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ABSTRACT

In this thesis, we study gauge theories with N = 2 supersymmetry in four dimen-

sions. The low energy effective action of these theories on their Coulomb branch

is described by a holomorphic function called the prepotential. In the first half,

we study linear conformal quiver theories with gauge group SU(2). These theories

have an SU(2) gauge group at each node of the quiver, and matter arranged in

the fundamental and the bi-fundamental representations, such that at each node

the β-function vanishes. To compute the prepotential for these theories, we follow

three different approaches. These are (i) the classic Seiberg-Witten approach, in

which we consider an M-theory construction of the Seiberg-Witten curve and the

associated differential, (ii) equivariant localization as developed by Nekrasov, and

(iii) the 2d/4d correspondence of the four dimensional gauge theory with the two

dimensional Liouville conformal field theory, as put forward by Alday, Gaiotto, and

Tachikawa. Matching the prepotential, we find out the precise map between the

various parameters that appear in the three descriptions.

In the latter half of the thesis, we study surface operators in the context of N =

2? theories with gauge group SU(N). These theories describe the dynamics of a

vector multiplet, and a massive hypermultiplet in the adjoint representation of the

gauge group. Surface operators are non-local operators that have support on a two

dimensional sub-manifold of the four dimensional spacetime. They are defined by the

singularities they induce in the four-dimensional gauge fields, or can be characterized

by the two-dimensional theory they support on their world-volume. The infrared

dynamics on the world-volume of the two-dimensional surface operator is described

by a holomorphic function called the twisted superpotential. Using localization

techniques, we obtain the instanton partition function, and thereby the twisted
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superpotential of these theories. This involves taking a suitable orbifold of the

original action without the surface operator. Imposing constraints from S-duality,

we obtain a modular anomaly equation for the coefficients that appear in the mass

expansion of the twisted superpotential. Solving the modular anomaly equation at

each order, and comparing with the results obtained from localization, we resum

the twisted superpotential in a mass series, whose coefficient functions depend on

(quasi-) modular forms and elliptic functions of the bare coupling constant and the

continuous (complex) parameters that describe the surface operator. This gives us

the entire tail of instanton corrections, at each order in the mass expansion. We

further show that our results for monodromy defects in the four-dimensional theory,

match the effective twisted superpotential that describes the infrared properties of

certain two-dimensional sigma models coupled to N = 2? gauge theories. This

provides strong evidence for the proposed duality between the two descriptions of

surface operators.
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Chapter 0

Synopsis

Symmetry has played an important role in our understanding of modern physics.

Relativistic quantum field theories have Poincaré symmetry, which consists of Lorentz

and space-time translational symmetries. These are generated by bosonic genera-

tors. Supersymmetry is an extension of Poincaré symmetry in which one introduces

spinorial generators to the algebra. It is a continuous space-time symmetry that

pairs bosons and fermions. The advantages of introducing supersymmetry to the

symmetry algebra are manifold. From a particle physicist’s point of view, intro-

ducing supersymmetry cures quadratic divergences that appear when one computes

self-energy Feynman diagrams. From a more theoretical point of view, supersym-

metry gives good control over the dynamics of the theory. Supersymmetric theories

are closely related to integrable systems, which are exactly solvable. Exact com-

putations which are not possible in non-supersymmetric theories are made possible

by supersymmetry. These serve as useful examples to understand various strong-

coupling, and non-perturbative effects that appear in non-supersymmetric theories.

In this thesis, we study N = 2 supersymmetric gauge theories in four dimensions.

These theories stand midway between the most symmetric, and hence tractable

xxix



N = 4 theories, and the N = 1 theories, that have the least amount of supersym-

metry. The study of N = 2 theories was pioneered by the work of Seiberg and

Witten in [1,2]. Since their work, tremendous progress has been made in the study

of these theories. We will make use of three different approaches to our study of

N = 2 supersymmetric gauge theories. These include the classic Seiberg-Witten

analysis, the techniques of equivariant localization as developed by Nekrasov in [3],

and the 2d/4d correspondence put forward by Alday, Gaiotto, and Tachikawa in [4].

Our interest is in N = 2 super-conformal theories that have the added symme-

try of conformality. In [5], a large class of super-conformal theories called class S

theories, was realized by the compactification of (2, 0) theory in six dimensions, on

Riemann surfaces with punctures. Particular theories of interest to us are i) linear

conformal quiver theories that contain products of SU(2) gauge groups. These have

matter arranged in the fundamental and the bi-fundamental representations such

that the β-function at each node vanishes. These theories are obtained by choos-

ing the Riemann surface on which the 6d theory is compactified to be a Riemann

sphere with punctures. We study the low energy effective action of these theories on

the Coulomb branch by computing the prepotential, and ii) N = 2? theories which

describe the dynamics of a vector multiplet and a single massive hypermultiplet in

the adjoint representation of the gauge group, for which the corresponding Riemann

surface is a torus with a single puncture. We study the low energy effective action

of these theories in the presence of a surface operator by computing the twisted

effective superpotential. This describes the infra-red physics of the two dimensional

theory that lives on the world-volume of the surface defect. We study modular

properties of the twisted superpotential under the constraints imposed by S-duality.

This thesis contains the following chapters.

xxx



0.1 Seiberg-Witten theory

In this chapter, we briefly describe the Seiberg-Witten theory which sets the plat-

form for the work that is presented in the thesis. Seiberg-Witten theory and its

generalization to higher rank gauge groups in [6–8] compute the low energy effec-

tive action of N = 2 supersymmetric gauge theories on the Coulomb branch where

the gauge group SU(N) is broken down to its maximal torus. The Seiberg-Witten

approach is a geometric one, in which the prepotential that describes the effective

theory is given in terms of an algebraic curve and an associated differential, called

the Seiberg-Witten curve and differential respectively.

In the traditional Seiberg-Witten approach, the vacuum expectation values ai of the

adjoint scalar and the dual variables aDi ≡ ∂F
∂ai

correspond to period integrals of the

Seiberg-Witten differential along a symplectic basis of cycles on the Seiberg-Witten

curve.

ai =

∫
αi

λ and aDj =

∫
βj

λ (1)

The curve and the differential depend on the gauge theory parameters, in particular

on the gauge-invariant parameters ui that are coordinates on the moduli space of

vacua. This implies that the set of variables (ai, a
D
i ) are functions of ui. By inverting

the functions ai(u), the dual periods aDi (u) can be written as aDi (ai). Thus we obtain

the relation,
∂aDi
∂ai

=
∂2F
∂ai∂aj

(2)

Integrating this formula twice, we obtain F as a function of the ai’s. However,

this procedure is rather cumbersome as the integrals leading to the dual periods

aDi are often very difficult. In our approach [9], we circumvent doing the βi set of

integrals that appear in (1), and make the computation of the prepotential much

more viable.
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Our study is in the context of linear super-conformal quiver theories with gauge

group SU(2). As shown in Figure 1, these theories contain products of SU(2) gauge

groups, and matter arranged in fundamental and bi-fundamental representations

such that the β-function at each node vanishes. We focus on cases with a single

node, two nodes, and for the massless case arbitrary number of nodes. The Seiberg-

Witten curve of these theories cover a Riemann sphere with n+ 3 punctures, where

n is the number of nodes in the quiver. The expressions for the curve and the

Figure 1: Linear Quiver with gauge group SU(2)

corresponding differential are obtained by considering a system of NS5-D4 branes

uplifted to M-theory [10]. The Gaiotto form of the curve when all the gauge groups

are SU(2) takes the form,

x2(t) =
P2n+2(t)

t2 (t− t1)2 . . . (t− tn)2 (t− 1)2 (3)

where ti’s are the positions of the punctures on the Riemann sphere. These are

related to the gauge theory couplings as qi = ti/ti+1, and P2n+2(t) is a polynomial

of degree (2n+ 2) which depends on the qi’s, the masses, and the Coulomb branch

parameters ui. The Gaiotto formulation of the curve (3) has the advantage that the

associated differential is readily given as,

λ = x(t)dt (4)

Our approach to computing the prepotential makes use of what are called Matone’s

relations. The relevant relation takes the form [11],

Ui ≡
〈
Tr Φ2

i

〉
= qi

∂F
∂qi

(5)

xxxii



It was proposed in [12, 13] that Ui should be identified with the residues of the

quadratic differential x2(t)dt2 at the various punctures of the curve (3),

Rest=ti
(
x2(t)

)
=
∂F
∂ti

(6)

We now illustrate these ideas in the case of the quiver with two nodes, and gauge

group SU(2) [9]. The Seiberg-Witten curve in the Gaiotto form is,

x2(t) =
p6(t)

t2 (t− q1)2(t− 1)2(q2t− 1)2
, (7)

where p6(t) is in general a sixth order polynomial in t, with the coefficient functions

depending on the masses, the coupling constants, and the gauge invariant Coulomb

branch parameters. The genus 2 Seiberg-Witten curve may be expressed in the

hyper-elliptic form,

y2(t) = p6(t) = c
6∏
i=1

(t− ei) (8)

where ei’s are the six roots of the polynomial, which are clearly branch points for

the function y(t). With a projective transformation we can fix three of them at 0,

1, and ∞. If we call ζ1, ζ2 and ζ̂ the remaining three parameters corresponding to

the three independent anharmonic ratios of the ei’s, equation (8) reduces to

y2(t) = c t
(
t− 1

)(
t− ζ1

)(
t− ζ2

)(
t− ζ̂

)
. (9)

When the curve is put in this form, we can choose a symplectic basis of cycles {αi, βj}

on the Riemann sphere as shown in Figure 2, and then proceed to compute the

periods of the Seiberg-Witten differential and finally derive the effective prepotential.

However, for generic values of the masses of the matter hypermultiplets this method

is not practical since one cannot find the roots of p6(t) in closed form, and hence

only a perturbative approach in the masses is viable. We choose the following mass
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0 ζ1 1 ζ̂ ζ2 ∞

α1 α2β2β1

Figure 2: Structure of branch cuts and a basis of cycles for the Riemann surface
described by Eq (9)

configuration,

m1 = m2 =m3 = m4 = 0 and m12 = M (10)

for which the polynomial p6(t) in (7) can be factorized. For this mass choice, the

curve becomes

x2(t) =
C(t− ζ3)(t− ζ̂)

t(t− q1)(q2t− 1)(t− 1)2
(11)

where ζ3, ζ̂ and C are functions of the couplings constants qi, the bi-fundamental

mass M , and the Coulomb branch parameters ui. The residue condition (6) takes

the form,

Res t=q1
(
x2(t)

)
=
∂F
∂q1

, Res t=1/q2

(
x2(t)

)
= −q2

2

∂F
∂q2

, (12)

The left hand sides of the above equations are functions of the gauge theory pa-

rameters, in particular of ui. We now compute the α-periods of the Seiberg-Witten
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differential, and obtain a1(Ui).

a1 =

∫ q1

0

√
C(ζ3 − t)(t− ζ̂)

t(q1 − t)(1− q2t)

dt

(1− t)

=
√
U1

(
1− q1

U1 +M2

4U2
1

+ q2
U2

4U2
1

− q1q2
U2

4U1

− q2
1

7U2
1 − 10U1U2 + 3U2

2 +M2
(
14U1 − 6U2 + 3M2

)
64U 2

1

+ . . .

)
(13)

A similar period integral obtains for us a2(Ui). Inverting these relations, and inte-

grating over q1 and q2 we obtain the prepotential [9],

F = a2
1 log q1 + a2

2 log q2 + q1
a2

1 − a2
2 +M2

2
+ q2

a2
2 − a2

1 +M2

2

+ q1q2
a2

1 + a2
2 −M2

4
+ q2

1

(
13a4

1 − 14a2
1a

2
2 + a2

2

64a2
1

+
9M2

32
+
M2(M2 − 2a2

2)

64a2
1

)
+ q2

2

(
13a4

2 − 14a2
1a

2
2 + a2

1

64a2
2

+
9M2

32
+
M2(M2 − 2a2

1)

64a2
2

)
+ . . . . (14)

0.2 Localization

In this chapter, we describe Nekrasov’s equivariant localization [3], and compute

the instanton partition function. The instanton partition function is typically di-

vergent, and in order to obtain finite results one considers the Ω-deformed theory

which is obtained by a standard dimensional reduction from a suitable theory in

an appropriate supersymmetric background. The Ω-background is parameterized

by two deformation parameters ε1 and ε2 that break the SO(4) symmetry down to

rotations on two planes. By equivariant localization, the moduli space of instantons

is localized to isolated points, and the instanton partition function of the quiver is

given by,

Zinst =
∑
ki

∫ ∏
i

qkii
ki!

ki∏
Ii=1

dχIi
2πi

zquiver
{ki} . (15)
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Here zquiver
{ki} gets contributions from the gauge and matter sectors of the theory. The

configurations of χi that contribute to the integral (15) are in one to one correspon-

dence with a set of Young tableaux Y = {Yi} with k =
∑

i ki number of boxes. The

instanton partition function can be rewritten as

Zinst = 1 +
∑
Yi

∏
i

q
|Yi|
i Z{Yi} . (16)

Here the 1 represents the contribution at zero instanton number, and |Yi| is the total

number of boxes of the i-th Young tableau. The ZYi are then calculated using the

formalism of group characters. For the 2-node SU(2) quiver at one instanton [9],

Z(�,•|•, •) =
(2a1 + 2a2 + 2m12 + ε)(2a1 − 2a2 + 2m12 + ε)

32 ε1ε2 a1(−2a1 − ε)

2∏
f=1

(2a1 + 2mf + ε)

Z(•,� |•, •) =
[
Z(� ,•|•, •)

]
a1→−a1

Z(•, •|� ,•) =
(2a2 + 2a1 − 2m12 + ε)(2a2 − 2a1 − 2m12 + ε)

32 ε1ε2 a2(−2a2 − ε)

4∏
f=3

(2a2 + 2mf + ε)

Z(•, •|•,�) =
[
Z(•, •|� ,•)

]
a2→−a2

(17)

where ε ≡ ε1 + ε2. The instanton partition function at 1-instanton is then given by,

Z1 = q1 Z1,0 + q2 Z0,1, with

Z1,0 = Z(�,•|•, •) + Z(•, �, |•, •) , Z0,1 = Z(•, •|� ,•) + Z(•, •|•,�) . (18)

This can be extended to higher instanton orders to get

Zinst = 1 +
∑
k1,k2

Zk1,k2 q
k1
1 qk22 (19)

The non-perturbative prepotential is given by,

Finst = −ε1ε2 logZinst =
∑
k1,k2

Fk1,k2 q
k1
1 qk22 . (20)
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Below we tabulate the first few prepotential coefficients Fk1,k2 , in the Nekraso-

Shatashvili limit [14] where we set ε2 = 0 and each Fk1,k2 has a further expansion of

the form

Fk1,k2 =
∞∑
n=0

F
(n)
k1,k2

εn1 . (21)

At order ε01 we have [9]

F
(0)
1,0 =

a2
1 − a2

2

2
+

1

2

(
m1m2 + 2(m1 +m2)m12 +m2

12

)
+
m1m2

(
m2

12 − a2
2

)
2a2

1

F
(0)
2,0 =

13a4
1 − 14a2

1a
2
2 + a4

2

64a2
1

+
1

64

(
m2

1 + 16m1m2 +m2
2 + 32(m1 +m2)m12 + 18m2

12

)
+
m2

1m
2
2 + 2

(
m2

1 + 8m1m2 +m2
2

)
m2

12 +m4
12 + 2a2

2

(
m2

1 − 8m1m2 +m2
2 −m2

12

)
64a2

1

−
3
[
2m2

1m
2
2m

2
12 + (m2

1 +m2
2)m4

12 + 2a2
2(m2

1m
2
2 − (m2

1 +m2
2)m2

12) + a4
2(m2

1 +m2
2)
]

64a4
1

+
5m2

1m
2
2

(
m4

12 − 2a2
2m

2
12 + a4

2

)
64a6

1

F
(0)
1,1 =

a2
1 + a2

2

4
+

1

4

(
m1m2 +m3m4 + 2(m1 +m2)(m3 +m4)−m2

12

)
+
m1m2

(
m3m4 −m2

12 + a2
2

)
4a2

1

+
m3m4

(
m1m2 −m2

12 + a2
1

)
4a2

2

− m1m2m3m4m
2
12

4a2
1a

2
2

(22)

The other prepotential terms Fk,` can be obtained from F`,k by the operations

a1 ↔ a2, (m1,m2)↔ (m3,m4), m12 ↔ −m12 (23)

This for the particular choice of masses (10) precisely matches the instanton prepo-

tential derived using the Seiberg-Witten curve and differential in the previous sec-

tion. We have also calculated corrections to the prepotential in the Ω-background.
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0.3 2d/4d correspondence

In this chapter, we use the 2d/4d correspondence which relates the instanton parti-

tion function of a linear quiver with gauge group SU(2)n to the n+3 point spherical

conformal block in two dimensional Liouville conformal field theory [4],

〈
Vα0 (0)

n∏
i=1

Vαi (ti)Vαn+1 (1)Vαn+2 (∞)

〉
{ξ1,...,ξn}

= N ZU(1) e
−Finst
ε1ε2 (24)

We compute the correlator in a specific pair-of-pants decomposition of the (n + 3)

punctured sphere, and in each internal line only a primary field with specific Liouville

momentum and its descendants propagate. We take the degenerate limit in which

the (n + 3) punctured sphere becomes (n + 1) 3-punctured spheres. Relating the

conformal block to the instanton partition function of the gauge theory requires a

detailed map of the parameters that appear in the Liouville theory to those in the

gauge theory. While the ratios of global coordinates on the spheres are mapped

to the instanton counting parameters in the gauge theory, the Liouville momenta

that flow through the external and internal lines in the conformal block are mapped

respectively to the masses and the vacuum expectation values in the gauge theory.

The central charge of the Liouville theory is mapped to a particular combination

of the Ω-deformation parameters ε1 and ε2. The Liouville theory also contains

information about the Seiberg-Witten curve. In order to see this, we consider the

conformal block with the additional insertion of energy-momentum tensor T (z),

φ2(z) ≡
〈
Vα0 (0)

∏n
i=1 Vαi (ti)T (z)Vαn+1 (1)Vαn+2 (∞)

〉〈
Vα0 (0)

∏n
i=1 Vαi (ti)Vαn+1 (1)Vαn+2 (∞)

〉 (25)

Using the conformal Ward identities, and the operator product expansion of the

energy momentum tensor with conformal primaries, we obtain φ2(z) to be of the

same form as x2(z) that appears in the Seiberg-Witten curve (3). The Ω-deformed

prepotential is also obtained from the Liouville theory by considering a null-vector
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decoupling equation [15]. We consider the conformal block with the insertion of a

specific degenerate primary Φ2,1(z),

Ψ(z) =

〈
Vα0(0)

n∏
i=1

Vαi (ti) Φ2,1(z)Vαn+1(1)Vαn+2(∞)

〉
(26)

Ψ(z) obeys a second order differential equation which in the Nekrasov-Shatashvili

limit takes the form of a Schrödinger equation,

(
−ε21

d2

dz2
+ V (z, ε1)

)
Ψ(z) = 0 (27)

The potential takes the form,

V (z, ε1) = V (0)(z) + ε1V
(1)(z) + ε21V

(2)(z) (28)

For the 2-node quiver that we consider, the Schrödinger potential is [9],

V (0)(z) = φ2(z)

V (1)(z) =
(m1 +m2 +m3 +m4) q1q2

2z(z − 1) (z − q1q2)
+

(m1 +m2 + 2m12) q1q2

2z (z − q2) (z − q1q2)
+

(m3 +m4 − 2m12) q2

2z (z − 1) (z − q2)

V (2)(z) = − 1

4z2
− 1

4 (z − q1q2)2 −
1

4 (z − q2)2 −
1

4 (z − 1)2 +
3

4 (z − 1)

− η1

z(z − 1) (z − q2)
− η2

z (z − q2) (z − q1q2)
(29)

where η1 and η2 are functions of the instanton counting parameters. Here V (0) has

the same expression that appears in the Seiberg-Witten curve of the undeformed

theory. In the Nekrasov-Shatashvili limit, Ψ(z) has the following singular behaviour,

Ψ(z) = e
−W (z)

ε1 (30)
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In order to solve (27), we make a WKB-like ansatz

W (z) =

∫ z

P (z′, ε1) dz′ (31)

and expand P in a power series in ε1, namely P (z, ε1) =
∑∞

n=0 ε
n
1P

(n)(z). With this

ansatz, (27) becomes

− P (z, ε1)2 + ε1
dP (z, ε1)

dz
+ V (z, ε1) = 0, (32)

Solving perturbatively in ε1, we obtain

P (0)(z) =
√
φ2(z)

P (0)(z) =
1

2

d

dz
logP (0)(z) +

V (1)(z)

2P (0)(z)

P (2)(z) =
P (1)′(z)− P (1)2(z)

2P (0)(z)
+
V (2)(z)

2P (0)(z)
(33)

and so on. Since P (0)(z)dz is simply the Seiberg-Witten differential of the unde-

formed theory, it is natural to define the deformed Seiberg-Witten differential as

λ (ε1) ≡ P (z, ε1) dz (34)

As in section 0.1, the α period integral is now readily calculated to obtain a1(Ui),

a1 = a
(0)
1 (Ui) + ε1a

(1)
1 (Ui) + ε21a

(2)
1 (Ui) + . . . (35)

A similar period integral is performed to evaluate a2(Ui). Inverting the expansion of

the periods order-by-order in ε1, we determine the ε1 dependence of U1 and U2. At

each order, the resulting expressions turn out to be integrable, and we recover the

prepotential. The zeroth-order term matches our results from the Seiberg-Witten

analysis in 0.1. The ε1 corrections precisely match the microscopic results obtained
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from the Nekrasov partition function via localization methods.

We obtained the prepotential of the simplest SU(2) linear conformal quiver theory

using three different approaches. One of our motivations to match the prepotential

from these approaches was that it requires us to find the precise map between

the gauge theory parameters, the geometric parameters that arise in the M-theory

construction, and the parameters in Liouville conformal field theory.

0.4 Surface Operators

In this chapter, we study surface operators in the context of N = 2? gauge theo-

ries. N = 2? theories describe the dynamics of a vector multiplet and a massive

hypermultiplet in the adjoint representation of the gauge group which we take to

be SU(N). In the massless limit, this theory reduce to the N = 4 super Yang-Mills

theory, and in the limit in which the mass is decoupled we obtain the pure N = 2

theory. In the Gaiotto construction [5], N = 2? theories are obtained by wrapping

M5 branes on a torus with a single puncture.

We study non-local operators called surface operators that have support on a two

dimensional plane inside the four dimensional (Euclidean) spacetime. In particular,

we parameterize R4 ' C2 by two complex variables (z1, z2), and place the defect

at z2 = 0, filling the z1 plane. Surface operators can be defined by the transverse

singularities they induce in the four dimensional fields, or can be characterized by

the two dimensional theory they support on their world-volume. Our interest is in

Gukov-Witten like defects [16] which induce the following singular behaviour in the

gauge connection A,

A = Aµ dx
µ ' − diag

(
︸ ︷︷ ︸

n1

γ1, · · · , γ1, ︸ ︷︷ ︸
n2

γ2, · · · , γ2, · · · , ︸ ︷︷ ︸
nM

γM , · · · , γM

)
dθ (36)
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as r → 0. Here (r, θ) denotes the set of polar coordinates in the z2 plane, and the

γI ’s constant parameters, where I = 1, . . . ,M . The M integers nI satisfy

M∑
I=1

nI = N (37)

and define a vector ~n that identifies the type of the surface operator. This vector is

related to the breaking pattern of the gauge group on the two-dimensional defect,

namely

SU(N)→ S [U(n1)× U(n2)× . . .× U(nM)] (38)

The type ~n = {1, 1, . . . , 1} corresponds to the full surface operator, and the type

~n = {1, N − 1} corresponds to the simple surface operator. There are two kinds of

defects, one realized by M2-branes and the other realized by M5 branes. Our interest

is in the latter kind, which from the six dimensional point of view correspond to co-

dimension 2 defects. In the presence of a surface operator, one can turn on magnetic

fluxes for each factor of the gauge group. Thus the instanton partition function

depends on, in addition to the vacuum expectation values of the adjoint scalar,

and the adjoint mass, a set of continuous complex parameters zi that combines

the electric and magnetic parameters. A holomorphic function called the twisted

effective superpotentialW determines the dynamics of the effective two dimensional

theory living on the world-volume of the defects [17, 18]. The instanton partition

function is obtained by suitably adapting equivariant localization to the case at hand.

This involves taking an orbifold of the original action without surface operator.

The logarithm of the resulting partition function exhibits both a four dimensional

and a two dimensional singularity in the limit of vanishing deformations. These

singularities are encoded respectively in the prepotential F and in a new function

W , the so-called twisted superpotential.

logZ = −F (ai,m, ε1, q)

ε1ε2
+
W (ai,m, ε1, q, z)

ε1
(39)
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The latter depends, in addition to the vacuum expectation values of the adjoint

scalar and the adjoint mass, on the continuous parameters zi that characterize the

defect.

Treating N = 2? theories as massive deformations of the N = 4 super-conformal

theory, the prepotential expanded as a power series in the adjoint mass parameter

has been shown to be tightly constrained by S-duality in [19]. The coefficient func-

tions are expressed in terms of (quasi)-modular forms of the bare coupling constant,

and the first few f` that appear at O(m`) are given by,

fodd = 0

f2 =

(
m2 − ε21

4

)
log(2a)

f4 = − 1

48a2

(
m2 − ε21

4

)2

E2

f6 = − 1

5760a4

((
m2 − ε21

4

)3 (
5E2

2 + E4

)
− 3E4

(
m2 − ε21

4

)2

ε21

)
(40)

As for the prepotential, the derivatives of the coefficient functions that appear in

the mass expansion of the W ,

W =
∞∑
n=1

wnm
n (41)

with respect to the complex parameters zi, obey a modular anomaly equation. Here

we focus on the SU(2) case which has a single complex parameter z that labels the

surface operator. The modular anomaly equation takes the form [20],

∂w′`
∂E2

+
1

24

`−1∑
n=0

∂f`−n
∂a

∂w′n
∂a

= 0 (42)

This can be solved to obtain the complete quasi-modular dependence at each order

inm. Combining results from localization, we can express the coefficient functions in
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terms of (quasi)-modular forms and elliptic functions of the bare coupling constant

τ and the continuous parameters zi. The first few coefficients in the SU(2) case are

given below [20],

w′2 =
1

24a

(
m2 − ε21

4

)
(E2 + 12℘̃ )

w′3 =
ε1

4a2

(
m2 − ε21

4

)
℘̃ ′

w′4 =
1

1152a3

(
m2 − ε21

4

)[(
m2 − ε21

4

)(
2E2

2 − E4 + 24E2℘̃+ 144℘̃2
)

+ 6ε21
(
E4 − 144℘̃2

) ]
w′5 =

ε1
48a4

(
m2 − ε21

4

)[(
m2 − ε21

4

)
(E2 + 12℘̃) ℘̃ ′ − 36ε21℘̃℘̃

′
]

(43)

and so on. Similar resummation has been done for higher rank gauge groups up to

SU(7) for a variety of surface operators corresponding to various decompositions (38)

of the gauge group, and very general formulas for the mass coefficients at various

orders have been obtained [20]. These contain the entire tail of instanton corrections.

We make contact with known results in the pure gauge theory [21]. The pure gauge

theory is obtained by decoupling the adjoint matter hypermultiplet, which is carried

out by taking the following limit

m→∞, and q → 0 such that qm2N = (−1)NΛ2N is finite (44)

where Λ is the strong coupling scale of the pure N = 2 theory. In the presence of

a surface operator, this limit must be combined with a scaling prescription for the

continuous variables zi that characterize the defect. In the case when there is only

one such parameter x = e2πiz, the scaling is

m→∞ and x→ 0 such that xmN = (−1)p−1x0 ΛN is finite. (45)

Here x0 = e2πiz0 is the complex parameter that labels the surface operator in the

pure gauge theory. We now restrict ourselves to the SU(2) case which has only
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one kind of surface operator, and which is labelled by a single complex parameter

x. Performing the limits in (44) and (45) on the results obtained for the N = 2?

theories, we obtain

1

2πi

∂W
∂z0

= −a− Λ2

2a

(
x0 +

1

x0

)
+

Λ4

8a3

(
x2

0 +
1

x2
0

)
− Λ6

16a5

(
x3

0 + x0 +
1

x0

+
1

x3
0

)
+

Λ8

16a7

(
x2

0 +
1

x2
0

+
5

8

(
x4

0 +
1

x4
0

))
+ . . .

(46)

We now show that in a specific semi-classical limit, this is identical to the twisted

superpotential that one obtains when one couples a two dimensional CP1 sigma

model to the pure N = 2 four dimensional gauge theory.

For the pure gauge theory, the exact (in Λ) expression for the twisted superpotential

has already been obtained in [21]. The quantum corrected chiral ring relation for

the pure SU(2) gauge theory can be written in the following form [22]:

P2(y) = Λ2

(
x0 +

1

x0

)
, (47)

where P2(y) is the quantum corrected gauge polynomial, given by

P2(y) = y2 − ũ , (48)

ũ is identified with the gauge invariant parameter on the Coulomb branch, and x0 =

e2πiz0 is identified with the continuous parameter that labels the surface operator

in the pure gauge theory [21, 22]. The variable y is interpreted as the expectation

value of the twisted chiral ring element in the two dimensional theory and is related

to the twisted superpotential by the relation

y =
1

2πi

∂W
∂z0

. (49)
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Since the effective twisted superpotential generates the quantum chiral ring in the

infra-red, it follows that for the simple surface operator ∂z0W is simply given by

solving for y using (47):

1

2πi

∂W
∂z0

= −
√
ũ

(
1 +

Λ2

ũ

(
x0 +

1

x0

)) 1
2

. (50)

In order to compare this result with the result we obtained in (46), we have to take

a semi-classical limit of this exact result. We consider the limit,

|Λ|2 << |ũ| . (51)

In this limit, we can expand the exact expression in a power series in Λ. Expressing

ũ in terms of the classical vacuum expectation value a using Matone’s relation, we

obtain a perfect match up to two instantons [20]. We have extended the check for

simple surface operators for higher rank gauge groups up to SU(7).

0.5 Conclusion

In this thesis, we studied N = 2 theories in four dimensions on their Coulomb

branch, with and without the presence of surface operators. The low energy effective

action of such theories is described by two holomorphic functions, the prepotential

that determines the effective action of the four dimensional theory, and the twisted

superpotential which governs the infra-red behaviour of the two-dimensional theory

living on the world-volume of the surface operator. We have focused on comput-

ing these two functions. In the case of N = 2 super-conformal linear quivers, we

computed the effective prepotential via the Seiberg-Witten curve and differential ob-

tained by an M-theory construction, and matched it with the results from equivariant

localization, and the 2d/4d correspondence. In doing so, we obtained a detailed map
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of the various parameters that appear in the three approaches mentioned above. In

the latter part of the thesis, we considered surface operators in the context ofN = 2?

theories. The effective superpotential was obtained by equivariant localization, and

the microscopic results were resummed into a mass expansion, where at each order

in mass, the coefficient functions were made up of (quasi)-modular forms and ellip-

tic functions of the bare coupling constant, and the continuous complex parameters

that label the surface operator. These results helped us make contact with known

results for the twisted effective superpotential for two dimensional sigma models

coupled to four dimensional SU(N) gauge theories, in a semi-classical limit.
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Chapter 1

Essential Supersymmetry

In this chapter, we give a lightning review of N = 2 supersymmetry, focusing only

on topics that are of relevance to the chapters to follow. We shall mostly stick to

the notations and conventions of [23].

1.1 Supersymmetry Algebra

The N = 2 supersymmetry algebra, in the presence of central charges is,

{QI
α, Q̄β̇J} = 2 (σµ)αβ̇ Pµδ

I
J ,

{QI
α, Q

J
β} = 2

√
2εαβε

IJZ ,

{Q̄α̇I , Q̄β̇J} = 2
√

2εα̇β̇εIJZ . (1.1)

where Qα and Q̄α̇ are the supersymmetry generators that transform respectively in

the
(

1
2
, 0
)
and the

(
0, 1

2

)
representations of the Lorentz group, the indices I and J

run from 1 to 2 for the 2 supersymmetries, and Z is the central charge. In a massive
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theory, the central charge gives a lower bound on the mass of the states as,

M ≥
√

2|Z| . (1.2)

1.2 Representing the Algebra on Fields

In ordinary relativistic quantum field theory, various quantum fields carry different

representations of the Lorentz group. In the study of supersymmetric quantum field

theories, it is convenient to construct fields that carry a representation of the super-

symmetry algebra. This requires enhancing the usual space-time to a superspace,

which has spinor coordinates (θIα and θ̄Iα̇) in addition to space-time coordinates. The

supersymmetry generators then have a natural action on the superspace, just as

Lorentz generators have on the space-time. We will discuss the N = 1 superspace1,

and generalize it to the N = 2 case. Any function of the superspace coordinates(
xµ, θα, θ̄α̇

)
is called a superfield. In general, a superfield contains too many compo-

nent fields to correspond to an irreducible representation of the N = 1 algebra. In

order to obtain an irreducible representation, one needs to impose supersymmetry

invariant constraints on the superfields. We will now see a few examples that are

relevant to our discussion.

1.2.1 N = 1 Chiral Multiplet

The N = 1 chiral multiplet is represented by a chiral superfield Φ which satisfies

the condition,

D̄α̇Φ = 0 , (1.3)
1The N = 1 algebra is obtained by setting Z = 0 in (1.1).
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where D̄α̇ is the super-covariant derivative −∂/∂θ̄α̇ − iσµαα̇θ
α∂µ. This forces the

functional dependence of Φ to be Φ(yµ, θ), where yµ := xµ + iθσµθ̄. Thus, an N = 1

chiral superfield is expanded as,

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y) , (1.4)

where φ and ψ are the scalar and the fermionic components in the chiral multiplet,

and F is an auxiliary field required for off-shell closure of the supersymmetry algebra,

and vanishes on-shell. The anti-chiral multiplet can similarly be represented an

anti-chiral superfield Φ̄ which is annihilated by the super-covariant derivative Dα.

Clearly, any arbitrary function of chiral superfields is also a chiral superfield, and

similarly for the anti-chiral superfields. A general function of (anti)-chiral superfields

is called the super-potential, which has the following expansion,

W (Φi) = W
(
φi +

√
2θψi + θθFi

)
= W (φi) +

∂W
∂φi

√
2θψi + θθ

(
∂W
∂φi

Fi −
1

2

∂2W
∂φi∂φj

ψiψj

)
. (1.5)

In terms of the original variables (xµ, θ, θ̄), the chiral superfield (1.4) takes the

following expansion,

Φ(x, θ, θ̄) = φ(x) + iθσµθ̄∂µφ−
1

4
θ2θ̄2 �φ

+
√

2θψ(x)− i√
2
θθ∂µψσ

µθ̄ + θθF (x) . (1.6)

1.2.2 N = 1 Vector Multiplet

The N = 1 vector multiplet V is a real superfield, i.e. V = V †. After imposing the

reality condition on a generic superfield, and choosing the Wess-Zumino gauge, V
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takes the following form,

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄D . (1.7)

Here V belongs to the adjoint representation of the gauge group, V = VaT
a where

T a
†

= T a are the group generators. The gauge field strength is,

Wα =
1

8
D̄2 e2VDαe−2V , (1.8)

which in terms of the components has the expansion,

Wα = T a
(
−iλaα + θαD

a − i

2
(σµσ̄νθ)αF

a
µν + θ2σµDµλ̄

a

)
, (1.9)

where F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν , and Dµλ̄

a = ∂µλ̄
a + fabcAbµλ̄

c.

1.3 Supersymmetric Actions

The most general N = 1 supersymmetric Lagrangian with both the gauge multiplet

and the charged chiral multiplet is,

L =
1

8π
Im
(
τ Tr

∫
dθ WαWα

)
+

∫
d2θd2θ̄ Φ†e−2V Φ +

∫
d2θ W +

∫
d2θ̄ W ,

(1.10)
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where the N = 1 chiral superfield Φ is in any given representation, and τ = θ
2π

+ 4πi
g2

is the complexified gauge coupling. In terms of component fields,

L = − 1

4g2
F a
µνF

aµν +
θ

32π2
F a
µνF̃

aµν − i

g2
λaσµDµλ̄

a +
1

2g2
DaDa

+
(
∂µφ− iAaµT

aφ
)†

(∂µφ− iAaµT aφ)− iψ̄σ̄µ
(
∂µψ − iAaµT

aψ
)

−Daφ†T aφ− i
√

2φ†T aλaψ + i
√

2ψ̄T aφλ̄a + F †i Fi

+
∂W
∂φi

Fi +
∂W̄
∂φ†i

F †i −
1

2

∂2W
∂φi∂φj

ψiψj −
1

2

∂2W̄
∂φ†i∂φ

†
j

ψ̄iψ̄j , (1.11)

where W denotes the scalar component of the superpotential. The on-shell field

content of an N = 2 vector multiplet is an N = 1 chiral multiplet (φ, ψ), and an

N = 1 vector multiplet (λ,Aµ). Thus, the Lagrangian in (1.11) has all the fields, but

is not N = 2 supersymmetric. N = 2 supersymmetry forces all the fields to be in

the adjoint representation of the gauge group. Since N = 2 supersymmetry treats ψ

and λ on the same footing, the form of their kinetic terms in (1.11) suggests that the

N = 2 Lagrangian is a combination of the chiral superfield, and the vector superfield

Lagrangians, with the former multiplied by 1
g2
. The N = 2 supersymmetry sets the

superpotential W to zero, as it couples only to ψa. Thus, the full Lagrangian with

N = 2 supersymmetry is,

L =
1

8π
Im Tr

[
τ

(∫
d2θ WαWα + 2

∫
d2θd2θ̄ Φ†e−2V Φ

)]
=

1

g2
Tr
(
− 1

4
FµνF

µν + g2 θ

32π2
FµνF̃

µν + (Dµφ)†Dµφ− 1

2
[φ†, φ]2

− iλσµDµλ̄− iψ̄σ̄µDµψ − i
√

2[λ, ψ]φ† − i
√

2[λ̄, ψ̄]φ

)
. (1.12)

N = 2 supersymmetry is made manifest by going to the N = 2 superspace which

has two sets of spinor coordinates, (θα, θ̄α̇, θ̃α,
¯̃
θα̇). The N = 2 chiral superfield is
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defined by the constraints,

D̄α̇Ψ = 0,
¯̃
Dα̇Ψ = 0 , (1.13)

where Dα and D̃α are the super-covariant derivatives with respect to θ and θ̃ re-

spectively. The chiral superfield has an expansion of the form,

Ψ = Ψ(1)(ỹ, θ) +
√

2θ̃αΨ(2)
α (ỹ, θ) + θ̃αθ̃αΨ(3)(ỹ, θ) , (1.14)

where ỹµ = xµ + iθσµθ̄ + iθ̃σµ
¯̃
θ. The N = 2 Lagrangian in terms of the N = 2

superfield takes the compact form,

L =
1

4π
Im Tr

∫
d2θd2θ̃

1

2
τΨ2 . (1.15)

Note that the N = 2 supersymmetric action is holomorphic in the fields, and in the

couplings, as it depends only on Ψ and τ , and not on Ψ† and τ̄ . In general, N = 2

supersymmetry constrains the effective Lagrangian with at most two derivatives,

and not more than four fermions as,

L =
1

4π
Im Tr

∫
d2θd2θ̃F(Ψ) , (1.16)

where F is the N = 2 prepotential. In N = 1 superspace, the effective Lagrangian

takes the form,

L =
1

8π
Im

(∫
d2θFab(Φ)W aαW b

α + 2

∫
d2θd2θ̄

(
Φ†e2gV

)aFa(Φ)

)
, (1.17)

where Fa(Φ) = ∂F
∂Φa

, Fab(Φ) = ∂2F
∂Φa∂Φb

. For the classical N = 2 super Yang-Mills

action in (1.15), the prepotential is given by,

Fclassical(Ψ) =
1

2
Tr τΨ2 . (1.18)
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1.4 One-loop contribution to the Prepotential

Due to the non-renormalization theorem by Seiberg in [24], the prepotential has

been found to be perturbatively exact at one-loop. In this section, we compute this

one-loop correction for a pure theory with gauge group SU(Nc), following [23].

Classically, an N = 2 theory has the global symmetry group SU(2)R× U(1)R. While

the SU(2)R rotates the two θ’s into each other, the U(1)R gives them a phase. In

terms of field content, the fermions form a doublet, and the scalar and the gauge

field form singlets under the SU(2)R. At the quantum level, the U(1)R symmetry is

broken by the chiral anomaly,

∂µj
µ
5 = − Nc

8π2
FµνF̃

µν . (1.19)

Thus, under a U(1)R transformation, the Lagrangian changes as

δLeff = −αNc

8π2
FF̃ . (1.20)

Since (32π2)−1
∫
FF̃ is an integer, the U(1)R invariance is broken to Z4Nc . Demand-

ing that the Lagrangian changes as above, and focussing only on the relevant terms

from (1.12), we obtain,

1

16π
Im
[
F ′′
(
e2iαφ

)
(−FF + iFF̃ )

]
=

1

16π
Im

[
F ′′(φ)(−FF + iFF̃ )

]
− αNc

8π2
FF̃ .

(1.21)

For infinitesimal α, we obtain the differential equation,

∂3F
∂φ3

=
Nc

π

i

φ
, (1.22)
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which for Nc = 2 integrates to give,

F1-loop(φ) =
i

2π
φ2 log

(
φ2

Λ2

)
. (1.23)

where Λ is a dynamically generated scale.

The one-loop correction to the prepotential may also be obtained from the β-function

of the theory. The one-loop β-function of the theory is,

β(g) = − dg

d ln Λ
= − g3

4π2
, (1.24)

which upon integration leads to

1

g2
=

1

g2
0

− 1

4π2
log

(
Λ2

φ2

)
. (1.25)

In order to make contact with the complexified gauge coupling, we rewrite the above

as,

4π

g2
=

4π

g2
0

− 1

π
log

(
Λ2

φ2

)
, (1.26)

which gives,

∂2F
∂a2

≡ τ(a) = τ0 +
i

π
log

(
φ2

Λ2

)
, (1.27)

which upon integration gives,

F1-loop =
i

π

(
−3

4
a2 + a2 log

(
φ2

Λ2

))
. (1.28)

Although the prepotential is perturbatively exact at one-loop, it gets corrections at

all orders from the non-perturbative sector due to instantons. The contribution of
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the k instanton sector to the prepotential is,

e−Sinst = exp

(
−8π2k

g2

)
= exp

(
−8π2k

g2
0

)(
Λ

a

)4k

. (1.29)

Thus, the instanton sector of the prepotential takes the form,

Finst =
∞∑
k=1

Fk
(

Λ

a

)4k

a2 . (1.30)

For a conformal theory, there is only the bare coupling τ0, and

Finst ∝ exp(2πiτ0) . (1.31)

The goal of Seiberg and Witten in [1] was to compute the Fk. In the first half of

this thesis, we describe various methods to compute these coefficients for a class of

theories.
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Chapter 2

Seiberg-Witten Theory

Given a quantum field theory, one is often interested in the low energy effective

action. Starting from the original bare action with a momentum cut-off given by

µ, the standard prescription to obtain the low energy effective action is to compute

the Wilsonian effective action. We integrate out modes above a particular mass

scale, say Λ, to obtain the effective action S[Λ] for the low lying states (E < Λ) in

the theory. However, such an approach fails when there is a moduli space, and the

masses of the states depend on the position on the moduli space. In such cases, the

Wilsonian approach fails, as it may lead to integrating out massless modes.

In this chapter, we describe the Seiberg-Witten theory which computes the low

energy effective action of N = 2 supersymmetric gauge theories, which are known

to have a moduli space. The Seiberg-Witten theory for the pure SU(2) gauge theory

introduced in [1], later extended to higher gauge groups in [6–8], and to the cases

with matter in [2] concerns itself with understanding the low energy effective action

on the Coulomb branch of these theories. We restrict our attention to the pure

gauge theory with gauge group SU(2). This presents itself with enough details for

all the work that follows.
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2.1 Moduli space of vacua

We consider the pure N = 2 gauge theory with gauge group SU(2). The Lagrangian

(1.12) has the scalar potential,

V
(
φ, φ†

)
=

1

g2
Tr
[
φ, φ†

]2 (2.1)

Supersymmetry preserving classical vacua do not require φ to vanish, but only re-

quires it to be valued in the Cartan sub-algebra of the gauge group, i.e.

φ =
1

2
a σ3 , (2.2)

where a ∈ C, and σ3 = diag (1,−1). The vacua breaks the gauge group SU(2) down

to U(1), and for obvious reasons this is called the Coulomb branch of the theory.

There is a continuous family of vacua labelled by the vacuum expectation value of

the adjoint scalar φ. The manifold of this family is called the moduli space of vacua,

and classically it is C. It is clear that a is not a gauge-invariant parameterization

of the moduli space, as there are Weyl reflections that change the vacuum by the

action a→ −a. Gauge-invariant parameterization of the moduli space is given by,

u =
1

2
Tr φ2 , (2.3)

Semi-classically, u = a2

2
. However, when one takes into account quantum fluctua-

tions, gauge inequivalent vacua are labelled by,

u ≡ 1

2
〈Tr φ2〉 . (2.4)

We now go back to the global symmetry group, discussed in section 1.4. Chiral

anomaly breaks the symmetry group SU(2)R× U(1)R to SU(2)R × Z8. Accounting

for the center of SU(2)R which is also contained in Z8, the symmetry group breaks

11



into SU(2)R × Z8/Z2. A non-zero vacuum expectation value for the adjoint scalar

further breaks the Z8 to Z4. The non-trivial action of the global symmetry group

on the Coulomb moduli u is as, u→ −u. Classically, there is a singularity at u = 0,

where the broken symmetry on the Coulomb branch is restored, and additional fields

go massless.

2.1.1 Metric on the Moduli Space

Let us denote theN = 1 chiral superfield on the Coulomb branch by A. The effective

Lagrangian (1.16) on the Coulomb branch is,

L =
1

4π
Im
[∫

d4θ
∂F
∂A

Ā+

∫
d2θ

1

2

∂2F
∂A2

WαW
α

]
, (2.5)

where we have the notation d4θ ≡ d2θd2θ̄. This can be viewed as a sigma-model

with a metric on the field space which in turn gives the metric on the moduli space,

(ds)2 = Im
∂2F(a)

∂a2
da dā = Im τ(a) da dā , (2.6)

where a is the vacuum expectation value of the scalar component of A. As a har-

monic function cannot have a minimum, the metric Im τ(a) is not globally defined.

Thus, the requirement of positivity of the metric makes it clear that the description

in terms of a is valid only locally.

2.2 An Electric-Magnetic Duality

From the above discussion, it is clear that we require a different description of the

moduli space where Im τ(a) < 0. To obtain such a description, we consider terms
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involving only the gauge fields in the N = 2 Lagrangian (1.12). We have the terms,

1

32π
Im

∫
τ(a)

(
F + iF̃

)2

=
1

16π
Im

∫
τ(a)(F 2 + iF̃F ) . (2.7)

Treating F as the independent field, we implement the Bianchi identity dF = 0

by coupling a Lagrange multiplier vector field VD to a monopole. The monopole

satisfies,

ε0µνρ∂νFνρ = 8πδ(3)(x) . (2.8)

The Lagrange multiplier term is then,

1

8π

∫
VDµε

µνρσ∂νFρσ =
1

8π

∫
F̃DF =

1

16π
Re

∫
(F̃D − iFD)(F + iF̃ ) (2.9)

where, FDµν = ∂µVDν − ∂νVDµ . Adding the Lagrange multiplier term to the action,

and integrating over F , we obtain,

1

32π
Im

∫ (
−1

τ

)
(FD + iF̃D)2 =

1

16π
Im

∫ (
−1

τ

)(
F 2
D + F̃DFD

)
. (2.10)

Comparing (2.7) and (2.10), the effect of the duality transformation is to replace the

gauge field Aµ which couples to electric charges, by the dual gauge field VDµ which

couples to magnetic charges, and transforms the complexified gauge coupling as,

τ → τD = −1

τ
. (2.11)

This is how electric-magnetic duality manifests itself in these theories. The action

(1.12) is also invariant under τ → τ + b =⇒ θ → θ + 2πb, which requires b ∈ Z.

These two transformations generate the SL(2,Z) duality group of the theory. A

general element of SL(2,Z) acts on the coupling as,

τ → aτ + b

cτ + d
, (2.12)
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where ad−bc = 1, and a, b, c, d ∈ Z. While τ → − 1
τ
corresponds to a dual description

of the theory, τ → τ + 1 corresponds to an actual symmetry of the theory. We will

now find out the magnetic variables aD corresponding to a. For this, we introduce

h(A) = ∂F/∂A. The complexified gauge coupling is then, τ(A) = ∂h(A)/∂A.

The scalar kinetic energy term in (2.5) becomes Im
∫
d4θ h(A)Ā. For the dual

theory, we introduce the variables AD,FD, hD (AD) and τD. From (2.11), we obtain

AD = h = ∂F/∂A, and hD = −A. With aD = ∂F
∂a

, the metric (2.6) on the moduli

space takes the completely symmetric form,

ds2 = Im daD dā = − i
2

(daDdā− da dāD) . (2.13)

We will now identify the class of local parameters in terms of which the metric can

be written as above. For this, we introduce the set aα = (aD, a), where α = 1, 2,

and the antisymmetric tensor εα,β with ε1,2 = 1. The metric may then be rewritten

as,

ds2 = − i
2
εαβ

daα

du

dāβ

dū
du dū . (2.14)

The metric has SL(2,R) invariance which preserves the ε tensor, and commutes with

complex conjugation. The SL(2,R) group is generated by,

 0 1

−1 0

 and

 1 b

0 1

 . (2.15)

The latter corresponds to τ → τ + b =⇒ θ → θ + 2πb which requires b ∈ Z. Thus,

we again see that the theory enjoys an SL(2,Z) duality.
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2.3 Monodromies on the Moduli Space

In section 2.1.1, we saw that the moduli space of vacua has singularities. Under-

standing the details of the singularity structure will help us solve the low energy

theory. At large |a|, the theory is asympotically free, and u = 1
2
a2. In this regime,

the prepotential is approximated by the one-loop answer (1.23),

F(a) =
i

2π
a2 log

(
a2/Λ2

)
. (2.16)

The dual magnetic variables are then,

aD =
∂F
∂a

=
2ia

π
log
( a

Λ

)
+

ia

π
. (2.17)

Making a closed loop on the u-plane around u = 0, log u→ log u+ 2πi, and log a→

log a+ iπ. Thus we get,

aD → −aD + 2a

a → −a (2.18)

The monodromy matrix acting on (aD, a)T is,

M∞ =

 −1 2

0 −1

 . (2.19)

The monodromy at infinity signals a non-trivial monodromy at a finite point on

the moduli space. Let us now try to understand the number of singularities that

might be there. If there is only one more singularity, it has to be at the origin of

the moduli space, else the u→ −u symmetry on the u-plane, mentioned in section

2.1 is not respected. However, if there is only one singularity at a finite point

on the moduli space, it commutes with the monodromy at ∞, making a a good
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coordinate over the entire moduli space, in contradiction to what we saw in section

2.1.1. Thus, we require at least two singularities at finite points on the u-plane with

non-trivial monodromies around them. The R-symmetry group imposes that these

be at +u0 and −u0. Singularities on the moduli space occur due to massive particles

going massless at these points. The naive intuition that these particles correspond

to gauge bosons leads to inconsistencies. The other massive states are monopoles

and dyons, that belong to hypermultiplets, and are BPS states. Seiberg and Witten

conjectured that singularities at finite points on the moduli space correspond to these

states going massless at the two chosen points. The hypermultiplet with monopoles

and dyons does not couple to the fundamental fields in our theory locally. However,

from section 2.2, it is possible to go to the dual description where these are locally

coupled to the dual fields.

The central charge in (1.2) is given by,

Z = ane + aDnm , (2.20)

where ne and nm denote the units of electric and magnetic charges respectively.

Let us suppose that at the point u0 on the moduli space, magnetic monopoles go

massless. From the mass formula (1.2), and the form of the central charge Z in

(2.20), we have,

aD (u0) = 0 . (2.21)

As mentioned above, unlike electric charges, monopoles do not couple locally to

photons, but instead couples to the dual photon field. The low energy theory is

N = 2 SQED. From the one-loop beta function, the magnetic coupling is,

τD ≈ −
i

π
ln aD . (2.22)
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Since aD is a good coordinate near u0,

aD ≈ c0(u− u0) , (2.23)

where c0 is come constant. Following the discussion in section 2.2, the electric

parameter a is obtained as,

a(u) ≈ a0 +
i

π
aD log (aD) = a0 +

i

π
c0 (u− u0) log (u− u0) . (2.24)

When u circles around u0, log(u− u0)→ log(u− u0) + 2πi, and we obtain,

aD → aD

a→ a− 2aD (2.25)

Thus the monodromy matrix associated with a monopole going massless at u0 is,

Mu0 =

 1 0

−2 1

 . (2.26)

The monodromy matrix corresponding to the third singularity is obtained from the

relation Mu0M−u0 = M∞. This relation gives,

M−u0 =

 −1 2

−2 3

 . (2.27)

The particle that goes massless to generate this singularity is described by the

condition, (nm, ne)M−u0 = (nm, ne). This imposes the condition, nm = −ne on

the charge of the dyon that goes massless at −u0.
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2.4 Solution

The Seiberg-Witten solution for the prepotential is described by an algebraic curve

and an associated differential. We follow the discussion in [8]. The quantum moduli

space of the pure gauge theory with gauge group SU(2) described above, coincides

with the moduli space of the elliptic curve,

y2 = (x2 − u)2 − Λ4 . (2.28)

We denote the four zero’s of p(x) = y2(x) by e+
1 = −

√
u+ Λ2, e−1 = −

√
u− Λ2, e−2 =

√
u− Λ2 and e+

2 =
√
u+ Λ2. The basis for the homology cycles are as in the figure

below. Our goal is to compute the periods,

e

�

1

e

�

2

e

+

2

e

+

1

�

�

Figure 2.1: The α and the β cycles for the elliptic curve (2.28) in the x-plane
.

 ωD

ω

 =
∂

∂u
π(u) ≡ ∂

∂u

 aD

a

 ∼
 ∮

β∮
α

 · dx

y(x, u)
, (2.29)

so that the prepotential is obtained by a simple integration of aD(a). In order to

compute the periods, we use the fact that the periods form a system of solutions of

the Picard-Fuchs equation associated with (2.28). The periods are given in terms of
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hypergeometric functions,

aD(α) =

∮
β

λ =
i

4
Λ(α− 1) 2F1

(
3

4
,
3

4
, 2; 1− α

)
,

a(α) =

∮
α

λ =
1

1 + i
Λ(1− α)1/4

2F1

(
−1

4
,
3

4
, 1;

1

1− α

)
. (2.30)

where, α = u2

Λ4 . After inverting a(u), and inserting it into aD(u), the prepotential is

obtained by integration with respect to a. We obtain the instanton contribution,

Finst = − i

π

∞∑
k=1

Fk
(

Λ

2a

)4k

a2 , (2.31)

at the first few orders,

F1 =
1

2
, F2 =

5

64
, F3 =

3

64
, . . . (2.32)

We have obtained the same results using Nekrasov’s methods.

In the following, we mention a check of the Seiberg-Witten solution described above,

following [25]. Let us for simplicity work at one instanton. We have,

τ(a) =
∂2F
∂a2

= − 3i

16π

Λ4

a4
. (2.33)

In the effective action on the Coulomb branch,

Leff ⊃
1

8π

∫
d2θ Im (τ(a)WαW

α) . (2.34)

This gives,

Leff ⊃
1

8π

(
−3Λ4

16π

)∫
d2θ

1

a4
WαW

α (2.35)

We now put to use the fact that a is a chiral superfield, and has the following
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expansion in N = 1 superspace,

a(θ) = a+
√

2θψ + . . . (2.36)

so that,

a−4 (θ) = a−4

(
1 +

√
2θψ

a

)−4

∼ a−4

(
1 + 20

θ2ψ2

a2
+ . . .

)
+ . . . (2.37)

This gives the following contribution to the action,

Leff ⊃ −
3Λ4

128π2

∫
d2θ θ2

(
ψ2λ2

)
× 20

a6

= − 15

32π2

Λ4

a6
ψ2λ2 (2.38)

The four point function 〈ψψλλ〉 has been explicitly computed in the background of

a single instanton to match this answer.

2.5 Seiberg-Witten curves from M-theory

In this section, following [26], we review the M-theory construction [10] of the

Seiberg-Witten curves for N = 2 quiver gauge theories in four dimensions. This

will fix our conventions, and set the stage for the explicit calculations in the sections

that follow.

We begin with a collection of NS5 branes and D4 branes in Type IIA string theory,

arranged as shown in Table 2.1. The first four directions {x0, x1, x2, x3} are longitu-

dinal for both kinds of branes and span the space-time R1,3 where the quiver gauge

theory is defined. After compacting the x5 direction on a circle S1 of radius R5,

we uplift the system to M-theory by introducing a compact eleventh coordinate x10

with radius R10. We finally minimize the world-volume of the resulting M5 branes;
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

NS5 branes − − − − − − · · · · ·
D4 branes − − − − · · − · · · −

Table 2.1: Type IIA brane configuration: − and · denote longitudinal and transverse
directions respectively; the last column refers to the eleventh dimension after the
M-theory uplift.

in this way we obtain the Seiberg-Witten curve for a 5-dimensional N = 1 gauge

theory defined in R1,3 × S1 which takes the form of a 2-dimensional surface inside

the space parameterized by {x4, x5, x6, x10}. To get the curve for the N = 2 theory

in four dimensions, we first perform a T-duality along x5 and then take the limit of

small (dual) radius. Thus, in terms of the dual circumference

β =
2πα′

R5

, (2.39)

the 4-dimensional limit corresponds to β → 0. Let us now give some details.

2.5.1 Brane solution

We want to engineer a conformal quiver with n SU(2) nodes, two massive funda-

mental flavors attached to the first node, two massive fundamental flavors attached

to the last node and one massive bi-fundamental hypermultiplet between each pair

of nodes1. To do so we consider a brane system in Type IIA consisting of:

• n+1 NS5 branes separated by finite distances along the x6 direction; we denote

them as NS5i with i = 1, . . . , n+ 1.

• Two semi-infinite D4 branes ending on NS51 and two semi-infinite D4 branes

ending on NS5n+1; we call them flavour branes.
1With this field content, the β-function vanishes for each SU(2) factor; see (A.1).
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• Two finite D4 branes stretching between NS5i and NS5i+1 for i = 1, . . . , n; we

will refer to them as colour branes.

In Fig. 2.2 we have represented, as an example, the set-up for the 2-node quiver

theory (n = 2).

Figure 2.2: NS5 and D4 brane set up for the conformal SU(2)× SU(2) quiver theory

The brane configuration is best described in terms of the complex combinations

x4 + ix5 ≡ 2πα′v and x6 + ix10 ≡ s , (2.40)

or their exponentials

w ≡ e
2πα′v
R5 = eβv and t ≡ e

s
R10 (2.41)

which are single-valued under integer shifts of x5 and x10 along the respective cir-

cumferences. Notice that we have introduced factors of α′ to assign to v scaling

dimensions of a mass; this choice will be particularly convenient for our later pur-
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poses. For each NS5i the variable si satisfies the Poisson equation in the v-plane [10]

∇2 si = fi (2.42)

where the source term in the right hand side describes the pulling on the i-th NS5

brane due to the D4 branes terminating on it from each side. For our configuration

this is simply a sum of four δ-functions localized at the relevant D4 positions in the

v-plane. We denote the positions of the flavour D4 branes on the left by
(
A

(1)
0 , A

(2)
0

)
,

those of the flavour D4 branes on the right by
(
A

(1)
n+1, A

(2)
n+1

)
, and those of the colour

D4 branes between NS5i and NS5i+1 by
(
A

(1)
i , A

(2)
i

)
. Since x5 is compact, we have

to take into account also the infinite images of these brane positions and hence the

solution of the Poisson equation (2.42) is

si
R10

=
∞∑

k=−∞

{
log
[
β
(
v − A(1)

i−1

)
− 2πik

]
+ log

[
β
(
v − A(2)

i−1

)
− 2πik

]
− log

[
β
(
v − A(1)

i

)
− 2πik

]
− log

[
β
(
v − A(2)

i

)
− 2πik

]}
+ const.

(2.43)

for i = 1, . . . , n+ 1. Using the identity

∞∏
k=1

(
1 +

x2

k2

)
=

sinhπx

πx
, (2.44)

and exponentiating the above result, this can be rewritten as

e
si
R10 = ti

sinh
(
β
2

(
v − A(1)

i−1

))
sinh

(
β
2

(
v − A(2)

i−1

))
sinh

(
β
2

(
v − A(1)

i

))
sinh

(
β
2

(
v − A(2)

i

)) , (2.45)

where ti is related to the integration constant in (2.43). The asymptotic positions

of the NS5 branes can be obtained by taking the limits rev → −∞ (i.e. w → 0)
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and realv → +∞ (i.e. w →∞) and are given by

e
si
R10

∣∣∣
w→0

= ti

√√√√Ã
(1)
i−1 Ã

(2)
i−1

Ã
(1)
i Ã

(2)
i

≡ t
(0)
i , e

si
R10

∣∣∣
w→∞

= ti

√√√√ Ã
(1)
i Ã

(2)
i

Ã
(1)
i−1Ã

(2)
i−1

≡ t
(∞)
i .

(2.46)

Here we have introduced tilded variables according to

Ã = eβ A (2.47)

for any given A.

As argued in [10], the difference in the asymptotic positions of the NS5 branes is

related to the complexified UV coupling constant of the gauge theory on the color

D-branes; more precisely if we define

τi =
θi
π

+ i
8π

g2
i

(2.48)

where θi and gi are the θ-angle and the Yang-Mills coupling for the SU(2) theory of

the i-th node, we have

πiτi ∼
si − si+1

R10

. (2.49)

However, since the distance between the NS5 branes is different in the two asymp-

totic regions exp v → ±∞, there is some ambiguity in this definition. We fix it as

in [10,26] and use

qi = eπiτi =
ti
ti+1

or, equivalently, ti = tn+1

n∏
j=i

qj . (2.50)

The overall constant tn+1 drops out from all equations and can be set to 1 with-

out any loss of generality. In subsequent sections we will confirm that the above

identification of the UV coupling constants is fully consistent with the Nekrasov

multi-instanton calculations.
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2.5.2 The 5-dimensional curve

The general Seiberg-Witten curve for the 5-dimensional theory defined on the color

D4 branes takes the form of a polynomial equation [10] in the t and w variables

introduced in (2.41): ∑
p,q

Cp,q t
pwq = 0 . (2.51)

Since there are always only two D4 branes in each region and in total we have (n+1)

NS5 branes, the polynomial in (2.51) must be of degree 2 in w and of degree (n+ 1)

in t. Of course, there are two equivalent ways of writing it. One is:

C1 : w2Q2(t) + wQ1(t) +Q0(t) = 0 , (2.52)

where the Q’s are polynomials in t of degree (n+ 1); the other is:

C2 : tn+1 Pn+1(w) + tn Pn(w) + · · · t P1(w) + P0(w) = 0 , (2.53)

where each of the P ’s is a polynomial of degree 2 in w. Using the known solutions

of t when w → 0 or w →∞, the form C1 can be written as

C1 : w2

n+1∏
i=1

(
t− t(∞)

i

)
+ wQ2(t) + d′

n+1∏
i=1

(
t− t(0)

i

)
= 0 . (2.54)

Having fixed to 1 the coefficient of the highest term w2tn+1, in (2.54) there are (n+3)

undetermined constants in this equation: d′ and the (n + 2) coefficients of Q2. On

the other hand, using the fact that when t → 0 and t → ∞ there are two flavour

branes at w = (Ã
(1)
0 , Ã

(2)
0 ) and w = (Ã

(1)
n+1, Ã

(2)
n+1) respectively, we can write the form

C2 of the curve as

C2 : tn+1

2∏
α=1

(
w− Ã(α)

n+1

)
+ tn Pn(w) + · · · t P1(w) + d

2∏
α=1

(
w− Ã(α)

0

)
= 0 . (2.55)
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Again we have fixed to 1 the coefficient of the highest term w2 tn+1, but in this form

there are (3n+ 1) undetermined parameters: d and the three coefficients for each of

the n polynomials Pk’s.

Equating the two forms (2.54) and (2.55) allows us to find relations that determine

some of the curve parameters: for instance, by comparing the coefficients of w2 t0

and w0 tn+1 in the two expressions we get

d = (−1)n+1

n+1∏
i=1

t
(∞)
i , d′ = Ã

(1)
n+1Ã

(2)
n+1 . (2.56)

Similarly, by comparing the coefficients of w t0 and w tn+1 we find that the undeter-

mined polynomial Q2(t) in (2.54) takes the form

Q2(t) = −
(
Ã

(1)
n+1 + Ã

(2)
n+1

)
tn+1 +

n∑
k=1

ck t
k + (−1)n

(
Ã

(1)
0 + Ã

(2)
0

) n+1∏
i=1

t
(∞)
i . (2.57)

Proceeding in a similar way one can fix the coefficients of w2 and w0 in the n

quadratic polynomials Pi’s of (2.55). In the end, all but n parameters in the Seiberg-

Witten curve are fixed; the n free coefficients that remain parametrize the Coulomb

branch of the SU(2)n quiver gauge theory. One subtlety is that the constant terms

in (2.54) and (2.55) match only if the following identity is satisfied:

Ã
(1)
0 Ã

(2)
0

n+1∏
i=1

t
(∞)
i = Ã

(1)
n+1 Ã

(2)
n+1

n+1∏
i=1

t
(0)
i . (2.58)

Using the explicit expressions (2.46) for the asymptotic positions of the NS5 branes,

we see this is identically satisfied and both sides are equal to (Ã
(1)
0 Ã

(2)
0 Ã

(1)
n+1 Ã

(2)
n+1)1/2.

This shows that indeed the two forms C1 and C2 of the Seiberg-Witten curve are fully

equivalent.
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2.5.3 The 4-dimensional curve

We now dimensionally reduce to four dimensions by first performing a T-duality and

then taking the limit β → 0. To find explicit expressions it necessary to introduce the

physical parameters of the 4-dimensional theory and rewrite the geometric positions

of the various branes in terms of these. In order to do this, for each pair of colour D4

branes we define the center of mass and relative positions in the v-plane according

to

A
(1)
i = ai + Āi , A

(2)
i = −ai + Āi (2.59)

for i = 1, . . . , n. The relative position ai is identified with the vacuum expectation

value of the adjoint scalar field Φi of the i-th SU(2) factor in the quiver theory.

Furthermore we remove the global U(1) factor by requiring

Ā1 + · · ·+ Ān = 0 , (2.60)

and identify the relative positions of the centers of mass with the physical masses of

the bi-fundamental hypermultiplets, i.e.

mi,i+1 = Āi − Āi+1 (2.61)

for i = 1, . . . , n−1. Finally, the physical masses of the fundamental hypermultiplets

attached to the first and the last NS5 branes are related to the positions of the

flavour D4 branes measured with respect to the first and last center of mass in the

v-plane, namely

m1 = A
(1)
0 − Ā1 , m2 = A

(2)
0 − Ā1 , m3 = A

(1)
n+1− Ān , m4 = A

(2)
n+1− Ān . (2.62)

All this is displayed in Fig. 2.2 for the case n = 2.
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Given this set-up, it is rather straightforward to obtain the 4-dimensional Seiberg-

Witten curve. However, in general it is not so simple to write explicit expressions in

terms of the relevant physical parameters. Thus, we discuss in detail the following

three cases:

• the conformal SU(2)n quiver with massless hypermultiplets;

• the SU(2) theory with Nf = 4 massive fundamental flavours;

• the SU(2)× SU(2) quiver theory with generically massive hypermultiplets.

• The conformal SU(2)n quiver

When all matter hypermultiplets are massless the curve equation drastically simpli-

fies. Indeed, all stacks of colour branes have the same center of mass positions, so

that (2.60) implies that Āi = 0 for i = 1, . . . , n. Moreover, setting to zero the four

fundamental masses implies that A(1)
0 = A

(2)
0 = A

(1)
n+1 = A

(2)
n+1 = 0. Using this, we

have

t
(0)
i = t

(∞)
i = ti (2.63)

where the constants ti are defined in terms of the gauge couplings qi according to

(2.50). The 5-dimensional curve (2.54) then becomes

w2

n+1∏
i=1

(t− ti)− 2w
(
tn+1 − 1

2

n∑
k=1

ck t
k − (−1)n

n+1∏
i=1

ti

)
+

n+1∏
i=1

(t− ti) = 0 . (2.64)

We now take the 4-dimensional limit β → 0 after writing ck = ck0 +ck1β+ck2β
2 +· · ·

and w = expβv. The O(β0) and O(β1) terms yield algebraic constraints for ck0 and

ck1 that can be easily solved. Instead, the O(β2) term leads to the 4-dimensional

Seiberg-Witten curve. Writing v = x t and setting tn+1 = 1, the curve becomes

x2(t) =
Pn−1(t)

t (t− t1) · · · (t− tn)(t− 1)
(2.65)
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where Pn−1(t) is a polynomial of degree n− 1, whose n coefficients parametrize the

Coulomb branch of the SU(2)n theory. This is precisely the form of the Seiberg-

Witten curve discussed in [5].

When the matter multiplets are massive, things become more involved. While it is

always quite straightforward to write formal expressions, it is not always immediate

to identify the meaning of the various coefficients in terms of the physical parameters

of the gauge theory. Thus to avoid clumsy general expressions we discuss in detail

the cases with n = 1 and n = 2.

• The SU(2) theory with Nf = 4

When n = 1 the formulæ (2.59)-(2.62) lead to

A
(1)
0 = m1 , A

(2)
0 = m2 , A

(1)
1 = a , A

(2)
1 = −a , A

(1)
2 = m3 , A

(2)
2 = m4 ,

(2.66)

where a is the vacuum expectation of the adjoint scalar field Φ. Then the curve

(2.54) becomes

w2
(
t− t(∞)

1

)(
t− t(∞)

2

)
− w

[(
m̃3 + m̃4

)
t2 − c t+

(
m̃1 + m̃2

)
t
(∞)
1 t

(∞)
2

]
+ m̃3m̃4

(
t− t(0)

1

)(
t− t(0)

2

)
= 0 (2.67)

where, according to (2.46) and (2.50),

t
(0)
1 = q

√
m̃1m̃2 , t

(∞)
1 =

q√
m̃1m̃2

, t
(0)
2 =

1√
m̃3m̃4

, t
(∞)
2 =

√
m̃3m̃4 (2.68)

and we are using the tilded variables m̃i according to the notation introduced in

(2.47). To obtain the 4-dimensional curve we expand w, c and all tilded variables

in powers of β. The O(β0) and O(β1) terms can be set to zero by suitably choosing
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the first two coefficients in the expansion of c, while the O(β2) term yields the

Seiberg-Witten curve for the SU(2) Nf = 4 theory. The result is [26–28]

v2(t−q)(t−1)−v
[
(m3+m4)t2−q

4∑
f=1

mf t+q(m1+m2)
]
+m3m4 t

2+u t+q m1m2 = 0 .

(2.69)

Here we have absorbed all terms linear in t and independent of v by redefining c into

a new parameter u. A simple dimensional analysis reveals that u has dimensions

of (mass)2. As pointed out in [5] it is a bit arbitrary to define the origin for this u

parameter when masses are present. Here we fix such arbitrariness by requiring

u
∣∣
q→0

= a2 . (2.70)

Shifting away the linear term in v in (2.69) and writing v = x t, we get [26–28]

x2(t) =
P4(t)

t2(t− q)2(t− 1)2
(2.71)

where P4(t) is a fourth-order polynomial in t of the form

P4(t) = −u t (t− q)(t− 1) +M4(t) (2.72)

where we have collected inM4(t) all terms that depend on the masses. The explicit

expression of this polynomial is given in (B.1). Using it and choosing a specific

determination for the square-root, one easily finds

Res t=0 (x(t)) =
m1 −m2

2
, Res t=q (x(t)) =

m1 +m2

2
,

Res t=1 (x(t)) =
m3 +m4

2
, Res t=∞ (x(t)) =

m4 −m3

2
.

(2.73)
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• The SU(2)×SU(2) quiver theory

For a 2-node quiver (see Fig. 2.2), the formulæ (2.59)-(2.62) read

A
(0)
1 = m1 +

m12

2
, A

(0)
2 = m2 +

m12

2
, A

(1)
1 = a1 +

m12

2
, A

(1)
2 = −a1 +

m12

2
,

A
(2)
1 = a2 −

m12

2
, A

(2)
2 = −a2 −

m12

2
, A

(3)
1 = m3 −

m12

2
, A

(3)
2 = m4 −

m12

2
(2.74)

where a1 and a2 are the vacuum expectation values of the adjoint scalars Φ1 and

Φ2 of the two SU(2) factors. With this configuration the 5-dimensional curve (2.54)

becomes

w2

3∏
i=1

(
t− t(∞)

i

)
− w

(m̃3 + m̃4√
m̃12

t3 − c2 t
2 − c1 t

−
√
m̃12

(
m̃1 + m̃2

) 3∏
i=1

t
(∞)
i

)
+
m̃3m̃4

m̃12

3∏
i=1

(
t− t(0)

i

)
= 0

(2.75)

where the asymptotic values are

t
(0)
1 = t1

√
m̃1m̃2 , t

(0)
2 = t2 m̃12 , t

(0)
3 =

1√
m̃3m̃4

,

t
(∞)
1 =

t1√
m̃1m̃2

, t
(∞)
2 =

t2
m̃12

, t
(∞)
3 =

√
m̃3m̃4

(2.76)

with

t1 = q1q2 , t2 = q2 . (2.77)
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We now take the 4-dimensional limit β → 0, proceeding as in the previous examples.

The resulting Seiberg-Witten curve is

v2(t− t1)(t− t2)(t− 1)

−v

[
(m3 +m4 −m12) t3 −

(( 4∑
f=1

mf −m12

)
t1 + (m3 +m4 +m12) t2 −m12

)
t2

+

(
(m1 +m2 −m12) t1 +m12 t2 +

( 4∑
f=1

mf +m12

)
t1 t2

)
t− (m1 +m2 +m12) t1 t2

]

+

[(
m3 −

m12

2

)(
m4 −

m12

2

)
t3 −

(m2
12

4
− u2

)
t2 +

(m2
12

4
− u1

)
t2 t

−
(
m1 +

m12

2

)(
m2 +

m12

2

)
t1 t2

]
= 0 . (2.78)

Here we have exploited the freedom to redefine the arbitrary coefficients c1 and c2

into the parameters u1 and u2 for which we require the following classical limit

u1

∣∣
q1,q2→0

= a2
1 and u2

∣∣
q1,q2→0

= a2
2 . (2.79)

In Section 2.7 we will confirm the validity of this requirement.

In order to put the curve in a more convenient form, we shift away the linear term

in v in (2.78) and then write v = x t, obtaining

x2(t) =
P6(t)

t2 (t− t1)2(t− t2)2(t− 1)2
, (2.80)

where P6(t) is a polynomial of degree six in t of the form

P6(t) = −t (u2 t− t2 u1)(t− t1)(t− t2)(t− 1) +M6(t) (2.81)

with M6(t) containing all mass-dependent terms. The explicit expression of this
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polynomial is given in (B.3). Using it we find

Res t=0 (x(t)) =
m1 −m2

2
, Res t=t1 (x(t)) =

m1 +m2

2
, Res t=t2 (x(t)) = m12 ,

Res t=1 (x(t)) =
m3 +m4

2
, Res t=∞ (x(t)) =

m4 −m3

2
. (2.82)

2.5.4 From the 4-dimensional curve to the prepotential

The spectral curve (2.80) encodes all relevant information about the effective quiver

gauge theory through the Seiberg-Witten differential

λ = x(t)dt . (2.83)

If we differentiate λ with respect to u1 and u2, we get (up to normalizations which

are irrelevant for our present purposes)

∂λ

∂u1

' dt

y
,

∂λ

∂u2

' t dt

y
, (2.84)

where

y2 = P6(t) . (2.85)

This is the standard equation defining a genus-2 Riemann surface. Such a surface

admits a canonical symplectic basis with two pairs of 1-cycles (α1, α2) and (β1, β2)

whose intersection matrix is αi ∩ αj = βi ∩ βj = δij. The periods of the Seiberg-

Witten differential λ along these cycles represent the quantities ai and aDi in the

effective gauge theory, namely

ai =
1

2πi

∮
αi

λ , aDi =
1

2πi

∮
βi

λ . (2.86)
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Through these relations, ai and aDi are determined as functions of the ui’s (and,

of course, of the UV couplings qi and of the mass parameters). Inverting these

relations, one can express the ui’s in terms of the ai’s and, substituting them into

the dual periods, obtain aDi (a). Since

aDi (a) =
∂F

∂ai
, (2.87)

one can reconstruct in this way the prepotential F (up to a-independent terms).

By comparing this prepotential with the one obtained from the multi-instanton

calculus via localization one can therefore test the validity of the proposed form of

the Seiberg-Witten curve.

However, an alternative and more efficient approach has been presented in [12,13] in

which the difficult computations of the dual periods aDi are avoided and the effective

prepotential is directly put in relation with the residues of the quadratic differential

x2(t)dt2 in the following way

Res t=ti
(
x2(t)

)
=
∂F̃

∂ti
. (2.88)

As we will show in more detail below, assuming this relation and just computing the

α-periods of the Seiberg-Witten differential we can readily reconstruct F̃ from the

spectral curve and check that it coincides with the effective prepotential F computed

via localization up to mass-dependent but a-independent shifts (so that F̃ and F

encode the same effective gauge couplings); the expression of these shifts is however

rather interesting, and we will comment on this in the next sections.
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2.6 The SU(2) theory with Nf = 4

We show how to derive the effective prepotential for the SU(2) Nf = 4 theory

starting from the curve (2.71) and the residue formula (2.88) which in this case

reads

Res t=q
(
x2(t)

)
=
∂F̃

∂q
. (2.89)

In doing this we do not only provide a generalization of the results presented in [13],

but also set the stage for the discussion of the quiver theory in the next section.

Using the curve (2.71) and the explicit expression of the polynomial P4 reported in

(B.1), the above residue formula leads to

q(1− q)∂F̃
∂q

= u− 1− q
2

(
m2

1 +m2
2

)
+
q

2
(m1 +m2) (m3 +m4) + q (m1m2 +m3m4) .

(2.90)

Combining this with the residues (2.73) amounts to rewrite the Seiberg-Witten curve

(2.71) as

x2(t) =
(m1 −m2)2

4t2
+

(m1 +m2)2

4(t− q)2
+

(m3 +m4)2

4(t− 1)2
− m2

1 +m2
2 + 2m3m4

2t(t− 1)

+
q(q − 1)

t(t− q)(t− 1)

∂F̃

∂q
.

(2.91)

We now clarify the meaning of F̃ . Imposing in (2.90) the boundary value (2.70) for

u, we easily find

q
∂F̃

∂q

∣∣∣
q→0

= a2 − 1

2

(
m2

1 +m2
2

)
, (2.92)

from which we deduce that F̃ cannot be directly identified with the effective gauge

theory prepotential, whose classical term is in fact Fcl = a2 log q. Therefore, to

ensure the proper classical limit we shift F̃ according to

F̃ = F̂ − 1

2

(
m2

1 +m2
2

)
log q , (2.93)
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and rewrite (2.90) as

q(1− q)∂F̂
∂q

= u+
q

2
(m1 +m2) (m3 +m4) + q (m1m2 +m3m4) . (2.94)

The function F̂ has the correct classical limit, but it is not yet the gauge theory

prepotential since it is determined by an equation in which the four masses do not

appear on equal footing. There are two independent ways to remedy this and restore

complete symmetry among the flavors, namely by redefining F̂ as2

I) : F̂ = FI +
1

2
log(1− q) (m1 +m2) (m3 +m4) , (2.95)

II) : F̂ = FII −
1

2
log(1− q) (m1m2 +m3m4) . (2.96)

In this way, from (2.94) we get

I) : q(1− q)∂FI

∂q
≡ (1− q)UI = u+ q

∑
f<f ′

mfm
′
f , (2.97)

II) : q(1− q)∂FII

∂q
≡ (1− q)UII = u+

q

2

∑
f<f ′

mfm
′
f . (2.98)

The minor difference in the numerical coefficient in front of the mass terms in these

two equations is, actually, quite significant. In fact, as we will see, FI is the Nekrasov

prepotential for the SU(2) Nf = 4 theory, while FII is the SO(8) invariant prepoten-

tial that can be derived from the Seiberg-Witten curve of [2] expressed in terms of

the UV coupling q.

To verify this statement in an explicit way, we take

m1 = m2 = m , m3 = m4 = M . (2.99)
2All other possibilities can be seen as linear combinations of these two. It is interesting to

observe that the shifts in (2.97) and (2.98) are directly related to the so-called U(1) dressing
factors used in the AGT correspondence [4].
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This is a simple choice of masses that allows us to exhibit all non-trivial features of

the calculation. With these masses the curve (2.71) becomes

x2(t) =
P2(t)

t(t− 1)2(t− q)2
(2.100)

where

P2(t) = −Ct2 +
(
u(1 + q)− q(m−M)2 + q2(m+M)2

)
t− q

(
u− (1− q)m2 + 2qmM

)
= C(e2 − t)(t− e3) (2.101)

with

C = u+ 2qmM −M2(1− q) . (2.102)

The expressions of the two roots e2 and e3 can be easily obtained by solving the

quadratic equation P2(t) = 0; in the 1-instanton approximation we find3

e2 = q
(

1− m2

u
+ q

m2 (u2 +M2u+ 2mMu−m2M2)

u3
+ . . .

)
,

e3 = 1 +
M2

u−M2
+ q

M2 (m2M2 −m2u− 2mMu− u2)

u(u−M2)
+ . . .

(2.103)

The Seiberg-Witten differential associated to the spectral curve (2.100) is

λ = x(t)dt =

√
(e2 − t)(t− e3)

t

√
C dt

(1− t)(t− q)
; (2.104)

it possess four branch points at t = 0, e2, e3 and ∞ and two simple poles at t = q

and 1. This singularity structure is shown in Fig. 2.3. The cross-ratio of the four
3Here and in the following, for brevity we explicitly exhibit the results only up to one or two

instantons, but we have checked that everything works also for higher instanton numbers.
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0
e2

α

q

0
e2

α

q≡
e3

∞1

e3

∞1

Figure 2.3: Branch cuts and singularities of the α-period of the Seiberg-Witten
differential λ of the SU(2) Nf = 4 theory

branch points is

ζ =
e2

e3

= q

(
1− (m2 +M2)u−m2M2

u2

)
(2.105)

+ q2

(
(m2 +M2)u3 + 2mM(m2 +M2)u2 − 2m2M2(m+M)2u+ 2m4M4

u4

)
+ . . .

In the massless limit, note that the cross ratio reduces to the Nekrasov counting

parameter q, as expected. As always, we identify the α-period of the Seiberg-Witten

differential with the vacuum expectation value a, namely

a =
1

2πi

∮
α

λ = Res t=q (λ) +

√
C

π

∫ e2

0

√
e2 − t
t

√
e3 − t

(1− t)(q − t)
dt . (2.106)

It is important to stress that the α-cycle corresponds to a closed contour encircling

both the branch cut from 0 to e2 and the simple pole of λ at t = q, see Fig. 2.3.

With this prescription, the α-cycle has a smooth limit when the masses are set to

zero. This explains the two terms on the right hand side of (2.106): the residue over

the pole in t = q, which in view of (2.73) is simply m, and the integral over the

branch cut. This integral is explicitly evaluated in Appendix C (see in particular

(C.9)); in the final result the mass term coming from the residue is canceled and we
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are left with

a =

√
C(e3 − q)
1− q

+

√
C

1− q

∞∑
n,`=0

(−1)`
(

1/2

n+ 1

)(
1/2

n+ `+ 1

)
en+1

2 q`

e
n+`+1/2
3

−
√
C

1− q

∞∑
n=0

n∑
`=0

(−1)(n+`)

(
1/2

n+ 1

)(
1/2

`

)
en+1

2

e
`−1/2
3

.

(2.107)

Exploiting the expressions of the roots e2 and e3, it is not difficult to realize that the

right hand side of (2.107) has an expansion in positive powers of q and that only a

finite number of terms contribute to a given order, i.e. to a given instanton number.

For example, using (2.102) and (2.103), up to one instanton we find

a =
√
u

(
1 + q

u2 +m2u+ 4mMu+M2u−m2M2

4u2
+ . . .

)
, (2.108)

which can be inverted leading to

u = a2

(
1− q a

4 +m2a2 + 4mMa2 +M2a2 −m2M2

2a2
+ . . .

)
. (2.109)

This result allows us to finally obtain the prepotential. Inserting it into (2.97) we

get

FI − a2 log q = q

(
a2

2
+
m2 + 4mM +M2

2
+
m2M2

2a2

)
+ . . . (2.110)

On the right hand side we recognize the 1-instanton prepotential for the SU(2)

Nf = 4 theory obtained in Nekrasov’s approach described in Appendix A4. This

instanton prepotential follows from that of the U(2) theory after decoupling the U(1)

contribution and, as is well known, does not possess the SO(8) flavor symmetry of the

effective theory; however the terms which spoil this symmetry are all a-independent

(like for example the pure mass terms in (2.110)) and therefore are not physical. On
4For the explicit expression see for example Section 7 and Appendix D of [29], keeping in mind

that mthere
i =

√
2mhere

i .
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the other hand, if we insert (2.109) into (2.98) we get

FII − a2 log q = q

(
a2

2
+
m2M2

2a2

)
+ . . . (2.111)

which is the 1-instanton term of the SO(8) invariant prepotential following from the

Seiberg-Witten curve of [2]. In this respect it is worth recalling that this curve,

differently from (2.71), is parametrized in terms of the IR coupling of the massless

theory Q(0) which is related to the UV coupling q by [30]

q =
θ4

2

θ4
3

(
Q(0)

)
. (2.112)

As shown for example in [29, 31], if one rewrites the prepotential derived from the

Seiberg-Witten curve in terms of q using (2.112) one can precisely recover the above

SO(8) invariant result.

The last ingredient is the perturbative 1-loop contribution which is given by5

Fpert = −2a2 log
4a2

Λ2
+

1

4

4∑
i=1

[
(a+mi)

2 log
(a+mi)

2

Λ2
+ (a−mi)

2 log
(a−mi)

2

Λ2

]
.

(2.113)

From the complete prepotential F = F +Fpert one obtains the IR effective coupling

Q of the massive theory by means of

Q = eπiτ with πiτ =
1

2

∂2F
∂a2

. (2.114)

Notice that both FI and FII lead to the sameQ since they only differ by a-independent

terms. For our specific mass choice (2.99), up to 1 instanton we find

Q =
q

16

(
1− m2 +M2

a2
+
m2M2

a4

)(
1 + q

a4 + 3m2M4

2a4
+ . . .

)
. (2.115)

5See also (A.25), with obvious modifications, in the limit ε1, ε2 → 0.
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As is well-known, given Q one can obtain the cross-ratio ζ of the four roots ei of the

associated Seiberg-Witten torus by means of the uniformization formula

ζ =
(e1 − e2)(e3 − e4)

(e1 − e3)(e2 − e4)
=
θ4

2

θ4
3

(
Q
)

(2.116)

which is the massive analogue of the massless relation (2.112). Using (2.115) and

expanding the Jacobi θ-functions we find

ζ = q

(
1− m2 +M2

a2
+
m2M2

a4

)
+ q2

(
m2 +M2

2a2
− m4 +M4

2a6
− m2M2(m2 +M2)

2a6
+
m4M4

a8

)
+ . . .

(2.117)

It is not difficult to check that this expression exactly agrees with the cross-ratio

(2.105) upon using the relations between a and u given in (2.108) and (2.109), thus

confirming in full detail the consistency of the calculations.

2.7 The SU(2)×SU(2) quiver theory

We now consider the 2-node quiver theory whose Seiberg-Witten curve takes the

form (see (2.80))

x2(t) =
P6(t)

t2 (t− q1q2)2(t− q2)2(t− 1)2
, (2.118)

where the sixth-order polynomial P6(t) is given in (B.3). In the following it will be

useful to use yet another form of the curve that can be obtained from (2.118) by

performing the rescaling (x, t)→ (x q2
−1, t q2). This yields

x2(t) =
p6(t)

t2 (t− q1)2(t− 1)2(q2t− 1)2
(2.119)
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where

p6(t) = P6(q2t) q
−4
2 = (u1 − u2t) t(t− 1)(t− q1)(q2t− 1) +M6(q2t) q

−4
2 . (2.120)

In this form the two SU(2) factors appear on the same footing and their weak

coupling limit is simply described by q1 and q2 approaching zero. In this limit the

punctured sphere which corresponds to the denominator of (2.119) looks as depicted

in Fig. 2.4.

Figure 2.4: Punctured sphere in the weak-coupling limit

In general the polynomial p6(t) defined in (2.120) is of order 6, and thus the hy-

perelliptic equation (see (2.85)) identifying the genus-2 Seiberg-Witten curve can be

written as

y2(t) = p6(t) = c
6∏
i=1

(t− ei) (2.121)

where ei’s are the six roots of the polynomial, which clearly are branch points for

the function y(t). With a projective transformation we can always fix three of them,

say e1, e3 and e6, in 0, 1 and∞ and lower by one the degree of the polynomial in the

right hand side; if we call ζ1, ζ2 and ζ̂ the remaining three parameters, corresponding

to three independent anharmonic ratios of the ei’s, the equation (2.121) reduces to

y2(t) = c t
(
t− 1

)(
t− ζ1

)(
t− ζ2

)(
t− ζ̂

)
. (2.122)

When the curve is put in this form, we can choose a symplectic basis of cycles {αi, βi}

in the Riemann sphere parametrized by the t variable as shown in Fig. 2.5, and then

proceed to compute the periods of the Seiberg-Witten differential and finally derive
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the effective prepotential. However, for generic values of the masses of the matter

0 ζ1 1 ζ̂ ζ2 ∞

α1 α2β2β1

Figure 2.5: Structure of branch cuts and a basis of cycles for the Riemann surface
described by Eq (2.122)

hypermultiplets this method is not practical since one is not able to find the roots

of p6(t) in closed form and only a perturbative approach in the masses is viable

to derive the effective prepotential. On the other hand we can exploit the residue

conditions (2.88), which after the rescalings we have performed, take the form

Res t=q1
(
x2(t)

)
=
∂F̃

∂q1

, Res t=1/q2

(
x2(t)

)
= −q2

2

∂F̃

∂q2

, (2.123)

and through them obtain some information on the prepotential directly from the

quadratic differential. Evaluating the residues using the curve equation (2.119), we

find

q1(1− q1)(1− q1q2)
∂F̃

∂q1

= u1 − q1u2 −
1

2

(
m2

1 +m2
2

)
+
q1

4

(
(m1 +m2)2 + (m1 +m2 −m12)2)

+
q1q2

2
(m1 +m2)

(
m12 +

4∑
f=1

mf

)
(2.124)

−q
2
1q2

4

(
m2

12 + 2
(
m1 +m2 −m12

) 4∑
f=1

mf + 4m3m4

)
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q2(1− q2)(1− q1q2)
∂F̃

∂q2

= u2 − q2u1 +m3m4 +
q2

4
m12

(
m12 + 2m3 + 2m4

)
+
q1q2

2

(
m3 +m4

)(
m1 +m2 −m12

)
(2.125)

−q1q
2
2

4

(
m2

12 + 2m12

4∑
f=1

mf + 2
(
m1 +m2

)(
m3 +m4

)
+ 4m1m2

)
.

Combining these with the residues (2.82) suitably rescaled for the new poles, we can

rewrite the curve as

x2(t) =
(m1 −m2)2

4t2
+

(m1 +m2)2

4(t− q1)2
+

m2
12

(t− 1)2
+

(m3 +m4)2

4(t− 1
q2

)2

− m2
1 +m2

2 + 2m3m4 + 2m2
12

2t(t− 1)
+

q1(q1 − 1)

t(t− q1)(t− 1)

∂F̃

∂q1

+
q2(1− 1

q2
)

t(t− 1)(t− 1
q2

)

∂F̃

∂q2

(2.126)

which is a simple generalization of (2.91). We now investigate the meaning of the

function F̃ appearing in the last two terms of (2.126). If we impose the boundary

conditions (2.79) on the ui’s, from (2.124) and (2.125) we obtain

q1
∂F̃

∂q1

∣∣∣
q1,q2→0

= a2
1 −

1

2

(
m2

1 +m2
2

)
,

q2
∂F̃

∂q2

∣∣∣
q1,q2→0

= a2
2 +m3m4 .

(2.127)

Thus, in order to match with the classical prepotential Fcl = a2
1 log q1 + a2

2 log q2, we

are led to the following redefinition

F̃ = F̂ − 1

2

(
m2

1 +m2
2

)
log q1 +m3m4 log q2 . (2.128)

Just as we did for the SU(2) Nf = 4 theory discussed in Section 2.6, here too we have

to make sure that all symmetries of the quiver model are correctly implemented. If

we just focus on the first group factor, we obtain an SU(2) theory with coupling

q1 and four effective flavors with masses {m1,m2, a2 +m12,−a2 +m12}. Therefore,
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according to (2.95) we have to redefine F̂ by the term

1

2
(m1 +m2) (a2 +m12 − a2 +m12) log(1−q1) = (m1 +m2)m12 log(1−q1) . (2.129)

Likewise, if we focus on the second group factor, we find an SU(2) theory with

coupling q2 and four effective flavors with masses {a1 − m12,−a1 − m12,m3,m4};

finally if we consider the quiver as whole, we have a "diagonal" SU(2) theory with

coupling q1q2 and four masses given by {m1,m2,m3,m4}. All in all, in order to im-

plement all symmetries of the quiver diagram and its subdiagrams, we must redefine

F̂ according to

F̂ = F + (m1 +m2)m12 log(1− q1)−m12 (m3 +m4) log(1− q2)

+
1

2
(m1 +m2) (m3 +m4) log(1− q1q2) .

(2.130)

It is interesting to observe that these logarithmic terms are like the U(1) dressing

factors commonly used in the context of the AGT correspondence [4]. Quite remark-

ably, if we combine (2.128) and (2.130), the two very asymmetric equations (2.124)

and (2.125) acquire a symmetric structure. Indeed, if we set

Ui = qi
∂F

∂qi
for i = 1, 2 , (2.131)

then equation (2.124) becomes

(1− q1)(1− q1q2)U1 =u1 − q1u2 +
q1

4

(
m12

(
m12 + 2m1 + 2m2

)
+ 4m1m2

)
+
q1q2

2

((
m1 +m2

)(
m12 + 2m3 + 2m4

)
+ 2m1m2

)
(2.132)

− q2
1q2

4

(
m12

(
m12 + 2m1 + 2m2 − 2m3 − 2m4

)
+ 4
∑
f<f ′

mFMf ′

)
,

while the corresponding equation for U2 following from (2.125) can be obtained from
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(2.132) with the replacements

q1 ↔ q2 , u1 ↔ u2 , (m1,m2)↔ (m3,m4) , m12 ↔ −m12 . (2.133)

This is precisely the exchange symmetry that should hold in the 2-node quiver model

under consideration. The function F therefore has all the required properties to be

identified with the effective prepotential of the SU(2)× SU(2) gauge theory. To check

this statement in an explicit way, we choose two mass configurations for which the

polynomial p6(t) in (2.119) can be factorized and its roots and period integrals can

be explicitly computed. Specifically we consider the following two cases:

A) : m1 = m2 = m , m3 = m4 = m12 = 0 , (2.134a)

B) : m1 = m2 = m3 = m4 = 0 , m12 = M . (2.134b)

As we will see, these mass configurations allow us to make the point and exhibit

all relevant features while keeping the treatment quite simple.

2.7.1 The IR prepotential from the UV curve

Case A): With the masses (2.134a) the polynomial p6(t) of the Seiberg-Witten

curve becomes

p6(t) = t(t− 1)(q2t− 1)
[
(u1− u2t)(t− q1) +m2q1 (q1q2t+ 1− q1 − q1q2)

]
. (2.135)

If we factorize the term in square brackets we immediately bring the curve to the

form (2.122), with c = −q2u2 and

ζ1 =
u1 + q1u2 +m2q2

1q2 −
√
D

2u2

, ζ̂ =
u1 + q1u2 +m2q2

1q2 +
√
D

2u2

, ζ2 =
1

q2

(2.136)
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where

D =
(
u1 − q1u2

)2
+ 2m2q1

[
q1q2u1 + u2

(
2− 2q1 − 2q1q2 + q2

1q2

)]
+m4q4

1q
2
2 . (2.137)

Then the spectral curve (2.119) reduces to6

x2(t) =
−u2(t− ζ1)(t− ζ̂)

t(t− 1)(t− q1)2(q2t− 1)
. (2.138)

For later purposes it is convenient to invert the relation (2.132) and the correspond-

ing one for U2 in order express u1 and u2 in terms of U1 and U2. For the mass

configuration (2.134a) we get

u1 =
(
1− q1

)
U1 + q1

(
1− q2

)
U2 −m2q1

(
1 + q2

)
,

u2 =
(
1− q2

)
U2 + q2

(
1− q1

)
U1 −m2q1q2 .

(2.139)

The Seiberg-Witten differential associated to the curve (2.138) is

λ = x(t) dt =

√
−u2(t− ζ1)(t− ζ̂)

t(t− 1)(q2t− 1)

dt

q1 − t
, (2.140)

and its singularity structure is shown in Fig. 2.6. The periods of λ along the cycles

α1 and α2 are identified with the vacuum expectation values a1 and a2, respectively.

Let us first consider the cycle α1 and note that it surrounds both the branch cut

from 0 to ζ1 and the pole in t = q1. Thus we have

a1 =
1

2πi

∮
α1

λ = Res t=q1 (λ) +
1

π

∫ ζ1

0

√
ζ1 − t
t

√
u2(ζ̂ − t)

(1− t)(1− q2t)

dt

q1 − t
.

(2.141)

The integral over the branch cut can be evaluated as explained in Appendix C (see

in particular Eq. (C.12)); it contains a contribution that cancels the residue and the

6Note that in the massless limit we have ζ1 → q1 and ζ̂ → u1/u2.
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0
ζ1

1 ζ̂ ζ2 = 1
q2

∞
α1 α2

q1

Figure 2.6: Branch cuts and singularities of the α-periods of the Seiberg-Witten
differential λ of the conformal SU(2)× SU(2) quiver

final result for a1 is

a1 =

√
u2(ζ̂ − q1)

(1− q1)(1− q1q2)
−

∞∑
n,`=0

(−1)n
(

1/2

n+ 1

)
fn+`+1 ζ

n+1
1 q`1 (2.142)

where the fn’s are the coefficients in the following Taylor expansion

√
u2(ζ̂ − t)

(1− t)(1− q2t)
=
∞∑
n=0

fn t
n , (2.143)

namely

fn = (−1)n
√
u2

n∑
`,k=0

(
1/2

`

)(
−1/2

k

)(
−1/2

n− `− k

)
qk2

ζ̂ `−1/2
. (2.144)

Using the expressions (2.136) for the roots it is not difficult to check that a1 has an

expansion in positive powers of q1 and q2 and that only a finite number of terms

contribute to a given instanton number. Substituting in the result the relations
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(2.139) we obtain the following weak coupling expansion7

a1 =
√
U1

(
1− q1

(
U1 − U2

)(
U1 +m2

)
4U2

1

− q1q2

(
U1 +m2

)
U2

4U2
1

(2.145)

− q2
1

(
U1 − U2

)(
U1

(
7U1 − 3U2

)(
U1 + 2m2

)
+ 3m4(U1 − 5U2

))
64U4

1

+ . . .

)

Let us now turn to the second period a2 along the cycle α2. Referring to Fig. 2.6

we have

a2 =
1

2πi

∮
α2

λ =
1

π

∫ ∞
1/q2

√
u2(t− ζ1)(t− ζ̂)

t(t− 1)(q2t− 1)

dt

t− q1

=
1

π

∫ 1

0

[√
u2(1− q2ζ1z)(1− q2ζ̂z)

(1− q2z)

1

(1− q1q2z)

]
dz√

z(1− z)

(2.146)

where the last step simply follows from the change of integration variable: t →

1/(q2z). This integral can be computed by expanding the factor in square brackets

in powers of z and then using

∫ 1

0

zndz√
z(1− z)

= (−1)n π

(
−1/2

n

)
. (2.147)

Inserting the root expressions (2.136) and exploiting the relations (2.139), we find

a2 =
√
U2

(
1− q2

U2 − U1

4U2

− q2
2

7U2
2 − 10U1U2 + 3U2

1

64U2
2

− q1q2
U1 +m2

4U2

+ . . .

)
.

(2.148)

Note that the results (2.145) and (2.148) are perturbative in the instanton counting

paramaters q1 and q2, but are exact in the mass deformation parameter m. We now
7For brevity we display only the results up to two instantons, but we have computed also higher

instanton contributions without difficulty.
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invert these weak-coupling expansions to obtain

U1 = a2
1 + q1

(a2
1 − a2

2

2
+m2 a

2
1 − a2

2

2a2
1

)
+ q1q2

(a2
1 + a2

2

4
+m2 a

2
1 + a2

2

4a2
1

)
+ q2

1

(13a4
1 − 14a2

1a
2
2 + a4

2

32a2
1

+m2 9a4
1 − 6a2

1a
2
2 − 3a4

2

16a4
1

+m4 a
4
1 − 6a2

1a
2
2 + 5a4

2

32a6
1

)
+ . . . ,

(2.149)

U2 = a2
2 + q2

a2
2 − a2

1

2
+ q1q2

(a2
1 + a2

2

4
+m2 a

2
1 + a2

2

4a2
1

)
+ q2

2

13a4
2 − 14a2

1a
2
2 + a4

1

32a2
2

+ . . . .

(2.150)

These two expressions are integrable, thus leading to the determination of F (up to

q-independent terms)

F = a2
1 log q1 + a2

2 log q2 + q1

(a2
1 − a2

2

2
+m2 a

2
1 − a2

2

2a2
1

)
+ q2

a2
2 − a2

1

2

+ q1q2

(a2
1 + a2

2

4
+m2 a

2
1 + a2

2

4a2
1

)
+ q2

2

13a4
2 − 14a2

1a
2
2 + a2

1

64a2
2

(2.151)

+ q2
1

(13a4
1 − 14a2

1a
2
2 + a4

2

64a2
1

+m2 9a4
1 − 6a2

1a
2
2 − 3a4

2

32a4
1

+m4 a
4
1 − 6a2

1a
2
2 + 5a4

2

64a6
1

)
+ . . . .

This precisely matches the q-dependent part of the prepotential derived using Nekrasov’s

localization techniques in the quiver theory when we choose the masses as in (2.134a)

and set the Ω-deformation parameters εi to zero (see Appendix A for details, and in

particular (A.17)).

Finally, adding the q-independent 1-loop contribution Fpert (see Eq. (A.26)), we may

obtain the complete prepotential of the effective theory

F =F + Fpert

=F − 2a2
1 log

4a2
1

Λ2
− 2a2

2 log
4a2

2

Λ2
+

1

2
(a1 +m)2 log

(a1 +m)2

Λ2

+
1

2
(a1 −m)2 log

(a1 −m)2

Λ2
+ a2

2 log
a2

1

Λ2

+
1

2
(a1 + a2)2 log

(a1 + a2)2

Λ2
+

1

2
(a1 − a2)2 log

(a1 − a2)2

Λ2
.

(2.152)
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This result represents a nice check of the spectral curve (2.138) and of the relations

(2.123).

Using all our findings so far, we can easily derive the weak-coupling expansions of

the roots (2.136) which are

ζ1 = q1

(
1− m2

a2
1

)(
1 + q1m

2 a
2
1 − a2

2

2a4
1

+ q1q2m
2 a

2
1 + a2

2

4a4
1

+ q2
1 m

2

(
a2

1 − a2
2

)(
5a4

1 + 7a2
1a

2
2 + 7a2

1m
2 − 19a2

2m
2
)

32a8
1

+ . . .

)
, (2.153)

ζ̂ =
a2

1

a2
2

(
1− q1

(
a2

1 − a2
2

)(
a2

1 +m2
)

2a4
1

− q2
a2

1 − a2
2

2a2
2

+ q1q2

(
a2

1 − a2
2

)(
a2

1 +m2
)

2a2
1a

2
2

− q2
1

(
a2

1 − a2
2

)(
a2

1 −m2
)(

3a4
1 + a2

1a
2
2 + a2

1m
2 + 11a2

2m
2
)

32a8
1

+ q2
2

(
a2

1 − a2
2

)(
7a2

1 − 11a2
2

)
32a4

2

+ . . .

)
, (2.154)

and
1

ζ2

= q2 . (2.155)

We remark that (2.153) and (2.154) are perturbative in the q’s but are exact in the

mass parameter.

Case B): Let us now briefly consider the second mass choice (2.134b). In this

case the spectral curve (2.119) becomes

x2(t) =
C(t− ζ3)(t− ζ̂)

t(t− q1)(q2t− 1)(t− 1)2
(2.156)

where

ζ3 =
−4u1 − 4u2 +M2(4− q1 − q2 + 2q1q2)− 4

√
D

8C
,

ζ̂ =
−4u1 − 4u2 +M2(4− q1 − q2 + 2q1q2) + 4

√
D

8C
,

(2.157)
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with

C = −u2 +
3M2

4
q2 −

M2

4
q1q2 ,

D =
1

16

(
4u1 + 4u2 −M2(4− q1 − q2 + 2q1q2)

)2
+ C

(
4u1 − 3M2q1 +M2q1q2

)
.

(2.158)

As in the previous case, it will prove useful to invert the relation (2.132) and the

corresponding one for U2; this leads to

u1 =
(
1− q1

)
U1 + q1

(
1− q2

)
U2 −

M2

4
q1

(
1 + q2

)
,

u2 =
(
1− q2

)
U2 + q2

(
1− q1

)
U1 −

M2

4
q2

(
1 + q1

)
.

(2.159)

We now compute the α-periods of the Seiberg-Witten differential λ = x(t)dt, whose

singularity structure is similar to the one shown in Fig. 2.6. The main difference is

that now t = q1 is a branch-point and not a pole, while t = 1 is a pole and not a

branch-point. Taking this into account we therefore have

a1 =
1

2πi

∮
α1

λ =
1

π

∫ q1

0

√
C(ζ3 − t)(t− ζ̂)

t(q1 − t)(1− q2t)

dt

(1− t)
. (2.160)

After rescaling t → q1t, we can easily compute the integral as discussed in the

previous case expanding in powers of t and exploiting (2.147). Making use of the

relations (2.159) to express the result in terms of Ui, we obtain

a1 =
√
U1

(
1− q1

U1 +M2

4U2
1

+ q2
U2

4U2
1

− q1q2
U2

4U1

− q2
1

7U2
1 − 10U1U2 + 3U2

2 +M2
(
14U1 − 6U2 + 3M2

)
64U 2

1

+ . . .

)
.

(2.161)

The second period a2 can be calculated along the same lines and the final result can

be obtained from (2.161) by simply exchanging q1 ↔ q2 and U1 ↔ U2. If we invert
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these formulæ and then integrate over q1 and q2, we get

F = a2
1 log q1 + a2

2 log q2 + q1
a2

1 − a2
2 +M2

2
+ q2

a2
2 − a2

1 +M2

2

+ q1q2
a2

1 + a2
2 −M2

4
+ q2

1

(13a4
1 − 14a2

1a
2
2 + a2

2

64a2
1

+
9M2

32
+
M2(M2 − 2a2

2)

64a2
1

)
+ q2

2

(13a4
2 − 14a2

1a
2
2 + a2

1

64a2
2

+
9M2

32
+
M2(M2 − 2a2

1)

64a2
2

)
+ . . . . (2.162)

This exactly matches the instanton prepotential derived using Nekrasov’s approach

in the quiver theory for the particular mass choice (2.134b) as one can see by com-

paring with (A.17).

Our results provide an explicit check of the UV equation of the Seiberg-Witten curve

and of the way in which the IR effective prepotential is explicitly encoded in it; this

will be confirmed in Section 3 by exploiting the AGT correspondence [4].

2.7.2 The period matrix and the roots

We now consider another approach to the derivation of the effective gauge theory

from the Seiberg-Witten curve, which is based on the computation of the period

matrix in terms of the roots of its defining equation (2.121). Taking the standard

basis of holomorphic differentials as

ωi =
ti−1 dt

y(t)
for i = 1, 2 , (2.163)

we denote their periods along the cycles described in Fig. 2.5 as follows:

∫
αj

ωi =
(
Ω(1)

)ij
,

∫
βj
ωi =

(
Ω(2)

)i
j
. (2.164)
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The period matrix τ of the curve is given by

τ = Ω−1
(1) Ω(2) . (2.165)

It is a symmetric matrix and has thus three independent entries τ11, τ22 and τ12. In

terms of these we introduce the quantities

Q1 = eiπτ11 , Q2 = eiπτ22 , Q̂ = eiπτ12 (2.166)

which will be conveniently used in the following. Given the period matrix τ , we
introduce the genus-2 θ-constants defined as

θ

[
~ε
~ε′

]
≡
∑
~n∈Z2

exp
{
πi
[(
~n+ ~ε

2

)t
τ
(
~n+ ~ε

2

)
+
(
~n+ ~ε

2

)t ~ε′ ]} , (2.167)

where ~ε, ~ε′ are two 2-vectors; in what follows we will only need to consider the case

in which these vectors have integer components.

The Thomae formulæ [32] can be used to express8 the anharmonic ratios ζ1, ζ2 and

ζ̂ in terms of the θ-constants. Specifically, one has

ζ1 =

θ2

 10

00

 θ2

 11

00


θ2

 01

00

 θ2

 00

00


, ζ2 =

θ2

 10

00

 θ2

 00

11


θ2

 01

00

 θ2

 11

11


, ζ̂ =

θ2

 00

11

 θ2

 11

00


θ2

 11

11

 θ2

 00

00


.

(2.168)

Using (2.166) and(2.167), we find that ζ1, 1/ζ2 and ζ̂ can be expressed as infinite

sums containing positive integer powers ofQ1 andQ2, and both positive and negative
8See for instance [33] and Appendix C of [34].
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powers of Q̂. Up to second order in Q1 and Q2, we have

ζ1 = Q1
4(Q̂+ 1)2

Q̂

[
1−Q1

2(Q̂+ 1)2

Q̂
+Q2

2(Q̂− 1)2

Q̂
−Q1Q2

8(Q̂2 − 1)2

Q̂2
(2.169)

+Q2
1

3Q̂4 + 10Q̂3 + 18Q̂2 + 10Q̂+ 3

Q̂2
+Q2

2

(Q̂− 1)2(Q̂2 − 4Q̂+ 1)

Q̂2
+ . . .

]
,

1

ζ2

= Q2
4(Q̂− 1)2

Q̂

[
1 +Q1

2(Q̂+ 1)2

Q̂
−Q2

2(Q̂− 1)2

Q̂
−Q1Q2

8(Q̂2 − 1)2

Q̂2
(2.170)

+Q2
1

(Q̂+ 1)2(Q̂2 + 4Q̂+ 1)

Q̂2
+Q2

2

3Q̂4 − 10Q̂3 + 18Q̂2 − 10Q̂+ 3

Q̂2
+ . . .

]
,

and

ζ̂ =
(Q̂+ 1)2

(Q̂− 1)2

[
1− 8(Q1 +Q2 − 8Q1Q2) + (Q2

1 +Q2
2)

4(Q̂2 + 8Q̂+ 1)

Q̂
. . .

]
.

(2.171)

As is well-known, the period matrix of the Seiberg-Witten curve is identified with

the matrix of the coupling constants of the low-energy effective theory, which are

expressed in terms of the prepotential F according to

2πiτij =
∂2F
∂ai∂aj

. (2.172)

55



Using the prepotential (2.152), from (2.172) and (2.166) we get

Q1 = q1
(a2

1 − a2
2)(a2

1 −m2)

16a4
1

[
1 + q1

(1

2
− 3m2a2

2

2a4
1

)
− q2

2

+ q2
1

(21a4
1 + 3a4

2

64a4
1

−m2 21a2
1a

2
2 + 15a4

2

16a6
1

+m4 3a4
1 − 60a2

1a
2
2 + 177a4

2

64a8
1

)
+ q2

2

3a2
1 − 3a2

2

32a2
2

+ q1q2
3m2a2

2

2a4
1

+ . . .

]
, (2.173)

Q2 = q2
a2

1 − a2
2

16a2
2

[
1− q1

(1

2
+
m2

2a2
1

)
+
q2

2
+ q2

2

21a4
2 + 3a4

1

64a4
2

+ q2
1

(3a2
2 − 3a2

1

32a2
1

−m2 9a2
2 − a2

1

16a4
1

+m4 15a2
2 + a2

1

32a6
1

)
+ . . .

]
, (2.174)

and

Q̂ =
a1 + a2

a1 − a2

[
1 + q1

m2a2

a3
1

− q1q2
m2a2

2a3
1

− q2
2

a3
1

16a3
2

− q2
1

( a3
2

16a3
1

−m2 3a2
1a2 + 6a3

2

8a5
1

−m4 6a2
1a2 + 8a1a

2
2 − 15a3

2

16a7
1

)
+ . . .

]
. (2.175)

These formulæ represent the explicit map between the IR effective couplings and

the UV data of the quiver theory. Inserting the above expressions into (2.169)–

(2.171) we can derive the corresponding anharmonic ratios ζ1, ζ̂ and ζ2, and find

perfect agreement with the expressions in (2.153), (2.154) and (2.155)! The same

agreement is found also when we use the second mass configuration (2.134b) and

the corresponding prepotential (2.162), thus confirming the validity of the whole

picture.

Summarizing, we have verified that the Seiberg-Witten curve is correct since it re-

produces the correct prepotential of the low-energy effective field theory. In doing

so, we have also found the precise relations between the UV data, namely the in-

stanton expansion parameters q1, q2 (which encode the UV gauge couplings) and the

Coulomb branch parameters a1, a2 on one side, and the IR couplings τ11, τ22, τ12 (or

56



equivalently Q1, Q2 and Q̂) on the other side. Such relations are given in (2.173)–

(2.175) which in turn follow from

ζ1 =

θ2

 10

00

 θ2

 11

00


θ2

 01

00

 θ2

 00

00


(
Q
)
,

1

ζ2

=

θ2

 01

00

 θ2

 11

11


θ2

 10

00

 θ2

 00

11


(
Q
)
, ζ̂ =

θ2

 00

11

 θ2

 11

00


θ2

 11

11

 θ2

 00

00


(
Q
)
.

(2.176)

These relations are the genus-2 analogues of the well-known relation [30] that holds

in the SU(2) theory with Nf = 4 and links the instanton counting parameter q of

the UV theory to the effective IR coupling Q (see (2.116) for the massive theory

or (2.112) for the massless one). Note that in the SU(2), Nf = 4 case, for purely

dimensional reasons, the vacuum expectation value of the adjoint scalar cannot

appear in the massless UV/IR relation but, as we have just shown, this is no longer

the case for quivers with more than one node.
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Chapter 3

The Omega background and the

2d/4d correspondence

3.1 Nekrasov and the Omega background

The Seiberg-Witten solution was a giant leap towards our understanding of the low

energy physics of N = 2 gauge theories. However, a direct computation of the com-

plete instanton contribution to the prepotential within the gauge theory was missing

until Nekrasov came up with his revolutionary work in [3]. We note that there were

a few successful attempts [24, 35] at low instanton orders. At higher orders, due to

large instanton measures, the integrals involved became extremely hard. In order

to compute the instanton corrections, Nekrasov studied the gauge theory in what

is called the Ω-background. The Ω-background compactifies the instanton moduli

space, and makes it finite. This occurs very often in our computations, and we will

very briefly describe it.

N = 2 super Yang-Mills action in four dimensions is obtained from N = 1 super

Yang-Mills action in six dimensions after compactification. The undeformed theory
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is obtained by compactifying, say x4 ≡ x4 + 2πR4 and x5 ≡ x5 + 2πR5 in the six

dimensional flat space,

ds2
6 = gµνdx

µdxν − dxadxa, a = 4, 5 . (3.1)

The Ω-deformed theory is obtained by choosing the deformed metric,

ds2
6 = gµν(dx

µ + V µ
a (x)dxa)(dxν + V ν

b (x)dxb)− dxcdxc , (3.2)

where V µ
a (x) = Ωµ

a,νx
ν and Ωµ

a,ν are matrices of Lorentz rotations. The deformation

is parameterized by ε1 and ε2 as follows,

Ωµν =
1√
2



0 0 0 ε1

0 0 ε2 0

0 −ε2 0 0

−ε1 0 0 0


. (3.3)

The partition function of the deformed gauge theory is given by,

Z =
∞∑
k=0

Zkq
k , (3.4)

where q ∼ Λ2N is the dynamically generated scale. For conformal theories, q is

simply the bare coupling constant exponentiated q = e2πiτ0 . The contribution of the

kth instanton sector to the partition function of the deformed theory is,

Zk =
1

k!

εk

(ε1ε2)k

∮ k∏
I=1

dφIQ(φI)

P (φI)P (φI + ε)

∏
1≤I<J≤k

φ2
IJ(φ2

IJ − ε2)

(φ2
IJ − ε21)(φ2

IJ − ε22)
, (3.5)
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where,

Q(x) =

Nf∏
f=1

(x+mf ) ,

P (x) =
N∏
f=1

(x− al) , (3.6)

and φIJ = φI−φJ , ε = ε1+ε2. The poles that contribute to the integral are classified

by partitions of the instanton number k, characterized by Young Tableaux. While

the Zk have an essential singularity as we turn off the deformation parameters, the

corresponding free energy,

F(a, ε1, ε2, q) = −ε1ε2 logZ(a, ε1, ε2, q) (3.7)

has a smooth limit. The claim of Nekrasov in [3] is that, this free energy in the limit

the deformation parameters vanish, matches the prepotential of the undeformed

gauge theory. These results have been succesfully compared with those obtained

from the more traditional Seiberg-Witten analysis. For details on the computation,

we refer to Appendix A. The ε deformed free energy gives the graviphoton corrected

prepotential of the gauge theory.

3.2 The 2d/4d Correspondence

We now consider Ω-deformed quiver theories with the goal of both confirming, and

extending the results of the previous chapter. We will also exploit the remarkable

2d/4d correspondence proposed by Alday-Gaiotto-Tachikawa (AGT) in [4]. This

correspondence states that the Nekrasov partition function of a linear quiver with

gauge group SU(2)n is directly related to the (n+3)-point spherical conformal block
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in two dimensional Liouville CFT. Let us give some details1.

3.3 The AGT map

In 2-dimensional Liouville theory with central charge c = 1 + 6Q2, let us consider

the conformal block 〈 n+2∏
i=0

Vαi(zi)
〉
{ξ1,...,ξn}

(3.8)

where Vα denotes a primary operator with Liouville momentum α and conformal

dimension

∆α = α(Q− α) . (3.9)

In (3.8) the subscript {ξ1, . . . , ξn} means that the correlator is computed in the spe-

cific pair-of-pants decomposition of the (n + 3)-punctured sphere where only the

primary field with Liouville momentum ξi and dimension ∆ξi plus its descendants

propagate in the i-th internal line (see Fig. 3.1). Furthermore, we take the degen-

Figure 3.1: Pair-of-pants decomposition of the spherical conformal block with (n+3)
punctures

erate limit in which the (n + 3)-punctured sphere reduces to a sequence of (n + 1)

3-punctured spheres connected by n long thin tubes with sewing parameters qi, as

shown in Fig. 3.2. If we denote the local coordinates on each 3-sphere by wi, then
1For a more extended and technical discussion see for example [36] or the review [37]
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the sewing procedure requires that

wi+1

wi
= qi with |qi| < 0 . (3.10)

In the local coordinates of each sphere, the punctures are located at (0, 1,∞); in

particular all the unsewn external punctures are at 1 (except for the first and the

last one which are at 0 and∞ respectively). However, if we use the local coordinates

of the last sphere as coordinates for the global surface, the sewing relations (3.10)

imply that the external punctures of the first n spheres are at

ti =
n∏
j=i

qj for i ∈ {1, . . . n} . (3.11)

This is precisely the same relation we found in (2.50). When written in terms of the

Figure 3.2: Three-punctured spheres connected by long thin tubes, with sewing
parameters qi

ti’s, the conformal block (3.8) becomes [36]

〈
Vα0(0)

n∏
i=1

Vαi(ti)Vαn+1(1)Vαn+2(∞)
〉
{ξ1,...,ξn}

= N B(ti,∆αi ,∆ξi) (3.12)

where the prefactor

N = t
−∆α0−∆α1+∆ξ1
1

n∏
i=2

t
−∆ξi−1

−∆αi+∆ξi

i = t
−∆α0
1

n∏
i=i

t
−∆αi
i q

∆ξi
i (3.13)

originates from the conformal transformations that move the vertices Vαi from 1 to ti,

while B(ti,∆αi ,∆ξi) contains all other relevant information, including the structure
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function coefficients and the contribution of all descendants in the internal legs.

According to [4], it is possible to establish a correspondence between the conformal

block (3.12) and the partition function of the ε-deformed SU(2)n quiver theory. To

do so, one has to identify qi with the gauge coupling of the i-th group factor, set

Q =
ε1 + ε2√
ε1ε2

, (3.14)

and choose the Liouville momenta as follows:

α0 =
Q

2
+
m1 −m2

2
√
ε1ε2

, α1 =
Q

2
+
m1 +m2

2
√
ε1ε2

,

αi =
Q

2
− mi−1,i√

ε1ε2
for i = 2, . . . , n ,

ξi =
Q

2
− ai√

ε1ε2
for i = 1, . . . , n ,

αn+1 =
Q

2
− m3 +m4

2
√
ε1ε2

, αn+2 =
Q

2
− m3 −m4

2
√
ε1ε2

,

(3.15)

where the m’s are the fundamental or bi-fundamental masses of the matter hyper-

multiplets as discussed in the previous sections, and ai is the vacuum expectation

value of the adjoint scalar of the i-th gauge group. From (3.9) and (3.15) one can

check that the conformal dimensions of the various operators are

∆α0 =
(ε1 + ε2)2 − (m1 −m2)2

4ε1ε2
, ∆α1 =

(ε1 + ε2)2 − (m1 +m2)2

4ε1ε2
,

∆αi =
(ε1 + ε2)2 − 4m2

i−1,i

4ε1ε2
for i = 2, . . . , n ,

∆ξi =
(ε1 + ε2)2 − 4a2

i

4ε1ε2
for i = 1, . . . , n ,

∆αn+1 =
(ε1 + ε2)2 − (m3 +m4)2

4ε1ε2
, ∆αn+2 =

(ε1 + ε2)2 − (m3 −m4)2

4ε1ε2
.

(3.16)
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The remarkable observation of [4] is that2,

B(ti,∆αi ,∆ξi) = ZU(1) e
−Finst
ε1ε2 (3.17)

where Finst is the Nekrasov instanton prepotential and ZU(1) ensures the correct

decoupling of the U(1) factors. This U(1) contribution can be explicitly computed

(see for example [36]) and the result is

ZU(1) =
n∏
i=1

n+1∏
j=i+1

(
1− ti

tj

)−2αi(Q−αj)

=
n∏
i=1

n+1∏
j=i+1

(1− qi . . . qj−1)−2αi(Q−αj) . (3.18)

The structure of these U(1) terms is actually quite simple: each factor in (3.18) can

be associated to a connected subdiagram with four legs that is obtained by grouping

together adjacent nodes of the quiver; the Liouville momenta of the two resulting

inner legs determine the exponent [4]. For example, for n = 1 we have just one

diagram with one node and coupling constant q; its inner legs carry momenta α1

and α2, and the corresponding U(1) factor is

(1− q)−2α1(Q−α2) . (3.19)

For n = 2 we have a subdiagram corresponding to the first node with coupling

constant q1 and inner legs with momenta α1 and α2; a subdiagram with coupling

constant q2 and inner legs carrying momenta α2 and α3, and finally a diagram with

the two nodes combined, which has coupling q1q2 and inner legs with momenta α1

and α3. Thus the U(1) dressing factor is

(1− q1)−2α1(Q−α2) (1− q2)−2α2(Q−α3) (1− q1q2)−2α1(Q−α3) . (3.20)
2In our subsequent analysis we ignore the structure function coefficients in the conformal block

B. These are related to the 1-loop contribution to the prepotential while our focus is the instanton
part.
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This structure, which can be easily generalized to higher values of n, bears a clear

resemblance with that of the symmetry factors introduced in Sections 2.6 and 2.7 in

the redefinition of F̂ (see in particular (2.95) and (2.130)). In fact, the U(1) terms

(3.18) can be considered as the proper generalization in the ε-deformed theory of

the symmetry factors discussed in the previous sections. Finally, combining (3.12)

and (3.17), we can write

〈
Vα0(0)

n∏
i=1

Vαi(ti)Vαn+1(1)Vαn+2(∞)
〉
{ξ1,...,ξn}

= e
− F̃ (ε)
ε1ε2 (3.21)

where

F̃ (ε) = −ε1ε2 logN − ε1ε2 logZU(1) + Finst . (3.22)

3.4 The UV curve

The 2-dimensional Liouville theory also contains information about the Seiberg-

Witten curve of the 4-dimensional quiver gauge theory and its quantum deformation.

To see this let us consider the normalized conformal block (3.12) with the insertion

of the energy momentum tensor, namely3

φε2(z) =

〈
Vα0(0)

∏n
i=1Vαi(ti)T (z)Vαn+1(1)Vαn+2(∞)

〉
〈
Vα0(0)

∏n
i=1Vαi(ti)Vαn+1(1)Vαn+2(∞)

〉 (3.23)

3From now on we simplify the notation by omitting the subscript {ξ1, . . . , ξn} in the correlators.
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with |z| < 1. As shown in Appendix D, using the conformal Ward identities it is

possible to rewrite φε2(z) as

φε2(z) =
∆α0

z2
+

n∑
i=1

∆αi

(z − ti)2
+

∆αn+1

(z − 1)2
−

∆α0 +
∑n

i=1 ∆αi + ∆αn+1 −∆αn+2

z(z − 1)

+
n∑
i=1

ti(ti − 1)

z(z − 1)(z − ti)
∂

∂ti
log
〈
Vα0(0)

n∏
i=1

Vαi(ti)Vαn+1(1)Vαn+2(∞)
〉
.

(3.24)

All terms on the right hand side of this equation are proportional to 1/(ε1ε2) since

both the conformal dimensions ∆’s and the logarithm of the conformal block scale

in that manner. Thus the following limit

lim
ε1,ε2→0

[
− ε1ε2 φε2(z)

]
≡ φ2(z) (3.25)

is well-defined and non-singular. In this limit only the mass dependent terms of the

conformal weights contribute so that one finds

φ2(z) =
(m1 −m2)2

4z2
+

(m1 +m2)2

4(z − t1)2
+

n∑
i=2

m2
i−1,i

(z − ti)2
+

(m3 +m4)2

4(z − 1)2

−
m2

1 +m2
2 + 2m3m4 + 2

∑n
i=2m

2
i−1,i

2z(z − 1)
+

n∑
i=1

ti(ti − 1)

z(z − 1)(z − ti)
∂F̃

∂ti

(3.26)

where

F̃ = lim
ε1,ε2→0

F̃ (ε) . (3.27)

φ2(z) has the same form of x2(z) appearing in the expression of the Seiberg-Witten

curve of the quiver theories described in the previous sections (see for example (2.91)

or (2.126)). Indeed the mass terms are exactly the ones needed to produce the correct

residues of the Seiberg-Witten differential and coincide with those we have written

for the single node and the two-node quivers in Sections 2.6 and 2.7. Also the other

terms have the right structure, and thus what remains to be checked is whether the

function F̃ in (3.26) coincides with the analogous quantity appearing in the Seiberg-

66



Witten curve. We now do this check in the three cases we have analyzed in more

detail.

• The SU(2) theory with Nf = 4

For the SU(2) theory with Nf = 4 things are particularly simple, since in this case

there is only a non-trivial puncture at t1 = q and F̃ defined in (3.27) becomes

F̃ = a2 log q − 1

2
(m2

1 +m2
2) log q +

1

2
(m1 +m2)(m3 +m4) log(1− q) + Finst . (3.28)

Using (2.93) and (2.95), one can immediately see that this agrees with the function

F̃ appearing in the Seiberg-Witten curve (2.91).

• The SU(2)×SU(2) quiver theory

In the 2-node quiver there are two non-trivial punctures. In the above discussion

we have located them at t1 = q1q2 and t2 = q2, while in the curve derivation of Sec-

tion 2.7 we have considered a different (though completely equivalent) configuration

with punctures at t1 = q1 and t2 = 1/q2. Thus, before comparing we have to make

the appropriate changes in the prefactor N which, being directly connected to the

factorization of the conformal block in pair-of-pants diagrams, crucially depends on

where the non-trivial punctures are located. If we set the punctures at t1 = q1 and

t2 = 1/q2, we have to use

N = q
−∆α0−∆α1+∆ξ1
1 q

∆ξ2
+∆α2−∆α3

2 . (3.29)
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The corresponding expression for F̃ is then

F̃ = a2
1 log q1 + a2

2 log q2 −
1

2
(m2

1 +m2
2) log q1 +m3m4 log q2

+m12(m1 +m2) log(1− q1)−m12(m3 +m4) log(1− q2)

+
1

2
(m1 +m2)(m3 +m4) log(1− q1q2) + Finst ,

(3.30)

which exactly matches the one appearing in the M-theory derivation of the Seiberg-

Witten curve, as one can see using (2.128) and (2.130). This same result can also

be obtained from the general expression (3.26) if we notice that under the change

of variables that maps (q1q2, q2, 1) to (q1, 1, 1/q2), the term of φ2(z) proportional to

1/(z(z−1) produces an extra contribution to F̃ modifying its expression and leading

to (3.30).

• The conformal SU(2)n quiver

When all masses are zero, F̃ in (3.27) is simply

F̃ =
N∑
i=1

a2
i log qi + Finst . (3.31)

Up to 1-loop t-independent contributions, this is precisely the prepotential F of the

conformal quiver gauge theory, and thus the corresponding Seiberg-Witten curve

can be written as

φ2(z) =
n∑
i=1

ti(ti − 1)

z(z − 1)(z − ti)
∂F

∂ti
, (3.32)

confirming in this case the direct identification of the residues at ti with the deriva-

tives of the gauge theory prepotential [12, 13]. We can therefore say that the AGT

correspondence provides the analogue of the Matone relations [11] for the quiver

gauge theory. One can go even further and map the curve (3.32) to that in (2.65)

obtained using the M-theory analysis, thus finding the explicit relation between the

68



Coulomb parameters ui appearing there and the ti-derivatives of the prepotential.

3.5 The quiver prepotential from null-vector decou-

pling

We now present the derivation of the Ω-deformed prepotential for the SU(2)n quiver

model in the Nekrasov-Shatashvili limit [14] using a null-vector decoupling equation

in the Liouville theory introduced in the previous section. The observable we con-

sider is the conformal block obtained by deforming (3.12) with the insertion of the

degenerate field Φ2,1(z) of the Virasoro algebra [38], namely

Ψ(z) =
〈
Vα0(0)

n∏
i=1

Vαi(ti) Φ2,1(z)Vαn+1(1)Vαn+2(∞)
〉
{ξ1,...,ξn}

(3.33)

with |z| < 1. The degenerate field Φ2,1 has conformal dimension

∆2,1 = −1

2
− 3

4

ε2
ε1

(3.34)

and satisfies the null-vector condition

ε1
ε2

d2Φ2,1(z)

dz2
+ :T (z)Φ2,1(z) : = 0 . (3.35)

This condition implies that Ψ(z) obeys a second order differential equation that can

be obtained from the conformal Ward identities as discussed in Appendix D. If we

normalize the correlator (3.33) with the unperturbed one (3.21) and write

Ψ(z) = e
− F̃ (ε)
ε1ε2 Φ(z) , (3.36)
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then the differential equation for Ψ(z) turns into the following differential equation

for Φ(z)

[
ε1
ε2

∂2

∂z2
− 2z − 1

z(z − 1)

∂

∂z
+

n∑
i=1

( ti(ti − 1)

z(z − 1)(z − ti)
∂

∂ti
− 1

ε1ε2

ti(ti − 1)

z(z − 1)(z − ti)
∂F̃ (ε)

∂ti

)
+

∆α0

z2

+
n∑
i=1

∆αi

(z − ti)2
+

∆αn+1

(z − 1)2
−

∆α0 +
∑n

i=1 ∆αi + ∆2,1 + ∆αn+1 −∆αn+2

z(z − 1)

]
Φ(z) = 0 .

(3.37)

This equation is well-suited to take the Nekrasov-Shatashvili limit [14] in which

ε2 → 0 with ε1 6= 0, provided we assume that

Φ(z) = e
−W (z)

ε1 (3.38)

where W (z) is regular in ε1. Multiplying (3.37) by (−ε1ε2) and sending ε2 to zero,

the differential equation simplifies in a few ways: the linear derivatives in z and

ti drop out along with the term proportional to the conformal dimension ∆2,1 of

the degenerate field. Furthermore, in the Nekrasov-Shatashvili limit the generalized

prepotential F̃ (ε) in (3.22) becomes

F̃ (ε) → F̃ + ε1F̃
(1) + ε21F̃

(2) (3.39)

where the ε1 corrections arise from the explicit ε-dependence of the prefactors N and

ZU(1). Since the terms proportional to the conformal dimensions ∆αi yield contri-

butions at most of order ε21, in the end we obtain the Schroedinger-type differential

equation: (
− ε21

d2

dz2
+ V (z, ε1)

)
Φ(z) = 0 , (3.40)

where

V (z, ε1) = V (0)(z) + ε1 V
(1)(z) + ε21 V

(2)(z) (3.41)
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with

V (0)(z) = φ2(z) ,

V (1)(z) =
n∑
i=1

ti(ti − 1)

z(z − 1)(z − ti)
∂F̃ (1)

∂ti
, (3.42)

V (2)(z) = − 1

4z2
−

n∑
i=1

1

4(z − ti)2
− 1

4(z − 1)2
+

n+ 1

4z(z − 1)
+

n∑
i=1

ti(ti − 1)

z(z − 1)(z − ti)
∂F̃ (2)

∂ti
.

Note that V (0) is the Seiberg-Witten curve of the undeformed theory. To solve (3.40)

we make a WKB-like ansatz for Φ(z) writing

W (z) =

∫ z

P (z′, ε1) dz′ , (3.43)

and then expand P in powers of ε1

P (z, ε1) =
∞∑
n=0

εn1 P
(n)(z) . (3.44)

Substituting in (3.40) we find

− P (z, ε1)2 + ε1
dP (z, ε1)

dz
+ V (z, ε1) = 0 , (3.45)

which in turn can be solved perturbatively in ε1. The first few terms are

P (0)(z) =
√
φ2(z) , (3.46a)

P (1)(z) =
1

2

d

dz
logP (0)(z) +

V (1)(z)

2P (0)(z)
, (3.46b)

P (2)(z) =
P (1)′(z)− P (1)2

(z)

2P (0)(z)
+

V (2)(z)

2P (0)(z)
, (3.46c)

and so on. Since P (0)(z)dz is simply the Seiberg-Witten differential of the un-

deformed theory, it is more than natural to define the deformed Seiberg-Witten
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differential as

λ(ε1) = P (z, ε1) dz . (3.47)

The periods of λ(ε1) along the αi-cycles can then be interpreted as the ai’s in the

deformed theory, namely

ai =
1

2πi

∮
αi

λ(ε1) =
∞∑
n=0

εn1 a
(n)
i with a

(n)
i =

1

2π

∮
αi

P (n)(z) dz . (3.48)

Clearly the above integrals depend on the prepotential F and its ti-derivatives;

therefore we can use this information to fix the ε1-dependence of F by demanding

consistency, namely by choosing ai’s as independent variables and thus taking them

to be constant. Even if it does not seem so at first sight, this procedure is fully

equivalent to that used for instance in [39, 40] to obtain the deformed prepotential

for the N = 2∗ SU(2) theory or the N = 2 SU(2) theory with Nf = 4. Indeed, also

in our case the periods ai which determine the monodromy properties of the wave

function Φ(z), are constant, since the ε1 (and qi) dependence of the prepotential is

fixed precisely to achieve this goal. It is remarkable that the prepotential obtained in

this way agrees with the one computed using localization methods in the Nekrasov-

Shatashvili limit.

3.5.1 The prepotential from deformed period integrals

We now illustrate the above procedure, focusing on the examples considered in the

previous sections.
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• The SU(2) theory with Nf = 4

When n = 1, the ε1-terms of the potential in the Schroedinger-type equation are

V (1)(z) = q
(m1 +m2 +m3 +m4)

2z(z − q)(z − 1)
,

V (2)(z) = − 1

4z2
− 1

4(z − q)2
− 1

4(z − 1)2
+

1

2z(z − 1)
+

3q − 1

4z(z − 1)(z − q)
,

(3.49)

while V (0)(z) is given by the Seiberg-Witten curve φ2(z).

To proceed we choose the same mass configuration that we have discussed in Sec-

tion 2.6, namely m1 = m2 = m, m3 = m4 = M , which allows us to write the curve

in the factorized form

φ2(z) =
C(e2 − z)(z − e3)

z(z − 1)2(z − q)2
. (3.50)

Here the roots e2 and e3 and the constant C are the same as in (2.102) and (2.103),

but they are expressed in terms of the prepotential instead of the Coulomb modulus

u.

At order ε01, the period has already been calculated in Section 2.6 (see (2.108));

expressing it in terms of U ≡ q ∂F/∂q, we have (up to 2 instantons)

a(0) =
√
U

[
1− q

4

(
1 +

(m2 + 4mM +M2)

U
+
m2M2

U2

)
− q2

64

(
7+

14m2 + 48mM + 14M2

U
+

3m4 + 16m3M + 60m2M2 + 16mM3 + 3M4

U2

+
6m2M2(m2 + 8mM +M2)

U3
+

15m4M4

U4

)
+ . . .

]
. (3.51)

At order ε1 we have instead

a(1) =
1

2πi

∮
α

P (1)(z) dz = −q m+M

2π
√
C

∫ e2

0

dz√
z(e2 − z)(e3 − z)

(3.52)

where in the second step we used (3.46b) and discarded the total derivative term.
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This integral can be evaluated as a power series and, up to two instantons, we find

a(1) = −q m+M

2
√
U

[
1 + q

3U2 + U(m2 + 4mM +M2) + 3m2M2

4U2
+ . . .

]
. (3.53)

Using the formulæ in (3.46) iteratively, we can easily compute the order ε21 correction

to the period and get

a(2) =− q

16U
5
2

[
3U2 +m2M2 +

q

8U2

(
17U4 + 7U3(3m2 + 8mM + 3M2) (3.54)

+ 2U2(m4 + 20m2M2 +M4)− 5Um2M2(m2 − 8mM +M2) + 35m4M4
)

+ . . .

]
.

So far, we have calculated the period integral as an expansion of the form

a = a(0)(U) + ε1 a
(1)(U) + ε21 a

(2)(U) + . . . (3.55)

We now invert this expression and determine how U should depend on ε1 so that a

be a constant. We can do this by writing

U = U (0) + ε1 U
(1) + ε21 U

(2) + . . . (3.56)

and demanding consistency order by order in ε1. Once U is computed, we can obtain

the deformed prepotential F by integrating it with respect to (the logarithm of) q.

The zeroth-order term that we get in this way clearly coincides with (2.110), while

the first successive corrections are given by

F (1) = q (m+M) +
q2

2
(m+M) + . . . ,

F (2) =
q

8

(
3 +

m2M2

a4

)
+

q2

128

(
23− m2 +M2

a2
+

2m4 + 16m2M2 + 2M4

a4

− 15m2M2(m2 +M2)

a6
+

21m4M4

a8

)
+ . . .

(3.57)

These precisely match the microscopic results obtained from the Nekrasov partition
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function via localization methods.

• The SU(2)× SU(2) quiver theory

When n = 2 the Schroedinger problem is algebraically more complicated, but still

doable. The ε1-corrections of the potential V are

V (1)(z) =
(m1 +m2 +m3 +m4)q1q2

2z(z − 1)(z − q1q2)
+

(m1 +m2 + 2m12)q1q2

2z(z − q2)(z − q1q2)
+

(m3 +m4 − 2m12)q2

2z(z − 1)(z − q2)
,

V (2)(z) =− 1

4z2
− 1

4(z − q1q2)2
− 1

4(z − q2)2
− 1

4(z − 1)2
+

3

4z(z − 1)

− η1

z(z − 1)(z − q2)
− η2

z(z − q2)(z − q1q2)
(3.58)

where

η1 =
(1− 2(1 + q1)q2 + 3q1q

2
2)

2(1− q1q2)
, η2 =

q2(1 + 5q2
1q2 − 3q1(1 + q2))

4(1− q1q2)
. (3.59)

To proceed we make the simplifying mass choices discussed in Section 2.7, see

(2.134).

Case A): In our present conventions the Seiberg-Witten curve takes the factorized

form

φ2(z) =
−u2(z − q2ζ1)(z − q2ζ̂)

z(z − 1)(z − q1q2)2(z − q2)
(3.60)

where the various constants are exactly those appearing in (2.136), with the ui’s

written in terms of the Ui’s using (2.139). Furthermore, with this mass choice the

first-order term of the potential simplifies to

V (1)(z) = − mq1q2(1 + q2 − 2z)

z(z − 1)(z − q2)(z − q1q2)
. (3.61)
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Using the same basis of α-cycles discussed in Section 2.7, we find that the first

correction to the a1-period takes the form

a
(1)
1 =

1

2πi

∮
α1

P (1)(z) dz = −mq1q2

2
√
u2

∫ q2ζ1

0

dz√
z(q2ζ1 − z)

(1 + q2 − 2z)√
(1− z)(q2 − z)(q2ζ̂ − z)

.

(3.62)

Note that, unlike the case of the undeformed period (2.141), now there are no poles

in the integrand and the integral can be done simply by expanding the second

factor of (3.62) in powers of z and writing the resulting integrals in terms of Euler

β-functions. In this way we find4

a
(1)
1 =− mq1

2
√
U1

[
1− q1

U1(U2 − 3U1) +m2(3U2 − U1)

4U2
1

+ q2 + . . .

]
. (3.63)

The first correction to the a2 period can be similarly performed and we obtain

a
(1)
2 = −3mq1q2

4
√
U2

+ . . . . (3.64)

At order ε21 we find

a
(2)
1 = − q1

16U
5
2

1

[
3U2

1 −m2U2− q2

(
5U2

1 +m2(U1 + U2)
)
− q1

8

(
17U2

1 − 7U1U2 + 2U2
2

+
m2(21U2

1 − 24U1U2 − 5U2
2 )

U1

+
m4(2U2

1 − 25U1U2 + 35U2
2 )

U2
1

)
+ . . .

]
,

a
(2)
2 = − q2

16
√
U2

[
3 + 5q1 + q2

2U2
1 − 7U1U2 + 17U2

2

8U2
1

+ . . .

]
. (3.65)

Inverting the expansion of the periods order-by-order in ε1, we can determine the

ε1 dependence of U1 and U2. At each order the resulting expressions turn out to

be integrable and the prepotential can be recovered. At order ε01 we get the same
4To keep the expressions compact we only exhibit the results up to 2 instantons. The calcula-

tions have been performed for higher instantons numbers as well.
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expression as in (2.151), while the corrections of order ε1 and ε21 are

F (1) = m

(
q1 +

1

2
q2

1 + q1q2 + . . .

)
, (3.66)

F (2) = q1
3a4

1 −m2a2
2

8a4
1

+ q2
3

8
+ q1q2

7a4
1 +m2a2

2

16a4
1

+ q2
2

23a4
2 − a2

1a
2
2 + 2a4

1

128a4
2

(3.67)

+q2
1

(
23a4

1 − a2
1a

2
2 + 2a4

2

128a4
1

− m2(a4
1 + 15a4

2)

128a6
1

+
m4(2a4

1 − 15a2
1a

2
2 + 21a4

2)

128a8
1

)
+ . . .

One can check that this precisely matches the ε1 corrections to the prepotential

obtained using Nekrasov’s analysis, thus validating the entire picture.

Case B): The Seiberg-Witten curve in this case is

φ2(z) =
C(z − q2 ζ3)(z − q2 ζ̂)

z(z − q1q2)(z − q2)2(z − 1)
(3.68)

where the constants are the same as in (2.157) and (2.158), provided we write the ui’s

in terms of the Ui’s by means of (2.159). For this mass configuration, the first-order

correction to the Schroedinger potential is

V (1)(z) = −
M q2

(
z(1− q1) + q1(1− q2)

)
z(z − q1q2)(z − q2)(z − 1)

, (3.69)

and the αi-cycles are unchanged from the undeformed theory. Thus the period

integrals are straightforward to perform, leading to the following results

a
(1)
1 =

1

2πi

∮
α1

P (1)(z) dz = −Mq2

2
√
C

∫ q1q2

0

dz√
z(q1q2 − z)

z(1− q1) + q1(1− q2)√
(q2ζ3 − z)(q2ζ̂ − z)(1− z)

= − q1M

2
√
U1

[
1 + q1

3U1 − U2 +M2

4U1

− q2

2
+ . . .

]
. (3.70)
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At order ε21 we find

a
(2)
1 =− q1

16
√
U1

[
3 + 5q2 + q1

17U2
1 − 7U1U2 + 2U2

2 −M2(21U1 − 4U2)− 2M4

8U2
1

+. . .

]
.

(3.71)

The period integrals a(k)
2 along the α2-cycle can be obtained from the above expres-

sions by the following symmetry operations

U1 ↔ U2 , q1 ↔ q2 , M ↔ −M . (3.72)

Inverting as before the map between the ai’s and the Ui’s, and integrating with

respect to the coupling constants qi, we find that the first ε1-corrections to the

prepotential are

F (1) = M(q1 − q2) +
M

2
(q2

1 − q2
2) + . . . ,

F (2) =
3(q1 + q2)

8
+

7q1q2

16
+ q2

1

23a4
1 − a2

1a
2
2 + 2a4

2 −M2(4a2
1 + a2

2) + 2M4

128a4
1

+ q2
2

23a4
2 − a2

1a
2
2 + 2a4

1 −M2(4a2
2 + a2

1) + 2M4

128a4
2

+ . . . .

(3.73)

This perfectly agrees with the Nekrasov prepotential for this mass configuration.

Combining the results for the two different mass configurations with the symmetry

that exchanges the two gauge groups, the associated masses and coupling constants,

we can therefore claim that the results following from the null-vector decoupling

equation are completely consistent with the Ω-deformed prepotential obtained from

localization in the Nekrasov-Shatashvili limit.
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Chapter 4

Surface Operators in Gauge Theories

4.1 Introduction

The study of how a quantum field theory responds to the presence of defects is a

very important subject, which has received much attention in recent years especially

in the context of supersymmetric gauge theories. In this section we study a class of

two-dimensional defects, also known as surface operators, on the Coulomb branch

of the N = 2? SU(N) gauge theory in four dimensions1. Such surface operators

can be introduced and analyzed in different ways. They can be defined by the

transverse singularities they induce in the four-dimensional fields [16,42], or can be

characterized by the two-dimensional theory they support on their world-volume

[21,22].

A convenient way to describe four-dimensional gauge theories with N = 2 super-

symmetry is to consider M5 branes wrapped on a punctured Riemann surface [5,10].

From the point of view of the six-dimensional (2, 0) theory on the M5 branes, sur-

face operators can be realized by means of either M5′ or M2 branes giving rise,
1For a review of surface operators see [41].
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respectively, to codimension-2 and codimension-4 defects. While a codimension-2

operator extends over the Riemann surface wrapped by the M5 brane realizing the

gauge theory, a codimension-4 operator intersects the Riemann surface at a point.

Codimension-2 surface operators were systematically studied in [43] where, in the

context of the of the 4d/2d correspondence [4], the instanton partition functions of

N = 2 SU(2) super-conformal quiver theories with surface operators were mapped

to the conformal blocks of a two-dimensional conformal field theory with an affine

sl(2) symmetry. These studies were later extended to SU(N) quiver theories whose

instanton partition functions in the presence of surface operators were related to con-

formal field theories with an affine sl(N) symmetry [44]. The study of codimension-4

surface operators was pioneered in [38] where the instanton partition function of the

conformal SU(2) theory with a surface operator was mapped to the Virasoro blocks

of the Liouville theory, augmented by the insertion of a degenerate primary field.

Many generalizations and extensions of this have been considered in the last few

years [45–52].

Here we study N = 2? theories in the presence of surface operators. The low-

energy effective dynamics of the bulk four-dimensional theory is completely encoded

in the holomorphic prepotential which at the non-perturbative level can be very

efficiently determined using localization [3] along with the constraints that arise

from S-duality. The latter turn out to imply [53, 54] a modular anomaly equation

[55] for the prepotential, which is intimately related to the holomorphic anomaly

equation occurring in topological string theories on local Calabi-Yau manifolds [56–

59]2. Working perturbatively in the mass of the adjoint hypermultiplet, the modular

anomaly equation allows one to resum all instanton corrections to the prepotential

into (quasi)-modular forms, and to write the dependence on the Coulomb branch

parameters in terms of particular sums over the roots of the gauge group, thus
2Modular anomaly equations have been studied in various contexts, such as the Ω-background

[30, 53, 54, 60–65], the 4d/2d correspondence [39, 40, 66], SQCD theories with fundamental matter
[53,54,67–69] and in N = 2? theories [19,53,54,70–72].
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making it possible to treat any semi-simple algebra [19,70].

In this section we apply the same approach to study the effective twisted superpoten-

tial which governs the infrared dynamics on the world-volume of the two-dimensional

surface operator in the N = 2? theory. For simplicity, we limit ourselves to SU(N)

gauge groups and consider half-BPS surface defects that, from the six-dimensional

point of view, are codimension-2 operators. These defects introduce singularities

characterized by the pattern of gauge symmetry breaking, i.e. by a Levi decomposi-

tion of SU(N), and also by a set of continuous (complex) parameters. In [73] it has

been shown that the effect of these surface operators on the instanton moduli action

is equivalent to a suitable orbifold projection which produces structures known as

ramified instantons [73–75]. The moduli spaces of these ramified instantons were

already studied in [76] from a mathematical point of view, in terms of representa-

tions of a quiver that can be obtained by performing an orbifold projection of the

usual ADHM moduli space of the standard instantons. In Section 4.2 we explicitly

implement such an orbifold procedure on the non-perturbative sectors of the theory

realized by means of systems of D3 and D(−1) branes [77, 78]. In Section 4.3 we

carry out the integration on the ramified instanton moduli via equivariant localiza-

tion. The logarithm of the resulting partition function exhibits both a 4d and a 2d

singularity in the limit of vanishing Ω deformations3. The corresponding residues

are regular in this limit and encode, respectively, the prepotential F and the twisted

superpotential W . The latter depends, in addition to the Coulomb vacuum expec-

tation values and the adjoint mass, on the continuous parameters of the defect.

In Section 4.4 we show that, as it happens for the prepotential, the constraints

arising from S-duality lead to a modular anomaly equation for W . In Section 4.5,

we solve this equation explicitly for the SU(2) theory and prove that the resultingW

agrees with the twisted superpotential obtained in [39] in the framework of the 4d/2d

3We actually calculate the effective superpotential in the Nekrasov-Shatashvili limit [14] in
which only one of the Ω-deformation parameters is turned on.
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correspondence with the insertion of a degenerate field in the Liouville theory. Since

this procedure is appropriate for codimension-4 defects [38], the agreement we find

supports the proposal of a duality between the two classes of defects recently put

forward in [79]. In Section 4.6, we turn our attention to generic surface operators in

the SU(N) theory and again, order by order in the adjoint mass, solve the modular

anomaly equations in terms of quasi-modular elliptic functions and sums over the

root lattice.

We also consider the relation between our findings and what is known for surface

defects defined through the two-dimensional theory they support on their world-

volume. In [21] the coupling of the sigma-models defined on such defects to a large

class of four-dimensional gauge theories was investigated and the twisted superpo-

tential governing their dynamics was obtained. Simple examples for pure N = 2

SU(N) gauge theory include the linear sigma-model on CPN−1, that corresponds to

the so-called simple defects with Levi decomposition of type {1, N − 1}, and sigma-

models on Grassmannian manifolds corresponding to defects of type {p,N − p}.

The main result of [21] is that the Seiberg-Witten geometry of the four-dimensional

theory can be recovered by analyzing how the vacuum structure of these sigma-

models is fibered over the Coulomb moduli space. Independent analyses based on

the 4d/2d correspondence also show that the twisted superpotential for the simple

surface operator is related to the line integral of the Seiberg-Witten differential over

the punctured Riemann surface [38]. In Section 4.7, we test this claim in detail by

considering first the pure N = 2 gauge theory. Since this theory can be recovered

upon decoupling the massive adjoint hypermultiplet, we take the decoupling limit on

our N = 2? results for W and precisely reproduce those findings. Furthermore, we

show that for simple surface defects the relation between the twisted superpotential

and the line integral of the Seiberg-Witten differential holds prior to the decoupling

limit, i.e. in the N = 2? theory itself. The agreement we find provides evidence for

the proposed duality between the two types of descriptions of the surface operators.
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4.2 Instantons and surface operators inN = 2? SU(N)

gauge theories

The N = 2? theory is a four-dimensional gauge theory with N = 2 supersymmetry

that describes the dynamics of a vector multiplet and a massive hypermultiplet in

the adjoint representation. It interpolates between the N = 4 super Yang-Mills

theory, to which it reduces in the massless limit, and the pure N = 2 theory, which

is recovered by decoupling the matter hypermultiplet. We will consider for simplicity

only special unitary gauge groups SU(N). As is customary, we combine the Yang-

Mills coupling constant g and the vacuum angle θ into the complex coupling

τ =
θ

2π
+ i

4π

g2
, (4.1)

on which the modular group SL(2,Z) acts in the standard fashion:

τ → aτ + b

cτ + d
(4.2)

with a, b, c, d ∈ Z and ad− bc = 1. In particular under S-duality we have

S(τ) = −1

τ
. (4.3)

The Coulomb branch of the theory is parametrized by the vacuum expectation value

of the adjoint scalar field φ in the vector multiplet, which we take to be of the form

〈φ〉 = diag(a1, a2, · · · , aN) with
N∑
u=1

au = 0 . (4.4)

The low-energy effective dynamics on the Coulomb branch is entirely described by

a single holomorphic function F , called the prepotential, which contains a classical
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term, a perturbative 1-loop contribution and a tail of instanton corrections. The

latter can be obtained from the instanton partition function

Zinst =
∞∑
k=0

qk Zk (4.5)

where

q = e2πiτ (4.6)

and Zk is the partition function in the k-instanton sector that can be explicitly

computed using localization methods4. For later purposes, it is useful to recall that

the weight qk in (4.5) originates from the classical instanton action

Sinst = −2πiτ

(
1

8π2

∫
R4

TrF ∧ F
)

= −2πiτ k (4.7)

where in the last step we used the fact that the second Chern class of the gauge field

strength F equals the instanton charge k. Hence, the weight qk is simply e−Sinst .

Let us now introduce a surface operator which we view as a non-local defect D

supported on a two-dimensional plane inside the four-dimensional (Euclidean) space-

time (see Appendix F for more details). In particular, we parametrize R4 ' C2 by

two complex variables (z1, z2), and place D at z2 = 0, filling the z1-plane. The

presence of the surface operator induces a singular behavior in the gauge connection

A, which has the following generic form [43,73]:

A = Aµ dx
µ ' − diag

(
︸ ︷︷ ︸

n1

γ1, · · · , γ1, ︸ ︷︷ ︸
n2

γ2, · · · , γ2, · · · , ︸ ︷︷ ︸
nM

γM , · · · , γM

)
dθ (4.8)

as r → 0. Here (r, θ) denotes the set of polar coordinates in the z2-plane, and the
4Our conventions are such that Z0 = 1.
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γI ’s are constant parameters, where I = 1, · · · ,M . The M integers nI satisfy

M∑
I=1

nI = N (4.9)

and define a vector ~n that identifies the type of the surface operator. This vector is

related to the breaking pattern of the gauge group (or Levi decomposition) felt on

the two-dimensional defect D, namely

SU(N)→ S
[
U(n1)× U(n2)× · · · × U(nM)

]
. (4.10)

The type ~n = {1, 1, · · · , 1} corresponds to what are called full surface operators,

originally considered in [43]. The type ~n = {1, N − 1} corresponds to simple surface

operators, while the type ~n = {N} corresponds to no surface operators and hence

will not be considered.

In the presence of a surface operator, one can turn on magnetic fluxes for each factor

of the gauge group (4.10) and thus the instanton action can receive contributions

also from the corresponding first Chern classes. This means that (4.7) is replaced

by [38,42,43,73]

Sinst[~n] = −2πiτ

(
1

8π2

∫
R4

TrF ∧ F
)
− 2πi

M∑
I=1

ηI

(
1

2π

∫
D

TrFU(nI)

)
(4.11)

where ηI are constant parameters. As shown in detail in Appendix F, given the

behavior (4.8) of the gauge connection near the surface operator, one has

1

8π2

∫
R4

TrF ∧ F = k +
M∑
I=1

γI mI ,

1

2π

∫
D

TrFU(nI) = mI

(4.12)

with mI ∈ Z. As is clear from the second line in the above equation, each mI repre-
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sents the flux of the U(1) factor in each subgroup U(nI) in the Levi decomposition

(4.10); furthermore, these fluxes satisfy the constraint

M∑
I=1

mI = 0 . (4.13)

Using (4.12), we easily find

Sinst[~n] = −2πiτ k − 2πi
M∑
I=1

(
ηI + τ γI

)
mI = −2πiτ k − 2πi~t · ~m (4.14)

where in the last step we have combined the electric and magnetic parameters (ηI , γI)

to form the M -dimensional vector

~t = {tI} = {ηI + τ γI} . (4.15)

This combination has simple duality transformation properties under SL(2,Z). In-

deed, as shown in [42], given an element M of the modular group the electro-

magnetic parameters transform as

(
γI , ηI

)
→

(
γI , ηI

)
M−1 =

(
d γI − c ηI , a ηI − b γI

)
. (4.16)

Combining this with the modular transformation (4.2) of the coupling constant, it

is easy to show that

tI →
tI

cτ + d
. (4.17)

In particular under S-duality we have

S(tI) = −tI
τ
. (4.18)

Using (4.14), we deduce that the weight of an instanton configuration in the presence
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of a surface operator of type ~n is

e−Sinst[~n] = qk e2πi~t·~m , (4.19)

so that the instanton partition function can be written as

Zinst[~n] =
∑
k,~m

qk e2πi~t·~m Zk,~m[~n] . (4.20)

In the next section, we will describe the computation of Zk,~m[~n] using equivariant

localization.

4.3 Partition functions for ramified instantons

As discussed in [73], theN = 2∗ theory with a surface defect of type ~n = {n1, · · · , nM},

which has a six-dimensional representation as a codimension-2 surface operator, can

be realized with a system of D3-branes in the orbifold background

C× C2/ZM × C× C (4.21)

with coordinates (z1, z2, z3, z4, v) on which the ZM -orbifold acts as

(z2, z3)→ (ω z2, ω
−1 z3) , where ω = e

2πi
M . (4.22)

Like in the previous section, the complex coordinates z1 and z2 span the four-

dimensional space-time where the gauge theory is defined (namely the world-volume

of the D3-branes), while the z1-plane is the world-sheet of the surface operator D

that sits at the orbifold fixed point z2 = 0. The (massive) deformation which leads

from the N = 4 to the N = 2∗ theory takes place in the (z3, z4)-directions. Finally,

the v-plane corresponds to the Coulomb moduli space of the gauge theory.
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Without the ZM -orbifold projection, the isometry group of the ten-dimensional back-

ground is SO(4)× SO(4)× U(1), since the D3-branes are extended in the first four

directions and are moved in the last two when the vacuum expectation values (4.4)

are turned on. In the presence of the surface operator and hence of the ZM -orbifold

in the (z2, z3)-directions, this group is broken to

U(1)× U(1)× U(1)× U(1)× U(1) . (4.23)

In the following we will focus only on the first four U(1) factors, since it is in the

first four complex directions that we will introduce equivariant deformations to apply

localization methods. We parameterize a transformation of this U(1)4 group by the

vector

~ε = {ε1,
ε2
M
,
ε3
M
, ε4} = {ε1, ε̂2, ε̂3, ε4} (4.24)

where the 1/M rescalings in the second and third entry, suggested by the orbifold

projection, are made for later convenience. If we denote by

~l = {l1, l2, l3, l4} (4.25)

the weight vector of a given state of the theory, then under U(1)4 such a state

transforms with a phase given by e2πi~l·~ε, while the ZM -action produces a phase

ωl2−l3 .

On top of this, we also have to consider the action of the orbifold group on the Chan-

Paton factors carried by the open string states stretching between the D-branes.

There are different types of D-branes depending on the irreducible representation

of ZM in which this action takes place. Since there are M such representations, we

have M types of D-branes, which we label with the index I already used before.

On a D-brane of type I, the generator of ZM acts as ωI , and thus the Chan-Paton

factor of a string stretching between a D-brane of type I and a D-brane of type J
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transforms with a phase ωI−J under the action of the orbifold generator.

In order to realize the split of the gauge group in (4.10), we consider M stacks of

nI D3-branes of type I, and in order to introduce non-perturbative effects we add

on top of the D3’s M stacks of dI D-instantons of type I. The latter support an

auxiliary ADHM group which is

U(d1)× U(d2)× · · · × U(dM) . (4.26)

In the resulting D3/D(−1)-brane systems there are many different sectors of open

strings depending on the different types of branes to which they are attached. Here

we focus only on the states of open strings with at least one end-point on the

D-instantons, because they represent the instanton moduli [77, 78] on which one

eventually has to integrate in order to obtain the instanton partition function.

Let us first consider the neutral states, corresponding to strings stretched between

two D-instantons. In the bosonic Neveu-Schwarz sector one finds states with U(1)4

weight vectors

{±1, 0, 0, 0}0 , {0,±1, 0, 0}0 , {0, 0±1, 0}0 , {0, 0, 0±1}0 , {0, 0, 0, 0}±1 , (4.27)

where the subscripts denote the charge under the last U(1) factor of (4.23). They

correspond to space-time vectors along the directions z1, z2, z3, z4 and v, respectively.

In the fermionic Ramond sector one finds states with weight vectors

{
± 1

2
,±1

2
,±1

2
,±1

2

}
± 1

2

(4.28)

with a total odd number of minus signs due to the GSO projection. They correspond

to anti-chiral space-time spinors5.
5Of course one could have chosen a GSO projection leading to chiral spinors, and the final

results would have been the same.
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It is clear from (4.27) and (4.28) that the orbifold phase ωl2−l3 takes the values ω0,

ω+1 or ω−1 and can be compensated only if one considers strings of type I-I, I-(I+1)

or (I + 1)-I, respectively. Therefore, the ZM -invariant neutral moduli carry Chan-

Paton factors that transform in the (dI , d̄I), (dI , d̄I+1) or (dI+1, d̄I) representations

of the ADHM group (4.26).

Let us now consider the colored states, corresponding to strings stretched between a

D-instanton and a D3-brane or vice versa. Due to the twisted boundary conditions

in the first two complex space-time directions, the weight vectors of the bosonic

states in the Neveu-Schwarz sector are

{
± 1

2
,±1

2
, 0, 0

}
0

(4.29)

while those of the fermionic states in the Ramond sector are

{
0, 0,±1

2
,±1

2

}
± 1

2

. (4.30)

Assigning a negative intrinsic parity to the twisted vacuum, both in (4.29) and

in (4.30) the GSO-projection selects only those vectors with an even number of

minus signs. Moreover, since the orbifold acts on two of the twisted directions,

the vacuum carries also an intrinsic ZM -weight. We take this to be ω−
1
2 when the

strings are stretched between a D3-brane and a D-instanton, and ω+ 1
2 for strings

with opposite orientation. Then, with this choice we find ZM -invariant bosonic

and fermionic states either from the 3/(−1) strings of type I-I, whose Chan-Paton

factors transform in the (nI , d̄I) representation of the gauge and ADHM groups, or

from the (−1)/3 strings of type I-(I + 1), whose Chan-Paton factors transform in

the (dI , n̄I+1) representation, plus of course the corresponding states arising from

the strings with opposite orientation.

In Appendix G we provide a detailed account of all moduli, both neutral and colored,
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and of their properties in the various sectors. It turns out that the moduli action,

which can be derived from the interactions of the moduli on disks with at least a

part of their boundary attached to the D-instantons [78], is exact with respect to

the supersymmetry charge Q of weight

{
+ 1

2
,+1

2
,+1

2
,+1

2

}
− 1

2

. (4.31)

Therefore Q can be used as the equivariant BRST-charge to localize the integral

over the moduli space provided one considers U(1)4 transformations under which it

is invariant. This corresponds to requiring that

ε1 + ε̂2 + ε̂3 + ε4 = 0 . (4.32)

Thus we are left with three equivariant parameters, say ε1, ε̂2 and ε4; as we will see,

the latter is related to the (equivariant) mass m of the adjoint hypermultiplet of

N = 2∗ theory.

As shown in Appendix G, all instanton moduli can be paired in Q-doublets of the

type (ϕα, ψα) such that

Qϕα = ψα , Qψα = Q2ϕα = λα ϕα (4.33)

where λα are the eigenvalues of Q2, determined by the action of the Cartan subgroup

of the full symmetry group of the theory, namely the gauge group (4.10), the ADHM

group (4.26), and the residual isometry group U(1)4 with parameters satisfying

(4.32) in such a way that the invariant points in the moduli space are finite and

isolated. The only exception to this structure of Q-doublets is represented by the

neutral bosonic moduli with weight

{0, 0, 0, 0}−1 (4.34)
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transforming in the adjoint representation (dI , d̄I) of the ADHM group U(dI), which

remain unpaired. We denote them as χI , and in order to obtain the instanton

partition function we must integrate over them. In doing so, we can exploit the U(dI)

symmetry to rotate χI into the maximal torus and write it in terms of the eigenvalues

χI,σ, with σ = 1, · · · , dI , which represent the positions of the D-instantons of type

I in the v-plane. In this way we are left with the integration over all the χI,σ’s and

a Cauchy-Vandermonde determinant

V =
M∏
I=1

dI∏
σ,τ=1

(χI,σ − χI,τ + δστ ) . (4.35)

More precisely, the instanton partition function in the presence of a surface operator

of type ~n is defined by

Zinst[~n] =
∑
{dI}

M∏
I=1

qdII Z{dI}[~n] with Z{dI}[~n] =
1

dI !

∫ dI∏
σ=1

dχI,σ
2πi

z{dI} (4.36)

where z{dI} is the result of the integration over all Q-doublets which localizes on the

fixed points of Q2, and qI is the counting parameter associated to the D-instantons

of type I. With the convention that z{dI=0} = 1, we find

z{dI} = V
∏
α

[
λα
](−)Fα+1

, (4.37)

where the index α labels theQ-doublets and λα denotes the corresponding eigenvalue

of Q2. This contribution goes to the denominator or to the numerator depending

upon the bosonic or fermionic statistics (Fα = 0 or 1, respectively) of the first

component of the doublet. Explicitly, using the data in Tab. G.1 of Appendix G

92



and the determinant (4.35), we find

z{dI} =
M∏
I=1

dI∏
σ,τ=1

(χI,σ − χI,τ + δσ,τ ) (χI,σ − χI,τ + ε1 + ε4)

(χI,σ − χI,τ + ε4) (χI,σ − χI,τ + ε1)

×
M∏
I=1

dI∏
σ=1

dI+1∏
ρ=1

(χI,σ − χI+1,ρ + ε1 + ε̂2) (χI,σ − χI+1,ρ + ε̂2 + ε4)

(χI,σ − χI+1,ρ − ε̂3) (χI,σ − χI+1,ρ + ε̂2)

×
M∏
I=1

dI∏
σ=1

nI∏
s=1

(
aI,s − χI,σ + 1

2
(ε1 + ε̂2) + ε4

)(
aI,s − χI,σ + 1

2
(ε1 + ε̂2)

)
×

M∏
I=1

dI∏
σ=1

nI+1∏
t=1

(
χI,σ − aI+1,t + 1

2
(ε1 + ε̂2) + ε4

)(
χI,σ − aI+1,t + 1

2
(ε1 + ε̂2)

)

(4.38)

where dM+1 = d1, nM+1 = n1 and aM+1,t = a1,t. The integrations in (4.36) must be

suitably defined and regularized. The standard prescription [19,70,80] is to consider

aI,s to be real, and close the contours in the upper-half χI,σ -planes with the choice,

Im ε4 � Im ε̂3 � Im ε̂2 � Im ε1 > 0 , (4.39)

and enforce (4.32) at the very end of the calculations.

In this way one finds that these integrals receive contributions from the poles of

z{dI}, which are in fact the critical points of Q2. Such poles can be put in one-to-one

correspondence with a set of N Young tableaux Y = {YI,s}, with I = 1, · · · ,M

and s = 1, · · ·nI , in the sense that the box in the i-th row and j-th column of the

tableau YI,s represents one component of the critical value:

χI+(j−1)modM,σ = aI,s +
(
(i− 1) + 1

2

)
ε1 +

(
(j − 1) + 1

2

)
ε̂2 . (4.40)

Note that in this correspondence, a single tableau accounts for dI ! equivalent ways

of relabeling χI,σ.
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4.3.1 Summing over fixed points and characters

Summing over the Young tableaux collections Y we get all the non-trivial critical

points corresponding to all possible values of {dI}. Eq. (4.40) tells us that we get a

distinct χI,σ for each box in the j-th column of the tableau YI+1−jmodM,s. Relabeling

the index j as

j → J + j M , (4.41)

with J = 1, . . .M , we have

dI(Y ) =
M∑
J=1

nI+1−J∑
s=1

∑
j

Y
(J+jM)
I+1−J,s , (4.42)

where Y (j)
I,s denotes the height of the j-th column of the tableau YI,s, and the subscript

index I + 1− J is understood modulo M .

The instanton partition function (4.36) can thus be rewritten as a sum over Young

tableaux as follows

Zinst[~n] =
∑
Y

M∏
I=1

q
dI(Y )
I Z(Y ) (4.43)

where Z(Y ) is the residue of z{dI} at the critical point Y . This is obtained by

deleting in (4.38) the denominator factors that yield the identifications (4.40), and

performing these identifications in the other factors. In other terms,

Z(Y ) = V(Y )
∏

α :λα(Y )6=0

[λα(Y )](−)Fα+1

, (4.44)

where V(Y ) and λα(Y ) are the Vandermonde determinant and the eigenvalues of

Q2 evaluated on (4.40).

A more efficient way to encode the eigenvalues λα(Y ) is to employ the character of

94



the action of Q2, which is defined as follows

X{dI} =
∑
α

(−)Fαeiλα . (4.45)

If we introduce

VI =

dI∑
σ=1

eiχI,σ− i
2

(ε1+ε̂2) , WI =

nI∑
s=1

eiaI,s (4.46)

and

T1 = eiε1 , T2 = eiε̂2 , T4 = eiε4 , (4.47)

we can write the contributions to the character from the various Q-doublets as in

the last column of Tab. G.1 in Appendix G. Then, by summing over all doublets

and adding also the contribution of the Vandermonde determinant, we obtain

X{dI} = (1− T4)
M∑
I=1

[
−(1− T1)V ∗I VI + (1− T1)V ∗I+1VIT2 + V ∗I WI +W ∗

I+1VIT1T2

]
.

(4.48)

As we have seen before, through (4.42) and (4.40) each set Y determines both the

dimensions dI(Y ) and the eigenvalues λα(Y ). Thus, the character X(Y ) associated

to a set of Young tableaux is obtained from X{dI} by substituting (4.40) into the

definitions of VI , namely

VI =
M∑
J=1

nI+1−J∑
s=1

eiaI+1−J,sT J2
∑

(i,J+jM)∈YI+1−J,s

T i−1
1 T jM−1

2 . (4.49)

By analyzing X(Y ) obtained in this way we can extract the explicit expression

for the eigenvalues λs(Y ) and finally write the instanton partition function. This

procedure is easily implemented in a computer program, and yields the results we

will use in the next sections. In Appendix (G.1), as an example, we illustrate these

computations for the SU(2) gauge theory.

In our analysis we worked with the moduli action that describes D-branes probing
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the orbifold geometry. An alternative approach works with the resolution of the

orbifold geometry [81,82]. This involves analyzing a gauged linear sigma-model that

describes a system of D1 and D5-branes in the background C×C/ZM ×T ?S2×R2.

One then uses the localization formulas for supersymmetric field theories defined on

the 2-sphere [83, 84] to obtain exact results. This is a very powerful approach since

it also includes inherently stringy corrections to the partition function arising from

world-sheet instantons [81]. The results for the instanton partition function of the

N = 2? theory in the presence of surface operators obtained in [82] are equivalent

to our results in (4.38).

4.3.2 Map between parameters

One of the key points that needs to be clarified is the map between the microscopic

counting parameters qI which appear in (4.43), and the parameters (q, tI) which were

introduced in Section 4.2 in discussing SU(N) gauge theories with surface operators.

To describe this map, we start by rewriting the partition function (4.36) in terms

of the total instanton number k and the magnetic fluxes mI of the gauge groups on

the surface operator which are related to the parameters dI as follows [43,73]:

d1 = k , dI+1 = dI +mI+1 . (4.50)

Therefore, instead of summing over {dI} we can sum over k and ~m and find

Zinst[~n] =
∑
k,~m

(q1 · · · qM)k (q2 · · · qM)m2 (q3 · · · qM)m3 · · · (qM)mM Zk,~m[~n] (4.51)
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Furthermore, if we set

qI = e2πi(tI−tI+1) for I ∈ {2, . . .M − 1} ,

qM = e2πi(tM−t1) and q =
M∏
I=1

qI ,
(4.52)

we easily get

Zinst[~n] =
∑
k,~m

qke2πi
∑M
I=2mI(tI−t1) Zk,~m =

∑
k,~m

qk e2πi~t·~m Zk,~m[~n] (4.53)

where in the last step we introduced m1 such that that
∑

I mI = 0 (see (4.13))

in order to write the result in a symmetric form. This is precisely the expected

expression of the partition function in the presence of a surface operator as shown

in (4.20) and justifies the map (4.52) between the parameters of the two descriptions.

From (4.53) we see that only differences of the parameters tI appear in the partition

function so that it may be convenient to use as independent parameters q and the

(M − 1) variables

zJ = tJ − t1 for J ∈ {2, . . .M} . (4.54)

This is indeed what we are going to see in the next sections where we will show how

to extract relevant information from the the instanton partition functions described

above.

4.3.3 Extracting the prepotential and the twisted superpo-

tential

The effective dynamics on the Coulomb branch of the four-dimensional N = 2?

gauge theory is described by the prepotential F , while the infrared physics of the

two-dimensional theory defined on the world-sheet of the surface operator is governed

by the twisted superpotential W . The non-pertubative terms of both F and W can
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be derived from the instanton partition function previously discussed, by considering

its behavior for small deformation parameters ε1 and ε2 and, in particular, in the

so-called Nekrasov-Shatashvili limit [14].

To make precise contact with the gauge theory quantities, we set

ε4 = −m− ε1
2

(4.55)

where m is the mass of the adjoint hypermultiplet, and then take the limit for small

ε1 and ε2. In this way we find [43]:

logZinst[~n] ' − Finst(ε1)

ε1ε2
+
Winst(ε1)

ε1
+O(ε2) (4.56)

The two leading singular contributions arise, respectively, from the (regularized)

equivariant volume parts coming from the four-dimensional gauge theory and from

the two-dimensional degrees of freedom supported on the surface defect D. This

can be understood from the fact that, in the Ω-deformed theory, the respective

super-volumes are finite and given by [41,85]:

∫
R4
ε1,ε2

d4x d4θ −→ 1

ε1ε2
and

∫
R2
ε1

d2x d2θ −→ 1

ε1
. (4.57)

The non-trivial result is that the functions Finst and Winst defined in this way are

analytic in the neighborhood of ε1 = 0. As an illustrative example, we now describe

in some detail the SU(2) theory.

98



SU(2)

When the gauge group is SU(2), the only surface operators are of type ~n = {1, 1},

the Coulomb branch is parameterized by

〈φ〉 = diag(a,−a) , (4.58)

and the map (4.52) can be written as

q1 =
q

x
, q2 = x = e2πi z (4.59)

where, for later convenience, we have defined z = (t2 − t1). Using the results

presented in Appendix G.1 and their extension to higher orders, it is possible to

check that the instanton prepotential arising from (4.56), namely

Finst = − lim
ε2→0

(
ε1ε2 logZinst[1, 1]

)
(4.60)

is, as expected, a function only of the instanton counting parameter q and not of x.

Expanding in inverse powers of a, we have

Finst =
∞∑
`=1

f inst
` (4.61)

where f` ∼ a2−`. The first few coefficients of this expansion are

f inst
2`+1 = 0 for ` = 0, 1, · · · ,

f inst
2 = −

(
m2 − ε21

4

)(
2q + 3q2 +

8

3
q3 + · · ·

)
,

f inst
4 =

1

2a2

(
m2 − ε21

4

)2(
q + 3q2 + 4q3 + · · ·

)
,

f inst
6 =

1

16a4

(
m2 − ε21

4

)2(
2ε21 q − 3

(
4m2 − 7ε21

)
q2 − 8

(
8m2 − 9ε21

)
q3 + · · ·

)
.

(4.62)

99



One can check that this precisely agrees with the Nekrasov-Shatashvili limit of the

prepotential derived for example in [53, 54]. This complete match is a strong and

non-trivial check on the correctness and consistency of the whole construction.

Let us now consider the non-perturbative superpotential, which according to (4.56)

is

Winst = lim
ε2→0

(
ε1 logZinst[1, 1] +

Finst

ε2

)
. (4.63)

Differently from the prepotential, Winst is, as expected, a function both of q and x.

If we expand it as

Winst =
∞∑
`=1

winst
` (4.64)

with winst
` ∼ a1−`, using the results of Appendix G.1 we find

winst
1 = −

(
m− ε1

2

)[(
x+

x2

2
+
x3

3
+
x4

4
+ · · ·

)
+
(1

x
+ 2 + x+ · · ·

)
q

+
( 1

2x2
+

1

x
+ 3 + · · ·

)
q2 + · · ·

]
, (4.65a)

winst
2 = −1

a

(
m2 − ε21

4

)[(x
2

+
x2

2
+
x3

2
+
x4

2
+ · · ·

)
+
(x

2
− 1

2x
+ · · ·

)
q

−
( 1

2x2
+

1

2x
+ · · ·

)
q2 + · · ·

]
, (4.65b)

winst
3 = − ε1

a2

(
m2 − ε21

4

)[(x
4

+
x2

2
+

3x3

4
+ x4 + · · ·

)
+
( 1

4x
+
x

4
+ · · ·

)
q

+
( 1

2x2
+

1

4x
+ · · ·

)
q2 + · · ·

]
, (4.65c)

and so on. For later convenience we explicitly write down the logarithmic derivatives
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with respect to x, namely

w′1 = −
(
m− ε1

2

)[(
x+ x2 + x3 + x4 + · · ·

)
−
(1

x
− x+ · · ·

)
q

−
( 1

x2
+

1

x
+ · · ·

)
q2 + · · ·

]
, (4.66a)

w′2 = −1

a

(
m2 − ε21

4

)[(x
2

+ x2 +
3x3

2
+ 2x4 + · · ·

)
+
(x

2
+

1

2x
+ · · ·

)
q

+
( 1

x2
+

1

2x
+ · · ·

)
q2 + · · ·

]
, (4.66b)

w′3 = − ε1
a2

(
m2 − ε21

4

)[(x
4

+ x2 +
9x3

4
+ 4x4 + · · ·

)
−
( 1

4x
− x

4
+ · · ·

)
q

−
( 1

x2
+

1

4x
+ · · ·

)
q2 + · · ·

]
(4.66c)

where w′` := x ∂
∂x

(
winst
`

)
. In the coming sections we will show that these expres-

sions are the weak-coupling expansions of combinations of elliptic and quasi-modular

forms of the modular group SL(2,Z).

4.4 Modular anomaly equation for the twisted su-

perpotential

In [53, 54] it has been shown for the N = 2? SU(2) theory that the instanton ex-

pansions of the prepotential coefficients (4.62) can be resummed in terms of (quasi-)

modular forms of the duality group SL(2,Z) and that the behavior under S-duality

severely constrains the prepotential F which must satisfy a modular anomaly equa-

tion. This analysis has been later extended to N = 2? theories with arbitrary

classical or exceptional gauge groups [19, 65, 70], and also to N = 2 SQCD theories

with fundamental matter [67,68]. In this section we use a similar approach to study

how S-duality constrains the form of the twisted superpotential W .

For simplicity and without loss of generality, in the following we consider a full

101



surface operator of type ~n = {1, 1, · · · , 1} with electro-magnetic parameters ~t =

{t1, t2, · · · , tN}. Indeed, surface operators of other type correspond to the case in

which these parameters are not all different from each other and form M distinct

sets, namely

~t =

{
︸ ︷︷ ︸

n1

t1, . . . , t1, ︸ ︷︷ ︸
n2

t2, . . . , t2, · · · , ︸ ︷︷ ︸
nM

tM , . . . , tM

}
. (4.67)

Thus they can be simply recovered from the full ones with suitable identifications.

Before analyzing the S-duality constraints it is necessary to take into account the

classical and the perturbative 1-loop contributions to the prepotential and the su-

perpotential.

The classical contribution

Introducing the notation ~a = {a1, a2, · · · , aN} for the vacuum expectation values,

the classical contributions to the prepotential and the superpotential are given re-

spectively by

Fclass = πiτ ~a · ~a (4.68)

and

Wclass = 2πi~t · ~a . (4.69)

Note that if we use the tracelessness condition (4.4), Wclass can be rewritten as

Wclass = 2πi
N∑
I=2

zI aI (4.70)

where zI is as defined in (4.54).
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These classical contributions have very simple behavior under S-duality. Indeed

S
(
Fclass

)
= −Fclass , (4.71a)

S
(
Wclass

)
= −Wclass . (4.71b)

To show these relations one has to use the S-duality rules (4.3) and (4.18), and

recall that

S
(
~a
)

= ~aD :=
1

2πi

∂F
∂~a

and S
(
~aD
)

= −~a , (4.72)

which for the classical prepotential simply yield S(~a) = τ ~a.

The 1-loop contribution

The 1-loop contribution to the partition function of the Ω-deformed gauge theory in

the presence of a full surface operator of type {1, 1, · · · , 1} can be written in terms

of the function

γ(x) := log Γ2(x|ε1, ε2) =
d

ds

(
Λs

Γ(s)

∫ ∞
0

dt
ts−1e−tx

(e−ε1t − 1)(e−ε2t − 1)

)∣∣∣∣
s=0

, (4.73)

where Γ2 is the Barnes double Γ-function and Λ an arbitrary scale. Indeed, as shown

for example in [82], the perturbative contribution is

logZpert[1, 1, · · · , 1] =
N∑

u,v=1

u6=v

[
γ
(
auv +

⌈
v−u
N

⌉
ε2
)
− γ
(
auv +m+ ε1

2
+
⌈
v−u
N

⌉
ε2
)]

(4.74)

where auv = au−av, and the ceiling function dye denotes the smallest integer greater

than or equal to y. The first term in (4.74) represents the contribution of the vector

multiplet, while the second term is the contribution of the massive hypermultiplet.

Expanding (4.74) for small ε1,2 and using the same definitions (4.56) used for the

instanton part, we obtain the perturbative contributions to the prepotential and the
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superpotential in the Nekrasov-Shatashvili limit:

Fpert = − lim
ε2→0

(
ε1ε2 logZpert[1, 1, · · · , 1]

)
,

Wpert = lim
ε2→0

(
ε1 logZpert[1, 1, · · · , 1] +

Fpert

ε2

)
.

(4.75)

Exploiting the series expansion of the γ-function, one can explicitly compute these

expressions and show that Fpert precisely matches the perturbative prepotential in

the Nekrasov-Shatashvili limit obtained in [19, 65], while the contribution to the

superpotential is novel. For example, in the case of the SU(2) theory we obtain

Fpert =
1

2

(
m2 − ε21

4

)
log
(4a2

Λ2

)
− 1

48a2

(
m2 − ε21

4

)2

− 1

960a4

(
m2 − ε21

4

)2(
m2 − 3ε21

4

)
+· · · ,

(4.76a)

Wpert = − 1

4a

(
m2 − ε21

4

)
− 1

96a3

(
m2 − ε21

4

)2

− 1

960a5

(
m2 − ε21

4

)2(
m2 − 3ε21

4

)
+· · · .

(4.76b)

Note that, unlike the prepotential, the twisted superpotential has no logarithmic

term6. Furthermore, it is interesting to observe that

Wpert = −1

4

∂Fpert

∂a
. (4.77)

4.4.1 S-duality constraints

We are now in a position to discuss the constraints on the twisted superpotential

arising from S-duality. Adding the classical, the perturbative and the instanton

terms described in the previous sections, we write the complete prepotential and
6 This fact is due to the superconformal invariance, and is no longer true in the pure N = 2

SU(2) gauge theory, for which we find

Wpert = −
(

2− 2 log
2a

Λ

)
a+

ε21
24a
− ε41

2880a3
+

ε61
40320a5

+ · · · .
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superpotential in the Nekrasov-Shatashvili limit as

F = Fclass + Fpert + Finst = πiτ ~a · ~a+
∞∑
`=1

f`(τ,~a) ,

W =Wclass +Wpert +Winst = 2πi
N∑
I=2

zI aI +
∞∑
`=1

w`(τ, zI ,~a)

(4.78)

where for later convenience, we have kept the classical terms separate. The quantum

coefficients f` and w` scale as a2−` and a1−`, respectively, and account for the per-

turbative and instanton contributions. While f` depend on the coupling constant τ ,

the superpotential coefficients w` are also functions of the surface operator variables

zI , as we have explicitly seen in the SU(2) theory considered in the previous section.

The coefficients f` have been explicitly calculated in terms of quasi-modular forms

in [19,65] and we list the first few of them in Appendix H. Their relevant properties

can be summarized as follows:

• All f` with ` odd vanish, while those with ` even are homogeneous functions

of ~a and satisfy the scaling relation 7

f2`(τ, λ~a) = λ2−2` f2`(τ,~a) . (4.79)

Since the prepotential has mass-dimension two, the f2` are homogeneous poly-

nomials of degree 2`, in m and ε1.

• The coefficients f2` depend on the coupling constant τ only through the Eisen-

stein series E2(τ), E4(τ) and E6(τ), and are quasi-modular forms of SL(2,Z)

of weight 2`− 2, such that

f2`

(
− 1
τ
,~a
)

= τ 2`−2 f2`(τ,~a)
∣∣∣
E2→E2+δ

(4.80)

7To be precise, one should also scale Λ→ λΛ in the logarithmic term of f2.
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where δ = 6
πiτ

. The shift δ in E2 is due to the fact that the second Eisenstein

series is a quasi-modular form with an anomalous modular transformation (see

(E.4)).

• The coefficients f2` satisfy a modular anomaly equation

∂f2`

∂E2

+
1

24

`−1∑
n=1

∂f2n

∂~a
· ∂f2`−2n

∂~a
= 0 (4.81)

which can be solved iteratively.

Using the above properties, it is possible to show that S-duality acts on the prepo-

tential F in the Nekrasov-Shatashvili limit as a Legendre transform [19,70].

Let us now turn to the twisted superpotential W . As we have seen in (4.71), S-

duality acts very simply at the classical level but some subtleties arise in the quantum

theory. We now make a few important points, anticipating some results of the

next sections. It turns out that W receives contributions so that the coefficients

w` do not have a well-defined modular weight. However, these anomalous terms

depend only on the coupling constant τ and the vacuum expectation values ~a. In

particular, they are independent of the continuous parameters zI that characterize

the surface operator. For this reason it is convenient to consider the zI derivatives

of the superpotential:

W(I) :=
1

2πi

∂W
∂zI

= aI +
∞∑
`=1

w
(I)
` (τ, zI ,~a) (4.82)

where, of course, w(I)
` := 1

2πi
∂w`
∂zI

.

Combining intuition from the classical S-duality transformation (4.71b) with the

fact that the zI-derivative increases the modular weight by one, and introduces an
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extra factor of (−τ) under S-duality, we are naturally led to propose that

S
(
W(I)

)
= τW(I) . (4.83)

This constraint can be solved if we assume that the coefficients w(I)
` satisfy the

following properties (which are simple generalizations of those satisfied by f`):

• They are homogeneous functions of ~a and satisfy the scaling relation

w
(I)
` (τ, zI , λ~a) = λ1−`w

(I)
` (τ, zI ,~a) . (4.84)

Given that the twisted superpotential has mass-dimension one, it follows that

w
(I)
` must be homogeneous polynomials of degree ` in m and ε1.

• The dependence of w(I)
` on τ and zI is only through linear combinations of

quasi-modular forms made up with the Eisenstein series and elliptic functions

with total weight `, such that

w
(I)
`

(
− 1
τ
,− zI

τ
,~a
)

= τ `w
(I)
` (τ, zI ,~a)

∣∣∣
E2→E2+δ

. (4.85)

We are now ready to discuss how S-duality acts on the superpotential coefficients

w
(I)
` . Recalling that

S(~a) = ~aD :=
1

2πi

∂F
∂~a

= τ ~a+
1

2πi

∂f

∂~a
= τ
(
~a+

δ

12

∂f

∂~a

)
(4.86)

where f = Fpert + Finst, we have

S
(
w

(I)
`

)
= w

(I)
`

(
− 1
τ
,− zI

τ
,~aD

)
= τ `w

(I)
` (τ, zI ,~aD)

∣∣∣
E2→E2+δ

= τ w
(I)
`

(
τ, zI ,~a+ δ

12
∂f
∂~a

)∣∣∣
E2→E2+δ

(4.87)
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where in the last step we exploited the scaling behavior (4.84) together with (4.86).

Using this result in (4.82) and formally expanding in δ, we obtain

1

τ
S
(
W(I)

)
=W(I)

(
τ, zI ,~a+ δ

12
∂f
∂~a

)∣∣∣
E2→E2+δ

=W(I) + δ

(
∂W(I)

∂E2

+
1

12

∂W(I)

∂~a
· ∂f
∂~a

)
+O(δ2) .

(4.88)

The constraint (4.83) is satisfied if

∂W(I)

∂E2

+
1

12

∂W(I)

∂~a
· ∂f
∂~a

= 0 , (4.89)

which also implies the vanishing of all terms of higher order in δ. This modular

anomaly equation can be equivalently written as

∂w
(I)
`

∂E2

+
1

12

`−1∑
n=0

∂f`−n
∂~a

· ∂w
(I)
n

∂~a
= 0 (4.90)

where we have defined w(I)
0 = aI .

In the next sections we will solve this modular anomaly equation and determine the

superpotential coefficients w(I)
` in terms of Eisenstein series and elliptic functions; we

will also show that by considering the expansion of these quasi-modular functions

we recover precisely all instanton contributions computed using localization, thus

providing a very strong and highly non-trivial consistency check on our proposal

(4.83) and on our entire construction. Since the explicit results are quite involved

in the general case, we will start by discussing the SU(2) theory.
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4.5 Surface operators in N = 2? SU(2) theory

We now consider the simplest N = 2? theory with gauge group SU(2) and solve

in this case the modular anomaly equation (4.90). A slight modification from the

earlier discussion is needed since for SU(2) the Coulomb vacuum expectation value

of the adjoint scalar field takes the form 〈φ〉 = diag(a,−a) and the index I used in

the previous section only takes one value, namely I = 2. Thus we have a single z-

parameter, corresponding to the unique surface operator we can have in the theory,

and (4.82) becomes

W ′ :=
1

2πi

∂W
∂z

= −a+
∞∑
`=1

w′` (4.91)

with w′` := 1
2πi

∂w`
∂z

, while the recurrence relation (4.90) becomes

∂w′`
∂E2

+
1

24

`−1∑
n=0

∂f`−n
∂a

∂w′n
∂a

= 0 (4.92)

with the initial condition w′0 = −a. The coefficient w1 and its z-derivative w′1 do

not depend on a and are therefore irrelevant for the IR dynamics on the surface

operator. Moreover, w′1 drops out of the anomaly equation and plays no role in

determining w′` for higher values of `. Nevertheless, for completeness, we observe

that if we use the elliptic function

h1(z|τ) =
1

2πi

∂

∂z
log θ1(z|τ) (4.93)

where θ1(z|τ) is the first Jacobi θ-function, and exploit the expansion reported in

(E.16), comparing with the instanton expansion (4.66a) obtained from localization,

we are immediately led to,

w′1 =
(
m− ε1

2

)(
h1 +

1

2

)
. (4.94)
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By expanding h1 to higher orders one can “predict” all higher instanton contributions

to w′1. We have checked that these predictions perfectly match the explicit results

obtained from localization methods involving Young tableaux with up to six boxes.

The first case in which the modular anomaly equation (4.92) shows its power is the

case ` = 2. Recalling that the prepotential coefficients fn with n odd vanish, we

have
∂w′2
∂E2

+
1

24

∂f2

∂a

∂w′0
∂a

= 0 . (4.95)

Using the initial condition w′0 = −a, substituting the exact expression for f2 given

in (H.1) and then integrating, we get

w′2 =
1

24a

(
m2 − ε21

4

) (
E2 + modular term

)
. (4.96)

At this juncture, it is important to observe that the elliptic and modular forms of

SL(2,Z), which are allowed to appear in the superpotential coefficients, are polyno-

mials in the ring generated by the Weierstraß function ℘(z|τ) and its z-derivative

℘′(z|τ), and by the Eisenstein series E4 and E6. These basis elements have weights

2, 3, 4 and 6 respectively. We refer to Appendix E for a collection of useful formulas

for these elliptic and modular forms and for their perturbative expansions. Since w′2

must have weight 2, the modular term in (4.96) is restricted to be proportional to

the Weierstraß function, namely

w′2 =
1

24a

(
m2 − ε21

4

)(
E2 + α

℘

4π2

)
(4.97)

where α is a constant. Therefore our proposal works only if by fixing a single

parameter α we can match all the microscopic contributions to w′2 computed in the

previous sections. Given the many constraints that this requirement puts, it is not

at all obvious that it works. But actually it does! Indeed, using the expansions of

E2 and ℘̃ = ℘
4π2 given in (E.2) and (E.17) respectively, and comparing with (4.66b),
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one finds a perfect match if α = 12. Thus, the exact expression of w′2 is

w′2 =
1

24a

(
m2 − ε21

4

)(
E2 + 12 ℘̃

)
. (4.98)

We have checked up to order six that the all instanton corrections predicted by this

formula completely agree with the microscopic results obtained from localization.

Let us now consider the modular anomaly equation (4.92) for ` = 3. In this case

since w′1 is a-independent and the coefficients fn with n odd vanish, we simply have

∂w′3
∂E2

= 0 (4.99)

According to our proposal, w′3 must be an elliptic function with modular weight 3,

and in view of (4.99), the only candidate is the derivative of the Weierstraß function

℘′. By comparing the expansion (E.18) with the semi-classical results (4.66c) we

find a perfect match and obtain

w′3 =
ε1

4a2

(
m2 − ε21

4

)
℘̃ ′ . (4.100)

Again we have checked that the higher order instanton corrections predicted by this

formula agree with the localization results up to order six.

A similar analysis can done for higher values of ` without difficulty. Obtaining the

anomalous behavior by integrating the modular anomaly equation, and fixing the

coefficients of the modular terms by comparing with the localization results, after a
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bit of elementary algebra, we get

w′4 =
1

1152a3

(
m2 − ε21

4

)[(
m2 − ε21

4

)(
2E2

2 − E4 + 24E2 ℘̃+ 144℘̃2
)

+ 6 ε21
(
E4 − 144℘̃2

)]
,

w′5 =
ε1

48a4

(
m2 − ε21

4

)[(
m2 − ε21

4

)(
E2 + 12℘̃

)
℘̃ ′ − 36 ε21 ℘̃ ℘̃

′
]
, (4.101)

w′6 =
1

138240a5

(
m2 − ε21

4

)[(
m2 − ε21

4

)2(
20E3

2 − 11E2E4 − 4E6 + 240E2
2 ℘̃− 60E4 ℘̃

+ 2160E2 ℘̃
2 + 8640℘̃3

)
+ 2
(
m2 − ε21

4

)
ε21
(
39E2E4 + 56E6 + 1440E4 ℘̃

− 6480E2 ℘̃
2 − 120960℘̃3

)
− 240 ε41

(
E6 + 27E4 ℘̃− 2160℘̃3

)]
,

and so on. The complete agreement with the microscopic localization results of

the above expressions provides very strong and highly non-trivial evidence for the

validity of the modular anomaly equation and the S-duality properties of the super-

potential, and hence of our entire construction.

Exploiting the properties of the function h1 defined in (4.93) and its relation with the

Weierstraß function (see Appendix E), it is possible to rewrite the above expressions

as total z-derivatives. Indeed, we find

w′2 =
1

2a

(
m2 − ε21

4

)
h′1 ,

w′3 =
ε1

4a2

(
m2 − ε21

4

)
h′′1 ,

w′4 =
1

48a3

(
m2 − ε21

4

)[(
m2 − ε21

4

)(
E2 h1 − h′′1

)
+ 6 ε21 h

′′
1

]′
,

w′5 =
ε1

8a4

(
m2 − ε21

4

)[(
m2 − ε21

4

)
(h′1)2 +

ε21
2

(
E2 − 6h′1

)
h′1

]′
.

(4.102)

We have checked that the same is also true for w′6 (and for a few higher coefficients

as well), which however we do not write explicitly for brevity. Of course this is to

be expected since they are the coefficients of the expansion of the derivative of the
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superpotential. The latter can then be simply obtained by integrating with respect

to z and fixing the integration constants by comparing with the explicit localization

results. In this way we obtain8

W = −2πiz a+
∑
n

wn (4.103)

with

w2 =
1

2a

(
m2 − ε21

4

)
h1 ,

w3 =
ε1

4a2

(
m2 − ε21

4

)
h′1 , (4.104)

w4 =
1

48a3

(
m2 − ε21

4

)[(
m2 − ε21

4

)(
E2 h1 − h′′1

)
+ 6 ε21 h

′′
1 +

1

2

(
m2 − ε21

4

)(
E2 − 1)

]
,

w5 =
ε1

8a4

(
m2 − ε21

4

)[(
m2 − ε21

4

)
(h′1)2 +

ε21
2

(
E2 − 6h′1

)
h′1

+
1

96

(
m2 − 9ε21

4

)(
E2

2 − E4

)]
,

and so on. Note that, as anticipated in the previous section, the coefficients wn do

not have a homogeneous modular weight.

4.5.1 Relation to CFT results

So far we have studied the twisted superpotential and its z-derivative as semi-

classical expansions for large a. However, we can also arrange these expansions

in terms of the deformation parameter ε1. For example, using the results in (4.98),

(4.100) and (4.101), we obtain

W ′ = −a+
∞∑
n=0

εn1W ′
n (4.105)

8We neglect the a-independent terms originating from (4.94) since they are irrelevant for the
infrared dynamics on the defect.
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where

W ′
0 =

m2

24a

(
E2 + 12℘̃

)
+

m4

1152a3

(
2E2

2 − E4 + 24E2 ℘̃+ 144℘̃2
)

+
m6

138240a5

(
20E3

2

− 11E2E4 − 4E6 + 240E2
2 ℘̃− 60E4 ℘̃+ 2160E2 ℘̃

2 + 8640℘̃3
)

+O
(
a−7
)
,

W ′
1 =

m2

4a2
℘̃ ′ +

m4

48a4

(
E2 + 12℘̃

)
℘̃ ′ +O

(
a−6
)
,

W ′
2 = − 1

96a

(
E2 + 12℘

)
− m2

2304a3

(
2E2

2 − 13E4 + 24E2 ℘̃+ 1872℘̃2
)

(4.106)

− m4

110592a5

(
12E3

2 − 69E2E4 − 92E6 + 144E2
2 ℘̃− 2340E4 ℘̃

+ 11664E2 ℘̃
2 + 198720℘̃3

)
+O

(
a−7
)
,

W ′
3 = − 1

16a2
℘̃ ′ − m2

96a4

(
E2 + 84℘̃

)
℘̃ ′ +O

(
a−6
)
,

and so on. Quite remarkably, up to a sign flip a → −a, these expressions precisely

coincide with the results obtained in [39] from the null-vector decoupling equation

for the toroidal 1-point conformal block in the Liouville theory.

We would like to elaborate a bit on this match. Let us first recall that in the so-called

AGT correspondence [4] the toroidal 1-point conformal block of a Virasoro primary

field V in the Liouville theory is related to the Nekrasov partition function of the

N = 2? SU(2) gauge theory. In [38] it was shown that the insertion of the degenerate

null-vector V2,1 in the Liouville conformal block corresponds to the partition function

of the SU(2) theory in the presence of a surface operator. In the semi-classical limit

of the Liouville theory (which corresponds to the Nekrasov-Shatashvili limit ε2 → 0),

one has [38,39]

〈V (0)V2,1(z)〉torus ' N exp
(
− F
ε1ε2

+
W(z)

ε1
+ · · ·

)
, (4.107)

where N is a suitable normalization factor. In [39] the null-vector decoupling equa-

tion satisfied by the degenerate conformal block was used to explicitly calculate the
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prepotential F and the z-derivative of the twisted effective superpotential W ′ for

the N = 2? SU(2) theory, which fully agrees with the one we have obtained using

the modular anomaly equation and localization methods. It is important to keep

in mind that the insertion of the degenerate field V2,1 in the Liouville theory corre-

sponds to the insertion of a surface operator of codimension-4 in the six-dimensional

(2, 0) theory. In the brane picture, this defect corresponds to an M2 brane ending

on the M5 branes that wrap a Riemann surface and support the gauge theory in

four dimensions. On the other hand, as explained in the introduction, the results we

have obtained using the orbifold construction and localization pertain to a surface

operator of codimension-2 in the six dimensional theory, corresponding to an M5′

intersecting the original M5 branes. The equality between our results and those

of [39] supports the proposal of a duality between the two types of surface operators

in [79]. This also supports the conjecture of [86], based on [44, 87, 88], that in the

presence of simple surface operators the instanton partition function is insensitive

to whether they are realized as codimension-2 or codimension-4 operators. In Sec-

tion 4.7.1 we will comment on such relations in the case of higher rank gauge groups

and will also make contact with the results for the twisted chiral rings when the

surface defect is realized by coupling two-dimensional sigma-models to pure N = 2

SU(N) gauge theory.

4.6 Surface operators in N = 2? SU(N) theories

We now generalize the previous analysis to SU(N) gauge groups. As discussed in

Section 4.2, in the higher rank cases there are many types of surface operators

corresponding to the different partitions of N . We start our discussion from simple

surface operators of type {1, (N − 1)}.
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4.6.1 Simple surface operators

In the case of the simple partition {1, (N − 1)}, the vector ~t of the electro-magnetic

parameters characterizing the surface operator takes the form

~t =

{
t1, ︸ ︷︷ ︸

N − 1

t2, . . . , t2

}
. (4.108)

Correspondingly, the classical contribution to the twisted effective superpotential

becomes

Wclass = 2πi~t · ~a = 2πi
(
a1 t1 + t2

N∑
i=2

ai

)
= −2πi z a1 (4.109)

where we have used the tracelessness condition on the vacuum expectation values

and, according to (4.54), have defined z = t2 − t1.

When quantum corrections are included, one finds that the coefficients w′` of the

z-derivative of the superpotential satisfy the modular anomaly equation (4.90). The

solution of this equation proceeds along the same lines as in the SU(2) case, although

new structures, involving the differences aij = ai−aj, appear. We omit details of the

calculations and merely present the results. As for the SU(2) theory, the coefficients

can be compactly written in terms of modular and elliptic functions, particularly

the second Eisenstein series and the function h1 defined in (4.93). For clarity, and

also for later convenience, we indicate the dependence on z but understand the
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dependence on τ in h1. The first few coefficients w′` are

w′2 =
(
m2 − ε21

4

) N∑
j=2

h′1(z)

a1j

, (4.110a)

w′3 = ε1

(
m2 − ε21

4

) N∑
j=2

h′′1(z)

a2
1j

+
1

2

(
m2 − ε21

4

)(
m+

ε1
2

) N∑
j 6=k=2

h′′1(z)

a1j a1k

, (4.110b)

w′4 =
1

6

(
m2 − ε21

4

)[(
m2 − ε21

4

)
(E2 h

′
1(z)− h′′′1 (z)) + 6 ε21h

′′′
1 (z)

] N∑
j=2

1

a3
1j

+ ε1

(
m2 − ε21

4

)(
m+

ε1
2

) N∑
j 6=k=2

h′′′1 (z)

a2
1j a1k

(4.110c)

+
1

6

(
m2 − ε21

4

)(
m+

ε1
2

)2
N∑

j 6=k 6=`=2

h′′′1 (z)

a1j a1k a1`

,

and so on. We have explicitly checked the above formulas against localization results

up to SU(7) finding complete agreement. It is easy to realize that for N = 2 only the

highest order poles contribute and the corresponding expressions precisely coincide

with the results in the previous section. In the higher rank cases, there are also

contributions from structures with lesser order poles that are made possible because

of the larger number of Coulomb parameters. Furthermore, we observe that there

is no pole when aj approaches ak with j, k = 2, · · ·, N .

It is interesting to observe that the above expressions can be rewritten in a suggestive

form using the root system Φ of SU(N). The key observation is that using the vector

~t defined in (4.108) we can select a subset of roots Ψ ⊂ Φ such that their scalar

products with the vector ~a of the vacuum expectation values produce exactly all the

factors of a1j in the denominators of (4.110). Defining

Ψ =
{
~α ∈ Φ

∣∣ ~α · ~t+ z = 0
}
, (4.111)

one can verify that for any ~α ∈ Ψ, the scalar product ~α · ~a is of the form a1j.
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Therefore, w′2 in (4.110a) can be written as

w′2 =
(
m2 − ε21

4

)∑
~α∈Ψ

h′1(−~α · ~t)
~α · ~a

=
(
m2 − ε21

4

)∑
~α∈Ψ

h′1(~α · ~t)
~α · ~a (4.112)

where in the last step we used the fact that h′1 is an even function. Similarly the

other coefficients in (4.110) can also be rewritten using the roots of SU(N). Indeed,

introducing the subsets of Ψ defined as 9

Ψ(~α) =
{
~β ∈ Ψ

∣∣ ~α · ~β = 1
}
,

Ψ(~α, ~β) =
{
~γ ∈ Ψ

∣∣ ~α · ~γ = ~β · ~γ = 1
}
,

(4.113)

we find that w′3 in (4.110b) becomes

w′3 = −ε1
(
m2 − ε21

4

)∑
~α∈Ψ

h′′1(~α · ~t )

(~α · ~a )2

− 1

2

(
m2 − ε21

4

)(
m+

ε1
2

)∑
~α∈Ψ

∑
~β∈Ψ(~α)

h′′1(~α · ~t )

(~α · ~a ) (~β · ~a )
,

(4.114)

while w′4 in (4.110c) is

w′4 =
1

6

(
m2 − ε21

4

)[(
m2 − ε21

4

)∑
~α∈Ψ

E2 h
′
1(~α · ~t )− h′′′1 (~α · ~t )

(~α · ~a )3
+ 6 ε21

∑
~α∈Ψ

h′′′1 (~α · ~t )

(~α · ~a )3

]

+ ε1

(
m2 − ε21

4

)(
m+

ε1
2

)∑
~α∈Ψ

∑
~β∈Ψ(~α)

h′′′1 (~α · ~t )

(~α · ~a )2 (~β · ~a )

+
1

4

(
m2 − ε21

4

)(
m+

ε1
2

)2
[∑
~α∈Ψ

∑
~β 6=~γ∈Ψ(~α)

h′′′1 (~α · ~t )

(~α · ~a ) (~β · ~a ) (~γ · ~a )

− 1

3

∑
~α∈Ψ

∑
~β∈Ψ(~α)

∑
~γ∈Ψ(~α,~β)

h′′′1 (~α · ~t )

(~α · ~a ) (~β · ~a ) (~γ · ~a )

]
.

(4.115)

We observe that the two sums in the last two lines of (4.115) are actually equal

to each other and thus, taking into account the numerical factors, they exactly
9These definitions are analogous to the ones used in [19, 70] to define the root lattice sums

appearing in the prepotential; see also (H.7).
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reproduce the last line of (4.110c). However, for different sets of roots the two sums

are different and lead to different structures. Thus, for reasons that will soon become

clear, we have kept them separate even in this case.

4.6.2 Surface operators of type {p,N − p}

We now discuss a generalization of the simple surface operator in which we still have

a single complex variable z as before, but the type is given by the following vector

~t =

{
︸ ︷︷ ︸

p

t1, . . . , t1, ︸ ︷︷ ︸
N − p

t2, . . . , t2

}
. (4.116)

In this case, using the tracelessness condition on the vacuum expectation values, the

classical contribution to the superpotential is

Wclass = 2πi

(
t1

p∑
i=1

ai + t2

N∑
j=p+1

aj

)
= −2πi z

p∑
i=1

ai (4.117)

where again we have defined z = t2 − t1.

It turns out that the quantum corrections to the z-derivatives of the superpotential

are given exactly by the same formulas (4.112), (4.114) and (4.115) in which the

only difference is in the subsets of the root system Φ that have to be considered in

the lattice sums. These subsets are still defined as in (4.111) and (4.113) but with

the vector ~t given by (4.116). We observe that in this case the two last sums in

(4.115) are different. We have verified these formulas against the localization results

up to SU(7) finding perfect agreement. The fact that the superpotential coefficients

can be formally written in the same way for all unitary groups and for all types

with two entries, suggests that probably universal formulas should exist for surface

operators with more than two distinct entries in the ~t-vector. This is indeed what
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happens as we will show in the next subsection.

4.6.3 Surface operators of general type

A surface operator of general type corresponds to splitting the SU(N) gauge group

as in (4.10) which leads to the following partition of the Coulomb parameters

~a =

{
︸ ︷︷ ︸

n1

a1, · · · an1 , ︸ ︷︷ ︸
n2

an1+1, · · · an1+n2 , · · · , ︸ ︷︷ ︸
nM

aN−nM+1, . . . aN

}
, (4.118)

and to the following ~t-vector

~t =

{
︸ ︷︷ ︸

n1

t1, · · · , t1, ︸ ︷︷ ︸
n2

t2, · · · , t2, · · · , ︸ ︷︷ ︸
nM

tM , · · · , tM

}
(4.119)

with
M∑
I=1

nI = N . (4.120)

In this case we therefore have several variables zI defined as in (4.54), and several

combinations of elliptic functions evaluated at different points. However, if we use

the root system Φ of SU(N) the structure of the superpotential coefficients is very

similar to what we have seen before in the simplest cases. To see this, let us first

define the following subsets 10 of Φ:

ΨIJ =
{
~α ∈ Φ

∣∣ ~α · ~t+ zI − zJ = 0
}
,

ΨIJ(~α) =
{
~β ∈ ΨIJ

∣∣ ~α · ~β = 1
}
,

ΨIJ(~α, ~β) =
{
~γ ∈ ΨIJ

∣∣ ~α · ~γ = ~β · ~γ = 1
} (4.121)

which are obvious generalizations of the definitions (4.111) and (4.113). Then, writ-
10When J = 1 one must take z1 = 0.
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ing

W(I) =
1

2πi

∂W
∂zI

= aI1 + · · · aInI +
∑
`

w
(I)
` , (4.122)

for I = 2, · · · ,M , we find that the first few coefficients w(I)
` are given by

w
(I)
2 =

(
m2 − ε21

4

)∑
J 6=I

∑
~α∈ΨIJ

h′1(~α · ~t )

~α · ~a
, (4.123)

w
(I)
3 = −ε1

(
m2 − ε21

4

)∑
J 6=I

∑
~α∈ΨIJ

h′′1(~α · ~t )

(~α · ~a )2

− 1

2

(
m2 − ε21

4

)(
m+

ε1
2

)∑
J 6=I

∑
~α∈ΨIJ

∑
~β∈ΨIJ (~α)

h′′1(~α · ~t )

(~α · ~a ) (~β · ~a )
, (4.124)

w
(I)
4 =

1

6

(
m2 − ε21

4

)[(
m2 − ε21

4

)∑
J 6=I

∑
~α∈ΨIJ

E2 h
′
1(~α · ~t )− h′′′1 (~α · ~t )

(~α · ~a )3

+ 6 ε21
∑
J 6=I

∑
~α∈ΨIJ

h′′′1 (~α · ~t )

(~α · ~a )3

]

+ ε1

(
m2 − ε21

4

)(
m+

ε1
2

)∑
J 6=I

∑
~α∈ΨIJ

∑
~β∈ΨIJ (~α)

h′′′1 (~α · ~t )

(~α · ~a )2 (~β · ~a )

+
1

4

(
m2 − ε21

4

)(
m+

ε1
2

)2
[∑
J 6=I

∑
~α∈ΨIJ

∑
~β 6=~γ∈ΨIJ (~α)

h′′′1 (~α · ~t )

(~α · ~a ) (~β · ~a ) (~γ · ~a )

(4.125)

− 1

3

∑
J 6=I

∑
~α∈ΨIJ

∑
~β∈ΨIJ (~α)

∑
~γ∈ΨIJ (~α,~β)

h′′′1 (~α · ~t )

(~α · ~a ) (~β · ~a ) (~γ · ~a )

]

+
(
m2 − ε21

4

)2 ∑
J 6=K 6=I

∑
~α∈ΨIJ

∑
~β∈ΨIK(~α)

h′1(~α · ~t )h′1(~α · ~t− ~β · ~t )

(~α · ~a ) (~β · ~a ) (~α · ~a− ~β · ~a )

where the summation indices J,K, · · · , take integer values from 1 to M . One can

explicitly check that these formulas reduce to those of the previous subsections if

M = 2. We have verified these expressions in many cases up to SU(7), always

finding agreement with the explicit localization results. Of course it is possible to

write down similar expressions for the higher coefficients w(I)
` , which however become

more and more cumbersome as ` increases. Given the group theoretic structure of
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these formulas, it is tempting to speculate that they may be valid for the other

simply laced groups of the ADE series as well, similarly to what happens for the

analogous expressions of the prepotential coefficients [19]. It would be interesting

to verify whether this happens or not.

4.7 Duality between surface operators

In this section we establish a relation between our localization results and those ob-

tained when the surface defect is realized by coupling two-dimensional sigma-models

to the four dimensional gauge theory. When the surface operators are realized in

this way, the twisted chiral ring has been independently obtained by studying the

two-dimensional (2, 2) theories [17, 18] and related to the Seiberg-Witten geometry

of the four dimensional gauge theory [21, 22]. Building on these general results, we

extract the semi-classical limit and compare it with the localization answer, finding

agreement.

In order to be explicit, we will consider only gauge theories without Ω-deformation,

and begin our analysis by first discussing the pure N = 2 theory with gauge group

SU(N); in the end we will return to the N = 2? theory.

4.7.1 The pure N = 2 SU(N) theory

The pure N = 2 theory can be obtained by decoupling the adjoint hypermultiplet

of the N = 2? model. More precisely, this decoupling is carried out by taking the

following limit (see for example [65])

m→∞ and q → 0 such that q m2N = (−1)NΛ2N is finite, (4.126)
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where Λ is the strong coupling scale of the pure N = 2 theory. In presence of a

surface operator, this limit must be combined with a scaling prescription for the

continuous variables that characterize the defect. For surface operators of type

{p,N − p}, which possess only one parameter x = e2πi z, this scaling is

m→∞ and x→ 0 such that xmN = (−1)p−1x0 ΛN is finite. (4.127)

Here x0 = e2πi z0 is the parameter that labels the surface operator in the pure theory

à la Gukov-Witten [16,21,22,42].

Performing the limits (4.126) and (4.127) on the localization results described in the

previous sections, we obtain

W ′ =

p∑
i=1

W ′
i (4.128)

where

W ′
i = −ai−ΛN

(
x0+

1

x0

) N∏
j 6=i

1

aij
−Λ2N

2

(
x2

0+
1

x2
0

) ∂

∂ai

( N∏
j 6=i

1

a2
ij

)
+O

(
Λ3N

)
. (4.129)

We have explicitly verified this expression in all cases up to SU(7), and for the low

rank groups we have also computed the higher instanton corrections11. With some

simple algebra one can check that, despite the appearance, W ′ is not singular for

ai → aj when both i and j are ≤ p or > p. This fact follows from the residue

condition satisfied by the original expression of the superpotential in the N = 2?

theory (see the remarks after (4.125)). Furthermore, one can verify that

N∑
i=1

W ′
i = 0 (4.130)

11For example, for SU(2) and p = 1 we find

W ′1 = −a−Λ2

2a

(
x0+

1

x0

)
+

Λ4

8a3

(
x20+

1

x20

)
− Λ6

16a5

(
x30+x0+

1

x0
+

1

x30

)
+

Λ8

128a7

(
5x40+8x20+

8

x20
+

5

x40

)
+O

(
Λ10
)

where a = a1.
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as a consequence of the tracelessness condition on the vacuum expectation values.

We now show that this result is completely consistent with the exact twisted chiral

ring relation obtained in [21]. For the pure N = 2 SU(N) theory with a surface

operator parameterized by x0, the twisted chiral ring relation takes the form [21]

PN(y)− ΛN
(
x0 +

1

x0

)
= 0 (4.131)

with

PN(y) =
N∏
i=1

(
y − ei

)
(4.132)

where ei are the quantum corrected expectation values of the adjoint scalar. They

reduce to ai in the classical limit Λ → 0 and parameterize the quantum moduli

space of the theory. The ei, which satisfy the tracelessness condition

N∑
i=1

ei = 0 , (4.133)

were explicitly computed long ago in the 1-instanton approximation in [89, 90] by

evaluating the period integrals of the Seiberg-Witten differential and read

ei = ai − Λ2N ∂

∂ai

(∏
j 6=i

1

a2
ij

)
+O

(
Λ4N

)
. (4.134)

The higher instanton corrections can be efficiently computed using localization meth-

ods [91–94], but their expressions will not be needed in the following.

Inserting (4.134) into (4.132) and systematically working order by order in ΛN , it is

possible to show that the N roots of the chiral ring equation (4.131) are

yi = ai + ΛN
(
x0 +

1

x0

) N∏
j 6=i

1

aij
+

Λ2N

2

(
x2

0 +
1

x2
0

) ∂

∂ai

( N∏
j 6=i

1

a2
ij

)
+O

(
Λ3N

)
(4.135)

for i = 1, · · · , N . Comparing with (4.129), we see that, up to an overall sign, yi
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coincide with the derivatives of the superpotentialW ′
i we obtained from localization.

Therefore, we can rewrite the left hand side of (4.131) in a factorized form and get

N∏
i=1

(
y +W ′

i )− PN(y) + ΛN
(
x0 +

1

x0

)
= 0 (4.136)

This shows a perfect match between our localization results and the semi-classical

expansion of the chiral ring relation of [21], and provides further non-trivial evi-

dence for the equivalence of the two descriptions. Let us elaborate a bit more on

this. According to [21], a surface operator of type {p,N − p} has a dual description

as a Grassmannian sigma-model coupled to the SU(N) gauge theory, and all infor-

mation about the twisted chiral ring of the sigma-model is contained in two monic

polynomials, Q and Q̃ of degree p and (N − p) respectively, given by

Q(y) =

p∑
`=0

y`Xp−` , Q̃(y) =

N−p∑
k=0

yk X̃N−p−k . (4.137)

with X0 = X̃0 = 1. Here, X` are the twisted chiral ring elements of the Grassmannian

sigma-model, and in particular

X1 =
1

2πi

∂W
∂z0

(4.138)

where W is the superpotential of the surface operator of type {p,N − p}. The

polynomial Q̃ encodes the auxiliary information about the “dual" surface operator

obtained by sending p → (N − p). The crucial point is that, according to the

proposal of [21], the two polynomials Q and Q̃ satisfy the relation

Q(y) Q̃(y)− PN(y) + ΛN
(
x0 +

1

x0

)
= 0 . (4.139)
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Comparing with (4.136), we are immediately led to the following identifications 12

Q(y) =

p∏
i=1

(
y +W ′

i

)
, Q̃(y) =

N∏
j=p+1

(
y +W ′

j

)
. (4.140)

Thus, using (4.138) and (4.128), we find

1

2πi

∂W
∂z0

=

p∑
i=1

W ′
i =W ′ . (4.141)

This equality shows that our localization results for the superpotential of the surface

operator of type {p,N − p} in the pure SU(N) theory perfectly consistent with the

proposal of [21], thus proving the duality between the two descriptions. All this

is also a remarkable consistency check of the way in which we have extracted the

semi-classical results for the twisted chiral ring of the Grassmannian sigma-model

and of the twisted superpotential we have computed.

4.7.2 The N = 2? SU(N) theory

Inspired by the previous outcome, we now analyze the twisted chiral ring relation

for simple operators in N = 2? theories using the Seiberg-Witten curve and compare

it with our localization results for the undeformed theory. To this aim, let us first

recall from Section 4.6.1 (see in particular (4.110) with ε1 = 0) that for a simple

surface operator corresponding to the following partition of the Coulomb parameters

{
ai, ︸ ︷︷ ︸

N − 1

{aj with j 6= i}
}
, (4.142)

12We have chosen a specific ordering in which the first p factors correspond to the first p vacuum
expectation values ai; of course one could as well choose a different ordering by permuting the
factors.
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the z-derivative of the superpotential is

W ′
i = −ai +m2

∑
j 6=i

h′1
aij

+
m3

2

∑
j 6=k 6=i

h′′1
aij aik

+
m4

6

(∑
j 6=i

E2 h
′
1 − h′′′1
a3
ij

+
∑

j 6=k 6=` 6=i

h′′′1
aij aik ai`

)
+O

(
m5
)
.

(4.143)

Let us now see how this information can be retrieved from the Seiberg-Witten curve

of the N = 2? theories. As is well known, in this case there are two possible

descriptions (see [72] for a review). The first one, which we call the Donagi-Witten

curve [95], is written naturally in terms of the modular covariant coordinates on

moduli space, while the second, which we call the d’Hoker-Phong curve [96], is

written naturally in terms of the quantum corrected coordinates on moduli space.

As shown in [72], these two descriptions are linearly related to each other with

coefficients depending on the second Eisenstein series E2.

Since our semi-classical results have been resummed into elliptic and quasi-modular

forms, we use the Donagi-Witten curve, which for the SU(N) gauge theory is an

N -fold cover of an elliptic curve. It is described by the pair of equations:

Y 2 = X3 − E4

48
X +

E6

864
, FN(y,X, Y ) = 0 . (4.144)

The first equation describes an elliptic curve and thus we can identify (X, Y ) with

the Weierstraß function and its derivative (see (E.11)). More precisely we have

X = −℘̃ = −h′1 +
1

12
E2 ,

Y =
1

2
℘̃ ′ =

1

2
h′′1

(4.145)

The second equation in (4.144) contains a polynomial in y of degree N which encodes

the modular covariant coordinates Ak on the Coulomb moduli space of the gauge
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theory:

FN(y,X, Y ) =
N∑
k=0

(−1)kAk PN−k(y,X, Y ) (4.146)

where Pk are the modified Donagi-Witten polynomials introduced in [72]. The first

few of them are 13:

P0 = 1 , P1 = y ,

P2 = y2 −m2X , P3 = y3 − 3 y m2X + 2m3 Y ,

P4 = y4 − 6m2 y2X + 8 y m3 Y −m4
(

3X2 − 1

24
E4

)
.

(4.147)

On the other hand, the first few modular covariant coordinates Ak are (see [72]):

A2 =
∑
i<j

aiaj +
m2

12

(
N

2

)
E2 +

m4

288

(
E2

2 − E4

)∑
i 6=j

1

a2
ij

+O(m6) ,

A3 =
∑
i<j<k

aiajak −
m4

144

(
E2

2 − E4

)∑
i

∑
j 6=i

ai

a2
ij

+O(m6) ,

A4 =
∑

i<j<k<`

aiajaka` +
m2

12

(
N − 2

2

)
E2

∑
i<j

aiaj +
m4

48
E2

2

+
m4

288

(
E2

2 − E4

)[∑
i<j

∑
k 6=`

aiaj

a2
k`

+ 3
∑
i

∑
j 6=i

a2
i

a2
ij

−
(
N

2

)]
+O(m6) ,

(4.148)

and so on.

We now have all the necessary ingredients to proceed. First of all, using the above

expressions and performing the decoupling limits (4.126) and (4.127), one can check

that the Donagi-Witten equation FN = 0 reduces to the twisted chiral ring relation

(4.131) of the pure theory. Of course this is not a mere coincidence; on the contrary

it supports the idea that the Donagi-Witten equation actually encodes also the

twisted chiral ring relation of the simple codimension-4 surface operators of the

N = 2? theories. Secondly, working order by order in the hypermultiplet mass m,
13The E4 term in P4 is one of the modifications which in [72] were found to be necessary and is

crucial also here.
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one can verify that the N roots of the Donagi-Witten equation are given by

yi = ai −m2
∑
j 6=i

h′1
aij
− m3

2

∑
j 6=k 6=i

h′′1
aij aik

− m4

6

(∑
j 6=i

E2 h
′
1 − h′′′1
a3
ij

+
∑

j 6=k 6=` 6=i

h′′′1
aij aik ai`

)
+O

(
m5
)
.

(4.149)

Remarkably, this precisely matches, up to an overall sign, the answer (4.143) for the

simple codimension-2 surface operator we have obtained using localization. Once

again, we have exhibited the equivalence of twisted chiral rings calculated for the

two kinds of surface operators. Furthermore, we can rewrite the Donagi-Witten

equation in a factorized form as follows

N∏
i=1

(
y +W ′

i

)
− FN(y,X, Y ) = 0 (4.150)

which is the N = 2? equivalent of the pure theory relation (4.136).

4.7.3 Some remarks on the results

The result we obtained from the twisted superpotential in the case of simple op-

erators is totally consistent with the proposal given in the literature for simple

codimension-4 surface operators labeled by a single continuous parameter z, whose

superpotential has been identified with the line integral of the Seiberg-Witten dif-

ferential of the four-dimensional gauge theory along an open path [38]:

W(z) =

∫ z

z∗
λSW (4.151)

where z∗ is an arbitrary reference point. Indeed, in the Donagi-Witten variables, the

differential is simply λSW (z) = y(z) dz. Given that the Donagi-Witten curve is an

N -fold cover of the torus, the twisted superpotential with the classical contribution
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proportional to ai can be obtained by solving for y(z) and writing out the solution

on the ith branch.

As we have seen in the previous subsection, the general identification in (4.151)

works also in the pure N = 2 theory, once the parameters in the Seiberg-Witten

differential are rescaled by a factor of ΛN [21]. This rescaling can be interpreted as

a renormalization of the continuous parameter that labels the surface operator [97].

The agreement we find gives further evidence of the duality between defects realized

as codimension-2 and codimension-4 operators that we have already discussed in

Section 4.5.1, where we showed the equality of the twisted effective superpotential

computed in the two approaches for simple defects in the SU(2) theory. We have

extended these checks to defects of type {p,N − p} in pure N = 2 theories, and to

simple defects in N = 2? theories with higher rank gauge groups. All these support

the proposal of [79] based on a “separation of variables” relation.
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Chapter 5

Conclusions

In the first half of this thesis, we considered SU(2)n super-conformal linear quiver

gauge theories, with special emphasis on the n = 1, 2 cases. In this study, we

followed three different approaches based on (i) the analysis of the Seiberg-Witten

curves, (ii) equivariant localization, and (iii) the AGT correspondence.

Starting from the Seiberg-Witten curves obtained from the M-theory lift of a system

of NS5-D4 branes, we derived the instanton expansion of the prepotential. Here we

used a generalized residue prescription, along the lines suggested in [12,13], together

with global symmetry considerations. We also showed that the cross-ratios of the

branch points of the Seiberg-Witten curve, which depend on the UV parameters of

the theory, can be expressed in terms of Θ-constants with period matrix τij, which

encodes the IR gauge couplings. This confirmed the nice geometric interpretation

of the Nekrasov counting parameters.

We then considered the AGT correspondence, and showed that the classical Seiberg-

Witten curve encoded in this approach matches the one obtained via the M-theory

analysis. Within this framework, we also investigated the Ω-deformed quiver theory,

in the Nekrasov-Shatashvili limit. The deformed periods ai can be written as inte-
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grals of a deformed Seiberg-Witten differential. From this expression we extracted

the expansion of the prepotential to second order in the deformation parameter, and

matched this with the microscopic results à la Nekrasov.

To compare the results obtained from the two approaches, the key point is to express

all parameters in terms of gauge theory data, which are the masses and the bare

coupling constants associated with each gauge group. In the M-theory approach, the

parameters are geometric, and are related to the positions of the constituent branes

that engineer the quiver gauge theory. In the Liouville theory, the parameters are

the central charge of the CFT, and the Liouville momenta of the primary operators

involved in the AGT correspondence. After working out the detailed map between

the various parameters, we identified the quantum mechanical system that governs

the infrared dynamics of the SU(2)n quiver gauge theory in the Nekrasov-Shatashvili

limit, for the cases n = 1, 2. This allowed us to calculate the prepotential of the

gauge theory.

In the second half of this thesis, we studied surface operators on the Coulomb branch

of the four dimensional N = 2? theory with gauge group SU(N) focusing on the su-

perpotential W . This superpotential, which describes the effective two-dimensional

dynamics on the defect world-sheet, receives non-perturbative contributions, which

we calculated using equivariant localization. Exploiting the constraints arising from

the non-perturbative SL(2,Z) symmetry, we showed that in a semi-classical regime

in which the mass of the adjoint hypermultiplet is much smaller than the classical

Coulomb branch parameters, (derivatives of the) twisted superpotential satisfy a

modular anomaly equation. The coefficients functions in the mass expansion are

linear combinations of elliptic and quasi-modular forms of a given weight. The

twisted superpotential can be written in a very general and compact form in terms

of suitable restricted sums over the root lattice of the gauge algebra.

The match of our localization results with the ones obtained in [21] by studying
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the coupling with two-dimensional sigma models is a non-trivial check of our meth-

ods. It also provides evidence for the proposed duality between codimension-2 and

codimension-4 surface operators in [79]. Further evidence is given by the match of

the twisted superpotentials in the N = 2? theory, which we proved for the simple

surface operators using the Donagi-Witten curve of the model.
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Appendix A

Nekrasov prepotential for quiver

gauge theories

We consider N = 2 quiver theories with a gauge group of the form
∏

i SU(Ni), and a

matter content specified by the numbers {ni} of hypermultiplets in the fundamental

representation of SU(Ni), and by the numbers {cij} of bi-fundamental hypermul-

tiplets which are fundamental under SU(Ni) and anti-fundamental under SU(Nj).

The β-function coefficient for each SU(Ni) factor is given by

βi = −2Ni +
∑
j

Nj(cij + cji) + nj . (A.1)

We restrict our attention to conformal theories such that the β-function vanishes for

every node. The basic quantity of interest is the multi-instanton partition function

which, using localization [3, 98], reduces to

Zinst =
∑
ki

∫ ∏
i

qkii
ki!

ki∏
Ii=1

dχIi
2πi

zquiver
{ki} . (A.2)
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Here we adopt the same conventions used in [99] (see in particular Appendix A).

For instance, in the (k1, k2) instanton sector of a 2-node quiver theory we have

zquiver
k1,k2

= zgauge
k1

zgauge
k2

zfund
k1

zfund
k2

zbi−fund
k1,k2

. (A.3)

where, in a rather obvious notation, the various factors represent the contributions of

the different multiplets. As shown in [3,98] (see also [100,101]), the configurations of

χIi which contribute to the integrals in (A.2) can be put in one-to-one correspondence

with a set Young tableaux Y = {Yi} containing a total number k =
∑

i ki of boxes,

and the instanton partition function can be rewritten as

Zinst = 1 +
∑
Yi

∏
i

q
|Yi|
i Z{Yi} . (A.4)

Here, the 1 represents the contribution at zero instanton number, |Yi| is the total

number of boxes of the i-th Young tableau.

There is an algorithmic way to calculate the ZYi ’s, using the formalism of group

characters, which now we briefly describe. For a given node i, we introduce the

characters associated to the gauge, flavour and instanton symmetries, namely:

Wi =

Ni∑
ui=1

eiaui , WF,i =

ni∑
fi=1

e−i
(
mfi+

1
2

(ε1+ε2)
)
, Vi =

ki∑
Ii=1

ei
(
χIi−

1
2

(ε1+ε2)
)
, (A.5)

where the m’s are the masses of the fundamental hypermultiplets while ε1 and ε2

are the parameters of the Ω-background [3, 98]. In addition to these, we also have

the characters associated to the Lorentz group, which are given by

T1 = eiε1 , T2 = eiε2 . (A.6)

For a quiver model specified by the data {ni, cij}, the character for a given tableau
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Y is expressed in terms of the fundamental characters (A.5) as follows:

TY =
∑
i,j

tij Tij − TF , (A.7)

with
tij = δij − cij ei

(
mij− 1

2
(ε1+ε2)

)
,

Tij = −ViV ∗j (1− T1)(1− T2) +WiV
∗
j + ViW

∗
j T1T2 ,

TF =
∑
i

ViW
∗
F,i

(A.8)

where mij is the mass of the bi-fundamental hypermultiplets. Notice that the com-

bination mij, ε1 and ε2 that appears in tij is such that a flip in the orientation

of an arrow, which exchanges cij and cji, can be reabsorbed in the redefinition

mij ↔ −mji to leave ZY invariant. In what follows, we will often use the notation

m̂ = m+ 1
2
(ε1 + ε2).

We now focus on the SU(2) × SU(2) quiver. The field content of this model is

specified by c12 = 1, c21 = 0, n1 = 2 and n2 = 2. The vacuum expectation values for

the two SU(2) factors are a1 and a2. Using the notation Tx = ei x, the fundamental

characters (A.5) are given by

V1 = Ta1
∑

(r,s)∈Ya1

T r−1
1 T s−1

2 + T−a1
∑

(r,s)∈Y−a1

T r−1
1 T s−1

2 ,

V2 = Ta2
∑

(r,s)∈Ya2

T r−1
1 T s−1

2 + T−a2
∑

(r,s)∈Y−a2

T r−1
1 T s−1

2 ,

W1 = Ta1 + T−a1 , WF,1 = T−m̂1 + T−m̂2 ,

W2 = Ta2 + T−a2 , WF,2 = T−m̂3 + T−m̂4 .

(A.9)

For the quiver at hand, from (A.7) and (A.8) we find

TY = T11 − Tm̂12T
−1
1 T−1

2 T12 + T22 − V1

(
Tm̂1 + Tm̂2

)
− V2

(
Tm̂3 + Tm̂4

)
. (A.10)
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TY can be explicitly calculated for a given arrangement of Young tableaux Y = {Yi}

and, from the exponents of its various terms, one can read off the corresponding

instanton partition function Z{Yi}. For instance, in the one-instanton sector we find

Z( ,•|•, •) =
(2a1 + 2a2 + 2m12 + ε)(2a1 − 2a2 + 2m12 + ε)

32 ε1ε2 a1(−2a1 − ε)

2∏
f=1

(2a1 + 2mf + ε) ,

Z(•, |•, •) =
[
Z( ,•|•, •)

]
a1→−a1

,

Z(•, •| ,•) =
(2a2 + 2a1 − 2m12 + ε)(2a2 − 2a1 − 2m12 + ε)

32 ε1ε2 a2(−2a2 − ε)

4∏
f=3

(2a2 + 2mf + ε) ,

Z(•, •|•, ) =
[
Z(•, •| ,•)

]
a2→−a2

,

(A.11)

where we have defined

ε = ε1 + ε2 . (A.12)

The 1-instanton partition function is then given by Z1 = q1 Z1,0 + q2 Z0,1, with

Z1,0 = Z( ,•|•, •) + Z(•, |•, •) , Z0,1 = Z(•, •| ,•) + Z(•, •|•, ) . (A.13)

In the same way one can calculate the higher instanton contributions, and obtain

the instanton partition function,

Zinst = 1 +
∑
k1,k2

Zk1,k2 q
k1
1 qk22 (A.14)

and the non-perturbative prepotential

Finst = −ε1ε2 logZinst =
∑
k1,k2

Fk1,k2 q
k1
1 qk22 . (A.15)

Below we tabulate the first few prepotential coefficients Fk1,k2 computed along the

lines described above. We write the results in the Nekrasov-Shatashvili limit where
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we set ε2 = 0 and each Fk1,k2 has a further expansion of the form

Fk1,k2 =
∞∑
n=0

F
(n)
k1,k2

εn1 . (A.16)

At order ε01 we have

F
(0)
1,0 =

a2
1 − a2

2

2
+

1

2

(
m1m2 + 2(m1 +m2)m12 +m2

12

)
+
m1m2

(
m2

12 − a2
2

)
2a2

1

,

(A.17a)

F
(0)
2,0 =

13a4
1 − 14a2

1a
2
2 + a4

2

64a2
1

+
1

64

(
m2

1 + 16m1m2 +m2
2 + 32(m1 +m2)m12 + 18m2

12

)
+
m2

1m
2
2 + 2

(
m2

1 + 8m1m2 +m2
2

)
m2

12 +m4
12 + 2a2

2

(
m2

1 − 8m1m2 +m2
2 −m2

12

)
64a2

1

−
3
[
2m2

1m
2
2m

2
12 + (m2

1 +m2
2)m4

12 + 2a2
2(m2

1m
2
2 − (m2

1 +m2
2)m2

12) + a4
2(m2

1 +m2
2)
]

64a4
1

+
5m2

1m
2
2

(
m4

12 − 2a2
2m

2
12 + a4

2

)
64a6

1

, (A.17b)

F
(0)
1,1 =

a2
1 + a2

2

4
+

1

4

(
m1m2 +m3m4 + 2(m1 +m2)(m3 +m4)−m2

12

)
+
m1m2

(
m3m4 −m2

12 + a2
2

)
4a2

1

+
m3m4

(
m1m2 −m2

12 + a2
1

)
4a2

2

− m1m2m3m4m
2
12

4a2
1a

2
2

.

(A.17c)

At order ε11 we simply have

F
(1)
1,0 =

1

2
(m1 +m2 + 2m12) , (A.18a)

F
(1)
2,0 =

1

4
(m1 +m2 + 2m12) , (A.18b)

F
(1)
1,1 = m1 +m2 +m3 +m4 . (A.18c)
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Finally, at order ε21 we find

F
(2)
1,0 =

3

8
+
m1m2(m2

12 − a2
2)

8a4
1

, (A.19a)

F
(2)
2,0 =

23

128
− 2a2

2 +m2
1 +m2

2 + 2m2
12

256a2
1

+
a4

2 + 2a2
2

(
(m1 −m2)2 −m2

12

)
+m2

1m
2
2 + 2m2

12(m1 +m2)2 +m4
12

64a4
1

−
15
[
a4

2(m2
1 +m4

2) + 2a2
2

(
m2

1m
2
2 −m2

12(m2
1 +m2

2)
)

+ 2m2
1m

2
2m

2
12 + (m2

1 +m2
2)m4

12

]
256a6

2

+
21m2

1m
2
2(a4

2 −m2
12a

2
2 +m4

12)

128a8
1

, (A.19b)

F
(2)
1,1 =

7

16
+
m1m2m3m4(a4

1 + a2
1a

2
2 + a4

2)

16a4
1a

4
2

+
m1m2(a2

2 −m2
12)

16a4
1

+
m3m4(a2

1 −m2
12)

16a4
2

+
m1m2m3m4m

2
12(a2

1 + a2
2)

16a4
1a

4
2

. (A.19c)

The other prepotential terms Fk,` can be obtained from F`,k by the operations

a1 ↔ a2 , (m1,m2)↔ (m3,m4) , m12 ↔ −m12 . (A.20)

An important check of these results is that Fk,0 with a2 = 0 matches exactly the

k-instanton prepotential of the conformal SU(2) gauge theory with Nf = 4 if we

choose to label the Coulomb parameter of the gauge group by a1 and take the four

masses to be given by (
m1,m2,m12,m12

)
(A.21)

(see for example [29], taking into account thatmhere
i =

√
2mthere

i ). These calculations

can be extended to higher instanton numbers without any problem.

We conclude by recalling the structure of the perturbative part of the prepotential

for the quiver theory. The basic ingredient is the double-Gamma function

γε1,ε2(x) := log Γ2(x|ε1, ε2) =
d

ds

[
Λs

Γ(s)

∫ ∞
0

dt

t

tse−tx

(1− e−ε1t)(1− e−ε2t)

]
s=0

(A.22)
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where Λ is an arbitrary mass scale. For large values of x, the function γε1,ε2 has a

series expansion of the form

γε1,ε2(x) =
x2

4

(
3− log

x2

Λ2

)
b0 − x

(
1− 1

2
log

x2

Λ2

)
b1 −

1

4
log

x2

Λ2
b2

+
∑
n≥3

x2−n

n(n− 1)(n− 2)
bn

(A.23)

where the coefficients bn’s are defined by

1

(1− e−ε1t)(1− e−ε2t)
=
∞∑
n=0

bn
n!
tn−2 . (A.24)

For the SU(2)× SU(2) quiver the perturbative part of the prepotential is

Fpert = ε1ε2

[
γε1,ε2(2a1) + γε1,ε2(−2a1) + γε1,ε2(2a2) + γε1,ε2(−2a2)

−
∑
f=1,2

(
γε1,ε2(a1 + m̂f ) + γε1,ε2(−a1 + m̂f )

)
−
∑
f=3,4

(
γε1,ε2(a2 + m̂f ) + γε1,ε2(−a2 + m̂f )

)
− γε1,ε2(a1 + a2 − m̂12 + ε)− γε1,ε2(−a1 + a2 − m̂12 + ε)

− γε1,ε2(a1 − a2 − m̂12 + ε)− γε1,ε2(−a1 − a2 − m̂12 + ε)

]
(A.25)

where we recall that m̂ stands for m+ 1
2
ε, with ε defined in (A.12) . The first line in

the above formula represents the contribution of the two adjoint vector multiplets,

the second and third lines represent the contributions of the fundamental hypermul-

tiplets of the two gauge groups, while the last two lines are the contribution of the

bi-fundamental matter.

This perturbative potential can be expanded for small ε1 and ε2 using (A.23). Up
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to order four in the masses and up to order two in the ε’s we get

Fpert = −
(
a2

1 + a2
2 +

1

12

(
ε2 + ε1ε2

))
log 16

−
(
a2

1 −
1

2

(
m2

1 +m2
2

)
+

1

12

(
2ε2 − ε1ε2

))
log

a2
1

Λ2

−
(
a2

2 −
1

2

(
m2

3 +m2
4

)
+

1

12

(
2ε2 − ε1ε2

))
log

a2
2

Λ2

+

(
1

2

(
a1 + a2

)2
+

1

2
m2

12 −
1

24

(
ε2 − 2ε1ε2

))
log

(
a1 + a2

)2

Λ2

+

(
1

2

(
a1 − a2

)2
+

1

2
m2

12 −
1

24

(
ε2 − 2ε1ε2

))
log

(a1 − a2)2

Λ2

−
2
(
m4

1 +m4
2

)
−
(
ε2 − 2ε1ε2

)(
m2

1 +m2
2

)
24a2

1

−
2
(
m4

3 +m4
4

)
−
(
ε2 − 2ε1ε2

)(
m2

3 +m2
4

)
24a2

2

+
m2

12

(
ε2 − 2ε1ε2

)
− 2m4

12

24(a1 + a2)2
+
m2

12

(
ε2 − 2ε1ε2

)
− 2m4

12

24(a1 − a2)2

+

(
m4

1 +m4
2

)(
ε2 − 2ε1ε2

)
48a4

1

+

(
m4

3 +m4
4

)(
ε2 − 2ε1ε2

)
48a4

2

+
m4

12

(
ε2 − 2ε1ε2

)
48(a1 + a2)2

+
m4

12

(
ε2 − 2ε1ε2

)
48(a1 − a2)2

+ . . . (A.26)

It is easy to check that in the limit ε1,ε2 → 0 we recover the expected expression of

the 1-loop prepotential for the linear quiver we have considered. Notice that only in

the massless undeformed theory the dependence on the arbitrary scale Λ drops out,

in agreement with conformal invariance.
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Appendix B

Polynomials appearing in the

Seiberg-Witten curves

The fourth-order polynomial P4 appearing in the numerator of the Seiberg-Witten

curve (2.71) for the SU(2) Nf = 4 theory is

P4(t) =
4∑
`=0

C` t
` (B.1)

where

C0 =
q2

4
(m1 −m2)2 ,

C1 = −qu+ qm1m2 −
q2

2

[
(m1 +m2)(m3 +m4) +m2

1 +m2
2

]
,

C2 = u+ qu+
q

2

[
(m1 +m2)(m3 +m4)− 2m1m2 − 2m3m4

]
+
q2

4

( 4∑
f=1

mf

)2
,

C3 = −u+m3m4 −
q

2

[
(m1 +m2)(m3 +m4) +m2

3 +m2
4

]
,

C4 =
1

4
(m3 −m4)2 . (B.2)
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The sixth-order polynomial P6 appearing in the numerator of the Seiberg-Witten

curve (2.80) for the SU(2)× SU(2) quiver theory is

P6(t) =
6∑
`=0

C ′` t
` (B.3)

where,

C ′0 =
t21 t

2
2

4
(m1 −m2)2 ,

C ′1 = −t1 t22 (u1 −m1m2) +
t21 t2

4

(
m2

12 − 2m2
1 − 2m2

2 + 2m12(m1 +m2 +m12)
)

− t21 t
2
2

4

(
m2

12 + 2(m1 +m2 +m12)
4∑

f=1

mf − 4m1m2

)
,

C ′2 =
t1 t2

4

(
4(u1 + u2)− 7m2

12 − 2m12(m1 +m2)− 4m1m2

)
+ t22 u1

+
t1 t

2
2

2

(
2u1 + (m1 +m2 +m12)(m3 +m4 +m12) +m12(m3 +m4)− 2m1m2

)
+
t21
4

(
m1 +m2 −m12

)2
+
t21 t

2
2

4

(
m12 +m1 +m2 +m3 +m4

)2

− t21 t2
4

(
3m2

12 + 2m12(m1 +m2 +m12)− 4(m1 +m2)
4∑

f=1

mf + 4m1m2

)
C ′3 = −t1

4

(
4u2 +m2

12 − 2m12(m1 +m2)
)
− t2

(
u1 + u2 −m2

12

)
− t1 t2

2

(
2u1 + 2u2 − 6m2

12 −m12(m1 +m2 −m3 −m4) + 2(m1 +m2)(m3 +m4)

− 2m1m2 − 2m3m4

)
− t21

2

(
m1 +m2 −m12

)(
m1 +m2 +m3 +m4 −m12

)
− t22

4

(
4u1 +m2

12 + 2m12(m3 +m4)
)

+
t21 t2

2

(
m12 −

4∑
f=1

mf

)(
m12 −

4∑
f=1

mf

)
− t1 t

2
2

2

(
m12 +m3 +m4

)(
m12 +m1 +m2 +m3 +m4

)
,

− t1 t2
4

(
5m2

12 − 2m12(m3 +m4)− 4(m1 +m2)(m3 +m4)− 4m3
3 − 4m3m4 − 4m2

4

)
,
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C ′4 = u2+
t1
2

(
2u2 +m2

12 −m12(2m1 + 2m2 +m3 +m4)+(m1 +m2)(m3 +m4)− 2m3m4

)
+
t2
4

(
4u1 + 4u2 − 7m2

12 + 2m12(m3 +m4)− 4m3m4

)
+
t21
4

(
m2

12 − 2m12

4∑
f=1

mf + 2
∑
f<f ′

mfmf ′ +
4∑

f=1

m2
f

)
+
t22
4

(
m12 +m3 +m4

)2

− t1 t2
4

(
5m2

12 − 2m12(m3 +m4)− 4(m1 +m2)(m3 +m4)− 4m3
3 − 4m3m4 − 4m2

4

)
,

C ′5 = −u2 +m3m4 −
t1
4

(
m2

12 + 2(m3 +m4 −m12)
4∑

f=1

mf − 4m3m4

)
+
t2
4

(
m2

12 − 2m2
3 − 2m2

4 − 2(m3 +m4 −m12)m12

)
,

C ′6 =
1

4
(m3 −m4)2

(B.4)

where t1 = q1q2 and t2 = q2.
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Appendix C

Some useful integrals

The calculation of the periods of the Seiberg-Witten differential λ requires the eval-

uation of integrals of the following types

I1 =
1

π

∫ z

0

√
z − t
t

f(t)

q − t
dt for |q| < 1 , (C.1)

and

I2 =
1

π

∫ z

0

√
z − t
t

f(t)

1− t
dt (C.2)

where f(t) is a function admitting a Taylor expansion
∑

n fn t
n. Using the identities

f(t)

q − t
=
∞∑
n=0

tn

qn+1

(
f(q)−

∞∑
`=n+1

f` q
`

)
(C.3)

and ∫ z

0

√
z − t
t

tn = (−1)n π

(
1/2

n+ 1

)
zn+1 , (C.4)

we can prove that

I1 = f(q)−
√
q − z
q

f(q)−
∞∑
n=0

∞∑
`=0

(−1)n
(

1/2

n+ 1

)
fn+`+1 z

n+1 q` . (C.5)
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On the other hand, from
f(t)

1− t
=
∞∑
n=0

n∑
`=0

f` t
n (C.6)

and (C.4), we have

I2 =
∞∑
n=0

n∑
`=0

(−1)n
(

1/2

n+ 1

)
f` z

n+1 . (C.7)

These results can be used to compute the periods of the Seiberg-Witten differential.

For example in the SU(2) Nf = 4 theory considered in Section 2.6, we can rewrite

the last term of (2.106) as

J =

√
C

π(1− q)

∫ e2

0

√
e2 − t
t

(√
e3 − t
q − t

−
√
e3 − t
1− t

)
dt =

√
C

1− q
(
I1 − I2

)
(C.8)

where I1 and I2 are as in (C.1) and (C.2) with z = e2 and f(t) =
√
e3 − t . Then,

from (C.5) and (C.7) we get

J =

√
C

1− q

(√
e3 − q −

√
(e2 − q)(q − e3)

q
+
∞∑
n=0

∞∑
`=0

(−1)`
(

1/2

n+ 1

)(
1/2

n+ `+ 1

)
en+1

2 q`

e
n+`+1/2
3

−
∞∑
n=0

n∑
`=0

(−1)(n+`)

(
1/2

n+ 1

)(
1/2

`

)
en+1

2

e
`−1/2
3

)
. (C.9)

This is the result used to obtain (2.107) in the main text.

In the quiver theory described in Section 2.7 we had to compute the integral (see

(2.141)

J ′ =
1

π

∫ ζ1

0

√
ζ1 − t
t

√
u2(ζ̂ − t)

(1− t)(1− q2t)

dt

q1 − t
(C.10)

which is again of the type I1 with z = ζ1, q = q1 and

f(t) =

√
u2(ζ̂ − t)

(1− t)(1− q2t)
. (C.11)
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Using (C.5) we then find

J ′ =

√
u2(ζ̂ − q1)

(1− q1)(1− q1q2)
−

√
u2(q1 − ζ1)(ζ̂ − q1)

q1(q1 − 1)(q1q2 − 1)
−
∞∑

n,`=0

(−1)n
(

1/2

n+ 1

)
fn+`+1 ζ

n+1
1 q`1

(C.12)

where the fn’s are the Taylor expansion coefficients of the function (C.11). This is

the result used to obtain (2.145) in the main text.
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Appendix D

Conformal Ward identities

The chiral blocks that are relevant for the discussion in Sections 3 and 3.5 are

〈
T (z)

n+2∏
i=0

Vαi(zi)
〉

=
n+2∑
i=0

(
∆αi

(z − zi)2
+

1

z − zi
∂

∂zi

) 〈 n+2∏
i=0

Vαi(zi)
〉
,

〈
:T (z)Φ2,1(z) :

n+2∏
i=0

Vαi(zi)
〉

=
n+2∑
i=0

(
∆αi

(z − zi)2
+

1

z − zi
∂

∂zi

) 〈
Φ2,1(z)

n+2∏
i=0

Vαi(zi)
〉
.

(D.1)

We can simplify the right hand sides by imposing the constraints that follow from

the global conformal invariance of the theory. For an (n+ 3)-point correlator these

are:

Λ̂k

〈 n+2∏
i=0

Vαi(zi)
〉

= 0 for k = −1, 0, 1 , (D.2)

where

Λ̂−1 =
n+2∑
i=0

∂

∂zi
, Λ̂0 =

n+2∑
i=0

(
zi
∂

∂zi
+ ∆i

)
, Λ̂1 =

n+2∑
i=0

(
z2
i

∂

∂zi
+ 2zi∆i

)
(D.3)

are the generators of the global conformal group. The relations (D.2) allow to express

the derivatives with respect to, say, z0, zn+1 and zn+2 in terms of the derivatives with

respect to the remaining n coordinates. If we fix z0 = 0, zn+1 = 1 and zn+2 = ∞,
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we have

∂

∂z0

= −
n∑
i=1

(
(zi − 1)

∂

∂zi
+ ∆αi

)
+ ∆α0 + ∆αn+1 −∆αn+2 ,

∂

∂zn+1

= −
n∑
i=1

(
zi
∂

∂zi
+ ∆αi

)
−∆α0 −∆αn+1 + ∆αn+2 ,

∂

∂zn+2

= 0 .

(D.4)

Applying these relations to the first correlator in (D.1), we get

〈
T (z)

n+2∏
i=0

Vαi(zi)
〉

=

[
n∑
i=1

(
∆αi

(z − zi)2
+

zi(zi − 1)

z(z − 1)(z − zi)
∂

∂zi

)
+

∆α0

z2
+

∆αn+1

(z − 1)2

−
∑n

i=1 ∆αi + ∆α0 + ∆αn+1 −∆αn+2

z(z − 1)

]〈 n+2∏
i=0

Vαi(zi)
〉

(D.5)

where, both in the left and in the right hand side, it is understood that z0 = 0,

zn+1 = 1 and zn+2 =∞.

Proceeding in a similar way, we can rewrite the second correlator in (D.1) as

〈
:T (z)Φ2,1(z) :

n+2∏
i=0

Vαi(zi)
〉

=

[
n∑
i=1

(
∆αi

(z − zi)2
+

zi(zi − 1)

z(z − 1)(z − zi)
∂

∂zi

)
− 2z − 1

z(z − 1)

∂

∂z

+
∆α0

z2
+

∆αn+1

(z − 1)2
−
∑n

i=1 ∆αi + ∆z + ∆α0 + ∆αn+1 −∆αn+2

z(z − 1)

]〈
Φ2,1(z)

n+2∏
i=0

Vαi(zi)
〉
.

(D.6)

To make contact with the discussion in Sections 3 and 3.5, we should notice that

the punctures zi have been denoted by ti and that these are related to the gauge

couplings according to qi = ti/ti+1. Using this we can obtain from (D.5) and (D.6)

the formulæ (3.24) and (3.37) of the main text.
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Appendix E

Useful formulas for modular forms

and elliptic functions

In this appendix we collect some formulas about quasi-modular forms and elliptic

functions that are useful to check the statements of the main text.

Eisenstein series

We begin with the Eisenstein series E2n, which admit a Fourier expansion in terms

of q = e2πiτ of the form

E2n = 1 +
2

ζ(1− 2n)

∞∑
k=1

σ2n−1(k)qk , (E.1)
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where σp(k) is the sum of the p-th powers of the divisors of k. More explicitly we

have

E2 = 1− 24
∞∑
k=1

σ1(k)qk = 1− 24q − 72q2 − 96q3 − 168q4 + · · · ,

E4 = 1 + 240
∞∑
k=1

σ3(k)qk = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + · · · ,

E6 = 1− 504
∞∑
k=1

σ5(k)qk = 1− 504q − 16632q2 − 122976q3 − 532728q4 + · · · .

(E.2)

Under a modular transformation τ → aτ+b
cτ+d

, with a, b, c, d ∈ Z and ad − bc = 1, the

Eisenstein series transform as

E2 → (cτ+d)2E2 +
6

πi
c (cτ+d) , E4 → (cτ+d)4E4 , E6 → (cτ+d)6E6 . (E.3)

In particular, under S-duality we have

E2(τ)→ E2

(
−1

τ

)
= τ 2

(
E2(τ) + δ

)
,

E4(τ)→ E4

(
−1

τ

)
= τ 4E4(τ) ,

E6(τ)→ E6

(
−1

τ

)
= τ 6E6(τ)

(E.4)

where δ = 6
πiτ

.

Elliptic functions

The elliptic functions that are relevant for this thesis can all be obtained from the

Jacobi θ-function

θ1(z|τ) =
∞∑

n=−∞

q
1
2

(n− 1
2

)2 (−x)(n− 1
2

) (E.5)
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where x = e2πiz. From θ1, we first define the function

h1(z|τ) =
1

2πi

∂

∂z
log θ1(z|τ) = x

∂

∂x
log θ1(z|τ) , (E.6)

and the Weierstraß ℘-function

℘(z|τ) = − ∂2

∂z2
log θ1(z|τ)− π2

3
E2(τ) . (E.7)

In most of our formulas the following rescaled ℘-function appears:

℘̃(z|τ) :=
℘(z, τ)

4π2
= x

∂

∂x

(
x
∂

∂x
log θ1(z|τ)

)
− 1

12
E2(τ) , (E.8)

which we can write also as

℘̃(z|τ) = h′1(z|τ)− 1

12
E2(τ) . (E.9)

Another relevant elliptic function is the derivative of the Weierstraß function, namely

℘̃ ′(z|τ) :=
1

2πi

∂

∂z
℘̃(z|τ) = x

∂

∂x
℘̃(z|τ) = h′′1(z|τ) . (E.10)

The Weierstraß function and its derivative satisfy the equation of an elliptic curve,

given by

℘̃ ′(z|τ)2 + 4 ℘̃(z|τ)3 − E4

12
℘̃(z|τ)− E6

216
= 0 . (E.11)

By differentiating this equation, we obtain

℘̃ ′′(z|τ) = −6 ℘̃(z|τ)2 +
E4

24
(E.12)

which, using (E.9) and (E.10), we can rewrite as

h′′′1 (z|τ) = −6
(
h′1(z|τ)

)2
+ E2 h

′
1(z|τ)− E2

2 − E4

24
. (E.13)
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The function h1, ℘̃ and ℘̃ ′ have well-known expansions near the point z = 0. How-

ever, a different expansion is needed for our purposes, namely the expansion for

small q and x. To find such an expansion we observe that q and x variables must

be rescaled differently, as is clear from the map (4.52) between the gauge theory

parameters and the microscopic counting parameters. In particular for M = 2 this

map reads (see also (4.59))

q = q1q2 , x = q2 , (E.14)

so that if the microscopic parameters are all scaled equally as qi −→ λqi, then the

gauge theory parameters scale as

q → λ2q x→ λx . (E.15)

With this in mind, we now expand the elliptic functions for small λ and set λ = 1 in

the end, since this is the relevant expansion needed to compare with the instanton

calculations. Proceeding in this way, we find 1

h1(x|q) = h1(λx|λ2q)
∣∣∣
λ=1

=
[
− 1

2
+ λ
( q
x
− x
)

+ λ2
( q2

x2
− x2

)
+ λ3

( q3

x3
+
q2

x
− qx− x3

)
− λ4 x4 + λ5

(
q3

x
− q2x− x5

)
− λ6

(
q2x2 + x6

)
+ · · ·

]
λ=1

= −1

2
−
(
x+ x2 + x3 + x4 + x5 + x6 + · · ·

)
+
(1

x
− x
)
q

+
( 1

x2
+

1

x
− x− x2

)
q2 +

( 1

x3
+

1

x
+ · · ·

)
q3 + · · · , (E.16)

1Depending on the context, we denote the arguments of the elliptic functions by either (z|τ) as
we did so far, or by their exponentials (x|q) when the expansions are being used.
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℘̃(x|q) = ℘̃(λx|λ2q)
∣∣∣
λ=1

=
[
− 1

12
− λ
( q
x

+ x
)

+ λ2
(
− 2q2

x2
+ 2q − 2x2

)
− λ3

(3q3

x3
+
q2

x
+ qx+ 3x3

)
+ λ4

(
6q2 − 4x4

)
+ · · ·

]
λ=1

(E.17)

= − 1

12
−
(
x+ 2x2 + 3x3 + 4x4 + · · ·

)
−
(1

x
− 2 + x

)
q

−
( 2

x2
+

1

x
− 6 + · · ·

)
q2 − 3q3

x3
+ · · · ,

℘̃ ′(x|q) = ℘̃ ′(λx|λ2q)
∣∣∣
λ=1

=
[
λ
( q
x
− x
)

+ λ2

(
4q2

x2
− 4x2

)
+ λ3

(9q3

x3
+
q2

x
− qx− 9x3

)
− 16λ4x4 + · · ·

]
λ=1

= −
(
x+ 4x2 + 9x3 + 16x4 + · · ·

)
+
(1

x
− x
)
q

+
( 4

x2
+

1

x
+ · · ·

)
q2 +

9q3

x3
+ · · · . (E.18)

As a consistency check, it is possible to verify that, using these expansions and

those of the Eisenstein series in (E.2), the elliptic curve equation (E.11) is identically

satisfied order by order in λ.

As we have seen in Section 4.2, the modular group acts on (z|τ) as follows:

(z|τ)→
( z

cτ + d

∣∣∣ aτ + b

cτ + d

)
(E.19)

with a, b, c, d ∈ Z and ad− bc = 1. Under such transformations the Weierstraß func-

tion and its derivative have, respectively, weight 2 and 3, namely

℘(z|τ)→ ℘
( z

cτ + d

∣∣∣ aτ + b

cτ + d

)
= (cτ + d)2 ℘(z|τ) ,

℘ ′(z|τ)→ ℘ ′
( z

cτ + d

∣∣∣ aτ + b

cτ + d

)
= (cτ + d)3 ℘ ′(z|τ) .

(E.20)

Of course, similar relations hold for the rescaled functions ℘̃ and ℘̃ ′. In particular,
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under S-duality we have

℘̃(z|τ)→ ℘̃
(
−z
τ

∣∣∣− 1

τ

)
= τ 2 ℘̃(z|τ) ,

℘̃ ′(z|τ)→ ℘̃ ′
(
−z
τ

∣∣∣− 1

τ

)
= −τ 3 ℘̃ ′(z|τ) .

(E.21)
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Appendix F

Generalized instanton number in the

presence of fluxes

In this Appendix we calculate the second Chern class of the gauge field in the

presence of a surface operator for a generic Lie algebra g.

Surface operator Ansatz

A surface operator creates a singularity in the gauge field A. As discussed in the

main text, we parametrize the space-time R4 ' C2 by two complex variables (z1 =

ρ eiφ , z2 = r eiθ), and consider a two-dimensional defect D located at z2 = 0 and

filling the z1-plane. In this set-up, we make the following Ansatz [43]:

A = Â+ g(r) dθ , (F.1)
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where Â is regular all over R4, and g(r) is a g-valued function which is regular when

r →∞. The corresponding field strength is then,

F := dA− iA ∧ A = F̂ + d(g(r)dθ)− idθ ∧ [g(r), Â] . (F.2)

From this expression we obtain,

Tr F ∧ F = TrF̂ ∧ F̂ + 2 Tr
(
d(g(r)dθ) ∧ F̂

)
− 2 i Tr

(
dθ ∧ [g(r), Â] ∧ F̂

)
= TrF̂ ∧ F̂ + 2 Tr d(g(r)dθ ∧ F̂ ) + 2 Tr

(
g(r)dθ ∧

(
dF̂ − i Â ∧ F̂ − i F̂ ∧ Â

))
(F.3)

The last term vanishes due to the Bianchi identity, and we are left with,

Tr F ∧ F = Tr F̂ ∧ F̂ + 2 Tr d(g(r)dθ ∧ F̂ ) (F.4)

We now assume that the function g(r) has components only along the Cartan di-

rections of g, labeled by an index i, such that,

lim
r→0

gi(r) = −γi and lim
r→∞

gi(r) = 0 (F.5)

This means that near the defect the gauge connection behaves as,

A = Aµ dx
µ ' − diag

(
γ1, · · · , γrank(g)

)
dθ (F.6)

for r → 0. Using this in (F.4), we have

TrF ∧ F = Tr F̂ ∧ F̂ + 2
∑
i

d(gi(r)dθ ∧ F̂i) (F.7)

Notice that in the last term we can replace F̂i with Fi because the difference lies

entirely in the transverse directions of the surface operator, and thus does not con-
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tribute in the wedge product with dθ. Since the defect D effectively acts as a

boundary in R4 located at r = 0, integrating (F.7) over R4 we have,

1

8π2

∫
R4

TrF ∧ F =
1

8π2

∫
R4

Tr F̂ ∧ F̂ +
∑
i

γi
2π

∫
D

Fi = k +
∑
i

γimi . (F.8)

Here we have denoted by k the instanton number of the smooth connection Â and

taken into account a factor of 2π originating from the integration over θ. Finally,

we have defined

mi =
1

2π

∫
D

Fi . (F.9)

These quantities, which we call fluxes, must satisfy a quantization condition that

can be understood as follows. All fields of the gauge theory are organized in rep-

resentations of g and, in particular, can be chosen to be eigenstates of the Cartan

generators Hi with eigenvalues λi. These eigenvalues define a vector ~λ = {λi}, which

is an element of the weight lattice ΛW of g. Let us now consider a gauge transfor-

mation in the Cartan subgroup with parameters ~ω = {ωi}. On a field with weight

~λ, this transformation simply acts by a phase factor exp
(
i ~ω · ~λ

)
. From the point of

view of the two-dimensional theory on the defect, the Cartan gauge fields Ai must

approach a pure-gauge configuration at infinity so that

Ai ∼ dωi for ρ→∞ , (F.10)

with ωi being a function of φ, the polar angle in the z1-plane. In this situation, for

the corresponding gauge transformation to be single-valued, one finds

~ω(φ+ 2π) · ~λ = ~ω(φ) · ~λ+ 2πn (F.11)
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with integer n. In other words, ~ω · ~λ must be a map from the circle at infinity S∞1

into S1 with integer winding number n. Given this, we have

2πmi =

∫
D

Fi =

∮
S∞1

dωi = ωi(φ+ 2π)− ωi(φ) . (F.12)

Then, using (F.11), we immediately deduce that

~m · ~λ ∈ Z , (F.13)

which amounts to saying that the flux vector ~m must belong to the dual of the

weight lattice of g:

m ∈ (ΛW )∗ . (F.14)

The SU(N) case

For U(N) the Cartan generators Hi can be taken as the diagonal (N ×N) matrices

with just a single non-zero entry equal to 1 in the i-th place (i = 1, · · · , N). The

restriction to SU(N) can be obtained by choosing a basis of (N − 1) traceless gen-

erators, for instance (Hi − Hi+1)/
√

2. In terms of the standard orthonormal basis

{~ei} of RN , the (N − 1) simple roots of SU(N) are then {(~e1 − ~e2), (~e2 − ~e3), · · · }

and the root lattice ΛR is the Z-span of these simple roots. Note that ΛR lies in a

codimension-1 subspace orthogonal to
∑

i ~ei, and that the integrality condition for

the weights is simply ~α · ~λ ∈ Z for any root ~α. This shows that the weight lattice

is the dual of the root lattice, or equivalently that the dual of the weight lattice is

the root lattice: (ΛW )∗ = ΛR. Therefore, the condition (F.14) implies that the flux

vector ~m must be of the form

~m = n1(~e1 − ~e2) + n2(~e2 − ~e3) + · · ·+ nN−1(~eN−1 − ~eN) with ni ∈ Z . (F.15)
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This simply corresponds to

~m =
∑
i

mi ~ei with mi ∈ Z and
∑
i

mi = 0 . (F.16)

The fact that the fluxes mi are integers (adding up to zero) has been used in the

main text.

Generic surface operator

The case in which all the γi’s defined in (F.5) are distinct, corresponds to the surface

operator of type [1, 1, . . . , 1], also called full surface operator. If instead some of the

γi’s coincide, the surface operator has a more generic form. Let us consider for

example the case in which the SU(N) gauge field at the defect takes the form (see

(4.8)):

A = Aµ dx
µ ' − diag

(
︸ ︷︷ ︸

n1

γ1, · · · , γ1, ︸ ︷︷ ︸
n2

γ2, · · · , γ2, · · · , ︸ ︷︷ ︸
nM

γM , · · · , γM

)
dθ , (F.17)

for r → 0, which corresponds to splitting the gauge group according to

SU(N)→ S
[
U(n1)× U(n2)× · · · × U(nM)

]
. (F.18)

The calculation of the second Chern class (F.8) proceeds as before, but the result

can be written as follows

1

8π2

∫
M

TrF ∧ F = k +
M∑
I=1

γI mI (F.19)

with

mI =

nI∑
i=1

mi =
1

2π

∫
D

nI∑
i=1

Fi =
1

2π

∫
D

TrFU(nI) . (F.20)
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Here we see that it is the magnetic flux associated with the U(1) factor in each

subgroup U(nI) that appears in the expression for the generalized instanton number

in the presence of magnetic fluxes.
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Appendix G

Ramified instanton moduli and their

properties

In this appendix we describe the instanton moduli in the various sectors. Our results

are summarized in Tab.G.1.

Let us first consider the neutral states of the strings stretching between two D-

instantons.

• (−1)/(−1) strings of type I-I: All moduli of this type transform in the adjoint

representation (dI , d̄I) of U(dI). A special role is played by the bosonic states created

in the Neveu-Schwarz (NS) sector of such strings by the complex oscillator ψv in

the last complex space-time direction, which is neutral with respect to the orbifold.

We denote them by χI . They are characterized by a U(1)4 weight {0, 0, 0, 0} and a

charge (+1) with respect to the last U(1). The complex conjugate moduli χ̄I , with

weight {0, 0, 0, 0} and charge (−1), are paired in a Q-doublet with the fermionic

moduli η̄I coming from the ground state of the Ramond (R) sector with weight{
− 1

2
,−1

2
,−1

2
,−1

2

}
and charge (−1

2
). All other moduli in this sector are arranged in
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Q-doublets. One doublet is (Az1I ,M
z1
I ), where Az1I is from the ψz1 oscillator in the

NS sector with weight {+1, 0, 0, 0} and charge 0, andM z1
I is from the R ground state{

+ 1
2
,−1

2
,−1

2
,−1

2

}
with charge (+1

2
). Another doublet is (Az4I ,M

z4
I ), where Az4I is

from the ψz4 oscillator in the NS sector with weight {0, 0, 0,+1} and charge 0, and

M z4
I is from the R ground state with weight

{
− 1

2
,−1

2
,−1

2
,+1

2

}
and charge (+1

2
).

Also the complex conjugate doublets are present. Finally, there is a (real) doublet

(λI , DI) where λI is from the R ground state with weight
{
+ 1

2
,+1

2
,+1

2
,+1

2

}
and

charge (−1
2
), and DI is an auxiliary field, and a complex doublet (λz1I , D

z1
I ) with λz1I

associated to the R ground state with weight
{
+ 1

2
,−1

2
,−1

2
,+1

2

}
and charge (−1

2
),

and Dz1
I an auxiliary field.

• (−1)/(−1) strings of type I-(I + 1): In this sector the moduli transform in

the bi-fundamental representation (dI , d̄I+1) of U(dI)×U(dI+1). In order to cancel

the phase ω−1 due to the different representations on the Chan-Paton indices at the

two endpoints, the weights under spacetime rotations of the operators creating the

states in this sector must be such that l2 − l3 = 1. In this way they can survive the

ZM -orbifold projection. Applying this requirement, we find a doublet (Az2I ,M
z2
I ),

Az2I is from the ψz2 oscillator in the NS sector with weight {0,+1, 0, 0} and charge 0,

and M z2
I is from the R ground state

{
− 1

2
,+1

2
,−1

2
,−1

2

}
with charge (+1

2
). Another

doublet is (Āz3I , M̄
z3
I ) where Āz3I is from the ψ̄z3 oscillator in the NS sector with weight

{0, 0,−1, 0} and charge 0, and M̄ z3
I is from the R ground state

{
+ 1

2
,+1

2
,−1

2
,+1

2

}
with charge (+1

2
) 1. Furthermore, we find two other complex Q-doublets, (λz2I , D

z2
I )

and (λz3I , D
z3
I ) where λz2I and λz3I are associated to the R ground states with weights{

− 1
2
,+1

2
,−1

2
,+1

2

}
and

{
+ 1

2
,+1

2
,−1

2
,−1

2

}
and charges (−1

2
), while Dz2

I and Dz3
I are

auxiliary fields. Also the complex conjugate doublets are present in the ZM -invariant

spectrum, and arise from strings with the opposite orientation.
1Notice that this last doublet is actually the complex conjugate of a Q-doublet of type (I+1)-I,

which is made of (Az3I ,M
z3
I ) with Az3I corresponding to the weight {0, 0, 1, 0} andMz3

I correspond-
ing to the weight

{
− 1

2 ,−
1
2 ,+

1
2 ,−

1
2

}
.
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• 3/(−1) strings of type I-I: These open strings have mixed Neumann-Dirichlet

boundary conditions along the (z1, z2)-directions and thus the corresponding states

are characterized by the action of a twist operator ∆ [78]. We assign an orbifold

charge ω−
1
2 to this twist operator, so that the states which survive the ZM -projection

are those with weights such that l2 − l3 = 1/2. The moduli in this sector belong to

the bi-fundamental representation (nI × d̄I) of the gauge and ADHM groups, and

form two complex doublets. One is (wI , µI) where the NS component wI has weight{
+ 1

2
,+1

2
, 0, 0

}
and charge 0, and the R component µI has weight

{
0, 0,−1

2
,−1

2

}
and

charge (+1
2
). The other doublet is (µ′I , h

′
I) where µ′I is associated to the R ground

state with weight
{

0, 0,−1
2
,+1

2

}
and charge (−1

2
), while h′I is an auxiliary field.

Also the complex conjugate doublets, associated to the (−1)/3 strings of type I-I,

are present in the spectrum.

• (−1)/3 strings of type I-(I + 1): These open strings have mixed Dirichlet-

Neumann boundary conditions along the (z1, z2)-directions and transform in the

bi-fundamental representation (dI × n̄I+1) of the gauge and ADHM groups. As

compared to the previous case, the states in this sector are characterized by the

action of an anti-twist operator ∆̄ which carries an orbifold parity ω+ 1
2 . Thus the

ZM -invariant configurations must have again weights with l2 − l3 = 1
2
in order

to compensate for the ω−1 factor carried by the Chan-Paton indices. Taking this

into account, we find two complex doublets: (ŵI , µ̂I) where the NS component

ŵI has weight
{
+ 1

2
,+1

2
, 0, 0

}
and charge 0, and the R component µ̂I has weight{

0, 0,−1
2
,−1

2

}
and charge (+1

2
), and (µ̂′I , ĥ

′
I) where µ̂′I is associated to the R ground

state with weight
{

0, 0,−1
2
,+1

2

}
and charge (−1

2
), while ĥ′I is an auxiliary field. Also

the complex conjugate doublets, associated to the 3/(−1) strings of type (I + 1)-I,

are present in the spectrum.

Notice that no states from the 3/(−1) strings of type I-(I + 1) or from the (−1)/3
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Doublet (−)Fα Chan-Paton U(1)4charge Q2-eigenvalue λα Character

(χ̄I , η̄I) + (dI , d̄I)
{

0, 0, 0, 0
}

χI,σ − χI,τ
(Az1I ,M

z1
I ) + (dI , d̄I)

{
+1, 0, 0, 0

}
χI,σ − χI,τ + ε1 V ∗I VIT1

(Az4I ,M
z4
I ) + (dI , d̄I)

{
0, 0, 0,+1

}
χI,σ − χI,τ + ε4 V ∗I VIT4

(λI , DI) − (dI , d̄I)
{
+ 1

2 ,+
1
2 ,+

1
2 ,+

1
2

}
χI,σ − χI,τ

(λz1I , D
z1
I ) − (dI , d̄I)

{
+ 1

2 ,−
1
2 ,−

1
2 ,+

1
2

}
χI,σ − χI,τ + ε1 + ε4 −V ∗I VIT1T4

(Az2I ,M
z2
I ) + (dI , d̄I+1)

{
0,+1, 0, 0

}
χI,σ − χI+1,ρ + ε̂2 V ∗I+1VIT2

(λz2I , D
z2
I ) − (dI , d̄I+1)

{
− 1

2 ,+
1
2 ,−

1
2 ,+

1
2

}
χI,σ − χI+1,ρ + ε̂2 + ε4 −V ∗I+1VIT2T4

(Āz3I , M̄
z3
I ) + (dI , d̄I+1)

{
0, 0,−1, 0

}
χI,σ − χI+1,ρ − ε̂3 V ∗I+1VIT1T2T4

(λz3I , D
z3
I ) − (dI , d̄I+1)

{
+ 1

2 ,+
1
2 ,−

1
2 ,−

1
2

}
χI,σ − χI+1,ρ + ε1 + ε̂2 −V ∗I+1VIT1T2

(wI , µI) + (nI , d̄I)
{
+ 1

2 ,+
1
2 , 0, 0

}
aI,s − χI,σ + 1

2 (ε1 + ε̂2) V ∗I WI

(µ′I , h
′
I) − (nI , d̄I)

{
0, 0,− 1

2 ,+
1
2

}
aI,s − χI,σ + 1

2 (ε1 + ε̂2) + ε4 −V ∗I WIT4

(ŵI , µ̂I) + (dI , n̄I+1)
{
+ 1

2 ,+
1
2 , 0, 0

}
χI,σ − aI+1,t + 1

2 (ε1 + ε̂2) W ∗I+1VIT1T2

(µ̂′I , ĥ
′
I) − (dI , n̄I+1)

{
0, 0,− 1

2 ,+
1
2

}
χI,σ − aI+1,t + 1

2 (ε1 + ε̂2) + ε4 −W ∗I+1VIT1T2T4

Table G.1: The spectrum of moduli, organized in doublets of the BRST charge Q (or
its conjugate Q̄). For each of them, we display their statistics (−)Fα , the represen-
tation of the color and ADHM groups in which they transform, their charge vector
with respect to the U(1)4 symmetry, the eigenvalue λα of Q2 and the corresponding
contribution to the character. The neutral moduli carrying a superscript z1, z2, z3

or z4, and the colored moduli in this table are complex.

strings of type (I + 1)-I survive the orbifold projection. Indeed, in the first case

the phases ω−
1
2 and ω−1 from the twist operator ∆ and the Chan-Paton factors

cannot be compensated by the NS or R weights; while in the second case the phases

ω+ 1
2 and ω+1 from the anti-twist operator ∆̄ and the Chan-Paton factors cannot be

canceled. All the above results are summarized in Tab. G.1 which contains also

other relevant information about the moduli.

As an illustrative example, we now consider in detail the SU(2) theory.
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G.1 SU(2)

In this case we have M = 2, and thus necessarily n1 = n2 = 1. Therefore, in the

SU(2) theory we have only simple surface operators. Furthermore, since the index

s takes only one value, we can simplify the notation and suppress this index in the

following.

Each pair Y = (Y1, Y2) of Young tableaux contributes to the instanton partition

function with a weight qd11 qd22 where d1 and d2 are given by (4.42), which in this case

take the simple form [43]

d1 =
∑
j

(
Y 2j+1

1 + Y 2j+1
2

)
, d2 =

∑
j

(
Y 2j+2

1 + Y 2j+2
2

)
. (G.1)

with Y k
I representing the length of the kth column of the tableau YI .

Let us begin by considering the case of pairs of Young tableaux with a single box.

There are two such pairs that can contribute. One is Y = ( , •) corresponding to

d1 = 1 and d2 = 0. Using these values in (4.38), we find

z{1,0} =
(ε1 + ε4)

(
a1 − χ1,1 + 1

2
(ε1 + ε̂2) + ε4

) (
χ1,1 − a2 + 1

2
(ε1 + ε̂2) + ε4

)
ε1 ε4

(
a1 − χ1,1 + 1

2
(ε1 + ε̂2)

) (
χ1,1 − a2 + 1

2
(ε1 + ε̂2)

) (G.2)

Due to the prescription (4.39), only the pole at

χ1,1 = a1 +
1

2
(ε1 + ε̂2) (G.3)

contributes to the contour integral over χ1,1, yielding

Z( , •) =
(ε1 + ε4) (a12 + ε1 + ε̂2 + ε4)

ε1 (a12 + ε1 + ε̂2)
=

(ε1 + ε4) (4a+ 2ε1 + ε2 + 2ε4)

ε1 (4a+ 2ε1 + ε2)
(G.4)

where in the last step we used the notation a12 = a1 − a2 = 2a and reintroduced
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Y weight poles ZY

( , ) q1q2

χ1,1 = a1 + 1
2

(ε1 + ε̂2)

χ2,1 = a2 + 1
2

(ε1 + ε̂2)

(ε1+ε4)2(4a+ε2+2ε4)(−4a+ε2+2ε4)

ε21(4a+ε2)(−4a+ε2)

( , •) q1q2

χ1,1 = a1 + 1
2

(ε1 + ε̂2)

χ2,1 = χ1,1 + ε̂2

(ε1+ε4)(ε2+ε4)(4a+ε2−2ε4)(4a+2ε1+ε2+2ε4)

ε1ε2(4a+ε2)(4a+2ε1+ε2)

(•, ) q1q2

χ2,1 = a2 + 1
2

(ε1 + ε̂2)

χ1,1 = χ2,1 + ε̂2

(ε1+ε4)(ε2+ε4)(−4a+ε2−2ε4)(−4a+2ε1+ε2+2ε4)

ε1ε2(−4a+ε2)(−4a+2ε1+ε2)(
, •
)

q2
1

χ1,1 = a1 + 1
2

(ε1 + ε̂2)

χ1,2 = χ1,1 + ε1

(ε1+ε4)(2ε1+ε4)(4a+2ε1+ε2+2ε4)(4a+4ε1+ε2+2ε4)

2ε21(4a+2ε1+ε2)(4a+4ε1+ε2)(
•,

)
q2

2

χ2,1 = a2 + 1
2

(ε1 + ε̂2)

χ2,2 = χ2,1 + ε1

(ε1+ε4)(2ε1+ε4)(−4a+2ε1+ε2+2ε4)(−4a+4ε1+ε2+2ε4)

2ε21(−4a+2ε1+ε2)(−4a+4ε1+ε2)

Table G.2: We list the tableaux, the weight factors, the pole structure and the
contribution to the partition function in all five cases with two boxes for the SU(2)
theory.

ε2 = 2ε̂2. A similar analysis can be done for the second pair of tableaux with one

box that contributes, namely Y = (•, ) corresponding to d1 = 0 and d2 = 1. In

this case we find

Z(•, ) =
(ε1 + ε4) (−4a+ 2ε1 + ε2 + 2ε4)

ε1 (−4a+ 2ε1 + ε2)
. (G.5)

In the case of two boxes, we have five different pairs of tableaux that can contribute.

They are: Y = ( , ), Y = ( , •), Y = (•, ), Y =
(

, •
)
and Y =

(
•,

)
.

The contributions of these five diagrams are listed below in Tab. G.2.

Multiplying all contributions with the appropriate weight factor and summing over

them, we obtain the instanton partition function for the SU(2) gauge theory in the
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presence of the surface operator:

Zinst[1, 1] = 1 + q1
(ε1 + ε4) (4a+ 2ε1 + ε2 + 2ε4)

ε1 (4a+ 2ε1 + ε2)
+ q2

(ε1 + ε4) (−4a+ 2ε1 + ε2 + 2ε4)

ε1 (−4a+ 2ε1 + ε2)

+ q2
1

(ε1 + ε4) (2ε1 + ε4) (4a+ 2ε1 + ε2 + 2ε4) (4a+ 4ε1 + ε2 + 2ε4)

2ε21 (4a+ 2ε1 + ε2) (4a+ 4ε1 + ε2)

+ q2
2

(ε1 + ε4) (2ε1 + ε4) (−4a+ 2ε1 + ε2 + 2ε4) (−4a+ 4ε1 + ε2 + 2ε4)

2ε21 (−4a+ 2ε1 + ε2) (−4a+ 4ε1 + ε2)

+ q1q2

(
(ε1 + ε4)(ε2 + ε4)(4a+ ε2 − 2ε4)(4a+ 2ε1 + ε2 + 2ε4)

ε1ε2(4a+ ε2)(4a+ 2ε1 + ε2)

+
(ε1 + ε4)(ε2 + ε4)(−4a+ ε2 − 2ε4)(−4a+ 2ε1 + ε2 + 2ε4)

ε1ε2(−4a+ ε2)(−4a+ 2ε1 + ε2)

+
(ε1 + ε4)2(4a+ ε2 + 2ε4)(−4a+ ε2 + 2ε4)

ε21(4a+ ε2)(−4a+ ε2)

)
+ · · ·

(G.6)

where the ellipses stand for the contributions originating from tableaux with higher

number of boxes, which can be easily generated with a computer program. We have

explicitly computed these terms up six boxes, but we do not write them here since

the raw expressions are very long and not particularly illuminating. To the extent

it is possible to make comparisons, we observe that the above result agrees with the

instanton partition function reported in eq. (B.6) of [43] under the following change

of notation

q1 → y , q2 → x , ε4 → −m , 2a→ 2a+ ε2
2
. (G.7)

Note then that the mass m appearing in [43] is the equivariant mass of the hy-

permultiplet [102], which differs by ε-corrections from the mass we have used (see

(4.55)).
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Appendix H

Prepotential coefficients for the

SU(N) gauge theory

The prepotential F of the N = 2? SU(N) gauge theory has been determined in

terms of quasi-modular forms in [19, 65]. Expanding F as in (4.78), the first few
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non-zero coefficients f` in the Nekrasov-Shatashvili limit turn out to be

f2 =
1

4

(
m2 − ε21

4

)∑
u6=v

log
(au − av

Λ

)2

+N
(
m2 − ε21

4

)
log η̂ , (H.1)

f4 = − 1

24

(
m2 − ε21

4

)2

E2C2 , (H.2)

f6 = − 1

288

(
m2 − ε21

4

)2
{[

2

5

(
m2 − ε21

4

)(
5E2

2 + E4

)
− 6 ε21E4

]
C4

+
1

2

(
m2 − ε21

4

)(
E2

2 − E4

)
C2;1,1

}
, (H.3)

f8 = − 1

1728

(
m2 − ε21

4

)2
{[

2

105

(
m2 − ε21

4

)2(
175E3

2 + 84E2E4 + 11E6

)
− 24 ε2

35

(
m2 − ε21

4

)(
7E2E4 + 3E6

)
+

24 ε4

7
E6

]
C6

− 1

5

(
m2 − ε21

4

)[(
m2 − ε21

4

)(
5E3

2 − 3E2E4 − 2E6

)
− 6 ε2

(
E2E4 − E6

)]
C4;2

− 1

5

(
m2 − ε21

4

)[ 1

12

(
m2 − ε21

4

)(
5E3

2 − 3E2E4 − 2E6

)
− 3 ε2

(
E2E4 − E6

)]
C3;3

+
1

24

(
m2 − ε21

4

)2(
E3

2 − 3E2E4 + 2E6

)
C2;1,1,1,1

}
. (H.4)

Here E2, E4 and E6 are the Eisenstein series and

log η̂ = −
∞∑
k=1

σ1(k)

k
qk = − 1

24
log q + log η (H.5)

with η being the Dedekind η-function. Finally, the root lattice sums are defined by

Cn;m1,m2,··· ,mk =
∑
~α∈Φ

∑
~β1 6=~β2 6=···6=~βk∈Φ(~α)

1

(~α · ~a)n(~β1 · ~a)m1(~β2 · ~a)m1 · · · (~βk · ~a)mk

(H.6)

where Φ is the root system of SU(N) and

Φ(~α) = {~β ∈ Φ
∣∣ ~α · ~β = 1} . (H.7)
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We refer to [19] for the details and the derivation of these results. Notice, however,

that we have slightly changed our notation, since fhere2` = f there` . By expanding the

modular functions in powers of q and selecting SU(2) as gauge group, it is easy to

show that the above formulas reproduce both the perturbative part and the

instanton contributions, reported respectively in (4.76a) and (4.62) of the main

text.
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