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ABSTRACT

This thesis deals with Brownian motion of a charged particle in holographic framework.

In the holographic context, dual field theories are usually studied in long-wavelength

or hydrodynamic limit which is macroscopic effective description obtained by coarse-

graining the more fundamental underlying microscopic physics. Holographic Brownian

dynamics is a simple set-up to incorporate fluctuations in AdS/CFT correspondence. The

central focus of this thesis is the novel feature of dissipation at zero temperature in this

context of holographic Brownian motion. The phenomenon has its origin in radiation re-

action of accelerating charged particle. Langevin dynamics has been explored in diverse

spacetime dimensions and the coefficient of zero-temperature dissipation has been shown

to have a jump in its value at zero temperature. Brownian motion is also studied in pres-

ence of finite matter density at zero and small temperature. All these have been explored

using analytic techniques.
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Synopsis

Motivation and Introduction

Gauge/gravity duality [1–4] has been remarkably successful in understanding strongly

coupled gauge theories at finite temperature. These field theories are usually studied in

long-wavelength or hydrodynamic limit which is macroscopic effective description ob-

tained by coarse-graining the more fundamental underlying microscopic physics. It is

thus very natural to make steps toward more microscopic non-equilibrium aspects of the

duality where fluctuations play very important role. In this thesis we study holographic

Brownian motion [5–9] which is a simple set-up to incorporate fluctuations in AdS/CFT

correspondence.

The dynamics of a Brownian particle of mass M0 moving with velocity v in a viscous

medium can be described by the famous Langevin equation

M0
dv
dt

+ γ v = ξ(t) , (1)

with 〈ξ(t) ξ(t′)〉 = Γ δ(t − t′) , (2)

where γ is the viscous drag, ξ is the random force acting on that particle and the constant

Γ quantifies the strength of the random force. Eqn. (1.0.2) is a particular form of the

fluctuation-dissipation theorem. Kubo [10] has argued that for smaller time scales one

would face a contradiction if one works with constant (i.e. time independent) γ and Γ.
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Thus a proper microscopic theory should be better behaved and one should replace Γ δ(t−

t′) by a more general function Γ(t − t′) which is less singular than a delta function and γ

by γ(t − t′). The resulting equation is called the generalized Langevin equation,

M0
d2x(t)

dt2 +

∫ t

−∞

dt′ GR(t, t′) x(t′) = ξ(t) 〈ξ(t) ξ(t′)〉 = i Gsym(t, t′) . (3)

The retarded and the symmetric Green functions are given by

Gsym(t, t′) =
1
2
〈{ξ(t), ξ(t′)}〉 , (4)

i GR(t, t′) = θ(t − t′) 〈[ξ(t), ξ(t′)]〉 . (5)

GR(t, t′) is thus the same as γ(t− t′) and iGsym(t, t′) is the same as Γ(t− t′). The generalized

Langevin equation is easier to interpret in frequency space

[
−M0ω

2 + GR(ω)
]

x(ω) = ξ(ω) , 〈ξ(−ω) ξ(ω)〉 = i Gsym(ω) . (6)

If one is interested in small frequencies one can expand GR(ω) as

GR(ω) = − i γω − ∆Mω2 − i ρω3 + . . . (7)

and can straightforwardly interpret the coefficients of different powers of ω as viscous

drag, mass-shift etc. Thus the retarded Green function contains almost all the information

about the dynamics of the system. All one needs is to compute this Green function. In

this thesis we compute this quantity using gauge/gravity duality. Our particular focus

is to study dissipation at (and near) zero temperature for various systems. The thesis is

organized as following chapters.
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Dualities in physics

Duality means equivalence between two seemingly different theories which is rather old

concept in physics. The existence of dualities points to a great underlying unity in the

structure of theoretical physics. In this chapter we briefly discuss about few important

dualities that appear in different branches of theoretical physics particularly in quantum

field theories and string theory and some of their typical characteristics.

We start describing dualities in statistical mechanics/field theories : Maxwell duality,

Kramers-Wannier duality, bosonization, Montonen-Olive duality, Seiberg-Witten duality.

Then briefly discuss few important dualities which involve string theory namely T-duality

and S-duality and head towards the most important one for this thesis which connects

field theories to string theory - gauge/gravity duality.

String theories, D-branes and AdS/CFT

Historically there have been many hints about gauge/gravity duality - open-closed string

duality, large N field theories, the holographic principle, to name a few. In the year

1997, Maldacena conjectured [1] the celebrated AdS/CFT correspondence. This chapter

is dedicated to describe Maldacena’s original decoupling argument [1] and the recipes to

compute Euclidean and Minkowski correlators using the duality [2, 3, 11].

String theory is not a theory of only strings. It contains extended objects which play im-

portant role when the string coupling is very large. These are known as D-branes. These

objects can be described in two completely different but equivalent ways - either as ex-

tended objects where an open string can end on or objects which source closed strings

and therefore gravitate. Starting with a stack of N D3 branes and describing them both in

terms of open and closed string Maldacena conjectured,
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N = 4 SU(N) super Yang-Mills in 4D ≡ Type IIB string theory in AdS5 × S5

(8)

To use the above mentioned duality quantitatively one should have some precise prescrip-

tion that relates the field theory quantities to their gravity theory equivalents. Such a pre-

scription has been given in [2, 3] which state that partition function of the QFT coincides

with the same of gravity theory.

〈
exp

(∫
∂AdS5

φi
0Oi

)〉
CFT

= ZQG(φi
0) , (9)

where φi are bulk fields in gravity theory and Oi are their dual boundary operators in the

gauge theory. ZQG(φi
0) is the partition function of quantum gravity with the boundary

conditions that φi goes to φi
0 on the boundary. The conjecture becomes useful in studying

strongly coupled field theories when the gravity theory is ‘classical’. In that limit the path

integral can be approximated by saddle point. Treating φi
0 as the sources of boundary

field theory one can calculate the correlators by taking functional derivative of ZQG with

respect to φi
0.

The above prescription is applicable to obtain Euclidean correlators. The Euclidean signa-

ture avoids some complications related to boundary conditions. However in many cases,

particularly for finite temperature systems, extraction of Lorentzian-signature AdS/CFT

results directly from bulk gravity theory is inevitable and therefore one requires to have

some prescription for computing real time correlators directly from gravity. This was

done by Son and Starinets [11]. We heavily use their prescription for computing Green

function throughout the main part of this thesis. The retarded Green function for stretched

string in AdS black hole background

ds2 =
L2

d+1

z2

(
− f (z) dt2 + d~x 2

)
+

L2
d+1

z2

dz2

f (z)
, (10)
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can be obtained by imposing ingoing boundary condition at the horizon of the black hole

GR(ω) := lim
z→0

T0(z)
(
−

z2

L2
d+1

)
xω′(z)
xω(z)

, (11)

where local string tension T0(z) = 1
2πl2s

L4
d+1
z4 f (z); Ld+1 is the radius of AdSd+1; ls is string

length, f (z) is the blackening function and xω(z) is the solution to the string equation of

motion in the bulk background.

The imaginary part of GR(ω) contains all the information about dissipation or energy loss

in the boundary theory. For example, for the string in bulk it represents energy loss of

an external quark in the strongly coupled plasma. In the rest of the thesis we particularly

focus on this quantity near and/or at zero temperature.

Brownian motion in 1+1 D

Brownian motion of a heavy quark in strongly coupled medium has been extensively

studied using holography [5, 6]. The retarded Green function (noise-noise correlator)

has all the information about the generalized Langevin equation of the quark. In this

chapter we start with describing Brownian motion in 1+1 dimensions and obtain the exact

Schwinger-Keldysh Green function by studying motion of a fundamental string in BTZ

black hole background. We obtain the retarded Green function exactly

GR(ω) =
Mω

2 π
(ω2 + 4 π2 T 2)

(ω + i M√
λ
)

, (12)

whereM = 2πM0, λ is the dimensionless coupling in the 1+1 CFT and T is its temper-

ature which is also the Hawking temperature of BTZ black hole in the dual gravity. For

small frequencies the Green function goes as

GR(ω) = − i

√
λ

2π
ω3 . (13)
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We identify the coefficient
√
λ

2π as the dissipation at zero temperature. This does not violate

boost (Lorentz) invariance because the drag force on a constant velocity quark continues

to be zero. This phenomenon have a nice interpretation as radiation due to accelerating

charged particle, namely, the quark. The dissipation co-efficient actually matches the

bremsstrahlung function B(λ) [12–14] for an accelerating heavy quark at leading order

in large coupling. Furthermore since the Green function is exact, we can write down an

effective membrane action, and thus a Langevin equation, located at a ‘stretched horizon’

which is placed at an arbitrary finite distance from the original horizon.

Dissipation at T = 0 and T → 0

In this chapter we use holographic techniques to study the zero-temperature limit of dis-

sipation for a Brownian particle moving in a strongly coupled CFT at finite temperature

in various space-time dimensions [8]. For 1+1 dimensional CFT the dissipative term at

zero temperature matches the same quantity near zero temperature both being equal to the

bremsstrahlung function B(λ) =
√
λ

2π .

But for higher dimensional theories this is not the case. In particular we compute the dissi-

pative term for the 3+1 dimensional boundary theory near zero temperature (T ) for small

frequencies (ω) with ω/T held fixed (see figure 5.1) studying dynamics of a stretched

string in AdS5 black hole

GR(ω)
∣∣∣∣∣
T→0

= − i
(
π − Log 4

4

) √
λ

2π
ω3 . (14)

Clearly this does not match GR(ω,T = 0) which is independent of the number of space-

time dimensions the CFT lives in and is given by

GR(ω)
∣∣∣∣∣
T=0

= − i

√
λ

2π
ω3 . (15)

6
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Figure 1. Different ways of taking T = 0, ω = 0 limit. Our analysis and results hold true
when ω/πT is a constant and smaller than one i.e. for the straight lines (e.g, the blue line) in
the upper triangular region of the box.

Thus that particular way of taking T → 0 limit is not smooth. This phenomenon appeared

to be related to a confinement-deconfinement phase transition at T = 0 in the field theory.

The result is important in the context of quark-gluon-plasma (QGP) which is always at

finite temperature. The analysis suggests, for a quark moving in QGP one should be very

careful in using zero temperature results to compute useful quantities (e.g, bremsstrahlung

function) however small be the temperature of the system.

Brownian motion at finite density

This chapter deals with Brownian motion at finite density. We study holographic Brown-

ian motion of a heavy charged particle in higher spacetime dimensions (d ≥ 3) at zero and

small temperature in presence of finite density [9]. Our main interest is to understand the

dynamics of that particle at (near-) zero temperature which was holographically described

by motion of a fundamental string in an (near-) extremal Reissner-Nordström (RN) black

hole.
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We analytically compute the functional form of retarded Green function to extract the

dissipative term at zero temperature following the matching technique in [15],

G(0)
R (ω) = −

√
λ

2 π
i µ2
∗ ω

(1 + i ω
µ∗

a(0)
− )

, (16)

where µ∗ is the chemical potential in the boundary theory which is a mass scale dual to

the charge of the RN black hole and a(0)
− is an undetermined constant that can be fixed

numerically. For small frequencies

G(0)
R (ω) ≈ −i

√
λ

2π
µ2
∗ ω −

√
λ

2π
µ∗ a(0)

− ω2 . (17)

The zero temperature dissipation goes linear in ω unlike zero density (µ = 0) case [7, 8]

where this goes as ω3. The leading dissipative term is proportional to µ2
∗ i.e. energy loss

for the charged Brownian particle is more for medium with higher charge density.

We show that the leading dissipative behaviour remains unchanged even at small temper-

ature

G(0)
R,T (ω) = −

√
λ

2π
iµ2
∗ ω

(1 + i ω
µ∗

a(0)
− )

. (18)

This Green function can be improved perturbatively inω and T . The corrections will be in

powers of ω
µ∗

and T
µ∗

. The corresponding real coefficients can also be obtained numerically

in a systematic fashion.

Conclusions and outlook

In this thesis we have studied dynamics of a heavy charged particle (a quark) in a strongly

coupled plasma using holography. Our main focus has been on the zero temperature

dissipation of the Brownian particle which has been interpreted as energy loss due to
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radiation [12–14]. We have studied the Brownian dynamics in diverse spacetime dimen-

sions and also in zero and finite matter density in the plasma. We have used only analytic

techniques throughout the thesis and for particular cases have obtained even exact results.

There are several directions that one can make progress in, in the context of holographic

Brownian motion. It will be interesting to study holographic renormalization group [16–

19] for this type of systems particularly for the 2+1 dimensional bulk where one can

solve the equations of motion the fluctuating string in closed form. The zero temperature

dissipation of the charged particle is very interesting in its own right. There are several

scenarios where this phenomenon can be studied. Some of them are as follows. It would

be interesting to investigate the dissipation near zero temperature in 1+1 dimensional CFT

at finite matter density by studying stochastic string in a charged BTZ black hole. Our

technique for computing Green function at finite density for higher dimensional systems

(i.e. CFTd with d ≥ 3) only requires an AdS2 factor near the horizon. Therefore it

should work even if the UV theory is non-conformal (not asymptotically AdS) but the IR

geometry has a AdS2 factor. For example, instead of D3 branes one can look at D2 or D4

brane geometries [20]. If for some charge density they flow to a AdS2 then the procedure

can be applied. By the same argument it can be also used for some rotating extremal black

hole backgrounds. Finally one can explore zero temperature dissipation for anisotropic

backgrounds [21, 22] which are more interesting phenomenologically.
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1 Introduction

The ultimate aim of theoretical physics is to explain or rather describe Nature with min-

imal set of assumptions. Fewer the number of assumptions the more beautiful is the

theory. Large number of hypotheses and numerous empirical laws have been proposed

to understand different phenomena. According to the current understanding any physical

phenomenon can be described by only four type of forces or interactions at the fundamen-

tal level namely, electromagnetic force, strong force, weak force and gravitational force.

The dream of unification of all four interactions together is the holy grail of theoretical

physics. The aim is to write down a single theory that will describe all the natural phe-

nomena. One requires a common language or a framework for that unification. Quantum

field theory (QFT) provides us with such a language that can express electromagnetic,

weak and strong interactions within extreme accuracy to present day available experi-

ments (E.g, see ‘anomalous magnetic moment’ of muon in [23]). But the program of

unification is only partially successful since writing down a complete consistent quantum

theory of gravity is still elusive (we shall discuss briefly about one candidate theory of

quantum gravity in chapter 3).

Thus quantum field theory has been proved to be an extremely useful framework in de-

scribing large number of physical phenomena. But we can solve only a very restrictive

class of systems using standard QFT toolbox which essentially consists of (a) perturbation

theory, (b) lattice gauge theory and (c) integrable systems. These methods have their own
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limitations. For example, there are many interesting systems (e.g, QCD at low energy,

high temperature superconductors etc) which are intrinsically strongly coupled in nature

and cannot be solved perturbatively. Lattice gauge theory has the famous ‘sign problem’

which restricts its applicability to systems no matter density and also without real time

dependence. The integrability techniques are mostly useful in two dimensions. Therefore

the standard field theoretic tools fail for a large class of systems with - (a) strong coupling,

(b) time dependence, (c) nonzero density and (d) for systems in higher (more than two)

dimensions.

The only way one can attack these ‘difficult’ strongly coupled problems analytically is via

duality (some strong/weak coupling duality, to be more precise). These type of dualities

map a strongly coupled system to a weakly coupled one (Chapter 2 contains more detailed

discussion on dualities). Thus one can solve the corresponding weakly coupled system

perturbatively and interpret the results using the dictionary of that duality. Gauge/gravity

duality [1–3] is probably the most useful among all these strong/weak dualities. It maps

some strongly coupled field theories to corresponding classical (super-) gravity theories.

Performing some classical gravity computation one can extract information about the dual

strongly coupled theory.

Gauge/gravity duality has been applied to study numerous strongly coupled systems. The

duality has been remarkably successful in understanding strongly coupled gauge theories

at finite temperature. Particularly it produces the famous shear viscosity to entropy density

ratio [24, 25] η/s = 1
4π for quark-gluon plasma at finite temperature which is very close

to the experimental result obtained in RHIC. But all these field theories are usually stud-

ied in long-wavelength or hydrodynamic limit which is macroscopic effective description

obtained by coarse-graining the more fundamental underlying microscopic physics. It is

thus very natural to make steps toward more microscopic non-equilibrium aspects of the

duality where fluctuations play very important role. In this thesis we study holographic

Brownian motion which is a simple set-up to incorporate fluctuations in AdS/CFT cor-
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respondence. Starting with [5, 6] there has been a numerous work addressing different

aspects of holographic Brownian motions - for non-relativistic theories [26, 27], in pres-

ence of background magnetic field [28], with rotating Plasma [29], in de Sitter space [30],

in higher derivative gravity, for anisotropic plasma [21,22] etc. Our main aim in this thesis

is to explore dissipation of a charged Brownian particle at or very near zero temperature.

This is a novel phenomenon in the context of Brownian motion in holographic settings.

We explore this phenomenon in various situations using analytic techniques. Before we

discuss all the details about holography and Brownian motion in this context, below we

briefly describe the Langevin dynamics of a Brownian particle. Then we discuss how

the rest of the thesis is organized which contains the summary of the main results of this

thesis as well.

The dynamics of a Brownian particle of mass M0 moving with velocity v in a viscous

medium can be described by the famous Langevin equation

M0
dv
dt

+ γ v = ξ(t) , (1.0.1)

with 〈ξ(t) ξ(t′)〉 = Γ δ(t − t′) , (1.0.2)

where γ is the viscous drag, ξ is the random force acting on that particle and the constant

Γ quantifies the strength of the random force. Eqn. (1.0.2) is a particular form of the

fluctuation-dissipation theorem. Kubo [10] has argued that for smaller time scales one

would face a contradiction if one works with constant (i.e. time independent) γ and Γ.

Thus a proper microscopic theory should be better behaved and one should replace Γ δ(t−

t′) by a more general function Γ(t − t′) which is less singular than a delta function and γ

by γ(t − t′). The resulting equation is called the generalized Langevin equation

M0
d2x(t)

dt2 +

∫ t

−∞

dt′GR(t, t′) x(t′) = ξ(t) 〈ξ(t) ξ(t′)〉 = i Gsym(t, t′) . (1.0.3)

17



The retarded and the symmetric Green functions are given by

Gsym(t, t′) =
1
2
〈{ξ(t), ξ(t′)}〉 , (1.0.4)

i GR(t, t′) = θ(t − t′) 〈[ξ(t), ξ(t′)]〉 . (1.0.5)

GR(t, t′) is thus the same as γ(t−t′) and i Gsym(t, t′) is the same as Γ(t−t′). The generalized

Langevin equation is easier to interpret in frequency space

[
−M0 ω

2 + GR(ω)
]

x(ω) = ξ(ω) , 〈ξ(−ω) ξ(ω)〉 = i Gsym(ω) . (1.0.6)

If one is interested in small frequencies one can expand GR(ω) as

GR(ω) = −i γω − ∆Mω2 − i ρω3 + . . . (1.0.7)

and can straightforwardly interpret the coefficients of different powers of ω as viscous

drag, mass-shift etc. Thus the retarded Green function contains almost all the information

about the dynamics of the system. All one needs is to compute this Green function. In

this thesis we compute this quantity using gauge/gravity duality. Our particular focus is

to study dissipation at (and near) zero temperature for various systems. Rest of the thesis

is organized as follows.

In chapter 2 we briefly discuss about few important dualities that appear in different

branches of theoretical physics particularly in quantum field theories and string theory and

some of their typical characteristics. We start describing dualities in statistical mechan-

ics/field theories : Maxwell duality, Kramers-Wannier duality, bosonization, Montonen-

Olive duality, Seiberg-Witten duality. Then briefly discuss few important dualities which

involve string theory namely T-duality and S-duality and head towards the most important

one for this thesis which connects field theories to string theory - gauge/gravity duality.

Historically there have been many hints about gauge/gravity duality - open-closed string
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duality, large N field theories, the holographic principle, to name a few. In the year

1997, Maldacena conjectured [1] the celebrated AdS/CFT correspondence. Chapter 3

is dedicated to describe Maldacena’s original decoupling argument and the recipes to

compute Euclidean and Minkowski correlators using the duality.

In chapter 4 we start with describing Brownian motion in 1+1 dimensions and obtain

the exact Schwinger-Keldysh Green function by studying motion of a fundamental string

in BTZ black hole background. We obtain the retarded Green function exactly using

holography. For small frequencies the Green function goes as

GR(ω) = − i

√
λ

2π
ω3 , (1.0.8)

where λ is dimensionless coupling of the field theory. We identify the coefficient
√
λ

2π as the

dissipation at zero temperature. This does not violate boost (Lorentz) invariance because

the drag force on a constant velocity quark continues to be zero. This phenomenon have

a nice interpretation as radiation due to accelerating charged particle, namely, the quark.

The dissipation co-efficient actually matches the bremsstrahlung function B(λ) [12–14]

for an accelerating heavy quark at leading order in large coupling. Furthermore since

the Green function is exact, we can write down an effective membrane action, and thus a

Langevin equation, located at a ‘stretched horizon’ which is placed at an arbitrary finite

distance from the original horizon.

In chapter 5 we use holographic techniques to study the zero-temperature limit of dissi-

pation for a Brownian particle moving in a strongly coupled CFT at finite temperature

in various space-time dimensions [8]. For 1+1 dimensional CFT the dissipative term at

zero temperature matches the same quantity near zero temperature both being equal to

the bremsstrahlung function B(λ) =
√
λ

2π . But for higher dimensional theories this is not

the case. In particular we compute the dissipative term for the 3+1 dimensional boundary

theory near zero temperature (T ) for small frequencies (ω) with ω/T held fixed (see figure
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5.1) studying dynamics of a stretched string in AdS5 black hole

GR(ω)
∣∣∣∣∣
T→ 0

= − i
(
π − Log 4

4

) √
λ

2π
ω3 . (1.0.9)

Clearly this does not match GR (ω,T = 0) which is independent of the number of space-

time dimensions the CFT lives in and is given by

GR(ω)
∣∣∣∣∣
T=0

= − i

√
λ

2π
ω3 . (1.0.10)

Thus that particular way of taking T → 0 limit is not smooth. This phenomenon appeared

to be related to a confinement-deconfinement phase transition at T = 0 in the field theory.

The result is important in the context of quark-gluon-plasma (QGP) which is always at

finite temperature. The analysis suggests, for a quark moving in QGP one should be very

careful in using zero temperature results to compute useful quantities (e.g, bremsstrahlung

function) however small be the temperature of the system.

Chapter 6 deals with Brownian motion at finite density. We study holographic Brownian

motion of a heavy charged particle in higher spacetime dimensions (d ≥ 3) at zero and

small temperature in presence of finite density [9]. Our main interest is to understand the

dynamics of that particle at (near-) zero temperature which was holographically described

by motion of a fundamental string in an (near-) extremal Reissner-Nordström (RN) black

hole. We analytically compute the functional form of retarded Green function to extract

the dissipative term at zero temperature following the matching technique in [15],

G(0)
R (ω) = −

√
λ

2 π
i µ2
∗ ω

(1 + i ω
µ∗

a(0)
− )

, (1.0.11)

where µ∗ is the chemical potential in the boundary theory which is a mass scale dual to

the charge of the RN black hole and a(0)
− is an undetermined constant that can be fixed
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numerically. For small frequencies

G(0)
R (ω) ≈ −i

√
λ

2π
µ2
∗ ω −

√
λ

2π
µ∗ a(0)

− ω2 . (1.0.12)

The zero temperature dissipation goes linear in ω unlike zero density (µ = 0) case [7, 8]

where this goes as ω3. The leading dissipative term is proportional to µ2
∗ i.e. energy loss

for the charged Brownian particle is more for medium with higher charge density.

We show that the leading dissipative behaviour remains unchanged even at small temper-

ature

G(0)
R,T (ω) = −

√
λ

2π
iµ2
∗ ω

(1 + i ω
µ∗

a(0)
− )

. (1.0.13)

This Green function can be improved perturbatively inω and T . The corrections will be in

powers of ω
µ∗

and T
µ∗

. The corresponding real coefficients can also be obtained numerically

in a systematic fashion.

In chapter 7 we summarize the main results of the thesis and also discuss about some fu-

ture research directions. Appendices include some background materials, computational

details etc. to make the thesis self-contained.
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2 Dualities in physics

Duality means equivalence between two seemingly different theories. This is actually a

very old concept in physics. In this section we discuss about dualities in quantum field

theories and also in string theory. Before we go into the details here are few typical

characteristics of dualities which we will encounter in this section many times.

Characteristics of dualities

Two sides (theories) of a duality are typically related by following maps.

• Degrees of freedom or the Lagrangian need not be same.

• Global symmetries coincide.

• Equation of motion ⇐⇒ Bianchi identity

• Weak coupling ⇐⇒ Strong coupling

The last one typically holds but not always true. When it holds, one calls that a strong-

weak duality. We will see in chapter 3 that AdS/CFT is a famous example of strong-weak

duality.

Some useful techniques in the context of duality are provided in appendix A.
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Dualities in quantum field theory

Here is a list of dualities from quantum field theories and/or statistical mechanics.

1. Maxwell duality

2. Kramers-Wannier duality

3. Bosonization

4. Montonen-Olive duality

5. Seiberg-Witten duality

We will elaborate on one from the list viz. the Maxwell duality and comment on other

dualities only briefly.

Maxwell duality

The oldest example of duality goes back to Maxwell. The famous equations due to

Maxwell for electric field ~E, magnetic field ~B, charge density ρ and electric current ~J

are given by

∇. ~E = ρ

∇ × B = ~J +
∂~E
∂t

 ⇐⇒ ∂µFµν = Jν , (2.1.1)

∇.~B = 0

∇ × ~E = −
∂~B
∂t

 ⇐⇒ ∂µF̃µν = 0 , (2.1.2)

where F̃µν := ε µνρσFρσ is the Hodge dual to Fµν. The equations (2.1.2) are independent

of sources whereas (2.1.1) depend on sources. We refer to (2.1.1) as ‘Maxwell equations’

and call (2.1.2) as ‘Bianchi identities’.
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Notice that, for ρ = 0 and ~J = 0, ~E ↔ −~B is a symmetry. Actually ~E ↔ −~B interchanges

Fµν ↔ F̃µν that amounts to interchanging

Dynamical “Maxwell equations”←→ Geometric Bianchi identities.

Here we choose a ‘trivial’ example to illustrate the electro-magnetic duality. Let’s con-

sider a bunch of photons (Aµ) and they don’t interact with any sources (e.g, electrons).

That’s the reason we call it a ‘trivial’ theory

Z =

∫
DAµe

−i 1
4g2

∫
F2
µν δ(∂µAµ) . (2.1.3)

The delta function ensures we are dealing with only physical of degrees of freedom. This

is known as a gauge choice. Let’s perform a change of variable : Aµ → Fµν i.e, our

integration variable will be Fµν instead of Aµ. This implies a Jacobian1 which is not

important for the dynamics of the system and can be taken out of the integral.

Z = “Jacobian” ×
∫
DFµν e−i 1

4g2

∫
F2
µν δ(εµνρσ∂νFρσ) . (2.1.4)

We have imposed the Bianchi identities over the path integral. Now our aim is to introduce

a Lagrange multiplier Cα into the path integral and integrate out the dynamical Fµν to write

down a theory for the ‘fake variable’ Cα. Let’s first introduce Cα

Z ≈
∫
DFµνDCα e−i

∫
( 1

4g2 F2
µν+ N Cαε

αβγδ∂βFγδ)δ(∂µCµ) . (2.1.5)

The δ(∂µCµ) is there because if one shifts Cα → Cα + ∂α f in the exponent, that does

nothing to the integral (extra piece vanishes due to anti-symmetry of εαβγδ) and N is just

normalization factor which is not important for this discussion. Now we integrate by parts

1The Jacobians are, in general, rather tricky in path integrals. They can be very important which may
lead to anomaly. But for this particular example the Jacobian is innocent.
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and drop the boundary term2 assuming ‘nice’ boundary condition.

Z ≈
∫
DFµνDCα e−i

∫
( 1

4g2 F2
µν+ N ∂βCα ε

αβγδFγδ)δ(∂µCµ) . (2.1.6)

Notice that due to anti-symmetry of εαβγδ the term ∂βCα has to be anti-symmetric in its

indices. Therefore one can define this as the field strength for the new ‘gauge field’ Cα :

Gαβ := ∂αCβ − ∂βCα.

The above action is a just quadratic in Fµν and therefore we can easily integrate out Fµν to

obtain

Z ≈
∫
DCα e−

ig2
N

∫
G2
µν δ(∂µCµ) . (2.1.7)

This is almost the same U(1) theory but of a completely different ‘gauge field’ Cµ. Few

remarks in order.

• This is an example of self duality where a Maxwell theory goes to another Maxwell

theory. But the coupling is inverted g→ 1
g . This is also an example of strong-weak

duality.

• Aµ and Cµ are completely different degrees of freedom. They are related by ex-

tremely involved relation.

• Degrees of freedom need not be the same in both sides of a duality. But in this case

a gauge field goes to another.

2This step is very non-trivial. We are assuming very particular boundary conditions. By ‘nice’ we mean
the field Cα and/or its derivative dies down at the boundary. But some non-trivial boundary condition can
give rise to more interesting physics - topological theories.
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Kramers-Wannier duality

It relates the partition function of a two-dimensional square-lattice Ising model at a low

temperature to that of another Ising model at a high temperature. Using this duality

Kramers and Wannier [31] predicted the exact location of the critical point of 2D Ising

model in 1941 before Onsager [32] could solve that model exactly in 1944.

Bosonization

In 1+1 dimensions one can map an interacting fermionic system to a system of bosons.

E.g., massive Thirring model is dual to sine-Gordan model. This is also an example of

strong-weak duality. This duality was uncovered independently by particle physicists

Coleman [33] and Mandelstam [34], and condensed matter physicists (Mattis, Luther and

others) around 1975.

Montonen-Olive duality

This is generalization of Maxwell duality with magnetic charge and current but in N = 4

SYM [35]. This is again a strong-weak duality and it relates ‘elementary particles’ of one

side to ‘monopoles’ of the other side.

Seiberg-Witten duality

Similar to Montonen-Olive duality but it is for IR effective theory ofN = 2 SUSY theory

in D = 4 [36]. UnlikeN = 4 SYM this theory not conformally invariant in general i.e. its

beta function runs – more interesting dynamics.
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Figure 2.1. Closed strings wrapping a compact direction in different ‘windings’.

Dualities in string theory

In string theory there are mainly two important dualities : T-duality and S-duality.

T-duality or ‘Target space’ duality is very simple and elegant. This is also an example

of duality which is not strong/weak type. Hints of this duality were noticed in [37, 38]

but it was first stated and explicitly shown to be a symmetry by Sathiapalan [39] and

also independently by Nair et al [40] in 1987. We discuss this in some detail and briefly

mention about S-duality.

T-duality

Einstein changed our view of space and time by marrying them. The notion of ‘space’ and

‘time’ became rather observer dependent. T-duality goes one step further to completely

change our notion of space-time itself. It shows how different objects or probes perceive

space-time quite differently. In that sense the notion of space-time itself is an ‘emergent’

concept. Let’s see how T-duality works in string theory. Consider a flat 1+1 dimensional

space-time (higher dimensional generalization is straight forward). This is just a plane

sheet of paper. Let’s compactify the spatial direction to make it an infinite cylinder with
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radius R (see Fig. 2.1).

First consider a particle (or a field) of mass m moving on this cylinder. Its momentum

(~p) has two orthogonal components : along the circle (pθ) and along the non-compact

direction (p⊥). But along the compact direction pθ has to obey the periodicity condition

ei pθ(2πR) = 1 i.e. pθ = n
R where n ∈ Z. Thus the total momentum

~p = pθ eθ + p⊥ e⊥

=
n
R
eθ + p⊥ e⊥ , (2.2.1)

where eθ, e⊥ are the corresponding unit vectors. The energy is given by

E2 = p2 + m2

= (p2
⊥ + m2) +

n2

R2 . (2.2.2)

Notice that, if one takes R → 0 the energy E → ∞, unless n = 0. Physically this

means when the compact direction is very small the particle can not ‘sense’ or probe that

direction and effectively ‘lives’ only in the non-compact dimension.

But what happens if we replace the particle with a closed string? Unlike the particle it

can wind around (fig. 2.1) the cylinder. Therefore there will be an extra contribution to

the energy from these winding modes.

E2 = p2 + M2 + (“winding energy”)2

=

(
p2
⊥ +
N

α′

)
+

n2

R2 + (“winding energy”)2 , (2.2.3)

where α′ is the string tension and N indicates the ‘level’ of the tower of closed string

states. Winding energy (Ew) of a string which wraps the cylinder w times is given by

Ew = length of the string × string tension

29



= w × (2πR) ×
1

2πα′

=
w R
α′

. (2.2.4)

Thus the total energy becomes

E2 =

(
p2
⊥ +
N

α′

)
+

n2

R2 +
w2R2

α′2
. (2.2.5)

If we take R→ 0 the momentum modes along the compact direction become very ‘heavy’

as before but at the same time the winding modes become very ‘light’! On the other hand

if we take R → ∞ momentum modes play the role of ‘light’ modes and winding modes

become ‘heavy’. Clearly there is a duality at work here and to be precise if we make the

following transformations

R→
α′

R

(n,w)→ (w, n) , (2.2.6)

the expression for energy remains unaltered. R :=
√
α′ = ls is called the self-dual radius.

Physics for R < α′ is identical to physics with R > α′. I just want to point out the

following characteristics of T-duality.

1. It is intrinsically stringy – there is no field theoretic analog to this. Strings perceive the

spacetime quite differently compared to point particles.

2. This is not a strong-weak duality.

S-duality

This is a strong coupling- weak coupling duality in string theory. S-duality in string theory

was first proposed Sen [41] in 1994. This duality maps one string theory with coupling
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gs to another string theory with coupling 1
gs

. For example, type IIB string theory with the

coupling constant gs is equivalent via S-duality to the same string theory with the coupling

constant 1
gs

. Similarly, type I string theory and the SO(32) heterotic string theory are dual

to each other.

Gauge/string duality

This duality [1] mixes the above two frameworks viz. QFTs and string theory. It was

proposed by Juan Maldacena in 1997. It roughly states a particular gravitational theory in

asymptotically AdS space-time is equivalent to a certain field theory in one less number of

spacetime dimensions. This statement is a very ‘coarse grained’ version of Maldacena’s

original conjecture which will be reviewed in detail in chapter 3.
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3 Strings, D-branes & Holography

String theories

General theory of relativity is arguably the most beautiful theory written down by human

mind. It works remarkably accurately at the astrophysical level. Recent discovery of

gravitational waves [42–44] has put it into a even firm footing. But if one tries to write

down a quantum field theory of gravity it suffers from UV divergences and turns out

to be non-renormalizable. String theory is the most promising candidate for quantum

theory of gravity. General relativity comes out naturally from perturbative string theory.

After the discovery of dualities and particularly AdS/CFT correspondence string theory

seems to be promising even at the non-perturbative level. String theory avoids the UV

divergences since it contains objects with finite length, namely the strings, instead of

point particles. Thus the theory is described by a two dimensional worldsheet action,

instead of one dimensional worldline,

S NG = −
1

2πl2
s

∫
dτ dσ

√
−det(h) . (3.1.1)

This action contains a square root and hard to quantize. That’s why people usually work

with Polyakov action,

S P =
1

4πl2
s

∫
dτ dσ (−γ)1/2 γab ∂aXµ ∂bXν ηµν , (3.1.2)
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which can be easily shown to be equivalent to Nambu-Goto action at classical level.

This worldsheet theory represents d free bosons in two dimensions and γab(σ, τ) is inde-

pendent metric on the worldsheet. Moreover this action enjoys

1. Reparameterization invariance : {σ, τ} → {σ̃(σ, τ), τ̃(σ, τ)} .

2. Weyl invariance : γab → γ′ab = e2ωγab .

After choosing a particular gauge namely ‘conformal gauge’ the theory is conformally

invariant and the worldsheet fields satisfy following free two dimensional wave equation

(
∂2

∂σ2 −
∂2

∂τ2

)
Xµ(τ, σ) = 0 . (3.1.3)

So the aim is to solve this string equation of motion with appropriate boundary condi-

tions i.e. periodic for closed strings and for open strings the boundary conditions can be

Dirichlet or Neumann.

It is well known that if one quantizes the theory without harming worldsheet conformal

invariance and Poincaré invariance of the target space (which is spacetime itself) one has

to have 26 scalars on the worldsheet which is same as having a 26 dimensional spacetime.

Below we focus on the spectrum of the bosonic strings.

Closed string spectrum

Closed strings have two independent modes which are usually called left and right movers.

Upon quantization the Fourier modes become creation and annihilation operators. It con-

tains a tachyon and three massless fields namely Dilaton (Φ), Graviton (Gµν) and anti-

symmetric Kalb-Ramond field (Bµν) and then there are infinite number of massive higher

spin modes.
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Open string spectrum

The open string spectrum is given by a single copy of oscillator. This too has a tachyon

and a massless Gauge field (Aµ) and then there are infinite number of massive higher spin

modes.

The bosonic string theory is not ‘physical’ for two reasons (i.) it contains tachyon in

its spectrum and (ii.) it doesn’t have fermions which are fundamental constituents of

matter in our universe. For these reasons one adds fermions to the theory and moreover

considers supersymmetric version which is famously known as superstring theory. Again

symmetries restrict the spacetime dimensionality of superstring to be 10 and there are

no tachyons in its spectrum. There are five consistent superstring theories namely Type I,

Type IIA, Type IIB, Heterotic E8 × E8 and Heterotic SO (32). They have different spectra.

But if one is interested in low energy effective theory one can focus only on the massless

modes and forget about the infinite tower of massive higher spin modes since they are

suppressed by higher powers of 1
α′

. In this thesis we mainly focus on Type II theories

(particularly Type IIB) as the original AdS/CFT conjecture was proposed in Type IIB

theory.

Superstring theory Low energy massless fields

Type IIA Gµν, Bµν, Φ and Cµ,Cµνκ,Cµνκσρ

Type IIB Gµν, Bµν, Φ and C,Cµν,Cµνκσ

Table 3.1. Low energy massless fields in different superstring theories

Notice that, Gµν, Bµν, Φ fields which come from the NS-NS sector are present in both the-

ories. But the Ramond-Ramond (antisymmetric) fields are different for different theories

- type IIA has ‘odd-form’ R-R fields where as type IIB contains only ‘even-form’ R-R

fields. A d-form gauge field naturally couples to a d − 1 dimensional charge. E.g, a U(1)
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1-form gauge field couples to a worldline of a charged particle as :
∫

Aµ dxµ or 2-form

Kalb-Ramond field Bµν naturally couples to string worldsheet as :
∫

Bµν dxµdxν.

The natural question that comes to one’s mind is what are the corresponding charges for

different R-R fields? The answer is D-branes!

D-branes

D-branes [45] appear in string theory in two seemingly different ways.

1. They are lower dimensional objects where an open string can end.

2. These are also solutions to particular supergravity e.g. type IIB SUGRA.

The first one is essentially an open string description of D-brane. If one is interested in

studying D-branes from this perspective one should study the dynamics or fluctuations

of open strings ending on the D-brane. The second one is effectively a closed string

description which says that a D-brane as an ‘heavy’ object sources gravitons and can be

described geometrically. In section 3.4 we will see how the equivalence between these two

seemingly different descriptions of D-brane leads Maldacena to the AdS/CFT conjecture.

In the last section we stated that D-branes source the R-R fields or equivalently they are

the charges of R-R fields.

Superstring
theory

Low energy massless fields Sources coupled to fields

Gµν, Bµν, Φ F1 couples to Bµν

Type IIA Cµ,Cµνκ,Cµνκσρ,Cµνκσρλγ D0, D2, D4, D6

Type IIB C,Cµν,Cµνκσ,Cµνκσρλ,Cµνκσρλγδ D(-1), D1, D3, D5, D7

Table 3.2. D-branes appearing in IIA and IIB theories.
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Note that we have added the magnetic dual fields in the table 3.2. For example, Cµνκσρλ is

dual to Cµν and thus D5 brane is magnetic dual to D1 brane. Notice that Cµνκσ is self dual

field in type IIB theory and correspondingly D3 brane is its own magnetic dual.

Why do we expect AdS/CFT duality?

At first sight the equivalence of gravity with gauge theory in one lower spacetime dimen-

sions might seem very strange mainly for following reasons.

1. Two theories don’t even live in same number of spacetime dimensions.

2. One is gauge theory without gravity and other one is a gravity theory.

If we look back to few influential discoveries of theoretical physics in last few decades

the duality looks more plausible.

Open string-closed string duality

Closed string spectrum contains : {Graviton + infinite tower massive modes.}

Open string spectrum contains : {Gauge field + infinite tower of massive modes.}

If we are interested only in low energy physics, closed string has ‘gravity’ in it where as

open string contains Yang-Mills ‘gauge fields’. Now let’s look at the following process

in fig. 3.1. One can look at it in two completely different but equivalent ways namely a

closed string is being exchanged between the D-branes or an open string is running in a

loop between them. Roughly it means,

Closed string tree = Open string loop.
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(a) Open string running in a loop (b) Closed string is exchanged between D-branes

Figure 3.1. Open string-closed string duality

Therefore one would expect, at least in some particular sense, there should be an equiva-

lence between gauge theory and gravity.

Large-N gauge theories

It is established that strong nuclear force is described by QCD which is nothing but a

Yang-Mills theory with gauge group SU(3). Here three indicates the number of colors.

The Yang-Mills coupling undergoes dynamical transmutation and QCD doesn’t have a

free parameter to play with – QCD is very difficult. What will happen if one works with

infinite number of colors instead of only three? This was the question ’t Hooft asked in

seventies [46]. Actually the theory simplifies1 a lot. ’t Hooft introduced a parameter N

which is the number of colors and it then plays the role of a free parameter. The N → ∞

limit is similar to taking ~→ 0 i.e, ‘classical’ limit of QCD.

For this discussion we shall consider pure S U(N) YM i.e. no ‘quarks’. But adding

‘quarks’ is a very straight forward extension. The ‘gluons’ are adjoint valued elements of

1This is in the same spirit in statistical mechanics. When fluctuations are important one way to handle
them is to work with a lot of such fluctuating variables. 3-body problem is very difficult but a box of gas
with huge number of molecules is easier to handle! Same is true with dimensionality. In lower dimensions
there are lot of fluctuations. Mean field theory is easier because one works in infinite dimensions.
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S U(N) and the Lagrangian

L = −
1

4 g2
Y M

∫
Fa
µνbFµνb

a , (3.3.1)

where L is a Lorentz scalar since µ, ν indices are contracted and is singlet under S U(N)

since a, b indices are contracted. From the Lagrangian it is clear that in this theory,

Propagator ∼ g2
Y M

Interaction vertices ∼ 1
g2

Y M
.

We will follow the double-line notation what ’t Hooft introduced to make the counting

easy – replacing each gluon propagator by a quark-antiquark pair (see fig. 3.2).

Figure 3.2. The gluon propagator ∼ g2
Y M

In this notation the 3-point and 4-point functions look as follows.

Figure 3.3. 3-pt vertex ∼ 1
g2

Y M

Figure 3.4. 4-pt vertex ∼ 1
g2

Y M
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Suppose we are interested in vacuum-to-vacuum amplitudes (see fig. 3.5). Our aim is

to see how the diagrams scale with N. For that we just need to count the number of

propagators and vertices. We know how they scale with the coupling gY M. On top of that

whenever we have a color loop (color index is summed over) that should correspond to a

factor of N, since there are total N colors.

(a) Planar diagram : O(N2) (b) Non-planar diagram : O(N0)

Figure 3.5. Vacuum-to-vacuum amplitude in double-line notation

For fig. 3.5a : # of propagators = 3

# of vertices = 2

# of loops = 3

∴ It scales as ∼ (g2
Y M)3 1

(g2
Y M)2 N3 = (g2

Y MN) N2 ≡ λN2 .

For fig. 3.5b : # of propagators = 6

# of vertices = 4

# of loops = 2

∴ It scales as ∼ (g2
Y M)6 1

(g2
Y M)4 N2 = (g2

Y MN)2 N0 ≡ λ2 N0 .

We have defined2 a new effective coupling λ := g2
Y MN and have extracted the N-dependence.

2This λ is called ’t Hooft coupling since ’t Hooft introduced this quantity. Also keeping λ := g2
Y MN

f ixed, with N → ∞ is known as ’t Hooft scaling limit for the same reason.
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If we keep λ to a fixed value as N → ∞, the fig. 3.5a contributes at O(N2) whereas fig.

3.5b contributes at O(N0). Notice that the fig. 3.5a can be drawn on a plane or a sphere

and is called planar diagram [46]. On the other hand fig. 3.5b can not be drawn on a

plane – one requires a torus. This is a non-planar diagram.

Therefore at large N and fixed (but small λ) one can schematically write down SU(N) YM

vacuum-to-vacuum amplitude as following.

Figure 3.6. Large N expansion of SU(N) gauge theory

Notice that at large N one needs to consider only the planar (or sphere) diagrams but there

are still infinitely many such terms since it is a perturbative expansion in λ. At this point

someone familiar with string perturbation theory [47, 48] can easily correlate this with

perturbative string amplitude which looks as follows,

Figure 3.7. Perturbative expansion of closed strings

and formally identify

gs ⇔
1
N

α′ ⇔ λ (3.3.2)
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Thus gauge theory at large N and string theory have similar perturbative expansions – it’s

not very hard to imagine that they can be related to each other.

Holographic principle

The holographic principle, originally proposed by ’t Hooft [49], states that the total

amount of information inside a volume of space cannot be larger than the amount of

information that can be encoded on its boundary. Later Susskind worked on this principle

in the context of string theory [50]. We don’t really need the details. The expression for

Bekenstein-Hawking entropy [51, 52] of black hole

S BH =
Horizon area

4G
, (3.3.3)

will ring a bell. It scales as the area of its horizon divided by 4G. Intuitively one can

argue why there should be such a principle. Suppose we have some volume of space with

some matter in it and we can put more and more matter inside that volume of space, thus

increasing the entropy within it. But at some point there will be so much matter inside

that it will essentially collapse into a black hole! Thus we cannot increase the entropy of a

volume of space indefinitely; we can only increase it until it is equal to the surface area of

the volume divided by 4G. We know that entropy is a measure of information. The more

information the volume has, the more entropy it will get. This is the holographic principle

which roughly says that the total amount of information inside a volume of space cannot

be larger than the amount of information that can be encoded on the boundary of that

volume.

Thus in a crude way ‘volume’ is equivalent to ‘its boundary’. And therefore if a d + 1

dimensional gravity theory is dual to a d dimensional field theory living on its boundary,

it shouldn’t be so surprising.
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The decoupling argument

It is quite clear from the above motivations that there should be some relationship be-

tween gauge theory and gravity (string theory). After the discovery of D-branes [45] in

mid-nineties there was a rapid development in this direction [53–56]. Finally, in 1997,

Maldacena proposed a duality [1] between3 N = 4 SYM and Type IIB string theory in

AdS5 × S5. His argument to reach this conjecture is famously known as the decoupling

argument and we discuss this in detail in this section.

Different descriptions of same physics

Before discussing about the decoupling argument let’s discuss about some simple exam-

ples of describing same physical phenomenon using two complementary point of views4.

This discussion will be very useful in describing Maldacena’s decoupling limit.

QED

Let’s start with a very basic example from QED. Suppose we want to understand how an

electron’s moves in presence of a proton. We can treat this problem perturbatively and

sum up all possible Feynman diagrams (see fig. 3.8).

The first diagram of fig. 3.8 in position space gives the standard Coulomb potential V(r) ∼

−1
r . The other diagrams are corrections to this ‘classical potential’. There will be many

more diagrams as one goes to higher loops. The more number of diagrams one considers

the more accurate the description will be. Effectively the extra diagrams change the form

of the potential, V(r) = −αr [1 + #α e−2mer

(mer)3/2 + . . .] .

3See appendix B and appendix C for more details on AdS space and N = 4 SYM respectively.
4In this section we heavily follow [57, 58].
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Figure 3.8. Electron’s motion near proton

There are two different ways of describing the same phenomenon.

• Picture I : The electron and the proton are in vacuum and they are interacting via

exchanging photons (see fig. 3.8). Then sum all such Feynman diagrams.

• Picture II : Another way of describing the same problem is the following. There

is no proton but the electron is moving in a background potential V(r) = −αr [ 1 +

#α e−2mer

(mer)3/2 + . . .] (see fig. 3.9).

Figure 3.9. Electron moving in a ‘background’ field

String theory

What can be the analogous picture in string theory? One should replace the electron by an

‘elementary’ closed string and the ‘heavy’ proton by a heavy and extended object avail-

able in the theory – D-brane.
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Figure 3.10. A closed string moving near a D-brane.

Again we have two different ways of looking at this phenomenon.

• Picture I : First approach would be analogous to summing over Feynman dia-

grams i.e., studying the scattering of a closed string with a D-brane perturbatively.

The string can split into many closed strings or can become an open string on the

D-brane and then can further split into many open strings on that brane (see fig.

3.10). Some of the open strings can join the end points on the D-brane and leave

the brane as closed strings.

In the world sheet picture it is easier to keep track of the factors of couplings (sim-

ilar to counting loops in QED). The number of handle indicates string splitting and

number of boundary of the worldsheet signifies the interaction with the D-brane

(see Fig 3.11). One needs to sum over all different worldsheet topologies.

• Picture II : Here is another equivalent description of the same phenomenon. One

can forget about the existence of the D-brane and replace all intermediate effects

(Feynman diagrams) by an effective background (see fig. 3.12) in which the closed

string moves. In this picture we are considering D-brane as a source of closed

strings. The ‘coherent state’ of large number of closed strings effectively changes

the background near the brane.

Notice that ‘Picture I’ holds true only in the perturbative regime i.e, low energy action of

open strings on the brane. This is described by SYM theories.
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+ . . .

Figure 3.11. Worldsheet picture of closed string - D-brane interaction

Figure 3.12. A closed string moving near a D-brane.
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Whereas in ‘Picture II’ D-brane is the source of closed strings. Since the closed strings

change the background this should have some gravitational description.

Maldacena’s Argument

In his original paper [1], Maldacena started with a stack of N D3 branes (fig. 3.13). One

can again describe the system in two alternative ways – (i) by open string dynamics or (ii)

by closed string dynamics5.

Figure 3.13. A stack of N D3-branes

Picture I

Let’s see how one would describe the low energy dynamics of this system from open

string perspective. The stack of N branes are described by N = 4 U(N) SYM theory

plus higher derivative terms. These higher derivative interactions come due to integrating

out all massive open string modes. These are all suppressed by increasing powers of α′.

5See fig. 3.11. If one tries to look along a D-brane one can ‘see’ the worldsheet of open string fluctuating.
On the other hand if one looks perpendicular to the D-brane one can ‘see’ closed string(s) being emitted (or
absorbed) by the D-brane.
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Similarly away from the branes (we call it ‘bulk’) the physics should be described by

10D low energy string theory (type IIB super-string theory since D3 brane appears in IIB

theory) which is known as type IIB super-gravity. Again there will be higher derivative

interactions suppressed by different powers of α′. And these two theories can interact. So

schematically the action for the total system looks as following.

S = S branes︸ ︷︷ ︸
(SYM + higher derivatives)

+ S bulk︸︷︷︸
(10D SUGRA + higher derivatives)

+ S int . (3.4.1)

The ‘bulk’ and the ‘branes’ interact gravitationally. Maldacena’s main aim was to turning

off this interaction by tuning some coupling and to decouple the theories. Notice that if we

take α′ → 0 keeping gs and N fixed, it is equivalent to taking Newton’s constant GN → 0

because
√

GN ∼ gsα
′2. But α′ is a dimensionful quantity, therefore it can not be taken to

zero. The correct way to take the limit is to make α′ smaller compared to the energy (or

inverse length) scale one is looking at i.e.,

α′ |~k|2 � 1 or,
|~x − ~x ′|2

α′
� 1 . (3.4.2)

Taking such a limit amounts to turning off all the interactions and all higher derivative

terms since they come with positive powers of GN or α′. Thus we are left with 4 D SYM

and 10 D super-gravity which are not talking to each other.

Picture I : N = 4 SYM in 4 dimensions ⊕ Super-gravity in 10 dimensions.

Picture II

Following same chain of arguments we want to see the stack of D3 branes a gravitational

solution or we should ask, what background do the stack of branes produce?
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Figure 3.14. Stack of D3-branes as a gravitational solution

This “classical” background should be described by low energy effective action of string

theory which for this particular case is type IIB super-gravity (Einstein action + “other

fields”). Therefore the aim is to look for a solution or a metric for this stack of N D3

branes (fig. 3.14).

Exploiting the symmetry of the system we start with the following ansatz

ds2 = ηµν
dxµ dxν

f (r)
+ f̃ (r) dxm dxm where, r2 = xm xm . (3.4.3)

To satisfy Einstein equations the unknown functions in the ansatz have to have the fol-

lowing form

f (r) = f̃ (r) =

√
1 +

L4

r4 with, L4 = gsN (4πα′2) . (3.4.4)

Once we have the metric there are two obvious ‘extreme’ limits we can look at in this

picture II :

(i) r → ∞

(ii) r → 0

49



Far away from the branes (r → ∞)

Far away from the branes the geometry has to be flat space R9,1

ds2 = dxµdxµ + dxmdxm . (3.4.5)

Near the branes (r → 0)

ds2 =
r2

L2ηµνdxµdxν +
L2

r2 dr2︸                       ︷︷                       ︸
AdS5

+ L2dΩ2
5︸ ︷︷ ︸

S5

. (3.4.6)

In GR we always talk about observables with respect to particular observers. Let’s ask

the question what do we mean by ‘time’?

dxµdxµ = −dt2 + d~x 2 . (3.4.7)

This t is just co-ordinate time and it is ‘physical’ or ‘proper’ time only for an observer at

r = ∞. Therefore the natural question arises what is the ‘time’ for an observer at arbitrary

r?

The proper time for an observer is related to co-ordinate time as follows.

∆tprop =
√

gtt ∆t

=
r
L
∆t . (3.4.8)

On dimensional ground the ‘proper’ energy

∆Eprop =
L
r
∆E . (3.4.9)
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Figure 3.15. The decoupling limit

Notice that for r → 0 there is an infinite red shift. So even if the near the stack of branes

the energy E is arbitrarily large6 for the observer at r → ∞ it is finite due to the redshift.

We are interested in ‘low energy’ physics for the observer at r → ∞. The things near

him/her are already low energy i.e, 10 D super-gravity and anything near r → 0 is also

low energy due to huge redshift as discussed above. Here by anything we mean full string

theory in AdS5 × S5.

Picture II : Full type IIB string theory in AdS5 × S5
⊕ Super-gravity in 10 dimensions.

6This is very crucial point. So let’s elaborate on it with a simple thought experiment. Suppose A and B
are at r → ∞. A is carrying a 10100 GeV ‘lamp’. Suddenly A decides to walk towards it. Due to the red
shift factor, to B the lamp energy keeps decreasing (i.e., lamp’s frequency gets smaller) as A approaches the
stack. When A is very close to the branes, such that the redshift factor is 10−109 say, to B the lamp’s energy
is just 1 eV . But for A it is still the 10100 GeV lamp! Therefore arbitrarily large energy near the branes is
finite energy for the observer far away. The bottom line is, low energy theory for the observer at infinity
includes all possible high energy phenomena near the D-branes – full string theory in AdS5 × S5.
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We need to “equate” Picture I and Picture II. Comparing these two description Maldacena

conjectured,

N = 4 SYM in 4 dimensions ≡ Full type IIB string theory in AdS5 × S5 .

The dictionary of parameters

There are two dimensionless parameters in the gauge theory namely gY M and N. As we

have discussed before it is more convenient to define dimensionless ’t Hooft coupling

λ ≡ g2
Y M N. Thus the gauge theory has two independent dimensionless couplings gY M and

λ.

On the other hand the string theory in AdS5 × S5 has one dimensionless coupling gs and

two dimensionful parameters namely the string length ls =
√
α′ and the AdS radius L.

Thus effectively this theory also has two dimensionless parameters gs and L
ls

. They are

related as follows.

g2
Y M = gs ,

λ ≡ g2
Y MN =

(
L
ls

)4

. (3.5.1)

Planar limit : According to the stronger version of the conjecture, the above matching

of parameters holds true for all values of the parameters. Things get simplified if one

takes N → ∞ keeping λ = f ixed i.e, g2
Y M → 0. This is famous ’t Hooft limit. In this

limit, as we have seen in the large N gauge theories, only the planar diagrams in N = 4

SYM contribute since the other non-planar diagrams are suppressed by powers of 1/N.
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Gauge theory String theory

Small λ Small λ i.e, L ∼ ls

Perturbative SYM Highly (stringy) quantum theory

(Easy) (Hard)

Large λ Large λ i.e, L � ls

Strongly coupled theory Classical SUGRA

(Hard) (Easy)

Table 3.3. Different regimes of gauge/gravity duality

Analogously in the string theory side gs → 0 and L
ls

remains finite which means that string

cannot split and join (i.e, no ‘handles’ in the string world sheet).

If we restrict ourselves in this planar limit where N → ∞ and λ = f ixed, there are two

possibilities : λ can be large or small.

Notice that (see table 3.3) when one side of the duality is computationally easy the other

side becomes extremely hard to handle. Thus it is not only very difficult to prove the

duality but it’s even hard to check. At the same time, due to exactly the same reason,

the duality is extremely powerful. One can calculate interesting quantities in strongly

coupled quantum field theories by computing corresponding quantities in dual classical

gravitational theory.

Generalization to finite temperature and density

Although the AdS/CFT duality was proposed in a very particular setup it is believed to

be valid for more generic systems and is usually referred to as gauge/gravity duality. This

was first generalized to thermal state of CFT which is dual to a black hole in asymptoti-
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Field theory in d-dimensions Dual gravity in (d + 1)-dimensions

T = 0 and µ = 0 Pure AdSd+1

T , 0 and µ = 0 Black hole in AdSd+1 (or thermal AdSd+1)

T , 0 and µ , 0 Charged black hole in AdSd+1

T = 0 and µ , 0 Extremal charged black hole in AdSd+1

Table 3.4. Generalization of gauge/gravity duality for different backgrounds

cally AdS spacetime [4]. Turning on chemical potential in the field theory is equivalent to

adding charge to the black hole7 (see table 3.4). In this thesis we study Brownian motion

using all those different dual gravitational backgrounds.

The GKPW prescription

To use the above mentioned duality quantitatively one needs to have a prescription that

relates the field theory quantities to their gravity theory equivalents. Such a prescription

has been given in [2, 3] which state that partition function of the QFT coincides with the

same of gravity theory

〈
exp

(∫
∂AdS5

φi
0Oi

)〉
CFT

= ZQG(φi
0) , (3.7.1)

where φi are bulk fields in gravity theory and Oi are their dual boundary operators in the

gauge theory. ZQG(φi
0) is the partition function of quantum gravity with the boundary

conditions that φi goes to φi
0 on the boundary. The conjecture becomes useful in studying

strongly coupled field theories when the gravity theory is ‘classical’. In that limit the path

integral can be approximated by saddle point. Treating φi
0 as the sources of boundary

7There are also other generalizations e.g, for rotating black holes. This is known as Kerr/CFT corre-
spondence [59–61] which is not very well understood.
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field theory one can calculate the correlators by taking functional derivative of ZQG with

respect to φi
0.

The above prescription is applicable to obtain Euclidean correlators. The Euclidean signa-

ture avoids some complications related to boundary conditions. However in many cases,

particularly for finite temperature systems which also appear frequently in this thesis,

extraction of Lorentzian-signature AdS/CFT results directly from bulk gravity theory is

inevitable (see appendix D to review some properties of different correlators in QFT).

Therefore one requires to have some prescription for computing real time correlators di-

rectly from gravity. This was done by Son and Starinets [11].

In Euclidean space

Let us first recall the AdS/CFT formulation in Euclidean space [2, 3]. For historical sig-

nificance and definiteness, we talk about the famous correspondence between N =4 SYM

theory and classical gravity on AdS5 × S5. The Euclidean version of the metric for this

compact manifold is given by (see (B.3.6))

ds2 =
L2

z2 (dτ2 + d~x 2
+ dz2) + L2d~Ω5

2
, (3.7.2)

where z = 0 corresponds to the boundary of AdS5 where the four dimensional quantum

field theory lives. Consider a scalar field φ in the bulk, which is coupled to an operator

O on the boundary such that the interaction Lagrangian is φO. AdS/CFT correspondence

then states

〈
e
∫
∂M φ0 O

〉
= e−S cl[φ], (3.7.3)

where S cl[φ] is the action of classical solution to the equation of motion for φ in the bulk

metric with the boundary condition : φ
∣∣∣

z=0
= φ0.
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The metric 3.7.2 corresponds to the zero-temperature field theory. To study field theory

at finite temperature, one has to modify it to a non-extremal one (see table 3.4),

ds2 =
L2

z2

(
f (z) dτ2 + d~x 2

+
dz2

f (z)

)
+ L2d~Ω5

2
, (3.7.4)

where f (z) = 1 − z4/z4
H and zH = (πT )−1. T is Hawking temperature, τ is the Euclidean

time co-ordinate which is periodic : τ ∼ τ + T−1 and z is between 0 and zH.

Difficulties in Minkowski Space

In Minkowski space too one can try to put down the correspondence in following way

〈
ei

∫
∂M φ0 O

〉
= e i S cl [φ] . (3.7.5)

But there are some difficulties with this Minkowski version of the duality. The basic

problem is with the boundary condition. In Euclidean case φ is uniquely determined by

its value at the boundary z = 0 and the requirement of regularity at horizon, z = zH. So,

the Euclidean correlator is unique. In Minkowski space, unlike the previous case, only

the regularity at horizon is insufficient. To pick a solution one has to have a more refined

boundary condition there. From physical perspective one important boundary condition

is the incoming wave at z = zH. This wave goes inside the horizon but cannot escape from

there. But even if we choose such a boundary condition, the Minkowski version (3.7.5)

will still be problematic [11].

Action of scalar field in AdS

We start with the AdS part of the metric (3.7.4), which can be written as

ds2 = gzz dz2 + gµν(z) dxµdxν. (3.7.6)
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Consider a fluctuation of scalar field φ on this background space-time. For any curved

(d+1) dimensional space-time the action due to scalar field reads

S =

∫
√
−g dd+1x

[
DµφDµφ + m2φ2)

]
, (3.7.7)

where µ runs from 0 to d and Dµ is the covariant derivative.

The action for scalar in AdS5 space is

S = K
∫

d4x

zH∫
zB

dz
√
−g

[
gzz (∂zφ)2 + gµν(∂µφ) (∂νφ) + m2φ2

]
, (3.7.8)

where K is normalization constant (for dilaton K = −π3L5/4κ2
10, κ10 is the 10 dimensional

gravitational constant ) and m is the mass of the scalar.

The action (3.7.7) can be re-written in the following way

S = K
∫
√
−g d4x

∫
dz

[
DA(φDAφ) − φDADAφ + m2φ2)

]
, (3.7.9)

where A contains both µ and z.

S = K
∫
√
−g d4x

∫
dz [−φ (� − m2) φ︸                                     ︷︷                                     ︸

S EOM

] + K
∫
√
−g d4x

∫
dz [DA(φDAφ)]︸                                      ︷︷                                      ︸

S Boundary

. (3.7.10)

The equation of motion (EOM) for φ is

(� − m2) φ = 0 (3.7.11)

1
√
−g

∂z(
√
−g gzz ∂zφ) +

1
√
−g

∂µ(
√
−g gµν∂νφ) − m2φ = 0 . (3.7.12)

Since gµν(z) is only a function of z,

1
√
−g

∂z(
√
−g gzz ∂zφ) + gµν ∂µ∂νφ) − m2φ = 0 . (3.7.13)
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It has to be solved using the boundary condition at z = zB. Let’s take the solution to be

φ(z, x) =

∫
d4k

(2π)4 eik.x fk(z) φ0(k), (3.7.14)

where φ0(k) is determined by the following boundary condition

φ(zB, x) =

∫
d4k

(2π)4 eik.x φ0(k), with fk(zB) = 1. (3.7.15)

Now substituting (3.7.15) into the EOM, (3.7.13)

1
√
−g

∂z(
√
−g gzz∂z fk) − (gµνkµkν + m2) fk = 0 . (3.7.16)

Boundary conditions

1. fk(zB) = 1.

2. Satisfies the incoming wave boundary condition at horizon (z = zH).

Boundary action and Green function

Let us look at the action on shell (i.e, when φ satisfies the EOM). Clearly from (3.7.10),

the action reduces only to a boundary term,

S Boundary = K
∫
√
−g d4x

∫
dz [DA(φDAφ)]

= K
∫
√
−g dσk(φDkφ), (3.7.17)

where dσk is a hyper-surface perpendicular to k direction. Now if the surface is chosen to

be perpendicular to z direction (as we are integrating over z from z = zB to z = zH ) the
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action reduces to

S Boundary = K
∫
√
−g dσz {φDzφ} (3.7.18)

= K
∫
√
−g d4x {φ gzz (∂zφ)}

∣∣∣∣∣zH

zB

. (3.7.19)

Substituting (3.7.15) into (3.7.18) and integrating over z we get,

S Boundary =

∫
d4k

(2π)4

{
φ0(−k) F (k, z) φ0(k)

}∣∣∣∣∣∣zH

zB

(3.7.20)

where, F (k, z) = K
√
−g gzz f−k(z) ∂z fk(z). (3.7.21)

If we want to calculate Green function, we can use equality (3.7.5) and we can find the

two point function taking the second derivative of classical action with respect to φ0, the

boundary value of φ.

Thus using (3.7.20) the Feynman Green’s function

G̃(k) = F (k, z)
∣∣∣∣∣zH

zB

−F (−k, z)
∣∣∣∣∣zH

zB

. (3.7.22)

The "problematic" Green function

The problem with this Green function is it is real. Green functions are complex in general.

Noticing the fact that f ∗k (z) = f−k(z) and using the equation of motion (3.7.16), it can be

easily shown that imaginary part of F (k, z)

Im F (k, z) =
K
2i
√
−g gzz

[
f ∗k ∂z fk − fk∂z f ∗k

]
, (3.7.23)

is independent of radial co-ordinate z, i.e, ∂z Im F (k, z) = 0. Therefore, in each term of

(3.7.22), the imaginary parts at horizon z = zH and at boundary z = zB cancel each other.
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To avoid the problem we can throw the contribution from horizon term. But from reality

of field equation one can show, F (−k, z) = F ∗(k, z) and imaginary parts still cancel and

G̃(k) remains real.

Minkowski space correlators from AdS/CFT

To get the complex retarded Green’s function we will follow the prescription by Son and

Starinets, which they proposed as a conjecture in [11] and ‘derived’ later in [62]. The

prescription is

G̃R(k) = −2 F (k, z)
∣∣∣∣∣

z=zB

. (3.8.1)

We check the above conjecture for a zero temperature field theory and reproduce the two

point functions following [11]. The prescription is as follows.

1. Find a solution to the (3.7.16) with following properties :

• It equals to 1 at boundary z = zB .

• For time-like momenta : It satisfies incoming boundary condition at horizon.

For space-like momenta : The solution is regular at horizon.

2. The retarded Green’s function is given by G = −2 F∂M, where F is defined as

(3.7.20) and only contribution from boundary has to be taken.

Note that Im F (k, z) (see (3.7.23)) is independent of radial co-ordinate z and therefore

one can calculate it at any convenient value of z, in particular at the horizon.
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A sample calculation

To see whether the prescription works, let us consider the following situations whose

Green functions are already known using other methods. Let us use the above prescription

to calculate the retarded (or advanced) Green’s function of the operator O = 1
4 F2 at

zero temperature. Here the action is of minimally coupled massless scalar field in the

background AdS5. The horizon is at zH = ∞ and the boundary is at zB = 0. EOM satisfied

by the modes is given by

f ′′k (z) −
3
z

f ′k (z) − k2 fk(z) = 0 . (3.8.2)

The Euclidean two point function using GKPW prescription has been computed in ap-

pendix E. For Minkowski correlator we need to treat spacelike and timelike momenta

separately.

For spacelike momenta i.e, k2 > 0, we can follow the steps identical to the Euclidean case

(see appendix E) and obtain the Green function

GR(k) =
N2k4

64 π2 ln k2 , k2 > 0 . (3.8.3)

The extra minus sign is due to the Lorentzian signature.

For timelike momenta, we introduce a new variable q =
√
−k2. The solution to the

equation (3.8.2) with above mentioned boundary conditions

fk(z) =



z2H(1)
2 (qz)

ε2H(1)
ν (qε)

if ω > 0,

z2H(2)
2 (qz)

ε2H(2)
2 (qε)

if ω < 0 .
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Note that f−k = f ∗k . Calculating F from (3.7.20) and using the prescription (3.8.1)

G̃R(k) =
N2K4

64 π2

(
ln k2 − i π sgn ω

)
. (3.8.4)

Combining (3.8.3) and (3.8.4) we can express the complete retarded Green’s function as

GR(k) =
N2K4

64 π2

(
ln |k2| − i π θ(−k2) sgn ω

)
. (3.8.5)

As z→ ∞, F (k, z) does not go to zero rather it becomes purely imaginary in that limit.

F (k, z→ ∞) =
i N2K4 sgn ω

128π
= Im F (k, ε) . (3.8.6)

This we could have guessed from the fact that flux is conserved (3.7.23) and therefore

imaginary part of the Green function can be calculated independently - just from the

asymptotic behavior of the solution at the horizon.

We can now use the relation (D.1.11) to get the Feynman propagator at zero temperature

G̃F(k) =
N2K4

64π2 (ln |k2| − iπθ(−k2)) . (3.8.7)

Evidently, we can obtain the same propagator by Wick rotating the Euclidean correlator

G̃E(kE) = −
N2K4

E

64π2 ln k2
E . (3.8.8)

Thus the prescription gives the correct answer for retarded Green’s function at zero tem-

perature.

Above we have checked the prescription at zero temperature with an example. The same

procedure can be applied to compute the retarded Green’s functions of two dimensional

CFT dual to the non-extremal BTZ black hole. And if the result is analytically contin-
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ued to complex frequencies we can reproduce the well known Matsubara correlators for

thermal field theory (see [11] for details).

We heavily use this prescription to calculate retarded Green function for a Brownian par-

ticle throughout rest of this thesis. For that particular system we need to study dynamics

of a fundamental string in an asymptotically AdS background in place of scalar field.
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4 Brownian motion in 1+1 D

In this chapter, we study the motion of a stochastic string in the background of a BTZ

black hole. In the 1+1 dimensional boundary theory this corresponds to a very heavy

external quark interacting with the fields of a CFT at finite temperature, and describing

Brownian motion. The equations of motion for a string in the BTZ background can be

solved exactly. Thus we can use holographic techniques to obtain the Schwinger-Keldysh

Green function for the boundary theory for the force acting on the quark. We write down

the generalized Langevin equation describing the motion of the external particle and cal-

culate the drag and the thermal mass shift. Interestingly we obtain dissipation even at zero

temperature for this 1+1 system. Even so, this does not violate boost (Lorentz) invariance

because the drag force on a constant velocity quark continues to be zero. Furthermore

since the Green function is exact, it is possible to write down an effective membrane ac-

tion, and thus a Langevin equation, located at a ‘stretched horizon’ at an arbitrary finite

distance from the horizon.

The content of this chapter is based on work done with B. Sathiapalan [7].

Introduction

AdS/CFT correspondence [1–4] has been used quite successfully to study thermal prop-

erties such as the viscosity ofN = 4 super Yang-Mills theory at finite temperature. Dissi-

65



pation and thermal fluctuation are two sides of the same coin as embodied in the famous

fluctuation dissipation (FD) theorem. The study of fluctuations using holographic tech-

niques has been done in several papers [5,6,26–28,63–65] and the fluctuation dissipation

theorem has been shown to hold. Different techniques [5, 6] have been used to address

this issue. A very versatile technique is in terms of Green functions. Son and Teaney [6]

have used holographic techniques to calculate Green functions to address these questions

in the context of Brownian motion of a particle such as a quark.

The fluctuation-dissipation theorem in the context of Brownian motion has been studied

by Kubo [10,66] and Mori [67,68] amongst others. Brownian motion can be described as

a stochastic process [69]. In some approximation it is Markovian. If we can assume that

velocities at two instants are not correlated, then it is a Markovian process when described

in terms of position. Thus one can define a probability P (x(t), t; x(t0), t0) as the conditional

probability for the particle to be in position x(t) at time t given that it was at x(t0) at

time t0. One can also write a Fokker Plank equation for P(x(t), t; x(t0), t0). On the other

hand if we want a finer description one can use the velocity as the variable defining the

Markovian process in terms of P(v(t), t; v(t0), t0). This is a good approximation as long as

the duration of a collision is very small, which is equivalent to saying that acceleration at

different instants is uncorrelated. The Fokker-Planck equation in the velocity description

is
∂P(v, t)
∂t

= −
∂

∂v
a1(v)P +

a2

2
∂2P
∂v2 . (4.1.1)

Here a1 = 〈∆v〉
∆t and a2 =

〈(∆v)2〉

∆t . Here ∆v is the change in velocity in time ∆t.

One can obtain these from the related Langevin equation

mv̇ = −γv + ξ(t) , (4.1.2)

where ξ(t) is the random force that is responsible for the fluctuations, obeying 〈ξ(t)ξ(t′)〉 =

Γδ(t−t′) and 〈ξ(t)〉 = 0. v(t0) = v0 is the initial condition. Thus a1 = 〈v(∆t)−v0〉 = −
γ

mv0∆t.
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From the solution of the Langevin equation (taking t0 = 0):

v(t) = v0e−
γ
m t +

1
m

∫ t

0
e−

γ
m (t−t′)ξ(t′) dt′, (4.1.3)

one can obtain a2 = Γ
m2 . Thus the Fokker Planck equation becomes

∂P(v, t)
∂t

=
γ

m
∂

∂v
vP +

Γ

2m2

∂2P
∂v2 . (4.1.4)

Finally since we know that P(v) = e−
mv2
2kT is a time independent solution of the Fokker-

Planck equation we get

Γ = 2γkT . (4.1.5)

This is the fluctuation dissipation theorem in this context, because it relates Γ, the strength

of the fluctuation, to γ the strength of the dissipation.

The Langevin equation is much more convenient to work with. To the extent that it

assumes that time scales are larger than the microscopic time scale it must fail for very

small time scales. As Kubo [10] has shown, stationarity should imply that

d
dt0
〈v(t0)v(t0)〉 = 0 = 〈v̇(t0)v(t0)〉. (4.1.6)

Whereas (4.1.3) gives

〈v̇(t0) v(t0)〉 = −
γ

m
〈v(t0) v(t0)〉 , 0 . (4.1.7)

The random force ξ represents the effects of the interaction of other degrees of freedom on

our particle and the assumption that the correlation time is zero is unphysical. A proper

microscopic theory that incorporates these effects should not give this contradiction. Kubo

has argued that one can replace Γδ(t− t′) by a more general Γ(t− t′) which is less singular
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than a delta function. To see this we modify the Langevin equation to

mv̇ = −

∫ t

t0
dt′ γ(t − t′) v(t′) + ξ(t) . (4.1.8)

As long as

lim
t→t0

∫ t

t0
dt′ γ(t − t′) v(t′) = 0, (4.1.9)

the aforementioned contradiction is avoided. Thus

γ(ω) =

∫ ∞

0
dt eiωt γ(t) (4.1.10)

acquires a non trivial frequency dependence. With this it can be shown that

∫ ∞

0
dt eiωt〈ξ(t0) ξ(t0 + t)〉 = Γ(ω) = k T γ(ω) . (4.1.11)

This is the fluctuation-dissipation theorem that replaces (4.2.18)1. In fact more gener-

ally fluctuation dissipation theorems can be stated in terms of properties of various two

point correlation functions. This is particularly clear in the Schwinger-Keldysh formal-

ism [70,71]. Son and Teaney [6] have shown how the Schwinger-Keldysh Green functions

can be obtained holographically and their holographic calculation gives such a frequency

dependent correlation function for the noise which satisfies the FD theorems. However

if one expands in powers of frequency one cannot see the softening of the delta function.

One needs a more non perturbative result.

In addition to obtaining a Langevin equation for the boundary theory at infinity, Son and

Teaney [6] also obtained an effective membrane action and a Langevin equation, at a

‘stretched’ horizon close to the event horizon. However in AdS5 the equations cannot be

solved exactly. Thus the solution had to be worked out as a power series in the frequency.

We do an almost identical calculation for the case of the BTZ black hole in AdS3 where

1The factor of 2 has disappeared because in the Laplace transform the integral is from 0 to ∞ and not
from −∞ to∞.
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one can solve the bulk equation of motion exactly. This was first shown in [5] where

some exact correlators were computed. We then use the techniques of [6] to obtain the

Schwinger-Keldysh Green functions exactly. We do indeed find the softening of the delta

function that avoids the contradiction pointed out by Kubo [10]. It is interesting that in-

ternal consistency at the microscopic level is built into the holographic formalism. (Of

course the holographic result is in some sense the leading term in a “strong coupling”

expansion i.e, large N and large λ limits of the theory. Departures from large N requires

quantum or stringy corrections in the bulk, whereas departure from large λ suggests ‘su-

pergravity’ is not a good approximation and needs higher derivative corrections to the

gravitational theory. Therefore to ensure consistency at higher orders it may be that one

has to embed the boundary theory in a string theory.)

We also find the interesting phenomenon of dissipation at zero temperature. This is a little

puzzling because at zero temperature one expects the system to have Lorentz invariance

and boost invariance would say that a quark moving at a constant velocity cannot possibly

feel any drag force. One can indeed check in our case, that even though the Green func-

tion does have a dissipative component at zero temperature, the frequency dependence

is such that force on a constant velocity quark does continue to be zero. Thus there is

nothing unphysical about this. Accelerating quarks can certainly experience dissipation

by coupling to the massless degrees of freedom in the conformal field theory - i.e. “ra-

diation” [12, 72, 73]. Dissipation at zero temperature has been reported in the literature

earlier [12, 72–82].

We are also able to place the membrane at an arbitrary location without a power series

expansion and thus obtain a generalized Langevin equation at an arbitrary location. We

believe this may be useful in a holographic RG analysis of this system.

In the path integral approach to the Langevin equation it is manifest that both γ(ω) and

Γ(ω) are related to correlation functions of the noise. Γ is related to the symmetric two

point function and γ to the retarded two point function. The FD theorem is then a state-
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ment of a relation between these two correlation functions and what we find is, as ex-

pected, consistent with this theorem.

Rest of this chapter is organized as follows. Section 4.2 is a description of the Langevin

equation and its derivation using the Schwinger-Keldysh technique and is a review. In

Section 4.3 the retarded Green function is calculated using the usual AdS/CFT prescrip-

tion. For the BTZ case the Green function can be obtained exactly. This section contains

one of the main results of this chapter. The Section 4.4 is mainly a review where we repeat

the Son and Teaney derivation of the Schwinger-Keldysh Green functions using hologra-

phy. This is also then a verification of the FD theorem. The main point of departure is that

the various Green functions that make up the Schwinger-Keldysh Green function are all

known exactly in the BTZ case. Section 4.5 starts with a brief review of the holographic

RG as discussed in [19] and its relevance for our work. It also contains the second main

result of this chapter in which, by calculating the bulk to bulk propagators exactly, we

obtain an effective ‘boundary’ action but now with the boundary at an arbitrary location.

From the boundary perspective this is like an effective action at an arbitrary point along

the RG flow. In Section 4.6 different time scales relevant to Brownian motion have been

discussed. Section 4.7 contains some conclusions.

Langevin Dynamics : A Review

Here the Langevin dynamics [83] will be reviewed in brief. Suppose in a viscous medium

a very heavy (compared to the masses of the medium particles) particle is moving. Its

dynamics will be described by the Langevin equation2

Mkin
dv
dt

+ γv = ξ(t), (4.2.1)

2This is actually the small-frequency limit of the generalized Langevin equation (4.1.8). In Section 4.3 it
will turn out that one obtains the generalized Langevin equation (4.1.8) from holographic calculation rather
than its local version (6.1.1).
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with 〈ξ(t) ξ(t′)〉 = Γ δ(t − t′) = 2kTγ δ(t − t′), (4.2.2)

where −γv is the drag, ξ is the random noise and Mkin is the ‘renormalized mass’ in

the thermal medium. Evidently equation (6.1.2) is a statement of fluctuation-dissipation

theorem. At the ultimate long time limit we can neglect inertial term in (6.1.1)

γv = ξ (4.2.3)

and can define the diffusion coefficient as

D =
T
γ
. (4.2.4)

We will see later the dynamics on the stretched horizon (4.5.32) is identical to this over-

damped motion (6.1.3).

The aim of this section is to review how to derive Langevin equation from path inte-

gral formalism. There are many good references [84, 85] for detail description of this

derivation, we will go through this quickly just to fix the notation we will use through out

this chapter and we follow mostly the steps sketched in [6]. We can define the partition

function for a heavy particle in a heat bath using a Schwinger-Keldysh contour3 (fig.4.1)

Z =

〈∫
[Dx1][Dx2] ei

∫
dt1 M0

Q ẋ2
1 e−i

∫
dt2 M0

Q ẋ2
2 ei

∫
dt1φ1(t1)x1(t1) e−i

∫
dt2φ2(t2)x2(t2)

〉
bath

, (4.2.5)

φ1, φ2 are the heat bath degrees of freedom which act like sources. x1, x2 are the fields

‘living’ on the two different sections 1 and 2 of the time contour. We will see later in the

gravity side these are the two types of field those ‘live’ on the two boundaries, 1 and 2 of

the full Kruskal diagram (fig.4.2). Path integral along the vertical portion of the contour

3For some recent developments in Schwinger-Keldysh formalism see [86, 87] and see [88–90] for de-
tailed reviews.
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t=−∞ t=+∞

t=+∞− iσ

t=−∞ − iβ

field “1”

field “2”

Figure 4.1. Schwinger-Keldysh contour for systems in thermal equilibrium with temperature
β−1

gives us average over the thermal density matrix e−βH. And σ is a free parameter that can

take any value. For this discussion we can safely choose σ = 0 and later we will see that

this choice is necessary for ‘ra formalism’ which is used extensively in real time thermal

field theory literature [63, 85, 88, 91].

For very heavy particle we can consider the forces on the particle is very small compared

to inertial term so we can expand it in second order, take the average over bath and make

it an exponentiate again to get

Z =

∫
[Dx1][Dx2] ei

∫
dt1 M0

Q ẋ2
1 e−i

∫
dt2 M0

Q ẋ2
2 e−

1
2

∫
dtdt′xs(t)[〈φ(t)φ(t′)〉]ss′ xs′ (t′) . (4.2.6)

Here the Green function takes a 2 × 2 matrix form as there are two type of fields and it is

contour ordered

[〈φ(t)φ(t′)〉]ss′ ≡ i

 G11(t, t′) −G12(t, t′)

−G21(t, t′) G22(t, t′)

 . (4.2.7)

Notice that G11(t, t′) is the usual time ordered Feynman Green function where as G22(t, t′)

is anti-time ordered Green function.

In operator language, if we define

φ(t) = eiHt φ(0) e−iHt. (4.2.8)
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The different Green functions are defined as,

i G11(t, t′) = 〈Tφ(t) φ(t′)〉 (4.2.9)

i G22(t, t′) = 〈T̃φ(t) φ(t′)〉 (4.2.10)

i G12(t, t′) = 〈φ(t′) φ(t)〉 (4.2.11)

i G21(t, t′) = 〈φ(t) φ(t′)〉 . (4.2.12)

The KMS relation Tr [e−βH φ(t) φ(0)] = Tr [e−βH φ(0) φ(t + iβ)] is easy to prove using

cyclicity of the trace and the definition (4.2.8). This implies for the Fourier transform

eβω
∫ ∞

−∞

dt eiωt〈Tr , [e−βH φ(0) φ(t)]〉 =

∫ ∞

−∞

dt eiωtTr [e−βH φ(t) φ(0)] . (4.2.13)

In addition to this if we add i G11 + i G22 we will get

i G11(t, t′) + i G22(t, t′) = 〈Tφ(t) φ(t′)〉 + 〈T̃φ(t) φ(t′)〉

= 〈φ(t) φ(t′)〉 {θ(t − t′) + θ(t′ − t)}

+ 〈φ(t′) φ(t)〉 {θ(t′ − t) + θ(t − t′)}

= i G12(t, t′) + i G21(t, t′) . (4.2.14)

Therefore we can write

G11 + G22 = G12 + G21 . (4.2.15)

Note that (4.2.15) is true only for σ = 0. We will see our Green functions will obey this

relation.

Using (4.2.13) and (4.2.15) all these components of the matrix can be expressed in terms
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of any one Green function, say retarded Green function

i GR(t) = θ(t) 〈[φ(t), φ(0)]〉bath . (4.2.16)

Thus for instance we can use

Im GR(ω) = −
i
2

∫ ∞

−∞

dt eiωt〈[φ(t), φ(0)]〉 = −
i (eβω − 1)

2

∫ ∞

−∞

dt eiωt 〈φ(0) φ(t)〉 , (4.2.17)

to write

Im GR(ω) = −i tanh
(
βω

2

)
Gsym(ω), (4.2.18)

where4 Gsym(ω) = 1
2

∫ ∞
−∞

dt 〈{φ(t), φ(0)}〉 eiωt.

Now we introduce the previously advertised ra formalism. We have already taken σ = 0.

As we are working with very heavy quark the motion will be nearly classical. So, x1 ∼ x2.

Therefore we can use some sort of ‘centre of mass’ coordinates for the particle and for

the forces too,

xr =
x1 + x2

2
, xa = x1 − x2, (4.2.19)

φr =
φ1 + φ2

2
, φa = φ1 − φ2. (4.2.20)

r and a here refer to retarded and advanced respectively and we should remember xa is a

very small quantity for quasi-classical description. Now substituting (4.2.19) and (4.2.20)

into the partition function (6.1.5)

Z =

∫
[Dxr] [Dxa] e−i

∫
dt M0

Q xa ẍr e−i
∫

dt dt′[xa(t) i GR(t,t′) xr(t′)− 1
2 xa(t) Gsym(t,t′) xa(t′)] , (4.2.21)

4According to our definition Gsym(ω) is purely imaginary.
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where the propagators

Gsym(t, t′) = 〈φr(t) φr(t′)〉 =
1
2
〈{φ(t), φ(t′)}〉 , (4.2.22)

i GR(t, t′) = 〈φr(t) φa(t′)〉 = θ(t − t′) 〈[φ(t), φ(t′)]〉 . (4.2.23)

As we have argued earlier the different Green functions are not independent. In particular

the retarded and the symmetric Green function are related as

i Gsym(ω) = − (1 + 2 nB) Im GR(ω), (4.2.24)

where nB(ω) = e− βω
1−e− βω is the Bosonic occupation number. This is just a rewriting of

(4.2.18).

This is a canonical statement of fluctuation-dissipation theorem. Later in this section we

will identify these two Green functions as γ(ω) and Γ(ω) of the equations (4.1.8) and

(4.1.11). Now we can write down the path integral in Fourier space

Z =

∫
[Dxr] [Dxa] exp

(
−i

∫
dω
2π

xa(−ω)[−M0
Qω

2 + GR(ω)]xr(ω)
)

e−
1
2

∫
dω
2π xa(−ω)[i Gsym(ω)]xa(ω).

(4.2.25)

We introduce a new random variable which we call ξ in anticipation that it will turn out

to be the random noise, by defining

e−
1
2

∫
dω
2π xa(−ω) [i Gsym(ω)] xa(ω) =

∫
[Dξ] ei

∫
xa(−ω) ξ(ω)e−

1
2

∫
ξ(ω) ξ(−ω)
i Gsym(ω)

dω
2π . (4.2.26)

The partition function becomes

Z =

∫
[Dxr] [Dxa] [Dξ] e−

1
2

∫
dω
2π

ξ(ω)(−ω)
i Gsym(ω) exp

(
−i

∫
dω
2π

xa(−ω)[−M0
Qω

2xr(ω) + GR(ω)xr(ω) − ξ(ω)]
)
.

(4.2.27)
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Integrate out xa(−ω) to get a delta function in ω-space

Z =

∫
[Dxr] [Dξ] e−

1
2

∫
dω
2π

ξ(ω) ξ(−ω)
i Gsym(ω) δω

[
−M0

Qω
2xr(ω) + GR(ω)xr(ω) − ξ(ω)

]
. (4.2.28)

This partition function is an average over the classical trajectories for the heavy particle

under the noise ξ.

[
−M0

Qω
2 + GR(ω)

]
x(ω) = ξ(ω), 〈ξ(−ω) ξ(ω)〉 = i Gsym(ω) . (4.2.29)

Going back to time space we obtain the generalized Langevin equation

M0
Q

d2x(t)
dt2 +

∫ t

−∞

dt′ GR(t, t′) x(t′) = ξ(t) , 〈ξ(t) ξ(t′)〉 = i Gsym(t, t′) . (4.2.30)

GR(t, t′) is thus the same as γ(t − t′) of Section 4.1 for the choice t0 = −∞ and i Gsym(t, t′)

is the same as Γ(t − t′).

If the Green function is expanded for small frequencies the coefficient of ω2
(
i.e, d2 x(t)

dt2

)
adds to the mass of the particle and the coefficient of ω

(
i.e, dx(t)

dt

)
will contributes as the

drag term

GR(ω) = −∆Mω2 − i γω + . . . (4.2.31)

After taking into account the thermal mass correction we define the effective mass

Mkin(T ) = M0
Q + ∆M .

Then the Langevin equation reads

Mkin
d2x
dt2 + γ

dx
dt

= ξ , (4.2.32)

with 〈ξ(t) ξ(t′)〉 = Γ(t − t′) . (4.2.33)
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These equations are identical to (6.1.1) and (6.1.2).

Generalized Langevin Equation from Holography

The Einstein-Hilbert action for AdS3 which has negative cosmological constant, − Λ = 1
L2

is given by

IEH =
1

2π

∫
dt dr dx

√
−g

[
R +

2
L2

]
+ IB’dy . (4.3.1)

In this units 16 πG is same as 2π. And therefore, 8G = 1. Since G goes as length in 2+1

dimensions this defines a choice of length units.

We write down the action for a string stretching from the horizon (r = rH) towards the

AdS boundary and ending on the probe brane at r = rB, in background metric of AdS3

with a BTZ black hole embedding. The BTZ metric is

ds2 = −

(
r2

L2 − 8GM
)

dt2 +

(
r2

L2 − 8GM
)−1

dr2 +
r2

L2 dx2 . (4.3.2)

Let’s write this background metric as

ds2 =
r2

L2

[
− f (b r) dt2 + dx2

]
+

L2 dr2

f (b r) r2 , (4.3.3)

where r is the canonical choice of coordinate with dimension of length, b is the inverse

horizon radius, L is the AdS radius. In our unit, rH = b−1 =
√

8GM L.

So, f (b r) = 1− 8GML2

s2 . Thus f (s) = 1− 1
s2 and πT =

√
8GM
2L =

√
2GM
L defines the Hawking

temperature. b = 1
2πT L2 is an alternate expression for b, which can be taken to be the black

hole mass parameter.
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We write the same metric (4.3.3) with a dimensionless coordinate, s ≡ b r

ds2 = (2πT )2L2
[
− s2 f (s) dt2 + s2dx2

]
+

L2 ds2

s2 f (s)
. (4.3.4)

We want to study the small fluctuation of the string in this non trivial background. The

Nambu-Goto action is

S = −
1

2 π l2
s

∫
dτ dσ

√
− det hab . (4.3.5)

Target space coordinates are,

Xµ ≡ (t, s, x) .

And world sheet coordinates are,

σ0 = τ and σ1 = σ.

We will choose (static gauge), t = τ and s = σ. Therefore, x ≡ x(τ, σ) = x(t, s) and the

induced metric, hab = Gµν
dXµ

dσa

dXν

dσb
where a, b = 0, 1.

Gµν is the target space metric which is AdS3-BH for present case.

h ≡ det (hab) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Gµν

dXµ

dτ
dXν

dτ Gµν
dXµ

dτ
dXν

dσ

Gµν
dXµ

dσ
dXν

dτ Gµν
dXµ

dσ
dXν

dσ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Gtt + Gxx ẋ2 Gxx ẋ x′

Gxx x′ ẋ Gss + Gxx x′2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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h = − (2 πT )2 L4
[
1 + (2 πT )2s4 f (s) x′2 −

ẋ2

f (s)

]
. (4.3.6)

For small fluctuations x′ and ẋ are very small. So we can write

√
−h = (2 πT ) L2

√
1 + (2 πT )2 s4 f (s) x′2 −

ẋ2

f (s)

≈ (2 πT ) L2
[
1 +

1
2

(2 πT )2 s4 f (s) x′2 −
1
2

ẋ2

f (s)

]
. (4.3.7)

Action for the small fluctuation of string world sheet

S = −
(2 πT ) L2

2 π l2
s

∫
dt ds

[
1 +

1
2

(2 πT )2 s4 f (s) x′2 −
1
2

ẋ2

f (s)

]
. (4.3.8)

Define mass per unit s

m ≡
(2 πT ) L2

2 π l2
s

=
√
λT, with,

(
L
ls

)4

≡ λ . (4.3.9)

And the local tension

T0(s) ≡
(2 πT )3 L2

2 π l2
s

f s4 = 4
√
λ π2 T 3 f s4 = 4

√
λ π2 T 3s2 (s2 − 1) . (4.3.10)

Then the action reduces to

S = −

∫
dt ds

[
m +

1
2

T0 (∂sx)2
−

m
2 f

(∂tx)2
]
. (4.3.11)

The equation of motion (EOM) can be obtained by varying the action (δS = 0 ),

0 = −
m
f
∂2

t x + ∂s (T0(s) ∂sx) . (4.3.12)
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Then the standard way is to write down the EOM in Fourier space

x(s, t) =

∫
dω
2π

eiωt fω(s) x0(ω) ,

x(s = sB, t) =

∫
dω
2π

eiωt x0(ω) , with fω(sB) = 1 . (4.3.13)

Therefore the EOM in terms of the modes reduces to

w2

f
fω(s) + ∂s [ f s4 ∂s fω(s)] = 0 , (4.3.14)

where we have defined w ≡ ω/2πT .

For our case f (s) = 1 − 1
s2 , so the EOM reduces to

∂2
s fω +

2 (2s2 − 1)
s (s2 − 1)

∂s fω +
w2

(s2 − 1)2 fω = 0 . (4.3.15)

This is an ordinary second order linear differential equation in s. This can be recast

into associated Legendre differential equation which one can solve exactly5. The general

solution to the EOM will be

fω(s) = C1
Piw

1

s
+ C2

Qiw
1

s
, (4.3.16)

where Pµ
λ and Qµ

λ are associated Legendre functions and C1, C2 are two constants which

will be determined by two boundary conditions at the horizon (s = 1) and at the boundary

(s → ∞) of the AdS space. We will impose the following boundary conditions on the

modes, fω to obtain the retarded Green function as prescribed by Son and Starinets [11].

Actually this ‘prescription’ has been derived quite rigorously later by van Rees in [92]

based on the dictionary of the Lorentzian AdS/CFT as formulated in [93]. Furthermore the

application of this formalism to holographic Brownian motion is described in appendix D

5The exact solution to this EOM for a stochastic string in BTZ background was obtained earlier by J. de
Boer et al. in [5] to calculate some exact correlators.
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of [94].

1. At the horizon to impose the ingoing wave boundary condition one has to pick the

solution Piw
1
s (see appendix F). So,

f R
ω (s) ∼

Piw
1

s
.

2. The other condition that it should satisfy at the ‘boundary’ (sB, say, where sB � 1) of

the AdS space is, s→ sB, f R
ω (s)→ 1.

f R
ω (s) =

(1 + s)iw/2

(1 + sB)iw/2

(1 − s)−iw/2

(1 − sB)−iw/2

sB

s
2F1(−1, 2; 1 − iw; 1−s

2 )

2F1(−1, 2; 1 − iw; 1−sB
2 )

=
(1 + s)iw/2

(1 + sB)iw/2

(1 − s)−iw/2

(1 − sB)−iw/2

sB

s
w + is
w + isB

. (4.3.17)

Now the retarded correlator GR(ω) is defined as

G0
R ≡ lim

s→sB
T0(s) f R

−ω(s) ∂s f R
ω (s) = − M0

Q ω
2 + GR(ω) . (4.3.18)

M0
Q is zero temperature mass of the external particle and the term containing it comes

from the ‘divergent part’ of the boundary limit (i.e, sB → ∞). Our aim is to extract GR(ω)

and then some interesting physical quantities like viscous drag and mass shift form it.

Here sB is UV regulator for the field theory and IR regulator from the dual bulk perspec-

tive. So to calculate the retarded correlator we should take the limit s → sB. Taking this

limit, from (4.3.17),

∂s f R
ω (s)

∣∣∣∣∣
s→sB

= −
w (sBw + i)

sB(sB
2 − 1)(sB − iw)

, (4.3.19)

and using the fact that f R
−ω(sB) = 1, we obtain

G0
R = T0(s) f R

−ω(s) ∂s f R
ω (s)

∣∣∣∣∣
s→sB
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= − 4
√
λ π2T 3 sBw (sBw + i) (sB + iw)

(s2
B + w2)

(4.3.20)

= − 4
√
λ π2T 3 sBw (sBw + i)

(sB − iw)
. (4.3.21)

Equation (4.3.21) is an exact expression for the retarded force-force correlator for the

boundary field theory. Note also that it has a singularity only in the lower half ω-plane

as required for a retarded Green function. But it is written in terms of two dimensionless

parameters s and w. To make the scaling behavior of the boundary theory correlator

more natural we use the corresponding dimensionful parameters, namely ω = 2πTw,

rB = 2πT L2sB.

Now we can introduce a mass scaleM ≡
rB

l2
s

. Actually, as discussed in Section 4.5.1,M

can be treated as a renormalization group (RG) scale for the dual field theory. Therefore

we do not have to pushM all the way to infinity6. We would rather take the point of view

that the parameters of the field theory run withM such a way that the physical quantities

remain unchanged. So the correlator reduces to

G0
R(ω) = −Mω

(i 4 π2T 2
√
λ +Mω)

2π (M− i
√
λω)

. (4.3.22)

Absorbing the divergent piece (the leading term in the large M expansion which goes

as Mω2) in the definition of the zero temperature mass of the Brownian particle and

subtracting it from G0
R we can define the retarded boundary Green function, GR

G0
R ≡ −M0

Q ω
2 + GR(ω) , (4.3.23)

where, M0
Q =
M

2 π
(4.3.24)

=
√
λT sB

6There is also another physical reason why it shouldn’t be pushed all the way to the boundary. In such
case the mass of the heavy quark is infinite and there would be no Brownian motion.
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=

√
λ

π L2 rB . (4.3.25)

As mentioned above, M0
Q is nothing but the mass of the string stretching from rB to 0 in

the zero temperature limit. And,

GR(ω) = −
i
√
λMω (4 π2 T 2 + ω2)

2π (M− i
√
λω)

(4.3.26)

=
Mω

2 π
(ω2 + 4 π2 T 2)

(ω + i M√
λ
)

. (4.3.27)

GR(ω) is clearly finite in theM→∞ limit.

Expanding GR (4.3.26) in small frequencies, ω

GR(ω) ≈
2 λ πT 2

M
ω2 − i

2 √λ πT 2 ω +

 √λ2 π
−

2 (
√
λ)3 πT 2

M2

ω3

 . (4.3.28)

Again we know when GR(ω) is expanded in small ω it takes the form

GR(ω) = −i γ ω − ∆Mω2 − i ρ ω3 + . . . (4.3.29)

where γ and ∆M are the viscous drag and the thermal mass shift for the Brownian particle.

Whereas ρ is some higher order ‘drag coefficient’ as it is known that the imaginary part

of the retarded Green function (Im GR(ω)) is responsible for dissipation.

Comparing (4.3.28) and (4.3.29) we can identify

γ = 2
√
λ πT 2 , (4.3.30)

∆M = −
2 λ πT 2

M
(4.3.31)

= −
√
λT

1
sB
, (4.3.32)
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ρ =

√
λ

2 π
−

2 (
√
λ)3 πT 2

M2 . (4.3.33)

Note that the particle’s rest mass at zero temperature, M0
Q (4.3.24) and its viscous drag, γ

(4.3.30) are identical to that of a quark in an N = 4 SYM plasma at finite temperature in

3+1 dimensions [6,95–97]. But the thermal mass shift, ∆M is vanishingly small for large

value ofM. We have intentionally kept theO(s−1
B ) term to look at its leading behavior. ∆M

has the correct dimension since sB is a dimensionless quantity (sB = b rB and b ∼ length−1

and rB ∼ length).

One can also compare this mass shift with that obtained by considering the change in mass

of a static string coming from the change in its length due to the presence of a horizon.

∆M = −

∫ rH

0
(Tension).

√
−g dr

= −
1

2 π l2
s

∫ rH

0

√
−gtt grr dr

= −
rH

2 π l2
s

= −
T L2

l2
s

= −
√
λT . (4.3.34)

Note that it is not quite the same as (4.3.31). In lower dimension systems the effect of

fluctuations could be much larger and could explain the discrepancy.

Notice if we take the limitM→∞ (ultra-violet limit) and T → 0 we obtain

GR(ω) = − i

√
λ

2 π
ω3 , (4.3.35)

which doesn’t contain any dimensionful parameter other than ω and thus properly de-

scribes a conformal field theory at UV fixed point.
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We can now put T = 0 in (4.3.26) to get

GR(ω)
∣∣∣∣∣

T=0
=

Mω3

2π (ω + i M√
λ
)

=
Mω3

(
ω − i M√

λ

)
2π

(
ω2 +

(
M
√
λ

)2
) . (4.3.36)

The presence of an imaginary part in GR(ω) signifies dissipation. Thus an interesting

result we get from the expression (4.3.36) is a temperature independent dissipation.

• For low frequency regime (ω �M) at zero temperature we recover (4.3.35) which

shows the diffusive behavior,

GR(ω)
∣∣∣∣∣

T=0
≈ − i

√
λ

2π
ω3 . (4.3.37)

• If we consider the frequency range ω �M 7

GR(ω)
∣∣∣∣∣

T=0
≈
Mω2

2 π
− i
M2 ω

2π
√
λ

+ . . . (4.3.38)

We see a drag like term proportional to ω. This term strongly suggests that there

must be ‘drag’ for the heavy particle even at zero temperature for this 1+1 d CFT.

At first sight this is puzzling because Lorentz invariance of a theory would say that a quark

moving with a constant velocity for all time, should not slow down - this would violate

boost invariance8. In fact the drag force on a particle moving with a constant velocity

turns out to be zero as we see below. The drag force F(t) is given by (in frequency space)

F(ω) = GR(ω) x(ω) . (4.3.39)

7If we are to think ofM as an effective cutoff of the theory, then we should keep ω <M. So (4.3.38) is
only a formal limit. This result will not be used elsewhere in the thesis.

8A Similar phenomenon has been observed for theories with hyperscaling violation [26, 27]. Clearly
these backgrounds break Poincaré invariance. For these non-relativistic situations, energy and momentum
are conserved but drain into the soft infra-red modes of the theory [27, 98]. Moreover, this mechanism of
energy loss is present even at constant velocity of the particle! Evidently this phenomenon is quite different
from the one we are addressing in this thesis.
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For a particle moving at constant velocity x(t) = vt. This translates to

x(ω) = − iv δ′(ω) . (4.3.40)

Since GR(ω = 0) = G′R(ω = 0) = 0, the force is zero. In more detail, since we have a

distribution δ′(ω), we should consider a smooth function f (ω) and evaluate the integral:

∫
dω GR(ω) x(ω) f (ω) =

∫
dω GR(ω) (− i v δ′(ω)) f (ω) = 0 , (4.3.41)

on integrating by parts.

(One can trace this to (4.3.36) which says that GR(ω) starts off as ω3.)

The phenomena of zero temperature dissipation have been noticed in holography [12,72–

76] and many other contexts [77–82]. The physical mechanism that gives rise to energy

loss at zero temperature in the relativistic theories was first explained in [12], and then

elaborated on in [72, 73]. For accelerated quarks in the vacuum of a CFT, energy and

momentum are radiated away by emission of gluonic fields9), in analogy with the theory

of radiation in classical electrodynamics. This in turns leads to a Liénard-like formula for

the rate of energy loss and a generalized Lorentz-Dirac equation that captures the effects

of radiation damping. The previous interpretation agrees with the fact that a quark moving

with constant velocity does not feel drag force and thus, does not radiate. Moreover, for

the Langevin dynamics around accelerated trajectories at zero temperature [65,100], it has

also been seen that the stochastic motion of the heavy probe is not due to collisions with

the fluid constituents but rather arises due to the random emission of ‘gluonic’ radiation10.

We conclude this section with some more remarks on the zero temperature dissipation

9Notice that in 1+1 dimensions gauge fields are not dynamical and hence cannot cause radiation. But
radiations which are massless degrees of freedom can also be scalars (e.g., see [99] for scalar radiation
due to heavy quark rotating in N = 4 SYM in 3+1 dimensions.). There are theoretical and experimental
evidences for scalar radiation in 1+1 dimensions particularly, in several condensed matter systems.

10 This interpretation is further supported by studies of the radiation pattern of a heavy quark [65, 101].
See [102] for a review of all these topics.
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term :

• It is finite and cannot be renormalized away in the boundary theory by Hermitian

counter terms.

• There has been some discussion in the literature on zero temperature dissipation

[77–82, 103]. [103] advocate renormalizing this term away by subtracting the con-

tribution from pure AdS which corresponds to a vacuum. While this is certainly

a valid option, we do not feel compelled to do this, because as we have seen in

this 1+1 dimensional system there is no violation of any physical principle such as

Lorentz invariance. Also as the calculations of radiation show, there is a compelling

physical reason to expect that it should be there.

• We take the view point that M is finite because it is to be interpreted as an RG

scale. Also as mentioned earlier, asM→ ∞ the particle becomes infinitely heavy.

Otherwise there is nothing pathological in our calculation even ifM is infinite.

• There are some 1+1 condensed matter systems [77–82] which exhibit such dissipa-

tion (or decoherence) at absolute zero due to zero-point fluctuations.

Schwinger-Keldysh Propagators from Holography

The first two subsections of this section are basically review of how to get Schwinger-

Keldysh propagators in the boundary field theories using extended Kruskal structure of

the black hole. This is written in terms of the retarded Green functions. Thus combining

this with the results of Section 4.3, we immediately obtain the exact Schwinger-Keldysh

Green functions for our system.
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Figure 4.2. AdS space in Kruskal coordinates

Kruskal/Keldysh correspondence

Herzog and Son [62] derived Schwinger-Keldysh propagators from bulk calculation in

AdS5-Schwarzschild metric. They analytically continued [104, 105] the modes of the

scalar field from I to II (see figure 4.2). During this procedure only the modes near

the horizon are crucial. It is very straight forward to see that their prescription goes

through for AdS3-BTZ background too, as modes near the horizon behave identically.

The same method is also applicable to our system with string where modes are functions

of frequency (ω) only. Their derivation involved symmetric contour i.e, σ = β/2 . As we

want to express our result in ra formalism we will fix σ = 0 as before. We just sketch the

generic four step AdS/CFT procedure.

I . The EOM for the fluctuating string is solved subjected to the boundary conditions

lim
s→sB

x(ω, s1) = x0
1(ω) , (4.4.1)
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lim
s→sB

x(ω, s2) = x0
2(ω) . (4.4.2)

Here s1, s2 are the radial coordinates in L and R regions respectively. Now the general

solutions in L and R are

x(ω, s1) = a(ω) fω(s1) + b(ω) f ∗ω(s1) , (4.4.3)

x(ω, s2) = c(ω) fω(s2) + d(ω) f ∗ω(s2) . (4.4.4)

II . We have four undetermined coefficients in (4.4.3) and (4.4.4) but have only two

boundary conditions namely (4.4.1)and (4.4.2). So to specify the solution uniquely we

need other two constraints. Imposing horizon boundary conditions we can eliminate two

coefficients namely c(ω) and d(ω). Near the horizon the ingoing and outgoing modes in

the R region behave as

e−iωt fω(s1) ∼ e−i ω
2πT log(V) , (4.4.5)

e−iωt f ∗ω(s1) ∼ e+i ω
2πT log(−U) . (4.4.6)

Now following [62] we will analytically continue the solution from R (U < 0, V > 0) to

L (U > 0, V < 0) region such that the solution is analytic in lower V-plane and upper

U-plane11

fω(s1)→ e−ω/2T fω(s2) , (4.4.7)

f ∗ω(s1)→ e+ω/2T f ∗ω(s2) . (4.4.8)

11This choice is motivated by the fact that in field theory Feynman Green function contains positive
energy modes for t → ∞ and negative energy modes for t → −∞. And the Green function (G11) for the
field theory ‘living’ on the boundary of the R-region should be time ordered one like usual Feynman Green
function,GF in Minkowski space.
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Therefore the solution when analytically continued to L region becomes

x(ω, s2) = a(ω) e−ω/2T fω(s2) + b(ω) e+ω/2T f ∗ω(s2) . (4.4.9)

But as mentioned above this is a special case where the contour is symmetric i.e, σ = β/2.

One can generalize this result by starting with V → |V | e−iθ and −U → |U | e−i(2π−θ) and

defining σ ≡ θ
2πT , then continuing analytically to get

fω(s1)→ e−ωσ fω(s2) = fω(s2) (4.4.10)

f ∗ω(s1)→ e+ω/T e−ωσ f ∗ω(s2) = e+ω/T f ∗ω(s2) , (4.4.11)

where we have taken σ = 0 as usual. So, the solution in L region reduces to

x(ω, s2) = a(ω) fω(s2) + b(ω) e+ω/T f ∗ω(s2) . (4.4.12)

Imposing the boundary conditions (4.4.1), (4.4.2) into (4.4.3) and (4.4.12) we can solve

for a(ω) and b(ω)

a(ω) = x0
1(ω) {1 + nB(ω)} − x0

2(ω) nB(ω) (4.4.13)

b(ω) = x0
2(ω)nB(ω) − x0

1(ω)nB(ω) . (4.4.14)

We have the solution fully specified by R and L region solutions (4.4.3) and (4.4.12)

satisfying necessary boundary conditions at the boundary and the horizon.

III . The next step is to plug this solution into the boundary action

S b’dy = −
T0(sB)

2

∫
s1

dω
2π

x1(−ω, s1) ∂sx1(ω, s1) +
T0(sB)

2

∫
s2

dω
2π

x2(−ω, s2) ∂sx2(ω, s2) ,

(4.4.15)
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to get

i S b’dy = −
1
2

∫
dω
2π

x0
1(−ω)

[
i Re G0

R − (1 + 2nB) Im G0
R

]
x0

1(ω)

+ x0
2(−ω)

[
−i Re G0

R − (1 + 2nB) Im G0
R

]
x0

2(ω)

− x0
1(−ω)

[
−2 nB Im G0

R

]
x0

2(ω)

− x0
2(−ω)

[
−2 (1 + nB) Im G0

R

]
x0

1(ω) . (4.4.16)

Here retarded Green function is defined as

G0
R(ω) ≡ T0(s)

f−ω(s) ∂s fω
| fω(s)|2

∣∣∣∣∣
s=sB

(4.4.17)

(as s → ∞, | fω(s)|2 → 1. So the numerator is already normalized if the probe brane is

very close to the boundary).

IV . The last step is to take functional derivative with respect to x0
1 and/or x0

2 which are

acting like two source terms for the boundary field theory to get the Schwinger-Keldysh

propagators

Gab =

i Re G0
R − (1 + 2nB) Im G0

R − 2 nB Im G0
R

− 2 (1 + nB) Im G0
R −i Re G0

R − (1 + 2nB) Im G0
R

 . (4.4.18)

Gab is exactly known from the expressions of G0
R in (4.3.23) and (4.3.27).

Now we want to express our result in ra formalism. So we need to covert x1, x2 into xs, xa.

Then the relations between bulk and the boundary fields reduce to

xa(ω, s) = f ∗ω(s) x0
a(ω) (4.4.19)

xr(ω, s) = fω(s) x0
s(ω) + i (1 + 2nB) Im fω(s) x0

a(ω) . (4.4.20)
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And the boundary action in this set up becomes

S b’dy = −
T0(sB)

2

∫
sB

dω
2π

xa(−ω, s) ∂sxr(ω, s) −
T0(sB)

2

∫
sB

dω
2π

xr(−ω, s) ∂sxa(ω, s) .

(4.4.21)

Plugging (4.4.19) and (4.4.20) into the boundary action as before we end up getting

iS b’dy = −i
∫

dω
2π

x0
a(−ω) [G0

R(ω)] x0
r (ω) −

1
2

∫
dω
2π

x0
a(−ω) [iGsym(ω)] x0

a(ω) . (4.4.22)

Boundary stochastic motion

Now here we want to have the boundary stochastic motion of the string. The partition

function for the string can be written as

Z =

∫
[Dx1Dx0

1] [Dx2Dx0
2] eiS 1−iS 2 , (4.4.23)

where Dx0
1 is a measure for temporal path of the string end point and Dx1 is a measure

for the bulk path integral for the body of the string in R-region of the full Kruskal plane.

SimilarlyDx0
1 and Dx1 are defined in L-region.

[Dx0
1] =

∏
t

dx0
1(t), [Dx1] =

∏
t,r

dx1(t, s) . (4.4.24)

To obtain the effective action of the string end points we will integrate out all string

coordinates inside the bulk. If we do this path integral (over the terms contained in the

bracket)

Z =

∫
[Dx0

1] [Dx0
2] [Dx1] [Dx2] eiS 1−iS 2︸                   ︷︷                   ︸

≡

∫
[Dx0

1] [Dx0
2] eiS 0

eff . (4.4.25)
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Figure 4.3. Visualizing the boundary stochastic motion of the heavy particle by integrating
out all string degrees of freedom.

We have absorbed the field independent determinant in the normalization of the path

integral. Now will use the results from previous section where we have already calculated

the boundary actions (4.4.15) and (4.4.21). As there is no ‘boundary’ at the horizon there

will be only two boundary terms from the two boundaries of the Kruskal plane

S 0
eff = −

T0(sB)
2

∫
s1

dω
2π

x1(−ω, s1) ∂sx1(ω, s1) +
T0(sB)

2

∫
s2

dω
2π

x2(−ω, s2) ∂sx2(ω, a2) .

(4.4.26)

We can easily write down the partition function for the string endpoints in ra formalism

from (4.4.22)

Z =

∫
[Dx0

r ] [Dx0
a] eiS 0

eff , (4.4.27)

i S 0
eff = −i

∫
dω
2π

x0
a(−ω) [G0

R(ω)] x0
r (ω) −

1
2

∫
dω
2π

x0
a(−ω) [i Gsym(ω)] x0

a(ω) . (4.4.28)

Notice that the effective partition function of the string end points (4.4.27) is exactly

93



similar to the Fourier space path integral (4.2.25). Therefore we can perform the same

procedure of introducing a “noise”, ξ to obtain the following equations of motion obeyed

by the string end points

[
−M0

Q ω
2 + GR(ω)

]
xr(ω) = ξ(ω) , 〈ξ(−ω) ξ(ω)〉 = − (1 + 2nB) Im GR(ω) .

(4.4.29)

Here we have used the facts that

G0
R(ω) = −M0

Q ω
2 + GR(ω), (4.4.30)

i Gsym(ω) = − (1 + 2nB) Im GR(ω) . (4.4.31)

Effective Action at General r : Brownian Motion on

Stretched Horizon

Since we have an exact solution one can hope to generalize the membrane paradigm by

locating the membrane at arbitrary r (r0, say). This would be in the spirit of a holographic

renormalization group (RG) [19, 106] approach to the problem. This would then justify

the statement made in Section 4.3 that M can be interpreted as an RG scale. This is

done in this section. We begin with a review of some basic ideas in holographic RG

following [19].

Holographic Renormalization Group

A version of the holographic RG that is useful here was discussed in [19] and is reviewed

in this section. The main idea is to start with an action, which is the original bulk action

supplemented by a boundary action at r = r0, that takes into account the effect of inte-

grating out of the bulk region r > r0. This region r > r0 in the bulk represents the high
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energy region of the boundary field theory. The so called ‘alternative quantization’ [107]

where the boundary value of the bulk field φ is interpreted as the expectation value of a

boundary single trace operator rather than as a source for the boundary operator comes

in handy in explaining the approach. The boundary action obtained this way can also be

interpreted as the generating functional for a different boundary theory that is obtained

by the so called ‘standard quantization’. Furthermore there is an RG flow from the first

boundary action perturbed by a relevant deformation involving double trace operators to

the second boundary action.

Thus we begin with

S =

∫ r0

0
dr dDx

√
−g

[
−

1
2
∂Mφ ∂Nφ gMN − V(φ)

]
+ S B[φ, r0] . (4.5.1)

In the [19] D is the space time dimension of the boundary theory and φ fills all of AdS

bulk. However we can interpret D for our purposes as the dimension of a brane/string

hanging down from the boundary into the center with the other end going into the horizon

of the black hole. Thus in our case φ(x) = x(r, t), D = 1 and the action becomes

S =

∫ r0

0
dr dt

√
−g

[
−

1
2

(
∂tx(r, t) ∂tx(r, t) gtt + ∂r x(r, t) ∂r x(r, t) grr) − V(x)

]
+ S B[x, r0] .

(4.5.2)

This can be compared with (4.3.11) and we see that it is exactly the same with V(x) =

m, which does not contribute to the equations of motion, and so can be ignored in this

discussion.

For our purposes, since we are only interested in the two point function, we can think of

the boundary action as

S B[φ, r0] =
1
2

∫
r=r0

dDk φ(k) GR(k, r0) φ(−k) . (4.5.3)
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Specializing to our case this becomes:

S B[x, r0] =
1
2

∫
r=r0

dω x(ω) GR(ω, r0) x(−ω) . (4.5.4)

The parameters of the boundary field theory action are collected here in GR(k, r0) and

their dependence on the RG scale r0 is indicated. When we vary φ we get the usual bulk

equation and also a (boundary) condition at the boundary r = r0. This depends on the

boundary action and is:

GR(k, r0) = −
√
−g grr ∂rφc(r0)

φc(r0)
. (4.5.5)

Fixing the solution to the equation of motion, a second order differential equation in r,

requires specifying φ(r0) and ∂rφ(r0). If we specify φ(r0) and ∂rφ(r0), GR is fixed by this

boundary condition. In the alternative quantization GR is the coefficient of the quadratic

term in the effective action of the boundary theory. On the other hand if we interpret S B(φ)

as the generating functional for the boundary theory, GR(k, r0) is the Green function of the

boundary theory. This is the interpretation that is relevant for us. The Green functions in

the two cases are inverses of each other.

One important point is that if the bulk equation of motion is linear, therefore scaling φ(r0)

by a number just scales the solution everywhere by the same number. Hence GR is not

affected. But this would not be true in a non linear bulk theory. In Sec 4.3 we have a

linear approximation to the equation for the string fluctuation. Thus there is no loss of

generality in setting φ(r0) = 1.

In this approach one can write down an RG, [19], that says the total action (evaluated on

the solution) cannot depend on r0. As also shown in [19] the parameters of the boundary

action must vary such that the the classical solution is reproduced. Thus solving the RG

gives the classical solution. The converse is also true. It is easy to see [19] that if we use

the exact classical solution in the action, the RG becomes an identity, because it becomes

equivalent to imposing (4.5.5).
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The above formalism can be applied to our case where we use (4.5.2) and (4.5.4).

GR(ω, r0) = −
√
−g grr ∂r xc(r0)

xc(r0)
, (4.5.6)

with
√
−g grr = T0. This is the same as (5.3.6) except that we have not assumed any

normalization for the xc(r0).

As we change r0 to r′0, RG demands that one has to change the boundary condition on x

and the boundary action so that physical quantities are fixed. In our case since we know

the exact solution, we know the boundary condition at r′0: x(r′0) = xc(r′0) where xc is the

exact classical solution, which has an earlier prescribed boundary value at r0. We also

know the new boundary action. It is given by (4.5.3) where GR(r′0) is given by (4.5.5),

where the RHS is evaluated at r′0. (Actually for the situation in Section 4.3, the equation

for x is linear, and as mentioned above we can just continue to use x(r′0) = 1.) The

functional form of the Green function does not change - except that all explicit r0’s are

replaced by r′0’s. Thus the parameterM =
r0

l2
s

used in Section 4.3 can be understood as a

renormalization scale.

Thus G0
R in our case is the correlation function for the random force i.e. we interpret the

action involving x as the generating functional for the boundary theory of the random

force acting on the quark.

(4.3.22) has a diffusive pole at −
iM
√
λ

. This gives an exponential decay time scale for the

random force acting on the quark. Being a mass scale it is appropriately proportional to

M the RG scale. From the point of view of the action for x (which is the coordinate of

the quark in addition to being the source for ξ), this is a non local quadratic term and

cannot be renormalized away by adding local counter terms. For the effective action for

ξ the random force acting on the quark, which involves the inverse Green function, this

is a zero rather than a pole. However being imaginary, it cannot be renormalized away

by a hermitian counter term in the bare action, and furthermore the powers of ω in the
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denominator would make the counterterm nonlocal. This leads us to conclude that this

pole represents a physical effect in the low energy dynamics of the quark.

Placing the Membrane at Arbitrary r

In the previous section we have integrated out all modes of the string to obtain the effec-

tive action for the string end points and we end up getting a Langevin equation on the

boundary. Here our aim is to obtain such an effective action on a spatial slice at a general

value of s (s0, say). This requires determining the solution to the EOM (4.3.15) exactly

which we have already obtained (4.3.17). Then we will choose s0 very close to sH to

get a Langevin equation on that stretched horizon (a hypothetical membrane which we

consider to be very close to the horizon of the black hole).

For this purpose again we write the partition function of string in several parts

Z =

∫
[Dx0

1Dx>1Dxs0
1 ] [Dx0

2Dx>2Dxs0
2 ] [Dx<1Dx<2 ] eiS >

1−iS >
2 eiS <

1−iS <
2 . (4.5.7)

As before Dx0
1 is a measure for temporal path of the string end point and Dx>1 and Dx<1

are the measures for the bulk path integral for the body of the string outside and inside

of the spatial slice in R-region and Dxs0
1 denotes the temporal path integral for the string

end point on the spatial slice (see fig. 4.4). Whereas S >
1 is the action outside the spatial

slice and S <
1 is the action inside the spatial slice. Same is true for L region. This time

integrating out the region of the string inside s = s0,

Z =

∫
[Dx0

1Dx>1Dxs0
1 ] [Dx0

2Dx>2Dxs0
2 ] eiS >

1−iS >
2 [Dx<1 ] [Dx<2 ] eiS <

1−iS <
2︸                    ︷︷                    ︸ (4.5.8)

=

∫
[Dx0

1Dx>1Dxs0
1 ] [Dx0

2Dx>2Dxs0
2 ] eiS >

1−iS >
2 eiS

s0
eff , (4.5.9)

where S s0
eff

= The boundary action which passes through xs0
1 (ω) and xs0

2 (ω). Notice here

the stretched horizon at s = s0 is a boundary. And the older boundary conditions are now
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s = 1
s = 1 + ε

s = s0

Figure 4.4. Integrating out the string degrees of freedom inside a hypothetical ‘membrane’
and push it very close to the horizon (i.e, stretched horizon) to obtain a Langevin equation
which is overdamped.

applicable at s = s0. So the the bulk fields, x<1,2(s, ω) and the boundary fields, xs0
1,2(ω) are

related by

x<1 (s1 = s0
1, ω) = xs0

1 (ω) (4.5.10)

x<2 (s2 = s0
2, ω) = xs0

2 (ω) . (4.5.11)

If we use the ra basis then the boundary conditions reduce to

x<a (ω, s) = f ∗ω(s) xs0
a (ω) (4.5.12)

x<r (ω, s) = fω(s) xs0
r (ω) + i (1 + 2nB) Im fω(s) xs0

a (ω) . (4.5.13)

Going through the same calculation as before and using the fact there is no “boundary” at

the horizon we end up getting the membrane effective action

S s0
eff

= −
T0(s0)

2

∫
s0

1

dω
2π

x<1 (−ω, s) ∂sx<1 (ω, s) +
T0(s0)

2

∫
s0

2

dω
2π

x<2 (−ω, s) ∂sx<2 (ω, s) .

(4.5.14)
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Now if we use the ra-coordinates then using (4.5.12) and (4.5.13) we will have

i S eff = − i
∫

dω
2π

xs0
a (−ω) [Gs0

R (ω)] xs0
r (ω) −

1
2

∫
dω
2π

xs0
a (−ω) [ i Gs0

sym(ω)] xs0
a (ω) .

(4.5.15)

The retarded propagator is defined such that it is normalized at the spatial slice. Now the

expression for retarded force-force correlator can be written down for any fixed value of

s0. Using the value of T0(s) from (4.3.10) and substituting the expression for fω(s) from

(4.3.17)

Gs0
R (ω) ≡ T0(s)

f−ω(s) ∂s fω
| fω(s)|2

∣∣∣∣∣
s=s0

= −

√
λ π2 T 3

2
s0w (s0w + i)

(s0 − iw)
(4.5.16)

= −M0 ω
(i
√
λ π2 T 2 +M0 ω)

2π(M0 − i
√
λω)

. (4.5.17)

(4.5.16) and (4.5.17) are exact expressions for the retarded propagator on the probe brane

which is placed at s = s0 and or equivalently when the field theory is probed at the energy

scaleM0 =
r0

l2
s
. It trivially reduces to the boundary propagator G0

R(ω) as in (4.3.20) when

s0 → sB.

The other point we want to emphasis here is that the retarded Green function (4.3.27)

which is derived using holography incorporates the “softening of delta function” to avoid

the contradiction described in section 4.1.

lim
t→t0

∫ t

t0
dt′ γ(t′) = lim

t→t0

∫ t

t0
dt′

∫ ∞

−∞

dω e−iωt′γ(ω) (4.5.18)

= − lim
t→t0

∫ t

t0
dt′

∫ ∞

−∞

dω e−iωt′ Mω

2π
(ω2 + π2 T 2)
(ω + i M√

λ
)
. (4.5.19)

One can perform the contour integral for ω to pick up the residue at ω = − i M√
λ
. So the
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corresponding integral

lim
t→t0

∫ t

t0
dt′ 2πi e−

M√
λ

t′
M(−iM√

λ
)

2π

(−i
M
√
λ

)2

+ π2T 2

→ 0 . (4.5.20)

This shows that our Green function (4.5.17) is consistent with (4.1.9).

From (4.5.9) it is evident that after we integrate out the string coordinates inside s = s0 we

have partition functions of two haves of the Kruskal plane and which are coupled by the

membrane effective action, S s0
eff

. Now will be shown (and already been mentioned) that a

part (Gs0
sym) of this ‘coupling’ introduces thermal noise. It can be done following exactly

same procedure of invoking a horizon noise for the second part of eiS
s0
eff in the partition

function

e−
1
2

∫
dω
2π x

s0
a (−ω) [iGs0

sym(ω)] x
s0
a (ω) =

∫
[Dξs0] ei

∫
x

s0
a (−ω) ξs0 (ω) e

− 1
2

∫
ξs0 (ω) ξs0 (−ω)

i G
s0
sym(ω) (4.5.21)

with, 〈ξs0(−ω) ξs0(ω)〉 = i Gs0
sym(ω) = −(1 + 2nB) Im Gs0

R (ω) . (4.5.22)

We have computed the contribution coming from the boundary action namely S s0
eff

. Now in

order to calculate the partition function (4.5.9) we need to look at the bulk contributions.

In ra basis this bulk action reduces to

iS >
1 − iS >

2 = −i
∫

dω
2π

ds
[
T0(s) ∂sx>a (−ω, s) ∂sx>r (ω, s) −

mω2 x>r (ω, s) x>a (−ω, s)
f

]
= −i

∫
dω
2π

x>a (−ω, s) [T0(s) ∂sx>r (ω, s)]
∣∣∣∣∣s=sB

s=s0

− i
∫

dω
2π

ds x>a (−ω, s)
[
−∂s(T0(s) ∂sx>r (ω, s)) −

mω2 x>r (ω, s)
f

]
.

(4.5.23)

From (4.5.15), (4.5.21) and (4.5.23) we can finally write

iS >
1 − iS >

2 + iS s0
eff

= − i
∫

sB

dω
2π

x0
a(−ω, s) [T0(sB) ∂sx>r (ω, s)]
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− i
∫

s0

dω
2π

xs0
a (−ω, s) [−T0(s0) ∂sx>r (ω, s) + Gs0

R (ω) xs0
r (ω) − ξs0(ω)]

− i
∫

dω
2π

ds x>a (−ω, s)
[
−∂s

(
T0(s) ∂sx>r (ω, s)

)
−

mω2 x>r (ω, s)
f

]
.

(4.5.24)

The path integral reduces to

Z =

∫
[Dx0

rDx>rDxs0
r ] [Dξs0] e

− 1
2

∫
ξs0 (ω) ξs0 (−ω)

−(1+2nB) ImG
s0
R (ω) [Dx0

aDx>aDxs0
a ] eiS >

1−iS >
2 +iS

s0
eff︸                             ︷︷                             ︸

=

∫
[Dx0

rDx>rDxs0
r ] [Dξs0] e

− 1
2

∫
ξs0 (ω) ξs0 (−ω)

−(1+2nB) ImG
s0
R (ω) δω

[
−T0(sB) ∂sx>r (ω, s)

]
s=sB

δω

[
−∂s(T0(s)∂sx>r (ω, s)) −

mω2 x>r (ω, s)
f

]
δω[−T0(s0) ∂sx>r (ω, s) + Gs0

R (ω) xs0
r (ω) − ξs0(ω)]s=s0 . (4.5.25)

We have integrated over the terms inside the bracket viz, [Dx0
a], [Dx>a ] and [Dxs0

a ]. This

path integral (4.5.25) leads to three equations for boundary end point, the horizon end

point and the body of the string.

I. The boundary end point dynamics is governed by the deterministic equation which

just tells us this end point is free,

T0(sB) ∂sx>r (ω, s) = 0 . (4.5.26)

II. The body of the string, as expected, satisfies the equation of motion

[
∂s

(
T0(s) ∂sx>r (ω, s)

)
+

mω2 x>r (ω, s)
f

]
= 0 . (4.5.27)

III. And the end point on the s = s0 membrane obeys the stochastic equation of motion

T0(s0) ∂sx>r (ω, s) + ξs0(ω) = Gs0
R (ω) xs0

r (ω) (4.5.28)
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with, 〈ξs0(−ω) ξs0(ω)〉 = − (1 + 2nB) Im Gs0
R (ω) . (4.5.29)

This is the Langevin dynamics describing the endpoint of the string living on the mem-

brane at s = s0.

So far in this section everything was for arbitrary s0. Now for the sake of completeness

we follow Son and Teaney [6] again to re-derive the overdamped motion on the stretched

horizon and also the boundary FD equation for AdS3-BH which is identical to their (AdS5-

BH) calculation. For that purpose we want to move this membrane very close to the

horizon i.e, s0 = 1 + ε ; ε is very small (see fig. 4.4). Putting this value of s0 into (4.5.16)

one obtains retarded Green function on the stretched horizon

GH
R (ω) = − lim

ε→0

√
λ π2 T 3

2

[
i (1 + 2ε) (w + w3)

1 + 2ε + w2 +
2 ε w2

1 + 2ε + w2

]
∼ −i γω . (4.5.30)

Here we have assumed that frequency is very small i.e, w � 1. The other point to notice

is the ‘inertial term’ is suppressed by an extra factor of ε. And as ε → 0 the mass of the

string end point on the stretched horizon,

MH
Q ≡

2ε
1 + 2ε

√
λT 2

2
→ 0 . (4.5.31)

(Expanding the real part of GH
R (ω) in ε we get correction to mass, ∆M ∼ O(ε2).)

Therefore from (4.5.28) and (4.5.30) one obtains the Langevin equation on the stretched

horizon

T0(sH) ∂sx>r (ω, s) + ξh(ω) = −iωγ xh
r (ω) (4.5.32)

with, 〈ξh(−ω) ξh(ω)〉 = (1 + 2nB) γω . (4.5.33)

This is the overdamped motion of the horizon end point as discussed in [6], where the first
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term signifies the pulling of the end point by the string outside the horizon. Vanishing of

Mh
Q (4.5.31) is the reason behind getting an overdamped Langevin dynamics.

Our next task is to investigate how the fluctuations on this membrane is transmitted to

the boundary through the string dynamics such that the boundary end point satisfies a

Langevin equation (4.4.29). In other words, we wish to have a relationship between ξh and

ξ0 and using this we want to show the fluctuation-dissipation for boundary fluctuations,

ξ0. To proceed let’s consider the behavior of the solution near the AdS boundary

x(ω, s) = x0(ω) fω(s) + ξ0(ω)
[

Im fω(s)
−Im GR(ω)

]
, (4.5.34)

where fω(s) is non-normalizable and Im fω(s) is a normalizable mode. −Im GR(ω) is just

a normalization such that ξ0(ω) can be recognized as the boundary fluctuation. Now if

substitute this (4.5.34) into the equation describing boundary dynamics (4.5.26) we obtain

expected Brownian equation for the boundary end point

[−M0
Q ω

2 + GR(ω)] x0(ω) = ξ0(ω) . (4.5.35)

To get the fluctuation-dissipation relation for ξ0 we use

−iωγ = T0(sH)
f−ω(sH) ∂s fω(sH)
| fω(sH)|2

, (4.5.36)

to re-write the equation at the stretched horizon dynamics (4.5.32) as

ξ0(ω)
−Im GR(ω)

T0(sH)
[
fω(sH) ∂sIm fω − Im fω(sH) ∂s fω(sH)

]
+ fω(sH) ξH(ω) = 0 . (4.5.37)

But the term in the square bracket is the Wronskian (G.0.3) of the two solutions and using

T0(s) W(s) = + Im GR(ω) (G.0.4) we have desired relation

ξ0(ω) = fω(sH) ξH(ω) . (4.5.38)
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For the AdS3-BH system we are considering we can exactly calculate fω(sH) from (4.3.17)

and equation (4.5.38) reduces to

ξ0(ω) =

(
1 − i

ω

πT

)
ξH(ω) . (4.5.39)

Once we have obtained this relation (4.5.38) we can use the horizon fluctuation-dissipation

theorem(4.5.33) and (4.5.36) to get

〈ξ0(−ω) ξ0(ω)〉 = −(1 + 2nB) Im GR(ω) . (4.5.40)

This is the statement of boundary fluctuation-dissipation theorem.

Different Time Scales

Brownian motion is usually characterized mainly by two time scales [10] : relaxation

time (tr) and collision time (tc). Apart from these two there is another time scale called

mean free path time (tm f p). These different time scales come very naturally in kinetic

theory of fluids. But in the holographic context when one considers classical gravity in

the bulk the dual field theory is inevitably strongly coupled. In the same spirit the fluid

that contains the quark in present context is strongly coupled. As a consequence, as we

will see in this section, all those intuitive notions from kinetic theory don’t go through in

this case of holographic Brownian motion. First of all we will define the different time

scales mentioned above.

• The relaxation time is a time scale which separates ballistic regime where the Brow-

nian particle moves inertially (displacement ∼ time) from diffusive regime where it

undergoes a random walk (displacement ∼
√

time). This is the time taken by the

system to thermalize. In the small frequency regime (4.3.29) (using (4.3.24)) we
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can write the Langevin equation (4.2.29) as

[
−
M

2π
ω2 − iγ ω + . . .

]
x(ω) = ξ(ω) . (4.6.1)

One obtains usual ballistic motion when the inertial term dominates over the diffu-

sive term i.e,
M

2π
ω2 � γ ω. Evidently one gets one characteristic frequency when

these two terms are of equal strength,

ω ∼
γ

M
≈

√
λT 2

Mkin
. (4.6.2)

Consequently the corresponding time scale (relaxation time)

tr ∼
Mkin
√
λT 2

. (4.6.3)

• The collision time is defined as a time scale over which random noise is correlated

or in other words it’s the time elapsed in a single collision. It measures how much

γ(t − t′) deviates from δ(t − t′). From (4.3.27) we obtain

γ(t) ≡ GR(t) =
M2

√
λ

(
−
M2

λ
+ 4 π2 T 2

)
e−

M√
λ

t
. (4.6.4)

In (4.6.4)
√
λ
M

naturally comes out to be a time scale. This is the ‘memory time’

which fixes the width of γ(t). Hence it determines the duration of collision (tc),

tc =

√
λ

M
≈

√
λ

Mkin
. (4.6.5)

One can observe that this is the pole of the retarded Green function (4.3.27) at

ω = −iM√
λ

that fixes the collision time scale12.

12Note that we have used Dirichlet boundary condition (standard quantization) (4.3.17) on the string
modes at the boundary. On the other hand, if one uses Neumann boundary condition (alternative quantiza-
tion), presumably one would get the retarded Green function, G̃R = G−1

R (see appendix A of [19]). These
two different boundary conditions describe two completely different dual CFTs. Therefore, for the latter
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From (4.6.3) and (4.6.5)

tr

tc
∼

(
Mkin
√
λT

)2

. (4.6.6)

For ‘dilute’ fluid one expects tr � tc. But from (4.6.6) it is clear that for strongly

coupled fluids for which λ � 1 this relation is not necessarily true.

• The mean free path time is the time elapsed between two consecutive collisions

of the Brownian particle. As argued in [5] to obtain tm f p one needs to compute

the 4-point correlation function. Therefore it will be suppressed by a factor of 1
√
λ

compared to tc,

tm f p ∼
1
√
λ

tc ≈
1

Mkin
. (4.6.7)

Again from (4.6.7) and (4.6.5) tm f p � tc does not necessarily hold for λ � 1.

Conclusions

We have studied the Brownian diffusion of a particle in one dimension using the holo-

graphic techniques. The holographic dual is a BTZ black hole with a string. We have

used the Green function techniques of Son and Teaney [6]. Since the differential equa-

tion can be solved exactly we find an exact Green function and an exact (generalized)

Langevin equation.

Some interesting features :

• We show that the exact generalized Langevin equation, which is valid on short time

scales also, does not suffer from the inconsistency that is associated with the usual

CFT the corresponding time scale is determined by the zero of our Green function GR(ω) i.e, ω = −i2πT
and thus tc ∼ 1

T . For example, in [5] Neumann boundary condition is used and the collision time, tc ∼ 1
T .
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Langevin equation that has a delta function for the drag term.

• We also find that the temperature dependent mass correction is zero (in the limit

that the UV cutoff is taken to infinity) unlike in the higher dimensional cases.

• There is also a temperature independent dissipation at all frequencies. At high

frequencies it is a drag term. This does not violate Lorentz invariance as the force

on a quark moving with constant velocity for all time continues to be zero. This

has already been studied in higher dimensional systems and is due to radiation

[12, 72–76]. It is noteworthy that a temperature independent dissipation in one

dimension has also been noted in the condensed matter literature [77–82].

• Once again because an exact Green function is available, the ‘stretched horizon’

can in fact be placed at an arbitrary radius and an effective action obtained.
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5 Dissipation at T = 0 and T → 0

We use holographic techniques to study the zero-temperature limit of dissipation for a

Brownian particle moving in a strongly coupled CFT at finite temperature in various

space-time dimensions. The dissipative term in the boundary theory for ω → 0, T → 0

with ω/T held small and fixed, does not match the same at T = 0, ω → 0. Thus the

T → 0 limit is not smooth for ω < T . This phenomenon appears to be related to a

confinement-deconfinement phase transition at T = 0 in the field theory.

The material presented in this chapter is based on work done with B. Sathiapalan [8].

Introduction

The motion of an external heavy quark in a non-Abelian gauge theory has been studied

in a number of papers (see [5–7, 9, 72, 73, 76, 95] and references there in). One moti-

vation for this are the experimental results that came out of the Relativistic Heavy Ion

Collider (RHIC). The suggestion that the quark gluon plasma is ‘strongly coupled’ with a

very small value of η

s came from experiments. The calculation of η

s using AdS/CFT tech-

niques [1–4] gave the small value of 1
4π [24]. This gave impetus to holographic techniques

for understanding the quark gluon plasma. On the dual gauge theory side exact calcula-

tions have been done for N=4 super Yang-Mills theory - calculations that make heavy

use of supersymmetry. One can hope that at finite temperature the deconfined QCD quark
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gluon plasma behaves qualitatively like strongly coupled N=4 super Yang-Mills theory.

The “running” effective coupling constant of QCD presumably is large in the field con-

figurations that dominate the quark gluon plasma and therefore well approximated by

a strongly coupled super Yang-Mills theory. At finite temperature since supersymme-

try is broken anyway and fermions and scalars effectively become massive, one can also

presume that supersymmetry and the presence of adjoint fermions and scalars, does not

invalidate the approximation. The success of the holographic calculation provides some

indirect justification for all this.

Many calculations in super Yang-Mills have been done at zero temperature where super-

symmetry is exact. In flat space, at all non zero temperatures, the theory is in the same

Coulomb phase (unlike QCD) and therefore calculations done at zero temperature might

be thought to still be of some relevance for the quark gluon plasma. On the dual gravity

side this corresponds to pure AdS5. On the gravity side it is a little easier to explore the

finite temperature regime [4]. This corresponds to non-extremal D3-branes. In fact the η

s

calculation involves calculating η and s separately at finite temperature.

Here we study the T → 0 limit of the finite temperature calculations on the gravity side.

This limit is subtle for reasons that will become clear later. The motivation for this study

comes from [7] where the Langevin equation describing Brownian motion1 of a stationary

heavy quark in 1+1 CFT at finite temperature was studied using the gravity dual, which

is a BTZ black hole (see section 4). The calculation was done using the holographic

Schwinger-Keldysh method worked out in [6]. The calculation can be done exactly (un-

like in 3+1 dimensions). One of the interesting results is that there is a drag force (dis-

sipating energy) on the fluctuating external quark even at zero temperature. This was

identified as being due to radiation [12, 72, 73, 76, 100, 101, 108–110]. This force term in

1Brownian motion of a heavy quark in quark-gluon-plasma was first described using holographic tech-
niques in [5, 6].
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the Langevin equation was of the form

F(ω) = −i

√
λ

2π
ω3x(ω) . (5.1.1)

If one calculates the integrated energy loss one finds (x(t) =
∫

dω
2π x(ω)e−iωt):

∆E =

∫ ∞

−∞

F(t)ẋ(t)dt =

∫
dω
2π

F(w)(iω)x(−ω)

=

∫
dω
2π

(−i)
√
λ

2π
ω3x(ω)(iω)x(−ω)

=

√
λ

2π

∫
dω
2π
ω4x(ω)x(−ω) . (5.1.2)

While the above calculation was done by taking the T → 0 of a finite temperature cal-

culation in BTZ, the same result is obtained for pure AdS in all dimensions, as we shall

see later in this chapter (see section 5.2). The energy radiated by an accelerating quark

has been calculated using other techniques (also holographic) by Mikhailov [12] and the

answer obtained is

∆E =

√
λ

2π

∫
dt a2 , (5.1.3)

which on Fourier transforming gives exactly the same result. In fact the coefficient
√
λ

2π

is essentially the bremsstrahlung function2 B(λ,N) (2πB(λ,N) =
√
λ

2π ) identified in [13]

as occurring in many other physical quantities (such as the cusp anomalous dimension

introduced by Polyakov [114]).

It is thus interesting to check whether the same result is also obtained as one takes T →

0 in 3+1 dimensions. In fact the T → 0 limit is a little tricky because of singularities.

Taking T → 0 in the finite T theory can be done if one keeps ω
T small. Thus the limit

where ω → 0 and T → 0 is well defined and can be calculated perturbatively. (We shall

2see [14, 111–113] and references there in for more details about bremsstrahlung function in supersym-
metric theories.

111



see later that all the dimensionful quantities are measured in the unit of quark mass,M).

The result for dissipation in this (DC) limit can be compared with that calculated for the

T = 0 result of pure AdS for ω → 0. The results do not agree. Thus we find that pure

AdS (T = 0) results cannot be assumed to be close to small T results as one would naively

have assumed. This is not surprising given that there is a Hawking Page transition [115]

at exactly zero temperature in the Poincaré patch description of Schwarzschild-AdS. (In

global AdS where space is S 3, this happens at a finite temperature.) But this does raise

questions of the relevance of the zero temperature calculations in N=4 super Yang-Mills

for comparison with data taken from experiments such as RHIC.

In this chapter we study in a general way, the zero temperature limit of some theories

in 3+1 dimensions using holography. We show how one can do a perturbation in T -

however this has to be done about a solution that is singular as T → 0. This does not go

smoothly to the T = 0 result of pure AdS.

The rest of this chapter is organized as follows. In section 5.2 we discuss dissipation at

exactly zero temperature by studying dynamics of a long fundamental string in pure AdS

space-time. We check whether the dissipation very close to zero temperature smoothly

matches the same at absolute zero in section 5.3 by changing the background geometry

for the moving string to AdS-black holes. In section 5.4 we try to interpret our results.

The section 5.5 summarizes the main results of this chapter. The perturbative technique

used in AdS5-BH case is also applied for studying string in BTZ background as a check

of applicability of the method in appendix H.

Dissipation at Zero Temperature (T = 0)

A Brownian particle dissipates energy at zero temperature only by radiating soft or mass-

less modes (photons, gluons etc). The dual background where the string moves is a pure
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AdS space.

ds2 = −
r2

L2 dt2 +
L2

r2 dr2 +
r2

L2 d~x 2 , (5.2.1)

where L is AdS radius and ~x ≡ (x1, x2 . . . xd−1).

A stochastic string in this pure AdS background is exactly solvable in arbitrary dimen-

sions. To compute the retarded Green’s function and the dissipative term from that we

need to study string dynamics in (5.2.1).

We shall be eventually working with linearized Nambu-Goto action. Therefore after

choosing the static gauge, without loss of generality, we can pick up any one transverse

direction (x1 ≡ x, say) and fix others (x2, x3 . . . xd−1) to zero. Essentially we are looking

at a three dimensional slice of AdSd+1. So, X(σ, τ) is a map to (τ, r, x). The Nambu-Goto

action for small fluctuation in space and in time reduces to

S = −
1

2πl2
s

∫
dt dr

√
1 + ẋ2 +

r4

L4 x′2

≈ −

∫
dt dr

[
1 +

m
2

ẋ2 +
1
2

T0(r) x′2
]
, (5.2.2)

where m = 1
2πl2s

and T0(r) = r4

2πl2s L4 . Varying the action we get the EOM which in frequency

space reads

f ′′ω (r) +
4
r

f ′ω(r) +
L4ω2

r4 fω(r) = 0 , (5.2.3)

where x(r, t) =
∫

dω
2π e− iωt fω(r)x0(ω) and x0(ω) is the boundary value3 of x(r, t) such that

fω(rB) = 1.

This is a linear second order ordinary differential equation with following two linearly

3Notice that r = rB is the boundary of the geometry. This is IR cutoff for the bulk and UV cutoff for the
dual field theory. For large but finite value of rB the quark is very heavy but has a finite mass, and therefore,
a detectable Brownian motion
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independent solutions

f (1)
ω (r) =

e−i L2ω
r (r + iL2ω)

r
(5.2.4)

f (2)
ω (r) =

ei L2ω
r (r − iL2ω)

r
. (5.2.5)

• As we want to compute retarded Green’s function we pick f (2)
ω (r) which is ingoing4

at r = 0.

• The boundary condition, fω(r)→ 1 as r → rB, fixes the solution to be

fω(r) =
rB

r
e+ i L2ω

r (r − iL2ω)

e+ i L2ω
rB (rB − iL2ω)

. (5.2.6)

We just use these modes in calculating the on-shell action and obtain the retarded Green’s

function [11, 62]

G0
R(ω) ≡ lim

r→rB
T0(r) f−ω(r) ∂r fω(r)

= −
r2

B ω
2

2 π l2
s

1
(rB − i L2 ω)

= −i
M2 ω2

2π
√
λ

1
(ω + i M√

λ
)
, (5.2.7)

where we have usedM = rB
l2s

and
√
λ = L2

l2s
. As stated in chapter 4,M and λ behave like

Wilsonian cutoff scale and dimensionless coupling for the field theory respectively. Also

M is essentially the energy stored in the string as it is stretched from the horizon to the

boundary of the AdS and can be interpreted as the mass of the external quark.

For M → ∞ , G0
R(ω) = −Mω2

2π which is divergent. We can renormalize the Green’s

function by absorbing the UV divergent piece to define the zero temperature mass of the

4Notice that e−iωtei L2ω
r = e−iω(t− L2

r ). To keep the phase unchanged, for increasing t, r must decrease. So
the wave is ingoing.
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quark, i.e, M0
Q =

µ

2π and obtain the renormalized Green’s function

GR(ω) ≡ G0
R(ω) +

Mω2

2π
=
Mω3

2π
1

(ω + i M√
λ
)
. (5.2.8)

The renormalized Green’s function is UV finite by construction. If we takeM → ∞ (or

we can take ω very small)

GR(ω)→ − i

√
λ

2π
ω3 . (5.2.9)

This is purely dissipative term which is independent of temperature.

Dissipation near Zero Temperature (T → 0)

To describe a Brownian particle moving in a d-dimensional space-time at finite temper-

ature holographically one needs to consider a fundamental string in (d+1)-dimensional

dual geometry with a black hole. In this section also we work in the Poincaré patch of

AdSd+1-Black hole geometry5.

We start with the AdSd+1-black brane metric [95]

ds2
d+1 = L2

[
−h(u) dt2 +

du2

h(u)
+ u2d~x 2

]
, (5.3.1)

where h(u) = u2
(
1 −

(
uH
u

)d
)

with uH = 4πT
d and u has dimension of energy.

We choose d = 2 and 4 for illustration. The aim is to check whether the dissipative terms

match smoothly to that of the zero temperature case as we take T → 0.

5We essentially repeat the calculation we did in chapter 4 but with the metric 5.3.1. Note that here we
directly work with coordinate r which has a dimension of length.
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BTZ Black hole Background

A string in (2+1) dimension is exactly solvable even in presence of a (BTZ) black hole

[5, 7]. We work in (5.3.1) for d = 2 but with r-coordinate where r ≡ L2u has dimension

of length.

ds2 = −
r2

L2

(
1 −

(2πT L2)2

r2

)
dt2 +

L2

r2

dr2(
1 − (2πT L2)2

r2

) +
r2

L2 d~x 2
. (5.3.2)

Using the holographic prescription for Minkowski space [6, 11] one obtains the exact

retarded Green’s function. Here are the key steps (see chapter 4 for details).

Choosing the static gauge, we study small fluctuations of the string from the Nambu-Goto

action

S ≈ −
∫

dt dr

m +
1
2

T0 (∂r x)2
−

m

1 −
(

2πT L2

r

)2 (∂tx)2

 , (5.3.3)

where m ≡ 1
2πl2s

and T0(r) ≡ 1
2πl2s

r4

L4

[
1 −

(
2πT L2

r

)2
]
.

Now varying this action one obtains the EOM in frequency space

f ′′ω (r) +
2(2r2 − 4π2T 2L4)
r(r2 − 4π2T 2L4)

f ′ω(r) +
L4ω2

(r2 − 4π2T 2L4)2 fω(r) = 0 , (5.3.4)

which is exactly solvable and the solution is

fω(r) = C1
P

iω
2πT
1 ( r

2πT L2 )
r

+ C2
Q

iω
2πT
1 ( r

2πT L2 )
r

,

where P and Q are associated Legendre functions.

Now choosing ingoing boundary condition (to obtain retarded Green’s function) at the
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horizon and fixing fω(rB) = 1 one obtains the required solution

f R
ω (r) =

(1 − r
2πT L2 )−iω/4πT

(1 − rB
2πT L2 )−iω/4πT

(1 + r
2πT L2 )iω/4πT

(1 + rB
2πT L2 )iω/4πT

rB

r
(L2ω + ir)
(L2ω + irB)

. (5.3.5)

Now from the on-shell action we can read off the Green’s function

G0
R ≡ lim

r→rB
T0(r) f R

−ω(r)∂r f R
ω (r) = −

Mω

2π
Mω + i

√
λ 4π2T 2

M− i
√
λω

(5.3.6)

where we have used previously defined mass scaleM and the dimensionless parameter λ.

ForM → ∞, G0
R(ω) = −Mω2

2π which is again divergent. We can renormalize the Green’s

function as before by absorbing the UV divergent piece to define the zero temperature

mass of the quark, i.e, M0
Q = M

2π and obtain the renormalized Green’s function

GR(ω) ≡ G0
R(ω) +

Mω2

2π
=
Mω

2π
(ω2 + 4π2T 2)

(ω + iM√
λ
)

. (5.3.7)

Near zero temperature

GR(ω)
∣∣∣∣∣

T→ 0
=
Mω3

2π
1

(ω + iM√
λ
)
. (5.3.8)

This is identical to the retarded Green’s function for zero temperature system (5.2.8).

Evidently for small frequency

GR(ω) ≈ −i

√
λ

2π
ω3 . (5.3.9)

From this calculation black hole background seems to match smoothly pure AdS space as

one takes T → 0. The obvious question comes to one’s mind is whether this coefficient of

zero temperature dissipation is universal and independent of the dimensionality of space

time. Actually we will see in the next section that this is not really the case in general.

Reason being the Poincaré patch of BTZ black hole is, strictly speaking, AdS3 at finite

117



temperature for all practical purposes. That’s why it smoothly matches the pure AdS result

as one takes T → 0. But AdSd+1-BH with d > 2 is a ‘genuine’ black hole background

and therefore the limit might not be smooth.

AdS5 Black Hole Background

Now let us check if the dissipation coefficients for higher dimensional black holes in AdS

space near zero temperature match the exact zero temperature coefficient. But those are

not exactly solvable. As an example we will demonstrate it for AdS5 black hole [6].

We can write down the metric in r-coordinate, as before, fixing d = 4 in (5.3.1)

ds2 = −
r2

L2

(
1 −

(πT L2)4

r4

)
dt2 +

L2

r2

dr2(
1 − (πT L2)4

r4

) +
r2

L2 d~x 2
, (5.3.10)

with ~x ≡ (x1, x2, x3).

The EOM6 for the string

F′′ω(r) +
4r3

(r4 − π4T 4L8)
F′ω(r) +

ω2L4r4

(r4 − π4T 4L8)2 Fω(r) = 0 , (5.3.11)

can not be solved exactly. As it’s an ordinary second order linear differential equation it

has two linearly independent solutions.

Near the horizon

Fω(r) ∼
(
1 −

π4T 4L8

r4

)±iΩ4

. (5.3.12)

6Notice that for this case m ≡ 1
2πl2s

and T0(r) ≡ 1
2πl2s

r4

L4

[
1 −

(
πT L2

r

)4
]
. But eventually we want to calculate

Green’s function for T → 0. Therefore for both BTZ and AdS-BH background we can practically use
T0(r) ≡ 1

2πl2s
r4

L4 .
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Near the boundary

Fω(r) =

(
1 +

Ω2

2r2 + . . .

)
+
χ(Ω)

r3

(
1 −

Ω2

10r2 + . . .

)
, (5.3.13)

contains a non-normalizable and a normalizable mode. Here Ω ≡ ω
πT .

But still one can solve it in perturbation expansion7 in small frequency

Fω(r) =

(
1 −

π4T 4L8

r4

)−iΩ4

(1 − iΩ f1(r) − Ω2 f2(r) + iΩ3 f3(r) + . . .) . (5.3.14)

Putting this ansatz into (5.3.11) we get hierarchy of differential equations. Solving them

order by order in Ω ≡ ω
πT in principle one can obtain the unknown functions, fi(r) where

i = 1, 2, 3, . . .

Few useful remarks on the perturbative solution before we actually obtain it.

1. This type of perturbative solution has been calculated in [6] by Son and Teaney. As

the authors were mostly interested in finite temperature phenomena they computed

the Green’s function up to ω2 term. Here we show that their solution can be used

even for T → 0 and also we compute the Green’s function up to ω3 term which

indicates the zero temperature dissipation.

2. The solution we obtain is a perturbation in Ω and T . But finally we are interested

in T → 0 limit. Clearly this limit is pathological for any finite ω. Only way we can

make sense of the solution is by taking both

ω,T → 0 with Ω held fixed (and small).

The temperature independent term that we are interested in is the coefficient of

Ω3T 3 in this solution.

7The -ve sign in the exponent is chosen in (5.3.14) which is ingoing at the horizon. Because we are
interested to calculate the retarded Green’s function.
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It is important to note, all dimensionful quantifies in this theory are measured in

terms of the cutoff scale M (= rB
l2s

) defined before which is also interpreted as the

mass of the external quark. Therefore whenever we sayω,T → 0 with Ω held fixed

we mean ω/M → 0 and T/M → 0 such a way that ω/T is fixed small number.

E.g, say, ω/M = 10−7, T/M = 10−6, thus ω/T = 0.1 which is smaller than one.

3. Actually, as we will see below, we don’t need to obtain all the unknown func-

tions, fi(r), explicitly by performing complicated integrals. Rather we need only

the residues of those integrals at the horizon to fix the coefficient of the homoge-

neous solutions.

Perturbative solution in AdS5-BH

Just for convenience we work with z co-ordinate, where z ≡ L2

r . Obtaining results in the

r variable is straightforward. As we have discussed the EOM (5.3.10) for the string in

AdS5-BH

F′′ω(z) +
2(1 + π4T 4z4)
z(1 − π4T 4z4)

F′ω(z) +
ω2

(1 − π4T 4z4)2 Fω(z) = 0 , (5.3.15)

is not exactly solvable and to obtain the solution that is ingoing at the horizon we need to

use the following ansatz.

FR
ω(z) =

(
1 − π4T 4z4

)−iΩ4 H(z) ,

where H(z) = 1 − iΩh1(z) − Ω2h2(z) + iΩ3h3(z) + . . . (5.3.16)

with Ω ≡ ω
πT . The differential equation H(z) satisfies is given by

H′′(z) −
2
(
1 + π3T 3z4(πT − iω)

)
z
(
1 − π4 T 4 z4) H′(z) +

ω
(
ω + π2T 2z2(ω + iπT )

(
π2T 2z2 + 1

))(
π2T 2z2 + 1

) (
1 − π4T 4z4) H(z) = 0 .

(5.3.17)
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Notice that by choosing the ansatz (5.3.16) we have taken care of the singular near hori-

zon part of the full solution by the pre-factor
(
1 − π4T 4z4

)−iΩ4 . Our strategy would be to

substitute the ansatz (5.3.16) into (5.3.17) and at each order in Ω we demand that the so-

lution to (5.3.17) is regular at the horizon. In other words, the full solution to (5.3.15) at

any order in Ω behaves like

(
1 − π4T 4z4

)−iΩ4
×

(
Regular function at z =

1
πT

)
. (5.3.18)

Again, we are interested in calculating temperature independent dissipative term in the

Green’s function. Therefore on dimensional ground we need to look for the coefficient of

ω3 term in the Green’s function as the Green’s function itself has mass dimension three.

In other words, if one takes zero temperature limit of the Green’s function only ω3 term

survives. For that one needs to take T → 0 limit of the solution. But clearly the solution

is a perturbation series in Ω = ω
πT . Therefore the only way one can make sense of this so-

lution near zero temperature is to take both T → 0 and ω → 0 (compared toM) keeping

the perturbation parameter, Ω fixed and small (Ω < 1) such that the series converges.

0 0.5 1 1.5 2

0.5

1

1.5

- ω →

-
π
T
→

Ω
=
1

Ω
=
0.
1

Ω
=
0.
1

Ω = ∞ (pure AdS)

Figure 5.1. Different ways of taking T = 0, ω = 0 limit.
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Pictorially, there are many ways one can reach (ω = 0,T = 0) i.e, the origin on the ω-T

plane (see figure 5.1). Our solution makes sense when ω/πT is a constant and smaller

than one. The shaded region is outside the domain of validity of our solution. Thus all

our analysis and results hold true for the straight lines in the upper half of the box.

Also notice that pure AdS (T = 0) is along the x-axis. Therefore eventually we will be

comparing these two ways (Ω = small and Ω = ∞) of taking limits.

Solution up to O(Ω) :

H(z) = 1 − iΩh1(z) . (5.3.19)

Substituting this ansatz into (5.3.15) we obtain the differential equation for h1(z)

h′′1 (z) +
2(1 + π4T 4z4)
z(1 − π4T 4z4)︸           ︷︷           ︸

p1(z)

h′1(z) =
π4T 4z2

(1 − π4T 4z4)︸          ︷︷          ︸
q1(z)

. (5.3.20)

Let’s cast this into a first order differential equation defining y1(z) ≡ h′1(z) and conse-

quently y′1(z) ≡ h′′1 (z)

y′1(z) + p1(z)y1(z) = q1(z) . (5.3.21)

One can introduce integrating factor I1(z) = exp (
∫

p1(z)dz) to obtain

y1(z) =
c1

I1(z)
+

1
I1(z)

∫ z

I1(x)q1(x)dx

=
c1z2

1 − π4T 4z4︸       ︷︷       ︸
yh

1(z)

+
π4T 4z3

1 − π4T 4z4︸       ︷︷       ︸
yp

1 (z)

. (5.3.22)

We will see that the homogeneous part of the solution (yh
i (z)) is identical in each order

in Ω up to the undetermined coefficient (ci). This coefficient is fixed by demanding the
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regularity of fi at the horizon.

f1(z) =

∫
yh

1(z)dz +

∫
yp

1(z)dz (5.3.23)

≡ hh
1(z) + hp

1(z) . (5.3.24)

The requirement that h1(z) has to be regular sets the coefficient of Log(1 − πTz) to zero.

One can explicitly calculate the integrals and from that expression sort out the required

coefficient. For this case

hh
1(z) =

c1

4π3T 3

{
−2tan−1(πTz) − Log(1 − πTz) + Log(1 + πTz)

}
, (5.3.25)

hp
1(z) = −

1
4

Log(1 − π4T 4z4)

= −
1
4

{
Log(1 − πTz) + Log(1 + πTz) + Log(1 + π2T 2z2)

}
. (5.3.26)

Clearly setting the coefficient of Log(1 − πTz) to zero we get

c1 = −π3T 3 . (5.3.27)

And the solution at this order becomes

h1(z) =
1
2

tan−1(πTz) −
1
2

Log(1 + πTz) +
1
4

Log(1 + π2T 2z2) . (5.3.28)

But there is another way in which we can fix the coefficient without doing the integrals.

The only potential singular term in h1(z) at the horizon appears as Log(1 − πTz). This

type of terms are originated from the terms of the form 1
(1−πTz) in y1(z). Therefore fixing

the coefficient of Log(1 − πTz) in f1(z) to zero is equivalent to setting the residue of y1(z)

at z = 1
πT to zero. This is much easier way when the integrals get complicated as we go in

higher orders.
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Solution up to O(Ω2) :

H(z) = 1 − iΩh1(z) − Ω2h2(z) . (5.3.29)

Notice that h1(z) is already known from (5.3.28). Substituting this ansatz into (5.3.17) we

get the differential equation for h2(z). Again one can cast that into a first order differential

equation

y′2(z) + p2(z)y2(z) = q2(z) , (5.3.30)

where p2(z) = p1(z). Therefore integrating factor I2(z) = I1(z).

y2(z) =
c2

I2(z)
+

1
I2(z)

∫ z

I2(x)q2(x)dx

=
c2z2

1 − π4T 4z4︸       ︷︷       ︸
yh

2(z)

+
1

I2(z)

∫ z

I2(x)q2(x)dx︸                      ︷︷                      ︸
yp

2 (z)

. (5.3.31)

Now making the residue of y2(z) at z = 1
πT to vanish we can fix

c2 = π3T 3 . (5.3.32)

The solution at this order

h2(z) =
1

32
[4{−4 + tan−1(πTz) − Log(1 + πTz)}{tan−1(πTz) − Log(1 + πTz)}

− 4{2 + tan−1(πTz) − Log(1 + πTz)}Log(1 + π2T 2z2) + Log(1 + π2T 2z2)2] .

(5.3.33)

Solution up to O(Ω3) :

H(z) = 1 − iΩh1(z) − Ω2h2(z) + iΩ3h3(z) , (5.3.34)
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where h1, h2 are known from (5.3.28) and (5.3.33). The differential equation for h3(z) or

rather y3(z) ≡ h′3(z)

y′3(z) + p3(z)y2(z) = q3(z) , (5.3.35)

where p3(z) = p1(z). Therefore integrating factor I3(z) = I1(z), as before.

y3(z) =
c3

I3(z)
+

1
I3(z)

∫ z

I3(x)q3(x)dx

=
c3z2

1 − π4T 4z4︸       ︷︷       ︸
yh

3(z)

+
1

I3(z)

∫ z

I3(x)q3(x)dx︸                      ︷︷                      ︸
yp

3 (z)

. (5.3.36)

Now making the residue of y3(z) at z = 1
πT to vanish we obtain

c3 =

(
π − Log 4

4

)
π3T 3 . (5.3.37)

The functional form of y3(z) is complicated and therefore it’s difficult to obtain an explicit

expression for h3(z) unlike the lower order functions. But as we are interested in zero

temperature limit of the Green’s function, we only need to know the full solution for

small Ω

FR
ω(z) =

(
1 − π4T 4z4

)−iΩ4 (1 − iΩh1(z) − Ω2h2(z) + iΩ3h3(z))

≈

(
1 +

i
4
π3ωT 3z4

) {
1 −

iω
πT

(
−

1
3
π3T 3z3

)
−

ω2

π2T 2

(
−

1
2
π2T 2z2

)
−

iω3

π3T 3

(
π − Log 4

12

)
π3z3T 3

}
. (5.3.38)

125



In the zero temperature (T → 0) limit8

FR
ω(z)

∣∣∣∣∣
T→0

= 1 +
ω2z2

2
+ i

ω3z3

3

(
π − Log 4

4

)
. (5.3.39)

In r co-ordinate

FR
ω(r)

∣∣∣∣∣
T→0

= 1 +
ω2L4

2r2 + i
ω3L6

3r3

(
π − Log 4

4

)
. (5.3.40)

The retarded Green’s function at T → 0 (with ω → 0 and Ω = fixed) can be calculated

using the solution (5.3.40)

G0
R ≡ lim

r→rB
T0(r) FR

−ω(r) ∂rFR
ω(r)

= lim
r→rB

1
2πl2

s

r4

L4

(
−
ω2L4

r3 − i
ω3L6

4r4 (π − Log 4)
)

= −
Mω2

2π
− i

√
λ

2π

(
π − Log 4

4

)
ω3 . (5.3.41)

Therefore the renormalized Green’s function

GR(ω) ≡ G0
R +
Mω2

2π
= −i

√
λ

2π

(
π − Log 4

4

)
ω3 . (5.3.42)

It is evident that this zero temperature dissipation term is not same as that of pure AdS

case and actually off by a factor of π−Log 4
4 .

Also the significance of the result is that for arbitrarily small T (say 1 µK), with ω < T ,

there is a T - independent coefficient for ω3. For example, at T = 1 µK and at T =

1 nK, the coefficient is the same. This is something of experimental relevance since in

experiments one never reaches T = 0 but works in very low temperature regime.

8It’s worth mentioning here the analysis is valid in the regime ω and T very small with ω
T (< 1) fixed.

Thus here T → 0 essentially means taking T arbitrarily small with keeping fixed ω
T < 1. Therefore one

cannot take T → 0 in strict mathematical sense because then one is forced to take ω = 0 and it is well
known that there can be no radiation if ω = 0 (which is equivalent to DC).
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Discussions

Whenever a charged particle accelerates or decelerates it radiates energy which is known

as bremsstrahlung effect. We discuss about dissipation at and near zero temperature.

Naturally this zero temperature dissipation finds its origin in this bremsstrahlung phe-

nomenon. One can notice that this dissipative force term (Fdiss) goes as a cubic power in

frequency

Fdiss(ω) ∼ −i
√
λ ω3x(ω) . (5.4.1)

In real space this each iω gives a time derivative and therefore the above force law reduces

to

Fdiss(t) ∼
√
λ

...x (t) =
√
λ ȧ , (5.4.2)

ȧ here quantifies the rate of change in acceleration and is often called jerk or jolt. This

formula is very similar to that of “Abraham-Lorentz force” [116] in classical electrody-

namics for a charged particle with charge q

Frad(t) =
2
3

q2 ȧ . (5.4.3)

This is the force that an accelerating charged particle feels in the recoil from the emis-

sion of radiation. Only the effective coupling is different for the holographic case. This

‘coupling’(
√
λ) is essentially the bremsstrahlung function B(λ,N). The corrections in λ

and N can also be computed for particular known theories (see [14, 111–113]).

The main aim is to understand how this bremsstrahlung function behaves near zero tem-

perature. We work in Poincaré patch of AdS-black hole on the gravity side. We notice

that for higher dimensional cases (we performed calculations in AdS5-BH) value of this
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function9 near T → 0 doesn’t match that of at T = 0. Strictly speaking, this result is

obtained in a particular regime of the parameter space namely ω/M→ 0 and T/M→ 0

such a way that Ω < 1. Thus the domain of validity of our analysis is spanned by family

of straight lines (see figure 5.1) which end at the origin and with slope greater than one

(i.e, πT
ω
> 1). It is important to note, ω → 0 limit for the solution to the pure AdS case is

actually represented by the x-axis of figure 5.1. Therefore effectively we are comparing

two different ways10 of taking T = 0, ω = 0 limit, ‘almost vertical lines’(AdS-BH) and

‘the horizontal line’ (pure AdS). They don’t match. Actually this result is not unexpected

as there is a Hawking-Page phase transition at zero temperature in Poincaré patch of black

holes in AdS.

Therefore the result suggests that one should not use the T = 0 theory (which always

has Ω = ∞) as an approximation to small temperature physics, when Ω is small i.e,

ω < T . Thus for example if T = 10−6 and ω = 10−7 compared to M, we cannot use

the T = 0 theory. This is something that can be very crucial in the context of quark-

gluon-plasma (QGP). QGP is always at finite temperature and therefore dissipation term

more specifically the bremsstrahlung function B(λ) is not continuously connected to the

zero temperature background (pure AdS) result, at least for small frequencies (Ω < 1).

Therefore one must use the AdS-BH background to compute those quantifies even at very

small temperature.

Unlike the higher dimensional case, we see that for a particle in 1+1 dimensional field

theory the bremsstrahlung functions match smoothly at T = 0 (see also appendix H). The

possible reason behind this phenomenon is hidden in the corresponding dual geometries

namely AdS3 (for T = 0) and BTZ (at T , 0). A BTZ black hole is just an orbifold

9Of course we are working in leading order in large N and large λ. To compute corrections one needs to
work with some known supersymmetric UV theories (e.g, ABJM, N = 4 SYM)

10It is worthwhile noting that the lines that end on the origin and are contained inside the shaded region
are also valid ways of taking T = 0, ω = 0 limit. But our analysis doesn’t work in that region. Because
in that region Ω > 1 and therefore our perturbative expansion (5.3.16) breaks down. Thus we cannot say
much about high frequency domain with this analysis. But since the coefficient is non zero for ω < T , it is
reasonable to assume that it will not vanish suddenly when ω > T . So one would expect similar dissipative
behavior even for the shaded triangle in 5.1.
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of AdS3 and therefore locally AdS3. One can only distinguish the former from the latter

by studying global properties. BTZ in Poincaré patch is no different than AdS3 at finite

temperature (also called thermal AdS3) unlike the higher dimensional black holes in AdS

which are ‘genuine’ black hole backgrounds.

Conclusions

We summarize the main points here :

• We have studied Brownian motion in various space time dimensions with the help

of holographic Green’s function computation. In each case we obtain dissipation at

zero temperature due to radiation from accelerated charged Brownian particle.

• As long as we are considering dynamics of the quark at zero temperature, that is the

string in the dual gravity theory moves in a pure AdS spacetime, the coefficients of

dissipation for arbitrary space time dimensions are identical. The value of the co-

efficient is
√
λ

2π and can be identified with B(λ,N) [13] (actually 2πB(λ,N) =
√
λ

2π ) as

occurring in many other physical quantities (such as the cusp anomalous dimension

introduced by Polyakov [114]).

• Even the coefficients match for string in AdS3 and in BTZ as we take T → 0. This

is because BTZ in Poincaré patch is nothing more than a thermal AdS3.

• For higher dimensions the coefficients at T = 0 and T → 0 don’t match for small

frequencies (Ω < 1). Here we are effectively comparing infiniteΩ to finite and small

Ω and they turn out to be different although both refer to the same region around

ω = 0,T = 0. Thus one should be careful in using pure AdS for calculating near

zero temperature quantities (e.g, B(λ)) for very low (near zero) frequencies, i.e. Ω <

1. Even if the temperature is very very small (unless it’s exactly zero) one should

not use T = 0 results as the T = 0 and T → 0 systems are described by completely
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different theories. We have shown this phenomenon via explicit computation by

studying a string dynamics in AdS5-BH background. The corresponding coefficient

comes out to be
√
λ

2π
π−Log 4

4 . This phenomenon might have its origin in the Hawking-

Page transition at T = 0 in Poincaré patch.
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6 Brownian motion at finite density

This chapter deals with Brownian motion of a heavy charged particle at zero and small

(but finite) temperature in presence of finite density. We are primarily interested in the

dynamics at (near) zero temperature which is holographically described by motion of a

fundamental string in an (near-) extremal Reissner-Nordström black hole. We analyti-

cally compute the functional form of retarded Green’s function for small frequencies and

extract the dissipative behavior at and near zero temperature.

This chapter is based on [9].

Introduction

AdS/CFT or more generally gauge/gravity duality [1–4] has been serving as a great

weapon in a theoretician’s armory to study strongly coupled systems analytically for al-

most last two decades. Although for most of the cases its predictions are qualitative,

there are instances (see for example the famous η/s computation in [24]) when it re-

lates very formal theoretical frame work to real life experiments. Since its discovery

this duality has glued many phenomena appearing in apparently different branches of

physics together. Studying Brownian motion of a heavy particle using classical grav-

ity technique is one such example [5, 6] where holography relates a statistical system

to a gravitational one. The dual gravity description involves a long fundamental string
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Figure 6.1. Gravity set up describing Brownian motion

stretching from the boundary of the AdS space into the black hole horizon. Numerous

works [7, 8, 21, 22, 74, 75, 95, 110, 117] have been done elaborating on different aspects

of this set-up. Integrating out1 the whole string in that background gives an effective de-

scription of the heavy particle at the boundary. Its dynamics is governed by a Langevin

equation. For a particle with mass2 M which is moving with velocity v the Langevin

equation reads

M
dv
dt

+ γv = ξ(t) , (6.1.1)

with 〈ξ(t)ξ(t′)〉 = Γδ(t − t′) , (6.1.2)

where γ is the viscous drag, ξ is the random force on the particle and Γ quantifies the

strength of the ‘noise’ (i.e, random force). The Second equation is one of the many

avatars of celebrated fluctuation-dissipation theorem. One can write down a generalized

1We mostly follow the Green’s function language of [6] to describe Brownian motion.
2We will see that this is actually ‘renormalized’ mass. The correction to the bare mass (M0) of the

Brownian particle will come from the retarded Green’s function.
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version3 of this equation

M0
d2x(t)

dt2 +

∫ t

−∞

dt′ GR(t, t′)x(t′) = ξ(t) , 〈ξ(t)ξ(t′)〉 = iGsym(t, t′) . (6.1.3)

GR(t, t′) is thus the same as γ(t−t′) for the choice of the lower limit of the integral, t0 = −∞

and iGsym(t, t′) is the same as Γ(t − t′).

In frequency space the generalized Langevin equation takes the following form

[
−M0 ω

2 + GR(ω)
]

x(ω) = ξ(ω) , 〈ξ(−ω) ξ(ω)〉 = i Gsym(ω) . (6.1.4)

If the retarded Green’s function, GR(ω) is expanded for small frequencies the coefficient

of ω2
(
i.e, d2 x(t)

dt2

)
adds to the bare mass of the particle and the coefficient of ω

(
i.e, dx(t)

dt

)
will

show off as the drag term4

GR(ω) = −iγω − ∆Mω2 + . . . (6.1.5)

After defining the ‘renormalized’ mass as

M ≡ M0 + ∆M , (6.1.6)

this generalized Langevin equations (6.1.4) (up to O(ω2)) take the standard form (6.1.1)

and (6.1.2).

From the above discussion it is quite clear that if we are interested in studying dissipation

for a Brownian particle we just need to compute the retarded Green’s function, GR(ω).

3See, for example, [6, 7] for a review of path integral derivation of this generalized Langevin equation.
Also notice that this equation is written in terms of the bare mass (M0) of the Brownian particle.

4More terms with higher powers in ω will also be generated in this small frequency expansion. Their
interpretations are outside the scope of standard Langevin equation (6.1.1). But from properties of Green’s
functions it is well known that imaginary part of retarded Green’s function causes dissipation. Thus odd
powers in ω are responsible for dissipation. Actually the ω3 term signifies dissipation at zero temperature
[7, 8] in absence of matter density.
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We can calculate this quantity using different holographic techniques [11, 15] depending

on the physical systems.

In chapter 5 Brownian motion for a heavy quark in 1+1 dimensions was studied following

[6] which used the prescription of [11, 62] to compute the boundary Green’s function.

The calculations were done in BTZ black hole background where the system is exactly

solvable. The main result was to obtain dissipation for the heavy quark even at zero

temperature. The result might look very counter intuitive and unphysical at first sight

because at zero temperature the thermal fluctuations go to zero and therefore the Brownian

particle should stop dissipating energy. But this zero temperature dissipation has its origin

in radiation of an accelerated charged particle. The force term5 in the Langevin equation

at zero temperature was of the form

F(ω) = −i

√
λ

2π
ω3 x(ω) . (6.1.7)

Therefore the integrated energy loss is given by

∆E =

√
λ

2π

∫
dt a2 . (6.1.8)

It is known from classical electrodynamics that the energy loss6 due to radiation is propor-

tional to square of the acceleration (a). See [14,65,72,73,76,100–102,108–110,113,118]

for related works.

Dissipation at zero temperature is a fascinating phenomenon. Its emergence from the

retarded Green’s function signifies that GR(ω) actually contains information at the ‘quan-

5This force formula is same as ‘Abraham-Lorentz force’ [116] in classical electrodynamics only its
‘coupling constant’ (which is q2

6πε0
for a particle with charge q and ε0 is the vacuum permittivity) is different.

This similarity is remarkable since in our holographic context the boundary theory is highly non-linear
unlike electrodynamics!

6This formula for an accelerated quark was obtained first by Mikhailov in [12] by a very different
approach. The factor

√
λ

2π is essentially the Bremsstrahlung function B(λ,N) (2πB(λ,N) =
√
λ

2π ) identified
in [13] as occurring in many other physical quantities (such as the cusp anomalous dimension introduced
by Polyakov [114]).

134



tum’ level (by ‘quantum’ here we mean dynamics at T = 0). Brownian motion of a parti-

cle is usually studied at finite temperature. The system is driven by fluctuations which are

thermal in nature and therefore if the temperature is taken to zero that GR(ω) must vanish

too. But the GR(ω) we obtain from holography contains information of both thermal and

quantum fluctuations for the boundary theory. Although at finite T thermal fluctuations

dominate over the quantum ones at very small T the latter ones are much more important.

The main aim here is to understand how a heavy particle’s (quark’s) motion at finite den-

sity (chemical potential µ , 0) is described at and near T = 0. The dual gravity theory

should contain an (near-) extremal7 charged black hole. (See [26,119] for some results in

this set up).

For high temperature regime (µ � T ) the effect of the charge of the non-extremal black

hole can be neglected at the leading order and GR(ω) can be computed in small µ and

small ω expansions using the methods followed in [6, 11].

In this chapter we would like to see how the system behaves near T = 0. Therefore the

other limit µ � T i.e, the low temperature regime is of more interest to us. We will see that

in this regime usual perturbation techniques for small T and small ω won’t work because

of a double pole for the ω2 term in the string equation of motion in the extremal black

hole background. Due to this double pole, near horizon dynamics is extremely sensitive

to ω. To get around this problem we will adopt the matching technique8 described in [15]

where the authors studied non-Fermi liquids using holography.

The rest of the chapter is organized as follows. In section 6.2 we quickly review the

Reissner-Nordström (RN) black hole in asymptotically AdS space time. The main pur-

pose is to spell out the notations and conventions that we will be following through out

7The zero temperature dissipation for a theory dual to pure AdSd+1 and black holes in AdSd+1 has
been calculated in chapter 5. Just on dimensional ground GR(ω) ∼ −iω3. The coefficient depends on the
background. The cause of this dissipation being the radiation due to accelerated quark.

8This matching technique is familiar to string theorists from the brane absorption calculations that led to
the discovery of AdS/CFT correspondence. For example see [55, 120]. Maldacena used similar technique
in his famous decoupling argument [1].
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rest of the thesis. The section 6.3 contains the analytic computation of retarded Green’s

function at zero temperature using matching technique. We also list some of its proper-

ties in detail. The retarded Green’s function at small but finite temperature is analyzed in

section 6.4. We mainly discuss how GR(ω) gets small T corrections. Section 6.5 sum-

marizes the main results and their interpretations, assumptions we make and some future

directions. Section 6.6 contains some concluding remarks.

AdS-RN black hole background

AdS-RN black hole9 is a solution to Einstein-Maxwell equation with a negative cosmo-

logical constant,

S EM =
1

2κ2

∫
dd+1x

√
−g

[
R +

d(d − 1)
L2

d+1

+
L2

d+1

g2
F

FMN FMN

]
. (6.2.1)

R is the Ricci scalar, gF is the dimensionless gauge coupling in the bulk. Ld+1 is a length

scale (known as AdS radius) and κ2 is Newton’s constant. Notice that we can always

redefine the gauge field by absorbing the dimensionless coupling g2
F into FMN . Thus we

can fix gF to one without loss of generality. The (d+1) dimensional metric and gauge field

that satisfy the corresponding equations of motion are given by

ds2 =
L2

d+1

z2

(
− f (z) dt2 + d~x 2

)
+

L2
d+1

z2

dz2

f (z)
, (6.2.2)

where,

f (z) = 1 + Q2 z 2d−2 − M z d

At(z) = µ

(
1 −

z d−2

z d−2
0

)
.

9The solution we will be working with has planer horizon with topology Rd−1. Therefore it is really a
black brane rather than a black hole.
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Q,M, z0 are constant parameters which are black hole charge, black hole mass and horizon

radius respectively. µ is the chemical potential, ~x ≡ (x1, x2 . . . xd−1) and z is the radial co-

ordinate in the bulk such that the boundary of this space is at z = 0.

Notice that if we put f (z) = 1 we get back pure AdSd+1 in Poincaré patch. This non trivial

function f (z) indicates that the physics changes as we move along the radial direction.

At the horizon : f (z0) = 0. Therefore we can express M as

M = z−d
0 + Q2 zd−2

0 . (6.2.3)

Now Q can be expressed in terms of chemical potential (µ)

Q =

√
2 (d − 2)

d − 1
µ

z d−2
0

. (6.2.4)

And the Hawking temperature

T =
d

4πz0

(
1 −

d − 2
d

Q2 z 2d−2
0

)
. (6.2.5)

Actually Q,M and z0 are related to charge density, energy density and entropy density in

the boundary theory respectively. Q is charge density up to some numbers. Let’s introduce

a new length scale z∗ to express Q as

Q :=

√
d

d − 2
1

z d−1
∗

. (6.2.6)

We also define µ∗ = 1
z∗

. Note that z∗ ≥ z0 to avoid the naked singular geometry. (This is

equivalent to M ≥ Q condition.)

There are two distinct situations possible : Extremal (T = 0) and Non-extremal (T , 0).
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Extremal black hole

When the Hawking temperature is zero the black hole is called extremal. Extremal black

hole contains maximum possible charge. The ‘blackening function’ becomes

f (z) = 1 +
d

d − 2
z2d−2

z2d−2
∗

−
2(d − 1)

d − 2
zd

zd
∗

. (6.2.7)

Near horizon region for the extremal black hole becomes AdS2 × R
d−1

ds2 =
L2

2

ζ2 (−dt2 + dζ2) + µ2
∗L

2
d+1d~x2 (6.2.8)

At(ζ) =
1

√
2d(d − 1)

1
ζ
, (6.2.9)

where ζ := z2
∗

d(d−1)(z∗−z) , L2 is the radius10 of the AdS2 and is related to Ld+1 by the following

relation

L2 =
1

√
d(d − 1)

Ld+1 . (6.2.10)

Non-extremal black hole

Generically charged black holes have non-vanishing temperature. We will be interested

in studying Brownian motion at finite density and finite temperature (T ) but with T � µ.

We want to be in this regime because the near horizon geometry will become AdS2-BH

×Rd−1,

ds2 =
L2

2

ζ2

(
−g(ζ)dt2 +

dζ2

g(ζ)

)
+ µ2

∗L
2
d+1d~x2 (6.2.11)

At(ζ) =
1

√
2d(d − 1)

1
ζ

(1 −
ζ

ζ0
) , (6.2.12)

10Note that L2 < Ld+1 for d ≥ 3.
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where g(ζ) := (1 − ζ2

ζ2
0
), ζ0 := z2

∗

d(d−1)(z∗−z0) and the corresponding temperature, T = 1
2πζ0

. For

T ≈ µ this nice structure breaks down.

Brownian motion at zero temperature

To understand Brownian motion of a heavy charged particle in some strongly coupled

field theory in d-dimensions which has a gravity dual one needs to study the dynamics

of a long string in the dual gravity background [5, 6]. Therefore to explore the same

Brownian motion at zero temperature and finite density one needs to study a string in an

extremal charged black hole. This section contains the main analysis and results of the

chapter.

Green’s function by matching solutions

In this Einstein-Maxwell theory an elementary string cannot couple to the gauge field,

AM. It can only couple to the background metric GMN . We consider geometries with

vanishing Kalb-Ramond field, BMN . For this zero temperature case GMN can be read off

from the extremal BH background (6.2.2) with f (z) given in (6.2.7).

The string dynamics is given by standard Nambu-Goto action

S NG = −
1

2πl2
s

∫
dτ dσ

√
−h , (6.3.1)

where ls is the string length and hab is the induced metric on the world sheet

hab = GMN ∂aXM ∂bXN . (6.3.2)
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We choose to work in static gauge,

τ ≡ t and σ ≡ ζ .

Also we can choose one particular direction, say x1 (we call this simply x for brevity),

along which the world sheet fluctuates.

x ≡ x (τ, σ) = x (t, ζ) . (6.3.3)

To understand the dynamics of the string we need to use the full background metric (6.2.2)

with the “blackening factor” given in (6.2.7). Varying the Nambu-Goto action

S NG = −
1

2π l2
s

∫
dt dz

Ld+1

z2

[
1 +

1
2

f (z) x′2 −
1

2 f (z)
ẋ2

]
, (6.3.4)

we obtain the equation of motion (EOM) in frequency space

x′′ω(z) +

d
dz ( f (z)

z2 )
f (z)
z2

x′ω(z) +
ω2

[ f (z)]2 xω(z) = 0 , (6.3.5)

where we have used x(z, t) =
∫

dω
2π e− iωtxω(z).

Now to obtain GR(ω) the standard procedure would be to solve this equation and obtain

it from the on shell action. But this procedure involves a few subtleties [15]. Firstly

this differential equation is not exactly solvable. Even if we are interested in GR(ω) for

very small frequencies (ω � µ) we cannot directly perform a perturbation expansion in

small ω. Because at zero temperature the f (z) has a double zero at the horizon (extremal

limit) and consequently ω2 term in the equation of motion generates a double pole at the

horizon. Thus this singular term dominates at the horizon irrespective of however small

ω we choose.

To get around this difficulty we closely follow the matching technique in [15]. At first

we isolate the ‘singular’ near horizon region from the original background. We already
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know that the near horizon geometry is given by AdS2×R
d−1 (6.2.8). This is referred to as

IR/inner region and the rest of the space time as UV/outer region. We can solve the string

EOM exactly in this IR region and therefore the treatment will be non-perturbative in ω.

On the other hand the ω-dependence in UV region can be treated perturbatively as there

is no more ω-sensitivity. The main task is to match the solutions over these two regions.

The overlap between these to regions is near the boundary (ζ → 0) of the AdS2 where

1
µ
� ζ �

1
ω
, (6.3.6)

with z2
∗

ω2

f (z)
∼ ω2ζ2 is very small,

and µ ζ ∼
z∗

z∗ − z
remains large.

The last two expressions ensure that the ω dependent term becomes small in EOM and

we are still near the horizon respectively.

• Inner region

For the string in AdS2 × R
d−1 (6.2.8)

√
−h =

L2
2

ζ2

√
1 +

L2
d+5

L2
2

µ2
∗ ζ

2 (x′2 − ẋ2)

≈
L2

2

ζ2

[
1 +

1
2

d (d − 1) µ2
∗ ζ

2 (x′2 − ẋ2)
]
. (6.3.7)

The Nambu-Goto action

S NG = −
L2

2

2πl2
s

∫
dt dζ

[
1
ζ2 +

1
2

d(d − 1) µ2
∗ (x′2 − ẋ2)

]
. (6.3.8)
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Varying this action we get a very simple EOM for the string which is that of a free wave

equation

x′′ − ẍ = 0 . (6.3.9)

To solve this linear EOM, the standard way is to go to the Fourier space

x(ζ, t) =

∫
dω
2π

e− iωt xω(ζ) . (6.3.10)

The equation of motion reduces to

x′′ω(ζ) + ω2 xω(ζ) = 0 . (6.3.11)

This is very well known differential equation with two independent solutions

xω(ζ) = e±iωζ . (6.3.12)

As we are interested in calculating retarded Green’s function we need to pick the one

which is ingoing at the horizon (ζ → ∞). It’s easy to see that e+ iωζ is ingoing at the

horizon. Once we pick the right solution at the horizon we need to expand that near the

boundary(ζ = 0) of the IR geometry i.e, AdS2 × R
d−1

xω(ζ) = 1 + iω ζ , near ζ = 0 . (6.3.13)

The ratio of normalizable to non-normalizable mode fixes the Green’s function for the IR

geometry

GR(ω) = iω . (6.3.14)
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(We will see in (6.3.20) that for string in AdSd+1 non-normalizable and normalizable

modes go as z0 and z3 respectively. Where as in AdS2 × R
d−1 (6.3.13) they go as z0 and

z1.)

• Outer region

For the outer region we need to solve the full EOM (6.3.5). But now as we are away

from the ‘dangerous’ near horizon region we can do a small frequency expansion. At the

leading order we can put ω = 0. Let’s say that the (6.3.5) has two independent solutions

η(0)
+ and η(0)

− for ω = 0. We can fix there behavior near the horizon (z = z∗) and near the

boundary (z = 0) by solving this equation near those regions.

Near horizon

Near z = z∗

f (z) ≈ d(d − 1)
(z∗ − z)2

z2
∗

. (6.3.15)

The EOM reduces to

x′′ω(z) −
2

z∗ − z
x′ω(z) = 0 . (6.3.16)

The two independent solutions are

c and
z∗

z∗ − z
, (6.3.17)
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where c is some constant which can be chosen to be 1. Since we need to match the inner

and the outer solutions near z = z∗ let’s express these independent solutions in terms of ζ,

η(0)
+ →

(
ζ

z∗

)0

, η(0)
− →

(
ζ

z∗

)1

. (6.3.18)

Near boundary

Near the boundary, z = 0 we can approximate f (z) ≈ 1 and consequently the EOM

x′′ω(z) −
2
z

x′ω(z) = 0 . (6.3.19)

The solutions near z = 0 will behave as

η(0)
+ ≈ a(0)

+

(
z
z∗

)0

+ b(0)
+

(
z
z∗

)3

, (6.3.20)

η(0)
− ≈ a(0)

−

(
z
z∗

)0

+ b(0)
−

(
z
z∗

)3

. (6.3.21)

Notice that a(0)
± , b

(0)
± are not independent but related by Wronskian. We will use this infor-

mation below to fix one of those coefficients.

Matching the solutions

We have some solutions to the full EOM in patches. All we need to do to obtain the

Green’s function is to determine the outer solution by matching it to the inner solution

in the overlap region. Then expand that solution near z = 0 to compute the ratio of

normalizable to non-normalizable mode.

Let’s do the matching first. From (6.3.13) and (6.3.18) we can express the outer solution
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as

xω(z) = η(0)
+ (z) + GR(ω) z∗ η

(0)
− (z) . (6.3.22)

Notice that so far we have been using solutions to the UV equation which are 0th-order

in ω (as we have put ω = 0). But in principle we can systematically add higher order

corrections in ω. In that improved version the outer solution will be given by

xω(z) = η+(z) + GR(ω) z∗ η−(z) , (6.3.23)

where η±(z) = η(0)
± (z) + ω2 η(2)

± (z) + ω4 η(4)
± (z) + . . . (6.3.24)

And as before near boundary, z = 0

η± ≈ a±

(
z
z∗

)0

+ b±

(
z
z∗

)3

, (6.3.25)

where a± = a(0)
± + ω2 a(2)

± + ω4 a(4)
± + . . . (6.3.26)

b± = b(0)
± + ω2 b(2)

± + ω4 b(4)
± + . . . (6.3.27)

Note that a±, b± are all real coefficients because the UV equation (6.3.5) and the boundary

condition (6.3.18) at z = z∗ are both real. Also the perturbation in frequency are in even

powers in ω as (6.3.5) contains only ω2.

Finally to obtain the retarded Green’s function we expand the outer solution (6.3.23) near

the boundary (z = 0)

xω(z) = A(ω)
(

z
z∗

)0

+ B(ω)
(

z
z∗

)3

, (6.3.28)

A(ω) = a+ + GR(ω) z∗ a− ,

B(ω) = b+ + GR(ω) z∗ b− .
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Green’s function of the boundary theory is given by (see [6–8])

GR(ω) := lim
z→0

T0(z)
(
−

z2

L2
d+1

)
xω′(z)
xω(z)

, (6.3.29)

where

T0(z) =
1

2πl2
s

L4
d+1

z4

1 +
d

d − 2

(
z
z∗

)2d−2

−
2(d − 1)

d − 2

(
z
z∗

)d , (6.3.30)

is identified as local string tension which comes from the z-dependent normalization of

the boundary action. Since we are interested in boundary Green’s function

T0(z) ≈
1

2πl2
s

L4
d+1

z4 , (6.3.31)

and consequently the retarded Green’s function

GR(ω) ≈ lim
z→0
−

1
2πl2

s

L2
d+1

z2

η+
′(z) + GR(ω) z∗ η−′(z)

η+(z) + GR(ω) z∗ η−(z)

= lim
z→0
−

L2
d+1

2πl2
s

1
z2

3b+ ( z
z∗

)2 1
z∗

+ GR(ω) 3b− ( z
z∗

)2

[a+ + GR(ω) z∗a−] + [b+ + GR(ω) z∗b−] ( z
z∗

)3

= −

√
λ

2π
3
z3
∗

[
b+ + GR(ω) z∗b−
a+ + GR(ω) z∗a−

]
. (6.3.32)

Therefore finally,

GR(ω) = −

√
λ

2π
3
z3
∗

[
b+ + GR(ω) z∗b−
a+ + GR(ω) z∗a−

]
.

(6.3.33)

We have introduced a dimensionless quantity λ := L4
d+1
l4s

which behaves like a coupling

constant in the boundary field theory. Since we are working in supergravity limit in the

bulk Ld+1 � ls and therefore λ � 1 i.e, the boundary theory is strongly coupled. The

expression (6.3.33) is the main result of this chapter. Below we analyze this in detail.
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Properties of the Green’s function

• The expression (6.3.33) depends on two sets of data.

1. {a±, b± } : These constants come from solving EOM in the outer region.

Therefore they depend on the geometry of the outer region. In this sense

they are non-universal UV data.

2. GR(ω) : This depends only on the IR region which always contains AdS2

independent of the full UV theory. This is universal IR data.

• As we have already pointed out the UV data (a±, b±) are always real. Whereas the

IR data (GR(ω)) is in general complex. Therefore the dissipation is always controlled

by the IR data. Actually all non-analytic11 behavior enters into GR(ω) from GR(ω).

• In principle a(2n)
± , b(2n)

± are fixed by (numerically) solving the EOM in UV region in

ω2 perturbation.

• The interesting thing to notice is that the (6.3.5) with ω = 0 allows a constant

solution. From the boundary condition (6.3.18) at z = z∗, we see that

η(0)
+ = 1 . (6.3.34)

This value of η(0)
+ will continue to solve the EOM (6.3.5) with ω = 0 for the outer

region z∗ ≥ z ≥ 0. So near the boundary (z = 0) we have (from (6.3.25))

η+ ≈ a(0)
+

(
z
z∗

)0

+ b(0)
+

(
z
z∗

)3

= 1 . (6.3.35)

11There is no non-integer powers of ω for the system we are considering. Therefore there is no branch
cuts but GR(ω) can only have poles at particular ω-values.
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This fixes

a(0)
+ = 1, b(0)

+ = 0 . (6.3.36)

We can fix one more coefficient by equating the generalized Wronskian12 at the

boundary and at the horizon. We get (see appendix I for details)

b(0)
− =

1
3
. (6.3.37)

The 0th-order Green’s function reduces13 to

G(0)
R (ω) = −

L2
d+1

2πl2
s

3
z3
∗

b(0)
+ + GR(ω)z∗b

(0)
−

a(0)
+ + GR(ω)z∗a

(0)
−

= −

√
λ

2π
iµ2
∗ ω

(1 + i ω
µ∗

a(0)
− )

. (6.3.38)

The form of G(0)
R (ω) ensures14

G(0)
R (ω) = 0 , as ω→ 0 .

The real and imaginary parts of G(0)
R (ω) are plotted (see Fig. 6.2 and Fig. 6.3) for

particular values of the parameters : λ = 50, µ∗ = 5 and a(0)
− = 10.

12The generalized Wronskian of a 2nd order homogeneous ODE with two independent solutions φ1 and
φ2 is defined as

W(z) ≡ e
∫ z

P(t)dt[φ1∂zφ2 − φ2∂zφ1]

=
√
−ggzz[φ1∂zφ2 − φ2∂zφ1] .

13There is no principle that tells us that the all the coefficients of Green’s function (even in 0th-th order in
ω) should be determined by analytic methods. Due to the simplicity of this particular differential equation
we can fix few of them analytically. In general one needs numerical techniques to fix all of them.

14Instead of a fluctuating string if one considers bulk Fermionic field (not world sheet field) in the same
geometry, a(n)

± , b
(n)
± are functions of momentum k. For certain value of k = kF , say, a(0)

+ = 0. At this value of
momentum G(0)

R (ω, kF) becomes singular at ω = 0. This indicates the Fermi surface.
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Figure 6.2. Real part of G(0)
R (ω) with µ∗ = 5
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Figure 6.3. Imaginary part of G(0)
R (ω) with µ∗ = 5

For small frequency

G(0)
R (ω) = −i

√
λ

2π
µ2
∗ ω(1 − i

ω

µ∗
a(0)
− + . . .)

≈ −i

√
λ

2π
µ2
∗ ω − a(0)

−

√
λ

2π
µ∗ ω

2 . (6.3.39)

This is also consistent with Langevin equation (6.1.5) as GR(ω) expansion starts

with −iω. Note that, for small frequencies, the zero temperature dissipation goes

linear in ω (see Fig. 6.3) unlike µ = 0 case [7,8] where this goes as ω3. The fact that

GR(ω) is linear in ω comes from the fact that the effective AdS2 dimension (which
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can be read off from (6.3.18)) of the ‘quark operator’ is one (i.e. ∆ = 1).

The leading dissipative term is proportional to µ2
∗. This result indicates that en-

ergy loss for the charged Brownian particle is more for medium with higher charge

density.

Brownian motion at finite temperature

To study Brownian motion at finite but very small temperature we need to follow the

same steps as before. But now the inner region will become a non-extremal (rather near

extremal) black hole (6.2.2) background.

Green’s function by matching solutions

In this section we will go through the same procedure of matching functional form of

the solutions in inner and outer regions. There will be few modifications to the zero

temperature GR(ω).

• Inner region

The metric in this region is black hole15 in AdS2 × R
d−1 (6.2.11).

The Nambu-Goto action

S NG = −
L2

2

2πl2
s

∫
dt dζ

[
1
ζ2 +

1
2

d(d − 1) µ2
∗

(
g(ζ) x′2 −

1
g(ζ)

ẋ2
)]
. (6.4.1)

15This black hole is related to AdS2 geometry by a co-ordinate transformation [121,122] (combined with
a gauge transformation) that acts as a conformal transformation on the boundary of AdS2. So correlators
can be obtained directly from AdS2 correlators via conformal transformation.
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Varying this action we obtain the EOM in frequency space

x′′ω(ζ) +
2 ζ

ζ2 − ζ2
0

x′ω(ζ) +
ζ4

0 ω
2

(ζ2 − ζ2
0 )2

xω(ζ) = 0 . (6.4.2)

This EOM can be solved exactly. The two independent solutions16 are :

xω(ζ) = e± i ζ0 ω tanh−1
(
ζ
ζ0

)
. (6.4.3)

Again we are interested in retarded Green’s function so we pick the solution which is

ingoing at the horizon (ζ = ζ0)

e+ i ζ0 ω tanh−1
(
ζ
ζ0

)
. (6.4.4)

Once we have the ingoing solution we need to expand it near the boundary(ζ = 0) of near

horizon geometry

xR
ω(ζ) = 1 + iω ζ . (6.4.5)

We can now read off the Green’s function in IR region

GR,T (ω) = iω . (6.4.6)

This is identical to the zero temperature case (6.3.14).

We have discussed earlier the dissipative part of GR(ω) comes solely from the IR Green’s

function. For this particular problem GR,T (ω) = GR(ω) = iω. Therefore T -dependence

can only creep in via the expansion coefficients (a±, b±).

16Notice the same ζ0 tanh−1
(
ζ
ζ0

)
factor appears in the conformal transformation from AdS2 to AdS2-BH

(see [122]).
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• Outer region

This outer region analysis will be almost identical to that of the zero temperature case.

One just has to be careful about the coefficients (a±, b±) which are now temperature de-

pendent, in general. Therefore we can skip repeating the analysis and directly write down

the Green’s function at finite temperature following the zero temperature case (see section

6.3)

GR,T (ω) = −

√
λ

2π
3
z3
∗

[
b+(ω,T ) + GR,T (ω) z∗ b−(ω,T )
a+(ω,T ) + GR,T (ω) z∗ a−(ω,T )

]
= −

√
λ

2π
3
z3
∗

[
b+(ω,T ) + iω z∗ b−(ω,T )
a+(ω,T ) + iω z∗ a−(ω,T )

]
. (6.4.7)

If we consider only the leading order in ω (i.e, putting ω = 0 in the EOM), even for the

non-extremal case, xω = const. is again a solution. As before we can normalize it to one.

By the same argument as in zero temperature case

a(0)
+ = 1, b(0)

+ = 0 . (6.4.8)

Therefore the leading order Green’s function is identical to that of zero temperature case

(6.3.38)

G(0)
R,T (ω) = −

√
λ

2π
i µ2
∗ ω

(1 + i ω
µ∗

a(0)
− )

. (6.4.9)

This Green’s function can be improved by solving the (6.3.5) perturbatively in ω and T .

Actually the corrections will be in powers of ω
µ∗

and T
µ∗

. The corresponding real coefficients

can also be obtained numerically in a systematic fashion.
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Discussions

We have studied in detail the important properties of the retarded Green’s function we

obtained from the matching technique. It has a nice structure in terms of frequency (and

also in temperature). We discussed that the dissipative (in general non-analytic) part of

the system is determined by the near horizon behavior i.e, the IR data of the system.

On the other hand the near boundary behavior i.e the UV data is always some analytic

expansion in nature. Actually these facts are compatible with our field theoretic and

geometric intuitions.

For generic many body systems we know that IR physics can show non-analytic behavior

but UV physics can only give analytic corrections to that. From Renormalization Group

(RG) point of view this matching technique can be thought of as matching UV to IR

physics at some intermediate energy scale fixed by the chemical potential (µ∗).

Geometrically also this is expected. Dissipation is caused due to energy or ‘modes’ dis-

appearing into ‘something’. In the bulk picture this can only happen near the horizon of

a black hole where the modes fall into the black hole and never come back. Whereas

near boundary geometry is very smooth and therefore no non-analytic behavior can be

expected from that UV region.

It is worth mentioning that the leading order dissipative term at zero temperature is linear17

in frequency unlike the zero density situations [7, 8] where it starts with cubic term (ω3).

Therefore this is actually the drag term associated to the velocity of the charged particle

rather than the acceleration of the same. A particle moving at constant velocity at zero

temperature can dissipate energy for this set-up since the presence of finite charge den-

sity breaks Lorentz symmetry of the boundary theory explicitly. Nevertheless there will

17This linear dependence in frequency comes from the fact that effective AdS2 dimension (see (6.3.18)) of
the ‘quark operator’ is one (i.e. ∆ = 1) and is very crucial. Due to this particular low frequency behaviour
the dissipative structure is qualitatively same at zero and finite temperature. If the dimension has been
different from one, the small ω expansion in (6.3.39) at zero temperature would have started with a different
power (i.e. not linear) and the story would have been different from the T , 0 result.
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be dissipation due to acceleration of the charged particle as radiation at the subleading

order. Expanding G(0)
R (ω) (6.3.38) in small frequency one can obtain the Bremsstrahlung

function B(λ) by collecting the coefficient of ω3,

B(λ) =

√
λ

2π
(a(0)
− )

2
. (6.5.1)

a(0)
− can be fixed by numerical technique. But this is obtained solving the string EOM

(6.3.5) only upto O(ω0). It will get corrections for higher orders in ω2 that can be taken

into account systematically.

It will be interesting to use this matching technique to system with small chemical poten-

tial (µ) and then take that to zero. Then the results obtained in chapter 5 can be checked.

But there is a subtlety. All the analysis in this chapter heavily rely on the near horizon

AdS2 factor which appears for large chemical potential and small temperature. For T & µ

the ‘nice’ inner region structure breaks down. Thus one cannot use this method for zero

density situation at least in a straightforward manner.

Conclusions

We have used holographic technique to study Langevin dynamics of a heavy particle

moving at finite charge density. We have studied this by computing retarded Green’s

function via solution matching technique. Here are the main results.

• Analytic form of retarded Green’s function for small frequencies has been obtained

at zero temperature.

• The drag force at zero temperature shows up as the leading contribution at small

frequencies.

• It is also been sketched how the retarded Green’s function gets corrections due to
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small (but finite) temperature. The leading dissipative part (drag) remains identical

to that in the zero temperature case.

• The drag term grows quadratically with the chemical potential i.e, loss in energy of

the Brownian particle is more for medium with higher charge density.

• The leading contribution to the Bremsstrahlung function B(λ) is obtained with an

unknown co-efficient a(0)
− which can be fixed by numerical method. Its corrections

in ω
µ∗

and T
µ∗

can be computed systematically.
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7 Conclusions & outlook

In this thesis we have studied dynamics of a heavy charged particle (a quark) in a strongly

coupled plasma using holography. Our main focus has been on the zero temperature

dissipation of the Brownian particle which is interpreted as energy loss due to radiation

[12–14]. We have studied the Brownian dynamics in diverse spacetime dimensions and

also in zero and finite matter density in the plasma. We have used only analytic techniques

throughout the thesis and for particular cases have obtained even exact results.

In the first part of the thesis we have studied the Brownian diffusion of a particle in 1+1

dimensions using the holographic techniques. The holographic dual is a BTZ black hole

with a string. We find an exact Green function and an exact (generalized) Langevin equa-

tion.

• We show that the exact generalized Langevin equation, which is valid on short time

scales also, does not suffer from the inconsistency that is associated with the usual

Langevin equation that has a delta function for the drag term.

• There is also a temperature independent dissipation at all frequencies. At high

frequencies it is a drag term. This does not violate Lorentz invariance as the force

on a quark moving with constant velocity for all time continues to be zero. This has

already been studied in higher dimensional systems and is due to radiation.

• Since an exact Green function is available, the ‘stretched horizon’ can in fact be

placed at an arbitrary radius and an effective action obtained which has a nice holo-
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graphic RG interpretation.

Next we explore dissipation of a Brownian particle near and at zero temperature. The mo-

tivation came from our earlier analysis in 1+1 dimensions where we noticed dissipation

T → 0 and T = 0 match i.e, dissipation has smooth T = 0 limit. Here we list our main

results.

• As long as we are considering dynamics of the quark at zero temperature, that is

the string in the dual gravity theory moves in a pure AdS spacetime, the coefficients

of dissipation for arbitrary space time dimensions are identical. The value of the

coefficient is
√
λ

2π and can be identified with the bremsstrahlung function B(λ,N).

• For higher dimensions (AdSd+1 with d > 2) the dissipation coefficient at T = 0 and

T → 0 don’t match for small frequencies ( ω
πT < 1). The coefficient for T → 0 comes

out to be
(
π−Log 4

4

) √
λ

2π instead of
√
λ

2π . We interpret this phenomenon as possible

signature of Hawking-Page transition at T = 0.

Finally we have studied Langevin dynamics of a heavy particle moving at finite charge

density. This analysis is valid for field theories in more than two spacetime dimensions

i.e, for AdSd+1 with d > 3.

• We derive analytic form of retarded Green’s function for small frequencies at zero

temperature. The drag force at zero temperature shows up as the leading contri-

bution. Even if we turn on small (but finite) temperature leading dissipative part

(which is drag) remains unchanged.

• The drag term grows quadratically with the chemical potential i.e, loss in energy of

the Brownian particle is more for medium with higher charge density.

• The leading contribution to the Bremsstrahlung function B(λ) is obtained with an

unknown co-efficient which can be fixed by numerical method.
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There are several directions that one can make progress in, in the context of holographic

Brownian motion.

• It will be interesting to study holographic renormalization group [16–19] for this

type of systems particularly for the 2+1 dimensional bulk where one can solve the

equations of motion the fluctuating string in closed form.

• Most of the methods applied in this thesis can possibly be generalized to fluctu-

ating higher dimensional extended objects i.e, D-branes in AdS spacetime. These

systems can be very useful in exploring different non-equilibrium phenomena in the

context of gauge/gravity duality.

• The zero temperature dissipation of the charged particle is very interesting in its

own right. There are several scenarios where this phenomenon can be studied.

Some of them are as follows.

– It would be interesting to investigate the dissipation near zero temperature in

1+1 dimensional CFT at finite matter density by studying stochastic string in

a charged BTZ black hole.

– Our technique for computing Green function at finite density for higher di-

mensional systems (i.e. CFTd with d ≥ 3) only requires an AdS2 factor near

the horizon. Therefore it should work even if the UV theory is non-conformal

(not asymptotically AdS) but the IR geometry has a AdS2 factor. For example,

instead of D3 branes one can look at D2 or D4 brane geometries [20]. If for

some charge density they flow to a AdS2 then the procedure can be applied.

By the same argument it can be also used for some rotating extremal black

hole backgrounds.

– Finally one can explore zero temperature dissipation for anisotropic back-

grounds [21, 22] which are more interesting phenomenologically.
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• All our results are valid for large chemical potential and small temperature. If one

is interested in studying Brownian motion in the opposite regime this technique can

not be used. The reason being for µ ∼ T the ‘nice’ inner region structure breaks

down. In that case the small µ corrections can be computed using same techniques

used in [6, 7] but for a charged black hole background in AdS with very small

charge.

• For a particular theory at finite density but at zero temperature if one can indepen-

dently compute the Bremsstrahlung function, then that can be compared with the

result obtained in our method. The standard and well known method of computing

the Bremsstrahlung function is using supersymmetric localization technique (see

e.g, [13, 14, 113]). But one would face following challenges to apply this tech-

nique at finite density. Firstly one needs to, if possible, turn on background fields

corresponding to finite density while preserving enough supersymmetry. Secondly,

and more specific to the computation of the Bremsstrahlung function, finite density

breaks conformal invariance. Some of the steps in computing the Bremsstrahlung

function use explicitly conformal symmetry. Although the Bremsstrahlung function

must exist for non-conformal theories, it may no longer be controlled by localiza-

tion.

• In this thesis we have performed all the computations in the dual bulk geometry.

It will be extremely interesting if all these results can be obtained directly from

conformal field theory calculations. One needs to work with CFT in Minkowski

space and it will be particularly interesting to see if rich 2D CFT tools can be used

to model Brownian motion.
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A Some useful tricks & results

Here we list some very useful techniques and results in the context of dualities in chapter.

2.1.

Lagrange multipliers

In classical physics to impose constraint on a system one introduces Lagrange multiplier.

Let’s describe a particular dynamical system to illustrate how to deal with Lagrange mul-

tiplier.

Consider a free scalar field φ that can take value only on a unit sphere in field space i.e, φ

satisfies the constraint φ2 = 1. The Lagrangian which describes this free scalar field on a

sphere is given by

L =
1
2
∂µφ ∂

µφ − Λ(φ2 − 1) . (A.1.1)

We have introduced Lagrange multiplier Λ which is a non-dynamical field since its con-

jugate momentum vanishes. The EOM of Λ is

∂L

∂Λ
= 0 ,

φ2 − 1 = 0 ,

φ2 = 1 . (A.1.2)
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This shows that our Lagrangian correctly incorporates the constraint on the field and the

constraint equation comes from the EOM of the Lagrange multiplier.

So far this was all classical. To do the same thing in quantum theory one just needs to

introduce same Λ into the path integral. A free un-constrained scalar field in d dimensions

is represented by the following partition function

Z =

∫
Dφ ei S [φ] , (A.1.3)

where S [φ] =
∫

dd+1x [ 1
2∂µφ ∂

µφ] .

To impose the constraint one has to introduce a ‘fake’ variable Λ into the partition function

Z =

∫
DφDΛ ei S [φ]− i

∫
dd+1 x Λ (φ2−1) . (A.1.4)

"Solvable" path integrals

Path integrals are usually tricky objects. Only a very special subclass of them namely

those with quadratic action can be exactly solved.

Z =

∫
Dφ e−

∫
φ θ̂ φ , (A.2.1)

where θ̂ is the kinetic energy operator or inverse propagator e.g, θ̂ = (� − m2) for free

massive scalar field. And for this particular case

Z =

∫
Dφ e−

∫
φ θ̂ φ = det θ̂ . (A.2.2)

The result det θ̂ is a formal expression. It can be realized by diagonalizing θ̂ and then

multiplying all its eigenvalues.
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Gaussian is special

In the previous section we discussed that we can exactly compute only those path integrals

whose integrands are Gaussian in the field variables. Gaussian has one more special

property namely Fourier transform of a Gaussian is also a Gaussian

1
2π

∫
dω eiωt e−

t2

2σ2 =

√
σ

2π
e−

σ2ω2
2 . (A.3.1)

The interesting fact to notice here is the ‘width’ or the standard deviation of the Gaussian

gets inverted i.e, σ → 1
σ

after the Fourier transformation. Thus if the Fourier transfor-

mation is performed at the level of path integrals, σ may be interpreted as a ‘coupling’

for some theory. Then roughly speaking this transformation effectively maps a ‘weakly

coupled’ theory of ‘field’ t with coupling constant σ to a ‘strongly coupled’ one of ‘field’

ω with coupling 1
σ

. (For a more concrete example see Maxwell duality in section 2.1.)

We also make use of similar property in chapter 4 while introducing Gaussian noise ξ into

the system (see (4.2.26)).
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B Anti-de Sitter spacetime

In this appendix we discuss about AdS spacetime in detail (see [123, 124]). We start with

studying lower dimensional spaces then build on them and talk about AdSd+1 spacetime in

different co-ordinates. Choice of coordinate is very crucial in studying particular problem

in holography.

Spaces with constant curvature

Let’s first consider two dimensional spaces (not space-time) with constant curvature.

Sphere (S2)

A sphere is defined by the surface which satisfies the following constraint in 3D Euclidean

space,

X2 + Y2 + Z2 = L2 ,

ds2 = dX2 + dY2 + dZ2 , (B.1.1)

where L is the radius of the sphere. One can parametrize the 2-sphere by there intrinsic

co-ordinates (θ, φ)

X = L sin θ cos φ
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Y = L sin θ sin φ

Z = L cos θ . (B.1.2)

In (θ, φ) coordinates the metric reduces to

ds2 = L2 (dθ2 + sin2θ dφ2) . (B.1.3)

• S2 has SO(3) invariance of the ambient space.

• S2 is homogeneous : Any point on S2 can be mapped to other point on S2 by SO(3).

• S2 has constant positive curvature 2
L2 . This is also called the Ricci scalar.

Hyperbolic space (H2)

This is a space of constant negative curvature. A hyperbolic space1 is defined by the sur-

face which satisfies the following constraint in 3D Minkowski space. As H2 is embedded

in Minkowski space rather than Euclidean space it’s hard to visualize.

X2 + Y2 − Z2 = −L2

ds2 = dX2 + dY2 − dZ2 . (B.1.4)

One can parametrize the H2 by its intrinsic co-ordinates (θ, φ)

X = L sinh ρ cos φ

1Hyperbolic space (H2) is not to be confused with hyperboloid which is embedded in Euclidean space
with identical constraint equation

X2 + Y2 − Z2 = −L2

ds2 = dX2 + dY2 + dZ2 .

Notice that hyperboloid is not homogeneous because it does not respect the SO(3) invariance of the ambient
space.
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Y = L sinh ρ sin φ

Z = L cosh ρ . (B.1.5)

In (ρ, φ) coordinates the metric reduces to

ds2 = L2 (dρ2 + sinh2ρ dφ2) . (B.1.6)

• H2 has SO(1,2) invariance of the ambient space.

• H2 is homogeneous : Any point on H2 can be mapped to other point on H2 by

SO(1,2) i.e, ‘Lorentz transformation’2.

• H2 has constant negative curvature − 2
L2 .

Space-times with constant curvature

Now we move on to space-times with constant curvature. We will discuss two spacetimes

AdS2 and dS2 which are analogous to H2 and S2 respectively. Our focus will be mostly

on AdS spacetime.

de Sitter spacetime (dS2)

The de Sitter spacetime is a spacetime with constant positive curvature. It (specially dS4)

frequently appears in the context of dark energy in cosmology. dS2 spacetime is defined

by

−Z2 + X2 + Y2 = +L2

ds2 = −dZ2 + dX2 + dY2 . (B.2.1)

2Strictly speaking this is not Lorentz transformation since we are essentially dealing with a space not a
space-time.
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It has the SO(1,2) invariance. Again we can parametrize dS2

X = L cosh t̃ cos θ

Y = L cosh t̃ sin θ

Z = L sinh t̃ . (B.2.2)

The metric becomes

ds2 = L2 (− dt̃ 2 + cosh2t̃ dθ2) . (B.2.3)

Notice that (see (B.1.1) and (B.2.1) ) if we Euclideanize the Z-direction i.e, define ZE = i Z

then

dS2
Euclideanize
−−−−−−−−→ S2 .

Anti de Sitter spacetime (AdS2)

AdS2 can be represented by the surface which satisfies the following constraint in flat

space with two timelike directions.

−Z2 − X2 + Y2 = −L2

ds2 = −dZ2 − dX2 + dY2 , (B.2.4)

where L is the AdS radius. One can parametrize AdS2 by its intrinsic co-ordinates

Z = L cosh ρ cos t̃

X = L cosh ρ sin t̃

Y = L sinh ρ . (B.2.5)
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The metric reduces to

ds2 = L2 (−cosh2ρ dt̃ 2 + dρ2) . (B.2.6)

AdS2 has SO(2,1) invariance. Notice that the coordinate t̃ is a periodic variable t̃ ∈ (0, 2π]

but ∂
∂t̃ is the timelike direction. Therefore this is the closed timelike direction and this

allows closed timelike curves. To avoid this pathology one goes to the universal cover of

this space where t̃ ∈ (−∞,∞). We call this AdS spacetime.

Also note that (see (B.1.4) and (B.2.4)) if we Euclideanize the X-direction i.e, define

XE = i X then

AdS2
Euclideanize
−−−−−−−−→ H2 .

Actually one can easily generalize the metric to arbitrary dimensions with the following

embedding.

−X2
0 − X2

d+1 +

d∑
i=1

X2
i = −L2

ds2 = −dX2
0 − dX2

d+1 +

d∑
i=1

dX2
i . (B.2.7)

(For d = 1 one gets back the AdS2.) AdSd+1 has SO(2,d) symmetry3 which contains

SO(d) as a subgroup. One can use the this rotational invariance to parametrize AdSd+1

with standard unit sphere (Sp−1) coordinates ωi (i = 1, . . . , p)

X0 = L cosh ρ cos t̃

Xp+2 = L cosh ρ sin t̃

Xi = L sinh ρ ωi . (B.2.8)

3It is worthwhile to note that this is the symmetry group of d-dimensional conformal field theories
(CFTd). This is a nice observation that hints towards the AdS/CFT correspondence
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The metric becomes

ds2 = L2 (−cosh2ρ dt̃2 + dρ2 + sinh2ρ dΩ2
d−1) . (B.2.9)

This metric is said to be in global co-ordinates. One can change variables to express the

same spacetime in different co-ordinates.

AdSd+1 in different co-ordinates

So far we have worked only with global co-ordinates (B.2.9). But people work with

different co-ordinates depending on situations.

Static co-ordinates

Let’s define r̃ ≡ sinh ρ. Then (B.2.9) reduces to

ds2

L2 = −(r̃2 + 1) dt̃2 +
dr̃2

r2 + 1
+ r̃2 dΩ2

d−1 . (B.3.1)

This coordinate is useful for studying AdS black holes.

Conformal co-ordinates

Define tan θ ≡ sinh ρ. Here θ takes value between −π2 to π
2 . The metric becomes confor-

mally flat,

ds2

L2 =
1

cos2 θ

(
− dt̃2 + dθ2 + sin2 θ dΩ2

d−1

)
. (B.3.2)

Note that θ = ± π
2 represent the conformal boundary of the AdS spacetime. This is where

the dual field theory ‘lives’.
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Poincaré co-ordinates

The Poincaré co-ordinates are defined as

X0 =
L r̄
2

(
x̄i

2 − t̄2 +
1
r̄2 + 1

)
Xd+1 = L r̄ t̄

Xi = L r̄ x̄i

Xd =
L r̄
2

(
x̄i

2 − t̄2 +
1
r̄2 − 1

)
. (B.3.3)

The metric (B.2.9) reduces to

ds2

L2 = −r̄2 dt̄2 +
dr̄2

r̄2 + r̄2 d ~̄x 2
d−1 . (B.3.4)

Note that all the co-ordinates namely r̄, t̄, ~̄x are dimensionless. It is always useful to ex-

press metrics in dimensionful co-ordinates. Let’s define the following dimensionful co-

ordinates.

r = L r̄, t = L t̄, ~x = L ~̄x.

The metric reduces to

ds2 = −
r2

L2 dt2 +
L2

r2 dr2 +
r2

L2 d ~x 2
d−1 . (B.3.5)

One can make one more change of variable z = L2

r to obtain

ds2 =
L2

z2 (− dt2 + dz2 + d ~x 2
d−1) . (B.3.6)

This is the most used co-ordinate system in the literature. This co-ordinate system makes

the boundary Poincaré symmetry manifest (i.e, for any fixed value of z = z0, say, the

metric is that of Minkowski spacetime.). This is called a Poincaré patch because the
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coordinate doesn’t cover the whole AdS spacetime. Poincaré patch in Euclidean signature

covers the entire AdS spacetime just like the global coordinates.
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C N = 4 super Yang-Mills

Here we briefly describe different features of N = 4 super Yang-Mills theory. For more

details see for example, [125, 126].

The Lagrangian

N = 4 supersymmetric Yang-Mills theory in four dimensions was written down for the

first time in [127,128] in 1976 by applying the method of dimensional reduction toN = 1

super Yang-Mills in ten dimensions. For N = 4 supersymmetric gauge theory in four

dimensions the gauge multiplet is the only possible multiplet (unlike N = 1 or N = 2

theories) and is given by (Aµ, Ψ
a
α , Φ

i) where Aµ is a vector field, Ψ a
α with (a = 1, . . . 4) are

Weyl spinors and Φi with (i = 1 . . . 6) are real scalars. And the Lagrangian is given by

L = tr
{
−

1
2g2 Fµν Fµν +

θI

8π2 Fµν F̃µν − i
∑

a

Ψ̄a σ̄
µ DµΨa −

∑
i

DµΦ
i DµΦi

+
∑
a,b,i

g Cab
i Ψa [Φi, Ψb] +

∑
a,b,i

g C̄iab Ψ̄
a [Φi, Ψ̄ b] +

g2

2

∑
i, j

[Φi, Φ j]2
}
, (C.1.1)

where g is the coupling constant, θI is the so-called instanton angle, Fµν is the usual field

strength of the gauge field, Dµ is the usual gauge-covariant derivative, F̃ is the Hodge dual

of F, and Cab
i are the structure constants of R-symmetry S U(4)R. The trace is over the

gauge indices to make the action gauge invariant. The full action is invariant under the

N = 4 supersymmetry transformations.
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Dimensional reduction of N = 1 SYM

The Lagrangian of N = 4 SYM in D = 4 may look complicated but it arises naturally

if one dimensionally reduce ten dimensional N = 1 SYM to four dimensions and this is

how it was first obtained [127, 128]. Let’s start with that 10D theory

S 10 =

∫
d10x tr

(
−

1
2g2 FMN FMN + iΨΓMDMΨ

)
, (C.2.1)

where M,N = 0, 1, . . . , 9 ; µ, ν = 0, 1, 2, 3 and Ψ is a 16 component real (Majorana-

Weyl) spinor. It has 8 degrees of freedom (DOF). The gauge field in 10 D also has 8

degrees of freedom, as it should be the case due to supersymmetry. ΓM are the ten dimen-

sional gamma matrices. Here the trace actually means

trΨ /DΨ ≡
9∑

M=0

N∑
b=1

N∑
a=1

N∑
B=1

N∑
A=1

(ΨA)ab Γ
M
AB (∂MΨB + i [AM, ΨB])ba , (C.2.2)

where M is a Lorentz index, A, B are number of spinors and a, b represent color indices.

Dimensionally reducing this theory from ten to four dimensions on a torus (T6) involve

the following steps.

• Nothing depends on co-ordinates x4, x5, . . . , x9. Therefore ∂x4 , . . . , ∂x9 must vanish.

• The gauge field should be decomposed as AM = (Aµ, Φi) and the gamma matrices

as ΓM = (γµ, γi) .

If we follow the above ‘rules’

FMN = ∂µAν − ∂νAµ + i [Aµ, Aµ] +��
�*0

∂iΦ j −��
�*0

∂ jΦi

+ i [Φi, Φ j] + ∂µΦi −��
�*0

∂iΦµ + i[Aµ, Φi] ,

= Fµν + i[Φi, Φ j] + DµΦi ,

174



− FMN FMN = − FµνFµν − DµΦiDµΦi + [Φi, Φ j][Φi, Φ j] , (C.2.3)

iΨ̄ /DΨ = iΨ̄γµ
{
∂µΨ + [Aµ, Ψ ]

}
+ i Ψ̄γi

{
��
�*0

∂iΨ + [Φi, Ψ ]
}

= iΨ̄γµ
{
∂µΨ + [Aµ, Ψ ]

}
+ i Ψ̄γi[Φi, Ψ ] . (C.2.4)

Adding RHS of (C.2.3) and (C.2.4) and keeping track of the coupling constants one ob-

tains theN = 4 SYM action in 4D (C.1.1). Notice that the γis which are in the compacti-

fied T6 play the tole of Yukawa couplings in this theory.

Symmetries

The above Lagrangian isN = 4 Poincaré supersymmetry invariant by construction. From

dimensional analysis

[Aµ] = [Φi] = 1, [Ψa] = 3/2 ,

∴ [g] = [θI] = 0,

we can see that the theory is also classically scale invariant theory since all fields are

massless and there is no dimensionful parameter. It is well known that relativistic the-

ories which posses both Poincaré symmetry and scale invariance are actually invariant

under enhanced symmetry group called the conformal symmetry. For four spacetime

dimensions the group is SO(2,4) ∼ SU(2,2). Furthermore, the N = 4 Poincaré supersym-

metry and conformal invariance combines themselves to an even more larger symmetry

group known as superconformal symmetry which is given by the supergroup SU(2,2|4).

Remarkably the theory remains scale invariant even after quantization. Its β-function van-

ishes to all order in perturbation and it is believed to vanish even non-perturbatively. Thus

the superconformal group SU(2, 2|4) is a symmetry even at the quantum mechanical level.
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This UV finiteness makes N = 4 SYM a very special quantum field theory.

In addition to superconformal symmetry as described above this theory enjoys a discrete

global symmetry known as S-duality or Montonen-Olive duality (see chapter 2). This

symmetry can be described better by combining the coupling constant (g) and instanton

angle (θI) into a single complex coupling as follows

τ ≡
θI

2π
+

4πi
g2 .

The quantized theory is invariant under τ→ τ+1. Montonen-Olive conjectured the theory

to be invariant under a full SL(2,Z) symmetry group which is realized as following.

τ→
aτ + b
cτ + d

.

where ad − bc = 1 and a, b, c, d ∈ Z. Note that when θI = 0 this duality transformation

relates g→ 1
g which is equivalent to exchanging weak coupling and strong coupling.

Phases

To study the phases of the theory one needs to analyze the potential energy term ofN = 4

SYM

V(Φ) = −
g2

2

6∑
i, j=1

tr [Φi, Φ j]2 . (C.4.1)

This is a sum of positive terms. The ground state obtained when

[Φi, Φ j] = 0 .

This criterion can be satisfied by following two different ways.
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• 〈Φi〉 = 0 for all i = 1, ..., 6.

The gauge algebra and the superconformal symmetry SU(2, 2|4) are unbroken. This

is known as superconformal phase.

• 〈Φi〉 , 0 for at least one i.

Superconformal symmetry is spontaneously broken since the non-zero vacuum ex-

pectation value of 〈Φi〉 sets a scale. This is known as Coulomb phase.
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D Correlators in QFT

The central theme of this thesis is thermal Green functions and particularly computing

them from gravity theory. Here we review some general well known properties about

different Green functions that appear in usual QFT (see also [11]) .

In Minkowski space

Let Ô be a local, Bosonic operator in a finite temperature quantum field theory. Retarded

and advanced propagators for Ô are defined by

GR(k) = −i
∫

dDx e−ik.x θ(t) 〈[Ô(x), Ô(0)]〉 , (D.1.1)

GA(k) = i
∫

dDx e−ik.x θ(−t) 〈[Ô(x), Ô(0)]〉 . (D.1.2)

Here gµν = diag(−1, 1, 1, 1). The different Green functions are not independent.

GR(k)∗ = i
∫

dDx eik.x θ(t) 〈[Ô(x), Ô(0)]〉∗

= i
∫

dDx eik.x θ(t)
{
〈Ô†(0) Ô†(x)〉 − 〈Ô†(x) Ô†(0)〉

}
= −i

∫
dDx eik.x θ(t) 〈[Ô(x), Ô(0)]〉 (O′s are Hermitian)

= GR(−k) . (D.1.3)
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GA(k) = i
∫

dDx e−ik.x θ(−t) 〈[Ô(x), Ô(0)]〉

= i
∫

dDx e−ik.x θ(−t) 〈[Ô(0), Ô(−x)]〉 (space time translational invariance)

= i
∫

dDx eik.x θ(t) 〈[Ô(0), Ô(x)]〉 (x→ −x)

= − i
∫

dDx eik.x θ(t) 〈[Ô(x), Ô(0)]〉

= GR(k)∗ . (D.1.4)

Therefore, GR(k)∗ = GR(−k) = GA(k) . (D.1.5)

For parity invariant systems, Re GR,A are even functions of ω ≡ k0 and Im GR,A are odd

functions of ω.

Let’s consider symmetrized Wightman function

G(k) =
1
2

∫
dDx e−ik.x 〈Ô(x) Ô(0) + Ô(0) Ô(x)〉. (D.1.6)

All other correlators can be written in terns of GR,GA and G. As an useful example,

Feynman propagator

GF(k) = −i
∫

dDx e−ik.x 〈|T {Ô(x) Ô(0)}|〉 (D.1.7)

=
1
2

[GR(k) + GA(k)] − i G(k). (D.1.8)

From the spectral representation of GR and G one can show

G(k) = − coth
ω

2T
Im GR(k). (D.1.9)

For known GR(k) we can compute

GF(k) = Re GR(k) + i coth
ω

2T
Im GR(k). (D.1.10)
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So, at zero temperature (D.1.10) becomes

GF(k) = Re GR(k) + i sgn (ω) Im GR(k); at T = 0. (D.1.11)

Taking the limit ω→ 0 in (D.1.9), we get another useful formula

G(0,~k) = − lim
ω→ 0

2T
ω

Im GR(k) = 2iT
∂

∂ω
GR(ω,~k)

∣∣∣∣∣
ω=0

. (D.1.12)

In Euclidean space

In Euclidean space one has to normally deal with Matsubara propagator,

GE (kE) =

∫
dDxE e−ikE .xE 〈TE {Ô(xE) Ô(0)}〉 , (D.2.1)

where TE denotes Euclidean time ordering. The Matsubara propagators are defined only

at discrete values of the frequency ωE. For Bosonic Ô they are multiples of 2πT . We can

always relate the Euclidean and Minkowski propagators. The retarded propagator GR(k)

(as a function of ω) can always be continued analytically to the whole upper half plane

and at complex values of ω equal to 2πi T n, reduces to the Euclidean propagator,

GR(2πi T n, ~k) = −GE(2πT n, ~k). (D.2.2)

Similarly, if we analytically continue the advanced propagator to the lower half plane,

gives Matsubara propagator at ω = −2πiTn,

GR(−2πi T n, ~k) = −GE(−2πT n, ~k). (D.2.3)

In particular, for n = 0 one gets

GR(0,~k) = GA(0,~k) = −GE(0,~k) . (D.2.4)
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E Euclidean correlators at zero

temperature from AdS/CFT

Here we review the computation of Euclidean two point function of a CFT operator O

using the AdS/CFT correspondence. This sample computation is for the sake of com-

pleteness and we closely follow [11].

From GKPW prescription

〈e
∫
∂M φ0 O〉 = e−S E[φ] , (E.0.1)

where S E[φ] is classical gravity action and φ0 is boundary value of bulk field φ.

At T = 0, M = AdS5× S5 (no black hole in the bulk). Euclidean AdS5 metric in Poincare

patch is

ds2
5 =

L2

z2 (dz2 + d~x 2) , (E.0.2)

where ~x are coordinates in R4. The action of massive scalar field on this background

S E = K
∫

d4x

zH=∞∫
zB=ε

dz
√

g
[
gzz (∂zφ)2 + gµν (∂µφ) (∂νφ) + m2φ2

]
, (E.0.3)

where K = π L5

4 κ2
10

and κ10 is ten dimensional gravitational constant.
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S E = K
∫

d4x
∫

dz
(

L2

z2

) 5
2
{

z2

L2 (∂zφ)2 +
z2

L2 (∂iφ)2 + m2φ2
}

(E.0.4)

=
π3L8

4κ2
10

∫
dz

∫
d4x z−3

(
(∂zφ)2 + (∂iφ)2 +

L2 m2

z2 φ2
}
. (E.0.5)

Using Fourier representation of the field

φ(z, x) =

∫
d4k

(2π)4 eik.x fk(z) φ0(k) , (E.0.6)

and integrating over ~x coordinates the action reduces to

S E = 4κ2
10 π

3L8
∫

dz
∫

d4k
(2π)4

1
z3

[
∂z fk ∂z f−k + k2 fk f−k +

L2 m2

z2 fk f−k

]
φ0(k) φ0(−k) .

(E.0.7)

fk satisfies the EOM

f ′′k (z) −
3
z

f ′k (z) −
(
k2 +

m2 L2

z2

)
= 0 . (E.0.8)

This EOM can be solved exactly and the general solution is

φk(z) = A z2 Iν(kz) + B z2 I−ν(kz) , (E.0.9)

where ν =
√

4 + m2 L2 and Iν(kz) is modified Bessel functions of first kind.

The solution should be regular at z = ∞ and equals to 1 at z = ε. Therefore

fk(z) =
z2 Kν(kz)
ε2 Kν(kε)

. (E.0.10)
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On shell, the action reduces to the boundary term

S E =
π3L8

4 κ2
10

∫
d4k d4k′

(2π)8 φ0(k) φ0(k′) F (z, k, k′)
∣∣∣∣∣∞
ε

. (E.0.11)

The two point function is given by

〈O(k)O(k′)〉 =Z−1 δ2Z[φ0]
δφ0(k) δφ0(k′)

∣∣∣∣∣
φ0=0

(E.0.12)

= − 2 F (z, k, k′)
∣∣∣∣∣∞
ε

= − (2π)4 δ4(k + k′)
π3L8

2κ2
10

fk′(z) ∂z fk(z)
z3

∣∣∣∣∣∞
ε

.

From (E.0.11)

〈O(k)O(k′)〉 = −
π3L8

2κ2
10

ε2(∆−d) (2π)4 δ4(k + k′) k2ν 21−2ν Γ(1 − ν)
Γ(ν)

+ . . . (E.0.13)

where dots denote terms analytic in k and / or those vanishing in the ε → 0 limit. Substi-

tuting the value κ10 = 2π
5
2 L4/N from [53] ,

〈O(k)O(k′)〉 = −
N2

8π2 ε
2(∆−4)(2π)4δ4(k + k′)

k2∆−4 Γ(3 − ∆)
22∆−5 Γ(∆ − 2)

. (E.0.14)

For integer ∆ the propagator,

〈O(k)O(k′)〉 = −
(−1)∆

(∆ − 3)!
N2

8π2 (2π)4 δ4(k + k′)
k2∆−4

22∆−5 ln k2 . (E.0.15)

For massless case (∆ = 4),

〈O(k)O(k′)〉 = −
N2

64 π4 (2π)4 δ4(k + k′) k4 ln k2 . (E.0.16)
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F Associated Legendre differential

equation and its solutions

The associated Legendre differential equation is a generalization of the Legendre differ-

ential equation and is given by

d
dz

[
(1 − z2)

dy
dz

]
+

[
λ(λ + 1) +

µ2

1 − z2

]
y = 0 , (F.0.1)

which can be written

(1 − z2)y′′ − 2zy′ +
[
λ(λ + 1) −

µ2

1 − z2

]
y = 0 . (F.0.2)

Pµ
λ and Qµ

λ are the two linearly independent solutions to the associated Legendre D.E. The

solutions Pµ
λ to this equation are called the associated Legendre polynomials (if λ is an

integer), or associated Legendre functions of the first kind (if is not an integer). Similarly,

Qµ
λ is a Legendre function of the second kind. These functions may actually be defined for

general complex parameters and argument. In particular they can be expressed in terms

of hypergeometric functions and gamma functions

Pµ
λ(z) =

1
Γ(1 − µ)

[
1 + z
1 − z

]µ/2
2F1

(
−λ, λ + 1; 1 − µ;

1 − z
2

)
(F.0.3)

Qµ
λ(z) =

√
π Γ(λ + µ + 1)

2λ+1Γ(λ + 3/2)
1

zλ+µ+1

(
1 − z2

) µ
2

2F1

(
λ + µ + 1

2
,
λ + µ + 2

2
; λ +

3
2

;
1
z2

)
. (F.0.4)
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For the EOM of the string (4.3.15) the general solution will be

fω(s) = C1
Piw

1

s
+ C2

Qiw
1

s
. (F.0.5)

From above expressions (F.0.3) and (F.0.4) we get,

Piw
1 (s) =

1
Γ(1 − iw)

[
1 + s
1 − s

]iw/2

2F1

(
−1, 2; 1 − iw;

1 − s
2

)

Qiw
1 (s) =

√
π Γ(2 + iw)
4Γ(5/2)

1
s(2+iw)

(
1 − s2

) iw
2

2F1

(
2 + iw

2
,

3 + iw
2

;
5
2

;
1
s2

)
.

Near the horizon f (s) = 1 − 1
s2 → 0 i.e, s → 1. So the dominant behavior of the solution

near the horizon will be of the form,

fω(s) ∼ (s − 1)±α .

From above two solutions it is evident that Piw
1 (s)
s ∼ (1 − s)−iw/2 and Qiw

1 (s)
s ∼ (1 − s)iw/2.

Now,

e−iωt (1 − s)−iw/2 ∼ e−iω {t+ 1
2πT ln(s−1)} .

Notice that near the horizon s→ 1, ln(s − 1) goes more and more negative. Now to keep

the phase fixed t must increase. That means this wave moves towards the horizon with

increment of time. So, Piw
1
s ∼ (1 − s)−iw/2 is the desired incoming wave solution. And by

the same token Qiw
1
s ∼ (1− s)iw/2 is the outgoing wave solution. To get retarded propagator

one has to choose Piw
1
s .
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G Bulk to bulk correlators

If we have retarded Green function in the boundary theory we can always construct other

Green functions. As we know the solution to the string EOM exactly we can build the

exact retarded bulk-to-bulk correlator, Gret(ω, s, s̃) which is in-falling at the horizon and

normalizable at the boundary. In section 4.3 we had fω(s) as a solution to the wave

equation (4.3.14) and so was f ∗ω(s). As it was a linear differential equation any linear

combination of them e.g, Im fω(s) =
fω(s)− f ∗ω(s)

2i is also a solution. But we had chosen them

such that fω(s) and f ∗ω(s)→ 1 as s→ ∞. Therefore Im fω(s) is a normalizable solution to

that wave equation (4.3.14). Thus the retarded bulk-to-bulk correlator is defined as

Gret(ω, s, s̃) =
Im fω(s) fω(s̃)θ(s, s̃) + fω(s)Im fω(s̃)θ(s̃, s)

T0(s̃)Wret(s̃)
, (G.0.1)

Wret(s̃) ≡ Im f ′ω(s̃) fω(s̃) − f ′ω(s̃)Im fω(s̃) . (G.0.2)

Now from equation (4.3.17) (taking sB → ∞) we obtain the Wronskian as

Wret(s̃) =
w3 + w

s̃2 − s̃4 . (G.0.3)

The interesting thing to notice that the Wronskian depends on s̃ in such a way that T0(s̃) =
√
λπ2T 3

2 s̃2(s̃2 − 1) cancels that s̃-dependence. Therefore the denominator of (G.0.1)

T0(s̃)Wret(s̃) = −
1
2
π2
√
λT 3

(
w

3 + w
)

= + Im GR(ω) , (G.0.4)
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becomes independent of s̃. We can write (G.0.1) as

Gret(ω, s, s̃) ≡ G+
ret(ω, s, s̃) θ(s, s̃) + G−ret(ω, s, s̃) θ(s̃, s) . (G.0.5)

Finally using (4.3.17) and (G.0.4) we obtain

G+
ret(ω, s, s̃) =

(
1 − s2

)− iω
2πT

(
1 + s̃
1 − s̃

) iω
2πT

(πs̃T − iω) e−
ω
T

(ω + iπsT ) (1 + s)
iω
πT + eω/T (1 − s)

iω
πT (ω − iπsT )

π
√
λss̃T 2ω

(
π2T 2 + ω2) , (G.0.6)

G−ret(ω, s, s̃) =
(
1 − s̃2

)− iω
2πT

(
1 + s
1 − s

) iω
2πT

(πsT − iω) e−
ω
T

(ω + iπs̃T ) (1 + s̃)
iω
πT + eω/T (1 − s̃)

iω
πT (ω − iπs̃T )

π
√
λss̃T 2ω

(
π2T 2 + ω2) . (G.0.7)
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H Perturbative solution in BTZ

We already mentioned that EOM for a string in BTZ can be solved exactly and hence

one can compute exact retarded Green’s function for the Brownian particle. Actually we

have done the same in 5.3.2. There we have seen that the zero temperature dissipation

coefficient is
√
λ

2π
. On the other hand, the EOM of string in AdS5-BH is not exactly solv-

able and therefore we adopted a perturbative technique to compute the above mentioned

coefficient. In 5.3.2 we got a different value for that coefficient. In this section we apply

the same perturbative method for a string in BTZ and show that the same result for zero

temperature dissipation is reproduced. This is just to show that the perturbative approach

and the associated limits indeed work.

Our aim is to perturbatively solve (5.3.4) which in z-coordinate looks

f ′′ω (z) +
2

z(1 − 4π2T 2z2)
f ′ω(z) +

ω2

(1 − 4π2T 2z2)2 fω(z) = 0 , (H.0.1)

using the following ansatz

f R
ω (z) =

(
1 − 4π2T 2z2

)−iΩ2 (1 − iΩh1(z) − Ω2h2(z) + iΩ3h3(z) + . . .) , (H.0.2)

where in this section Ω ≡ ω
2πT (notice the extra factor of two).

Again we will be working in the regime where

ω,T → 0 with Ω held fixed (and small).
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Next step is to solve for the unknown functions, h1(x), h2(x), h3(x) etc. recursively. We

repeat the same procedure as in (5.3.2).

Solution up to O(Ω) :

fω(z) =
(
1 − 4π2T 2z2

)−iΩ2 (1 − iΩh1(z)) . (H.0.3)

Substituting this ansatz into (H.0.1) we obtain the differential equation for h1(z)

h′′1 (z) −
2

z(1 − 4π2T 2z2)︸             ︷︷             ︸
p1(z)

h′1(z) = −
4π2T 2

(1 − 4π2T 2z2)︸           ︷︷           ︸
q1(z)

. (H.0.4)

Let’s cast this into a first order differential equation defining y1(z) ≡ f ′1(z) and conse-

quently y′1(z) ≡ f ′′1 (z)

y′1(z) + p1(z)y1(z) = q1(z) . (H.0.5)

Introducing the integrating factor I1(z) = exp (
∫

p1(z)dz)

y1(z) =
c1

I1(z)
+

1
I1(z)

∫ z

I1(x)q1(x)dx

=
c1z2

1 − 4π2T 2z2︸         ︷︷         ︸
yh

1(z)

+
4π2T 2z

1 − 4π2T 2z2︸         ︷︷         ︸
yp

1 (z)

. (H.0.6)

The homogeneous part of the solution (yh
i (z)) will again be identical in each order in Ω up

to the undetermined coefficient (ci). This coefficient is fixed by demanding the regularity

of hi at the horizon,

h1(z) =

∫
yh

1(z)dz +

∫
yp

1(z)dz (H.0.7)

≡ hh
1(z) + hp

1(z) . (H.0.8)
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Demanding regularity for h1(z) fixes the coefficient of Log(1 − 2πTz) to zero. One can

explicitly calculate the integrals and from that expression sort out the required coefficient.

For this case

hh
1(z) = c1

[
−

z
4π2T 2 +

1
16π3T 3 {Log(1 + 2πTz) − Log(1 − 2πTz)}

]
, (H.0.9)

hp
1(z) = −

1
2

Log(1 − 4π2T 2z2)

= −
1
2
{Log(1 + 2πTz) + Log(1 − 2πTz)} . (H.0.10)

Clearly setting the coefficient of Log(1 − 2πTz) to zero we get

c1 = − 8π3T 3 .

And the solution at this order becomes

h1(z) =
1
2

[
4πTz − 2Log(1 + 2πTz)

]
. (H.0.11)

As has been argued before we can equivalently set the residue of y1(z) at z = 1
2πT to zero

to fix the value of c1.

Solution up to O(Ω2) :

fω(z) =
(
1 − 4π2T 2z2

)−iΩ2 (1 − iΩh1(z) − Ω2h2(z)) , (H.0.12)

where h1(z) is already known from (H.0.11). The differential equation for h2(z) reduces to

y′2(z) + p2(z)y2(z) = q2(z) , (H.0.13)
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where p2(z) = p1(z) and integrating factor I2(z) = I1(z).

y2(z) =
c2

I2(z)
+

1
I2(z)

∫ z

I2(x)q2(x)dx

=
c2z2

1 − 4π2T 2z2︸         ︷︷         ︸
yh

2(z)

+
1

I2(z)

∫ z

I2(x)q2(x)dx︸                      ︷︷                      ︸
yp

2 (z)

. (H.0.14)

Now making the residue of y2(z) at z = 1
2πT to vanish we can fix

c2 = 8π3T 3 .

The solution at this order

h2(z) =
1
2

[
−4πTz + {Log(1 + 2πTz)}2

]
. (H.0.15)

Solution up to O(Ω3) :

fω(z) =
(
1 − 4π2T 2z2

)−iΩ2 (1 − iΩh1(z) − Ω2h2(z) + iΩ3h3(z)) , (H.0.16)

where h1, h2 are known from (H.0.11) and (H.0.19). The differential equation for h3(z) or

rather y3(z) ≡ h′3(z)

y′3(z) + p3(z)y2(z) = q3(z) , (H.0.17)

where p3(z) = p1(z) and thus integrating factor I3(z) = I1(z), as before.

y3(z) =
c3

I3(z)
+

1
I3(z)

∫ z

I3(x)q3(x)dx

=
c3z2

1 − 4π2T 2z2︸         ︷︷         ︸
yh

3(z)

+
1

I3(z)

∫ z

I3(x)q3(x)dx︸                      ︷︷                      ︸
yp

3 (z)

. (H.0.18)
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Fixing residue of y3(z) at z = 1
2πT to vanish we obtain

c3 = 0 .

The functional form of h3(z) is simple unlike the higher dimensional case,

h3(z) = πTz{Log(1 + 2πTz)}2 −
1
6
{Log(1 + 2πTz)}3 . (H.0.19)

Therefore in this perturbative expansion the full solution becomes

f R
ω (z) =

(
1 − 4π2T 2z2

)−iΩ2
[
1−iΩ(

1
2

(4πTz − 2Log(1 + 2πTz))) − Ω2(
1
2

(−4πTz + {Log(1 + 2πTz)}2))

+iΩ3(πTz{Log(1 + 2πTz)}2 −
1
6
{Log(1 + 2πTz)}3)

]
.

(H.0.20)

Evidently in the zero temperature limit (with very small frequency)

f R
ω (z)

∣∣∣∣∣
T→0

= 1 +
ω2z2

2
+ i

ω3z3

3
. (H.0.21)

In r co-ordinate

f R
ω (r)

∣∣∣∣∣
T→0

= 1 +
ω2L4

2r2 + i
ω3L6

3r3 . (H.0.22)

The retarded Green’s function at T = 0 can be calculated using this solution

G0
R ≡ lim

r→rB
T0(r) f R

−ω(r) ∂r f R
ω (r)

= lim
r→rB

1
2πl2

s

r4

L4

(
−
ω2L4

r3 − i
ω3L6

r4

)
= −

µω2

2π
− i

√
λ

2π
ω3 . (H.0.23)
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Thus the renormalized Green’s function

GR(ω) ≡ G0
R +

µω2

2π
= −i

√
λ

2π
ω3 . (H.0.24)

This matches identically with the leading term in small frequency expansion of (5.3.8).
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I Fixing the coefficient b(0)
−

A field ψ(z) satisfying a second order linear homogeneous differential equation

ψ′′(z) + P(z)ψ′(z) + Q(z)ψ(z) = 0 , (I.0.1)

where P(z) and Q(z) are real the generalized Wronskian is defined as

W(ψ1, ψ2; z) := e
∫ z

P(t)dt[ψ1∂zψ2 − ψ2∂zψ1] (I.0.2)

=
√
−ggzz[ψ1∂zψ2 − ψ2∂zψ1] , (I.0.3)

where ψ1 and ψ2 are two solutions of (I.0.1). The interesting fact about this W(z) is it is

independent of z

∂zW(ψ1, ψ2; z) = 0 .

Therefore we can write, W(ψ1, ψ2; z) ≡ W(ψ1, ψ2) .

Equation (6.3.5) is exactly of the form (I.0.1). We know how its two independent solutions

behave at the horizon (z = z∗) and at the boundary (z = 0). The generalized Wronskian

W(ψ1, ψ2) =

(
L2

d+1

z2

) d+1
2 f (z)

L2
d+1

z2(ψ1∂zψ2 − ψ2∂zψ1) (I.0.4)

=

(Ld+1

z

)d−1

(ψ1∂zψ2 − ψ2∂zψ1) , (I.0.5)
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is independent of z.

∴ W(ψ1, ψ2)
∣∣∣∣∣

z=0
= W(ψ1, ψ2)

∣∣∣∣∣
z=z∗

. (I.0.6)

For extremal case,

f (z) = 1 +
d

d − 2

(
z
z∗

)2

−
2d − 2
d − 2

(
z
z∗

)d

.

• f (z)
∣∣∣

z=0
= 1 .

• f (z)
∣∣∣

z=z∗
≈ d(d − 1) (z∗−z)2

z2
∗

.

LHS of (I.0.6) : W(ψ1, ψ2)
∣∣∣∣∣

z=0
=

1
z2 (η(0)

+ ∂zη
(0)
− − η

(0)
− ∂zη

(0)
+ )

=
3
z3
∗

(a(0)
+ b(0)

− − a(0)
− b(0)

+ ) . (I.0.7)

RHS of (I.0.6) : W(ψ1, ψ2)
∣∣∣∣∣

z=z∗
=

d(d − 1)(z∗ − z)2

z2z2
∗

(η(0)
+ ∂zη

(0)
− − η

(0)
− ∂zη

(0)
+ )

=
d(d − 1)(z∗ − z)2

z2z2
∗

[
1. ∂z

(
ζ

z∗

)
−

(
ζ

z∗

)
∂z(1)

]
=

1
z3
∗

. (I.0.8)

Equating (I.0.7) and (I.0.8)

a(0)
+ b(0)

− − a(0)
− b(0)

+ =
1
3
,

and substituting b(0)
+ = 0 and a(0)

+ = 1, we get

b(0)
− =

1
3
.
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