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ABSTRACT

In this thesis, we study the ZN symmetry and confinement-deconfinement (CD) transition

in SU(N) Higgs theory. In the absence of the Higgs field, the Euclidean action is invari-

ant under the ZN gauge transformation. This symmetry is spontaneously broken in the

deconfinement phase as the Polyakov loop acquires non-zero thermal average value. This

gives rise to N degenerate states in the deconfinement phase. In the presence of matter

fields, the Euclidean action is not invariant under the ZN symmetry. This explicit symme-

try breaking affects the CD transition. We carry out non-perturbative simulations of this

theory to understand how the strength of the explicit symmetry breaking depends on the

parameters of the theory.

Our results show that in the Higgs phase, where the Higgs condensate is non

zero, the ZN symmetry is explicitly broken. In the Higgs symmetric phase where the Higgs

condensate is expected to vanish, the strength of the ZN symmetry breaking depends on

the lattice cut-off, i.e. the number of points along the temporal direction (Nτ) of the

Euclidean lattice. For vanishing bare Higgs mass and Higgs quartic coupling, the N = 2

CD transition is found to be a crossover with finite explicit symmetry breaking for Nτ = 4.

For the same bare parameters, this transition turns out to be second order, accompanied

by the realization of the Z2 symmetry for Nτ = 8. We observe that for Nτ = 4, the ZN

symmetry is restored in parts of the Higgs symmetric phase. In the λ − κ plane (λ Higgs

quartic coupling, κ the gauge-Higgs interaction strength), the ZN symmetry is restored

for κ > κ(λ). This κ(λ) line moves closer to the Higgs transition line with the increase

in the number of temporal lattice points (Nτ ). For Nτ = 8 this line coincides with the

Higgs transition line. Since for Nτ = 8 with vanishing bare Higgs mass and Higgs quartic

coupling the Z2 symmetry is realized, it will also be the case for all non-zero values of
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the bare Higgs mass. In contrast, in QCD, where the explicit symmetry breaking grows

stronger with the decrease in the quark mass.
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Synopsis

At very high temperature, around ∼150MeV, hadrons melt to form the quark-gluon plasma

(QGP). Such extreme thermal conditions existed in the early Universe and currently

are being created in heavy-ion collision experiments. Theoretical studies using quan-

tum chromodynamics (QCD) show that the melting of hadrons to QGP proceeds via the

confinement-deconfinement (C-D) transition. The nature of this transition depends on the

presence of fermionic matter fields, i.e Quarks. Interestingly this transition occurs in all

S U(N)(N > 2) gauge theories like QCD, for example in the Electroweak theory. As in

QCD, presence of bosonic matter fields also affects the nature of C-D transition. There-

fore, it is important to study in detail the effect of bosonic and fermionic matter fields on

this transition.

The C-D transition is studied by writing the partition function of the theory

in the path integral form. At finite temperatures, the pure gauge sector of these theries

have the ZN symmetry [1, 2]. This can be argued as follows: since the excitations of the

gauge fields(gluons) are bosonic, the gauge fields in the Euclidean space must be periodic

along the temporal direction. This boundary condition allows for gauge transformations

to be periodic in the temporal direction upto a factor z, where z ∈ ZN and ZN ⊂ S U(N).

All possible gauge transformations therefore can be classified by the ZN group. Since the

action remains invariant, the ZN group is a symmetry group of the pure gauge part. In such

a gauge transformation, the Polyakov loop (L) (which is the trace of path order product

xix
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of links in the temporal direction) transforms like a ZN spin under the ZN transformation,

i.e L → zL. When only gauge fields are considered, the ZN symmetry is spontaneously

broken at high temperatures in the deconfinement phase where 〈L〉 , 0. It is restored

below the C-D transition temperature (Td) in the confinement phase where 〈L〉 = 0 [3,4].

Because of this unique property the Polyakov loop serves as an order parameter for the

C-D phase transition. Bosonic (Fermionic) statistics requires that the bosonic (fermionic)

fields of the above theories are periodic (antiperiodic) in the temporal direction. Since the

matter fields are in the fundamental representation, the ZN gauge transformed matter fields

do not have periodic boundary conditions anymore. Therefore the gauge transformations

corresponding to z , I (where I is the identity element of ZN) cannot act on the matter

fields. Only the periodic gauge transformations (z = I) act on both the gauge and matter

fields, hence keep the total action invariant. Though the z , I gauge transformation cannot

act on the matter fields, one can consider them acting only on the gauge fields. In such

cases the action will not remain invariant. So, at the classical level, the ZN symmetry is

explicitly broken in the presence of matter fields. This situation is similar to introducing

an external field in spin systems [5]. The effect of matter fields is equivalent to having an

external ordering field for the Polyakov loop. The actual effect of the matter fields on the

ZN symmetry can only be known when fluctuations, perturbative and/or non-perturbative

in nature, are considered. Previous perturbative calculations upto 1-loop have shown that

the ZN symmetry is explicitly broken when matter fields are coupled to the pure gauge

theory [6, 7]. The 1-loop effective potential for the Polyakov loop also shows that, there

are meta-stable states corresponding to the local minima with negative entropy [7]. In

these calculations only the zeroth mode of the temporal gauge field is coupled to the

matter fields. Furthermore these studies are limited to very high temperatures where the

coupling and fluctuations are small. It is important that the effect of fluctuations on the

ZN symmetry be considered near the C-D transition region. Effects of matter fields on the

ZN symmetry are expected to be large near the transition region and are likely to affect

the nature of the C-D transition [8, 9]. So in this study, we compute the effect of the
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fundamental Higgs field on the ZN symmetry for N = 2 and 3 [10]. We focus on the

properties of the Polyakov loop and other observables to study the ZN symmetry.

For the simulation study, the continuum action is discretized on a four-dimensional

Nτ × N3
s Euclidean lattice. In the simulation process, the Higgs field Φn and the gauge

link Un,µ are repeatedly updated to generate the Monte Carlo history. The field variable

Φn is updated using pseudo heat-bath algorithm [11, 12] and Un,µ is updated using the

standard heat-bath algorithm [13]. In the update method, the new configuration is gener-

ated from the old one using the Boltzmann factor (e−S ) and taking care of the principle of

detailed balance. Since the new configuration is generated from the old one, there will be

auto-correlation between the consecutive configurations. To reduce this auto-correlation,

we use the over-relaxation method [14].

The distributions of the Polyakov loop show that the ZN symmetry is explic-

itly broken in the Higgs broken phase (〈Φ〉 , 0) for large κ. For small enough explicit

symmetry breaking, there exist meta-stable states 1(a). The explicit symmetry breaking

decreases with κ . For small κ the symmetry is restored which leads to symmetric distri-

bution of the Polyakov loop 1(b).

Figure 1. The histogram of the Polyakov loop (H(L)) vs Polyakov loop(L) in Higgs symmetric
phase for (a)far from Higgs transition line and (b)near Higgs transition line.

For N = 2, the restoration of the ZN symmetry gives rise to critical behavior

which is shown by computing the Binder cumulant of the Polyakov loop and its finite

size scaling. The Binder cumulant scales with volume and its value at the crossing point

for different volumes is consistent with the 3D-Ising universality class. We believe the
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restoration of the ZN symmetry is driving the critical behavior of the C-D transition. Pre-

viously it was thought that the symmetry is restored only when the mass of the matter

field is infinitely heavy [15]. Previous studies have found that the Polyakov loop has large

cutoff effects [6]. It is possible that the region in the Higgs symmetric phase where the

ZN symmetry is restored may depened on number of temporal lattice site (Nτ). Therefore,

we study the ZN symmetry and the behavior of C-D transition in S U(2) Higgs theory for

different Nτ. To simplify this study, we consider the bare mass and bare Higgs quartic

coupling to be zero [16]. We find that the C-D transition is a cross-over for Nτ = 2, 4.

In the following, figure: 2(a) shows that the C-D transition is a cross-over for Nτ = 2.

For Nτ = 8, in figure: 2(b) the average of the Polyakov loop shows spatial volume de-

pendence and it scales with volume like the magnetization in 3D-Ising modelindicating a

critical behavior. Similarly the susceptibility, Binder cumulant of the Polyakov loop and

their scalings show a critical behavior belonging to 3D-Ising universality class. We be-

lieve that in this case the restoration of the ZN symmetry gives rise to the critical behavior

of the C-D transition.
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Figure 2. The Polyakov loop average (〈|L|〉) vs gauge coupling (βg) for (a) Nτ = 2, and (b)
Nτ = 8.

Further we compute the average of the gauge and Higgs field interaction for

different Nτ. As interaction increases with increase in Nτ, it is clear that the symmetry

restoration is not due to decoupling of the gauge and Higgs fields for large Nτ. We argue
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that the increase in phase space with Nτ is responsible for the ZN symmetry restoration.

These results contradict 1-loop perturbative prediction and suggest that calculations be-

yond 1-loop perturbation theory are necessary. Our results for Nτ = 8 suggest that the ZN

symmetry is restored in all of the Higgs symmetric phase (〈Φ〉 = 0).
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1 Introduction

SU(N) gauge theories have been successful in describing the fundamental interactions

of nature. The gauge theory of quarks and gluons, (quantum chromodynamics (QCD))

describes the strong interactions of hadrons. When a hadron gas is heated to high tem-

peratures or compressed to high densities, quarks and gluons get deconfined and form the

quark-gluon plasma (QGP) [17–20]. The transition to QGP happens around 150 − 170

MeV and proceeds via the confinement-deconfinement (CD) transition. For infinitely

heavy quarks, the ZN symmetry of the gauge theory plays important role in the CD transi-

tion. On the other hand in the chiral limit, when the quarks are massless, the CD transition

is dominated by the spontaneous breaking of the chiral symmetry. The Polyakov loop in

this limit does show behaviour similar to the chiral condensate. Here we will restrict our

study mostly to the behaviour of the Polyakov loop. The transition to QGP at finite T and

µ = 0 is a crossover. With increase in µ, the transition becomes second order at some

critical value (µ = µc) and first order for larger µ values. Fig. 1.1 shows energy density in

QCD rises rapidly. This is a signature of CD phase transition around the critical tempera-

ture (Tc) [21]. The nature of this transition depends on the presence of fermionic matter

fields, i.e. quarks [22–31]. Interestingly this CD transition occurs in all SU(N > 2) gauge

theories like QCD, for example in the Electroweak (EW) theory. As in QCD, the presence

of bosonic matter fields in fundamental representation also affects the nature of the CD

transition. Therefore, it is important to study in detail the effect of bosonic and fermionic

matter fields on this transition. Even without the matter fields, pure SU(N) gauge theories

undergo the CD transition. For N = 2 this transition is second order [3, 4] and for N ≥ 3

1
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Figure 1.1. Energy density curve in QCD showing phase transition [21].

first order [32–34]. In pure SU(N) gauge theory, the phase transition is described by the

Polyakov loop [2],

P(x) =
1
N

Tr P exp
[∫ β

0
dτ (igA0(x, τ))

]
. (1.0.1)

Here β = 1
T , T is the temperature. A0(x, τ) is a traceless N × N matrix, temporal gauge

field configuration in the Euclidean space. The thermal and volume average of P(x) in

eqn (1.0.1), is found to behave like magnetization in ferromagnetic ZN spins with ferro-

magnetic nearest neighbor interactions [34–36],

L = 〈P(x)〉 (1.0.2)

Where L is the thermal and volume average of the Polyakov loop. L is non-zero above

the critical temperature while the magnetization of ZN spins is non-zero below the critical

temperature. A sketch of the temperature dependence of L for pure SU(2) gauge theory

and magnetization for Z2 spin system are shown in the Fig. 1.2. The order of pure SU(N)

transition is found to be same as the magnetization transition of ferromagnetic ZN-spins.

For SU(N), the deconfined phase is characterized by N degenerate states, associated with

the spontaneous breaking of the ZN symmetry. The ZN symmetry arises from the invari-
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Figure 1.2. Sketch of (a) Polyakov loop average (L) vs. T for pure SU(2) gauge theory, (b)
Magnetization (average of spins) vs. T for Z(2) Ising model

ance of the Euclidean gauge action under gauge transformations which are periodic to an

element z ∈ ZN , where ZN is the center of SU(N). In such a gauge transformation, the

Polyakov loop (L) transforms like a ZN spin under the ZN transformation, i.e L → zL.

Since L = 0 in the confinement phase and L , 0 in the deconfinement phase, it serves as

the order parameter for the CD transition.

The presence of bosonic and fermionic matter fields spoil the ZN symmetry

of the action. Bosonic (Fermionic) statistics requires that the bosonic (fermionic) fields

SU(N) theories are periodic (anti-periodic) in the temporal direction. Since the matter

fields are in the fundamental representation, the ZN gauge transformed matter fields do not

satisfy the periodic boundary conditions anymore. These gauge transformations therefore

can not act on the matter fields. However, it still makes sense to consider these ZN gauge

transformations by restricting their actions only to the gauge fields. These transformations

are not like the conventional gauge transformations which act both on the gauge and

the matter fields, will not leave the action of the full theory invariant. Even though the

action is not invariant, a configuration and its ZN gauge transformed configuration both

will contribute to the partition function. Their individual contribution to the partition

function will decide the relative Boltzmann probability of these two configurations in

a thermal ensemble. Even though the classical action does not have the ZN symmetry

ultimately the fluctuations of the fields will decide if the ZN symmetry is relevant in the
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presence of matter fields. Hereby ZN symmetry gauge transformation we imply that the

gauge transformations are acting only on the gauge fields. The matter fields can be gauge

transformed only when the gauge transformations correspond to the identity of ZN group.

The issue of ZN symmetry in the presence of fundamental matter fields has

been extensively studied in the literature [6–8]. Perturbative calculations which are lim-

ited to very high temperatures away from the transition point, consider fluctuations up to

second order around the minimum of the Euclidean action. In pure SU(N) gauge theory,

there is no spontaneous breaking of the ZN symmetry without these fluctuations. These

Gaussian fluctuations lead to an effective potential for the Polyakov loop, with the spon-

taneous breaking of ZN symmetry [37]. The matter field effects are calculated by consid-

ering an ideal gas which couples only to the Polyakov loop or only to the zero mode of

the gauge field fluctuations [6]. This results in explicit breaking of the ZN symmetry, the

strength of which depends on the masses and the number of the matter fields. For some

cases the explicit symmetry breaking is so large that there are no local minima in the ef-

fective potential. For some choice of parameter, the Polyakov loop effective potential has

local minima, meta-stable states, with unphysical behavior such as negative pressure and

negative entropy [7] . It is not known whether these unphysical behavior persist when

fluctuations beyond Gaussian approximation are considered.

The issue of matter fields on the CD transition has been studied in SU(N)

gauge theories on the lattice using mean field approximation. These calculations consider

strong gauge coupling limit, in which it is possible to reduce the partition function to a

form only in terms of the Polyakov loop degrees of freedom [15, 38]. Except for the

integration measure (Haar measure), the partition function turns out to be similar to that

of ZN spins with nearest neighbor ferromagnetic coupling. The effect of matter field lead

to a determinant, which can be expanded in terms of hopping (parameter) of the matter

fields in closed loops on the lattice. The hopping parameter is small for heavy matter

fields. In this limit and for small Nτ (Nτ is the number of lattice points in the temporal
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direction of the Euclidean lattice) the leading order approximation leads to a term in the

effective action which breaks the ZN symmetry explicitly. The resulting partition func-

tion is studied in the mean field approximation for the CD transition. The CD transition

becomes weaker with the increase the hopping parameter. For SU(2) with matter fields,

the transition becomes a crossover for non-zero hopping parameter. For SU(3) the tran-

sition becomes a weak first order , second order and crossover with the increase in the

hopping parameter. These results are in the qualitative argument with non-perturbative

lattice studies for small Nτ. The CD transition has been studied extensively in QCD us-

ing non-perturbative lattice simulations [5]. These studies find that in the heavy quark

mass region, the explicit breaking of the ZN symmetry decreases with mass. This explicit

symmetry breaking gives rise to meta-stable states in the deconfined phase [39]. In the

chiral limit, however, the behavior of the Polyakov loop cannot be understood in terms

explicit symmetry breaking by a uniform external field. Along with the chiral condensate,

the Polyakov loop exhibit critical behavior [9]. But the distribution of the Polyakov loop

does not show any ZN symmetry. This suggests that, in the chiral limit, the effective ex-

ternal field is a fluctuating and nonuniform dynamical field instead of a constant uniform

field [40]. The behaviors of the chiral transition and the chiral condensate are, however,

well described by a uniform/static field in the chiral limit [41].

As in QCD, in SU(N) theory with Higgs in the fundamental representation,

the fundamental charges will experience similar force/potential. Previous studies have

shown that in the confined phase there will be colorless composite particles of Gluons

and the Higgs. In the deconfined phase, there charges experience coulombic interactions

(with screening). Although there have been a lot of non-perturbative studies on the CD

transition of SU(N) gauge theories coupled to fundamental bosonic fields, very few, have

addressed the issue of the ZN symmetry in these theories. Most of these studies are for

small number of temporal lattice site Nτ = 2 with a few for Nτ = 4 [38, 42]. In these

studies, the ZN symmetry is explicitly broken, and the CD transition is different from

the pure gauge case once the interaction between gauge and matter switch on. More
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studies are necessary to address how the strength of explicit symmetry breaking depends

on the various parameters of the theory. More importantly study of the explicit symmetry

breaking and the nature of CD transition in the continuum limit, i.e large Nτ. Both in the

presence of bosonic and fermionic fields (in fundamental representation) the Euclidean

action is not invariant under the ZN transformation. It is not clear how fluctuations affect

the ZN symmetry in both cases. Studying the ZN symmetry in the SU(N) Higgs theory will

give a better overal picture of the effect of fundamental matter fields. It is possible that

such a study may complement the studies done in QCD, also uncover new aspects not yet

seen in QCD. In this thesis work, we carry out non-perturbative studies to address these

issues by considering temporal lattice points up to Nτ = 8. We compute the distribution

of the Polyakov loop and other observables which are relevant for the ZN symmetry and

the CD transition. Most of our simulation studies are for N = 2 and N = 3. We find that

the distribution of the Polyakov loop is similar to the distribution of the magnetization in

ferromagnetic N-state Potts model in the presence of the external field [5]. The external

field causes asymmetry in the distributions of the magnetization which otherwise has the

ZN symmetry. The larger the external field, larger is the asymmetry in the distribution of

the magnetization. In the present case the asymmetry of the Polyakov loop distribution is

found to vary with the Higgs quartic coupling (λ) and the gauge-Higgs interaction strength

(κ). It is observed that the distribution has large (small) asymmetry when the condensate

is large (small). Conventionally It is never expected that the explicit symmetry breaking

of ZN vanish as long as there is a non-zero interaction between the gauge and the Higgs

fields. Surprisingly it is found that for Nτ = 4 in the λ − κ plane, in a region of the

Higgs symmetric phase, the Polyakov loop distribution exhibits the ZN symmetry. The

simulation results also show that the different ZN states in the deconfined phase have

the same free energy. This implies that the effective external field is vanishingly small

and there is realization of the ZN symmetry. In the effective potential calculations, the

ZN symmetry is realized only in the limit of infinitely heavy Higgs mass, i.e basically

when the Higgs field decouples from the gauge fields. In the present case, this occurs
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even though there is a non-zero interaction (correlation) between the gauge and the Higgs

fields. The nature of the CD transition is almost same as in the pure gauge theory. It has

been argued previously that in a lattice theory of SU(N)+Higgs with frozen radial mode

of the Higgs, the presence of Higgs field does not change the pure gauge CD transition

for small coupling between the gauge and Higgs fields [43]. The explanation for this

was that the Higgs field does not couple to any global order parameter. The presence of

Higgs field only modifies the critical "temperature" for the CD transition. Though present

results cannot be extrapolated to the continuum limit. The ZN explicit breaking symmetry

results for Nτ = 4 and Nτ = 2 are different, this suggests there are finite cut-off effect

on the ZN symmetry and the CD transition. It is well known that the thermal average

of the Polyakov loop has a strong cut-off dependence. The Polyakov loop expectation

value decreases with the number of temporal sites (Nτ) of the Euclidean lattice, though

the nature of the pure gauge CD transition does not change with Nτ. We mention here that

the renormalized Polyakov loop turns out to be cut-off independent [44].

In our simulations of the Nτ dependence study is only for S U(2)+Higgs. We

believe similar results will hold for higher SU(N)+Higgs. A detailed study of the Nτ de-

pendence was carried out for vanishing bare Higgs mass and the quartic coupling. For

these values of the parameters, the CD transition is a crossover for Nτ = 2 and 4. For

Nτ = 8 the transition turned out to be second order with the realization of the Z2 symme-

try. This is in contrast to the effective potential calculations which suggest that the explicit

symmetry breaking will be maximal in the massless limit. We show that the restoration

of Z2 for higher Nτ is not due increase of the renormalized Higgs mass which can lead to

decrease in the correlation between the Higgs and the gauge fields. We find that interac-

tion energy between the Higgs and the gauge fields in a given physical volume increase

with Nτ when we use the one loop beta-function. It is important to study if similar Nτ

dependence exists for other values of λ and Higgs mass. So in this thesis, we also study

the Z2 symmetry on the λ − κ plane for Nτ = 8. We find that for small λ, the Z2 sym-

metry is restored in all of the Higgs symmetric phase. There is a clear pattern observed
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in the variation of the explicit symmetry breaking on the λ − κ plane. For large κ the ex-

plicit symmetry breaking is large at the same time the system is found to be in the Higgs

phase. On the other hand for small κ the explicit symmetry breaking is vanishingly small

with vanishing Higgs condensate (Higgs symmetric phase). So we believe that the Higgs

condensate may play the role of the effective ordering field for the Polyakov loop. More

work is needed to establish the connection between the Higgs condensate and the explicit

breaking. Our results suggest that since the Z2 symmetry is realized in the Higgs sym-

metric phase, it is conceivable that Z2 domain walls may be present above electroweak

transition temperature in the early Universe. This domain walls will disappear once the

universe cools down with possible physically observable consequences. Note that with

λ = 0, the Z2 symmetry is realized already for vanishing Higgs mass. For higher mass,

the interaction between the Higgs and the gauge fields will only decrease, so it expected

that the Z2 symmetry would persist for any non-zero Higgs mass. In contrast QCD the ZN

symmetry is there only for infinite quark mass and the explicit symmetry breaking only

increases with the decrease in the quark mass.

The thesis is organized as follows. In chapter-2 we derive the partition function

in the path integral form and discuss the ZN symmetry. In chapter-3 we briefly review the

Polyakov loop effective potential calculations. Mean field approximation studies of CD

transition in the strong coupling limit will be discussed in chapter-4. In chapter-5, we

discuss numerical techniques used for our Monte Carlo simulations. In chapter-6 we

present our simulation studies for Nτ = 4 and describe Nτ dependence studies in chapter-

7. In chapter-8 we present discussions, conclusions, and outlook.



2 ZN symmetry in SU(N) gauge

theories

In this chapter we derive the path-integral form of the partition function for SU(N)+Higgs

theories. Afterwards we discuss how this ZN symmetry arises in the partition function and

its breaking in the presence of matter fields in the fundamental representation.

2.1 Partition function for pure SU(N) gauge theory

The classical action for a pure SU(N) gauge theory is given by,

S [A] =

∫
dt L = −

1
2

∫
d4x Tr[Fµν(x)Fµν(x)] (2.1.1)

This Lagrangian(L) describes the dynamics and interactions of (N2 − 1) spin-1 bosons,

called gluons. Here x stands for the four space time vector xµ (with µ = 0, 1, 2, 3), the

gauge field strength Fµν(x) = ∂µAν(x) − ∂νAµ(x) + ig[Aµ(x), Aν(x)]. Gauge fields are

expressed as Aµ(x) =
∑

a Aa
µ(x)T a (with a = 1, 2, ...N2 − 1), T a’s are the generators of

SU(N) group, which are N×N traceless matrices in the fundamental representation of the

gauge group.

Tr(TaTb) =
1
2
δab, [Ta,Tb] = i fabcTc.

The trace in the gauge action (2.1.1) is over color indices. g appearing in Fµν is the gauge

9
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coupling constant. The gauge action (2.1.1) is invariant under the following local SU(N)

gauge transformations of the gauge fields.

Aµ(x) −→ V(x)Aµ(x)V−1(x) −
i
g

(
∂µV−1(x)

)
V(x) (2.1.2)

Here V(x) = eiΛa(x)T a
, Λa(x)’s are space time dependent functions. To study the thermo-

dynamic properties of the system we need the Hamiltonian operator. We will follow the

standard procedure to derive the Hamiltonian operator [45]. The conjugate momentum

fields ΠAµ(x) for the gauge fields Aµ(x) are defined as,

ΠAµ(x) =
∂L

∂Ȧµ(x)
. (2.1.3)

Since Ȧ0(x) doesn’t appear in the Lagrangian the corresponding conjugate field ΠA0 = 0.

Thus A0(x) is not a dynamical field. The electric field Ei(x) = F0i(x) turns out to be the

conjugate momentum fields for Ai(x)′s as,

ΠAi(x) =
∂L

∂Ȧi(x)
= −Ei(x). (2.1.4)

The Hamiltonian is given by the following Legendre transformation of the Lagrangian L,

H =

∫
d3x Tr[Ȧµ(x)ΠAµ(x)] − L =

∫
d3x

1
2

Tr [Ei(x)Ei(x) + Bi(x)Bi(x) − A0(x)(D.E(x))].

(2.1.5)

Here Bi(x) = ε i jkF jk(x) are the magnetic fields. Note that in the above convention Ei

and Bi are N × N traceless matrices. Appearing in the last term A0(x) acts as a Lagrange

multiplier which makes sure that D.E = DiEi is independent of time.

The canonical quantization of this theory requires gauge fixing. The A0 = 0

gauge is found to be suitable for finite temperature studies [46]. The quantization is

carried out by setting up the equal time commutation relation between the dynamical
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gauge fields Ai and the conjugate momentum fields ΠAi = −Ei as,

[Ei(x), A j(y)] = −iδi jδ
3(x − y) (2.1.6)

In terms of the gauge and momentum field operators the Hamiltonian operator for the

pure SU(N) gauge theory is given by,

Ĥ =

∫
d3x

[
1
2

(Ea
i )2 +

1
4

(Ba
i )2

]
(2.1.7)

The partition function of the theory in the {|A(x)〉} basis is given by,

Z = Tr[e−βĤ] =

∫
DA(x)〈A(x)|e−βĤ |A(x)〉 (2.1.8)

Here β = 1
T . Thermal average of any operator (O) is given by,

〈O〉 =
Tr(Oe−βĤ)
Z

=

∫
DA(x)

〈A(x)|Oe−βĤ |A(x)〉
Z

(2.1.9)

In the above ’Tr’ is trace over all physical states of the system. Note that setting A0(x) = 0

does not remove unphysical degrees of freedom from the theory completely. Therefore

the full Hilbert space of the states spanned by {|A(x)〉} has which are physically equivalent

states. For example, two states |A(x)〉 and |A′(x)〉 are physically same/equivalent if A′i(x)

and Ai(x) are related by a time independent gauge transformation. As the states that

lie along a gauge orbit are physically equivalent, care must be taken so that only one

state from each gauge orbit (gauge field configurations related to one another by gauge

transformations) will contribute to the partition function. This is achieved by imposing

the Gauss law on the states of the Hilbert space. In the absence of any external charges,

the physical states {|Aphys〉} are required to satisfy the Gauss’s law,

D.E(x)|Aphys〉 = 0 (2.1.10)
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The Gauss law constraint can also be taken into account by requiring that the physical

states are invariant under the operator P̂

P̂ =

∫
DΛ(x) exp

(
−i

∫
d3x Tr[Λ(x)(D.E(x))]

)
(2.1.11)

, i.e P̂|Aphys〉 = |Aphys〉. Λ(x) = T aΛa(x), where Λa’s are N2 − 1 scalar functions vanishing

at spatial infinity and DΛ(x) is the integral over all possible gauge functions Λ(x). The

operator P̂ generates the time independent gauge transformations which are still allowed

in the A0 = 0 gauge. Essentially P̂ projects out one state from each gauge orbit. It can

be shown that the projection operator P̂ commutes with the Hamiltonian, i.e [P̂, Ĥ] = 0.

Therefore one can write,

e−βĤ P̂ = e−βĤp (2.1.12)

Where

Ĥp = Ĥ + i
∫

d3x Tr(E.DΛ(x)/β). (2.1.13)

Note that in equation (2.1.11) the operators E and Λ can be interchanged by introducing

a minus sign. The Gauss law constraint leads to a new term in the Hamiltonian operator.

So the partition function the physical degrees of freedom is given by,

Z =

∫
DA(x)〈A(x)|e−βĤp |A(x)〉 (2.1.14)

The momentum operator Ei(x) in the Hamiltonian Ĥp does not commute with the operator

Ai(x). Hence the states |A(x)〉 are not eigen states of Ei(x). The only way to evaluate the

above integrand/expectation value is by writing,

e−βĤp =
(
e−εĤp

)N
. (2.1.15)
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Here ε =
β

N
. Further N − 1 identity operators,

∫
DAi(x, j) |Ai(x, jε)〉〈Ai(x, jε)|, j = 1, ...N − 1, (2.1.16)∫
DEi(x, j) |Ei(x, jε)〉〈Ei(x, jε)|, j = 1, ...N − 1 (2.1.17)

are inserted between each consecutive factors of e−εĤp in equation (2.1.14). In the partition

function, this leads to factors like the following in the,

〈Ai(x, ( j + 1)ε)|Ei(x, ( j + 1)ε)〉〈Ei(x, ( j + 1)ε)|e−εĤp |Ai(x, jε)〉 (2.1.18)

The first factor is

〈Ai(x, ( j + 1)ε)|Ei(x, ( j + 1)ε)〉 ∝ exp[i
∫

Ei(x, ( j + 1)ε).Ai(x, ( j + 1)ε)] (2.1.19)

apart from a normalization constant. For largeN , ε is small. The other factor in the above

amplitude can be calculated by expanding e−εĤp to first order in epsilon (as ε << 1).

〈Ei(x, ( j + 1)ε)|[1 − εĤp]|Ai(x, jε)〉. (2.1.20)

This can be evaluated easily, by using

Âi|Ai(x, jε)〉 = Ai(x, jε)|Ai(x, jε)〉

Êi|Ei(x, jε)〉 = Ei(x, jε)|Ei(x, jε)〉
(2.1.21)

The result is,

(1 − εĤp)(Ei(x, ( j + 1)ε, Ai(x, jε)) × 〈Ei(x, ( j + 1)ε)|Ai(x, jε)〉 (2.1.22)

' e−εĤp(Ei(x, ( j + 1)ε, Ai(x, jε)) × 〈Ei(x, ( j + 1)ε)|Ai(x, jε)〉 (2.1.23)
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Another equation like (2.1.19)

〈Ei(x, ( j + 1)ε)|Ai(x, jε)〉 ∝ exp(−i
∫

Ei(x, ( j + 1)ε).Ai(x, jε)). (2.1.24)

Through the above steps by inserting the complete set of states, we have converted the

partition function into integral over functions Ei(x, jε = τ j) and Ai(x, jε = τ j). In the

integral the functions Ei(x, τ j)’s appear in the exponential with linear and quadratic pow-

ers. The Gaussian integration of these momentum functions can be carried out exactly,

resulting in the following path integral form of the partition function,

Z ∝

∫
DΛ(x)

∏
j

dAi(x, jε) exp[−S (Λ(x), Ai(x, jε))] (2.1.25)

Where

S (Λ(x), Ai(x, jε)) =

∫
d3x ε

1
2

( (Ai(x, ( j + 1)ε) − Ai(x, jε))
ε

− di

(
Λ

gβ

)
+

(
Λ

β

)
× Ai(x, jε)

)2

+ B2


(2.1.26)

Note that Ai(x) = Ai(x, 0) = Ai(x, β). In the limit N → ∞, the path integral is written as

Z = lim
N→∞

Tr(P̂e−εĤ)N =

∫
Ai(x,0)=Ai(x,β)

[DΛ][DAi]e−S [Λ,Ai] (2.1.27)

Here
∫

[DAi] =
∫ ∏

i dAi is the functional integral over all possible paths between Ai(x, 0)

and Ai(x, β). Λ field depends only on x. However one can consider it dependent on time

by enhancing the gauge symmetry to include time dependent gauge transformations. With

now Λ = Λ(x, τ), it can be thought of as the A0(x, τ) field which was set to zero to quantize

the theory. In (2.1.27), Λ(x, τ) is replaced by βgA0(x, τ), the partition function is given by

Z =

∫
[DA]e−S E[A] (2.1.28)
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The Euclidean gauge action in (2.1.28) is given by,

S E[A] =

∫
V

d3x
∫ β

0
dτ

[
1
2

Tr[Fµν(x, τ)Fµν(x, τ)]
]
. (2.1.29)

Here Fµν = ∂µAν − ∂νAµ + ig[Aµ × Aν]. It is interesting to note that after fixing the gauge

and implementing the Gauss law the final form of the path integral partition function has

all the gauge symmetries present at the classical level. In the following, we derive the

partition function for the SU(N)+Higgs theory.

2.2 Partition function in the presence of fundamental

matter fields

The classical action SU(N) gauge theory with fundamental Higgs field is given by,

S [A, Φ] =

∫
d4x

[
−

1
2

Tr[FµνFµν] +
1
2

(DµΦ)†(DµΦ) −
m̄2

2
Φ†Φ −

λ̄

4
(Φ†Φ)2

]
(2.2.1)

This action describes the dynamics and interactions of (N2 − 1) gluons and 2N scaler

bosons. The Higgs fields Φ is in the fundamental representation of SU(N). The covariant

derivative DµΦ is defined as DµΦ = ∂µΦ+ igAµΦ, where g is the gauge coupling constant,

The action (2.2.1) is invariant under the following local SU(N) gauge transformations of

the gauge and Higgs fields,

Aµ(x) −→ V(x)Aµ(x)V−1(x) −
i
g

(
∂µV−1(x)

)
V(x)

Φ(x) −→ V(x)Φ(x).
(2.2.2)

Here V(x) ∈ SU(N). To write the partition function of the system, we will follow the same

approach as in the pure SU(N) gauge case. In the A0 = 0 gauge, the conjugate momentum
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fields for the Higgs fields are,

ΠΦ =
∂L
∂Φ̇

= Φ̇†. (2.2.3)

ΠΦ† =
∂L
∂Φ̇†

= Φ̇. (2.2.4)

The total Hamiltonian in terms of the conjugate momentum fields for gauge and Higgs

fields are given by,

H =

∫
d3x Tr[ȦiΠAi + Φ̇ΠΦ + Φ̇†ΠΦ† − L]

=

∫
d3x Tr[F2 +

1
2

(ΠΦΠΦ†) −
1
2

(~∇Φ − ig~AΦ)†(~∇Φ − ig~AΦ) +
1
2

m̄2Φ†Φ +
1
4
λ̄(Φ†Φ)2]

(2.2.5)

Here L is the Lagrangian for SU(N)+Higgs theory. The commutation relations between

the Higgs fields and their conjugate momentum fields are taken to be,

[ΠΦ(x), Φ(y)] = −iδ3(x − y)

[ΠΦ†(x), Φ†(y)] = −iδ3(x − y)
(2.2.6)

The Hamiltonian operator with gauge field, Higgs field and their corresponding momen-

tum operators are given by,

Ĥ = Ĥg +

∫
d3x Tr[ΠΦΠΦ† − |(∇Φ)|2 − ig∂iΦ

†AiΦ + igAiΦ
†∂iΦ

−g2AiΦ
†AiΦ + m̄2Φ†Φ + λ̄(Φ†Φ)2]

(2.2.7)

Here Ĥg is the Hamiltonian operator for the pure gauge theory (2.1.7). Given total Hamil-

tonian operator, one can write the partition function for the theory,

Z = Tr[e−βĤ] =

∫
DAi(x)DΦ(x) 〈χ(x)|e−βĤ |χ(x)〉 (2.2.8)
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Here |χ(x)〉 = |A(x), Φ(x)〉. In the above ’Tr’ is trace over all physical states of the system.

The physical states satisfy the Gauss’s law,

[D.E(x) − ρ]|χ〉 = 0 (2.2.9)

Here ρ is the charge density operator, is given by,

ρ = i
∫

d3x [Φ†ΠΦ† −ΦΠΦ] (2.2.10)

As in the pure gauge case, the Gauss law constraint can be taken into account by consid-

ering that the physical states are invariant under the operator P̂

P̂ =

∫
DΛ(x) exp

(
i
∫

d3x T̂rΛ[(D.E) − [Φ†ΠΦ† −ΦΠΦ]]
)

(2.2.11)

The physical states satisfy the condition P̂|χ〉 = |χ〉. The operator P̂ commutes with the

Hamiltonian. As in the previous section P̂ operator effectively gives rise to an additional

term in the Hamiltonian in the partition function as,

Ĥp = Ĥ + i
∫

d3x
β

Tr[(E.DΛ) − Λ[Φ†ΠΦ† −ΦΠΦ]] (2.2.12)

The partition function with gauss law constraint is given by,

Z =

∫
dΛ(x)dAi(x)dΦ(x) 〈χ(x)|e−βĤp |χ(x)〉 (2.2.13)

Here Ai(x) = Ai(x, 0) = Ai(x, β) and Φ(x) = Φ(x, 0) = Φ(x, β). As in pure gauge case

e−βĤp is written as (e−εĤp)N insertingN − 1 complete set of states |χ(x), jε〉 and |Π(x), jε〉,

j = 1, 2, 3...N − 1. Following similar steps as in the last section we arrive at the following

form of the partition function in the limit N → ∞,

Z = lim
N→∞

Tr(e−εĤp)N =

∫
[DA][DΦ]e−S E[A,Φ] (2.2.14)
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The path integral in (2.2.14) is over periodic gauge and Higgs field, i.e Aµ(x, 0) = Aµ(x, β)

and Φ(x, 0) = Φ(x, β). The Euclidean gauge action in (2.2.14) is given by,

S E[A, Φ] =

∫
V

d3x
∫ β

0
dτ

{
1
2

Tr
(
FµνFµν

)
+

1
2

(DµΦ)†(DµΦ) +
m̄2

2
Φ†Φ +

λ̄

4
(Φ†Φ)2

}
(2.2.15)

In the following, we discuss the ZN symmetry in pure SU(N) gauge theory followed by

the SU(N)+Higgs theory.

2.3 ZN symmetry in pure SU(N) gauge theory

As mentioned above the Euclidean action is invariant under the following gauge transfor-

mation of the gauge fields:

Aµ(x, τ) −→ V(x, τ)Aµ(x, τ)V−1(x, τ) −
i
g

(
∂µV−1(x, τ)

)
V(x, τ) (2.3.1)

All gauge transformations are allowed as long as they preserve the periodicity of the gauge

fields in the temporal direction, i.e Aµ(x, 0) = Aµ(x, β). It turns out that the gauge trans-

formations V(x, τ) which preserve the periodicity of the gauge field along the temporal

direction so keep the action (2.1.29) invariant are of the form

V(x, τ = 0) = zV(x, τ = β) (2.3.2)

Where z = 1exp( 2πin
N ), 1 is the N × N identity matrix, (n = 0, 1, 2...N − 1). Here z ∈ ZN ,

where ZN is the center of the gauge group SU(N). Since the elements of ZN commute with

Aµ, under the gauge transformations (2.3.1), it is easy to see that the gauge fields remain

periodic. The gauge transformations at finite temperatures are not necessarily periodic

and can be characterized by z or the ZN group according to equation (2.3.2). The Wilson
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line,

P(x) =
1
N

Tr
[
P
{

exp
(
ig

∫ β

0
A0(x, τ)dτ

)}]
, (2.3.3)

Under the gauge transformations (2.3.2), P(x) transforms as P(x) → zP(x) [1, 47]. All

gauge transformations (2.3.2) which correspond to z, lead to same transformations of the

Polyakov loop. Therefore, it is useful to classify the all gauge transformations by ZN

group. The pure SU(N) action is invariant under these gauge transformations. So pure

gauge partition function has ZN symmetry. It can be shown that the Polyakov loop thermal

average (L)is related to the free energy Fq of a isolated static fermion or boson [48, 49],

L ∼ e−(Fq) (2.3.4)

Confinement requires that Fq is infinite, so L = 0. On the other hand the possibil-

ity of isolated charges in the deconfinement phase requires the free energy Fq to be fi-

nite. In this case L , 0 which leads to the spontaneous breaking of the ZN symmetry.

Non-perturbative lattice studies show that the pure SU(N) gauge theory undergoes the

confinement-deconfinement (CD) transition at high temperature T = Tc. These studies

show that the thermal average of the Polyakov loop vanishes at low temperatures and

acquires non-zero values for temperature above a critical temperature Tc(N), i.e

L , 0 (Deconfinement) (Fq finite)

L = 0 (Confinement) (Fq infinite)
(2.3.5)

Thus, the Polyakov loop serves as an order parameter for the CD transition [2]. Since L

is the trace of an SU(N) matrix, for N = 2 the range of values L can take is [−1, 1]. For

N > 2, it can take any value in a n−polygon in the complex plane whose vertices are given

by ei 2πn
N , (n = 0, 1, ...N − 1). It is important to note that the ZN symmetry is the symmetry

of the pure SU(N) gauge theory partition function [50–52]. This means the ZN symmetry

and Polyakov loop are useful only when the system described by SU(N) gauge theory is

in equilibrium. It is interesting to note that the behavior of L under ZN transformations
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is exactly like the magnetization in N−state Pott model. Non-perturbative studies have

shown that thermodynamic behavior of L is also similar to the magnetization in N−state

Potts model. The finite temperature SU(N) gauge theory and N−state Pott’s model. The

order of the SU(N) CD transition is found to be same as the magnetization transition in

N−state Pott’s model.

2.4 ZN symmetry in the presence of fundamental mat-

ter fields

Partition function for SU(N) gauge theory with matter fields is given by (2.2.1),

Z =

∫
[DA] [DΦ] e−S E[A,Φ]. (2.4.1)

where the Euclidean action S E[A, Φ] is

S E[A, Φ] =

∫
V

d3x
∫ β

0
dτ

[
1
2

Tr
(
FµνFµν

)
+ (DµΦ)†(DµΦ) + V1(Φ†Φ)

]
. (2.4.2)

Since the gauge field Aµ and Higgs field Φ are bosonic, they satisfy the following bound-

ary conditions in Euclidean space,

A(x, 0) = A(x, β)

Φ(x, 0) = Φ(x, β).
(2.4.3)

As mentioned before the Euclidean action is invariant under the gauge transformation of

the gauge and matter fields. The gauge fields transform as,

Aµ(x, τ) −→ V(x, τ)Aµ(x, τ)V−1(x, τ) −
i
g

(
∂µV−1(x, τ)

)
V(x, τ).
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The matter fields, being in the fundamental representation, transform as,

Φ(x, τ) −→ V(x, τ)Φ(x, τ). (2.4.4)

Under a ZN gauge transformation (2.3.2) such that V(x, β) = zV(x, 0) with z ∈ ZN , the

transformed gauge field is periodic in the temporal direction (2.4.3). The gauge trans-

formed matter fields Φg on the other hand satisfy the following boundary condition.

Φg(x, β) = zΦg(x, 0). (2.4.5)

It is obvious that the gauge transformed bosonic fields are periodic only when the gauge

transformations are periodic i.e z = 1. Φg are not allowed field configurations and can not

contribute to the partition function. One can still consider the ZN gauge transformations

with z , 1 but acting only on the gauge fields. However any gauge transformations acting

only on the gauge fields will likely result in change in the action. The action for two

configurations (Aµ, Φ) and (Ag
µ, Φ), where Ag

µ is ZN gauge transformed with z , 1, will

be different. Therefore the action is not invariant under all ZN gauge transformations.

Though the total action is not invariant, the pure gauge part of the action is invariant

under these transformations. The situation is similar to ZN spin systems in the presence

of external field. Some terms in the Hamiltonian for the ZN spins are invariant under

the ZN transformations and others are not. Hence the ZN symmetry is explicitly broken

in the presence of dynamical matter fields. The explicit breaking of the ZN will affect

the CD transition, as external field affects the magnetization transition in spin systems.

The extent to which the CD transition is affected depends on the strength of the explicit

symmetry breaking. For large explicit symmetry breaking the CD transition may become

a crossover transition from a first order pure gauge CD transition. In ZN spin systems the

strength of the explicit symmetry breaking is the magnitude of the external field. Though

it is easy to argue that ZN symmetry of pure SU(N) gauge theory is explicitly broken in the

presence of matter fields, the strength of the explicit symmetry breaking is very difficult
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to calculate. In field theories as in the present case explicit symmetry breaking of ZN

symmetry in the action will not necessarily imply that all fluctuations of the fields break

this symmetry explicitly.



3 Polyakov loop effective potential

calculations

In this chapter we derive the effective potential for the Polyakov loop following works

of Nathan Weiss and others [6, 37, 46]. In these analytic calculation it is possible to see

the explicit breaking of ZN symmetry in the presence of matter fields. In these studies the

Euclidean action is expanded around the minimum upto quadratic order in the fluctuations

of the fields [37,53]. This allows the analytic calculation of the partition function. In the

following we derive the effective potential calculations [6,37,46]. These calculations are

reliable at high temperatures (T >> Tc) where higher order fluctuations of the fields are

small, so can be ignored.

3.1 Effective potential for pure SU(N) gauge theory

The Euclidean partition function for SU(N) pure gauge theory is given by (2.1.27),

Z = N
∫

[D(gβA0)][DAi(x, t)] e−S E ,

with the Euclidean action,

S E =
1
2

∫ β

0
dt

∫
d3x[(∂0Ai − ∂iA0 + gA0 × Ai)2 + B2

i ]. (3.1.1)

23
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The functional integration over A0 is carried on compact SU(2) space. It is preferable

to work in the gauge in which the A0 field depends only on x and not on the temporal

variable t [46]. Unlike the zero temperature case, at finite temperature we can not set

A0 = 0 by a gauge transformations. Such a gauge transformation well be dependent on

time, so will spoil the periodic boundary condition of the Ai(x, τ) gauge fields. Still it is

possible to pick a gauge in which,

A0
a(x) = δa3φ(x). (3.1.2)

With this choice of A0 the partition function can be written as,

Z = N
∫ ∏

x

[1 − cos[gβφ(x)]][Dφ(x)][DAi(x, t)]

exp
(
−

1
2

∫ β

0
dt

∫
d3x [(∇φ)2 + (∂0Ai + gφ3̂ × Ai)2 + B2]

)
.

(3.1.3)

where 3̂a = δa3. The factor (1 − cos[gβφ]) comes from the Haar measure of SU(2) [54].

Using eqn.(3.1.2), the Polyakov loop is determined in terms of φ as,

L(x) = cos
(
βgφ(x)

2

)
, (3.1.4)

It is convenient to calculate the effective potential in terms of φ instead of L. Later one

can always make the change of variables φ → L . The action in (3.1.1) is minimized

when φ(x) = C/g, is independent of x and Aa
i = 0. In this case S E = 0 for all values

of gφ(x) = C. So the Polyakov loop at the zeroth order of the fluctuations can take any

value between −1 to 1, i.e the effective potential is independent of L. We will see that the

fluctuations upto second order will modify the zeroth order effective potential.

The 1-loop effective potential which includes fluctuations upto second order is

evaluated by writing φ(x) = C
g + δφ(x) and Aa

i (x, t) = δAa
i (x, t) in the action and keeping

terms upto second order in δφ(x) and Aa
i (x, t). The measure term

∏
x[1− cos[gβφ(x)]] can
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be written as

exp

ln{∏
x

[1 − cos[gβφ(x)]]}

 = exp
(∫

d3x ln{1 − cos[gβφ(x)]}
∫

d3k/(2π)3
)
.

(3.1.5)

The summation over x can be written as an integration multiplied by the momentum space

volume factor. Conventionally the summation over momentum k is written as an integral

in k times physical volume. The action with the measure term is given by,

S =
1
2

∫ β

0
dt

∫
d3x [(∇δφ)2 + (∂0Ai + C3̂ × δAi)2 +

1
2

(∂iδA j − ∂ jδAi)2]

−

∫
d3k

(2π)3 d3xln(1 − cosβC) + O(g2).
(3.1.6)

There will be a term from the measure, quadratic term of the fluctuation. But it is ignored

because it is higher order in g. Since Z is in the form of a Gaussian integral, the integration

over δφ(x) and Aa
i (x, t) can be carried out. It is convenient to expand the fields in Fourier

modes as in the following,

δφ(x) =

√
1
V

∑
k

ei(k.x)φ(k) (3.1.7)

δAa
i (x, τ) =

√
β

V

∑
ω,k

ei(k.x.+ωτ)χa
i (k) (3.1.8)

Note that since the gauge field fluctuations are periodic in τ = β, ω = 2πn
β

where n is any

integer. Substituting the Fourier modes in the above action leads to five separate terms as,

S φ(k) =
∑

k

k2φ(k)φ(k) (3.1.9)

S T
χ3

=
∑
k,ω

(ω2 + k2)χ3
T (k, ω)χ3

T (k, ω) (3.1.10)

S L
χ3

=
∑
ω

ω2χ3
L(k, ω) ∗ χ3

L(k, ω) (3.1.11)

S T
χ1,2

=
∑
n,k

(
A1

T (ω, k) A2
T (ω, k)

)
MT

A1
T (ω, k)

A2
T (ω, k)

 (3.1.12)
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S L
χ1,2

=
∑
n,k

(
A1

T (ω, k) A2
T (ω, k)

)
ML

A1
T (ω, k)

A2
T (ω, k)

 (3.1.13)

The 2 × 2 matrices MT and ML are given by

MT =

ω
2 + C2 + k2 i2ωC

−i2ωC ω2 + C2 + k2

 . (3.1.14)

ML =

ω
2 + C2 i2ωC

−i2ωC ω2 + C2

 . (3.1.15)

As we see that the action is diagonal in the Fourier modes φ(k)’s and in both

transverse and longitudinal modes A3
i (ω, k). The action has both diagonal and off diagonal

terms the modes A1
i (ω, k) and A2

i (ω, k) eqn.(3.1.14, 3.1.15). It is easy to diagonalize the

matrices involving MT and ML. So in all we have the eigen values k2 for φ(k), ω2 + k2 for

transverse component of A3
i (ω, k),ω2 for longitudinal component of A3

i (ω, k), (ω2±C)2+k2

for transverse component of A1
i (ω, k) and A2

i (ω, k), ω2 ±C2 for longitudinal component of

A1
i (ω, k) and A2

i (ω, k). The integration of the Fourier modes give the partition function in

terms of the eigen values,

Z ∝

∏
ω,k

k2(ω2 + k2)2ω2((ω2 −C)2 + k2)2((ω2 + C)2 + k2)2(ω + C)2(ω −C)2


− 1

2

(3.1.16)

exp
[
−

∫
d3k

(2π)3 d3xln(1 − cosβC)
]
.

The free energy is obtained using the formula F = −
ln(Z(β))

β
. As the momenta are integrated
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out, the free energy F depends only on β = 1
T and C,

F(β) =
1
β

V
2

∞∑
−∞

∫
d3k

(2π)3 {lnk2 + 2ln[(ω + C)2 + k2] + 2ln[(ω −C)2 + k2] + 2ln[ω2 + k2]

+ln[ω2 + C2] + ln[ω2 −C2] + lnω2} −
1
β

V
∫

d3k
(2π)3 ln(1 − cosβC).

(3.1.17)

The summation of ω can be handled in the following way. Let us consider the second and

fourth term in the above,

F1 =

∞∑
−∞

∫
d3k

{
ln[(ω + C)2 + k2] − ln[ω2 + k2]

}
. (3.1.18)

The summation over ω of the integrand can be written in the following form,

∞∑
−∞

{
ln[(ω + C)2 + k2] − ln[ω2 + k2]

}
=

∞∑
−∞

∫
dk2

(
1

(ω + C)2 + k2 −
1

ω2 + k2

)
.(3.1.19)

The summation of the integrands on the r.h.s are computed using the following formulas,

∞∑
−∞

(
1

n2 + a2

)
=
πcoth[aπ]

a
(3.1.20)

∞∑
−∞

(
1

(n + b)2 + a2

)
=

πsinh[2aπ]
a(cosh[2aπ] − cos[2bπ])

(3.1.21)

Using these formula, the summation over ω in (3.1.19) is given by

∞∑
−∞

∫
dk2

(
1

(ω + C)2 + k2 −
1

ω2 + k2

)
=

∫
dk2 β

2k

(
sinhβk

coshβk − cosβC
−

sinhβk
coshβk − 1

)
= ln(coshβk − cosβC) − ln(cosβk − 1).

(3.1.22)

The integration constant is fixed by requiring that the above integral vanishes for C = 0.
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Using eqn. (3.1.22), F1 can be written as,

F1 =

∫
d3kln(1 − 2cosβCe−βk + e−2βk) +

∫
d3kln(1 − 2e−βk + e−2βk). (3.1.23)

The second term is singular but independent of C. Following the above steps to carry out

summation over ω for the 5th and 7th term in (3.1.17) we get the result,

∞∑
−∞

∫
d3k

(
ln(ω + C)2 − lnω2

)
=

∫
d3k ln(1 − cosβC) + f̄ (β). (3.1.24)

f̄ (β) is independent of C. From (3.1.17), (3.1.23) and (3.1.24), we arrive at the following

expression for the effective potential

Ve f f (C) = −
F(β,C)

V
=

1
2β(2π)3

∫
d3k{4ln(1 − 2cosβCe−βk + e−2βk) + 2ln(1 − cosβC)}

−
1
β

∫
d3k

(2π)3 ln(1 − cosβC) + f ′(β).

(3.1.25)

The last term f ′(β) independent of C, hence can be dropped from the effective potential.

The measure/ghost term cancels the longitudinal gluon contribution, so we have,

Ve f f (C) =
1

2β

∫
d3k

(2π)3 4ln(1 − 2cosβCe−βk + e−2βk)

=
2

(2π)3β4

∫
dx x2ln(1 − 2cosβCe−x + e−2x).

(3.1.26)

The x−integration is carried out by writing the factor,

ln(1 − 2cosβCe−x + e−2x) = ln(1 − e−xeiβC) + ln(1 − e−xe−iβC)

= 2Re[ln(1 − e−xeiβC)]

= −2
n=∞∑
n=1

enxcos(nβC)
n

.

(3.1.27)
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Using the above series form for ln(1 − 2cosβCe−x + e−2x) in (3.1.26) we get,

Ve f f (C) = −
1

2(2π)3β4

∞∑
1

cos(nβC)
n4

= −
2π2

β4

 1
45
−

1
24

[
1 −

[(
βC
π

)
mod2
− 1

]2]2 .
(3.1.28)

Equation (3.1.28) is the effective potential for the Polyakov loop considering fluctuations

upto one loop. The potential is periodic in βC with period 2π. In the following Fig. 3.1,

we plot the effective potential as a function of βC [37]. There are two degenerate minima

at βC = 0 and βC = 2π. These two values of βC correspond to L = 1 and L = −1,

so there is spontaneous breaking of Z2 symmetry. The value of effective potential at the

degenerate minima corresponds to the free energy of an ideal gas of gluons. Note that the

results do not depend on the gauge coupling constant g.
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2 Π
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Figure 3.1. 6β4Ve f f

π2 vs βC
2π is plotted for SU(2).

The barrier between the minima decreases with temperature. For small enough

height of the barrier there will be fluctuations connecting the minima. So it is possible that

this will result in a distribution of the Polyakov loop in physical space, such that equal spa-

tial volume fraction in L = 1 and L = −1. Such a state will have properties of confinement
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as the thermal average of the Polyakov loop will vanish. The perturbative calculations of

effective potential for SU(3) slightly involved but show spontaneous breaking of the Z3

symmetry. In the following, we briefly review the effective potential calculations for the

Polyakov loop in the presence Higgs field. We will restrict our discussions to ideal gas of

Higgs bosons coupled to the SU(2) gauge fields.

3.2 Effective potential for SU(2)+Higgs theory

In this section, we describe the derivation of the effective potential for the Polyakov loop

for SU(2) gauge theory in the presence of Higgs fields in the fundamental representation.

The calculations are only upto one loop [6, 46]. The effective potential calculations in

the presence of Higgs field proceeds similar to the last section. The partition function for

SU(2)+Higgs theory with vanishing quartic coupling is given by,

Z = N
∫

[DΦ†][DΦ][D(gβA0)][DAi] exp(−S E), (3.2.1)

with the Euclidean action,

S E =
1
2

∫ β

0
dt

∫
d3x {[(∂0Ai − ∂iA0 + gA0 × Ai)2 + B2]

+
1
2

(DµΦ)†(DµΦ) +
m2

H

2
Φ†Φ}.

(3.2.2)

The covariant derivative DµΦ = ∂µΦ + igAµΦ. As in the previous section, the gauge field

A0 is considered to be Aa
0 = δa3φ(x). With this choice of A0 the action is minimized by

φ(x) =
C
g
, Aa

i = 0, Φ = 0. (3.2.3)
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Here C is independent of x. The Euclidean action vanishes at the minimum. The full

fields expanded around the minima as,

φ(x) =
C
g

+ δφ(x), Aa
i = δAa

i (x), Φ(x) = δΦ(x). (3.2.4)

Assuming the fluctuations δφ(x), δAa
i (x) and δΦ(x) are small, the action (3.2.2) is ex-

panded around the minimum configuration (3.2.4). When the fluctuations are considered

upto one loop, i.e terms which are upto 2nd order in the fluctuations, the gauge part and

matter part separate. However the temporal covariant derivative of the Higgs field still de-

pends on the zero mode of φ(x), i.e C
g . Hence we need here only to consider the effective

potential for the Polyakov loop coming only from the Higgs field. The part for the gauge

fields can be taken over from the previous section. The relevant partition function is now

given by,

Z ∝
∫

[DΦ†][DΦ]exp[−
1
2

(
∂δΦ†

∂τ
+

iC
2
δΦ†

) (
∂δΦ

∂τ
−

iC
2
δΦ

)
(3.2.5)

−
1
2
∇Φ†∇Φ −

m2
H

2
Φ†Φ].

This partition function is that of an ideal bosonic gas with an imaginary chemical potential

iC. Note that Φ(x) is a doublet field. So the partition function (3.2.1), for the choice of

A0 field, will be square of the partition function of a complex scalar field. We follow the

computation [55], of the partition function of a complex scalar fieldΦ(x) = φ1(x)+iφ2(x).

As in the previous section the fields, now δφ1(x) and δφ2(x), are expressed in Fourier

modes,

δφ1(x, τ) =

√
β

V

∑
ω,k

ei(k.x+ωτ)φ1(ω, k) (3.2.6)

δφ2(x, τ) =

√
β

V

∑
ω,k

ei(k.x+ωτ)φ2(ω, k), (3.2.7)
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Since the Higgs field must be periodic in the temporal direction, ω = 2πn
β

with integer n.

The partition function in terms of the Fourier modes is given by,

Z = N
∏
ω

∏
k

∫
dφ1(ω, k)dφ2(ω, k)e−S , (3.2.8)

where

S =
1
2

∑
ω

∑
k

(
φ1(−ω,−k) φ2(−ω,−k)

)
M

φ1(ω, k)

φ2(ω, k)

 (3.2.9)

where

M =

β
2(ω2 + ωk − µ

2) −2µω

2µω β2(ω2 + ωk − µ
2)

 . (3.2.10)

Here ωk =

√
(k2 + m2

H) and µ = iC
2 . The matrix M can be diagonalized. The integrations

of the Fourier modes gives the partition function in terms of the eigen values is given by,

lnZ = −
1
2

ln

∏
ω

∏
k

β2
(
ω2 + (ωk − µ)2

) + −
1
2

ln

∏
ω

∏
k

β2
(
ω2 + (ωk + µ)2

)
= −

1
2

∑
ω

∑
k

ln
{
β2

(
ω2 + (ωk − µ)2

)}
+ −

1
2

∑
ω

∑
k

ln
{
β2

(
ω2 + (ωk + µ)2

)}
.

(3.2.11)

The summation over ω can be carried out as in the previous section using the formula

(3.1.22). Replacing µ by iC
2 the resulting expression for the logarithm of the partition

function given by,

lnZ = −
∑

k

{
βωk + ln

(
1 − e−β(ωk−

iC
2 )
)

+ ln
(
1 − e−β(ωk+ iC

2 )
)}

(3.2.12)

The first term is independent of C, so can be dropped from the effective potential Vh(β,C) =

lnZ
βV , where V is the spatial volume.

Vh(β,C) =
2
β

∫
d3k

(2π)3

{
ln

(
1 − e−β(ωk−

iC
2 )
)

+ ln
(
1 − e−β(ωk+ iC

2 )
)}

(3.2.13)
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The factor 2 above is to account for the Higgs doublet. The integration over k can be

carried out for massless case (mH = 0) as in the last section. The effective potential

contribution from the Higgs Vh(β,C) in this case is given by,

Vh(C) = −
2π2

β4

 1
45
−

1
24

[
1 −

[(
βC
2π

)
mod2
− 1

]2]2 . (3.2.14)

So for massless Higgs Vh is periodic over βC = 4π. As a result βC = 0 and βC = 2π do

not have same value of Vh. As a result L = −1 and L = −1 are non-degenerate. Clearly

the Z2 symmetry is explicitly broken for mH = 0 as shown in Fig. 3.2 , with L = 1 is the

only ground state. L = −1 corresponds to the peak of the Fig. 3.2. The strength of the

0.5 1.0 1.5 2.0

ΒC

2 Π

0.1

0.2
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0.4

0.5

6 Β4 Vh

Π2

Figure 3.2. 6β4Vh
π2 vs βC

2π is plotted for SU(2)+Higgs when mH = 0.

explicit symmetry breaking will decrease with mH. It is clear that in the limit mH = ∞,

Vh will not have any C dependence, restoring the Z2 symmetry. For number of Higgs

doublets. The full effective potential Vg + Vh has a local minimum at L = −1, a meta-

stable state. The explicit symmetry breaking increases with number of Higgs doublets.

For four Higgs doublets the meta-stable state at L = −1 disappear. For number of Higgs

doublets Nb > 4, there will be a critical mH(Nb) below which there will be no meta-stable
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states. The one loop calculations show that the Z2 (ZN) symmetry is explicitly broken by

the presence of the Higgs fields. However these fields couple only to the zero mode of the

A0, Ai fields at 1−loop. In the pure gauge case these modes give rise to the Z2 symmetry of

the effective potential. Therefore one should couple these modes also with the Higgs field

to see explicit breaking of the Z2 (ZN) symmetry. Though the perturbative calculations

have been successful in demonstrating the ZN symmetry and its explicit breaking in the

effective potential of the Polyakov loop, these calculations are not reliable near the CD

transition. The gauge coupling is expected to grow as the temperature is lowered towards

Tc and so also the fluctuations.



4 Strong coupling methods

Perturbative studies on ZN symmetry in gauge theories are limited to high temperatures

away from the transition region. These studies are not reliable as both the gauge coupling,

fluctuations are large near the CD transition. In this strong coupling limit mean field

approximation offer understanding of the ZN symmetry and the CD transition. For SU(N)

with dynamical quarks [15], these studies show that the inverse of the quark mass play the

role of an external field for the Polyakov loop. For SU(3) as the quark masses decreases

the first order CD transition becomes weaker. For a critical value of the quark masses the

transition becomes second order. Further decrease in the masses lead to a crossover CD

transition. These results are in qualitative agreement with non-perturbative studies [9].

In the strong coupling limit, mean field study of the SU(2)+Higgs theory have shown that

the CD transition is a crossover for finite Higgs mass [38].

In this chapter, we derive the lattice action for SU(N) Higgs theory. Following

this we derive the mean field studies of ZN symmetry and CD transition in the strong

coupling limit focusing on N = 2.

35
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4.1 Discretization of continuum SU(N)+Higgs action

on the lattice

Partition function for SU(N)+Higgs theory is given by,

Z =

∫
[DA][DΦ] e−S E[A,Φ] (4.1.1)

Where S E[A, Φ] is the Euclidean action which describes the interaction of the gauge field

Aµ(xE) and the Higgs field Φ(xE) and is given by (2.2.15).

S E[A, Φ] =

∫
V

d3x
∫ β

0
dτ

{
1
2

Tr
(
FµνFµν

)
+

1
2

(DµΦ)†(DµΦ) +
m̄2

2
Φ†Φ +

λ̄

4!
(Φ†Φ)2

}
(4.1.2)

Here xE is the Euclidean four vector, gauge field(A) is N × N traceless matrix and Higgs

field Φ is a 1 × N complex scalar field. The Higgs field Φ is in the fundamental represen-

tation of SU(N).

We first consider discretization of the gauge fields. The corresponding gauge

action is given by,

S E[A] =

∫
V

d3x
∫ β

0
dτ

1
2

[
Tr(FµνFµν)

]
. (4.1.3)

This theory in (4.1.3) can be regularized by discretizing it on a four dimensional lattice.

The four space-time vector xE(x, τ) is replaced by na, where n is the co-ordinate of the

Euclidean lattice, i.e n = (n1, n2, n3, n4). For a lattice N3
s × Nτ, there are Nτ points in

temporal direction and Ns points in (x,y,z) directions. Given a lattice spacing "a", the

temperature is given by T = 1
aNτ

and the size of the given system is given by L = Nsa.

The gauge fields are defined only on the lattice points i.e Aµ(n) and the action is written

in-terms of these discretized fields. The requirement of any discrete lattice action is that it

should lead to the continuum action in the limit a→ 0. If the continuum action has gauge

symmetry than the discretized action must be gauge invariant under gauge transformations
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defined on the lattice. Instead of the discretized gauge field Aµ(n) the lattice action is

written in terms of gauge link Un,µ = eiagAµ(n). Un,µ is the link connecting lattice site n and

n + µ̂, where µ̂ is a unit vector in the µth direction, with (µ = 1, 2, 3, 4). Since Aµ = Aa
µT

a

the gauge links Un,µ are SU(N) matrices. Under a gauge transformation Vn, the gauge

links transform as,

Un,µ → VnUn,µV−1
n+µ̂. (4.1.4)

It can be shown that this leads to eqn.(2.3.1) in the continuum limit. Due to the trans-

formation property of the links, the gauge invariant objects can be formed purely from

the trace of path ordered product of links along closed loops. The simplest path ordered

product of links along an elementary square is called a plaquette as given by,

UP = Un,µUn+µ̂,νU
†

n+ν̂,µU
†
n,ν (4.1.5)

The plaquette Up with co-ordinate n lies in the µ − ν plane. Here U−1
n,µ = U†n,µ and 1 ≤ µ <

ν ≤ 4. A sketch of an gauge link elementary plaquette defined in the counterclockwise

Figure 4.1. Sketch of an elementary plaquette UP

direction is shown in Fig. 4.1 and the notation Uµ(n) in figure is same as Un,µ. Using
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Baker-Campbell-Housdorff formula,

eAeB = eA+B+ 1
2 [A,B]+... (4.1.6)

one can relate the plaquette with the gauge field strength tensor,

UP = eia2gFµν(n) (4.1.7)

The exponential term in UP can be expanded as follows for small lattice spacing a,

UP = 1 + ia2gFµν(n) −
a4g2

2
[Fµν(n)]2 − i

a6g3

6
[Fµν(n)]3 + ...

U†P = 1 − ia2gFµν(n) −
a4g2

2
[Fµν(n)]2 − i

a6g3

6
[Fµν(n)]3 + ... (4.1.8)

Adding the above two equations, taking trace both sides and rearranging, we have,

Tr[Fµν(n)]2 + O(a2) '
1

a4g2 Tr
[
2 − UP − U†P

]
(4.1.9)

The four-dimensional volume integral is discretized as,

∫
d4xE → a4

∑
n

(4.1.10)

Making use of the above discretized form of space and eqn. (4.1.9), we have the dis-

cretized action,

S G[U] = βg

∑
P

[
1 −

1
2N

Tr
(
UP + U†P

)]
. (4.1.11)

Here βg = 2N
g2 is the gauge coupling. The sum over plaquette takes care of the extra factors.

As a → 0 the discretized action in (4.1.11) approaches to the continuum action (4.1.3)

upto an error of O(a2).
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For the Higgs discretization the relevant action is

S E[Φ] =

∫
V

d3x
∫ β

0
dτ

{
1
2

(DµΦ)†(DµΦ) +
m̄2

2
Φ†Φ +

λ̄

4
(Φ†Φ)2

}
. (4.1.12)

The Higgs fields live on the lattice sites Φ(na). The lattice variables are obtained by

making the following substitutions,

Φ(xE)→ Φ(n)∫
d4xE → a4

∑
n

�Φ(xE)→
1
a2 �̂Φ(n)

DµΦ(xE)→ DµΦ(n).

(4.1.13)

where

�̂Φ(n) =
∑
µ

[Φ(n + µ̂) +Φ(n − µ̂) − 2Φ(n)]

∂µΦ(n) = [Φ(n + µ̂) −Φ(n)]

DµΦ(n) = ∂µΦ(n) +
(1 − Uµ)

a
Φ(n).

(4.1.14)

Following the above discretized form of field, derivative and double derivative, the total

action in (4.1.2) can be expressed in terms of discretized variables like given below,

S [U, Φ] =
∑

n

βg

∑
P

[1 −
1

2N
Tr(UP + U†P)] +

8a2

2
Tr(Φ†nΦn)

−a2
∑
µ

ReTr(Φ†n+µUn,µΦn) −
m̄2a4

2
Tr(Φ†nΦn) +

λ̄a4

2
Tr(Φ†nΦn)2.

(4.1.15)

In the following, we describe mean field approximation of the strong coupling limit of the

above theory.
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4.2 Strong coupling expansion in SU(2)+Higgs theory

The study of confinement-deconfinement transition in the presence of dynamical matter

fields require non-perturbative lattice simulations. However the lattice partition function

for analytic studies in the strong coupling limit, βg → 0. The confinement of static

color charges can be analytically demonstrated in this regime. The mean field approx-

imations coupled with strong coupling techniques provide qualitative understanding of

the CD transition in the presence of dynamical matter fields. Previous study of SU(N)

gauge theory with dynamical quarks show that the effect of dynamical quarks is equiva-

lent to an external field on the Polyakov loop [15]. The effective external field is given

by 2n f (κNτ), where n f is number of flavors, κ is the hopping parameter. The hopping

parameter vanishes in the limit of infinite heavy quarks. Similar studies have been done

in SU(N) theory with dynamical bosons [38]. Here we describe these calculations with

λ = 0 for SU(2)+Higgs theory. The lattice Euclidean partition function is given by,

Z =

∫
[DU][DΦ] eβg

∑
P{1−

1
2N [TrUP+TrU†P]}−

∑
n,m Φ

†
nQµ,nmΦm (4.2.1)

In the pure gauge part of the action, the constant term can be ignored as it gives rise to a

overall constant factor. Qµ,nm is given by,

Qµ,nm =
1
2

[δn,m1 − 2κ[δn,m−µUn,µ + δn,m+µU†n,µ]]. (4.2.2)

where κ is the hopping parameter given by 1
mH 2a2+8 . The Higgs part in the partition function

(4.2.1) is Gaussian, therefore the Higgs field integration can be carried out exactly. After

integrating the Higgs fields, the partition function in terms of the remaining Un,µ’s is given

by,

Z =

∫
[DU] eβg

∑
P{

1
2N [(TrUP+TrU†P)]}− 1

2 TrlnQ. (4.2.3)
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We can ignore the factor 1
2 in Q as it will only lead to a constant factor multiplying the

partition function, therefore will not affect the behavior of the CD transition. We first

consider the partition function without the Higgs part, κ = 0. In the strong coupling limit

βg → 0, spatial plaquettes can be ignored [48, 49, 56] as they are not crucial for the

CD transition. Therefore, the spatial links can be integrated out resulting in following

partition function in terms of character expansion,

Ze f f (κ = 0) =

∫ ∏
n

dWn

∏
n,e

1 +
∑

r

zr(β)Nτχr(Wn)χr(W
†
n+e)

 (4.2.4)

Here n = (n1, n2, n3) and Wn is,

Wn =

 Nτ∏
n4=1

U(n,n4),4

 , (4.2.5)

the Polyakov loop/Wilson line variable, χr represents character of the r fundamental rep-

resentation of the group and zr’s are the character coefficients. zr’s can be expressed in

terms of series expansion of βg, and are increasingly higher order in βg as r increases. In

the strong coupling limit i.e small enough βg, the term corresponding to the fundamental

representation r ≡ (1 : 0) will dominate in eqn. (4.2.4) [57]. The partition function with

only the contribution of the fundamental representation is given by,

Ze f f (κ = 0) �
∫ ∏

n

dWn eβ
′

∑
n,e[TrWnTrW†n+e+ c.c] (4.2.6)

For SU(2), β′ = 1
2

[ I2(βg)
I1(βg)

]Nτ

, where In(βg) is the modified Bessel function of order n. Eqn.

(4.2.6) is the effective theory for the Polyakov loop in the strong coupling limit. Deriving

the effective potential for the Polyakov loop from the above partition function is difficult

due to the integration measure dW. But this theory can be used to study the CD transition

in the mean field approximation. Note that the effective theory is manifestly ZN invariant.

The symmetry can be realized by looking at the transformation property of the Polyakov

loop which under the global ZN transformation transforms W → zW, where z ∈ ZN . In the
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action z and z† can cancel each other leaving it invariant. The partition function (4.2.6)

looks similar to that of a ferromagnetic ZN spin system.

In the limit of large but finite bare Higgs mass, the hopping parameter is small.

In this limit, one can expand lndetQ in powers of κ,

lndetQ = TrlnQ = −
∑

l

Tr(
κl

l
Ml) (4.2.7)

Where M = δn,m−µUn,µ + δn,m+µU
†
n,µ and κ → 2κ .The sum in eqn. (4.2.7) is over all closed

loops of length l in units of a. For Nτ < 4 the leading term is given by,

lndetQ ' −h
∑

n

[TrWn + TrW†
n ]. (4.2.8)

Here h = (2κ)Nτ . This contribution comes from hopping in the temporal direction. The

effective partition function for the gauge Higgs system in the strong coupling limit for

Nτ < 4 is given by

Ze f f =

∫ ∏
n

dWn exp

β′∑
n,e

[TrWnTrW†
n+e + c.c] + h

∑
n

[TrWn + TrW†
n ]

 (4.2.9)

The partition function (4.2.9) is now not invariant under the Z2 symmetry due to last two

terms in the effective action. The free energy can be calculated from the partition function

by

F = −
1
V

lnZe f f (4.2.10)

To calculate the free energy in the mean field approximation, each Wilson loop on site n

is considered to be under the influence of an average field J, trace of an SU(2) matrix.

This is achieved by replacing the nearest neighbor Polyakov loop/Wilson line Tr(Wn+µ),

(µ→ 1....2d), by V = J/2d. d is the number of spatial dof. Now the partition function for
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the Polyakov loop/Wilson line TrW at site n is given by,

Zss(J, J†) =

∫
[dW] exp

[
β′(TrW J† + J TrW†) + h[TrW + TrW†]

]
(4.2.11)

Here Zss(J, J†) is the single site partition function in the mean field approximation. The

free energy is given by,

Fss = −ln(Zss) (4.2.12)

A self consistent condition is imposed, in which the partition function average of the

Polyakov loop/Wilson line at site i equals the mean field Vk of the neighboring sites,

〈W〉 = V = J/2d (4.2.13)

From equations (4.2.12) and (4.2.13), we can write the following condition,

−1
β′
∂Fss

∂J†
=

1
2d

J (4.2.14)

A free energy FMF is written in terms of the mean field J [58],

FMF =
β′

2d
TrJ†J + Fss(J, J†) (4.2.15)

So that at the extremum condition,

∂FMF

∂J†
= 0 (4.2.16)

one recovers equation (4.2.14). The free energy (4.2.12) can be evaluated exactly for

SU(2) [59]. For SU(2), Tr(W) and J are real. The self consistent condition, eqn. (4.2.13)

can be written as,

Tr(W) =
2I2(12β′Tr(W) + 4h)
I1(12β′Tr(W) + 4h)

(4.2.17)
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To solve the equation (4.2.17) numerically we consider L = 1
2〈Tr(W)〉. When

h = 0, the above equation has always a solution for L = 0. For βg > (βgc = 1.8512), there

appears three solutions (0, L, −L). For βg > βgc, the mean field free energy calculation

show that the solutions L and −L only correspond to the minima of the free energy. For βg

near above βgc has singular behavior implying a second order phase transition as in seen

Fig. 4.2. In this case the theory has Z2 symmetry, and is spontaneously broken above βgc.
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Figure 4.2. Polyakov loop plotted as a function of βg for Nτ = 2 and h = 0.

For h , 0, there are no pair solutions (L,−L) of eqn. (4.2.17) as in h = 0. If L is the

solution of eqn. (4.2.17) then −L is not a solution. This shows that the Z2 symmetry is

explicitly broken. In figure we show L(βg, h) for h = 0.0225, 0.1 values of h.
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Figure 4.3. Polyakov loop plotted as a function of βg for Nτ = 2 and h = 0.0225.
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Figure 4.4. Polyakov loop plotted as a function of βg for Nτ = 2 and h = 0.1.

It is clearly seen form the Figs. 4.3 and 4.4 that with increase in h, decrease

in Higgs mass, the dependence of L on βg becomes increasingly smoother, suggesting

that the transition is becoming weaker. These results do agree with the non-perturbative

simulations for Nτ = 2 [38]. It is however important to note that Nτ considered here is

very small. For larger Nτ our simulation studies, presented in this thesis, show that the Z2

symmetry is restored for all values of the bare Higgs mass.





5 Numerical Methods

In this chapter, we briefly discuss numerical methods which are used to perform Monte

Carlo simulations of the lattice partition function of the SU(N)+Higgs theory. It is difficult

to calculate the S U(N)+ Higgs partition function,

Z =

∫
[DA][DΦ]e(−S E[A,Φ]), (5.0.1)

analytically. This is because there are interaction terms such as, gauge field self coupling,

Higgs quartic coupling interaction and gauge Higgs coupling. Perturbative treatment is

possible when all the couplings are suitably small. Near the CD transition perturbative

calculations are not reliable as couplings and fluctuations are not small. The problem

becomes tractable on a finite lattice, where the degrees of freedom are finite. The partition

function on lattice is given by ,

Z =

∫
[DUn,µ][DΦn]e(−S [Un,µ,Φn]) (5.0.2)

The discretized lattice action is given by (4.1.15),

S [Un,µ, Φn] = βg

∑
p

(
1 −

1
2N

Tr(Up + U†p)
)
− κ

∑
µ,n

ReTr
[
(Φ†n+µUn,µΦn)

]
+

∑
n

1
2

Tr
(
Φ†nΦn

)
+ λ

(
1
2

Tr
(
Φ†nΦn

)
− 1

)2 (5.0.3)

47
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The above action is obtained from Eqn. (4.1.15) by scaling the Φ field parameters λ̄ and

the Higgs mass m̄ [60] in the following way,

Φ(xE)→
√
κΦn

a
, λ̄→

λ

κ2 , m̄2 →
(1 − 2λ − 8κ)

a2κ
(5.0.4)

All the field variables and parameters in the above action are now dimensionless. Numer-

ically computing the above partition function, with number of integrations of the order

of number of lattice points, is almost impossible. In numerical simulations, partition

functions therefore are never computed. The problem becomes numerically tractable by

realizing that given a set of parameters of the theory, not all configurations of Un,µ and

Φn contribute equally to the partition function. Only a fraction of the space in functional

space contribute substantially to the partition function. In the Monte Carlo simulations,

a sequence of statistically independent configurations of (Φn,Un,µ) are generated. This is

achieved by repeatedly updating an arbitrary initial configuration using numerical meth-

ods which maintain the Boltzmann probability factor e−S and the principle of detailed

balance among the configurations in the sequence. To update the gauge fields, we use the

standard heat bath algorithm [11,61], and then update the Higgs fields using the pseudo-

heat bath algorithm [13]. The gauge link updates and Higgs field updates are followed by

over-relaxation steps which tend to reduce the correlation among the generated configu-

rations [14]. To further reduce auto-correlation between successive configurations along

the sequence (Monte Carlo history), we carry out ten cycles of this updating procedure

between subsequent measurements.

5.1 Monte carlo techniques

Monte Carlo simulations sample configurations in the functional space according to their

contribution to the partition function. The physical observables, their fluctuations and

higher order cumulants on the lattice are calculated by averaging over the configurations
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generated by Monte Carlo history. The sampling of the configurations in functional space

by the Monte Carlo simulations must obey the following Markov chain rules,

• From any configuration of the system A ≡ (U, Φ), it must be possible to evolve the

system to any other configurations A′ ≡ (U′, Φ′)by applying the evolution (Monte

Carlo updates) a sufficiently large number of times, known as the ergodicity condi-

tion.

• The transition probabilities between two configurations must satisfy the detailed

balance condition:

P(A)P(A|A′) = P(A′)P(A′|A) (5.1.1)

Where P(A) and P(A′) are the Gibb’s probabilities of states A and A′ respectively.

P(A|A′) is the transition probability of state from A to A′ and P(A′|A) is the transition

probability of from A′ to A.

The most important and simple algorithm based on the above Markov chain rules is the

Metropolis-Hastings algorithm. The Metropolis-Hastings algorithm [62] consists of the

following steps:

• Pick an initial configuration A0;

• Set t = 0;

• Iterate

Generate: randomly generate a new state A′ from At according to g(A′|At)

• Calculate: calculate the acceptance probability

Pacc(A′|At) = min
(
1, P(A′)

P(At)
g(At |A′)
g(A′ |At)

)
;

Here distribution g(At|A′) is the conditional probability of proposing a state At given

A′.
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• Accept/Reject: generate a uniform random number r ∈ [0, 1];

if r ≤ Pacc(A′|At), accept the new state and set At+1 = A′;

if r > Pacc(A′|At), reject the new state, and copy the old state forward At+1 = At;

• Increment: set t = t + 1;

5.2 Heat bath algorithm

The Metropolis algorithm is not efficient for simulations of SU(N) gauge theory. It is

difficult to use Metropolis-Hastings algorithm for continuous variables. The heat bath

algorithm improves on many shortcomings of the Metropolis algorithm. In the following,

we will discuss the heat bath algorithm for SU(2). This same method is used to update

SU(2) sub spaces of SU(N) matrices. Consider the following Wilson action for SU(2)

gauge theory (4.1.11).

S [U] = βg

∑
P

[1 −
1
4

ReTr (UP + U†P)] = βg

∑
P

[1 −
1
2

ReTr UP] (5.2.1)

Since the trace of SU(2) matrices are real, there is only Tr(UP) in the action. To update

any link U, we write an action S[U] by considering only terms in Eqn. (5.2.1) which

depend on the link U. The link U appears in six plaquettes, so there are six terms in Eqn.

(5.2.1). Let us denote the plaquettes by UP, P = 1, ....6. Also let us denote the staple

matrices connecting to the gauge link U by VP, P = 1, 2, ..6. The action S [U] is given by,

S [U] ∼

6 − βg

2
ReTr

∑
P=1,2,..6

(UVP)

 (5.2.2)

Since U and VP’s are SU(2) matrices, we can write
∑

P Tr(UVP) = Tr(U
∑

P VP) =

c̄Tr(UV), where c̄V =
∑

P VP. Note that sum of two SU(2) matrices is an SU(2) ma-

trix upto an overall factor. Therefore, V is a SU(2) matrix and the action S [U] is given
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by,

S [U] ∼ (6 − cReTr(UV)) , c =
c̄βg

2
(5.2.3)

Given the above action the probability distribution of the link U is given by,

P[U]dU ∝ exp(cReTr(UV)) dU (5.2.4)

Further we replaces U → UV−1 = W in the above equation, which gives

P[W]dW ∝ exp(−(c/2)Tr(U)) dW (5.2.5)

Since the group measure is invariant under U → W, one can generate U matrix according

to the probability

P[U]dU ∝ exp(−(c/2)Tr(U)) dU (5.2.6)

and then replace it with UV−1. To generate U according to the above probability, U is

written in the following form,

U = a01 + i~a.~σ (5.2.7)

~σ = (σ1, σ2, σ3) are the Pauli matrices. Now Tr(U) = 2a0. So the probability P[U]

depends only on a0. The vector ~a can take any value on the surface of a sphere whose

radius is
√

(1 − a2
0). The Haar measure dU can be written as,

dU = da0dai δ(1 − a2
0 − ~a.~a). (5.2.8)

In terms of the polar coordinates (ax, ay, az) = (r, θ, φ)

dU =
1
2

(1 − a2
0)

1
2 da0drdθdφsinθ δ(r − (1 − a2

0)
1
2 ). (5.2.9)
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This implies that

P(a0)da0 ∝ (1 − a2
0)

1
2 exp(ca0)da0 (5.2.10)

Conventionally two methods, Creutz method [11] and Kennedy-Peddleton method [61],

are used to generate a0 with the above probability distribution. In the Creutz method a0

is generated using the exponential part of the above distribution. Then accept/reject the

generated a0 using the rest of the probability distribution. This doesn’t work when c is

large as the generated values are close to c. For such values of 1, the rejection rate due

to (1 − a2
0)

1
2 factor is large. To improve on this, in ref. [61], it was suggested that eqn.

(5.2.10) can be written in the following form,

P′(δ)dδ = N′−1(1 −
1
2
δ2)

1
2 δ2exp(−cδ2) dδ (5.2.11)

With δ = (1 − a2
0)

1
2 and (0 ≤ δ

√
2),

For large c, the probability distribution has a peak near 0. δ is generated using the distri-

bution

g(δ)dδ = N̄−1δ2exp(−cδ2) dδ (5.2.12)

The above distribution is Gaussian-like distributions and can be generated easily by ma-

nipulating a Gaussian distribution [61]. The generated δ then can be accepted/rejected

using the factor (1 − 1
2δ

2)
1
2 . The following steps are used in the code.

• Generate two uniformly distributed pseudo-random numbers r and r′ in the interval

[0,1];

• Let x← −(lnr)/c and x′ ← −(Inr′)/c;

• Set C ← cos2(2πr1), with r1 is another uniform random number in [0,1] ;

• Let A← xC;

• Let δ̄← x′ + A;
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• If r2 > 1 − 1
2 δ̄ , for r2 uniform pseudo-random in (0,1], go back to first step;

• Set a0 ← 1 − δ̄.

The above updating method is repeated for each and every link of the lattice. The heat

bath updates for the gauge links is further augmented by over-relaxation routine to reduce

the auto-correlation of the gauge field correlations. In the over-relaxation procedure, each

link is rotated so that the gauge action is invariant. This is achieved by rotating the link U

in (5.2.3) by U → VUV−1. This over-relaxation step is repeated again for each and every

link on the lattice.

5.3 Pseudo-heat bath algorithm

Let us consider the lattice action for the SU(2)+Higgs theory (4.1.15),

S [U, Φ] = βg

∑
p

(
1 −

1
4

Tr(Up + U†p)
)
− κ

∑
µ,n

Re
[
Tr(Φ†n+µUn,µΦn)

]
+

∑
n

1
2

Tr
(
Φ†nΦn

)
+ λ

(
1
2

Tr
(
Φ†nΦn

)
− 1

)2 . (5.3.1)

For convenience the Higgs doublet above has been replaced by its magnitude times a

SU(2) matrix. The presence of the gauge Higgs interaction, the 2nd term, does not modify

the updating algorithm for the gauge link described in the previous section. This term

adds to the staples, so only modifies the constant c in eqn. (5.2.3). Following the previous

section, to update the Higgs field Φn at the site n [13], we collect the terms in the action

which depend on Φn. The action which depends only on Φn at a particular site n is given

by,

S [Φ] = −κ
∑
µ

[
Re

[
Tr(Φ†n+µUn,µΦn)

]
+ Re

[
Tr(Φ†nUn−µ,µΦn−µ)

]]
+

1
2

Tr
(
Φ†nΦn

)
+ λ

(
1
2

Tr
(
Φ†nΦn

)
− 1

)2 . (5.3.2)
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The gauge Higgs interaction term can be written as

S U−Φ =
∑
n,µ

Tr(ΦnΦ
†
n+µUn,µ +Φ†nUn,n−µΦn−µ) = ξTr(ΦB + c.c) (5.3.3)

The matrix B is an overall factor times an SU(2) matrix, because only SU(2) matrices are

involved. We make a further transition from the 2 × 2 matrix field to a four component

scalar φ,

φ(4) = Tr(Φ), φ(i) = Tr(Φσi). (5.3.4)

In terms of the field φ the site action is given by, S (φ) = (φ−b)2 + (φ2 −1)2. Here the four

vector b is given by b(4) = Tr(B), b(i) = Tr(σi) The probability distribution for φ is,

P(φ) ∝ e−S (φ) (5.3.5)

To generate a φ with the above distribution the following strategy is adopted. The site

action S [φ] is split into two parts, one quadratic and quartic as follows,

S (φ) = α(φ − α−1b)2 + λ(φ2 − v2
α)2 − cα (5.3.6)

Where

v2
α = 1 +

α − 1
2λ

(5.3.7)

Here α is a variable and cα is a constant independent of φ. Unlike the Haar Measure dU

in the last section, d4φ does not influence distribution of φ. A new value of φ is drawn

from the Gaussian distribution

P(φ) ∝ exp[−α(φ − α−1b)2] (5.3.8)

The generated φ is then accepted/rejected using the second term of (5.3.6) with probabil-

ity,

Paccp = Min [1, eV(φold)−V(φ)]. (5.3.9)
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Here V(φ) and V(φold) are values of V evaluated at φ and φold respectively. Since α is

a parameter, it can be tuned so as to maximize the acceptance rate of φ. The value of

α for which the acceptance is found to be maximum is the positive root of the cubic

equation [13],

α3 − (1 − 2λ)α2 − 4λα = 2λb2 (5.3.10)

We numerically solve this equation in our code [13]. One can also use the following

approximate solution [13],

α = h0 + [h1 + h2b2]
1
2 (5.3.11)

Here h0, h1 and h2 are given below:

h0 = α0 −
α0

2+4λ
6α0+4λ−2

h1 =
[

α0
2+4λ

6α0+4λ−2

]2

h2 = 4λ
6α0+4λ−2

α0 = 1
2 − λ +

[
(1

2 − λ)2 + 4λ
] 1

2

The above algorithm can be used for λ = 0. For this case large values of κ lead to insta-

bilities. This is due to negative Higgs mass, which drives the field to infinity. However,

the above algorithm works fine for the case when λ = 0 and mH = 0.
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In the following we show Monte Carlo history of various observables in SU(2)+Higgs

theory for λ = 0.005, κ = 0.058865 and βg = 2.35. We plot in Fig. 5.1 the Monte carlo

history of the Polyakov loop.
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Figure 5.1. Monte Carlo history of the Polyakov loop for 163 × 4 lattice with λ = 0.005,
κ = 0.058865 and βg = 2.35 in SU(2)+Higgs theory.
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In Fig. 5.2, we shows Monte carlo history of the observable H2 =
∑

n Φ
†
nΦn.
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Figure 5.2. Monte Carlo history of
∑

n Φ
†
nΦn for 163 × 4 lattice with λ = 0.005, κ = 0.058865

and βg = 2.35 in SU(2)+Higgs theory.
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The Fig. 5.3 shows the Monte carlo history of the interaction term KE =
∑

n Φ
†
n+µUn,µΦn.

In our simulations an initial configuration is specified to generate the Monte Carlo se-
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Figure 5.3. Monte Carlo history of
∑

n Φ
†
n+µUn,µΦn for 163 × 4 lattice with λ = 0.005,

κ = 0.058865 and βg = 2.35 in SU(2)+Higgs theory.

quence. For various choice of the initial condition these observables thermalized to same

equillibrium state, i.e same averages and higher order fluctuations. We have also checked

that our code reproduces result for previous studies by others.



6 Dynamical symmetry restoration

in SU(N)+Higgs theory: Simulations -

I

For the simulations, we use the publicly available MILC code [63] and modify it to

accommodate the Higgs fields. In the following, we explain the gauge link and Higgs

field updating methods.

6.1 Lattice action and parameters

The issue of ZN symmetry and the CD transition in the presence of Higgs field has been

studied before. These studies showed that for SU(2) Higgs theory, the CD transition

becomes a crossover [38] for Nτ = 2. One observable, the βg dependence of the Polyakov

loop suggested a critical behavior in 123 × 4 lattices. This was thought to be due to the

influence of the second order phase transition at infinitely heavy Higgs. These studies

were not much focussed on the critical behavior of the Polyakov loop, as it was thought

that since the action is not invariant under the ZN transition the CD transition will always

be a crossover.

The main motivation behind our study is to understand how the strength of

the explicit symmetry breaking depends on the parameters of the theory and if the nature

59
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of the explicit symmetry breaking and CD transition dependent on the cut-off. So we

planned to study the ZN symmetry by computing the distribution of the Polyakov loop

for different values of the gauge Higgs coupling and the Higgs quartic coupling. When

it seemed the distribution of the Polyakov loop is ZN symmetric, we did finite volume

studies to confirm the nature of the CD transition. We measure the following observables,

Polyakov loop, Φ†nΦn, Φ†n+µUn,µΦn to study the interaction between the gauge and Higgs

field, the ZN symmetry and the CD transition [10].

6.2 Sketch of Higgs phase diagram

Let us consider the SU(N)+Higgs action

S [U, Φ] = βg

∑
p

(
1 −

1
4

Tr(Up + U†p)
)
− κ

∑
µ,n

Re
[
Tr(Φ†n+µUn,µΦn+µ)

]
+

∑
n

1
2

Tr
(
Φ†nΦn

)
+ λ

(
1
2

Tr
(
Φ†nΦn

)
− 1

)2 .
The Polyakov loop L(ni) at a spatial site ni is trace of the path ordered product of all

temporal link variables on the temporal loop going through ni. A ZN rotation can be

carried out by multiplying all temporal links on a fixed temporal slice of the lattice by

an element of the ZN group. This operation leaves all terms of the above action invariant

except the κ dependent term. This term is solely responsible for the explicit breaking of

the ZN symmetry.

It is well known that for N = 2 [64–67] for the action (5.0.3) for a given βg,

there is a Higgs transition line on the λ − κ plane. The transition is first order (crossover)

for small (large) values of λ. For a fixed (λ, βg) the parameter, κ plays the role of the

transition parameter for the Higgs transition. For high κ (κ > κc) the system is found

to be in the Higgs phase with a non-zero Higgs condensate. With decrease in κ, the

condensate starts to melt and at the critical point κ = κc the system undergoes transition
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Figure 6.1. Theoretical expectations of explicit symmetry breaking on (λ−κ) plane for SU(2)
Higgs theory.

to the Higgs symmetric phase solid line in Fig. 6.1. For κ < κc the Higgs condensate

vanishes. Intuitively, when the system is in the Higgs phase, we can expect the matrix

ΦnΦ
†
n+µ has large overlap with 2 × 2 identity matrix. This is because the Higgs field

is supposed to be uniform (zero momentum mode) modulo the gauge transformations.

This effectively results in the gauge Higgs term being proportional to Tr(Un,µ). Such a

term try to align the temporal links with the identity matrix. This will lead to a non-zero

+ve real Polyakov loop, resulting in the symmetry breaking. In the Higgs symmetric

phase however, the matrix ΦnΦ
†
n+µ can have any "orientation", so at least one expects the

explicit symmetry breaking will be smaller than the Higgs phase as the temporal links

are not forced to align with the identity matrix. So we expect that in the λ − κ plane, in

the Higgs phase the explicit symmetry breaking will be large and decrease as we move

towards the Higgs symmetric phase. In Fig. 6.1, we sketch the expected relative strength

of the explicit symmetry breaking on the λ − κ plane.
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6.3 Numerical simulations: Explicit breaking of ZN sym-

metry

We carried out simulations for different values of βg, κ and λ. For given values of κ and λ,

we study variables which are sensitive to the ZN symmetry in particular the Polyakov loop,

by varying βg. For our purpose it suffices to fix the coupling λ and study the ZN symmetry

at various values of κ. Given a (λ, κ), small (large) βg corresponds to the confinement

(deconfinement) phase. The CD transition takes place at the critical point βg = βgc. To

study the ZN symmetry at different κ, we compute the Polyakov loop distribution. In
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Figure 6.2. Distribution of Polyakov loop for SU(2), 163 × 4 lattice with κ = 0.088865,
λ = 0.005 and βg = 2.31

Fig. 6.2, we show the Polyakov loop distribution H(L) is in the deconfined phase for

N = 2 for λ = 0.005 and κ = 0.088865. The height of the peak on the right is higher, the

ratio of the heights does not change when we add more statistics. This is a clear signature

of the explicit breaking of Z2 symmetry. The local maximum here corresponds to the

meta-stable state of the system. The peak on the positive L axis corresponds to the ground

state of the system. For N ≥ 3 the Polyakov loop is complex. For better illustration, we
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Figure 6.3. Distribution of Polyakov loop for SU(3), 83 × 4 lattice with κ = 0.29, λ = 0.1 and
βg = 2.50 .

show the distribution of phase of the Polyakov loop H(θ) instead of H(L) on the complex

plain. This however will not work if the 〈L〉 = 0. In Fig. 6.3, we show H(θ) for βg = 2.50,

λ = 0.1 and κ = 0.29 for N = 3. The peak at θ = 0 clearly dominates the other two local

maxima are a result of the Z3 explicit symmetry breaking. For both N = 2 and N = 3,

it has been observed that the asymmetry in the above distributions increases when κ is

increased further. Beyond some value of κ (which depends on λ and N) the local maxima

(the meta-stable states) disappear. The κ values considered above are below κc, in the

Higgs symmetric phase.
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6.4 Numerical simulations: Realization of ZN symme-

try

The ZN symmetry is supposed to be there only when κ = 0 as the matter and gauge fields

decouple. We find that for small enough κ values, in the Higgs symmetric phase, the

Polyakov loop distribution exhibit the ZN symmetry. For N = 2, κ = 0.058865, λ = 0.005
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Figure 6.4. Histogram of Polyakov loop in the confinement phase for SU(2), 323 × 4 lattice
with κ = 0.058865, λ = 0.005 and βg = 2.26 .

and βg = 2.26 we observe the confinement phase. The distribution of the Polyakov loop

in Fig. 6.4, for this value of βg is symmetric around zero.



6.4 Numerical simulations: Realization of ZN symmetry 65

 0

 200

 400

 600

 800

 1000

 1200

-0.2 -0.1  0  0.1  0.2

H
(L

)

L

k=0.058865

Figure 6.5. Distribution of Polyakov loop for SU(2), 163 × 4 lattice with with κ = 0.058865,
λ = 0.005 and βg = 2.31

The behavior of the Polyakov loop and fluctuations are found to be similar to the case of

pure gauge theory. This is a signature of Z2 symmetry in the confinement phase. When we

considered βg values larger than βgc, Polyakov distribution clearly showed 2 degenerate

peaks, which is the signature of spontaneous symmetry breaking of the Z2 symmetry.

This is evident in the distribution H(L) of the Polyakov loop for N = 2 shown in Fig. 6.5.

Similarly the distribution H(θ) for N = 3 shows the Z3 symmetry shown in Fig. 6.6.
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Figure 6.6. Distribution of Polyakov loop for SU(3), 83 × 4 lattice with with κ = 0.05, λ = 0.1
and βg = 1.90

It is important to exclude that statistical or systematic errors are not causing

the ZN symmetry restoration. For small κ, the Higgs correlation length can become shorter

than the lattice spacing, i.e Φn and Φn+µ are not correlated. The product ΦnΦ
†
n+µ having

no preferential orientation with respect to Un,µ the κ term in (5.0.3) can not affect the ZN

symmetry. Though this is plausible but our simulations suggest that this is not the reason

for the ZN realization/restoration. The κ term was found to be non-zero finite. The product

ΦnΦ
†
n+µ tends to align with Un,µ. When a ZN rotation ((Φ,U) → (Φ,Ug)) is carried out

on any configuration from the thermal ensemble, the resulting configuration is found to

be out of equilibrium. This is because the new configuration has far higher action (5.0.3)

than any configuration in the thermal ensemble. Interestingly this cost in the action can

be compensated by varying the Φ field, i.e Φ → Φ′, when the gauge link is ZN rotated

the links. Φ′ can be obtained by Monte Carlo updates of Φ, though it is not clear how Φ

and Φ′ are related. We observed that the symmetry ((Φ,U) → (Φ′,Ug)) is there only in

the Higgs symmetric phase (κ < κc) and when the number of lattice points in the temporal

direction is greater or equal to 4 (Nτ ≥ 4). Note that for ZN realization for every (Φ,U) in

the ensemble, there must (Φ′,Ug) with same action. For smaller Nτ, this happens for only
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a fraction of the configuration in the ensemble.

To see the ZN symmetry in the Polyakov loop distribution for higher βg in the deconfine-
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Figure 6.7. Histogram of the +ve and rotated −ve Polyakov loop with κ = 0.058865, λ =

0.005 for SU(2)+Higgs.

ment phase, the tunneling between the different ZN sectors has to be high. The tunneling

rate decreases away from the transition point and also for larger lattice sizes. For example,

for βg = 2.38 and 163 × 4 lattice, we do not see any tunneling between the different Z2

sectors up to 2 × 106 statistics. However the histogram of the Polyakov loop in the two

sectors are in perfect agreement when one distribution is Z2 rotated, as is seen clearly in

Fig. 6.7. Note here that the Histogram values are very much within the statistical error of

10−6.
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Figure 6.8. Average of gauge action for the +ve and −ve Polyakov loop with κ = 0.058865,
λ = 0.005 for SU(2)+Higgs

Table-1: Average Gauge action

βg S g(L > 0) S g(L < 0)

2.30 0.6030(11) 0.6031(12)

2.31 0.6066(12) 0.6066(40)

2.32 0.6100(11) 0.6100(11)

2.33 0.6132(10) 0.6132(12)

2.34 0.6162(11) 0.6162(11)

2.35 0.6191(11) 0.6191(11)

2.36 0.6218(10) 0.6218(12)

2.37 0.6245(20) 0.6244(19)

2.38 0.6270(09) 0.6270(11)

If the ZN symmetry is indeed restored than the free energy of the different

Polyakov loop states would have to be same. In Fig. 6.8, we show the average value of

the gauge action vs βg for the two Z2 states (called +ve and −ve). The gauge action for

the +ve (−ve) sector is calculated by taking the average over configurations for which the

Polyakov loop is +ve (−ve). The gauge actions for the two Z2 states are identical for all

βg. The free energy of each of these states can now be computed by integrating the gauge
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action S g(βg) in βg [68, 69].

[
f

T 4

]βg

βg0

= Nτ
4
∫ βg

βg0

dβ′(S T − S 0) (6.4.1)

Where S T is the gauge action calculated at finite temperature and S 0 corresponds to the

zero temperature gauge action. βg0 = βg is some gauge coupling for which S T = S 0.

Since the gauge action are identical, the free energy will be same for the two Polyakov

loop sectors. The CD transition for N = 2 for small κ has been investigated previously
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Figure 6.9. (a) Binder cumulant around transition point for different Ns (b) scaling of the
Binder cumulant with t = (βg−βgc

βgc
) , when κ = 0.058865, λ = 0.005 for SU(2)+Higgs respec-

tively.

[38, 42, 65, 66, 70]. The CD transition was found to be crossover except for κ = 0. In

ref. [66] , the average value of the Polyakov loop on 123 × 4 was found to vary with βg

which is consistent with critical 3D Ising behavior and found to be in the universality

class of the Ising model. This was interpreted as due to the influence of the critical point

at κ = 0. When we repeated these calculations, close to the critical point the average of

the Polyakov loop did not fit any critical behavior. Moreover critical behavior can only be

ascertained by scaling of observables with lattice size. In order to establish that there is

realization/restoration of the Z2 symmetry and the CD transition is second order, we carry

out the finite size scaling studies of the Binder cumulant UL of the Polyakov loop for the

first time [71].

UL = 1 −

〈
P4

〉
3
〈
P2〉2 (6.4.2)
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In Fig. 6.9(a) the Binder cumulant around transition point is shown for different spatial

volumes. The value of the Binder cumulant at the crossing point corresponds to the uni-

versality class of the 3D-Ising model. Further the scaling of the Binder cumulant, shown

in Fig. 6.9(b). where t = (βg−βgc

βgc
). The scaling of the Binder cumulant a value for the

critical exponent ν ∼ 0.62998 which is also consistent with the same universality class.

These results clearly show that the CD transition is second order even for finite but small

κ.

Conventionally it is thought that the CD transition is true second order only for

κ = 0. We believe that the origin of this second order CD transition for finite but non-zero

κ is because the statistically dominant fluctuations respect the Z2 symmetry.
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6.5 Phase diagram related to ZN symmetry for Nτ = 4

We have studied the Z2 symmetry for other values of λ. Changing the λ changes the

range of κ for which the Z2 symmetry is realized. Our results suggest that with increase

in λ the largest value of κ for which we observe the Z2 symmetry slightly increases. This

suggests that there will be a line in the Higgs symmetric phase (i.e. thick green line)

which separates the region where the Z2 symmetry is realized from the region where the

symmetry is explicitly broken. In Fig. 6.10, we schematically show the Z2 symmetry on
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Figure 6.10. Higgs phase diagram showing ZN symmetry for 163 × 4 lattice with βg = 2.30
for SU(2)+Higgs theory.

the λ − κ plane, for Nτ = 4. In Fig. 6.10, the red line (solid and dashed) is the Higgs

transition line. The area above this line corresponds to the Higgs phase and below this

line corresponds to the Higgs symmetric phase. The Higgs symmetric phase and Higgs

broken phase are separated by a first order phase transition line (i.e. thick red line) for

lower λ values which turns to second order at some critical value of λc and crossover

for higher values of λ. The Z2 symmetry is explicitly broken in parts of Higgs symmetric

regime below the Higgs transition line and all over the regions of Higgs broken phase. The
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region above the green line in the above figure is the regime where Z2 symmetry explicitly

broken. The restoration of Z2 symmetry corresponds to a second order CD transition

which is observed from the finite size scaling behavior of the Binder cumulant. We expect

similar type of ZN symmetry phase diagram for higher N. Since the explicit symmetry

breaking of Z2 for Nτ = 4 is different than Nτ = 2 . This suggest that the interaction

between the gauge and Higgs fields changes with Nτ. So it is desirable to extend these

studies to larger Nτ. Larger Nτ lattices are closer to continuum so the results are more

reliable. Along this line, in our follow up work we carry out simulations for N = 2. In the

next chapter we describe our results for Nτ dependence of the explicit symmetry breaking

and the CD transition. We compare our results to perturbative calculations and lattice

QCD studies.



7 Nτ dependence of ZN symmetry

and CD transition: Simulations-II

The strength of the explicit breaking of the Z2 symmetry in SU(2)+Higgs theory depends

on the parameters of the theory and also on Nτ. Previous studies have found that the

corresponding CD transition for Nτ = 2 is a crossover for non-zero κ. In our previous

studies for Nτ = 4 this transition turns out to be second order in parts of the λ − κ plane,

for finite non-zero κ. Clearly the Z2 symmetry and the nature of the CD transition depend

on Nτ. It is likely that the results for Nτ = 4 will change with further increase in Nτ. This

suggests that a careful continuum limit study of the aspects of Z2 symmetry is necessary

for this theory. To simplify the study of Nτ dependence of the Z2 symmetry, we consider

λ = 0. Further we take the Higgs mass mH = 0. Intuitively an increase in the Higgs

mass mH will only lead to decrease in the explicit symmetry breaking. Our results clearly

show that with increase in Nτ the explicit symmetry breaking decreases and vanishes for

Nτ = 8. The lattice action for this choice of parameters is given by setting the scaled

parameters λ = 0 and κ = 0.125.

S [U, Φ] = βg

∑
p

(
1 −

1
4

Tr(Up + U†p)
)
−

1
8

∑
µ,n

ReTr
[
(Φ†n+µUn,µΦn)

]
+

1
2

∑
n

Tr
(
Φ†nΦn

)
.

(7.0.1)

With λ = 0 the partition function is easier to simulate. The Higgs update procedure for

this case is pure heat bath algorithm. In the pseudo-heat bath there is an accept/reject

component which is not required here.

73
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The CD transition is studied for three values of temporal lattice points Nτ =

2, 4 and 8 [16]. For Nτ = 2, we consider three spatial volumes, Ns = 8, 10 and 12.

For Nτ = 4 we consider Ns = 16, 20 and 24 and for Nτ = 8, we consider Ns = 32, 40

and 48. The reason for this choice of Ns and Nτ is to make sure the physical volume is

same. For each volume and each run, we analyze 100, 000 configurations. The Polyakov

loop, susceptibility and Binder cumulant are computed for various values of βg to locate

the transition point. We also compute the volume average of Φ†Φ and the interaction

term Ka4 = 1
8

∑
µ,ν Re(Φ†n+µUn,µΦn). It is important to note that even though the Φ field is

massless at the tree level, the fluctuations are finite. This is because the interaction with

the gauge fields generate a non-zero finite mass for the Φ field. In the following sections,

we describe our simulation results.
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7.1 The CD transition for Nτ = 2 and 4
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Figure 7.1. The Polyakov loop average vs βg for Nτ = 2
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Figure 7.2. The Susceptibility vs βg for Nτ = 2

The Polyakov loop avg (L) vs βg for Nτ = 2 is shown in Fig. 7.1. L grows

with βg with a sharp increase around the transition. The Polyakov loop susceptibility is

also sharply peaked as shown in Fig. 7.2 around the transition point. However both L and

the susceptibility of the Polyakov loop
〈
|P2|

〉
- 〈|P|〉2 do not show any volume dependence

near the transition.
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Figure 7.3. UL vs βg for different volumes for Nτ = 2

The Binder cumulant UL for Nτ = 2 is show in Fig. 7.3. The Binder cumulant has a sharp

variation near transition. The volume dependence is exactly opposite of what is expected

in a second order transition where the Binder cumulant curves for different spatial volume

intersect at the transition point.
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Figure 7.4. The Polyakov loop average vs βg for Nτ = 4
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Figure 7.5. The Susceptibility vs βg for Nτ = 4

For Nτ = 4, the avg of the Polyakov loop L vs βg is shown in Fig. 7.4. In this case also

the Polyakov loop average varies sharply with βg. The 1 − loop β−function temperature

dependence of L is found to be consistent with the power law, L ∼ (T − Tc)1/3. But very

close to the transition point the power law breaks down. In any case, this is supposed to

be for very large lattices. Near the transition point the L has small volume dependence,

but unlike in the case of a second order phase transition.
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Figure 7.6. UL vs βg for different volumes for Nτ = 4

The volume dependence is more prominent in the plot of susceptibility in Fig. 7.5. Like in

the previous case the Binder cumulant curves for different volume do not intersect at any

βg value, as seen in Fig. 7.6. In the absence of any finite size scaling, the sharp variation

of the Polyakov loop around βgc ∼ 1.8, (Nτ = 2) and βgc ∼ 2.29, (Nτ = 4) only suggest a

cross-over for the CD transition. In both cases the correlation length does not grow with

volume.
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7.2 The CD transition for Nτ = 8

The behavior of the Polyakov loop for Nτ = 8 is completely different from that of Nτ = 2

and 4. The Polyakov loop avg L around the transition point βgc behaves almost like

the magnetization in the Ising model. The results for L vs βg for different volumes are

shown in Fig. 7.7(a). In this case, L clearly shows volume dependence. The volume

dependence of the susceptibility χc of the Polyakov loop around the transition point is

shown in Fig. 7.8(a).
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Figure 7.7. Nτ = 8. (a) The Polyakov loop vs βg for different volumes, and (b) Scaled
Polyakov loop vs βg for different volumes.

In Figs. 7.7(b) and 7.8(b), we show magnetization and susceptibility vs (L1/ν(βg−

βgc)/βgc), respectively. We see that both the quantities collapse to single curves. We find

the value of the exponent, γ/ν, by studying the finite size scaling (FSS) of the location

of the maxima of the χc’s similar to as in [72]. However instead of using Reweighting

method to determine χc
max, we use the cubic spline Interpolation method to generate a

few hundred points close to βgχmax for every jackknife sample since we have a reasonable

amount of data near the peak for each volume. The scaling behavior of χc
max as a function

of spatial volume, L, are shown in Fig. 7.10(a). We obtain γ/ν = 1.97(4).

The Binder cumulant for Nτ = 8 is shown in Fig. 7.9(a). While the UL(βg)

for different volumes do not intersect for Nτ = 2 and 4, they do for Nτ = 8 in a narrow
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Figure 7.8. Nτ = 8. (a) Susceptibility vs βg for different volumes, and (b) Scaled Susceptibility
vs βg for different volumes.

region around the transition point. To determine βgc and corresponding value of Binder

cumulant, we use the following finite size behavior of UL in the vicinity of the critical

point,
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Figure 7.9. Nτ = 8. (a) The Binder cumulant UL vs βg for different volumes, and (b) Scaled
UL vs βg for different volumes.

UL ≈ a0 + a1 (βg − βgc)/βgc L1/ν + a2 L−ω + · · · . (7.2.1)

By following the same procedure as in [73], we can write

βgc
eff = βgc (1 − αε) , where ε = L−1/ν−ω 1 − b−ω

b1/ν − 1
, b =

L′

L
, b > 1. (7.2.2)

The crossing point of the straight lines of two different spatial volumes pro-
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Figure 7.10. Nτ = 8. (a) The values of χc
max as a function of L for L = 32, 40 and 48. The

slope of fitted line provides the value of γ/ν. (b) The values of Ueff
c obtained from the crossing

points of Binder cumulant between two different volumes as a function of ε′. The intercept
provides the value of Uc.

vides βgc
eff . By using the 3D Ising values of ν = 0.6298 and ω = 0.825, we obtain βgc in

the limit ε → 0 as βgc = 2.5063(4). Fig. 7.9(b) shows that UL vs (L1/ν(βg − βgc)/βgc) for

different volumes collapse to a single curve. To obtain infinite volume Binder cumulant,

Uc, we use the following relation

Ueff
c = Uc

(
1 + α′ε′

)
, where ε′ = L−ω

1 − b−ω−1/ν

1 − b−1/ν (7.2.3)

In Fig. 7.10(b), we show Ueff
c vs ε′. In the limit ε′ → 0, we obtain Uc = 0.468(4). To

determine the exponent β/ν, we find magnetization at βgc for each volume using Cubic

Spline Interpolation. Using 〈|P|〉|βgc
∼ Lβ/ν, we get β/ν = 0.53(3). The above values

of β/ν, γ/ν and UL(βgc) from our computations are close to the 3D Ising values. These

results seem to show that the CD transition transition for Nτ = 8 is a second order phase

transition.

Large Nτ, continuum limit study of ZN symmetry in SU(N)+Higgs theory is

necessary as, if not for Nτ = 8 studies we would have concluded that the CD transition in

the theory massless Higgs coupled to SU(2) gauge fields is a crossover.
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7.3 Nτ dependence of explicit Z2 breaking

The different Nτ studies clearly show that the nature of the CD transition depends on Nτ.

The change in the nature of the CD transition from Nτ = 8 to Nτ = 4, 2 is similar to that of

the Ising transition when the external field is increased. So it is possible that the explicit

breaking of the Z2 symmetry decrease with increase in Nτ.

To check this, we compute the histogram of the Polyakov loop near the tran-

sition point for Nτ = 2, 4, 6 and 8. For Nτ = 2 and 4, no Z2 symmetry is observed in the

distribution of the Polyakov loop. On the deconfinement side and close to the transition
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Figure 7.11. H(L) vs |L|. H(L) is normalized to 2. (a) 163 × 2 lattice with βg = 2.2, (b) 323 × 4
lattice with βg = 2.35, (c) 243 × 6 lattice with βg = 2.50, and (d) 323 × 8 lattice with βg = 3.20

.

point, the histograms always show one peak located on the positive real axis. Away from

the transition point and inside the deconfinement phase, locally stable states are observed
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for which the Polyakov loop is negative. In Fig. 7.11(a) the histogram of the Polyakov

loop H(L) vs |L| for βg = 2.2 is shown for Nτ = 2. H(L) is normalized to 2. There is no

Z2 symmetry either between the locations or the widths of the peaks. So the behavior of

the Polyakov loop such as thermal average, fluctuations, correlation length etc. are found

to be different for these two states. The distribution for Nτ = 4 is similar to Nτ = 2.

However, for Nτ = 6, the Polyakov loop H(L) vs |L| for βg = 2.50 the two peaks are

approaching towards each other though they are not same. For Nτ = 8 the Polyakov loop

distribution for the two Z2 sectors, shown in Fig. 7.11(d), agree with each other. Though

106 measurements are used to compute all the data points in Fig. 7.11(d), each individual

point in the figure is the average over (H(L) ∗ 106) configurations in a small bin. For

example, the peaks of the histogram result from about ∼ 1.5 × 104 configurations. It is

interesting to see that H(L) for +L and (−L) agree even with such small statistics. All

physical observables which depend on the temporal gauge field such as gauge action and

interaction term have same average when computed for the two Z2 sector. These results

suggest the effective realization of the Z2 symmetry for Nτ = 8.
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7.4 Interaction between gauge and Higgs field

It is important to show that the realization of the Z2 symmetry is not due to decoupling

between the gauge and the Higgs fields. In Fig. 7.12, we plot the Monte Carlo history of
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Figure 7.12. Monte Carlo history of
∑

n Φ
†
n+µUn,µΦn for 323 × 8 lattice with λ = 0, κ = 0.125

and βg = 2.508 in SU(2)+Higgs theory.

the gauge Higgs interaction term KE =
∑

n Φ
†
n+µUn,µΦn. The plot is for λ = 0, κ = 0.125

and βg = 2.508 parameters of the SU(2)+Higgs theory. Non-zero value of the interaction

term show that the Higgs and gauge fields are not decoupled. The Z2 symmetry supposed

to exist when Higgs and gauge fields are decoupled, but our simulation results show that

even with finite non-zero gauge Higgs interaction the realization of Z2 symmetry happens.

We also have checked that the realization of Z2 symmetry for higher Nτ is not

because of the increase in Higgs mass as cut-off increases. For this we try to calculate the

Higgs mass on a zero temperature lattice. Due to time constraint a reliable computation

of the Higgs mass vs Nτ could not be done. On the other hand if the Higgs mass increases

with Nτ average of the interaction, i.e κ term, in the action should decrease with Nτ. In

Fig. 7.13 we show the κ term vs βg in a given physical volume, for Nτ = 4, 6 and 8. The
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βg range for each Nτ is around βgc(Nτ). We observe that the interaction in a given physical

volume increases with Nτ in Fig. 7.13. From Nτ = 4 to 6, the interaction increases by

a factor of ∼ 5 and , from Nτ = 6 to 8, it increases by a factor of ∼ 3. The interaction

between the Higgs and gauge fields are non-zero which implies that the realization of the

Z2 symmetry is not due to the vanishing or small interaction. In our simulations, we find

that fluctuations of the Higgs field play an important role. Z2 flip of the gauge fields are

always accompanied by realignment (Φ → Φ′) of the Higgs configuration. As soon as

the Higgs fluctuations are frozen/fixed, the explicit breaking of Z2 reappears. The possible
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Figure 7.13. The avg. of Ka4 = 1
8
∑
µ,ν Re(Φ†n+µUn,µΦn) for different Nτ near transition point.

reason, why the Z2 realization happens for Nτ = 8 and not for Nτ = 2 and 4 is because

for Nτ = 8 the phase space of Φ field is larger. With the increase in the phase space, it is

more likely that for a given Φ there exists a Φ′ which can compensate for the increase in

action due to Z2 rotation of the gauge fields. We numerically find that the likelihood of

finding such a Φ′ increases with Nτ. It is important to note that the Z2 symmetry in our

simulations only implies that a Φ′ exists for every statistically significant Φ. It is obvious

that there will be Φ configurations for which there will not be any Φ′ even in the limit of

Nτ → ∞. This happens when the Higgs field acquires a condensate. In this case for large

fraction of Φ from the thermal ensemble there are no corresponding Φ′.
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7.5 Phase diagram of Z2 breaking for higher Nτ

We find from our Nτ studies that explicit breaking of ZN symmetry depends on Nτ. For

λ = 0, κ = 0.125, the explicit breaking vanishes for Nτ = 8. It is important to study how

the phase diagram of Z2 symmetry breaking changes with Nτ. So we attempt to extend

the previous study of Nτ = 8 for mHa = 0, λ = 0 to other parts of the λ − κ plane.
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Figure 7.14. Higgs phase diagram showing ZN symmetry restoration in all over the region of
Higgs symmetric phase for Nτ = 8 with βg = 2.30 for SU(2)+Higgs theory.

We compute the distribution of the Polyakov loop H(L) for different point on

the λ− κ plane. We find that the Z2 symmetry is realized in all of the symmetric phase for

λ values 0 − 0.02 as shown in Fig. 7.14. In the Higgs phase the Z2 symmetry is found to

be explicitly broken. In comparision to Fig. 6.10, the red and blue lines merge for Nτ = 8.

For the same range of λ for Nτ = 4 the Z2 symmetry is restored only in parts of the region

of Higgs symmetric phase. Note that larger Nτ studies have smaller cut-off corrections.

Therefore, Z2 symmetry phase diagram for Nτ = 8 is more reliable than that for Nτ = 4.

It will be interesting to see if there is any change in the Z2 symmetry phase diagram for

Nτ > 8.



8 Discussions and Conclusions

In this thesis, we have studied the ZN symmetry and the confinement deconfinement tran-

sition in the SU(N)+Higgs theory using lattice Monte Carlo simulations. Most of our

simulations are for SU(2)+Higgs, though we have also considered N = 3 for lattices with

smaller temporal sites.

In SU(N)+Higgs theories the presence of the Higgs field leads to the explicit

breaking of ZN symmetry at the level of the action. The strength of the explicit symmetry

breaking depends on the fluctuations, so implicitly on the parameters λ, κ of the theory

and the cut-off. So we focused on the study of ZN symmetry and CD transition on the λ−κ

plane for the different number of temporal lattice sites. For Nτ = 4 we find that the explicit

symmetry breaking varies with λ and κ. On the other hand, given a (λ, κ) the strength does

not vary much with the CD transition parameter βg. The patterns of explicit symmetry

breaking observed in N = 2 and N = 3 are very similar. The explicit breaking of ZN

symmetry has a clear pattern on any trajectory on the λ − κ plane along which κ and the

Higgs condensate decrease. We observe that for larger values of κ which also corresponds

to the larger value of the Higgs condensate, the explicit symmetry breaking is so large that

the distributions of the Polyakov loop have only one peak in deconfined phases. The large

explicit symmetry breaking causes the meta-stable states to become unstable. Further, as

κ and the Higgs condensate decrease multiple peaks in the distributions do appear. It is

possible that for some other trajectories in the Higgs phase there are no meta-stable states

associated with the ZN symmetry. As the trajectory crosses the Higgs transition point κc
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the explicit symmetry breaking drops sharply.

In our simulations for Nτ = 4, away from the transition point, the nature of the

confinement-deconfinement transition is found to be almost indistinguishable from the

pure SU(N) gauge theory. For N = 3 we find a first order transition at critical βg = βgc. For

N = 2, finite size scaling studies of various observables and the Binder cumulant confirm

that the transition is second order. For βg > βgc, in the distributions of the Polyakov loop,

there are N peaks of almost equal heights. These correspond to the N, ZN states in the

deconfinement. In our computations all physical observables such as the gauge action,

interaction κ−term etc. are found to be same for all the ZN states. As a consequence,

the free energies of the different ZN states have same free energy. All these results seem

to suggest that the explicit breaking of the ZN symmetry is vanishingly small even for

non-zero κ values. It has been argued previously that in a lattice theory of SU(N)+Higgs

with frozen radial mode of the Higgs, the presence of Higgs field does not change the

pure gauge CD transition for small coupling between the gauge and Higgs fields [43].

The presence of Higgs field only modifies the critical "temperature" for the CD transition.

However, these studies are basically strong coupling results, without the continuum limit.

The value of κ for which the symmetry is effectively restored/realized in theory

depends on λ. For larger λ this restoration of the ZN symmetry occurs at a higher value

of κ. As we do not observe much variation in the explicit symmetry breaking of ZN by

varying β, these results suggest that there is a line that divides the λ − κ plane into the

region where ZN symmetry is explicitly broken and region where the ZN symmetry is

almost restored/realized. In other words, there is a strip on the λ − κ plane in the Higgs

symmetric phase where the ZN symmetry is effectively realized. In contrast, previously,

for N = 2 the CD transition was found to be a crossover for all non-zero κ values. Clearly

this shows that the nature of the CD transition and the explicit symmetry breaking depend

on Nτ. To understand the role of Nτ, we study the CD transition and Z2 symmetry for

Nτ up to 8. At first we considered vanishing Higgs mass (κ = .125) and Higgs quartic
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coupling (λ = 0). We found strong cut-off effects. For Nτ = 2 and 4, the CD transition

turns out to be a crossover. The Polyakov loop varies sharply around the transition point,

but no volume dependence was observed. Previously for 123 × 4 lattice sharp variation of

the Polyakov loop was thought be a critical behavior. When repeated the calculations, we

find no sign of any finite size scaling, i.e singular behavior. For Nτ = 8, the temperature

dependence, susceptibility and the Binder cumulant of the Polyakov loop show volume

dependence and singular behavior suggesting a second order CD transition. Our results

for the critical exponents are found to be consistent with the 3D Ising universality class.

The singular behavior of the Polyakov loop for Nτ = 8 is accompanied by the effective

realization of the Z2 symmetry. Z2 symmetric peaks were observed in the histogram of the

Polyakov loop in the deconfined phase near the transition point. Thermal averages such

as the fluctuations of the Polyakov loop, the interaction term between the gauge and the

Higgs field, the gauge action, etc. were all found to be same for the two deconfined states

related by the Z2 symmetry.

The Nτ = 8 study was repeated for other values of (λ, κ). For small λ up to

λ = 0.02 the Z2 symmetry is found to be realized/restored in the entire Higgs symmetric

phase. In the region of Higgs phase, we did not see any change in the explicit breaking

up to Nτ = 8. However, we cannot be sure that the Nτ = 8, ZN symmetry phase diagram

in the λ − κ plane will not evolve with further increase in Nτ. Since the pattern of explicit

symmetry breaking between N = 2 and N = 3 were similar for Nτ = 4, we expect that the

ZN symmetry for N ≥ 3 will also be realized/restored in the Higgs symmetric phase for

large enough Nτ.

We have tried to understand the physics behind the restoration/realization of

the ZN symmetry for non-zero κ. It is possible that for small enough κ the Higgs mass

will be larger than the inverse of the lattice spacing. In this case, the interaction term

will vanish as the nearest neighbor site Φ fields will be uncorrelated. The κ values we

simulated were beyond this range, as we observed finite non-zero interaction between the
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gauge and the Higgs field. We also checked that the decrease in the explicit symmetry

breaking with Nτ is not due to the gradual decoupling of the Higgs field. For this, we

computed the interaction term in physical units using 1−loop beta-function. We find that

the interaction in a given physical volume increases with Nτ. From Nτ = 4 to 6, the

interaction increases by a factor of ∼ 5 and, from Nτ = 6 to 8, it increases by a factor of

∼ 3.

The Higgs fluctuations instead of decoupling played an important role in the

ZN symmetry realization/restoration. In our simulations, a Z2 flip of the gauge fields is

always accompanied by a realignment (Φ → Φ′) of the Higgs configuration. As soon as

the Higgs fluctuations are frozen/fixed, the explicit breaking of Z2 reappears. We believe

that the reason the Z2 realization happens for higher Nτ but not for smaller Nτ is because

of the increase in the phase space of the Φ field with Nτ. With the increase in the phase

space, it is more likely that for a given Φ there exists a Φ′ which can compensate for the

increase in the action due to the Z2 rotation of the gauge fields. We find numerically that

the likelihood of finding a Φ′ for a given Φ increases with Nτ. It is important to note

that the Z2 symmetry in our simulations only implies that a Φ′ exists for every statisti-

cally significant Φ. It is obvious that there will be Φ configurations for which there will

not be any corresponding Φ′. However, contribution to the partition function of these Φ

configurations is statistically insignificant for the parameters for which Z2 symmetry is re-

alized/restored. In the Higgs broken phase, the explicit symmetry breaking is significant,

because the statistically important Φ configurations do not have corresponding Φ′ which

can compensate for the change in action due to the Z2 rotation of the gauge fields.

Our results for Z2 symmetry for higher Nτ simulations do not agree with the

previous perturbative, mean field and non-perturbative studies which are only for small

Nτ s. In these studies, the ZN symmetry is realized only for κ = 0, i.e infinite Higgs mass.

In contrast, our results suggest that the ZN symmetry is realized in the whole of Higgs

symmetric phase, at least for small λ. Note that adding more Higgs fields to our theory
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will not change the status of the ZN symmetry. For small Higgs quartic couplings, the ZN

symmetry will still be realized in the Higgs symmetric phase, when all the fields melt.

The perturbative calculations, on the other hand, suggest that putting more Higgs field

increases the explicit symmetry breaking. For N = 2, in the massless case, for 4 Higgs

doublet fields the meta-stable state disappears. We believe that the discrepancy between

our non-perturbative results and perturbative calculations is because, in the later only the

zero mode of the Polyakov loop (or gauge fields) couple with the matter fields. Going

beyond the Gaussian fluctuations, in which the higher modes of the Polyakov loop will

couple with matter fields, likely the 1−loop results will be modified. In previous Monte

Carlo studies the value of Nτ used were 2, 4. These values were too small to observe ZN

symmetry restoration observed in our study. Moreover, these studies looked at only the

average of the Polyakov loop. Even for Nτ = 4 previous studies observed critical like

behavior which was explained as due to the pure gauge transition at κ = 0. Later in our

study we found this critical behaviour was not consistent with finite size scaling.

The Higgs symmetric phase is realized only at high temperatures. For such

conditions, in case the gauge fields happen to be in the deconfined phase, then there will

be ZN domain walls in the medium. For N ≥ 3 these domain walls will be connected

to strings [74–76]. The realization of the ZN symmetry makes these domain walls long

lived, possibly making them relevant for the evolution of the system. If there is no ZN

symmetry these domain walls tend to decay quickly [77]. It will be interesting to see if

these domain walls play any role above the electroweak symmetry breaking. Realization

of ZN symmetry in the large density regime of QCD, where there is a possibility of a phase

of diquarks (in the fundamental representation) interacting with the gauge fields, will lead

to domain walls.



92 Discussions and Conclusions

 0

 0.05

 0.1

 0.15

 0.2

 0  0.005  0.01  0.015  0.02

κ

λ

<Φ>≠0 ZN symmetry broken

<Φ>=0

ZN symmetry

Figure 8.1. Higgs phase diagram showing Higgs condensate acts like an external symmetry
breaking field.

8.0.1 Future plans

We observe that decrease in κ leads to decrease in the strength of the explicit symmetry

breaking. At the same time with decrease in κ, it is expected that the condensate decreases.

This suggests that the Higgs condensate plays the role of the ZN symmetry breaking field

as in Fig. 8.1. However, more work is needed to relate the Higgs condensate to the effec-

tive field for the ZN symmetry. In this work, we have used the Higgs transition point to

infer the values of the Higgs condensate. Since the Higgs field is not gauge invariant the

Higgs condensate is not well defined [78]. However, the gauge fixed Higgs condensate is

found to behave like an order parameter for the Higgs transition [67]. We plan to calcu-

late the Higgs condensate by appropriately choosing a gauge which will make the Higgs

condensate well defined and find out the connection between the Higgs condensate and

the explicit symmetry field for ZN .

Our results clearly show that the interaction between the gauge and Higgs field

depends on Nτ, at least the aspects which control the ZN symmetry and the CD transition.
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We have done extensive studies for N = 2. We plan to carry out similar detail study for

N ≥ 3 in future. We believe that the large cut-off effects on the ZN symmetry in Higgs

theory seen here in SU(N)+Higgs theory will likely be present also in QCD. So at present

we are planning to extend the studies to QCD, also to theories where fermions and bosons

both present as in the Standard model.
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