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Synopsis

The synthesis problem aims to find an algorithm, that when given a specification, generates

a program whose behaviour satisfies the given specification. When the synthesized program

is required to be a distributed program, that is, as a collection of interacting programs

implemented on a distributed system, we call it the distributed synthesis problem.

In this thesis, we study the distributed synthesis problem for certain simple distributed

systems that have the following operational template: The distributed system operates in

rounds. Each sub-system of the distributed system has access to read or write on some

boolean variables. At each round, the environment writes on some of the variables and

each program implemented on a sub-systems first reads the variables it has access to and

then writes on the variables it has access to. The behaviour of such a distributed system is

given by the sequence of reads and writes performed in each round. By a specification of a

distributed program we mean a property of the behaviour of the distributed program.

The distributed synthesis problem admits a natural correspondence with the winning strat-

egy problem for multi-agent imperfect information games and so we study this formulation

of the distributed synthesis problem. The correspondence can be explained informally as

follows: The input specification for the distributed synthesis problem is transformed to an

adversarial game between a coalition of agents and an environment-agent. The distributed

system now becomes a ‘action-labelled game graph’, where the vertices of the game graph

represent the states of the system, and the edges represent the state change due to the

read/write actions that label the edge. The behavioural specification becomes the winning

13



condition for the coalition. The game tree for this game is given by an ‘unravelling’ of this

game graph, where the nodes of the tree represent partial runs of the distributed system and

the ‘indistinguishability relation’ for an agent relates partial runs that are informationally

identical to an agent. A winning strategy for the coalition now corresponds to a distributed

program that satisfies the desired specification.

It is known due to [1] that the winning strategy problem for multi-agent imperfect infor-

mation games is unsolvable, even for very simple games and winning conditions. In the

equivalent setting of the distributed synthesis problem, it is known due to [2] that the syn-

thesis problem is unsolvable for distributed systems specified by means of certain simple

architectures with ‘LTL specifications’. They go on to show that the synthesis problem

is solvable for ‘hierarchical architectures’ with such specifications. Later it was shown

in [3] that the solvability can be extended to a larger class of architectures and for global

µ-calculus specifications, using the narrowing construction that they had used earlier. The

state-of-the-art result in the case was given in [4], where a criterion for architectures called

the ‘information forks’ is introduced, the absence of which is a necessary and sufficient

condition for solving the distributed synthesis problem for µ-calculus specifications. The

study of ‘local specifications’ for the synthesis problem was introduced in [5]. A local

specification is essentially a weaker notion of specification which is given as a conjunction

of the specifications for each sub-system of the distributed system. In this work they give a

necessary and sufficient condition for solving the distributed synthesis problem on ‘acyclic

architectures’ with local specifications given in linear temporal logics. Later in [6] that

this solution can be extended to the case of ‘flanked-pipelines with feedback’. We remark

here that this list of results is not meant to be comprehensive, but rather illustrative of the

state of research on this problem.

We study the winning strategy problem for multi-agent imperfect information games

with µ-calculus winning conditions (both local and otherwise), with an eye towards the

distributed synthesis problem. We remark here that the specification language of µ-calculus
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is at least as expressive as all the specification languages considered above. Our goal is to

obtain a purely ‘game-based’ solutions to the winning strategy problem, by means other

than the automata-theoretic solutions, which is the conventionally followed approach. The

advantage of the game approach is the robustness it offers to slight changes in the problem.

The contributions of this thesis can be broadly divided into four parts:

• We study a class of imperfect information games called games with recurring

common knowledge of state, and show that such games are solvable for winning

conditions given by ‘priority labelling’ of the game graph. This is intended as a

departure from the class of hierarchical games, which are the only previously known

case of multi-agent imperfect information games that admit a solution to the winning

strategy problem. We show that if a game satisfies the property of recurring common

knowledge of state, then there is an NEXPTIME algorithm that decides whether

a winning strategy exists for the game. Moreover, the winning strategy can be

synthesized in 2EXPTIME.

• We study a generic approach to solving imperfect information games, called the

retraction approach. The key idea here is the design of a class of structures, called

‘witnesses’, that witness the existence of a winning strategy in the game. Then we

define a generic operation called ‘retraction’, that transforms witnesses to possibly

smaller witnesses. We show that if a class of witnesses of a game, called canonical

witnesses, admit retraction to small witnesses, then it is a sufficient criteria for

solving the winning strategy problem.

• We consider the case of of architectures that admit weak-informedness ordering and

informedness ordering on its agents. These classes are known to have a decidable

distributed synthesis problem, and we give new proofs for these via the retraction

approach. We show that these architecture classes correspond to games that contain

no uniform-determinsitic fork-triples and fork-triples respectively, and that canonical

witnesses obtained from such games belong to a class of witnesses called modular
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witnesses. To solve the corresponding winning strategy problem, we show that

modular witnesses admit retractions to small witnesses.

• We introduce the class of weak-broadcast architectures and broadcast architectures,

and show that for the case of local specifications, these architecture have a decidable

distributed synthesis problem. The solution for this proceeds in two steps: first

we show that canonical witnesses for games corresponding to these classes can be

factorized into simpler witnesses, and second, we show that such witnesses admit

retractions to small witnesses by means of the retractions of their ‘factors’. We note

that these architecture classes subsume the known decidable classes in the case of

local specifications.
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Chapter 1

Introduction

A central challenge in computer science is to find algorithms that can determine if a

program meets a desired specification. This challenge has been approached in two different

ways, as a verification problem and a synthesis problem.

The verification problem aims to find algorithms, that when given a program and a specifica-

tion as input, determines if the behaviour of the program satisfies the given specification. A

fundamental result in this direction is Rice’s theorem [7], which says that any ‘behavioural’

property of a program, for example the property of termination of a program, cannot be

determined procedurally. Therefore the focus shifts to solving the verification problem for

classes of programs, that have either a finite state-space (that is, a finite-state automaton)

or an infinite but structured state-space (for example, a push-down automaton).

On the other hand the synthesis problem aims to find an algorithm, that when given a

specification, generates a program whose behaviour satisfies the given specification, when

it exists. Clearly, this is a harder problem as compared to the verification approach, but

with the obvious advantage that one now obtains a program that satisfies the specification.

Here again, the focus shifts to synthesizing programs that have either a finite state-space,

or an infinite but structured state-space.
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The subject matter of this thesis pertains to the synthesis problem. Among the many variants

of this question, depending on the chosen model of computation and the specification

language, our attention here is on models of computation that are reactive distributed

systems, and the specification language of µ-calculus. We call the synthesis problem in this

setting, as the distributed synthesis problem. We now describe the terminology referenced

here.

The standard notion of computation is that of a Turing machine, which operates as follows:

an input is presented to the Turing machine, which is then processed, and an output

delivered. However, many systems like operating systems, hardware controllers, etc.

which also perform computation, act quite differently. Such systems interact for ever with

an environment, and perform actions to maintain some invariant property of the system.

The term reactive refers to such systems, that interact continually with an environment.

Additionally, such systems may themselves be a collections of many interacting sub-

systems, in which each sub-system receives only a part of the input from the environment.

The term distributed refers to such systems, and we use the term centralized to refer to

systems that are not composed of multiple sub-systems. Moreover, we assume that the

system is synchronous, that is, it has a global clock that is available to all sub-systems. We

note that the distributed synthesis question without the assumption of the system being

synchronous has also been studied, for example in [8], [9], but here we focus only on the

synchronous case.

The notions of program and specification for reactive distributed systems differs signif-

icantly from that of Turing machines and reactive centralized systems. To distinguish

this notion of a program, we call it a distributed program. We list below some of its

characteristics.

• Due to the system being distributed, one must now synthesize a distributed program,

which is a collection of sub-programs, one for each sub-system. At each instant

of the global clock, a sub-program executes an action based on the information
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it receives. Since a sub-program can only react to the information it receives, it

must behave uniformly at any two states of the system at which the sub-system is

identically ‘informed’. We call the information known to a sub-system, at a point in

its execution history, as the view of the sub-system.

• Due to the system being reactive, the behaviour of a distributed program is given by

a computation tree, which is an edge labelled directed tree with all its edges pointing

away from the root. It can be described informally as follows:

– Each node of the computation tree corresponds to a possible state of the

system after a partial run of the distributed program, and the root of the tree

corresponds to the start state of the system. Also, the state of any sub-system

can be identified easily from the state of the system.

– Each edge is labelled with a collection of actions, one corresponding to an

action of each sub-system. An edge from a node to another denotes a transition

of the system between the states represented by the nodes. The branching

at a node represents the possible transitions due to the joint execution of a

collection of actions, and each branch corresponds to the transition due to a

particular input from the environment at that state.

– The computation tree of a distributed program also satisfies some additional

constraints, due to the earlier mentioned requirement that a sub-program must

behave uniformly when it has the same view. We call these the ‘uniformity

constraints’ of the computation tree.

The specification of the behaviour of distributed programs consists of two parts:

• Information Specification: The access that a sub-system has to the information held

by a distributed system, is given by means of an information specification. This

is typically given by means of an architecture, which is an edge labelled directed

graph, with vertices of the graph representing the various sub-systems and labels
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on the edges representing variables shared by the sub-systems. A labelled directed

edge from a vertex v to another vertex v′, with the edge label containing a variable z,

denotes that the sub-system represented by v has access to write on the variable z,

and that the sub-system represented by v′ has access to read the variable z.

We note here that there could be other modes of communication,that could be studied

in the context of synthesis, but here we consider only communication by shared

variables.

• Execution Specification: The term execution specification refers to the properties

of the computation tree generated by a distributed program. These can be broadly

classified into local and global specifications. A global specification refers to asser-

tions on the computation tree of a distributed program, whereas a local specification

refers to assertions on the ‘behaviour’ of the sub-programs. The notion of behaviour

for sub-program is also given by a computation tree, in which the nodes correspond

to the states of the sub-system and the edges are labelled by the actions performed

by the sub-program.

Distributed Synthesis Problem and Winning Strategy Problem The distributed syn-

thesis problem admits a natural correspondence with the winning strategy problem for

multi-agent imperfect information games. This can be explained informally as follows:

The input specification for the distributed synthesis problem is transformed to an adver-

sarial game between a coalition of agents and an environment-agent. The information

specification of the distributed program now becomes a ‘action-labelled game graph’,

where the vertices of the game graph represent the states of the system, and the edges

represent the state change due to the execution of actions that label the edge. The execution

specification becomes the winning condition for the game. The game tree for this game

is given by an ‘unravelling’ of this game graph, where the nodes of the tree represent

execution histories and the ‘indistinguishability relation’ for an agent relates execution

histories that are informationally identical to that agent. A strategy for this game now
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corresponds to a distributed program, the desired distributed program to be synthesized

now corresponds to a winning strategy of such a game.

Much like above, the synthesis problem for reactive centralized systems, called the classical

synthesis problem, admits a natural correspondence with the winning strategy problem for

two agent perfect information games. A perfect information game is a game in which a

single agent plays against the environment-agent, and additionally, throughout the game,

both agents receive exact information about the state. In this case the game tree has trivial

indistinguishability relations: the indistinguishability relation for each agent only relates

the node of the game tree to itself.

We note here that distributed systems specified by architectures only allow modelling of

situations where the communication structure between the various sub-systems is fixed

beforehand. On the other hand imperfect information games are capable of modelling

distributed systems where the communication structure between sub-systems is dynamic.

A Summary of the Distributed Synthesis Problem

Before we begin this section, we remark that the summary presented here is in no way

complete, and is intended only to point out the milestones, that in the author’s opinion,

are the most essential to the study of the distributed synthesis problem. We organize the

results in increasing order of generality, with a side-by-side comparison of the synthesis

question with the corresponding winning strategy problem.

The synthesis question was first raised in [10] by Alonzo Church, for switching circuits

with specification given in restricted recursive arithmetic. In our terminology, this is the

classical synthesis problem. In [11] Büchi and Landweber show that the problem for such

systems is decidable, against a more general class of specifications called the monadic

second-order logic of order. Later in [12] Rabin gave a tree-automata-theoretic solution to

this problem.
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The solution of Büchi and Landweber involves the reduction of the classical synthesis

problem, to a winning strategy problem for a perfect information game, whereas the

solution given by Rabin, reduces the classical synthesis problem to obtaining a regular tree

from a tree-automaton. The ideas from this automata-theoretic solution form the basis of

many of the solutions of synthesis problems studied in this tradition.

The next milestone for the winning strategy problem is in [13],[14], in which Reif shows

how to solve the winning strategy problem for an imperfect information game with a

one-agent coalition and with ‘reachability winning condition’. The solution in this case

proceeds by a reduction of the imperfect information game to a perfect information game,

using ideas similar to that of the subset construction used for determinizing finite-state

word automata.

In the synthesis setting, the above game corresponds to reactive distributed systems with a

single sub-system, in which the environment has inputs to the system that are unavailable

to the sub-system. In [15], Kupferman and Vardi show that the synthesis problem for such

systems is solvable, for the specification language of CTL∗. The crucial tool here is the

automata-theoretic operation called narrowing, that interprets the set of computation trees

of distributed programs that satisfy the specifications, as a regular set of trees accepted by

a tree-automaton. The desired distributed program is obtained by finding a regular tree

accepted by this tree-automaton, and then inverting the interpretation into a distributed

program.

The earliest study of multi-agent imperfect information games in its full generality, is in [1],

where Peterson and Reif show that the winning strategy problem for multi-agent imperfect

information games is unsolvable, even for very simple games and winning conditions.

They go on to show that for a class of games called ‘hierarchical games’, the winning

strategy problem is solvable for reachability winning condition. This result was extended

to the case of winning conditions that are ‘observable parity conditions’ by Berwanger

et.al. in [16], by means of a generalization of the subset-like construction. Their solution
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reduces an imperfect information game to a perfect information game. The proof here

gives a general criterion, for when this reduction results in a perfect information game that

is described by a ‘finite game graph’. They show the solvability of a hierarchical game, by

showing that the hierarchical game satisfies this criterion.

The distributed synthesis problem in its full generality was first studied by Pnueli and

Rosner in [2]. They show the unsolvability of the synthesis problem for arbitrary architec-

tures with ‘LTL specifications’, and that the synthesis problem is solvable for ‘hierarchical

architectures’ with such specifications. Later in [3], Kupferman and Vardi extend this

to a larger class of architectures and for global µ-calculus specifications, using the nar-

rowing construction that they had used earlier. The state-of-the-art result in the case of

global specifications was given by Finkbeiner and Schewe in [4], in which they give a

criterion for architectures called the ‘information forks’ criteria, the absence of which

is a necessary and sufficient condition for solving the distributed synthesis problem for

µ-calculus specifications. Here again, the essential tool is the automata-theoretic operation

of narrowing.

The study of local specifications for the synthesis problem, was introduced by Madhusud-

han and Thiagarajan in [5], where they show that for ‘acyclic architectures’, an architecture

being a sub-architecture of a ‘flanked-pipeline’ is a necessary and sufficient condition for

solving the distributed synthesis problem with local specifications given in linear temporal

logics. Later Fridman and Puchala show in [6] that this solution can be extended to the

case of ‘flanked-pipelines with feedback’.

Thesis Outline

The main goal of the thesis is to study the winning strategy problem for multi-agent

imperfect information games with global or local µ-calculus winning conditions, with

an eye towards the distributed synthesis problem. We remark here that the specification
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language of µ-calculus is at least as expressive as all the specification languages mentioned

above.

The focus in this thesis is to obtain purely ‘game-based’ solutions to the winning strategy

problem, by means other than the automata-theoretic solutions. The motivation for this

is the following: The problem depends crucially on the view that a sub-system has in

relation to the exact state of the system. While the automata-theoretic approach implicitly

considers this aspect, the game-based solution explicates the relationship between views,

by means of the indistinguishability relation on the game trees. This allows us to build a

framework that gives fundamental reasons for the solvability of the corresponding winning

strategy problems, based on the structure of indistinguishability relations. This allows for

a finer classification of the solvability landscape, as opposed to considering structure of the

architecture. Another advantage of the game approach is the robustness it offers to slight

changes in the problem statement; as an example of this, we will show that the synthesis of

non-determinsitic and determinstic distributed programs can be argued simultaneously in

many cases.

Next we summarize the contents the thesis:

• In Chapter 2, we introduce the winning strategy problems studied in this thesis.

We begin by introducing the necessary preliminaries to state the winning strategy

problems, and then show the translation of the distributed synthesis problem to a

winning strategy problem on imperfect information games. We conclude the chapter

with a summary of known results for the distributed synthesis problem.

• In Chapter 3 we study a class of imperfect information games called games with

recurring common knowledge of state, and show that such games are solvable for

winning conditions given by ‘priority labelling’ of the game graph. This is intended

as a departure from the class of hierarchical games, which are the only previously

known case of multi-agent imperfect information games that admit a solution to the

winning strategy problem.
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• The remaining chapters study a generic approach to solving imperfect information

games, called the retraction approach. Chapter 4 introduces the idea behind this

approach, and equips us with some concepts and tools to solve the winning strategy

problem. The key idea here is the design of a class of structures, called ‘witnesses’,

that witness the existence of a winning strategy in the game. Then we discuss a

generic operation called ‘retraction’, that transforms witnesses to possibly smaller

witnesses. We show that if a class of witnesses of a game, called canonical witnesses,

admit retraction to small witnesses, then it is a sufficient criteria for solving the

winning strategy problem. We with a description of how the distributed synthesis

problem can be solved by solving the corresponding winning strategy problem.

• In Chapter 5 we consider the case of global specifications on architectures that

admit weak-informedness ordering and informedness ordering on its agents. These

classes are known to have a decidable distributed synthesis problem, and we give

new proofs for these via the retraction approach. We show that these architecture

classes correspond to games that contain no uniform-determinsitic fork-triples and

fork-triples respectively, and that canonical witnesses obtained from such games

belong to a class of witnesses called modular witnesses. To solve the corresponding

winning strategy problem, we show that modular witnesses admit retractions to small

witnesses.

• In Chapter 6 we introduce the class of weak-broadcast architectures and broadcast

architectures, and show that for the case of local specifications, these architecture

have a decidable distributed synthesis problem. We note here that these architecture

classes subsume the case of flanked pipelines and flanked pipelines with feedback.

The solution for this proceeds in two steps: first we show that canonical witnesses

for games corresponding to these classes can be factorized into simpler witnesses,

and second, we show that such witnesses admit retractions to small witnesses by

means of the retractions of their ‘factors’.
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Chapter 2

The Winning Strategy Problem

In this chapter we formally define a multi-agent imperfect information game, and the

winning strategy problem. Specifically, we describe how imperfect information games and

winning conditions of games are specified via game-graphs and µ-automata. Later, we

describe in detail the relationship between the the distributed synthesis problem and the

winning strategy problem, and conclude the chapter by presenting some known results

from the literature that are relevant to the study here.

2.1 Preliminaries

Standard Notation : Any totally-ordered set I may be referred to as an index set and its

elements called indices. {Xi}i∈I denotes a collection of sets Xi indexed by some index set I.

(xi)i∈I denotes a tuple (x1,x2, ..) indexed by I and ∏i∈I Xi denotes the product X1×X2× ..

indexed by I. For any tuple x indexed by a set I, we use x↓i to denote its ith component.

P(X) and 2X denote the power-set of the set X . Given sets X ,Y we denote a function

f from X to Y by f : X → Y and a partial function f ′ from X to Y by f ′ : X ↪→ Y . Let

N denote the set of natural numbers and for a natural number n, let [n] denote the set

{1,2, ..,n}. For a binary relation Y ⊆ X×X , we use xY to denote the set {x′ | (x,x′) ∈ Y}.
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For a function f : X → Z and a subset X ′ ⊆ X , f (X ′) denotes the set { f (x) | x ∈ X ′}. For

functions f ,g, we denote their composition by f ◦ g and define it as f ◦ g(x) = g( f (x))

for all x. Given an equivalence relation Y ⊆ X ×X , we denote the equivalence classes

generated by Y as X/Y and the equivalence class containing an element x ∈ X by [x]Y .

2.1.1 ω-Words

Let us fix a finite set of symbols that we call an alphabet, and denote it by Σ. A word over

Σ is a finite sequence of symbols in Σ. The set of all words over Σ is denoted by Σ∗ and a

word language over Σ is a subset of Σ∗. Similarly, an ω-word (read as omega-word) over

Σ is an infinite sequence of symbols in Σ. The set of all ω-words over Σ is denoted by Σω

and an ω-word language over Σ is subset of Σω .

ω-Word Automata An ω-word automaton is given by a tuple (Q,Σ,∆,Acc,qε), where

Q is a finite set of states with qε as the start state, Σ is the alphabet, ∆⊆ Q×Σ×Q is the

transition relation and Acc is the acceptance condition. We introduce only the minimum

ideas associated with ω-automaton, and refer the reader to [17] for a comprehensive

treatment of these.

The ω-word automaton is qualified as deterministic if the relation ∆ ⊆ Q×Σ×Q is a

partial function1 ∆ : Q×Σ ↪→ Q, otherwise it is qualified as non-deterministic.

A run of an ω-word (or a word) w1w2.. on the ω-word automaton A , is a sequence q0q1..

that satisfies q0 = qε , and (qi,wi+1,qi+1) ∈ ∆ for all index i, i+1 of the ω-word.

An ω-word automaton is parametrized by various kinds of acceptance conditions, and we

list some of them below. First we introduce some notation. For an ω-word x̃ = x1x2.. over

an alphabet X , let Oc(x̃) denotes the set of elements in X that appear in the sequence and

let Inf(x̃) denote the set of elements in X that appear infinitely often in the sequence.

1Note that this is different from the usual; usually this is called an incomplete deterministic automata
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• Büchi/Co-Büchi Automaton: Both Büchi automaton and Co-Büchi automaton are

given by an ω-word automaton A = (Q,Σ,∆,F,qε) where F ⊆ Q.

A run q0q1.. of the ω-word w1w2.. on the automaton A is said to be an acceptance

run of

– a Büchi automaton A , if Inf(q0,q1, ..)∩F 6= /0.

– a Co-Büchi automaton A , if Inf(q0,q1, ..)∩F = /0.

Note that a run is an accepting run for a Büchi automaton A , if and only if, the run

is not an accepting run for a Co-Büchi automaton A .

• Parity Condition: A parity automaton is given by an ω-word automaton A =

(Q,Σ,∆,Ω,qε) where Ω : Q→ P is a function that maps states of the automaton to

the set of priorities P such that P = {1,2, .., |P|}.

A run q0q1.. of the ω-word w1w2.. on the automaton A is said to be an acceptance

run of the Parity automaton A , if the priority sequence Ω(q0)Ω(q1).. satisfies the

parity condition, that is, the minimum priority in Inf(Ω(q0)Ω(q1)..) is even.

In all the above cases, a word is said to be accepted by an ω-word automaton with a

particular acceptance condition, if there exists an acceptance run of the word on the

respective ω-word automaton. We call the set of words accepted by an ω-word automaton

as the ω-word language recognized by the ω-word automaton.

Theorem 2.1.1 (Chapter 1 in [17]).

1. Büchi automata and parity automata are equivalent in expressive power, that is, they

recognize the same ω-word languages.

2. Deterministic parity automata recognize the same ω-word languages as Büchi

automata.
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Theorem 2.1.2 ([18]). For every Büchi automaton A with n states, there exists a deter-

ministic parity automaton with n2n+2 states and 2n priorities, that recognizes the same

ω-language as A .

The next theorem is a folklore result in automata theory, but for the sake of completeness

we prove it here.

Theorem 2.1.3.

1. For every parity automaton with n states and k priorities, there exists a Büchi

automaton with at most n(k+1) states.

2. For every deterministic parity automaton A with n states, there exists a deterministic

parity automaton with n states that recognizes the complement language recognized

by A .

Proof. Towards the first part of the theorem, consider a parity ω-word automaton A . The

desired Büchi automaton is constructed as follows: Consider k copies of the automaton A ,

one corresponding to each priority, and an additional copy that we call the initial copy. We

denote the copy corresponding to a priority j by A j and the initial copy by Ain. From each

copy A j, we remove all the states with odd priorities that are less than or equal to j, and

include the states with priority j as the final states of the Büchi automaton. We leave intact

all the transitions in each copy A j. Additionally, we add transitions so that at any state q

in the initial copy, if there exists an outgoing transition (q,a,q′), then for every copy A j,

we add an outgoing transition (q,a,q′j), where q′j denotes the corresponding copy of the

state q′ in the copy A j. This completes the construction of the desired Büchi automaton.

It remains to show that the language recognized by both these automata are identical.

Firstly, note that if there exists an acceptance run of an ω-word on a parity automaton,

then there exists an acceptance run of this ω-word on the constructed Büchi automaton.

Towards this, consider an accepting run of the parity automaton A . Note that by definition
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of an acceptance run of a parity automaton, it must be the case that there exists a suffix

of this run and an even priority j that satisfy the following: the priorities appearing in

this suffix are greater than or equal to j and the priority j appears infinitely often in this

suffix. We call this the good suffix of an accepting run. Now consider a run of the Büchi

automaton that mimics the run of parity automaton in the initial copy until the beginning of

the good suffix, at which point the Büchi automaton jumps to the copy of the current state

of the automaton in the copy A j and mimics the remaining run of the parity automaton in

this copy. By construction of the Büchi automaton, it follows that this is an accepting run.

For the other direction, consider an acceptance run of the Büchi automaton. By construction

of the automaton, it must be the case that every run eventually settles in some copy A j or

the initial copy Ain. Moreover, due to the way in which final states of the Büchi automaton

are constructed, it must be the case that an accepting run settles in some copy A j with an

even j, and the run is accepting because it visits infinitely many states of priority j in the

copy A j. By mimicking this run in the parity automaton, we obtain an accepting run on

the parity automaton, which has a suffix such that the minimum priority seen infinitely

often along this suffix is j.

Towards the second part of the theorem, consider a deterministic parity automaton that

has priority labelling Ω, and construct a parity automaton that is identical to the original

parity automaton, but with a priority labelling Ω′, which is obtained by incrementing

the priority assignment on the states by one. Observe that for any run q0,q1, .. in the

original parity automaton, the priority sequence Ω(q0)Ω(q1).. satisfies the parity condition,

if and only if, the priority sequence Ω′(q0)Ω
′(q1).. does not satisfy the parity condition.

Since both parity automata have identical transition relations, and are deterministic, every

ω-word generates a unique run in both the parity automaton, if it exists. Therefore an

ω-word is accepted by the original automaton, if and only if it is not accepted by the

above constructed automaton. This shows that the language recognized by the automaton

constructed here is the complement of the language of the original automaton.
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2.1.2 Multi-Agent Transition Systems

The objects that are central to our analyses of the winning strategy problem for imperfect

information games are structures called ‘multi-agent transition systems’, and these are

defined next. These are familiar objects in many studies that involve multi-agent systems

[19],[20], but their use is rare for the question of distributed synthesis problem.

Labelled Transition System An A-transition system, abbreviated as A-TS, is a structure

(S,R,sε) where A denotes the set of actions of the system, the set S denotes the set of states

of the system with sε as the start state, the relation R⊆ S×A×S denotes the transition

relation and a tuple (s,a,s′) ∈ R denotes an a-transition from state s to s′ on an action

a ∈ A.

A {B j} j∈J-labelled A-transition system, abbreviated as ({B j} j∈J,A)-LTS, is a structure

(S,R,{ν} j∈J,sε) that is an expansion of the A-TS (S,R,sε) with labelling functions ν j :

S→ B j, one for each j ∈ J. We refer to elements in each B j as labels.

Next we define some notation and terminology associated with a A-TS S = (S,R,sε).

• We say that a transition (s1,a,s2) ∈ R is an incoming transition at a state s, if s = s2

holds and an outgoing transition at a state s, if s = s1.

By an a-transition, we mean a transition labelled with an action a.

• A path in the TS S is an infinite alternating sequence s0a1s1a2... of states and joint

actions such that (sk,ak+1,sk+1) ∈ R for all indices k ≥ 0. By a prefix of a path, we

mean a prefix of the path that ends at a state, as opposed to ending at an action. By

the length of a path τ = s0a1s1 . . .aksk, we mean the index k. We also call a path s̃ to

be a prolongation of a path s̃′, if the path s̃′ is a strict prefix of s̃.

For a path s̃, we use start(s̃) to denote its start state and use end(s̃) to denote its end

state, if it exists. A state s2 is said to be reachable from s1, if there exists a path s̃
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such that start(s̃) = s1 and end(s̃) = s2.

• A TS is qualified as a acyclic if there exist no ‘simple cycles’ in the TS, and every

state in the TS is reachable from the start state. A simple cycle is a path s0a1...amsm

such that s0 = sm and no other state except s0 repeats. A TS is qualified as a tree,

if it is acyclic, and additionally, if every state in the TS, except the start state, has

exactly one incoming transition. We call the start state of an acyclic TS, a root, and

a state with no outgoing transitions as a leaf.

• We qualify S as deterministic, if for any state s ∈ S, any pair of distinct outgoing

transitions (s,a1,s1),(s,a2,s2) ∈ R at s, satisfy a1 6= a2. We qualify S as non-

terminal, if every state in S has some outgoing transition.

• A substructure of S induced by a set of states S′ ⊆ S, is called strategic, if sε ∈ S′,

and additionally, for any state s∈ S′ and joint action a ∈ A, sRa∩S′ 6= /0 implies

sRa⊆S′.

• For any joint action a∈ A, we use Ra to denote the relation {(s,s′)∈ S×S | (s,a,s′)∈

R}. For a state s ∈ S, we call the set of states sRa as the a-neighbourhood of s. For

any state s∈ S, the neighbourhood of s is the partial function R(s) : A→P(S)

defined as R(s)(a) = sRa for all s ∈ S.

Multi-Agent Transition System An {Ai}i∈[n]-multi-agent transition system, abbreviated

as {Ai}i∈[n]-MaTS, is a structure (S,R,{∼i}i∈[n],sε) where each set Ai denotes the action

set of agent i, each equivalence relation ∼i⊆ S×S denotes the indistinguishable relation

for agent i with a tuple (s,s′) ∈∼i denoting that s,s′ are indistinguishable for i, and the

structure (S,R,sε) is a A-TS, where A = ∏
i∈[n]

Ai is called the set of joint actions.

A {B j} j∈J-labelled {Ai}i∈[n]-transition system with indinstinguishability relations, abbre-

viated as ({B j} j∈J,{Ai}i∈[n])-MaLTS, is a structure (S,R,{∼i}i∈[n],{ν j} j∈J,sε) that is an

expansion of the {Ai}i∈[n]-MaTS (S,R,{∼i}i∈[n],sε) with labelling functions ν j : S→ B j,
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one for each j ∈ J.

We say that an {Ai}i∈[n]-MaTS S = (S,R,{∼i}i∈[n],sε)

• is uniform, if

– for any states s1,s2 ∈ S and agent i ∈ [n], if s1 ∼i s2 holds, then

{a↓i ∈ Ai | s1Ma 6= /0}= {a↓i ∈ Ai | s2Ma 6= /0}, and

– for any state s ∈ S, {a ∈ A | sMa 6= /0}= ∏
i∈[n]
{a↓i | sMa 6= /0}.

• has perfect-recall, if for any transitions (s1,a,s2),(s′1,a
′,s′2) ∈ R and agent i ∈ [n],

s2 ∼i s′2 implies that s1 ∼i s2.

Intuitively, the first condition asserts that for each agent in the coalition, the set of actions

prescribed by an agent at indistinguishable histories is identical. The second condition

above is a sanity check for whether the joint actions at a state allow all possible combina-

tions of actions prescribed by the agents.

We note that a definition associated with a structure may also be invoked for expansions

of the structures, for example a path of LTS refers to the path of the TS ‘underlying’

the LTS. We use the term ‘underlying’ to refer to the various reducts of structures; for

example given a LTS (S,R,{∼i}i∈[n],{ν j} j∈J,sε), we call the LTS (S,R,{ν j} j∈J,sε) as the

LTS underlying the MaLTS. Another convention we follow is that whenever the parameters

being referred to in a definition are clear from the context, then we discard them, for

example a ({B},{Ai}i∈[n])-MaLTS will be referred to as a MaLTS.

µ-Calculus and µ-Automata The µ-calculus is a modal logic with fixed-point operators,

that are interpreted on Kripke models. A LTS (S,R,ν ,sε) may be seen as a Kripke model

with the state set S denoting the set of possible worlds, the state sε as the current world

and each of the relations in {Ra | a ∈ A} denoting the accessibility relations for different

modalities. For the purposes here, instead of the logic of µ-calculus, we use µ-automata to
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specify properties of LTS’s, since µ-calculus and µ-automata have the same expressive

power on the class of LTS’s [21].

A µ-automaton on (B,A)-LTS’s is given by a tuple (Q,A,B,δ ,Ω,qε), where Q is a finite set

of states with qε as the start state, A is the set of joint actions, δ : Q×B→P(A→P(Q))

is the transition function and Ω : Q 7→ P is a function that assigns states to priorities in

P = {1,2, .., |P|}. We say that a state q ∈ Q has priority p, if Ω(q) = p.

We say that a (B,A)-LTSS =(S,R,ν ,sε) is accepted by the µ-automaton Q=(Q,A,B,δ ,Ω,vε)

via the acceptance run S ′, if S ′ is a ({S,Q},A)-LTS (S′,R′,{ fS, fQ},s′ε) that satisfies the

following:

• fS(s′ε)=sε and ∀s′ ∈ S′,∀a ∈ A : fS(s′R′a)= fS(s′)Ra,

• fQ(s′ε) = qε and ∀s′ ∈ S′ : {(a, fQ(s′R′a)) | a ∈ A} ∈ δ ( fQ(s′),ν( fS(s′))), and

• for every path s′0a1s′1a2.. in S ′, the priority sequence Ω( fQ(s′0)),Ω( fQ(s′1)), .. satis-

fies the parity condition.

Intuitively, the first condition for the acceptance run asserts that the function fS is a

‘bisimulation’ from the TS (S′,R′,s′ε) onto the TS (S,R,sε). The second condition asserts

that for every state s ∈ S′, the labelling `Q of the states in the neighbourhood of s are

‘compatible’ with the transition function δ in the way described above.

We note that in the original presentation of µ-automaton in [21], the acceptance run is also

required to be a tree. It is not necessary to add this condition, since the ‘tree unravelling’

of an acceptance run as given here, continues to be an acceptance run.

Next we define the notion of ‘strong acceptance’ by a µ-automaton. We say that S is a

strongly accepted by Q via a strong acceptance run fQ, if fQ satisfies the following:

• fQ(sε) = qε and ∀s ∈ S : {(a, fQ(sRa)) | a ∈ A} ∈ δ ( fQ(s),ν(s)), and
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• for every path s0a1s1a2.. in S , the priority sequence Ω( fQ(s0)),Ω( fQ(s1)), .. satis-

fies the parity condition.

Note that a strong acceptance run is special case of an acceptance run (S′,R′,{ fS, fQ},s′ε),

in which the labelling fS is the identity map on states of S.

Tree Automaton A (B,A)-LTS is called a (B,A)-ranked tree, if it is a tree, and if for

every joint action a ∈ A, the existence of an outgoing a-transition at a state in the LTS,

implies the existence of a unique outgoing a-transition at the state.

An alternating tree automaton [22],[17] is a µ-automaton, with its acceptance condition

additionally requiring that the LTS input to the automaton be a ranked tree.

A tree automaton is a special case of an alternating tree automaton where the acceptance

criterion is that of strong acceptance, that is, a ranked tree is said to be accepted by a tree

automaton Q, if it is strongly accepted by the alternating tree automaton Q. Since the

notion of acceptance here is that of strong acceptance, and since the LTS’s being accepted

are ranked trees, we may assume without loss of generality that any tree automaton

(Q,A,B,δ ,Ω,qε) satisfies the property that for every q ∈ Q, b ∈ B, f ∈ δ (q,b) and a ∈ A,

we have | f (a)| ≤ 1.

Theorem 2.1.4 ([23]). For every alternating tree-automaton A with n states and k priori-

ties, there exists a tree automaton A ′ with 2O(nd log(nd)) states and O(nd) priorities such

that, a ranked tree is accepted by A , if and only if, it is accepted by A ′.

2.2 Imperfect-Information Games

An imperfect information game between a coalition of agents [n] and the environment, is

given by a tuple (T ,W ) consisting of two parts, a ‘game tree’ T and a ‘winning condition’

W for ‘strategies’ on the game tree.
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Game Trees A game tree for the coalition [n] (against the environment) is an {Ai}i∈[n]-

MaTS T = (S,M,{∼i}i∈[n],sε) that is a tree, where S denotes the states of the game

with sε denoting the start state, each ∼i⊆ S×S is an equivalence relation that denotes the

indistinguishability relation of agent i, the transition relation M ⊆ S×A×S denotes the

move relation on the game tree on joint actions in A. Moreover, for every state s ∈ S and

joint action a ∈ A, there exists some outgoing a-transition at s.

Next, we explain how a game proceeds. A play in a game begins at the start state

sε and proceeds as follows. At a state s during the play, each agent in the coalition

independently chooses a subset A′i from its set of actions Ai. The environment responds

by non-deterministically choosing an action ai from this set A′i, resulting in a joint action

(ai)i∈[n], and chooses the next state s′ that satisfies (s,a,s′) ∈M. The current state of play

is now updated to s′ and this process repeats. Formally, a play is defined as a path in the

game tree T that begins at the start state. A finite prefix of a play is called a history.

Along a play, agents may have different information about the play. The role of indis-

tinguishability relations is to denote the information available to an agent at a history,

by means of an equivalence relation. An equivalence s ∼i s′ in the game tree denotes

that the agent i has identical information at the states s and s′, and they are therefore

indistinguishable for agent i. The equivalence classes induced by the indistinguishability

relation ∼i of agent i are called the information sets of agent i. If all the information sets of

an agent are singletons, then we say that the agent i has perfect information, otherwise we

say that the agent i has imperfect information. A perfect information game is one where all

agents have perfect information.

There are two equivalent formalisms for defining the strategy of an imperfect information

game, namely, ‘coalition strategy’ and ‘joint strategy’.

• A coalition strategy on the game tree T , is a tuple of functions (ςi)i∈[n], one for

each agent in [n], where each ςi : S/∼i→ (2Ai \ /0) gives the strategy of agent i, that
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maps information sets of agent i to a non-empty set of actions in 2Ai .

• A joint strategy on the game tree T , is a function σ : S→ (2A \ /0), such that

– for any states s1,s2 ∈ S and agent i ∈ [n], if s1 ∼i s2 holds, then

{a↓i ∈ Ai | a ∈ σ(s1)}= {a↓i ∈ Ai | a ∈ σ(s2)}, and

– for any state s ∈ S, {a ∈ A | a ∈ σ(s)}= ∏
i∈[n]
{a↓i ∈ Ai | a ∈ σ(s)}.

It is not difficult to see that these two notion of strategy are equivalent. Towards arguing

this, consider the following translations.

• Given a coalition strategy (ςi)i∈[n], the corresponding joint strategy σ is defined for

any state s ∈ S as follows: σ(s) = {(ai)i∈[n] ∈ A | ∀i ∈ [n] : ai ∈ ςi([s]∼i)}. It is easy

to see that σ satisfies both the conditions necessary for a joint strategy.

• Given a joint strategy σ , the corresponding coalition strategy (ςi)i∈[n] is defined for

any agent i and information set S′ ∈ S/∼i as follows:

ςi(S′) = {a↓i ∈ Ai | ∃s ∈ S′ : a ∈ σ(s)}.

We consider the notions of coalition strategy and joint strategy to be equivalent for the

following reason: the translation of a coalition strategy to a joint strategy and a further

translation of this joint strategy back to a coalition strategy, results in isomorphisms

between the strategies of agents. Symmetrically, the translation from a joint strategy to a

coalition strategy back to a joint strategy, also results in an isomorphism. This shows that

there is no loss of structure when translating one to the other, and therefore, we may use

these two notions of strategy inter-changeably.

We qualify a coalition strategy (ςi)i∈[n] as deterministic, if every for every agent i ∈ [n]

and information set S′ ∈ S/∼i, the action-set ςi(S′) is a singleton set. Similarly, we qualify

a joint strategy σ as deterministic, if every for every agent i ∈ [n] and state s ∈ S, the

action-set σ(s) is a singleton set. Note that the translations above translate a deterministic

coalition strategy to a deterministic joint strategy, and vice-versa.
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Winning Condition A winning condition for an imperfect information game is a prop-

erty of joint strategies on the game tree. We qualify a joint strategy as winning, if it satisfies

the winning condition.

The winning strategy problem for a class G of imperfect information games is the following:

Is there an algorithm that, given an imperfect information game (T ,W ) ∈ G , finds a

winning joint strategy for (T ,W ) if it exists?

Additionally, if we require that the winning joint strategy be deterministic, then we call it

the deterministic winning strategy problem.

Towards an algorithmic study of the winning strategy problem, we consider next some

finite presentations of game trees, winning conditions and strategies.

Specifying Imperfect Information Games Here we consider game trees given by finite

game graphs, which are similar to the ‘concurrent game structures’ introduced in [24]. In a

game graph, each state of the game graph is associated with a tuple of ‘local states’, one

for each agent in the coalition, and on a transition into a state, agents are only informed of

the transition into their respective local state. Formally, a game graph for a coalition [n] is

given by a A-TS G = (V,E,vε), where

• V ⊆ ∏
i∈[n]

Vi is a finite set of states of the game graph, with each Vi denoting the local

state of the agent i and vε denoting the start state.

• E ⊆V ×A×V denotes the move relation of the game graph labelled with the set of

joint actions A.

Additionally, for each v ∈V and a ∈ A, there is some transition (v,a,v′) ∈ E.

A play in a game specified by the game graph G begins at the initial state v0 = vε and

proceeds in rounds. In the first round, each agent i chooses a set of actions A′i ⊆ Ai at the

current state v0, then environment chooses a joint action a ∈ {(ai)i∈[n] | ∀i ∈ [n] : ai ∈ A′i}
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Figure 2.1: A game graph G.

G is a game graph for coalition {1,2}, with V1 = {v′1,v′′1},V2 = {v′2,v′′2} giving the local
states of 1,2 respectively, joint action-set {a′,a′′} and with (v′′1,v

′′
2) as its start state.

and a successor state v1 reachable via a move (v0,a,v1) ∈ E, where a↓i = ai for every

agent i. On moving into the state v1, each agent i receives information about its local

state v↓i1 , and the play proceeds to the next round. The next round operates similarly at the

next ‘current state’ v1, and the play progresses. Formally, a play of the game graph G is a

maximal path in G that begins at the start state, and a history is any finite prefix of a play.

The game tree specified by a game graph G = (V,E,vε) is given by the MaTS TG =

(H,M,{≈i}i∈[n],vε) defined as follows:

• H is the set of histories of G and the history vε is the start state.

• For any histories τ1,τ2 ∈ H, joint action a and agent i ∈ [n], we have

– (τ1,a,τ2) ∈M, if and only if, τ2 is the prolongation τ1av of the history τ1, for

some state v ∈ end(τ1)Ea.

– τ1 ≈i τ2, if and only if, viewi(τ1) = viewi(τ2),

where viewi(τ) denotes the information available to agent i at a history τ ,

defined inductively as follows:
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∗ For the trivial history vε , we define viewi(vε) := v↓iε , and

∗ For a history τav, we define viewi(τav) := viewi(τ)a↓iv↓i.

Specifying Winning Conditions The term winning conditions is used to refer to proper-

ties of joint strategies, and the properties studied here are properties of structures called

‘strategy trees’, that are derived from joint strategies. We define this next.

A joint strategy on the game graph G = (V,E,vε) is a joint strategy on the corresponding

game tree TG. We say that a play (or a history) π = v0a1v1a2.. in the game graph G follows

a joint strategy σ , if ak+1 ∈ σ(v0a1..akvk) for any index k ∈ N strictly less than the length

of π .

An extended strategy tree of a joint strategy σ , denoted by E T σ
G, is given by a (V,{Ai}i∈[n])-

MaLTS (Hσ ,Mσ ,{≈σ
i }i∈[n],ν ,vε), where

• Hσ denotes the set of histories in G that begin at vε and follow σ ,

• (Hσ ,Mσ ,{≈σ
i }i∈[n],vε) is the substructure of TG induced by Hσ , and

• ν(τ) = end(τ) for every history τ ∈ Hσ .

We call the LTS underlying the extended strategy tree E T σ
G as the strategy tree of a joint

strategy σ , and we denote it by T σ
G .

Winning conditions can be classified into ‘global’ or ‘local’ depending on whether they

make assertions on the states V of the game graph or on the local states {Vi}i∈[n]. We state

here the winning conditions considered in this thesis, and their corresponding global and

local formulations:

• µ-Automaton Winning Conditions: For a global winning condition given by a

µ-automaton Q, we say that a joint strategy σ on the game graph G is winning, if

the strategy tree of the joint strategy σ , is strongly accepted by Q.
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Figure 2.2: The game tree specified by G for histories of length at most 2.

The indistinguishability relation of agents 1,2 are respectively denoted by red and blue
dashed-edges in the tree. Here for clarity, we draw only some of these dashed-edges, and the
indistinguishability relation of an agent i ∈ {1,2} is obtained by the reflexive-transitive
closure of the edges for i.
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• ω-Automaton Winning Conditions:

– For a global winning condition given by an ω-automaton Q, we say that a joint

strategy σ on the game graph G is winning, if for any play v0a1v1a2v2 . . . that

follows σ , the ω-word v0a1v1a2v2 . . . is accepted by the ω-automaton Q.

– For a local winning condition given by ω-automata {Qi}i∈[n], we say that a

joint strategy σ on the game graph G is winning, if for any agent i ∈ [n] and

for any play v0a1v1a2v2 . . . that follows σ , the ω-word v↓i0 a↓i1 v↓i1 a↓i2 v↓i2 . . . is

accepted by the ω-automaton Qi.

• Priority Labelling Winning Conditions:

– Let γ : V → P be a labelling of the states of the game graph G with priorities in

P = {1,2, .., |P|}.

For a global winning condition given by a priority labelling γ , we say that

a joint strategy σ on the game graph G is winning, if for any infinite play

v0a1v1a2 . . . that follows σ , the priority sequence γ(v0)γ(v1)γ(v2).. satisfies

the parity condition.

– For each i ∈ [n], let γi be a labelling of the local states of the game graph G

with priorities in P = {1,2, .., |P|}.

For a local winning condition given by a priority labellings {γi}i∈[n], we say

that a joint strategy σ on the game graph G is winning, if for any agent i ∈ [n]

and for any infinite play v0a1v1a2 . . . that follows σ , the priority sequence

γi(v
↓i
0 )γi(v

↓i
1 )γi(v

↓i
2 ) . . . satisfies the parity condition.

Specifying Strategies Given a joint strategy σ of the game graph G, we say that a

(V,A)-LTS (S,R,ν ,sε) represents σ , if it satisfies the following: there exists a history

v0a1v1a2... that follows σ , if and only if, there exists a path s0a1s1a2.. that begins at the

start state sε and satisfies ν(si) = vi for all indices i.
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Intuitively, for a finite path s0a1s1a2..s j in such a LTS, the action prescribed by an agent

i ∈ [n] at the corresponding history ν(s0)a1ν(s1)a2..ν(s j) is given by A′i = {a↓i | sRa 6= /0}.

It is easy to see that in the case when the joint strategy σ is deterministic, the set A′i is a

singleton.

Next state the winning strategy problem studied in this thesis. From here on, an imperfect

information game is denoted by a tuple (G,W ), where G is a game graph of a coalition [n]

and W is one of the winning conditions stated earlier.

The WINNING STRATEGY PROBLEM for a class G of imperfect information games, is

the following: Is there an algorithm that given an imperfect information game (G,W ) ∈ G ,

finds a winning joint strategy for the game, if it exists? Here the joint strategy being output

is presented as an LTS that represents the joint strategy.

If the joint strategy is required to be deterministic, then we call it the DETERMINISTIC

WINNING STRATEGY PROBLEM. We say that the (deterministic) winning strategy problem

is solvable/decidable for a class G , if the problem can be answered positively.

2.3 Some Observations

Observations on Winning Conditions We begin with a comparison of the expressive-

ness of the winning conditions mentioned here. Firstly observe that games with winning

conditions by ω-automata, for both global and local cases, are inter-reducible with games

with winning conditions by priority labellings.

Below we summarize this reduction only for the case of global winning conditions, since

the case of local winning condition follows similarly.

• Given a game (G,γ) with priority labelling γ , the desired game (G,Q) where Q

is a parity automaton that has a structure similar to that of the game graph G, with

priority labelling on the states given by γ .
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• Given a game (G,Q), the desired game (G−,γ) is obtained as follows: The game

graph G− is obtained from a synchronous product of the game graph G with the

transition system underlying the automaton Q, and the priority labelling γ of a

product-state of G− is obtained from the priority label of the automaton-state com-

ponent of the product-state.

Games with winning conditions given by µ-automata are strictly more general than games

with priority labellings; this is not difficult to argue. In view of the above observations, we

consider only the case of winning conditions given by priority labellings and µ-automata.

Next we note that in the case of global winning conditions given by µ-automata, the

use of ‘strong acceptance’ by a µ-automaton, as opposed to the more general notion of

acceptance, is without loss. This is because for the class of strategy trees, a µ-automaton

with the standard acceptance condition can be transformed into one with strong acceptance

condition, with an exponential blow-up in the state-space. We show this next.

Proposition 2.3.1. Consider a game graph G and a µ-automaton Q that accepts (V,A)-

LTS’s. Then there exists a µ-automaton Q− such that, for any joint strategy σ on G

and strategy tree T σ
G of σ , we have T σ

G is accepted by Q, if and only if, T σ
G is strongly

accepted by Q−.

Proof. This proposition is a consequence of a general property on ‘almost-ranked’ tree

LTS’s. A (V,A)-LTS S = (S,R,ν ,sε) is called an almost-ranked tree, if it is a tree, and if

for any state s and distinct transitions (s,a,s1),(s,a,s2) ∈ R outgoing at the state s, it is the

case that ν(s1) 6= ν(s2).

We begin by showing that strategy trees are almost-ranked trees. Consider a strategy tree

T σ
G = (Hσ ,Mσ ,ν ,vε) of some joint strategy σ . Assume for a contradiction that there

exist two distinct transitions (τ,a,τ1),(τ,a,τ2) ∈ Mσ outgoing at the state τ , such that

ν(τ1) = ν(τ2). Since Mσ ⊆M, it follows from the definition of the transition relation M,

that τ1 = τav1 and τ2 = τav2 for some v1,v2 ∈V . By definition of ν , ν(τ1) = end(τ1) = v1
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and ν(τ2) = end(τ2) = v2. Since ν(τ1) = ν(τ2), we obtain that v1 = v2, a contradiction to

the fact that the transitions being considered are distinct.

Next we claim that for a µ-automaton Q, there exists a µ-automaton Q− such that, an

almost-ranked tree is accepted by Q, if and only if, it is strongly accepted by Q−. The

theorem follows from the claim.

Towards showing this claim, we introduce some terminology. The ranked tree interpreta-

tion of an almost-ranked tree (V,A)LTS S = (S,R,ν ,sε) is given by the (V,A×V )-ranked

tree S ′ = (S,R′,ν ,vε), where the transitions in R′ are obtained by replacing the action

a on each transition (s1,a,s2) ∈ R, with the expanded action (a,ν(s2)). The fact that the

ranked-tree interpretation S ′ of the almost-ranked tree S , is a (V,A×V )-ranked tree

follows easily, since every outgoing (a,s2)-transition at a history s1 goes to the unique

history s2. Also, one can obtain the original tree S from such a tree S ′, by considering

each transition (s1,(a,ν(s2)),s2) in the tree S ′ and discarding the component ν(s2) from

the expanded action (a,ν(s2)). It is then easy to see that that almost-ranked trees share a

bijective correspondence with their ranked tree interpretations.

Now consider a µ-automaton Q = (Q,A,V,δ ,Ω,qε). The desired µ-automaton Q−

claimed above, is constructed in two steps. First we construct a tree automaton Q′ from

the µ-automaton Q, that accepts the ranked trees interpretation of the almost-ranked tree

accepted by Q. Towards this, construct an alternating tree automaton QATA on (V,A×V )-

ranked tree, that ignores the component v in every expanded action (a,v) ∈ A×V , and

operates like the µ-automaton Q. It is easy to see that the language recognized by Q,

when restricted to almost-ranked trees, has a bijective correspondence with the ranked

trees recognized by QATA. By Theorem ??, there must also exist a tree automaton Q′ =

(Q′,A×V,V,δ ′,Ω′,q′ε), that recognizes the same language as that recognized by QATA.

Note that, Q′ may have exponentially more states that QATA, and since Q′ is a tree

automaton, it is also the case that | f ′((a,v′))|= 1 for all q,v,v′,a and f ′ ∈ δ ′(q,v).

Next we construct a µ-automaton Q− from the automaton Q′, that strongly accepts exactly
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the set of almost-ranked trees, whose ranked tree interpretation is accepted by Q′. Towards

this, let Q− = (Q−,A,V,δ−,Ω−,(q′ε ,⊥)) such that

• Q− = (Q′×V ), with (q′ε ,vε) as the start state,

• for all q− ∈ Q−, we have Ω−(q−) = Ω′(q−↓1), and

• for all q− ∈ Q− and v ∈V , we have f− ∈ δ−(q−,v), if and only if,

q−↓2 = v, and additionally, there exists f ′ ∈ δ ′(q−↓1,v), such that for all a ∈ A,

f−(a) = {(q′,v′) ∈ Q′×V | f ′((a,v′)) = {q′}}.

We begin with a simple observation about the above automaton.

Lemma 2.3.2. If (S,R,ν ,sε) is an LTS accepted by Q− via a strong acceptance run fQ− ,

then fQ−(s)↓2 = ν(s) for all s ∈ S.

Proof. Consider an LTS (S,R,ν ,sε) that is accepted by Q− via an acceptance run fQ− . By

definition of fQ− being accepting, it follows that for every state s ∈ S, {(a, fQ−(sRa)) | a ∈

A} ∈ δ−( fQ−(s),ν(s)).

Now for a contradiction, consider a state s ∈ S such that fQ−(s)↓2 6= ν(s). Firstly observe

that for any state s∈ S, the set {(a, fQ−(sRa)) | a∈A} is non-empty. But if fQ−(s)↓2 6= ν(s),

then it follows from the definition of δ− that δ−( fQ−(s),ν(s)) = /0, a contradiction.

In order to show that Q− is as desired, consider any almost-ranked tree S = (S,R,ν ,sε)

and its ranked tree interpretation S = (S,R′,ν ,sε). To see that Q− satisfies desired

properties, it suffices to show the following:

S ′ is accepted by the tree automaton Q′ via a strong acceptance run, if and only if, S is

strongly accepted by the µ-automaton Q− via a strong acceptance run.

By Lemma ??, it follows that the next claim implies the one above:

For any functions fQ′ :S→Q′ and fQ− :S→Q− that satisfy fQ−(s) = ( fQ′(s),ν(s)) for all
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s ∈ S, S ′ is accepted by the non-deterministic Q′ via the strong acceptance run fQ′ , if and

only if, S is strongly accepted by the µ-automaton Q− via a strong acceptance run fQ− .

Next, we make three observations, from which the above claim follows immediately.

• Firstly note that for the state sε , fQ′(sε) = q′ε , if and only if, fQ−(sε) = (q′ε ,vε). This

is an easy consequence of the definition of an acceptance for Q′ and Q−.

• Secondly note that for any infinite sequence of states s1,s2, .. and actions a1,a2, ..,

the sequence s1,a1,s2,a2, .. is a path in the almost-ranked tree S , if and only if,

s1,(a1,ν(s2)),s2,(a2,ν(s3)), .. is a path in the ranked tree S ′. This is an easy conse-

quence of the definition of the transition relation R′ in the ranked tree interpretation

S ′. Moreover, it follows from the definition of Ω− and Lemma ?? that, the priority

sequence Ω′( fQ′(s1)),Ω
′( fQ′(s2)), .. satisfies the parity condition, if and only if, the

priority sequence Ω−( fQ−(s1)),Ω
−( fQ−(s2)), .. satisfies the parity condition.

• Now consider the functions f ′τ : A×V →P(Q′), f−τ : A→P(Q−), one for each

history τ ∈ Hσ , defined as follows:

– f ′τ((a,v)) = { fQ′(τ
′) | τ ′ ∈ τM′σ(a,v)}, for each (a,v) ∈ A×V .

– f−τ (a) = { fQ−(τ
′) | τ ′ ∈ τMσ

a }, for each a ∈ A.

We claim that f ′τ ∈ δ ′( fQ′(τ),ν(τ)), if and only if, f−τ ∈ δ−( fQ−(τ),ν(τ)), for every

history τ ∈ Hσ .

Now consider a history τ ∈ Hσ and the below mentioned equations.
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f−τ (a)

={ fQ−(τ
′) | τ ′ ∈ τMσ

a } (By definition of f−τ )

={ fQ−(τav) | v ∈ end(τMσ
a )} (By definition of τMσ

a )

={( fQ′(τav),v) | v ∈ end(τMσ
a )} (Since fQ−(s) = ( fQ′(s),ν(s))

={(q′,v) | v ∈ end(τMσ
a ) and fQ′(τav) = q′}

={(q′,v) | τ ′ ∈ τMσ
a and fQ′(τ

′) = q′} (By definition of τMσ
a )

={(q′,v) | f ′τ((a,v)) = {q′}} (By definition of f ′τ)

Now from the definition of δ− and the above observation that f−τ (a)= {(q′,v) | f ′τ((a,v))=

{q′}}, it follows easily that f ′τ ∈ δ ′( fQ′(τ),ν(τ)), if and only if, f−τ ∈ δ−( fQ−(τ),ν(τ)).

This completes the proof of the proposition.

Observation on Extended Strategy Trees We now state a characterization of the

MaTS underlying an extended strategy tree.

Proposition 2.3.3. Let TG be the game graph specified by a game graph G.

1. An induced substructure of the game tree TG, is the MaTS underlying an extended

strategy tree of a joint strategy, if and only if, it is non-terminal, strategic and

uniform.

2. An induced substructure of the game tree TG, is the MaTS underlying an extended

strategy tree of a deterministic joint strategy, if and only if, it is non-terminal,

deterministic, strategic and uniform.

Proof. We argue both the above items simultaneously. Let the game graph G = (V,E,vε)

and let TG = (H,M,{≈i}i∈[n],vε) be the game graph specified by G.

(⇒) For the forward direction, consider the MaTS E T σ = (Hσ ,Mσ ,{≈σ
i }i∈[n],vε) ex-

tended strategy tree of a joint strategy σ . We need to show that E T σ is non-terminal,

strategic and uniform, and that when σ is deterministic, then E T σ is also deterministic.
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Recall that Hσ is the set of histories that follow σ , and that τMa denotes the a-neighbourhood

of τ in TG. We begin with a simple claim.

Lemma 2.3.4. For any history τ ∈ Hσ , we have τMa∩Hσ 6= /0, if and only if, a ∈ σ(τ).

Moreover, if a ∈ σ(τ), then τMa ⊆ Hσ .

Proof. For the forward direction of the claim, observe that if τMa ∩Hσ 6= /0, then the

definition of τMa implies that there exists a history τav ∈Hσ , for some v ∈V . Since every

history in Hσ follows σ , it must be the case that a is one of the actions prescribed at τ ,

that is, a ∈ σ(τ). This completes the argument for the forward direction. For the reverse

direction, if a ∈ σ(τ), then the a-neighbourhood of τ in M, given by τMa = {τav | v ∈

end(τ)Ea}, are histories that follow σ . Therefore they belong to Hσ , that is τMa ⊆ Hσ .

Moreover since every state in the game graph G has an outgoing transition for every

action, the set end(τ)Ea is non-empty, and therefore τMa is non-empty. The desired claims

follow.

• For E T σ to be non-terminal, we need to show that every history in Hσ has an

outgoing transition. Towards this, observe that the joint strategy σ prescribes an

action at every history, that is, for a history τ ∈ Hσ , an action a ∈ σ(τ) prescribed

at τ . Therefore, using Lemma ??, we have that τMa∩Hσ 6= /0. It follows that there

exists an outgoing transition at τ in E T σ
G.

• For E T σ
G to be strategic, E T σ

G must be an induced substructure of TG and the start

state vε must belongs to E T σ
G; these are true by definition of E T σ

G. Additionally,

E T σ
G must satisfy the following: For any history τ , if τMa ∩Hσ 6= /0 for some

history τ , then τMa ⊆ Hσ . This follows straightforwardly from our Lemma ??.

• For E T σ
G to be uniform, it must satisfy the following conditions:

– for any states τ1,τ2 ∈ Hσ and agent i ∈ [n], if τ1 ≈σ
i τ2 holds, then

{a↓i ∈ Ai | τ1Mσ
a 6= /0}= {a↓i ∈ Ai | τ2Mσ

a 6= /0}, and
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– for any state τ ∈ Hσ , {a ∈ A | τMσ
a 6= /0}= ∏

i∈[n]
{a↓i | τMσ

a 6= /0}.

Now by definition of a joint strategy, we have that σ satisfies the following:

– for any states τ1,τ2 ∈ H and agent i ∈ [n], if τ1 ≈i τ2 holds, then

{a↓i ∈ Ai | a ∈ σ(τ1)}= {a↓i ∈ Ai | a ∈ σ(τ2)}, and

– for any state τ ∈ H, {a ∈ A | a ∈ σ(τ)}= ∏
i∈[n]
{a↓i | a ∈ σ(τ)}.

The uniformity of E T σ
G follows from this, since Hσ ⊆ H, and since the predicates

τMσ 6= /0 and a ∈ σ(τ) are equivalent, due to Lemma ??.

Now if the joint strategy σ is deterministic, then E T σ
G is deterministic. To see this,

consider for a contradiction, a history τ ∈ Hσ , two distinct actions a1,a2 and transitions

(τ,a1,τ1),(τ,a2,τ2) ∈Mσ for some τ1,τ2 ∈ Hσ . Then it follows from the definition of

the transition relation Mσ , that τMσ
a1
6= /0 and τMσ

a2
6= /0. Moreover since Mσ ⊆ M, it

follows that τMa1 ∩Hσ 6= /0 and τMa2 ∩Hσ 6= /0. By Lemma ??, this would imply that

a1,a2 ∈ σ(τ), whereas for a deterministic joint strategy σ(τ) must be a singleton, a

contradiction.

(⇐) For the reverse direction, consider a MaTS H ′ = (H ′,M′,{≈′i}i∈[n],vε) that is an

induced substructure of TG that is non-terminal, strategic and uniform. We need to show

that H ′ is the extended strategy tree of some joint strategy.

Towards this, we define a function σ : H→ (2A \ /0) as follows:

• If τ ∈ H ′, then σ(τ) = {a ∈ A | τM′a 6= /0},

• If τ 6∈ H ′, then for each i ∈ [n], let A′i := {a↓i| ∃τ ′ ∈ H ′ : τ ≈i τ ′ and a ∈ σ(τ)}, and

let A′ := A′1×A′2...×A′n. Then, σ(τ) = A′, if A′ 6= /0, otherwise σ(τ) = A.

To see that the function σ is well-defined, consider a history τ ∈H ′, and observe that since

H ′ is non-terminal, there exist some outgoing transition at τ , that is, τM′a 6= /0 for some
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a ∈ A. Therefore by the above definition of σ , σ(τ) is assigned a non-empty set of actions.

The function is easily seen to be well-defined at other histories.

We claim firstly that σ is a joint strategy, and secondly that H ′ is the extended strategy

tree of σ . For the first claim, consider the two defining conditions for being a joint strategy,

as given in the forward direction of the proof. Observe that both these conditions are

assertions about histories in H. Now in the case when the histories being considered belong

to H ′, both the conditions hold true by virtue of the uniformity condition on the MaTS H ′,

and the equivalence between the predicates τMσ 6= /0 and a ∈ σ(τ). In all other cases, the

construction of σ for the histories ensures each of the above two conditions. The extra

condition in the definition of σ , in the case when τ 6∈ H ′, is defined precisely for this to go

through, and this can be verified easily.

For the proof of the second claim, it suffices to show that H ′ is exactly the set of histories

that follow σ . We argue this by an induction on the length of histories. Now for any k ∈ N,

let H ′k denote the set of histories in H ′ of length k and let Hσ
k denote the set of histories

of length k that follow σ . The base case H ′1 = {vε}= Hσ
1 follows easily. Assuming that

H ′k = Hσ
k , the argument below shows that H ′k+1 = Hσ

k+1.

H ′k+1 = {τav | τ ∈ H ′k and τav ∈ τM′a} (By definition of H ′k+1)

= {τav | τ ∈ H ′k and τav ∈ τMa∩H ′} (By definition of M′)

= {τav | τ ∈ H ′k,τM′a 6= /0 and τav ∈ τMa} (Since H ′ is strategic

τMa∩H ′ 6= /0 implies τMa ⊆ H ′.)

= {τav | τ ∈ Hσ
k ,a ∈ σ(τ) and τav ∈ τMa} (Since H ′k = Hσ

k ,

and by definition of σ)

= Hσ
k+1 (By definition of Hσ

k+1)

Therefore by induction principle, the second claim holds true. This completes the proof of

the theorem.
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(a)

Figure 2.3: An architecture on variable-set {z1,z2}.

Here the input variables are In0 = /0, In1 = In2 = {z1,z2} and Ini = {z1} for all [n]\{1,2},
and the output variables are Out0 = {z1,z2} and Outi = /0 for all i ∈ [n].

2.4 The Distributed Synthesis Problem

Towards the description of the distributed synthesis problem, we first informally describe

the operation of a distributed program on an architecture, and then construct a game graph

that simulates this operation.

An architecture on a set of (boolean) variables Z is a labelled graph ([n]+,α), where

• [n]+ = [n]∪{0} is the set of sub-systems (or agents), with [n] denoting the set of

agents in the system excluding the environment agent 0.

• α ⊆ [n]+× (2Z \ /0)× [n] is such that, (i,Z′, j) ∈ α denotes that agent i has access to

write on variables in Z′ and agent j has access to read variables in Z′. Additionally,

only one agent has write-access for a variable.

For an agent i ∈ [n], let Ini denote the set of input variables that can be read by agent i and

let Outi denote the set of output variables that agent i can write on.
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A distributed program on an architecture operates in rounds, and can be described as

follows: We assume for convenience that before the first round, every variable holds

the value 0. At a round, every agent in i ∈ [n] reads the values of variables in Ini from

the previous round, and writes a value for each of its output variables Outi. The system

proceeds by repeating such a round forever.

The game graph GAr corresponding to the architecture Ar = ([n]+,α) is defined as the

A-TS (V,E,vε), where

• V = ∏
i∈[n]

Vi, such that Vi = ∏
z∈Ini

{[z = 0], [z = 1]} for each agent i,

• vε ∈V such that v↓i↓zε = [z = 0] for each agent i and and z ∈ Ini,

• A = ∏
i∈[n]

Ai, such that Ai = ∏
z∈Outi

{[z = 0], [z = 1]} for each agent i,

• E ⊆V ×A×V is such that (v,a,v′) ∈ E, if and only if, for any agents i, j ∈ [n] and

variable z ∈ Outi∩ In j, we have a↓i↓z = v′↓ j↓z.

Intuitively, Ai denotes the set of actions of agent i and an action ai ∈ Ai with a↓zi = [z = x]

denotes that the action ai assigns a value x to the variable z. The set Vi denotes the set

of local states of agent i, and a state vi ∈ Vi with v↓zi = [z = x] denotes that at the local

state vi of agent i, the value of variable z is x. A transition (v,a,v′) ∈ E represents the

situation where each agent i assigns a value to the variable z ∈ Outi according to a↓i↓z, and

each agent i reads the new values of variables z ∈ Ini as updated in v′↓i↓z. It is easy to see

from the definition of transition relation E that at any state v reachable from the start state,

the value of any variable z ∈ Ini∩ In j read by any pair of agents i, j is identical, that is,

v↓i↓z = v↓ j↓z.

The terminology required to state the distributed synthesis problem can now be defined as

follows:

• A distributed program on an architecture Ar is a coalition strategy of GAr. A program

for an agent i in the distributed program corresponds to the strategy of the agent i in
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Figure 2.4: An architecture and its corresponding game graph corresponding.

The correspondence is given by the following: {a′,a′′}= {[z2 = 0], [z2 = 1]},
{v′1,v′′1}= {[z1 = 0], [z1 = 1]} and {v′2,v′′2}= {[z2 = 0], [z2 = 1]}.
Here the start state is ([z1 = 1], [z2 = 1]) instead of the usual ([z1 = 0], [z2 = 0])

the coalition strategy. We qualify a distributed program or a program for an agent i

as deterministic, if the strategies being referred to in their respective definitions, are

deterministic. Since coalition strategies and joint strategies are equivalent notions,

from here on, we will treat a distributed program as a joint strategy.

• The computation tree for a distributed program is the strategy tree of the distributed

program.

• An execution specification (or a specification) of a distributed program is simply

a winning condition, and we qualify it as global/local, if the winning condition is

global/local. We say that a distributed program satisfies the specification, if the

distributed program is winning for the corresponding winning condition

The DISTRIBUTED SYNTHESIS PROBLEM for a class of architectures A and a class of

specifications S , is the following: Does there exist an algorithm, that given an architecture

Ar in A and a specification W in S , returns a distributed program on Ar that satisfies W if

it exists?
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If the distributed program is required to be deterministic, then we call the above problem

DETERMINISTIC DISTRIBUTED SYNTHESIS PROBLEM. We say that the (deterministic)

distributed synthesis problem is solvable or decidable for an architecture class A and

specification class S , if this question can be answered positively.

A (deterministic) distributed synthesis problem may be reduced to a (deterministic) winning

strategy problem as follows: an input instance to the (deterministic) distributed synthesis

problem, comprised of an architecture Ar and a specification W , maps to the input instance

(GAr,W ) of the (deterministic) winning strategy problem. By the terminological correspon-

dence given earlier, it follows that a (deterministic) distributed program on an architecture

Ar that satisfies W , is also a (deterministic) winning joint strategy for the game (GAr,W ),

and vice-versa.

2.5 Known Results

Distributed Synthesis Problem with Global/Local Specs We state here only the most

general results known about the distributed synthesis problem. In the following, we use

the terms global µ-automata specifications to denote the class of global specifications

given by µ-automata, and local ω-automata specifications to denote the class of local

specifications given by a set ω-automaton, one for each agent in [n].

• Global Specs: The state-of-the-art result in the study distributed synthesis problem

for global specifications, for both the deterministic and non-deterministic versions, is

by Finkbeiner and Schewe in [4] and [25]. We state these results next, and postpone

the definition of these architecture classes to Section 2.1.

Theorem 2.5.1.

1. The deterministic distributed synthesis problem is solvable for an architecture

class A and global µ-automaton specifications, if and only if, the architectures
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in A admit a weak-informedness ordering on its agents.

2. The distributed synthesis problem is solvable for an architecture class A and

global µ-automaton specifications, if and only if, the architectures in A admit

a hierarchy ordering on its agents.

• Local Specs: The distributed synthesis problem for local specifications was charac-

terized for acyclic architectures by Madhusudhan and Thigarajan in [5], by means

of ‘flanked pipelines’. This result was extended by Fridman and Puchala in [6] to

‘flanked pipelines with feedback channels’. The formal definition of these architec-

ture classes can be found in Section 3.1.

Theorem 2.5.2.

1. The deterministic distributed synthesis problem is solvable for an acyclic

architecture class A and local ω-automata specifications, if and only if, the

architectures in A are flanked pipelines or their sub-architectures2.

2. If the architectures in a class A are flanked pipelines with feedback channels

or their sub-architecture, then the deterministic distributed synthesis problem

is solvable for the architecture class A and local ω-automata specifications.

Game Graphs with Global/Local Winning Conditions After the initial solution of

Peterson and Reif [1], there has been little progress in the study winning strategy problems

for imperfect information games of the kind studied here. The case of local winning

conditions and joint strategies that are not deterministic are yet to be explored from the

game point of view.

An exception to this is the approach of tracking construction studied in [16]. The construc-

tion reduces an imperfect information game (G,γ) specified by a game graph G, with a

global winning condition given by an ‘observable’ priority labellings into a perfect infor-

mation game (G ,γ ′), where each state of the reduced game corresponds to an ‘epistemic
2A sub-architecture of an architecture is simply an induced subgraph of the architecture.
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state’ of the system. Intuitively, the epistemic state models the ‘information’ and ‘mutual

information’ held by agents of the coalition. The main result of [16] shows that winning

strategy problem for imperfect information games (G,γ) reduces to a possibly infinite

perfect information game (G ,γ ′). Moreover, they show that any such perfect information

game (G ,γ ′), with states that correspond to epistemic states, may be reduced further as

follows: any two homomorphically equivalent epistemic states in the reduced game graph

G , maybe identified as a single epistemic state, without changing the winning status of

the game. Consequently, the winning strategy problem is decidable for a class of games,

whenever the reduced game is guaranteed to generate only finitely many epistemic states,

up to homomorphic equivalence. They show that hierarchical games belong to the class

of imperfect information games for which the above transformation yields finitely many

epistemic states upto homomorphic equivalence.

2.6 Discussion

Having described the setting of the (deterministic) distributed synthesis problem and its

relation to the (deterministic) winning strategy problem, we note that when compared

to the standard formulation of the distributed synthesis problem, our formulation here is

slightly different in some respects. In the standard formulations, the environment agent is

treated as a first-class participant in the distributed system, and the joint actions and states

of the system in this case include in them a component for the actions and states of the

environment-agent. The reasons for discarding this are two fold: the first is that while we

do not record the actions of the environment, the effect of these actions is reflected in the

evolution of the states of the system, and therefore discarding environment agent from the

analysis is in no way less general; second, the actions and the information available to the

environment agent are of no consequence for synthesizing the distributed program, only

the effect of these actions need be recorded.
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Another point of difference from the setting of distributed synthesis problem is the notion

of viewi. In the case of the distributed synthesis problem, the information of an agent at a

history does not include the actions executed by the agent, that is, viewi(τav) is defined as

viewi(τ)v↓i, as opposed to viewi(τ)a↓iv↓i. This distinction is inconsequential in the case of

deterministic joint strategies, since one can uniquely determine the actions executed by an

agent along a history, from the sequence of local states visited by the agent. However for

the case of non-deterministic joint strategies, this distinction is relevant. We will revisit

this issue in Chapter 5. Despite the difference, the solutions studied in this thesis can be

modified appropriately for any of these two notions.

An aspect where we will be lax is the question on computational complexity of solvability.

The reason for this is that even in positive cases, the algorithms have non-elementary

complexity, and therefore are of little practical use. We believe that in view of the current

state of research on this problem, the priority for now should be to build better techniques

and understanding which distributed synthesis problems are solvable, and this thesis is

intended as a step in this direction.
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Chapter 3

Games with Recurring Common

Knowledge of State

3.1 Introduction

In this chapter, we identify a new condition for the solvability of imperfect information

games, that does not rely on the game being hierarchical. The condition, called recurring

common knowledge of the state, asks that there be infinitely many histories along every

play at which the state of the game graph is ‘common knowledge’ to all agents of the

agents. The results of this chapter were published in [26],[27].

For the purpose of this chapter, we consider only the case of deterministic joint strategies

problem, and therefore refer to them as simply joint strategies. The results in this chapter

are the following:

1. The question of whether a game graph satisfies the condition of recurring common

knowledge of the state is solvable in NLOGSPACE.

2. The question of whether there exists a winning joint strategy for a game is NEXPTIME-

complete. Moreover, the winning joint strategy can be synthesized in 2EXPTIME.
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The solution relies on three key arguments. Firstly, under recurring common knowledge

of the state, the intervals where the current state of the game is not common knowledge

are bounded uniformly. Secondly, we characterize recurring common knowledge in terms

of recurring mutual knowledge. Finally, we prove that the problem of solving imperfect-

information games with recurring common knowledge of state can be reduced to solving

parity games with perfect information, at a relatively low cost in terms of complexity.

Preliminaries For the purpose of this chapter, let us fix an imperfect information game

(G,γ), where G is a game graph (V,E,vε) and γ : V → P is priority labelling that gives

the global winning condition, with P = {1,2, .., |P|} denoting the set of priorities. For any

state v ∈V , let Gv denote the game graph (V,E,v) obtained by replacing the start state vε

of the game graph G, by the state v.

We say that two histories τ,τ ′ in a game graph G are connected, if there exists a sequence

of histories τ1, . . . ,τk that begin at τ and end at τ ′, and a sequence of agents i1, . . . , ik−1 in

[n], such that,

τ1 ≈i1 τ2 ≈i2 · · · ≈ik−1 τk.

We say that two plays are connected, if every history in one play is connected to some

history in the other. In the special case when two histories τ and τ ′ end at the same state v

and are connected via a sequence of histories that also end at v, we say that τ and τ ′ are

twins. Note that if two histories τ and ρ that end at the same state v are connected or twins,

then for every move (v,a,v′) ∈ E, the prolongations τav′ and ρav′ are connected or twins

respectively.

3.2 Deciding ω-CKS for Game Graphs

CKS, ω-CKS and Knowledge Gaps We say that the agents attain common knowledge

of the state (CKS) at history τ in the game graph G, if end(τ) = end(τ ′) holds for any
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pair of connected histories τ,τ ′ in G. We say that a play π allows for recurring common

knowledge of the state (ω-CKS) if there are infinitely many histories in π at which the

agents attain CKS. We say that a game graph G allows for ω-CKS, if every play in G

attains ω-CKS.

A knowledge gap in a play π is an interval J`, tK with t ≥ ` > 0, such that the agents do not

attain CKS at any ‘round’ in J`, tK of the play π . Here by a round k of the play π , we mean

the unique history that is prefix of π and of length k. The length of the gap is t− `+1.

Hence, a play allows for ω-CKS if the length of every knowledge gap in it is finite. The

gap size (for CKS) of a play π is the least upper bound on the length of knowledge gaps in

π . Likewise, the gap size of a game graph is the least upper bound on the gap size of its

plays.

Deciding whether a game allows for ω-CKS by checking that the property holds within

parts of the game graphs or on individual plays is not easy. In general, histories at which the

agents do not attain CKS may be connected to arbitrarily long chains of indistinguishable

histories that end at the same state, before reaching one with a different end state to witness

the lack of CKS. Fortunately, there is a way around this obstacle. It turns out that in any

game graph that allows for ω-CKS, whenever the agents lack common knowledge of the

state at some history τ , then there is a history connected to τ that lacks ‘mutual knowledge’

of the state. This will allow us to characterize games with recurring common knowledge

of the state as those where mutual knowledge of the state is attained over and over again,

along every play.

Mutual Knowledge of State We say that the agents attain mutual knowledge of the state

(MKS) at a history τ in a game graph G, if all indistinguishable histories ρ ≈i τ end at the

same state as τ , for all agents i. A play π allows for recurring mutual knowledge of the

state (ω-MKS) if the agents attain MKS at infinitely many histories along π , and a game

(graph) G allows for ω-MKS if all plays in G do.
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The link between common and mutual knowledge is made by the notion of connected

ambiguous histories. A history τ is ambiguous if the agents do not attain MKS at τ , that

is, if there exists an indistinguishable history ρ ≈i τ , for some agent i, which ends at a

different state. In this case, we refer to ρ as an ambiguity witness for τ and we say that

ρ,τ is an ambiguous pair. Notice that the agents do not attain CKS at a history τ , if and

only if, there exists an ambiguous twin of τ .

Our goal is to show that every play in which the agents do not attain ω-CKS, is witnessed

by one where they do not attain ω-MKS. Towards this, we first prove that if the agents never

attain CKS in a play, there exists a witnessing play in which all histories are ambiguous.

Lemma 3.2.1. For any game graph, if there exists a play π along which the agents never

attain common knowledge of the state (except for the initial state), then there also exists a

play π ′ along which they never attain mutual knowledge of the state. Moreover, the plays

π and π ′ are connected.

Proof. For an arbitrary game graph G and a play π = v0 a1v1 . . . , we consider the set Tπ

of all histories τ in G such that every non-trivial prefix history of τ is ambiguous and

connected to the history of the same length in π . As the set Tπ is closed under prefix

histories, we can view it as a finitely branching tree. We wish to show that if the agents do

not attain CKS along π , then every history in π is connected to some history in Tπ , and

therefore Tπ contains an infinite play in G along which the agents never attain MKS.

We prove a stronger property, for every history π` of length `≥ 1 in π: If the agents do not

attain CKS along π` (except for the trivial history), then for every ambiguous pair τ ≈i ρ

connected to π` there exists a pair τ ′ ≈i ρ ′, such that

1. τ ′ ∈ Tπ is a twin of τ , and

2. ρ ′ ends at the same state as ρ .
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For the base case with `= 1, if the agents do not attain CKS at the history π1 := v0 a1v1,

then there exist ambiguous histories connected to π1, and they all belong to Tπ , because

the only preceding history is trivial. Hence, for any ambiguous pair τ ≈i ρ , already τ ′ = τ

and ρ ′ = ρ witness the statement.

For the induction step, suppose the statement holds for `≥ 1 and assume that the agents

do not attain CKS up to (and including) the history π`+1 of length `+1. In particular, this

means that there exist ambiguous histories connected to π`+1; among these, let us pick an

ambiguous pair τav≈i ρcw, with v 6= w. Due to perfect recall, we have τ ≈i ρ .

We distinguish two cases. (1) If τ and ρ end at different states v′ 6= w′, by induction

hypothesis, there exists a twin τ ′ ∈ Tπ of τ and a history ρ ′ ≈i τ ′ that ends at w′. On

the one hand τ ′av is a twin of τav. On the other hand, by definition of ≈i, we have

τ ′av≈i ρ ′cw. Since τ ′ ∈ Tπ and v 6= w, this also implies τ ′av ∈ Tπ . (2) Otherwise, suppose

τ and ρ end at the same state. As the histories are connected to π`, the agents do not attain

CKS at τ . Hence, there exists an ambiguous twin τ ′ of τ , and by induction hypothesis, we

can choose τ ′ ∈ Tπ . On the one hand, τ ′av is a twin of τav. On the other hand, as τ ′ and

ρ end at the same state, so τ ′cw is a valid history in G, and we have τ ′av≈i τ ′cw. Again,

since τ ′ ∈ Tπ , and v 6= w it follows τ ′av ∈ Tπ . This completes the induction argument.

In conclusion, for a play π in which the agents do not attain CKS at any round, there exist

histories in Tπ that are connected to arbitrarily long histories of π . As the tree Tπ is finitely

branching, it follows from König’s lemma that it has an infinite path π ′. By construction,

each non-trivial prefix of π ′ is an ambiguous history, and it is connected to the history of

π of the same length. Hence, π ′ describes a play connected to π along which the agents

never attain mutual knowledge of the state.

We are now ready to formulate our characterisation result that will be instrumental for

deciding the property of ω-CKS on games graphs.

Theorem 3.2.2. A game allows for recurring common knowledge of the state if, and only
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if, it allows for recurring mutual knowledge of the state.

Proof. The only if direction is trivial: recurring common knowledge of the state implies

recurring mutual knowledge of the state.

For the converse, let us consider a game graph G that does not allow for ω-CKS. Then,

there exists a play π in which the agents attain CKS at some round `, but not at any later

history. Accordingly, in the game graph Gv starting from the state v that is reached in

round ` of π , there exists a play along which agents never attain CKS, except for the initial

state. Then, by Lemma ??, there exists a play π ′ in Gv along which the agents never attain

MKS. Furthermore, in the play in G that follows π for the first ` rounds and, upon reaching

v, proceeds like π ′, the agents do not attain MKS at the infinitely many histories from

round ` onwards. Hence, the game G does not allow for ω-MKS, which concludes the

proof.

Before turning to algorithmic questions, let us state the following corollary of arguments

from the proofs of Lemma ?? and Theorem ??, which will be useful for bounding the gap

size of games graphs.

Corollary 3.2.3. For any game graph G, if the agents do not attain common knowledge of

the state in a play π along a sequence of rounds `+1, . . . , `+ t, then there exists a play π ′

in G that is connected to π and on which the agents do not attain mutual knowledge of the

state along the rounds `+1, . . . , `+ t.

Proof. Let G be a game graph and let π be a play with the stated property, for some `, t > 0.

We assume, without loss of generality, that the agents attain CKS at round ` and t +1 in π .

For the game Gv starting at the state v reached in this round, we consider the suffix τ of π

from round ` onwards, and construct the tree Tτ of ambiguous histories connected to τ ,

as in the proof of Lemma ??. The induction argument from the proof then shows that the

history of length t in τ is connected to some ambiguous history τ ′ ∈ Tτ . The histories of τ ′
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from round 1 to t are ambiguous and each of them is connected to the history of the same

length in τ . Hence, the play π ′ that follows π for the first ` rounds, then proceeds like τ ′

for t rounds, and then again follows π , satisfies the required properties: π ′ is connected to

π and the agents do not attain MKS along the rounds `+1, . . . , `+ t.

From the above observations, it follows that for the purposes of deciding whether a game

graph admits the property of ω-CKS, it suffices to show that the game graph admits the

property of ω-MKS. Now for the purpose of identifying histories of a play that lack MKS,

if we consider all the ambiguity witnesses associated with the histories of the play, then the

subtree induced in the game unravelling by such ambiguity witnesses can have unbounded

width. To handle this, we associate with every play, a structure called a ‘fork-pair’, that

carefully chooses ambiguity witnesses of the histories in the play that lack MKS.

Fork-Pair and Sequences A fork-pair for a play π is a prefix-closed set T of histories

that contains, for every level `≥ 0,

(i) the history π` of π in round `, and

(ii) at most one history ρ` 6= π` with ρ` ≈i π`, for some agent i.

A fork-pair T is complete, if it additionally satisfies, for every level `:

(iii) if π` is ambiguous, then T contains an ambiguity witness ρ` of π`.

We can view fork-pairs as induced subtrees in the unravelling of G that contain π as a

central branch and have width at most two, that is, at most two elements on each level. For

convenience, we let ρ` refer to π` whenever T contains only π` at level `. In case π` and

ρ` end at different states, we say that the level ` is a doubleton, else it is a singleton.

Fork pairs for a fixed play π can be represented by ω-words. We say that an ω-word

τ ∈ V (AV )ω is a fork sequence for a play π if it starts with τ0 = v0 and there exists a
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fork-pair T for π such that τ` is the last action-state pair of ρ` in T , for every ` > 0.

Lemma 3.2.4. For every play in an arbitrary game there exists a complete fork-pair.

Proof. It is convenient to extend the notion of ambiguity witness to knowledge gaps in

histories. For a history π and an interval J`, tK, we say that a history π ′ is an ambiguity

witness along the gap J`, tK if π and π ′ have length at least t, and π ′r is an ambiguity

witness for πr, for every round `≤ r ≤ t. Likewise, for a play π , we say that a play π ′ is

an ambiguity witness from round ` onwards if π ′r is an ambiguity witness for πr for every

r ≥ `.

Now, consider an arbitrary game G and a play π . By induction on the number of rounds

`, we construct a finite or infinite sequence of trees T` that satisfy the fork-tree condi-

tions (i) and (ii) for the first ` levels, and, in addition, the following strengthening of the

completeness condition (iii) for the last level `:

(iii)∗ If, for some t ≥ `, there exists a history in G that is an ambiguity witness for π along

the gap J`, tK, then there also exists a prolongation history of ρ` that is such a witness.

In particular, this implies that whenever the history π` is ambiguous, the level ` in T` is a

doubleton.

Each tree T`+1 is finite and extends its predecessor T` by one level, except if the sequence

ends at some stage `+1, in which case T`+1 extends T` with the (infinite) prolongation of

π` to π and with a prolongation play ρ of either π` or ρ` that is an ambiguity witness for π

from round ` onwards.

For the base case, we take the tree T0 consisting only of the initial history vε . For the

induction step, suppose that a tree T` with ` levels satisfying the conditions (i), (ii), and

(iii)∗ has been constructed. To extend it to T`+1, we look at the set R of histories τ that

prolong either π` or ρ`, and are ambiguity witnesses for π along the gap J`+1, tK up to
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the length t of τ . Now we distinguish three cases. (1) If R is empty, we set ρ`+1 := π`+1,

that is, `+1 is a singleton level. (2) If R is nonempty, but finite, we pick a history τ ∈ R of

maximal length, and add ρ`+1 := τ`+1 together with π`+1 as a new level to T`. (3) Finally,

if R is infinite, there exists an infinite play τ in G such that all its histories from round

` onwards are in R. This follows from König’s lemma, since the histories in R form an

infinite tree that is finitely branching (indeed, a subtree of the unravelling of G). In this

case, we add the histories πr and ρr := τr, for all levels r > ` and terminate the sequence

with this infinite tree T`+1.

In any case, ρ`+1 is a history in G and is indistinguishable from π`+1 which is also

contained on level `+1. Condition (iii)* holds trivially in case (3), we shall verify that it

is also maintained in case (1) and (2).

For case (1) assume, towards a contradiction, that R is empty and there exists a history

π ′ of length `+ 1 that is an ambiguity witness for π`+1. If π ′` ends at the same state as

π`, then the last action-state pair (a′`+1v′`+1) of π ′ yields a prolongation τ = π`a′`+1v′`+1

that should be included in R, a contradiction. Else, if π ′` ends at a different state than π`,

by perfect recall, π ′` is an ambiguity witness for π` along the gap J`,`+ 1K, which, by

induction hypothesis, implies that there also exists such a witness that prolongs ρ` and is

thus contained in R, again in contradiction to our assumption that R = /0.

For case (2), consider a history π ′ of length t > ` that is an ambiguity witness for π along

the gap J`+1, tK. We claim that there also exists a prolongation of ρ`+1 with this property.

There are two situations to distinguish: If π ′` reaches the same state as π`, then the history

π ′′ that follows π until round ` and then continues like π ′ belongs to R, and is at most as

long as the witness τ chosen to construct ρ`+1. Hence, τ prolongs ρ`+1 and is an ambiguity

witness for π along the gap J`+1, tK. Otherwise, if π ′` reaches a different state than π`,

then, by perfect recall, we have π ′` ≈i π`, for some agent i, and hence π ′ is already an

ambiguity witness for π along the gap J`, tK. By induction hypothesis, there exists an

ambiguity witness π ′′ for π along the gap J`, tK that prolongs ρ`. Hence, π ′′ ∈ R and, as
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the history τ ∈ R chosen to construct ρ`+1 is of maximal length, τ prolongs ρ`+1 and is

also an ambiguity witness for π along the gap J`+1, tK.

Clearly, each tree T` constructed along the induction satisfies the conditions of a complete

fork-pair and agrees with its successor T`+1, up to level `. In conclusion, the sequence

converges and the infinite tree T obtained at the limit is a complete fork-pair for π .

In the following we construct, for any arbitrary game, an ω-word automaton with co-Büchi

acceptance condition, that takes as input an (infinite) play π in G and guesses in every run

a fork sequence for π .

Proposition 3.2.5. For any game with m states, the set of plays that do not allow for

recurring mutual knowledge of the state is recognisable by a nondetermistic co-Büchi

automaton with m2 states.

Proof. Let us fix an arbitrary game graph G. We construct an ω-word automaton A with

co-Büchi acceptance condition that recognizes the set of histories π in G, for which there

exists a fork-pair with only finitely many singleton levels. To witness this, the automaton

guesses non-deterministically a fork sequence τ for π and accepts if the states at τ` and π`

are different, for all but finitely many rounds `.

The states of the automaton are pairs of game states from V : the first component keeps track

of the input play, the second one is used for guessing the fork sequence τ . The transition

function ensures that the two components evolve according to the moves available in the

game graph and that the current input symbol yields the same observation as the second

component to some agent i.

Concretely, the co-Büchi automaton A is defined over the input alphabet A×V on the state

set V ×V with initial state (v0,v0) and transitions from state (u,u′) on input (a,v) to state

(v,v′) whenever (u,a,v) ∈ E and v′↓i = v↓i, for some agent i, and either (u′,a′,v′) ∈ E or

(u,a′,v′) ∈ E, for some action a′ ∈ A with a′↓i = a↓i for this agent. The set of final states
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is Q\{(v,v) | v ∈V}; the automaton accepts an infinite input word if all states that occur

infinitely often in a run are final.

We claim that an input word π ∈V (AV )ω is accepted by A if, and only if, π corresponds to

a play in G, and the agents never attain mutual knowledge of the state along π , from some

round onwards.

For the if direction, consider a play π along which the agents never attain mutual knowledge

of the state from some round onwards. By Lemma ??, there exists a complete fork-pair

T for π , in which all but finitely many levels are doubletons. Let τ be the fork sequence

associated to T . Then, the sequence ((π`,τ`))`<ω describes a run of A on input π in which

non-final states (v,v) occur only at the finitely many positions ` corresponding to singleton

levels in T , thus witnessing that π is accepted.

For the converse, inputs that do not correspond to histories in G are rejected, by construction

of A. Furthermore, if an input word π corresponds to a play with infinitely many histories

π` at which the agents attain mutual knowledge of the state, then every run of the automaton

visits a non-final state whenever such an input prefix π` is read. As this occurs infinitely

often, the input π is rejected.

Next we present the algorithm that decides whether a game graph allows for ω-CKS.

Theorem 3.2.6. The problem of whether a game graph allows for recurring common

knowledge of state is NLOGSPACE-complete.

Proof. According to the Theorem ??, a game graph G allows for recurring common

knowledge of the state, if and only if, it allows for recurring mutual knowledge of the state.

Our problem thus reduces to checking whether the language recognized by the co-Büchi

automaton A constructed for G in Proposition ?? is non-empty. It is well known that the

non-emptiness test for co-Büchi automata is in NLOGSPACE (see, for instance, Vardi and

Wolper [28]).
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Concretely, a nondeterministic procedure can guess a run of A that leads to a cycle included

in the set of final states. This requires only pointers to three states of the automaton: two

for the current transition and one for storing a state to verify that a cycle is formed. As each

state of the automaton is formed by two states of the game, the overall space requirement

is logarithmic in the size of the game graph G. Accordingly, the problem of determining

whether a game graph allows for common knowledge of state is in NLOGSPACE.

Hardness for NLOGSPACE follows via a straightforward reduction from directed graph

acyclicity, shown to be NLOGSPACE-hard by Jones in [29]: Given a directed graph G, we

construct a game graph G′ for one agent by taking two disjoint copies of G and assigning

all non-terminal nodes with the same observation; each terminal node is assigned with a

distinct observation and equipped with a self-loop. Finally, we add a fresh initial state to

G′, with moves to all other states. Clearly, the game graph G′ can be constructed using

logarithmic space, and the agent has recurring (mutual, common) knowledge of the state

in G′ if, and only if, the directed graph G is acyclic.

This shows that the problem of determining whether a game graph allows for common

knowledge of the state is NLOGSPACE-complete.

3.3 Solving games with ω-CKS

The key argument in the solution for winning strategy problem for such games is that

knowledge gap size between rounds of certainty of state are bounded. Notice that for a

play in an arbitrary game, the length of knowledge gaps may be unbounded, even if the

play allows for ω-CKS; its gap size is then infinite. Nevertheless, we show that, if a game

allows for ω-CKS, then there exists a uniform, finite bound on the length of the knowledge

gaps in its plays.

As a preliminary step to this, we show that the gap size of such a game graph is finite.

Towards this, observe that due to the construction of the game tree TG, at any two histories
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τ,τ ′ ∈ H at which the agents attains CKS, and end at the same state, the substructures of

the game tree TG induced by the histories reachable from τ and the histories reachable

from τ ′, are identical. An easy consequence of this observation is that at any two histories

τ , τ ′ ∈ H at which the agents attain CKS, with the same end state v, any two prolongations

τaρ,τ ′a′ρ ′ ∈ H and agent i ∈ [n], we have τaρ ≈i τ ′a′ρ ′, if and only if, vaρ ≈v
i va′ρ ′,

where ≈v
i denotes the indistinguishability relation of the agent i, in the game tree specified

by Gv. The preservation for the case of common knowledge of state follows immediately,

and we note this below for further reference.

Lemma 3.3.1. Let τ be a history in G at which the agents attain CKS, and let v be its last

state. Then, the agents attain CKS at a prolongation history τaρ in G, if and only if, the

agents attain CKS at history vaρ in the game Gv.

Proposition 3.3.2. If the game graph G allows for recurring common knowledge of the

state, then its gap size is finite.

Proof. Let G allow for ω-CKS. For each state v ∈V , we construct a tree Tv that may be

understood as the unravelling of G from v, up to common knowledge. The nodes of Tv

correspond to the histories in Gv that have no strict, non-trivial prefix at which the agents

attain CKS. The edges are labelled with joint actions and correspond to moves in G: for

any history τ in the domain of Tv at which the agents do not attain CKS, or for τ = v, we

have an edge (τ,a,τaw) whenever (u,a,w) ∈ E, for the last state u of τ . The leaves of Tv

thus correspond to the histories in Gv at which the agents attain CKS for the first time (not

counting the initial history).

Notice that each of the constructed trees is finite branching and all its paths are finite,

according to our assumption that all plays allow for ω-CKS. Hence by König’s lemma,

every tree in the collection (Tv)v∈V is finite. We claim that the maximal height of a tree in

this collection is an upper bound for the length of knowledge gaps in the plays of G.

To show this, we construct a game graph GCK over the disjoint union of all unravelling
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trees Tv, where we identify every leaf history with the root of the tree associated to its last

state. Formally, in each tree Tv, we replace every edge (τ,a,ρ), where ρ is a leaf history

ending at w, with an edge (τ,a,w) leading to the root of the tree Tw. This induces a natural

bijection h between histories of G and GCK, which is also a bisimulation — clearly, the two

game graphs have the same infinite unravelling.

The bijection h preserves CKS: By the argument of Lemma ??, the agents attain CKS at a

history τ in G, if, and only if, they attain CKS at the image h(τ) in GCK. As a consequence

it follows that, on the one hand, every history in GCK at which the agents attain CKS ends

at the root of some tree Tv, and on the other hand, for every knowledge gap, i.e., every

sequence of consecutive histories τ1,τ2, . . . ,τt in G at which the agents do not attain CKS

the image h(τ1),h(τ2), . . . ,h(τt) describes a sequence of consecutive histories in GCK that

never visit the root of any tree Tv. Hence, the length t of such a sequence is bounded by

the maximal length of a path in any of the trees (Tv)v∈V . This concludes the proof.

Next we show that the gap size for games with ω-CKS is bounded, by using the alternative

characterization of such games by the ‘fork-pair’ criterion.

Theorem 3.3.3. The gap size of any game with m states that allows for recurring common

knowledge of the state is bounded by m2.

Proof. Consider a game G with m states that allows for ω-CKS. Towards a contradiction,

suppose that in G there exists a play with gap size greater than m2, that is, the agents do

not attain CKS along a sequence of consecutive rounds r, . . . ,r+m2, for some r. Due to

Corollary ??, there also exists a play π in G such that the agents do not attain MKS in π

along these rounds. Let T be a complete fork-pair for π , according to Lemma ??, and let τ

be the associated fork sequence.

As G allows for ω-MKS, the automaton A constructed in Proposition ?? recognizes the

empty language, in particular it rejects the run on π described by (π,τ). But A has at most

m2 states, so there must be a cycle in the transition graph that is visited by this run, say
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from position `≥ r to t ≤ r+m2. Along the interval J`, tK, the agents do not attain MKS

in π , therefore the corresponding levels in the fork-pair T are doubletons, and the states on

the cycle visited in the run (π,τ) from position ` to t are final.

Consider now the sequences π ′, and τ ′ that follow π and τ , respectively, until position t

and then loop from ` to t forever. Then, the pair (π ′,τ ′) describes a run in A that eventually

cycles through final states, hence, the input π ′ is accepted. But this means that π ′ is a play

in G that does not allow for ω-MKS, in contradiction to our assumption that all plays in G

allow for ω-CKS.

We observe that the quadratic bound on the gap size is tight. Consider, for instance, a

number m ∈ N and the game graph Gm for two agents as depicted in Figure ??, where one

of the agents, say 1 has two local states, denoted by black and white, and the other agent

has a different local state for each state of the game graph, which we do not denote in the

figure. At the start state, the environment can either move up, into the cycle with m−1

white states followed by a black one, or down, to the path consisting of m white states with

self-loops, each followed by a black state, except for the last one which leads to the black

state on the cycle. Consider the play π where the environment moves into the cycle and

stays there forever. Along π , every non-trivial history up to round m2 is indistinguishable

from the one where environment moves initially down to the path and loops on each white

state precisely m−1 times. For the first m2 rounds in π , the agent 1 does therefore not

know the current state, which means that the gap size of the game is at least m2. On the

other hand, notice that all histories that are distinguishable from π are non-ambiguous, and

that from round m2 +1 onwards, any history that is indistinguishable from π leads to the

same state as π itself. Accordingly the game graph Gm with 3m states allows for ω-CKS

and its gap size is m2.

We are now ready to establish complexity bounds for the basic algorithmic questions on

games with recurring common knowledge of the state. At the end of the section, we explain

how the results apply to observable priority labellings.
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path of length 2m−1

cycle of length m

Figure 3.1: A game graph with 3m states and gap size m2

Theorem 3.3.4. For games that allow for recurring common knowledge of the state, with

priority labellings,

1. the problem of deciding whether there exists a winning joint strategy is NEXPTIME-

complete;

2. if winning joint strategies exist, then they can be synthesized in 2-EXPTIME.

The lower bound for the decision problem (??) follows from NEXPTIME-hardness of the

corresponding problem for two-agent reachability or safety games of finite horizon. These

are games where the underlying graph is acyclic except for having self-loops at observable

sinks — hence, the simplest examples of games that allow for CKS. The original proof,

due to Azhar, Peterson, and Reif [30, Section 5], is by reduction from the time-bounded

halting problem via a variant of QBF with dependency quantifiers.

For the upper bound and the strategy-construction procedure, we introduce an auxiliary

representation of the game which retains the histories at which agents attain CKS and is

only exponential in the size of the input game graph.

The abridged game The abridged game (Ĝ, γ̂) of (G,γ) is a game with perfect infor-

mation for one agent against environment. Intuitively, (Ĝ, γ̂) is obtained by contracting

knowledge gaps and recording only the most significant priority seen between two consec-

utive histories where the agents attain CKS.
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Concretely, the states of the abridged game graph Ĝ are pairs (v, p) of states v ∈ V and

priorities p ∈ P; for convenience, we also include a sink state 	, from which there are no

outgoing moves. We shall refer to the states of Ĝ as positions, to avoid confusion with

the ones of (G,γ). The initial position (vε , pmax) corresponds to the initial state of (G,γ)

labelled with the most significant priority (that is, the smallest priority) pmax in P. The set

of actions consists of all non-empty subsets U ⊆V ×P of positions.

To define the moves, we look at the unravelling GCK up to common knowledge of the

game graph G, as constructed in the proof of Proposition ??. Recall that GCK is built from

a disjoint collection of trees (Tv)v∈V , which are then connected by identifying all leaves

with the corresponding roots. For every state v ∈V and any joint strategy t over the tree

component Tv of GCK, we define the set outcomev(t) of pairs (u, p′) ∈ V ×P, for which

there exists a history τ in Tv that follows t, such that τ ends at u, and the most significant

priority that occurs along τ is p′. Now, the set of available moves is defined as follows. For

an action U ⊆V ×P there are moves from a position (v, p) to every position (u, p′) ∈U if

there exists a joint strategy t in Tv with outcomev(t) =U . Otherwise, the action leads to

the 	-sink. Notice that the moves depend only on the first component of the position, that

is, on the state and not on the priority.

At last, we define a parity condition on (G,γ), by assigning to every position (v, p) ∈V ×P

the priority p.

The plays of G and Ĝ are related via their summaries. Intuitively, this is the sequence of

states reached when the agents attain CKS in a play, together with the most significant

priority seen along the last knowledge gap. More precisely, for a play π = v0 a1v1 . . . in

G, we look at the subsequence of rounds t0, t1, t2, . . . such that, for all ` ≥ 0, the agents

attain CKS at round t` in π , but not at any round t in between t` < t < t`+1. Next, we

associate to each index ` > 0, the most significant priority that occurred in the gap between

t` and t`+1, setting p`+1 := min{γ(vt) : t` < t ≤ t`+1}. Now, the summary of π is the

sequence [π] := v0,(vt1, p1),(vt2, p2) . . . Notice that for every play π in G, the summary [π]
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corresponds to a sequence of states in Ĝ, which is infinite, since we assume that π allows

for ω-CKS.

The notion of summary is defined analogously for histories, and it also applies to plays π̂

in Ĝ. Indeed, [π̂] is obtained simply by dropping the actions in the sequence π̂ . We say

that a play π in G matches a play π̂ in Ĝ if they have the same summary: [π̂] = [π].

The next lemma shows that the winning or losing status is preserved among matching

plays.

Lemma 3.3.5. If a play π of (G,γ) matches a play π̂ of (Ĝ, γ̂), then π is winning if, and

only if, π̂ is winning.

Proof. Let p be the least priority that appears infinitely often in π . As each knowledge

gap in π is finite, p appears in infinitely many knowledge gaps in π , hence it is recorded

infinitely often in the summary [π]. Conversely, all priorities that appear infinitely often

in the summary [π], also appear infinitely often in π , so p is minimal among them. In

conclusion, the least priority appearing infinitely often in the summaries [π] = [π̂] is the

same as in the plays π and π̂ .

Reduction to Games with Perfect Information To use results from the standard liter-

ature on parity games, it is convenient to view the abridged game (Ĝ, γ̂) formally as a

turn-based game between two agents, Coordinator and Nature. In contrast to before, we

shall hence regard Nature as an actual agent with proper positions, moves, and strategies.

Towards this, we view the game graph Ĝ as a bipartite graph, with one partition V ×P

controlled by Coordinator, and a second one formed by the non-empty subsets of V ×P

denoting the actions of the abridged game, controlled by Nature. The initial position

(vε , pmax) is unchanged. Coordinator can move from every position (v, p) ∈ V ×P to a

position U ⊆V ×P, if U = outcomev(t) for some joint strategy t on Tv, whereas Nature

can move from every position U ⊆V ×P to any element (u, p′) ∈U . The new positions
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from U ⊆V ×P receive the least significant priority in P, whereas position (v, p) ∈V ×P

have priority p, as before. The notion of strategy for Coordinator is that of a function that

maps histories ending in a position controller by the coordinator, to a successor of this

position. The notion of strategy for Nature is similarly defined.

A fundamental result about parity games is that they enjoy positional determinacy. A

strategy is positional if the choice prescribed at a history π depends only on the last position

in π . The following theorem was proved by Emerson and Jutla [31].

Theorem 3.3.6 ([31]). For every parity game with perfect information, one of the two

agents has a positional winning strategy.

For our setting, positional determinacy means that in the abridged game (Ĝ, γ̂), either

Coordinator or Nature has a winning strategy defined on the set of positions. This yields

witnesses of manageable size for determining which agent wins the abridged game.

In the following, we argue that positional strategies for the abridged game (Ĝ, γ̂) can be

translated effectively into strategies on (G,γ), such that the resulting plays match in the

sense of Lemma ??.

Proposition 3.3.7. Let (G,γ) be a game that allows for ω-CKS, and let Ĝ be the abridged

game.

1. For every positional Coordinator strategy ŝ in (Ĝ, γ̂), we can effectively construct

joint strategy s for the game (G,γ) such that, for every play π that follows s, there

exists a matching play π̂ that follows ŝ.

2. For every positional Nature strategy r̂ in (Ĝ, γ̂), and every joint strategy s for the

game (G,γ), there exists a play π in (G,γ) that follows s with a matching play π̂

that follows r̂.

Proof. 1. Let ŝ : V ×P→ 2V×P be a positional strategy for Coordinator in the abridged

game (Ĝ, γ̂). We construct a joint strategy s for the unravelling (G,γ)CK of (G,γ) up to

79



common knowledge. As the two game graphs have the same unravelling, s is also a strategy

for G .

We can assume that the strategy ŝ prescribes for every state v ∈V the same choice at all

positions (v, p) independently of the priority. This is without loss of generality: Recall that

all positions (v, p) in (Ĝ, γ̂) have the same set of successors U . If we add a fresh position zv,

of least significant priority, from which Coordinator can move to every position in U , and

replace the outgoing moves from each position (v, p) with a move to zv, the game remains

essentially unchanged. Whenever Coordinator has a winning strategy for the original game,

he has one for the modified game. Then, due to positional determinacy, he also has a

positional winning strategy and its choice at the new position zv can be transferred as a

uniform choice to all positions (v, p) in the original game, still yielding a winning joint

strategy.

To transfer the given strategy from (Ĝ, γ̂) to (G,γ)CK, we consider for each state v ∈V the

tree component Tv of (G,γ)CK separately. For an arbitrarily chosen priority p, we look

at the set U := ŝ(v, p) and pick a joint strategy tv on Tv with outcomev(tv) =U . Now, for

every history π that ends in Tv, we take the suffix πv contained in Tv, that is, we forget

the prefix history up to entering the tree, and set s(π) = {tv(πv)}. This is a valid joint

strategyby Lemma ??.

With s constructed this way, every play π in G that follows s has the same summary

[π] = v0 (v1, p1)(v2, p2) . . . as the play π̂ = v0 a1(v1, p1)a2(v2, p2) . . . in Ĝ with actions

a` = ŝ(v`, p`). Hence, π̂ follows ŝ and matches π , as required.

2. For the converse, let r̂ : 2V×P→V ×P be a positional strategy for Nature in Ĝ and let s

be an arbitrary strategy for Coordinator in G. We construct a pair of plays π in G, and π̂ in

(Ĝ, γ̂) with the desired properties.

The construction is by induction on the number of knowledge gaps in π: For every `, we

construct a history π` in G with ` knowledge gaps that follows s and ends at some state v,
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where the agents attain CKS. At the same time, we construct a matching history π̂` that

follows r̂ and ends at a position (v, p) in Ĝ, associated with the same state v.

For the base case, both histories π0 and π̂0 are set to v0. For the induction step, suppose

that the two histories π` and π̂` satisfy the hypothesis, and that they end at state v and

position (v, p), respectively. We construct a prolongation π`+1 that follows s over the

`+1st knowledge gap and matches a one-round prolongation π̂`+1 of π̂`. Towards this, we

consider the strategy tv induced by s in the set of histories π`Tv, that is, the prolongations

of π` into the tree component Tv of GCK. For U := outcomev(tv) and (u, p′) := r̂(U), there

exists a history τ in Tv that ends at u and has p′ as most significant priority after the initial

state v. Now, we update π`+1 := π`τ and π̂`+1 := π̂`U(u,d). This way, π`+1 follows s

and the agents attain CKS, and π̂`+1 follows r̂. Moreover, the two plays have the same

summary, and π̂`+1 ends at a position corresponding to the last state of π`+1.

For the infinite plays π and π̂ obtained at the limit, we have: π follows s and matches π̂

which follows r̂, as required.

The correspondence between strategies in the abridged game and in the original game

results in the following conclusion.

Proposition 3.3.8. Let (G,γ) be an imperfect-information game that allows for recurring

common knowledge of the state, such that G has m states and γ maps states in G to the

priorities in {1,2, ..,d}.

1. There exists a joint winning strategy for (G,γ) if, and only if, Coordinator has a po-

sitional winning strategy for the abridged game (Ĝ, γ̂), that is a perfect-information

parity game with md +2md positions and d priorities.

2. If there exists a joint winning strategy in (G,γ), then there exists a winning profile of

finite-state strategies with 2O(m2 logm) states.
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Proof. 1. If Coordinator has a positional winning strategy ŝ in (Ĝ, γ̂), then the correspond-

ing profile s according to Proposition ??(i) is winning in (G,γ), because every play π that

follows s has a matching play in (G,γ) that follows ŝ and is hence winning, which implies

that π is also winning, by Lemma ??.

Conversely, assume that there exists a joint winning strategy s in G. By Proposition ??(ii),

for any arbitrary positional strategy r̂ of Nature, there exists a play π̂ that follows r̂ and

matches some play π in G which follows s and thus wins. Hence, π̂ is also winning for

Coordinator, by Lemma ?? which means that r̂ in not winning for Nature. By positional

determinacy, it follows that Coordinator has a positional winning strategy in Ĝ.

The state space of the abridged game is V ×P∪ 2V×P, it has md + 2md positions; the

number d of priorities is as in (G,γ).

2. Let ŝ : V ×P→ 2V×P be a winning strategy for Coordinator in the abridged game (Ĝ, γ̂).

As in the proof of Proposition ??(i), we assume, without loss of generality, that the strategy

prescribes the same move U = ŝ(v, p), at all positions corresponding to v, independently

of the priority p; for each of the m states v ∈ V , the move ŝ(v, p) is translated into an

imperfect-information strategy tv on the tree component Tv of GCK. We use these local

strategies to construct a joint winning strategy s for the grand agents in G as follows.

For each agent i, the component strategy si is implemented by a procedure that maintains,

along the infinite sequence of states, a record (v,ρ i) of the last state v about which the

agents attained common knowledge and the local-state history ρ i along the subsequent

knowledge gap. Initially v is set to v0 and ρ i to v↓i0 . In each step, the procedure returns

the action ai := tv(ρ)↓i, inputs the next local state v′i, and repeats with ρ iaiv′i as a new

value for ρ i, unless this corresponds to a history in Gv at which the agents attain common

knowledge of the current state v′. In that case, the root v is replaced with v′ and the new

value of ρ i becomes v′↓i. Each local strategy t i
v can be represented by a (tree shaped)

automaton that outputs actions in response to observation sequences along knowledge

gaps — of length at most m2, by Theorem ??. Since there are no more observations than

82



game states, mm2
automaton states are sufficent to store these responses, as well as the

set of histories at which the agents attain CKS. Globally, the strategy si of each agent i

combines m local strategies t i
v. Hence, we need at most m ·mm2

= 2O(m2 logm) many states

to represent each component of the profile s by a strategy automaton.

Next we discuss the complexity of determining the existence of a winning strategy. Accord-

ing to Proposition ??, this can be done guessing the abridged game (Ĝ, γ̂) and determining

whether the Coordinator has a winning strategy in the obtained parity game with perfect

information. The complexity is dominated by the verification of the transition relations

between Coordinator positions (v, p) and Nature positions U ⊆ V ×C, which involves

guessing a witnessing strategy profile tv over the tree Tv such that outcomev(tv) =U . As

we pointed out in the proof of Proposition ??, for a game (G,γ) of size m, such a strat-

egy tv can be represented by a collection of n trees of size 2O(m2 logm), one for every agent.

Once the local strategy trees t i are guessed, the verification that outcomev(t) =U is done

in time linear in their size. Given the abridged game, a winning strategy for Coordina-

tor can be guessed and verified in non-deterministic linear time with respect to the size

md + 2md of (Ĝ, γ̂) where d is the number of priorites. Overall, the procedure runs in

NTIME(2O(m2 logm)), that is, non-deterministic exponential time.

With a deterministic procedure, the abridged game can be constructed by exhaustive search

over witnessing strategies over the component trees in GCK in time 22O(m2 logm)
. Once this is

done, winning strategies for the obtained parity game (Ĝ, γ̂) can be constructed in time

O(2md2
) using the basic iterative algorithm presented by Zielonka in [32]. This concludes

the proof of Theorem ??.

3.4 Discussion

Known solvable classes from the distributed-systems literature rely on an ordering on the

information available to agents and then use this ordering to decompose the system into
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parts that are similar to one-player imperfect information games against the environment.

Our approach is orthogonal to this idea, and instead of restricting the order of information,

our solvability condition requires that players attain common knowledge of the game state

infinitely often along every play. The technical manifestation of this condition allows us to

decompose the game tree into a sequence of time slices that can be solved independently.

We believe that this may be viewed as a situation where, the imperfect information is

present only as a temporary perturbation of a perfect information. It remains to be seen

whether other such small perturbations in the information structure, for instance, due to

communication delays or incomplete but perfect information, still retain the solvability

status of the game.
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Chapter 4

The Retraction Approach

4.1 Introduction

In this chapter, we introduce the building blocks of a different approach to the winning

strategy problem, called the retraction approach. Like in the case of tracking construction

[16], the retraction approach relies on explicitly modelling the ‘information’ possessed by

agents, and aspires to explain the decidability results for imperfect information games as

being due to the presence of certain structural patterns in the indistinguishability relation

of the game.

We begin with an intuitive account of the methodology underlying the retraction approach.

In the study of algorithms, a typical approach to solving a search problem is to first design

a class of structures that is rich enough to represent its solutions, and then search through

them until a structure corresponding to a solution is found. We call such a structure, the

one that corresponds to a solution, as a witness. A requirement for performing such a

search is that the search space must be recursively enumerable, and additionally, it should

be easy to verify if a finite structure being considered is indeed a witness. As an example

of this methodology, consider the satisfiability problem of boolean formulae. The ‘brute-

force’ algorithm for determining the satisfiability of a formula, uses the class of ‘valuation
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functions’ (an assignment of variables to valuations) as the class of structures representing

the solution. The algorithm for satisfiability proceeds by searching for a valuation function

that represents a solution. Moreover, it limits its search space to ‘bounded’ valuation

functions, that only consider valuations of variables that appear in the input formula. The

retraction approach solves the winning strategy problem in a similar manner. As a general

remark, we note that such a methodology is also ‘complete’ for the class of decidable

problems, in the following sense: For a problem with an algorithm that runs on an input x in

time at most f (|x|), the witness is given by the configuration space of the Turing machine

covered by the run of the algorithm on the input x: it is of size at most f (|x|)× f (|x|).

For reference, we state below the main steps of this methodology with respect to the

winning strategy problem.

1. First, find a class of structures rich enough to adequately represent winning joint

strategies of imperfect information games.

2. Second, restrict the search space to some sub-class of bounded size structures.

Here we use MaLTS’s as witnesses to winning joint strategies of a game, and define them

via a set of axioms on the the class of MaLTS’s. The method used here to restrict the search

space of witnesses is by an operation on witnesses, called a retraction, that gives some

generic conditions to transform a witness into possibly smaller witnesses.

Note that due to undecidability of the winning strategy problem for imperfect information

games, there is no hope of finding a retraction operation that uniformly transforms all the

witnesses of a game into bounded size witnesses. Our intention for this approach is quite

different. Put simply, we hope to identify classes of games for which a certain class of

witnesses of the game called ‘canonical witnesses’, admit a retraction to a bounded size

witness. We will see in later chapters that many previous results can be explained from

this perspective. In the remaining part of this chapter, we consider variants of imperfect

information games and define the notion of witness and retraction for each of them.
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4.2 Witnesses and Retractions for Global Specs.

Let us fix an imperfect information game (G,Q), where G = (V,E,vε) is a game graph

and Q is a global winning condition given by the µ-automaton (Q,A,V,δ ,Ω,qε). Let

TG = (H,M,{≈i}i∈[n],vε) denote the game tree associated with the game graph G. Recall

that a joint strategy σ is said to satisfy the winning condition specified by Q only if the

strategy tree of σ is strongly accepted by Q.

Witnesses A ({V,Q},{Ai}i∈[n])-MaLTS W = (S,R,{∼i}i∈[n],{`V , `Q},sε) is called a

witness for the imperfect information game (G,Q), if it satisfies the following:

S.1. (1) ∀s1,s2 ∈ S,∀i ∈ [n] : if s1 ∼i s2, then (Uniformity-1)

{a↓i ∈ Ai | s1Ra 6= /0}= {a↓i ∈ Ai | s2Ra 6= /0},

and

(2) ∀s ∈ S : {a ∈ A | sRa 6= /0}= ∏
i∈[n]
{a↓i | sRa 6= /0} (Uniformity-2)

S.2 ∀s ∈ S,∃a ∈ A : sRa 6= /0. (Non-Termination)

V.1. `V (sε)=vε , and ∀s ∈ S,∀a ∈ A : if sRa 6= /0, then (Strategy-Simulation)

`V (sRa)=`V (s)Ea and |sRa|= |`V (s)Ea|.

V.2 ∀i ∈ [n],∀(s1,a,s2),(s′1,a
′,s′2) ∈ R : if s1 ∼i s′1, then, (Indistinguishability)

s2∼i s′2, if and only if, `V (s2)
↓i=`V (s′2)

↓i and a↓i = a′↓i.

Q.1. `Q(sε) = qε , and (Q-Simulation)

∀s ∈ S : {(a, `Q(sRa)) | a ∈ A} ∈ δ (`Q(s), `V (s)).

Q.2. for every path s0a1s1a2.. in the witness, the sequence (Q-Parity)

Ω( fQ(s0)),Ω( fQ(s1)), .. satisfies the parity condition.

Intuitively, the labelling `V ensures that the witness represents a strategy tree corresponding

to some joint strategy; the conditions S.1, S.2, V.1, V.2 together ensure that the MaTS un-
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derlying the witness corresponds to the MaTS underlying the extended strategy tree of

some joint strategy. The labelling `Q ensures that the strategy tree of this joint strategy,

satisfies the winning condition Q; the conditions Q.1, Q.2 ensure this.

We begin by showing a correspondence between the class of winning (deterministic) joint

strategies and the class of (deterministic) witnesses.

Theorem 4.2.1 (Witness Theorem). For any imperfect information game (G,Q), there

exists a winning (deterministic) joint strategy for (G,Q), if and only if, there exists a

(deterministic) witness for (G,Q).

Proof. (⇒) We begin with the forward direction of the theorem. Towards this, assume

that there exists a winning joint strategy σ for the game (G,Q). Let Hσ denote the set

of histories that follow σ , let E T σ
G = (Hσ ,Mσ ,{≈σ

i }i∈[n],ν ,vε) denote the extended

strategy tree of σ , and let T σ
G = (Hσ ,Mσ ,ν ,vε) be the strategy tree of σ . Recall that

ν(τ) = end(τ) for all τ ∈ Hσ . By definition of a winning joint strategy, the LTS T σ
G is

strongly accepted by the µ-automaton Q via some strong acceptance run, say fQ.

We claim that the structure W = (Hσ ,Mσ ,{≈σ
i }i∈[n],{`V , `Q},vε), with `V (τ) = end(τ)

and `Q(τ) = fQ(τ) for all τ ∈Hσ , is a witness for the game (G,Q). We call such a witness

the canonical witness associated with the winning joint strategy σ .

Next, we argue that W satisfies each of the conditions for being a witness, and is therefore

a witness.

• S.1,S.2: The fact that W satisfies the conditions S.1,S.2, is a consequence of two

facts: firstly that the MaTS underlying the witness W is identical to the MaTS un-

derlying the extended strategy tree E T σ
G; and secondly, by Proposition ??, such

a MaTS underlying an extended strategy tree is uniform and non-terminal. The

conditions S.1,S.2 state exactly this.

• V.1: The first part of this condition requires that `V (vε) = vε , and this follows
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immediately from the definition of `V . For the second part, consider a history

τ ∈ Hσ and an action a ∈ A such that τMσ
a is non-empty. We need to show that

`V (τMσ
a ) = `V (τ)Ea. Towards this, consider the equalities,

`V (τMσ
a ) = end(τMσ

a ) = end(τMa) = end(τ)Ea = `V (τ)Ea,

where the first and last equalities follow from the definition of `V , the second follows

from the observation that the extended strategy tree E T σ
G is strategic (a consequence

of Proposition ??), and the third equality follows from the definition of M. Moreover,

since τMa is exactly the set of histories {τav | v ∈ `V (τ)Ea}, it follows from the

above equalities that |τMσ
a |= |τMa|= |`V (τ)Ea|, and therefore the condition V.1 is

satisfied by the witness.

• V.2: Consider the premise of V.2, that is, transitions (τ1,a,τ2),(τ
′
1,a
′,τ ′2) ∈ Mσ

and an agent i ∈ [n] such that τ1 ≈σ
i τ ′1. Also, since τ1 ≈σ

i τ ′1, its follows from the

definition of ≈σ
i that viewi(τ1) = viewi(τ2). Now consider the following:

`V (τ2)
↓i=`V (τ

′
2)
↓i and a↓i = a′↓i

⇔ end(τ2)
↓i=end(τ ′2)

↓i and a↓i = a′↓i (By definition of `V )

⇔ viewi(τ1) a↓iend(τ2)
↓i=viewi(τ

′
1) a′↓iend(τ ′2)

↓i (By the assumption above)

⇔ viewi(τ1a end(τ2))=viewi(τ
′
1a′ end(τ ′2))

⇔ viewi(τ2)=viewi(τ
′
2) (By definition of Mσ

a ,M
σ

a′)

⇔ τ2≈σ
i τ
′
2. ( By definition of ≈σ )

This shows that the condition V.2 is satisfied by the witness.

• Q.1,Q.2: The conditions Q.1,Q.2 are verbatim the defining conditions of the strong

acceptance run fQ, with every occurrence of ν replaced with `V . This replacement

is sound, since ν(τ) = end(τ) = `V (τ) for all histories τ ∈ Hσ .

Now for the deterministic case, if σ is deterministic and if the MaLTS W is a witness,

then note the following: firstly, the MaTS underlying the witness W is identical to the

MaTS underlying extended strategy tree E T σ
G; secondly, by Proposition ??, whenever σ
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is deterministic the MaTS underlying the extended strategy tree E T σ
G is also deterministic.

It follows from these two observations that the the witness W is also deterministic. This

completes the proof of this direction.

(⇐) To see the reverse direction of the theorem, assume the existence of a witness W =

(S,R,{∼i}i∈[n],{`V , `Q},sε) for the game (G,Q).

Let S̃ denote the set of paths in W that begin at the start state sε , and let f−V : S̃→ (VA)∗V

be the ‘extension’ of the labelling function `V to finite paths s0a1s1a2... in S̃, defined as

follows: f−V (s0a1s1a2...)=`V (s0)a1`V (s1)a2....

Also, let H ′ denote the set of sequences f−V (S̃), and let fV : S̃→ H ′ denote the function

obtained by restricting the co-domain of f−V to H ′.

Consider an MaLTS E T ′
G =(H ′,M′,{≈′i}i∈[n],ν

′,vε) such that, H ′= fV (S̃), the MaTS (H ′,M′,{≈′i

}i∈[n],vε) is the substructure of the game tree TG induced by H ′, and ν ′ : H ′ → V is a

labelling defined as ν ′(τ) = end(τ) for all τ ∈ H ′.

We claim that E T ′
G is the extended strategy tree of some winning joint strategy of the

game (G,Q), and additionally that, if W is deterministic, then E T ′
G is the extended

strategy tree of some winning deterministic joint strategy.

We begin with some observations about the objects defined above.

Lemma 4.2.2.

1. H ′ consists of histories of game graph G.

2. fV is a bijection.

Proof. For the first part, we need to show that for any path s̃ = s0a1s1a2...sk ∈ S̃, the

sequence `V (s0)a1`V (s1)a2..`V (sk) that belongs to H ′ is a history. We prove this claim

by induction on the length k of the path. For the base case k = 0, firstly observe that

s0 = sε , since all paths in S̃ begin at the state sε . Now observe that by the Strategy-

90



Simulation condition of the witness W , `V (sε)= vε holds, and therefore it follows that

`V (s0) = vε , a history. For the inductive case k, assume that the claim is true for histories

of length less than k. By this assumption, it follows that `V (s0)a1`V (s1)a2..`V (sk−1) is

a history in H ′. Now observe that sk ∈ sk−1Rak holds due to definition of the path s̃,

and since sk−1Rak 6= /0, it follows from the Strategy-Simulation condition on the witness

W , that `V (sk−1Rak)= `V (sk−1)Eak . Since sk ∈ sk−1Rak , it further follows that `V (sk) ∈

`V (sk−1Rak)=`V (sk−1)Eak . It follows from this observation and the induction hypothesis,

that the sequence `V (s0)a1`V (s1)a2..`V (sk) is a path in the game graph.

For the second part, assume for a contradiction that fV is not a bijection. Then there exist

distinct paths s̃1, s̃2 such that fV (s̃1) = fV (s̃2) = τ . It follows that there must exist distinct

prefixes s̃as1 and s̃as2 of the respective paths s̃1 and s̃2, such that s̃ is the least common

prefix of s̃1 and s̃2. Let s = end(s̃). Now note that the states s1,s2 ∈ sRa are distinct, due to

the prefixes s̃as1, s̃as2 being distinct. Also, since fV (s̃1) = fV (s̃2) holds, it follows from

the definition of fV that `V (s1) = `V (s2). Combining the above observations, we obtain

that |sRa|< |`V (sRa)|. Next, since s1,s2 ∈ sRa, we have sRa 6= /0, which by the Strategy-

Simulation condition implies `V (sRa) = `V (s)Ea and |sRa| = |`V (s)Ea|. Combining the

above, we obtain |sRa|< |`V (sRa)|= |`V (s)Ea|= |sRa|, a contradiction.

Lemma 4.2.3. For any histories τ,τ ′ ∈H ′, paths s̃∈ f−1
V (τ), s̃′ ∈ f−1

V (τ ′) and agent i∈ [n],

if viewi(τ)=viewi(τ
′)), then end(s̃)∼i end(s̃′).

Proof. Consider paths and histories as above, and let s̃ = s0a1..amsm and s̃′ = s′0a′1..a
′
m′s
′
m′ .

Now assume that the premise viewi(τ)=viewi(τ
′) holds.

We show the claim end(s̃)∼i end(s̃′), or equivalently, sm ∼i s′m′ , by induction on the sum

m+m′. Firstly observe that for the base case, end(sε)∼i end(sε) holds true. Next, since

viewi(τ)=viewi(τ
′), or equivalently, viewi( fV (s̃))=viewi( fV (s̃′)) holds, it follows from the

definition of viewi and fV that `V (sm)
↓i = `V (s′m′)

↓i, a↓im = a′↓im′ and viewi( fV (s0a1..am−1sm−1)=

viewi( fV (s′0a′1..a
′
m′−1s′m′−1). By induction hypothesis, we obtain that sm−1 ∼i s′m′−1. More-
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over, since s̃, s̃′ are paths in S̃, there exists transitions (sm−1,am,sm),(s′m′−1,a
′
m′,s

′
m′) ∈ R.

Therefore we have transitions (sm−1,am,sm),(s′m′−1,a
′
m′,s

′
m′) ∈ R such that sm−1 ∼i s′m′−1,

a↓im = a′↓im′ and `V (sm)
↓i = `V (s′m′)

↓i. It follows from the Indistinguishability condition of the

witness W that sm ∼i s′m′ .

Lemma 4.2.4. For any history τ ∈H ′, path s̃ ∈ f−1
V (τ) and action a ∈ A, we have

end(τM′a) = `V (end(s̃)Ra).

Proof. Consider a history τ∈H ′, path s̃ ∈ f−1
V (τ), and action a. Then,

end(τM′a)

= {end(τav) | τav ∈ τM′a} (By definition of τM′a)

= {end(τav) | ∃s ∈ S : s̃as ∈ S̃ and fV (s̃as) = τav} (Since τM′a ⊆ H ′)

= {end(τav) | ∃s ∈ S : s ∈ end(s̃)Ra and fV (s̃as) = τav} (Since s̃as is a path in W )

= {v | ∃s ∈ S : s ∈ end(s̃)Ra and `V (s) = v} (By definition of fV ,end)

= {`V (s) | s ∈ end(s̃)Ra}

= `V (end(s̃)Ra)

Lemma 4.2.5. If there exists a path τ0a0τ1a1... in E T ′
G, then there exists a path end(s̃0) a0 end(s̃1) a1...

in W with s̃k ∈ f−1
V (τk) for each index k.

Proof. To see this, consider an infinite path τ0a0τ1a1... in E T ′
G, and let s̃k be the unique

path in that satisfies s̃k ∈ f−1
V (τk). Since fV is a bijection, such a unique path exists. It

is an easy inductive consequence of the definition of fV , that end(s̃0)a0end(s̃1)a1... is an

infinite path in the witness W .

Returning to our claim, we first show that E T ′
G is the extended strategy tree of some

joint strategy. Towards this, firstly observe that the labelling function ν ′ of E T ′
G is

defined as required by an extended strategy tree. Therefore it suffices to show that the
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MaTS H = (H ′,M′,{≈′i}i∈[n],vε), is a MaTS underlying the extended strategy tree of

some joint strategy. According to Proposition ??, this is equivalent to showing that H is

non-terminal, strategic and uniform. We argue these next.

• For H to be non-terminal, every history in H ′ must have a prolongation in H ′. To see

this, consider a history τ ∈ H ′ along with the path s̃ ∈ fV (τ). By Non-Termination

condition of the witness W , it must be the case that state end(s̃) ∈ S has some

outgoing transition, say (end(s̃),a,s). It is easy to see from the definition of fV that,

the history fV (s̃as) is a prolongation of τ .

• For H to be strategic, it must satisfy two conditions: first, that vε ∈ H ′; and second

that, for any τ ∈ H ′ and action a, if τMa∩H ′ 6= /0, then τMa ⊆ H ′.

For the first part, observe that by first part of the Strategy-Simulation condition

satisfied by W , we have `V (sε) = vε . Now since sε is a path in S̃, it follows from

the definition of fV that fV (sε)= `V (sε) =vε . Moreover, since H ′ = fV (S̃), we have

that vε ∈ H ′.

For the second part, consider a history τ ∈ H ′, the path s̃ ∈ fV (τ) and an ac-

tion a such that, τMa∩H ′ 6= /0. Since M′a =Ma∩ (H ′×H ′), by its definition, the

premise τMa∩H ′ 6= /0 can be restated as τM′a 6= /0. Moreover, since `V (end(s̃)Ra) =

end(τM′a) holds by Lemma ??, we obtain that end(s̃)Ra 6= /0. Now if end(s̃)Ra 6= /0,

then the Strategy-Simulation condition satisfied by the witness W implies that,

`V (end(s̃)Ra) = `V (end(s̃))Ea. Now consider the following equalities:

τM′a = {τav | v ∈ end(τM′a)} (By definition of τM′a)

= {τav | v ∈ `V (end(s̃)Ra)} (By Lemma ??)

= {τav | v ∈ `V (end(s̃))Ea} (Since `V (end(s̃)Ra) = `V (end(s̃))Ea)

= {τav | v ∈ end( fV (s̃))Ea} (By definition of fV and end)

= {τav | v ∈ end(τ)Ea} (By definition of s̃)

= τMa (By definition of M)
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Now since M′a is the transition relation of the MaTS H , it follows that τM′a ⊆ H ′,

and therefore using the above equality, we obtain τMa ⊆ H ′.

• For H to be uniform, we need to show the following conditions:

1. ∀τ1,τ2 ∈ H ′,∀i ∈ [n] : if τ1 ≈′i τ2, then

{a↓i ∈ Ai | τ1M′a 6= /0}= {a↓i ∈ Ai | τ2M′a 6= /0}, and

2. ∀τ ∈ H ′ : {a ∈ A | τM′a 6= /0}= ∏
i∈[n]
{a↓i | τM′a 6= /0}.

Towards this, firstly observe that for any history τ ∈ H ′, path s̃ ∈ f−1
V (τ) and action

a ∈ A, we have by ?? that end(s̃)Ra 6= /0, if and only if, τM′a 6= /0. Therefore any use

of the predicate end(s̃)Ra 6= /0, may be replaced by τM′a 6= /0.

Now for the first condition, consider any histories τ1,τ2 ∈ H ′ that satisfy τ1≈′i τ2,

and paths s̃1 ∈ f−1
V (τ1) and s̃2 ∈ f−1

V (τ2). Since ≈′i is the sub-relation of ≈i induced

by histories H ′, it follows from the definition of ≈i that viewi(τ1)=viewi(τ2). By

Lemma ??, it follows that that end(s̃1)∼a end(s̃2). Since end(s̃1)∼a end(s̃2) holds,

it follows from the Uniformity-1 condition satisfied the witness W that, {a↓i ∈

Ai | end(s̃1)Ra 6= /0}= {a↓i ∈Ai | end(s̃2)Ra 6= /0}. The desired conclusion is obtained

by replacing the predicates end(s̃1)Ra 6= /0 and end(s̃2)Ra 6= /0, by τ1M′a 6= /0 and

τ2M′a 6= /0 respectively.

For the second condition, consider any history τ ∈ H ′, path s̃ ∈ f−1
V (τ) and the state

end(s̃) ∈ S. Observe that due to Uniformity-2 condition, it must be the case that

{a ∈ A | end(s̃)Ra 6= /0}= ∏
i∈[n]
{a↓i | end(s̃)Ra 6= /0}. The desired conclusion follows

by replacing predicates as done before.

Therefore E T ′
G is the extended strategy tree of some joint strategy. Let σ be a joint

strategy such that E T σ
G = E T ′

G. We argue next that if W is deterministic, then σ is also

deterministic. To see this, assume for a contradiction that W is deterministic and that σ is

not deterministic. Since σ is a joint strategy, we have that E T ′
G is non-terminal, strategic

and uniform. It follows from Proposition ?? that E T ′
G is not deterministic. Therefore,
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there must exist a history τ ∈ H ′ and distinct actions a1,a2 that satisfy τM′a1
6= /0 and

τM′a2
6= /0. Let s̃ be a path such that fV (s̃) = τ . Using Lemma ??, it follows that there

exist distinct actions a1,a2 at the state end(s̃), that satisfy end(s̃)Ta1 6= /0 and end(s̃)Ta2 6= /0,

which is a contradiction to W being deterministic.

For our main claim to be true, it remains to show that the joint strategy σ is also winning,

or equivalently, that the strategy tree of σ is strongly accepted by the µ-automaton Q.

Towards this, recall that the strategy tree of σ is by definition the LTS underlying the

extended strategy tree E T ′
G. Now let T ′

G = (H ′,M′,ν ′,vε) be the LTS underlying the

extended strategy tree E T ′
G, and consider a function fQ : H ′→Q such that, for all histories

τ ∈H ′ and paths s̃∈ f−1
V (τ), we have fQ(τ) = `Q(end(s̃)). The function fQ is well-defined,

since fV is a bijection.

We claim that LTS T ′
G is strongly accepted by Q via the strong acceptance run fQ.

Towards proving this, we state an observation about the function fQ.

Lemma 4.2.6. For any history τ ∈H ′, path s̃ ∈ f−1
V (τ) and action a ∈ A, we have

fQ(τM′a) = `Q(end(s̃)Ra).

Proof. Consider a history τ∈H ′, path s̃ ∈ f−1
V (τ) and action a. Then,

fQ(τM′a)

= { fQ(τav) | ∃s ∈ S : s̃as ∈ S̃ and fV (s̃as) = τav} (By definition of τM′a, fV )

= {`Q(end(s̃as)) | ∃s ∈ S : s̃as ∈ S̃} (By definition of fQ)

= {`Q(end(s̃as)) | ∃s ∈ S : s ∈ end(s̃)Ra} (Since s̃as is a path in S̃)

= {`Q(s) | ∃s ∈ S : s ∈ end(s̃)Ra} (By definition of end)

= `Q(end(s̃)Ra)

We show next that fQ satisfies the two conditions that are necessary for a strong acceptance

run.
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• The first condition requires that {(a, fQ(τM′a)) | a ∈ A} ∈ δ ( fQ(τ),ν
′(τ)), for any

history τ ∈ H ′.

To see this, consider a history τ ∈ H ′ and a path s̃ ∈ f−1
V (τ). Note that by the

Q-Simulation condition (or condition Q.1) from the definition of the witness W ,

we have that {(a, `Q(end(s̃)Ra)) | a ∈ A} ∈ δ (`Q(end(s̃)), `V (end(s̃))). Now from

Lemma ?? and the definition of fQ it follows that end(s̃)Ra) = fQ(τM′a). Also,

from definition of fQ, fV and ν ′, it follows that fQ(τ) = `Q(end(s̃)) and ν ′(τ) =

`V (end(s̃)). The desired conclusion {(a, fQ(τM′a)) | a ∈ A} ∈ δ ( fQ(τ),ν
′(τ)) fol-

lows from these observations.

• The second condition requires that for any infinite path τ0a0τ1a1... in the LTS T ′
G,

the priority sequence Ω( fQ(τ0))Ω( fQ(τ1))... must satisfy the parity condition.

To see this, consider an infinite path τ0a0τ1a1... in H ′. It follows from Lemma ??

that there exists a end(s̃0)a0end(s̃1)a1... path in the witness W such that s̃k ∈ f−1
V (τk)

for each index k. By the Q-Parity condition (or condition Q.2) satisfied by the

witness W , it follows that the priority sequence Ω(`Q(end(s̃0)))Ω(`Q(end(s̃1)))...

satisfies the parity condition. By the definition of fQ, it follows that the above

priority sequence is identical to the priority sequence Ω( fQ(τ0))Ω( fQ(τ1))..., and

the desired result follows.

This completes the proof of the witness theorem.

Having defined the notion of a witness we show next that it is easy to verify if a MaLTS is

a witnesses.

Theorem 4.2.7 (Verifiability Theorem). The problem of deciding if a finite first-order

structure is a (deterministic) witness of the imperfect information game (G,Q), is in

NLOGSPACE.

Proof. Let the term basic conditions, refer to the conditions S.1, S.2, V.1, V.2 and Q.1
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for being a witness, excluding the Q-Parity condition. Since the basic conditions are

first-order formulae, the procedure for checking basic conditions, draws its complexity

from the data complexity of model-checking structures for a fixed first-order formula. This

is known to be in NLOGSPACE. Therefore if a structure W satisfies the basic conditions,

then we may assume that the structure W is of the form (S,R,(∼i)i∈[n],{`V , `Q},sε) with

the appropriate signature.

We show next that checking for the Q-Parity condition, which is a second-order logic

formula, is also NLOGSPACE. Towards this, we observe that the Q-Parity condition

admits the following alternative characterization: A structure W that satisfies the ba-

sic conditions also satisfies the Q-Parity condition, if and only if, there are no ‘odd

simple cycles’ in W . A simple cycle s0a1...amsm is said to be odd, if the minimum

priority in {Ω(`Q(si)) | 0 ≤ i ≤ m} is odd. For a proof of this, observe that if there

exists an odd simple cycle s0a1...amsm with so = sm in W , then the priority sequence

(Ω(`Q(s0))Ω(`Q(s1))..Ω(`Q(sm)))
ω corresponding to the infinite path s̃ = (s0a1...am)

ω

is easily seen to violate the parity condition. Conversely, assume that there are no odd

simple cycles in W , and consider an arbitrary infinite path s0a1... in W . Consider its suffix

siai+1si+1ai+2.., such that every state in the suffix appears infinitely often, and consider

consecutive segments of this infinite path, that are simple cycles; since there are only

finitely many states in W , such a segmentation exists. It is easy to see that if none of the

segments are odd, then the path satisfies the parity condition.

Checking the existence of an odd simple cycle can be done by a non-deterministic algorithm

in space O(log(|W |)). Therefore the algorithm to check whether a finite structure W is a

witness for the imperfect information game (G,Q) is in NLOGSPACE.

Next we define a transformation on MaLTS’s, called a ‘g-retract’.

Retracts of MaLTS’s Consider an MaLTS S = (S,R,{∼i}i∈[n],{ν j} j∈J,sε) and a func-

tion g : S→ S. Then,
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• Rg denotes the ‘composition’ of R with g in the following sense: for any states

s1,s2 ∈ S and joint action a ∈ A, we have (s1,a,s2) ∈ Rg, if and only if, there exists

a state s ∈ S such that (s1,a,s) ∈ R and s2 = g(s). As before, for every action a ∈ A,

Rg
a is the relation obtained by the composition Ra ◦g.

• A g-path is a sequence s0a0s1a1... such that s0 = g(sε) and sm+1 ∈ smRg
am for all

m≥ 0. Sg denotes the set of states s ∈ S such that, there exist a g-path that ends at s.

The g-retract of S , denoted by g(S ), is the MaLTS (Sg,Rg,{∼g
i }i∈[n],{ν

g
j } j∈J,s

g
ε), where

sg
ε = g(sε), each functions ν

g
j is the restriction of the function ν j to Sg and each relation

∼g
i is the restrictions of ∼i to Sg. The relation Rg here is the restriction of the relation Rg

defined earlier to the domain Sg.

We note below an elementary consequence of the definition of g-retract that will be used

in later chapters.

Proposition 4.2.8. If g is a retraction of S , then Sg ⊆ g(S).

Proof. Note that for any s∈ Sg, either s = g(sε), or s∈ s′Rg
a for some s′ ∈ S,a∈ A by virtue

of being a state reachable by a g-path. In the second case, it follows from the definition

of Rg
a that there exists a state s′′ ∈ S such that g(s′′) = s. The claim follows from these

observations.

A function g is said to be a retraction of the witness W = (S,R,{∼i}i∈[n],{`V , `Q},sε), if

it satisfies the following:

R.1 for any state s ∈ Sg we have `V (s) = `V (g(s)) and `Q(s) = `Q(g(s)),

R.2 for any agent i∈ [n] and transitions (s1,a,s2),(s′1,a
′,s′2) ∈ Rg with s1,s′1 ∈ Sg, if

s1 ∼i s′1, then, s2∼i s′2, if and only if, `V (s2)
↓i=`V (s′2)

↓i and a↓i = a′↓i, and

R.3 for any g-path s0a0s1a1..., the priority sequence Ω(`Q(s0)),Ω(`Q(s1)), .. satisfies

the parity condition.
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Figure 4.1: A MaLTS and its g-retract.

An MaLTS W is shown above along with a map g on the MaLTS represented by the green
arrows. The g-retract g(W ) is given below.
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We refer to R.1,R.2 as basic constraint and R.3 as the parity constraint.

Intuitively, a retraction g relates those states such that any incoming transition to s may be

redirected to g(s), while ensuring that the resulting structure remains a witness. In some

sense a retraction relates states of the witness, where the joint actions chosen at a state may

be reused at the other, while maintaining the winning status of the resulting joint strategy.

Theorem 4.2.9 (Retraction Theorem). If g is a retraction of a (deterministic) witness W

for the imperfect information game (G,Q), then g(W ) is a (deterministic) witness for the

imperfect information game (G,Q).

Proof. Let W be the imperfect information game (G,Q), and let g be a retraction of W .

We claim that the MaLTS g(W ) is also a witness for (G,Q).

First we state, without proof, some easy observations about g(W ).

(i). For any state s ∈ Sg and joint action a ∈ A, sRg
a 6= /0, if and only if, sRa 6= /0.

(ii). For any states s,s′ ∈ Sg and agent i ∈ [n], s∼g
i s′, if and only if, s∼i s′.

(iii). For any state s ∈ Sg and joint action a ∈ A, we have `V (sRg
a)=`V (sRa) and `Q(sRg

a)=

`Q(sRa).

Returning to our claim, first observe that the analogue of conditions S.1,S.2 for the

MaLTS g(W ), can be obtained by considering condition S.1,S.2 for the witness W , and

replacing any predicates of the form sRa 6= /0 and s∼i s′ in this condition, by the predicate

sRg
a 6= /0 and s∼g

i s′ respectively. By the observation (i),(ii) made above, such a replacement

is sound.

To see that the condition V.1 for being a witness holds for g(W ), we need to show that

`g
V (s

g
ε))=vε , and that for any state s∈ Sg and joint action a∈ A, sRg

a 6= /0 implies `g
V (sRg

a)=

`g
V (s)Ea and |sRg

a|= |`g
V (s)Ea|. For the first part, note that `g

V (s
g
ε))=`V (g(sε))=`V (sε)=vε ,

where the second equality follows from condition R.1 and the other equalities follow from

the definition of `V , `g
V and sg

ε . For the second part, note that for any state s∈Sg and joint

action a∈ A, if sRg
a 6= /0, then we have `g

V (sRg
a) = `V (sRg

a) = `V (sRa) = `V (s)Ea = `g
V (s)Ea,

100



which follows from condition V.1 for the witness W and the definition of the `g
V ,R

g
a and

observation (iii). The fact that |sRg
a|= |`g

V (s)Ea| also follows easily, since each outgoing

transition (s,a,s′) ∈ R at a state s ∈ Sg, is replaced by exactly one outgoing transition

(s,a,s′′) ∈ Rg. The condition V.2 for g(W ), is verbatim the condition R.2 from the

definition of a retraction.

To see that the condition Q.1 for being a witness holds for g(W ), we need to show that

`g
Q(s

g
ε))=qε , and that for any state s∈ Sg, {(a, `Q(sRg

a)) | a∈ A} ∈ δ (`g
Q(s), `

g
V (s)). For the

first part, note that `g
Q(s

g
ε))=`Q(g(sε))=`Q(sε)=qε , where the second equality follows

from condition R.1 and the other equalities follow from the definition of `Q, `g
Q and sg

ε .

For the second part, consider the second part of condition Q.1 for the witness W , which

states that for any state s ∈ S, {(a, `Q(sRa)) | a ∈ A} ∈ δ (`Q(s), `V (s)). Since Sg ⊆ S and

since `Q(sRg
a)=`Q(sRa) holds by observation (iii), it follows from the definitions of `g

Q, `
g
V

that for any state s ∈ Sg, {(a, `Q(sRg
a)) | a ∈ A} ∈ δ (`g

Q(s), `
g
V (s)). The condition Q.2 for

g(W ), is verbatim the condition R.3 from the definition of a retraction.

Note that retractions are not ‘composable’, that is, if g1,g2 are retractions of a witness W ,

then it is not always the case that g1 ◦g2 is a retraction of W . However, if g1 is a retraction

of W , and g2 is a retraction of g1(W ), the g1 ◦g2 is a retraction. This is not difficult to see,

and we state this observation below for later use.

Proposition 4.2.10. If g1 is a retraction of the witness W and g2 is a retraction of the

witness g1(W ), then g1 ◦g2 is a retraction of W .

4.3 Witnesses and Retractions for Local Specs.

In this section, we describe the notion of witness and retraction for imperfect information

games that have local winning conditions given by priority labellings. Towards this, let us

fix an imperfect information game (G,{γi}i∈[n]), where G = (V,E,vε) is a game graph and
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each γi : Vi→ P is a priority labelling that maps the set of local states Vi of agent i to the

priorities in P = {1,2, .., |P|}.

Witnesses A ({V},{Ai}i∈[n])-MaLTS W = (S,R,{∼i}i∈[n],{`V},sε) is called a witness

for the imperfect information game (G,{γi}i∈[n]), if it satisfies the conditions S.1,S.2,V.1,V.2

as defined earlier, and the condition given below:

S′.3. ∀s1,s2 ∈ S,∀i ∈ [n] : s1 ∼i s2 implies `V (s1)
↓i = `V (s2)

↓i.

S′.4. ∀s1,s2 ∈ S,∃i ∈ [n] : s1 6∼i s2. (Unique-Type)

Q′.1. for every path s0a1s1a2.. and agent i ∈ [n], the sequence (γ-Parity)

γi(`V (s0)
↓i),γi(`V (s1)

↓i), .. satisfies the parity condition.

A function g is said to be a retraction of the witness W , if it satisfies the following:

R′.1 For any state s ∈ Sg we have `V (s) = `V (g(s)),

R.2 for any agent i∈ [n] and transitions (s1,a,s2),(s′1,a
′,s′2) ∈ Rg with s1,s′1 ∈ Sg, if

s1 ∼i s′1, then, s2∼i s′2, if and only if, `V (s2)
↓i=`V (s′2)

↓i and a↓i = a′↓i, and

R′.3 For any g-path s0a1s1a2s2... and agent i ∈ [n], the priority sequence

γi(`V (s0)
↓i),γi(`V (s1)

↓i),γi(`V (s2)
↓i), .. satisfies the parity condition.

Theorem 4.3.1 (Witness, Verifiability and Retraction Theorem-Local).

1. For any imperfect information game (G,{γi}i∈[n]), there exists a winning (deter-

ministic) joint strategy for (G,{γi}i∈[n]), if and only if, there exists a (deterministic)

witness for (G,{γi}i∈[n]).

2. There is an NLOGSPACE algorithm that decides if a given finite structure is a witness

for the imperfect information game (G,{γi}i∈[n]).

3. If g is a retraction of the (deterministic) witness W for the imperfect information
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game (G,{γi}i∈[n]), then g(W ) is a (deterministic) witness for the imperfect infor-

mation game (G,{γi}i∈[n]).

Proof. The first proof follows along similar lines of the earlier witness theorem. For

the forward direction, the canonical witness associated with the winning joint strategy

σ is given by W ′ = (Hσ ,Mσ ,{≈σ
i }i∈[n],{`V},vε), which is identical to the witness W

constructed in the earlier witness theorem but without the label `Q. The argument for the

conditions S.1,S.2,V.1,V.2 to hold for W ′ follows from before. And argument for W ′

being deterministic for a deterministic joint strategy σ also follows from before. The fact

that condition S′.3,S′.4 holds true is an easy consequence of the definition of ≈σ
i and the

fact that `V = end. It remains to show that the condition Q′.1 holds. Towards this, note

that any path τ0a1τ2a2.. in the witness W ′ that begins at the start state, by construction

of the witness W ′, corresponds to the play end(τ0)a1end(τ0)a2.. that follows σ . Since

σ is a winning joint strategy, we have that γi(end(τ0)
↓i)γi(end(τ1)

↓i).. satisfies the parity

condition for every agent i∈ [n], and since `V = end, we have that γi(`V (τ0)
↓i)γi(`V (τ1)

↓i)..

satisfies the parity condition for every agent i ∈ [n]. This shows that condition Q′.1 holds

for W ′.

For the reverse direction, consider a W =(S,R,{∼i}i∈[n],{`V},sε) for the game (G,{γi}i∈[n])

and construct the extended strategy tree E T ′
G = (H ′,M′,{≈′i}i∈[n],ν

′,vε) as in the earlier

witness theorem. Note that this construction does not use any properties of the labelling `Q

used there, and therefore can be admitted here. Now let E T ′
G be the extended strategy tree

of some joint strategy σ . It remains to argue that σ is a winning joint strategy. Towards this

consider a play v0a1v1a2.. that follows σ . We need to show that γi(v
↓i
0 )γi(v

↓i
1 ).. satisfies the

parity condition. Now since E T ′
G is the extended strategy tree of σ , it follows that the

path τ0a1τ1a2.., with each τk = v0a1v1a2..vk is a path in the E T ′
G. By definition of fV and

the fact that fV is a bijection, it follows that there exists a path s0a1s1a2.. in W such that

`V (s0)a1`V (s1)a2..= v0a1v1a2.., and therefore for any agent i ∈ [n], the priority sequence

γi(`V (s0)
↓i)γi(`V (s1)

↓i).. = γi(v
↓i
0 )γi(v

↓i
1 )... Since the witness W satisfies the condition
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Q′.1, the priority sequence γi(`V (s0)
↓i)γi(`V (s1)

↓i).. satisfies the parity condition and the

desired result follows.

The proofs of the second and third items above follow from arguments similar to the ones

in the verifiability and retraction theorems proved in the previous section.

4.4 Using the Retraction Approach

Retraction Approach for the Winning Strategy Problem We are now in a position to

describe how we intend to use the retraction approach to solve winning strategy problems.

The goal is to find classes G of imperfect information games, for which there exists a

computable size function fG : N2→ N such that the following hold:

For any game (G,Q) ∈ G and canonical witnesses W of (G,Q), the witness W admits a

retraction g such that g-retract g(W ) is of size at most fG (|G|, |Q|).

Now if such a property is present for the class G of games, then the algorithm to solve

winning strategy problem, operates by guessing a witness of size at most fG (|G|, |Q|) on an

input (G,Q) ∈ G , and verifies it. If the verification holds, then return the LTS underlying

the witness. It is not difficult to see that this LTS is the LTS-represenation of some winning

strategy of the game. Since verifying a witness is in NLOGSPACE, the time complexity of

this algorithm is NTIME( fG (|G|, |Q|)).

The correctness of the algorithm follows from the witness, verifiability and retraction

theorems, and the fact that a winning strategy exists for a game, if and only if, there exists

a canonical witness for the game. The case of games with local winning condition and that

of deterministic winning strategy problem can be argued similarly. We consolidate these

observations in the form of the following theorem.

Theorem 4.4.1 (Solvability Theorem for Games). For a class G of imperfect in-

formation games, if there exists a computable function fG such that every (determin-
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istic) canonical witness of every game (G,W ) ∈ G admits a retraction g such that

|g(W )| ≤ fG (|G|, |W |) , then the (deterministic) winning strategy problem is solvable

for the class G in NTIME( fG (|G|, |W |)).

Retraction Approach for the Distributed Synthesis Problem As seen in Chapter 2,

the (deterministic) distributed synthesis problem reduces in polynomial time to the (de-

terministic) winning strategy problem. Therefore to show that the solvability of the

(determinitic) distributed synthesis problem for an architecture class A and a specification

class S , it suffices to show the retraction criterion stated below:

There exists a computable function f such that, for any architecture Ar ∈A and

specification W ∈S . every (deterministic) canonical witness W of the game (GAr,W ),

admits a retraction g such that |g(W )| ≤ f (|GAr|, |W |).

It follows from the earlier Theorem ?? that the satisfaction of this criterion automati-

cally gives an algorithm for solvability of the distributed synthesis problem, that is in

NTIME( f (|GAr|, |W |)).
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Chapter 5

Synthesis for Global Specifications

In this chapter, we show the following:

1. The deterministic distributed synthesis problem is solvable for architectures that

admit weak-informedness ordering and global µ-automaton specifications.

2. The distributed synthesis problem is solvable for architectures that admit informed-

ness ordering and global µ-automaton specifications.

We divide our analyses of the (deterministic) distributed synthesis problem into the follow-

ing steps:

1. First we show that the game graphs corresponding to architectures that admit

(weak-) informedness ordering, satisfy the property that they contain no ‘(uniform-

deterministic) fork-triples’.

2. Second we show that for any game (G,Q) where G contains no (uniform-deterministic)

fork-triples and Q is a global µ-automaton winning condition, every canonical (de-

terministic) witness of (G,Q) is a ‘modular witness’.

3. Third we show that there exists a computable function f such that, every modular
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witness W of a game (G,Q) of the kind mentioned above, admits a retraction g with

g(W ) of size at most f (|G|, |Q|).

By the retraction criterion mentioned previously, the solvability of the above distributed

synthesis problems follows.

As mentioned in Chapter 2, these architecture classes were solved previously using

automata-theoretic approach1. Our aim is to use the retraction approach to solve these in a

uniform fashion, and thereby show the robustness of this approach.

5.1 Architectures, Informedness and Fork-Triples

We begin by fixing some notation. Let (G,Q) be an imperfect information game, where G

is the game graph (V,E,vε) and Q is the µ-automaton (Q,A,P,δ ,Ω,qε). Let TG denote

the game tree specified by G.

We say that a game graph G contains a fork-triple, if there exists an induced substructure

T ′=(H ′,M′,{≈′i}i∈[n],vε) of the game tree TG that satisfies the following:

1. T ′ contains no infinite paths and contains exactly three finite maximal paths of

equal length.

2. There exist agents i, j ∈ [n] and histories τ1,τ2,τ3 ∈ H ′ such that τ1 ≈′j τ2 ≈′i τ3 and

τ1 6≈′i τ2 6≈′j τ3 hold.

We qualify a fork-triple T ′ as uniform-deterministic, if T ′ is uniform and deterministic.

We begin by showing that the criterion of existence of a fork-triple in a game graph is an

effective one.

1The case of ‘hierarchy ordering’ mentioned in Chapter 2 is replaced here with ‘informedness ordering’,
because the solution for hierarchy ordering uses the notion of views that excludes actions from the view.

108



Proposition 5.1.1. There exists an NLOGSPACE algorithm that decides whether a game

graph contains a (uniform-deterministic) fork-triple.

Proof. We begin with the case of fork-triples. Firstly observe that if there exists fork-triple

in the game graph G, then there exists a fork-triple in which the length of the maximal

histories in the fork-triple is bounded by |G|3×n.23. To see this, consider a fork-triple

T ′=(H ′,M′,{≈′i}i∈[n],vε) with its three maximal histories denoted by τ1,τ2,τ3. For each

k ∈ {1,2,3}, let τ`k denote the `-length prefix of τk.

Now consider any triples of histories (τ`1,τ
`
2,τ

`
3), (τ

`′
1 ,τ

`′
2 ,τ

`′
3 ) with ` < `′, that satisfy the

following: there exists an isomorphism f between the substructures of the fork-triple

induced by the history-sets {τ`1,τ`2,τ`3} and {τ`′1 ,τ
`′
2 ,τ

`′
3 }, such that f (τ`k) = τ`

′
k for all

k ∈ {1,2,3}. Now if such triples exist, then one can obtain a shorter fork-triple by

considering each path in the fork-triple that begins at τ`k and ends at τ`
′

k , and collapsing

all histories that lie in between, to the state τ`k . It is not difficult to argue that the resulting

structure is also a fork-triple. Also there are at most |G|3×n.23 many history-triples that

induce non-isomorphic substructures; |G|-many labels for each history in the history-triple

and for each agent in [n], at most 23-many possibilities equivalence relations.

Having shown this bound on the fork-triple, we describe the algorithm that checks for

existence of fork-triples. The algorithm proceeds by maintaining three pointers x1,x2,x3

for storing states of the game graph and pointers to store two equivalence relations, say

≈′i and ≈′j, on these three pointers. It begins by initializing each of the three pointers to

the start vertex of the game graph, and performs at most |G|3×n.23 iterations, where in

each iteration, each of the pointers to the vertices are non-deterministically updated to a

successor vertex in the game graph, and the equivalence relations due to ≈′i,≈′j on these

new vertices are updated accordingly. If at one of these iterations, the pointers refer to

histories τ1,τ2,τ3 ∈ H ′ such that τ1 ≈′j τ2 ≈′i τ3 and τ1 6≈′i τ2 6≈′j τ3, then the algorithm

outputs YES, else at the end of the iterations, it outputs NO. The correctness of this

algorithm is easy to see, and since the algorithm only maintains three pointers to the states
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and two equivalence relations on these states, it requires only logarithmic space. The

additional checks to ensure that the fork-triple is uniform-deterministic simply require us

to do a constant-time check at each iteration, which again requires only logarithmic space.

It follows that the algorithm in NLOGSPACE.

Now consider an architecture Ar= ([n]+,α) on a set of variables Z. Recall that for any

agent i ∈ [n], Ini denotes the set of input variables of agent i, Outi denote the set of output

variables of agent i.

Also recall that if G is a game graph that corresponds to the architecture Ar, then

• V = ∏
i∈[n]

Vi, such that Vi = ∏
z∈Ini

{[z = 0], [z = 1]} for each agent i,

• vε ∈V such that v↓i↓zε = [z = 0] for each agent i and z ∈ Ini,

• A = ∏
i∈[n]

Ai, such that Ai = ∏
z∈Outi

{[z = 0], [z = 1]} for each agent i,

• E ⊆V ×A×V is such that (v,a,v′) ∈ E, if and only if, for any agents i, j ∈ [n] and

variable z ∈ Outi∩ In j, we have a↓i↓z = v′↓ j↓z.

We say that an architecture Ar admits

• an informedness ordering2, if there exists an enumeration i1, i2, ...in of agents in [n],

such that Ini j ∪Outi j ⊇ Ini j+1 ∪Outi j+1 holds for all indices 1≤ j < n.

• a weak-informedness ordering, if there exists an enumeration i1, i2, ...in of agents in

[n], such that Ini j ∪Outi j ⊇ Ini j+1 holds for all indices 1≤ j < n.

In either of the above cases, we call the enumeration i1, i2, ...in as a (weak-)informedness

ordering, and call the last element in this enumeration as the least-informed agent.

Next we show that the games corresponding to the above mentioned architectures satisfy

the property that they contain no ‘fork-triples’.
2Instead, the hierarchy ordering requires that Ini j ⊇ Ini j+1 holds for all indices 1≤ j < n
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(a) (b)

(c)

Figure 5.1: (Weak-)Informedness Architectures: Examples and Non-Examples.

The architecture (a) admits neither a weak-informedness nor an informedness ordering. The
architecture (b) admits a weak-informedness ordering, but not informedness ordering. The
architecture (c) admits both weak-informedness and informedness ordering.

Proposition 5.1.2. Let Ar be an architecture that admits a (weak-)informedness ordering,

and let G be a game graph that corresponds to the architecture Ar. Then, G contains no

(uniform-deterministic) fork-triples.

Proof. We argue both cases simultaneously. Assume for a contradiction that T ′ =

(H ′,M′,{≈′i}i∈[n],vε) is a a (uniform-deterministic) fork-triple of the game G with its

three maximal histories given by τ1,τ2,τ3. Let τ`1,τ
`
2,τ

`
3 denote the `-length prefix of the

histories τ1,τ2,τ3 respectively.

We argue inductively that for any k,k′ ∈ {1,2,3}, length ` and agent i, if τ`k ≈′i τ`k′ , then

τ`k ≈′i+1 τ`k′ . It is easy to see that if this is true, then we obtain a contradiction to our

assumption that T ′ is a fork-triple.

Now towards this, firstly consider the base case `= 0, and observe that in this case, we

have τ0
k = τ0

k′ = vε , and therefore the claim follows. For the inductive case, consider a

length ` and assume that the claim holds true for histories of this length, and assume for a
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contradiction that the claim is false for the length `+1.

Let τ
`+1
k = τ`kav and τ

`+1
k′ = τ`k′a

′v′. It follows from the claim being false for the length

`+1, that τ`kav≈′i τ`k′a
′v′ and τ`kav 6≈′i+1 τ`k′a

′v′. Since τ`kav≈′i τ`k′a
′v′ holds, it follows from

the synchronous perfect-recall property on the game tree that τ`k ≈′i τ`k′ , and it follows from

the induction hypothesis that τ`k ≈′i+1 τ`k′ .

Now since τ`kav 6≈′i+1 τ`k′a
′v′, it follows from the definition of≈′i+1 that either a↓i+1 6= a′↓i+1

or v↓i+1 6= v′↓i+1. The argument now splits into two cases, one for the weak-informedness

case and the other for the informedness case:

• Weak-Informedness: In this case, since the fork-triple T ′ is uniform and determinis-

tic, and since τ`k ≈′i+1 τ`k′ holds, it follows that the action of agent i+1 in the joint

actions a and a′ are identical, and so a↓i+1 6= a′↓i+1 is always false. Therefore it

must be the case that v↓i+1 6= v′↓i+1 holds, or equivalently, that there exists a variable

z ∈ Ini+1 such that v↓i+1↓z 6= v′↓i+1↓z.

Since Ini∪Outi ⊇ Ini+1 holds by definition of weak-informedness, the variable z

read by agent i+1, is read or written on by agent i. Therefore it follows from the

construction of the game graph GAr, that either a↓i↓z 6= a′↓i↓z or v↓i↓z 6= v′↓i↓z.

• Informedness: Since either a↓i+1 6= a′↓i+1 or v↓i+1 6= v′↓i+1, either there exists a

variable z ∈ Outi+1 such that v↓(i+1)↓z 6= v′↓(i+1)↓z or there exists a variable z ∈ Ini+1

such that v↓i+1↓z 6= v′↓i+1↓z.

Since Ini∪Outi ⊇ Ini+1∪Outi+1 holds by definition of informedness, the variable

z read or written on by agent i+1, is read or written on by agent i. Here again it

follows from the construction of the game graph GAr, that either a↓i↓z 6= a′↓i↓z or

v↓i↓z 6= v′↓i↓z.

Therefore in either of the above cases, we have by definition of the game graph GAr that

a↓i 6= a′↓i or v↓i 6= v′↓i. It follows from the definition of the indistinguishability relation ≈′i
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that τ`kav 6≈′i τ`k′a
′v′, a contradiction to one of our assumptions. This completes the proof of

the theorem.

Having characterized architectures with (weak-)informedness ordering in terms of (uniform-

distributed) fork-triples, the remaining part of this chapter is devoted to proving the

following results:

1. The winning strategy problem for global µ-automaton winning conditions is solvable

for game graphs that contain no fork-triples.

2. The deterministic winning strategy problem for global µ-automaton winning condi-

tions is solvable for game graphs that contain no uniform-deterministic fork-triples.

We show this in two steps: first, we show that canonical (deterministic) witnesses of a game

(G,Q), where the game graph G contains no (uniform-distributed) fork-triples, belong to

the class of ‘modular witnesses’; second, we show that modular witnesses admit retractions

to bounded size witnesses.

5.2 Modular Witnesses

Towards defining modular witnesses, we introduce some terminology associated with

MaLTS’s. Consider a MaLTS S = (S,R,{∼i}i∈[n],{ν j} j∈J,sε).

We say that a MaLTS S is a layered acyclic MaLTS, if

1. S has no cycles, and all states are reachable from the start state sε ,

2. for every state s ∈ S, every path that begins at the start state and ends at s is of the

same length; we call this length, the depth of the state,

3. for any states s,s′ ∈ S and agent i ∈ [n], if s∼i s′, then the states s and s′ are of the

same depth.
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For the remainder of this section, we assume that S is a layered acyclic MaLTS.

Intuitively, a layered acyclic MaLTS may be viewed as a transition system with its states

arranged in levels according to their depth, with transitions only across consecutive levels,

and with indistinguishability relations contained in a level. Note that any canonical witness

for an imperfect information game is a layered acyclic witness.

Modular Transition Systems An equivalence relation ≡⊆ S×S on the MaLTS S is

called a modularization, if all states in each equivalence class in S/ ≡ are of the same

depth. We say that a modularization ≡ of the MaLTS S ,

• is initial, if ≡= {(s,s) | s ∈ S}, and is final if ≡⊇∼i for each i ∈ [n]. Moreover we

qualify the finest final modularization as sharp.

• is w-wide, if the size of every equivalence class in S/≡ is at most w.

The modular transition system associated with a modularization ≡ of the MaLTS S is

given by a transition system M≡ = (M≡,R≡,Mε), where

• M≡ is the set of all substructures of S induced by equivalence classes in S′ ∈ S/≡

and Mε denotes the substructure induced by the state-set [sε ]≡, and

• R≡ ⊆M≡×2R×M≡ is the transition relation defined as follows: (M1,R′,M2) ∈

R≡, if and only if, R′ = R∩ dom(M1)× dom(M2) and R′ 6= /0, where dom(M )

denotes the domain underlying the structure M .

We call the states, transitions and paths of the transition system M≡ as ≡-modular-states,

≡-modular-transitions and ≡-modular-paths respectively. If the modularization being

discussed is clear from the context, then we skip the parameter ‘≡’ from each of the above

terms.

114



Note that the states in an equivalence class induced by a modularization are of the same

depth and since there are no transitions between states at the same depth by virtue of being

layered acyclic, it follows that the transition relation of any modular-state is empty.

Modular Decomposition of an MaLTS For a modularization ≡ of the MaLTS S , the

≡-modular-neighbourhood of a state s ∈ S, denoted by N≡(s), is an n-tuple that satisfies

the following: for each agent i ∈ [n], if [s]∼i\[s]≡ 6= /0, then N≡(s)↓i = [s]∼i , otherwise

N≡(s)↓i = /0.

A (w,m,d)-decomposition of an MaLTS S , is given by a sequence of modularizations

≡1⊆≡2⊆ . . .⊆≡d of S , that additionally satisfy the following:

1. ≡1 is a w-wide modularization and ≡d is a final modularization.

2. the modular transition system M≡1 , associated with ≡1, is a tree.

3. for any index 1≤ c< d and equivalence class S′ ∈ S/≡c+1, there are at most m states

in S′ that have distinct ≡c-modular-neighbourhoods, that is, |{N≡c(s) | s ∈ S′}| ≤m.

Additionally, we qualify the decomposition as sharp, if the final modularization ≡d is

sharp. We qualify a MaLTS as modular, if it admits a (w,m,d)-decomposition for some

w,m,d.

Observe that for a decomposition ≡1⊆≡2⊆ . . . ⊆≡d of S , if M≡1 is a tree, then every

M≡c with c ∈ [d] is also a tree.

Next we show that (deterministic) canonical witnesses for games that have game graphs

with no (uniform-deterministic) fork-triples, admit a (1,1,n+1)-decomposition, and are

therefore modular witnesses.

Theorem 5.2.1. Let Ar be an architecture that admits a (weak-)informedness ordering, and

let G be a game graph that corresponds to the architecture Ar. Then every (deterministic)

canonical witness of (G,Q) admits a sharp (1,1,n+1)-decomposition.
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Figure 5.2: A modularization and the modular transition system.

The tree above represents a MaLTS and the boxes drawn on the tree denote the equivalence
classes induced by a modularization. The modular transition system corresponding to this
modularization is drawn below, with the nodes denoting the modular-states and the edges
denoting the modular-transitions. We discard the labels on the nodes and transitions for the
sake of clarity.
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Proof. We simultaneously argue the claim for both the cases of uniform-deterministic

fork-triples and fork-triples.

Let W = (Hσ ,Mσ ,{≈σ
i }i∈[n],{`V , `Q},vε) be a canonical (deterministic) witness associ-

ated with a winning (deterministic) joint strategy σ , and let H =
⋃

i∈[n]
Hσ/≈σ

i . Note that

since H is a union of n partitionings of the set of histories Hσ , it follows that there are at

most n sets in H that contain a state s ∈ S, and every state in S is contained in some set in

H .

Lemma 5.2.2. The partial-order (H ,⊆) is a tree-order, that is, /0 6∈H and for any

distinct elements t1, t2 ∈H , either t1 ⊂ t2 or t2 ⊂ t1 or t1∩ t2 = /0.

Proof. The fact that /0 6∈H follow immediately from the construction of H . Therefore it

suffices to show that for any histories τ,τ ′ ∈ Hσ and agents i, i′ ∈ [n], either [τ]≈σ
i
⊇ [τ]≈σ

i′

or [τ]≈σ

i′
⊇ [τ]≈σ

i
or [τ]≈σ

i
∩ [τ]≈σ

i′
= /0.

Towards this, consider histories τ,τ ′ ∈ Hσ , and assume for a contradiction that there exist

agents i, i′ ∈ [n] such that, neither [τ]≈σ
i
⊇ [τ]≈σ

i′
nor [τ]≈σ

i′
⊇ [τ]≈σ

i
nor [τ]≈σ

i
∩ [τ]≈σ

i′
= /0.

Or equivalently, that [τ]≈σ
i
\ [τ ′]≈σ

i′
6= /0 and [τ ′]≈σ

i′
\ [τ]≈σ

i
6= /0. It follows from this that,

there exist histories τ1,τ2,τ3 such that τ1 ≈σ
i τ2 ≈σ

i′ τ3 and τ1 6≈σ

i′ τ2 6≈σ
i τ3.

A (uniform-deterministic) fork-triple can now be constructed using the substructure of the

(deterministic) extended strategy tree T σ
G induced by the set of prefixes of the histories

τ1,τ2,τ3. This is a contradiction to the assumption that the game graph G contains no

(uniform-deterministic) fork-triples. The above construction of (uniform-deterministic)

fork-triples crucially depends on the following observation: While extended strategy trees

are guaranteed to be uniform, their substructures need not be uniform. However, when

an extended strategy tree is also deterministic, then its substructures are guaranteed to be

uniform and deterministic. These observations are straightforward consequences of the

definition of extended strategy trees.
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We next define a rank on the tree-order (H ,⊆) as follows: The maximal sets in H receive

a rank n, and for a set with rank k, its children in the tree-order receive a rank k−1. Note

that the rank is always greater than 0 for any set in H , otherwise it would imply the

existence of a sequence Hn ⊂ Hn−1 ⊂ ..⊂ H0 of non-empty sets in H , a contradiction to

the fact that every history in Hσ , in particular those in H0, is contained in at most n sets in

H .

Now consider a sequence of modularizations ≡1, ...,≡n defined as follows: Each ≡k is

such that for every H ′ ∈ Hσ/≡k, either H ′ is a rank k set in H or H ′ is a singleton set.

Now let ≡0 be the initial modularization. It is easy to see from the above definitions and

observations that ≡0⊆≡1⊆ .. ⊆≡n holds. We claim that this sequence is a (1,1,n+1)-

decomposition of W , and this follows immediately from the observations below:

• ≡0 being initial, is a 1-wide modularization, and the modular transition system M≡0

is a tree that is isomorphic to the transition system underlying W .

• For ≡n to be a final modularization, it suffices to show that every equivalence class

in
⋃

i∈[n]
Hσ/≈σ

i (or equivalently, H ), is a subset of some set in Hσ/≡n. To see this,

observe that the equivalence classes in Hσ/ ≡n are exactly the rank n sets in H ,

and therefore contain all maximal sets in H . Moreover since the maximal sets in

H are equivalence classes in some Hσ/≈σ
i , it follows that ≡n is also sharp.

• Lastly, we consider an arbitrary modularization ≡k for some k < n, and show that

for any two histories τ1,τ2 that satisfy [τ1]≡k = [τ2]≡k , their same ≡k−1-modular

neighbourhood is identical, or equivalently that, for each i∈ [n], if [τ1]≈σ
i
\ [τ1]≡k−1 6=

/0, then [τ2]≈σ
i
\ [τ2]≡k−1 6= /0 and [τ1]≈σ

i
= [τ2]≈σ

i
.

To see this, firstly note that if [τ1]≈σ
i
\ [τ1]≡k−1 6= /0, then from the construction

of ≡k−1 and H it follows that [τ1]≈σ
i
⊇ [τ1]≡k−1 , and therefore the set [τ1]≈σ

i
has

rank greater than k−1. By construction of modularizations ≡1, ..≡n, it follows that

[τ1]≈σ
i
= [τ1]≡k′ for some k′≥ k, and therefore [τ1]≈σ

i
⊇ [τ1]≡k . Since [τ1]≡k = [τ2]≡k ,
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it follows that [τ1]≈σ
i
⊇ [τ2]≡k and that [τ1]≈σ

i
= [τ2]≈σ

i
. Moreover, since [τ2]≡k ⊇

[τ2]≡k−1 holds by construction of ≡k,≡k−1, we have that [τ1]≈σ
i
⊇ [τ2]≡k−1 and that

[τ1]≈σ
i
= [τ2]≈σ

i
. The desired claim follows from this.

5.3 Towards Retractions for Modular Witnesses

In this section we show that modular witnesses admit retractions that transform the witness

into a bounded-size witness. We informally refer to such retractions as good retractions.

For further analysis, let us fix a layered-acyclic witness W = (S,R,{∼i}i∈[n],{`V , `Q},sε)

of the imperfect information game (G,Q).

In order to better understand the ideas involved in this construction, we construct retractions

of special cases of modular witness, and incrementally build the necessary tools to construct

retractions of general modular witness. We define these special cases next.

We say that the witness W

• has perfect information, if it has trivial indistinguishability relations, that is, if

∼i= {(s,s) | s ∈ S} for all agents i ∈ [n].

• is w-simple, if there exists a modularization ≡ of W that is final and w-wide, and if

the modular transition system M≡ associated with the modularization ≡ is a tree.

5.3.1 Retraction for Perfect-Information Witnesses

Recall that a function g is a retraction of the witness W , if it satisfies the basic constraints

and the parity constraints. Note that if the witness W has perfect information, then the basic
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constraints are trivially true for any map g : S→ S that preserve the labellings `V , `Q, and

therefore the difficulty in constructing retractions is only in ensuring the parity constraints.

Towards fulfilling the parity constraints, we use the ideas in [33] which involve the use of

‘parity progress measures’. The retraction approach in this case is conceptually identical to

this solution of [33].

Parity Progress Measures The notion of ‘parity progress measure’ was introduced by

Klarlund in [34], to give an alternative characterization of the parity condition. This

has been used in many forms in the literature, and in particular, in the study of perfect

information games to obtain ‘small’ strategies.

We begin with an informal description of the idea of a progress measure. Towards this,

consider an LTS X = (X ,Y,{`},xε) with a priority labelling ` : X → I on its states, to

a set of priorities I = {1,2, .., |I|}. Assume that X satisfies the parity condition, that is,

the priority sequence `(x0), `(x1), .. corresponding to any path x0a1x1a2.. in X satisfies

the parity condition. The parity progress measure offers a way to interpret the parity

condition on infinite paths, as a ‘local’ property of transitions satisfying some conditions.

Its usefulness in constructing retractions comes from the fact that, when one identifies a

pair of states for the purpose of retracting one to the other, the local properties are easier to

fulfil.

Towards formally defining these, we introduce some definitions. Let Ord denote the class

of all ordinals, and let <Ord denote the natural total order on this class. An i-lexicographic

order on the set Ord|I|, is a binary relation ≺i⊆ Ord|I|×Ord|I| defined as follows: x≺i x′,

if and only if, x↓1 <Ord x′↓1 or there is a j ≤ i such that x↓ j =Ord x↓ j for all j < i and

x↓i <Ord x′↓i. We note here that an i-lexicographic order is a well-founded total order, that

is, it has no infinite descending chains.

A parity progress measure on X is a function µ : X → Ord|I| such that, for any transition

(x,a,x′) ∈ Y :
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1. if the priority `(x) is even, then µ(x)�`(x) µ(x′), and

2. if the priority `(x) is odd, then µ(x)�`(x) µ(x′).

The following theorem shows the characterization of a priority-labelled LTS that satisfies

the parity condition in terms of the parity progress measure.

Theorem 5.3.1 ([33]). There exists a parity progress measure on X , if and only if, the

priority sequence `(x0), `(x1), .. corresponding to any path x0a0x1a1.. in X satisfies the

parity condition.

Parity Progress Measures for Witnesses A parity progress measure on the witness W

is defined as the parity progress measure on structure (S,R, `Q ◦Ω,sε), where Ω is the

priority labelling on the states Q of the µ-automaton Q.

Note that for the witness W , the priority sequence Ω(`Q(s0)),Ω(`Q(s1)), .. corresponding

to any path s0a0s1a1.. in W satisfies the parity condition. It follows by Theorem 2.3.1,

there exists a parity progress measure on W . It also follows that parity progress measures

exist for any witness for the game (G,Q).

The next theorem shows how the parity constraints can be fulfilled by means of the parity

progress measure.

Theorem 5.3.2. Let g be a function and let µ be a parity progress measure on the witness

W . If µ(s)�Ω(`Q(s)) µ(g(s)) for all states s∈ S, then for any g-path s0a0s1a1.., the priority

sequence Ω(`Q(s0)),Ω(`Q(s1)), .. satisfies the parity condition.

Proof. In order to see this, assume for a contradiction that µ(s) �Ω(`Q(s)) µ(g(s)) for

all states s ∈ S, and that there exists a g-path s0a0s1a1.. for which the priority sequence

Ω(`Q(s0)),Ω(`Q(s1)), .. does not satisfy the parity condition. It follows from the definition

of the parity condition that there exists an odd priority p ∈ P and a suffix skaksk+1ak+1.. of

the path s0a0s1a1.. such that, all priorities in the sequence Ω(`Q(sk)),Ω(`Q(sk+1)), .. are
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greater than or equal to p, and there exist infinitely many indices in this sequence where

the priority is p.

Consider the sequence of states s0a0s′0s1a1s′1.. such that s′j ∈ s jRa j and g(s′j) = s j+1 for

all indices j. The existence of such a sequence follows from the definition of a g-path.

Now consider the priorities sequence Ω(`Q(sk)),Ω(`Q(s′k)),Ω(`Q(sk+1)),Ω(`Q(s′k+1)), ..,

and observe that each priority in this sequence is greater than or equal to p. This follows

from our earlier observation and the first condition from the definition of a retraction,

which says that `Q(s′j) = `Q(g(s′j)) for all j ≥ k.

Now consider the sequence µ(sk),µ(s′k),µ(sk+1),µ(s′k+1), .., and observe that µ(sk)�p

µ(s′k)�p µ(sk+1)�p µ(s′k+1)�p .. holds, and additionally that, whenever Ω(`Q(s j) = p is

odd for some j≥ k, we have µ(s j)�p µ(s′j). This is an easy consequence of the definition

of µ-progress measure, our assumption above, and the fact that every priority in the suffix

Ω(`Q(sk),Ω(`Q(sk+1), .. is greater than or equal to p.

Since there are infinitely many states in this suffix that have the odd priority p, it follows

that the sequence µ(sk)�p µ(s′k)�p µ(sk+1)�p µ(s′k+1)�p .. is an infinite descending

chain in the well-founded order�p, a contradiction to the fact that�p is well-founded.

Next we show that good retractions can be constructed for witnesses that have perfect

information.

Theorem 5.3.3. If the witness W has perfect information, then there exists a retraction g

of W , such that |g(W )|= O(|V |2.|Q|2.|A|).

Proof. Let µ be a parity-progress measure on the witness W , and let ≤S⊆ S× S be a

preference-order on the states of W defined as follows:

s1 ≤S s2, if and only if, `V (s1) = `V (s2), `Q(s1) = `Q(s2) and µ(s1)�Ω(`Q(s1)) µ(s2).

Note that since �p is well-founded for each priority p, there are no infinite ascending

chains s1 <S s2 <S .. in the preference-order.
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Let f : S→ S be an optimal map on ≤S, that is,

1. for any state s ∈ S, s≤S f (s), and

2. for any states s1,s2 ∈ f (S), s1,s2 are incomparable under ≤S.

It is clear that since there are no infinite ascending chains in the preference-order ≤S, an

optimal map exists. And so, consider an optimal map g on ≤S.

We claim that the function g is a retraction. To see this, note that for each element s ∈ S,

µ(s) ≤S µ(g(s)) holds by definition of an optimal map, and therefore it follows that

`V (s) = `V (g(s)), `Q(s) = `Q(g(s)) and µ(s)�Ω(`Q(s)) µ(g(s)). We know from an earlier

observation that any function on S that preserves the labels `V , `Q trivially satisfies the

basic constraints for being a retraction. Moreover, since µ(s)�Ω(`Q(s)) µ(g(s)) holds for

all states s ∈ S, it follows from Theorem 2.3.2 that g satisfies the parity constraints to be a

retraction, and the claim follows.

To obtain the size bound for the g-retract g(W ), observe that by Proposition ??, the

domain Sg of the g-retract g(W ) is contained in g(S). Now note that since each �p

is a total order for any priority p, any pair of states s1,s2 that satisfy `V (s1) = `V (s2),

`Q(s1) = `Q(s2) are comparable under the ≤S. It follows from this that any maximal

set of mutually incomparable states is of size at most |V ×Q|. Therefore we have from

the definition of an optimal map that |g(S)| ≤ |V ×Q|. Now considering the fact that

the g-retract g(W ) contains trivial indistinguishability relations, it follows that |g(W )|=

O(|V |2.|Q|2.|A|).

Note that in the above theorem the number of priorities and agents does not contribute to

the size of the resulting witness.

Corollary 5.3.4. The winning strategy problem for perfect information games is solvable

in NPTIME.
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Proof. To see this, observe that if the game (G,Q) being considered, is a perfect informa-

tion game, then the canonical witnesses of this game are perfect information witnesses. By

Theorem 2.3.3, every perfect information witness of a game (G,Q) admits a retraction

into a witness of size at most O(|V |2.|Q|2.|A|). Therefore it follows from the solvability

Theorem ?? that the winning strategy problem is solvable in NTIME(|V |2.|Q|2.|A|), or

equivalently, in NPTIME.

5.3.2 Retractions for Simple Witnesses

The retractions that we construct for simple witnesses are similar to the case of perfect

information witnesses, but with the retraction mapping the domain of each modular-state

as a whole, to the domain of another modular state. Because of this, it is convenient to

view a retraction as a map from modular-states to other modular states. We define some

terminology and formalize these ideas next.

Modular-Maps and Unbundling Consider a modularization ≡ of the witness W and

the associated modular transition system M≡ = (M≡,R≡,Mε).

• We call a function g :M≡→M≡, a≡-modular-map on W , if for every modular-state

M ∈M≡, there exists an isomorphism from M to g(M ).

• A function g : S→ S is called an unbundling of the a≡-modular map g : M≡→M≡,

if for every modular-state M ∈M≡, the restriction of the function g to the domain

dom(M ), is an isomorphism from M to g(M ).

Theorem 5.3.5. Let g be an unbundling of some ≡-modular map g on W . Then,

1. for any state s ∈ S, `V (s) = `V (g(s)) and `Q(s) = `Q(g(s)),

2. for any states s1,s2 ∈ S and agent i ∈ [n], if s1 ≡ s2 holds, then s1 ∼i s2, if and only

if, g(s1)∼i g(s2), and
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3. g(S) =
⋃

M∈g(M≡)
dom(M ).

4. g is a retraction of the witness W , if the following conditions hold:

(a) for any states s1,s2 ∈ S and agent i∈ [n], if s1 6≡ s2, then s1 ∼i s2, if and only if,

g(s1)∼i g(s2).

(b) for any g-path s0a0s1a1... that begins at the state g(sε), the priority sequence

Ω(`Q(s0)),Ω(`Q(s1)),Ω(`Q(s2)), .. satisfies the parity condition.

Proof. The first, second and third items in the above theorem are immediate consequences

of the definition of ≡-modular maps and unbundling.

For the proof of the fourth item, consider the following observations:

• For g to be a retraction `V (s) = `V (g(s)) and `Q(s) = `Q(g(s)) must hold for any

state s ∈ S, and this follows from item 1. The parity constraint for g to be a retraction

is verbatim the second condition in the theorem.

• It remains to show that for any agent i∈ [n] and transitions (s1,a,s2),(s′1,a
′,s′2)∈ Rg,

if s1∼i s2, then, s2 ∼i s′2, if and only if, `V (s′1)
↓i=`V (s′2)

↓i and a↓i = a′↓i.

Towards this consider an agent i ∈ [n] and transitions (s1,a,s2),(s′1,a
′,s′2) ∈ Rg

such that s1∼i s′1. Then by definition of Rg, there must exist states s,s′ ∈ S and

transitions (s1,a,s),(s′1,a
′,s′) ∈ R such that s2 = g(s) and s′2 = g(s′) hold. The

desired conclusion follows immediately from the following two claims.

– Firstly we claim that s2 ∼i s′2, if and only if, s∼i s′. To see this, observe that if

s ≡ s′, then the claim follow immediately from item 2. On the other hand if

s 6≡ s′, then the claim follows from the first condition in the theorem.

– Secondly we claim that s∼i s′, if and only if, `V (s)↓i=`V (s′)↓i and a↓i = a′↓i.

To see this, consider the Indistinguishability condition (that is, condition V.2)

satisfied by the witness W , stated below:
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∀i ∈ [n],∀(s1,a,s2),(s′1,a
′,s′2) ∈ R : if s1 ∼i s′1, then,

s2∼i s′2, if and only if, `V (s2)
↓i=`V (s′2)

↓i and a↓i = a′↓i.

Since s1∼i s′1 holds and transitions (s1,a,s),(s′1,a
′,s′) ∈ R exist by our earlier

observation, it follows from the above condition that, s ∼i s′, if and only if,

`V (s)↓i=`V (s′)↓i and a↓i = a′↓i.

This completes the proof of the theorem.

Analogous to the case of retraction for the perfect-information case, the construction of

retractions of the w-simple case proceeds by considering a ‘preference-order’ on modular-

states and ‘optimal maps’ on preference-order. We define these next.

Modular-Preference-Order and Optimal Maps Consider a modularization ≡ of the

witness W and the associated modular transition system M≡ = (M≡,R≡,Mε).

• A pre-order E⊆M≡×M≡ is called a ≡-modular-preference-order, if it satisfies the

following: for all M1,M2 ∈M≡, if M1 E M2, then there exists an isomorphism

from M1 to M2.

• Given a modular-preference-order E, we qualify a modular-map g : M≡→M≡

– as E-monotone, if M E g(M ) for all modular-states M ∈M≡.

– as E-optimal, if it is E-monotone, every modular-state in g(M≡) is a maximal

modular-state under the ordering E, and no two modular-states in g(M≡) are

comparable under E.

Note that an E-optimal modular-map may not exist for any modular-preference-order E.

A necessary and sufficient criterion for the existence of this is given next.

Proposition 5.3.6. For any modular-preference-order E, there exists a E-optimal modular

map, if and only if, there are no infinite ascending chains in E.
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We now return to our first construction of retraction for the case where the witness W is

w-simple. We show that in this case, the parity progress measure is inadequate for the

purpose of constructing good retractions.

Theorem 5.3.7. If the witness W is w-simple, then there exists a retraction g of W such

that, the g-retract g(W ) is finite.

Proof. Let W have ≡ as its final and w-wide modularization. Let M≡ = (M≡,R≡,Mε)

denote the associated modular transition system and let µ be the parity progress measure

of the witness W .

Now consider the modular-preference-order E⊆M≡×M≡ defined as follows:

M1 EM2, if and only if, there is an isomorphism h from M1 to M2 such that, µ(s)�Ω(`Q(s))

µ(h(s)) for all states s ∈ dom(M1).

Firstly note that there are no infinite ascending chains in E. To see this, consider for a

contradiction an infinite ascending chain M1 CM2 C ... By definition of E, there exists

an isomorphism hi : dom(Mi)→ dom(Mi+1) for each index i. It is easy to see from

this that there exists some state s ∈ dom(M1) such that µ(s)�Ω(`Q(s)) µ(h1(s))�Ω(`Q(s))

µ(h2(h1(s)))�Ω(`Q(s)) .., a contradiction to the well-foundedness of �Ω(`Q(s)).

Since there are no infinite ascending chains in E, it follows from 2.3.6 that a E-optimal

modular-map g exists on E. Let g be the unbundling of g.

Firstly we claim that g is a retraction of W . To see this, consider item 4 of Theorem 2.3.5,

and observe the following:

• For any states s1,s2 ∈ S, if s1 ∼i s2 for some agent i ∈ [n], then due to the modular-

ization ≡ being final, it follows that s1 ≡ s2. Therefore the first condition in item 4

of Theorem 2.3.5 holds trivially.

• By construction of g, it follows that µ(s) �Ω(`Q(s)) µ(g(s)) for each s ∈ S, and

therefore by Proposition 2.3.2, the second condition in item 4 of Theorem 2.3.5

127



holds.

The fact that g is a retraction follows from item 4 of Theorem 2.3.5.

It remains to show that g(W ) is a finite. Note that by Proposition ?? and Theorem

2.3.5, we have that Sg (the domain of g(W )) satisfies Sg ⊆
⋃

M∈g(M≡)
dom(M ). Since

every modular-state in g(M≡) is maximal, it must the case that for any two modular

states M ,M ′ ∈ g(M≡), either they are non-isomorphic, or there exists an isomorphism

from M ,M ′ but the progress measure profiles (µ(s))s∈dom(M ) and (µ(h(s)))s∈dom(M)

are incomparable, when ordered point-wise under ≺Ω(`Q(s)) at each index s. It is an easy

consequence of Dickson’s lemma that there are only finitely many progress measure

profiles that are incomparable to a profile (µ(s))s∈dom(M ). Since there are only finitely

many modular-states that are incomparable under isomorphism (by virtue of ≡ being

w-wide), we can conclude that there are only finitely many modular-states in g(M≡). Since

each modular-state is a finite structure, it follows that Sg is finite, and therefore g(W ) is

finite.

As shown above, the direct use of parity progress measure is insufficient to provide good

retractions in the case where W is w-simple, since the set g(M≡), although of finite

size, could contain arbitrarily large number of modular-states. In the remaining part of

this section, we build techniques to handle this. We resolve this problem by defining a

generalization of a parity progress measure called a ‘modular-progress measure’, that may

be seen as a parity progress measures on modular transition systems.

5.3.3 Constructing Modular-Progress Measure

We begin with a summary of the construction of modular progress measure. Towards this,

consider the witness W and a modularization ≡ of W such that, ≡ is w-wide and the

associated modular transition system M≡ = (M≡,R≡,Mε) is a tree.
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The construction of a ≡-modular progress measure proceeds in three steps:

1. First, we construct an alphabet Σ≡, and provide an interpretation of modular-paths

in M≡ as a words over Σ≡.

2. Second, we construct a deterministic parity ω-word automaton such that, for all

modular-paths in M≡, their corresponding interpretation as words over Σ≡, is

accepted by the automaton.

3. Lastly, we define the notion of modular-progress measure, and show that retractions

that use this notion of progress measure are good retractions.

Interpreting Modular-paths as ω-Words Consider an arbitrary total-ordering on the

set of states S of W , and let the term ith largest element of a set S′ ⊆ S, refer to the ith

largest element of the set S′ under the this total ordering.

A structure T is called a transition structure of the modular-transition (M1,R1,M2) ∈R≡,

if T is a substructure of W induced by the set of states dom(M1)∪dom(M2). We denote

the states in dom(M1) and dom(M2) as source(T ) and sink(T ) respectively.

Let Σ≡ be a minimal set of transition structures such that for every modular-transition

(M1,R1,M2) ∈ R≡, there exists an element T ∈ Σ≡ that is isomorphic to the transition

structure of (M1,R1,M2). Note that since ≡ is w-wide, the set Σ≡ is finite and of size at

most O(w2).

For a sequence of modular-transitions (M1,R1,M
′
1),(M2,R2,M

′
2), .., its word interpre-

tation is given by the sequence T1,T2, .., where each Ti ∈ Σ≡ is isomorphic to the tran-

sition structure of the modular-transition (Mi,Ri,Mi+1). The word interpretation of a

modular-path M1,R1,M2,R2, .., is defined as the word interpretation of the sequence

(M1,R1,M2),(M2,R2,M3), ..
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Automaton on Modular-Paths Next we construct an automaton that accepts word-

interpretations of those modular-paths for which the paths ‘contained in’ a modular-path,

satisfy the Q-Parity condition.

Towards this, recall that P is the set of priorities used to label the states of the automaton

Q, and let pε denote the priority Ω(qε) of the start state qε .

A thread in a word T1,T2, .. ∈ Σω
≡, is any sequence (w1, p1),(w2, p2), .. ∈ ([w]×P)ω , such

that, for any index i ≥ 1, there exists some transition (si,a,si+1) in Ti that satisfies the

following:

1. si is the wth
i largest element in source(Ti) and Ω(`Q(si)) = pi.

2. si+1 is the wth
i+1 largest element in sink(Ti) and Ω(`Q(si+1)) = pi+1.

We say that an ω-word T1,T2, .. ∈ Σω
≡ satisfies the parity condition, if and only if, for

every thread (w1, p1),(w2, p2), .. of the ω-word T1,T2, .. that begins at (1, pε), the priority

sequence p1, p2, .. satisfies the parity condition.

Let L denote the set of ω-words in Σω
≡ that satisfy the parity condition. Note that since word

interpretations of modular-paths satisfy the parity condition, they belong to the language L.

The next proposition shows that the language L is ω-regular.

Proposition 5.3.8. There exists a deterministic parity ω-word automaton that accepts L

and has 2O(|P|.w) states.

Proof. The construction of the desired automaton proceeds in three steps. First, we

construct a parity automaton A ′ that accepts the language L. Second, we convert it

into a Büchi automaton and use Theorem ?? stated in Chapter 2 to obtain an equivalent

deterministic parity automaton A ′′. And third, we obtain a deterministic parity automaton

A ′′′ that is the complement of A ′′.

As the first step, let A ′ = (Q′,Σ≡,∆′,Ω′,(1,Ω(qε))) be a parity automaton, where
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• Q′ = ([w]×|P|)∪{q′⊥} with (1, pε) as the start state.

• for any transition structure T ∈ Σ≡,

– (q′⊥,T,q
′
⊥) ∈ ∆′,

– ((1, pε),T,q′⊥) ∈ ∆′, if and only if, the smallest element in source(T ) has a

priority different from pε .

– for states (w1, p1),(w2, p2) ∈ Q′ \ {q⊥}, we have ((w1, p1),T,(w2, p2)) ∈ ∆′,

if and only if, there exists a transition (s1,a,s2) ∈ R1 such that

1. s1 is the wth
1 largest element in source(T ) and Ω(`Q(s1)) = p1.

2. s2 is the wth
2 largest element in sink(T ) and Ω(`Q(s2)) = p2.

• Ω′ : Q′→{1,2, .., p+1} satisfies Ω′((wi, pi)) = pi +1 for any (wi, pi) ∈ Q′ \{q⊥},

and Ω′(q⊥) = 0.

It is not difficult to see that, for any sequence (w1, p1),(w2, p2), .. ∈ ([w]×|P|)ω and ω-

word T1,T2, .. ∈ Σ≡, the sequence (w1, p1)T1(w2, p2)T2.. is a run of the automaton A ′, if

and only if, (w1, p1),(w2, p2), .. is a thread of the ω-word T1,T2, .. that begins at (1, pε).

We argue next that the automaton A ′ recognizes the language L. To see that every ω-word

in L is accepted by the automaton A ′, consider an ω-word T1,T2, ..∈ L. Since T1,T2, ..∈ L,

one of the cases below applies:

• Either every thread (w1, p1),(w2, p2), .. in T1,T2, .. begins at an pair other than

(1, pε), in which case there is a run (w1, p1)T1q′⊥T2q′⊥.. of automaton A ′, that at

the start state (1, pε) of the automaton, proceeds to the state q′⊥ and remains there.

The run is an accepting run, since the priority of Ω′(q′⊥) is 0 and it follows that the

priority sequence Ω′((w1, p1))Ω
′(q′⊥)Ω

′(q′⊥)... satisfies the parity condition.

• Or there exists a thread (w1, p1),(w2, p2), .. in T1,T2, .. that begins at (1, pε), such

that the priority sequence p1, p2, .. does not satisfy the parity conditions. In this
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case, the sequence (w1, p1)T1(w2, p2)T2.. is guaranteed to be a run of the automaton;

the definition of ∆′ is set up exactly so that this happens. This run is an accept-

ing run because by definition of the priority labelling Ω′, the priority sequence

Ω′((w1, p1)),Ω
′((w2, p2)), .. is identical to p1+1, p2+1, .., and therefore it follows

that the priority sequence satisfies the parity condition.

To see that an ω-word not in L is not accepted by the automaton A ′, consider an ω-

word T1,T2, .. 6∈ L. Then every run (w1, p1)T1(w2, p2)T2.. of T1,T2, .. on A ′ corresponds

exactly to some thread (w1, p1),(w2, p2).. of T1,T2, ... Since T1,T2, .. 6∈ L, or equivalently,

T1,T2, .. ∈ L, it follows from the definition of L that the priority sequence p1, p2, .. satisfies

the parity condition, and therefore (w1, p1)T1(w2, p2)T2.. is not an accepting run.

Now using Theorem ??, we convert the above parity automaton A ′, which has w.|P|+1

states and |P|+1 priorities, to a Büchi automaton that recognizes the same language as A ′,

and has k = (w.|P|+1).(|P|+1) states. Using Theorem ??, we further convert this Büchi

automaton to a deterministic parity automaton A ′′ that recognizes the same language as

A ′, and has k2k+2 states with 2k-many priorities. Again using Theorem ??, we obtain a

deterministic parity automaton A ′′′ that recognizes the complement language recognized

by A ′′, and has the same size and number of priorities as A ′′. Since k = O(w.|P|2), the

desired bound follows.

Modular-progress measure Now let A L = (QL,Σ≡,∆
L,ΩL,qL

ε ) be a deterministic par-

ity automaton that recognizes the language L described earlier, and let ΩL be a function

from QL to the set of priorities PL.

A ≡-modular progress measure of the witness W , is a tuple (µ≡, `QL , `PL), where

• `QL :M≡→QL is a function such that, for any modular-path M1,R1,M2,R2, .. in the

modular transition system M≡ that begins at Mε , the state sequence `QL(M1)`QL(M2)..

is the unique run of the automaton A L on the word-interpretation of the modular-path
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M1,R1,M2,R2, ..,

• `PL = `QL ◦ΩL is function that maps modular-states in M≡ to the set of priorities PL.

• µ≡ is a parity progress measure on the LTS (M≡,R≡,{`PL},Mε).

Note that since the automaton is deterministic and the modular transition system M≡ is

a tree, the function `QL is well-defined. Intuitively, `QL labels M≡ in such a way that the

labelling along a modular-path corresponds to a run of the automaton A L on the word

interpretation of the modular-path. The threads of this word interpretation correspond to

priority sequences of paths ‘contained’ in the modular path, and since threads of words in

L satisfy the parity condition, the Q-Parity condition on paths is maintained.

Next we exhibit the usefulness of modular progress measures in the construction of good

retractions.

Theorem 5.3.9. Let ≡ be a w-wide modularization of the witness W and let M≡ =

(M≡,R≡,Mε), the modular transition system associated with ≡, be a tree.

1. There exists a ≡-modular progress measure of the witness W .

2. Let (µ≡, `QL , `PL) be a ≡-modular progress measure of the witness W .

Let E be the ≡-modular-preference-order such that, for any M1,M2 ∈ M≡, if

M1 E M2, then `QL(M1) = `QL(M2) and µ≡(M1)�`PL(M1) µ≡(M2).

Then the following hold:

(a) There exists a E-optimal modular-map.

(b) For any E-monotone modular-map g, its unbundling g and any g-path s0a0s1a1..,

the priority sequence Ω(`Q(s0)),Ω(`Q(s1)), .. satisfies the parity condition.

Proof. Consider the alphabet Σ≡, the language L as defined earlier. Let AL =(QL,Σ≡,∆
L,ΩL,qL

ε )

be a deterministic parity ω-word automaton that accepts L. The existence of such an
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automaton follows from Proposition 2.3.8. Also, let the ≡-modular progress measure

(µ≡, `QL , `PL) be obtained from this automaton AL as described earlier.

The first part of the theorem is an immediate consequence of the preceding construction of

the ≡-modular progress measure.

For the first item of the second part, note that if there exists an infinite ascending chain

M1 CM2 CM3..., then it follows from the definition of C and Φ that µ≡(M1)�`PL(M1)

µ≡(M2)�`PL(M1) µ≡(M3).., a contradiction to the well-foundedness of �`PL(M1). There-

fore it follows from Theorem 2.3.6 that an optimal modular map exists.

Towards the second item of the second part, we consider a g-path s0a1s1a2... and the

following objects:

• Let (s0,a0,s′0),(s1,a1,s′1), ... be a transition sequence such that for each index i,

(si,ai,s′i) is a transition in the witness W and g(s′i) = si+1. The existence of such a

sequence follows from the definition of the g-path s0a1s1a2....

• Let (M0,R0,M
′
0),(M1,R1,M

′
1), ... be a sequence of modular-transitions, such that

for each index i, we have g(M ′
i ) = Mi+1, and si ∈ dom(Mi), s′i ∈ dom(M ′

i ) and

(si,ai,s′i) ∈ Ri. The existence of such a sequence follows from the definition of the

modular transition relation R≡ and the construction of the optimal map g.

Since g is E-monotone, it follows that M ′
i E Mi+1 for all indices i, and therefore

`QL(M ′
i ) = `QL(Mi+1) and µ≡(M ′

i )�p µ≡(Mi+1),

• Let T0,T1,T2, .. ∈ Σω
≡ be the word interpretation of the modular-transition sequence

(M0,R0,M
′
0),(M1,R1,M

′
1), ... and let (w0, p0),(w1, p1), .. ∈ ([w]×P)ω be a se-

quence such that for every index i, si is the wth
i largest element in Mi and has priority

Ω(`Q(si)) = pi. It follows easily that the sequence (w0, p0),(w1, p1), .. is a thread

in T0,T1,T2, .., since for every index i, the modular-transition associated with each

transition structure Ti, is isomorphic to the modular-transition (Mi,Ri,M ′
i ).
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We claim that T0,T1,T2, .. belongs to the language L, and that the sequence qL
0T0qL

1T1qL
2T2..

that satisfies qL
i = `QL(Mi) for each index i, is an accepting run of the automaton A L on

this word.

Now assuming that this claim is true, it follows from the definition of L that the priority se-

quence p0, p1, .. associated with the thread (w0, p0),(w1, p1), .. in the word T0,T1,T2, .., sat-

isfies the parity condition. Since each pi =Ω(`Q(si)), the priority sequence Ω(`Q(s0)),Ω(`Q(s1)), ..

satisfies the parity condition, and the claim follows.

Towards proving the above claim that T0,T1,T2, .. belongs to the language L, consider the

associated modular-transition sequence (M0,R0,M
′
0),(M1,R1,M

′
1), ..., and the sequence

of states qL
0 ,q
′L
0 ,q

L
1 ,q
′L
0 such that qL

i = `QL(Mi) and q′Li = `QL(M ′
i ) hold for every index i.

It follows that for any index i, ∆L(qL
i ,Ti) = q′Li holds by construction of the labelling `QL

and q′Li = qL
i+1 due to our earlier observation that `QL(M ′

i ) = `QL(Mi+1). Therefore the

sequence qL
0T0qL

1T1qL
2T2.. is a run of the ω-word T0,T1,T2, .. on the automaton A L.

It remains to show that qL
0T0qL

1T1qL
2T2.. is also an accepting run. Towards this, consider

the priority sequence ΩL(qL
0),Ω

L(q′L0 ),Ω
L(qL

1),Ω
L(q′L1 ), .., or equivalently, the priority

sequence `PL(M0), `PL(M ′
0), `PL(M1), `PL(M ′

1), ... We claim that this sequence satisfies

the parity condition. Towards proving this, assume for a contradiction that the sequence

does not satisfy the parity condition. By definition of parity condition, it follows that there

exists an odd priority p ∈ PL and a suffix `PL(Mi), `PL(M ′
i ), `PL(Mi+1), `PL(M ′

i+1), ..

such that, all priorities appearing in this suffix are greater than or equal to p and p appears

infinitely often in this suffix. Now observe that for all indices j ≥ i,

• (M j,R j,M ′
j) is a transition in R≡, and therefore µ≡(M j) �p µ≡(M ′

j) holds by

definition of the parity progress measure µ≡, with the additional constraint that

µ≡(M j)�p µ≡(M ′
j) whenever `PL(M j) = p.

• `PL(M ′
j)≥ p and µ≡(M ′

j)�p µ≡(M j+1) hold due to an earlier observation.

It follows that the sequence µ≡(Mi)�p µ≡(M ′
i )�p µ≡(Mi+1)�p µ≡(M ′

i+1), .. holds,
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with the additional constraint that the strict order µ≡(M j)�p µ≡(M ′
j) whenever `PL(M j)=

p for all j ≥ i. This is a contradiction to the fact that �p is a well-founded order. There-

fore, we conclude that the sequence qL
0T0qL

1T1qL
2T2.. is an accepting run of the automaton

A L.

Theorem 5.3.10. If W is w-simple, then there exists a retraction g such that the g-retract

g(W ) has a domain of size 2O(n.w2 log(|V |.|Q|.|P|)).

Proof. Let ≡ denote a final and w-wide modularization of the W . Let (µ≡, `QL , `PL) be

a ≡-modular progress measure of the witness W . The fact that this exists follows from

Theorem 2.3.9.

Now consider the modular-preference-order E⊆M≡×M≡ defined as follows:

M1 E M2, if and only if, there exists an isomorphism from M1 to M2, `QL(M1) =

`QL(M2) and µ≡(M1)�`PL(M1) µ≡(M2).

According to Theorem 2.3.9, for a modular-preference-order of the form defined above,

there exists a E-optimal modular-map g. Let g denote the unbundling of the modular-map

g, and consider the following:

• For any states s1,s2 ∈ S, if s1 ∼i s2 for some agent i ∈ [n], then due to the modular-

ization ≡ being final, it follows that s1 ≡ s2.

• For any g-path s0a1s1a2..., the priority sequence Ω(`Q(s0)),Ω(`Q(s1)), .. satisfies

the parity condition. This is again a consequence of Theorem 2.3.9.

It now follows from the above two observations and item 4 of Theorem 2.3.5 that g is a

retraction of the witness W .

For the size bound on g(W ), consider the E-optimal modular-map g. Note that any two

modular-states in g(M≡) are incomparable under E, therefore they either have different

`QL labels or are non-isomorphic to each other. Since each modular-state has at most
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w-many states and since the transition relation in each modular-state is empty, there are

at most (|V |.|Q|)w× 2n.w2
-many isomorphism classes of modular-states. Also |QL| =

2O(|P|.w). It follows from these that |g(M≡)| ≤ 2O(n.w2 log(|V |.|Q|.|P|)). Now by Proposition

?? and Theorem 2.3.5 we know that Sg, the domain of the g-retract g(W ), satisfies

Sg ⊆
⋃

M∈g(M≡)
dom(M ). Since each modular-state is of size at most w, the size bound

claimed in the theorem follows.

5.4 Retraction for Modular Witnesses

Now assume for the purposes of this section that the witness W is modular. The construc-

tion of good retractions for W proceeds in three steps:

1. First we show that if W admits a (w,m,d)-decomposition, then there exists a retrac-

tion g such that g(W ) admits a (w′,m,d−1)-decomposition, for a particular value

of w′.

2. Second, using the above result repeatedly, we show that if W admits a (w,m,d)-

decomposition, then there exists a retraction g such that g(W ) is w′-simple, for a

particular value of w′.

3. Lastly, we combine the above results with Theorem 2.3.10 to show that a W admits

a good retraction.

We begin with the first result mentioned above.

Theorem 5.4.1. If the witness W admits a (w,m,d)-decomposition ≡1⊆ . . . ⊆≡d , then

there exists a retraction g of W such that,

1. the g-retract g(W ) is layered-acyclic,

2. g(W ) admits a (2O(n.w2 log(m.|V |.|Q|.|P|)),m,d−1)-decomposition≡g
2⊆≡

g
3⊆ . . .⊆≡g

d ,

where ≡g
c = ≡c ∩ Sg×Sg for each 2≤ c≤ d.
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Proof. Let ≡1⊆ . . . ⊆≡d be a (w,m,d)-decomposition of witness W . For notational

convenience, we denote modularization ≡1 by ≡ and ≡2 by ≡′.

Let (M≡,R≡,Mε) and (M≡′,R≡′,M ′
ε) denote the respective modular transition systems

associated with the modularizations ≡ and ≡′.

By definition of a (w,m,d)-decomposition, the modularization≡ is w-wide and the modular

transition system (M≡,R≡,Mε) is a tree, and therefore it follows from Theorem 2.3.9 that

a ≡-modular progress measure exists. Let (µ≡, `QL , `PL) be a ≡-modular progress measure

of the witness W .

Now consider the ≡-modular-preference-order E⊆M≡×M≡ defined as follows:

M1 E M2, if and only if, there exists an isomorphism h from M1 to M2 such that

1. for all s ∈ dom(M1), we have N≡(s)=N≡(h(s)),

2. `QL(M1) = `QL(M2) and µ≡(M1)�`PL(M1) µ≡(M2), and

3. dom(M1)∪dom(M2)⊆ dom(M ′) for some M ′ ∈M≡′ .

Now according to Theorem 2.3.9, for a ≡-modular-preference-order of the form defined

above, there exists some E-optimal modular-map. Let g be a E-optimal modular-map

and let g denote the unbundling of the modular-map g that satisfies the condition that

N≡(s)=N≡(g(s)) for all s ∈ S. It is not difficult to see from the definition of E and g that

such an unbundling of g exists.

We begin with a simple consequence of the construction of g.

Lemma 5.4.2. For any ≡′-modular-state M ′ ∈M≡′ , we have

1. g(S∩dom(M ′))⊆ g(S)∩dom(M ′), and

2. |Sg∩dom(M ′)| ≤ |g(S)∩dom(M ′)|= 2O(n.w2 log(m.|V |.|Q|.|P|)).
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Proof. Consider a ≡′-modular-state M ′ ∈M≡′ and let M′≡ = {M ∈M≡ | dom(M ) ⊆

dom(M ′)}. It is an easy consequence of the definition of E that every ≡-modular state in

M′≡, is comparable via E, only to other modular states in M′≡. Therefore it follows from

E-montonicity of g that g(M′≡)⊆M′≡.

The first item to be proved here is a simple consequence of the above observation and the

fact that g is an unbundling of g.

For the second item, it suffices to show that |g(M′≡)| = 2O(n.w2 log(m.|V |.|Q|.|P|)), since

|g(S)∩ dom(M ′)| is the domain of the modular-states in g(M′≡), each of which have

domain-size at most w. Now since g is an E-optimal modular-map, it must be the case

that any pair of modular-states in g(M′≡) are incomparable under E. Note that a pair of

modular states are incomparable under E, if either they are non-isomorphic, or the label

N≡ on states is not preserved, or the label `QL is not preserved.

Now note that by definition of a (w,m,d)-decomposition, the number of labels assigned by

N≡ to states in M ′ is bounded by m. It follows that the maximum number of modular-

states in M′≡ that are either non-isomorphic or do not preserve label N≡ on states is

bounded by (m.|V |.|Q|)w×2n.w2
. Since there are at most |QL| different labels for `QL , it

follows that |M′≡|= |QL|× (m.|V |.|Q|)w×2n.w2
. Additionally since |QL|= 2O(|P|.w), we

have |M′k≡|= 2O(n.w2 log(m.|V |.|Q|.|P|)).

The fact that the g-retract g(W ) is a layered-acyclic witness follows from the fact that W

is layered-acyclic and the first item of Lemma 2.4.2 which says that g maps every state

that belongs to a ≡2-modular-state to another state in the same ≡2-modular-state.

Next we show that g is a retraction of W . Towards this, consider the Theorem 2.3.5, and

observe the following:

• Firstly, note that for any states s1,s2 ∈ S and agent i ∈ [n], if s1 6≡ s2, then s1 ∼i s2, if

and only if, g(s1)∼i g(s2). This is an elementary consequence of the definition of

N≡ and the fact that N≡(s)=N≡(g(s)) for all s ∈ S.
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• Secondly observe that for any g-path s0a1s1a2..., the priority sequence Ω(`Q(s0)),

Ω(`Q(s1)), Ω(`Q(s2)).. satisfies the parity condition. This follows from the definition

of E and Theorem 2.3.9.

Therefore it follows from item 4 of Theorem 2.3.5 that g is a retraction.

Let w′ = O(2n.w2 log(m.|V |.|Q|.|P|). Next we show that g(W ) admits the (w′,m,d − 1)-

decomposition ≡g
2⊆≡

g
3⊆ . . .⊆≡g

d . To see this, consider the following arguments:

• To see that each ≡g
c is a modularization, note that since the function g maps states to

other states of the same depth, it follows that for any state s ∈ Sg with some depth

k in the witness W , is also reachable via a length k g-path in W that begins at the

start state of g(W ). Since ≡g
c=≡c ∩ Sg×Sg, it follows that if s≡g

c for some states

s,s′ ∈ Sg, then the have identical depth in g(W ).

The fact that ≡2
d is w′-wide is a simple consequence of Lemma 2.4.2 and the fact

that ≡g
d is final, follows from ≡d being final and the indistinguishability relations

{∼g
i }i∈[n] of the witness g(W ) being induced substructures of {∼i}i∈[n].

• Next we argue that the modular transition system M≡g
2

associated with the mod-

ularization ≡g
2 of g(W ) is a tree. Towards this consider the modular transition

systems M≡1,M≡2 associated with modularizations ≡1,≡2 of the witness W re-

spectively. Since W admits a (w,m,d)-decomposition ≡1⊆ ...⊆≡n, it follows from

the definition of a (w,m,d)-decomposition that M≡ is a tree. Moreover, since the

modularization ≡2 is coarser than ≡1, it also follows that M≡2 is a tree.

The fact that M≡g
2

is a tree, is a consequence of the fact that the modular transition

system M≡2 is a tree and that the retraction g maps every state that belongs to a

≡2-modular-state to another state in the same ≡2-modular-state (due to the first item

of Lemma 2.4.2).

• Next we show that for every index 2≤ c < d, there are at most m states in any equiva-

lence class in S′ ∈ Sg/≡c+1 with distinct≡c-neighbourhoods, that is, |{N≡g
c
(s′) | s′ ∈
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S′}| ≤ m.

Towards this, we claim that for any pair of states s,s′ ∈ Sg, if N≡c(s) =N≡c(s
′), then

N≡g
c
(s) = N≡g

c
(s′). Now if this claim is true, then the our original claim follows,

since for any state s ∈ Sg:

|{N≡g
c
(s′) | s′ ∈ [s]≡g

c
}| ≤ |{N≡c(s

′) | s′ ∈ [s]≡c}| ≤ m.

For a proof of the above claim, consider states s,s′ ∈ Sg that satisfy N≡c(s) =

N≡c(s
′). Then by definition of N≡c , we have for every agent i ∈ [n] that N≡c(s)

↓i =

N≡c(s
′)↓i. Consider the following two cases:

– CASE N≡c(s)
↓i = /0: In this case, it follows by definition of N≡c that [s]∼i \

[s]≡c = /0 holds. Since both ∼g
i ,≡

g
c are the respective sub-relations of ∼i

,≡c induced by the state-set Sg, it is also the case that [s]∼g
i
\ [s]≡g

c
= /0, and

therefore N≡g
c
(s)↓i = /0. Symmetrically, N≡g

c
(s′)↓i = /0, and therefore, we have

N≡g
c
(s)↓i = N≡g

c
(s′)↓i.

– CASE N≡c(s)
↓i 6= /0: Since N≡c(s)

↓i = N≡c(s
′)↓i 6= /0 holds by assumption,

it follows from the definition of N≡c that [s]∼i = [s′]∼i , [s]∼i \ [s]≡c 6= /0 and

[s′]∼i \ [s′]≡c 6= /0. Since both ∼g
i ,≡

g
c are the respective sub-relations of ∼i,≡c

induced by the set Sg, it follows easily that [s]∼g
i
= [s′]∼g

i
, [s]∼g

i
\ [s]≡g

c
6= /0 and

[s′]∼g
i
\ [s′]≡g

c
6= /0. Again from the definition of N≡g

c
, it follows that N≡g

c
(s)↓i =

N≡g
c
(s′)↓i 6= /0.

Next we combine the observations made in the previous sections and construct good

retractions for the class of witnesses that admit a (w,m,d)-decomposition.

Corollary 5.4.3. If the witness W admits a (w,m,d)-decomposition≡1, . . . ,≡d , then there

exists a retraction g such that, the modularization ≡g
d=≡d ∩Sg×Sg of the g-retract g(W )

is wd-wide, where wd is recursively defined as follows:
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wd :=


2O(n.w2

d−1 log(m.|V |.|Q|.|P|), if d > 1

w, if d = 1.

Note that since ≡d is a final modularization of W , it follows that ≡g
d is a final modulariza-

tion of g(W ) and therefore g(W ) is a wd-simple witness.

Proof. The desired function g is obtained in stages. First we consider the witness W , and

apply the Theorem 2.4.1 to obtain a retraction g1 such that, the g1-retract g1(W ) admits

a (w1,m,d−1)-decomposition where w1 = 2O(n.w2 log(m.|V |.|Q|.|P|)). Now, by Theorem ??

we have that g1(W ) is a witness for the game (G,Q), and by Theorem 2.4.1 the g1-retract

g1(W ) is layered-acyclic and admits a (w1,m,d−1)-decomposition. Therefore we can

again use Theorem 2.4.1 to obtain a further retraction g2 of the witness g1(W ).

Similarly, for any c≤ d we can obtain a retraction gc of the witness gc−1(gc−2(..(g1(W )))

so that the gc-retract gc(gc−1(gc−2(..(g1(W )))) is a (wc,m,d− c)-decomposition, with

wc = 2O(w2
c−1.|V |.|Q|.|Ω(Q)|2+log n).

The required retraction g stated in the theorem, is obtained by the composition g =

g1 ◦ g2 ◦ ... ◦ gd , which by Proposition ?? is guaranteed to be a retraction. The size

parameters follows easily from these.

We conclude by summarizing how to solve the (deterministic) winning strategy problem

for game graphs with no (uniform-deterministic) fork-triples.

Theorem 5.4.4.

1. The winning strategy problem for global µ-automaton winning conditions is solvable

for game graphs that contain no fork-triples.

2. The deterministic winning strategy problem for global µ-automaton winning condi-

tions is solvable for game graphs that contain no uniform-deterministic fork-triples.
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Proof. Consider an imperfect information game (G,Q) with a game graph G that con-

tain no (uniform-deterministic) fork-triples and global winning conditions given by a

µ-automaton Q. By Theorem 2.4.4, the canonical (deterministic) witnesses of such games

are modular witnesses, and admit (1,1,n+1)-decomposition. Now by Corollary 2.4.1,

such witnesses admit retractions that result in a w-simple witnesses, for some computable

number w. And using Theorem 2.3.10 we obtain a retraction for this w-simple witness to

a bounded-size witness. It therefore follows from solvability Theorem ?? that the (deter-

ministic) winning strategy problem is solvable for global µ-automaton winning conditions

with game graphs that contain no (uniform-deterministic) fork-triples.

5.5 Discussion

We show here that the distributed synthesis problem is solvable for architectures with

(weak-)informedness ordering and global µ-automaton specifications. We show this by way

of translating them first to games that have game graphs without (uniform-deterministic)

fork-triples and have global µ-automaton winning conditions, and then showing that such

games are solvable.

Another result which is subsumed by the solvability of games without (uniform-deterministic)

fork-triples is from [35], which solves the deterministic winning strategy problem for game

graphs that admit the property ‘dynamic hierarchic information’ and global winning con-

ditions given by priority labellings. It is not difficult to show that the property of having

‘dynamic hierarchic information’ is equivalent to the property of a game graph having

no fork-triples. The solution presented in [35] proceeds by reducing this problem to the

distributed synthesis problem for architectures with informedness ordering, and then uses

past results on architectures to argue its solvability. In contrast, our result here argues

the solvability directly and also extends the solvability of such games to the case of

non-deterministic winning strategy problem.
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Note that while our final results use only the case when the witnesses admit (1,1,n+1)-

decomposition, the techiques introduced here allow us to solve classes of games/architectures

for which the witnesses admit (w,m,d)-decomposition, for arbitrary w,m,d ∈ N. Inspite

of this technically stronger result, currently we are unaware of any interesting classes

of architectures/games for which this result can be utilized. From a purely theoretical

point of view, the case of retractions for witnesses that admit (w,m,d)-decompositions,

may be seen as partial evidence for the intuition that slight perturbations from the case of

(dynamic) hierarchical games (that is, the ones that admits no fork-triples) may still yield a

solvable winning strategy problem.
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Chapter 6

Synthesis for Local Specifications

In this chapter, we show the following:

1. The deterministic distributed synthesis problem is solvable for the class of weak

broadcast architectures and local priority labelling specifications.

2. The distributed synthesis problem is solvable for the class of broadcast architectures

and local priority labelling specifications.

Towards showing the above results, we divide our analyses into the following steps:

1. First, we show that for any game (G,{γi}i∈[n]), with the game graph G corresponding

to (weak) broadcast architectures, and winning conditions given by local priority

labelling conditions, the canonical witnesses of (G,{γi}i∈[n]) satisfy the ‘broadcast

property’.

2. Second, we define a notion of ‘factorization’ of a witness, which is comprised of

two parts. The first part of a factorization is comprised of the set of ‘factors’ of the

witness, and the second is a ‘coupling relation’ that records how the various factors

interact.
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We show that the canonical witnesses of (G,{γi}i∈[n]) of the form given above admit

a factorization into factors that are similar to modular witnesses. Additionally, we

show that the coupling relation satisfies a property called the ‘grid property’.

3. Third, we define a notion of retraction of a factor, and show that the retractions

of factors may be used to construct retractions of the witness, if they satisfy some

‘compatibility’ conditions.

Moreover, we construct a retraction for canonical witnesses of (G,{γi}i∈[n]), using

the retractions of factors that satisfy the compatibility relation. It is crucial for this

construction that the factors of the witness are similar to modular witnesses, and that

the coupling relation satisfies the grid property.

4. Lastly we show that there exists a computable function f such that, any witness W

of any game (G,{γi}i∈[n]) of the form given above admits a retraction g with g(W )

of size at most f (|G|, |{γi}i∈[n]|).

By the retraction criterion mentioned in Chapter 4, the solvability of the distributed

synthesis problems above follows.

6.1 Games for Broadcast Architectures

We begin by fixing some notation. Let P = {1,2, .., |P|} be a set of priorities. Let

(G,{γi}i∈[n]) be an imperfect information game, where G = (V,E,vε) is a game graph and

{γi}i∈[n] is a local priority labelling winning condition with each γi as a function that maps

states in Vi to priorities in P. Let N= {N1,N2, ..,Nd} be a partitioning of agents in [n].

Now consider an architecture Ar = ([n]+,α) on the set of variables Z. Recall that for

any agent i ∈ [n], Ini and Outi denote the set of input and output variables of agent i,

respectively. For any subset N ⊆ [n], let InN =
⋃

i∈N
Ini and OutN =

⋃
i∈N

Outi.

An architecture Ar is said to be a (weak) N-broadcast architecture, if
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(a) A simple broadcast architecture (b) A Pipeline with feedback

Figure 6.1: Broadcast Architectures: Examples

1. each agent-set Nc ∈N admits a (weak-)informedness ordering1.

2. for any index c ∈ [d] and agent i ∈ [n]\Nc, we have OutNc ∩ In[n]\Nc ⊆ Ini.

3. for any index c ∈ [d], we have OutNc ∩ In[n]\Nc ⊆ Outic , where ic denotes the least

informed agent in Nc, under the (weak-)informedness ordering.

We use the term (weak) broadcast architecture, to refer to a (weak) N-broadcast architec-

ture for some partitioning N.

Next we give an intuitive description of the above conditions. The first condition is self-

explanatory. The second condition says whenever information is transmitted from an agent

in a partition Nc to an agent outside the partition, then it is also transmitted to every other

agent in the system. The third condition says that in a partition Nc, only the least informed

agent ic is allowed to transmit outside of Nc.

An interesting special case of the above class of architectures is that of ‘simple broadcast

architecture’ where every agent transmits equally to all other agents. Formally, we say that

an architecture Ar is a simple broadcast architecture if Outi∩ In[n]\{i} ⊆ In j for any agents

i ∈ [n] and j ∈ [n]\{i}. It is easy to verify that this is a special case of (weak) N-broadcast

architecture where N= {{1},{2}, ..,{n}}.

1Refer to Section 2.1 to recall this definition.
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Comparison with Earlier Results As mentioned in Chapter 2, the previous state-of-

the-art result for solvability in local specifications, is for flanked pipelines with feedback

architectures and local ω-automaton specifications. In order to define these architecture

classes, we define some terminology. We qualify an architecture Ar as

• a pipeline, if there exist an enumeration i1, i2, ..in of agent in n such that Ini =Outi−1

for all 1≤ i≤ n. We call this enumeration the pipeline order.

• a pipeline with feedback, if the architecture is obtained by considering a pipeline

architecture and adding edges from agents that appear later in the the pipeline order

to the ones that appear earlier in the order.

Note that pipeline architectures and pipeline with feedback architectures are instances of

architectures that admit a weak-informedness ordering, and this can be verified easily.

Flanked pipelines are a special case of weak broadcast architecture that admits a partitioning

into two sub-architectures, where the first sub-architecture is a pipeline, the second sub-

architecture is a single agent, and the least informed agent in the first sub-architecture

can communicate with the second sub-architecture. Flanked pipelines with feedback are

similar to the above, with the modification that the first sub-architecture now consists of a

pipeline with feedback.

We note here that, in this chapter we show the solvability for these architectures for priority

labelling specifications, and not the more general ω-automaton specifications. We will

discuss the reasons for this at the end.

Let W = (H,M,{≈i}i∈[n],{`V},vε) be a (deterministic) canonical witness of (G,{γi}i∈[n]),

associated with a winning (deterministic) joint strategy σ .2

Next we state a few properties of the canonical (deterministic) witness W , due to being
2Note the change in convention; earlier the canonical witness associated with σ was denoted by

(Hσ ,Mσ ,{≈σ
i }i∈[n],{`V},vε) and the game tree specified by G was denoted by (H,M,{≈i}i∈[n],vε).
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obtained from a (weak) broadcast architecture. The latter property in the theorem given

below is in some sense a true characteristic of a broadcast systems, and we informally refer

to this as the broadcast property.

Theorem 6.1.1. Let Ar be a (weak) N-broadcast architecture and let G be a game graph

corresponding to Ar.

1. If Nc ∈N with i1, i2, ..ik denoting the (weak-)informedness ordering on the agents in

Nc, then for any history τ ∈ H, we have [τ]≈i1
⊆ [τ]≈i2

⊆ ..⊆ [τ]≈ik
.

2. For any histories τ1a1v1,τ2a2v2 ∈ H, if τ1a1v1 ≈i τ2a2v2 for some i ∈ [n], then

a↓ic↓z1 = a↓ic↓z2 for every index c ∈ [d] and variable z ∈ OutNc ∩ In[n]\Nc .

Proof. 1. To show the first claim, it suffices to show that for any histories τ1,τ2 ∈ H

and agent i j with j < k, if τ1 ≈i j τ2, then τ1 ≈i j+1 τ2.

We argue the above claim by induction on the sum of length of the histories τ1,τ2.

For the base case, both these histories correspond to the trivial history vε , and the

claim follows trivially. For the induction case, consider histories τ1a1v1,τ2a2v2 ∈ H

and agent i j with j < k, such that τ1a1v1 ≈i j τ2a2v2 holds. We need to show that

τ1a1v1 ≈i j+1 τ2a2v2.

Now by the perfect recall property satisfied by the canonical witness W , it follows

from τ1a1v1 ≈i j τ2a2v2 that τ1 ≈i j τ2. And additionally, by induction hypothesis on

the shorter length histories τ1,τ2, we have that τ1 ≈i j+1 τ2.

Now assume for a contradiction that τ1a1v1 6≈i j+1 τ2a2v2, then since τ1≈i j+1 τ2 holds,

it follows from the definition of ≈i j+1 that either a
↓i j+1
1 6= a

↓i j+1
2 or v

↓i j+1
1 6= v

↓i j+1
2 .

The argument now splits into the following cases:

• i1, i2, ..ik is a weak-informedness ordering and W is canonical deterministic

witness: Since W is uniform and deterministic, and since τ1 ≈i j+1 τ2 holds, it

follows that the actions of agent i j+1 in the joint actions a and a′ are identical,
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and so a
↓i j+1
1 = a

↓i j+1
2 . Therefore it must be the case that v

↓i j+1
1 6= v

↓i j+1
2 holds, or

equivalently, that there exists a variable z ∈ Ini j+1 such that v
↓i j+1↓z
1 6= v

↓i j+1↓z
2 .

Now by definition of weak-informedness Ini j ∪Outi j ⊆ Ini j+1 , that is, the vari-

able z read by agent i j+1, is read or written on by agent i j. Therefore it

follows from the construction of the game graph G, that either a↓i j↓z
1 6= a↓i j↓z

2

or v↓i j↓z
1 6= v↓i j↓z

2 .

• i1, i2, ..ik is an informedness ordering and the witness W is canonical witness:

Since either a
↓i j+1
1 6= a

↓i j+1
2 or v

↓i j+1
1 6= v

↓i j+1
2 hold, it must be the case that either

there is a variable z ∈ Outi j+1 such that v
↓i j+1↓z
1 6= v

↓i j+1↓z
2 or there is a variable

z ∈ Ini j+1 such that v
↓i j+1↓z
1 6= v

↓i j+1↓z
2 .

Now by definition of informedness Ini j ∪Outi j ⊇ Ini j+1 ∪Outi j+1 , that is, the

variable z read or written on by agent i j+1, is read or written on by agent i j. It

follows from the construction of the game graph G, that either a↓i j↓z
1 6= a↓i j↓z

2

or v↓i j↓z
1 6= v↓i j↓z

2 .

Therefore in either of the above cases we have by definition of the game graph G

that a↓i j
1 6= a↓i j

2 or v↓i j
1 6= v↓i j

2 . It follows from the definition of the indistinguishability

relation ≈i that τ1a1v1 6≈i j τ2a2v2, a contradiction to one of our assumptions. This

completes the proof of the first item of the theorem.

2. Let τ1a1v1 ≈i τ2a2v2 for an agent i∈ [n], and assume for a contradiction that a↓ic↓z1 6=

a↓ic↓z2 for some index c ∈ [d] and variable z ∈ OutNc ∩ In[n]\Nc . We consider the

following mutually exclusive and exhaustive cases:

• If i ∈ Nc, then due to ic being the least informed agent in Nc and due to

Proposition 3.1.1, it follows from τ1a1v1 ≈i τ2a2v2 that τ1a1v1 ≈ic τ2a2v2.

Now due to the definition of ≈ic , it must be the case that a↓ic1 = a↓ic2 , which

contradicts our assumption that a↓ic↓z1 6= a↓ic↓z2 .

• If i 6∈ Nc, then let Nc′ be a partition with i ∈ Nc′ . Firstly note that since z ∈

OutNc ∩ In[n]\Nc , it is the case that z is a variable written on by ic and read by
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some agent in [n] \Nc. It follows from the definition of (weak-) broadcast

architectures that z is read by every agent in [n]\Nc, and in particular, that z is

read by agent i.

Now since agent i reads different values for z after the actions a1,a2, it follows

from the construction of the game graph G that v↓i↓z1 6= v↓i↓z2 , and therefore,

v↓i1 6= v↓i2 . It now follows from the definition of ≈i that τ1a1v1 6≈i τ2a2v2, a

contradiction to our assumption.

6.2 Factorizing Witnesses

In this section we define the notion of factorization of a witness, and show that canonical

(deterministic) witnesses of the games obtained from (weak) broadcast architectures admit

a factorization into ‘factors’ that are similar to modular witnesses. We also show that these

factors are ‘coupled’ in a way that is favourable to our needs.

For the remainder of this chapter, let us fix a witness S = (S,R,{∼i}i∈[n],{`V},sε) of

the game (G,{γi}i∈[n]). For any subset N ⊆ [n] and state s ∈ S, let [s]N denote the tuple

([s]∼i)i∈N of equivalence classes3, and let V N = ∏
i∈N

Vi and AN = ∏
i∈N

Ai.

N-factor The N-factor of the witness S is given by the ({V N},{Ai}i∈N)-MaLTS S N =

(SN ,RN ,{∼N
i }i∈N ,{`V N}, [sε ]

N) where:

1. SN := {([s]N | s ∈ S}.

2. The transition relation RN ⊆ SN ×AN × SN is such that, ([s1]
N ,aN , [s2]

N) ∈ RN , if

and only if, there exists a transition (s′1,a,s
′
2) ∈ R such that s′1 ∈ [s1]

N , s′2 ∈ [s2]
N and

3Analogous to this, for any history τ ∈ H in the canonical witness W , we denote a tuple ([τ]∼i)i∈N by
[τ]N .

151



a↓i = aN↓i holds for all agents i ∈ N.

3. For any agent i∈N, the equivalence relation∼N
i ⊆ SN×SN is such that [s1]

N ∼N
i [s2]

N ,

if and only if, [s1]
N↓i = [s2]

N↓i.

4. The labellings `V N : SN → V N is defined as follows: for any s ∈ S, we have

`V N ([s]N)↓i := `V (s)↓i for agents i ∈ N.

Here `V N is well-defined due to condition S′.3 satisfies by the witness W .

Factorization and Coupling Relation An N-factorization of the witness S is a tu-

ple ({S Nc}c∈[d],C ), where S Nc is an Nc-factor of S , for each c ∈ [d], and C :=

{([s]Nc)c∈[d] | s ∈ S}. We call C the coupling relation of the N-factorization.

Intuitively, the presence of a tuple ([s1]
N1,([s2]

N2, ...,([sd]
Nd) in the coupling relation indi-

cates that there is some state s ∈ S such that for each c ∈ [d], we have [s]Nc = [sc]
Nc .

We begin by stating an elementary property of the witness S which is an immediate

consequence of the Unique-Type condition satisfied by the witness: for all states s1,s2 ∈ S,

there exists an agent i ∈ [n] such that s1 6∼i s2.

Proposition 6.2.1. For any sequence of equivalence classes [s1]
1, [s2]

2, .., [sn]
n, one for

each agent in [n], |
⋂

i∈[n]
[si]

i| ≤ 1.

It is a simple consequence of the definition of N-factors and Proposition 3.2.1 that, every

witness S is isomorphic to its [n]-factor S [n]. An N-factor of a witness S may now be

seen as a projection of the structure S [n], to the components in N.

While an N-factor of a witness does not retain all the properties of a witness, it preserves

some key properties. We combine these properties in the next definition.

We say that a ({V N},{Ai}i∈N)-MaLTS S N = (SN ,RN ,{∼N
i }i∈N ,{`V N}, [sε ]

N) a witness-

like, if it satisfies the following
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S′.3. ∀[s1]
N , [s2]

N ∈ SN ,∀i ∈ N : [s1]
N ∼N

i [s2]
N implies `V N ([s1]

N)↓i = `V N ([s2]
N)↓i.

S′.4. ∀[s1]
N , [s2]

N ∈ SN ,∃i ∈ N : [s1]
N 6∼N

i [s2]
N .

V.2 ∀i ∈ N,∀([s1]
N ,aN , [s2]

N),([s′1]
N ,a′N , [s′2]

N) ∈ RN : if [s1]
N ∼N

i [τ ′1]
N , then,

[s2]
N∼N

i [s′2]
N , if and only if, `V N ([s2]

N)↓i=`V N ([s′2]
N)↓i and aN↓i = a′N↓i.

Q′.1. for every path [s0]
NaN

1 [s1]
NaN

2 .. and agent i ∈ N, the sequence

γi(`V N ([s0]
N)↓i),γi(`V N ([s1]

N)↓i), .. satisfies the parity condition.

The proof of theorem below follows straightforwardly from the definition of a witness and

its N-factor.

Theorem 6.2.2. For any N ∈ [n], the N-factor of the witness S is witness-like.

Next we show that the canonical witnesses for games obtained from broadcast architectures

admit a factorization into parts that are modular MaLTS’s.

Theorem 6.2.3. Let Ar be a (weak) N-broadcast architecture and let G be a game graph

corresponding to Ar. Then for any c ∈ [d], the Nc-factor W Nc of the (deterministic)

canonical witness W admits a sharp (1,1, |Nc|+1)-decomposition4.

Proof. Consider the Nc-factor W Nc of the witness W , and let i1, i2, .., ik denote (weak-

)informedness order on agents in Nc. Let H Nc =
⋃

i∈Nc

HNc/≈Nc
i .

The proof of this follows along lines similar to those of Theorem 2.4.4. We begin by

showing that (H Nc ,⊆) is a tree-order, that is, /0 6∈H Nc and for any distinct elements t1, t2 ∈

H Nc , either t1 ⊂ t2 or t2 ⊂ t1 or t1∩ t2 = /0. The fact that /0 6∈H Nc is easily seen to be true.

To see the remaining claim, note that by Proposition 3.1.1, [τ]≈i1
⊆ [τ]≈i2

⊆ ..⊆ [τ]≈ik
, for

any history τ in the canonical (deterministic) witness W . It is an easy consequence of this

fact and the definitions of ≈Nc
i1 ,≈

Nc
i2 , ..,≈

Nc
ik that, [[τ]Nc ]≈Nc

i1
⊆ [[τ]Nc]≈Nc

i2
⊆ .. ⊆ [[τ]Nc ]≈Nc

ik
,

for any element [τ]Nc ∈ HNc , in the factor W Nc . The claim follows from this observation.

4Refer to Section 2.2 for the definition of sharp modularization.
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The desired sharp (1,1, |Nc|+ 1)-decomposition of the Nc-factor W Nc can now be con-

structed using arguments similar to those in Theorem 2.4.4.

Next we show a characteristic property of the coupling relation of the N-factorization of

the witness W , informally referred to as the grid property.

Theorem 6.2.4. Let Ar be a (weak) N-broadcast architecture and let G be a game graph

corresponding to Ar. Let ≡ be the sharp final modularization of the canonical witness W ,

and let M≡ = (M≡,R≡,Mε) be the modular transition system associated with ≡. Let C

be the coupling relation of the N-factorization of W .

Then, C =
⋃

M∈M≡
CM , where CM = ∏

c∈[d]

⋃
τ∈dom(M )

[τ]Nc for each M ∈M≡.

Proof. The forward direction C ⊆
⋃

M∈M≡
CM holds, since C := {([τ]Nc)c∈[d] | τ ∈ H}

holds by definition of the coupling relation C .

For the reverse direction, that is, to show C ⊇
⋃

M∈M≡
CM , it suffices to show that CM ⊆ C

holds for any modular-state M . Towards this, consider an arbitrary modular-state M .

We prove the claim CM ⊆ C by induction on the length of the unique modular-path that

begins at Mε and ends at M . Note that since W is a canonical witness, it must be the case

that M≡ is a tree, and such unique modular-path exists between Mε and M .

For the base case, consider the modular-state Mε which contains exactly one history vε .

The fact that ([vε ]
Nc)c∈[d] ∈ C follows from the definition of C , and therefore CMε

⊆ C .

Towards the inductive case, assume that the claim holds true for a modular-state M , that

is, CM ⊆ C , and consider a modular-state M ′ ∈M≡ that has some incoming transition

(M ,R′,M ′) from M . We need to show that CM ′ ⊆ C .

We begin by defining some notation.

• For any history τ ∈ H, let ([τ]Nc)[d] denote the tuple ([τ]Nc)c∈[d].

• For any D⊆ [d], let swapD(([τ1]
Nc)[d],([τ2]

Nc)[d]) denote the operation that takes the
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two tuples ([τ1]
Nc)[d] and ([τ2]

Nc)[d] as input, and returns the tuple (Xc)c∈[d] with

Xc = [τ2]
Nc for each c ∈ D and Xc = [τ1]

Nc for each c ∈ [d]\D.

Returning to our main claim, we argue that following two claims imply CM ′ ⊆ C :

1. For any two histories τ ′1,τ
′
2 ∈ dom(M ′), the set of tuples ∏

c∈[d]
{[τ ′1]Nc, [τ ′2]

Nc} ⊆ C .

2. For any two histories τ ′1,τ
′
2 ∈ dom(M ′) and for every c ∈ [d], the tuple

swap{c}(([τ
′
1]

Nc)[d],([τ
′
2]

Nc)[d]) belongs to C .

Observe that if the first claim were true, then our desired result follows. To see this, observe

that if ∏
c∈[d]
{[τ ′1]Nc, [τ ′2]

Nc} ⊆ C for any two histories τ ′1,τ
′
2 ∈ dom(M ′), then it follows that

∏
c∈[d]
{[τ ′]Nc | τ ′ ∈ dom(M ′)} ⊆ C , or equivalently, that CM ⊆ C .

Next we argue that the second claim implies the first claim. Towards this assume that the

second claim is true and observe the following expressions.

• firstly observe that ∏
c∈[d]
{[τ ′1]Nc , [τ ′2]

Nc}=
⋃

D⊆[d]
swapD([τ

′
1]

Nc)[d],([τ
′
2]

Nc)[d]), and

• secondly, for any D⊆ [d] with D = {c1,c2, ..,ck}, we have the following:

swapD
(
([τ ′1]

Nc)[d],([τ
′
2]

Nc)[d])
)

=

swap{c1}

(
...swap{ck−1}

(
swap{ck}

(
([τ ′1]

Nc)[d],([τ
′
2]

Nc)[d]

)
,([τ ′2]

Nc)[d]

)
, ...,([τ ′2]

Nc)[d]

)
.

The correctness of both the above expressions follows straightforwardly from the definition

of swapD. From our assumption about the correctness of the second claim, one can argue

inductively, starting at the innermost parentheses in the second expression above, that

each operation swap{c j} returns a tuple in the coupling relation C . It follows immediately

that swapD
(
([τ ′1]

Nc)[d],([τ
′
2]

Nc)[d])
)

is a tuple in the coupling relation C . Combining this

observation with the first expression, we obtain that the tuples in ∏
c∈[d]
{[τ ′1]Nc, [τ ′2]

Nc} belong

to C , which is the first claim.
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We can conclude form the above discussion that to show our main claim, it suffices to

show that for any two histories τ ′1,τ
′
2 ∈ dom(M ′) and an arbitrary agent, say 1, the tuple

swap{1}(([τ
′
1]

Nc)[d],([τ
′
2]

Nc)[d]), or equivalently, the tuple ([τ ′2]
N1, [τ ′1]

N2, .., [τ ′1]
Nd) belongs

to the coupling relation C . By definition of the coupling relation C , this is equivalent

to showing that there exists a history τ ′ ∈ dom(M ′), such that ([τ ′]N1, [τ ′]N2 , .., [τ ′]Nd) =

([τ ′2]
N1, [τ ′1]

N2, .., [τ ′1]
Nd). In the remaining part of this proof, we show that such a history τ ′

exists.

Towards this, observe that since the modular-state M ′ has some incoming transition

(M ,R′,M ′) from M , it must be the case that there exist histories τ1,τ2 ∈ dom(M ) such

that τ ′1 = τ1a1v1 and τ ′2 = τ2a2v2 for some a1,a2 ∈ A and v1,v2 ∈V . From the inductive as-

sumption CM ⊆C , it follows that the tuples ([τ1]
N1, [τ1]

N2 , .., [τ1]
Nd), ([τ2]

N1, [τ2]
N2, .., [τ2]

Nd)

and ([τ2]
N1, [τ1]

N2 , .., [τ1]
Nd) belong to the coupling relation C . It follows from the defini-

tion of the coupling relation C , that there exists a history τ such that ([τ]N1, [τ]N2, .., [τ]Nd)=

([τ2]
N1 , [τ1]

N2, .., [τ1]
Nd), and moreover, from Proposition 3.2.1 such a history τ is unique.

We claim next that the desired history τ ′ is the history τav that satisfies the following:

• a↓i = a↓i2 and v↓i = v↓i2 for every agent i ∈ N1, and

• a↓i = a↓i1 and v↓i = v↓i1 for every agent i ∈ [n]\N1.

It is easy to see that if such a history τ ′ belongs to the witness W , then from the def-

inition of τ ′ and ≈i we have the following: firstly, τav ≈i τa2v2 for all i ∈ N1; and

secondly τav ≈i τa1v1 for every index c ∈ [d] \ {1} and agent i ∈ Nc. It follows that

([τ ′]N1, [τ ′]N2, .., [τ ′]Nd) = ([τ ′2]
N1, [τ ′1]

N2 , .., [τ ′1]
Nd). Moreover, since τa2v2 is a state in

dom(M ′), and since τav≈i τa2v2 for some i ∈ N1, it follows from the definition of a final

modularization that τav≡ τa2v2, and therefore τav ∈ dom(M ′).

And so it suffices to show that the history τ ′ = τav belongs to the witness W . We argue

this in two parts. Before we begin, note that by construction of the canonical witness W ,

the MaTS underlying W is identical to the MaTS underlying the extended strategy tree
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of the joint strategy σ , and therefore by Proposition ?? the MaLTS W is uniform and

strategic. We will use this fact in the arguments to follows.

• Firstly we show that there exists an outgoing a-transition at τ such that a↓i = a↓i2 for

every agent i ∈ N1, and a↓i = a↓i1 for every agent i ∈ [n]\N1.

To see this, observe that since [τ]N1 = [τ2]
N1 and [τ]Nc = [τ1]

Nc for all c ∈ [d]\{1}, it

follows that τ ≈i τ2 for all agents i ∈ N1, and that τ ′ ≈i τ ′2 for all agents i ∈ [n]\N1.

Now since the histories τ1,τ2 have prolongations τ1a1v1,τ2a2v2 respectively, it

follows from the witness W being a uniform MaLTS, that there exists some joint

action a′ ∈ A and an outgoing a′-transition at τ such that a′↓i = a↓i2 for every agent

i ∈ N1 and a′↓i = a↓i1 for every agent i ∈ [n] \N1. The joint action a is exactly the

joint action a′ whose existence is argued above.

• Secondly, we show that there exists a transition (τ,a,τav) in the witness W , with

the joint action a ∈ A satisfying the above properties, and v such that v↓i = v↓i2 for

every agent i ∈ N1 and v↓i = v↓i1 for every agent i ∈ [n]\N1.

Towards this, firstly note that since there exists an outgoing a-transition at τ , it

follows from the witness W being a strategic MaLTS that, the set of histories

H ′ = {τav′ | v′ ∈ end(τ)Ea} also belongs to the witness W . Note that the set of

states end(τ)Ea is determined only by the action a, and the following is a simple

consequence of the construction of the game-graph G that highlights this remark:

– for all z∈Out[n] and v′,v′′ ∈ end(τ)Ea, if z∈ Ini∩Out j for some i, j ∈ [n], then

v′↓i↓z = v′′↓i↓z = a↓ j↓z.

– for all z ∈ Out0, if z ∈ Ini for an agent i ∈ [n] and there is a state v′ ∈ end(τ)Ea

with v′↓i↓z = [z = 0] (or [z = 1]), then there exists a state v′′ ∈ end(τ)Ea such

that v′′↓i↓z = [z = 1] (or [z = 0]).

In view of the above remark, to show the main claim of this part, it suffices to show

that for an arbitrary state v′ ∈ end(τ)Ea and variable z ∈ Ini∩Out[n] for some i ∈ [n],

157



if i ∈ N1, then v↓i↓z = v↓i↓z2 , otherwise (that is, if i ∈ [n]\N1) we have v↓i↓z = v↓i↓z1 .

We argue this in the following two steps:

– By definition of the edge relation E of the game graph G, it follows that for

every pair of agents i, j ∈ N1 and variable z ∈ Ini∩Out j, we have v′↓i↓z = a↓ j↓z.

Similarly, for the state v2 ∈ end(τ2)Ea2 , we have that v↓i↓z2 = a↓ j↓z
2 for every

pair of agents i, j ∈ N1 and variable z ∈ Ini∩Out j. Since by construction of

a, we have a↓ j = a↓ j
2 for all j ∈ N1, it follows that v′↓i↓z = v↓i↓z2 for all agents

i, j ∈ N1 and variable z ∈ Ini∩Out j.

Symmetrically, we can argue that v′↓i↓z = v↓i↓z1 for all agents i, j ∈ [n]\N1 and

variable z ∈ Ini∩Out j.

– Next we argue that

∗ for every agent i ∈ N1, agent j ∈ [n]\N1 and variable z ∈ Ini∩Out j, we

have v′↓i↓z = v↓i↓z2 .

∗ for every agent i ∈ [n]\N1, agent j ∈ N1 and variable z ∈ Ini∩Out j, we

have v′↓i↓z = v↓i↓z1 .

Firstly, consider the first case above and note that since Ar is a (weak) N-

broadcast architecture, we know that every variable z ∈ InN1 ∩Out[n]\N1 is

written on by a least informed agent ic of some partition Nc ∈N\{N1}. Sym-

metrically, every variable z ∈ In[n]\N1 ∩OutN1 is written on by the least in-

formed agent i1 of the partition N1. Therefore in both the cases, the variable

z ∈ Ini∩Out j being referred to, satisfies z ∈ Outic for some partition Nc ∈N.

Next we claim that for any least informed agent ic of any partition Nc ∈N, and

variable z ∈OutNc ∩ In[n]\Nc , we have a↓ic↓z1 = a↓ic↓z2 = a↓ic↓z. Put in words, this

says that for each partition Nc, a variable z written on by the least informed

agent ic ∈ Nc and read by some agent outside Nc, the agent ic assigns the same

value to the variable z in both the actions a1 and a2. It is not difficult to see that

if this were true, then the claim made in this part follows.
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To see the above claim, observe that since τ ′1,τ
′
2 belong to the same modular-

state M ′, it follows from the definition of the final modularization ≡ that

there exists a sequence ρ1a′1v′1,ρ2a′2v′2, ..,ρka′kv′k of histories in dom(M ′) such

that: (1) the sequence begins at τ ′1 and ends at τ ′2, and (2) for every index

1≤ j < k, there exists an agent i such that ρ ja′jv
′
j ≈i ρ j+1a′j+1v′j+1. It follows

from this and the broadcast property shown in Proposition 3.1.1 that for every

index 1 ≤ j < k, index c ∈ [d] and variable z ∈ OutNc ∩ In[n]\Nc , we have

a′↓ic↓zj = a′↓ic↓zj+1 . Since ρ1a′1v′1,ρka′kv′k are the histories τ ′1 and τ ′2 respectively, it

follows from the definition of τ ′1,τ
′
2 that a↓ic↓z1 = a↓ic↓z2 . Furthermore, we have

by definition of a that a↓ic↓z1 = a↓ic↓z2 = a↓ic↓z.

This completes the proof of the theorem.

6.3 Retraction of Factorizable Witnesses

Having described the notion of factorization of a witness, we show in this section that

the retraction of a witness may be constructed in terms of the retractions of its factors.

The usefulness of this idea should be clear for the particular kind of canonical witness W

considered here, since each Nc-factor of the canonical witness W is a modular witness, and

we know that modular witnesses admit good retractions5. We note here that to construct

good retractions for a witness, it is not sufficient to have good retractions for its factors; the

way in which these factors are ‘coupled’ also plays an important role. To counter this, we

give a ‘compatibility’ condition on the retractions of the various factors, so that retractions

for a witness may now be constructed from the retractions of its factors.

We begin with some notations.

• For a function g : S→ S on the witness S , we denote the g-retract of S by g(S ) =

5As in the previous chapter, the informal term good retraction refers to retractions that transform a
MaLTS to a bounded-size MaLTS.
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(Sg,Rg,{∼g
i },{`

g
V},g(sε)).

• For any N-factor S N = (SN ,RN ,{∼N
i }i∈N ,{`V N}, [sε ]

N) of the witness S and func-

tion gN : SN→ SN , we denote the gN-retract of S N by gN(S N)= (SN,gN
,RN,gN

,{∼N,gN

i

}i∈N ,{`gN

V N},gN([sε ]
N)).

Next we define the notion of retraction of ({V N},{Ai}i∈N)-MaLTS’s, which is similar to

the definition of retraction of ({V},{Ai}i∈[n])-MaLTS’s defined in Chapter 4.

A function gN : SN → SN is called a retraction of an N-factor S N , if the following hold:

R′.1 For any state [s]N ∈ SN,gN
we have `V N ([s]N) = `V N (gN([s]N)),

R.2 for any agent i∈N and transitions ([s1]
N ,aN , [s2]

N),([s′1]
N ,a′N , [s′2]

N) ∈ RN,gN
with

[s1]
N , [s′1]

N ∈ SN,gN
, if [s1]

N ∼N
i [s′1]

N , then,

[s2]
N∼N

i [s′2]
N , if and only if, `V N ([s2]

N)↓i=`V N ([s′2]
N)↓i and aN↓i = a′N↓i,

R′.3 For any g-path [s0]
NaN

1 [s1]
NaN

2 .. and agent i ∈ N, the priority sequence

γi(`V N ([s0]
N)↓i),γi(`V N ([s1]

N)↓i), .. satisfies the parity condition.

The crucial property of a retraction of an N-factor S N is that it preserves the property of

the retract being witness-like. This can be argued along lines similar to those of Retraction

Theorem ??, and so we only state the theorem here for reference.

Theorem 6.3.1. For any N ⊆ [n], if gN is a retraction of an N-factor S N of the witness

S , the gN-retract gN(S N) is witness-like.

Next we give a criterion for when the retractions on the Nc-factors of witnesses may be

combined to give a retraction for the witness W .

Compatibility of Retractions Given a N-factorization ({S Nc}c∈[d],C ) of the witness

S , and an retraction gNc of the Nc-factor S Nc for each c∈ [d], we say that ({S Nc}c∈[d],C )

is compatible with a tuple of retractions (gNc)c∈[d], if

160



{(gNc([s]Nc))c∈[d] | s ∈ S} ⊆ C .

The notion of compatibility can be understood intuitively as follows: For each Nc-factor

S Nc , if a retraction gNc for S Nc maps the element [s]Nc to the element gNc([s]Nc), then the

resulting tuple (gNc([s]Nc))c∈[d] must ‘correspond’ to some state s′ ∈ S. This requirement

is ensured by insisting that (gNc([s]Nc))c∈[d] ∈ C is true.

Next we show that compatibility is sufficient for obtaining retractions for W .

Theorem 6.3.2. Let ({S Nc}c∈[d],C ) be an N-factorization of the witness S and let

g̃ = (gNc)c∈[d] be a tuple such that, for each c ∈ [d], gNc is a retraction of S Nc .

If ({S Nc}c∈[d],C ) is compatible with g̃, then there is a retraction g of S .

Proof. Let the N-factorization ({S Nc}c∈[d],C ) of the witness S be compatible with the

tuple of retractions g̃.

Let g : S→ S be defined as follows: for every state s ∈ S, g(s) is the unique history s′ that

satisfies [s′]Nc = gNc([s]Nc) for each c ∈ [d]. We claim that the desired retraction for the

witness S is given by g.

Towards our main claim, we show that the function g is well-defined, that is, for each

state s ∈ S, there exists a unique state s′ that satisfies [s′]Nc = gNc([s]Nc) for each c ∈ [d].

Towards this, consider a state s ∈ S, and the associated tuple ([s]Nc)c∈[d] ∈ C . Now since

({S Nc}c∈[d],C ) is compatible with g̃, it follows that the tuple (gNc([τ]Nc))c∈[d] belongs

to C . Again from the definition of C , it follows that there exists a state s′ such that

(gNc([s]Nc))c∈[d] = ([s′]Nc)c∈[d].

In order to see that such a history s′ is unique, consider for a contradiction, distinct states

s1,s2 ∈ S such that, [s1]
i = gNc([s]Nc)↓i and [s2]

i = gNc([s]Nc)↓i hold for all c∈ [d] and i∈Nc.

Now consider the following equalities:

{s1}=
⋂

i∈[n]
[s1]

i =
⋂

c∈[d]
and

i∈Nc

[s1]
Nc↓i =

⋂
c∈[d]
and

i∈Nc

gNc([s]Nc)↓i =
⋂

c∈[d]
and

i∈Nc

[s2]
Nc↓i =

⋂
i∈[n]

[s2]
i = {s2}.
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Here the first and last equalities follow from Proposition 3.2.1, the second and fifth

equalities are follow from N being a partitioning of [n], and the remaining equalities follow

from our assumption. The desired contradiction follows.

In order to show that g is a retraction, we show next that g satisfies the two basic constraints

R′.1,R.2 and parity constraint R′.3 for being a retraction.

• R′.1: Firstly, we need to show that for all states s ∈ S, `V (s) = `V (g(s)), or equiva-

lently that, `V (s)↓i = `V (g(s))↓i for all i ∈ [n].

Towards this, consider a state s ∈ S and observe that for each index c ∈ [d], we know

that `V Nc ([s]Nc) = `V Nc (gNc([s]Nc)) holds by definition of Nc-retraction gNc . Now

consider an index c ∈ [d] , and the following equivalences:

`V Nc ([s]Nc) = `V Nc (gNc([s]Nc))

⇔ `V Nc ([s]Nc) = `V Nc ([g(s)]Nc) (By definition of g)

⇔ `V (s)↓i = `V (g(s))↓i for all i ∈ Nc (By definition of `V Nc )

• R.2: Next we need to show that for any agent i∈ [n] and transitions (s1,a,s2),(s′1,a
′,s′2)∈

Rg, if s1 ≈i s2, then s′1 ∼i s′2, if and only if, a↓i = a′↓i and `V (s′1)
↓i = `V (s′2)

↓i.

Towards this, consider an index c ∈ [d] and agent i ∈ Nc, and consider transitions

(s1,a,s2),(s′1,a
′,s′2) ∈ Rg such that s1 ∼i s2. Let aNc,a′Nc ∈ ANc be such that aNc↓i =

a↓i,a′Nc↓i = a′↓i for all i ∈ Nc.

We begin with the following lemma.

Lemma 6.3.3. If (s1,a,s2) ∈ Rg, then for any c ∈ [d], we have ([s1]
Nc ,aNc , [s2]

Nc) ∈

RNc,gNc with aNc↓i = a↓i for all i ∈ Nc.

Proof. To see this, firstly observe that by definition of Rg, there exists a s ∈ H such

that (s1,a,s) ∈ M and g(s) = s2. Now if (s1,a,s) ∈ R, then it follows from the

definition of the Nc-factor S Nc that there exist a transition ([s1]
Nc,aNc , [s]Nc) ∈ RNc .

From the definition of g, it also follows that gNc([s]Nc) = [g(s)]Nc . Now since
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([s]Nc ,aNc, [s]Nc) ∈ RNc and gNc([s]Nc) = [g(s)]Nc = [s2]
Nc and since RNc,gNc is a ‘com-

position’ of the relation RNc with the Nc-retraction gNc , it follows from the definition

of RNc,gNc that ([s1]
Nc ,aNc, [s2]

Nc) ∈ RNc,gNc .

Since (s1,a,s2),(s′1,a
′,s′2)∈Mg, it follows from the above claim that there exist tran-

sitions ([s1]
Nc,aNc , [s2]

Nc),([s′1]
Nc,a′Nc, [s′2]

Nc) ∈ RNc,gNc . From the basic constraint

R.2 satisfied by the retraction gNc of the Nc-factor, it follows that if [s1]
Nc ≈Nc

i [τ2]
Nc ,

then [τ ′1]
Nc ≈Nc

i [τ ′2]
Nc , if and only if, `V Nc ([τ1]

Nc)↓i = `V Nc ([τ2]
Nc)↓i and aNc↓i = a′Nc↓i.

The desired claim follows from this, since the predicates s1 ∼i s2 and s′1 ∼i s′2 are

equivalent to [s1]
Nc ∼Nc

i [s2]
Nc and [s′1]

Nc ∼Nc
i [τ ′2]

Nc respectively.

• R′.3: Lastly, we need to show that for any g-path s0a1s1a2s2... and agent i ∈ [n], the

priority sequence γi(`V (s0)
↓i),γi(`V (s1)

↓i),γi(`V (s2)
↓i), .. satisfies the parity condi-

tion.

Now consider a g-path s0a1s1a2s2... in S , a partition Nc ∈N and an agent i ∈ [n].

Now note that by the definition of the g-path s0a1s1a2s2..., it is the case that

(τk,ak+1,τk+1)∈Mg for all k≥ 0. It follows from this and lemma 3.3.3 that there ex-

ists a gNc-path [τ0]
NcaNc

1 [τ1]
NCaNc

2 [τ2]
Nc... in the Nc-factor W Nc , for some aNc

1 ,aNc
2 , ...

Now it follows from the definition of the retraction gNc that the priority sequence

γi(`V Nc ([s0]
Nc)↓i),γi(`V Nc ([s1]

Nc)↓i),γi(`V Nc ([s2]
Nc)↓i)... satisfies the parity condition.

By definition of `V Nc , we have `V Nc ([s]Nc)↓i = `V (s)↓i for all s ∈ S, it follows that

γi(`V (s0)
↓i),γi(`V (s1)

↓i),γi(`V (τ2)
↓i), .. satisfies the parity condition.

This completes the proof of the theorem.

Next theorem gives a certain relationship between retraction of a witness, retraction of its

factors and modularizations of witnesses and its factors. We begin with some terminology.

Consider a N-factorization ({S Nc}c∈[d],C ) of the witness S . We say that
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• the tuple of retractions (gNc)c∈[d] is a N-factorization of the retraction g of the

witness S , if for each c ∈ [d], gNc is a retraction of the Nc-factor S Nc such that for

all s ∈ S, gNc([s]Nc) = [g(s)]Nc .

• the tuple of modularizations (≡c)c∈[d] is a N-factorization of the modularization ≡

of the witness S , if for each c ∈ [d], ≡c is a modularization of the Nc-factor S Nc

such that for any states s1,s2 ∈ S, [s1]
Nc ≡c [s2]

Nc , if and only if, s1 ≡ s2.

Theorem 6.3.4. Let ({S Nc}c∈[d],CN) be the N-factorization of the witness S and let the

tuples (gNc)c∈[d], (≡c)c∈[d] be the N-factorization of the retraction g and modularization

≡ of the witness S .

1. If for each c ∈ [d], the modularization ≡c is wc-wide, then ≡ is w1.w2...wd-wide.

2. If for each c∈ [d], the equivalence relation≡c,gNc
=≡c ∩ SNc,gNc×SNc,gNc is a wc-wide

modularization of the gNc-retract gNc(S Nc), then ≡g=≡ ∩ Sg×Sg is a w1.w2...wd-

wide modularization of the g-retract g(S ).

Proof. Towards the first item, assume that the modularization ≡c is wc-wide, for each

c ∈ [d], that is, each equivalence class in SNc/≡c is of size at most wc. Now consider an

arbitrary equivalence class S′ ∈ S/≡. We need to show that S′ has size at most w1.w2...wd .

To see this, firstly consider the set S′Nc := {[s]Nc | s ∈ S′}, for each c ∈ [d]. By definition

of ≡c, it follows that S′Nc ∈ SNc/ ≡c holds for each c ∈ [d], and therefore by our above

assumption about ≡c being wc-wide, it follows that |S′Nc | ≤ wc. Secondly note that by

the construction of each S′Nc , it follows that {([s]Nc)c∈[d] | s ∈ S′} ⊆ S′N1
× S′N2

× ..×

S′Nd
. Moreover due to Proposition 3.2.1, no two states s1,s2 ∈ S′ satisfy ([s1]

Nc)c∈[d] =

([s2]
Nc)c∈[d]. It follows from these observations that |S′| ≤ w1.w2...wd .

Towards the second item, for each Nc ∈N, let S g,Nc denote the Nc-factor of g(S ) and

let Sg,Nc denote its domain. Now observe that for each c ∈ [d], there is a one-one corre-

spondence between an element of S g,Nc and those of gNc(S Nc) which can be described
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as follows: Sg,Nc := {[s]Nc ∩Sg | [s]Nc ∈ SNc,gNc}. This can be proved by an easy induction

of the length of the smallest gNc-path that reaches a state SNc,gNc .

Now let (≡g,Nc)c∈[d] be a N-factorization of the modularization ≡g. By the one-one

correspondence above and the definition of N-factorization of a modularization, it follows

for each c ∈ [d], that the modularization ≡g,Nc is wc-wide due to the modularization ≡c,gNc

being wc-wide. Now from a simple application of the first item of the theorem, it follows

that ≡g is a w1.w2...wd-wide modularization of the g-retract g(S ).

As mentioned in the beginning of this section, the construction of the retraction for the

witness W proceeds by first constructing for each Nc ∈N, a good retraction of its Nc-factor

(which we know to be modular MaLTS’s), and then combining the retractions of the various

factors to obtain the retraction for the witness W . The above theorems give us enough

tools to show the second part of the mentioned plan. Next we state some results towards

the first part of the plan, which is to construct good retractions for the modular N-factors

of witnesses

6.3.1 Retractions of Modular Witnesses and N-Factors

In order to distinguish the notion of witness in Chapter 5 (that is, witness for global winning

conditions) from the notion of witness here (that is, witness for local winning conditions),

we use the term global witness for the former and local witness for the latter.

Much like the case of modular global witnesses in Chapter 5, we can also construct good

retractions for modular local witnesses and modular N-factors of local witnesses. We point

out only the changes needed in the arguments presented in Chapter 5 because of the witness

being a local witness. Next we present the main theorem regarding good retractions for

local witnesses.

165



Theorem 6.3.5.

1. If S is w-simple local witness, then there exist a retraction g such that the g-retract

g(S ) has a domain of size 2O(|N|.w2 log(|V |.|P|)).

2. If the N-factor S N of a local witness S admits a (w,m,d)-decomposition ≡1

, . . . ,≡d , then there exists a retraction gN such that, the modularization ≡gN

d =≡d

∩SN,gN × SN,gN
of the gN-retract gN(S N) is wd-wide, where wd is recursively de-

fined as follows:

wd :=


2O(|N|.w2

d−1 log(m.|V |.|P|), if d > 1

w, if d = 1.

Note that since ≡d is a final modularization of S N , it follows that ≡gN

d is a final

modularization of gN(S N) and therefore gN(S N) is a wd-simple witness.

The items 1 and 2 of the above theorem are analogues of Theorems 2.4.3 and 2.3.10,

modified to the case local witnesses and N-factors of local witnesses respectively. Below

we give an outline of the correctness of the analogue of Theorem 2.4.3, since the second

claim follows from similar arguments.

To begin with, firstly observe that in the theorem 2.4.3, the only properties of a global

witness that are being used in their proofs are the Indistinguishability condition and the

Q-Parity condition. While local witnesses satisfy the Indistinguishability condition, they

satisfy the γ-Parity condition instead of the Q-Parity condition. The only crucial depen-

dence of the particular formulation of the Q-Parity condition is for defining the modular

progress measure.

Recall that modular progress measures were constructed to maintain the Q-Parity condition

on the retracts of global witnesses. We can use a similar notion to maintain the γi-Parity

condition on the retracts of local witnesses. The crucial modifications for this is the

deterministic automaton AL used in the definition of modular progress measure. Previously,
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the role of AL was to provide a labelling of the modular transition system so that all paths

‘contained in’ a modular path satisfy the Q-Parity condition. Its role now is to ensure that

paths ‘contained in’ a modular path satisfy the γi-Parity condition. The construction of this

is similar to that in Proposition 2.3.8, with the exception that now the automaton A ′ in the

proof of Proposition 2.3.8 (the one that accepts the complement of the language L) first

guesses the an agent i ∈ [n] and then checks if some ‘thread’ violates the parity condition

due to the labelling γi. For this idea to follow through, the notion of ‘thread’ needs to be

modified appropriately to record each of the priorities given by priority labellings {γi}i∈[n].

Barring this, the remaining construction of the ≡-modular progress measure and all the

arguments proceed as before.

6.3.2 Retraction for Games of Broadcast Architectures

We are now in a position to show that canonical (deterministic) witnesses that corresponds

to (weak) broadcast architectures admit good retractions.

We begin with some assumptions. Let Ar be a (weak) N-broadcast architecture and let

G be the game graph corresponding to Ar. Recall that W is a witness for game (G,{γi}i∈[n]).

Consider a sharp final modularization≡ of the witness W , the N-factorization ({W Nc}c∈[d],C )

of the witness W and the N-factorization (≡c)c∈[d] of the modularization ≡.

The construction of the desired retraction g of W proceeds in the following steps:

Modularizing the Factors For each c ∈ [d], consider the (1,1, |Nc|+2)-decomposition

≡c
0⊆≡c

1⊆ .. ⊆≡c
|Nc|⊆≡

c of the Nc-factor W Nc , where ≡c
0⊆≡c

1⊆ .. ⊆≡c
|Nc| is a sharp

(1,1, |Nc|+1)-decomposition of the Nc-factor W Nc .

To see that such a decomposition of W exists, firstly note that by Theorem 3.2.3, there

exists a sharp (1,1, |Nc|+1)-decomposition of W Nc . Secondly, for any histories τ1,τ2 ∈H,

if [τ1]
Nc ≈Nc

i [τ2]
Nc holds for an agent i ∈ Nc, then τ1 ≈i τ2 holds as well. Now since ≡
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is a final modularization, it follows that ≈i⊆≡ for any i ∈ Nc, and therefore ≡c is final

modularization of W Nc . Since ≡c
Nc

is a sharp final modularization, it follows that ≡c
Nc
⊆≡c.

Retractions of the Modular Factors For each c ∈ [d], consider a retraction gNc of W Nc

such that gNc(W Nc) is a wnc-simple MaLTS such that gNc([τ]Nc)≡c [τ]Nc for all [τ]Nc ∈HNc ,

nc = |Nc|+2 and the number wnc is recursively defined as follows:

wnc :=


2O(nc.w2

nc−1 log(m.|V |.|P|), if d > 1

1, if d = 1.
.

By item 2 of Theorem 3.3.5 such a retraction gNc exists for each Nc-factor W Nc .

Retraction of Factors to Retraction of Witness Consider the retraction g of the witness

W such that the witness g(W ) is a wn1.wn2...wnd -simple witness.

We argue that the existence of such a retraction g in two steps. First we argue the following:

Lemma 6.3.6. (gNc)c∈[d] is compatible with the coupling relation C .

Proof. To see this, consider an arbitrary history τ ∈ H, and let τc ∈ H be a history such

that [τc]
Nc = gNc([τ]Nc) for each index c ∈ [d]. To show that (gNc)c∈[d] is compatible with

the coupling relation C , it suffices to show that ([τc]
Nc)c∈[d] ∈ C .

To see this, consider an index c ∈ [d] and note that by definition of gNc it follows that

[τ]Nc ≡c [τc]
Nc . Moreover, by definition of ≡c it follows that τ ≡ τc. Therefore we have

that τ ≡ τ1 ≡ ...≡ τc.

Now consider the unique ≡-modular state M that contains the histories τ,τ1, ...,τc. By

Theorem 3.2.4 we know that ∏
c∈[d]

⋃
τ∈dom(M )

[τ]Nc ⊆ C . Therefore, it follows that the tuples

([τ]Nc)c∈[d] and ([τc]
Nc)c∈[d] belong to the coupling relation C .

Now by Theorem 3.3.2 it follows that there exists a retraction g for the witness W .

Moreover, it is also easy to verify that the retraction g constructed in the proof of Theorem
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3.3.2 admits a N-factorization into (gNc)c∈[d].

Next, since each gNc(W Nc) is a wnc-simple MaLTS, it follows by Theorem 3.3.4 that the

g-retract g(W ) is wn1.wn2...wnd -simple witness.

Retraction of w-Simple Witness into Bounded Witness Finally, by item 1 of Theorem

3.3.5 it follows that there exists a retraction g′ of the witness g(W ) such that g′(g(W )) has

a domain of size 2O(|N|.w2 log(|V |.|P|)) where w = wn1 .wn2...wnd .

This shows that any canonical witness W of the game (G,{γi}i∈[n]), where G is a game

corresponding to a broadcast architecture, admits a retraction into a bounded-size witness.

In view of the above observations, the Solvability Theorem ?? on games and the retraction

criterion mentioned in Chapter 4, we have the following result:

Theorem 6.3.7. The (deterministic) distributed synthesis problem for (weak-) broadcast

architecture with local specifications is solvable.
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Chapter 7

Concluding Remarks

We have analyzed the distributed synthesis problem by means of a winning strategy

problem on imperfect information games. The common feature in the solutions of all

the games studied here is that the solution depends entirely on finding nice information

patterns in the game tree or the strategy tree. In Chapter 3 we saw that in the case of games

with recurring common knowledge of state, the particular information structure generated

by the game may be seen as a repeated games where each round consists of playing a

bounded duration imperfect information game, and we use this fact to solve the game.

To further explore the connection between information structure of the game and its

solvablity, in Chapter 4 we devise a methodology called the retraction approach, that

considers the information structure of the game as a first-class object. Essentially, we

define witnesses to the existence of a winning strategy where the witness incorporates

in it the information structure of the game. Furthermore, we hypothesise the reason for

solvability of games as being due to the existence of small witnesses. For obtaining small

witnesses, we set up a generic operation called retraction and identify two constraints,

called basic and priority constraints, as the key properties required for the existence of a

retraction. In the Chapters 5 and 6 we use the methodology developed here to show the

solvability of various games.
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In Chapter 5 we use the retraction approach to solve the distributed synthesis problem for

architectures with (weak) informedness ordering, by first showing that games correspond-

ing to these architectures have no (uniform-distributed) fork-triples, and then showing

that witnesses of such games belong to the class of modular witnesses and admit good

retractions. The key tools introduced here are that of modularization of a witness and

modular progress measure.

In Chapter 6 we use the retraction approach to solve the distributed synthesis problem

for various classes of broadcast architectures. Here we attribute two properties, namely

broadcast property and grid property, to the games corresponding to broadcast architectures

and show that witnesses of such games admit good retractions. The key technique used

here is that of factorizing the witness, constructing retractions on the factors and then

combining the retractions of the factors to obtain a retraction of the witness.

As stated in the introduction, our ambition is to find a general methodology that provides a

fundamental point of view for the winning strategy problem. Looking back at the work

here, we believe that the solutions using the retraction approach offers many qualities that

we look for, but they also have certain downsides.

On the upside the retraction approach is robust: for example, the deterministic and non-

deterministic winning strategy problem could be solved in a single go. Also the method

allows analysis for any slight change in the problem statement: for example, the case

of games with multiple-start state, modelling delays in communication etc. Another

aspect were we are hopeful of the usefulness of the retraction approach, is when the

communication between the agents is by means of mechanisms other than through shared

variables..

On the downside, the application of the retraction approach in the two cases studied

here, require us to introduce complex terminology and many new objects to solve the

problem. Another aspect of the two cases studied here is that many arguments and ideas

were repeated, but without a clear way to unify them. We believe that this is because the
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language that we chose to describe the ideas needs enriching. For example, it seems likely

that the notions of modularization and factorization, both of which identify sub-structures

of a witness, can be better described by other uniform means.

In spite of these downsides, we believe that solutions by means of retraction approach is a

step in the right direction, and that explicitly representing the informational changes in a

distributed system will be beneficial in the long run. In view of this, we believe that the

immediate priority is to find a language that is well-suited to describe analysis by means of

the retraction approach.
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