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Synopsis

The Standard Model (SM) of particle physics is a gauge quantum field theory, containing

the unitary product group SU(3) × SU(2) × U(1). The gauge field particles of the SU(3)

group are the eight massless gluons, whose interactions with each other as well as with

the matter fields are described by Quantum Chromodynamics (QCD). The dynamics of

electroweak theory is described by SU(2) × U(1) gauge group. One of the important

processes in the SM is the Drell-Yan (DY) [1] production of a lepton pair. According

to the parton model picture, this process takes place through the annihilation of a quark-

antiquark pair, giving rise to a photon or a Z boson in the intermediate state, which then

decays to a lepton pair. At the Large Hadron Collider (LHC), the typical scales at which

the interactions take place during particle collisions is of the order of TeV. At such high

energy scales, QCD effects become an important part of the DY process. One of the ways

of computing such contributions is by expanding in a perturbative series of the strong

coupling constant. According to the powers in coupling constant, they are known as the

Leading Order (LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO)

etc.. Beyond LO such expansions gives rise to divergences which can be categorized

under two types: ultraviolet divergences (UV) and infrared divergences (IR). The UV

singularities arise when the momentum of the particles in the virtual loops go to infinity.

This divergence can be removed by regularizing the theory and then renormalizing the

strong coupling constant. The IR divergences are of two types: soft and collinear. The

soft singularities can be removed by adding the virtual diagrams and the real radiation

processes that yield the same observable final state; the initial state collinear divergences
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are removed by mass factorization. As a result, two unphysical scales µR and µF enter into

computations of perturbative QCD. It is thus of utmost importance to calculate higher

orders in perturbative expansion so that the effect of unphysical scales on observable

reduces. This thesis arises exactly in the context of calculating higher order radiative

corrections for different processes in QCD.

Despite the enormous success of the SM, it is still unable to incorporate properly the

fourth force of nature: gravity. There are enormous efforts that are underway to formulate

a concrete theory of all the four forces. One of the ways in which the unification of gauge

fields with general relativity can be achieved is through Kaluza-Klein reduction. This

describes the dynamics of (3+1) dimensional SM fields coupled to (4+n) gravity. Per-

forming a mode expansion, we get a massive spin-2 particle, (n-1) massive vector bosons

and n(n-1)/2 massive scalars. The spin-2 particle has tensorial nature of interactions with

the SM fields. In this thesis, we have considered the production of a spin-2 particle as an

intermediate state in the DY type process and computed the higher order QCD corrections

in a model independent way. The phenomenological impact of these corrections can then

be studied in different extra dimensional models. The contributions of the higher order

radiative corrections with respect to LO can be expressed in terms of K factors, which is

important to constrain the parameters from different extra-dimensional models in a more

precise way.

1. NNLO QCD corrections in models of TeV scale Gravity with universal coupling

Production of a spin-2 particle at LO takes place through the DY process, with both gluons

and quarks as the initial states. In the effective theory, the couplings of the gluon and quark

to the massive spin-2 particle are assumed to be same. At LO there is no strong coupling

constant dependency; at NLO level the coupling constant first enters into the calculation.

The result at NLO thus becomes sensitive to µR and higher order corrections are needed to

reduce this dependence. It is necessary to perform NNLO corrections in order to stabilize

the cross section against scale variations. Often it is not easy to perform such higher order



corrections; increase in number external particles in real emission processes make phase

space integration too complicated and challenging. In addition, the increase in number

of scales that accompany a NNLO computation makes the problem worse. This makes

it difficult to compute real emission processes. However, in contrast to real emission

process, there have been lots of development in computing the virtual corrections. It

will be less taxing if we can compute the real emission processes similarly like the virtual

diagrams. The goal of this section is to briefly describe the method adopted for calculating

the real processes and also state the phenomenological impact of the NNLO corrections

for the Arkani-Dimopoulos-Dvali (ADD) model.

Using the state-of-the-art method of reverse unitarity [2], the real emission phase space

diagrams were converted to loop integrals; the corresponding loop matrix elements were

computed by standard techniques. At the end of our computations, we have to reinstate

the loop propagators to final state real particles and use the available Master integrals

to compute the partonic cross sections. The real-virtual processes were also handled in

identical manner. The resulting partonic cross sections contains UV and IR divergences.

To eliminate these singularities it is needed to introduce two unphysical renormalization

and factorization scales. It is important to study the dependence of these scales on the

cross section to asses the need for further higher order computations. We find [3] that the

inclusion of NNLO corrections indeed reduce the dependence on these unphysical scales

and provides a more reliable theoretical prediction. In addition, the cross section increases

as we incorporate these radiative corrections; the NLO QCD corrections increase the LO

cross section by 68%; the NNLO corrections increase an additional 12%. These reduced

scale uncertainties and increase in perturbative convergence highlights the importance of

the NNLO corrections. Our predictions of differential distributions will undoubtedly play

very important role at the LHC.

2. Three loop form factors of spin-2 particle with non-universal coupling

In many extra dimensional models the coupling of a spin-2 particle to gluon pairs and
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photon pairs are assumed to be equal. However analysis has shown that this universal

nature of coupling may not be the favorable scenario. A model which incorporates a

RS Graviton with a mass of 125 GeV and universal couplings has been excluded from

experimental measurements at the Tevatron [4]. Drawing conclusions from the above,

it is important to study the effects of setting the couplings of spin-2 with SM fields to

non-equal values. For such a non-universal scenario, we can investigate the stability of

effective field theory with respect to higher order corrections. This is the motivation for

the study of three loop form factors for a massive spin-2 production, where the SM gauge

bosons and fermions couple to the massive particle through different coupling strengths.

Although the EM tensor of the SM is not conserved any more, the gauge symmetries are

not affected. We have considered [5] a minimal effective action that consists of two gauge

invariant operators: one containing pure gauge fields and another operator has gauge and

fermionic fields. To use the form factors for further phenomenological studies, we have

to renormalize the UV divergences that arise from the two composite operators. This

is achieved by multiplying overall operator renormalization constants. Computation of

these renormalization constants is non-trivial: the operators have same quantum numbers

and hence mix under renormalization. However we have computed these anomalous di-

mensions by exploiting the universal IR structure of the on-shell form factors. These bare

form factors satisfy an integro-differential equation, the K+G equation, which follows

from gauge and renormalization group invariances. By using the predictive power of the

solution of form factors, we determine the anomalous dimensions up to third order in the

perturbation theory. This will be important for our phenomenological studies of NNLO

QCD corrections for models with non-universal coupling.

3. NNLO QCD corrections to production of a spin-2 particle with non-universal coupling

In our study of form factors with non-universal coupling, we have seen that the nature

of IR singularities of amplitudes remain unaffected. It is also of interest to investigate

whether the same property holds for real emission processes. This work achieves the

above mentioned goal; the universal nature of IR divergences were found to hold true



for purely real emission as well as real-virtual processes, leading to an extensive and

thorough study of the phenomenology of models with non-universal coupling. In addition

non-universal models have been used to distinguish a spin-0 from a spin-2, to characterize

the 125 GeV boson as the Higgs boson [6]. The ATLAS collaboration have also used

non-universal models to exclude several non SM spin hypothesis. It is thus important to

compute NNLO corrections for such a model and study its phenomenology, which will

be useful at the LHC.

We have computed [7] the higher order QCD contributions from various subprocesses and

presented its impact for a resonance production of a spin-2 particle of mass 500 GeV. At

the energies of LHC we find that the gg subprocess dominates over the rest. However the

total NNLO correction is smaller than gg channel due to the negative contribution from

the qg channel. At the resonance, the K-factor both for NLO as well as NNLO is different

for different choice of coupling strengths. We also find that the uncertainties coming from

factorization and renormalization scale dependencies, for LO, NLO and NNLO are 49%,

52%, 30% respectively.

4. Threshold resummation of rapidity distribution in the DY process at NNLO+NNLL

Any computation of fixed order partonic cross section result in polynomials, plus distri-

butions and other logarithms, all expressed in terms of some dimensionless variable z,

where the latter is the ratio of invariant mass of the final state and the partonic centre

of mass energy. It is to be noted that the plus distributions are the result of soft and/or

collinear gluon emissions from the final state. In the kinematical limit (threshold limit)

z → 1, the contributions to the UV and IR finite cross section can be divided into two

parts : Soft virtual (SV) or threshold and hard part. At any order αk
s, plus distributions

like
[

lnm−1(1−z)
1−z

]
+

(m ≤ 2k) and delta functions fall under the SV category; while the polyno-

mials and other logarithms like ln(1− z) can be listed under the hard contributions. It is to

be remembered that the plus distributions are integrable. However in the threshold limit

z → 1, these SV terms give dominant contributions as compared to the hard part. The
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product αk
s

[
lnm−1(1−z)

1−z

]
+

becomes comparable to similar contributions from k + 1 th order,

which spoils the reliability of perturbative expansion. In order to obtain a sensible result

for inclusive and differential cross sections, we have to resum to all orders in perturbation

theory. This is called threshold resummation.

It is challenging task to compute the SV cross section that contain the resummed contri-

butions due to soft gluon emissions to all orders in perturbation expansion. There have

been huge amount of works in the past to obtain such all order results. In our recent

work we have followed a completely different methodology to obtain the SV cross sec-

tion in z space. In a work by one of the author of this paper [8], it was shown that the

SV rapidity distribution in z1, z2 space can be factorized in terms of purely form factor

contributions and soft distribution functions. Here z1, z2 are related to the inclusive vari-

able z and rapidity y. Often it is easier to work in Mellin space as compared to z1, z2

space; such a transformation converts the convolutions into normal products. Perform-

ing a double Mellin (N1,N2) transformation of the soft distribution function, we obtain

a compact form of the all order resummation formula; then return back to z1, z2 space to

get the resummation improved rapidity distribution. This is the first time where a com-

pletely general, double variable resummation is performed, taking into account all the

deltas and plus distributions. In addition our method is applicable for production of any

colorless final state particle. In this work, we have studied the phenomenology for DY

production of a lepton pair up to NNLO+NNLL accuracy. Our result shows improved

perturbative convergence as compared to the existing fixed order result. In addition the

scale uncertainties reduce at NNLO+NNLL level. This is the most accurate result for soft

gluon resummation of DY rapidity distribution, which will play an important role in the

upcoming runs at the LHC.
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1 Introduction

1.1 The Standard Model

The quest for understanding the basic constituents of matter that exists in the world around

us has fascinated human minds for a long time. It goes back to the era when the atomic

theory was developed through the relentless pursuit of Leucippus and Democritus. The

modern theory of atoms started from the nineteenth century with the help of John Dalton

and other scientists. The discovery of the protons, neutrons and other subatomic particles

paved a new way to understand the physics of the universe. Gradually our understanding

of the world became more precise, thanks to the several experimental and theoretical en-

deavor that followed in the mid nineteenth century. All these efforts resulted in a concrete

theory in particle physics : The Standard Model (SM). It is a gauge quantum field theory

containing the unitary product group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . Each of these group in

the SM contain gauge particle/particles which mediate the interaction in different colli-

sion processes. The strong interactions are described by the gauge group SU(3)C which

consists of eight gluons. Their interactions with each other as well as with the quarks are

explained in the theory of Quantum chromodynamics (QCD). The weak and the electro-

magnetic interactions are encapsulated together in the electroweak theory, described by

the gauge group SU(2)L ⊗ U(1)Y . In this section we shall briefly describe the theory of

electroweak interactions; we will elaborate on the strong interactions in the next chapter.

1



2 Introduction

The simplest gauge theory in nature is quantum electrodynamics(QED), described by the

group U(1). Electromagnetic interactions take place via the exchange of photons, which

are massless spin-1 bosons. There is only one photon (γ) which acts as the generator

of the group, it has no charge but can mediate in the interaction between two charged

particles like the electrons. During 1950’s, questions were being raised as to whether

weak interactions can be thought along the similar lines of electromagnetic theory. This

led to the V − A theory [9, 10], where the weak interactions were thought to be taking

place via the exchange of spin-1 W± bosons. In the work [11] Schwinger developed

the theory of weak interactions into a gauge theory, where the mediators were the W±

bosons. He also suggested about the possibility of a combined theory of the weak and

electromagnetic interactions, where the gauge bosons would be W± and γ. However the

idea of combining the electromagnetic and weak interactions faced stiff problems: the

W± particles were massive due to the short range nature of weak interactions, whereas the

photons were massless. In addition the symmetry of such a theory needed to be broken

due to the mass difference between these gauge particles. Later on in 1961 Glashow gave a

combined theory of the weak and electromagnetic interactions [12] comprising of a bigger

symmetry group SU(2) ⊗ U(1). The generators of the group were three parity violating,

massive W± and Z0 particles and one parity conserving particle, the massless photon.

But there were still difficulties in assigning mass to these gauge bosons by breaking the

symmetry, particularly, the theory became unrenormalizable. This problem was solved

by introducing the concept of spontaneous symmetry breaking.

1.1.1 Spontaneous symmetry breaking

The concept of spontaneous symmetry breaking appears in condensed matter physics as-

sociated with phase transitions. It happens when the Hamiltonian of the system has a

symmetry, hence a conserved quantity, but the ground state of the system does not respect

that symmetry. One of the most common example is the ferromagnet. Above the Curie
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temperature (TC), all the electron’s spin in a ferromagnet are randomly oriented resulting

in no overall magnetization. But below TC, there happens to be a preferred direction of

magnetization and the rotational invariance property is broken. It cannot be predicted in

advance in which direction the ferromagnet will acquire a magnetization when cooled

below TC, hence the symmetry broken is spontaneous. This phenomenon can also be

observed in particle physics. We take the example of complex scalar field with a φ4

interaction term in quantum field theory and illustrate the phenomenon of spontaneous

symmetry breaking. The Lagrangian is

L = (∂µφ)∗(∂µφ) − µ2φ∗ φ − λ(φ∗φ)2. (1.1)

where λ > 0. This Lagrangian has a global U(1) symmetry; under the transformation φ→

exp(−iθ) φ the Lagrangian remains invariant. The first piece of the Lagrangian represents

the kinetic term. Here µ is the mass term and λ is the coupling strength of interacting

scalar fields. The potential term of the Lagrangian, V(φ), consists of the mass and the

interaction term. For µ2 > 0, there is a unique minimum at φ = 0 and no spontaneous

symmetry breaking is observed. In other words, there is a unique vacuum at φ = 0.

However if µ2 < 0 the minimum of the potential in eq. 1.1 is not anymore at φ = 0. The

U(1) symmetry is broken by a vacuum expectation value of φ, which at the classical level

is the minimum of the potential. We write φ = 1
√

2
(φ1 + i φ2) and put it in the Lagrangian.

Choosing a value < φ2 >= 0, we get

< φ1 >= ±

√
−µ2

λ
= ±v (1.2)

Thus there are two values of φ1 for which the potential acquires a minimum value. This

is shown below in fig. 1.1

Out of these two symmetric ground states we can choose arbitrarily any one of them.

This choice spontaneously breaks the symmetry of the vacuum. Although the ground
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V(φ)

φ

φ = +vφ = −v

Figure 1.1: Spontaneous symmetry breaking.

state does not respect anymore the symmetry of the theory, the Lagrangian still remains

invariant under the global U(1) symmetry.

Introducing two real scalar fields σ and η, we can reparametrize φ as

φ(x) =
1
√

2

[
v + σ (x) + i η (x)

]
(1.3)

and putting them back into eq. 1.1 we get,

L =
1
2

(∂µσ)(∂µσ) +
1
2

(∂ησ)(∂ησ) −
1
2

(
2λν2

)
σ2

− λ ν σ3 − λ ν σ η2 −
1
4
λ σ4 −

1
4
λ η4 −

1
2
λ σ2 η2 (1.4)

In above the particle σ acquires a mass =
√

2 λ ν2; while η remains massless. This mass-

less particle is called a Goldstone boson. In other words, if a Lagrangian having contin-

uous symmetry is spontaneously broken then there will be massless particles which are

the Goldstone bosons [13]; the number of such particle(s) will be same as the number of

broken generator(s) of the symmetry group.

However these massless particles are not seen in nature. This puzzle was resolved by

Englert, Brout, Higgs, Guralnik, Hagen and Kibble. The mechanism is popularly known

as the Higgs mechanism. In the next section we shall see how this concept plays an
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important role in generating the masses of W± and Z bosons.

1.1.2 The Higgs Mechanism

We consider the Abelian example where a complex scalar field couples to itself as well as

to an electromagnetic field :

L = −
1
4

FµνFµν +
∣∣∣Dµφ

∣∣∣2 + µ2φ∗φ − λ(φ∗φ)2 (1.5)

where Dµ = ∂µ+ i e Aµ. The Lagrangian has a local U(1) symmetry, φ→ exp(iθ(x)) φ, and

the gauge field transforms as Aµ → Aµ −
1
e∂µθ(x). The sign of the mass term is opposite

to that of the example considered in previous section.

We follow the arguments along the line of the previous section, except that for µ2 > 0, the

field φ will acquire a vacuum expectation value through spontaneous breaking of the local

U(1) symmetry. Considering the minimum as φ0 we can expand the Lagrangian about the

vacuum state with

φ(x) = φ0 +
1
√

2

[
φ1 + i φ2

]
. (1.6)

On putting the above expression for φ in eq. 1.5 we find that the field φ1 acquires a mass

mφ1 =
√

2µ and the field φ2 turns out to be the Goldstone boson. From the kinetic term of

the Lagrangian we find that the field Aµ acquires a mass mA = 2 e2 φ2
0. Thus spontaneous

symmetry breaking generates mass for the gauge boson. The Goldstone boson does not

appear as an independent particle of the theory; if we work in unitarity gauge the terms

corresponding to φ2 in the Lagrangian vanishes. This can be physically interpreted by

considering that the vector boson has acquired its mass by eating up the Goldstone boson.

This phenomenon of mass generation for gauge bosons through spontaneous breaking of

local gauge symmetry paved the way for unification of the electromagnetism and weak

interaction [14]. To generate masses for W± and Z bosons, it is necessary to break the
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SU(2)L ⊗ U(1)Y symmetry. The Lagrangian containing the scalar field reads as

Lscalar = (Dµφ)† (Dµφ) + µ2 (φ†φ) − λ (φ† φ)2, (1.7)

where Dµ is the covariant derivative corresponding to the gauge group SU(2)L ⊗ U(1)Y

Dµ = ∂µ +
1
2

i g1 ~τ. ~Wµ +
1
2

i g2 Y Bµ. (1.8)

The SU(2) group has three generators, the Pauli matrices, denoted by ~τ. The three vector

fields are denoted by ~Wµ. Y is the hypercharge and Bµ is the field corresponding to group

U(1). g1, g2 are the couplings of Wµ and Bµ to the scalar field φ respectively; the latter is

a doublet under SU(2)

φ =

φ
+(x)

φ0(x)

 . (1.9)

This is a left handed doublet with weak Isospin = 1
2 . The upper component has charge +1

while the lower one has charge 0. Each component is a complex scalar field which can be

written as

φ+ =
1
√

2
(φ1 + i φ2), φ0 =

1
√

2
(φ3 + i φ4). (1.10)

There is a O(4) symmetry associated with φ. The potential in eq. 1.5 has a minimum for

µ2 > 0 at

φ†φ =
µ2

2λ
=
ν2

2
(1.11)

In order to generate masses we have to choose a vacuum; a gauge transformation with

φ1 = φ2 = φ4 = 0 and φ3 = v allows us to write the field φ in eq. 1.9 as

φ =
1
√

2

 0

v + h(x)

 (1.12)



7

where ν= vacuum expectation value =

√
µ2

λ
and h(x) is a scalar field, with 〈h(x)〉 = 0. This

results in breaking of three local symmetries which generates the three massless Gold-

stone bosons. These Goldstone bosons are eaten up by the three gauge bosons and thus

they become massive; however the photon still remains massless. From the Lagrangian

the masses of the gauge bosons are found out to be

MW =
v g1

2
MZ =

v
2

√
g2

1 + g2
2. (1.13)

The massive vector bosons were experimentally discovered at CERN [15, 16]. Precise

measurement of their mass gives: MW = 80.385±0.015 GeV and MZ = 91.1876±0.0021

GeV. Thus the unification of SU(2)L ⊗ U(1)Y was achieved and it has been one of the

greatest achievement in the history of the particle physics.

The term h(x) in the doublet structure of φ0 is the scalar Higgs field of the SM. The

quanta corresponding to this field is the Higgs particle, whose mass can be derived from

the Abelian example we have considered at the start of this section. It reads as

mh =
√

2 λν. (1.14)

The Higgs particle remained elusive in high energy experiments for quite a long time.

In 2012 [17, 18], a resonance of 125 GeV was discovered at the CERN’s Large Hadron

Collider (LHC) and it was confirmed to be the Higgs particle.

We have seen how the dream of unifying the weak and electromagnetic interactions cul-

minated in the discovery of the electroweak theory. The theory of spontaneous symmetry

breaking was introduced to generate masses for gauge bosons and fermions. The only

scalar particle of the SM, the Higgs boson, was finally found out at the LHC. It is impor-

tant to mention that the energies at which the LHC operates is of the order of TeV, where

protons moving at velocities close to speed of light collide with one another. As we shall

see in the next chapter the proton is made up of large number of gluons and quarks and
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these constituents contribute significantly at such high energies. The gluons and quarks

are held together by strong interactions described by the gauge group SU(3)C. In other

words, at such high energies the effect of strong interactions cannot be neglected in ob-

servables like the inclusive and differential cross section. In fact at the LHC the dominant

channel for production of Higgs boson is the gluon fusion channel, which gets radiative

corrections due to the strong interactions. One of the reasons for the precise measurement

of the mass of the Higgs boson was due to the spectacular higher order corrections that

resulted from QCD [2, 8, 19–30]. We shall briefly discuss in the next chapter how this

theory was developed over the years of intense effort from physicists all over the world.



2 Quantum Chromodynamics

2.1 Quarks and gluons

In the previous chapter we have briefly described the theoretical endeavor that went on to

formulate the electroweak theory, described by the gauge group SU(2)L ⊗ U(1)Y . In ad-

dition the SM also contains the gauge group that describes the strong interactions namely

SU(3)C. The strong interaction is the force that binds the protons and neutrons together

inside the nucleus of an atom. At the scale of 10−15 m the strong force dominates over

the other two forces, namely the electromagnetic and weak force. The study of strong

force began with the endeavor to understand the hadrons and its properties, which has

been an area of interest for quite a long time. The most famous example of a hadron is a

proton, a name given to the hydrogen nucleus by Ernest Rutherford in 1920. The subse-

quent discoveries of neutron, kaon, pion etc. increased the list of the hadrons and as more

and more new particles emerged from experiments during 1950’s, it became necessary to

find a way to categorize the particles and also to understand their spectrum. The brilliant

analysis by M.Gell-Mann [31] and Y. Ne’eman [32] helped to categorize the hadrons into

representation of the symmetry group SU(3): the octets of baryons and mesons. While

protons, neutrons, Λ, Σ and Ξ belonged to baryons, the family of meson comprised of the

pions, k-mesons and η mesons. In 1964 Gell-Mann [33] and Zweig [34] independently

proposed that the hadrons are made up of quarks. The mesons are formed of one quark

9
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and one anti-quark; on the other hand the baryons were composed of three quarks. Sub-

sequently three flavor of quarks: up, down and strange were discovered but to explain the

quantum numbers of hadrons, quarks were assigned fractional electric charge. The action

of the SU(3)flavor group on the three flavors led to the mass formulas for the hadrons. Later

on Gürsey and Radicati [35] introduced the symmetry group SU(2)spin and thus the quarks

were identified as spin 1
2 particles. The SU(2)spin and SU(3)flavour group were combined

into a larger SU(6)spin-flavor symmetry. Following this unification and in order to explain

the bound state of baryons, it was necessary that the low-lying baryons were in a symmet-

ric state under permutations. This contradicted the Pauli’s spin-statistics theorem [36],

which requires that the spin 1
2 quarks to be in an anti-symmetric state under permutations.

To resolve this tension, Greenberg [37] proposed that the quarks had an additional sym-

metry, the color, along with the the flavor, spin and space degrees of freedom. Now the

quarks could be in an anti-symmetric configuration corresponding to the color degree of

freedom and in a symmetric state in terms of the other three degrees of freedom. The color

symmetry remains unbroken and all the hadrons are color singlets. While measurement of

properties of excited baryons served as evidence for the existence of color, measuring the

ratio of annihilation cross section for e+e− → hadrons to that of e+e− → µ+µ− established

color as a degree of freedom.

The quarks inside the hadrons are bound together by the strong force. Drawing analogy

from QED, we can imagine that the mediators of the strong force can only be gauge

particles, owing to the SU(3) nature of the quarks. In addition, these mediators should

interact with the color charge analogously as the photon responds to the electric charge. It

was found that the interaction between the quarks are generated by massless gauge bosons

known as gluons. We have seen earlier how the electromagnetic and weak interactions

were unified into the electroweak theory, a non-Abelian gauge theory. To construct a

gauge theory of strong interactions, it was necessary to explain a phenomenon called

Bjorken scaling (we shall discuss about it in the next chapter). This required the theory of
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the quarks and the gluons to be a non-Abelian gauge theory. All these efforts gave rise to

the theory of strong interactions: QCD. There are some fundamental differences between

QED and QCD: in contrast to one photon in QED, there are eight gluons in QCD; gluons

carry color charge while photons have no charge. In the next section, we give a brief

description of the Lagrangian of QCD.

2.2 Basics of QCD

The Lagrangian density of QCD is as follows :

L = −
1
4

Ga
µνG

µν,a +

n f∑
f =1

ψ̄
f
i (iγ µD i j

µ − m δi j)ψ
f
j −

1
2 ζ

(∂µAa
µ)

2 + ω̄d (−∂µD de
µ )ωe. (2.1)

In above the field tensor Ga
µν , the covariant derivative in fundamental representation D i j

µ

and the covariant derivative in adjoint representationD de
µ are given by

Ga
µν = ∂µAa

ν − ∂νA
a
µ + gs f abc Ab

µAc
ν ,

D i j
µ = δi j∂µ − i gs Aa

µ (T a) i j ,

D de
µ = δde∂µ + gs f degAg

µ . (2.2)

The other quantities appearing in the Lagrangian are as follows

Aa
µ = gluon field ,

ψ̄
f
i = quark field ,

ωd = ghost field ,

a, d, e = color indices in the adjoint representation ,

i, j = color indices in the fundamental representation ,

f abc = structure constants of SU(3) ,
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(T a) i j = Gell-Mann matrices ,

gs = strong coupling constant ,

m = mass of the quark ,

ζ = gauge fixing parameter ,

n f = number of fermion species . (2.3)

The first term and second term in eq. 2.1 represents the kinetic term for the gauge field

and the fermionic field respectively. The non-abelian nature of the Lagrangian is reflected

through f abc in the kinetic term of gauge field, which is absent in QED. This term is

responsible for three-point and four point vertices in QCD. The third term denotes the

gauge fixing term which is needed to properly define the gluon propagator. The last term

represents the kinetic term for the ghost field. The ghosts are unphysical as they violate the

spin-statistics theorem. The gluons appearing in loops can have four degrees of freedom

but a physical gluon can have only two degrees of freedom. The ghosts cancel the two

extra unphysical degrees of freedom coming from the gluons appearing in the loops.
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H

Figure 2.1: Higher order QCD correction to the process gg→ H

2.3 Asymptotic freedom

The QCD Lagrangian discussed in the previous section describes how the gluons interact

with themselves as well as with the matter fields. The millions and millions of quarks and

gluons in a proton are held together by the strong force. In high energy collision processes

at the LHC, where the centre of mass energy of the colliding protons is of the order of TeV,

the strong force dominates over the electromagnetic and the weak force. QCD corrections

to the signal and the background processes become important; it is necessary to compute

these contributions for precisely predicting observables such as inclusive and differential

cross sections. For example at the LHC the production of Higgs boson is dominated by

the gluon fusion process. The virtual QCD correction at the signal is shown in fig. 2.1

The coupling of fermions to the Higgs boson is proportional to the mass of the fermions;

hence the dominant contribution in the fermion loop in the fig. 2.1 is from the top quark.

Also we observe that there is a gluon loop between the two incoming particles; this is an

example of higher order QCD correction for processes at the LHC. One of the ways to

compute such contributions is to expand in a perturbative series of the strong coupling

constant :

∆ =

∞∑
j=0

â j
s ∆̂

j (2.4)

where âs ≡
ĝ2

s
16 π2 . The observables, ∆̂ j are computed by writing down the Feynman rules

from the Lagrangian 2.1 and then evaluating the amplitudes by summing over Dirac in-
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dices, color indices and expressing them in terms of dot products of external momentum

of particles. The contribution at â0
s is called Leading order (LO); the âs order is called

next-to-leading order (NLO) ; O(â2
s) level is called next-to-next-to-leading order (NNLO)

and so on. For example the diagram in fig. 2.1 illustrates NNLO correction to the process

gg→ H. Such kind of diagrams are divergent due to high momentum particles moving in

the virtual loops. More precisely while evaluating this diagram there will be integrals with

the four-momentum of the massless virtual particles running form 0 to ∞. In the limit of

the momentum → ∞, the divergence that arise is called ultraviolet (UV) singularity. To

eliminate the divergence we have to regularize the theory in dimensional regularization,

by going to n = 4 + ε dimension and then renormalize the coupling constant of the theory.

This renormalization is done by choosing a scheme; for us we choose MS such that :

âs =

(
µ

µR

)ε
S −1
ε Z(as(µ2

R)) as(µ2
R) (2.5)

where µ is the scale introduced to keep the unrenormalized strong coupling constant âs

dimensionless in n-dimensions and µR is the renormalization scale.

S ε = exp
[
(γE − ln 4π)ε/2

]
, γE = 0.5772 . . . . The coupling constant renormalization term

Z(as(µ2
R)) reads as :

Zas = 1 + as

[
2
ε
β0

]
+ a2

s

[
4
ε2 β

2
0 +

1
ε
β1

]
+ a3

s

[
8
ε3 β

3
0 +

14
3ε2 β0 β1 +

2
3ε
β2

]
+ a4

s

[
16
ε4 β

4
0 +

46
3ε3 β

2
0 β1 +

3
2ε2 β

2
1 +

10
3ε2 β0 β2 +

1
2ε
β3

]
+ a5

s

[
32
ε5 β

5
0 +

652
15ε4 β

3
0 β1 +

157
15ε3 β0 β

2
1 +

172
15

ε3 β2
0 β2 +

34
15ε2 β1 β2

+
13
5ε2 β0 β3 +

2
5ε
β4

]
. (2.6)

The renormalization group equation (RGE) satisfied by the renormalized coupling as(µ2
R)

is

µ2
R

das(µ2
R)

dµ2
R

=
ε as(µ2

R)
2

+ β(as(µ2
R)), (2.7)
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with

β(as(µ2
R)) = as(µ2

R) µ2
R

d ln Z(µ2
R)

dµ2
R

= −

∞∑
k=0

as(µ2
R)k+2βk. (2.8)

βk is the beta function of QCD. The one loop QCD beta function was computed indepen-

dently by Gross and Wilczek [38] and by Politzer [39]. For SU(N) theory it’s value is:

β0 = −( 11
3 N − 2

3n f ), where n f are the number of fermion species. This negative value of

beta function in QCD is in contrast to the corresponding value in QED.

The RGE in 2.7 can be solved with the initial scale as µ2 and final scale Q2 (can represent

momentum transfer in a particular process)

as(Q2) =
as(µ2)

1 − β0
4π as(µ2) ln

(
Q2/µ2) . (2.9)

The above solution implies that the coupling constants are not truly ‘constants’; their

strength depends on the energy scale at which the interaction takes place. For β0 < 0 (as

in QCD) the coupling as(Q2) decreases as Q2 increases and in the limit of very high Q2

i.e.

as(Q2)→ 0 as Q2 → ∞. (2.10)

Thus in processes where a large momentum transfer Q2 is involved, we can explain the

dynamics of QCD in the light of free behavior of quarks and gluons. This reduction

of strong coupling constant at high energies is called asymptotic freedom, discovered

independently by Gross, Wilczek [38] and Politzer [39]. At low energies the coupling is

not small, which explains the binding of quarks in the hadrons. As the distance decreases,

the ratio αs(Q2)/αem(Q2) decreases, where αem(Q2) is the fine structure constant in QED.

This is the conceptualization of the asymptotic freedom. One of the consequences of the

asymptotic freedom observed in high energy experiments are formation of jets, where the

later is a collection of energetic quarks and gluons moving in a common direction. As the

quarks and gluons evolve to form hadrons, in order to conserve energy and momentum,

they interact weakly with highly virtual particles. Therefore detection of these jets and
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measuring their properties in experiments like CERN and SLAC serves as confirmation

of asymptotic freedom and also solidifies the framework of perturbative QCD (pQCD).

Asymptotic freedom is an important property of non-abelian gauge theories. It allows us

to compute QCD effects at high energies as corrections to the free quark behavior. In the

next chapter we shall see how the pQCD corrections can be computed in the framework

of parton model.



3 The parton model and its

application to the Drell-Yan process

In the previous chapter we saw how the concept of asymptotic freedom makes QCD ef-

fects an important component of high energy colliders like the LHC. Hence it is of utmost

importance to compute the higher order QCD corrections for making accurate predictions

about observables like the inclusive and differential cross sections. QCD interactions

involve quarks and gluons and they are described by the Lagrangian in eq. 2.1. These

elementary particles are the constituents of hadrons; the former does not exist in free state

whereas in experiments, hadrons are the ones that take part in the collision. Thus from

theoretical side it is important to connect the hadronic picture with that of the elementary

ones to enable us perform calculations in pQCD. In this chapter we shall see how this was

possible after the discovery of the parton model.

While there were great developments in search for a unified theory of QED and weak

interactions, there was also considerable progress to understand the nature of strong in-

teractions. In the previous chapter we have seen how the understanding of quarks and

gluons eventually led to the theory of QCD. Subsequently there were advancements made

by Gell-Mann to derive the current algebras, the commutation relations for the vector

and axial vector currents [40]. These current algebras were used to derive sum rules [41]

which helped to understand the scattering processes of highly energetic neutrino and anti-

neutrino. Bjorken [42] applied these sum rules to high energy electron nucleon scattering

17
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l1

p1

l2

p2

V
q

l = x1 P
H

P

Figure 3.1: Deep inelastic scattering process

and showed that the cross section of such a scattering process can be thought of as a point

like target. This subsequently led to the concept of Bjorken scaling [43], which was con-

firmed by the experiments at the SLAC. Bjorken scaling was explained by Feynman [44]

as incoherent scattering of point like constituents of nucleon by the incident electron.

These point like constituents were named as partons; this was the advent of the parton

model. In the language of QCD, partons are quarks, antiquarks and gluons. The deep

inelastic lepton-hadron scattering (DIS) process could be explained in terms of parton

model with some corrections, thanks to the asymptotic nature of QCD. The DIS process

is

l1(p1) + H(P)→ l2(p2) + X (3.1)

where P is the momentum of the hadron H, p1, p2 are the momentum of leptons and X

is some hadronic state. Fig 3.1 shows the DIS process as realized through the parton

model. The interaction of a lepton and a parton of momentum l takes place through an

intermediate vector boson (V), having momentum q. The differential cross section is

d2σ

dQ2dν
(τ,Q2) =

∑
i=q,q̄,g

∫ 1

0
dx1

∫ 1

0
dz δ(τ − x1z) x1 f H

i (x1)
d2σ i

dQ2dν
(z,Q2), (3.2)

where Q2 = −q2, the scaling variable τ = −q2/2P.q and ν =
P.q
M where M is the mass
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of the hadron. x1 is the fraction of hadron’s momentum carried by the parton i i.e., l =

x1 P and 0 ≤ x1 ≤ 1.The scaling variable at parton level is z =
−q2

2p.q . f H
i (x1) is the

parton distribution function (PDF), which is the probability of finding a parton i in H with

momentum fraction between x and x + dx. PDF satisfy the following properties :

∫ 1

0
dx

[
fu(x) − fū(x)

]
= 2,

∫ 1

0
dx

[
fd(x) − fd̄(x)

]
= 1, (3.3)

which says that the integral of the difference between quarks and anti-quarks equals the

number of quarks in proton. Conservation of momenta implies

∑
i

∫ 1

0
dx x fi(x) = 1. (3.4)

The parton level cross section in eq. 3.2 is d2σ i

dQ2dν (z,Q
2) and it can be expanded in a power

series of the strong coupling constant to compute the higher order QCD corrections.

3.1 The Drell-Yan process

In 1970 hadron-hadron collision was being studied at BNL [45], where the process inves-

tigated was collision of protons of energies 22-29 GeV giving rise to muon pair of mass

1-6.7 GeV. One of the interesting features of the data was the rapid fall-off of the cross

section with muon-pair mass. Drell and Yan [1] explained this fall based on a hadron-

hadron collision process giving rise to massive lepton pairs; this process is now popularly

known as the Drell-Yan (DY) process. It takes place as:

H1(P1) + H2(P2)→ l+(l1) + l−(l2) + X(PX). (3.5)

P1, P2 are the momentum of the hadrons and l1, l2 are the momentum of the leptons. X de-

notes any final inclusive state which is allowed by the conservation of quantum numbers.
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p1 = x1 P2

V
q

l1

l2

p2 = x2 P2
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Figure 3.2: The Drell-Yan process

Fig. 3.2 depicts the DY process as realized through parton model picture. According to

the parton model, a quark from one hadron annihilates an antiquark from another hadron,

giving rise to a vector boson (V), which subsequently decays to a lepton pair. The dif-

ferential cross section for the DY process in terms of the parton model can be quantified

in the following way: We consider the hadronic collision process in eq. 3.5 with a virtual

photon (V = γ) of momentum q in the intermediate state. The invariant mass squared of

the final state lepton pair is Q2 and the centre of mass energy of the colliding protons is
√

S . These variables are related to one another in the following way

S = (P1 + P2)2, τ =
Q2

S
, Q2 = q2. (3.6)

The DY cross section reads as follows

dσ
dQ2 (τ,Q2) =

∑
i, j

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dz δ(τ − z x1x2)

x1 f H1
i (x1) x2 f H2

j (x2)
dσ i, j

dQ2 (z,Q2) (3.7)

where we have two PDF’s coming due to two partons taking part in the collision; z =

Q2

s and
√

s are the scaling variable and the center of mass energy at the partonic level

respectively. The partonic cross section is represented by dσ i, j

dQ2 (z,Q2). If Q2 is large, then
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Figure 3.3: Lowest order DY process

by Heisenberg uncertainty principle, the time of interaction of the quark and the anti-

quark is short and the partons participating in the reaction cannot interact with the other

partons present in the proton. The light quarks and the gluons which do not take part in

the reaction come out as final state hadrons. While measuring the cross section of the DY

process, we sum over all these final state hadrons, denoted by X in eq. 3.5.

A number of predictions can be made from the DY formalism, which includes a) scaling

behavior of the differential cross sections w.r.t the Feynman variable xF or rapidity y,

b) dependence of cross section on atomic number, c) angular distribution of the decay

products. There have been large number of experimental measurements conducted over

all these years and fair consistency with the predictions have been reported.

In addition to photon, W and Z (V = W,Z) boson can also appear in the intermediate stage

of the DY process. The processes take place as follows

pp̄→ W → l ν̄l + X, pp̄→ Z → f f̄ + X . (3.8)

The experimental signatures involve two high pT leptons as a result of the decay of Z

boson or a single high pT lepton and missing transverse energy in the case of W boson.

The W and Z bosons were discovered in the UA1 and UA2 collaborations at the CERN

[15, 16]. The DY process is a very important experimental tool due to its high production

rate and clean experimental final state, which lead to the determination the electroweak

model parameters. Measurements of the W boson production at the Tevatron [46] resulted
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in an accurate determination of the W mass and width.

The partonic cross section in eq. 3.7 can be realized through fig. 3.3 with V = γ. We

call it as a leading order process (O(α2
em)) as we shall see later that this is lowest order

diagram that appears when the cross section is expanded in a perturbative series of the

strong coupling constant as. The value of the cross section is [47]

dσ
dQ2

∣∣∣∣
γ
(τ,Q2) = τ

4 πα2
em

3 Q4N

∑
q

e2
q

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dz δ(τ − z x1x2)

{
f H1
q (x1) f H2

q̄ (x2) + f H1
q̄ (x1) f H2

q (x2)
}
δ(1 − z) (3.9)

where N is the number of colors in QCD, αem is the fine structure constant. The charge

of quark is denoted by eq. The term 1/Q4 on the right hand side explains the rapid fall of

cross section with the increase in invariant mass of the lepton pair.

However the leading order computation of the DY process is not a good approximation,

due to the discrepancy reported between the theoretical predictions and the experimental

data; namely the NA3 group [48] found it in 1979 and this was also concluded by other

fixed target experiments. The experimental result for cross section was larger by a factor

of 2.3 ± 0.5 than the theoretical prediction [48]. Around that time the spectacular one loop

QCD (O(as)) corrections to the DY process were being performed by different groups

[49–53]. The O(as) corrected cross section of the DY process was then compared against

the data from the CERN and the FERMILAB and it was concluded that the discrepancy

seen before was due to the unavailable one loop QCD corrections. This highlights the

necessity of higher order QCD corrections in process like the DY. Some of the diagrams

contributing to one loop are shown in fig. 3.4. We shall elaborate on these diagrams

and the associated divergences in the next paragraph. However the one loop corrections

turned out to be large, ∼ 70% for fixed target energies, which questioned the reliability of

the perturbative series. Therefore to strengthen the one loop corrections it was necessary

to compute the two loop (NNLO) corrections to the DY process [54]. The NNLO cross
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Figure 3.4: Sample diagrams contributing to O(as) QCD corrections

section for Z boson production was found to be in good agreement with the existing

UA2 [55] experimental data. For W boson production, the theoretical predictions were

found to lie systematically above the UA2 datas. There have been attempts to go beyond

NNLO; the NNLL resummation was reported in [56]. Using Sudakov resummation of

QCD amplitudes, RG invariance and mass factorization theorem, the N3LO soft virtual

QCD corrections for the DY was finally achieved; for inclusive production see [57, 58]

for rapidity distribution see [30].

Finally we describe the type of divergences that appear beyond the leading order in the DY

process. As we can see from fig. 3.4 there are two classes of diagrams that can appear. One

of them contain a virtual gluon loop, the type we encountered in sec. 2.3. This gives rise

to the UV divergences and to eliminate them we have to renormalize the strong coupling

constant after regulating the theory in dimensional regularization (d = 4+ε). As a result a

unphysical renormalization scale, µR enters into pQCD calculations. There are two more

singularities that can arise from the loop diagram. The momentum of the massless virtual

particle in the loop runs from 0 to∞ and in the limit when the momentum→ 0, there are

divergences which are known as soft singularities. In other words soft singularities arise

due to massless gauge particles. In addition the particle in the loop can become parallel to

one of the external massless partons, which can give rise collinear singularity. As shown

in fig. 3.5 in the center of mass frame of the quark-antiquark system, the gluon is emitted

at an angle θ with respect to the quark. Collinear singularity arises when θ → 0. These

two singularities, the soft and collinear, together are called infrared (IR) divergences.
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θ

q̄ q

Figure 3.5: Gluon emitted at an angle θ in center of mass frame of the quark-antiquark
system.

The second class of diagram consist of one real emission from the initial state as shown

in fig. 3.4. When multiplied by its own conjugate it will contribute to O(as). This dia-

gram can give rise to both soft and collinear singularities. According to the KLN theo-

rem [59, 60] the soft and collinear singularities from virtual diagrams cancel against the

soft divergences from the real emission ones, when the two classes of diagram are added

together. To cancel the initial state collinear divergence, we have to perform mass fac-

torization [61]. The process of mass factorization introduces an additional scale into the

computation, µF; hence the UV and IR finite result contains two unphysical scale depen-

dencies: µR and µF . At a particular fixed order in the perturbative expansion, if the cross

section varies considerably w.r.t to these scales, then it indicates the need for higher order

QCD radiative corrections. As we saw before, this was one of the reason that prompted

the NNLO corrections to the DY cross section.

The DY process in the SM is now one of the widely studied and understood areas in parti-

cle physics. It has established itself as one of the benchmark processes to probe physics at

TeV energies at the colliders, namely earlier at the Tevatron and now at the LHC. Because

of its large cross-section and small systematic uncertainties, DY production also serves

as luminosity monitor [62] at the LHC. Its clean electromagnetic probe is best suited for

the search of any new physics beyond the SM (BSM). An excess rate over the SM in this

channel will potentially indicate the signature of BSM physics. Drell-Yan is the potential

background for processes involving Z′ or W ′ and also for spin-2/graviton searches. In this

thesis using the DY process, we shall study the scenario where a massive spin-2 particle

can appear in the intermediate stages, which then subsequently decays to a lepton pair.
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The SM of particle physics has been very successful in explaining the phenomenon that

take place at the subatomic level. We saw in the previous chapters how the theory was

built over years of perseverance of physicists from all over the world. The final milestone

was achieved in 2012 when the Higgs boson was discovered at the LHC [17, 18]. How-

ever the theory has many limitations: it does not have dark matter candidate to explain the

relic abundance in the early universe; it fails to explain the observed baryon asymmetry in

our universe; it lacks a proper description of the phenomenon of neutrino oscillations. In

addition the theory cannot incorporate properly the fourth force of nature: gravitational

force. These above mentioned evidences served as compelling reasons to construct the-

ories beyond the SM. In the next section we shall concentrate on how extra-dimensional

models incorporate gravity and thereby allow it to interact with the SM fields which can

lead to observable signatures at the colliders. We shall concentrate on the DY production

of a massive spin-2 particle which subsequently decays to a lepton pair. We have seen

earlier that QCD corrections play an important role in the SM DY process; hence we shall

compute second order QCD corrections in models of TeV scale gravity. We describe them

in details in the next two sections.

25
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4.1 Field theories with extra dimension

Unification of all the four forces that exist in nature has been a dream of physicists for

quite a long time. Although the strong, weak and electromagnetic forces have been com-

bined together and they are explained by the SM, there is still no successful theory in

which gravity can be described at par with the three forces. This inability arises due to the

huge difference between the two fundamental energy scales in nature: electroweak scale

(mW) ∼ 103 GeV and the Plank scale (MP) ∼ 1019 GeV. In other words at the subatomic

scales, gravitational force is weaker compared to other three forces in the SM. In order

to explain this hierarchy, proposals of extra-dimensional models have been made with the

aim to allow gravity interact with the SM fields. The idea to unify the forces in nature

dates back to early nineteenth century when Kaluza [63] and Klein [64] tried to combine

electromagnetism with general relativity by proposing a 5-d model, where one spatial di-

mension was compactified on a circle. A higher-dimensional field theory can be reduced

to 4-dimension after the extra dimensions are compactified. This is called Kaluza-Klein

reduction. We illustrate this in the next section with an example of a free scalar field.

4.1.1 Kaluza Klein reduction

The action representing a free massless scalar field in 5-d reads as follow [65]

S =

∫
d5x

1
2
∂Mφ(x µ, z)∂Mφ(x µ, z). (4.1)

In above, z is the extra dimension compactified on a circle of radius R, M = 0, 1, 2, 3, 5

and µ ∈ [0, 3]. The measure of the integral is d 5x = d 4x dz. The field φ is periodic along

z with φ(x µ, z + 2πR) = φ(x µ, z). We perform a Fourier expansion of the scalar field along
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the extra dimension,

φ(x µ, z) =
1
√

2 πR

∞∑
l=−∞

φ(l)(x µ)ei l
R z (4.2)

where the field is subjected to the constraint (φ(l))† = φ−(l). Putting the expansion in the

above equation into the action in eq. 4.1 and performing the z integration we get:

S =

∫
d 4x

1
2
∂µφ

(0)∂ µφ(0) +

∞∑
l=1

[
∂µφ

(l)†∂ µφ(l) −
l2

R2φ
(l)†φ(l)

] . (4.3)

Thus by compactifying the extra dimension and then performing a Fourier expansion

along it, we notice that a 5-d theory has been reduced to 4 dimensions. The first term rep-

resents the 0’th mode of the Fourier expansion, which remains massless in 4 dimension.

The second term describes an infinite series of states, popularly called the Kaluza-Klein

(KK) tower of states, with each state having a mass m = l/R. For higher dimension com-

pactified on a torus, the generalization is straightforward and the masses of the KK states

are as follows:

m2
l5,l6,... =

l2
5

R2
5

+
l2
6

R2
6

+
l2
7

R2
7

+ ... (4.4)

with Ri is the radius of the i’th compact dimension.

The KK reduction can be similarly carried out for a gauge field in 5-d as well as gravita-

tional field in d = n + 4 dimensions. To describe KK reduction for gravitational scenario,

we consider an action describing coupled gravity + gauge + matter systems in d = 4 + n

dimensions. Since gravity is a non-renormalizable theory, an UV cut-off has to be chosen,

which can be related to the compactification radius of the extra dimensions. On perform-

ing a mode expansion, the l = 0 mode correspond to m massless vectors, m(m + 1)/2

massless scalars and one massless graviton. On the other hand for the mode l , 0, we

get for each KK level, one massive spin-2 tensor, m − 1 massive vectors and m(m − 1)/2

massive scalars.

In the next section we shall describe how extra-dimensional models try to solve the hier-

archy problem and try to unify SM with gravity.
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4.1.2 The ADD model

One of the extra dimensional models addressing the problem of hierarchy was given by

Arkani-Hamed, Dimopoulos and Dvali (ADD), popularly called the ADD model [66].

Here the authors consider the experimentally determined electroweak scale as the mass

scale of their model and the UV cutoff was set equal to mW . In order reduce the huge

energy gap between the scales MP and mW , n extra spatial dimensions were introduced

which were compactified in a torus of radius R. Denoting the Planck scale in the 4 + n

dimensional theory as MS , the following relation between MP and MS was shown to hold:

M2
P ∼ Mn+2

S Rn (4.5)

By taking R to be large the scale MS can be lowered down to a few TeV and the hierarchy

problem can be avoided.

In the ADD model the SM fields are constrained to a 3-brane while the gravitons prop-

agate in the 4 + n dimensional bulk. Then the size of the extra dimensions is only con-

strained by the length scales to which the gravitational inverse square law has been ex-

perimentally tested, which are currently probing the sub-millimeter range. To reduce the

higher dimensional theory to four dimensions, KK reduction is performed which results

in a tower of KK modes. Among these, the zeroth mode gives rise to massless particles,

while the rest of the modes, which are infinite in number gives rise to massive particles.

The KK modes interact with the SM fields through the energy momentum tensor, T µ ν,

with coupling strength of each interaction being proportional to 1/MP (we consider this

as κ). In the effective theory all the KK modes are summed over and due to high multiplic-

ity of these modes, the effective coupling becomes of the order of 1/MS . This enhanced

coupling provides viable signatures of the graviton KK modes at colliders.

Most of the extra-dimensional models assume the coupling of the spin-2 particle to the
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SM fields to be same. In other words the gauge and fermionic fields couple to the spin-2

particle with an universal coupling strength. In the next chapter we shall study the phe-

nomenology of such a scenario in great details. However this is not the most general way

in which the spin-2 can interact to the SM particles. There can be a generic massive spin-2

particle coupling differently to the fermionic and gauge fields. We shall also investigate

such a scenario and present the phenomenological impact up to NNLO level in QCD.

In the next section we describe the general theoretical concepts required for computing

the differential distribution of a lepton pair production from the decay of a massive spin-2

particle, where the latter appears in the intermediate stages in DY type of process. We

describe the universal coupling scenario in the next section; the theory for non-universal

case will be presented later in chapter 6.

4.2 Theoretical Framework

4.2.1 The effective action

We assume the massive spin-2 particle interacts universally with the SM fields. Since we

are interested in the QCD regime of the SM we shall consider the coupling of the QCD

energy-momentum tensor to the spin-2 field. The action describing such an interaction is

S = S SM + S h −
κ

2

∫
d4x T QCD

µν (x) hµν(x) (4.6)

where, S SM and S h represent the actions of the SM and spin-2 fields, respectively. T QCD
µν

is the conserved energy momentum tensor of QCD which is given by

T QCD
µν = −gµνLQCD − Fa

µρF
aρ
ν −

1
ξ

gµν∂ρ(Aa
ρ∂

σAa
σ) +

1
ξ

(Aa
ν∂µ(∂

σAa
σ) + Aa

µ∂ν(∂
σAa

σ))
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+
i
4

[
ψγµ(
−→
∂ ν − igsT aAa

ν)ψ − ψ(
←−
∂ ν + igsT aAa

ν)γµψ + ψγν(
−→
∂ µ − igsT aAa

µ)ψ

− ψ(
←−
∂ µ + igsT aAa

µ)γνψ
]

+ ∂µω
a(∂νωa − gs f abcAc

νω
b)

+ ∂νω
a(∂µωa − gs f abcAc

µω
b). (4.7)

In above gs is the strong coupling constant and T a, f abc are the Gell-Mann matrices and

structure constants of SU(N) gauge theory respectively. ξ is the gauge fixing parameter

which is set to 1 as we have performed our computation in the Feynman gauge. The

Feynman rules of the theory are presented in Appendix 11.1.

4.2.2 Invariant Lepton Pair Mass Distribution dσ/dQ2

We consider the DY production of a lepton pair, l+ and l−, given by

H1(P1) + H2(P2)→ l+(l1) + l−(l2) + X(PX) , (4.8)

where H1 and H2 are the two incoming hadrons and X takes into account all possible

partonic emissions in the initial state. The four momenta of the corresponding particles

are represented inside the parenthesis. In the QCD improved parton model we can express

the hadronic cross section in terms of the partonic one in the following way:

2S
dσH1H2

dQ2

(
τ,Q2) =

∑
ab=q,q̄,g

∫ 1

0
dx1

∫ 1

0
dx2 f H1

a (x1) f H2
b (x2)

×

∫ 1

0
dz 2ŝ

dσ̂ab

dQ2

(
z,Q2)δ(τ − zx1x2) . (4.9)

In the above equation S is the square of the hadronic center of mass energy which can be

related to the corresponding partonic one, ŝ, through ŝ = x1x2S . Q2 is the invariant mass

of the final state leptonic pair i.e. m2
l+l− = Q2. fa and fb are the parton distribution functions
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of the initial state partons a and b, respectively. The other parameters are defined as

τ ≡
Q2

S
, z ≡

Q2

ŝ
and τ = x1x2z . (4.10)

The underlying partonic process corresponding to the hadronic one (4.8) is

a(p1) + b(p2)→ j(q) +

m∑
i=1

Xi(qi)→ l+(l1) + l−(l2) +

m∑
i=1

Xi(qi)

where, j can be photon (γ∗), Z-boson (Z) or spin-2 particle. The DY cross section can be

factorized in terms of partonic (ab→ j) and leptonic ( j→ l+l−) parts as follows:

2ŝ
dσ̂ab

dQ2 =

∫ m∏
i

dnqi

(2π)n 2π δ+(q2
i )

 (∫ dnl1

(2π)n 2π δ+(l 2
1 )

)
×

(∫
dnl2

(2π)n 2π δ+(l 2
2 )

)
(2π)n × δ(n)

p1 + p2 − q −
m∑

i=1

qi

 2π δ+(q2 − Q2) 1
2π

∑
j, j′=γ∗,Z,h

∣∣∣Mab→ j j′+
∑m

i=1 qi
∣∣∣2 . P j(q) . P∗j′(q) .

∣∣∣ML
j j′→l+l−

∣∣∣2 (4.11)

where in above
∣∣∣M ab→ j j′+

∑m
i=1 pi

∣∣∣2 is the partonic cross section while
∣∣∣ML

j j′→l+l−
∣∣∣2 is the

leptonic contribution. j , j′ reflects the interference terms between the channel j and j′.

In the above equation, the sum over Lorentz indices between matrix element squared and

the propagators is implicit through a symbol ‘dot product’. Introducing the identity

∫
dnq

(2π)n × (2π)nδn(q − l1 − l2) = 1 (4.12)

and noting that

∫
dPS m =

∫ m∏
i

dnqi

(2π)n 2π δ+(q2
i )∫

dPS m ×

∫
dnq

(2π)n 2π δ+(q2 − Q2) (2π)n × δ(n)

p1 + p2 − q −
m∑

i=1

qi


=

∫
dPS m+1 (4.13)
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Thus we arrive at the following formula for partonic cross section

2ŝ
dσ̂ab

dQ2 =
1

2π

∑
j, j′=γ∗,Z,h

∫
dPS m+1

∣∣∣M ab→ j j′
∣∣∣2 · P j(q) · P∗j′(q) · L j j′→l+l−(q) (4.14)

with L j j′→l+l− is given by

L j j′→l+l−(q) =

2∏
i=1

(
dnli

(2π)n 2πδ+(l2
i )
)
× (2π)nδn(q − l1 − l2)

∣∣∣M j j′→l+l−
∣∣∣2 . (4.15)

In eq. 4.11 the propagators are

Pγ, µν(q) = −
i

Q2ηµν ≡ ηµνP̃γ(Q2),

PZ, µν(q) = −
i

(Q2 − M2
Z − iMZΓZ)

ηµν ≡ ηµνP̃Z(Q2),

Ph, µνρσ(q) = D(Q2)Bµνρσ(q) ≡ Bµνρσ(q)P̃h(Q2) (4.16)

where

Bµνρσ(q) =

(
ηµρ −

qµqρ
q.q

) (
ηνσ −

qνqσ
q.q

)
+

(
ηµσ −

qµqσ
q.q

) (
ηνρ −

qνqρ
q.q

)
−

2
n − 1

(
ηµν −

qµqν
q.q

) (
ηρσ −

qρqσ
q.q

)
, (4.17)

ηµν = diag[1,−1,−1,−1, · · · ] and D(Q2), the summation over the virtual Kaluza-Klein

(KK) modes in the time like propagators [67] in (4 + d)-dimensions, is

D(Q2) = 16π
(

Qd−2

κ2Md+2
s

)
I
(

Ms

Q

)
. (4.18)

In the UV region the integral I is regulated by a cutoff which is of the order of MS [67].

This cutoff sets the limit on the applicability of the effective theory. For the DY process,
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this implies Q < MS . The summation over the non-resonant KK modes yields

I(ω) = −

d/2−1∑
k=1

1
2k
ω2k −

1
2

log(ω2 − 1) , d = even , (4.19)

I(ω) = −

(d−1)/2∑
k=1

1
2k − 1

ω2k−1 +
1
2

log
(
ω + 1
ω − 1

)
, d = odd , (4.20)

where ω = MS /Q.

In order to compute the hadronic cross section in eq. 4.9 we have to compute the leptonic

part and partonic part separately and then fold the resulting partonic cross section in eq.

4.14 with the appropriate PDF’s. The leptonic part turns out to be

L j j′→l+l−(q) = gµν(q)L j j′(Q2), j j′ = {γγ,ZZ, γZ} ,

Lhh→l+l−(q) = Bµνρσ(q)Lhh(Q2) , (4.21)

where

Lhh(Q2) = Q4 κ2

640π
, LZZ(Q2) = Q2 2α

3c2
ws2

w

(
(gV

e )2 + (gA
e )2

)
,

LγZ(Q2) = −Q2 2αgV
e

3cwsw
, Lγγ(Q2) = Q2 2α

3
,

and gµν(q) ≡ ηµν −
qµqν
q.q

. (4.22)

In the above equation, α is the fine structure constant, cW ≡ cos θW , sW ≡ sin θW and θw is

the weak mixing angle. gV
f and gA

f can be expressed in terms of charge Q f of the fermions

( f ) i.e. quarks, leptons and weak isospin T 3
f :

gV
f =

1
2

T 3
f − s2

wQ f , gA
f = −

1
2

T 3
f . (4.23)
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Hence, the hadronic cross section in eq. 4.9 can be rewritten as

2S
dσH1H2

dQ2 =
1

2π

∑
j, j′={γ∗,Z,h}

P̃ j(Q2) P̃∗j′(Q
2)L j j′(Q2)WH1H2

j j′ (τ,Q2) (4.24)

where, the hadronic structure function W is

WH1H2
j j′ (τ,Q2) =

∑
a,b, j, j′

∫
dx1

∫
dx2 fa

H1(x1) fb
H2(x2)

∫
dzδ(τ − zx1x2)

×

∫
dPS m+1|M

ab→ j j′ |2T j j′(q) (4.25)

with

T j j′(q) =


gµν(q), j j′ = γγ, γ Z,ZZ

Bµνρσ(q), j j′ = hh .
(4.26)

To obtain the differential distribution in eq. 4.24 we need to compute the hadronic struc-

ture function W j j′ in eq. 4.25 which further requires evaluation of the integrals in a suitable

frame over dPS m+1 and dz after substituting the matrix element squared |Mab→ j j′ |2T j j′(q).

We define the bare partonic coefficient function ∆̂ j j′

ab

(
z,Q2, 1/ε

)
as following

∆̂
j j′

ab

(
z,Q2, 1/ε

)
= C j j′

∫
dPS m+1|M

ab→ j j′ |2T j j′(q) (4.27)

where

C j j′ =


1
e2 j j′ = γγ,ZZ, γZ ,

1
Q2κ2 j j′ = hh .

(4.28)

There are two different class of processes which contributes to the partonic cross section:

first one happens through a virtual photon (γ∗) or a Z-boson whereas the second one

contains a spin-2 particle in the intermediate state. Interestingly, on performing the phase

space integration, the interference term between the two classes of diagrams up to NNLO
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identically vanishes, this was earlier noted to NLO [68]. This can be realized as follows:

We consider the partonic processes where 1. a massive spin-2 particle is produced and 2. a

photon/Z boson is produced and take the interference between these two processes. Then

after the phase space integrations, the resulting expression will be a third rank tensor say

P µνσ. Now the only quantities available from which we can construct such a third rank

tensor are ηµν and qσ (q.q , 0). There can be no such P µνσ constructed out of ηµν and

qσ which satisfies qµP µνσ = 0. This is also true for Levi-Civita tensor which appears in

the case of the electro-weak vertices. This can also be checked by explicit computation.

Therefore, our result contains no contribution from the interference terms.

In order to compute the matrix elements in eq. 4.25 we have to expand the amplitudes in

a perturbative series of the strong coupling constant. For a spin-2 particle appearing as

an intermediate state, at LO we can have gluon initiated process as well as quark initiated

one. Thus at LO (see fig. 4.1)

q + q̄→ γ∗/Z/h , g + g→ h . (4.29)

Beyond LO, the contributions arise from virtual as well as real emission diagrams. At

γ∗/Z/h h

Figure 4.1: Leading order processes for the DY

NLO in QCD, we have
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q + q̄→ γ∗/Z/h + g ,

g + g→ h + g ,

g + q→ γ∗/Z/h + q ,

q + q̄→ γ∗/Z/h + one loop ,

g + g→ h + one loop ,

g + q̄→ γ∗/Z/h + q̄ . (4.30)

Similarly at NNLO in QCD, the contributions can arise from three different categories:

double-real emissions, real-virtual and double virtual diagrams. The processes which

belong to the double-real emissions are

q + q̄→ γ∗/Z∗/h + q + q̄ ,

g + g→ h + g + g ,

g + q→ γ∗/Z/h + g + q ,

q + q→ γ∗/Z/h + q + q ,

q1 + q̄2 → γ∗/Z/h + q1 + q̄2 .

q + q̄→ γ∗/Z/h + g + g ,

g + g→ γ∗/Z/h + q + q̄ ,

g + q̄→ γ∗/Z/h + g + q̄ ,

q1 + q2 → γ∗/Z/h + q1 + q2 ,

(4.31)

The processes which contribute in real-virtual are

q + q̄→ γ∗/Z/h + g + one loop ,

g + q→ γ∗/Z/h + q + one loop ,

g + g→ h + g + one loop ,

g + q̄→ γ∗/Z/h + q̄ + one loop (4.32)

and the pure double virtual diagrams are

q + q̄→ γ∗/Z/h + two loop ,

g + g→ h + two loop . (4.33)

As we have discussed earlier in section 2.3 the evaluation of virtual diagrams give rise
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to UV divergences. In addition IR singularities also arises from loop diagrams, when the

virtual particle can become soft or parallel to one of the external particles. Moreover IR

singularities also arise from real emission diagrams which we already discussed in sec-

tion 3.1. We regulate the UV as well as IR divergences using dimensional regularisation

where the space-time dimensions n is chosen to be equal to 4 + ε. All the singularities

manifest themselves as the poles in dimensional regularization parameter ε: 1/εα with

α ∈ [1, 4] up to NNLO. As we have already seen through eq. 2.5 and 2.6 in MS, the UV

poles are removed through strong coupling constant renormalisation using

âsS ε =

(
µ2

µ2
R

)ε/2
Zasas (4.34)

where, the renormalization constant Zas up to O(a5
s) is given by

Zas = 1 + as

[
2
ε
β0

]
+ a2

s

[
4
ε2 β

2
0 +

1
ε
β1

]
+ a3

s

[
8
ε3 β

3
0 +

14
3ε2 β0 β1 +

2
3ε
β2

]
+ a4

s

[
16

1
ε4 β

4
0 +

46
3ε3 β

2
0 β1 +

3
2ε2 β

2
1 +

10
3ε2 β0 β2 +

1
2ε
β3

]
+ a5

s

[
32
ε5 β

5
0 +

652
15ε4 β

3
0 β1 +

157
15ε3 β0 β

2
1 +

172
15

ε3 β2
0 β2 +

34
15ε2 β1 β2

+
13
5ε2 β0 β3 +

2
5ε
β4

]
, (4.35)

and

S ε = exp
[
(γE − ln 4π)ε/2

]
, γE = 0.5772 . . . ,

as ≡ as(µ2
R) ≡

g2
s

16π2 . (4.36)

µ is the scale introduced to keep the unrenormalized strong coupling constant âs dimen-

sionless in n-dimensions. The corresponding renormalization scale is denoted by µR. βi’s

are the coefficients of QCD β-function [38, 39, 69–71]. The spin-2 particles couple to the

SM ones via T QCD
µν which is conserved, hence κ is protected from any UV renormalisation.

The soft divergences arising from virtual diagrams cancel exactly against the same coming
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from real emission ones, thanks to the Kinoshita-Lee-Nauenberg (KLN) theorem [59,60].

The initial state collinear divergences are removed through mass factorization, performed

at the factorization scale µF:

∆̂i
ab(z,Q2, 1/ε) =

∑
c,d=q,q̄,g

Γca(z, µ2
F , 1/ε) ⊗ Γdb(z, µ2

F , 1/ε) ⊗ ∆
i
cd(z,Q2, µ2

F) . (4.37)

The symbol ⊗ stands for the convolution:

( f ⊗ g) (z) ≡

1∫
z

dx
x

f (x)g
( z

x

)
. (4.38)

In eq. 4.37, ∆̂ ≡ σ̂/z is the bare partonic coefficient function and the corresponding

one after performing the mass factorization is denoted by ∆. Further we have dropped

the double index j j′ from the partonic coefficient function (see eq. 4.27) because of the

vanishing interference terms between the two classes of diagrams and replace it by the

single index i instead. The mass factorization kernel in the MS scheme is given by

Γab(z, µ2
F , 1/ε) =

∞∑
k=0

ak
s(µ

2
F)Γ(k)

ab (z, µ2
F , 1/ε)

with

Γ(0)
ab = δabδ(1 − z) ,

Γ(1)
ab =

1
ε

P(0)
ab (z) ,

Γ(2)
ab =

1
ε2

(
1
2

P(0)
ac ⊗ P(0)

cb + β0P(0)
ab

)
+

1
ε

(
1
2

P(1)
ab

)
. (4.39)

P(i)
ab are the Altarelli-Parisi splitting functions [72–76].

Expanding the unrenormalised coefficient function in eq. 4.27 and the mass factorized
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one in eq. 4.37 in powers of strong coupling constant as

∆̂i
ab =

∞∑
k=0

âk
sS

k
ε

(
Q2

µ2

)k ε2

∆̂i,(k)
ab ,

∆i
ab =

∞∑
k=0

ak
s(µ

2
F)∆i,(k)

ab (4.40)

and using eq. 4.39, we can get all the contributions to NNLO arising from all the subpro-

cesses:

∆i,(0)
gg = ∆̂i,(0)

gg ,

∆i,(1)
gg = ∆̂i,(1)

gg − 2∆̂i,(0)
gg ⊗ Γ

(1)
gg ,

∆i,(2)
gg = ∆̂i,(2)

gg + 3∆̂i,(0)
gg ⊗ Γ

(1)
gg ⊗ Γ

(1)
gg + 4n f ∆̂

i,(0)
gg ⊗ Γ

(1)
gq ⊗ Γ

(1)
qg

+ 2n f ∆̂
i,(0)
qq̄ ⊗ Γ

(1)
qg ⊗ Γ

(1)
q̄g − 2∆̂i,(1)

gg ⊗ Γ
(1)
gg − 4n f ∆̂

i,(1)
gq ⊗ Γ

(1)
qg − 2∆̂i,(0)

gg ⊗ Γ
(2)
gg ,

∆i,(0)
qq̄ = ∆̂i,(0)

qq̄ ,

∆i,(1)
qq̄ = ∆̂i,(1)

qq̄ − 2∆̂i,(0)
qq̄ ⊗ Γ

(1)
qq ,

∆i,(2)
qq̄ = ∆̂i,(2)

qq̄ + ∆̂i,(0)
gg ⊗ Γ

(1)
gq ⊗ Γ

(1)
gq̄ + 2∆̂i,(0)

qq̄ ⊗ Γ
(1)
qg ⊗ Γ

(1)
gq̄ + 3∆̂i,(0)

qq̄ ⊗ Γ
(1)
qq ⊗ Γ

(1)
q̄q̄

− 2∆̂i,(1)
gq ⊗ Γ

(1)
gq̄ − 2∆̂i,(0)

qq̄ ⊗ Γ
(2)
qq − 2∆̂i,(1)

qq̄ ⊗ Γ
(1)
qq ,

∆i,(1)
gq = ∆̂i,(1)

gq − ∆̂
i,(0)
gg ⊗ Γ

(1)
gq − ∆̂

i,(0)
qq̄ ⊗ Γ

(1)
q̄g ,

∆i,(2)
gq = ∆̂i,(2)

gq + 2∆̂i,(0)
gg ⊗ Γ

(1)
gg ⊗ Γ

(1)
gq + ∆̂i,(0)

gg ⊗ Γ
(1)
gq ⊗ Γ

(1)
qq + ∆̂i,(0)

qq̄ ⊗ Γ
(1)
q̄g ⊗ Γ

(1)
gg

+ 2∆̂i,(0)
qq̄ ⊗ Γ

(1)
qq ⊗ Γ

(1)
q̄g − ∆̂

i,(0)
gg ⊗ Γ

(2)
gq − ∆̂

i,(1)
gg ⊗ Γ

(1)
gq − ∆̂

i,(1)
gq ⊗ Γ

(1)
gg

− ∆̂i,(1)
gq ⊗ Γ

(1)
qq − ∆̂

i,(0)
qq̄ ⊗ Γ

(2)
q̄g − ∆̂

i,(1)
qq̄ ⊗ Γ

(1)
q̄g ,

∆i,(2)
qq = ∆̂i,(2)

qq + ∆̂i,(0)
gg ⊗ Γ

(1)
gq ⊗ Γ

(1)
gq + 2∆̂i,(0)

qq̄ ⊗ Γ
(1)
q̄g ⊗ Γ

(1)
gq − 2∆̂i,(1)

gq ⊗ Γ
(1)
gq

− 2∆̂i,(0)
qq̄ ⊗ Γ

(2)
q̄q ,

∆i,(2)
q1q2

= ∆̂i,(2)
q1q2
⊗ Γ(0)

q1q1
+ ∆̂i,(0)

gg ⊗ Γ
(1)
gq1
⊗ Γ(1)

gq2
+ 2∆̂i,(0)

q1q̄1
⊗ Γ(1)

q̄1g ⊗ Γ
(1)
gq2



40 Beyond the Standard Model

− 2∆̂i,(1)
gq1
⊗ Γ(1)

gq2
− 2∆̂i,(0)

q1q̄1
⊗ ΓS ,(2)

q̄1q2
,

∆i,(2)
q1q̄2

= ∆̂i,(2)
q1q̄2

+ ∆̂i,(0)
gg ⊗ Γ

(1)
gq1
⊗ Γ(1)

gq̄2
+ 2∆̂i,(0)

q1q̄1
⊗ Γ(1)

q1g ⊗ Γ
(1)
gq̄2
− 2∆̂i,(1)

gq1
⊗ Γ(1)

gq̄2

− 2∆̂i,(0)
q1q̄1
⊗ ΓS ,(2)

q1q1
. (4.41)

To arrive at the above set of results 4.41, we have made use of

Γqg = Γq̄g , Γgq = Γgq̄

and ∆i
gq = ∆i

gq̄ = ∆i
qg = ∆i

q̄g (4.42)

and the presence of the n f in RHS comes from the sum over flavors. The superscript S in

the last two equations of 4.41 denotes the flavour singlet part of the AP kernel. From the

results of the bare coefficient functions and the known splitting functions, we can obtain

the finite ∆i
ab using the above eq. 4.41. This in turn gives us the Q2 distribution of the

leptonic pair in the DY process:

2S
dσH1H2

dQ2 (τ,Q2) = 2S
dσH1H2

SM

dQ2 (τ,Q2)

+
∑
Fh

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dzδ(τ − zx1x2)

×

[
Hqq̄

2∑
k=0

ak
s∆

h,(k)
qq̄ + Hgg

2∑
k=0

ak
s∆

h,(k)
gg +

(
Hgq + Hqg

) 2∑
k=1

ak
s∆

h,(k)
gq

+ Hqq

2∑
k=2

ak
s∆

h,(k)
qq + Hq1q2

2∑
k=2

ak
s∆

h,(k)
q1q2

]
, (4.43)

where the contribution from SM [54, 77–79] reads as follows:

2S
dσH1H2

SM

dQ2 (τ,Q2) =
∑

q

FS M,q

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dz δ(τ − zx1x2)

×

[
Hqq̄

2∑
k=0

ak
s∆

h,(k)
qq̄ +

(
Hgq + Hqg

) 2∑
k=1

ak
s∆

h,(k)
gq



4.2 Theoretical Framework 41

+Hqq

2∑
k=2

ak
s∆

h,(k)
qq + Hq1q2

2∑
k=2

ak
s∆

h,(k)
q1q2

+ Hgg

2∑
k=2

ak
s∆

h,(k)
gg

]
.(4.44)

In the above expression

FS M,q =
4α2

em
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)(
(gV
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q )2

)]
,

Fh =
κ4Q6

320π2 |D(Q2)|2 ,

∆i,(k)
ab = ∆i,(k)

ab (z, µ2
F) (4.45)

and the renormalised partonic distributions are

Hqq̄(x1, x2, µ
2
F) = f H1

q (x1, µ
2
F) f H2

q̄ (x2, µ
2
F) + f H1

q̄ (x1, µ
2
F) f H2

q (x2, µ
2
F) ,
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q (x1, µ
2
F) f H2

q (x2, µ
2
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2
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2
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,

Hgq(x1, x2, µ
2
F) = f H1

g (x1, µ
2
F)

(
f H2
q (x2, µ

2
F) + f H2

q̄ (x2, µ
2
F)

)
,

Hqg(x1, x2, µ
2
F) = Hgq(x2, x1, µ

2
F) ,

Hgg(x1, x2, µ
2
F) = f H1

g (x1, µ
2
F) f H2

g (x2, µ
2
F) . (4.46)

The differential distribution of the DY pair produced from a spin-2 particle already exists

up to NLO QCD in the literature [68]; in this thesis we extend it up to NNLO. We discuss

about the methodology to compute the finite partonic cross sections ∆h,(2)
ab in the next

chapter.
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4.3 Outline of the thesis

This thesis contains both fixed order computations as well as resummation. It is divided

into four parts : in chapter 5 we shall discuss the NNLO QCD corrections to production

of a lepton pair where the latter is produced from an intermediate spin-2 particle which

couples universally to the SM fields. We discuss the method of reverse unitarity that we

employ to achieve the above computation. In chapter 6 we discuss the theoretical aspects

where the spin-2 particle interacts with the SM fields with non-universal coupling. We

compute the form factors and derive the anomalous dimensions up to three loop order in

the perturbation theory, using the universal IR structure of the QCD amplitudes. Using

the results of the form factor computed in chapter 6 and employing the reverse unitarity

for computing the real emission processes, we compute the NNLO QCD corrections for

such a nonuniversal model in chapter 7. The fixed order partonic cross sections receive

large contributions from some regions of phase space, due to the emission of soft gluons.

When these cross sections are multiplied by the PDF’s, there can be large contributions at

the hadronic level, which spoils the reliability of the perturbation theory. To resolve this

issue we have to perform resummation to all orders in the perturbation theory. In chapter 8

we describe the formalism to obtain the soft-virtual cross section in zi space (i = 1, 2),

which we use to compute the resummed exponents in double Mellin space. In chapter 9

we apply the formalism to perform threshold resummation of the rapidity distribution in

two dimensional Mellin space for the DY process. Finally we conclude in chapter 10.



5 Second order QCD corrections in

models of TeV scale gravity: Universal

coupling

In this chapter we discuss the next-to-next-to-leading order (NNLO) QCD corrections to

production of di-leptons at the hadron colliders in large extra dimensional models with

spin-2 particle produced in the intermediate stages. The spin-2 particle couples to the

energy momentum tensor of the SM with the universal coupling strength κ. We present

the numerical impact of the higher order corrections and demonstrate the reduction of

scale uncertainty at NNLO level.

5.1 Introduction

The Run-1 at the LHC culminated in the discovery of the Higgs boson [17, 18], Run-

II is currently in operation and the SM is being scrutinized at unprecedented levels of

accuracy. From the theoretical perspective, precise predictions for both signals of new

physics and the SM background are very essential. Computation of observables in QCD

involve expansion in strong coupling constant and calculating the contributions coming

from LO, NLO etc. The LO predictions are often very crude at the colliders due to miss-

43
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ing higher order effects and the presence of unphysical scales resulting from ultraviolet

renormalization and mass factorization. The predictions based on LO results are unreli-

able and they cannot constrain the model parameters stringently. At the energies of the

LHC, the dominant corrections to LO DY result come from QCD; hence NLO correc-

tions are large. For the DY process, the NNLO corrections in QCD are available for

inclusive cross section [54], rapidity distributions [80, 81], fully exclusive distributions

including γ-Z interference, the leptonic decay of gauge bosons and finite width effects

are also included [82–84]. The current accuracy of the DY process is next-to-next-to-

next-to-leading order (N3LO) corrections to the production cross section near the partonic

threshold [57, 58, 85].

The SM of particle physics explains the dynamics of three forces: electromagnetic, weak

and strong force. However it cannot successfully explain the phenomenon associated with

gravity. Although both electromagnetic and gravitational force have interactions ranging

up to infinity, yet at the subatomic scale, gravity is much weaker compared to electromag-

netic force. There are two different fundemental energy scales in nature: the electroweak

scale (103 GeV) and the Planck scale (1018) GeV. Gravitational force is comparable to the

gauge interactions at the Planck scale but not at the electroweak scale. In order to explain

this huge difference between two scales in nature, many extra-dimensional models have

been proposed involving a massive spin-2 particle interacting with the Standard Model

fields through the conserved energy-momentum tensor. To achieve this, we have to go

beyond the SM (BSM). In this context, massive spin-2 particle have been phenomenolog-

ically well studied in the context of models with extra spatial dimensions which could be

flat as in the large extra dimension model, namely ADD [66, 86, 87], or warped as in the

RS model [88] or any other new physics scenario with spin-2. They couple to all the SM

particles through the energy-momentum tensor of the SM. A generic spin-2 particle can

also contribute to other production channels, namely di-lepton or di-vector boson produc-

tions at the LHC. In this chapter, we will restrict ourselves to study the invariant mass of

di-lepton pair in the ADD model with spin-2 particle. To match the theoretical accuracy of
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the SM DY process, the di-lepton final states including a spin-2 intermediate state should

also be calculated to the same order of accuracy in QCD. The present accuracy of fixed

order computation for ADD and RS model is NLO QCD corrections, which are available

for most of the di-final state process with a trivial color flow viz.: di-lepton [68, 89, 90],

di-photon [91,92], ZZ [93,94] and W+W− [95,96]. In addition, these processes have been

extended to NLO+Parton Shower accuracy [97–100]. These corrections are found to be

large i.e K-factors are turned out to be order of 1.6. For most of these processes the renor-

malisation scale (µR) dependence begins at the NLO level, which implies that we have to

compute NNLO corrections. Only at NNLO the renormalisation scale dependence starts

getting compensated. To go from NLO to NNLO it is prudent to take incremental steps.

For large invariant mass systems threshold contributions play an important role as they

capture the dominant part of the cross section. The form factors such as gluon-gluon

→ spin-2 and quark-antiquark→ spin-2 at two-loop level in QCD [101, 102] were com-

puted to obtain threshold corrections at NNLO in QCD for production of di-leptons at the

hadron colliders in ADD model and resonant production of a spin-2 particle in RS model.

The three loop QCD corrections for these form factors were computed in [103], the two

loop corrections for a massive spin-2 decaying to 3 gluons was achieved in [104].

It is also necessary to go beyond threshold contributions and compute the hard part of

the cross section, which may contribute significantly. In this chapter we shall describe the

methodology to perform a full NNLO computation in a model independent way and study

the impact of these higher order corrections for the ADD model. The theoretical back-

ground required to compute the differential cross section has been elaborated in section

4.2.1. In the next section we describe the methodology to compute the NNLO corrections.
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5.2 Computation

We are interested to compute the partonic cross section ∆h,(2)
ab , which consists of the evalu-

ation of the loop integrals arising from the virtual diagrams and the phase space integrals.

For a spin-2 production, at LO we can have both gluon and quark initiated processes (see

fig. 5.1)

q + q̄→ γ∗/Z/h , g + g→ h . (5.1)

γ∗/Z/h h

Figure 5.1: Leading order processes for the DY

Although we have already discussed about the type of processes that can appear up to

NNLO while describing the theory part of spin-2, yet we list the processes again before

moving on to describe the methodology to compute the partonic contributions. Beyond

LO, contributions arise from virtual as well as real emission diagrams. At NLO in QCD,

we have

q + q̄→ γ∗/Z/h + g ,

g + g→ h + g ,

g + q→ γ∗/Z/h + q ,

q + q̄→ γ∗/Z/h + one loop ,

g + g→ h + one loop ,

g + q̄→ γ∗/Z/h + q̄ . (5.2)

At the NNLO in QCD, the contributions can come from: double-real emissions, real-

virtual and double virtual diagrams. The processes which belong to the double-real emis-

sions are
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q + q̄→ γ∗/Z∗/h + q + q̄ ,

g + g→ h + g + g ,

g + q→ γ∗/Z/h + g + q ,

q + q→ γ∗/Z/h + q + q ,

q1 + q̄2 → γ∗/Z/h + q1 + q̄2 .

q + q̄→ γ∗/Z/h + g + g ,

g + g→ γ∗/Z/h + q + q̄ ,

g + q̄→ γ∗/Z/h + g + q̄ ,

q1 + q2 → γ∗/Z/h + q1 + q2 ,

(5.3)

The processes which contribute in real-virtual are

q + q̄→ γ∗/Z/h + g + one loop ,

g + q→ γ∗/Z/h + q + one loop ,

g + g→ h + g + one loop ,

g + q̄→ γ∗/Z/h + q̄ + one loop (5.4)

and the pure double virtual diagrams are

q + q̄→ γ∗/Z/h + two loop ,

g + g→ h + two loop . (5.5)

In this work, we have computed the double real and real virtual contributions, while the

purely virtual form factor contributions were computed in [102]. We describe the method-

ology of our computation by taking the g g initiated process as an example.

• double-virtual: the interference of the two loop and the tree level amplitudes, listed

in eq. (5.5)

+ 152 terms .

Figure 5.2: Interference of two loop with Born
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The Feynman diagrams in above were generated by using the package QGRAF [105].

Using in-house code written in FORM [106,107], the output from QGRAF was converted

to a suitable format. Using our codes in FORM, the born square of the above diagram was

evaluated by summing over colors and spins. The matrix elements contain hundreds of

different loop integrals, which were reduced to only a few number of master integrals

(MIs) by making use of the integration-by-parts (IBP) [108, 109] and Lorentz invariance

(LI) [110] identities. The reduction to MIs was achieved using the mathematica based

package LiteRed [111]. The above form factor results can be found in [102].

• double-real: the self-interference of the tree level amplitudes for the processes con-

tributing to pure double-real emissions. For example, for the process g+g→ h+g+g

+ 675 terms .

Figure 5.3: self interference of double real emission

To evaluate the above diagrams we have to perform a phase space integration over the final

state gluons, which can be quite non-trivial to calculate. To compute the NNLO QCD

correction to the DY pair production in [54], the phase space integrals were performed

through evaluation of the two parametric and two angular integrations in three different

frames. The phase space integration in inclusive production cross section of the Higgs

boson were done by three different techniques. In [112], the partonic cross section was

obtained by performing an expansion around the soft limit. In the meantime a completely

new and elegant formalism was developed in [2] by Anastasiou and Melnikov to get the

same result. The phase space integrals were converted to loop integrals by using the idea

of reverse unitarity. Thus evaluation of real emission diagrams boils down to computing

virtual diagrams. We describe it in details below.
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The contribution coming from fig. 5.3 when the two parts are multiplied is proportional

to ∫
dnq1

(2π)n−1

dnq2

(2π)n−1 δ+(q2
1)δ+(q2

2)δ+(q2 − m2
h)[· · · ] (5.6)

where, p1, p2, q1, q2 are the momentas of incoming and outgoing gluons respectively, q is

the momenta of spin-2 particle. In above δ+(q2 −m2) ≡ δ(q2 −m2)θ(q0). The δ+ functions

can be replaced by the difference between two propagators with opposite prescriptions for

their imaginary parts, which follows from Cutkosky rules [113]:

δ+(q2 − m2) ∼
1

q2 − m2 + iε
−

1
q2 − m2 − iε

(5.7)

with ε → 0. Upon this substitution, the square of the diagram becomes equivalent to the

forward scattering amplitude, presented in fig. 5.4, where, the blue dotted line denotes the

cut propagators which should be replaced by the RHS of eq. 5.7.

p1

p2

p1

p2

Figure 5.4: Effective two loop diagram with three cut propagators

We begin our computation by evaluating the normal Born square of the above diagram

(5-external on-shell legs) where the sum over colors and spins are performed. The color

simplification is done in general SU(N) gauge theory. The Dirac and Lorentz algebra are

carried out in n-dimensions (n = 4 + ε). We multiply the phase space factor with the final

answer, which contains the three δ+ functions corresponding to the final state particles.

We convert it into a cut two-loop Feynman diagram through the application of reverse

unitarity as discussed above. As a result the phase space integral can now be handled in

the same way as the multiloop integrals. We make use of the IBP and LI identities to

reduce this two loop diagram into a set of MIs. The sign of the imaginary parts of the
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cut propagators are irrelevant for the above identities; the two terms of those propagators

which are differed by the different prescriptions of the imaginary parts give rise to same

IBP relations. Each of these two terms have the same form of the IBP relations as the

original two-loop integral without the cut. Therefore instead of considering the two terms,

we can take only one term, which is equivalent to substituting the δ+ functions by its first

propagator from the RHS of eq. 5.7. During reduction to MIs, in order to keep intact

the cut propagators in its original form even in the MIs, we make sure not to apply any

transformation on the momenta of the cut propagators. After the reduction, we must put

those MIs to zero which do not contain any of the three cut propagators. Putting the δ+

functions in place of all the cut propagators, we get the final set of phase space MIs. These

integrals are identified with the ones appearing as phase space MIs for the evaluation of

the NNLO QCD correction to the inclusive production cross section of the Higgs boson

which are obtained in the article [114]. Same set of MIs were also evaluated in [115].

• real-virtual: the interference of the one-loop and the tree level amplitudes.

+ 107 terms .

Figure 5.5: Interference of real-virtual with single real emission

The evaluation of the above kind of processes follow exactly the similar method as double

real emission process. The polarization sum of the external gluons is carried out in axial

gauge to ensure the exclusion of the unphysical degrees of freedom. We include the ghost

loops to cancel the unphysical degrees of freedom of the internal gluons present in the

virtual loops.

Up to NNLO we have 2979 number of double real, 948 real-virtual and 207 double vir-

tual Feynman diagrams. The partonic cross sections obtained from all the subprocesses
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contain UV and IR divergences. We eliminate the UV divergences by renormalizing

the strong coupling constant. The IR divergences appearing are of two types: soft and

collinear divergences. By adding all the real emission processes and the virtual diagrams,

the soft divergences and the final state collinear singularities cancel, by KLN theorem.

The initial state collinear singularities are removed by mass factorization. Thus we get

completely finite partonic cross sections or partonic coefficient function at NNLO QCD.

The final results of the partonic coefficient functions involving spin-2 particle for different

channels are presented in the Appendix 11.4.

In the next section we present the numerical impact of the NNLO corrections on the

dilepton production in the ADD model at the LHC.
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5.3 Phenomenology

The two loop QCD corrections that we computed above was done in a model indepen-

dent framework. To observe its numerical impact at the LHC, we consider lepton pair

production in the ADD model. By convoluting the partonic coefficient functions order-

by-order with the corresponding PDFs (taken from lhapdf [116]), we obtain the LO,

NLO and NNLO corrected hadronic cross sections. We have set the number of flavors

n f = 5, fine structure constant αem = 1/128 and the weak mixing angle sin2θW = 0.227

and use MSTW2008lo/nlo/nnlo with the corresponding values of as for LO, NLO and

NNLO. Except for studying the scale variations, the factorization and the renormaliza-

tion scales are set equal to the invariant mass of the di-lepton, i.e., µF = µR = Q. We

note that in the past there have been a series of experimental searches for large extra di-

mensions using di-lepton events at both Tevatron and the LHC. Consequently, stringent

bounds have been obtained on the scale Ms of the ADD model as a function of the number

of extra dimensions d. For instance, the lower limits on the scale Ms obtained from both

ATLAS and CMS collaborations using 7 TeV data are Ms = 2.4(3.9) TeV corresponding

to d = 7(3) [117, 118]. With the availability of 8 TeV data [119, 120], the lower lim-

its on these parameters are further pushed to about Ms = 3.3(4.9) TeV corresponding to

d = 7(3). There have already been some preliminary results on search for narrow reso-

nances in di-lepton final state using 13 TeV data [121]. In addition, the ATLAS and CMS

collaborations have observed di-lepton events with invariant mass as large as 1800 GeV

using 8TeV LHC data corresponding to a luminosity of about 20 f b−1 [119, 120]. For

the illustration of the impact of QCD corrections, we choose the model parameters to be

Ms = 4 TeV and d = 3.

At NNLO there are different partonic channels that contribute to the hadronic cross sec-

tion. Although all these channels add up their contribution to give the final physical

hadronic cross section yet the individual contributions are unphysical. These bare par-
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tonic cross sections contain initial state IR divergences which are removed by mass fac-

torization, where the latter is performed in some scheme which for our case is the MS. In

the fig. 5.6, we present the Q distributions for various subprocesses at NNLO in the ADD

model along with the contribution from SM at NNLO [54, 78, 79]. Both in the SM and

SM Total

ADD qq

(-1)*ADD qg

ADD gg

ADD qq

ADD Total
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Figure 5.6: Various sub-process contributions to the di-lepton production computed at
O(a2

s) QCD in ADD model. The SM background contains the full a2
s correction.

ADD model, the quark anti-quark initiated sub-process (qq̄) contributes at LO. However,

the gluon fusion sub-process (gg) starts contributing at the LO in the ADD model unlike

in the SM where its contribution begins at NNLO. Because of the large gluon flux at the

LHC, the contributions arising from the gg sub-process in the ADD model dominates

over the rest, which is same as for the Higgs boson at the LHC. The crucial difference

between these two production channels is the presence of strong coupling constant as(µR)

at the leading order for the Higgs boson production cross section. It is worthwhile to no-

tice the numerical impact of the contributions coming from quark-gluon (qg) sub-process

beyond LO. The qg sub-process contribution both in the SM and in the ADD model is

found to be negative but significantly large in magnitude. The same trend continues even

at NNLO. Particularly, we notice that the NNLO QCD corrections from qg sub-process

are considerably larger in magnitude than the sum of all the quark initiated sub-processes
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Figure 5.7: Pure graviton contribution to the Drell-Yan production cross section (left
panel) up to NNLO QCD in the ADD model for LHC13 and the corresponding K-factors
(right panel).

(qq̄, qq, q1q2, q1q̄2). Although their contribution is less, yet they are important to stabilize

the cross section under renormalization and factorization scale variations through renor-

malization group equations. A generic pattern in all of these sub-processes is that their

contributions increase with Q, simply because of the increase in the number of accessible

KK-modes with Q.

In fig 5.7 we present in the left panel dσ/dQ as a function of invariant mass Q at LO, NLO

and NNLO for ADD model(i.e. setting the SM contributions to zero). It is found that the

contributions from the interference terms between the SM and spin-2 is zero. There is

also a moderate increase in NNLO cross section over the NLO counterpart. In order to

have an estimate of the corrections coming from different orders, we have plotted the K

factors which is defined as

Ki =
dσi

dσLO , i = 1(NLO), 2(NNLO) . (5.8)

The NLO QCD corrections here increase the LO cross sections by about 68% for Q = 1.5

TeV, while the NNLO corrections that are still reasonably large contribute an additional

12% (K1 = 1.68 and K2 = 1.80). The K-factors depend on the invariant mass through
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Figure 5.8: Drell-Yan production cross section (left panel) for SM, GR and the signal in
the ADD model for LHC13 along with the corresponding K-factors (right panel). Here,
Ms = 4 TeV and d = 3.

the logarithm corrections both in partonic cross sections as well as in the evolution of

PDFs. Hence it is not good choice to use the constant K-factor for constraining the model

parameters. We also find that the conservative estimate of the K-factor for the Drell-

Yan production in ADD model resembles closely to that of the Higgs boson production.

However, because of the large negative contribution from the qg sub-process, the exact

values of the K-factors differ in these two cases. It is to be noted that K2 in ADD model

alone is bigger than the corresponding one for the SM simply because of the dominance

of gg sub-process over others.

Being an effective theory, the ADD model is valid below the cut-off scale Ms and above

Ms, the formalism ceases to be valid. As the number of accessible KK modes increases

with Q as can be seen from eq. 4.18, the cross sections in the pure ADD model will

increase with Q. This implies that in the kinematic regime Q < Ms, the spin-2 should

give reliable predictions for the LHC. Due to the increase in the spin-2 contributions with

Q in the ADD model, they can dominate the SM contribution at some invariant mass

Q0(< Ms), the precise value of which depends on the choice of model parameters. This

is demonstrated in fig. 5.8. In the left panel of the figure, we present the NNLO cross



56 NNLO QCD corrections in models of TeV scale gravity: Universal coupling

SM LO

SM NLO

SM NNLO(x1.1)

SM+ADD LO

SM+ADD NLO

SM+ADD NNLO(x1.1)

dσ/dQ (pb/GeV)

LHC 13 TeV

MSTW2008

µ
R
 = µ

F
 = Q

M
s
 = 4 TeV

d = 3

Q (GeV)

10
-7

10
-6

10
-5

10
-4

10
-3

400 600 800 1000 1200 1400 1600 1800 2000

SM K
1

SM K
2

SM+ADD K
1

SM+ADD K
2

K-factors

LHC 13 TeV

MSTW2008

µ
R
 = µ

F
 = Q

M
s
 = 4 TeV

d = 3

Q (GeV)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

400 600 800 1000 1200 1400 1600 1800 2000

Figure 5.9: Drell-Yan production cross section (left panel) for SM as well as the signal
in the ADD model for LHC13 along with the corresponding K-factors (right panel).

sections for the SM, spin-2 (GR) and the signal (SM+GR) together with the corresponding

NNLO K-factor i.e. K2 in the right panel. From the above discussion we see that the

phenomenologically interesting kinematic regime is Q0 < Q < Ms where the the spin-2

signals can give significant deviations from the SM predictions. For our default choice of

model parameters, Q0 is about 1.4 TeV. Thus the signal is dominated by SM contributions

well below 1.4 TeV and by ADD model contributions well above 1.4 TeV.

Owing to the importance in the experimental searches for extra dimensions, it is impor-

tant to give the signal contributions along with the corresponding SM background. The

differential distributions in SM and ADD model at LO, NLO and NNLO are presented in

the left panel of fig. 5.9 along with the corresponding K factors on the right panel.

Till now we have studied the variation of differential cross section with Q by keeping

the scale of extra dimensions (Ms) and the number of extra dimensions (d) fixed at some

values that are consistent with the experimental bounds. It is also of interest to investigate

the case when the Q-distribution is a function of Ms. This is shown in the left panel of

fig. 5.11 where as we decrease Ms, the value of Q0 also goes down. When Q >> Q0

the SM contribution can be neglected and the SM+ADD K-factor becomes equal to the

pure ADD K-factor which is independent of choice of model parameters. This effect
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Figure 5.10: Dependence of the signal production cross sections at NNLO on the the
scale of the ADD model Ms (left panel) and the corresponding signal K-factors(right
panel) for d=3.
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Figure 5.11: Dependence of the signal production cross sections at NNLO on the the
scale of the ADD model Ms (left panel) and the corresponding signal K-factors(right
panel).

is reflected in the right panel, where far beyond Q0, the SM+ADD K-factors tend to

converge to each other. The dependence on the number of extra dimension is shown in

fig. 5.12.

We shall now study the variation of signal production cross section with the renormaliza-

tion scale µR and the factorization scale µF . The LO cross section depends strongly on
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Figure 5.12: Dependence of the signal production cross sections at NNLO on the num-
ber of extra dimensions d (left panel) and the corresponding K-factors (right panel).

the factorization scale µF through the PDFs. This dependence on µF starts reducing at

higher orders leaving a residual scale dependence that is proportional to an
s , n > 1. For

spin-2 production, dependence on µR starts at NLO and the result up to NLO will now

become sensitive to the choice of µR. Hence at NLO the factorization scale dependence

gets reduced, the renormalisation scale dependence crops up. The cross section becomes

less sensitive to the scales µR and µF as we include more and more higher order terms.

This is a consequence of the renormalization group equation. In order to demonstrate the
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Figure 5.13: Uncertainties in the signal production cross section due to the choice of
renormalisation scale µR (left panel) and factorization scale µF (right panel).

reduction in the scale dependence, we have plotted the dσ/dQ in the fig. 5.13 at a fixed
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value of Q = 1.5 TeV, the choice where the new physics dominates, as function of µR (left

panel), µF (right panel) and then µ = µF = µR (see fig. 5.14.) in the range between Q/10 to

10Q, for wider scale variations. We find according to our expectation that the inclusion of

higher terms in the perturbation theory indeed reduce the dependence on these unphysical

scales.
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Figure 5.14: Uncertainties in the signal production cross section due to the choice of
the scale µ = µR = µF .
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Figure 5.15: Dependence of the signal production cross sections at NNLO on the cen-
ter of mass energy at LHC (left panel) and the corresponding K-factors (right panel).

We will now present in fig. 5.15 the predictions for the differential cross section for various

center of mass energies, namely 7, 8, 13 and 14 TeV at the LHC. With the increase in
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Figure 5.16: Dependence of the signal production cross sections at NNLO on the
choice of PDFs (left panel). Signal K-factors at NNLO for different PDFs (right panel).

the centre of mass energy, both the NNLO SM+ADD cross sections (left panel) and the

corresponding signal K-factors (right panel) increases. This is because the parton fluxes

particularly the gluon flux will increase with energy and hence the sensitivity to the ADD

model also goes up.

In fig. 5.16 we present the differential cross sections at NNLO for different choice of

PDFs. The precise value of the strong coupling constant consistent with a given PDF

set influences the prediction. We have used PDF sets such as MSTW2008, ABM12,

CT10, NNPDF3.0 to demonstrate our result. The perturbatively computed partonic cross

sections at an order as is convoluted with the PDFs extracted to the same order in as for

all the PDF sets except ABMP12 for which we have used only the available NNLO PDFs

for computing all the LO, NLO and NNLO hadron level cross sections. From the left

panel of fig. 5.16 we see that the cross sections for different PDF sets differ from one

another. But the the K factor may not show the similar pattern as cross sections because

PDFs of different orders enter in the ratio of K- factors, as can be seen in the right panel

of fig. 5.16.

Finally, we address the impact of soft-plus corrections on our fixed order predictions.

Note that for ADD, the numerical impact of soft-plus-virtual (SV) were already reported
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Figure 5.17: NLO and NNLO predictions obtained from modified SV approximation for
the signal only with the gg subprocess contribution.

in [101]. Now that we have a complete result at NNLO level, it is important to study the

validity of SV approximation. As mentioned before that the gg initiated sub-process in

the pure spin-2 case is similar to the SM Higgs production in gluon fusion channel. For

the latter case, the SV corrections (or rather with the modified parton fluxes) are found to

be a very good approximate for the fixed order results. This indeed is the case even for

our ADD model predictions provided we just take only the gg initiated subprocesses. In

addition, if we use the modified SV approximation as described in [122], we find that it

is closer to the exact result, resulting from gg subprocesses alone see fig. 5.17. Inclusion

of qg initiated sub processes spoil this approximation as their contribution is negative and

significantly large. Hence, the SV approximation at a2
s does not seem to be working very

well unlike in the Higgs production in gluon fusion.
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5.4 Conclusion

For the first time we have performed the NNLO QCD correction for the production of a

lepton pair in the DY type of processes with a massive spin-2 particle appearing in the

intermediate stages. Unlike SM, both gg and q q̄ appear at the LO; there are 14 partonic

subprocesses that contributes at NNLO. We have systematically employed the methodol-

ogy of reverse unitarity to achieve the two loop computation. At the energies of LHC,

the spin-2 mediated process is dominated by the gluon initiated processes due to the large

gluon flux at the collider. We also find that the qg initiated process gives large negative

contribution at NNLO. In order to estimate the corrections coming from each order, we

have reported the K factors in ADD model which is 1.68 at NLO and 1.80 at NNLO.

The K factor in ADD model is larger than the corresponding one in the SM due to the

dominance of gg subprocess over the others. The QCD corrections play an important

role to stabilise the differential cross section with respect to the unphysical renormaliza-

tion and factorization scale. We find that the higher order corrections decrease the scale

uncertainties: from 71% at LO to 29% at NLO which goes down to 8% at NNLO.



6 Form factors with nonuniversal

coupling

In the previous chapter we have computed the NNLO QCD corrections in DY type of

processes where a massive spin-2 particle appearing in the intermediate stage couple uni-

versally to all the SM fields. In this chapter we extend our study of higher order QCD

corrections for a more general case, namely when the spin-2 field couples differently to

gauge and fermionic sector of the SM.

6.1 Introduction

In chapter 4 we discussed about the theoretical aspects of a scenario where a generic spin-

2 particle couples to all the SM fields through the conserved energy momentum tensor of

QCD, with a universal coupling strength κ. Most of the popular extra dimensional models

have this universal nature of coupling of spin-2 particle and their phenomenology have

been studied rigorously. These extra dimensional models are described by effective the-

ories and hence non-renormalizable in the conventional sense. In the ADD and the RS,

thanks to conservation of the energy momentum tensor of the SM, the leading interaction

term that describes the coupling of spin-2 with those of the SM does not require any addi-

tional renormalization. For most of the phenomenological studies this order in coupling

63
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is sufficient, thus the IR structure of the SM is also not affected and hence factorization

properties continue to hold. One of the consequences of the above is that we can compute

successfully various observables beyond leading order in the SM coupling using the per-

turbative methods. Thus we computed the NNLO QCD corrections in DY process where

a generic spin-2 particle appeared in the intermediate stages and then decayed to a lep-

ton pair. All the infrared singularities cancelled and we got finite perturbative results that

could be used to constrain the model parameters unambiguously. We then studied the phe-

nomenological impact of such higher order corrections in the context of the ADD model,

where we saw that the scale uncertainties reduce on inclusion of the NNLO corrections.

However this universal nature of coupling may not be the most general way in which

the spin-2 interacts with the SM fields. There may be a scenario where the spin-2 field

interacts differently with the fermion and gauge fields of the SM. In other words instead

of one coupling strength κ we can have two different coupling strengths kq, kg. While

this type of scenarios are not a part of most of the extra dimensional models, they can

provide an opportunity to study the distinct signatures at the colliders which is not pos-

sible with theories containing universal coupling strength. For example in the work [6]

the pX
T distributions of the spin-2 particle for various values of the quark and gluon cou-

plings were analyzed and the signatures of the unitarity violating behavior associated with

nonuniversal coupling strengths were also pointed out.

The discovery of the 125 GeV Higgs boson has been one of the spectacular achievements

in the history of particle physics. To ascertain its nature, it was important to analyze the

models with spin-2 nonuniversal coupling which could act as an imposter to the Higgs

boson [123–125]. In addition for extra dimensional models like the RS, experimental

bounds on RS resonance ( for universal coupling) was much higher [126–133]. From the

above discussion we can see the necessity of studying the scenario where a massive spin-

2 particle interacts with the SM fields with nonuniversal coupling strengths. To NLO

in QCD the UV and IR behavior for the nonuniversal couplings for a spin-2 had been
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studied in the context of Higgs Characterization [6]. Due to the nonuniversal nature of

the coupling, UV renormalisation was needed and the one loop anomalous dimensions

were also computed. The IR structure was studied and the cancellation which results from

adding the virtual and real processes, followed by mass factorization was demonstrated.

Thus the IR factorization to NLO order in QCD for the nonuniversal coupling scenario

was shown in [6].

With the unprecedented level of precision at which the SM is being scrutinized at the

LHC, it is only natural to have the competing BSM scenarios match the same order of

accuracy in QCD as the SM observables. The first step to such a phenomenological study

would be to compute form factors to the production of a singlet on shell state X via the

quark qq̄→ X or gluon gg→ X production channels. Presently, form factors are available

to up to three-loop level in the SM [134–138], for some BSM spin-2 that couples to the

energy momentum tensor [102, 103] and for the pseudo-scalar Higgs boson [139]. For

extra dimensional models viz. ADD and RS for most of the di-final state process, NLO

QCD corrections have been computed in [68, 89–93, 95, 96] and extended to NLO+PS

accuracy in [97–99].

In this chapter we describe the computation of form factors for a nonuniversal interac-

tion term up to three loop level in QCD. We restrict ourself to the QCD sector of the SM

because the phenomenology with such operators have immediate application at the LHC

where such interactions are probed. In the previous chapter we saw how spin-2 couples

to the conserved and gauge invariant EM tensor of the QCD [140]. Now we divide the

EM tensor of QCD into two rank 2 operators such that each of them are not conserved but

they are invariant under the gauge group of QCD. Note that spin-2 is gauge singlet. As a

consequence of this, both the operators as well as the couplings get additional UV renor-

malization order by order in the perturbation theory. These additional UV divergences

can be removed by multiplying overall operator renormalization constants. We will find

out these constants by computing the on-shell form factors of the operators between quark
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and gluon states. These form factors are important ingredients of any observable at the

LHC to study such interactions. In the next section we discuss about the theory and then

describe the methodology adopted to compute the anomalous dimensions up to three loop

order in QCD.

6.2 Theoretical Framework

6.2.1 The Effective Action

We consider the minimal effective action that describes the coupling of spin-2 fields de-

noted by hµν with those of QCD which consists of two gauge invariant operators ÔG, µν

and ÔQ, µν 1:

S =

∫
d4x LQCD −

1
2

∫
d4x hµν(x)

(
κ̂G Ô

G, µν(x) + κ̂Q Ô
Q, µν(x)

)
(6.1)

where κ̂I , I = G,Q are dimensionful couplings. The pure gauge sector is denoted by G

while Q represents the fermionic sector and its gauge interaction. The gauge invariant

operators ÔG, µν and ÔQ, µν reads as

ÔG
µν =

1
4

gµνF̂a
αβF̂

aαβ − F̂a
µρF̂

aρ
ν −

1
ξ̂

gµν∂ρ(Âa
ρ∂

σÂa
σ) −

1
2ξ̂

gµν∂αÂaα∂βÂaβ

+
1
ξ̂

(Âa
ν∂µ(∂

σÂa
σ) + Âa

µ∂ν(∂
σÂa

σ)) + ∂µω̂a(∂νω̂a − ĝs f abcÂc
νω̂

b)

+∂νω̂a(∂µω̂a − ĝs f abcÂc
µω̂

b) − gµν∂αω̂a(∂αω̂a − ĝs f abcÂcαω̂b),

ÔQ
µν =

i
4

[
ψ̂γµ(
−→
∂ ν − iĝsT aÂa

ν)ψ̂ − ψ̂(
←−
∂ ν + iĝsT aÂa

ν)γµψ̂ + ψ̂γν(
−→
∂ µ − iĝsT aÂa

µ)ψ̂

−ψ̂(
←−
∂ µ + iĝsT aÂa

µ)γνψ̂
]
− igµνψ̂γα(

−→
∂ α − iĝsT aÂa

α)ψ̂ (6.2)

1This is not the unique decomposition of original EM tensor. One can adjust gauge invariant terms
between these two.
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where Âa
µ, ψ̂, ω̂a and hµν are gauge, quark, ghost and spin-2 fields, respectively. ĝs is the

strong coupling constant and ξ̂ is the gauge fixing parameter. The bare/unrenormalized

quantities are indicated by a hat. T a and f abc are the Gell-Mann matrices and structure

constants of SU(N) gauge theory, respectively. For the purpose of our analysis we re-

tain terms only up to order κ̂ and in the rest of the thesis, we restrict ourselves to this

approximation.

6.2.2 Ultraviolet renormalization

The sum ÔG, µν + ÔQ, µν is nothing but the energy momentum tensor of QCD. As can be

seen from eq. 6.2 the operator ÔG, µν is free from quark fields which means that in the

theory where spin-2 field couples exclusively to the pure Yang-Mills, the operator ÔG, µν

is conserved. However, in the presence of the quark fields in QCD, this property ceases

to hold true beyond the tree level. These two operators being non conserved, develop

additional UV divergences which need to be factored out in terms of UV renormaliza-

tion constants. These constants then renormalize the bare couplings κ̂I , I = G,Q. The

resulting interaction terms expressed in terms of renormalized operators with appropriate

renormalized couplings are guaranteed to predict UV finite correlation functions to all

orders in the strong coupling constant. The most commonly used method of obtaining

the renormalization constants in quantum field theory is to compute off-shell amplitudes

and extract the UV divergent contributions order by order in the perturbation theory. For

composite operators there exists the method of operator product expansion. We will not

follow any of these approaches in this thesis. Instead, we apply the method discussed

in [139] to obtain both UV renormalisation constants as well as on-shell form factors of

these operators. In the work [139] it was demonstrated that UV renormalisation constants

of composite operators can be extracted order by order in perturbation theory from their

on-shell form factors by exploiting their universal IR structure. The form factors consist

of UV divergences coming from two sources : the coupling constant and the two compos-
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ite operators. The renormalization of the coupling constant has already been discussed

before (see eq. 2.5, 2.6). In the following we describe the methodology to handle the UV

singularities coming from the two operators.

According to the Joglekar and Lee theorem [141] , the two operators OI are closed under

renormalization which can be accomplished through the renormalization mixing matrix

Z, as follows O
G

OQ

 =

ZGG ZGQ

ZQG ZQQ


Ô

G

ÔQ

 . (6.3)

The renormalization constants ZIJ satisfy following renormalization group equation (RGE)

µ2
R

d
dµ2

R

ZIJ ≡ γIKZKJ with I, J,K = G,Q (6.4)

where γIK’s are the corresponding anomalous dimensions and the summation over re-

peated index is understood. The general solution to the RGE up to a3
s is as follows

ZIJ = δIJ + as

[
2
ε
γ(1)

IJ

]
+ a2

s

[
1
ε2

{
2β0γ

(1)
IJ + 2γ(1)

IKγ
(1)
KJ

}
+

1
ε

{
γ(2)

IJ

}]
+ a3

s

[
1
ε3

{
8
3
β2

0γ
(1)
IJ

+ 4β0γ
(1)
IKγ

(1)
KJ +

4
3
γ(1)

IKγ
(1)
KLγ

(1)
LJ

}
+

1
ε2

{
4
3
β1γ

(1)
IJ +

4
3
β0γ

(2)
IJ +

2
3
γ(1)

IKγ
(2)
KJ +

4
3
γ(2)

IKγ
(1)
KJ

}
+

1
ε

{
2
3
γ(3)

IJ

}]
(6.5)

where, γIJ is expanded in powers of as as

γIJ =

∞∑
n=1

an
sγ

(n)
IJ . (6.6)

The second term of the action in eq. 6.1 can be written in terms of renormalized quantities:

−
1
2

∫
d4x hµν

(
κG O

G,µν + κQ O
Q,µν

)
(6.7)
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where the κI are related to the bare ones by

[
κ̂G κ̂Q

]
=

[
κG κQ

] ZGG ZGQ

ZQG ZQQ

 . (6.8)

6.3 Form factors and its infrared structure

We need to compute the on-shell form factors and then employ its universal IR structure

to extract the UV renormalization constants order by order in perturbation theory. To cal-

culate the form factors we have to find the matrix elements of unrenormalized composite

operators ÔI , I = G,Q between a pair of on-shell partonic states i = q, g and the vac-

uum state. In the color space these matrix elements are expanded in the powers of bare

coupling constant âs as

|MI
i 〉 =

∞∑
n=0

ân
s

(
Q2

µ2

)nε/2

S n
ε |M̂

I,(n)
i 〉 (6.9)

where i = q, q, g. Then we can define the on-shell form factor of ÔI by taking the the

overlap of |MI
i 〉 with its leading order amplitude normalized with respect to the leading

order contribution. With these two operators, there exists four independent form factors:

F̂ I,g,(n) =
〈M̂

G,(0)
g |M̂

I,(n)
g 〉

〈M̂
G,(0)
g |M̂

G,(0)
g 〉

, F̂ I,q,(n) =
〈M̂

Q,(0)
q |M̂

I,(n)
q 〉

〈M̂
Q,(0)
q |M̂

Q,(0)
q 〉

I = G,Q . (6.10)

While the diagonal elements |M̂G,(n)
g 〉 and |M̂Q,(n)

q 〉 have leading order contributions, the

non-diagonal amplitudes |M̂Q,(n)
g 〉 and |M̂G,(n)

q 〉, start at one-loop level. In other words, the

form factors for diagonal ones start at O(â0
s); the non-diagonal terms starts to contribute

at O(âs).

The form factors are often ill-defined in 4-dimensions even after UV renormalization due

the presence of soft and collinear singularities. The massless gluons and light quarks and
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anti-quarks bring in these divergences beyond the leading order in perturbation theory,

which manifests as poles in the dimensional regularization parameter ε. Thanks to factor-

ization properties and universality of the IR divergences, these on-shell form factors sat-

isfy Sudakov differential equation, famously known as K-G equation2. Using the univer-

sal IR di-pole subtraction operators, Catani [142] proposed a generalization to multiparton

amplitudes up to two loop level in QCD, see also [143]. The generalization of IR subtrac-

tion operators of Catani beyond two loops were proposed by Becher and Neubert [144]

and by Gardi and Magnea [145]. Following closely the notation used in [146], we find

that the UV finite form factors F I,i(âs,Q2, µ2, ε), after performing strong coupling con-

stant and operator renormalizations, satisfy the integro-differential K-G equation, where

the later follows from gauge and renormalization group invariances [147–150]. The equa-

tion reads as following

Q2 d
dQ2 lnF I,i(âs,Q2, µ2, ε) =

1
2

[
Ki

(
âs,

µ2
R

µ2 , ε

)
+ GI,i

(
âs,

Q2

µ2
R

,
µ2

R

µ2 , ε

)]
(6.11)

where the Q2 = −q2 = −(p1 + p2)2 with pi being the momenta of external on-shell states.

The function Ki contains all poles in ε and is independent of the scale Q2. The finite terms

in ε → 0 are encapsulated in GI,i.

The solutions present a universal structure of the singularities, except the single pole in ε.

Single poles are controlled by the finite functions GI,i. We find

GI,i

(
âs,

Q2

µ2
R

,
µ2

R

µ2 , ε

)
= GI,i

(
as(µ2

R),
Q2

µ2
R

, ε

)
= GI,i

(
as(Q2), 1, ε

)
+

∫ 1

Q2

µ2
R

dλ2

λ2 Ai(λ2µ2
R) (6.12)

where Ai are cusp anomalous dimension and is operator independent.

It was first observed in [28,134] that the coefficient GI,i of the single pole in ε manifests a

2The name is due to the presence of two functions in Sudakov differential equation which are popularly
denoted by letters K and G.
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universal structure, in terms of the anomalous dimensions. The factorization of the single

pole in quark and gluon form factors in terms of soft and collinear anomalous dimensions

was first revealed up to two loop level in [28], whose validity at three loop was later

established in the article [134]. Expanding GI,i as

GI,i
(
as(Q2), 1, ε

)
=

∞∑
n=1

an
s(Q

2)GI,i
n (ε) (6.13)

we find

GI,i
n (ε) = 2Bi

n + f i
n + CI,i

n +

∞∑
k=1

εkgI,i,k
n , (6.14)

where, the constants CI,i
n up to three-loop are [151]

CI,i
1 = 0 ,

CI,i
2 = −2β0gI,i,1

1 ,

CI,i
3 = −2β1gI,i,1

1 − 2β0

(
gI,i,1

2 + 2β0gI,i,2
1

)
. (6.15)

In the above expressions, XI,i
n with X = A, B, f are defined through

XI,i ≡

∞∑
n=1

an
s XI,i

n . (6.16)

The constant GI,i
n (ε) in eq. 6.14 depends not only on the universal collinear (Bi

n) and soft

( f i
n) anomalous dimensions, but also the operator as well as process dependent constants

gI,i,k
n . Since Ai [56, 152–156], Bi [153] and f i [28, 134] are known up to three loop level,

we can use the solution to K-G equation to determine the renormalisation constants ZIJ.

Hence our next task is to compute the on-shell form factors order by order in perturba-

tion theory and compare them against the predictions of K-G equation to determine the

unknown renormalisation constants γIJ in ZIJ. Using these renormalisation constants, we

obtain UV finite on-shell form factors of OI up to three loop level.
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6.4 Computation and results

We briefly describe the methodology used in computing the unrenormalized form factors

F̂ I, i, (n) and subsequently the anomalous dimension γIJ up to three loop level in perturba-

tion theory. We closely follow the steps used in the derivation of three loop unrenormal-

ized form factors of scalar and vector form factors [137,138], see also [103,139,157]. We

have generated the Feynman diagrams using QGRAF [105]. At three loop the number

of diagrams for the amplitude |M̂G,(3)
g 〉 were 1586, 447 for |M̂Q,(3)

g 〉, 400 for |M̂G,(3)
q 〉 and

244 for |M̂Q,(3)
q 〉. Using an in-house routine in FORM [106], we convert the QGRAF out-

put to a suitable format to perform substitution of Feynman rules, contraction of Lorentz

and color indices and simplification of Dirac and Gell-Mann matrices. We have included

ghost loops in the Feynman gauge. For the external on-shell gluons, we have kept only

transversely polarization states of gluons in n-dimensions. The resulting matrix elements

consist of huge number of scalar Feynman integrals which are reduced to few scalar in-

tegrals, called master integrals (MIs) by employing integration-by-parts (IBP) [108, 109]

and Lorentz invariance (LI) [110] identities. The reduction to MIs is achieved using La-

porta algorithm, [158] implemented in various symbolic manipulation packages such as

AIR [159], FIRE [160], Reduze2 [161, 162] and LiteRed [111, 163]. For our computa-

tional purposes we have used Reduze2 [161, 162] to shift the loop momenta in Feynman

diagrams in order to belong them to suitable integral classes. Then we make extensive

use of LiteRed [111, 163] to reduce the integrals to MIs. We find that at three loop level,

there are 22 topologically different master integrals (MIs) involving genuine three-loop

integrals with vertex functions (At,i), three-loop propagator integrals (Bt,i) and products of

one- and two-loop integrals (Ct,i). The integrals, computed analytically as a Laurent series

in ε can be found in [164–168]. On substituting these MIs we compute the unrenormal-

ized form factors.

Next we shall determine the operator renormalisation constants ZIJ. We compute them by
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exploiting the universal IR structure of the form factors i.e. by comparing order by order

the results of renormalized form factors expressed in terms of unknown γIJ against the

predictions of the K-G equation expressed in terms of Ai, Bi and f i anomalous dimensions

that are known up to three loop level. The γ(n)
IJ are given below:

γ(1)
GG = −

2
3

n f (6.17)

γ(2)
GG = −

35
27

CAn f −
74
27

CFn f (6.18)

γ(3)
GG = C2

An f

(
−

3589
162

+ 24ζ3

)
+ CACFn f

(
139
9
−

104
3
ζ3

)
+ C2

Fn f

(
−

2155
243

+
32
3
ζ3

)
+ CAn2

f

(
1058
243

)
−CFn2

f

(
173
243

)
(6.19)

γ(1)
GQ = CF

(
8
3

)
(6.20)

γ(2)
GQ = CACF

(
376
27

)
−C2

F

(
112
27

)
−CFn f

(
104
27

)
(6.21)

γ(3)
GQ = C2

ACF

(
20920
243

+
64
3
ζ3

)
+ CAC2

F

(
−

8528
243

− 64ζ3

)
+ C3

F

(
−

560
243

+
128
3
ζ3

)
+ CACFn f

(
−

22
9
−

128
3
ζ3

)
+ C2

Fn f

(
−

7094
243

+
128

3
ζ3

)
−CFn2

f

(
284
81

)
(6.22)

where CA = N and CF = (N2 − 1)/2N are the quadratic Casimir of the S U(N) group.

TF = 1/2 and n f is the number of light active quark flavors. ζi is the Riemann Zeta

function. The remaining entries are γ(n)
QG = −γ(n)

GG and γ(n)
QQ = −γ(n)

GQ where n = 1, 2, 3.

These relations are due to the fact that the sum of these operators is conserved. This

serves as a crucial check on the correctness of our computation. Interestingly, all the

γ(n)
GG are proportional to n f which is consistent with the expectation that the conservation

property of the operator ÔG,µν breaks down beyond tree level due to the presence of quark

loops.

The renormalized form factors can be obtained using eq. 4.34, 4.35, 6.3, 6.5. Setting
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µ2
R = Q2, expanding in terms of as(Q2) as

F I,i(Q2) =

∞∑
n=0

an
s(Q

2)F I,i,(n), I = G,Q i = g, q. (6.23)

where F I,i,(n) up to three loop level are given by

F G,g,(1) =
2
ε
γ(1)

GG + F̂ G,g,(1)

F G,g,(2) =
2
ε2

{
β0γ

(1)
GG + (γ(1)

GG)2 + γ(1)
GQγ

(1)
QG

}
+

1
ε

{
2F̂ G,g,(1)(β0 + γ(1)

GG)

2F̂ Q,g,(1)γ(1)
GQ + γ(2)

GG

}
+ F̂ G,g,(2)

F G,g,(3) =
1
ε3

{8
3
β2

0γ
(1)
GG + 4β0(γ(1)

GG)2 +
4
3

(γ(1)
GG)3 + 4β0γ

(1)
GQγ

(1)
QG +

8
3
γ(1)

GGγ
(1)
GQγ

(1)
QG

+
4
3
γ(1)

GQγ
(1)
QQγ

(1)
QG

}
+

1
ε2

{
4β2

0F̂
G,g,(1) +

4
3
β1γ

(1)
GG + 6β0F̂

G,g,(1)γ(1)
GG

+ 2F̂ G,g,(1)(γ(1)
GG

)2
+ 6β0F̂

Q,g,(1)γ(1)
GQ + 2F̂ Q,g,(1)γ(1)

GGγ
(1)
GQ + F̂ G,g,(1)γ(1)

GQγ
(1)
QG

+ F̂ Q,g,(1)γ(1)
GQγ

(1)
QQ +

4
3
β0γ

(2)
GG + 2γ(1)

GGγ
(2)
GG +

4
3
γ(2)

GQγ
(1)
QG +

2
3
γ(1)

GQγ
(2)
QG

}
+

1
ε

{
β1F̂

G,g,(1) + 4β0F̂
G,g,(2) + 2F̂ G,g,(2)γ(1)

GG + 2F̂ Q,g,(2)γ(1)
GQ + F̂ G,g,(1)γ(2)

GG

+ F̂ Q,g,(1)γ(2)
GQ +

2
3
γ(3)

GG

}
+ F̂ G,g,(3)

F G,q,(1) =
2
ε
γ(1)

GQ + F̂ G,q,(1)

F G,q,(2) =
2
ε2

{
β0γ

(1)
GQ + γ(1)

GGγ
(1)
GQ + γ(1)

GQγ
(1)
QQ

}
+

1
ε

{
2β0F̂

G,q,(1) + 2F̂ G,q,(1)γ(1)
GG

+ 2F̂ Q,q,(1)γ(1)
GQ + γ(2)

GQ

}
+ F̂ G,q,(2)

F G,q,(3) =
1
ε3

{8
3
β2

0γ
(1)
GQ + 4β0γ

(1)
GGγ

(1)
GQ +

4
3

(γ(1)
GG)2γ(1)

GQ +
4
3

(γ(1)
GQ)2γ(1)

QG + 4β0γ
(1)
GQγ

(1)
QQ

+
4
3
γ(1)

GGγ
(1)
GQγ

(1)
QQ +

4
3
γ(1)

GQ(γ(1)
QQ)2

}
+

1
ε2

{
4β2

0F̂
G,q,(1) + 6β0F̂

G,q,(1)γ(1)
GG

+ 2F̂ G,q,(1)(γ(1)
GG)2 +

4
3
β1γ

(1)
GQ + 6β0F̂

Q,q,(1)γ(1)
GQ + 2F̂ Q,q,(1)γ(1)

GGγ
(1)
GQ

+ 2F̂ G,q,(1)γ(1)
GQγ

(1)
QG + 2F̂ Q,q,(1)γ(1)

GQγ
(1)
QQ +

4
3
γ(1)

GQγ
(2)
GG +

4
3
β0γ

(2)
GQ +

2
3
γ(1)

GGγ
(2)
GQ

+
4
3
γ(1)

QQγ
(2)
GQ +

2
3
γ(1)

GQγ
(2)
QQ

}
+

1
ε

{
β1F̂

G,q,(1) + 4β0F̂
G,q,(2) + 2F̂ G,q,(2)γ(1)

GG

+ 2F̂ Q,q,(2)γ(1)
GQ + F̂ G,q,(1)γ(2)

GG + F̂ Q,q,(1)γ(2)
GQ +

2
3
γ(3)

GQ

}
+ F̂ G,q,(3)



6.4 Computation and results 75

F Q,g,(1) =
2
ε
γ(1)

QG + F̂ Q,g,(1)

F Q,g,(2) =
2
ε2

{
β0γ

(1)
QG + γ(1)

GGγ
(1)
QG + γ(1)

QGγ
(1)
QQ

}
+

1
ε

{
2β0F̂

Q,g,(1) + 2F̂ G,g,(1)γ(1)
QG

+ 2F̂ Q,g,(1)γ(1)
QQ + γ(2)

QG

}
+ F̂ Q,g,(2)

F Q,g,(3) =
1
ε3

{8
3
β2

0γ
(1)
QG + 4β0γ

(1)
GGγ

(1)
QG +

4
3

(γ(1)
GG)2γ(1)

QG +
4
3
γ(1)

GQ(γ(1)
QG)2 + 4β0γ

(1)
QGγ

(1)
QQ

+
4
3
γ(1)

GGγ
(1)
QGγ

(1)
QQ +

4
3
γ(1)

QG(γ(2)
QQ)2

}
+

1
ε2

{
4β2

0F̂
Q,g,(1) +

4
3
β1γ

(1)
QG

+ 6β0F̂
G,g,(1)γ(1)

QG + 2F̂ G,g,(1)γ(1)
GGγ

(1)
QG + 2F̂ Q,g,(1)γ(1)

GQγ
(1)
QG + 6β0F̂

Q,g,1γ(1)
QQ

+ 2F̂ G,g,(1)γ(1)
QGγ

(1)
QQ + 2F̂ Q,g,(1)(γ(1)

QQ)2 +
2
3
γ(1)

QGγ
(2)
GG +

4
3
β0γ

(2)
QG +

4
3
γ(1)

GGγ
(2)
QG

+
2
3
γ(1)

QQγ
(2)
QG +

4
3
γ(1)

QGγ
(2)
QQ

}
+

1
ε

{
β1F̂

Q,g,(1) + 4β0F̂
Q,g,(2) + 2F̂ G,g,(2)γ(1)

QG

+ 2F̂ Q,g,(2)γ(1)
QQ + F̂ G,g,(1)γ(2)

QG + F̂ Q,g,(1)γ(2)
QQ +

2
3
γ(3)

QG

}
+ F̂ Q,g,(3)

F Q,q,(1) =
2
ε
γ(1)

QQ + F̂ Q,q,(1)

F Q,q,(2) =
2
ε2

{
γ(1)

GQγ
(1)
QG + β0γ

(1)
QQ + (γ(1)

QQ)2
}

+
1
ε

{
2β0F̂

Q,q,(1) + 2F̂ G,(1)
q γ(1)

QG

+ 2F̂ Q,q,(1)γ(1)
QQ + γ(2)

QQ

}
+ F̂ Q,q,(2)

F Q,q,(3) =
1
ε3

{
4β0γ

(1)
GQγ

(1)
QG +

4
3
γ(1)

GGγ
(1)
GQγ

(1)
QG +

8
3

{
β2

0γ
(1)
QQ + γ(1)

GQγ
(1)
QGγ

(1)
QQ

}
+ 4β0(γ(1)

QQ)2 +
4
3

(γ(1)
QQ)3

}
+

1
ε2

{
4β2

0F̂
Q,q,(1) + 6β0F̂

G,q,(1)γ(1)
QG

+ 2F̂ G,q,(1)γ(1)
GGγ

(1)
QG + 2F̂ Q,q,(1)γ(1)

GQγ
(1)
QG +

4
3
β1γ

(1)
QQ + 6β0F̂

Q,q,(1)γ(1)
QQ

+ 2F̂ G,q,(1)γ(1)
QGγ

(1)
QQ + 2F̂ Q,q,(1)(γ(1)

QQ)2 +
2
3
γ(1)

QGγ
(2)
GQ +

4
3
γ(1)

GQγ
(2)
QG +

4
3
β0γ

(2)
QQ

+ 2γ(1)
QQγ

(2)
QQ

}
+

1
ε

{
β1F̂

Q,q,(1) + 4β0F̂
Q,q,(2) + 2F̂ G,q,(2)γ(1)

QG + 2F̂ Q,q,(2)γ(1)
QQ

+ F̂ G,q,(1)γ(2)
QG + F̂ Q,q,(1)γ(2)

QQ +
2
3
γ(3)

QQ

}
+ F̂ Q,q,(3) (6.24)

where the terms F̂ I,i,(n) are the unrenormalized form factors, presented in Appendix 11.3.

In the next section we shall discuss about some interesting connections between the form

factor results in QCD with that of N = 4 supersymmetric Yang-Mills theory (SYM).
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6.5 Leading Transcendentality principle

The on-shell form factors in the supersymmetric Yang-Mills theory has helped to under-

stand the intricacies of quantum field theory. N = 4 SYM is UV finite in n = 4 dimensions

and also dual to type IIB string theory on AdS 5×S 5 with self dual RR field strength. This

makes it possible to relate quantities computed inN = 4 SYM in the strong coupling limit

with those obtained in the weak coupling limit of the gravity theory. By expanding in a

perturbative series of the strong coupling constant, on-shell amplitudes and form factors

have been computed to very good accuracy in order to make non-perturbative predictions

through systematic resummation procedures. There are works on resummation of pertur-

bative contributions [169, 170] for MHV amplitudes to all orders in ‘t Hooft coupling.

N = 4 SYM being maximally supersymmetric, large cancellations take place between

various contributions which results in elegant and simple looking predictions that have a

lot of resemblance with those in QCD. In this regard it is important to mention about the

principle of the leading transcendentality (LT) [171–173].

By extending the BFKL and DGLAP evolution equations for the supersymmetric case,

Kotikov and Lipatov [171, 174, 175] conjectured maximum transcendentality principle

which implies that the anomalous dimensions of leading twist two operators in N = 4

SYM contain uniform transcendental terms which are related to those in the correspond-

ing QCD results [152, 153]. This property is seen in scattering amplitudes of certain type

[176, 177], FFs of the BPS type operators [178–180], light-like Wilson loops [181, 182]

and correlation functions [180, 182] in N = 4 SYM. In any perturbative computation of

amplitudes and form factors we get terms such as ζ(n), ε−n and Harmonic polylogarithms,

that can be assigned certain transcendental weights. The maximum degree of transcen-

dentality depends on the order (l) of perturbation theory eg. at two loops it is 4. Thus the

terms ζ(n), ε−n carry weight n; εn is of weight −n. The form factors of half-BPS operators

in N = 4 SYM theory have uniform transcendental weight, owing to its protected nature.



6.6 Conclusion 77

However QCD results contain terms of all transcendental weights (up to 2 l) in addition to

rational terms (zero transcendentality). It was observed that the the QCD quark and gluon

form factors [137] and scalar form factor inN = 4 SYM share an interesting relation. On

putting the color substitution [172] CA = CF = N and n f = N in the quark and gluon form

factors, their LT parts not only coincide with each other but also become identical, to the

form factors of half-BPS operator in N = 4 SYM [183]. In the work [139] the diagonal

terms for the pseudo-scalar form factors F G,g and F J,q were found to exhibit similar type

of behavior. The LT terms for the three point form factors, H → ggg in QCD [184] at

two loop level were found to be same as those of half-BPS operator inN = 4 SYM [179].

Our computation of form factors also show some interesting behaviors in terms of their LT

parts. We have found that the LT terms of the diagonal form factors , F̂ G,g, F̂ Q,q with the

above prescribed color replacement, are not only identical to each other but also coincide

with the LT terms of the scalar form factors in N = 4 SYM [183]. This is found to be

true for terms containing positive powers in ε available up to transcendentality 8 [185]. In

addition, for the off diagonal terms namely F̂ G,q, F̂ Q,g, the LT parts are identical to one

another; however they do not coincide with the diagonal ones.

6.6 Conclusion

Most of the extra dimensional models assume the coupling of the SM fields to that of a

massive spin-2 field to be same. In our current study we have investigated in details the

theoretical issues that arise when the gauge and fermion fields of the SM interact with

unequal coupling strengths with a massive spin-2 field. We have divided the energy mo-

mentum tensor of QCD into two parts in such a way that purely gauge interactions form

one tensor operator, ÔG, µν, while the fermions and their interaction with the gauge fields

are encapsulated in another operator, ÔQ, µν. These composite operators are gauge invari-

ant but are not conserved like the usual energy momentum tensor. Hence they require
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additional UV renormalisation. We have exploited the universal IR structure of on-shell

amplitudes for the composite operators to compute these UV renormalization constants.

The form factors are computed up to three loop order in perturbation theory; then using

the K-G equation we obtain the UV anomalous dimensions and thus the renormalisation

constants up to three loop level. We find that all the anomalous dimension γ(n)
GG are pro-

portional to n f which implies that the conservation property of the operator ÔG, µν breaks

down beyond the tree level due to the presence of fermion loops. The renormalization

constants and the on-shell FFs are important components of observables that can probe

the physics of spin-2 fields. In the next chapter we shall discuss in details, the phenomeno-

logical study of the NNLO QCD corrections involving these two operators.



7 Second order QCD corrections in

models of gravity with nonuniversal

coupling

In the previous chapter we discussed about a scenario where a massive spin-2 field inter-

acts with the SM ones through different coupling strengths. This introduced additional UV

divergences which were regulated by multiplying overall UV renormalization constants.

We computed the form factors and used the universal IR structure of QCD amplitudes to

extract these anomalous dimensions up to three loop order in perturbative QCD. In this

chapter we shall extend our study with the two operators to compute the NNLO QCD cor-

rections for production of a lepton pair and present its numerical impact at the energies of

LHC.

7.1 Introduction

Currently with the energies at which the LHC is operating, there are no signals of new

physics; thus searches of beyond the SM (BSM) physics depend on the ability to make

very precise theoretical predictions within the SM. This will help to look for possible

deviations between experimental observations and theoretical predictions which can give

79
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hints of the physics beyond the SM. In order to constrain the new physics model parame-

ters, one needs to also compute the BSM signals to the same level of theoretical precision

as the SM and compare with the observations made at the LHC. For many observables,

QCD corrections are large at the LHC and inclusion of higher order terms reduces the the-

oretical uncertainties substantially. Many SM processes have been measured at the LHC

and the cross sections are in excellent agreement with higher order QCD predictions. This

has helped in the discovery of the Higgs boson by ATLAS [17] and CMS [18] collabo-

rations at the LHC which has resulted in the measurement of the important fundamental

parameter of the SM, the Higgs mass mH (see [2, 24, 112]). In addition to understand

the stability of electroweak vacuum [186] , it is essential to precisely measure the Higgs

mass.

Despite the fact that the SM is in excellent agreement with experimental observations,

there also are compelling reasons to go beyond the SM. For example models with spin-2

were necessary to ascertain the spin and parity of the 125 GeV boson discovered in the

di-photon channel. Most of the popular extra-dimensional models consist of a massive

spin-2 particle coupling universally to the SM fields. For universal coupling, depending

on the geometry of extra dimensions,viz. large extra dimensions or warped extra dimen-

sion models, studies have been extensively carried out up to higher orders in QCD in

various channels that are relevant for the LHC. The NLO QCD corrections in this model

has been studied in [68, 89, 90] for various observables. Di-vector boson final state have

been studied to NLO level in [91–96]. In the framework of aMC@NLO, all the non-color,

di-final states have been studied to NLO+PS accuracy [97–99]. Production of a generic

spin-2 particle in association with colored particles, vector bosons and the Higgs boson

have been studied in [100] to NLO+PS accuracy. The form factor of a spin-2 universally

coupled to quarks and gluons up to two loops was computed in [102]. Subsequently the

NNLO computation in the threshold limit was done in [101] and finally the full NNLO

computation was achieved, as described in the chapter 5. Production of a spin-2 in as-

sociation with a jet to full two-loop QCD corrections has also been completed with the
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evaluation of generic spin-2 decaying to g g g [104] and q q̄ g [187].

Although there are many works on models of spin-2 with universal coupling, there are

stringent bounds on the parameters of these types of models. For example heavy con-

straints have been put on models with universally-coupled spin-2 particle [188, 189].

Hence models with nonuniversal coupling of a spin-2 to SM are a suitable alternative.

Such models consist of a massive spin-2 particle interacting with two gauge invariant SM

tensorial operators with different coupling strengths, although each operator is not indi-

vidually conserved. Models with nonuniversal coupling were incorporated in tools like

Higgs characterization [6] to NLO in QCD. There were additional challenges that accom-

panied such models namely: (a) additional UV renormalization were needed, (b) in the IR

sector, additional double and single pole terms had to be cancelled with the counter parts

from real emission processes and mass factorization counter terms, thus demonstrating

the IR factorization to NLO for nonuniversal coupling [6]. The nonuniversal coupling

of spin-2 to SM has been actively considered by the ATLAS Collaboration [190, 191] to

provide exclusion of several non-SM spin hypotheses. It is thus necessary to compute

NNLO corrections which will help to provide bounds on the parameters for such models.

The three loop form factors have been computed, as described in chapter 6. In this chapter

we compute the real-real and real-virtual processes up to two loop order in perturbative

expansion. The theoretical background necessary to perform the aforementioned com-

putation has already been described in chapter 6; the formula to compute the lepton pair

invariant mass distribution is given in eq. 4.43; the necessary steps to arrive at the formula

has been elaborated in section 4.2.1. In the next section we present the phenomenological

implications of NNLO computation for such a nonuniversal model.



82 Second order QCD corrections in models of gravity with nonuniversal coupling

SM at α
s

GR qqb

(-1)*GR qg

GR gg

GR at α
s

dσ/dQ (pb/GeV) (Sub processes at α
s
)

LHC 13 TeV

Λ = 2 TeV

(k
q
, k

g
) = (0.5, 1.0)

Q (GeV)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

400 500 600 700 800 900 1000

Figure 7.1: First order QCD corrections from different subprocesses to di-lepton pro-
duction. The choice of the model parameters is as mentioned in the text.

7.2 Phenomenology

The results for the mass factorized partonic cross section are presented in Appendix 11.5.

We present in this section, the detailed phenomenology with our NNLO result on the

production of di-leptons, applicable for the energies at the LHC. We have considered a

minimal scenario of nonuniversal couplings of spin-2 particle with the SM fields, where

the spin-2 particle couples to all the SM fermions with coupling κQ =
√

2kq/Λ and to all

the SM gauge bosons with a coupling strength of κG =
√

2kg/Λ. Our numerical results

are presented for the default choice of model parameters, namely spin-2 particle of mass

mG = 500 GeV, the scale Λ = 2 TeV and the couplings (kq, kg) = (0.5, 1.0). We have set

the renormalization and factorization scales equal to the invariant mass of the di-lepton,

i.e., µR = µF = Q. Unless otherwise stated we use MSTW2008nnlo parton distribution

functions (PDFs) with the corresponding as provided from LHAPDF. We choose
√

S = 13

TeV, the center of mass energy of the incoming hadrons at the LHC.

Throughout our analysis we have restricted ourselves to scenarios where spin-2 particle

decays only to SM fields. The spin-2 particle decay widths for nonuniversal couplings are
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Figure 7.2: Di-lepton invariant mass distributions are presented to NLO QCD for dif-
ferent choice of couplings (kq, kg) in the left panel. The corresponding K-factors are
presented in the right panel.

same as those given in [67]. In our analysis, the coupling of spin-2 to all bosons are taken

to be identical; thus spin-2 decaying to Zγ vanishes identically Γ(h → Zγ) = 0 [192].

In fig. 7.1, we present the NLO corrections (only at order as) from various subprocess

contributions to the di-lepton production. As per our choice of model parameters, we

find that gg subprocess contribution dominates over the rest. In addition, the total NLO

correction is smaller than the gg contribution because of negative contribution from qg

subprocess.

The impact of higher order QCD corrections can be captured through the K-factors which

are defined as

K1 =
dσNLO/dQ
dσLO/dQ

and K2 =
dσNNLO/dQ
dσLO/dQ

. (7.1)

In the left panel of fig. 7.2, we present di-lepton invariant mass distributions to NLO for

different choices of nonuniversal couplings (kq, kg) = (1.0, 0.5), (1.0, 0.1) and (0.5, 0.1).

As per expectation for universal couplings, at the resonance region the cross sections i.e.

the height of the peak will be same simply because the couplings at the matrix element
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Figure 7.3: Percentage of qg subprocess contribution R(1)
qg as defined in the text for

different choice of nonuniversal couplings.

level will cancel with those from the decay width of the spin-2 particle. However, for

nonuniversal couplings this is not the case thus cross sections at the resonance region

for different choices of nonuniversal couplings will be different. Thus, compared to the

warped extra dimensional models, the precision as well as the phenomenological studies

of the spin-2 particle production in this model will be different. To highlight the impact

of different couplings on higher order corrections, we present the NLO K-factor (K1) in

the right panel of fig. 7.2 for various choices of (kq, kg). We observe that the K-factor

crucially depends on the choice of nonuniversal couplings. In particular we notice that

the K-factors are larger for the choice of couplings (1.0,0.1). To understand this behavior

better, we study the percentage contribution of various subprocesses to the total correction

at NLO level, particularly from qg subprocess due to its large flux at LHC energies. To

quantify we define the percentage of contribution of a given subprocess ab as R(i)
ab =

(dσH1H2,(i)
ab /dQ2)/(dσH1H2,(i)/dQ2)×100, where in the numerator we have contribution from

∆h,(i)
ab and for the denominator, we include all the partonic channels.

We present in fig. 7.3, R(1)
qg for different choices of nonuniversal couplings and we observe

that the sign of the qg subprocess crucially depends on the choice of couplings. The

reason for the large K-factor at the resonance region is because of large positive values of
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Figure 7.4: Second order QCD corrections from various subprocess to the di-lepton
invariant mass distribution.

R(1)
qg for some values of coupling. For example R(1)

qg is about 70% for the coupling (1.0, 0.1).

However, the sign of the contribution from other subprocesses qq̄ and gg is found to be

positive for various couplings.

The second order QCD corrections (at (a2
s)) from various subprocesses to the di-lepton

production is presented in fig. 7.4, for the default choice of couplings (kq, kg) = (0.5, 1.0).

We observe that the gg subprocess has the dominant contribution over the rest while qg

has a negative contribution which is comparable in magnitude to the dominant channel. In

addition we also study the percentage of the relative contribution, R(2)
qg to the total second

order correction. In fig. 7.5, we present R(2)
qg for different choice of couplings. We observe

that for the choice of couplings as considered here, the qg contribution varies from about

−70% to about 35%. For the couplings (1.0, 0.1) and (0.5, 0.1) the qg contribution is

positive while it is negative for the rest of the choices, as well as in the SM. We can

conclude that the K-factors for the choice of (1.0, 0.1) coupling is large for a wide range

of invariant mass distribution. It is worth mentioning here that in general qg subprocess

has a negative contribution both in the SM as well as in the case of universal couplings,

irrespective of the value of the latter.

Now we shall study the di-lepton invariant mass distribution to various orders in QCD for
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Figure 7.5: Percentage of qg contribution R(2)
qg as defined in the text.
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Figure 7.6: Cross sections at different orders (left panel) and the corresponding K-
factors K1 and K2 (right panel) are presented for different couplings.

a particular choice of couplings (1.0, 0.5), as shown in fig. 7.6. At the resonance we find

that the NLO QCD corrections for the signal (SM+spin-2) are about 60% while those

at NNLO are about 80%. Similar result for the default choice of model parameters is

presented in fig. 7.7. In this case the corresponding NLO corrections to the signal are

about 45% while those of NNLO are about 55%.

We now present the invariant mass distributions of the di-leptons at NNLO for 9 different

choice of couplings through fig. 7.8, 7.9, 7.10. In the left panel the distributions are shown
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Figure 7.7: Same as fig. 7.6 but for a different set of couplings.
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Figure 7.8: Di-lepton invariant mass distributions to NNLO for different choice of cou-
plings (left panel) and the corresponding K-factors (right panel) are presented.

and the corresponding NNLO K-factors (K2) are given in the right panel. The respective

K-factors for the signal at the resonance region are found to vary from about 1.5 to as

large as 3.0, due to different contributions from qg subprocess to the signal as explained

before.

The dependence of the invariant mass distributions on the center of mass energy Ecm of the

protons at the LHC will now be presented. We show our results for Ecm = 7, 8, 13 and 14

TeV energies for two different sets of couplings. In fig. 7.11, we present the invariant mass
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Figure 7.9: Same as fig. 7.8 but for a different set of couplings.
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Figure 7.10: Same as fig. 7.8 but for a different set of couplings.

distributions and the corresponding K-factors for the universal couplings of (1.0, 1.0). For

the nonuniversal coupling (0.5, 1.0), similar results are presented in fig. 7.12. In both the

cases, the K-factors at the resonance region are found to be larger for 7 TeV case and are

about 1.6.

The partonic cross section obtained after UV renormalization and mass factorization con-

tains two unphysical scales µR, µF . This scale dependence arises due to truncation of the

perturbative expansion up to a finite order. The LO cross section is µR independent but

contains µF dependence through mass factorization. At NLO the partonic cross section



7.2 Phenomenology 89

7 TeV
8 TeV

13 TeV

14 TeV

dσ/dQ (pb/GeV)

NNLO

Λ = 2 TeV

M
G

 = 500 GeV

(k
q
, k

g
) = (1.0, 1.0)

Q (GeV)

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

400 500 600 700 800 900 1000

7 TeV

8 TeV

13 TeV

14 TeV

K-factors (NNLO)

Λ = 2 TeV

M
G

 = 500 GeV

(k
q
, k

g
) = (1.0, 1.0)

Q (GeV)

0.8

1

1.2

1.4

1.6

1.8

2

400 500 600 700 800 900 1000

Figure 7.11: Dependence of cross sections on the di-lepton invariant mass distribution
for universal couplings (1.0, 1.0).
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Figure 7.12: Same as fig. 7.11 but for the default choice of nonuniversal couplings
(0.5, 1.0).

starts depending on µR; the sensitivity to factorization scale gets reduced at this level. The

cross section becomes less sensitive to the scales µR and µF as we include more and more

higher order terms. We study the uncertainties in our predictions due to µR and µF through

fig. 7.13, 7.14. For this, we define the ratios R(µR, µF) of the invariant mass distributions

computed at arbitrary scale to those computed at the fixed scale. These are defined as

R(µR, µF) =
dσ(µR, µF)/dQ
dσ(Q0,Q0)/dQ

.
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Figure 7.13: Renormalization (left) and factorization (right) scale dependence of the
di-lepton invariant mass distribution at LO, NLO and NNLO.
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Figure 7.14: Same as fig. 7.13 but with µR = µF = µ.

For a systematic study of these scale uncertainties, we use LO (NLO and NNLO) PDFs

for LO (NLO and NNLO) cross sections respectively. We shall focus at the resonance

region i.e. Q = M = 500 GeV. The fixed scale is set equal to Q0 = M. In the left

panel of fig. 7.13, we present R(µR,Q0) by varying µR from 0.1Q to 10Q and keeping

µF = Q0 fixed. At LO, there is no scale µR entering the cross section. The corresponding

scale uncertainties at NLO and NNLO are 19% and 5% respectively. In the right panel

of fig. 7.13, we present R(Q0, µF) by varying µF from 0.1Q to 10Q and keeping µR = Q0

fixed. In this range of factorization scale variation, the uncertainties in the distributions at
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Figure 7.15: Di-lepton invariant mass distributions for different choice parton distribu-
tion functions (PDFs).

LO, NLO and NNLO are respectively about 49%, 31% and 26%.

Finally in fig. 7.14, we present R(µ, µ) (where µR = µF = µ) by varying µ from 0.1Q

to 10Q. The corresponding scale uncertainties at LO, NLO and NNLO are respectively

about 49%, 52% and 30%.

We have also studied the uncertainties in our predictions that comes due to different

choices of PDFs. For this we use the PDF groups MSTW2008, CT10, NNPDF3.0 and

ABM12. The results for the invariant mass distributions for the signal at NNLO are pre-

sented in the left panel of fig. 7.15 and the corresponding K-factors are presented in the

right panel of fig. 7.15. The K-factors here are found to vary from 1.18 at Q = 400 GeV

to about 1.28 at Q = 1000 GeV, while at the resonance they are about 1.54.
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7.3 Conclusion

In this chapter we have computed the NNLO QCD corrections in the DY type of process

with a massive spin-2 particle appearing in the intermediate stages. We consider a mini-

mal scenario where a spin-2 couples differently to the gauge and fermionic sector of the

SM. In the previous chapter we studied a similar scenario for the form factors and saw

how the universal IR structure of the QCD amplitudes remained unaffected in the presence

of nonuniversal couplings. In this chapter we have seen that the IR universality remains

true even for purely real and real-virtual type of processes. By multiplying the additional

UV renormalization constants for the two composite operators, adding all the virtual and

real emission diagrams and then performing mass factorization, we obtained the partonic

cross section free of UV and IR singularities. We then multiply the appropriate PDFs with

these partonic cross sections and obtain the final hadronic cross section that we use for

further phenomenological investigations.

In contrast to the models with universal coupling, the phenomenological study that we

have performed in this chapter is both interesting as well as different. We present the

invariant mass distribution for production of di-leptons at the energies of the LHC. Even

at LO, we can notice that the signal has different cross sections at the resonance region in

contrast to the gravity mediated models where the signal has the same cross section for

different universal couplings. From NLO onwards the spin-2 exploits its freedom of being

produced with different coupling strengths even for a given subprocess, which makes

the QCD radiative corrections crucially dependent on the choice of the spin-2 coupling

strength. Therefore the impact of the QCD corrections here is very much different from

those of di-lepton or Higgs production in the SM.

Our numerical results show that the QCD corrections for (kq, kg) = (1.0, 0.1) are dominant

over the rest of the choice of couplings, making the K-factors as large as 2.5 or more. For



7.3 Conclusion 93

this choice of couplings, the LO gluon fusion contribution is very small although gluon

fluxes are high for the kinematic region of producing a 500 GeV particle. But at higher

orders where the spin-2 can be emitted off from a quark line with large coupling strength,

the large quark-gluon fluxes at LHC energies can potentially enhance the spin-2 produc-

tion rate, as is evident from the numerical results. For di-lepton production the ‘sign’ of

qg subprocess is usually negative both in the SM as well as in the models of universal

couplings. But here we note that the ‘sign’ of qg subprocess contribution changes with

the nonuniversal couplings and for the above choice it is positive.

We have also presented our predictions for different center of mass energies of the incom-

ing protons at the LHC and found that the K-factors are larger for 7 TeV case. In addition,

the K factors that we have presented for different scenarios of nonuniversal couplings can

help different experimental collaborations by providing an accurate theoretical input for

an in depth analysis of a more general model in order to constrain it more precisely. Such

higher order corrections are used mainly to constrain the model parameters with least

theoretical uncertainty.

The variation of the differential distribution with the renormalization and factorization

scales have been quantified and presented in this thesis. For the variation of the scales

µR and µF between 0.1Q and 10Q, the uncertainties are found to get reduced from about

50% at LO to about 30% at NNLO. For completeness, we also present the uncertainty in

our predictions due to different choice of the PDFs.

These NNLO QCD predictions for the hadroproduction of a massive spin-2 with nonuni-

versal couplings will augment the similar results previously computed at NLO level and

compliment the earlier results for NNLO QCD corrections in models with spin-2 univer-

sal couplings.



8 Soft gluon resummation in two

dimensional Mellin space

8.1 Introduction

In the previous chapters we have seen the importance of the DY process in probing physics

beyond the SM. This helped us to obtain the NNLO QCD corrections for a spin-2 particle

decaying to a lepton pair. The UV and IR finite fixed order partonic cross sections that we

obtained (presented in Appendix 11.4) contain polynomials, plus distributions and other

logarithms, all expressed in terms of some dimensionless variable z, where the latter is

the ratio of the invariant mass of the final state and the partonic centre of mass energy.

The plus distributions are the result of soft and/or collinear gluon emissions from the final

state. In spite of the existing state-of-art calculation for cross section of the DY process,

the threshold region of the phase space often lacks a concrete physical description. The

threshold region is defined in the soft limit z → 1. The perturbative evaluation of the

partonic cross section near the boundary of the phase space for a hard scattering process,

exhibits large logarithmic corrections arising from the emission of soft gluons. These

threshold logarithms originate when a generic scale q2 in a scattering process becomes

equal to the square of the partonic centre-of-mass energy. In such cases the phase space

of the real emission processes become highly constrained. In the threshold limit the UV

94
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and IR finite cross section can be divided into two parts : Soft virtual (SV) or threshold and

hard part. At any order αk
s, the SV category consist of plus distributions like

[
lnm−1(1−z)

1−z

]
+

(m ≤ 2k) and delta functions; the polynomials and other logarithms like ln(1 − z) can

be listed under the hard contributions. In the threshold limit z → 1, the distributions

become singular. However it is to be noted that these functions are integrable. At the level

of hadronic cross sections, they often dominate over the hard part when folded with the

appropriate PDFs, in the above mentioned kinematic regions at every order in perturbation

theory. Hence, they can potentially disturb the reliability of the perturbative predictions.

The resolution is to resum these large terms, often the logarithms, to all orders to obtain

any sensible prediction. This is called threshold resummation. We describe in details the

necessary theoretical framework in the next section.

8.2 Theoretical framework

In this thesis we shall discuss about the threshold resummation of rapidity distribution for

the SM DY process, where the partonic scaling variables z1, z2 approach unity i.e. z1 → 1

and z2 → 1. We discuss about the SV cross section which can be expressed in terms of

these two variables and then layout the derivation of the soft distribution function.

8.2.1 The Soft-virtual cross section

In this section we define our notations and outline the derivation of the soft distribution

function, which is closely related to the standard threshold resummation formula. In the

regime of QCD improved parton model, we consider the interaction of two partons a(k1)

and b(k2) to produce c(q) i.e.

a(k1) + b(k2)→ c(q), (8.1)
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where ki’s are the momenta of the incoming partons and q = k1 + k2. For the DY process

c can be an intermediate vector boson decaying to a di-lepton pair; it is the scalar Higgs

boson for Higgs produced through gluon fusion as well as annihilation of bottom quarks.

The square of the hadronic centre of mass energy is defined by S ≡ (p1 + p2)2, where

pi’s denote the initial momenta of the hadrons P1 and P2. The incoming partons carry a

fraction xi of the initial state hadron momentum i.e. ki = xi pi. The square of the partonic

centre of mass energy is defined through (k1 + k2)2 = ŝ.

The differential cross section can be written as

d
dx
σI(q2, x, τ) = σI

Born(µ2
R, q

2, τ)W I(µ2
R, x, q

2, τ) , (8.2)

where τ = q2/S . For DY production, I = q and σI = dσq(τ, q2, x)/dq2. The invariant

mass of the di-lepton pair is q2 = M2
l+l− . For Higgs production through bottom quark

annihilation I = b and σI = σb(τ, q2, x) while for Higgs production through gluon fusion

I = g and σI = σg(τ, q2, x) with q2 = M2
H, where MH is the mass of the Higgs boson. x

can be the Feynman variable (xF) or rapidity(y), both defined in the centre-of-mass frame

in following way:

xF =
2(p1 − p2) · q

S
, and y =

1
2

ln
(

p2 · q
p1 · q

)
. (8.3)

σI
Born is the lowest order contribution in the perturbative expansion. σI(q2, x, τ) is the

hadronic cross section, which is related to the partonic cross section through W I(µ2
R, x, q

2, τ).

In the parton model the function W I(µ2
R, x, q

2, τ) can be expressed as convolution of two

functionsH I and ∆I in the following way:

W I(µ2
R, x, q

2, τ) =
∑

ac=q,q,g

∫ 1

0
dx1

∫ 1

0
dx2 H

I
ac(x1, x2, µ

2
F)

×

∫ 1

0
dz δ(τ − zx1x2)∆I

d,ac(x, z, as, q2, µ2
F , µ

2
R) . (8.4)
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In above ∆I
d,ac(x, z, as, q2, µ2

F , µ
2
R) = 1

σI
Born

∫
dPS 1+X |Mac→H+X |

2 δ(x − Ω), where for x =

xF , Ω =
2(p1−p2)·q

S and for x = y, Ω = 1
2 ln

(
p2·q
p1·q

)
. The phase space element for the H + X

system is dPS 1+X andMac→H+X denotes the scattering amplitude at partonic level where

the latter can be computed order by order in perturbation series. The subscript d denotes

differential part of the cross section. µR and µF are the renormalization and factorization

scale respectively. The renormalized strong coupling constant is as = g2
s(µ

2
R)/16π2; its

relation to the bare one âs = ĝ2
s/16π2 has been described in eq. 2.5 and 2.6. The function

H I
ac(x1, x2, µ

2
F) is the product of PDFs fa(x1, µ

2
F) and fc(x2, µ

2
F) mass factorized at the scale

µ2
F as expressed in eq. 4.46.

The renormalized PDFs are related to unrenormalized ones through the Altarelli-Parisi

kernel Γcd as follows:

fc(xi, µ
2
F) =

∑
d=q,q,g

∫ 1

xi

dz
z
Γcd(âs, µ

2, µ2
F , z, ε) f̂d

( xi

z

)
c = q, q, g. (8.5)

The factorization kernel Γcd(âs, µ
2, µ2

F , z, ε) cancels the initial state collinear singularity

due to massless partons. It can be expanded in power series in âs,

Γcd(âs, µ
2, µ2

F , z, ε) = δcdδ(1 − z) + âsS ε

(
µ2

F

µ2

) ε
2 1
ε

P(0)
cd (z) + O(â2

s) (8.6)

where P(0)
cd (z) is the leading order DGLAP splitting function. The splitting functions are

known fully up to three loop level [152, 153] and in the large n f limit at four loop level

[193] in perturbative expansion:

P(z j, µ
2
F) =

∞∑
i=1

ai
s(µ

2
F)P(i−1)(z j) . (8.7)

The diagonal term of the splitting function is as follows,

P(i)
II (z j) = 2

[
BI

i+1δ(1 − z j) + AI
i+1D0(z j)

]
+ P(i)

reg,II(z j). (8.8)



98 Soft gluon resummation in two dimensional Mellin space

The last term in the above equation (P(i)
reg,II(z j)) is regular in the kinematical limit z j → 1.

Di(z1), D̄i(z2) are the plus distributions defined in the following way:

Di =

[
lni(1 − z1)

(1 − z1)

]
+

, Di =

[
lni(1 − z2)

(1 − z2)

]
+

i = 0, 1, · · · . (8.9)

The subscript ‘+’ denotes the customary ‘plus-distribution’ f+(z) which acts on functions

regular in z→ 1 limit as

∫ 1

0
dz f+(z)g(z) =

∫ 1

0
dz f (z)(g(z) − g(1)) (8.10)

The renormalized H is related to the corresponding unrenormalized ones through the

kernels Γcd as follows :

Hac(x1, x2, µ
2
F) =

∫ 1

x1

dy1

y1

∫ 1

x2

dy2

y2
Γaa′(âs, µ

2, µ2
F , y1, ε)Ĥa′c′

(
x1

y1
,

x2

y2

)
Γcc′(âs, µ

2, µ2
F , y2, ε) .

(8.11)

It is often convenient to work with two scaling variables x0
1 and x0

2 instead of x and τ. For

the rapidity distribution, the variables x0
1 and x0

2 are related to x and τ as follows,

x = y =
1
2

ln
(

x0
1

x0
2

)
, τ = x0

1x0
2 . (8.12)

For xF distribution the relations are,

x = xF = x0
1 − x0

2, τ = x0
1x0

2 . (8.13)

We can now express the hadronic as well as the partonic cross section in terms of the new

variables x0
1 and x0

2. It can be shown that the partonic cross sections can be expressed in

terms of zi, which acts as scaling variable at the partonic level, where zi =
x0

i
xi

. Therefore
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in terms of these variables, eq. 8.4 can be rewritten in the following way:

W I(x0
1, x

0
2, q

2, µ2
R) =

∑
ac=b,b,g

∫ 1

x0
1

dz1

z1

∫ 1

x0
2

dz2

z2
Hac

(
x0

1

z1
,

x0
2

z2
, µ2

F

)

× ∆I
d,ac(z1, z2, as(µ2

R), q2, µ2
F , µ

2
R) , (8.14)

where 1
x1 x2

∆I
d,ac(z1, z2, as(µ2

R), q2, µ2
F , µ

2
R) = 1

σI
Born

∫
dPS 1+X

∫
dzδ(τ−zx1x2) |Mac→H+X |

2 δ(x−

Ω). Thus our task boils down to computing ∆I
d,ac(z1, z2, as(µ2

R), q2, µ2
F , µ

2
R). The infrared

safe coefficient functions ∆I
d,ac get contributions from both soft gluons as well as from hard

partons. Contributions from soft gluons consist of terms proportional to the distributions

Di(z j) in eq. 8.9 and δ(1−z j) . The remaining part of the differential cross section is called

hard contribution, which can be obtained by the standard procedure given in [194, 195] .

Thus we rewrite the differential partonic cross section as

∆I
d,ab(as, z1, z2, q2, µ2

F , µ
2
R) = ∆I,hard

d,ab (as, z1, z2, q2, µ2
F , µ

2
R) + δab ∆

I, SV
d (as, z1, z2, q2, µ2

F , µ
2
R).

(8.15)

We are interested in the SV part of the above cross section. It is to be remembered that

only diagonal terms of Γcd contribute to SV part of the cross section. In the threshold limit

(zi → 1) the SV part of the cross section contributes dominantly as compared to the hard

part. To evaluate this, we will follow the approach prescribed in [8, 146]. The SV part of

the finite partonic cross section can be written in a factorized way as follows

∆I,SV
d (as, z1, z2, q2, µ2

F , µ
2
R) =(Z I(âs, µ

2
R, µ

2, ε))2
∣∣∣F̂ I(âs,Q2, µ2, ε)

∣∣∣2δ(1 − z1)δ(1 − z2)

⊗ Ce2φI
d(âs,q2,µ2,z1,z2,ε) ⊗ Γ−1

II (âs, µ
2, µ2

F , z1, ε)δ(1 − z2)

⊗ Γ−1
II (âs, µ

2, µ2
F , z2, ε)δ(1 − z1). (8.16)

The term F̂ I(âs,Q2 = −q2, µ2, ε) is the bare form factor which we describe in details in

the next section. The symbol C denotes convolution and its operation on the exponential
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of a function f (z1, z2) indicates

Ce f (z1, z2) = δ(1 − z1)δ(1 − z2) +
1
1!

f (z1, z2) +
1
2!

f (z1, z2) ⊗ f (z1, z2)

+
1
3!

f (z1, z2) ⊗ f (z1, z2) ⊗ f (z1, z2) + · · · . (8.17)

The functions f (z1, z2) are distributions of type δ(1 − zi) or D j(zi) . The symbol ⊗ in-

dicates the “double" Mellin convolution, which convolutes with respect to the variables

z1 and z2 separately. As we are interested in evaluating the SV part of the cross sec-

tions, we neglect all the regular functions that come from different convolutions. The

term φI
d(âs, q2, µ2, z1, z2, ε) is the soft distribution function which we shall discuss later. In

eq. 8.16, Z I(âs, µ
2
R, µ

2, ε) is the overall operator renormalization constant. For gluon oper-

ator [147] and bottom quark coupling to Higgs, [148] Z I(âs, µ
2
R, µ

2, ε) satisfy the following

renormalization group equations:

µ2
R

d
dµ2

R

ln Zg(âs, µ
2
R, µ

2, ε) =

∞∑
i=1

ai
s(µ

2
R)

(
i βi−1

)
,

µ2
R

d
dµ2

R

ln Zb(âs, µ
2
R, µ

2, ε) =

∞∑
i=1

ai
s(µ

2
R) γb

i−1 , (8.18)

where the anomalous dimension γb
i are given in [195–197]. For the DY process we have

Zq(âs, µ
2
R, µ

2, ε) = 1.

8.2.2 Solution of the form factor

The function F̂ I(âs,Q2, µ2, ε) in eq. 8.16 is the bare form factor. In section 6.3 we dis-

cussed about the renormalized FF’s in the context of the two composite operators and

briefly mentioned about the differential equation that they satisfied. In this section we

shall again revisit the solution of the FFs in great details, as their general solution will be

required in the next section to find the solution of the soft distribution function. The bare
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form factors satisfy the KG equation, which is a consequence of factorization, gauge and

renormalization group (RG) invariances [147–150]

Q2 d
dQ2 ln F̂ I

(
âs,Q2, µ2, ε

)
=

1
2

[
K I

(
âs,

µ2
R

µ2 , ε

)
+ GI

(
âs,

Q2

µ2
R

,
µ2

R

µ2 , ε

) ]
, (8.19)

where the K I contains all the singularities in ε, GI involves finite terms in the limit ε → 0.

Using the property of RG invariance of F̂ I(âs,Q2, µ2, ε) and the finiteness of GI we can

obtain the solution of the above equation. The formal solution, which is a series expansion

in the bare coupling constant is presented in [135,146] up to four loop level. The solution

for K I reads as

K I(âs, µ
2, µ2

R, ε) =

∞∑
i=1

âi
s

(
µ2

R

µ2

)i ε2

S i
εK

I,(i)(ε), (8.20)

with

K I,(1)(ε) =
1
ε

{
− 2AI

1

}
, K I,(2)(ε) =

1
ε2

{
2β0AI

1

}
+

1
ε

{
− AI

2

}
,

K I,(3)(ε) =
1
ε3

{
−

8
3
β2

0AI
1

}
+

1
ε2

{
2
3
β1AI

1 +
8
3
β0AI

2

}
+

1
ε

{
−

2
3

AI
3

}
. (8.21)

where AI
i are the cusp anomalous dimensions [56, 152–155]. For I = q they are given by,

Aq
1 = 4CF ,

Aq
2 = 8CFCA

{
67
18
− ζ2

}
+ 8CFn f

{
−

5
9

}
,

Aq
3 = 16CFC2

A

{
245
24
−

67
9
ζ2 +

11
6
ζ3 +

11
5
ζ2

2

}
+ 16C2

Fn f

{
−

55
24

+ 2ζ3

}
+ 16CFCAn f

{
−

209
108

+
10
9
ζ2 −

7
3
ζ3

}
+ 16CFn2

f

{
−

1
27

}
. (8.22)
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Ab
i are same as Aq

i , as they are flavor independent. We can extract Ag from Aq by making

use of its maximally non-Abelian property,

Ag =
CA

CF
Aq. (8.23)

The renormalization group equation for the function GI has the following solution

GI

(
âs,

Q2

µ2
R

,
µ2

R

µ2 , ε

)
= GI

(
as(µ2

R),
Q2

µ2
R

, ε

)
= GI

(
as(Q2), 1, ε

)
+

∫ 1

Q2/µ2
R

dλ2

λ2 AI
(
as(λ2µ2

R)
)

= GI
(
as(Q2), 1, ε

)
+

∞∑
i=1

S i
ε â

i
s

(
µ2

R

µ2

)i ε2
(Q2

µ2
R

)i ε2

− 1

 K I,(i)(ε) . (8.24)

GI
(
as(Q2), 1, ε

)
can be expanded in power series of as(Q2) as

GI
(
as(Q2), 1, ε

)
=

∞∑
i=1

ai
s(Q

2)GI
i (ε) , (8.25)

where GI
i (ε) consists of process independent terms – collinear (BI

i ) and soft ( f I
i ) anoma-

lous dimensions as well as some vertex dependent terms (gI
i,F). They are expressed as

GI
i (ε) = 2(BI

i − γ
I
i ) + f I

i + CI
i +

∞∑
k=1

εkgI,k
i,F . (8.26)

BI
i [152, 153] are obtained by demanding that physical observables like cross sections

should be finite. They are the coefficients of the δ(1 − z) part of the splitting functions

in eq. 8.8. Since Bq
i are flavour independent they satisfy Bq

i ≡ Bb
i . The soft anomalous

dimension, f I
i for i = 1, 2 can be found in [28] and in [153] for i = 3. We list them below:

f q
1 = 0 ,

f q
2 = CACF

{
−

22
3
ζ2 − 28ζ3 +

808
27

}
+ CFn f TF

{
8
3
ζ2 −

224
27

}
,
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f q
3 = CA

2CF

{
352
5
ζ2

2 +
176
3
ζ2ζ3 −

12650
81

ζ2 −
1316

3
ζ3 + 192ζ5 +

136781
729

}
+ CACFn f

{
−

96
5
ζ2

2 +
2828
81

ζ2 +
728
27

ζ3 −
11842

729

}
+ CF

2n f

{
32
5
ζ2

2 + 4ζ2 +
304
9
ζ3 −

1711
27

}
+ CFn f

2
{
−

40
27
ζ2 +

112
27

ζ3 −
2080
729

}
.

(8.27)

Like BI
i , f I

i are also flavor independent i.e. f b
i ≡ f q

i . The authors in [28] first noticed that

the constants f I
i are maximally non-Abelian obeying the relation

f g
i =

CA

CF
f q
i . (8.28)

Using the above relation we can predict the single pole in the logarithm of form factor

up to two loop level [28]. In [134] it was validated to hold up to three loop level in

perturbative expansion. From the above solutions of K and G we can now obtain ln F̂ I :

ln F̂ I(âs,Q2, µ2, ε) =

∞∑
i=1

âi
s

(
Q2

µ2

)i ε2

S i
ε L̂

I,(i)
F

(ε) (8.29)

where

L̂
I,(1)
F

=
1
ε2

(
− 2AI

1

)
+

1
ε

(
GI

1(ε)
)
,

L̂
I,(2)
F

=
1
ε3

(
β0AI

1

)
+

1
ε2

(
−

1
2

AI
2 − β0GI

1(ε)
)

+
1
2ε

GI
2(ε) ,

L̂
I,(3)
F

=
1
ε4

(
−

8
9
β2

0AI
1

)
+

1
ε3

(
2
9
β1AI

1 +
8
9
β0AI

2 +
4
3
β2

0G
I
1(ε)

)

+
1
ε2

(
−

2
9

AI
3 −

1
3
β1GI

1(ε) −
4
3
β0GI

2(ε)
)

+
1
ε

(
1
3

GI
3(ε)

)
,

L̂
I,(4)
F

=
1
ε5

(
β3

0AI
1

)
+

1
ε4

(
−

2
3
β0β1AI

1 −
3
2
β2

0AI
2 − 2β3

0G
I
1(ε)

)
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+
1
ε3

(
1
12
β2AI

1 +
1
4
β1AI

2 +
3
4
β0AI

3 +
4
3
β0β1GI

1(ε) + 3β2
0G

I
2(ε)

)

+
1
ε2

(
−

1
8

AI
4 −

1
6
β2GI

1(ε) −
1
2
β1GI

2(ε) −
3
2
β0GI

3(ε)
)

+
1
ε

(
1
4

GI
4(ε)

)
. (8.30)

The constants gI,k
i can be extracted from the finite part of the form factors as evident

through eq. 8.26 and 8.30. For Higgs production through bottom quark annihilation

(I = b), the results up to two loop level are available in [146, 151, 198]. The three loop

computation is presented in [138], which was later used to compute gb,1
3 in [156]. For

I = q, g the constants gI,k
i can be found in [134]. The beta function and the constants gI,k

i

determine CI
i . They read as

CI
1 = 0, CI

2 = −2β0gI,1
1,F , CI

3 = −2β1gI,1
1,F − 2β0

(
gI,1

2,F + 2β0gI,2
1,F

)
. (8.31)

The solution of the logarithm of the form factor, ln F̂ I(âs,Q2, µ2, ε) for DY and Higgs

production through gg fusion and bottom quark annihilation can now be obtained from

the universal anomalous dimensions AI
i , Bi, f I

i , γ
I
i and the process dependent constants gI,k

i,F .

8.2.3 Solution of the soft distribution function

We now need to find the solution of the soft distribution function φI
d(âs, q2, µ2, z1, z2, ε).

To determine it, we recall that the function ∆I,SV
d (as, z1, z2, q2, µ2

F , µ
2
R) on the left hand

side of eq. 8.16 is finite in the limit ε → 0. This implies that all the pole structure of

φI
d(âs, q2, µ2, z1, z2, ε) as well as its q2 dependence should be similar to those of ln F̂ i. The

differential equation that the soft function satisfies was first given in [146]. It is as follows

q2 d
dq2φ

I
d =

1
2

[
K

I
d

(
âs,

µ2
R

µ2 , z1, z2, ε

)
+ G

I
d

(
âs,

q2

µ2
R

,
µ2

R

µ2 , z1, z2, ε

) ]
. (8.32)
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Following the structure of K I and GI in the logarithm of the form factor, we include all

the singular terms in ε of φI
d in K

I
d and keep the finite terms in G

I
d. φI

d also satisfies the RG

equation

µ2
R

d
dµ2

R

φI
d(âs, q2, µ2, z1, z2, ε) = 0 (8.33)

which leads to

µ2
R

d
dµ2

R

K
I
d = −µ2

R
d

dµ2
R

G
I
d = −δ(1 − z1)δ(1 − z2)A

I
(as(µ2

R)) . (8.34)

The proportionality of the form factor to δ(1− z1) δ(1− z2) in eq. 8.16 explains the product

of deltas in the above equation. The poles from φI
d(âs, q2, µ2, z1, z2, ε) have to cancel with

those coming from F̂ I and ΓII , to make ∆I,SV
d finite. Hence the constants A

I
should satisfy

A
I

= −AI . (8.35)

Using the above relation the solution for G
I
d in eq. 8.34 is

G
I
d

(
âs,

q2

µ2
R

,
µ2

R

µ2 , z1, z2, ε

)
= G

I
d

(
as(µ2

R),
q2

µ2
R

, z1, z2, ε

)
= G

I
d

(
as(q2), 1, z1, z2, ε

)
− δ(1 − z1)δ(1 − z2)

∫ 1

q2

µ2
R

dλ2

λ2 AI
(
as(λ2µ2

R)
)
. (8.36)

The above solutions can be used to solve the Sudakov differential eq. 8.32 for soft function

φI
d,

φI
d = φI

d(âs, q2(1 − z1)(1 − z2), µ2, ε)

=

∞∑
i=1

âi
s

(
q2(1 − z1)(1 − z2)

µ2

)i ε2

S i
ε

(
(i ε)2

4(1 − z1)(1 − z2)

)
φ̂I,(i)

d (ε) , (8.37)
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where,

φ̂I,(i)
d (ε) =

1
iε

[
K

I,(i)
d (ε) + G

I,(i)
d (ε)

]
. (8.38)

The form of z j dependent part in the above solution can be justified through factorization

property of QCD amplitudes. The term [(1 − z1)(1 − z2)]ε/2 is the contribution from the

phase space while the (1 − zi) term in the denominator comes from the matrix elements.

Expanding K̄ I
d in powers of âs

K
I
d

(
âs,

µ2
R

µ2 , z1, z2, ε

)
= δ(1 − z1)δ(1 − z2)

∞∑
i=1

âi
s

(
µ2

R

µ2

)i ε2

S i
ε K

I,(i)
d (ε), (8.39)

and solving the RG equation in eq. 8.34 we can determine the constants K
I,(i)
d (ε). They are

identical to K I,(i)(ε) given in [146, 151]. G
I,(i)
d (ε) are related to the finite functions

G
I
d(as(q2), 1, z1, z2, ε). In terms of renormalized coupling constant, we find

G
I
d

(
as(q2), 1, z1, z2, ε

)
=

∞∑
i=1

âi
s

(
q2(1 − z1)(1 − z2)

µ2

)i ε2

S i
ε G

I,(i)
d (ε)

=

∞∑
i=1

ai
s

(
q2(1 − z1)(1 − z2)

)
G

I
d,i(ε) (8.40)

G
I
d,i(ε) are similar to GI

i (ε) of the form factor and is given by,

G
I
d,i(ε) = − f I

i + CI
d,i +

∞∑
k=1

εkG
I,k
d,i , (8.41)

The coefficients of the single poles in φ̂I,(i)
d (ε) are controlled by the soft anomalous dimen-

sion, f I
i , which are also maximally non-Abelian and the constants CI

d,i. We now need to

determine the z independent constants, G
I,k
d,i . We achieve this using the following identity:

∫ 1

0
dx0

1

∫ 1

0
dx0

2

(
x0

1x0
2

)N−1
(x0

1 + x0
2)

dσI

dxF
=

∫ 1

0
dx0

1

∫ 1

0
dx0

2

(
x0

1x0
2

)N−1 dσI

dY

=

∫ 1

0
dτ τN−1 σI . (8.42)
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σI for I = q, g is known to NNLO level [2, 19–24, 51, 52, 54, 77–79, 112] and the N3LO

for Higgs production is now known [29]. We can relate φ̂I,(i)
d (ε) to φ̂I,(i)(ε) that appears in

inclusive threshold corrections to DY process [57, 146, 151, 156], by taking the large N

limit of above equation i.e. N → ∞,

φ̂I,(i)
d (ε) =

Γ(1 + i ε)

Γ2
(
1 + i ε2

) φ̂I,(i)(ε). (8.43)

Using the above two equations we can determine the constants G
I,k
d,i and hence G

I
d,i(ε).

Interestingly it is found that G
I
d,i(ε) are also maximally non-Abelian i.e.

G
q
d,i =

CF

CA
G

g
d,i. (8.44)

Finally the constants CI
d,i are given by

CI
d,1 = 0, CI

d,2 = −2β0G
I,1
d,1, CI

d,3 = −2β1G
I,1
d,1 − 2β0(G

I,1
d,2 + 2β0G

I,2
d,1) . (8.45)

From eq. 8.23 and eq. 8.44 we see that the soft distribution functions for the differential

cross section satisfy

φ
q

d

(
âs, q2, µ2, z1, z2, ε

)
= φ b

d

(
âs, q2, µ2, z1, z2, ε

)
=

CF

CA
φ

g
d

(
âs, q2, µ2, z1, z2, ε

)
, (8.46)

up to order a2
s , similar to the soft distributions that appear in the total cross sections [146].

The reason for this universality is due to its dependence only on the gauge interactions

(SU(N)). In other words the soft part is independent of flavor, color, spin or any other

quantum number, once the Born level cross section is factored out.

We now have all the ingredients to write eq. 8.37 in terms of AI and G
I

d . The form of soft
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distribution function is as follows [8]

φ I
d (âs, q2, µ2, z1, z2, ε) =

1
2
δ(1 − z2)

(
1

1 − z1

{∫ q2(1−z1)

µ2
F

dλ2

λ2 AI

(
as(λ2)

)

+G
I

d

(
as

(
q2(1 − z1)

)
, ε

) })
+

+q2 d
dq2

[(
1

4(1 − z1)(1 − z2)

{∫ q2(1−z1)(1−z2)

µ2
F

dλ2

λ2 AI
(
as(λ2)

)

+G
I
d

(
as

(
q2(1 − z1)(1 − z2)

)
, ε

) })
+

]

+
1
2
δ(1 − z1)δ(1 − z2)

∞∑
i=1

âi
s

(
q2

µ2

)i ε2

S i
ε φ̂

I,(i)
d (ε)

+
1
2
δ(1 − z2)

(
1

1 − z1

)
+

∞∑
i=1

âi
s

(
µ2

R

µ2

)i ε2

S i
ε K

I,(i)
(ε)

+(z1 ↔ z2) . (8.47)

Now we can find out the finite soft-virtual function ∆I,SV
d (as, z1, z2, q2, µ2

F , µ
2
R) in eq. 8.16.

Writing it as

∆I,SV
d (as, z1, z2, q2, µ2

R, µ
2
F) = C exp

(
Ψ I

d(as, z1, z2, q2, µ2
R, µ

2
F , ε)

)∣∣∣∣∣∣
ε=0

(8.48)

the finite distribution Ψ I
d in dimensional regularization can be written as

Ψ I
d = δ(z2)

(
1
z1

{∫ q2 z1

µ2
F

dλ2

λ2 AI
(
as(λ2)

)
+ḠI

d

(
as(q2 z1)

) })
+

+
1
2

(
1

z1z2

{
AI(as(z12))

+
dḠI

d(as(z12))
d ln z12

})
+

+
1
2
δ(z1)δ(z2) ln

(
gI

d,0(as(µ2
F))

)
+z1 ↔ z2, (8.49)
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where z1 = 1 − z1 and z2 = 1 − z2 and z12 = q2z1z2.

The finite distribution Ψ I
d as obtained above contain plus distributions which can give

large contributions in the limit z1 → 1, z2 → 1. Thus the SV cross section gives large

contributions at every order in perturbation theory which can disturb the reliability of the

perturbative predictions. The resolution is to resum these large terms, often the loga-

rithms, to all orders to obtain any sensible prediction. In the next section we describe how

to obtain an all order resummation formula by computing the integrals in eq. 8.49.

8.3 The resummation formula in double Mellin space

The soft virtual cross section in eq. 8.48 has an all order structure which is depicted

through the exponential nature of the solution. It is written in terms of a convoluted

exponential where the meaning of the later is given in eq. 8.17. Thus solving the integrals

in eq. 8.49 will give us the desired all order resummation formula. However it is easier

to work in the conjugate space of zi, which is the Mellin Ni space, to get a compact form

of such an all order formula. Thanks to the convolution structure of the hadronic cross

section in terms of the PDFs fa,b and the SV cross section ∆I,SV
d , the two-dimensional

Mellin transformation of the Born normalized hadronic cross section becomes a simple

product of f̃a(N1), f̃b(N2) and ∆̃I,SV
d (N1,N2). The double Mellin transformation is defined

by

∆̃I,SV
d (as,N1,N2, q2, µ2

R, µ
2
F) =

∫ 1

0
dz1 zN1−1

1

∫ 1

0
dz2 zN2−1

2 ∆I,SV
d (as, z1, z2, q2, µ2

R, µ
2
F). (8.50)

The delta functions, plus distributions transform as follows [26] (we show for one variable

z1)

∫ 1

0
dz1 zN1−1

1 δ(1 − z1) = 1 ,
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∫ 1

0
dz zN1−1

1 Di(z1) =
(−1)i+1

i + 1
lni+1 N1 + O(lni N1) ,∫ 1

0
dz1 zN1−1

1 lni(1 − z1) =
(−1)i

N1
lni N1 + O

(
1

N1
lni−1 N1

)
. (8.51)

The threshold limit in Mellin space correspond to N1 → ∞. In this limit we see that the

lni(N1) terms give dominant contributions compared to the O(1/N1) terms. From now we

shall write ∆̃SV
d,I as function of N1,N2 and suppress the arguments as, q2, µ2

R, µ
2
F for brevity.

In order to derive a compact form of the resummed cross section we follow the method-

ology adopted in the work [26] where the soft virtual cross section in one dimensional

Mellin space was expressed in terms of two quantities: an exponential containing all

ln(N) terms and a prefactor multiplying the exponential, independent of ln(N) terms. For

N1,N2 space the large logarithms are of the form lnn(Ni), where n = 1, · · · and i = 1, 2

and the resummation in double Mellin space resums terms of the form ω = asβ0 ln(N1N2)

through a process independent function g(ω) and a process dependent but Ni independent

function g0. Here β0 is the leading coefficient of the beta function of the strong coupling

constant gs. Thus we can write

∆̃I,SV
d (ω) =

∫ 1

0
dz1 zN1−1

1

∫ 1

0
dz2 zN2−1

2 ∆I,SV
d

= gI
d,0(as) exp

(
gI

d(as, ω)
)
, (8.52)

where N i = eγE Ni, i = 1, 2 and γE is the Euler-Mascheroni constant. The exponent

gI
d(as, ω) takes the canonical form:

gI
d(as, ω) = gI

d,1(ω) ln(N1N2) +

∞∑
i=0

ai
sg

I
d,i+2(ω) . (8.53)

Hence to obtain an all order resummation formula for the soft-virtual cross section we

have to compute the integrals in eq. 8.49 after taking a double Mellin transformation.

The result of the integrals are presented in Appendix 11.2. Computing the integrals we



8.3 The resummation formula in double Mellin space 111

get the left side of eq. 8.52 and then comparing the exponential terms i.e. expΨ I
d and

exp
(
gI

d(as, ω)
)

we find gI
d(as, ω). Identifying ḠI

d = DI
d and rescaling the constants by β0

as gI
d,1 = gI

d,1, gI
d,i+2 = gI

d,i+2/β
i
0, A

I
i = AI

i/β
i
0, D

I
d,i = DI

d,i/β
i
0 and βi = βi/β

i+1
0 , we find

gI
d,1 =A

I
1

1
ω

(
ω + (1 − ω) ln(1 − ω)

)
,

gI
d,2 =ω

(
A

I
1β1 − A

I
2

)
+ ln(1 − ω)

(
A

I
1β1 + D

I
d,1 − A

I
2

)
+

1
2

ln2(1 − ω)A
I
1β1

+ Lqr ln(1 − ω)A
I
1 + L f rωA

I
1,

gI
d,3 = −

ω

2
A

I
3 −

ω

2(1 − ω)

(
− A

I
3 + (2 + ω)β1A

I
2 +

(
(ω − 2)β2 − ωβ

2
1 − 2ζ2

)
A

I
1 + 2D

I
d,2

− 2β1D
I
d,1

)
− ln(1 − ω)

 β1

(1 − ω)

(
A

I
2 − D

I
d,1 − A

I
1β1ω

)
− A

I
1β2

 +
ln2(1 − ω)
2(1 − ω)

A
I
1β

2
1

+ L f rA
I
2ω −

1
2

L2
f rA

I
1ω − Lqr

1
(1 − ω)

((
A

I
2 − D

I
d,1

)
ω − A

I
1β1 (ω + ln(1 − ω))

)
+

1
2

L2
qr

ω

(1 − ω)
A

I
1. (8.54)

where L f r = ln(µ2
F/µ

2
R), Lqr = ln(q2/µ2

R). The term gI
d,0(as) contains fixed order contri-

butions and ln(Ni) independent terms. In eq. 8.47, the finite parts of the last two terms

that remain after the cancellation of singularities, constitutes gI
d,0(as). We also include

in gI
d,0(as), the contributions coming from the Mellin transformation of delta functions.

Expanding ln(gI
d,0) as ln(gI

d,0) =
∑∞

i=1 ai
sl

I,(i)
g0 , we find

lI,(1)
g0

= 2gI,1
1,F + 2G

I,1
d,1 + 4AI

1ζ2 − 2L f rBI
1 + 2Lqr

(
BI

1 − γ
I
0

)
,

lI,(2)
g0

= gI,1
2,F + G

I,1
d,2 + 2β0

(
gI,2

1,F + G
I,2
d,1

)
+ 2ζ2

(
2AI

2 + β0

(
3BI

1 + 2 f I
1 − 3γI

0

))
+

2
3

AI
1β0ζ3

−2L f rBI
2 + L2

f rB
I
1β0 + Lqr

(
2BI

2 − 2γI
1 − β0

(
2gI,1

1,F + 2G
I,1
d,1 + 4AI

1ζ2

))
+L2

qrβ0

(
− BI

1 + γI
0

)
. (8.55)

Thus we have all the ingredients to perform threshold resummation of rapidity distribution

for the production of any colorless particle in the final state. To find gI
d(as, ω) and gI

d,0 we

need to know: cusp (AI
i ), collinear (BI

i ), soft ( f I
i ), UV (γI

i ) anomalous dimensions and
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universal soft terms G
I,i
d, j and process dependent constants gI,i

j,F of virtual corrections where

I = g, q. In the next chapter we shall apply the above formalism for the production of

lepton pair in the DY process (I = q) and analyze its numerical impact at the energies of

the LHC up to NNLO+NNLL accuracy.



9 Threshold resummation of the

rapidity distribution in the DY process

9.1 Introduction

The DY process has been studied theoretically to a great extent over many dacades [49,

77]. The full inclusive production cross section is known up to NNLO [54,112] for a very

long time. The dominant soft-virtual (SV) contributions are now known at next-to-next-

to-next-to-leading order (N3LO) level [57, 199]; electroweak corrections beyond leading

order are also known and at NLO level [200, 201]. Although inclusive production is im-

portant for precise prediction of cross section, differential distributions allow a wider com-

parison with experiments. Rapidity and transverse momentum distributions for the Drell-

Yan are known to up to NNLO level in QCD [80,81,83,84,202]; at N3LO level [8,30,203]

soft plus virtual contributions for the rapidity distribution are now known. Studies where

both QCD and electroweak corrections are combined can be found in [204]. Parton show-

ers matched with NLO QCD results for the DY are also available in MC@NLO [205],

POWHEG [205, 206] and aMC@NLO [207] frameworks. The differential distributions

that has been studied extensively is the transverse momentum (pT ) distribution of pair of

leptons or the vector bosons such as Z/W±, see [208–212], often in their large pT region.

On the other hand, the rapidity distribution in DY was computed in [208] at NLO level

113
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in QCD and it was later extended to NNLO level in [80, 83]. This stabilized the predic-

tions [81], giving only a few percentage sensitivity to renormalization and factorization

scales, for example at the Z mass region. However it has to be noted that the result does

vary significantly w.r.t. the choices of different parton distribution functions (PDFs). In

particular, at large invariant mass or at large rapidity of the final state, the cross sections

are sensitive to large Björken x regions of PDFs, where different PDFs show not only dif-

ferences between them but also exhibit large uncertainties. For a recent review see [213].

This sensitivity of PDFs will in turn help to constraint the PDF sets much better. Hence,

it is important to study these distributions.

In certain regions of phase space, the fixed order predictions are often not reliable due

to presence of large logarithms arising from some kinematic variables. At the partonic

threshold i.e. where the initial partons have just enough energy to produce the final state

such as a pair of leptons or Z/W± and soft gluons, the phase space available for the gluons

become severely constrained which results in large logarithms. To reliably predict differ-

ent observables, we have to systematically resum these large logarithms to all orders in

perturbation theory. Over the years resummation has become an important topic of in-

vestigation. For the inclusive production, the resummation of soft gluons in the threshold

region was establised [154, 155, 214] in the Mellin space and for the transverse momen-

tum distribution, at small pT , the resulting large logarithms were shown to exponentiate

in the impact parameter space [215, 216]. Resummation in momentum space based on

soft-collinear effective theory (SCET) have also been studied: for inclusive production

see [217] and for transverse momentum distribution see [218]. For the differential distri-

bution with respect to the Feynman variable xF , resummation was studied in [154] and it

was found that there were two thresholds and both could be resummed to all orders. It is

to be noted that xF describes the longitudinal momentum of the final state. The authors

established that these logarithms could be exponentiated and also obtained the resummed

result at the next-to-leading-logarithmic (NLL) accuracy. For resummation up to NLL

accuracy in MS scheme see [219]. Resummation of rapidity distribution similar to the



Introduction 115

inclusive one with a single scaling variable can be obtained in certain kinematic region,

see [220–224] and an equivalent approach based on SCET can be found in [225, 226].

In the former one, called the standard direct QCD (dQCD) approach [154, 155, 214],

since the resummation is performed in Mellin space where the phase space of the soft

gluons factorizes under appropriate Mellin transformation, the threshold limit of the par-

tonic scaling variable z → 1 corresponds to Mellin variable N → ∞, where z = Q2/ŝ,

Q2 = MV ,V = Z,W± and ŝ is the partonic center of mass energy. However in SCET

approach [217, 225, 226], resummation can be performed both in Mellin space as well as

in z-space using the evolution operators of soft and the hard functions of the coefficient

function.

For rapidity distribution resummation of large logarithms has been performed and several

results are already available to very good accuracy. In [222] the authors have studied

rapidity resummation for W± in Mellin-Fourier (M-F) space based on a conjecture (see

[220]) and later on same approach was used for Drell-Yan production in [223]. A more

detailed study in the context of W± productions as well as production of a pair of leptons

was undertaken in [227], where the role of prescriptions were emphasized that take care

of diverging series at a given logarithm accuracy.

Our approach to resum the soft gluon contributions for the rapidity distribution of a pair of

leptons will be same as the dQCD approach [154]. The soft gluon effects show up through

delta functions and plus distributions in the partonic cross section, when the partonic

scaling variables reach the threshold limits, i.e., z1 → 1 and z2 → 1. These contributions

can be resummed to all orders both in z1, z2 space and in N1,N2 space. By expanding

the resummed results up to desired accuracy the fixed order predictions in the soft plus

virtual approximation in z1, z2 space were obtained in [30,203,228]. Using the formalism

developed in [8, 203], we [229] have derived a general result that resums the soft gluons

to all orders in perturbation theory in two dimensional Mellin (M-M) space spanned by

N1,N2. Our result is applicable for production of any colorless final state at the hadron
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colliders; in the work [229] we have investigated the numerical impact of the rapidity

distribution for Higgs boson production at the LHC. This double threshold limit, denoted

by a pair of limits, namely (z1 → 1 , z2 → 1) corresponds to (N1 → ∞, N2 → ∞) in M-M

space. The corresponding large logarithms are of the form lnn(Ni), where n = 1, · · · and

i = 1, 2 and the resummation in M-M space resums terms of the form w = asβ0 ln(N1N2)

through a process independent function g(w) and a process dependent but Ni independent

function g0. Here β0 is the leading coefficient of the beta function of strong coupling

constant gs and as = g2
s(µ

2
R)/16π2 with µR being renormalisation scale .

In this thesis we have studied the numerical impact of resummed contributions in the M-

M approach on the fixed order predictions for the rapidity distribution of pair of leptons

in the DY process at the LHC. The fixed order results at NNLO show remarkable stability

against the factorization and renormalization scales. This is a good news for any phe-

nomenological study with DY process but the question remains whether at every order in

perturbative expansion, the fixed order predictions will be plagued by presence of large

kinematic logarithms resulting from soft gluons in the threshold regions. In this thesis we

have made a detailed study by taking into account these threshold effects from all orders

in the perturbative expansion. In addition, owing to various ways by which these loga-

rithms can be resummed, a detailed comparison of different approaches is desirable. This

thesis attempts to address all these issues. We shall present our resummed result up to

NNLO+NNLL accuracy. The resummation formalism based on the M-M approach has

been discussed in the previous chapter. In sec. 9.3 we proceed with a detailed numerical

study which is applicable for the energies at the LHC.

9.2 Theoretical framework

The theoretical framework necessary to perform threshold resummation has been de-

scribed in chapter 8. We shall however write down the main formula that will be needed
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in the next section. In the QCD improved parton model, for the production of a pair of

leptons with invariant mass q2 and rapidity y, the double differential cross section can be

written as

d2σq(τ, q2, y)
dq2dy

= σ
q
B(x0

1, x
0
2, q

2)
∑

ab=q,q

∫ 1

x0
1

dz1

z1

∫ 1

x0
2

dz2

z2

× fa

(
x0

1

z1
, µ2

F

)
fb

(
x0

2

z2
, µ2

F

)
∆

q
d,ab(z1, z2, q2, µ2

F , µ
2
R), (9.1)

where σq
B(x0

1, x
0
2, q

2) is the Born prefactor, τ = q2/S = x0
1x0

2 with q being the momentum

of the final state lepton pairs and S = (p1 + p2)2 where pi are the momenta of the in-

coming hadrons. The hadronic rapidity is defined as y = 1
2 ln(p2.q/p1.q) = 1

2 ln(x0
1/x0

2);

fa

(
x0

1
z1
, µ2

F

)
and fb

(
x0

2
z2
, µ2

F

)
are the PDFs having momentum fractions x1 = x0

1/z1, x2 = x0
2/z2

respectively, renormalized at the factorization scale µF . ∆q
d,ab(as, z1, z2, q2, µ2

F) on the other

hand is the DY coefficient function for rapidity distribution mass factorized at µF . This

coefficient function consists of two parts: the hard part and the SV part. We have already

discussed about it in eq. 8.15; the necessary steps to arrive at the differential SV cross

section in M-M space has been described in the previous chapter

It is to be noted that the approach followed here [229] differs from earlier ones (see [220,

221, 223, 225–227] in the way the threshold limit(s) is(are) taken). In the later approach,

the threshold contributions from soft gluons in the partonic cross section are defined by

considering only those distributions with respect to the scaling variable z = z1z2 which

appear in the region when z → 1. The remaining contributions contain not only regular

terms in z but also distributions and regular functions of partonic rapidity variable (yp).

Here, only those distributions in z are resummed to all orders treating the remaining terms

as hard part. Interestingly, if one works in M-F space, it can be easily shown that in

the limit z → 1, the threshold logs resulting from N → ∞ are identical to those of the

inclusive cross section. Thus the resummation for the rapidity distributions for the DY

has been done using single Mellin variable N corresponding to z keeping the yp dependent
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coefficients as it is.

We employ the technique developed in [229] namely the M-M space approach to perform

the soft gluon resummation for the DY rapidity distribution. In the next section we shall

investigate the phenomenological impact of our resummation formalism.

9.3 Phenomenology

We consider the production of both leptons, i.e. `+`−, where ` = e, µ through Z and γ∗

in the collision of two hadrons at the centre of mass energy 14 TeV. Unless otherwise

stated, we will mostly focus on the region containing the Z-pole. We take n f = 5 fla-

vors, MMHT2014(68cl) PDF sets [230] and the corresponding as(MZ) through LHAPDF-

6 [231] interface at each order in the perturbation theory. We obtain the fixed order results

from the publicly available code Vrap-0.9 [80, 232]. The resummed contribution is ob-

tained from ∆̃
q,SV
d (N1,N2) in eq. 8.52 after performing Mellin inversions which are done

using an in house Fortran based code. The ln(Ni) terms in the resummed exponential gq
d

and the Ni independent terms g̃q
d,0 are already present in the fixed order results; hence

care is needed to avoid double counting. This can be achieved simply by employing a

matching procedure at every order. The matched result is given below :

d2σq,res

dq2dy
=

d2σq,f.o

dq2dy
+σ

q
B

∫ c1+i∞

c1−i∞

dN1

2πi

∫ c2+i∞

c2−i∞

dN2

2πi
e y(N2−N1)

(√
τ
)2−N1−N2

f̃q(N1) f̃q(N2)
[
∆̃

q,SV
d (N1,N2) − ∆̃q,SV

d (N1,N2)
∣∣∣∣
trunc

]
, (9.2)

where σq
B is given by

σ
q
B =

4πα2

3q4N

[
e2

q −
2q2(q2 − M2

Z)eqgV
e gV

q(
(q2 − M2

Z)2 + M2
ZΓ

2
Z

)
c2

ws2
w

+
3q4ΓZ BZ

l

16αMZ

(
(q2 − M2

Z)2 + M2
ZΓ

2
Z

)
c2

ws2
w

(
1 +

(
1 −

8
3

s2
w

)2
) ]
. (9.3)
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Figure 9.1: Cross sections against µF(left), µR(middle) and µ(right) variations at
NNLO+NNLL for 14 TeV LHC. The bands are obtained by using 7 point scale varia-
tion (see text for more details).

with α = α(MZ) = 1/127.925, eq is the quark charge, MZ = 91.1876 GeV, ΓZ = 2.4952

GeV, s2
w = 0.227, c2

w = 1 − s2
w, gV

e = −1/4 + s2
w, gV

u = 1/4 − 2/3s2
w, gV

d = −1/4 + 1/3s2
w,

BZ
e = 0.03363 and BZ

µ = 0.03366. The first term in eq. 9.2, d2σq,f.o/dq2dy, correspond to

contributions from a fixed order perturbative computation. On the other hand the second

term contains only threshold logarithms ln(Ni) to all orders in perturbation theory. The

subscript “trunc" in the ∆̃SV
d,q indicates that it is truncated at the same order as the fixed

order one after expanding in powers of as. Thus at O(an
s), the non-zero contribution from

the second term starts at O(an+1
s ) and includes terms from all orders. For the fixed n-th

order contribution, namely NnLO, the contribution from the second term is called NnLL.

For the fixed order predictions we use the notations LO, NLO and NNLO and correspond-

ingly LO+LL, NLO+NLL and NNLO+NNLL for the resummed ones. It is well known

that the resummed expression diverges due to the missing non-perturbative contributions.

The origin of this divergence is ω → 1 in the functions gq
d,i; they are due to the cou-

pling constant as(µ2
R) that diverges near the Landau pole. We have adopted the Minimal

Prescription (MP) [233] to resolve the above mentioned problem. For the two Mellin in-

versions, the contours are chosen [234] in such a way that all the poles in the complex

plane spanned by N1,N2 remain to the left of the contours except for the Landau pole.

The leading order contribution to the DY process is due to electroweak interactions; the
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dominant theoretical uncertainty comes from the factorization scale µF that enters through

the parton distribution functions while the dependence on the renormalization scale µR

starts only from NLO onwards. In contrary to the leading order term, in the resummed

case, the LL contributions do depend on µR through ω in gI
d,1(w)|I=q given in eq. 8.54.

Hence, µR dependence will show up even at LO+LL level. This will be evident from

fig. 9.4 where one finds larger scale uncertainty from LO+LL contributions compared to

the fixed order one at LO level. Thus it is important to understand the impact of these
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Figure 9.2: Resummed rapidity distribution in Drell-Yan production for the two sets of
central scale choices (MZ,MZ) and (MZ/2,MZ) using MMHT PDFs at 14 TeV LHC.
Corresponding bands are obtained using 7-point scale variation around the central scale.
The lower panel represents the corresponding K-factors.

two scales at the fixed order as well as at resummed level and also determine the optimal

choice for the central scale around which the scale uncertainty remains minimal. In the

work [235] the optimal choice has been realized for the fixed order case: it is when

both µR and µF are set to MZ. In order to find the same for the resummed case, we

have plotted in fig. 9.1, dependence of the rapidity distribution on a) (µR = MZ, µF),

b) (µR, µF = MZ) and finally c) (µ = µR = µF). The symmetric band is obtained by

performing 7-point scale variation [26, 227, 235] around a given central scale with the

constraint (k1, k2) ⊗ (µR, µF)central where (k1, k2) ∈ [1/2, 2] with 1/2 ≤ k1/k2 ≤ 2 and by

taking maximum absolute deviation from the central scale. From the first and the last

panels of fig. 9.1, it is found that the optimal central scale choice is (MZ,MZ) whereas
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y=2.4 using MMHT2014 PDF at each order. The uncertainties are obtained by using 7
point scale variation around the central scale (see text for more details).

the middle panel favors
(

MZ
2 ,MZ

)
for the central scale. Comparing all three panels, we

find that the choice
(

MZ
2 ,MZ

)
gives minimum uncertainty band. However, to confirm the

above analysis also holds true at each order in the perturbation theory, we have considered

two different central scale choices (MZ,MZ) and (MZ/2,MZ) in fig 9.2. We find that

while the acceleration of the perturbative convergence are almost same for both cases,

uncertainty band at NLO + NLL and at NNLO + NNLL level are smaller for the central

scale choice (MZ/2,MZ) compared to the case (MZ,MZ). In fig. 9.3 we compare the

predictions of our resummed result using the central scale
(

MZ
2 ,MZ

)
against those coming

from fixed order result with the central scale choice (MZ,MZ), for two rapidities y = 0 and

y = 2.4. We find that the scale uncertainties from the resummed case at NNLO+NNLL are

comparable to what one obtains from NNLO. However, the central values at NLO+NLL

and NNLO+NNLL are very close to each other compared to those of fixed order results,

demonstrating better perturbative convergence.

In the introduction we mentioned about the works [222, 223, 227] where resummation of

threshold logarithms for the rapidity distribution was achieved in the M-F space. The

formalism that we have described in the previous chapter and also used in the work [229]

differs from the other approaches in the way the threshold contributions are resummed.
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µR
MZ
, µF

MZ
LO LLM-F LLM-M NLO NLLM-F NLLM-M NNLO NNLLM-F NNLLM-M

2, 2 72.63 +0.99 +3.22 73.45 +1.64 +1.80 70.89 + 0.63 +0.65

2, 1 63.20 +0.77 +2.59 70.62 +0.76 +1.02 70.36 +0.29 +0.32

1, 2 72.63 +1.09 +3.58 73.53 +1.91 +1.76 70.51 +0.51 +0.40

1, 1 63.20 +0.85 +2.89 71.40 +0.86 +0.90 70.54 +0.25 +0.17

1, 1
2 53.24 +0.62 +2.22 67.58 + 0.16 +0.14 69.83 - 0.001 - 0.09

1
2 , 1 63.20 +0.95 +3.28 72.35 +0.94 +0.68 70.27 +0.09 - 0.01

1
2 , 1

2 53.24 +0.69 +2.50 69.26 +0.10 - 0.15 70.28 - 0.04 - 0.15

Table 9.1: Comparison of resummed results for Mellin-Fourier space (M-F) and double
Mellin space (M-M) approach in the minimal prescription scheme at y = 0 for various
choices of scales.

We resum large logarithms resulting from the regions where scaling variables z1 and z2

approach unity simultaneously while in the case of M-F, only large logarithms from the

region where the partonic threshold variable z approaches unity and the partonic rapidity

yp is zero, are resummed. In the following we will make the numerical comparison of our

predictions, namely the M-M formalism against those of M-F reported in [227]. The fixed

order contributions are obtained by using Vrap-0.9 [80,232]; the resummed contributions

up to NNLL for M-F are obtained by using publicly available code ReDY [236] and for

M-M, we use our in house Fortran routine. We have set all the parameters including the

PDF set (NLO set of NNPDF-2.0 [237] at every order) the same as those used in [227].

Both our results and those from ReDY are listed in the Table 9.1 for various scale choices

at the central rapidity. From the table we observe that at LL level, both M-F and M-

M give positive contributions but the contribution from M-M is about three times larger

compared to M-F independent of the scale choice. The additional contribution over LL

at NLL for M-F is negative for some scale choices and positive for the rest while for

M-M, it is always negative. The magnitude of these additional contributions for M-M

is larger than M-F. Interestingly, at NNLL level, the additional contributions over NLL
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Figure 9.4: Drell-Yan rapidity distribution for 14 TeV LHC at q = MZ using MMHT
PDFs. The fixed order results are plotted in the left panel and the resummed results in
the right panel. Central scale is chosen as µR = µF = MZ for both and the corresponding
bands are obtained using 7-point scale variation (see text for more details) around the
central scale. The lower panel represents the corresponding K-factors.

for M-F and M-M are both negative in a such a way that the net NNLL contributions

from both the approaches become comparable. In the case of M-F, the NLO+NLL is 2%

larger compared to LO+LL and NNLO+NNLL is -4.7% larger compared NLO+NLL.

For M-M, the corresponding ones are -0.8% and -4.9% respectively at µR = µF = 2MZ.

We now present in fig. 9.4 the differential cross section for production of a lepton pair

as a function of the rapidity y for
√

S =14 TeV at the LHC. In the left panel we plot

the fixed order result up to NNLO and in the right panel we present the resum result up

to NNLO+NNLL. The respective K factors are also presented below. The K-factor at a

given perturbative order, say at NnLO (NnLO + NnLL), is defined by the cross section at

that order normalized by the same at LO (LO+LL) at the central scale µR = µF = MZ.

This choice for the scales has been made because the fixed order perturbative prediction

is well behaved around this scale [235]. We obtain the symmetric band at each order by

varying µR and µF between [MZ/2, 2MZ] around the central scale µR = µF = MZ with the

constraint 1/2 ≤ µR/µF ≤ 2, by adding and subtracting to the central scale the highest

possible uncertainties originating from all the scale combinations. We find that magnitude

and the sign of the resummed contributions are sensitive to the order of perturbation as
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Figure 9.6: Same as fig. 9.4 but for q = 1 TeV.

well the exact values of y and the scales µR, µF . For example, if we choose µR = MZ/2 and

µF = MZ instead of µR = µF = MZ as the central scale, we obtain a negative contribution

from NNLL terms for all values of rapidity.

We observe from fig. 9.4 that the inclusion of NnLL contributions increase the cross sec-

tion at every order for wide range of rapidity values. In addition, the overlap among

various orders is larger for resummed case compared to the fixed order ones, because

the uncertainty band at each order in the resummed case is bigger compared to the fixed

order. As far as fixed order results are concerned, in particular at NNLO level, several

partonic channels open up, effectively reducing the scale uncertainty considerably. How-
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ever, resummed contributions come only from quark anti-quark initiated channels to all

orders in the perturbation theory; other channels do not give the threshold logarithms

and hence do not contribute. We confirm this through fig. 9.5, where we have studied

the effects of resummation over the fixed order contributions, by considering a) only qq̄

channel at NNLO and b) all the channels at NNLO. We perform our analysis for y = 0

and set µF = MZ while vary µR between MZ/2 to 2MZ. For the qq̄ channel the resum

contributions arising from the two extreme scales are of opposite sign and their individ-

ual contributions are such that the NNLO+NNLL (qq̄) curve shows a stable behavior as

compared to NNLO (qq̄). While the fixed order decreases by 2.36% from MZ/2 to 2MZ,

the corresponding decrease for NNLO+NNLL (qq̄) is 1.53%. This confirms the reduc-

tion of scale dependence upon adding resummed terms to the fixed order contributions.

To estimate the percentage corrections purely coming from the threshold region from this

channel at each order of the perturbation theory, we have considered the case where the

central scale is chosen to be µR = µF = MZ. As expected, at LO both fixed order and the

truncated resummed predictions agree. But, at NLO and at NNLO we find truncated one

is 7%-8% and 12%-13% larger compared to respective fixed order at the central rapidity

region. The largeness of the truncated results gets compensated by the -ve corrections

coming from other channels emerging at respective orders. However the scenario entirely

reverses when we consider all the channels at NNLO. We find that the differential cross

section at NNLO (all) increases by 0.29% in the entire range of µR value; the correspond-

ing increase for NNLO+NNLL (all) is 1.29%. This reduction of the scale dependence at

NNLO is due to cancellation among different partonic channels. However the resumma-

tion effects come only from qq̄ channel which adds to the fixed order in such a way that

the resummed uncertainty increases. This explains the increase of scale uncertainty at

each resummed order depicted in fig. 9.4. In addition the PDF’s do not contain resummed

threshold logarithms, hence there is incomplete cancellation of factorization scale against

the PDF’s, which increases the band. The K-factor at NLO varies between 1.3 and 1.2 and

at NNLO between 1.37 and 1.3 over the entire rapidity region. On the other hand, the K-
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y LO LO+LL NLO NLO+NLL NNLO NNLO+NNLL KNLO KNLO+NLL KNNLO KNNLO+NNLL

0.0 58.00±
16.36

64.87±
16.89

76.76±
5.28

78.87±
7.56

79.18±
0.98

79.57±
2.02

1.32 1.216 1.365 1.226

0.8 57.64±
16.07

64.47±
16.61

75.73±
5.26

77.80±
7.53

77.97±
1.04

78.34±
2.03

1.314 1.207 1.352 1.215

1.6 56.23±
15.29

62.93±
15.82

72.30±
5.17

74.27±
7.45

74.24±
1.11

74.59±
2.08

1.286 1.180 1.320 1.185

2.4 53.18±
14.19

59.65±
14.71

65.95±
5.04

67.77±
7.33

67.68±
1.21

67.99±
2.11

1.240 1.136 1.273 1.140

Table 9.2: Fixed order and the resummed cross sections with % scale uncertainties along
with the K-factors at the central scale µR = µF = MZ.

factors at both NLO+NLL and NNLO+NNLL significantly overlap with each other over

most of the regions of rapidity and stay around 1.2. Thus we find that the perturbative con-

vergence for resummed case is better compared to fixed order. We present the differential

cross section for benchmark rapidity values along with the percentage scale uncertainties

in Table 9.2. It is to be noted that the differential cross-section at NNLO+NNLL level for

the central scale is well approximated by the same at NLO+NLL. In fact, NNLO+NNLL

increases approximately by 0.8% with respect to NLO+NLL; the corresponding number

for NNLO over NLO is approximately 3%. From the trend that resummed results give,

we anticipate N3LO+N3LL cross-section will fall completely within the NNLO+NNLL

band.

We present in fig. 9.6 both the fixed order and resummed results at various orders for a

larger invariant mass q = 1 TeV. Interestingly, the uncertainty bands at NLO+NLL and

NNLO+NNLL levels are better compared to those from fixed order.

In addition the predictions from the resummed terms at various orders are closer compared

to those from fixed order which implies better perturbative convergence for the resummed

case. In fact the resummed K-factor for the central rapidity at NNLO+NNLL is 1.25

compared to 1.39 at NNLO.
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y MMHT ABMP NNPDF PDF4LHC

0.0 79.568+1.83%
−1.16% 79.756+0.43%

−0.56% 81.959+2.64%
−3.64% 78.734+1.20%

−0.89%

0.8 78.340+1.55%
−0.99% 78.202+0.43%

−0.56% 80.256+2.07%
−3.66% 77.390+1.17%

−0.83%

1.6 74.588+0.90%
−0.63% 73.738+0.42%

−0.52% 75.178+2.61%
−2.31% 73.505+1.26%

−0.61%

2.4 67.985+0.72%
−0.79% 66.653+0.41%

−0.44% 67.354+2.89%
−3.01% 67.070+1.11%

−0.62%

Table 9.3: Cross sections at NNLO+NNLL using different PDF sets along with percent-
age uncertainties for y = 0, 0.8, 1.6, 2.4.
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Figure 9.7: PDF variation at NNLO+NNLL using various sets. The y-axis represents the
ratio of extremum variation over the central PDF set.

As there are several PDF groups in the literature, each providing sets of PDFs, it is cus-

tomary to estimate the uncertainty resulting from the choice of PDFs within each set of

a given PDF group. We have obtained the cross sections along with the corresponding

PDF uncertainty using PDFs from different groups namely MMHT2014nnlo68cl [230],

ABMP [238], NNPDF3.1 [239] and PDF4LHC [240]. This we present in fig. 9.7, where

we have plotted the uncertainty bands for various PDF sets as function of rapidity in order

to demonstrate the correlation of PDF uncertainty with the rapidity values. This will help

to better constrain the PDF fits using measurements on rapidity in the Drell-Yan process.

In table 9.3, we have also tabulated the cross sections along with % uncertainties resulting

from the choice of different PDFs.

In fig. 9.8 we present the q-integrated rapidity distribution for the LHC with 8 TeV centre
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of mass energy at NNLO+NNLL. We choose µR = µF = MZ and integrate the invariant

mass between 60 GeV and 120 GeV. Unlike our earlier analysis, we have included both

e+e− as well as µ+µ− final states. The electro-weak (EW) corrections at NLO are com-

parable to QCD corrections at NNLO+NNLL; we present our result by combining both

of them. The EW contributions are obtained by using publicly available code Horace-

3.2 [241–244]. We use the Gµ scheme and take GF = 1.16639× 10−5, MW = 80.395 GeV,

MZ = 91.1876 GeV and use MMHT2014nlo68cl pdf. The electron and muon masses are

taken to be me = 0.51099 MeV and mµ = 0.10566 GeV respectively. While the NNLL

contribution increases the cross-section by roughly around 0.5% with respect to NNLO,

however the EW corrections at NLO give negative contribution to the cross-section. We

find the corrections are different for e+e− and µ+µ− pairs: for electrons, the EW con-

tributions are twice that of muons. The total contributions from the electron and muon

channels gives rise to an overall 2.3% decrease in the cross section w.r.t. the NNLO in the

central rapidity region. Since the rapidity distribution in fig. 9.8 is inclusive in the trans-

verse momenta of the final state leptons, hence they can not be directly compared with

the results presented in [245] where a minimum transverse momenta cut is applied in the

selection of final state leptons. In order to compare, we need distribution exclusive of

transverse momenta which at the moment beyond the scope of the current thesis. Both at
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Figure 9.9: Comparison of resummed results with the CDF data [246] at
√

s = 1.8 TeV
and [247] at

√
s = 1.96 TeV in the invariant mass range 66 < q < 116 GeV for two

different PDF sets.

Tevatron and at the LHC, there are already precise measurements of rapidity distributions

for different ranges of invariant mass q. For one of the earliest set of measurements see

NuSea [248, 249]. Since the data from the LHC depends heavily on the kinematic cuts

of the final states we cannot directly compare against our predictions. On the other hand

CDF [246] has data for the rapidity distributions for wide range of y with invariant mass

range 66 < q < 116 GeV. In fig. 9.9 we have compared our predictions against the data

at
√

s = 1.8 TeV and
√

s = 1.96 TeV after integrating q between the above mentioned

range for two different choices of PDF sets. The scale uncertainty is obtained as before

by using 7-point scale variations around the central value µR = µF = MZ. We note that at

NNLO+NNLL level, the resummed contributions over the fixed order is very mild, less

than 0.5%. We have also observed that the resummed effects become significant for large

invariant mass regions.
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9.4 Conclusion

In this chapter we have investigated the role of resummed threshold logarithms for the

rapidity distribution of pairs of leptons in the DY process at the LHC. The DY process

has been widely studied at different colliders like Tevatron, LHC; the accurate prediction

of inclusive as well as differential cross section is known up to NNLO in the context of

pQCD. In addition the first order electroweak effects have been computed in the past and

they are found to be of same order of magnitude as the NNLO QCD corrections. Owing

to the dominant QCD interactions, soft gluons play vital role in most of the observables.

They show up in certain kinematic regions through large logarithms in the perturbative

computations, thus spoiling the reliability of the fixed order predictions. We have made a

detail study on the effect of the soft gluons on rapidity distribution within the resumma-

tion framework. There are two approaches that exist in the literature: a) Mellin-Mellin ap-

proach and b) Mellin-Fourier approach. Our approach (a) differs from the one in (b) in the

way the threshold limits are defined. This is the first time the double Mellin moment ap-

proach has been used to derive an all order resummation formula for the DY process. We

present the numerical impact of the rapidity distribution of the DY up to NNLO+NNLL

accuracy and compare with the already known result, obtained up to the same accuracy in

the alternative framework. As these two formalisms resum different type of logarithms to

all orders, they are expected to give different numerical predictions. At LL and NLL level

they differ very much but surprisingly at the NNLL level both the approaches converge to

a few percent correction to the fixed order prediction. This could be accidental, however it

is desirable to understand this coincidence at NNLL level. We have performed numerical

study on the dependence of renormalization and factorization scales and found out that

the optimal central scales for the resummed result are µR = MZ/2 and µF = MZ. In ad-

dition we have found that, for wide range of rapidity, the scale uncertainties from NNLL

contributions at every order slightly are larger than those from fixed order results. We be-
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lieve that this could be due to an incomplete cancellation scale dependent terms between

resummed result and the PDFs. It is to be noted that the PDFs that we use are extracted

from data using the fixed order perturbative predictions for the observables and also us-

ing evolutions equations controlled by splittings functions computed to desired order in

strong coupling constant. Hence, we expect that there will be a better cancellation of scale

if appropriate resummed PDF sets are available. We have also presented our predictions

for various choices of PDFs from various PDF groups. The result on q integrated rapidity

distribution is also presented in this thesis. Since our resummation formalism cannot take

into the experimental cuts such as the transverse momentum and/or polar angles of the

final state leptons, we cannot make any direct comparison with the existing data on the q

integrated rapidity distribution measured at the LHC which are extracted after employing

cuts on transverse momentum of final state leptons. On the other hand we have compared

our predictions against CDF data at Tevatron for the invariant mass range 66 < q < 116

GeV and found good agreement within both theoretical and experimental uncertainties.



10 Conclusion

To incorporate the gravitational force within the SM of particle physics, extra dimensional

models have been constructed which allows the interaction of a generic massive spin-2

field with the gauge and fermionic fields of the SM. We have studied such an interaction

term in the most general framework: when the coupling of the spin-2 to the SM fields is

universal as well as non-universal. In order to precisely constrain the parameters of the

models constructed out of such interactions, it is important to compute the higher order

QCD corrections, where the latter plays an important role at the LHC. For the scenario of

universal coupling, we have computed second order QCD corrections in models of TeV

scale gravity. We employed the method of reverse unitarity to achieve the computation.

At NNLO level, we observe reduction of scale uncertainties, where the latter originates

due to the unphysical renormalization and factorization scales. To understand how the

spin-2 particle interacts with the gauge and fermionic fields through different coupling

strengths, we have computed form factors up to three loop orders in perturbation the-

ory. The additional UV divergences that appeared were regulated by multiplying overall

renormalization constants. We then computed the QCD corrections for such an interac-

tion term up to second order. Study of the phenomenology of such a nonuniversal model

revealed interesting aspects, like the dependence of the partonic cross section on different

values of the coupling strengths. Our detailed study on the phenomenological aspects of

the massive spin-2 particle will help to constrain the model parameters in a better way.

However in certain regions of phase space, the fixed order predictions are often not reli-
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able, for example when the initial partons have just enough energy to produce the final

state such as a pair of leptons or Z/W± and soft gluons. In such cases large logarithms of

some kinematic variables can appear at the partonic level; when multiplied by the PDF’s,

these contributions can dominate over the hard part of the hadronic cross section. These

large contributions can spoil the reliability of the perturbation theory. The resolution to

the problem is to add all these logarithmic contributions at every order in the perturba-

tion theory. This is called threshold resummation of the soft gluon contributions. In this

thesis, we have performed threshold resummation of the rapidity distribution for the DY

production of a lepton pair in the final state. We have performed the resummation in the

most general framework, where we take into account all the plus distributions and delta

functions in the partonic variables z1 and z2. We present our results up to NNLO+NNLL

accuracy and they show improved perturbative convergence as compared to the fixed or-

der counterparts. In addition we have also studied the q integrated rapidity distribution

and compared our predictions with the CDF data at
√

s = 1.8 TeV in the invariant mass

range of 66 < q < 116 GeV for two different PDF sets. We have observed that the re-

summed effects become significant for large invariant mass regions. We believe that the

perturbative results that take into account both the fixed order as well as the resummed

contributions will provide a precise determination of PDFs from the ample data that are

already available at the LHC.
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11.1 Feynman rules for spin-2 particle

We present the Feynman rules for massive spin-2 field (~hn
µν) interacting with the SM fields

via the energy momentum tensor of QCD where the latter is given in eq. 4.7.

The Feynman rules for the three point vertices are:

Aa
ρ(k1)

Ab
σ(k2) ~hn

µν

~hn
µν AA : −i

κ

2
δ ab

( (
m2

A + k1.k2

)
Cµν, ρσ + Dµν, ρσ(k1, k2)

+ 1/ξ Eµν, ρσ(k1, k2)
)

k1,m

k2, n
~hn
µν

~hn
µν ψψ : −i

κ

8
δmn

(
γµ (k1ν + k2ν) + γν

(
k1µ + k2µ

)
− 2 ηµν

(
/k1 + /k2 − 2 mψ

) )

k1,m

k2, n
~hn
µν

~hn
µν φφ : −i

κ

2
δmn

(
m2
φ ηµν + Cµν, ρσ k ρ1 kσ2

)
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The Feynman rules for the four point vertices are:

k1,m

k2, n

~hn
µν

Aa
ρ

~hn
µν φφ A : i gs

κ

2
T a

nm Cµν, ρσ

(
kσ1 + kσ2

)

Aa
ρ(k1)

Ab
σ(k2) Ac

λ(k3)

~hn
µν

~hn
µν A A A : gs

κ

2
f abc

(
Cµν, ρσ(k1λ − k2λ) + Cµν, ρλ(k3σ − k1σ)

+ Cµν, σλ(k2ρ − k3ρ)

+ Fµν, ρσλ(k1, k2, k3)
)

k1,m

k2, n

~hn
µν

Aa
ρ

~hn
µν ψψ A : i gs

κ

4
T a

nm

(
Cµν, ρσ − ηµν ηρσ

)
γσ

The Feynman rules for the five point vertices are:

Aa
ρ(k1)

Ab
σ(k2) Ac

λ(k3)

Ad
δ(k4)

~hn
µν

~hn
µν AAAA : i g2

s
κ

2

(
f eac f edbGµν, ρσλδ + f eab f ecdGµν, ρλσδ

+ f ead f ebcGµν, ρσδλ

)

k 1,m

k 2,n Aa
ρ

Ab
σ

~hn
µν

~hn
µν φφAA : −i g2

s
κ

2
Cµν, ρσ

{
T a,T b

}
mn
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The graviton-ghost-ghost vertex is as follows:

k1, a

k2, b ~hn
µν

~hn
µν ωω : −i

κ

2
δab

(
Cµν,ρσ kρ1 kσ2

)

The graviton-ghost-ghost-gluon vertex is as follows:

k1, a

k2, b

~hn
µν

Ac
ρ

~hn
µν ωω A : gs

κ

2
f abc Cµν, ρσ kσ2

The terms Cµν,ρσ, Dµν,ρσ, Eµν,ρσ, Fµν,ρσλ, Gµν,ρσλδ are given below:

Cµν,ρσ = ηµρηνσ + ηµσηνρ − ηµνηρσ ,

Dµν,ρσ(k1, k2) = ηµνk1σk2ρ −

[
ηµσk1νk2ρ + ηµρk1σk2ν − ηρσk1µk2ν + (µ↔ ν)

]
,

Eµν,ρσ(k1, k2) = ηµν(k1ρk1σ + k2ρk2σ + k1ρk2σ)

−

[
ηνσk1µk1ρ + ηνρk2µk2σ + (µ↔ ν)

]
,

Fµν,ρσλ(k1, k2, k3) = ηµρησλ(k2 − k3)ν + ηµσηρλ(k3 − k1)ν

+ηµληρσ(k1 − k2)ν + (µ↔ ν) ,

Gµν,ρσλδ = ηµν(ηρσηλδ − ηρδησλ) +

(
ηµρηνδηλσ + ηµληνσηρδ

−ηµρηνσηλδ − ηµληνδηρσ + (µ↔ ν)
)
.
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11.2 Computation of the integrals in double Mellin

space

In this section we shall compute the integrals appearing in the soft function in the eq. 8.47

in Mellin space, which will help to obtain the resummation exponents given in eq. 8.54.

We shall compute the Mellin transform

∫ 1

0
dz1 zN1−1

1

∫ 1

0
dz2 zN2−1

2 2φd(z1, z2) = φd(N1,N2) .

The first two terms of eq. 8.47 contain plus distributions and gives ln(Ni) type of terms

after Mellin transformation. In order to calculate gI
d(as, ω) we need the above mentioned

terms. On the other hand the last two terms contain singularities which cancel with each

other and leave finite parts. These finite parts will be ln(Ni) independent and we shall

absorb them into gI
d,0(as). We also include in gI

d,0(as), the contributions coming from the

Mellin transformation of delta functions. We take into account the first two terms and

compute the required integrals. We write them as

φd(N1,N2) =

∫ 1

0
dz1

zN1−1
1 − 1
1 − z1

[ ∫ q2

µ2
F

dλ2

λ2 A(as(λ2)) +

∫ q2(1−z1)

q2

dλ2

λ2 A(as(λ2))

+ Ḡd

(
as(q2(1 − z1))

) ]

+
1
2

∫ 1

0
dz1

zN1−1
1 − 1
1 − z1

∫ 1

0
dz2

zN2−1
2 − 1
1 − z2

A
(
as(q2(1 − z1)(1 − z2))

)

+
1
2

∫ 1

0
dz1

zN1−1
1 − 1
1 − z1

∫ 1

0
dz2

zN2−1
2 − 1
1 − z2

{
q2 d

dq2 Ḡd

(
as(q2(1 − z1)(1 − z2))

)}

+ (z1 ↔ z2)(N1 ↔ N2)

=IA + IB + IC + (z1 ↔ z2)(N1 ↔ N2) (11.1)
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To solve the integrals we need the following relations [26]

zN−1 − 1 = −Γ̃

(
1 −

∂

∂ ln N

)
Θ

(
1 − z −

N0

N

)
+ O

(
1
N

)
, (11.2)

−Γ̃

(
1 −

∂

∂ ln N̄

)
= Γ2

(
∂

∂ ln N̄

) (
∂

∂ ln N̄

)2

− 1 ,

Γ2 (x) =
1
x2

1 − exp

 ∞∑
n=2

ζ(n)
n

xn

 , (11.3)

with N̄ = N
N0

. We follow the methodology adopted in [250] where the computation was

performed for only one Mellin variable. In this thesis we show how to perform the inte-

grals for two Mellin variables.

11.2.1 IA

Using the above relations and Γ̃1 = 1 − Γ2

(
∂

∂ ln N̄1

) (
∂

∂ ln N̄1

)2
we can write

IA = ln N̄1

∫ µ2
F

q2

dµ2

µ2 A(as(µ2)) − Γ̃1

∫ q2

q2/N̄1

dµ2

µ2

{
ln

(
q2

µ2N̄1

)
A(as(µ2)) + Ḡd(as(µ2))

}
≡ ln N̄1

∫ µ2
F

q2

dµ2

µ2 A(as(µ2)) −
∫ q2

q2/N̄1

dµ2

µ2

{
ln

(
q2

µ2N̄1

)
A(as(µ2)) + G̃d(as(µ2))

}
− ln C̃.

(11.4)

Thus we find

ln C̃ = − Γ2

[
∂

∂ ln N̄1
Ḡd(as(k2)) − A(as(k2))

] ∣∣∣∣∣∣
N̄1=1

,

G̃d(as(k2)) = −
∂

∂ ln N̄1
Γ2

[
∂

∂ ln N̄1
Ḡd(as(k2)) − A(as(k2))

]
+ Ḡd(as(k2)) (11.5)

with k2 =
q2

N̄1
.
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11.2.2 IB

IB =(−Γ̃12)2
∫ q2

q2/N̄12

dλ2

λ2 ln
λ2N̄12

q2 A(as(λ2)) −Γ̃1

∫ q2

q2/N̄1

dλ2

λ2 ln
λ2N̄1

q2 A(as(λ2))

−Γ̃2

∫ q2

q2/N̄2

dλ2

λ2 ln
λ2N̄2

q2 A(as(λ2))

= I1 + I2 + I3 (11.6)

where (−Γ̃12)2 = (−Γ̃1)(−Γ̃2) and N̄12 = N̄1N̄2. The three integrals are as follows:

I1 =(−Γ̃12)2
∫ q2

q2/N̄12

dλ2

λ2 ln
λ2N̄12

q2 A(as(λ2))

≡ −

∫ q2

q2/N̄12

dλ2

λ2

[
ln

q2

λ2N̄12
A(as(λ2)) + B̃(as(λ2))

]
− ln C̃ (11.7)

where

ln C̃ =

{
Γ2

∂2

∂(ln N̄12)2
− 2

}
Γ2

(
−A(as(k2))

) ∣∣∣∣∣∣
N̄12=1

,

B̃
(
as(k2)

)
=

∂

∂ ln N̄12

{
Γ2

∂2

∂(ln N̄12)2
− 2

}
Γ2

(
−A(as(k2))

)
. (11.8)

where k2 =
q2

N̄12
.

I2 =−Γ̃1

∫ q2

q2/N̄1

dλ2

λ2 ln
λ2N̄1

q2 A(as(λ2))

≡

∫ q2

q2/N̄1

dλ2

λ2

{
ln

q2

λ2N̄1
A(as(λ2)) + B̃(as(λ2))

}
+ ln C̃ (11.9)
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where

ln C̃ =Γ2

{
A(as(k2))

} ∣∣∣∣∣∣
N̄1=1

,

B̃(as(k2)) =
∂

∂ ln N̄1
Γ2

(
A(as(k2))

)
. (11.10)

with k2 =
q2

N̄1
. The last integral I3 can be obtained from I2 with N̄1 ↔ N̄2.

11.2.3 IC

We observe that the integrals IB and IC are similar to one another except for the derivative

of Ḡd present in IC. To solve this we note that we can write q2 d
dq2 Ḡd = β(as(k2)) d

das(k2)Ḡd,

where β is the QCD beta function. Both β and Ḡd can be expanded in power series of the

strong coupling constant. There will be two values of k2 depending on the type of integral

I1 or I2/I3, similar to what it appears in IB. Thus we have

k2 =
q2

N̄12
for I1 ,

k2 =
q2

N̄1
for I2 ,

k2 =
q2

N̄2
for I3 . (11.11)

We now have to solve the following : eq. 11.5 for IA; eq. 11.8 and eq. 11.10 for IB and

eq. 11.11 for IC. We solve this by writing an in-house code in Mathematica. The solution

of the integrals will give us eq. 8.49 in Mellin space and hence ∆̃I,SV
d (ω).
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11.3 Unrenormalized form factors

In this section we present the unrenormalized form factors that appears in eq. 6.24.

F̂ G,g,(0) = 1 , (11.12)

F̂ G,g,(1) = CA

{
1
ε2

(
− 8

)
+

1
ε

(
22
3

)
+

(
−

203
18

+ ζ2

)
+ ε

(
+

2879
216

−
7
3
ζ3 −

11
12
ζ2

)
+ ε2

(
−

37307
2592

+
77
36
ζ3 +

203
144

ζ2 +
47
80
ζ2

2

)
+ ε3

(
465143
31104

−
31
20
ζ5 −

1421
432

ζ3

−
2879
1728

ζ2 +
7

24
ζ2ζ3 −

517
960

ζ2
2

)
+ ε4

(
−

5695811
373248

+
341
240

ζ5 +
20153
5184

ζ3 −
49

144
ζ2

3

+
37307
20736

ζ2 −
77
288

ζ2ζ3 +
9541

11520
ζ2

2 +
949

4480
ζ3

2

)}
, (11.13)

F̂ G,g,(2) = CFn f

{
1
ε2

(
32
9

)
+

1
ε

(
−

260
27

)
+

(
3037
162

−
8
3
ζ2

)
+ ε

(
−

61807
1944

+
62
27
ζ3

+
65
9
ζ2

)
+ ε2

(
1158007
23328

−
461
81

ζ3 −
3185
216

ζ2 −
31
45
ζ2

2

)
+ ε3

(
−

20551495
279936

−
28
45
ζ5

+
26131
1944

ζ3 +
22759
864

ζ2 −
17
6
ζ2ζ3 +

1721
1080

ζ2
2

)}
+ CAn f

{
1
ε3

(
−

8
3

)
+

1
ε2

(
64
9

)
+

1
ε

(
−

499
27

+ 2ζ2

)
+

(
6863
162

−
38
9
ζ3 −

16
3
ζ2

)
+ ε

(
−

84433
972

+
277
27

ζ3 +
481
36

ζ2

73
60
ζ2

2

)
+ ε2

(
1913059

11664
−

151
30

ζ5 −
2269
81

ζ3 −
1009
36

ζ2 +
5
2
ζ2ζ3 −

131
45

ζ2
2

)
+ ε3

(
−

40845067
139968

+
559
45

ζ5 +
251461
3888

ζ3 −
343
108

ζ2
3 +

68603
1296

ζ2 −
25
4
ζ2ζ3 +

6911
864

ζ2
2

+
781
1680

ζ3
2

)}
+ C2

A

{
1
ε4

(
32

)
+

1
ε3

(
− 44

)
+

1
ε2

(
226

3
− 4ζ2

)
+

1
ε

(
− 81

+
50
3
ζ3 +

11
3
ζ2

)
+

(
5249
108

− 11ζ3 −
67
18
ζ2 −

21
5
ζ2

2

)
+ ε

(
59009
1296

−
71
10
ζ5 +

433
18

ζ3

−
337
108

ζ2 −
23
6
ζ2ζ3 +

99
40
ζ2

2

)
+ ε2

(
−

1233397
5184

+
759
20

ζ5 −
8855
216

ζ3 +
901
36

ζ2
3

+
12551
648

ζ2 +
77
36
ζ2ζ3 −

4843
720

ζ2
2 +

2313
280

ζ3
2

)
+ ε3

(
108841321

186624
−

3169
28

ζ7 −
4691
60

ζ5

+
22231
216

ζ3 −
2365
72

ζ2
3 −

813499
15552

ζ2 +
313
40

ζ2ζ5 −
1609
216

ζ2ζ3 +
21901
1440

ζ2
2 −

1291
80

ζ2
2ζ3

−
65659
3360

ζ3
2

)}
, (11.14)
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F̂ G,g,(3) = CFn2
f

{
1
ε3

(
256
81

)
+

1
ε2

(
−

128
9

)
+

1
ε

(
30916
729

−
160
27

ζ2

)
+

(
−

78268
729

+
208
81

ζ3

+
80
3
ζ2

)}
+ C2

Fn f

{
1
ε3

(
512
81

)
+

1
ε2

(
−

1600
81

)
+

1
ε

(
20180
729

+
320
9
ζ3 −

320
27

ζ2

)
+

(
35957
2430

−
45056
405

ζ3 +
1144
27

ζ2 −
32
3
ζ2

2

)}
+ CAn2

f

{
1
ε4

(
−

128
81

)
+

1
ε3

(
1696
243

)
+

1
ε2

(
−

6328
243

+
80
27
ζ2

)
+

1
ε

(
189167

2187
−

464
81

ζ3 −
1060
81

ζ2

)
+

(
−

6734887
26244

+
5500
243

ζ3 +
3805
81

ζ2 +
293
135

ζ2
2

)}
+ CACFn f
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−
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+
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+
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+

1
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−
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2

)
+

(
−
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14580

−
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ζ5 +
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405

ζ3 +
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ζ2 +
40
3
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2
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+ C2

An f

{
1
ε5

(
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3

)
+

1
ε4

(
−

4784
81

)
+

1
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(
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243

−
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27

ζ2

)
+

1
ε2

(
−
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+
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ζ3 +
2458
81
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)
+

1
ε

(
2991329
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−
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81

ζ3 −
27059
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ζ2 −

1493
90

ζ2
2

)
+

(
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524880

−
3002
45

ζ5 +
219163

810
ζ3 +

229919
5832

ζ2 −
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9
ζ2ζ3 +
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2
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+ C3

A

{
1
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(
−
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3

)
+

1
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(
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3

)
+

1
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(
−
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)
+

1
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(
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−
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3
ζ3

+
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27
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)
+

1
ε2

(
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−

440
27

ζ3 −
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81

ζ2 +
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ζ2
2

)
+

1
ε

(
−
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17496

+
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ζ5 −
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ζ3 +
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ζ2 +
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9
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ζ2
2

)
+

(
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+
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ζ5

+
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ζ3 −
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3 −
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11664

ζ2 −
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ζ2ζ3 −
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ζ2
2 −
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ζ3
2

)}
, (11.15)

F̂ Q,g,(0) = 0 , (11.16)

F̂ Q,g,(1) = n f

{
1
ε

(
−

4
3

)
+

(
35
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)
+ ε

(
−

497
216

+
1
6
ζ2

)
+ ε2

(
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2592

−
7
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ζ3 −
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ζ2

)
+ ε3

(
−
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+
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432

ζ3 +
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2

)
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(
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−
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ζ5 −
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5184
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−
6593
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ζ2ζ3 −
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2304
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2

)}
, (11.17)

F̂ Q,g,(2) = CFn f

{
1
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(
−
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9

)
+

1
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(
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)
+

(
−
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+
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−
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2

)
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(
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2

)
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+ ε3
(
−

1386569
17496

+
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180

ζ5 +
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ζ3 −
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3
ζ2

3 −
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{
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(
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)
+
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(
−
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+

1
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(
868
27
−

8
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)
+

(
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+
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)
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(
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)
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(
−
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+
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)
+ ε3

(
83029021
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109
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2
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, (11.18)

F̂ Q,g,(3) = CFn2
f
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−
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81
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+
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(
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+
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−
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−
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+

(
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−
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+
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+

1
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(
−
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−
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)
+

(
−
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1215
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405
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2
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+ CAn2

f

{
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(
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)
+

1
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−
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+

1
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(
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−
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+

1
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−
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+
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+
235
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+
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−
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810

ζ3 −
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648
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+ CACFn f

{
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(
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+
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(
−
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)
+

1
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(
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224
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+

1
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−
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−
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27

ζ2

−
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5
ζ2

2

)
+

(
−
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+ 152ζ5 −
4508
45

ζ3 −
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3
ζ2ζ3 +
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2
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+ C2
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{
1
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(
−
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3

)
+

1
ε4

(
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9
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+
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−
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+

1
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(
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+
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−
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+

(
−
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−
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ζ5

−
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405

ζ3 +
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432
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ζ2
2

)}
, (11.19)

F̂ G,q,(0) = 0 , (11.20)

F̂ G,q,(1) = CF

{
1
ε

(
−

16
3

)
+

(
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9

)
+ ε

(
−
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27

+
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ζ2

)
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(
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−
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)
+ ε3

(
−
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+
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)
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(
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−
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+
7
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2

)}
, (11.21)

F̂ G,q,(2) = CFn f

{
1
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(
−
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9

)
+

1
ε

(
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27

)
+

(
−
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+
16
9
ζ2

)
+ ε

(
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−
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ζ3
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−
94
27
ζ2

)
+ ε2

(
−
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+
1504
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ζ3 +
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ζ2 +
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ζ2

2

)
+ ε3

(
5125571
69984

−
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45

ζ5

−
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243

ζ3 −
16259
1944

ζ2 +
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ζ2ζ3 −
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ζ2
2

)}
+ C2

F

{
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(
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)
+
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−
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9

)
+

1
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−
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+

(
−
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+
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)
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−
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−
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ζ2 −
28
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2

)
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(
−
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+
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ζ5 +
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ζ3 +
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324

ζ2 −
56
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ζ2ζ3

+
743
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ζ2
2

)
+ ε3

(
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139968
−

613
45

ζ5 −
51995
486

ζ3 +
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27

ζ2
3 −
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3888

ζ2 +
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ζ2ζ3

−
3331
216

ζ2
2 −

31
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2

)}
+ CACF

{
1
ε2

(
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9

)
+

1
ε

(
−
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27

)
+

(
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−
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9
ζ2

)
+ ε

(
−
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972

+
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ζ3 −
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15
ζ2

2

)
+ ε2

(
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− 24ζ5 −
961
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ζ3 +
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81

ζ2

−
16
3
ζ2ζ3 −

5
6
ζ2

2

)
+ ε3

(
−
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+
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ζ3 +
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3
ζ2

3 −
47947
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ζ2

+
287
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ζ2ζ3 −
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ζ2
2 +

484
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2

)}
, (11.22)

F̂ G,q,(3) = CFn2
f

{
1
ε3

(
−
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27

)
+

1
ε2

(
2464
81

)
+

1
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(
−

17216
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+
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)
+

(
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−
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ζ3

−
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)}
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{
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(
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+
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(
−
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+
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−
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9
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+

1
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(
−
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+
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9
ζ3 +
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9
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)
+

(
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−
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ζ2 −
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2
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+ C3
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{
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−
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)
+

1
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(
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+

1
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−
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)
+

1
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(
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−
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3
ζ3

−
1592

9
ζ2

)
+

1
ε

(
−

2565953
729

+
2296

3
ζ3 +

8644
27

ζ2 +
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15

ζ2
2

)
+

(
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−
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5
ζ5 −

162008
81

ζ3 −
65755
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ζ2 +
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ζ2ζ3 −
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2
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+ CACFn f

{
1
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(
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81

)
+

1
ε2

(
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243

)
+

1
ε

(
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+
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9
ζ3 −
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ζ2

)
+

(
−
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+
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−
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27
ζ2 −
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{
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(
−
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+

1
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(
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−
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+

1
ε2

(
−
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+
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3
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9
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+

1
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(
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−
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ζ3 −
1321
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+

(
−
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+
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ζ5 +
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90
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2
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+ C2
ACF

{
1
ε3

(
−

7744
81

)
+

1
ε2

(
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243

)
+

1
ε
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−
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−
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9
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+

(
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2187
− 240ζ5 +
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81
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ζ2ζ3 +
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ζ2
2
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, (11.23)

F̂ Q,q,(0) = 1 , (11.24)

F̂ Q,q,(1) = CF

{
1
ε2

(
− 8

)
+

1
ε1

(
34
3

)
+

(
−
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9

+ ζ2

)
+ ε

(
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−

7
3
ζ3 −
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ζ2

)
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(
−
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+
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ζ3 +
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ζ2 +
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2

)
+ ε3

(
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972

−
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ζ5 −
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ζ3 −
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ζ2

+
7
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ζ2ζ3 −
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ζ2
2

)
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(
−
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+
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ζ5 +
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ζ3 −
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3 +
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−
119
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ζ2ζ3 +
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ζ2
2 +
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2

)}
, (11.25)

F̂ Q,q,(2) = CFn f

{
1
ε3

(
−

8
3

)
+

1
ε2

(
40
3

)
+

1
ε

(
−
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)
+

(
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36
−
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9
ζ2

)
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(
−
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+
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ζ2 +
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2

)
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(
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−
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ζ5 −
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)
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−
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+
67
6
ζ5 +
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−
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ζ2 +
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2 +
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{
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+
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−
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+
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+
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+
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+

(
257615

648
−
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9
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−
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2

)
+ ε

(
−
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+
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ζ5 +
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54

ζ3 −
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+
1033
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)
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(
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−
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ζ5 −
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ζ3 +
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9
ζ2

3 +
177023
2592

ζ2 +
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ζ2ζ3

−
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ζ2
2 +
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2

)
+ ε3

(
−
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−
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ζ7 +
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ζ5 +
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−
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3 −
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ζ2ζ5 −
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2880
ζ2
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−
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{
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(
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+

1
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−
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+

1
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11
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+
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−
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+
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−
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+
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89
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)
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−
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−
42157
180

ζ5 −
6822089

7776
ζ3 +

29399
216

ζ2
3 +

8369333
31104

ζ2 +
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ζ2ζ5 +
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−
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, (11.26)

F̂ Q,q,(3) = CFn2
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+
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+
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−
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9
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+

1
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−
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+
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(
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+
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(
−
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+
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+
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3
ζ2
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+

1
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(
−
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+
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9
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3
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)
+

1
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(
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−
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ζ3 +
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ζ2 −
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ζ2
2

)
+

(
−
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+
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ζ5 +
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ζ3 −

849
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ζ2 −
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9
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{
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(
−
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)
+

1
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(
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+
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−
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+

1
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(
161240

81
−

800
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+
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−
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+
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−
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5
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+
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289927
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+
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+
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−
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+
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+
17480

81
ζ3 −
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+

(
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−
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ζ5 −
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+
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+
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+
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−
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+
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−
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+
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−
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1616
3

ζ2
3 +

1339027
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−
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9
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3 −
1632292

729
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614
9
ζ2ζ3 +

247963
540

ζ2
2 −

6152
189

ζ3
2

)}
. (11.27)

where CA = N and CF = (N2 − 1)/2N are the quadratic Casimir of the SU(N) group.

TF = 1/2 and n f is the number of light active quark flavours. ζi is the Riemann Zeta

function.
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11.4 Results of the partonic cross sections: universal

coupling

In this appendix, we present the renormalized and finite partonic coefficient functions

involving spin-2 particles, ∆h,(k)
ab

(
z,Q2, µ2

F

)
in eq. 4.40, up to NNLO QCD (k = 0, 1, 2).

We use these results in section 5.3 to investigate the phenomenological impact of higher

order QCD corrections. The results at NLO are in agreement with the existing ones [68].

The soft-virtual corrections i.e. the contributions arising from the soft gluon emissions at

NNLO were computed in [101]. Our results are also consistent with these ones. Below we

present all of our findings after normalising the components of the coefficient functions

by the leading order results:

∆h,(k)
gg ≡

π

2(N2 − 1)
∆̄h,(k)

gg ,

∆h,(k)
ab ≡

π

8N
∆̄h,(k)

ab for ab , gg (11.28)

and all the
(

logi(1−z)
1−z

)
terms should be understood as distributions,Di with

Di ≡

[
logi(1 − z)

1 − z

]
+

, i = 0, 1, 2, · · · . (11.29)

The results are obtained as

∆̄h,(0)
gg = δ(1 − z) ,

∆̄h,(1)
gg = nf

{
δ(1 − z)

(
35
9

)
+ log

(
Q2

µ2
F

)
δ(1 − z)

(
−

4
3

)}
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{(
− 2 −

22
3

1
z

+ 2z +
22
3

z2
)

+ log(1 − z)
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1
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+ 16
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+ 16z − 16z2

)
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11.5 Results of the partonic cross sections: nonuniver-

sal coupling

In the following we present the mass factorised partonic cross section. We use these

results in section 7.2 to investigate the phenomenological impact of higher order QCD

corrections. We set µR = µF and present the results. For the gluon initiated processes, we

obtain
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Unlike gluon gluon initiated process, the gluon quark initiated processes start at NLO

level. The NLO,NNLO results are found to be
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The quark anti-quark initiated processes start at LO level and the results up to NNLO
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The identical quark quark initiated processes start at NNLO level and the result is found
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The non-identical quark quark initiated processes start at NNLO level and the result is
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