vertices from both G1

and G2. But this is impossible since all straddling edges point the same way, from

G1 towards G2. Let u0, v0 denote the tail and head of ~e. It remains to show that λ

has a unique sink at v0, or equivalently, by Lemma 5.1, that there is a directed path

in λ from any vertex x to v0. This is clear if x is a vertex of G2. If x is in G1, we

have a directed path in λ1 from x to u0. Now the edge ~e is directed from u0 to v0;

concatenating this directed path with ~e produces a directed path from x to v0 in λ

as required. We define the map ψ : B → A by ψ(e, λ1, λ2) = (~e, λ).
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Observe that for the λ defined above, the set of u0-reachable vertices is exactly

V (G1). This is because edges straddling G1 and G2 point away from G1, so no vertex

of G2 is u0-reachable. This implies that ϕ ◦ ψ is the identity map on B. Further,

it readily follows from Lemma 5.1(b) that ψ ◦ ϕ is the identity map on A. This

establishes that ϕ is a bijection.

5.2 Spanning trees without broken circuits

In this section we give another bijective proof of the recurrence formula (5.2), this

time using the fact that α(G) counts the number of spanning trees of G without

broken circuits.

Definition. Let σ be a total ordering on the set E(G) of edges of G. Given a circuit

in G, it has a unique maximum edge with respect to σ; the set of edges obtained by

deleting this edge from the circuit is called a broken circuit relative to σ. The set of

all broken circuits relative to σ is denoted BG(σ).

Let SG(σ) be the set of all spanning trees of G that contain no broken circuits

relative to σ. It is well-known that the cardinality of SG(σ) is independent of the

choice of σ, and equals α(G) [4].

Given a total ordering σ on E(G), let max(σ) denote the maximum edge in

E(G). The following lemma is immediate.

Lemma. Any spanning tree in SG(σ) contains the edge max(σ).

In the sequel, we will fix for each edge e, a total order σe on E(G) for which

max(σe) = e. We will write BG(e) and SG(e) for the sets BG(σe) and SG(σe)

respectively.
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We now proceed to prove (5.2) in the following equivalent form:

(5.3) e(G)α(G) =
∑
{G1,G2}

unordered partitions of G

α(G1)α(G2) e(G1, G2).

We first define the set A to consist of pairs (e, T ) where e is an edge and T ∈

SG(e); from the above discussion, A has cardinality e(G)α(G).

Next, we define the set B. Given an unordered partition {G1, G2} of G, define

B({G1, G2}) to be the set of pairs (e, {T1, T2}) where e is an edge that straddles G1

and G2 and Ti ∈ SGi(e) for i = 1, 2. Here, SGi(e) is the set of spanning trees of

Gi which contain no broken circuits relative to the total order σe restricted to the

edges of Gi. We let B denote the disjoint union of B({G1, G2}) as {G1, G2} ranges

over unordered partitions of G. Clearly B has cardinality equal to the right hand

side of (5.3).

We define maps ϕ : A→ B and ψ : B → A as follows:

Given (e, T ) ∈ A, e occurs in T in view of Lemma 5.2. Deleting e from the

spanning tree T will result in a pair of trees T1, T2 with vertex sets V1 and V2. Let

Gi denote the subgraph induced by Vi, i = 1, 2; clearly {G1, G2} is an unordered

partition of G and e straddles the Gi. Observe that since the total order on E(Gi)

is defined as the restriction of the total order σe on E(G), Ti will contain no broken

circuits of Gi for i = 1, 2, i.e., Ti ∈ SGi(e). We set ϕ(e, T ) = (e, {T1, T2}).

For the inverse map ψ, let (e, {T1, T2}) ∈ B. Define T to be the spanning tree

of G obtained by adding the edge e to the union of T1 and T2. To prove that

T contains no broken circuits relative to σe, observe that any broken circuit of T

cannot lie entirely within T1 or T2, and must hence contain the edge e. But e is the

maximum edge relative to σe, so this cannot be a broken circuit by definition. Thus

(e, T ) ∈ A, and we define ψ(e, {T1, T2}) = (e, T ).
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It is straightforward to check that ϕ and ψ are indeed inverse maps. .
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