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Synopsis

C ontinuous Mott transitions are a rarity in condensed matter. In contrast to their

generic first-order character, the Mott transition in the spinless Falicov-Kimball

Model (FKM) is continuous, and hence expected to be one of the few models that rigor-

ously display "Mott quantum criticality". Many studies, including Dynamical Mean Field

Theory (DMFT) [38] and its cluster extensions [61] have been used in this context.

In another vein, the FKM is also long known to be isomorphic to a binary-alloy Anderson

disorder model, where the quantum criticality associated with the metal-insulator transi-

tion (MIT) has also been extensively studied.

On both counts above, however, the important question of the role of short-range spatial

correlations on the (DMFT) MIT has long been an open and important issue. Usually, the

problem is complicated because of involved numerics, which many times also obscures

physical insight. This is especially so in the strong coupling limit, where perturbation

theory breaks down.

This thesis discusses the five parts - (a) Study of Falicov-Kimball Model (FKM) within

alloy analogy using cluster DMFT (CDMFT) technique (b) Study of quantum criticality

of dc conductivity at a continuous metal-insulator transition (c) Study of quantum critical-

ity of magneto-transport at a continuous metal-insulator transition (d) Thermal transport

across a continuous metal-insulator transition and (e) Optical conductivity and universal
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dielectric response at the continuous metal-insulator transition

Real-Space Cluster-Dynamical Mean Field Approach to

the Falicov-Kimball Model: An alloy-analogy approach

The Hamiltonian for the spin-less FKM is given as,

HFK = −t
∑
〈i j〉

c†i c j + µ
∑

i

c†i ci + U
∑

i

nidnic

ci(c
†

i ), ci(c
†

i ) are the fermion annihilation (creation) operators in dispersive band(c) and

the non-dispersion state(d) respectively, t is the one electron hopping integral and U is

the onsite repulsion between c and d electrons. Since, nid = 0, 1, vi = Unid can be

viewed as a static disorder potential for the c-fermions with binary distribution given as,

P(vi) = (1− x)δ(vi−vA)+ xδ(vi−vB) with vA = 0 and vB = U. The short range order (SRO)

between nearest neighbour disorder is: fi j = 〈viv j〉 − 〈vi〉〈v j〉 = C, a constant parameter.

The FKM has been studied in details within alloy approximation using analytic cluster

extensions of DMFT (CDMFT) exact-to-order-1/d, where d is the system dimensionality.

The short range spatial correlations also considered explicitly in the CDMFT technique.

So our scheme allows direct physical insight to be gained at much more modest numerical

cost. It can also be used as an advanced approximation supplanting Coherent Potential

Approximation (CPA) for disordered binary alloys in the context of ab-initio electronic

structure calculations for disordered systems.

We calculated local Green function, self energy with no violation of the causality. We

also computed cluster momentum dependent Green function, self energy and two particle

irreducible vertex function. The vertex function shows clear non-analyticities before the

band splitting transition of the Hubbard type occurs, signalling onset of an unusual type of

localization at the strong coupling. We also studied effect of SRO on the MIT by applying
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finite "antiferro alloy" SRO, f0α = 〈x0xα〉 − 〈x0〉〈xα〉 = −0.15. We found MIT occurs at

lower value of U compare to fully random case ( f0α = 0).

However, our cluster extension also allows us to study two-particle response function

related to density fluctuations in detail. We find that this shows anomalous power-law

behaviour at strong coupling BEFORE the MIT occurs. More implications of this result

is used to study the long-time response to a sudden local quench. from which we propose

that the localization at strong coupling is of a novel type, and that it may be related to

a kind of many-body localization. However, we have not studied this aspect, which we

have left for the future.

Quantum Criticality of DC Conductivity across the Con-

tinuous Metal-Insulator Transition

Across continuous MITs, transport properties, in particular, electrical transport, is ex-

pected to reveal the quantum criticality in an especially clear way, as has long been known

in the case of the Anderson disorder model. On the other hand, such quantum criticality

remains to be investigated in models with electronic correlations, especially ion strong-

coupling regimes, where no perturbative solutions are expected to work. These problems

supply the motivation for our present work, which studies "Mott" quantum criticality

across the MIT in a simplest model for correlated fermions, namely FKM.

Using our recently developed exact-to-order 1/d cluster-DMFT technique, we present an

exact description of the transport quantum criticality for the FKM. The main features that

stand out are:

(i) dc resistivity exhibits striking features with increasing correlations, going over from

a "dirty Fermi liquid" at small U, via an unusual bad metal at intermediate U, to a bad-

insulator-like or very bad metal for U close to the critical value where the continuous Mott
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transition occurs in CDMFT.

(ii) upon careful scaling, we find that clear mirror-symmetry of scaled resistivity, driven

by unusual form of the beta-function (or Gell-Mann-Low function in field theory) of the

form β(g) ∼ log(g), with g is a scaled conductance, obtains. This is very different from the

form expected at a non-interacting Anderson transition. We find that a scenario of Mott-

like quantum criticality naturally accounts for these findings. More consequences of this

analysis are: (1) novel symmetry relations between the conductivity and resistivity on the

two sides of the MIT, (2) clear emergence of a low-energy scale (T0), which vanishes

precisely at the MIT as a power law on both sides of the Mott QCP, (3) extraction of the

critical exponents z and ν from microscopic calculations, which seem to be in the right

value range compared to experiment.

It can also be used for analysing experimental results in a variety of interesting sys-

tems: in particular, the close similarity between our results and the famous experiments

of Kravchenko et al (in 1995) lend support to this argument.

Quantum Critical Magneto-transport at the Continuous

Metal-Insulator Transition

We study magneto-transport and the issue of Mott quantum criticality reflected in magneto-

transport studies across a continuous MIT, which has long been an interesting issue in the

literature. In perturbative approaches to Anderson disorder problems, the Hall constant

is T-independent and non-critical at the MIT. However, a range of real materials like

GeSb and P-doped Si do exhibit both, the critical scaling of the Hall constant, as well as

breakdown of the weak localization predictions, at the MIT. This necessitates either intro-

duction of electron electron interactions, or consideration of non-perturbative approaches

to solve the strong scattering problem. Using our recently developed exact-to-order 1/d
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cluster-DMFT technique, we present an exact description of the transport quantum criti-

cality for the FKM. The main features that stand out are:

(i) the off-diagonal conductivity shows clear and anomalous behaviour near the MIT. Cor-

respondingly, the Hall constant exhibits striking T-dependence, at variance with pertur-

bative predictions. Since we nevertheless find that (1) RH(T ) is finite in the metal, but

(2) diverges in the insulator, the issue is whether an underlying quantum criticality also

underpins off-diagonal conductivity and Hall effect. (ii) To test this, we perform a scaling

procedure for the Hall conductivity in a way similar to that used for the dc transport in ear-

lier works. A remarkable finding of this work is that the "mirror symmetry" and Mott-like

beta-function, features characteristic of Mott criticality, are also cleanly reflected in the

scaled magneto-conductivity around the continuous MIT. This leads to other very interest-

ing consequences, which we also find to excellent precision: (1) satisfaction of a rigorous

"symmetry" arguments relating the scaled off-diagonal conductivity to its inverse across

the MIT, and (2) universal scaling behaviour for the scaled off-diagonal conductivity as a

function of an appropriately chosen "scaling function".

Moreover we found ∆RH/RH
∆ρxx/ρxx

achieves values between 0.5 and 0.8 close to the MIT whcih is

largly contradict to the prediction of weak localization theory (in weak localization theory

the ratio to be equals to 2 ). But out calculated ratio is in good accord with the recent study

by Chand et. al. on NbN [23] in strongly disorder region where they found the ratio to be

0.69. Motivated by this we re-analysed their data and study the quantum criticality near

the critical point (kFl ∼ 1). We found the universal scaling function for both diagonal and

off-diagonal conductivity and the quantum critical exponent zν to be 1.285 which is very

close to our theoretical value. This provides good experimental support to our formalism

and results, showing that such features are characteristic of a "strong scattering" regime,

where perturbative theories are inadequate.
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Thermal Transport across the Continuous Metal-Insulator

Transition

Like electrical conductivity and Hall conductivity thermal transport is also play an vital

role in numerous applications of thermoelectric materials. The control of these properties

is a key goal in material design which motivates us to study thermal transport of the

system with binary disorder potential or equivalent FKM.

On the otherhand according to Wiedemann-Franz (WF) law in metals at low tempare-

ture the electrical conductivity (σxx(T )) and thermal conductivity (K(T )) related via the

universal Lorentz number, L0 =
K(T )

Tσxx(T ) =
π2k2

B
3e2 as long as interactions between electrons

preserve their fermion-quasiparticle character. We study thermal transport and the fate

of the WF law close to a continuous MIT in the FKM using CDMFT technique within

alloy analogy approximation. Surprisingly, as for electrical transport, we find robust and

novel quantum critical scaling in thermal transport (thermopower, thermal conductivity

and Lorentz number) across the MIT. We have also calculated corresponding quantum

critical exponent and show that, βth(s) = d[log(s)]/d[log(T )] ≈ log(s) on both sides of

QCP as found in conductivity tensor. Here, s = S (T )/S c(T ) with S(T) is the thermopower

and S c(T ) is the thermopower at the MIT.

We unearth the deeper reasons for these novel findings in terms of (i) the specific structure

of energy-current correlations for the FKM and (ii) the microscopic electronic processes

which facilitate energy transport while simultaneously blocking charge transport close to

the MIT. However, within CDMFT, we also find that the WF law survives at T −→ 0

in the incoherent metal right up to the MIT, even in absence of Landau quasiparticles.

Finally, we discussed Thomson co-efficient (τth) and electronic specific heat γe =
dS (T )

dT as

a function of U across the MIT with γe(T ) diverges at the MIT.
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Universal Dielectric Response across the Continuous MIT

A wide range of disordered materials, including doped (weakly and strongly correlated)

semiconductors, molecular and ionic liquids and glasses, show "Universal Dielectric Re-

sponse " (UDR), followed by a superlinear power-law increase in their optical responses

over exceptionally broad frequency ranges, covering the range from ultra-low (mHz) to

phonon (THz) regimes. Motivated thereby, we investigate the optical response of the

FKM across the continuous MIT using CDMFT. Surprisingly, we find that all the above

features emerge quite naturally in the quantum critical region associated with the con-

tinuous MIT. We argue that these novel features are linked to emergence of a strongly

correlated electronic glassy dynamics close to the MIT, explaining the similarity between

optical responses of correlated electronic matter and canonical glass formers.

Conclusion

To conclude, we extend the formalism of single site DMFT to two site Cluster-DMFT and

study the continuous metal to insulator transition in the Falicov-Kimball Model within

alloy analogy on the high dimensional bethe lattice. Our scheme goes beyond extant

schemes by (i) computing effects of spatial correlations on the MIT to exact-to-order-1/d,

where d is the system dimensionalty (ii) it can be easily adapted to real electronic structure

computations for strongly disordered real binary alloys, and (iii) it throws light on the

unusual character of localization near a continuous MIT. We also reveal on the quantum

criticality of the dc transport properties near the MIT through the "mirror symmetry" and

β-function analysis across MIT. At the end we compare our theoretical result with the

experimental data on NbN materials.
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Chapter 1

Introduction

C ondensed matter physics is largely a subject of understanding the properties of

materials in the solid, liquid and gas phases. Nonetheless, compared to liquid

and gases it is the physics of the solids [9, 76, 94, 95, 115] that advanced very steeply.

The reason is that solid has a large scope of applications which attract people to contribute

more on the process of the development of this field. The birth of the theoretical solid

state physics was followed by the description of the properties of metals by P. Drude [30]

in 1900. The theory was further developed by H. A. Lorentz [70] who put forward more

precise description of the conduction properties of metals. The discovery of superconduc-

tivity by H. K. Onnes [89] in 1911, made people to forage for new theoretical descriptions

of this physical properties of solids.

With the advent of the quantum mechanics the new theory was proposed that qualitatively

as well as quantitatively explained a wide range of phenomena with its spectacular suc-

cess. By the end of 1920s people came to know about two distinct classes of particles:

fermions and bosons. Particles with half-integer spins, like electrons, are fermions de-

scribed by Fermi-Dirac statistics, while bosons are particles with integer spins, described
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by Bose-Einstein statistics. Then within ten years people like B. Bethe, F. Bloch, L.

Brillouin brought about a dramatic changes in the theoretical foundation of solid state

physics. The theory explains thermal properties in crystals, conduction and optical prop-

erties through the quantum mechanical treatment of electronic states and the theory of

magnetic phenomena with the identification of the exchange interaction. Although it

failed to explain the physical mechanism of superconductivity.

The theory of superconductivity was finally proposed by J. Bardeen, L. N. Cooper and

J. R. Schrieffer [12] in 1957. Incorporating quantum field theory (QFT) with quantum

mechanics, they identified that it is the phonon mediated interaction between electrons

which is responsible for superconductivity. For the first time, they gave the microscopic

description of superconductivity that gained a new momentum to the experimental and

theoretical study of superconductivity.

In the 1960s magnetism became the hottest research topic in the solid state physics com-

munity. In one hand quantum mechanical treatment gave important progress in studying

magnetism in metals and on the other hand QFT provides a more precise solution for the

model of magnetism based on localized magnetic moments. In 1963, J. Hubbard and M.

C. Gutzwiller independently proposed a simple model [1, 45] that was expected to give

a theoretical description of ferromagnetic behaviour caused by non-localized electrons.

This Hubbard model and its generalizations gave a tremendous boost in the study of both

magnetism as well as metal-insulator transition.

The study of disordered systems, amorphous systems and glassy systems [27] have re-

cently gained an intense interest in the field of solid state physics. This system have a

myriad of applications in designing new materials in the field of engineering and tech-

nology. Disorder has a prominent role to play in transport properties of materials - even

weak disorder can make qualitative differences in the transport properties of materials.

The most interesting phenomena of disorder physics is Anderson Localisation or Ander-

son metal-insulator transition [5, 118], first coined by P. W. Anderson in 1958, for which
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he was awarded Nobel prize in 1977. He showed the absence of diffusion of electrons in

1D and 2D systems with any arbitrary weak disorder. The extended states (Bloch states)

near the Fermi surface becomes localized due to multiple scattering (Quantum Interfer-

ence) of the disorder. The diffusion of electrons near the Fermi level is only possible for

dimension D ≥ 3 for parameter W small compared to the bare bandwidth (∼ 2zt) and

the system behaves as metal, where W characterizes the disorder of the system. When

W exceeds a critical value, the electrons diffusion stops and the system shows insulating

behaviour although the density of states near the Fermi level is non-vanishing. This is

known as Anderson Metal-Insulator Transition.

Binary alloy represents another class of disordered systems. This system breaks the lat-

tice translational symmetry making its theoretical description very difficult unlike the

crystalline solid where the discrete translational symmetry is intact. The people have

incorporated different techniques to solve the alloy problem like, Averaged T -Matrix Ap-

proximation, Coherent Potential Approximation (CPA) [116] etc. Binary alloy shows the

Metal-Insulator Transition (MIT) by changing the composition of the alloy or strength of

the disorder potential. Unlike the Anderson insulator, here the insulating state is charac-

terised by the gap in the single particle state (band splitting). The MIT is second order

in nature i.e. the density of state at the Fermi energy vanishes continuously at the critical

point.

It is interesting to study quantum criticality at the metal-insulator transition. In binary

alloy MIT is observed at T = 0 as it is a quantum phase transition [100] unlike classical

(Landau) phase transition at finite temperature (T , 0). But all experimental results are

obtained at non zero temperature although very low temperature (T) and there is no perfect

order parameter for MIT, makes it more difficult to study quantum criticality at the MIT.

One possible solution is to formulate theory for quantum phase transition that describes

the effect of the quantum critical point (singularity at T=0) on various physical properties

at finite temperature (T , 0). So, working away from the quantum critical point one could
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understand the thermodynamic and dynamic properties of the system over a broad range

of values of coupling constant (g) and temperature (T) .

In this thesis, I investigate the quantum critical transport (both dc as well as ac transport)

in binary disordered model. Binary disordered model is isomorphic to Falicov-Kimball

Model and Falicov-Kimball model can be solved exactly within Dynamical Mean Field

Theory (DMFT) and in our newly developed Cluster DMFT approximations. I have stud-

ied the binary disordered model by solving Falicov-Kimball Model within alloy analogy

using both DMFT as well as Cluster DMFT.

Chapter-wise summary of my thesis:

• In Chapter 2, I start with an introduction to metal-insulator transition (MIT) and

give a brief about different types of MITs.

• Then I provide a short account of Dynamical Mean Field Theory (DMFT) and its

cluster extensions in Chapter 3.

• In Chapter 4, I talk about Falicov-Kimball model (FKM) and how it can be solved

exactly within single-site DMFT approximation in details.

• After that, I describe in details our newly developed Cluster Dynamical Mean Field

Theory (CDMFT) technique in FKM within alloy analogy approximation in Chap-

ter 5. I show the MIT in this model and how the critical point change with the short

range order between the nearest neighbour disorder.

• In Chapter 6, I present dynamical charge susceptibility in FKM using Cluster DMFT

technique. I also discuss the response of the system to a sudden local quench.

• In Chapter 7, I study the quantum criticality of dc conductivity tensor at the con-

tinuous metal-insulator transition in FKM using Cluster DMFT technique. I also

compare our result with the result of single-site DMFT. I compare our quantum
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critical exponent with that of the experimentally determined critical exponent of

disorder NbN.

• I extend the idea of quantum criticality to thermal transport and present that ther-

mal transport coefficients also show quantum critical behaviour across the MIT in

Chapter 8.

• In Chapter 9, I discuss the optical conductivity and dielectric response of the FKM

within Cluster DMFT and I compare our result with the experimental results.

• I conclude my thesis with some future directions and open issues in Chapter 10
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Chapter 2

Metal-Insulator Transitions and

Quantum Criticality

In this chapter, I introduce different types of metal-insulator transition (MIT). Then I talk

about the idea of Quantum Phase Transition and how it is different from Landau type

phase transition. At the end, I briefly discuss recent theoretical and experimental works

on quantum criticality at the MIT.

I n condensed matter theory metal-insulator transition (MIT) [50, 27] is one of the

oldest but fascinating problems which have attracted a lot of attention even today.

First sucessful theoretical description of the MIT was the band theory explanation based

on weakly interacting electron system. But this simple theories [9] described the phe-

nomenon well for the materials which are either good metals(e.g. gold, copper) or good

insulators(e.g. silicon, germenium) and physical properties of this materials is too stable

to meet the needs of modern technology or to get interesting phenomena. So to extract
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novel and interesting physics, one needs to study the materials that properties can be

changed by tuning (e.g. doping, pressure). Most recent example of this type of materials

is doped semiconductor which led to the discovery of the transistor, MOSFET and others

integrated circuits. Band picture fails to provide theoretical description of this materials.

So people search for different mechanism which can drives the system from metal to in-

sulator or vice versa. In the following sections I discuss about different types of MIT and

different mechanism associated with different MITs.

2.1 Different types of Metal-Insulator Transition

Metal-insulator transition can be of two types [15] - one type of transition happen due

to the structural changes of the lattice which leads to the separation of conduction and

valance bands. Another type of metal-insulator transition is due to electronic distribution.

The second category of MIT is the most general MIT. This MIT is further divided into

three categories of insulators (shown in Fig 2.1) : Band Insulator due to ordering ordering

transition, Mott Insulator due to electron electron interaction, Anderson Insulator due

to strong disorder. There is another type of insulator arising due to electron electron

correlation and also disorder called Many Body Localization (MBL).

2.1.1 Band Insulator

According to the band theory of solid [9], one can calculate the electronic band structure

of the materials. Now if the highest occupied electronic state i.e. Fermi level lies within

a band gap then all bands are either full or empty, it takes finite enregy (∼ band gap) to

excite the electron to the lowest accessible state in order to carry elctrical current, then

the material is an insulator (Band Insulator). Otherwise, if the Fermi level lies inside the

band this band is partially filled, electron can carry current without supply of any energy,

then material behaves as metal. When the system undergoes some ordering transition, it
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Correlation:
Mott Insulator

Ordering:
Band Insulator

Disorder:
Anderson Localuzation

Metal-Insulator Transition

Anderson-Mott Insulator
Many Body Localization

Figure 2.1: Three Basic Insulators: Mott Insulator, Band Insulator, Anderson Insulator.
Many Body Localization (Mott-Anderson Insulator) is a Challenging Problem!

is possible to induce a gap at the Fermi surface and the system shows metal to insulator

transition. This odering transition corresponds to the some kind of Fermi surface instabil-

ity where a charge-density-wave(CDW) or spin-density-wave(SDW) [43] formation leads

to unit cell doubling. As for example the Slater theory [114] of itinerant antiferromagnets,

where the gap opens due to the magnetic ordering.

The band theory of solid is based on the assumption that all the electron-electron in-

teraction and electron-impurity interaction is approximated by an effective potential i.e.

pseudopotential and elctron is moving free in the pseudopoentials. But this assumption is

valid only if kinetic energy of this electron is dominant compare to any other energy scale

in this problem. A useful method is calculation of rs number: rs = Ec
EF

, Ec is the average

coulomb energy per particle and EF is the Fermi energy. For low value of rs number the

band theory is applicable. Even for good metal if this rs number is between 3 and 5, the

band theory should not work. However, there are other important facts [9] that minimize

the role of interaction:

• in metal due to screening the strength of the electron-electron or electron-impurity
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interactions renormalized to a significant degree.

• the Hartree and exchange part of the coulomb energy contribute to pseudo-potential

and only "correlation" energy gives rise to many-body effects.

• the Pauli exclusion principle reduces the phase space of the electron-electron inter-

action

As a result the effect of the elctron-elctron interaction and electron-impurity interaction is

treated as perturbation where the dominant energy scale is the kinectic energy, known as

"Fermi liquid" described by Landau’s Fermi Liquid Theory [63, 64].

This theory fails to describe the system close to the metal-insulator transition. This situa-

tion found in:

• Narrow band materials such as transition-metal oxide V2O3.

• Doped semiconductors such as Si:P or diluted two-dimensional electron gas.

• Doped Mott insulators such as high-Tc cuprate La2−xS rxCuO4.

In all these materials, the potential energy due to the electron-electron and electron-

impurity interaction becomes comparable to the Fermi energy and the ground state of the

system undergoes sudden and dramatic changes - the electrons become bound or local-

ized. As a result the material does not conduct current and behaves as insulator although

band theory does not predict any gap at the Fermi surface.

2.1.2 Correlation driven Mott Insulator

In contrast to the band theory many materials with an odd number of electrons behaves

as insulator in the experiments. Such materials(e.g. transition metal oxides) have an-

tifferomagnetic ground state. Slater proposed spin density wave [114] formation is origin
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of this insulating behaviour. According to the Slater [114] such insulating behaviour

would disappear above Neel temperature(∼ 102K ). Surprisingly in most of the antifer-

romagnetic oxides this insulating behaviour survive at temperature even higher than Neel

temperature, ruling out Slater’s weak coupling mechanism.

It was Mott [82] and Hubbard [1], first came to explain this issues by proposing the

strong coloumb repulsion between electrons occupying the same orbital is the cause of

this insulating behaviour. In this description the electron tunnel between near neighbour

with strong onsite coulomb repulsion, as described by Hubbard Hamiltonian [83],

HHUB = −
∑
〈i j〉σ

(tc†iσc jσ + h.c.) +
∑

jσ

ε jc
†

jσc jσ + U
∑

j

c†j↑c j↑c
†

j↓c j↓ (2.1)

Here, the operator c†iσ creates an electron of spin σ in the i-th orbital, t is tunnelling

amplitude describing the nearest neighbour inter-orbital hybridization, ε j represents the

corresponding site energy and U describes the onsite Coulomb repulsion.

When the lattice is at half filling(i.e. one electron per site) the electron can move from

one site to another only if electrons have enough kinetic energy(EK ∼ t) to overcome the

Coulomb energy U. In the narrow band limit t � U, the electron do not have enough

kinetic energy to overcome U and electron becomes localized to a particular site lead-

ing to a gap in the single-particle excitation spectrum, behaves as an Mott insulator. The

phase diagram of Hubbard model at half filling using DMFT is shown in Fig 2.2. The gap

Eg ≈ U − B(here B = 2zt, z is the coordination of the lattice ) is the energy need to supply

from outside to overcome Coulomb energy U so that electron can move from one side to

another. In Mott insulator at half filling every site is singly occupied and so electron be-

haves as spin 1/2 local magnetic moment. This local magnetic moments interact through

magnetic super-exchange of order J ∼ U
t2i j

. As a result, a magnetic ordering establishes at

a temperature of order TJ ∼ J. The magnetic ordering ceases at temperature higher than

TJ, however the insulating behaviour exists upto much higher temperatures TMOTT ∼ Eg

than TJ. For oxide the typical value of TMott ∼ Eg ∼ 103 − 104K while magnetic ordering
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Figure 2.2: The phase diagram of fully frustrated Hubbard model at half filling us-
ing DMFT technique, Tc is the critical point below which first order phase transition
happen, shaded region showing quantum critical like scaling("hidden quantum critical-
ity"),red dotted line above Tc is the instability line, T0 is the crossover temperature
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emerges upto temperature of order TJ ∼ 100 − 300K.

When the kinetic energy (t) and Coulomb energy (U) are comparable to each other, the

system is near the Mott transition. Experimentally, for this materials one can tuned the

bandwidth(B∼ 2zt) by modifying the orbital overlap t to drive the system from metal-

lic to insulating and vice versa. For example in transition metal oxide, it is possible to

change their metal or insulating properties by applying external hydrostatic pressure. Un-

fortunately, theoretically it is very difficult to study the system in the vicinity of Mott

transition as the perturbation theory fails to describe the system in this regions. Though

after a research effort people have found some theoretical tools which can qualitatively

describe the properties of the system close to the Mott transition.

2.1.3 Disorder Driven MIT

Random impurity in a metal scattered the mobile elctron randomly and mean free path of

the elctron decreases as a consequence decrease in the conductivity. In ordinary metal,

the kinetic energy of the mobile elctron is so large compare to the random poetntial due

to impurity that the later can be treated as a small perturbation. In this case, one can apply

classical drude theory [30] where the conductivity is written as,

σ ≈ σ0 =
ne2τtr

m
(2.2)

where, n is the carrier concentration, e is the electron charge, m is band mass and τ−1
tr

is the scattering rate. According to the Matthiessen’s rule [9], the scattering rate takes

additive contribution from different scattering channels i.e.,

τ−1
tr = τ−1

el + τ−1
ee (T ) + τ−1

ep (T ) + − − −− (2.3)
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Here, τ−1
el is the elastic scattering rate, τ−1

ee (T ) is the inelastic electron-electron scattering

rate and τ−1
ep (T ) is the inelastic electron-phonon scattering rate. The resistivity ρ = σ−1 is

a monotonically increasing function of temperature(T) is given by,

ρ(T ) ≈ ρ0 + AT n with A > 0 (2.4)

The value of exponent n depends on the scattering processes i.e. n=1 for electron-phonon

scattering process, n=2 for electron-electron scattering processes etc. ρ0 = σ−1(T = 0) is

the coming from elastic scattering.

Now if the impurity density is large enough so that the impurity potential is comparable

with the Fermi energy, then the semi classical description fails and the electrons make

bound state with the impurity i.e. localized by the impurity. This leads to a continuous

metal-insulator transition at T=0, since at finite temperature there is always a probability

proportional to Bolzmann weight that an electron can overcome the impurity potential.

Hence, in low temperature limit a continuous metal-insulator transition occurred where

the conductivity vanishes in a power law fashion,

σ(T = 0) ∼ (n − nc)µ, (2.5)

the µ is the conductivity exponent, the value of which depends on the characteristic length-

scale for disorder.

The simplest example of disorder driven MIT is binary alloy. Consider a binary alloy

(AxB1−x) as shown in Fig 2.3 of two types of atoms A and B with composition of atom A

as x and that of B as (1-x). Atom A or B occupy randomly on a regular lattice site. The

onsite energy differences between Atom A and B is vA − vB = U. The alloy shows MIT

at a critical U = Uc with fixed x. Similarly, by changing x with fixed U one can observed

MIT.
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Figure 2.3: Binary alloy on a two dimensional lattice. If the lattice point is occupied by
atom A it has an onsite energy vA = U and if it is unoccupied by the atom it has onsite
energy vB = 0

Anderson Localization:

Another interesting phenomena in the disorder system is Anderson Localization. The pos-

sibility of Anderson localisation in presence of strong disorder was first demonstrated by

Anderson in 1958 [5]. According to Anderson’s arguments sufficiently strong disorder is

able to localize all electronics states within narrow bandwidth. At weak disorder the elec-

tronic states at the edge of the band are expected to be localized whereas the states at the

middle of the band remain extended. The line that separate the extended from the local-

ized states is called the "mobility edge(Ec)" as shown in Fig 2.4. As the disorder strength

is increased, the position of the mobility edge is shifted towards the middle of the band.

For sufficiently strong disorder, the mobility edge crosses the Fermi energy(EF) leads to

localization of all the electronic states close to the Fermi level - the system undergoes

an Anderson metal insulator transition. The actual mechanism behind the localization of

electron states is the destructive quantum interference of the electrons scattered by the

disorder.

Let us consider the Hamiltonian of the form:

H =
∑

i

εic
†

i ci +
∑
i, j

(ti jc
†

i c j + h.c.) (2.6)
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Figure 2.4: Electronic density of states of a disordered system with the mobility edge
that separated the extended states at the middle of the band from the localized states at the
tails of the band. Dashed line indicates the density of states in the absence of disorder.

Disorder in the system can be introduced in two way. Firstly, the diagonal term εi can

choose a few discrete values randomly over an energy range known as diagonal disorder.

Secondly, the hopping amplitude ti j can take any random values known as off-diagonal

disorder. For simplicity, I consider only the diagonal disorder with constant nearest-

neighbour hopping amplitude t. The onsite energy εi has a uniform distribution over a

energy range W with probability distribution P(εi) is given as,

P(εi) =


1
W , if | εi |≤

W
2

0, otherwise
(2.7)

In 1D and 2D, for any value of W all the states will be localized and the system behaves

as an insulator although non-vanishing density of states at the Fermi level. Anderson

showed that for three dimension the system shows metallic behaviour as long as W is

very small compares to the bare band-width(= 2zt). As soon as W exceeds a critical value

(≡ 10zt) all the electrons states become localized. This localization owing to the presence

of disorder is known as Anderson localization and the system behaves as an insulator.
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2.1.4 Many Body Localization: Effect of Interaction in Disorder Sys-

tem

In the previous section, I have discussed about single-body (Anderson) localization in

a non-interacting system, a single electron state becomes localized due to destructive

interference with itself. This interference is induced by the presence of disorder.

Now by turning on interactions one can bring the realm of many-body physics, as single-

particle states are not enough to describe the system any more. Now, if the behaviour

similar to Anderson localization is observed in this many-body system (like many body

mobility edge), one say that this system has many-body-localized states or is in the many-

body-localized (MBL) regime.

Another reasonable way, one can argue that the many-body localization is present in a

many-body system for which the Eigenstate thermalization hypothesis does not hold. Al-

ternatively, a fully many-body localized system is a system where all the many-body

eigenstates of the Hamiltonian are localized. On technical level, this is quite complicated

and still a challenging problem! I am not going in details as this is out of the scope of my

thesis. Interested reader may go through the following references [86, 71].

2.2 Quantum Phase Transitions

Quantum Phase Transition (QPT) [100] is a phase transition between different quan-

tum phases at zero temperature unlike classical phase transition (Landau type) occurs

at nonzero temperature due to thermal fluctuations. This is the abrupt change in the

ground state of the Hamiltonian due to quantum fluctuation at T=0. Near zero temper-

ature (T → 0), the quantum fluctuation dominates over thermal fluctuations. At finite

temperature (T , 0), quantum fluctuations is suppressed by thermal fluctuations - so only

classical phase transition is possible. In my thesis, my discussion is limited to second
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order (continuous) of quantum phase transitions.

2.2.1 MIT at the Critical Point

According to the Mott’s earlier argument [83], the metal-insulator transition is discontin-

uous i.e. first order where a minimum metallic conductivity ( σmin ) exists on the metallic

side even at T=0. His argument is based on the Drude’s picture, where the increasing

disorder will imply decreasing in elastic mean free path(l = vFτtr) and vice versa. The

minimum possible value of the mean free path (l) cannot be shorter than the inter atomic

distant or lattice spacing (a). Hence the metallic conductivity is bounded from below by

"Mott limit"

σ ≥ σmin =
ne2a
mvF

(2.8)

For two-dimensional system, the minimum metallic conductivity σ2D have a universal

value with no length scale in it,

σmin
2D ≈ 0.1

e2

~
≈ 3 × 10−5Ω−1 (2.9)

However, as shown in fig 2.5, the conductivity of silicon doped with phosphorus (S i : P)

as a function of the dopant concentration when extrapolated to T −→ 0 limit, the con-

ductivity starts to decrease rather sharply when it come close to the minimum metallic

conductivityσmin - even one can measure conductivities which are orders of magnitude

smaller than the σmin. The metal-insulator transition is extremely sharp(conductivity van-

ishes in power law fashion), but continuous i.e. second order.

For MIT, there is no order parameter though the system show clearly critical behaviour at

T=0. As conductivity vanishes at T −→ 0 in insulating phase and remains finite in metal-

lic phase, one can consider conductivity plays a role similar to the order parameter. So

one can defined scaled conductivity like an order parameter to study quantum criticality
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Figure 2.5: Zero-temperature conductivity of metallic P-doped Si as a function of the
donor density, taken from [33]
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at MIT.

2.2.2 Scaling theory of disorder-driven MIT

The scaling behaviour around the critical point is demonstrated by β function formalism.

The original work described by the "gang of four" (Abrahams, Anderson, Licciardello

and Ramakrishnan) in 1979 [3]. The β− function describes how the conductance changes

with the effective system size. In principle, one could take a finite size of disorder material

and measure the conductance. If the experiment is repeated for different system size one

could experimentally determine the conductance depends on the system size.

In a good metal, disorder is weak and conductivity is large so that one can use Drude

theory to find the conductance. For metal, conductance will increase with the effective

system size L. From Ohm’s law, conductance g then scale with the system size L given

as,

gmet(L) = σLd−2 d > 2 (2.10)

where σ is the conductivity. In the opposite limit of strong disorder, all the electrons to

form bound states with impurities. If ξ is the characteristic length scale of this bound

states, then the conductance will decrease exponentially with the size of the system L,

gins(L) ∼ exp−L/ξ (2.11)

According to the Gell-mann law the "β"-function is defined by,

β(g) =
d(lng)
dlnL

(2.12)

"β(g)" does not explicitly depends on L, is a function of g only. It is a smooth(analytical)

function near the transition. The quantity is expected to be positive in a metal and negative

in the insulator. Hence, zero of the "β" function shows the metal-insulator transition.
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Figure 2.6: Scaling Analysis at MIT : β function of the localization problem for dimen-
sions d = 1, 2, and 3

So in ohmic metal one find,

βmet = d − 2 (2.13)

while for localized insulator,

βins = ln(g) (2.14)

The plot of β-function for dimensions d=1,2 and 3 is shown in Fig 2.6. Since, βmet > 0

and βins < 0, β is a smooth function implies that β must change sign at some finite value

of the conductance g = gc which corresponds to the critical point. So close to the critical

point one can write β as,

β(g) ≈ sln(g/gc) (2.15)

where, s = β′(gc) is the slope of the β-function near the critical point(gc). Define a variable

t = ln g
gc

. Now differentiating the β-function equation [28] I obtain,

d(lnt)
dlnL

≈ s, (2.16)

Integrating the above equation from the microscopic cut-off l to the sample size L and

write

t(L) = t0(L/l)s. (2.17)

This integration has to be carried out upto the correlation lengthscale i.e. L = ξ such that
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the renormalized distance to the transition δg(L) = (g(L) − gc)/gc ≈ t(L) ∼ O(1). Since at

short scale t0 = t(l) ∼ δg0 ∼ δX, I have

ξ ∼ t1/s
0 ∼ δn1/s (2.18)

Here X is the tuning parameter. Thus, the correlation length exponent

ν =
1
s

(2.19)

Substituting this I have the length scale dependence conductance as:

g(L) ≈ gcexp[AδX(L/l)1/ν] (2.20)

2.2.3 Phenomenological scaling formulation:

A phenomenological scaling analysis is proposed for quantum criticality [100] to un-

derstand quantum critical phenomena and corresponding critical exponent. If the scaling

analysis is valid then a single correlation length characterizing the system is ξ ∼ δX−ν,

where δX = X−Xc
Xc

is the dimensionless distant from the critical value (Xc) and ν is the cor-

relation length exponent. If z is "dynamical exponent" of the system then the time scale

corresponding to the correlation length is given by τz ∼ ξ
z. Using Heisenberg Uncertainty

Principle, the corresponding energy (temperature) scale is of the form,

T0 ∼
~

τxi
∼ δXνz (2.21)

At non-zero temperature, the length scale (L) is related to the temperature scale (T)

through the dynamical exponent (z) as T ∼ Lz. Using this and Eq. 2.21 I obtain from

40



Figure 2.7: Cartoon representing a typical phase diagram in the vicinity of a quantum
critical point, taken from [85]. Here, T is the temperature and X is the tuning parameter

Eq. 2.20 the temperature dependence of the conductance is,

g(δX,T ) ≈ gcexp[sgn(δX)A(
T0

T
)1/νz] (2.22)

Hence the scaling temperature T0 vanishes at the critical point X = Xc with exponent νz.

This scaling temperature T0 is called the crossover temperature. Here, A is a dimension-

less constant of order one. If the scaling conductance, g∗(δX,T ) = g(δX,T )/gc then,

g∗(δX,T ) ≈ 1/g∗(−δX,T ) (2.23)

i.e. there is a mirror symmetry on log scale between metallic and insulating branch with

g∗(δX = 0,T ) = 1 ! The crossover temperature T0 determined the boundary of the

quantum critical region( shown in Fig 2.7) where the mirror symmetry between metallic

(δX < 0) and insulating branch (δX > 0) exists,

For MIT there is no order parameter, though the system show clearly critical behaviour

at T=0. As conductivity is vanishes at T −→ 0 in insulating phase and remains finite in

metallic phase, one can consider conductivity plays a role similar to the order parameter.
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So like order parameter in second order phase transition one can write conductivity in the

scale invariant form given as,

σ(δn,T ) = b−µ/ν fσ(b1/νδn, bzT ). (2.24)

Here, T is the temperature, b is the length rescaling factor and µ is the conductivity expo-

nent, I identify tuning parameter X as the number density of electrons (n) i.e. X ≡ n. At

T=0, behaviour of σ(T = 0) ∼ δnµ and choosing b = δn−ν ∼ ξ. Then the scaling form is:

σ(T ) = δnµφ̃σ(
T
δnzν ) (2.25)

where, φ̃σ(y) = fσ(1, y). Finite temperature correction in the metallic phase are obtained

by expanding:

φ̃σ(y) ≈ 1 + ayα, (2.26)

and the low temperature conductivity of the form:

σ(δn,T ) ≈ σ0(δn) + mσ(δn)Tα (2.27)

Where, σ0(δn) ∼ δnµ, and mσ(δn) ∼ δnµ−ανz. Since the form of the scaling function φσ(y)

is independent of δn, the value of the exponent α is universal in the entire metallic phase

and for weak disorder can be calculated by using perturbation theory. For example, the

interaction corrections in d=3 [67] lead to α = 1/2.

The temperature dependence at the critical point (in the critical region) can be obtained if

I put δn = 0 and b = T−1/z, gives

σc(T ) = σ(δn = 0,T ) ∼ T µ/νz (2.28)

So I can write,

σ(n,T ) = T µ/νzφσ(T/T0(n)), (2.29)
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where, φσ(x) = xµ/νzφ̃σ(x), and the crossover temperature T0(δn) ∼ δnνz.

2.2.4 Experimental Evidence of Quantum Criticality:

To demonstrate experimentally quantum criticality, one must follow the procedure given

below:

• Plot σ(δn,T ) vs. T for several carrier concentration on both side of the transition

point. The critical curve(separatrix) shows the power-law behaviour σc ∼ T x and

one can identify the critical concentration (n = nc) which looks like straight line

when the data are plotted in log-log scale.

• From the slope of the σc(T ) in log-log scale, one can find the critical exponent

x =
µ

νz .

• Then plot φσ(T/T0(δn)) = σ(δn,T )/σc(T ) as a function of T/T0(δn). T0 is the

crossover temperature such that at critical point T0 = 0. T0 is determined in such

a way that all the curves of the scaling function φσ(y) fall on either of the two

branches(metallic or insulating).

• Plot T0(δn) as a function of δn on log-log scale and calculate critical exponent νz.

The exponent νz is expected to be same on both sides. Then one can calculate

conductivity exponent from µ = xνz.

• One can do cross check by extrapolating the metallic curves σ(δn,T ) to T −→ 0

and then determines the exponent µ from the relation σ(δn,T = 0) ∼ δnµ.

2.2.5 Past Experimental Evidence:

The metal-insulator transition is driven by quantum fluctuation i.e. the transition is ap-

peared at T=0 where the thermal fluctuation dies out. Although experimental evidences
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of this are limited I would like to emphasize a few experiment evidences.

• Doped semiconductors such as Si:P

In this experiment, MIT critical behaviour is carefully studied [113]. When the

conductivity is extrapolated to T=0 shows a sharp critical behaviour [90, 91] of the

form σ ∼ (n − nc)µ with the critical exponent µ ≈ 1/2 for uncompensated samples

(half filled impurity band) and conductivity exponent µ = 1 for heavily compen-

sated samples of Si:P,B or in presence of strong magnetic field. Such dramatic

difference between these cases is seen over an extremely broad concentration range

upto several times of the critical density.

• Two-dimensional metal-insulator transitions

In several two-dimensional electron gas (2DEG) such as silicon MOSFET, a sharp

metal-insulator transition reported [59, 96, 4]. There are some controversies re-

garding the driving force of the transition. Some debates also going on the nature

of the transition. Remarkably, in some experiments describing the scaling freature

of the resitivity near the transition at low temperature, also found the mirror sym-

metry [59, 96] between both sides of the transition ("duality") [28] which shows (in

Fig 2.8) a strong evidence of "Quantum Criticality" [112]. This critical behaviour

extends to relatively high temperature, comparable to the Fermi temperature [4].

• High temperature anomalies-Mooij correlation

Mooij [81] for the first time pointed out that similar MIT transition has been ob-

served in systems [67] driven by disorder with fixed electron density. In recent

study [111], the temperature coefficient of the resistivity(TCR) is found to change

sign, indicating the crossover from metallic(dρ/dT > 0) to insulating (dρ/dT > 0)

transport, around the values of the resistivity close to the "Mott limit" ρc = 1/σmin.

This behaviour is consistent with the Mott’s idea that as the temperature increases

the resistivity approaches to a saturation [34] value as the mean-free-path becomes
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Figure 2.8: The resistivity curves (a) for a two-dimensional electron system in silicon [59]
show a dramatic metal-insulator crossover as the density is reduced below nc ∼ 1011cm−2

(b) displays the scaling behaviour, which seems to hold over a comparable temperature
range. The remarkable "mirror symmetry" [28] of the scaling curves seems to hold over
more then an order of magnitude for the resistivity ratio

comparable to the atomic scale.

• High temperature violation of the Mott limit

The most surprising behaviour was first observed in cuprate superconductors [49]

where Mott limit violates. This bhaviour is explained by non-Fermi liquid physics

and strongly correlation effects. Futher study of organic Mott system [68] and

transition metal oxides such as V2O3 [69] shows the violation of Mott limit at

temperature exceeding Fermi-liquid coherent scale T ∗ and was observed to coincide

with the suppression of the corresponding Drude peak in the optical conductivity.

Similarly to the resistivity saturation, "bad metal" behaviour seems to emerges only

in the high temperature incoherent region where local scattering process dominates.

• Quantum criticality of Mott transition in organic materials

In the very recent experimental studies [39, 102], the evidence for the quantum crit-

ical nature of the Mott instability was investigated. In one study [39], the electron

transport of three organic systems with different ground states under continuously
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controlled pressure was studied. The resistivity obeys the material-independent

quantum-critical scaling relation bifurcating into a Fermi liquid or Mott insulator,

irrespective of the ground states. Electrons on the verge of becoming delocalized

behave like a strange quantum-critical fluid before becoming a Fermi liquid. In

another study [102], they presented the electron transport properties in the vicin-

ity of a doping-driven Mott transition. They showed a continuous metal-insulator

transition (MIT) as electron doping proceeds.

All these experiments suggest that there are many interesting issues in many body metal-

insulator transition(MIT) that need to be studied with appropruate theoretical tools. Un-

frotunately the well known theory is failed due to the lack of order parameter formulation.

Recently, an alternative formulation has been developed based on Dynamical Mean Field

Theory(DMFT) [41]. Complementary to the phenomenological theory, this formalism

provides some striking result for disordered systems consistent with the experimental re-

sult. In the following chapters I will describe this method in details and extensions of this

formalism.
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Chapter 3

Dynamical Mean Field Theory and Its

Extensions

Before going into the details of my thesis problems, here I will give a brief idea of Dy-

namical Mean Field Theory (DMFT) and its extensions. In this chapter, we talk about the

basic concept of single site DMFT and then we will describe two types of Cluster exten-

sion of DMFT - (a) Real Space Cluster Extension (Cluster DMFT) and (b) Momentum

Space Cluster Extension (Dynamical Cluster Approximation)

T he numerical implementation of strongly correlated systems is an interesting area

of research in modern day physics. Unfortunately there is no suitable method to

solve standard many-body problems in strongly correlated region: Exact diagonalization

methods are applicable to problems with small number of sites as the basis of the Hilbert

spaces grows exponentially with the no. of sites. The Quantum Monte Carlo method has

sign problems, fails at low temperatures. Standard DMRG method also limited to one
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Figure 3.1: In DMFT the full lattice problem is mapped to an single site lattice (say ′i′ )
problem embedding in an effective medium

dimensional system.

A useful numerical approach to treat fermionic systems in strongly correlated region is

Dynamical Mean Field Theory (or DMFT). The development of this field was started

by Muller-Hartmann and Metzner and Vollhardt [77] while the insights were developed

by by Georges, Kotliar and co-workers [41]. All the results presented here have been

obtained using Cluster-Dynamical Mean Filed Theory (CDMFT) which is a cluster ex-

tension of the single site DMFT. We therefore give a brief overview of single site DMFT

and its extension to Cluster-DMFT. The interested reader may go through an introductory

article [57], an extensive review [41] as well as thesis and lecture note [56, 44] on DMFT

and the Cluster DMFT [75].

3.1 Single-site DMFT

The basic ideas of DMFT come from the original classical Weiss mean field theory of

magnetism [42]. It focuses on a single lattice site and the effect of all the other degrees

of freedom is included in a self-consistently determined "effective medium" [41]. In con-
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trast to the Weiss mean field theory, in DMFT the environment can not be determined by

a static field, but must contain a dynamic "bath function"(∆i(ω)) which takes into account

the dynamics of the electrons on a given site due to the environment. Hence, in DMFT the

complicated full lattice problem is mapped to an effective single site problem. The calcu-

lation then reduces to solving an appropriate quantum impurity problem supplemented by

a self-consistently determined bath function ∆(ω). The precise form of DMFT equation

will be different for electron-electron interaction or interaction with disorder or for both.

The first derivation of dynamical mean field theory is known under the name of "cavity

method" [41]. The idea is to focus on a given site, say ′i′ and integrate out all degrees

of freedom associated with other lattice sites so that one can define an effective dynamics

for the selected site ′i′ as shown in Fig 3.1. The total Hamiltonian can be split into:

H = Hi + Hhyb + H(0) (3.1)

where, Hi is the term that corresponds to site ′i′, H(0) is the Hamiltonian of the lattice by

removing a single site ′i′ and its adjacent bonds (i.e. a cavity is created surrounding ′i′

), Hhyb is the hybridization term that corresponds to the site i and the cavity lattice. For

a general lattice the relation between the full lattice green function and the cavity green

function is given by,

G(0)
lm = Glm −

GliGim

Gii
(3.2)

where, Glm,G
(0)
lm are the full lattice green function and cavity green function, respectively.

The cavity green function G(0) is related to the effective local green function correspond-

ing to the site ′i′ with suitable self-consistency. The spectral part of the cavity green

function gives the information of metal-insulator transition (MIT), hence can serve as an

order parameter for MIT. According to the Fermi-golden Rule, the transition rate to a

neighbouring site is proportional to the density of the final states. Hence an insulating

behaviour leads to a gap in the spectral part at Fermi energy. In Hubbard model such a

gap is a direct consequence of the strong onsite electron-electron Coulomb repulsion and
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IMPURITY SOLVER

G(ω), Σ(ω)G0(ω)

SELF CON-
SISTENCY

Figure 3.2: DMFT Self-Consistency loop. For a given G0(ω) solving the impurity prob-
lem one can get interacting Green’s function G(ω) and Self-energy Σ(ω). This is in self-
consistency condition to produce a new bath Green’s function G0(ω). Iterations goes on
until convergence is achieved

is same for every lattice site.

In case of the Anderson insulator (disorder induced localization) [5] the average of the

spectral part has no gap in the insulating state and hence cannot serve as an order param-

eter for Anderson localization. In this case we consider the "typical spectral function" [7]

as an order parameter. This typical spectral function has a gap at the Fermi surface in the

Anderson insulating state. The relation between the typical spectral function and average

spectral part [25] as,

∆typ = exp〈ln(∆i)〉 (3.3)

The average is taken over the distribution of the disorder. In the presence of disorder we

go from normal metal(Fermi liquid) to a non Fermi liquid metal and then finally to an

insulator.

Some of the physical aspects of DMFT are as follows:

• This approach is an approximate scheme where problems of infinite length scale

are mapped to a single lattice site with infinite time scale. In the limit of infinite

coordination number, the method is exact as in this limit the spatial correlation

vanishes.
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• In the metallic region, DMFT reproduces the Fermi liquid behaviour of metal both

in the low-temperature and the high temperature incoherent regime.

• From the local green function one can have local self-energy Σii(ω), from which

one can calculate the effective mass of the quasi-particle m∗ = 1 − (δΣii/δω)ω=0

and the inelastic scattering rate τ−1
in (ω) = −ImΣii(ω = 0). With disorder these

quantities display spatial fluctuations [80] and an appropriate distribution function

is necessary to characterize them.

• As DMFT ignores spatial fluctuations it cannot describe the phenomena which are

described by long wavelength spatial fluctuations.

Though there are some limitations, DMFT has come to be most powerful technique to un-

derstand system in the strongly correlated regime with many successful applications [56].

In the following section I discuss two extension of the DMFT- CDMFT (Cluster Dynam-

ical Mean Field Theory) and DCA (Dynamical Cluster Approximation).

3.2 Cluster Extensions of DMFT

It is shown from single site DMFT that in the limit of infinite coordination number the lat-

tice model can be exactly mapped to a single site impurity model where the lattice Green

function is related to the impurity Green function via a suitable self-consistency condi-

tion. Although the mapping is not exact for a lattice with finite coordination number, one

can use this as an approximation. So in this approximation one assume the momentum-

dependent (non-local) self-energy by local self energy i.e. Σ(k, ω) ≈ Σ(ω). But for certain

physical phenomena the inter-site correlation becomes relevant for example the super-

exchange in Hubbard model. In such cases, single site DMFT approximation is unable to

describe the physics in such cases.

Therefore, recently several attempts have been made to extend DMFT approximation
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Figure 3.3: Two types of cluster extension of DMFT (a) Real space Cluster DMFT
(CDMFT) with four site square as cluster impurity and (b) Momentum space Cluster
DMFT (DCA) [93] with four cluster momentum plaquette (S, Px, Py and D)

to include inter-site correlations. Considers instead of focusing on a single site, within

cluster-DMFT one consider a cluster of sites as ’impurity’ and solves the model of cluster

Anderson impurities embedded in a bath with a self- consistency condition at the cluster

level. Hence the self-energy becomes momentum dependent i.e. Σ(~K, ω) with the number

of ~K values is dependent on the number of sites in the impurity cluster.

In the following subsections I discuss two widely used cluster schemes - CDMFT (Cel-

lular Dynamical Mean Field Theory) and DCA (Dynamical Cluster Approximations).

Figures 3.3(a) and Fig 3.3(b) depict these methods schematically.

3.2.1 Cluster Dynamical Mean Field Theory(CDMFT)

In CDMFT a real space cluster is treated as impurity embedded by cluster of baths as

shown in Fig 3.3(a). For a lattice of infinite extent, we choose a large subset of the lattice

as a cluster which obeys all the symmetries of the lattice (e.g. for a two dimensional

lattice a suitable cluster would be 2 × 2 cluster) and then map the full lattice to a super-

lattice where the cluster is treated as a basis. The super-lattice has all the symmetries
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of the original lattice. Now choose one site in the super-lattice as the impurity and rest

of them as the bath and map it to an Anderson impurity problem. Hence the impurity

green function will be a matrix green function(Ĝimp(ω)) and the bath function (∆̂(ω)) is

connected with the lattice Green function with self-consistent matrix equations.

Let us consider a lattice of sites N and make a super-lattice of clusters with Nc sites. Let, x̃

be the lattice vector of the cluster from the origin in the super-lattice. Then a lattice point

x in the original lattice is given as, x = x̃ + X, where X is the vector from the cluster to the

lattice point. In reciprocal space the original Brillouin zone is divided into Nc number of

super-lattice Brillouin zones with k = k̃ + K, where k, k̃ are the reciprocal lattice vectors

in the original lattice BZ and super-lattice BZ, K in cluster momentum.

Splitting the hopping and the self-energy into intra-cluster and inter-cluster part one has,

t(x̃i − x̃j) = tcδx̃i,x̃j + δt(x̃i − x̃j) (3.4)

Σ(x̃i − x̃j, iωn) = Σc(iωn)δx̃i,x̃j + δΣ(x̃i − x̃j, iωn) (3.5)

where, all bold quantities are of size Nc × Nc. Expanding the Green function one has,

G(x̃i − x̃j, iωn) = g(iωn)δx̃i,x̃ j

+ g(iωn)
∑

l

[δt(x̃i − x̃j) + δΣ(x̃i − x̃j, iωn)G(x̃i − x̃j, iωn)]

(3.6)

where, g is the Green function restricted to the cluster, defined as:

g = [(iωn + µ) − tc − Σc(iωn)]−1 (3.7)

In momentum space this equation simplifies to:

G(k̃, iωn) = g(iωn) + g(iωn)[δt(k̃) + δΣ(k̃, iωn)]G(k̃, iωn). (3.8)
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In DMFT, the self-energy is chosen to be local. Similarly in CDMFT the self-energy of

the cluster super-lattice is local i.e. δΣ = 0, then one has,

G(k̃, iωn) = g(iωn) + g(iωn)δt(k̃)G(k̃, iωn)

= [g−1(iωn) − δt(k̃)
−1

]−1 (3.9)

the "coarse gaining" of the cluster Green function is given as:

Ḡ(iωn) =
Nc

N

∑
k̃

G(k̃, iωn). (3.10)

and the Weiss function in CDMFT is given as:

G0(iωn) = [Ḡ−1(iωn) + Σc(iωn)]−1 (3.11)

A sketch of the self-consistency loop is shown in the flowchart (Fig 3.4) next page:
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Figure 3.4: Cluster DMFT Algorithm Flow Diagram

Initialize,
Ḡ(iωn), Σc(iωn)

Compute, G0
i j(iωn)

using Equ 3.11

Solve Cluster
Impurity Model

New, Gnew
c (iωn),

Σnew
c (iωn)

Check Con-
vergence

compute, Ḡ(iωn)
using Equ 3.10

Save Gnew
c (iωn)

and Σnew
c (iωn)

Compute other
physical quantities

Yes

No
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3.2.2 Dynamical Cluster Approximation (DCA)

In this method [93] the full lattice Brillouin zone(BZ) is divided into Nc patches with

equal size as shown in Fig 3.3(b). Each patch is chosen in such a way that center of the is

the reciprocal lattice vector of the real space cluster. The patch function is defined by:

φK(k) =


1, if k is in patch K

0, otherwise.
(3.12)

so that one can restrict the momentum sums inside the Kth patch. The approximation of

DCA is to choose a constant self-energy on each patch but different in different patches

i.e.:

Σ(k, iωn) ≈ Σc(K, iωn) (3.13)

Since the self-energy is a function of the Green function, the cluster self-energy is also

a function of the coarse grained Green function, Σc(K, iωn) = Σc[Ḡ(K, iωn)]. The coarse

grained Green function Ḡ(K, iωn) is:

Ḡ(K, iωn) =
Nc

N

∑
k

φK(k)G(k, iωn) =
Nc

N

∑
k

φK(k)
1

iωn − εk + µ − ΣDCA(k, iωn)
(3.14)

The DCA self-energy ΣDCA(k, iωn) is:

ΣDCA(k, iωn) =
∑

K

φK(k)Σc(K, iωn) (3.15)

Then the corresponding non-interacting Green function is given as:

G0(K, iωn) = [Ḡ−1(K, iωn) + Σc(K, iωn)]−1 (3.16)

This non-interacting Green function G0(K, iωn) is fed back to the cluster impurity solver.

The impurity solver gives the interacting cluster Green function Gc(K, iωn). Then we
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calculate the cluster self-energy Σc(K, iωn) using Dyson’s equation,

Σc(K, iωn) = G−1
0 (K, iωn) −G−1

c (K, iωn) (3.17)

The new cluster self-energy is fed back in equation(3.15) and iterated till self-consistently

is attained. The iteration stops when the Σc(K, iωn) converges.
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Chapter 4

Falicov-Kimball Model and Dynamical

Mean Field Theory

In this chapter, I will present a review on Falicov-Kimball Model. I will first show how

it is related with Binary Disordered Alloy and then exact solution within DMFT approxi-

mation.

T he "Falicov-Kimball model" was first introduced by Hubbard and Gutzwiller in

1963-65 as a simplification of the Hubbard model. Falicov and Kimball [32] in-

troduced in 1969 a model that included a few extra complications, in order to investigate

metal-insulator phase transitions in rare-earth materials and transition-metal compounds.

Experimental data suggested that this transition is due to the interactions between elec-

trons in two electronic states: non-localized states (itinerant electrons), and states that

are localized around the sites corresponding to the metallic ions of the crystal (static

electrons). Brandt and Mielsch [18, 19, 20] for the first time exactly solve this model
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analytically in infinite dimensions.

4.1 Hamiltonian of FKM Model

The Falicov-Kimball Model involve spinless conduction electrons and localized electrons

or ions. The Hamiltonian is:

H = −t
∑
〈i j〉

(c†i c j + h.c.) +
∑

i

ε f f †i fi − µ
∑

i

(c†i ci + f †i fi) + U
∑

i

c†i ci f †i fi (4.1)

Here, c, c† are the annihilation and creation operators corresponding to the conduction

electrons respectively, t is the kinetic term of c-electrons, ε f is the site energy of f-

electrons, µ is the chemical potential, U is the on site interaction of c and f electrons.

Let us mention that Falicov-Kimball model has been used by several authors to devise

approximations to the solution of the d = ∞ Hubbard model. Here the number den-

sity of localized f electrons is determined by statistical average. If I consider Hubbard

model with one of the spin species as moving(conduction electrons) in the background of

the other one(localized electrons), considered frozen and static then Hubbard model and

Falicov-Kimball Model are equivalent.

4.2 Exact Solution of FKM

Brandt and Mielsch [18] first showed that FKM model can be solved exactly in infinite di-

mension [127] by analytical methods. In this method the full lattice problem is mapped to

a exactly solvable atomic problem with a time dependent field in the conduction electron

as perturbation. Then the corresponding generalized partition function is given by,

Z = Tr{c, f }[Exp(−βHat)S (λ)] (4.2)
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where, Hat is the atomic Hamiltonian given as,

Hat = Uc†c f † f + E f f † f − µ(c†c + f † f ) (4.3)

S (λ) = TτExp
[
−

∫ β

0
dτ

∫ β

0
dτ′λ(τ, τ′)d†(τ)d(τ′)

]
(4.4)

here, λ(τ, τ
′

) is the generalized time-dependent field which can be written in Fourier trans-

form form as,

λ(τ, τ′) =
1
β

∑
n

Exp[−iωn(τ − τ′)]λn (4.5)

ωn is the Matsubara frequency given as,

ωn =
(2n + 1)π

β
(4.6)

Now the Green function of the conduction electron is:

G(τ, τ′) =
1
Z

Tr{c, f }[−Exp(−βHat)S (λ)c(τ)c†(τ′)] (4.7)

The green function is related with the partition function as:

G(τ, τ′) = −
1
Z

dZ
dλ(τ, τ′)

= −
dlnZ

dλ(τ, τ′)
(4.8)

Now in the Fourier space of G(τ, τ′) is:

G(iωn) = −
dlnZ
dλn

(4.9)

Now I know that for atomic FK model the number of f electrons is constant of motion i.e.

is either 0 or 1 while the c-electron number can take any value between 0 and 1. Indeed

the two Hilbert subspace of f-electrons f † f = 0 and f † f = 1 evolve independently under

the dynamics of the c-electrons. Hence trace can be performed separately for n f = 0 and

61



n f = 1 subspaces. Hence the partition function is:

Z = Tr{c}[Exp(−βHat)S (λ)] f † f =0 + Tr{c}[Exp(−βHat)S (λ)] f † f =1

= Z0 + Z1 (4.10)

For n f = 0 subspace the atomic Hamiltonian becomes:

Hat = −µc†c (4.11)

Then the partition function corresponds to the n f = 0 subspace as,

Z0 = 2
∏

n

iωn + µ − λn

iωn
(4.12)

Similarly, for n f = 1 subspace the atomic Hamiltonian becomes:

Hat = (U − µ)c†c + (E f − µ) (4.13)

Hence the partition function becomes the same as Z0 with µ will be replaced by µ−U and

multiplied by a pre-factor Exp[−β(E f − µ)]. Hence,

Z1 = 2Exp[−β(E f − µ)]
∏

n

iωn + µ − λn

iωn
(4.14)

Hence the full partition function becomes:

Z = 2
∏

n

iωn + µ − λn

iωn
+ 2Exp[−β(E f − µ)]

∏
n

iωn + µ − λn

iωn

= 2Exp

∑
n

[ln(iωn + µ − λn) − ln(iωn)]eiωn0+

 +

2 Exp

−β(E f − µ) +
∑

n

[ln(iωn + µ − U − λn) − ln(iωn)]eiωn0+

 (4.15)
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By differentiating logarithmic Z of w.r.t. λn (See Appendix B) I have the green function

as,

G(iωn) =
w0

iωn + µ − λn
+

w1

iωn + µ − U − λn
(4.16)

with w0 = Z0
Z = 1 − w1 and,

w1 =
Z1

Z
=

2
Z

Exp

−β(E f − µ) +
∑

n

[ln(iωn + µ − U − λn) − ln(iωn)]eiωn0+

 (4.17)

w0 is interpreted as the average conduction electron per site whereas, w1 is the average of

the f-electron per site.

The non interacting green function is interpreted as,

G−1(iωn) = iωn + µ − λn (4.18)

Then define self energy Σn as,

G−1(iωn) = (G(iωn)−1 − Σ(iωn))−1 (4.19)

Combining the above two equations I have,

Σn = w1U + w0w1U2
n(Gn − w0Gn)−1 (4.20)

This self energy depends on λn. Expressing λn in terms of Gn and using w0 = 1 − w1 one

have,

Σn(Gn) =
U
2
−

1
2Gn

+

√(
U
2
−

1
2Gn

)2

+ w1
U
Gn

(4.21)

where, w1,Σn is both functions of Gn.For constant w1 the result will be similar with the

coherent potential approximation(CPA) self energy of random binary alloy where the w1

is constant fixed from outside.

In order to calculate lattice green function one can write the Dyson’s equation for lattice
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green function:

(iωn + µ − Σii
n(Gii

n))Gil
n −

∑
m

timGml
n = δil (4.22)

I assume that Σii is independent of site and for d = ∞ the self energy is local. Hence the

Fourier transform of lattice green function:

Gn(k) =
1

iωn + µ − Σn − εk
(4.23)

Thus the local lattice green function becomes:

Gii
n =

∑
k

1
iωn + µ − Σn − εk

=

∫ ∞

−∞

dε
ρ0(ε)

iωn + µ − ε − Σ(iωn)
(4.24)

4.3 Properties of FKM Model:

In this section, I will discuss some of the general feature of the Falicov-Kimball Model(FKM):

• At half filling nc + n f = 1, the model display a metal insulator transition [121, 122]

at critical U, Uc = D i.e. for U < Uc the system is metal and for U > Uc the system

is insulator.

• If the number of electron per side n f = 0 or 1, the model reduces to non interacting

Fermi gas.

• If n f is in between 0 and 1, f-electrons acts like a disorder scatterer with an annealed

average over disorder (more details discussion in next section). This disorder pro-

duces a finite lifetime even at the Fermi surface, the quasi-particle picture breaks

down. The system behaves like an non Fermi liquid. Although, for small U the

system behaves like a "dirty Fermi liquid".

• Hence the unlike Hubbard model the model exhibits three phases: (a) dirty Fermi

liquid metal b) non-Fermi liquid metal and (c) insulator.
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• For half filling at low temperature, the d = ∞ FK Model display CDW ordering

phase in all bipartite lattice as a function of U. It had shown analytically [123]

Tc ∼ 1/U for large U, while Tc ∼ U2ln(1/U) for small U.

• Lastly, the f-electron spectral function has a x-ray edge singularity. I will not pro-

vide here detail discussion of f-electron spectrum as it is out of scope of present

thesis. Interested reader may go through the following articles [110, 21, 52].

4.3.1 Binary Disorder Alloy as FKM

Here I show that binary disorder alloy model Hamiltonian can be mapped to Falicov-

Kimball Model Hamiltonian. The Hamiltonian for binary disordered alloy is given by,

Hbinary = −t
∑
〈i j〉

(c†i c j + h.c.) − µ
∑

i

c†i ci +
∑

i

vic
†

i ci (4.25)

Where, vi is the disordered potential at site i, for binary alloy vi have one of the two

possible values either U or 0. The probability distribution of disorder potential,

P(vi) =


x, if vi = U

1 − x, if vi = 0
(4.26)

Hence one can write vi = Uxi, where xi is either 0 or 1 with 〈xi〉 ≡ x. Now if I promoted

xi as an operator it satisfied all the commutation relations as the fermion number operator

does. So one can think xi as xi ≡ n f
i = f †i fi. Then the Hamiltonian is,

Hbinary = −t
∑
〈i j〉

(c†i c j + h.c.) − µ
∑

i

c†i ci + U
∑

i

f †i fic
†

i ci (4.27)

This is the Falicov-Kimball Model (FKM) with site energy of f-electrons ε f = µ. There

is no kinetic term corresponding to f-electrons, so it is called localized electrons. One

more thing that should mention that disorder average 〈xi〉 for binary alloy is fixed from
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outside i.e. quenched, whereas the average f-electrons i.e. 〈n f 〉 is calculated statistically

i.e. annealed. So one can think binary disordered alloy model as Falicov-Kimball Model

with quenched average over f-electrons instead of annealed. In this thesis, I consider the

quenched average of f-electrons 〈n f 〉.

4.4 DMFT approach to Falicov-Kimball Model within Al-

loy Analogy

Consider the Falicov Kimball Model(FKM) or Binary Disordered Alloy Model on bethe

lattice of infinity coordination number(i.e.d = ∞). The Hamiltonian is:

H = −t
∑
〈i j〉,σ

(c†i c j + h.c.) − µ
∑
i,σ

c†i ci +
∑

i

vic
†

i ci (4.28)

I assume that the distribution of disorder in binary alloy is:

P(vi) = (1 − x)δ(vi) + xδ(vi − U) (4.29)

Then vi = Un f
i with n f

i is 0 or 1. This model is not a Fermi-liquid for 〈n f 〉 , 0 or

1, as for 〈n f 〉 = 0 or 1 the model is an noninteracting problem.Because f-electrons act

as an annealed disorder scatterer and the scattering produces finite lifetime at the Fermi

surface. So no quasi-particle exists and Fermi-liquid theory breaks down. Although for

small disorder one can think this model as "dirty Fermi liquid".

Using DMFT technique one can mapped the Hamiltonian to a impurity problem embed-

ding with an "effective medium" given by,

Himp = U
∑
σ

n f
0c†0σc0σ−µ

∑
σ

c†0σc0σ+
∑
k,σ

(εk−µ)c†k,σckσ+
∑
k,σ

(teik.R0c†kσc0σ+h.c.) (4.30)

where, 0 denotes the impurity site, first term is the impurity potential due to disorder, µ is
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the chemical potential, third term is the dispersion of the effective medium (bath), fourth

term is the hybridization term between the impurity and the effective medium (conduction

electron bath function) that has to be self consistently determined by a suitable embedding

procedure.

Now I will calculate the impurity green function, i.e. G00(ω) = 〈c0; c†0〉,Gk0(ω) = 〈ck; c†0〉

with the technique of Equation of Motion (EOM).Using the identity:

ω〈Â; B̂〉 = 〈[Â, B̂]±〉 + 〈[[Â, Ĥ]; B̂]±〉 (4.31)

Here, Â and B̂ are fermionic or bosinic operators and anticommutator and commutator are

respectively for fermionic and bosonic operators.

EOM for G00(ω):

(ω + µ)G00(ω) = 1 +
∑

k

tkGk0 + v〈n f
0c0; c†0〉 (4.32)

Notice the appearance of the higher order green function. Using EOM one can calculate

the higher order green function and close the loop. For 〈n f
0c0; c†0〉,

(ω + µ − U)〈n f
0c0; c†0〉 = 〈n f

0〉 +
∑

k

tk〈n
f
0ck; c†0〉 (4.33)

EOM for Gk0,

Gk0(ω) =
t∗k

(ω + µ − εk)
G00(ω) (4.34)

EOM for 〈n f
0ck; c†0〉,

〈n f
0ck; c†0〉 =

t∗k
(ω + µ − εk)

〈n f
0c0; c†0〉 (4.35)

where, I have used (n f
0)2 = n f

0 . Closing the above four equation the local green function

is given as:

G00(ω) =
1 − 〈n f

0〉

ω + µ − ∆(ω)
+

〈n f
0〉

ω + µ − U − ∆(ω)
(4.36)
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where, ∆(ω) is a bath function given as,

∆(ω) =
∑

k

| tk |
2

ω + µ − εk
(4.37)

∆(ω) is related with the lattice green function with suitable self consistency condition.

For any general lattice the consistency condition is:

∆(ω) =

∫ ∞

−∞

ρ0(ε)dε
ω + µ − εk − Σk(ω)

(4.38)

For bethe lattice with infinite coordination number the self energy is local i.e. Σk(ω) =

Σii(ω). The self consistency condition is:

∆(ω) = t2G00(ω) (4.39)

The non-interacting Weiss Green function is given as:

G−1(ω) = ω + µ − ∆(ω) (4.40)

Using Dyson’s equation the self energy is given as:

Σ00(ω) = G−1(ω) −G−1
00 (ω) (4.41)

Hence for bethe lattice with infinite coordination the self energy has the form:

Σ00(ω) = U〈n f
0〉 +

U2〈n f
0〉(1 − 〈n

f
0〉)

ω − U(1 − 〈n f
0〉) − t2G00(ω)

(4.42)

The algorithm of the DMFT self-consistency loop is shown in the flowchart 4.1:

68



Guess a Trial
Lattice Green

function, Glatt(ω)

Compute bath function
using Eq. 4.40

Calculate Impurity
Green function

G00(ω) using Eq. 4.36

Calculate local
Self energy Σ00(ω)

using Eq. 4.41

Get new lattice
Green function,

Glatt(ω) =
∫

ρ0(ε)dε
ω+µ−ε−Σ00(ω)

| Gnew
latt −Glatt | <error

Compute Glatt =

pGnew
latt + (1 − p)Glatt,

where 0 < p < 1

Save G00(ω)
and Σ00(ω)

Yes

No

Figure 4.1: Algorithm of the single-site DMFT self-consistency loop
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Figure 4.2: The local density of states (LDOS) of the binary disorder alloy model for p-h
symmetry case. A clear continuous band-splitting transition is seen at Uc = 1.01 (cyan
curve).

4.5 Results and Discussions:

Following the algorithm as describe in the above flowchart I have calculated the local

green function G00(ω) for bethe lattice with infinite coordination number (d = ∞) with

bare half-bandwidth is unity. The convergence has been achieved upto the error of 10−5.

The spectral function is given as, A(k, ω) = − 1
π
G(k, ω). For infinite dimensional bethe

lattice Green function as well as self-energy are local. Hence the spectral density is given

as, A(ω) = − 1
π
G00(ω). In Fig 4.2 the local DOS is shown for different disorder strength

(U) for 〈n f
0〉 = 0.5 i.e. particle-hole symmetric case. It shows a continuous metal-insulator

transition (MIT) at the critical disorder strength Uc = 1.01 (cyan curve). Fig 4.3 shows the

real part of the local self energy (Σ(ω)) and Fig 4.4 shows the imaginary part of the local

self energy (Σ(ω)) as a function of disorder strength (U) on both sides of the critical curve.

Self-energy shows the non-Fermi-Liquid characteristic in the metallic state. Imaginary

part of the self-energy shows the quadratic behaviour but with wrong sign and at zero
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Figure 4.3: Real part of the local self-energy of binary disorder model for the same pa-
rameter value as in Fig 4.2. It shows discontinuity at ω=0 at critical U=1.01 (cyan curve)

temperature the intercept at ω = 0 does not go to zero. The real part of the self energy is

linear but the slope has the wrong sign near ω. In the insulating state the imaginary part

of the self-energy diverges as well as the real part shows discontinuity at ω = 0 which is

responsible for the opening of the gap at ω = 0.

4.6 Summary

To summarize, I have reviewed the FKM model and how it is related with the binary

disorder alloy within some restrictions. I also show that both FKM and binary disorder

model can be solved exactly within single-site DMFT. I also presented the continuous

metal-insulator transition (MIT) in this model on infinite dimensional bethe lattice and

analysis the properties of single-particle propagator (both Green function and self-energy)

across the MIT. From the next chapter, I will start discussing about the main part of my

thesis problem where I will extend this DMFT technique to the two-site cluster level and
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Figure 4.4: Imaginary part of the local self-energy of binary disorder model for the same
parameter value as in Fig 4.2. It shows singularity at ω=0 at critical U=1.01 (cyan curve)

will apply this technique to study the quantum transport in the FKM within alloy analogy.
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Chapter 5

Solution of FKM within Alloy Analogy

Using Cluster DMFT

This chapter is devoted to discuss the solution of Falicov Kimball Model (FKM) or equiv-

alently Anderson disorder problem with binary alloy distribution taking into account the

short range order (SRO). The Hamiltonian is solved using cluster Dynamical mean field

Theory (C-DMFT) technique which treated inter-site correlation( 1
d ) exactly. In results

and discussions, I will show the local propagator as well as cluster momentum propa-

gator, self energy and two-particle cluster momentum vertex function and discuss their

analytical properties and behaviour across the MIT.

5.1 Introduction

S ingle-site DMFT or equivalently Coherent Potential Approximation (CPA) falls

short in describing Anderson Localization (AL) [5], since for this technique non-
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local self-energy vanishes and the local self-energy cannot take into account for the coher-

ent back-scattering process that is responsible for AL. One way to include the non-local

correlation is several numerical based cluster approaches [79, 53, 99] that has been ap-

plied with mixed success. The major difficulty of these methods is the time taken to solve

this model grows exponentially with the number of lattice sites within the cluster. This

rises a big challenge to solve the model in three dimensional lattice with large lattice sites.

To solve the issue of finite lattice I have adopted cluster extension of DMFT that treats

intra-cluster (1/d, d=spatial dimension) correlations exactly to solve binary disordered

problem or equivalent Falicov-Kimball Model. I extend earlier developed two-site cluster

DMFT [62] to take into account non-local self-energy.

5.2 Model and Solution

The Hamiltonian for Anderson disorder model or equivalently Falicov-Kimball model

(FKM) is given as,

H = −t
∑
〈i, j〉,σ

(c†iσc jσ + h.c.) − µ
∑
i,σ

c†iσciσ +
∑

iσ

viniσ (5.1)

with vi = Uxi. Here, I assume the binary distribution of disorder i.e.,

P(vi) = (1 − x)δ(vi) + xδ(vi − U) (5.2)

as defined in the previous chapter (Chapter 4). I also consider Short Range Order (SRO)

fi j between nearest neighbour disorder as a constant parameter, defined as:

fi j = 〈viv j〉 − 〈vi〉〈v j〉 (5.3)
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In real materials this SRO is strongly depends on the x, temperature and other physical

variables.

Now using C-DMFT technique the Hamiltonian can be mapped to an effective Anderson

impurity model with impurity as a two sites cluster embedding by an effective dynamical

bath with cluster self-energy.

The Hamiltonian for the impurity model is given as:

Himp = Hµ + HU + Hbath + Hhyb (5.4)

where, Hµ,HU are terms corresponds to impurity, Hbath is the bath Hamiltonian and Hhyb

is the hybridization term between the impurity and the bath. Each of these terms is given

as:

Hµ = −µ
∑

i∈{0,α}σ

c†iσciσ

HU = U
∑

i∈{0,α}σ

xiniσ

Hbath =
∑
k,σ

εk,σc†k,σck,σ

Hhyb =
∑

k,i∈{0,α},σ

(vkic
†

iσckσ + h.c.) (5.5)

where 0, α are the two sites of the cluster impurity.

Now the cluster Green function is defined as:

Ĝ =

 G00(ω) G0α(ω)

G0α(ω) G00(ω)


where, G00(ω) is the diagonal Green function define as, Gσ

00(ω) := 〈c0σ; c†0σ〉 and G0α(ω)

is the off-diagonal Green’s function define as, Gσ
0α(ω) := 〈c0σ; c†ασ〉. Here, σ is the spin
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indices, i.e. σ ∈ {↑, ↓}. Using the identity (proof is given in Appendix A):

ω〈Â; B̂〉 = 〈[Â, B̂]±〉 + 〈[[Â, Ĥ]; B̂]±〉 (5.6)

The Equation of Motion (EQM) for Gσ
00(ω) is:

ωGσ
00(ω) = 1 − tGσ

α0(ω) + U < x0c0σ; c†0σ > +
∑

k

vk0Gσ
k0 (5.7)

The EQM for off-diagonal Green function Gσ
0α(ω) is:

ωGσ
α0(ω) = U < xαcασ; c†0σ > −tGσ

00(ω) +
∑

k

vkαGσ
k0(ω) (5.8)

EOM for Gσ
k0(ω) is:

ω〈ckσ; c†0σ〉 = εk〈ckσ; c†0σ〉 +
∑

i∈{0,α}

v∗ki〈ciσ; c†0σ〉

⇒ Gσ
k0(ω) =

∑
i∈{0,α}

v∗ki

ω − εk
Gσ

i0 (5.9)

Define, ∆00(ω) =
∑

k
|vk0 |

2

ω−εk
and ∆α0(ω) =

∑
k

vk0v∗kα
ω−εk

. Solving above three equations one gets,

Gσ
00(ω) =

1 + U < x0c0σ; c†0σ > +( U
−t+∆α0(ω) )F2(ω) < xαcασ; c†0σ >

ω − ∆00 − F2(ω)
(5.10)

Gσ
α0(ω) =

U(ω − ∆00(ω)) < xαcασ; c†0σ > +(−t + ∆α0(ω))(1 + U < x0c0σ; c†0σ >)
(ω − ∆00(ω))(ω − ∆00(ω) − F2(ω))


(5.11)

Here, F1(ω) ≡ (−t+∆α0(ω))2

ω−U−∆00(ω) and F2(ω) ≡ (−t+∆α0(ω))2

ω−∆00(ω) .

Similarly, using EOM one can calculate higher order Green function. The EOM for <

x0c0σ; c†0σ > is:

(ω − U) < x0c0σ; c†0σ >=< x0 > −t < x0cασ; c†0σ > +
∑

k

vk0 < x0ckσ; c†0σ > (5.12)
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The EOM for < x0ckσ; c†0σ > is:

ω〈x0ckσ; c†0σ〉 = εk〈x0ckσ; c†0σ〉 +
∑

i∈{0,α}

v∗ki〈x0ciσ; c†0σ〉

〈x0ckσ; c†0σ〉 =
∑

i∈{0,α}

v∗ki

ω − εk
〈x0ciσ; c†0σ〉 (5.13)

The EOM for < x0cασ; c†0σ > is:

ω < x0cασ; c†0σ >= U < x0xαcασ; c†0σ > −t < x0c0σ; c†0σ > +
∑

k

vkα < x0ckσ; c†0σ >

(5.14)

The EOM for < x0xαcασ; c†0σ > is:

(ω − U) < x0xαcασ; c†0σ >= −t < x0xαc0σ; c†0σ > +
∑

k

vkα < x0xαckσ; c†0σ > (5.15)

The EOM for < x0xαckσ; c†0σ > is:

ω < x0xαckσ; c†0σ > = εk < x0xαckσ; c†0σ > +
∑

i∈{0,α}

v∗kα < x0xαciσ; c†0σ >

⇒< x0xαckσ; c†0σ > =
∑

i∈{0,α}

v∗kα
ω − εk

< x0xαciσ; c†0σ > (5.16)

The EOM for < x0xαc0σ; c†0σ > is:

(ω−U) < x0xαc0σ; c†0σ >= 〈x0xα〉− t < x0xαcασ; c†0σ > +
∑

k

vk0 < x0xαckσ; c†0σ > (5.17)

Here 〈x0xα〉 ≡ 〈xαx0〉 = 〈x0α〉. Solving the above equations the expression for 〈x0c0σ; c†0σ〉

is:

< x0c0σ; c†0σ >=
< x0 > − < x0α >

ω − U − ∆00(ω) − F2(ω)
+

< x0α >

ω − U − ∆00(ω) − F1(ω)
(5.18)
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The EOM for < xαcασ; c†0σ > is:

(ω − U) < xαcασ; c†0σ >= −t < xαc0σ; c†0σ > +
∑

k

vkα < xαckσ; c†0σ > (5.19)

The EOM for < xαckσ; c†0σ > is:

ω < xαckσ; c†0σ > = εk < xαckσ; c†0σ > +
∑

i∈{0,α}

v∗ki < xαciσ; c†0σ >

< xαckσ; c†0σ > =
∑

i∈{0,α}

v∗ki

ω − εk
< xαciσ; c†0σ > (5.20)

The EOM for < xαc0σ; c†0σ > is:

ω < xαc0σ; c†0σ >=< xα > +U < xαx0c0σ; c†0σ > −t < xαcασ; c†0σ > +
∑

k

vk0 < xαckσ; c†0σ >

(5.21)

Solving the above equations the expression for 〈xαcασ; c†0σ〉 is:

< xαcασ; c†0σ >=
F1(ω)

−t + ∆α0(ω)

[
< xα > − < x0α >

ω − ∆00(ω) − F1(ω)
+

< x0α >

ω − U − ∆00(ω) − F1(ω)

]
(5.22)

Using the four equations I have the final expressions for diagonal and off-diagonal Green

function:

G00(ω) =
1 − 〈x0〉 − 〈xα〉 + 〈xα0〉

ω − ∆00(ω) − F2(ω)
+

〈x0〉 − 〈xα0〉

ω − v − ∆00(ω) − F2(ω)

+
〈xα〉 − 〈xα0〉

ω − ∆00(ω) − F1(ω)
+

〈xα0〉

ω − v − ∆00(ω) − F1(ω)
(5.23)

Gα0(ω) =
F2

(−t + ∆α0(ω))

[
1 − 〈x0〉 − 〈xα〉 + 〈xα0〉

ω − ∆00(ω) − F2(ω)
+

〈x0〉 − 〈xα0〉

ω − v − ∆00(ω) − F2(ω)

]
+

F1

(−t + ∆α0(ω))

[
〈xα〉 − 〈xα0〉

ω − ∆00(ω) − F1(ω)
+

〈xα0〉

ω − v − ∆00(ω) − F1(ω)

]
(5.24)
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Here the bath function ∆̂(ω) is a 2 × 2 matrix,

∆̂(ω) =

 ∆00(ω) ∆0α(ω)

∆0α(ω) ∆00(ω)


5.2.1 Calculation of self-energy:

The self-energy is in 2 × 2 matrix form:

Σ̂(ω) =

 Σ00(ω) Σ0α(ω)

Σ0α(ω) Σ00(ω)


The non-interacting Weiss Green function is:

Ĝ(ω) =
[
(ω + µ)I − T̂ − ∆̂(ω)

]−1
(5.25)

Here I is the 2 × 2 identity matrix and T̂ is of form:

T̂ =

 0 −t

−t 0


Hence,

Ĝ−1(ω) =

 ω + µ − ∆00(ω) t − ∆0α(ω)

t − ∆0α(ω) ω + µ − ∆00(ω)


The Weiss Green function Ĝ is connected with the impurity Green function Ĝ through

suitable matrix self-consistency condition. For Bethe lattice the self-consistency condi-

tion reduces to the simplified form : ∆̂(ω) = t2Ĝ(ω). Using Dyson’s equation in matrix

form the self-energy is: Σ̂(ω) = Ĝ−1(ω) − Ĝ−1(ω), i.e.

 Σ00(ω) Σ0α(ω)

Σ0α(ω) Σ00(ω)

 =

 ω + µ − ∆00(ω) t − ∆0α(ω)

t − ∆0α(ω) ω + µ − ∆00(ω)

 −
 G00(ω) G0α(ω)

G0α(ω) G00(ω)


−1
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Hence the final form of the local and non-local self-energy:

Σ00(ω) = (ω + µ − ∆00(ω)) −
1
2

[
1

G00(ω) + G0α
+

1
G00(ω) −G0α

]
(5.26)

Σ0α(ω) = (t − ∆0α(ω)) +
1
2

[
1

G00(ω) −G0α
−

1
G00(ω) + G0α

]
(5.27)

5.2.2 Self-consistency condition for two-site Cluster Method

The solution for the two site cluster impurity problems give the following matrix Green

function and self-energy:

Ĝ(ω) =

 G00(ω) G0α(ω)

G0α(ω) G00(ω)

 , Σ̂(ω) =

 Σ00(ω) Σ0α(ω)

Σ0α(ω) Σ00(ω)


Dividing the Brillouin zone as shown in Fig 5.1 into two parts corresponds to two cluster

momentum, K = (0, 0,−−) and K = (π, π,−−) as shown in Fig 5.1. For k-points cor-

responds to K = (0, 0,−−) is S-sector and for k-points corresponds to K = (π, π,−−) is

P-sector. Then the lattice self-energy is related to the impurity self energy Σ̂(ω) using

DCA:

ΣDCA(~k, ω) =


ΣS = Σ0 + Σ1 k ∈ S

ΣP = Σ0 − Σ1 k ∈ P
(5.28)

The partial density of states correspond to the cluster momentum S, P are:

ρS (P)(ε) = 2 ×
∫

k∈{S ,P}
dkδ(ε − εk) (5.29)

The Green function corresponds to cluster momentum basis:

Ĝ(ω) =

 GS (ω) 0

0 GP(ω)

 , Σ̂(ω) =

 ΣS (ω) 0

0 ΣP(ω)


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Figure 5.1: Division of Brillouin zone (a) 2-site DCA on square lattice. (b) 2-site cluster
on cubic lattice, figure taken from [93]
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where,

GS (P) =

∫
ρS (P)(ε)dε

ω + µ − ε − ΣS (P)
(5.30)

The self consistency condition is:

G00 = (GS + GP)/2

G0α = (GS −GP)/2 (5.31)

The algorithm for two site cluster DMFT is shown in the flowchart (Fig 5.2):
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Guess, Ĝ(ω)

Compute ∆̂(ω)
using Equ 5.25

Calculate
G00(ω),G0α(ω) using
Equ 5.23 & Equ 5.24

Calculate Self energy
Σ̂(ω) using Equ 5.27

Get Cluster Mo-
mentum Green

function, GS ,GP

Using Equ 5.30

Check Con-
vergence

Compute G00,G0α

using Equ 5.31

Calculate, Ĝ(ω) using
Dyson’s Equation

Save Ĝ(ω) and Σ̂(ω)

Yes

No

Figure 5.2: CDMFT Algorithm Flow Diagram for FKM within Alloy Analogy
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5.2.3 Calculation of Vertex Function

According to the functional methods begin with the generating function with source field

φσ, then the partition function in grand canonical ensemble:

lnZ[φ] = lnTr[e−β(Ĥ−µN̂)Tτ(e−c†σφσcσ)] (5.32)

Green function in presence of this source field is defined as:

Gσ(φ) := −〈cσ; c†σ〉φ = −
δlnZ[φ]
δφσ

(5.33)

Similarly the two particle Green function (Π) is obtained by functional derivative of G[φσ]

w.r.t. φσ, i.e.

Πσ =
δG[φ]
δφσ

(5.34)

Using the matrix notation I have:

GG−1 = I (5.35)

Differentiating w.r.t. φ I have,

δG
δφ

G−1 + G
δG−1

δφ
= 0 (5.36)

δG
δφ

= −G
δG−1

δφ
G (5.37)

Using the Dyson’s equation: G−1 = G−1
0 − Σ − φ one gets,

δG
δφ

= G.G + G
δΣ

δφ
G (5.38)

As the self-energy is functional of Green function, Σ := Σ(G), using chain rule one gets,

δG
δφ

= G.G + G
[
δΣ

δG
δG
δφ

]
G (5.39)
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Comparing the above equation with Bethe-Salpeter equation (BSE) given as,

Π = Π0 + Π0ΓΠ (5.40)

one gets the irreducible particle-hole vertex function Γ corresponds to the BSE as

Γ ≡
δΣ(G)
δG

(5.41)

For my case both the self-energy and Green functions are 2× 2 matrix form. Consider the

Green function and self-energy in symmetric (cluster momentum) basis on the diagonal-

ized forms:

Ĝ(ω) =

 GS (ω) 0

0 GP(ω)

 , Σ̂(ω) =

 ΣS (ω) 0

0 ΣP(ω)


In diagonalized basis each two sector (S and P) disjoint from each other i.e. ΣS ≡ ΣS (GS )

and ΣP ≡ ΣP(GP) . Now,

δ

δĜ
=


δ

δGS
0

0 δ
δGP


Hence the vertex function is given as,

Γ̂(ω) =
δ

δĜ
Σ̂

=


δ

δGS
0

0 δ
δGP


 ΣS 0

0 ΣP


=


δΣS
δGS

0

0 δΣP
δGP

 (5.42)

Hence the vertex function is also diagonal in cluster momentum basis corresponds to S

and P sector and the off-diagonal vertex function vanishes. One can argue that as ΣS is

85



function of GS only, the derivative of ΣS with respect to GP vanishes and vice versa i.e.,

δΣP(S )

δGS (P)
= 0

δΣS (P)

δGP(S )
= 0 (5.43)

and only diagonal components survive with,

ΓS (P) =
δΣS (P)

δGS (P)
(5.44)

5.3 Results:

I have considered the Bethe lattice of high dimensions (d) with unit half-bandwidth

(2t=1) of the unperturbed density of states (DOS) of conduction electrons. Then the

non-interacting DOS for conduction electrons is given as,

ρ0(ε) =
2
πD

√
D2 − ε2 (5.45)

I follow the self consistency condition ∆̂(ω) = t2Ĝ(ω) for Bethe lattice and calculate the

single particle spectral function (ρ00(ω)) and self-energy (Σ̂(ω)). Then using Luttinger

ward identity I calculate the Vertex function (Γ̂(ω)). The average f-electrons density is:

〈ni f 〉 = 〈xi〉 and the nearest-neighbour(n.n.) short range correlation is: f0α = 〈x0xα〉 −

〈x0〉〈xα〉, where the 0, α the n.n. sites on the lattice. In the following I show the results for

three different cases:

1. Particle-hole symmetric with no short range correlation case : 〈ni f 〉 = 0.5, f0α = 0.0

2. Particle-hole asymmetric with no short range correlation case : 〈ni f 〉 = 0.45, f0α =

0.0

3. Particle-hole symmetric with short range correlation case : 〈ni f 〉 = 0.5, f0α = −0.15
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Figure 5.3: The local density of states (LDOS) of the binary-alloy disorder model for p-h
symmetry (upper panel) and p-h asymmetric case (lower panel). A clear continuous band-
splitting transition of the Hubbard (or Falicov-Kimball model-like) variety is seen in both
cases. At Uc = 1.8 (red curve), the LDOS exhibits a critical |ω|1/3 singular behaviour in
both cases.
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5.3.1 Particle-hole Symmetric Case:

I begin with the 〈nic〉 = 〈ni f 〉 = 0.5 and f0α = 0.0, x0α = 〈x0xα〉 = 〈x0〉〈xα〉 = 0.25. In the

upper panel of Fig 5.3, I show the local DOS (LDOS) for different values of U (in range

from U=0.5 to U=2.2). At the critical point (Uc = 1.8) the band is split into two subband

which signifies the metal-insulator transition (MIT) of the Mott-Hubbard [2] type. But

in contrast to the Hubbard model the band spliting occurs continuously(i.e. ρ00(ω = 0)

vanishes continuously at Uc = 1.8 with the increasing U), so continuous MIT (2nd order)

happens in FKM. So one can see this as genuine quantum critical point (QCP). Comparing

with the single-site exact DMFT result I see that with the incorporation of dynamical

effect of 1/d corrections in our two-site C-DMFT gives more additional features in the

LDOS, even with totally random case ( f0α = 0) this additional features in LDOS survived.

In Fig 5.6, I show the LDOS for critical point with U = Uc = 1.80. I also find that at QCP

(U = Uc) the LDOS in low energy can be written as, ρc(ω) = c | ω |η, where η ≈ 1
3 (shown

in Fig 5.6 in log-scale plot), the similar result was found for single site DMFT with FKM.

Although this result is contrast to that Hubbard model for which for the critical curve

η = 1
2 .

Using CDMFT method I also calculate the spectral density of cluster momentum K ∈

(0, 0, ...) and (π, π, ...). I define K=(0,0,..) as S-channel and K = (π, π, ..) as P-channel.

In the upper panel Fig 5.4, I show the cluster spectral function A(K ∈ {S , P}, ω) as a

function of U. I find that A(K ∈ {S , P}, ω) ≥ 0 as one expected from analytical properties

of momentum spectral function. As the particle-hole symmetric case, it is obvious that

ρS (ω) = A(K = S , ω) = ρP(−ω) = A(K = P,−ω). The cluster momentum dependent

spectral function also exhibits same singular features as LDOS. Notwithstanding these

similarities, I stress that our extension of DMFT faithfully captures the feedback of the

non-local (intra-cluster) correlations on the single-particle DOS and the self-energies (see

below) in contrast to DMFT, where such 1/d feedback effects are absent.

In the upper-left panel of Fig 5.5, I show the imaginary part of the local self-energy
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Figure 5.4: The cluster-momentum resolved one-electron spectral functions for same
parameters as in Fig. 5.3. For the p-h symmetric case, the symmetry relation ρS (ω) =

ρP(−ω) is clearly satisfied as it must be (upper panel).

(Σ00(ω)) for the same values of disorder strength U as above. For small U, ImΣ00 weakly

depends on ω, and is sizable only near ω = 0. However, it has the wrong sign, i.e,

a minimum, instead of a maximum characteristic of a Landau Fermi liquid, at ω = 0.

Thus, the metallic state is incoherent and not a Landau Fermi liquid (LFL). This is again

a feature in common with DMFT studies. In DMFT, it is well known that this feature

becomes more prominent as U increases, and diverges at the MIT. In CDMFT, however,

ImΣ00 develops marked structure already at (U) = 1.0: it develops a maximum at ω = 0,

which progressively sharpens up with increasing U in the incoherent metallic regime.

Interestingly, (i) right at (Uc) as shown in Fig 5.6 (red curve), for low energy ImΣ00(ω) =

c|ω|1/3, reminiscent of what is expected in a power-law liquid, in strong contrast to what

happens in DMFT, where it diverges. The real part of local self energy (ReΣ00(ω)) is

shown in the right panels of Fig. 5.5. For p-h symmetric case (shown in upper right panel

of Fig. 5.5), ReΣ00(ω) is U/2.0 atω=0 for all values of U. If I see Re[Σ00(ω)]− U
2 it changes

sign according to the ω near the Fermi level and at the transition point (U ∼ Uc) it shows
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Figure 5.5: Σ00(ω) (both real and imaginary part) vs U for the binary-ally disorder prob-
lem for the same parameters as in Fig. 5.3. For small U, our results agree with self-
consistent Born approximation (constant ImΣ00(ω)). As U increases, ImΣ00(ω) develops
marked low-energy structure, and at Uc = 1.8 (red curve), ImΣ00(ω) ' |ω|1/3, reflecting
the non-perturbative nature of the “Hubbard III” quantum criticality. The ReΣ00(ω) shows
discontinuity at ω = 0 at the critical U.
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Figure 5.6: Exponent of ρ00(ω) and ImΣ00(ω) closed to the Fermi energy at critical value
of U with symmetric alloy
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Figure 5.7: Same as Fig. 5.5, but now for the cluster-momentum resolved self-energies.
It is clear that the symmetry relation ImΣS (ω) =ImΣP(−ω) holds in the p-h symmetric
case.

steep discontinuity at ω = 0. The source of gap opening comes from the divergence

of ∂
∂ω

ReΣ00(ω) at ω=0. For U > Uc, opening up of a “Mott” gap in the LDOS goes

hand-in-hand with the divergence of ∂
∂ω

ReΣ00(ω) and vanishing ImΣ00(ω) in the gap. For

(U > Uc) , opening up of a "Mott" gap in the LDOS goes hand-in-hand with vanishing

ImΣ00(ω) in the gap. In all cases, I also find power-law fall-off in self-energies at high

energy and, more interestingly, clear isosbestic points (where ImΣ00(ω) is independent of

ω) at Ω = 0.2t.

Finally, CDMFT allows a direct evaluation of the K-dependent self-energies, which I

exhibit in Fig 5.7. As a cross-check, I find that ImΣ(K = S , ω) = ImΣ(K = P,−ω) as I

expected with particle-hole symmetry.

In Fig 5.8, I exhibit the imaginary parts of the cluster-momentum-resolved irreducible

particle-hole vertex functions as functions of U. It is clear that both, ImΓ(K, ) with K =

(0, 0,...) (called "S") and with K = (π, π, ..) (called "P") show non-analyticities precisely at

ω = 0 at Uc = 1.8 (red curves). Thus, for the completely random case, I find, as expected,
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Figure 5.8: Imaginary parts of the irreducible particle-hole vertex functions in the S , P
channels as a function of U for the binary-alloy disorder model. Clear non-analyticities
in ΓS ,P(ω) at ω = 0 occur precisely at Uc = 1.8 (red curve), where the continuous Hubbard
band-splitting transition occurs. In addition, the results confirm the symmetry ImΓS (ω) =

−ImΓP(−ω).
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Figure 5.9: Same as in Fig. 5.7, but for the p-h asymmetric case. Though no symmetry
is expected nor found here, the critical features are unaffected, since ImΣS ,P(ω) indeed
exhibit the same non-analytic feature (' |ω|1/3 behavior) for ω < 0(S ) and ω > 0(P).

that the "Mott" QCP is signaled by a clear non-analyticity in the momentum-dependent

(irreducible) p-h vertices at the Fermi energy (ω = 0). This non-analytic feature goes

hand-in-hand with a power-law variation of ImΣS (P)(ω) in the vicinity of the Fermi energy

(ω = 0). Along with spectral functions and self-energies, the vertex functions also satisfy

the "symmetry" relation, ImΓ(K = S , ω) = −ImΓ(K = P,−ω) for the p-h symmetric case.

Clearly, the anomalous infra-red behavior of the irreducible vertices is directly related to

the clear non-analytic structures in the cluster self-energies discussed above.

5.3.2 Particle-hole Asymmetric Case:

Next, I consider the "particle-hole asymmetric case" with completely random disorder

i.e. nic , ni f but foα = 0.0. In the lower panel of Fig 5.3, I show the LDOS with

particle-hole asymmetric case with 〈ni f 〉 = 〈xi〉 = 0.45. The LDOS is fully reflected the

asymmetric case. At U = Uc = 1.80 the LDOS at ω = 0 vanishes which is same as in the
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p-h symmetric case. Here also MIT is associated with a genuine Quantum Critical Point

(QCP). The exponent of LDOS in p-h asymmetric csae also 1
3 near the Fermi energy.

Hence comparing to p-h symmetric case no more extra features find in this case.

In the cluster K-dependent spectral function I find, ρS (ω) = A(K = (0, 0), ω) = ρP(−ω) =

A(K = (π, π),−ω) as shown in the lower panels of Fig 5.4, which is consistent with the p-h

asymmetric case. The K-dependent spectral function also show the power-law behaviour

with with an exponent η ≈ 1
3 on both sides of the Fermi energy. In the lower panels of

Fig 5.5, I show the imaginary and real part of the self-energy that correctly depicted the

p-h asymmetry. In Fig 5.9, I show the cluster momentum resolve self-energies that exhibit

the same non-analytic features (∼| ω |
1
3 ) for ω < 0(S ) and ω > 0(P).

5.3.3 Particle-hole Symmetric Case with Short Range Order:

Additional notable features characteristic of 1/D effects captured by CDMFT become

apparent upon repeating the above procedure for the case of finite "alloy" short-range

order (SRO), namely, when f0α = 〈x0xα〉 − 〈x0〉〈xα〉 , 0.

In Fig. 5.10, Fig. 5.11 and Fig. 5.12, I exhibit the cluster self-energies and p-h vertices

for the case of f0α = −0.15, which represents the physical situation with short-range

“antiferro” alloy correlations on the two-site cluster. Now, the MIT occurs at a criti-

cal Uc1 = 1.35, smaller than for the completely random case. The reason is simple:

on very general grounds, short-ranged “antiferro” alloy correlations suppress the one-

electron hopping by a larger amount compared to the random case (this is also reflected

in the deeper pseudogap in the incoherent metal for f0α < 0), simply because the prob-

ability for an electron to hop onto its neighbour on the cluster is reduced when there is

more probability of having a local potential U on the neighbouring site. In this case,

ImΣ(K, ω) shows, on first glance, a behaviour similar to the case with f0α = 0 described

before. Upon closer scrutiny of Fig. 5.11, however, I find that ImΣ(K, ω) already di-
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Figure 5.10: Cluster-momentum resolved one-electron spectral functions as a function
of U for the short-range ordered binary alloy in the p-h symmetric case. As expected,
the continuous “Hubbard” transition now obtains at a smaller Uc = 1.35 (red curve),
due to enhanced suppression of itinerance by the “anti-ferro” alloy short-range order
( f0α = −0.15 < 0). As for the totally random alloy, the symmetry relation for the spectral
functions still holds. The LDOS shows very similar quantum-critical singular features at
low energy at Uc.

verges for U = 1.3, slightly before Hubbard band-splitting occurs (cyan curve). Also,

Fig. 5.11 also clearly shows the power-law divergence of the self-energy (cyan and red

curves), with ImΣ00(ω) ' |ω|−η, with η = 1/3 at the MIT. This new feature is very dif-

ferent from the pole-divergence of the self-energy in the Hubbard model within DMFT,

but is indeed seen in the DMFT solution for the FKM when the self-energy and the ver-

tex function are treated consistently at the local level [51]. A related non-analyticity in

ImΓ(K, ω) also correspondingly occurs at precisely the same value in Fig. 5.12. Thus,

in this case, I find that the irreducible p-h vertex diverges before the actual MIT occurs.

Such features are also known for the d = 2 Hubbard model within the dynamical vertex

approximation [103, 98]. However, this divergence of the vertex function is not associ-

ated with (∂Σ00(ω)/∂ω)ω=0 = ∞, where the actual “Mott” transition occurs. Thus, it is

neither connected to any symmetry-breaking (which would require a divergence in the
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Figure 5.11: Imaginary parts of the cluster-momentum resolved one-particle self-
energies as a function of U for the short-range ordered binary alloy. The symmetry
relation for the cluster self-energies still holds, as does the fact that both show critical
power-law behavior at Uc (see text).
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Figure 5.12: Imaginary parts of the cluster-momentum resolved irreducible p-h vertex
functions for the p-h symmetric short-range ordered binary alloy as a function of U. Clear
non-analyticities in both ΓS ,P(ω) occur slightly before the Hubbard-type band-splitting
transition occurs, signifying the onset of a novel kind of localization (see text).
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momentum channel), nor does it lead to non-analyticities in the one-particle response (the

LDOS remains smooth for all U < Uc1 = 1.35).

Thus, at the level of spectral functions and self-energies, our CDMFT for the FKM finds

universal features at a quantum-critical "Mott" transition that are qualitatively similar to

those found by Janis et al [51]. I find that the infra-red non-analytic behaviour in Γ(K, ω)

precedes the MIT. This was probably to be expected, since both approaches deal with

quasi-local quantum criticality suited to the Mott-Hubbard problem. The advantages of

our extension relate to (i) having a CDMFT that always respects causality [62], and (ii) en-

ables computation of momentum-resolved spectral responses, even for the hitherto scant-

ily considered cases of explicit “alloy” short-range order. Importantly, having an almost

analytic cluster extension of DMFT means that I have to simply deal with N coupled non-

linear algebraic equations to compute the full CDMFT propagators for a N-site cluster,

even with short-range order. This is an enormous numerical simplification when one en-

visages its use for real disordered systems, with or without strong Hubbard correlations:

these issues have long been extremely well-studied using the coherent-potential approx-

imation (CPA) and DMFT [41]. I anticipate wide uses of such a semi-analytic approach

as ours in this context.

It is interesting to compare our results to those obtained by Shinaoka et al. [109]. Moti-

vated by disordered and correlated systems near a MIT, they consider a disordered Hub-

bard model, where Hubbard correlations are treated within static Hartree-Fock, giving rise

to local moments, while disorder effects over and above HF are studied by exact diagonal-

ization techniques. Their main findings are (i) a “soft” gap arises even with purely local

interactions, in contrast to that in an Efros-Shklovskii picture, where it arises from long-

range coulomb interactions and (ii) while the LDOS A(E) ' |E − EF |
α with 0.5 < α < 1

for |E −EF | > 0.1, they see that A(E) ' exp[−(−γlog|E −EF |)3] provides a much better fit

for |E − EF | < 0.1. In contrast, I find that the LDOS, ρ(ω) ' C|ω|1/3 remains valid up to

lowest energies at the QCP: this is similar to the situation found in single-site DMFT [29],
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where precisely the same behavior is found analytically.

These differences could arise from many factors: (a) there are no localized magnetic

moments in our case, since I do not have the Hubbard term, (b) while I focus on predom-

inantly short-range disorder correlations, Shinaoka et al include longer range disorder

correlations. It is noteworthy that a “soft power-law gap” already appears in (C)DMFT

studies, and while it is conceivable that the low-energy behaviour may change upon in-

creasing cluster size, this remains to be shown. Alternatively, if local moments are crucial

to obtain this behaviour, one must study the disordered Hubbard model within CDMFT.

This ambitious enterprise is left for future consideration.

5.4 Discussions:

Using the disordered binary alloy analogy extended to a two-site cluster, I have investi-

gated 1/d effects on the continuous MIT in the "simplified" FKM (by this, I mean a FKM

where the disorder is quenched, rather than annealed, so quantities like 〈x0〉 and f0α are

fixed and given from a binary distribution, rather than computed self-consistently, as in

the true FKM). In spite of this simplification, I find that quantum critical features at the

level of one-electron Green functions and self-energies are very similar to those obtained

from an “Anderson-Falicov-Kimball” [51] model. This is not so surprising, since the ef-

fect of the FK term, U
∑

i ni f nic is precisely to generate a band “splitting” for all U in the

FKM as well, and a binary alloy disorder indeed has exactly a similar effect on the DOS.

Thus, within DMFT or CDMFT approaches such as ours, one would expect quantitative

changes in the spectral functions, but no qualitative modification of critical exponents in

the LDOS exactly at the band-splitting Hubbard-like transition.

However, in strong contrast to one-electron response, the nonlocal p-h vertex shows clear

divergence even before MIT Metal to Anderson localization transition in this thesis, the

qualitative discussion have done in the dynamical charge susceptibility in the next chapter
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6.

5.5 Summary

To summarize this chapter, I have analyzed the role of short-ranged (spatially non-local)

alloy correlations on the Hubbard-like MIT in a binary disorder Anderson model at strong

coupling in detail. While quantum critical features at one-electron level are exactly similar

to recent DMFT results [51] for the disordered FKM, non-local vertex corrections show up

a clear signature of quantum interference at strong coupling. In contrast to previous CPA

studies, this is a concrete manifestation of the relevance of dynamical effects associated

with 1/D alloy correlations near the quantum critical point associated with a continuous

MIT of the Hubbard band-splitting type. It is obviously of interest to elucidate the nature

and consequences of this strong coupling QCP in various transport responses. This aspect

will be discussed in the following chapters.
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Chapter 6

Dynamical Charge Susceptibility in

FKM using CDMFT

Previous chapter, I have discussed the CDMFT formalism of solving FKM. In this chapter,

I will present the frequency-dependent charge susceptibility of FKM by using Cluster

DMFT. Using time dependent response to a sudden local quench, I find long-time wave-

function changes from a power-law to an anomalous form at strong coupling.

I have already studied MIT within an exact-to-O(1/d) CDMFT for the FKM using

one-electron response like Green function, Self-Energy. Additional details regard-

ing the nature of this strong-coupling "Mott" transition can be gleaned from examination
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of the two-particle response. In particular, the non-analyticities in the irreducible vertex

function before the MIT made us curious to study two particle response function that

included vertex correction close to the MIT. The dynamic charge susceptibility of the

FKM can also be precisely computed in our approach by using the CDMFT propaga-

tors (GS (P)(k, ω)) and the irreducible p-h vertices ΓS (P)(ω) in the Bethe-Salpeter equation

(Appendix B).

6.1 Calculation of Dynamical Charge Susceptibility

The two-particle dynamical charge susceptibility [36, 38] in generally defined by,

χcc(q; iνl) =
1

2s + 1

∫ β

0
dτeiνlτ

1
V

∑
Ri−R j

eq(Ri−R j)

×

Trc f

〈e−βHnc
i (τ)nc

j(0)〉

Z
− Trc f

〈e−βHnc
i 〉

Z
Trc f
〈e−βHnc

i 〉

Z

 (6.1)

with iνl = 2iπlT the bosonic matsubara frequency, ωm, ωn are the fermionic Matsub-

ara frequency and nc
i = c†i ci is the number operator for conduction electrons. In the

previous chapter, I have discussed about two-particle irreducible vertex function (ΓS (P))

corresponding to the particle-hole(p-h) channel. The momentum-dependent cluster sus-

ceptibility corresponding to the S(P) channels is evaluated using Bethe-Salpeter Equation

(BSE) is:

χS (P)(q, iωm, iωn; iνl) = χ0
S (P)(q, iωm; iνl)δmn − T

∑
n′
χ0

S (P)(q, iωm; iνl)

× ΓS (P)(iωm, iωn′; iνl)χS (P)(q, iωn′ , iωn; iνl) (6.2)

The full susceptibility is found by summing over all the fermionic Matsubara frequencies

(ωm, ωn) given as,

χS (P)(q, iνl) = T
∑
mn

χS (P)(q, iωm, iωn; iνl) (6.3)
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The vertex function is defined as,

ΓS (P)(iωn, iωm; iνl) =
1
T
δΣ(iωm, iωm+l)
δG(iωn, iωn+l)

(6.4)

Here, both a self-energy and a Green function that depend on two fermionic Matsubara

frequencies, because these functions are not time-translation-invariant in imaginary time.

It is proved that both the self-energy and the Green function are nonzero on the diagonal

m = n and on the diagonal shifted by l units m + l = n and irreducible dynamical charge

vertex from yields,

ΓS (P)(iωm, iωn; iνl,0) = δmn
1
T

Σ
S (P)
m − Σ

S (P)
m+l

GS (P)
m −GS (P)

m+l

(6.5)

As, χS (P) are diagonal in S or P channel, I keep only the channel index S , with the under-

standing that an identical calculation holds for the P channel. Using ΓS (P) from the above

equation I find,

χS (q, iωm, iωn; iνl) = χS
0 (q, iωm; iνl)δmn − TχS

0 (q, iωm; iνl)

× ΓS (iωm, iωm; iνl)χS (q, iωm, iωn; iνl) (6.6)

⇒ χS (q, iωm, iωn; iνl) =
χS

0 (q, iωm; iνl)δmn

1 + χS
0 (q, iωm; iνl)

ΣS
m−ΣS

m+l
GS

m−GS
m+l

(6.7)

Replacing q by X(q) with X(q) is defined as,

X(q) = lim
d→∞

d∑
i=1

cos(
qi

d
) (6.8)
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one has the full lattice susceptibility given by,

χS (X, iνl) = T
∑
m,n

χS (X, iω; iνl)

= T
∑
m,n

χS
0 (X, iωm; iνl)δmn

1 + χS
0 (X, iωm; iνl)

ΣS
m−ΣS

m+l
GS

m−GS
m+l

(6.9)

Summing over the n index:

⇒ χS (X, iνl , 0) = T
∑

m

χS
0 (X, iωm; iνl)

1 + χS
0 (X, iωm; iνl)

ΣS
m−ΣS

m+l
GS

m−GS
m+l

(6.10)

There are two possibility for two-site cluster case:

(i) For q = 0, X(q) = 1, the bare charge susceptibility is:

χS
0 (X = 1, iωm; iνl) = −

GS
m −GS

m+l

iνl + ΣS
m − ΣS

m+l

(6.11)

then one find the full dynamical charge susceptibility as,

χ(1; iνl , 0) = −T
∑

m

GS
m −GS

m+l

iνl
= 0 (6.12)

which one expected because the number operator of conduction electron is commute with

the Hamiltonian, hence there is no τ dependence. Hence dynamical charge susceptibility

for l , 0 is vanishes except there is a statics charge susceptibility corresponds to l = 0.

(ii) For second case, for generic q, X(q) = 1, the contribution from bare bubble is given

as,

χS
0 (X = 1, iωm; iνl) = −GS

mGS
m+l (6.13)

Then the full dynamical charge susceptibility is:

⇒ χS (X = 0, iνl , 0) = −T
∑

m

GS
mGS

m+l

1 −GS
mGS

m+l
ΣS

m−ΣS
m+l

GS
m−GS

m+l

(6.14)
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Following the same steps for P channel one will also find the same expression for χP(X, iνl ,

0) with only S will be replaced by P.

6.2 Analytical Contunuation of Dynamical Charge Sus-

ceptibility

Now by performing the analytical continuation from Matsubara frequency to real fre-

quency in the standard way one can obtained the dynamical charge susceptibility (χS (P)(x =

0; ν)) on real frequency. I will discuss this method in the following:

I know that the Fermi function f (z) = [eβz + 1]−1 has poles of strength −T at each discrete

frequency z = iωn. So, one can write,

T
∑

n

F(iωn) = −

∮
C

dz
2πi

F(z) f (z) (6.15)

where,F(iωn) =
−GS (P)

m GS (P)
m+l

1−GS (P)
m GS (P)

m+l

Σ
S (P)
l −Σ

S (P)
m+l

GS (P)
m −GS (P)

m+l

,the contour integral C is to be taken anticlockwise

around the poles at z = iωn as shown in Fig. 6.1.

I introduce "null" contours which allow us to distort the original contour C into the mod-

ified contour C′ shown in Fig 6.2.
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Figure 6.1: Contour integral for evaluating the Matsubara frequency summations of the
charge susceptibility. The ×′ s mark the locations of fermionic Matsubara frequencies.
The contours enclose all Matsubara frequencies, but no other poles of the system. Note
that I divide the complex plane into three regions: (i) region I, where the imaginary part
is greater than zero; (ii) region II, where the imaginary part lies between zero and −iνl ;
and (iii) region 3, where the imaginary part is less than −iνl .

Hence, the susceptibility becomes:

χS (P)(iνl) =
1

2πi

∫
C1

dω f (ω)
GS (P)

R (ω)GS (P)
R (ω + iνl)

1 −GS (P)
R (ω)GS (P)

R (ω + iνl)
Σ

S (P)
R (ω)−Σ

S (P)
R (ω+iνl)

GS (P)
R (ω)−GS (P)

R (ω+iνl)

+
1

2πi

∫
C2

dω f (ω)
GS (P)

A (ω)GS (P)
R (ω + iνl)

1 −GS (P)
A (ω)GS (P)

R (ω + iνl)
Σ

S (P)
A (ω)−Σ

S (P)
R (ω+iνl)

GS (P)
A (ω)−GS (P)

R (ω+iνl)

+
1

2πi

∫
C3

dω f (ω)
GS (P)

A (ω)GS (P)
A (ω + iνl)

1 −GS (P)
A (ω)GS (P)

A (ω + iνl)
Σ

S (P)
A (ω)−Σ

S (P)
A (ω+iνl)

GS (P)
A (ω)−GS (P)

A (ω+iνl)

(6.16)

When I evaluate the integral along the lines indicated in Fig. 6.2, I replace the Fermi func-

tion at ω − iνl of form f (ω − iνl) by f (ω) and then I can make the analytical continuation
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Figure 6.2: Deformation of the contours needed for evaluation of the susceptibility on the
real axis. The integrations are parallel to the real axis.

iνl → ν + i0+. Then the final expression becomes,

χ
S (P)

(ν) =
1

2πi

∫ ∞

−∞

dω
{

f (ω)
GS (P)(ω)GS (P)(ω + ν)

1 −GS (P)(ω)GS (P)(ω + ν) ΣS (P)(ω)−ΣS (P)(ω+ν)
GS (P)(ω)−GS (P)(ω+ν)

− f (ω + ν)
G

S (P)∗(ω)G
S (P)∗(ω + ν)

1 −GS (P)∗(ω)GS (P)∗(ω + ν) Σ
S (P)∗(ω)−Σ

S (P)∗(ω+ν)
GS (P)∗(ω)−GS (P)∗(ω+ν)

− [ f (ω) − f (ω + ν)]
GS (P)∗(ω)GS (P)(ω + ν)

1 −GS (P)∗(ω)GS (P)(ω + ν) ΣS (P)∗(ω)−ΣS (P)(ω+ν)
GS (P)∗(ω)−GS (P)(ω+ν)

}
(6.17)

Here, I replace the retarded green function GS (P)
R by GS (P) and the advanced green function(GS (P)

A )

by the complex conjugate of the retarded Green function(GS (P)∗) and similarly holds for

self-energy (ΣS (P)(ω)).

6.3 Results and Discussions

In Fig 6.3, I show the imaginary part of full cluster-local dynamical charge susceptibil-

ity as U increases. From small U up to U ' 1.2, Imχch(ω) varies linearly with ω in
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the infra-red, with a maximum at intermediate energy, followed by a high-energy fall-

off. However, closer scrutiny of the strong-coupling (U ≥ 1.4) regime reveals that this

behaviour undergoes a qualitative change at low energies: now Imχch(ω) ' ω1−κ, with

0 < κ(U) < 1. It is important to notice that the configurationally averaged DOS does

not show any non-analyticities in this regime, and the system is close to, but not in the

"Mott” insulating regime. A closer look at the behaviour of the cluster self-energies and

irreducible vertex functions in this regime shows that both begin to acquire non-trivial

energy dependence at low energy when U is close to the critical value needed for the

“Mott” transition to occur. In fact, as described in the previous chapter, (see both Im

ΓS (P)(ω) start exhibiting strong ω-dependence, especially near ω = 0, when U ≥ 1.4,

and clear non-analyticities accompanied by anomalous power-law variation near ω = 0

when one is very close to the transition in the range 1.7 < U < 1.8. Thus, it is clear that

the anomalous low-energy behaviour of the collective charge fluctuations is linked to the

strongω-dependence and impending non-analytic behaviour in the cluster irreducible ver-

tex as the MIT as approached from the metallic side. Thus, while the fact that the vertex

diverges before the actual MIT does not lead to non-analyticity in the one-electron spec-

tral functions, it does qualitatively modify the collective density fluctuations, reflecting in

an anomalously overdamped critical form. I am unaware of such a connection existing

within earlier DMFT studies [38] and this qualitatively new feature has not previously

been noticed, to our best knowledge.

One interpretation of this unusual feature is the following. Close to the Hubbard band

splitting (“Mott”) transition, one generically expects formation of excitons. A simple

way to understand this is in terms of the "holon-doublon" mapping of the model, which

is a partial particle-hole transformation where c† → c†, d → d†. Now U
∑

i ni,cni,d →

−U
∑

i(ni,cni,d−ni,c), whereby the c, d fermions experience an on-site attraction, leading to

formation of local "pair" bound states (these are excitons in the original model) of the type

〈c†i d†i 〉. Quite generally, in a Hubbard model, one expects these bosons to Bose-condense.

On first glance, our results are quite similar to those in upshot thereof is the well-known
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Figure 6.3: The imaginary part of the local component of the full dynamical charge sus-
ceptibility for the p-h symmetric binary alloy disorder model in the totally random case
( f0α = 0). Up to U1 = 1.4, Imχloc

ch (ω) ' ω, similar to its DMFT counterpart. However, for
1.5 ≤ U ≤ Uc = 1.8, Imχloc

ch (ω) ' ων where ν = 1 − κ and 0 < κ(U) < 1 and κ reduces
with increasing U, reaching a value κ = 0.5 at Uc (red curve). This has very unusual
consequences for the long-time response to a “sudden” local quench at strong coupling
(see text).
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fact that this is nothing else but antiferromagnetic magnetic order, now interpreted as a

Bose condensate of spin excitons. In our simplified FKM or binary-alloy case, however,

such a BEC is explicitly forbidden by the fact that the local Z2 gauge symmetry, associated

with [ni,d,H] = 0 for all i, cannot be spontaneously be broken by Elitzur’s theorem. This

still leaves open the possibility of having inter-site excitonic pairing of the c-fermions on

the two-site cluster. Without global broken symmetry, such a state would be a dynamically

fluctuating excitonic liquid. One would expect that a phase transition to a “solid” of such

excitonic pairs will eventually occur, perhaps as a Berezinskii-Kosterlitz-Thouless (BKT)

transition [8], but this is out of scope of the present work. However, having strong inter-

site excitonic liquid fluctuations could cause the irreducible charge vertices to exhibit

precursor features, and it could be that our finding above is a signal of such an impending

instability. More work is certainly needed to put this idea on a stronger footing, but this

requires a separate investigation.

6.3.1 Response to a Sudden Local Quench

Finally, one would expect emergence of anomalous features in vertex functions and charge

fluctuations close to the MIT to have deeper ramifications. Specifically, I now address the

question outlined in the Introduction: “Can we study the long-time response of the FKM

to a sudden local quench, and can such an endeavour provides deeper insight into the

“strong” localization aspect inherent in a continuous “Mott” transition?” In other words,

if I introduce a local, suddenly switched-on potential in the manner of a deep-core hole

potential in metals [40], how would the long-time response of the “core-hole” spectrum

evolve with U? In the famed instance of a Landau Fermi liquid metal, the seminal work of

Anderson [6], Nozieres and de Dominicis [88] (AND) leads to the result that at long times,

the core-hole propagator, related to the wave function overlap between the ground states

without and with the suddenly switched potential, goes like a power-law: ρh(t)|t→∞ ' t−α

with πα =tan−1(Vhρc(0)) being the (s-wave for a local scalar potential) scattering phase
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shift. It has also long been shown that [84] the deep reason for this feature is that the

particle-hole fluctuation spectrum, ρph(ω) (related to the collective charge fluctuation re-

sponse), in a Fermi gas is linear in energy. Explicit evaluation of the core-hole response

when e − e interactions in the Landau Fermi liquid sense are present is a much more in-

volved and delicate matter [51]. It is clear that qualitative change(s) in the low-energy

density fluctuation spectrum must qualitatively modify the long-time response to such a

sudden quench.

Answering this question in our case of the FKM is a subtle matter, since the c-fermion

spectral function is not that of a Landau Fermi liquid, but describes an incoherent non-

Landau Fermi liquid state. As long as Imχch(ω) ' ω holds, however, I expect that the

long-time response will be similar to that evaluated by Janis [51] using rather formal

Wiener-Hopf techniques. Ultimately, the long-time response still behaves in a qualita-

tively similar way to that for the free Fermi gas, except that the exponent in the power law

is modified by interactions (thus, Imχch(ω) ' ω still holds, but with sizable renormaliza-

tion). In my case, I thus expect that ρh(t)|t→∞ ' t−α still holds for U < 1.3, since I do

find Imχch(ω) ' ω in this regime in the infra-red. However, the qualitative change to the

form Imχch(ω) ' ω1−κ with 0 < κ < 1 in the infra-red for U ≥ 1.4 must also qualitatively

modify the long-time overlap and the “core-hole” response.

Rather than resort to a direct computation of the long-time response within CDMFT, I

will find it more instructive to consider this issue by using the low-energy results gleaned

from CDMFT as inputs into an elegant approach first used in the context of the seminal

X-ray edge problem by Schotte et al. [104] and by Müller-Hartmann et al [84]. To this

end, I have to identify the collective charge fluctuations encoded in χch(ω) with a bath of

bosonic particle-hole excitations in the incoherent metal. Generally, using the linked clus-

ter expansion, the spectral function of the localized "core-hole" is (for detail calculation

see Appendix C)

111



S h(ω) =
1

2π

∫ ∞

−∞

dteiωtexp[V2
h

∫ ∞

0
dEImχph(E)

e−iEt − 1
E2 ] (6.18)

where Vh is the “suddenly switched” core-hole potential. As long as Imχph(E) ' E, I

estimate, similar to the well-known result, that the core-hole spectral function behaves

like S h(ω) ' ω−α with α = (1/π)tan−1(Vhρ00(0)), with ρ00(0) being the CDMFT LDOS at

the Fermi energy (in a full computation, this exponent will change a bit because ρ00(ω)

has sizable frequency dependence close to ω = 0 at strong coupling in the metal as found

in Results, but the qualitative features will survive). However, when U ≥ 1.4, having

Im χch(ω) ' ω1−κ must modify this well-known behavior. In this regime I find (see also

Ref. [84]) the following leading contribution to the core-hole spectral function

S h(ω) '
V2

h

EF
(
EF

ω
)1+κexp[−πV4

h (
EF

ω
)2(1−κ)] (6.19)

which is qualitatively distinct from the well-known form, and corresponds to a long-

time wave function overlap having a very non-standard form: ρh(t)|t→∞ ' e−t1−κ . This

qualitative modification of the long-time wave function overlap is a strong manifestation

of a novel type of localization at work. It would be tempting to associate this with a

many-body localized regime, especially since the Landau quasiparticle picture is also

violated within this strong-coupling regime, but more work is called for to clinch this

issue. The basic underlying reason for this novel behaviour is the same as the one leading

to generation of the anomalous exponent κ in the p-h fluctuation spectrum, i.e, strong ω-

dependence and incipient non-analyticity in the irreducible p-h vertex close to the MIT.

6.4 Summary

I can safely summarize that in strong contrast to the one-electron response, inclusion of

non-local irreducible p-h vertex in computation of the dynamic charge susceptibility does
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lead to qualitatively new effects at strong coupling. I have shown that Imχch(ω) ' ω1−κ

with 0 < κ < 1 to occur precisely in the same regime where the non-local vertex shows

strong frequency dependence and signs of an impending non-analyticity (the latter occurs

either at the MIT, or precedes it, see above). This feature is quite anomalous, indicating

that a novel collectively fluctuating state of the electronic fluid, characterized by infra-red

critical bosonic p-h modes, sets in before the MIT occurs. Naturally, one expects that

this feature will drastically modify the charge responses in the strong coupling limit: in

fact, related effects should reveal themselves in optical response of the disordered electron

fluid. I leave detailed elucidation of such points for future work.
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Chapter 7

DC Conductivity Tensor and Quantum

Criticality at the Continuous MIT

The phase diagram of Mott-like transition in the FKM is well reproduced by both single-

site DMFT as well as Cluster DMFT in the previous chapters. The main task in this

chapter is to perform a detailed study of the dc conductivity tensor (both longitudinal and

transverse) throughout the CDMFT or DMFT phase diagram, identify different regimes,

try to find evidence of quantum critical behaviour at finite temperatures and to compare

the results to experiments.

T he weak localization (WL) of non-interacting electrons due to disorder is now well

understood within the scaling formalism [3] as a genuine quantum phase transi-

tion. In spite of its extensive successes [67], further experimental developments [60, 11]

present compelling evidence for a different kind of quantum criticality that requires non-
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trivial extensions of the WL paradigm. It has long been suggested, both experimen-

tally [33] and more recently, theoretically [74] that electron-electron interactions in a

disordered system can cause a metal-insulator transition (MIT) in D = 2 dimensions. An-

other possibility is that the experiments may be probing the “strong localization” region

of a disorder model, i.e, in a regime kFl ≤ 1, opposite to that where WL theory works.

Binary disordered alloy which is isomorphic to the Falicov-Kimball Model (FKM) shows

continuous metal-insulator transition (MIT) at strong disorder. That motivate us to study

quantum critical behaviour in binary disordered alloy or equivalent FKM with disorder

strength (U) as an tuning parameter. This chapter is divided into three sections. In sec-

tion I, I discuss the quantum criticality of longitudinal dc conductivity across the MIT. In

section II, I present the quantum criticality of transverse dc conductivity (or Hall conduc-

tivity). In the third section I analysis the experimental data of disordered NbN.

7.1 DC Conductivity in FKM

7.1.1 General Formalism for Calculation of conductivity:

The Kubo formula in Appendix D relates the response function to the corresponding

current-current correlation function. Each current takes the general form:

ja(q) =
∑
σ

∑
k

γa(k + q/2)c†k+qσckσ (7.1)

where γa(k) is the current vertex function. The Bethe-Salpeter equation (BSE) for any

current-current correlation is shown in fig 7.1. There is no vertex correction in current

current correlation whereever,

∑
k

γa(k + q/2)Gnσ(k)Gn+lσ(k + q) = 0 (7.2)
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For optical conductivity q = 0 and vertex correction is zero. Hence the only contribution

Figure 7.1: Bethe-Salpeter equations (BSE) for current-current correlation functions de-
scribed by the vertex function γa . Panel (a) depicts the BSE equation for the interacting
correlation function, while panel (b) is the supplemental equation needed to solve for
the correlation function. The symbol Γ stands for the local dynamical irreducible charge
vertex function. In situations where Eq. 7.2 is satisfied, there are no charge vertex correc-
tions, and the correlation function is simply given by the first diagram on the right hand
side of panel (a).

comes from the bare bubble. Hence the current current correlation within our CDMFT

approach is:

χnn(iνl) =
∑

a∈S ,P

σ0

∑
a∈S ,P

∑
σ

∑
n

∑
k

v2(k)Ga
nσ(k)Ga

n+l(k) (7.3)

Change the momentum summation into energy integral I have,

χnn(iνl) = σ0

∑
a∈S ,P

∑
σ

∑
n

∫ ∞

−∞

dερa(ε)v2(ε)Ga
nσ(ε)Ga

n+l(ε) (7.4)

After doing the analytical continuation as was done for dynamical charge susceptibility I

get the χnn(ω) on the real frequency. Now the optical conductivityσ(ω) is given by,

σ(ω) =
Imχnn(ω)

ω

= σ0

∑
σ

∑
a∈S ,P

∫
dερa(ε)

∫
dνAa

σ(ε, ν)Aa
σ(ε, ω + ν) ×

f (ν) − f (ω + ν)
ω

(7.5)
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Figure 7.2: The dc resistivity for various U/t across the continuous “Mott” transition in
the binary-alloy disorder model. When 0.90 ≤ U/t < 1.8, an intermediate “bad insulator”
regime separates the high-T incoherent metal from the T → 0 very bad metal, beyond
which a split-band (“Mott”) insulator obtains.

Using optical sum rule (i.e. integral of optical conductivity over frequency ) I have,

d
dε

[v2(ε)ρ(ε)] + ερ(ε) = 0 (7.6)

Solving the above equation with the boundary condition v2(ε) → 0 for hypercubic lattice

one get v2(ε) = 1
2 and infinite coordination Bethe lattice [24, 125] v2(ε) = (4 − ε2)/3. I

have used more exact calculation of v2(ε) as given in Appendix E. Taking the limit ν→ 0

I have the dc conductivity as,

σdc(T ) = lim
ω→0

σ(ω)

= σ0

∑
a∈S,P

∫ +∞

−∞

dεv2(ε)ρa
0(ε)

∫ +∞

−∞

dνA2
a(ε, ν)(

−d f
dν

) (7.7)

where σ0 = πe2

~Da ' (10−3 − 10−2)(2/D)(µΩ).cm−1
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7.1.2 Results and Discussions

In Fig.7.2, I show ρxx(U/t,T ) as U/t is raised from small to large values across a critical

value, (U/t)c = 1.80, where a continuous MIT occurs in the FKM within CDMFT [47].

Several features clearly stand out: (1) at high T , ρxx(T ) ≈ AT with small A, and always

attains bad-metallic limiting values ∀ U/t ≥ 0.5. This behavior persistis up to rather

low T ∼ 0.01 − 0.02t, below which it levels off to a T -independent value, as expected

of a weakly disordered metal. Thus, the metallic state is never a strict Landau Fermi

liquid (2) Remarkably, ∀ U/t ≥ 0.90, ρxx(T ) develops a minimum at intermediate-to-

low T , and further, ρxx(T → 0) > (2 − 3)~/e2, exceeding the Mott-Ioffe-Regel (MIR)

limit. This describes a re-entrant “transition” from “bad insulator” to bad-metal at very

low T . Both ρxx(T ) ' T and bad-metallicity are found for the FKM in DMFT [38],

though I find much cleaner linear-in-T behaviour up to much lower T here (3) Even more

surprisingly, in the regime 0.90 ≤ U/t ≤ 1.80, ρxx(T ) crosses over smoothly from a high-

T bad-metallic behaviour to a progressively wider intermediate-to-low T window where

it shows progressively insulating behaviour, followed by a second "re-entrant transition"

to an extremely bad metal with ρxx(T → 0) ' O(20 − 250)~/e2, before the T → 0 "Mott"

insulating state obtains as a divergent resistivity. These features are very different from

expectations based on WL approaches, and cry out for deeper understanding.

Theoretically, two-site CDMFT reliably captures arbitrarily strong, repeated scattering

processes off spatially separated scatterers on the cluster length scale l ' k−1
F . Thus, it

works best in the MIR regime, where kFl ' O(1), opposite to the weak-scattering regime,

where kFl � 1. Hence, quantum criticality in this regime has no reason tobe of the WL

type, since no (1/kFl)-expansion is now tenable. Rather, as in the locator expansion [28],

one expects criticality associated with “strong localization”. To unearth the nature and

effects of underlying quantum criticality, I analyze our results by performing a detailed

scaling analysis, which I now describe. In Fig.7.3, I show log(ρxx(T )/ρ(c)
xx (T )) versus T ,

where ρc
xx(T ) is the critical resistivity just at (U/t)c = 1.80 where the MIT occurs. Beauti-
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Figure 7.3: Log(ρ/ρc) vs T (left panel) and Log(ρ/ρc) vs T/T0(U/t) (right panel) for same
parameters as in Fig. 7.2. Beautiful mirror symmetry around (U/t)c = 1.8 and collapse
of the T → 0 “metallic” and insulating curves on to two universal scaling trajectories is
clear.

ful “mirror” symmetry of the curves about that for (U/t)c is testimony to the genuine quan-

tum criticality underlying the resistivities. Interestingly, in stark contrast to the Hubbard

model (within DMFT) where ρ(c)
xx (T ) is bad-metallic but quasilinear in T , ρ(c)

xx (T )|(U/t)c in

the FKM is insulator-like up to very low T and reaches extremely high values O(200)~/e2,

attesting to very different underlying behavior. To further unveil the novel quantum criti-

cality, I show log(ρ(T )/ρc(T )) as a function of T and T/T0 in Fig. 7.3, with T0(U) chosen

using standard procedure [60, 74] to make the insulating and metallic curves collapse

onto two master curves. This unbiased procedure has the advantage of directly explicitly

yielding zν, the product of the critical exponents associated with diverging spatial and

temporal correlations at the Mott QCP, directly from the U-dependence of a low-energy

scale, T0(U), which vanishes precisely at the MIT. Remarkably, as Fig.7.3(right panel),

clearly shows, I find that the “metallic” and insulating curves cleanly collapse on to two

universal scaling curves for a wide range of |U −Uc|. In Fig.7.4(left panel), I also confirm

that T0(δU) ' c1|δU |zν with zν = 1.3. Further, by plotting the dc conductivity at T → 0
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Figure 7.4: The parameter T0(U/t) vs δU = (|U − Uc| (left panel) and conductivity
σxx(T → 0) vs δU (right panel). Insets show that T0(δU) = (δU)1.32 ' (δU)4/3 and
σxx(T → 0) = (Uc − U)1.31 ' (Uc − U)4/3, testifying to clear quantum critical behavior
(see text).

as a function of U in Fig.7.4(right panel), I also find that σxx(U,T → 0) ' |Uc − U |1.3

as the MIT is approached from the metallic side. More confirmation of quantum critical

behavior is shown in Fig. 7.5, where I exhibit log(ρ(T )/ρc(T )) as a function of the scal-

ing variable, (δU)/T 1/zν: the fact that the scaling curves for both insulating and metallic

phases have the same scaling form on either side of the MIT testifies to robust quantum

critical scaling. Since the critical behavior of the dc conductivity at the MIT reflects the

critical divergence of the only relevant length scale, namely the localization length, ξ(U),

via σxx ' e2/~ξ [17], and since ξ(U) ' |U − Uc|
−ν, I directly extract ν = 1.3 ' 4/3 and

z = 1. It is interesting to note that ν = 4/3 is characteristic of a percolation mechanism for

transport. This intriguing possibility indeed holds qualitatively in the FKM as follows: as

shown by Pastor et al. [92], one can define a configuration averaged charge-glass suscep-

tibility, χ[2], which is also singular in the disordered “Mott” insulating phase of the FKM.

Noticing that inter-site correlations already effectively arise in our two-site CDMFT (near

the transition on the metallic side, these read Hres ' J1
∑
〈i, j〉 σ

z
iσ

z
j+ 4th-order Ising “ring”
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Figure 7.5: Log(ρ/ρc) vs the scaling parameter (δU)/T 1/zν on both sides of the MIT.
Both metallic and insulating branches exhibit the same scaling form on either side of Uc.
Continuity of the scaling curve across Uc clearly bares "Mott" quantum criticality.

exchange for the FKM, with σz
i = (ni,c − ni,d)/2 and J1 ' 4t2/U) at sizable U ≤ Uc, one

expects an effective inter-site term, H′ ' j
∑
〈i, j〉 ni,cn j,c with a modified j , J to persist

somewhat in to the very bad metallic regime. Since the glass transition is also signaled by

the equation (1 − jχ[2]) = 0, χ[2]will already diverge before the MIT. Thus, our finding of

ν = 4/3 maybe due to onset of an electronic glassy dynamics near the MIT. Percolative

transport is a strong possibility in glassy systems. Though our results suggest such an

emerging scenario near the MIT, clinching this link requires deeper analysis alike that by

Pastor et al., which I leave for future work. Moreover, noticing that the Harris criterion,

ν > 2/D, always holds for D ≥ 2 in our case also implies that intrinsic disorder effects

in the FKM cannot lead to droplet formation (which requires ν < 2/D [55] for a second-

order transition) [55]. Thus, the quantum criticality is “clean”. Interestingly, along with

the extended "mirror" symmetry, our zν ' 1.3 is qualitatively consistent with zν ' 1.6 for

the 2D-electron gas (2DEG) in Si near the MIT [60] and zν ' 1.5 for Bi films. Our com-

puted zν = 1.3 is vey different from zν = 0.67 for the one-band Hubbard model within
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Figure 7.6: The conductivity β function vs log(g) (left panel) and ln(ρ/ρc) (insulat-
ing) and ln(ρc/ρ) (metallic) vs ln(T/T0) (right panel). Left panel shows that β(g) =

log(g) clearly holds over an extended regime in U/t on both sides of Uc, testifying
to clear “Mott” quantum criticality. Right panel establishes the symmetry relation
ln(ρ(δU)/ρc) =ln(σxx(−δU)/σc) around Uc.

DMFT. The latter value is consistent with data for 2D-organics [117]. Thus, one may con-

clude that MITs in the 2DEG in Si and Bi films, among others, are better understood by

a “strong localization” limit in a physical picture where strong disorder is more relevant

than local Hubbard correlations.

Further, upon plotting the transport beta-function (or Gell-Mann Low function), defined

by β(g) =
d[log(g)]
d[log(L)] =

d[log(g)]
d[log(T )] (since L ' T−z with z = 1 as above) versus log(g) in

Fig. 7.6(left panel) [67], I find that β(g) ' log(g) over a wide range of U, from the

insulator, through Uc, extending deep into the “metallic” phase. In fact, it persists up to

(U/t) ' 0.90, showing now that the intermediate-to-low-T pseudogap feature in ρxx(T ) in

Fig. 7.2 is a manifestation of this underlying Mott quantum criticality. It is clear that this

scaling is natural deep in the insulator, where ρxx(T ) 'exp(Eg/kBT ). Its persistence deep

into the metallic regime shows that the appearance of the very low-T “re-entrant metal”

is due to the same physical processes which cause Mott insulating behavior, and pro-
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vides deeper insight into the origin of this anomalous state. Specifically, this means that

this QCP arises from strong-coupling physics, and is out of scope of perturbative weak-

coupling schemes, as alluded to earlier. This has additional deep implications as follows.

(i) Consequent to the above, I find that the “symmetry” relation linking ρ and σxx on two

sides of the MIT, ρ(δU)
ρc

=
σxx(−δU)

σc
xx

, also holds over an extended region around Uc, as shown

in the right panel of Fig. 7.6.(ii) I also find that log(ρ/ρc) is a universal function of the

"scaling parameter" δU
T 1/zν as shown in Fig. 7.5. (iii) Further, this also allows us to explicitly

construct β(g) for a specific microscopic model (known to be a hard task) [28] as follows:

In scaling approaches to WL [67], β(g) depends explicitly (only) on g, and that the proba-

bility distribution of g, P(g), is sharply peaked at its mean value. This assumption breaks

down at “strong” localization, where one expects a broad distribution, i.e, P(g) is broad.

It has been argued, based on insight from a locator expansion [28], that it is P(log(g)), or

more generally P[logφ(g)] with φ(g) = a/g+b+cg+ ... as g→ 0 that is sharply peaked in

this case. Then it turns out that β(g) ' log[φ(g)/φ(gc)], with gc the critical conmductivity.

Comparing this with our results, I now explicitly find that φ(g) ' 1/g for the FKM.

7.1.3 Comparison with the single-site DMFT result

Most, but not all, novel features found in our two-site CDMFT study of transport are

already visible in single-site DMFT.

To obtain these features, I simply use the exact DMFT spectral function, A(k, ω) =

−1/πImG(k, ω) with G(k, ω)−1 = ω − εk − Σ(ω) for Bethe lattice. I insert the A(k, ω)

in the Kubo formula for the current-current correlation function. It is well known that this

is literally exact, since irreducible vertex corrections in the Bethe-Salpeter equations for

conductivities rigorously drop out in this limit.

In particular, at first glance, Figs 7.7, 7.8, 7.9, 7.10 cleanly exhibit all features seen in two-

site CDMFT calculations. Upon closer inspection, however, some important distinctions
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Figure 7.7: dc resistivity as a function of U/t in single-site DMFT. Though the trend is
similar to that in CDMFT, ρdc(Uc,T ) is O(40~/e2), much smaller than O(250~/e2) seen
in the CDMFT.

between DMFT and CDMFT results arise.

(i) The dc resistivity follows a similar trend with U/t. However, it attains values O(40)~/e2

just before the MIT, in contrast to the much larger values O(250)~/e2 in CDMFT.

(ii) Though similar scaling of T0(δU) and β(g) of comparable good quality is seen in

DMFT results as well, the DMFT finding of zν = 1.2 (shown in Fig 7.9) is different from

zν = 4/3 found in CDMFT. The latter is the expected value for a classical percolation

regime associated with onset of electronic glassy dynamics near the MIT. Thus, our results

point toward the need for a cluster extension of DMFT to access onset of a dynamical

glassy regime in transport close to the MIT.

(iii) finally, since (zν)DMFT = 1.2 > 2/D for D ≥ 2 satisfies the Harris criterion as well,

no droplet formation can occur, and the quantum criticality I find is “clean”.

Thus, all conclusions found in CDMFT remain valid, and the only important difference is

that the glassy dynamics strongly hinted at in CDMFT is absent in DMFT.
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Figure 7.8: Log(ρ/ρc) versus T (left panel) and versus T/T0 (right panel) exhibiting
clear mirror symmetry about UDMFT

c /t = 1.01. This is very similar to CDMFT results,
indicating that no qualitative changes occur for the scaling features upon use of DMFT.

7.1.4 Comparison with the Quantum Criticality in Hubbard Model

Our findings provide clinching support for clear manifestations of an unusual quantum

criticality associated with the continuous Mott-like MIT. Perfect mirror symmetry, along

with β(g) ' −ln(g) and its persistence deep into the "metallic" regime all indicate simi-

larities with Mott criticality in the Hubbard model (HM). But while such features appear

above the finite-T end-point (T ∗) of the line of first-order Mott transitions in the HM, they

persist down to T = 0 in the FKM, underlining a genuine “Mott” QCP. I can understand

this qualitatively as follows: observe that the Landau quasiparticle picture is already de-

stroyed above TLFL < T ∗ in the HM [117]. I am then left with a bad-metal where absence

of coherent ↓-spin recoil in the HM prevents the lattice Kondo effect, making it possible

to "map" the HM onto two coupled FKMs (one for each spin species) [31]. This qual-

itatively explains why the “Mott” criticality features I find for the FKM resemble those

seen for the HM, even though (zν)FKM ' 1.3 ' 2(zν)HM ' 0.67. I am presently unable to

explain this difference. Experimentally, I posit that this QCP leaves its imprint in ρxx(T )
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as a “bad insulator” at intermediate T , followed by an anomalously bad metal as T → 0:

this is also distinct from the Hubbard case, where a bad-metallic ρc
xx(T ) ' AT obtains at

the critical point. Finally, within (C)DMFT, the quantum disordered phase in the FKM is

known to possess a finite residual entropy O(ln2) per site. Along with infra-red branch-

cut continuum spectral functions [47] in earlier work, our findings are reminiscent of

“hologhraphic duality” scenarios [101]. Thus such novel quantum criticality, originally

proposed for QCPs associated with Kondo-destruction approaches to (T = 0) melting

of quasiclassical order, may also hold for “Mott” quantum criticality associated with a

continuous metal-insulator transition.

7.2 Magneto-transport in the FKM

In this section, I study the Hall conductivity and Hall constant using the exact-to-O(1/D)

cluster propagators GK(ω) for each of the 2-site cluster momenta K = (0, 0), (π, π) to

compute the full conductivity tensor, σab(T ), with a, b = x, y. I neglect the vertex correc-

tions to the Bethe-Salpeter equation (BSE) for all the intra-cluster momenta since they are

negligible even within CDMFT, as can be seen, for example, within a cluster-to-orbital

mapping [119, 48]. Thus, this constitutes an excellent approximation for computation of

transport coefficients.

7.2.1 Expression for Hall conductivity and Hall constant

Explicit expression for the dc conductivity given in equation 7.7. The Hall conductivity

is a more delicate quantity to compute [65]. Fortunately, absence of vertex corrections

comes to the rescue and I find the expression for the Hall conductivity,

σxy(T ) = σxy,0B
∑

K

∫
dεv2(ε)ρK

0 (ε)ε
∫

dωA3
K(ε, ω)(

d f
dω

) (7.8)
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with σxy,0 = −2π2 |e|3a
3~2 (1/2D2), and B the magnetic field. Now, the Hall constant is defined

as,

RH(T ) =
σxy

Bσ2
xx

(7.9)

and the Hall angle is:

cotθH =
σxx

σxy
(7.10)

7.2.2 Results and Discussions:

I show the off-diagonal conductivity, σxy(U,T ) as a function of U from small- to large U

across the continuous MIT occurring at Uc = 1.8. First, I show results for the temperature-

dependent off-diagonal conductivity, σxy(T ) as a function of U across the continuous Mott

transition.

I use Equation 7.8 to compute σxy(T,U). In Fig. 7.11 I show σxy(T,U) as a function of

temperature (T) for different disorder values (U). A clear change of slope at low T < 0.05t

occurs around U ' 1.3, which seems to correlate with the bad-metal-to-bad-insulator

crossover in the dc resistivity in our earlier section. Close to the MIT, ρdc(T ) diverges

approximately like exp(Eg/kBT ) as T → 0 in this regime, RH(T → 0) diverges as it must,

since the MIT is accompanied by loss of carriers due to gap opening. A clear change

of slope (for T < 0.05t) occurs around U = 1.3, and σxy(T ) ' T 1.2 around Uc. The dc

resistivity ρxx(T ) shows extremely bad-metallic behaviour at lowest T , beautiful mirror

symmetry and novel “Mott-like” scaling precisely in this regime. It is obviously of inter-

est to inquire whether the novel features seen in ρxx(U,T ) are also reflected in magneto-

transport near the “Mott” QCP. To facilitate this possibility, I show log10( σ
xy
c

σxy(T ) ) versus

T in the left panel of Fig.7.12, finding that the family of 1/σxy(U,T ) curves also exhibit

a near-perfect “mirror” symmetry over an extended region around 1/σxy
(c)(U,T ), strongly

presaging quantum critical behaviour. To unearth this feature, I also show log10( σ
xy
c

σxy(T ) )

versus T/T xy
0 in the right panel of Fig.7.12, where I have repeated the unbiased method
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Figure 7.13: (a) In left panel, scaling parameter T xy
0 as a function of control parameter

δU = U − Uc; the inset illustrates power law dependence of scaling parameter T xy
0 = c |

δU |µ. (b)In right panel, σxy(T → 0) as a function of control parameter δU = U −Uc; the
inset illustrates power law dependence of σxy(T → 0) = c | δU |µ

′

.

of introducing a T xy
0 (U) to rescale all metallic and insulating curves on to two universal

curves. Remarkably, as for the ρxx-scaling, I find, as shown in the left panel of Fig.7.13,

that T xy
0 vanishes precisely at the MIT. Clear scaling behaviour I find testifies to a remark-

able fact: the novel scaling features found earlier in dc resistivity are also clearly manifest

in the off-diagonal resistivity.

Even clearer characterization of the quantum critical features obtains when I compute the

γ-function [108] (this is the analogue of the well-known β-function for the longitudinal

conductivity) for σxy(U,T ), defined by γ(gxy) =
d[ln(gxy)]
d[ln(T )] , with gxy = σxy(T )/σxy

c . As

shown in Fig.7.14, it is indeed remarkable that it clearly varies as ln(gxy), and is continuous

through δU = 0. This shows that it has precisely the same form on both sides of the

MIT, which is exactly the feature needed for genuine quantum criticality. These features

resemble those found for QC scaling in ρxx [46], showing that, like β(g), γ(gxy) 'ln(gxy)

deep into the metallic phase. Thus, I have found that the full dc conductivity tensor reflects
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the strong coupling nature of the “Mott” QCP, attesting to its underlying non-perturbative

origin in Mott-like (strong scattering) physics.

That γ(gxy) ' lngxy holds on both sides of the MIT implies that its two branches must

display “mirror symmetry” over an extended range of gxy. In Fig.7.14, left panel, I indeed

see that magneto-transport around the QCP exhibits well-developed reflection symme-

try (bounded by dashed vertical lines), It is also manifest in the right panel of Fig.7.14,

where σxy
c /σ

xy(δU) = σxy(−δU)/σxy
c ; i.e, they are mapped onto each other under reflec-

tion around Uc, precisely as found earlier for the dc resistivity. As a final check, I also

show (see Fig. 7.15) that log (σxy
c /σ

xy(T ) is a universal function of the “scaling variable”

δU/T 1/µ. Thus, our study explicitly shows the novel quantum criticality in magneto-

transport at the “Mott” QCP (associated with a continuous Mott transition) in the FKM at

strong coupling.

In an Anderson model framework, scaling of σxy is long known [108]. Our findings
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are very distinct from expectations for an Anderson-like transition: observe that I find

T xy
0 (δU) ' cxy|δU |µ (in left panel of Fig. 7.13) with µ ' 0.75 = 3/4 (in inset) on both

sides of Uc, as required for genuinely quantum critical behaviour. This strongly contrasts

with the T xx
0 (δU) ' c|δU |zν with zν = 1.32 ' 4/3 found for the dc resistivity [46]. Further,

in the right panel of Fig.7.13, I also show that σxy = σ0,xy(Uc − U)µ
′

with µ′ = 1.8 (in

inset), quite distinct from ν ' 4/3 found earlier for σxx(U).

Along with our finding of σxx(T ) ' T and σxy(T ) ' T 1.2 at the MIT, these findings

have very interesting consequences: (i) the Hall constant is critical at the MIT. I find

R−1
H ' σ

2
xx/σxy ' (Uc − U)0.8, whereas RH is non-critical [108] at the Anderson MIT, (ii)

RH is also strongly T -dependent and divergent at the MIT, varying like RH(T ) ' T−0.8,

whereas RH ' (nec)−1 in an Anderson disorder model. Concomitantly, the Hall angle also

exhibits anomalous behaviour: (iii) tanθH(T ) ' T 0.2 and tanθH(U) ' (Uc − U)1/2 in the

quantum critical region. Our results are distinct from expectations from a Landau FL

and Anderson-MIT views. At an Anderson MIT [108], RH = (nec)−1 is T -independent

and non-critical at the MIT. In the metallic phase, use of semiclassical ideas dictates that
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both β(g) and γ(gxy) scale like (d − 2) − A/g, and the quantum correction to the Hall

conductance is twice as big as for the Ohmic conductance. The stringent assumption

under which this holds is that the inverse Hall constant (related to h(L) = Ld−2/RH B in

Abrahams et al.) scales classically like h(L) ' Ld−2 for small B (large h). It is precisely

this assumption that breaks down when one considers the Mott MIT, where RH is critical

at the MIT (see above). They are also different from expectations in a correlated LFL:

a strongly T -dependent RH close to a Mott MIT in a Hubbard model framework is long

known [66]. However, in a DMFT framework, RH(T ) exhibits a recovery of correlated

Landau-Fermi liquid behaviour below a low-T lattice coherence scale. Moreover, the

MIT there is a first-order transition. In the FKM, the metallic state remains bad-metallic

and incoherent down to lowest T , and the MIT is continuous. The Mott-like character of

the associated QCP is revealed by the observation of β(g) ' log(g) and γ(gxy) ' log(gxy).

In Fig.7.16, I show RH(U,T ) versus Temperature (T). Both are indeed markedly T -dependent.

For an Anderson MIT, RH would be non-critical. In a LFL metal, one expects σxx(T ) =

1/ρdc(T ) = AT 2, while σxy(T ) ' T−4 at low T . In that case, I end up with a T -independent
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RH and cotθH(T ) = cT 2. This is the expected behaviour for a LFL, where a single relax-

ation rate governs the T -dependent relaxation of longitudinal and Hall currents. Very

different T -dependences I find here testify to the breakdown of this intimate link between

LFL quasi-particles and this conventional behaviour, and that the results I find are direct

consequences of the destruction of LFL quasi-particles at strong coupling. They render

semiclassical Boltzmann arguments (based on validity of kFl >> 1) inapplicable at the

outset.

7.3 Experimental Results: Disordered NbN

I now turn to experiments to investigate how our theory stands this stringent test. Recent

work on NbN [23] most clearly reveals ill-understood signatures of localization incompat-

ible with weak localization predictions. In NbN, the effect of intentional charge disorder is

to cause a random variation in the local atomic potential, which increases as kFl is reduced

by increasing the disorder level. Following Freericks et al. [38], I posit that the FKM is a

suitable effective model for materials like TaxN and NbxN, where carriers interact locally

with randomly distributed charge disorder. I have reanalyzed Chand et al.’s data on NbN

in light of the above results to test how our strong coupling view performs relative to data.

To make meaningful contact with data on NbN, I make a reasonable assumption that

increasing U/t in the FKM corresponds to decreasing kFl, since the scattering strength

should increase with U/t, reducing kFl to O(1) [23] near the MIT. I find: as shown in

Fig. 7.17(a), that (i) log(ρxx(T )/ρc) on the (bad) metallic side scales with T/T0(kFl) ex-

actly as predicted by our theory [46]. Further, the data analysis shows (Fig. 7.17(b)) that

T0(kFl) ' (k f l − (k f l)c)zν with zν ' 1.3, again in excellent accord with theory if I identify

decreasing kFl with increasing U in our model. (ii) interestingly, our ρxx(T ),RH(T ) results

reproduce the detailed T -dependence seen in data [23] with only one adjustable parameter

(U). (iii) even more remarkably, I find that (∆RH/RH)/(∆ρxx/ρxx), shown in Fig. 7.17(c),

achieves values between 0.5 and 0.7 close to the MIT (between 1.5 ≤ U ≤ 1.9) in our
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Figure 7.17: (a) Resistivity data from Chand et al. [23], replotted as log(ρxx(T )/ρc) versus
T/T0 with T0(δkFl) ' |δkFl|1.3 in Panel (b), in excellent accord with theory [46]. In Panel
(c), I show that the theoretical ratio ∆RH/RH

∆ρ/ρ
is in the range of 0.5 − 0.7 near the Mott QCP,

again in good qualitative accord with the value of 0.69 from Hall data [23]. In Panel (d),
I show clear scaling of the experimentally extracted log(σ(c)

xy /σxy(T )) in very good accord
with theory for the same sample set used for Panel (a). The σxy(T ) is constructed from the
experimental dc resistivity and Hall constant (RH). The RH at the critical kFl is calculated
from extrapolation of the experimental Hall constant (RH) down to (kFl)c = 0.82, as shown
in Fig. 7.18
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temperature (T) at the critical kFl = 0.82

model, in very good accord with 0.69 extracted in experiment. Finally, in Fig. 7.17(d),

I uncover quantum critical scaling in 1/σxy(T ) as a function of kFl from data on NbN,

which is expected in our model, since both σxx, σxy exhibit such novel scaling behaviour.

Since RH is difficult to extract reliably in very bad-metallic samples (with kFl < 3.0) close

to the MIT, I resorted to a careful extrapolation of the Hall conductivity (σxy) and Hall

constant (RH) to smaller values of kFl.

In Fig. 7.18, I show the results of a careful fitting of the experimental data down to kFl '

O(1) (in fact, the critical (kFl)c is now consistent with 0.82, which is the critical value

for the longitudinal dc conductivity). Using these extrapolated fits to the dc conductivity

tensor as a function of kFl, I constructed Fig. 7.17(d) in the main text. This makes our

analysis consistent with a single (kFl)c ' 0.82 for both σxx(kFl,T ) and σxy(kFl,T ).

137



Taken together, earlier results of Chand et al. [23], now suitably reanalyzed in light of our

CDMFT results, receive comprehensive explication within a “strong localization” view

adopted here, lending substantial support to the view that the novel findings in NbN are

representative of strong scattering effects near a continuous MIT, and involve microscopic

processes beyond perturbative-in-(1/kFl) approaches.

7.4 Summary

Thus, to conclude this chapter, I have presented clear evidence of novel quantum critical

behaviour in dc resistivity as well as magneto-transport near a continuous MIT by a care-

ful scaling analysis of CDMFT results for the diagonal and off-diagonal conductivity for

the FKM in the strong localization limit. I find that the loss of the quasiparticle pole struc-

ture at strong coupling (kFl ' 1) leads to a rather distinct “Mott”-like quantum criticality,

necessitating substantial modification of the quasiclassical Drude-Boltzmann transport

schemes to study (longitudinal and transverse)-transport. The resulting quantum critical-

ity I find is closer to that expected from the opposite limit of strong localization based

on a real-space locator expansion [5, 28], as manifested in β(gxx) ' ln(gxx) or γ(gxy) '

ln(gxy). Comprehensive and very good explication of recent data on NbN lend substantial

experimental support to this Mott-like view. I suggest that strongly disordered electronic

systems that show a bad-metallic resistivity and sizeable T -dependent Hall constant would

be promising candidates to unearth such novel quantum-critical at a continuous MIT. Fi-

nally, the similarity of QC scaling in resistivity to the Mott QC scaling in the Hubbard

model [117] above the finite-T critical end-point suggests that related features discussed

above may also manifest in wider classes of strongly correlated Mott materials.
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Chapter 8

Thermal Transport in FKM within

Alloy Analogy

In this chapter, I will discuss the thermal transport close to the continuous metal-insulator

transition in the FKM within alloy analogy using CDMFT technique. I will study quantum

critical scaling of thermopower, thermal conductivity and Lorentz number and unearth the

deeper reasons of the quantum critical behaviour. I will discuss the thomson coefficient

and the Wiedemann-Franz law in the incoherent metals in details. At the end, I will

compare our findings with single site DMFT results.

I n the disorder driven MIT the core interest of study is to investigate how the dc

conductivity tensor (both longitudinal and transverse conductivity) behaves near

the quantum critical point (QCP). However, there is recent interest developed which
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shows physical knowledge of the transport properties of the materials partly accomplished

through the study of thermoelectric properties. Thermoelectric materials have numerous

applications in designing new devices in the field of physics and engineering such as,

power generation or refrigeration devices. Motivated by the practical application of the

thermoelectric materials I study thermal properties of the disorder system near the MIT.

8.1 Definition of Thermal Transport Co-efficient

There is no single thermo-electric coefficient like dc conductivity or Hall conductivity.

The definition of different thermal coefficient is different so one must be very careful

when define this coefficients. The forces responsible for the thermoelectric effects are

mainly temperature gradient (∆T ) and electric field (E). But all the thermal averaging

assumes a constant temperature, so the calculation of thermal conductivity can be done

for ∆T → 0, so that correlation function can be evaluated at a single temperature. The

electric field also be weak so that one can write the induced currents to linear order of ∆T

and E.

If the conductor is maintain in a constant temperature so that the temperature difference at

the both ends of the conductor is zero (i.e. ∆T = 0), then electric current flowing through

the conductor is proportional to the induced electric field E i.e.,

〈 j〉 = σdcE (8.1)

where, σdc is the d.c. conductivity.

Now consider an open circuit but a temperature gradient is applied i.e. ∆T , 0. Then

electrons would flow from high-T end to the low-T end. This gives rise to the depletion

of electrons at the high-T end and at the same time electrons would store at the low T-

end. As a result a electric field E will generate in the open circuit from the low-T end to
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Figure 8.1: The Seebeck effect : Due to the temperature gradient ∇T an electric field E
induced, E opposes the thermal flow of electrons

the high-T end. This electric field opposes the thermal flows of electrons from high-T to

low-T end. This electric field E is proportion to the temperature gradient ∆T for small ∆T

i.e.

E = S ∆T (8.2)

The quantity S is termed as thermoelectric power or thermopower.

Again, in the open circuit (〈 j〉=0), the heat current jQ flowing through the conductor is

proportional to the temperature gradient ∆T (with small ∆T ). According to the Fourier’s

law heat current ( jQ) can be written as,

〈 jQ〉 = K(−∆T ) (8.3)

where K is the thermal conductivity. At low temperature the contribution of phonon is

negligible compared to electron contribution. As T → 0, σdc approaches a constant value

and K becomes linear in T in metals. Then one can check the Wiedemann Franz law

which states that the ratio of K and σdc is directly proportional to T i.e.

K
σdcT

= L0 (8.4)

where, L0 is the proportionality constant which takes the value e2π2

3k2
B

for metal. The Wiede-

mann Franz law is valid at very low temperature (≤ 10K) as well as at very high tempera-
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ture (room T) because in this region the electrons are scattered elastically. At intermediate

temperature, the Lorentz number depends on temperature (T).

In the circuit shown in Fig. 8.1, if electric current is driven through the circuit at an

constant temperature T and heat will be absorbed at one end and released at the other

end. Then the Peltier coefficient (Π) can be defined as the ratio of the heat current density

(〈jQ〉) and electric current density (〈j〉) i.e.

〈jQ〉 = Π〈 j〉 (8.5)

Similarly, the Thomson’s effect is defined as the production or absorption of heat when

electrons flows through a conductor with a temperature gradient ∇T . Thomson’s coeffi-

cient τ is defined as the ratio of heat current 〈 jQ〉 and negative electric current 〈 j〉multiply

temperature gradient i.e.,

〈jQ〉 = −τ∇T 〈 j〉 (8.6)

Using Kelvin’s law the relation between three thermoelectric coefficients S ,Π, τ as,

Π = S T

τ = T
dS
dT

(8.7)

8.2 Calculation of Thermal Coefficient Using Onsager Re-

lation

According to the linear response theory, the response of a quantum system linearly de-

pends on applied forces. Thus using linear response theory, both electronic current (〈j〉)

and heat current (〈jQ〉) can be written as linear in E and ∆T of the form:

〈j〉 = L11E −
L12

| e | T
∆T (8.8)
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and,

〈jQ〉 =
L21

e
E −

L22

eT
∆T (8.9)

The coefficients Li j are known as Onsager Coefficients. In general Li j are tensors. For

isotropic case considered here Li j are scalar quantities. Using Ohm’s law ( 8.1) in Eq.

( 8.8), I obtain:

σdc = L11 (8.10)

Putting 〈 j〉 = 0 in equation ( 8.8) the thermopower (S) according to equation ( 8.2) is

given as,

S =
L12

| e | T L11
(8.11)

Similarly, using equation ( 8.3) expression for thermal conductivity (K) yields

K =
L22L11 − L21L12

e2T L11
(8.12)

and from equation ( 8.4) for Lorentz number (L0) the expression as,

L0 =
L22L11 − L21L12

(kBT L11)2 (8.13)

Therefore the transport properties of the system can be determined immediately once one

know the Onsager coefficients. It is also mention that in the absence of magnetic field

the Onsager relation L12 = L21 holds. Substituting the Onsager coefficient by transport

coefficient in equations ( 8.8) and ( 8.9) I obtain the final expression for electric and heat

current as,

〈j〉 = σdcE − σdcS ∆T (8.14)

and,
〈jQ〉

T
= S 〈j〉 −

K∆T
T

(8.15)

Here, 〈jQ〉/T is the entropy current density will go to zero as T → 0 according to the third
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law of thermodynamics.

Onsager coefficients Llm, l,m = 1, 2 can be computed from the corresponding current

correlation in the zero frequency limit:

L11 = lim
ν→0

Re
i
ν

L̄11(ν) (8.16)

L̄11(ν) is obtained from the analytical continuation of L̄11(iνl) to the real axis with,

L̄11(iνl) =
π

β

∫ β

0
dτeiνlτ〈Tτ j†α(τ) jβ(0)〉 (8.17)

where, νl = 2πl
β

is the bosonic Matsubara frequency. Similarly for the others Onsager

coefficients:

L12 = L21 = lim
ν→0

Re
i
ν

L̄12(iνl),

L̄12(iνl) =
π

β

∫ β

0
dτeiνlτ〈Tτ j†α(τ) jQβ(0)〉 (8.18)

and

L22 = lim
ν→0

Re
i
ν

L̄22(iνl),

L̄22(iνl) =
π

β

∫ β

0
dτeiνlτ〈Tτ j†Qα(τ) jQβ(0)〉 (8.19)

Here, jα, jβ are the electrical currents whose general expression is:

j =
∑
qσ

vqc†qσcqσ (8.20)

Similarly, jQα, jQβ are the heat current with general expression:

jQ =
∑
qσ

(εq − µ)vqc†qσcqσ +
U
2

∑
qq′σ

W(q − q′)[vq + v′q]c†qσcq′σ (8.21)
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The detailed derivation of the electric current and heat current in equations 8.20 and 8.21

are given in Appendix F. The subscripts α, β represents the spatial dimension of the cur-

rent vectors.

In absence of vertex corrections to transport coefficients, the Llm can finally be expressed

in terms of the cluster propagators, G(K, ω). L11 is same as I derived for the dc conduc-

tivity σxx(T ) earlier in Chapter 7,

L11 =
∑

a=S ,P

Tσ0

e2

∫
dερa(ε)

∫
dω(
−d f (ω)

dω
)A2

a(ε, ω) (8.22)

The Onsager co-efficient relevant for heat transport is most conveniently given in the two-

site cluster bonding-anti-bonding basis (S , P channels [47]) as the sum of the "kinetic" and

"potential" contributions as sketched above, L12 = Lk
12 + Lp

12. Then following Freericks et

al. [37] for our two-site CDMFT, this reads (for details see the Appendix F),

L12 =
∑

a=S ,P

Tσ0

e2

∫
dερa(ε)

∫
dω(−

d f (ω)
dω

)ωA2
a(ε, ω) (8.23)

while L22 is given by

L22 =
∑

a=S ,P

Tσ0

e2

∫
dερa(ε)

∫
dω(−

d f (ω)
dω

)ω2A2
a(ε, ω) (8.24)

As for the conductivity tensor, it turns out that thermal transport co-efficients can be

precisely evaluated within our two-site CDMFT. This is because the irreducible clus-

ter resolved particle-hole vertex corrections rigorously drop out from the Bethe-Salpeter

equations (BSE) for all current-current correlation functions [48]. This enormous simpli-

fication permits a precise computation of thermal transport within CDMFT without any

further approximation. Further, having explicit closed-form analytical expressions for the

cluster propagators, G(K, ω), minimizes the computational cost, even within CDMFT.
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Figure 8.2: dc resistivity ρdc(T ) (a), thermopower S el(T ) (b), thermal conductivity Kel(T )
(c) and Lorenz number L0(T ) (d) for the FKM as functions of U/t. At the Mott QCP (bold
red circles) at (U/t)c = 1.8, both S el(T ), L0(T ) attain finite values, cleanly separating
metallic and insulating behavior. Concomitantly, ρdc(T → 0) diverges and Kel(T ) ' T 1+ν

with ν ' 4/3 [46].
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8.3 Results within Cluster DMFT

In this section, I show the result of the thermal transport with two site CDMFT approach.

For convenience consider non-interacting electrons half-bandwidth as unity i.e. 2t=1.

Since I aim to correlate specific features in electrical and thermal transport with each

other, I start by recapitulating dc resistivity.

In Fig. 8.2(a), I exhibit the dc resistivity, ρdc(U,T ) as a function of U as the system

is driven through a continuous MIT at Uc = 1.8 [46]. It is clear that at intermediate

0.95 < U < 1.8, clear pseudogap signatures appear in ρdc(T ) over a progressively wider

T -range, between the high-T incoherent metal and a low-T bad metal, before the MIT

occurs for U ≥ 1.8. This feature is associated with proximity to the “Mott” quantum

critical point (QCP) occuring between a T = 0 very bad metal and a “Mott” insulator at

Uc. I am interested in how this Mott quantum criticality manifests in thermal transport.

In Fig. 8.2(b), I show how the electronic contribution to the thermopower varies across

the continuous MIT. Several features stand out: (i) for weak-to-intermediate U < 0.9,

S el(T ) ' AT at low T < 0.025t is small (not shown), as expected for a weakly correlated

metal, and goes hand-in-hand with ρdc(T ) ' const at low T . (ii) In the intermediate-to-

strong coupling (0.9 < U < 1.7) regime, where one is in the increasingly bad-metallic

low-T regime, S el(T ) is still linear-in-T , but is significantly enhanced by factors of O(50−

100) over its weakly correlated values. S el(T ) also exhibits a broad peak around T ∗ '

0.04t, before continuously falling off to achieve the Heikes value [22] at very high T . It

is very interesting that S el(U,T ) = A(U)T with A(U) increasing with U holds through-

out this very bad metallic regime, even as ρdc(T → 0) ' 100~/e2. This is the regime

in which no quasiclassical Boltzmann view of transport is tenable, since application of

Drude-Boltzmann ideas would necessarily yield kFl < 1 (where no 1/kFl-expansion is

possible). Since thermopower features result solely from a non-Landau quasiparticle

cluster propagator within CDMFT, this implies that this low-T enhancement in S el(T )

involves non-Landau-FL quasiparticle (branch-cut continuum) excitations. Just before
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Figure 8.3: Mott Quantum critical scaling in thermopower S el(U/t,T ) across the MIT.
Log(S el(T )/S c) vs T exhibits almost perfect “mirror symmetry” around (U/t)c (left
panel). Collapse of metallic and insulating curves onto two “universal” curves upon scal-
ing T axis by T th

0 (right panel). This is evidence that Mott quantum critical scaling in
electrical transport [46] extends to thermal transport as well.

the MIT, S el(T → 0) is still linear in T , but is enhanced by a factor of about 100 relative

to its small U value. (iii) Finally, precisely at the QCP U = 1.8, clear anomalies obtain:

S el(T ) increases with decreasing T right down to T → 0, but achieves a finite value. For

U > 1.8, opening of the “Mott” gap in the one-electron density-of-states [47] produces

a divergent S el(T → 0). This is not a violation of the Nernst theorem, since ρdc(T → 0)

simultaneously diverges.

It is clear from Fig. 8.2(b) that S el(U,T → 0) curves fan out to either metallic or insulating

values, except at the “Mott” QCP, where S el is finite. This suggests that, like electrical

transport [46], thermal transport should also exhibit characteristic quantum critical fea-

tures. To unravel this novel possibility, I repeat earlier procedure [46] for thermopower by

making the metallic and insulating curves fall on to two “universal” curves by scaling both

with a U-dependent scale, T th
0 (U). In the left panel of Fig. 8.3, I exhibit log(S el(T )/S (c)

el )

versus T . Remarkably, this bares clear signatures of “mirror” symmetry, exactly as in
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electrical transport. This strongly presages novel “Mott” quantum critical features in ther-

mal transport as well. More clinching support for such criticality is seen in right panel

of Fig. 8.3, where I show log(S el(T )/S (c)
el ) versus T/T th

0 (U) as done earlier [46]. Remark-

ably, I find (i) clear “mirror” symmetry between metallic and insulating curves around the

critical S el(Uc), and (ii) T th
0 (δU) = cth|δU |η with η = 1 (in Fig. 8.4 left panel). To further

cement this unusual idea, I also show in the right panel of Fig. 8.4 the "beta"-function

(or the Gell-Mann Low function) for thermopower, βth(s) = d[log(s)]/d[log(T )] versus s,

with s = (S el(T )/S c(T )) and S c(T ) being the critical thermopower right at the MIT (red

circled curve in Fig. 8.2(b)). Remarkably, I find βth(s) ' log(s) near the MIT, exactly as

found before for the dc conductivity. This conclusively establishes novel quantum-critical

scaling of the thermopower at the “strong localization” MIT as well.

Appearance of such quantum-critical scaling in thermopower at the MIT is very surpris-

ing, and calls for deeper analysis. Since S el(T ) measures “mixed” electrical current-

energy current correlations, these features must originate from long-time behavior of

〈 je(τ) jQ(0)〉. Let us look more closely at this term. The energy current, in contrast to

the electrical current, involves three sites, and reads [128]

ji,Q = t2(ic†i−δci+δ + h.c) −
U
2

( ji−δ,i + ji,i+δ)(ni,d −
1
2

) (8.25)

where I have relabelled c → c↑, d → c↓, δ denotes nearest neighbors of sitei, and ji,i+δ

is the electrical current operator. For the FKM, I have [ni,d,H] = 0 for all i, and thus

ni,d = 0, 1 only. The expression for ji,Q now simplifies to a revealing form

ji,Q = t2(ic†i−δci+δ + h.c) ±
U
4

( ji−δ,i + ji,i+δ) (8.26)

for (+,−) corresponding to ni,d = 0, 1. Thus, for the FKM, I find that ji,Q is directly related

to the electrical current operator, providing direct insight into the underlying reason for

emergence of very similar quantum critical scaling responses in ρdc(T ) [46] and S el(T )
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Figure 8.4: T th
0 (δU) = c|δU |µth with µth = 1 (left panel). The “beta function” varies like

β(s) ' log(s) with s = S el(T )/S c close to the MIT and is continuous across Uc (right
panel)

above. Simply put, energy current correlations mirror those of the electrical current.

Armed with these positive features, I now study the electronic contribution to the thermal

conductivity, Kel(T ), in Fig. 8.2(c). In the small U regime, Kel(T ) ' A2T is linear in T ,

as would be expected for a weakly correlated metal, with transport being determined by a

LFL of “dirty” quasiparticles. This is the regime where ρdc(T → 0) ' const, and formally

corresponds to the weak scattering regime where kFl >> 1 holds (this is thus the regime

where self-consistent Born approximation (SCBA) applies). As I enter the intermediate-

to-strong scattering regime with 0.95 < U < 1.8, progressive bad metallicity in resistivity

goes hand-in-hand with emergence of a low-energy scale in Kel(T ), where its power-

law-in-T (Kel(T ) ' T n, n > 1) behaviour at intermediate-T crosses over to a linear-in-T

variation as T → 0. Precisely at Uc = 1.8, I find Kel(T ) ' T 1+ν. This behavior is char-

acteristic of heat conductivity arising from non-fermionic excitations. In our case, such

collective modes can only be of electronic origin: these are the low-energy particle-hole

fluctuations, which remain low-energy excitations in the insulator when charge degrees of
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Figure 8.6: Thomson Co-efficient τth(T ) for FKM as a function of U/t

freedom are frozen out at low energies. Upon closer inspection, I see that the linear-in-T

contribution gives way to a power-law behavior (Kel(T ) ' T 1+ν, 0 < ν < 1) right down

to T = 0 for U = 1.8 within our numeric, precisely where the MIT occurs. This find-

ing is completely consistent with breakdown of the LFL quasiparticle description in the

quantum critical region associated with the MIT.

Even more insight into the breakdown of the LFL quasiparticle description close to the

MIT is provided by examination of the T -dependent Lorenz number, L0(T ) = Kel(T )/Tσxx(T ),

as a function of U. In Fig. 8.2(d), I exhibit L0(U,T ) across the MIT. Throughout the

metallic phase, including the very bad metal, L0(T → 0) = π2

3 (in units of kB = 1 = e),

even though L0(T ) exhibits significant T -dependence up to the lowest T , especially for

U > 1.4, implying no breakdown of the WF law in the metallic phase. Precisely at the

MIT, however, L0(T → 0) ' 10, indicating breakdown of the WF law exactly at the MIT.

In the insulator (U > 1.8), L0(T → 0) diverges, as it must, since Kel(T ) ' T 3 while

ρdc(T ) ' exp(Eg/kBT ). Our finding is remarkable because, whilst the resistivity shows

clear precursor features of impending proximity to the MIT via progressive enhancement
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Figure 8.7: Results similar to those in Fig. 8.2, but now using single-site DMFT.

of bad-insulating and very bad metallic regimes beginning from U = 0.95, both S el(T )

and Kel(T ) continue to display apparently conventional behavior right up to the MIT. Fur-

ther, spectral responses clearly show non-Landau-FL metallicity [47], and while one may

argue for a non-WF behavior at any T , 0, our results indicate no breakdown of the WF

law at T = 0.

Remarkably, upon proper rescaling, it now turns out that σxx(T ), S el(T ),Kel(T ) and L0(T )

all exhibit clear quantum-critical scaling features. At the QCP, I find (not shown) that

Kel(T ) ' T 7/3 = T 1+ν with ν = 4/3. Recalling that ν = 4/3 is precisely the correlation

length exponent I find for the dc conductivity [46], this suggests an alternative way to ex-

hibit quantum critical scaling that bares the link between electrical and thermal transport.

In Fig. 8.5, I find that T−4/3σxx(T )/σ0, S el(T ),T−7/3Kel(T ) and L0(T ) exhibit clear collapse

of the metallic and insulating curves onto two clear branches when plotted as a function

of the "scaling variable" y = |U − Uc|/UcT , i.e, as a function of the distance from the

“Mott” QCP. Since σxx(U) ' (Uc − U)4/3 as found earlier [46], ν = 4/3 and z = 1, as

expected for the FKM. Further, zν = 4/3 > (2/d) implies that the Harris criterion holds,
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a implying a genuinely clean QCP. Again, these features reflect the finding above, where

energy current correlations simply mirror the electrical current correlations for the FKM,

providing direct microscopic rationale for closely related quantum-critical transport in

both. I am aware of only one previous study [126, 78] where this issue was studied

phenomenologically, by using the experimental conductivity as an input into the Kubo

formula for the Llm. In contrast, our results emerge from a truly microscopic CDMFT

formulation for the FKM, and our finding of z = 1 is very different from z = 3 and

ν = 1 (latter taken from experimental conductivity data). It is also different from z = d

found [58, 55] for scaling in the non-interacting disorder model. Together with Mott-

like criticality in transport [46], these differences reflect the qualitatively distinct “strong

coupling” nature of the QCP in the FKM.

Finally, using the Kelvin formula, I now show the Thomson co-efficient as a function of

U/t across the MIT. In Fig. 8.6, I show τth(U/t,T ). In the metallic phase, right up to

(U/t) = 1.7, the Thomson co-efficient exhibits a weak T -dependence at high T , changes

sign at a low-to-intermediate T1 ' O(0.08t), passes through a maximum around 0.5T1

before vanishing linearly at lowest T . Exactly at the MIT, qualitative changes occur:

τth(U > Uc,T ) now exhibits two distinct regimes where dτth(T )/dT changes sign (around

1.13t and 0.05t)before asymptoting to a finite negative value in the insulator. Remarkably,

much alike the way in which the γ-co-efficient of the usual specific heat at constant vol-

ume diverges upon approach to the MIT, I find that the γ-co-efficient of the “specific heat

of electricity”, defined as γe = (dS el(T )/dT ), progressively increases with U/t right up to

the MIT, diverging at the “Mott” QCP.

8.4 Single-Site DMFT Results for Thermal Transport

Here, I compare our result with single site DMFT [35] result. The spectral function,

A(k, ω) = − 1
π
ImG(k, ω) with G(k, ω)−1 = ω − εk − Σ(ω). Inserting A(k, ω) in Kubo-
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Figure 8.8: (a) In left panel, log(S el(T )/S c) vs T/T0 and (b) in right panel, T th
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within single-site DMFT.

Greenwood formula I calculate current-current correlation function [38, 37]. It is well

known that for single-site DMFT irreducible vertex correction vanishes in the Bethe-

Salpeter equation, so only the bare bubble contributes.

I now show single-site DMFT results for electrical and thermal transport. In dc resistiv-

ity across the MIT, shown in Fig. 8.7 (which now occurs at a (U/t)DMFT
c = 1.1), I see

features very similar to those found in CDMFT. However, (i) ρdc(T ) at Uc now attains

values O(40)~/e2, much smaller than the O(200)~/e2 found in CDMFT. Correspondingly,

S el(T ),Kel(T ) and L0(T ) exhibit very similar behavior to that found in CDMFT, as shown

in Fig. 8.7. At first sight, one may thus conclude that no qualitative difference exists

between DMFT and CDMFT results.

However, closer inspection of DMFT results, obtained by performing the same scaling

analysis as the one done in the main text, reveals crucial differences between DMFT and

CDMFT results. Comparing scaling for S el(T ) within DMFT in Fig. 8.8 to those obtained

from CDMFT in Fig. 8.3 and Fig. 8.4 in the reveals that (i) scaling holds over a much
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Figure 8.9: Results similar to those obtained in Fig. 8.5, but now using single-site DMFT.

narrower window in DMFT compared with CDMFT, and (ii) µDMFT
th = 1.2, compared to

µth = 1 in CDMFT. It is thus more difficult to discern clean extended scaling behavior

from DMFT results, and CDMFT clearly performs better in this respect.

Moreover, repeating the analysis leading to Fig. 8.5, I exhibit the results in Fig. 8.9. It

is now clear that the scaling features in S el(T ), L0(T ),T−νσxx(T ) and T−1−νKel(T ) are of

much poorer quality than those obtained from two-site CDMFT results.

Comparing with CDMFT results, several features stand out. These reveal very interesting

differences between DMFT and CDMFT results, and I use these to propose that extensions

of DMFT to include short-range spatial correlations seem to be necessary to discuss novel

quantum critical scaling in thermal transport at the MIT.

Thus, while critical features in electrical transport may be adequately captured by single-

site DMFT as above (though the critical exponents z and ν are, as expected, different),

I find that description of energy transport, and, in particular, much better elucidation of

quantum critical thermal transport, requires cluster extensions capable of properly dis-
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tinguishing between non-local aspects entering the distinct microscopic processes which

underlie energy transport, as opposed to charge transport.

8.5 Discussions

What is the microscopic origin of boson-like collective modes that can provide a distinct

channel for heat conduction which simultaneously blocks charge transport? It is most

instructive to invoke the analogy with the Hubbard model, where one-electron excitations

in the Mott insulator are frozen out at low energies ω < ∆MH, the Mott-Hubbard gap in the

one-electron DOS. Were one to consider the Hubbard model, dynamical bosonic spin fluc-

tuations, originating from second-order-in-(t/U) virtual one-electron hopping processes,

would be the natural low-energy excitations. However, in the FKM-like binary alloy

model I consider, identifying c → c↑, d → c↓ leads to an Ising super-exchange to second

order in a (t/U) expansion when U >> t in the “Mott” insulator. It is important, exactly

as in the Hubbard case, that it is the virtual hopping of a c-fermion between neighboring

sites (from 0 to α and back in our two-site cluster [47]) that is necessary to generate such a

boson-like mode. Since this is not a real low energy charge fluctuation, it cannot cause real

charge transport. But it does lead to a gain O(−t2/U) in super-exchange energy; i.e, energy

is not conserved, and so these virtual charge fluctuations indeed cause energy transport.

Physically, this n.n hopping in a gapped “Mott” insulator involves creation of a particle-

hole pair (a holon-doublon composite on neighboring sites). At low energy, this local

“exciton” is effectively a bosonic mode that disperses on the scale of J ' t2/U. These

bosons are thus not necessarily linked to any broken symmetry, but naturally emerge in a

“Mott” insulator. In our CDMFT, the dynamical effects of such “excitonic” inter-site cor-

relations on the cluster length scale are fed back into the cluster self-energy, and thus the

basic process leading to energy transport but not charge transport is included in CDMFT.

This is also the reason why CDMFT performs much better that single site DMFT when

I study quantum critical scaling in thermal transport. The underlying reason for this in-
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ability of DMFT results to properly describe quantum critical scaling of thermal transport

can be understood heuristically as follows: in CDMFT approach, I have argued that ther-

mal transport involves microscopic electronic processes associated with virtual hopping

between a given site to its neighbors and back. Such second-order-in-hopping processes

block charge transport, but allow energy transport, since such processes involve a gain of

“super-exchange” (of Ising form for the FKM) energy. In single site DMFT, this process

is O(1/d), and so is not adequately captured. But precisely such a process is captured in

our CDMFT, since the dynamical effects of inter-site (intracluster) correlations are fed

back into CDMFT self-energies by construction [47]. These “bosons” are thus natural

candidates that can account for our finding of Kel(T ) ' T 1+ν in the proximity of the MIT.

Very interestingly, a series of careful experiments on two-dimensional electron gases

(2DEGs) show remarkable features [87]: (i) in the low-ns regime where ρ >> h/e2, the

activated T -dependence of ρdc(T ) shows a remarkable “slowing down” to an extremely

bad metallic state, even as ρdc(T → 0) ' 250h/e2, (ii) in the same ns-regime, the ther-

mopower shows hugely enhanced values (two orders of magnitude above the Mott value)

and, perhaps even more remarkably, exhibits linear-in-T behavior reminiscent of normal

metals precisely below 1.0 K. It may be possible to apply our high-D approach, which

focuses on short-ranged correlations, to these mesoscopic systems if one could model the

system as a 2DEG influenced by strong scattering from atomic-sized (strong) scattering

charged centers. In light of our calculations, the dichotomy between the T -dependence

of ρdc(T ) and S el(T ) can be interpreted as follows: a real charge excitation is blocked in

the “strong-disorder” limit of the FKM near the MIT due to blocking effects associated

with Mottness, explaining the extraordinarly high ρdc(T → 0) below 1.0 K. But a col-

lective particle-hole (or holon-doublon composite in Hubbard model lore) excitations are

real low-energy electronic collective modes that naturally arise in this regime, and lead to

a hugely enhanced S el. It is interesting that our strong-coupling approach seems to ratio-

nalize the very unusual experimental observations in a single picture which emphasizes

proximity to a (Mott-like) localization transition. That such observations maybe subtle

158



manifestations of novel phase fluctuation effects is not inconsistent with our view either,

since it follows directly from the number-phase uncertainty principle that increasing prox-

imity to electronic localization will necessary generate large phase fluctuation-dominated

state(s).

It is interesting to compare our CDMFT technique of studying thermal transport to the

recent work on thermal transport by Finkel’stein and Schwiete [106, 105]. Based on

perturbative renormalization group (RG) calculation they studied the quantum criticality

using 2+ε expansion and calculate the critical exponent corresponds to different universal-

ity classes. This theory describes the system with both disorder as well as interaction and

treat the system as disordered Fermi liquid with disorder induced renormalized Landau

parameter.

Despite the great success of this approach, there are certain limitations in compare with

the CDMFT approach - (a) In this theory (perturbative RG ), low temperature excita-

tions which are adiabatically connected to a non-interacting (but disordered ) electronic

systems, hence excitations are fermionic in nature and collective excitations play a sub-

leading role, while in CDMFT approach fermionic like excitations are absence and the

collective excitations play prominent role (b) perturbative RG is unable to detect any

metastable states (like glassy dynamics) arising due to the competition between disorder

and interaction whereas our approach can easily describe those features.

8.6 Summary

To summarize, I have showed clear quantum-critical scaling features in S el(T ),Kel(T )

and L0(T ) at the MIT strongly testifies to robust quantum critical scaling of thermal trans-

port at a continuous MIT. Ours is a truly microscopic approach, and is best valid in the

strong localization regime (kFl ' 1), where a Hubbard-like band-splitting type of MIT

obtains. This is the limit opposite to the well-studied weak localization (WL) case, where
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a perturbative-in-1/kFl expansion is possible: at strong localization, the criticality is bet-

ter rationalized in terms of a locator expansion [28], and exhibits signatures expected of a

continuous “Mott” quantum criticality. Moreover, I am also able to connect these critical

features in a very transparent way to those observed in electrical conductivity by analysing

the structure of underlying correlations, thereby providing a direct rationalization for our

findings. In view of the fact that the one-band Hubbard model exhibits “quantum criti-

cal” scaling in dc transport near the finite- but low T end-point of the line of first-order

Mott transitions, it would also be interesting to study the possibility of related features

in thermal transport for such cases in future if the finite-T critical end-point of the Mott

transition could be driven to sufficiently low T .
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Chapter 9

Optical Conductivity and Dielectric

Response in FKM

In this chapter, I will investigate the optical response of the Falicov-Kimball model (FKM)

across the continuous metal-insulator transition (MIT) in detail using results from a clus-

ter extension of dynamical mean field theory (CDMFT). Exploiting rigorous sum rules, I

will characterize polarization fluctuations and the related singularity in the Hilbert space

metric tensor at the MIT. Surprisingly, I will find that all "Universal Dielectric Response"

UDR naturally emerges in the quantum critical region associated with the continuous

MIT, followed by a superlinear power-law increase in their optical responses over excep-

tionally broad frequency regimes.

O ptical conductivity has long been used to characterize elementary excitations in

condensed matter. Response of matter to ac electromagnetic fields is usually

encoded in the complex conductivity [10], σ(ω) or the complex dielectric constant, ε(ω).
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Optical studies have been especially valuable in strongly correlated electronic matter [50]

and, as a particular example, have led to insights into breakdown of traditional concepts

in cuprates [120].

Such studies have also led to much progress in understanding of complex charge dynam-

ics in disordered matter. In the seventies, pioneering work of Jonscher [54] showed a

universal dielectric response (UDR) of disordered quantum matter to ac electromagnetic

fields, wherein σ(ω) ' ωα with α ≤ 1 in the sub-GHz regime. More recently, in a remark-

able study, Lunkenheimer et al. [72] find an astonishingly similar response in a wide class

of disordered matter: among others, doped, weakly and strongly correlated semiconduc-

tors exhibit UDR, followed by a superlinear power-law increase in σ(ω), bridging the gap

between classical dielectric and infra-red regions. That this behavior is also common to

dipolar and ionic liquids as well as to canonical glass formers suggests involvement of

a deeper, more fundamental and common element, related to onset of a possibly intrin-

sic, glassy dynamics in emergence of UDR. In the context of correlated quantum mat-

ter (such as the Mott insulator LaTiO3 and Pr0.65(Ca0.8S r0.2)0.35MnO0.35 (PCSMO) [72]),

such unconventional “glassy” dynamics must emerge near the doping-induced MIT as a

consequence of substitutional and/or intrinsic disorder due to inhomogeneous electronic

phase(s) near the MIT. The microscopic origin of electronic processes leading to these

observations, however, is an open and challenging issue, and remains largely unaddressed

theoretically, to our best knowledge. In this chapter, I will present the optical conductivity

and universal dielectric response in the FKM within CDMFT approximation.
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Figure 9.1: In the left panel (A) the real part of optical conductivity (σ(ω)) as function of
frequency (ω) for different disorder strength U with short range order f0α = 0. The bump
has observed in the bad metallic region in the low frequency. In the right panel (B) the
real part of optical conductivity (σ(ω)) as function of frequency (ω) for different disorder
strength U with short range order f0α = −0.15.
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9.1 Relation between Optical conductivity and Dielectric

Response

The expression for the optical conductivityσ(ω) (the detailed calculation is given in Chap-

ter 7) is given by,

σ(ω) =
Imχnn(ω)

ω

= σ0

∑
σ

∫
dερ(ε)

∫
dνAσ(ε, ν)Aσ(ε, ω + ν) ×

f (ν) − f (ω + ν)
ω

(9.1)

I can consider v2(ε) is equal to 1/2. For more exact calculation of v2(ε) is given in Ap-

pendix E. Now, the real part of the conductivity is related with the imaginary part of the

dielectric response (known as dielectric loss) by,

σ(ω) = ωε0Im[ε(ω)] (9.2)

where, ε0 is the permittivity of free space. So using equation 9.2 one can calculate the

dielectric response.

9.2 Results for Optical Conductivity

In Fig. 9.1, I show the real part of the optical conductivity near and across the MIT (1.6 ≤

U/t ≤ 2.0), computed from Eq. 9.1 as a function of U/t for (a) the completely disordered

case in Panel A (short-range order parameter f0α = 0 in our earlier work [47]) and (b)

the short-range ordered case in Panel B ( f0α , 0). Several features stand out clearly: In

Case (a), (1) σ(ω) shows a bad-metallic low-energy bump (shown in Fig 9.2) centered at

ω = 0, whose weight decreases continuously as the MIT is approached (at U/t = 1.8). It

is important to note that low-energy spectral weight is continuously transferred from the

bad-metallic and mid-infra-red (MIR) regions to high energies O(U) across the MIT. This
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Figure 9.2: The low frequency view of the left panel of Fig 9.1, the bump at the low
frequency are very prominent

is characteristic of a correlation-driven MIT and the continuous depletion of low-energy

weight is a consequence of the continuous MIT in the FKM. In Case (b), I exhibit the

effect of “anti-ferro alloy” (AF-A) short range order (SRO). Apart from the fact that the

MIT now occurs at (U/t) ' 1.35 [47], the above features seem to be reproduced in this

case as well. Looking more closely, however, I see marked changes in the low- and mid-

infra-red energy range: the “bad metallic” bump centered at ω = 0 is suppressed by SRO,

and σ(ω) rises faster with ω in the MIR. These changes are to be expected, since AF-A

SRO reduces the effective kinetic energy, increases U/t and leads to reduction low-energy

spectral weight in optics.

9.3 Universal Dielectric Response

Having investigated the optical conductivity, I now turn to the UDR near the MIT. Since

the FKM is isomorphic to the binary-alloy Anderson disorder problem, I inquire how
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Figure 9.3: (a) In left panel, log(σ(ω)) vs log(ω) for different disorder strengths (U) (b)
In right panel, dlog(σ)

dlog(ω) vs log(ω) for different disorder strengths (U).

CDMFT performs in the context of the remarkable universality in dielectric response in

disordered quantum matter alluded to before [72]. In Figs. 9.3 9.4, I show log(σ(ω))

and log(σ(ω)/ω) versus log(ω) as functions of U/t to facilitate meaningful comparison

with data of Lunkenheimer et al. [72]. It is indeed quite remarkable that all the basic

features reported for disordered matter are faithfully reproduced by our CDMFT calcula-

tion. Specifically, (i) for 1.5 < (U/t) < 1.8, a “dc” conductivity regime at lowest energy

(up to 10−4 − 10−3t) smoothly goes over to a sublinear-in-ω regime (UDR, in the region

(10−2 − 10−1)t) followed by a superlinear-in-ω regime (around (10−1)t, connecting up

smoothly into the “boson” peak. These regimes are especially visible around (U/t) = 1.8,

precisely where the MIT occurs. (ii) Moreover, corroborating behavior is also clearly

seen in Fig. 9.4, where I exhibit the dielectric loss function log(σ(ω)/ω) vs ω on a log-

log scale. It is clearly seen that a shallow minimum separates the UDR and superlinear

regimes at approximately ln(ω) = −0.8 (in the meV region) in the very bad-metallic

state close to the MIT. This is in excellent accord with results for both LaTiO3 and PC-

SMO [72]. Moreover, the energy dependence of the optical conductivity also seems to be
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Figure 9.4: (a) In left panel, dielectric loss log(σ(ω)/ω) vs log(ω) for different disorder
strengths (U) with short range order f0α=0.0 (b) In right panel, dielectric loss log(σ(ω)/ω)
vs log(ω) for different disorder strengths (U) with short range order f0α=-0.15

in good qualitative accord with data when I compare our results with Figures(1),(2) and

(3) of Lunkenheimer et al. [72]. Finally, in Fig. 9.4(b), I also show that short-range spa-

tial correlations do not qualitatively modify these conclusions, attesting to their robustness

against finite short-range order.

This accord is quite remarkable, and begs a microscopic clarification in terms of basic

electronic processes at work near the MIT. It was conjectured that the similarities in re-

sponses of electronic systems with those of canonical glass formers suggests that the ap-

parent universality is linked to glassy dynamics as a common underlying element. Inter-

estingly, thanks to the mapping between the FKM and the binary-alloy Anderson model,

this possibility arises in the FKM near the MIT due to the following reasons: (i) from our

previous dc transport study [46], I find z = 1 and ν = 4/3. The latter is characteristic

of percolative transport that naturally arises in glassy systems. (ii) More importantly, it

has also been shown [92] (for the Anderson disorder problem) that electronic glassy be-

havior precedes an insulating phase. Given the formal equivalence between the FKM and
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the binary-alloy disorder problem, their arguments are also fully valid for the FKM. An

analysis literally similar to that of Dobrosavljevic et al. can thus also be carried out for

the FKM, whence I also expect an intrinsic electronic glassy phase near the continuous

MIT. Thus, these arguments now pin the novel universal dielectric responses I observe

to the onset of an electronic glassy dynamics near the continuous MIT in the FKM. It

also rationalizes the finding [72] of very similar dielectric responses in a wide variety of

disordered matter in a natural way by positing that glassy dynamics is the basic factor at

work across widely different classes of disordered systems.

Theoretically, it is very interesting that such features appear near a correlation-driven

MIT in the FKM, since this is a band-splitting type Mott (rather than pure Anderson lo-

calization) transition. It supports views [28, 46] that the (binary-alloy) disorder problem

at strong coupling (with kFl ' O(1)) is characterized by a different “Mott”-like quantum

criticality as made manifest by the finding that β(g) ' ln(g) even deep in the (bad) metallic

phase. This is reasonable, as it is long known [125] that the coherent potential approxima-

tion (CPA), the best mean-field theory for the Anderson disorder problem, is equivalent

to the Hubbard III band-splitting view of the Mott transition (the latter becomes exact for

the FKM in d = ∞ [124]). Various aspects of manganite physics have also been success-

fully modeled by an effective FKM, where the c-fermions represent effectively spinless

fermions strongly scattered by a disordered “liquid” of effectively localized Jahn-Teller

polarons [97]. Thus, our model can serve as a simplest effective model for PCSMO [72].

Application to LaTiO3 would require using a full Hubbard model very close to half-filling,

where even modest disorder would generally be expected to be relevant. Aside from mate-

rial specificities, I believe that non-perturbative aspects related to strong intrinsic disorder

scattering in the FKM lead to onset of strongly correlated glassy dynamics near the MIT.

I find that it is this specific aspect that is at the heart of the "universal" dielectric response.
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9.4 Summary

To summarise, I have shown the optical conductivity and dielectric response of the FKM

using our newly developed CDMFT technique and made some critical analysis about

universal dielectric response of materials with different types of disorder. This work is in

progress. I hope I will provide this work completely at the time of final thesis submission.
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Chapter 10

Conclusion and Future Directions

In this chapter, I give some concluding remarks of my thesis. I also discuss future direc-

tions and open issues.

I n this thesis, I have made a detailed study of the simplified interacting model,

"Falicov-Kimball Model (FKM)" which is also isomorphic to binary disorder al-

loy. I have solved this model using a novel and almost analytic cluster scheme (Cluster

DMFT). This model showed continuous metal-insulator transitions (MITs), which are rare

and are characteristic of disordered systems. Using both DMFT and Cluster DMFT tech-

nique I have surveyed metallic and insulating phases of this model and have investigated

how the single particle and two-particle response function behave near the MIT. Sur-

prisingly, I have found the irreducible two particle vertex exhibits clear non-analyticities
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before the transition. After that, I have enquired the frequency dependent charge suscep-

tibility in this model and using time-dependent response to a sudden local quench as a

diagnostic, I have found that the long-time wave-function overlap changes from a power-

law to an anomalous form at strong coupling.

Falicov-Kimball Model or equivalent binary disorder model shows continuous metal-

insulator transition at zero temperature. This intrigated me to inquire about, and study

quantum criticality associated with continuous MITs. Using our recently developed exact-

to-order 1/D cluster-DMFT technique, I have presented an exact description of the quan-

tum criticality across the metal-insulator transition (MIT) for the FKM. I have showed

dc resistivity exhibits striking features of quantum criticality with clear mirror symmetry

between metallic and insulating branch of the scaled resistivity driven by unusual form of

the beta-function (or Gell-Mann-Low function in field theory) of the form β(g) ∼ log(g),

with g is a scaled conductance. I have also studied magnetotransport and the issue of Mott

quantum criticality reflected in magneto-transport across the continuous MIT, which has

long been an interesting issue in the literature. I have tested my theoretically determined

quantum critical exponents with the experimentally determined (on Nb vacancies disorder

NbN) critical exponents. I have explicitly showed that like dc resistivity, hall conductiv-

ity and thermal transport coefficients also showed quantum critical behaviour close to the

MIT but with different with critical exponents. This gave us the idea of two relaxation

time in spinfull FKM with Hubbard like interaction [14]. At the end, I have studied the

optical conductivity and dielectric response in this model using CDMFT technique. I have

found that the model shows "Universal Dielectric Response" (UDR), followed by a super-

linear power-law increase in their optical responses over exceptionally broad frequency

regimes as experiment predicted.
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10.1 Future Work

Our finding demonstrate the Mott-like metal-insulator transition (MIT) in binary disor-

der alloy which is known as disorder induced MIT. The semi-analytical cluster schemes

discussed here can be used as an advanced approximation along with CPA for disordered

binary alloys in the context of ab-initio electronic structure calculations for disordered

systems. It could be more interesting if one can apply this technique to real 2D/3D sys-

tems like topological insulator, Weyl semimetal etc to explore the effect of disorder. En-

tropy is an important quantity to study classical (Landau) phase transition. So one can

also study the entropy in the FKM and show how it behaves across or near the MIT.

Hubbard model showed MIT of the first order (discontinuous) induced by strong electron-

electron interactions. Recent studies showed the quantum criticality ("hidden") in Hub-

bard model across the MIT. Therefore, one can survey the quantum criticality in a sys-

tem which treats both strong electron-electron interactions and disorder on equal footing.

There are many works of such studies using CPA+DMFT technique where they used self-

consistently perturbation theory (Iterated Perturbation Theory) to take into account e-e

interactions. But the Iterated Perturbation Theory (IPT) is best applicable for single-site

DMFT. It is very complicated to formulate perturbation theory within cluster DMFT. The

best possible way is to map the Hamiltonian to a multi-orbital (like bonding and antibond-

ing orbital for two sites cluster) model and then solve the Hamiltonian using multi-orbital

IPT+DMFT. Another possible impurity solver is the Continuous Time Quantum Monte

Carlo (CT-QMC) which is very good in case of cluster DMFT and it is numerically exact

upto some statistical error (monte carlo error). But the problem with this technique is that

it provides single-particle propagators on Matsubara frequency (finite temperature). So to

find the spectral function, one needs to use the Analytic continuation technique which is

very poor. The most widely used method to study disorder and interaction is the Typical

Medium Theory [26].
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Appendix A

Technique of Equation of Motion for

Calculating Green Function

Here, I will discuss in details the Equation of Motion technique [13] for fermions in both

zero and non-zero temperature. The technique is used in this thesis to calculate the Green

function of the impurity solver while applying DMFT (both single-site and cluster ) to

Falicov-Kimball Model.

A.1 Equation of motion for fermions at T = 0 (real time)

The real time retarded Green’s function is defined as:

〈Â(t); B̂(t′)〉 ≡ −iθ(t − t′)〈[Â(t), B̂(t′)]+〉

= GAB(t − t′) (A.1)
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Let us assume that t′ = 0, then I can write:

〈Â(t); B̂〉 = −iθ(t)〈[Â(t), B̂]+〉

= GAB(t) (A.2)

Now,

dGAB(t)
dt

= −i
dθ(t)

dt
〈[Â(t), B̂]+〉 − iθ(t)

d
dt
〈[Â(t), B̂]+〉

= −iδ(t)〈[Â(t), B̂]+〉 − iθ(t)〈
dÂ(t)

dt
B̂ + B̂

dÂ(t)
dt
〉

= −iδ(t)〈[Â(t), B̂]+〉 + θ(t)〈[Ĥ, Â(t)]B̂ + B̂[Ĥ, Â(t)]〉

(A.3)

In last line I used Heisenberg Equation of Motion:

dX̂
dt

=
i
~

[Ĥ, Â(t)]

with ~ = 1.

dGAB(t)
dt

= −iδ(t)〈[Â(t), B̂]+〉 + θ(t)〈[[Ĥ, Â(t)], B̂]+〉

= −iδ(t)〈[Â(t), B̂]+〉 − i(−iθ(t)〈[[Â(t), Ĥ], B̂]+〉)

= −iδ(t)〈[Â(t), B̂]+〉 − i〈[Â(t), Ĥ]; B̂〉

(A.4)

Now by Fourier transform of Equ. A.4 into ω+ ≡ + iη; η→ 0 − space, I get:

−iω
∫

dtei(ω+iη)t d
dt
〈Â(t); B̂〉 = −i

∫
dteiω+tδ(t)〈[Â(t), B̂]+〉

− i
∫

dteiω+t〈Â(t), Ĥ]; B̂〉 (A.5)
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⇒ −iω
∫

dt〈Â; B̂〉ω+ = −i〈[Â, B̂]+〉 − i〈[Â, Ĥ]; B̂〉 (A.6)

Here I have used,

∫
dtei(ω+iη)t〈Â(t); B̂〉 =

eiωt−ηt

iω
〈Â(t); B̂〉|t=∞t=−∞ −

∫
dt

eiωt

iω
d
dt
〈Â(t); B̂〉

= −

∫
dt

eiωt

iω
d
dt
〈Â(t); B̂〉 (A.7)

The first term vanishes as the upper limit t → ∞, the e−ηt → 0 and the θ(t) discards the

lower limit t → −∞. Hence the final expression for the Fermion in frequency space at

zero temperature is given as:

ω〈Â; B̂〉ω = 〈[Â, B̂]+〉 + 〈[Â, Ĥ]; B̂〉ω (A.8)
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A.2 Equation of motion for fermions at T , 0 (imaginary

time)

I will now formulate the equation of motion for fermions at finite temperature. The imag-

inary time Green function is defined as:

〈Â(τ); B̂(τ′)〉 ≡ −θ(τ − τ′)〈[Â(τ), B̂(τ′)]+〉

= GAB(τ − τ′) (A.9)

Let us assume that τ′ = 0, then I can write:

〈Â(τ); B̂〉 = −θ(τ)〈[Â(τ), B̂]+〉

= GAB(τ) (A.10)

Now, the imaginary time evolution for the Heisenberg operator can be written as,

Ô(τ) = e
K̂τ
~ Ô(0)e

−K̂τ
~ (A.11)

where, K̂ is the grand canonical Hamiltonian of the system,

K̂ = Ĥ − µN̂ (A.12)

Then the equation of motion corresponding to Ô(τ) as,

dÔ(τ)
dτ

=
1
~

[K̂, Ô(τ)] (A.13)
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As before for simplicity I considered, ~ = 1. I have,

dGAB(τ)
dτ

= −
dθ(τ)

dτ
〈[Â(τ), B̂]+〉 − θ(τ)

d
dτ
〈[Â(τ), B̂]+〉

= −δ(τ)〈[Â(τ), B̂]+〉 − θ(τ)〈
dÂ(τ)

dτ
B̂ + B̂

dÂ(τ)
dτ
〉

= −δ(τ)〈[Â(τ), B̂]+〉 + θ(τ)〈[K̂, Â(τ)]B̂ + B̂[K̂, Â(τ)]〉

= −δ(τ)〈[Â(τ), B̂]+〉 + θ(τ)〈[[K̂, Â(τ)], B̂]+〉

= −δ(τ)〈[Â(τ), B̂]+〉 − (−θ(τ)〈[[Â(τ), K̂], B̂]+〉)

= −δ(τ)〈[Â(τ), B̂]+〉 − 〈[Â(τ), K̂]; B̂〉

(A.14)

Now, in term of Matsubara frequency, ωn = 2nπ
β

for fermions. Using the above equation I

have,

∫ β

0
dτeiωnτ

d
dτ
〈Â(τ); B̂〉 =

∫ β

0
dτeiωnτδ(τ)〈[Â(τ), B̂]+〉

−

∫ β

0
dτeiωnτ〈Â(τ), K̂]; B̂〉 (A.15)

⇒ −iωn〈Â; B̂〉ωn = 〈[Â, B̂]+〉 − 〈[Â, K̂]; B̂〉 (A.16)

Here, I have used,

∫ β

0
dτeiωnτ〈Â(τ); B̂〉 =

eiωnτ

iωn
〈Â(τ); B̂〉 |τ=βτ=0 −

∫
dτ

eiωnτ

iωn

d
dτ
〈Â(τ); B̂〉 (A.17)

Now,

eiωnτ〈Â(τ); B̂〉 |τ=βτ=0 = eiωnβ〈Â(β); B̂〉 − 〈Â; B̂〉

= 0 (A.18)
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Thus, ∫ β

0
dτeiωnτ〈Â(τ); B̂〉 = −

∫
dτ

eiωnτ

iωn

d
dτ
〈Â(τ); B̂〉 (A.19)

and finally,

−iωn〈Â; B̂〉ωn = 〈[Â, B̂]+〉 − 〈[Â, K̂]; B̂〉 (A.20)

This is the equation of motion formalism for fermions in Matsubara frequency (or finite

temperature).
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Appendix B

Derivation of Bethe-Salpeter Equation

The generating function [107] with source field φσ in the grand canonical ensemble is

given as,

lnZ[φ] = lnTr[e−β(Ĥ−µN̂)Tτ(e−ψ
†

σ̄(1̄)φσ̄(1̄,2̄)ψσ̄(2̄))] (B.1)

Where, ψ†σ̄(1̄) is the creation operator at position and imaginary time (r1, τ1) and ψσ̄(2̄) is

the anhilliation operator at position and imaginary time (r2, τ2). Now, the Green function

in the presence of φσ is:

Gσ(1, 2; φ) = −〈ψσ(1);ψ†σ(2)〉φ = −
δlnZ[φ]
δφσ(2, 1)

(B.2)

The physical correlation function is obtained in the limit of {φ} = 0. In the usual practice

φ is kept finite in the intermediate steps of the calculation and at the end put {φ} = 0. Now,

using the Dyson’s equation one obtains the self-energy in the presence of the source field

φ as,

(G−1
0 − φ)G = 1 + ΣG;

G−1 = G−1
0 − φ − Σ (B.3)
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Now, the two-particle response function (four-point) can be obtained from the function

(Π) single-particle (two-point) propagator given as,

Π(1, 2, 3, 4; {φ}) = −〈ψσ(1)ψ†σ(2);ψσ(3)ψ†σ(4)〉φ

=
δG(1, 2; φ)
δφ(4, 3)

∣∣∣∣∣
{φ}=0

= −
δ2lnZ[φ]

δφ(4, 3)δφ(2, 1)

∣∣∣∣∣
{φ}=0

(B.4)

Now, using the matrix notation one can use the propagator G as,

GG−1 = 1 (B.5)

Differentiating with respect to the source field φ, I find,

δG
δφ

G−1 + G
δG−1

δφ
= 0 (B.6)

Using Dyson’s equation G−1 = G−1
0 − φ − Σ, I can write as,

δG
δφ

= −G
δG−1

δφ
G = G.G + G

δΣ

δφ
G (B.7)

Using chain rule one can have, δΣ
δφ

= δΣ
δG

δG
δφ

. Substituting this into the equation B.7 I have,

δG
δφ

= G.G + G
[
δΣ

δG
δG
δφ

]
G (B.8)

If I rearrange slightly I have,

δG
δφ

= G.G + GG
[
δΣ

δG
δG
δφ

]
(B.9)

Now, the interacting two particle function Π = δG
δφ

and the non-interacting two particle

function Π0 = G.G. The two-particle irreducible particle-hole vertex function is defined

as:

Γ =
δΣ

δG
(B.10)
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So using equation B.9 one can write the two-particle function analogous to the Dyson-like

equation for single-particle function, given of the form:

Π = Π0 + Π0ΓΠ (B.11)

This equation is known as Bethe-Salpeter Equation (BSE) which is used to calculate the

two-particle response function.
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Appendix C

Response to a Sudden Local Quench

(Loschmidt Echo)

Here, I will show in details the many-electron response on the core hole due to the switch-

ing on a sudden local potential [73] (known as Loschmidt echo). The Green function of

the core-hole is given as,

Gh(t) = −i〈Td(t)d†(0)〉 (C.1)

where d†, d are the creation and annihilation operator of the core-hole, respectively. The

very useful way to study the core-hole spectrum is by the linked cluster expansion. The

Loschmidt echo is given as,

ρ(t) = 〈Texp[−i
∫ t

0
dt1V(t1)]〉 = exp[

∞∑
l=1

Fl(t)] (C.2)

Fl(t) =
(−1)l

l

∫ t

0
dt1...

∫ t

0
〈TV(t1)...V(t1)〉connected (C.3)

The first term F1(t) is linear in t and is a self energy term given as,

F1(t) = −i
∫ t

0
dt1〈V(t1)〉 =

−it
N

∑
k

V(k,k)nF(ε(k)) (C.4)
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The exact self-energy of the core-hole is of the form:

Ei = −
2~2

m

∑
l

(2l + 1)
∫ kF

0
kdkδl(k) (C.5)

The factor V(k,k) is the first term in an expansion which should give Fumi’s result Ei

when all terms are summed. The second term F2(t) is given as:

F2(t) =
(−i)2

2

∫ t

0
dt1

∫ t

0
dt2〈|TtV(t1)V(t2)|〉

=
(−i)2

2N2

∫ t

0
dt1

∫ t

0
dt2

∑
k1 k2σ

∑
k3 k4σ

′

V(k1, k2)V(k3, k4)

× 〈TtC
†

k1σ
(t1)Ck2σ(t1)C†

k3σ
′ (t2)Ck4σ

′ (t2)〉 (C.6)

Evaluating the time integrals directly I have,

F2(t) =
(−i)2

2N2

∫ t

0
dt1

∫ t

0
dt2

∑
k1 k2σ

V(k1, k2)V(k2, k1)

× G(k1, t1 − t2)G(k2, t1 − t1)

=
(−i)2

2N2

∫ t

0
dt1

∫ t

0
dt2

∑
k1 k2σ

|V(k1, k2)|2ei(t1−t2)(ε2−ε1)

× [Θ(t1 − t2) − n1][Θ(t2 − t1) − n2] (C.7)

Hence,

F2(t) =
1
N2

∑
k1 k2σ

|V(k1, k2)|2
[ itn1

ε1 − ε2
−

n1(1 − n2)
(ε1 − ε2)2 (1 − eit(ε1−ε2))

]
(C.8)

The factor 1
2 in front vanished, because each term in the final result appear twice. The

first term is linear in t, is dropped as it only contributes to the self-energy. So, with the

remaining term the expression for the F2(t) is:

F2(t) = −
2

N2

∑
k1 k2

|V(k1, k2)|2
nF(εk1)[1 − nF(εk2)]

(ε1 − ε2)2 (1 − eit(εk1−εk2 )) (C.9)

186



Re-write this with the assumption that the hole potential V(k,k′) only depends on the

difference of its momentum V(k − k′) and with the changing variable k1 = k2 + q I have

the second order contribution of the diagram is:

F(t) =

∫ ∞

−∞

g(ω)
ω2 (e−iωt − 1)dω (C.10)

We take g(ω) to be of the form,

g(ω) = 2V2
0ω

αθ(ω)θ(ξ − ω) where, α < 1

Inserting g(ω) into equation(1) we have,

F(t) = 2V2
0

∫ ξ

0

1
ω2−α (e−iωt − 1)dω (C.11)

For t small (t � 1
ξ
),

we can expand the exponential to first order as ωt < 1, then from equation(2) we have,

F(t) = 2V2
0

∫ ξ

0

−iωt
ω2−αdω

= −
2V2

0 it
α

ωα|
ξ
0

= −
2V2

0 itξα

α

(C.12)

For large t (t >> 1
ξ
),

For that ωt > 1, hence the exponential term will oscillate quickly and we can qualitatively

ignore that term. Then the integration is not valid at ω = 0. So we use a lower cut-off to

avoid the divergence at ω = 0. Hence we have,

F(t) ≈ −2V2
0

∫ ξ

1
t

dω
ω2−α

=
2V2

0

(1 − α)
[ξα−1 − t1−α]

≈ −
2V2

0

(1 − α)
t1−α

(C.13)
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Now, the Loschmidt echo ρ(t) is define by,

ρ(t) = e−iεhtexp[F(t)] (C.14)

Putting the value of F(t) for large t limit we have,

ρ(t) = e−iεhtexp[−
2V2

0 t1−α

1 − α
]

≈ exp[−
2V2

0 t1−α

1 − α
]

(C.15)

Hence, at t → ∞, ρ(t) vanishes exponentially which is the signature of many body local-

ized states. Now, the hole spectrum is given by,

S (ν) =
1

2π

∫ ∞

−∞

dteiνtexp[F(t)] (C.16)

So for t → ∞ i.e. for ν→ 0 the hole spectrum is given by,

S (ν) =
1

2π

∫ ∞

−∞

dteiνtexp[−
2V2

0 t1−α

1 − α
] (C.17)

Now for Fermi liquid metallic case,

g(ω) = 2V2
0ωθ(ω)θ(ξ − ω)

For large t (t >> 1
ξ
),

F(t) ≈ −2V2
0 log(ξt) t �

1
ξ

(C.18)

Now, the Loschmidt echo ρ(t) for t → ∞ is define by,

ρ(t) = e−iεht(ξt)−2V2
0 (C.19)

Which vanishes at large t in power law.
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Appendix D

Linear Response Theory

D.1 General Kubo Formula

Linear Response Theory states that the response to a weak external perturbation is propor-

tional to the perturbation, and therefore all one needs to understand is the proportionality

constant.

Among the numerous applications of the linear response formula, one can mention charge

and spin susceptibilities of e.g. electron systems due to external electric or magnetic

fields.

Consider a quantum system described by the (time independent) Hamiltonian H0.Then

expectation value of a physical quantity, described by the operator A, can be evaluated as,

〈A〉 =
1
Z0

Tr[ρ0A] =
1
Z0

∑
n

〈n | A | n〉e−βEn (D.1)

where, ρ0 is the density operator given by,

ρ0 = e−βH0 =
∑

n

| n〉〈n | e−βEn (D.2)
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and Z0 = Tr[ρ0] is the partition function, {| n〉} is the complete sets of eigenstates corre-

sponds to the unperturbed Hamiltonian H0.

Suppose now that at some time, t = t0 , an external perturbation is applied to the system,

driving it out of equilibrium.Then Hamiltonian is,

H(t) = H0 + H′(t)θ(t − t0) (D.3)

{| n(t)〉} is the complete sets of eigenstates corresponds to the Hamiltonian H(t).

〈A(t)〉 =
1
Z0

Tr[ρ(t)A] =
1
Z0

∑
n

〈n(t) | A | n(t)〉e−βEn (D.4)

ρ(t) =
∑

n

| n(t)〉〈n(t) | e−βEn (D.5)

The time dependence of the states | n(t)〉 is of course governed by the Schrödinger equa-

tion,

i∂t | n(t)〉 = H(t) | n(t)〉 (D.6)

Since H′(t) is to be regarded as a small perturbation, it is convenient to utilize the interac-

tion picture representation | nI(t)〉. Then,

| n(t)〉 = e−iH0t | nI(t)〉 = e−iH0tÛ(t, t0) | nI(t0)〉 (D.7)

where by definition, | nI(t0)〉 = eiH0t0 | n(t0)〉 =| n〉

To linear order in H′(t), Û(t, t0) = 1 − i
∫ t

t0
dt′H′(t).Inserting these into equation(4) I have,

〈A(t)〉 = 〈A〉0 − i
∫ t

t0
dt′

1
Z0

∑
n

e−βEn〈n(t0) | Â(t)Ĥ′(t) − Ĥ′(t)Â(t) | n(t0)〉

= 〈A〉0 − i
∫ t

t0
dt′〈[Â(t), Ĥ′(t′)]〉0
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Then,

δ〈A(t)〉 = 〈A(t)〉 − 〈A〉0 = int∞t0 dt′CR
AH′(t, t

′)e−η(t−t′) (D.8)

where,

CR
AH′(t, t

′)e−η(t−t′) = −iθ(t − t′)〈[Â(t), Ĥ′(t′)]〉0 (D.9)

D.2 Kubo Formula for Conductivity

Consider a system of charged particles, electrons say, which is subjected to an external

electromagnetic field. The electromagnetic field induces a current, and the conductivity

is the linear response coefficient.

Jαe (r, t) =

∫
dt′

∫
dr′

∑
β

σαβ(rt, r′t′)Eβ(r′, t′) (D.10)

Where, σαβ(rt, r′t′) is the conductivity tensor. The electric field E is given by,

E(r, t) = −∆rφext(r, t) − ∂tA(r, t) (D.11)

The perturbing term in the Hamiltonian due to the external electromagnetic field is given

by upto the linear order of the external potential,

Hext = −e
∫

drρ(r)φext(r, t) + e
∫

drJ(r).A(r, t) (D.12)

Let A0 denote the vector potential in the equilibrium, i.e. prior to the onset of the pertur-

bation Aext , and let A denote the total vector potential. Then I have,

A = A0 + Aext (D.13)

The current operator has two components the diamagnetic term and the paramagnetic
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term:

J(r) = J∆(r) +
e
m

A(r)ρ(r) (D.14)

I choose gauge in such a way that the scalar external potential is zero i.e. φext = 0. Since,

∂t becomes −iω in the frequency domain I have, Aext(r, ω) = 1
iωEext(r, ω), the external

perturbation in frequency domain:

Hext(ω) =
e

iω

∫
drJ(r).Eext(r, ω) (D.15)

In frequency domain I have,

Jαe (r, ω) =

∫
dr′

∑
β

σαβ(r, r′, ω)Eβ(r′, ω) (D.16)

The total current is:

J = J∆ +
e
m

(A0 + Aext)ρ

J0 = J∆ +
e
m

A0ρ (D.17)

Since I am interested in the linear response , thus neglecting the term proportional to

Eext.Aext the perturbative Hamiltonian,

Hext(ω) =
e

iω

∫
drJ0(r).Eext(r, ω) (D.18)

The expectation value of the current I write,

〈J(r, ω)〉 = 〈J0(r, ω)〉 + 〈
e
m

Aext(r, ω)ρ(r)〉 (D.19)

For the last term in equation(20) I use that to linear order in Aext the expectation value can
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be evaluated in the equilibrium state,

〈
e
m

Aext(r, ω)〉 ≈
e
m

Aext(r, ω)〈ρ(r)〉0 =
e

iωm
Eext(r, ω)〈ρ(r)〉0 (D.20)

Thus the expectation value of current reads:

〈J(r, ω)〉 = 〈J0(r, ω)〉 +
e
m
〈ρ(r)〉0Aext(r, ω) (D.21)

where first term is:

〈J0(r, ω)〉 =

∫
dr′

∑
β

ΠR(ω)
e

iω
Eβ(r′, ω) (D.22)

Now, Je = −e〈J〉 Hence the final expression for the conductivity tensor is

σαβ(r, r′, ω) =
ie2

ω
ΠR
αβ(r, r

′, ω) +
e2n(r)
iωm

δ(r − r′)δαβ, (D.23)

In the time domain retarded current-current correlation function is given by,

ΠR
αβ(r, r

′,t − t′) = −iθ(t − t′)〈[Ĵα0 (r, t), Ĵβ0(r′, t′)]〉0 (D.24)
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Appendix E

Calculation of Fermi Velocity (〈v2〉(ε)

)in the Conductivity Expression

The expression for the optical conductivity as derived in the Chapter 7 is given in the limit

d → 0 as,

σ(ω) = σ0

∫ ∞

−∞

dερ̃(ε)
∫ ∞

−∞

dνA(ε, ν)A(ε, ω + ν)
f (ν) − f (ω + ν)

ω
(E.1)

where, A(ε, ω) is the spectral function, f (ω) is the Fermi-function, σ0 = 2πe2

~2
N
V , and

ρ̃(ε) :=
1
N

∑
k

| vk |
2 δ(ε − εk) := 〈| v |2〉(ε)ρ(ε) (E.2)

where, ρ(ε) is the non-interacting density of state (DOS) is given as,

ρ(ε) =
1
N

∑
k

δ(ε − εk) (E.3)

with εk is the non-interacting dispersion relation. For hyper-cubic lattice it is given as,

εhc
k = −2t

∑d
α=1 cos(kα) which for the proper scaling t = t∗/

√
2d leads to a Gaussian DOS
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for d → ∞,

ρhc(ε) =
1
√

2πt8
Exp[−

ε2

2t∗2
] (E.4)

In the hyper-cubic lattice in d −→ ∞, the momentum dependence of the Fermi velocity

vk becomes irrelevant, for unit hopping (t) and unit lattice spacing one can show that,

ρ̃hc(ε) = ρhc(ε).

Now, my aim is calculate the value of ρ̃(ε) or 〈v2〉(ε) for any arbitrary lattice structure

(given DOS (ρ(ε))) using the DOS of hyper-cubic lattice (ρhc(ε)) at d → ∞ following the

method developed in [16].

Let us start with the non-interacting Hamiltonian as,

H0 =
∑
i,σ

∑
δ

tδc
†

Riσ
c†Ri+δ,σ

=
∑
k,σ

ε(k)nk,σ (E.5)

where, the hopping distance || δ ||=
∑d
α=1 | δα | is:

ε(k) =

∞∑
D=1

εD(k), (E.6)

with εD(k) =
∑
||δ||=D tδeiδ.k With some algebra one can derive the recursion relation for

εD(k) as,

ε(k) =

∞∑
D=1

t∗D
√

D!
HeD(εhc

k ) =: F (εhc
k ) (E.7)

Using the orthogonality of the Hermite polynomials, the hopping matrix elements can be

expressed in terms of the transformation function F (x) as,

t∗D =
1

√
2πD!

∫ ∞

−∞

dεF (ε)HeD(ε)e−
ε2
2 (E.8)

Specializing on the case of a monotonic transformation function F (x), one can write the

ρ(ε) as,

ρ(ε) =
1

F ′(F −1(ε))
ρhc(F −1(ε)) (E.9)
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Here, F ′(x) is the derivative of F (x). From the above equation one can find,

F −1(ε) =
√

2er f −1(2
∫ ε

−∞

dε′ρ(ε′) − 1). (E.10)

Then, the Fermi-velocity vk = ∇εk can be computed as,

vk = F ′(F −1(ε))vk
hc =

ρhc(
√

2er f −1(2
∫ ε

−∞
dε′ρ(ε′) − 1))

ρ(ε)
vk

hc (E.11)

For practical used the general formalism proceed as follows:

1. calculate F −1(ε) from arbitrary DOS (ρ(ε)) using Equation E.10.

2. Obtain F (x) by inverting the function F −1(ε).

3. Finally, calculate 〈v2〉(ε) or ρ̃(ε) using equation E.11 for the arbitrary DOS (ρ(ε)).
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Appendix F

Calculation of the transport coefficients:

L11, L12, L21 and L22

Transport properties are calculated using Kubo-Greenwood formalism. Here, I will give

in details the calculation [38] of transport coefficients: L11, L12, L21, L22 for Falicov-Kimball

Model (FKM). It is noted that the calculation of L11 have provided in detail in Chapter 7

and L12 = L21. Therefore here I will present the calculations of L12 and L22 only using

Freericks et all. [37].

The electron (particle) current operator is given as,

j =
∑
qσ

vqc†qσcqσ, (F.1)

where the velocity operator is vq = ∇qε(q) and the Fourier transform of the creation

operator is c†q =
∑

j exp[iq · R j]c
†

j /N. The heat current operator is:

jQ =
∑
qσ

(εq − µ)vqc†qσcqσ

+
U
2

∑
qq′σ

W(q − q′)[vq + vq′]c†qσcq′σ, (F.2)
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where W(q) =
∑

j exp(−iq · R j)w j/N. The heat current can be broken into two pieces: (i)

first term is the kinetic-energy part jK
Q and (ii) second term is the potential energy jP

Q.

Now, at zero frequency the Onsager coefficients are defined as,

L11 = lim
ν→0

Re
i
ν

L̄11(ν),

L̄11(iνl) = πT
∫ β

0
dτeiνlτ〈Tτ j†α(τ) jβ(0)〉, (F.3)

where νl = 2πTl is the Bosonic Matsubara frequency, the τ-dependence of the operator is

with respect to the full Hamiltonian. Similar definitions hold for the other coefficients:

L12 = lim
ν→0

Re
i
ν

L̄12(ν),

L̄12(iνl) = πT
∫ β

0
dτeiνlτ〈Tτ j†α(τ) jQβ(0)〉, (F.4)

and

L22 = lim
ν→0

Re
i
ν

L̄22(ν),

L̄22(iνl) = πT
∫ β

0
dτeiνlτ〈Tτ j†Qα(τ) jQβ(0)〉. (F.5)

In all of these equations, the subscripts α and β denote the respective spatial index of the

current vectors.

One can divide the heat current into two pieces, one corresponding to the kinetic energy

and one corresponding to the potential energy. This allows me to write L12 = LK
12 + LP

12.

The derivation for the kinetic energy piece follows exactly like the derivation for L11

except there is an extra factor of ε − µ that appears. The integral over ε can then be

performed straightforwardly producing

LK
12 = lim

ν→0

Tσ0

e2 δαβ

∫ ∞

−∞

dω
f (ω) − f (ω + ν)

ν

× Re
{
−

[ω − Σ(ω)]G(ω) − [ω + ν − Σ(ω + ν)]G(ω + ν)
ν + Σ(ω) − Σ(ω + ν)
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+
[ω − Σ∗(ω)]G∗(ω) − [ω + ν − Σ(ω + ν)]G(ω + ν)

ν + Σ∗(ω) − Σ(ω + ν)

}
. (F.6)

Evaluating the limit ν→ 0 is simple. The final result is

LK
12 =

Tσ0

e2

∫ ∞

−∞

dω
(
−

d f (ω)
dω

)
{[ω − ReΣ(ω)]τ(ω)

− 2ImΣ(ω)Im[(ω + µ − Σ(ω))G(ω)]}, (F.7)

with τ(ω) defined as,

τ(ω) =
ImG(ω)
ImΣ(ω)

+ 2 − 2Re{[ω + µ − Σ(ω)]G(ω)}. (F.8)

Replacing the momentum-dependent operator W(q− q′) by its Fourier transform. Simpli-

fying the expression for L̄P
12 I have,

L̄P
12(iνl) =

πTU
2

∫ β

0
dτeiνlτ

∑
qq′σσ′

1
N

∑
j

vqαvq′β

×

[
e−iq′·R j〈Tτw jc†qσ(τ)cqσ(τ)c†q′σ′(0)c jσ′(0)〉

+ eiq′·R j〈Tτw jc†qσ(τ)cqσ(τ)c†jσ′(0)cq′σ′(0)〉
]
. (F.9)

Noting that the w j operator commutes with the Fermionic operators, allows us to use

Wick’s theorem to rewrite the terms in the square bracket as

1
N

∑
j

[
−e−iq·R j〈Tτw jc†qσ(τ)c jσ(0)〉Gqσ(τ)

+ eiq·R j〈Tτw jcqσ(τ)c†jσ(0)〉Gqσ(−τ)
]
δqq′δσσ′ , (F.10)

The correlation functions in Eq. (F.10) can be evaluated by taking the derivative with

respect to the components of an infinitesimal field −
∑

j h jw j. These correlation functions

have a factor of exp[−βH] in the numerator and a factor of Z in the denominator. In

addition, the τ-dependence of the operators arises from factors of exp[±τH]. Since the
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operator w j commutes with all Fermionic operators, it is easy to verify that the expression

in Eq. (F.10) becomes

−
1
N

∑
j

[
Gqσ(τ)

(
T
∂

∂h j
+ 〈w j〉

)
Gqσ(−τ)

+ Gqσ(−τ)
(
T
∂

∂h j
+ 〈w j〉

)
Gqσ(τ)

]
δqq′δσσ′ , (F.11)

which follows by first removing the w j operator through the derivative, then expressing

the Fermionic operator at site j through a Fourier transform, and finally evaluating the

Fermionic averages. Substituting this result into Eq. (F.9) I have,

L̄P
12(iνl) = −

πT 2U
2N

∑
n

∑
qσ

∑
j

vqαvqβ

×

(
{[T

∂

∂h j
+ 〈w j〉]Gqσ(iωn)}Gqσ(iωn+l)

+ Gqσ(iωn)[T
∂

∂h j
+ 〈w j〉]Gqσ(iωn+l)

)
. (F.12)

The derivatives need to be computed. Writing the momentum-dependent Green’s function

as a Fourier transform

Gqσ(iωn) =
1
N

∑
i− j

eiq·(Ri−R j)Gi jσ(iωn), (F.13)

and using the identity

Gi jσ(iωn) =
∑

kl

Gikσ(iωn)G−1
klσ(iωn)Gl jσ(iωn), (F.14)

allows us to compute the derivative as

∂

∂h j
Gqσ(iωn) =

1
N

∑
i− j

eiq·(Ri−R j)Gi jσ(iωn)

×
∂Σ j jσ(iωn)

∂h j
G j jσ(iωn). (F.15)

202



But in a homogeneous phase, the derivative of the local self energy with respect to the

local field, and the local Green’s function are both independent of the site j, so I finally

have,
∂Gqσ(iωn)

∂h
= Gnσ

∂Σnσ

∂h
Gqσ(iωn). (F.16)

Since the self energy depends only on Gn and w1, the derivative can be computed by

taking partial derivatives and using the chain rule

∂Σnσ

∂h
=

∂Σnσ
∂w1

∂w1
∂h

1 −G2
nσ

∂Σnσ
∂Gnσ

. (F.17)

Each of the derivatives in Eq. (F.17) can be found directly

∂Σnσ

∂w1
=

U
1 + Gnσ(2Σnσ − U)

, (F.18)

∂w1

∂h
=

w1(1 − w1)
T

, (F.19)

and

1 −G2
nσ
∂Σnσ

∂Gnσ
=

(1 + GnσΣnσ)(1 + Gnσ[Σnσ − U])
1 + Gnσ(2Σnσ − U)

. (F.20)

Substituting these derivatives into Eq. (F.17) and performing some straightforward sim-

plifications that involve the quadratic equation that the self energy satisfies finally yields

[T
∂

∂h
+ 〈w〉]Gqσ(iωn) =

Σnσ

U
Gqσ(iωn). (F.21)

Now I can perform the analytic continuation. First I substitute Eq. (F.21) into Eq. (F.12)

and I note that the sum over j cancels the factor of 1/N

L̄P
12(iνl) = −

πT 2

2

∑
n

∑
qσ

vqαvqβ

× [Σσ(iωn) + Σσ(iωn+l)]Gqσ(iωn)Gqσ(iωn+l). (F.22)

Next, I rewrite the sum over Matsubara frequencies as a contour integral and perform the
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analytic continuation in the exact same way as before. If I then evaluate LP
12 I find

LP
12 = lim

ν→0
−

Tσ0

2e2ν

∫ ∞

−∞

dω
∫ ∞

−∞

dερ(ε)

× Re
[

f (ω){[Σ(ω) + Σ(ω + ν)]Gq(ω)Gq(ω + ν)

− [Σ∗(ω) + Σ(ω + ν)]G∗q(ω)Gq(ω + ν)}

+ f (ω + ν){[Σ∗(ω) + Σ(ω + ν)]G∗q(ω)Gq(ω + ν)

− [Σ∗(ω) + Σ∗(ω + ν)]G∗q(ω)G∗q(ω + ν)}
]
. (F.23)

Now the integral over ε can be performed and the limit ν→ 0 can be taken. It becomes

LP
12 =

Tσ0

e2

∫ ∞

−∞

dω
(
−

d f (ω)
dω

)[
ReΣ(ω)τ(ω)

+ 2ImΣ(ω)Im[{ω + µ − Σ(ω)}G(ω)]
]
. (F.24)

Adding together Eqs. (F.7) and (F.24) yields the Jonson-Mahan result of

L12 =
Tσ0

e2

∫ ∞

−∞

dω
(
−

d f (ω)
dω

)
τ(ω)ω. (F.25)

Now, I will do the derivation for the coefficient L22. Like before, I separate this into pieces

corresponding to the kinetic energy and the potential energy: L22 = LKK
22 +LKP

22 +LPK
22 +LPP

22 .

Due to the symmetry, I have LKP
22 = LPK

22 . The kinetic energy piece is simple to calculate.

Like in our derivation for LK
12, the steps are identical to the derivation for L11 except I have

an extra factor of (ε − µ)2. Performing the integration over ε and collecting terms finally

yields

LKK
22 =

Tσ0

e2

∫ ∞

−∞

dω
(
−

d f (ω)
dω

)
×

{
[ω − ReΣ(ω)]2τ(ω) + ImG(ω)ImΣ(ω)

− 2[ImΣ(ω)]2 + 2[ImΣ(ω)]2Re{[ω + µ − Σ(ω)]G(ω)}

− 4[ω − ReΣ(ω)]ImΣ(ω)Im{[ω + µ − Σ(ω)]G(ω)}
}
. (F.26)
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The derivation for LKP
22 = LPK

22 is identical to that of LP
12 except I have an extra factor of

(ε − µ). Performing the integration over ε then produces

LKP
22 =

Tσ0

e2

∫ ∞

−∞

dω
(
−

d f (ω)
dω

)
×

{
[ω − ReΣ(ω)]ReΣ(ω)τ(ω) − ImG(ω)ImΣ(ω)

+ 2[ImΣ(ω)]2 − 2[ImΣ(ω)]2Re{[ω + µ − Σ(ω)]G(ω)}

+ 2[ω − 2ReΣ(ω)]ImΣ(ω)Im{[ω + µ − Σ(ω)]G(ω)}
}
. (F.27)

The final term I must evaluate is LPP
22 . I proceed by an alternate method based on the equa-

tion of motion (EOM) technique. The EOM for the Fermionic creation and annihilation

operators (in the momentum basis) are

∂

∂τ
c†qσ(τ) = [ε(q) − µ]c†qσ(τ) + U

∑
k

W(k)c†q+kσ(τ), (F.28)

and
∂

∂τ
cqσ(τ) = −[ε(q) − µ]cqσ(τ) − U

∑
k

W(k)cq−kσ(τ). (F.29)

These EOMs can be employed to express the correlation function of the heat-current

operators in terms of derivatives with respect to imaginary time as shown below

L̄PP
22 (iνl) =

πTU2

4

∫ β

0
dτeiνlτ

∑
qq′q′′q′′′σσ′

(vqα + vq′′′α)(vq′β + vq′′β)

× 〈TτW(q − q′′′)W(q′ − q′′)c†qσ(τ)cq′′′σ(τ)

c†q′σ′(0)cq′′σ′(0)〉

= πT
∫ β

0
dτeiνlτ

∑
qq′σσ′

vqαvq′β lim
τ′→τ−

lim
τ′′′→τ′′−→0+

〈Tτ[{
1
2

(∂τ − ∂τ′) − (εq′ − µ)}c†q′σ(τ)cq′σ(τ′)]

× [{
1
2

(∂τ′′ − ∂τ′′′) − (εq − µ)}c†qσ′(τ
′′)cqσ′(τ′′′)]〉. (F.30)

Now each of the operator averages can be expressed in terms of Green’s functions, since
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the velocity factors guarantee there will be no vertex corrections. Noting further, that the

integrals will only contribute if α = β finally yields

L̄PP
22 (iνl) = πT

∫ β

0
dτeiνlτ

∑
qσ

v2
qα

×

[1
2
∂τGqσ(τ)∂τGqσ(−τ) −

1
4
∂2
τGqσ(τ)Gqσ(−τ)

−
1
4

Gqσ(τ)∂2
τGqσ(−τ)

+(εq − µ){Gqσ(τ)∂τGqσ(−τ) − ∂τGqσ(τ)Gqσ(−τ)}

−(εq − µ)2Gqσ(τ)Gqσ(−τ)
]
. (F.31)

I need to be able to produce expressions for the derivatives of the Green functions. I do so

by first writing the Green’s function as a Fourier series over the Matsubara frequencies,

and then taking the derivative into the Matsubara summation. Since I am interested only

in 0 < τ < β, this procedure has no convergence issues. Likewise, one is also able to take

the second derivative in this fashion. I find for 0 < τ < β

∂τGqσ(τ) = −(εq − µ)Gqσ(τ)

− T
∑

m

e−iωmτ
Σmσ

iωm + µ − Σmσ − εq
,

∂2
τGqσ(τ) = +(εq − µ)2Gqσ(τ)

+ (εq − µ)T
∑

m

e−iωmτ
Σmσ

iωm + µ − Σmσ − εq

+ T
∑

m

e−iωmτ
iωmΣmσ

iωm + µ − Σmσ − εq
, (F.32)

with similar formulae for Gqσ(−τ). Substituting the derivatives from Eq. (F.32) into

Eq. (F.31), and then simplifying the result finally produces

L̄PP
22 (iνl) = −

πT 2

4

∑
n

∑
qσ

v2
qα

×

[
{Σσ(iωn) + Σσ(iωn+l)}2Gqσ(iωn)Gqσ(iωn+l)

+Σσ(iωn+l)Gqσ(iωn) + Σσ(iωn)Gqσ(iωn+l)
]
. (F.33)
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Performing the analytic continuation and simplifying I have,

LPP
22 =

Tσ0

e2

∫ ∞

−∞

dω
(
−

d f (ω)
dω

)
×

{
[ReΣ(ω)]2τ(ω) − 2[ImΣ(ω)]2 + ImΣ(ω)ImG(ω)

+ 2[ImΣ(ω)]2Re{[ω + µ − Σ(ω)]G(ω)}

+ 4ReΣ(ω)ImΣ(ω)Im{[ω + µ − Σ(ω)]G(ω)}
}
. (F.34)

Summing together Eq. (F.26), twice Eq. (F.27), and Eq. (F.34) gives:

L22 =
Tσ0

e2

∫ ∞

−∞

dω
(
−

d f (ω)
dω

)
τ(ω)ω2. (F.35)

I can also generalize the original Jonson-Mahan argument to prove relations between L21

and L11 and between L22 and L12. I begin with the generalized two-particle correlation

function

Fαβ(τ, τ′, τ′′, τ′′′) =∑
qq′σσ′

vqαvq′β〈Tτc†qσ(τ)cqσ(τ′)c†q′σ′(τ
′′)cq′σ′(τ′′′)〉. (F.36)

In the infinite-dimensional limit, the two-particle correlation function is expressed by just

its bare bubble because the irreducible charge vertex has a different symmetry than vq.

Hence, I have

Fαβ(τ, τ′, τ′′, τ′′′)

= −
∑
qσ

v2
qαδαβGqσ(τ′′′ − τ)Gqσ(τ′ − τ′′). (F.37)

But

Gqσ(τ) =

∫
dωA(k, ω)e−ωτ[1 − f (ω)], (F.38)
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for τ > 0 and

Gqσ(τ) =

∫
dωA(k, ω)e−ωτ[− f (ω)], (F.39)

for τ < 0. Substituting into Eq. (F.37), then have

Fαβ(τ, τ′, τ′′, τ′′′) =
δαβ

2d

∫
dερ(ε)

∫
dω

∫
dω′

× A(ε, ω)A(ε, ω′)eω(τ−τ′′′)−ω′(τ′−τ′′) f (ω)[1 − f (ω′)]. (F.40)

Using this function I can construct the relevant “polarization operators”. Recalling the

EOM in Eqs. (F.28) and (F.29) shows that

lim
τ′→τ−

1
2

(
∂

∂τ
−

∂

∂τ′

)∑
qσ

vqc†qσ(τ)cqσ(τ′) = jQ(τ). (F.41)

The Jonson-Mahan theorem will hold for any Hamiltonian that satisfies Eq. (F.41). The

“polarization operators” then become

L̄11 = πT
∫ β

0
eiνlτF(τ, τ−, 0, 0), (F.42)

for the conductivity,

L̄12 = πT
∫ β

0
eiνlτ

1
2

(
∂

∂τ
−

∂

∂τ′

)
F(τ, τ′, 0, 0), (F.43)

(in the limit where τ′ → τ−) for the thermopower, and

L̄22 = πT
∫ β

0
eiνlτ

1
4

(
∂

∂τ
−

∂

∂τ′

) (
∂

∂τ′′
−

∂

∂τ′′′

)
× F(τ, τ′, τ′′, τ′′′), (F.44)

(in the limit where τ′ → τ−, τ′′′ → τ′′−, and τ′′ → 0+) for the thermal conductivity. Be-

cause of Eq. (F.40), the analytic continuation is trivial (one first converts from imaginary

time to Matsubara frequencies and then performs the Wick rotation to the real frequency
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axis), and using the identity

f (ω) − f (ω + ν) = − f (ω)[1 − f (ω + ν)][e−βν − 1], (F.45)

then I can easily compute that

L12 =
Tσ0

e2

∫
dερ(ε)

∫
dω

(
−

d f (ω)
dω

)
A2(ε, ω)ω, (F.46)

and,

L22 =
Tσ0

e2

∫
dερ(ε)

∫
dω

(
−

d f (ω)
dω

)
A2(ε, ω)ω2, (F.47)
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[8] Apinyan, V., and Kopeć, T. K. Excitonic phase transition in the extended three-

dimensional falicov–kimball model. Journal of Low Temperature Physics 176, 1

(Jul 2014), 27–63.

[9] Ashcroft, N., and Mermin, N. Solid state physics. Science: Physics. Saunders

College, 1976.

[10] Ashcroft, N. W., andMermin, N. D. Solid state physics.

[11] Baenninger, M., Ghosh, A., Pepper, M., Beere, H. E., Farrer, I., and Ritchie,

D. A. Low-temperature collapse of electron localization in two dimensions. Phys.

Rev. Lett. 100 (Jan 2008), 016805.

[12] Bardeen, J., Cooper, L. N., and Schrieffer, J. R. Theory of superconductivity.

Phys. Rev. 108 (Dec 1957), 1175–1204.

[13] Barman, H. Diagrammatic perturbation theory based investigations of the Mott

transition physics. PhD thesis, Ph. D. Thesis, Theoretical science unit, Jawaharlal

Nehru centre for advanced scientific research, Bangalore, India, 2013.

[14] Barman, H., Laad, M. S., and Hassan, S. R. Realization of a "two relaxation rates"

in the hubbard-falicov-kimball model. arXiv:1611.07594 (2016).

[15] Belitz, D., and Kirkpatrick, T. R. The anderson-mott transition. Rev. Mod. Phys.

66 (Apr 1994), 261–380.
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[103] Schäfer, T., Rohringer, G., Gunnarsson, O., Ciuchi, S., Sangiovanni, G., and

Toschi, A. Divergent precursors of the mott-hubbard transition at the two-particle

level. Phys. Rev. Lett. 110 (Jun 2013), 246405.

[104] Schotte, K. D., and Schotte, U. Tomonaga’s model and the threshold singularity

of x-ray spectra of metals. Phys. Rev. 182 (Jun 1969), 479–482.

[105] Schwiete, G., and Finkel’stein, A. M. Renormalization group analysis of thermal

transport in the disordered fermi liquid. Phys. Rev. B 90 (Oct 2014), 155441.

[106] Schwiete, G., and Finkel’stein, A. M. Thermal transport and wiedemann-franz

law in the disordered fermi liquid. Phys. Rev. B 90 (Aug 2014), 060201.
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