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Synopsis

After the discovery of the Higgs boson at the LHC, the standard model (SM) is put on firm

ground. Despite its experimental verifications some theoretical issues such as the gauge-

hierarchy problem, flavor hierarchy problem etc. still remain unanswered in the SM. More-

over the SM can not explain the observed dark matter, neutrino mass and the baryon asym-

metry of the universe. These considerations naturally calls for some new physics beyond the

SM (BSM). Recently, quite unexpectedly, both ATLAS and CMS have reported an excess in

the diphoton channel at around 750 GeV [1, 2]. If this excess persists in the future run of the

LHC, this will be a clear signal for some new physics at the TeV scale.

Over the years many BSM theories have been proposed. Some of these, for example,

composite Higgs models, little-Higgs models and some extra-dimensional models predict

that the standard model (SM) Higgs is a pseudo goldstone boson (pNGB) of some sponta-

neously broken approximate global symmetry. In some of these models, the SM Higgs is

accompanied by other extra neutral scalars (collectively called φ), either CP-even (H) or CP-

odd (A). These extra scalars can be SU(2) singlets or can come as a part of an SU(2) scalar

doublet. Some of these models have a two-Higgs doublet model (2HDM) structure [3, 4, 5].

To make the theory invariant under the bigger symmetry group, the SM fermions have vec-

tor like fermion (VLF) partners that together complete the group multiplet. The main focus

of the thesis will be to study the phenomenology of BSM neutral scalars with VLFs also

present. We also touch upon briefly its possible dark matter implications.

The outline of the thesis is as follows. In the introductory chapter we give a brief re-

view of the standard model of particle physics, discuss the drawbacks of the SM and the

motivations for going beyond the SM. In the next chapter we perform a model independent
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analysis of a general scalar φ, either scalar or pseudoscalar, with Yukawa couplings to the

SM fermions. The interactions of the φ with the gauge bosons gg,γγ,Zγ,ZZ,WW (col-

lectively called V V ) are incorporated by effective five dimensional operators. In a specific

model these operators will be generated by heavy particles in the loop. We focus on such a

scalar produced by the gg→ φ process as this is usually the dominant process. We present

the 8 TeV and 14 TeV LHC σ(gg→ φ) cross section as a function of effective φgg coupling

(κφgg). Using this, we obtain constraints on BR(φ→ tt, ττ,γγ) and κφgg, from the 8 TeV

LHC tt, ττ,γγ channel results [6, 7, 8]. These results are detailed in Ref. [9].

In the next chapter we consider two models with an SU(2) singlet pseudoscalar (A) cou-

pled to either an SU(2) singlet or a doublet VLQ. We present the effective Agg coupling and

BR(A→ γγ,Zγ,ZZ) for each of these models. For the doublet VLQ case we additionally

present BR(A→WW ). For MA < mh/2, we present BR(h→ AA) also and the h→ γγ

signal strength. These results are detailed in Ref. [9].

In the next chapter we briefly discuss the two-Higgs doublet models (2HDM) which

will be relevant in the subsequent chapters. The 2HDM contains two scalar SU(2) doublets

Φ1 and Φ2. We choose a 2HDM potential such that electroweak symmetry is broken via

expectation values of Φ1 and Φ2. We have five physical states, two neutral CP-even scalars

h,H , a neutral CP-odd scalarA and the charged scalarsH±. The lightest scalar h is identified

as the SM Higgs. We will specialize to the so called “2HDM alignment limit” in which the

Yukawa couplings and the gauge couplings of the h become identical to those of the SM

Higgs. Different kinds of Yukawa structures have been proposed and we consider those that

are safe from tree level flavor changing neutral currents. The usual types of couplings well

known in the literature that we study here are the so called 2HDM type-II, type-X and type-I

which we denote as 2HDM-II, 2HDM-X and 2HDM-I.

In the next chapter we discuss the phenomenology of 2HDM-II and 2HDM-X with SM

fermions only, and few models with VLFs also introduced. In the loop level φ→ V V pro-

cesses, these VLFs will interfere either constructively or destructively with the SM fermions

in the loop thereby modifying both σ(gg→ φ) and BR(φ→ V V ). We separately consider

two kinds of models, one in which the VLFs mix with the SM third generation quarks and
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one in which these mixings are shut off. We present the κφgg for each each of these models.

For the model where the VLF mix with the SM top quark, we analyze the deviation of the

top Yukawa coupling from its SM value. We present BR(φ→ tt, bb,gg, t2t, b2b), where t2, b2

are EM charge 2/3 and -1/3 heavy VLQ states present in these models. For the models where

VLFs and SM quarks do not mix, we present BR(φ→ tt, bb,ττ,Zγ,γγ). We find that in

some regions of parameter space the VLFs can modify κφgg and BR(φ→ V V ) significantly

compared to the 2HDM with SM fermions only. We also find that in one of these models,

the addition of VLFs can open up regions of parameter space which are excluded in 2HDM

with SM fermions only. These results are detailed in Ref. [9]. As pointed out in the intro-

duction, there are many UV complete models that have a 2HDM structure and VLFs. The

phenomenology of one such model namely the SU(6)/Sp(6) little-Higgs model [5] has been

studied in Ref. [10].

In the next chapter we give a brief review of dark matter which will be relevant in later

chapters. We give the details of the relic density and dark matter direct detection cross section

(σDD) and discuss the constraints coming from dark matter experiments. In the next chapter

we present few models explaining the recent diphoton excess at the LHC at 750 GeV [1, 2].

We assume that the resonance is a scalar and produced through the gluon fusion process. We

consider a general scalar φ coupled to the SM fermions and VLFs (collectively called ψ).

We present the values of effective φgg and φγγ couplings required to explain the excess for

various φ widths. We present a model independent analysis of the constraints coming from

the 8 TeV LHC tt, ττ,hh results [6, 7, 11]. We determine the constraints on the φψψ Yukawa

couplings from the perturbative unitarity of φφ→ φφ and ψψ→ψψ processes. These results

are detailed in Ref. [12]. We consider few specific models where φ is either a 2HDM scalar

or an SU(2) singlet. We analyze the 2HDM-II with SM fermions only and few models where

we add VLLs and/or VLQs to 2HDM of type-II, X and I. We analyze a model where a singlet

scalar is coupled to an SU(2) singlet VLQ, an SU(2) singlet VLL and the SM Higgs. For

each of these models we present the σ(φ)∗BR(γγ). For the singlet scalar model, if the VLL

has zero hypercharge, it cannot decay to any SM particles and can be a dark matter candidate.

In the next chapter we investigate this scenario. The important dark matter self annihilation
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channels are ψψ→ tt,WW,ZZ,hh,gg through φ and h exchange. We present the values

the model parameters should take for obtaining the correct relic density. We present the

constraints on the parameter space from the dark matter direct detection experiments. We find

that there are regions of parameter space that is consistent with the experimental bound on

σDD. There are also some regions of parameter space for which direct detection is possible

in the near future. These results are detailed in Ref. [12]. In the last chapter we summarize

the thesis and offer our conclusions.
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Chapter 1

Introduction

The standard model (SM) of particle physics has been extremely successful in describing

nature at energy scales up to about ∼100 GeV. All the particles predicted by the SM have

been discovered by experiments, with the Higgs boson discovery announced recently on

4th July 2012 at the LHC [13, 14]. The interaction strengths among the SM particles are

measured and are in good agreement with SM predictions. These indicate that the SM is the

correct description of nature, at least up to about a few 100 GeV. Below we briefly review

the standard model.

1.1 The Standard Model

The standard model of particle physics is a description of the fundamental particles in terms

of the SU(3)c×SU(2)L×U(1)Y gauge theory. The strong interactions among the funda-

mental particles are described in terms of the SU(3)c group [15, 16, 17]. The weak and the

electromagnetic interactions are described in terms of the SU(2)L×U(1)Y group [18, 19,

20]. The particle spectrum of SM contains three generations of fermions. Each generation

furnishes a representation of the SM gauge group as shown in Table 1.1. The Lagrangian

1



Fermions SU(3)c SU(2)L U(1)Y
qL =

(
u
d

)
L

,
(
c
s

)
L

,
(
t
b

)
L

3 2 1/6

lL =
(
νe
e

)
L

,
(
νµ
µ

)
L

,
(
ντ
τ

)
L

0 2 -1/2

uR =uR,cR,tR 3 0 2/3
dR =dR,sR,bR 3 0 -1/3
lR =eR,µR, τR 0 0 -1

Table 1.1: The representations of the fermionic particles under the SM gauge group where
the subscripts L and R refers to the left handed or right handed components of the fields.

describing the interactions between the SM fermions and the gauge bosons is given by

L= l̄Lγ
µ(i∂µ−

g

2σ
aW a

µ + g′

2 Bµ)lL+ l̄Rγ
µ(i∂µ+g′Bµ)lR

+ q̄Lγ
µ(i∂µ−

g

2σ
aW a

µ −
g′

6 Bµ−
gs
2 λ

aGaµ)qL

+ ūRγ
µ(i∂µ−

2g′
3 Bµ−

gs
2 λ

aGaµ)uR

+ d̄Rγ
µ(i∂µ+ g′

3 Bµ−
gs
2 λ

aGaµ)dR (1.1.1)

where σa are the Pauli matrices, λa are the Gell-Mann matrices and W a
µ , Bµ, Gaµ are the

gauge fields for the SU(2), U(1) and SU(3) gauge groups respectively. The kinetic energy

terms for the gauge fields are given by

L=−1
4W

aµνW a
µν−

1
4B

µνBµν−
1
4G

aµνGaµν (1.1.2)

with W a
µν = ∂µW

a
ν −∂νW a

µ − gεabcW b
µW

c
ν , Bµν = ∂µBν −∂νBµ, Gaµν = ∂µG

a
ν −∂νGaµ−

gsf
abcGbµG

c
ν where fabc is the structure constant for the SU(3) group. As can be seen from

Table 1.1, the SM fermions are “chiral” i.e. one cannot write down a gauge invariant mass

term for them. In general, chiral fermions render the gauge symmetry anomalous through the

Adler-Bell-Jackiw (ABJ) anomaly [21, 22]. The divergence of the symmetry current Jgi,aµ
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corresponding to the gauge group gi is given as

∂µJgi,aµ =− 1
64π2Da,b,cε

µναβF
gj ,b
µν F gk,cαβ with

Da,b,c = tr
[
{tLgi,a, t

L
gj ,b}t

L
gk,c

]− tr[{tRgi,a, t
R
gj ,b}t

R
gk,c

]
(1.1.3)

where F gr,b,cµν are the field strengths for the gauge fields corresponding to the gauge group gr

(generated by the tgr,a’s) under which the fermions transform as ψL,R→ exp[itL,Rgi,aθ
L,R
gi,a ]ψL,R

and the trace (tr) is to be taken over all the fermionic species. It is remarkable that in the SM,

the quantum numbers of the quarks and the leptons are such that, the anomaly is precisely

canceled once the trace is taken over a complete generation. For example, let us consider the

case when gi = gj = gk = U(1)Y . Then using Table 1.1 we have from Eq. (1.1.3)

∂µJYµ = 3×2×
(
−1

6

)3
+ 3×

(2
3

)3
+ 3×

(
−1

3

)3
+ 2×

(1
2

)3
+ (−1)3

= 0 (1.1.4)

1.1.1 The Higgs mechanism

The mass terms for the fermions and the gauge fields are generated through the Higgs mech-

anism [23]. One introduces a complex scalar H known as the Higgs field, which is an SU(2)

doublet and has hypercharge Y = 1/2. The Lagrangian for the Higgs filed is given by

L= (DµH)†(DµH) +µ2H†H−λ(H†H)2 (1.1.5)

with µ2 > 0, and DµH is the co variant derivative of H given by

DµH =
(
∂µ− i

g

2σ
aW a

µ − i
g′

2 Bµ
)
H. (1.1.6)

TheH can be parametrized asH = (H1 + iH2,H3 + iH4)T . The potential term in Eq. (1.1.5)

is minimized for H†H = v2 = µ2/λ which is identified with the vacuum expectation value

(VEV) 〈H†H〉 of H†H . The observed value of v is 246 GeV [24]. The VEV of H can be

3



chosen as1

〈H〉= 1√
2

0

v

 (1.1.7)

which breaks the global part of the SU(2)L×U(1)Y symmetry down to the U(1)Q subgroup

generated by Q= T3 +Y : 〈H〉 → exp[iαQ]〈H〉= 〈H〉,where T 3 = σ3/2. This U(1)Q sub-

group is identified with the electromagnetic gauge group and the corresponding gauge field

Aµ is identified with the photon. In this way the SM unifies the weak and the electromagnetic

interactions. Evaluating L on the minima we have

L= 1
4g

2v2W+µW−µ + 1
8v

2(−gW 3µ+g′Bµ)(−gW 3
µ +g′Bµ) (1.1.8)

which yields three massive gauge bosons. To see this, we diagonalize the quadratic terms in

Eq. (1.1.8) by introducing the new fields

W±µ = (1/
√

2)(Wµ
1 ± iW

µ
2 )

Zµ = (cosθWW 3µ− sinθWBµ)

Aµ = (sinθWW 3µ+ cosθWBµ) (1.1.9)

with tanθW = g′/g. In terms of these new fields, the L is given by

L= 1
4g

2v2W+µW−µ + 1
8(g2 +g

′2)v2ZµZµ (1.1.10)

from which we identify the mass terms for the W and Z bosons as mW = gv/2 and mZ =√
g2 +g

′2v/2. The Aµboson remains massless as expected.

The potential term in Eq. (1.1.5) has an accidental global SO(4) symmetry, acting on

(φ1,φ2,φ3,φ4)T . Because of the gauging, the SO(4) symmetry is only an approximate sym-

1In terms of component fields, the minimization condition can be written as H2
1 +H2

1 +H2
3 +H2

4 = v2

which describes a three sphere. The points on this sphere are related to one another by SU(2) rotations. The
VEV of H can be chosen to be any point on this sphere. Physical observables do not depend on which point
we choose.
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metry which becomes exact in the limit g′→ 0. After the electroweak symmetry breaking,

the SO(4) is spontaneously broken down to an SU(2)V subgroup. The would be Goldstone

bosons of the symmetry breaking transform as a triplet under the SU(2)V . This approximate

SU(2)V global symmetry, known as the “custodial symmetry” [25] is responsible for the

protection of the tree level relation m2
W =m2

Z cos2 θW .

The Higgs mechanism also gives masses to the SM fermions through the Yukawa cou-

plings. The Lagrangian involving the Yukawa couplings is given by

−LY uk = ydij q̄
i
LHd

i
R+yuij q̄

i
LH̃u

i
R+ylij l̄

i
LHlR+h.c. (1.1.11)

where i, j are generation indices and H̃ = iσ2H∗. The y matrices are complex and off-

diagonal in general. The mass matrix for the fermions is obtained by plugging in the VEV

of H in Eq. (1.1.11) as

−Lmass = v√
2
(
ydij d̄

i
Ld

j
R+yuij ū

i
Lu

j
R+ylij l̄

i
Ll
j
R+h.c.

)
. (1.1.12)

We can diagonalize the mass matrices by bi-unitary transformations as dL→ UdLdL, dR→

UdRdR, uL→ UuLuL, uR→ UuRuR, lL→ UlLlL, lR→ UlRlR. These transformations does

not change the neutral currents, since ūiL,Rγ
µuiL,R, d̄iL,Rγ

µdiL,R remains invariant. However,

the charge currents are transformed as ūiLγ
µdiL→ ūiLγ

µ(U †uLUdL)ijdjL. The matrix VCKM =

U †uLUdL is called the Cabibbo–Kobayashi–Maskawa (CKM) matrix [26, 27]. VCKM has four

independent parameters, three mixing angles and one complex phase. The complex phase is

responsible for the CP-violation in the quark sector. The corresponding transformations in

the lepton sector leaves the lepton charge currents l̄iLγ
µνiL invariant. Therefore, the lepton

sector of the SM conserves CP exactly and also conserves the lepton number separately for

each generation. In the rotated basis the mass terms of the fermions are simply given as

Lm =
∑
f

mf f̄f =
∑
f

yf√
2
vf̄f (1.1.13)

where yf are the diagonal Yukawa couplings.
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1.1.2 The Higgs boson

The fluctuations of the H around its VEV can be parametrized as

H = U(x)

 0

(v+h)/
√

2

 (1.1.14)

where U(x) is an element of the group SU(2)≡ [SU(2)L×U(1)Y ]/U(1)Q. We can choose

the unitary gauge in which U(x) = 1 and the only remaining degree of freedom h is identified

with the Higgs boson. Putting Eq. (1.1.14) in Eq. (1.1.5) we have the Higgs mass given by

mh =
√

2λv. The couplings of the h with the SM gauge bosons are given as

LhV V = m2
W

v2 h2W+µW−µ + m2
Z

2v2h
2ZµZµ+ 2m2

W

v
hW+µW−µ + m2

Z

v
hZµZµ. (1.1.15)

The h plays an important role in unitarizing the theory. Without the hWW coupling the

scattering amplitude WLWL→WLWL diverges at high energy [28, 29], where WL refers to

the longitudinal polarization of W . The h cancels the divergence as a result of the special

structure of the hWW coupling dictated by the underlying gauge invariance. The couplings

of the h with the SM fermions are given as

Lhff =−
∑
f

mf

v
hf̄f. (1.1.16)

We can see that the Yukawa couplings of the SM fermions are proportional to their masses

which is due to the fact that the fermion masses arise from the Higgs VEV. With the knowl-

edge of the Higgs couplings, we can study the Higgs phenomenology which we briefly dis-

cuss below.

Higgs phenomenology:

We start by summarizing the Higgs decay processes [30]. For mh . 130 GeV, the dominant

decay channel is the h→ bb mode with branching ratio (BR) ∼ 80% followed by h→ ττ

with BR∼ 7%. The loop level process h→ gg mediated by the top loop and γγ mediated by
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the top and W loop has BR∼ 9% and 0.2% respectively around mh ∼ 120 GeV. The main

production processes for the h at the LHC are gg→ h [31, 32], qq̄→ h+V [33, 34] and qq→

V ∗V ∗→ qq+h [35, 36, 37] where V denotes the vector bosons Z,W . For mh < 130 GeV, a

very promising discovery channel for the Higgs is the h→ γγ [13, 14, 38, 39]. The excellent

mass resolution in the di-photon channel enables the signal to stand out above the background

in spite of the very small branching ratio. It was the di-photon channel in which the discovery

of the 125 GeV Higgs was first reported [13, 14]. Other than the di-photon channel, the Higgs

boson is also observed in the h→ZZ∗→ 4l [13, 14, 40, 41], h→WW ∗→ lνlν [13, 14, 42,

43], h→ ττ [44, 45, 46, 47], h→ bb [45, 48, 49] channels. To confirm the SM Higgs sector,

the Higgs couplings to the SM particles should match their measured SM values. It turns out

that the Higgs couplings, as inferred from the measurements of the Higgs production rates

and the branching ratios at the LHC agree with their corresponding SM values [50] within

the error bars.

1.2 Drawbacks of the standard model

Despite its enormous success, the SM has several shortcomings, both on the theoretical and

observational sides. One of the main theoretical drawbacks of the SM is that the Higgs

mass is not radiatively stable. When quantum corrections are included, the bare Higgs mass

receives corrections that are quadratic in the cut-off scale (Λ). For example, the top one-loop

contribution (Fig. 1.2.1) to the Higgs mass squared is given by m2
h = m2

h0 + 3y2
tΛ2/(8π2)

where mh0 is the bare Higgs mass and yt is the top Yukawa coupling. If there is no new

physics up to the Planck scale then Λ ≈ 1019 TeV and therefore the mh0 has to be fine-

tuned to achieve a light Higgs mass of 125 GeV. This is referred to as the “Higgs fine-tuning

problem”. Any parameter which has the property that its quantum corrections are less than

or of the order of the parameter itself, is called a “natural” parameter. According to ’t Hooft’s

“naturalness” argument [51], a given parameter κ in any theory can be “natural” only if there

is an enhanced symmetry in the limit of κ→ 0. The Higgs mass fine-tuning will be small if
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Figure 1.2.1: Top loop contribution to the Higgs mass correction (left) and the φ loop cor-
rection to µ2 (right).

δm2
h ∼m2

h that is

m2
h = 3y2

tΛ2

8π2 . (1.2.1)

So the Higgs fine-tuning will be small only if the quantum corrections are cut off at the scale

Λ with Λ2 . 8π2(125)2/3y2
tGeV2 . (1TeV)2. The quadratic sensitivity to the high scale

physics can also be seen in dimensional regularization. Let us consider a real SM singlet

heavy scalar φ of mass Mφ interacting with the Higgs field as described by the Lagrangian

L= LSM −λφφ2H†H− 1
2M

2
φφ

2. (1.2.2)

The one loop correction to the µ2 term in Eq. (1.1.5) due to the φ loop (Fig. 1.2.1 ) is given

by [52, 53]

δµ2 =−
λφM

2
φ

16π2

(2
ε
− logM2

φ

)
(1.2.3)

which in the minimal subtraction scheme (MS) becomes

δµ2 =
λφM

2
φ

16π2 log
M2
φ

M2 (1.2.4)

where M is an arbitrary renormalization scale. From Eq. (1.2.4) we again see that the µ2

and hence m2
h is quadratically sensitive to the φ mass. The considerations above suggest that

if the Higgs sector is to be rendered natural, there should be some new physics at an energy

scale of . 1 TeV that cancels the quadratic divergences.
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Apart from the fine tuning problem, the SM also cannot explain some of the experimental

observations like dark matter, baryon asymmetry of the universe and neutrino mass. Here we

briefly discuss these issues.

Dark matter:

The observation of the rotation curves of galaxies and clusters of galaxies strongly indicate

that our universe contains dark matter. This cannot be accounted for in the SM. The existence

of dark matter is further supported by the gravitational lensing studies of the bullet cluster.

Several BSM theories have been proposed to explain dark matter. Most of them assume that

dark matter is a weakly interacting massive particle (WIMP). WIMPs have ∼ 100 GeV to 1

TeV masses and have electroweak interactions with the SM particles.

Baryon asymmetry:

It is observed that our observable universe is almost entirely composed of baryonic matter

and no anti-baryonic matter. If the big bang produced equal amount of matter and anti-

matter as is reasonable to assume, there must exist some processes which leads to the baryon

anti-baryon asymmetry during the evolution of the universe. One proposal to address this

asymmetry is “baryogenesis” which requires a large CP-violation. The required amount of

CP-violation is not present in the SM.

Neutrino mass:

In the SM as constructed earlier, the neutrinos are massless. However, neutrino oscillation

experiments suggest that the neutrinos should have a tiny mass of order 10−2 eV. One can

generate the mass terms for the neutrinos in the same way as for the other SM fermions by

adding Yukawa terms. But in order to get 10−2 eV size mass, the Yukawa couplings has to

be extremely small which is an unattractive feature of this proposal.
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Beyond the standard model:

To address the shortcomings of the SM, several theories beyond the standard model (BSM)

have been proposed. Examples of these BSM theories are, supersymmetric theories (SUSY),

extra-dimensional models, little-Higgs models, composite Higgs models, two Higgs doublet

models etc. In the following chapter we will briefly describe some of these theories.

As we shall see in the next chapter, many BSM theories such as little-Higgs models,

extra-dimensional models and strong coupling theories have additional neutral scalars and

vector-like fermions as important ingredients. To capture the phenomenology of such mod-

els, our main focus in this thesis is to study some effective models of BSM neutral scalars

(collectively called φ) with vector-like fermions also present. The study of such effective

models captures many features present in realistic BSM theories. We present a model inde-

pendent analysis of a scalar coupled to the SM particles and VLFs. We consider few effective

models of BSM neutral scalars with VLFs also present. We focus on the singlet scalar mod-

els and the two Higgs doublet model, with VLFs also added. We assume that the scalar

is produced by the loop level gluon fusion process (gg→ φ), as it is usually the dominant

production channel. Both the SM fermions and the colored VLFs contribute to the gg→ φ

process. We present the production cross sections and branching ratios of the neutral scalars

for each of these models, highlighting the effects of the VLFs. We also explore the dark

matter implications of a singlet scalar model namely the hidden sector dark matter model.

Below we briefly summarize few references that are relevant to our work.

An effective Lagrangian analysis of new heavy scalar particles is presented in Ref. [54].

The LHC phenomenology of singlet scalars is studied for example in Refs. [55, 56]. The

phenomenology of the abelian hidden sector model is studied in Ref. [57]. The phenomenol-

ogy of the abelian hidden sector model with VLFs added is studied in Ref. [58]. Ref. [59]

studies the dark matter implications of the abelian hidden sector model with fermions added.

Refs. [60, 61] consider the possibility that the observed 125 GeV state at the LHC

is a CP-odd scalar, and the former shows that this possibility is disfavored by the LHC

data. Refs. [62, 63] analyze 2HDM Types I and II taking into account the 125 GeV LHC

10



data, all pre-LHC constraints and results of the heavy-Higgs searches in various channels.

Ref. [64] performs a global fit of general 2HDMs using ATLAS, CMS and Tevatron results.

Refs. [65, 66, 67, 68, 69] shows the allowed parameter space of the 2HDM-II, applying the-

oretical (perturbativity, unitarity and vacuum stability) and experimental (LEP, Tevatron and

LHC 125 GeV Higgs data, precision observables and B-physics and electric dipole moment

measurements) constraints. Ref. [70] also includes the heavy Higgs exclusion limits to con-

strain the 2HDM. LHC 8 TeV constraints on the 2HDM parameter-space are also discussed

in Refs. [71, 72, 73, 74, 75]. The heavy neutral scalars of the 2HDM, namely A and H , are

studied in Ref. [76], where the LHC 8 TeV exclusion and 14 TeV reach from the processes

gg→H→AZ and gg→A→HZ are presented. Ref. [77] constructed an SO(5) symmetric

2HDM which naturally realizes the "alignment limit" and puts constraints on it’s parameter

space from the 8 TeV LHC data. Ref. [78] puts limits on the the triple Higgs couplings and

presents a set of benchmark points for probing SM-Higgs pair production and the search of

heavy Higgs bosons through non-standard decay channels (i.e decays of A,H that involves

at least one Higgs boson in the final state). Ref. [79] calculates the loop factors for the AV V

couplings in the MSSM and the 2HDM with a heavy chiral fourth generation. Ref. [80] stud-

ies A→WW,ZZ decays and compares this with the corresponding CP-even scalar decays

in 2HDM-II, and also with a chiral fourth generation or additional heavy vector-like quarks

(VLQ) added. In addition to these, here we also include the effects of VLFs on A→ γγ,Zγ

decays. The outline of the thesis goes as follows.

In Chapter 2 we discuss some of the BSM theories. Specifically, we describe the super-

symmetric extensions of the SM, extra-dimensional models, little-Higgs models, composite

Higgs models and models with extended scalar sector. Chapter 3 we present a model inde-

pendent study of neutral scalars (φ) coupled to the SM fermions and new VLFs. We obtain

the 8 TeV and 14 TeV LHC σ(gg → φ). We also discuss the constraints on the effective

couplings from the 8 TeV LHC results. In Chapter 4 we study an SU(2) singlet CP-odd

scalar (A) coupled to the VLFs which are either an SU(2) singlet or an SU(2) doublet. We

present the branching ratios of A and the effective Agg coupling in each of these models.

In Chapter 5 we briefly review the two Higgs doublet model. In Chapter 6 we briefly dis-
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cuss the phenomenology of neutral scalars (A,H) in the 2HDM type II and X where we

present the branching ratios of A,H and the effective Hgg,Agg couplings. We subsequently

introduce the VLFs to the 2HDM type-II and X. We separately consider two cases, one in

which the VLFs mix with the SM third generation fermions and one in which the VLF mix-

ing with the SM fermions are shut off. We present the branching ratios of A,H and the

effective Agg,Hgg couplings for each of this model. We also obtain the constraint on the

parameter space from the 8 TeV LHC ττ channel results. In Chapter 7 we specialize to

the diphoton channel φ→ γγ . We present a model independent analysis of the 13 TeV

LHC σ(gg → φ→ γγ) and discuss the constraints from the 8 TeV LHC results and from

perturbative unitarity. We then consider the 2HDM and a singlet scalar model with VLFs

also present. In the 2HDM we consider the types-II, X and I. We obtain the 13 TeV LHC

σ(gg→ φ→ γγ) for each of these models. We also present the constraints on the parameter

space from the 8 TeV LHC results and the perturbative unitarity. The singlet scalar model

can also provide a dark matter candidate. In Chapter 8 we present a brief review of WIMP

dark matter. We discuss the dark matter implications of the singlet scalar model in Chapter 9

where we present the regions of the parameter space which gives the correct dark matter relic

density. We also present in Chapter 9 the constraints on the parameter space from the dark

matter direct detection limits. In Chapter 10 we present the summary and conclusions of the

thesis.
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Chapter 2

Beyond the Standard Model

As mentioned in the introduction, the SM has a few drawbacks. To address these, various

theories beyond the standard model (BSM) have been proposed. In this chapter we briefly

discuss some of the BSM theories, namely theories with extended scalar sector, supersym-

metric theories, extra-dimensional theories, little-Higgs theories and composite Higgs theo-

ries. We also discuss some properties of the vector-like fermions that are present in many of

the BSM theories.

2.1 Extended scalar sector

One of the simplest extensions of the SM is obtained by simply extending its scalar sector.

There are several possible ways to extend the SM scalar sector. One option is to add an extra

SU(2) singlet neutral scalar φ which is charged under a U(1) gauge symmetry. This model

is called the abelian hidden sector model. One can introduce new fermions (ψ) in this model

along with a Z2 symmetry under which ψ is odd and the SM fermions are even. In this case,

the lightest Z2 odd fermion can be a dark matter candidate.

Another option is to introduce new SU(2) doublet scalars. One important example of

such models is the two Higgs doublet model (2HDM) which has two SU(2) scalar doublets

Φ1,Φ2. Electroweak symmetry breaking (EWSB) is achieved by minimizing the 2HDM

potential V (Φ1,Φ2) with respect to Φ1 and Φ2. The 2HDM has two CP-even scalars h,H
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one CP-odd scalar A and a charged scalar H±. Commonly, the lightest CP-even scalar is

identified with the 125 GeV Higgs boson. In general, the SM fermions will have Yukawa

couplings with both Φ1 and Φ2 and there will be flavor changing neutral currents (FCNC).

In the 2HDM these FCNCs are usually forbidden by a Z2 symmetry. Depending on the Z2

transformation properties of the SM fermions several types of 2HDM have been proposed.

The commonly studied types are so called 2HDM type-I, II and X. The measurements of the

Higgs observables at the 8 TeV and 13 TeV LHC [81, 82] requires that the Higgs couplings

to the SM particles are close to their SM values. In the 2HDM this can be ensured by

considering the so called “alignment limit” where the Higgs coupling to the SM particles

become identical to those in the SM. The details of the 2HDM is presented in Chapter 5.

2.2 Supersymmetry

An elegant solution of the Higgs sector fine-tuning problem is provided by supersymmetry

(SUSY) [83, 84, 85, 86, 87, 88, 89]. SUSY is generated by extending the Poincare algebra

to include N set of fermionic generators (Qi, Q̄i,i = 1, · · ·N ) which transforms as two com-

ponent spinors [(1/2,0),(0,1/2) respectively] under the Lorentz transformation. Therefore,

SUSY transformations takes bosonic degree of freedom into fermionic ones and vice verse.

The SUSY algebra is invariant under the U(N) rotations: Qi → UijQ
j , U ∈ U(N). This

symmetry is known as the “R-symmetry” which acts as a global symmetry on the physical

states. Each irreducible representation of the SUSY algebra is called a supermulitiplet. Each

supermultiplet contains equal number of degenerate bosonic and fermionic degree of free-

doms. A simple example of a supermultiplet is the chiral supermultiplet which contains a

two component Weyl fermion and a complex scalar. In any supersymmetric theory all the

particles inside a supermultiplet must transform identically under the underlying gauge (lo-

cal or global) symmetry of the theory. In SUSY theories there is no quadratic divergence

of the scalar mass, since for every bosonic (fermionic) loop contributing to the scalar mass

correction, there is a fermionic (bosonic) loop that contributes with an opposite sign and

equal magnitude [90, 91]. The solution to the Higgs fine tuning problem is thus obtained by
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a suitable supersymmetric extension of the SM. The simplest of such extensions, known as

the minimal supersymmetric standard model (MSSM) is a N = 1 supersymmetric extension

of the SM. In MSSM, each of the SM particles have a single supersymmetric partner. For

example, the quark doublet (tL, bL) is accompanied by the (complex) scalar doublet (t̃L, b̃L)

and so on. Similarly, each massless gauge boson in the SM has a (Weyl) fermionic partner.

Supersymmetrising the Higgs, however requires introduction of two chiral supermultiplets

which consists of two scalar doublets Hu,Hd with Y =±1/2 and their corresponding super-

partners H̃u, H̃d. The second multiplet is required to cancel the gauge anomaly from the first

one.

SUSY cannot be an exact symmetry of nature all the way down to the lowest possible

scale. If it were, we would have observed the superpartners of all the SM particles, since

in an exact SUSY all the particles in a given super multiplet are degenerate. In the MSSM,

SUSY breaking is introduced in the Lagrangian through terms of positive mass dimensions.

Such terms, known as the soft breaking terms, are irrelevant at the ultra-violet (UV) scale

where SUSY becomes exact. The soft breaking terms introduces a mass splitting among the

particles within a given supermultiplet. Therefore, when we compute the Higgs mass loop

corrections, contributions from different particles in the supermultiplet no longer cancel each

other and introduces a quadratic sensitivity to the mass splitting. If the mass splittings are not

larger than O(TeV ) then the Higgs mass remains natural. For the MSSM, the R-symmetry

is simply U(1)R. The R-charges of the SM particles differ from their super partners by ±11.

Therefore, the lightest supersymmetric particle (LSP) cannot decay to only SM particles and

become absolutely stable. Hence the LSP can be a good dark matter candidate. The MSSM

also successfully unifies [92, 93, 94] the gauge couplings g,g′,gs.

1Since [R,Q] =Q, RQ|ψ〉= (QR+Q)|ψ〉= (Rψ+1)Q|ψ〉 where R|ψ〉=Rψ|ψ〉, R being the generator
of U(1)R.
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2.3 Extra-dimensional models:

In extra-dimensional models one conjectures the existence of extra spatial dimensions so that

locally the space-time looks like M4×Ed, where M4 is the Minkowski space and Ed is a

d dimensional space representing the extra dimensions. There are many varieties of such

models which can be broadly divided into two classes; one in which the extra dimension is

flat and one in which the extra dimension is “warped”. Below we briefly describe these two

types of models.

2.3.1 Flat extra dimension

In the flat extra dimensional models, the metric on M4 does not depend on the extra-

dimensional co-ordinates. Let us consider a simple example where the space-time is globally

M4×Tn with the metric

ds2(x) = gµν(x)dxµdxν− δabdyadyb. (2.3.1)

where xµ are the coordinates on M4 and ya are extradimensional coordinates. The SM fields

are assumed to be localized on an M4 subspace and only gravity can leak into the extra-

dimensions. This leads to an effective reduction of the gravitational force as viewed by a

4-dimensional observer. To see this, let’s consider the Eienstein-Hilbert action

S4+n = 1
16πG4+n

∫
d4xdy1 · · ·dyn

√
−g4+nR4+n (2.3.2)

where G4+n is the 4+n dimensional Newton’s constant andR4+n is the Ricci scalar for the

metric in Eq. (2.3.1). Putting the metric of Eq. (2.3.1) in Eq. (2.3.2) and integrating over the

extra-dimensions, the effective 4-d action is given as

S4d = V n

16πG4+n

∫
d4x
√
−g4R4 (2.3.3)
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where R4 is the 4-d Ricci scalar for the 4-d metric gµν and V n is the volume of the extra-

dimension. As can be seen from Eq. (2.3.3), the 4-d Newton’s constant is given by GN =

G4+n/V n. So, in this scenario the smallness of GN is explained by the volumetric suppres-

sion of the fundamental Newton’s constant G4+n. A realistic version of this model is the

ADD model [95].

2.3.2 Warped extra dimension

In warped extra-dimensional models, one adds one extra compact spatial dimension and the

metric on the 4-d Minkowski space depends on the fifth dimension. An explicit example of

this scenario is provided by the Randall-Sundram (RS) model [96]. The RS model uses the

metric

ds2 = e−kφRgµν(x)dxµdxν−R2dφ2 (2.3.4)

where−π < φ≤ π and k, R are constants with mass dimensions 1, −1 respectively. We can

see that the distance scales (or equivalently the energy scales) depend on the fifth dimen-

sional coordinate. In the original proposal of Randall and Sundrum, all the SM particles are

localized on a 4-dimensional brane at φ= π. To see how the RS scenario solve the hierarchy

problem, let us consider the following Lagrangian for a brane localized scalar field φ which

has a bare VEV v0:

L=
∫
d4x
√
−gind

[
gµνind(∂µφ)†(∂νφ)−λ

(
φ†φ−v2

0
)]

(2.3.5)

where gµνind is the induced metric on the brane. From Eq. (2.3.5) we have gµνind = e−kπRηµν ,

where ηµν is the usual Minkowski metric. Then the Lagrangian in Eq. (2.3.5) becomes

L=
∫
d4x

[
e−2πkRηµν(∂µφ)†(∂νφ)−λe−4πkR

(
φ†φ−v2

0
)2]

. (2.3.6)
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To canonically normalize the kinetic term, we rescale φ as φ→ e−kπRφ. Then Eq. (2.3.6)

becomes

L=
∫
d4x

[
ηµν(∂µφ)†(∂νφ)−λ

(
φ†φ− e−2πkRv2

0
)2]

. (2.3.7)

We can see that the bare value of the scalar VEV is warped down to a smaller value v =

v0e−kπR. As a result, although v0 ∼O(Mpl), if we chose kR∼O(10), v can be of the order

of the electroweak scale 246 GeV. In subsequent years, many papers [97, 98, 99] considered

the possibility of SM fields also living in the bulk of the space-time. One consequence of the

SM fields propagating in the bulk is the existence of the discrete Kaluza-Klein (KK) modes

for each bulk field. For any given bulk field, the mode with the lowest energy (zero mode

that has no nodes along the 5-th dimension) is identified with the corresponding SM field.

The KK modes are separated from the zero modes by a mass gap of about∼ ke−kπR ∼O(1)

TeV. A difficulty arises when we consider fermionic fields in the bulk. In 4-d we can label the

fermionic states by their γ5 eigenvalues, as γ5 commutes with all the Lorentz generators. But

in 5-d, the γ5 is used up in constructing the 5-d Clifford algebra [ΓM ,ΓN ] = 2ηMN where

Γµ = γµ,µ = 0,1,2,3 and Γ4 = iγ5. Therefore, if a 5-d fermion ψ transforms under some

gauge group (G), then the ψL = (1/2)(1− γ5)ψ and ψR= (1/2)(1 + γ5)ψ must transform

exactly the same way under G. This leads to vector-like fermions as opposed to the chiral

fermions of the SM. This problem is solved when the extra dimension, a circle, is orbifolded

by identifying the points φ and−φ. We can define a parity operator P5 such that P5(φ) =−φ

and label the fermionic states by their P5 eigenvalues ±1 (since P 2
5 = 1). We can define the

fields ψ+ and ψ− as P5(ψ+) = ψ+, P5(ψ−) =−ψ−. When we KK decompose, only the ψ+

will have a zero mode since ψ−, being P5-odd, must have a node along the 5-th dimension.

The chiral fermions of the SM are identified with the zero modes of some fermionic fields.

For example, if we want the quark doublet qL, we introduce the 5-d SU(2) doublet quark

field ψ = (ψL,ψR) , impose the condition P5(ψL) = ψL,P5(ψR) = −ψR and identify the

zero mode of of ψL (ψ0L) with the qL. The massive modes remains vector-like under the SM

gauge group.
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2.4 Little-Higgs models:

In little-Higgs (LH) constructions, the Higgs is identified as a pseudo Nambu Goldstone

boson (pNGB) of a spontaneously broken global symmetry. LH models necessarily have

a bigger symmetry group G which is broken down to one of its subgroups, say H, by the

vacuum expectation value of a scalar field. The SM gauge group is contained withinH. The

Goldstone bosons of the symmetry breaking correspond to the generators of the coset space

G/H. A subgroup H′ of G is gauged and as a consequence some of the Goldstone bosons

cease to be exact Goldstone bosons and become pNGBs. The 125 GeV Higgs (h) is identified

as one of the pNGBs. At the tree level there is no potential for the pNGBs. EWSB occurs by

loop level processes. Because of the special structure of LH models the symmetry is broken

“collectively” and there are no quadratic divergences in the Higgs mass at one loop. The

bigger symmetry group in the LH models requires new vector-like fermions which together

with the SM fermions complete the symmetry group representations. As an example we

consider the “simplest little-Higgs” model[100, 101] where G= SU(3)1×SU(3)2 which is

broken down to the subgroup H = SU(2)1×SU(2)2 by VEVs of two SU(3) triplet scalars

φ1 and φ2: 〈φ1〉 = (0,0,f1)T ,〈φ2〉 = (0,0,f2)T . We get 10 goldstone bosons which can be

parametrized as

φ1 = eiπ1/f1


0

0

f1

 , φ2 = eiπ2/f2


0

0

f2

 (2.4.1)

where

π1,2 =


−η/2 0 h1− ih2

0 −η/2 h3− ih4

h1 + ih2 h3 + ih4 η


1,2

.

We can see that the fields H1,2 = (h1 + ih2,h3 + ih4)T1,2 transforms as SU(2)1,2 doublets and

η1,2 are SU(2) scalars. We now gauge the diagonal part (SU(3)V ) of the SU(3)×SU(3)
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global symmetry. The SM gauge group SU(2)L ∈ SU(3)V . The Lagrangian describing the

interactions of the SU(3) gauge fields and the Goldstone boson is given as

L ⊃ (Dµφ1)† (Dµφ1) + (Dµφ2)† (Dµφ2) (2.4.2)

whereDµφi = ∂µφi− igiAaµT aφi. As a result of the gauging, only the SU(3)V remains as an

exact global symmetry of the theory. Hence there are only 5 exact NGBs which come from

the breaking of the SU(3)V down to the SU(2)V (the diagonal part of the SU(2)1×SU(2)2).

The other 5 NGBs become pNGB which are massless at the tree level. A combination of H1

and H2 is identified with the Higgs field. A potential term for the pNGBs is generated at

one loop. The absence of quadratic divergence (at one-loop) is ensured by the fact that the

one-loop diagrams contributing to the potential must involve both the gauge couplings, g1

and g2, because if we set any of the gi to be zero, the original SU(3)×SU(3) symmetry is

restored and all the NGBs are exact NGBs. The one-loop diagrams involving both the g1 and

g2 are at most logarithmically divergent. In the fermionic sector of this model one introduces

new fermions which together with the SM fermions furnish a representation of SU(3). For

example, along with the third generation quarks, an SU(2) singlet vector-like top partner

(TL,TR) is introduced to form the SU(3) triplet (tL, bL,TL)T . The Yukawa Lagrangian is

given as

L= λ1ψ̄φ1TR+λ2ψ̄φ2tR+h.c. (2.4.3)

This Lagrangian breaks the SU(3)×SU(3) to the diagonal SU(3). If we set any of the λi

to be zero, the SU(3)×SU(3) is restored which makes the quadratic divergence absent in

the Yukawa sector also. Several versions of the little-Higgs model exist in the literature [3,

4, 100, 102, 103, 104, 105]. Interestingly, many of the LH theories [3, 4, 100, 105] have a

2HDM structure.
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2.5 Strongly coupled theories

There exists another class of theories that relies on new strong interactions which dynami-

cally breaks the electroweak symmetry. As we have discussed in the introduction, the fine-

tuning problem arises in the SM because of the SM Higgs being a fundamental scalar. The-

ories based on strong dynamics assume that the Higgs is a composite of new fermions and

therefore free from the problems associated with fundamental scalars. The new dynamics is

assumed to originate from a non-abelian gauge theory, similar to QCD. A concrete realiza-

tion, amongst many others [106, 107, 108, 109] of this scenario is the minimal composite

Higgs model [110] which is based on a globalGMCH = SU(3)c×SO(5)×U(1) invariance.

TheGMCH is spontaneously broken down toHMCH = SU(3)c×SU(2)L×SU(2)R×U(1)

at some scale f > v by some strong dynamics, delivering 4 NGBs that transforms like a dou-

blet under the SU(2)L. This SU(2)L doublet scalar field is to be identified with the Higgs

doublet. The SM gauge bosons are coupled to the conserved currents of the global symmetry

GMCH of the strong dynamics thereby gauging a subgroup GSM = SU(3)c×SU(2)L×

U(1)Y⊂HMCH of GMCH . The SU(2)L×U(1)Y gauge generators do not coincide with

the broken symmetry generators (corresponding to the coset space GMCH/HMCH ) and

hence they cannot “eat” the NGBs which therefore become pNGBs. To represent SO(5), the

fermion content of the SM is enlarged to include extra fermions which together with the SM

fermions, furnish a representation of SO(5). One possible fermion representation is a 4 of

SO(5). In the quark sector for example one introduces the new quark fieldsQL, quR, q
d
R,d
′
R,u′R

and form the SO(5) spinor (4 of SO(5)) as

ψq =

 qL
QL

 ,ψu =


quRuR
d′R


 ,ψd =


qdRu′R
dR


 . (2.5.1)

The electroweak symmetry is broken by the one loop effective potential generated for the H ,

by the SM top, SM gauge bosons and the new fermion fields. Since v→ 0 as f → 0, the v is

proportional to f and therefore free from the naturalness problem for f ∼O(TeV ).
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2.6 Vector-like fermions

As we have discussed above, many BSM theories have vector-like fermions as an important

ingredient. Here we briefly discuss some properties of the vector-like fermions (VLF). As

mentioned in the introduction, the SM fermions are chiral, that is, the left handed and right

handed fermions transform differently under the gauge group. Vector-like fermions have the

property that under the gauge group, its right handed component transforms as the conju-

gate representation of the left handed ones. This allows for a gauge invariant mass term for

the VLFs, and therefore the Yukawa couplings of the VLFs to the Higgs boson are not pro-

portional to their masses (MV L). As a direct consequence, the VLFs decouple in the loop

level processes in the limit of MV L→∞. Therefore, the limits on the VLFs from the Higgs

observables are looser. The current direct search limit on the mass of the vector-like top

partner is about 920 GeV [111]. The precision electroweak constraints on the VLF mass are

discussed for example in Ref. [112]. The LHC signatures of vector-like quarks are studied

for example in Refs. [113, 114, 115, 116, 117, 118].

As an example of how the VLFs arise in a concrete model we take the example of the

custodialy protected RS model [99] based on the SU(3)c× SU(2)L× SU(2)R×U(1)X .

To represent the symmetry group, we must add new bulk fermions. For example, the third

generation quarks is embedded into a representation of SU(2)L×SU(2)R×U(1)X as

QL ≡ (2,1)1/6 ≡

t(+)
L

b
(+)
L

 ,QtR ≡ (1,2)1/6 ≡

 t(+)
R

b′(−)

 ,QbR ≡ (1,2)1/6 ≡

t′(−)

b
(+)
R

 (2.6.1)

where +and − denotes whether they are P5 even or odd respectively. We recall from Sec-

tion 2.3.2 that only the P5 even fields have zero modes. The Higgs field is taken to be a

bi-doublet under SU(2)L×SU(2)R and can be parametrized as

Σ =

 φ∗0 φ+

−φ− φ0

 . (2.6.2)

The electroweak symmetry is broken by the VEV 〈Σ〉= diag(v,v)/
√

2. The gauge interac-
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tions for the fermions is given as

Lgauge = Q̄Liγ
µDµQL+ Q̄tRiγ

µDµQtR + Q̄bRiγ
µDµQbR (2.6.3)

where

Dµ = ∂µ− i
gs
2 G

a
µλ

a− ieQAµ− i
g√
2
(
T+W+

µ +T−W−µ
)
− igZ(T 3− s2

WQ)Zµ. (2.6.4)

The 5-d Yukawa Lagrangian is given as

−LY ukawa = λ̃tQ̄LΣQtR + λ̃bQ̄LΣQbR +h.c. (2.6.5)

Putting in the Σ VEV in Eq. (2.6.5) we get the mass terms for the down type fermions as

−Lmass = λ̃tv√
2
b̄Lb
′
R+ λ̃bv√

2
b̄LbR. (2.6.6)

The fields b,b′ are KK decomposed as

bL,R(x,φ) =
∑
n
fL,Rn (φ)b(n)

L,R(x)

b
′
R(x,φ) =

∑
n6=0

f
′R
n (φ)b

′(n)
R (x). (2.6.7)

The 5-d profiles fn(φ), f ′n(φ) are given for example in Ref. [97]. We call b0L,R as bL,R, b(1)
L

as b′L and b
′(1)
R as b′R. Since the modes with n > 1 are heavier than the n= 1 mode by at least

O(TeV), their contributions to the processes at the electroweak scale are suppressed (com-

pared to the n = 1 mode). Therefore we ignore the n > 1 modes from now on. Integrating

over φ the 4-d mass terms for the fermions can be written as

−Lmass ⊃Mbb̄LbR+Mbb′ b̄Lb
′
R+Mb′ b̄

′
Lb̄
′
R (2.6.8)

where Mb = λ̃b
v√

2kπRe
kπRfL0 (π)fR0 (π), Mbb′ = λ̃t

v√
2kπRe

kπRfL0 (π)f ′R1 (π) and Mb′ is the
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vector-like mass term for b′ which is of order ke−kπR. The Mbb′ term introduces b↔ b′

mixing. We can define the new fields b1, b2 which diagonalizes the mass term and identify the

lighter mass eigenstate (b1) with the SM bottom. Because of the mixing, the charged current

interactions will lead to b2 → tW decays. The mixing also induces the decay processes

b2→ b1Z,b1h processes. Similar analysis can be done for the top sector. The LHC signatures

of the VLFs in this model are studied in Refs. [116, 118].

As we see, many BSM theories introduce additional neutral scalars and VLFs. In order to

test such theories, one needs to study the phenomenology of these new particles in detail. In

the next chapter we will present a model independent study of general BSM neutral scalars.

In Chapters 4, 6, 7 and 8 we will study the phenomenology of several effective models of

BSM neutral scalars with VLFs also present.
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Chapter 3

Model independent analysis of BSM

neutral scalars

This chapter is based on the work done in Ref. [9]. As mentioned in the introduction, sev-

eral BSM theories have additional neutral scalars. In this chapter we consider BSM neutral

scalars, either CP-even or CP-odd, coupled to the SM fermions and SM gauge bosons. Our

goal is to determine the 8 TeV and 14 TeV LHC production cross-sections of these scalars

and the possible constraints from the 8 TeV LHC in terms of few effective parameters. We

focus on these scalars produced by the gluon fusion process as it is usually the dominant

production channel. Our analysis goes as follows.

We define an effective Lagrangian with couplings of the neutral scalars to SM gauge

bosons and fermions (f ). We denote the 125 GeV SM Higgs boson by h as usual, CP-even

scalars by H , CP-odd scalars by A and collectively call them the φ. In models that contain

two CP-even scalars, we identify the lighter one (h) as the 125 GeV scalar observed at the

LHC. For the heavier states (φ), we show the constraints from the 8 TeV LHC, signal c.s. σ

× BR into various SM two body final states at the 8 and 14 TeV LHC, as a function of the

effective couplings and the φ mass (Mφ). Because of CP invariance, CP odd scalars couple

to the gauge bosons only through higher dimensional (d > 4) operators. The CP-even scalars

can couple to the massive gauge bosons at tree level. Showing only the new physics terms,

the effective Lagrangian for any neutral scalar φ is
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Leff =1
2∂µφ∂

µφ− 1
2M

2
φφ

2−yφfifiφf̄iXfi−
1

64π2M
κφggφYµνστG

aστGaµν

− 1
64π2M

κφZZφYµνστZ
στZµν− 1

32π2M
κφWWφYµνστW

στWµν (3.0.1)

− 1
64π2M

κφγγφYµνστA
στAµν− 1

32π2M
κφZγφYµνστZ

στAµν

+yφWWφW
µWµ+yφZZφZ

µZµ.

where X = γ5,Yµνστ = εµνστ for the CP-odd scalar, while X = I (identity matrix), Yµνστ =

gµσgντ for the CP-even scalar and “a” are the color indices. In any given model the effective

couplings κφV V will be generated by loop induced processes. For convenience we have

defined the dimensionless effective couplings κ by pulling out an arbitrary mass-scale M in

the effective φV V terms. In any given model the κφV V can be obtained by calculating the

relevant loop diagrams. If φff couplings exist, the SM fermions also contribute to the φV V

processes and these contributions must also be included in κφV V . If the particles in the

loop go onshell, then the φV V amplitude become complex. In that case the κφV V should be

interpreted as |κφV V |. Eq. (3.0.1) should be interpreted as an effective Lagrangian at a scale

just above Mφ. In Appendix A we present the explicit expressions for κφγγ and κφgg for a

general scalar coupled to a set of fermions.

In terms of the effective couplings, the φ partial decay widths are given by

Γ(φ→ Zγ) = 1
32π

(
κφZγ

16π2M

)2
M3
φ(1− rZ)3,

Γ(φ→ γγ) = 1
64π

(
κφγγ

16π2M

)2
M3
φ,

Γ(φ→ gg) = 1
8π

(
κφgg

16π2M

)2
M3
φ,

Γ(φ→ ff) =Nc8π y
2
φffMφ(1−4rf )n/2, (3.0.2)

where n= 3/2 for CP-even scalars and 1/2 for CP-odd scalars, and rf =m2
f/M

2
φ. We have

included a color factor of 8 for Γ(φ→ gg) . However, it turns out that the actual color factor
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is only 2. To compensate for this we have included an extra factor of 2 in the expression

of κφγγ in Eq. (A.0.4). From the expressions of Γ(φ→ V V ) (in Eq. (3.0.2)) and κφV V

(in Eqs. (A.0.4), (A.0.7)), we can see that when calculated for a particular model, the “M”

cancels out from the expressions of the φ→ gg and γγ decay widths. Here we present our

results for M = 1 TeV. But if one wishes to choose some other scale, say M ′ then our results

for the κφgg have to be multiplied by M ′/M .

3.1 8 TeV LHC constraints and 14 TeV LHC cross section

In this section we discuss the 8 and 14 TeV LHC σ(gg → φ) and the constraints on y,κ

from the 8 TeV LHC results. The currently relevant decay channels at the 8 TeV LHC are

φ→ γγ,tt,ττ (collectively called XX). The 8 TeV LHC results put a certain upper limit

(UL) on each σ(pp→ φ→XX) using which we can put constraints on κ and y. We take the

upper limit on σ(pp→ φ→ γγ) from the CMS analysis in Ref. [8] which puts constraints

up to Mφ = 850 GeV, on σ(pp→ φ→ ττ) from the ATLAS analysis in Ref. [7] which puts

constraints up to Mφ = 1000 GeV, and on σ(pp→ φ→ tt) from the ATLAS analysis in

Ref. [6].

As mentioned earlier we will focus on the φ being produced through the gluon fusion.

However, if the φ couple to the b, other production mechanisms such as bb̄→ φ, bg→ bφ and

gg → bb̄φ are possible. The relative importance of these processes compared to the gluon

fusion process depends on the bbφ coupling which is model dependent. For example, if the

bbφ coupling is≈ 0.5 then the total contribution of the bottom fusion process and b-associated

processes becomes comparable to the gluon fusion process for κφgg ≈ 20. In such scenarios

the b-fusion process and the b-associated processes have to be included in σ(pp→ φ). We

do not include these in our analysis and focus only on the gluon fusion process. The b

quark associated production channels of the h including gg→ bb̄h is studied for example in

Ref. [119]. The b quark associated production channels can be studied separately by tagging

on the final state b-jet as discussed in Ref. [7]. For a recent study of bb̄ fusion and b quark

associated production channels for a light CP-odd scalar see Ref. [120].
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We obtain σ(gg→ φ) for any Mφ by relating it to the corresponding cross section for the

SM Higgs (φSM ) via the relation

σ(gg→ φ) = σ(gg→ φSM )× Γ(φ→ gg)
Γ(φSM → gg) . (3.1.1)

The σ(gg→ φ→XX) becomes

σ(gg→ φ→XX) = σ(gg→ φSM )×
κ2
φgg

κ2
φSMgg

×BR(φ→XX). (3.1.2)

The σ(gg → φSM ) can be obtained from Ref. [32] and κφSMgg can be calculated in SM

using Eq. (A.0.7). Here we assume that the gluon PDFs involved for A,H and h are sim-

ilar. If more than one scalar have masses close to each other so that they are inseparable

within the experimental resolution, then contributions from all of them should be included in

Eq. (3.1.2).

In Fig. 3.1.1 we plot σ(gg→ φ) as a function of κφgg at the 8 TeV LHC and 14 TeV LHC,

for Mφ = 200,500,800 and 1000 GeV. In any given model one can calculate the κφgg and

obtain σ(gg→ φ) from Fig. 3.1.1. To discuss the constraints from the 8 TeV LHC results, we

assume the narrow width approximation σ(gg→ φ→XX) = σ(gg→ φ)×BR(φ→XX).

Using the 8 TeV LHC upper limit on any given channel (XX) we can put an upper limit on

σ(gg→ φ) for a givenBR(φ→XX), and using Eq. (3.1.1) we can translate this to an upper

limit on κφgg. In Fig. 3.1.2 we show the constraints on κφgg and BR(φ→ γγ,ττ, tt) at 95%

confidence level from the 8 TeV LHC γγ,ττ and tt channel results respectively. The regions

above the curves are excluded at 95% confidence level. For the γγ channel the constraint

is strongest for Mφ = 200 GeV where the 8 TeV LHC exclusion limit is strongest. There

are no constraints on κφgg for BR(φ→ γγ) . 10−4. In the ττ channel the constraint is

tightest for Mφ = 500 GeV for which κφgg & 3 is excluded for BR(φ→ ττ) ≈ 1. For the

tt channel we see that κφgg & 20 is excluded for BR(φ→ tt) ≈ 1. We see that in general,

the constraints coming from the ττ channel is strongest. In Fig. 3.1.3 we plot contours of

σ(gg→ φ→ γγ,ττ, tt) as a function of κφgg and the corresponding BRs, using Eq. (3.1.2).
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Figure 3.1.1: σ(gg→ φ) (in pb) at the 8 TeV LHC (left) and 14 TeV LHC (right) for mφ =
200 GeV (red), 500 GeV (blue), 800 GeV (green) and 1000 GeV (yellow)

Figure 3.1.2: 8 TeV LHC constraints from the γγ channel (left), τ+τ− channel (middle) and
tt̄ channel (right), for mφ = 200 GeV (red), 500 GeV (green), 800 GeV (blue) and 1000 GeV
(yellow). The regions to the top and right of the curves are excluded at the 95 % CL level.

We also show in Fig. 3.1.3 the 8 TeV LHC constraints on κφgg and BR(φ→ XX) by the

solid curves denoted by “8 TeV”.

If the φ couples to the SM gauge bosonsW,Z then the constraints from the φ→WW,ZZ

decays can also become important. In this thesis we will focus on scenarios where the φWW

and φZZ couplings are small. In Chapter 6 and 7 we will work in the so called “2HDM

alignment limit” where the tree level φWW and φZZ couplings are identically zero. In

Chapter 7 and 9 we will analyze a model where the φ is a SM gauge singlet. There, the

φWW , φZZ couplings are generated via the φ−hmixing. We will see in Chapter 9, Sec. 9.2

that the 8 TeV LHC φ→ hh results [11] constrain the mixing angle to be very small (see

for example Fig. 9.2.2), and hence the φV V couplings are also small. Therefore, we do not

analyze the constraints coming from the φ→ ZZ,WW channels.
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Figure 3.1.3: Contours of the 14 TeV LHC σ×BR (in pb) in the γγ channel (upper-row)
and the τ+τ+ channel (middle-row) for mφ = 200 GeV (left), 500 GeV (middle), 800 GeV
(right), and in the tt̄ channel (bottom-row) formφ = 500 GeV (left), 800 GeV (middle), 1000
GeV (right). The region above the contour labeled ’8 TeV’ is excluded at the 95% CL level
from the 8 TeV LHC result.
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As mentioned earlier, in any given model one can calculate the κφgg and BR(φ→XX)

to obtain constraints on the model parameters and the LHC cross sections at 8 and 14 TeV.

In later chapters we will present κφgg and BR(φ→XX) for some specific models.
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Chapter 4

Phenomenology of a singlet CP-odd

scalar model with vector-like fermions

This chapter is based on our work done in Ref. [9]. In many BSM theories such as the

little-Higgs models [121], technicolor models [122, 123, 124], the Higgs (h) is accompanied

by an SU(2) singlet CP-odd scalar. These models have a bigger symmetry group than the

SM and contain new vector-like fermions which together with the SM fermions complete

the representation under the symmetry group. In this chapter we study few effective theories

of neutral SU(2) singlet CP-odd scalars with vector-like fermions also present, without spe-

cializing to any particular model. Study of such effective theories is useful to look for the

CP-odd scalars without paying attention to any particular model. Specifically, we consider

two models where the CP-odd scalar is coupled to either an SU(2) singlet or an SU(2) doublet

vector-like quarks. We present the branching ratios of A and the effective Agg couplings in

each of these models. We also obtain the constrains on the parameter space from the h→ γγ

signal strength.

4.1 SVU model

In what we call SV U model an SU(2) singlet CP-odd scalar A is coupled to an SU(2)

singlet, SU(3)c triplet VLQ (ψ) with hypercharge Yψ. Clearly, the electromagnetic charge
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Figure 4.1.1: BR (A→ γγ) (black), BR (A→ γZ) (blue), BR(A→ ZZ) (red), BR(A→
WW ) (cyan) as a function of mA with yA = 0.1 and mψ = 1000 GeV for SV U (left) and
SV Q (right) models.

Q= Yψ. To the SM Lagrangian we add

L ⊃1
2∂µA∂

µA− 1
2m

2
AA

2 + ψ̄i/∂ψ+ eQAµψ̄γ
µψ−gQs

2
W

cW
Zµψ̄γ

µψ

+ ψ̄i /Dψ− iyAAψ̄γ5ψ−mψψ̄ψ−
λA
6 A2H†H (4.1.1)

The SM Higgs doublet is written as H here. Here we have not considered possible terms

coupling the A to a SM fermion and a VLF for Yψ = 2/3,−1/3 such as ψ̄LAuR, ψ̄LAdR,

q̄HψR. We study this possibility of off-diagonal couplings between the 3rd generation SMQ

and a VLQ in the context of the SU(2) doublet Φ in Chapter 6.

We restrict ourselves tomA < 2MV L, so thatA cannot decay to a VLF pair. The possible

decay modes of A are to gg, γγ, Zγ and ZZ through a VLF loop, but no decay to W+W−.

A cannot decay to a pair of SM fermions since such couplings are forbidden by gauge in-

variance. The effective AV µV ν couplings induced by VLFs are given in Appendix B. From

these we compute the partial widths and the BR into the above modes. In Fig. 4.1.1 we plot

BR(A→ γγ), BR(A→ Zγ) and BR(A→ ZZ) where we chose Yψ = 2/3 as an example.

BR(A→ gg) is almost constant at around 0.999.

In Fig. 4.1.2 we plot κAgg/yA as a function of mA. From this, one can read-off the

σ(gg→ A) at the 8 and 14 TeV LHC from Fig. 3.1.1 in Chapter 3. The peaks in Fig. 4.1.2

are due to the VLFs going onshell, although as mentioned earlier, we do not explore its

consequences in this work. In this model, the gluon-fusion c.s. of A is induced only through
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Figure 4.1.2: κAgg/yAas a function of mA for mψ = 800 GeV (red) and 1200 GeV (blue) for
SV U model.

Figure 4.1.3: BR (h→ AA) (left) and µγγ (right) as a function of mA for SV U model.

loops of the heavy VLFs due to which the 8 TeV LHC exclusion limits on σ×BR into the

ZZ channel (see Ref. [125]) or the γγ channel (see Ref. [8]) are rather weak, unless yA

becomes so large that perturbativity is lost.

If mA <mh/2 (where h is the 125 GeV Higgs), then h→AA becomes kinematically al-

lowed and becomes a means of producingA in addition to the gluon-fusion channel discussed

above. In Fig. 4.1.3 we plot BR(h→ AA) for λA = 0.1,0.05 and 0.001. When this decay is

allowed, it will contribute to the Higgs total width thereby modifying the BRs into the other

channels. In particular, it will modify the signal strength µγγ = Γ(h→ γγ)/ΓSM (h→ γγ),

which is measured to about 10% precision (see for example Ref. [126]). We thus see that the

constraint on λA from the 8 TeV LHC is of the order of 0.01 if mA <mh/2.
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4.2 SVQ model

We consider a BSM extension, which we call the SV Q model, with an SU(2) singlet A, and

one SU(2) doublet vector-like fermion ψ = ψL,R = (ψ1L,R,ψ2L,R)T with hypercharge Yψ.

To the SM Lagrangian we add

L ⊃ 1
2∂µA∂

µA− 1
2m

2
AA

2 + ψ̄i /Dψ− iyAAψ̄γ5ψ−mψψ̄ψ−
λ1
4!A

4− λA6 A2H†H (4.2.1)

where the gauge interactions of the ψ are understood and are not explicitly shown. For

Yψ = 1/6 one can add the terms y′uψ̄LH̃uR+ y′dψ̄LHdR+ iy2AAq̄LψR+h.c which we will

not consider here but later in Chapter 6. As in the SV U model, there are no decays to a pair

of SM fermions, but unlike there, in this model A→W+W− decay is also possible through

the VLF loop, in addition to gg, γγ, Zγ and ZZ modes. The expressions for the effective

couplings of the A to two SM gauge-bosons are given in Appendix B. We take Yψ = 1/6 as

an example.

In Fig. 4.1.1 we plot the BR of A into γγ, Zγ, ZZ and W+W− modes. As in SV U

model, the BR into gg remains almost constant at around 0.99 for mA & 300 GeV. As the

ψ1ψ2W coupling (g) is greater than the ψiψiZ couplings (g/cW )(T3−Qs2
W ), the BR into

WW is larger than into ZZ. Again, for the same reasons explained in the SV U model, the

exclusion limits from the 8 TeV LHC in the γγ,ZZ,WW channels are rather weak in this

model also.

The σ(gg→ A) in this model is twice of what was obtained in the SV U model because

there are two degenerate VLFs in the loop. The VLFs are degenerate since no Yukawa terms

involving the SM Higgs can be written down that can split the masses after EWSB. Since no

couplings to a pair of SM fermions exist, there are no b-quark initiated production processes

possible.
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Chapter 5

Two Higgs doublet Model type-I, II, X

In this chapter we briefly review the two Higgs doublet model (2HDM) which will be rele-

vant in the next chapter. For a detailed review of 2HDM see Ref. [127]. 2HDM is a simple

extension of the standard model (SM) which extends the scalar sector of the SM. Specifi-

cally, one introduces two SU(2) doublet scalars Φ1 and Φ2 with hypercharge YΦ1 and YΦ2

respectively, along with a potential term V (Φ1,Φ2) for the Φ1 and Φ2. To obtain the vacuum

of the theory, one then minimizes V (Φ1,Φ2) with respect to Φ1 and Φ2. The ratio

ρ= (g2
Z/M

2
Z)

(g2/M2
W ) (5.0.1)

is very precisely measured and found to be very close to 1. In general, for n SU(2) doublet

scalars Φi with hypercharge YΦi and v.e.v. 〈Φi〉= vi we have [127]

ρ=
∑
i

(
3
4 −Y

2
Φi

)
vi∑

i 2Y 2
Φivi

. (5.0.2)

We see that if we want ρ= 1, we must take YΦi =±1/2. We take YΦ1 = YΦ2 = 1/2 which is

usually considered in the literature. Considering only the renormalizable terms we can write
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the general 2HDM scalar potential as

V (Φ1,Φ2) =m2
11Φ†1Φ1 +m2

22Φ†2Φ2− (m2
12Φ†1Φ2 +h.c.) +λ1(Φ†1Φ1)2 +λ2(Φ†2Φ2)2

+λ3Φ†1Φ1Φ†2Φ2 +λ4Φ†1Φ2Φ†2Φ1 + λ5
2
[
(Φ†1Φ2)2 +h.c.

]
+λ6Φ†1Φ1Φ†1Φ2

+λ7Φ†2Φ2Φ†1Φ2. (5.0.3)

If m2
12 = λ6 = λ7 = 0, then the theory has an exact discrete Z2 symmetry under which Φ1→

−Φ1,Φ2 → Φ2. As we will see later, this Z2 symmetry forbids tree level flavor changing

neutral currents (FCNC). We will set λ6 = λ7 = 0 from now on but keep a nonzero m2
12. The

m2
12 term breaks the Z2 symmetry softly and does not give rise to tree level FCNCs. The

reason for choosing a nonzero m2
12 will be clear later. The λi in general can be complex, in

which case they contribute to CP violation. We are not interested in studying CP violation in

the scalar sector and therefore we choose the λi to be real.

Minimizing the V (Φ1,Φ2) with respect to Φ1 and Φ2 gives the V.E.Vs 〈Φi〉= (1/
√

2)(0,vi)T

which satisfies the conditions

m2
11−m2

12
v2
v1

+λ1v
2
1 + 1

2(λ3 +λ4 +λ4)v2
2 = 0

m2
22−m2

12
v1
v2

+λ2v
2
2 + 1

2(λ3 +λ4 +λ4)v2
1 = 0. (5.0.4)

The EW vacuum (v) is given by v =
√
v2

1 +v2
2 . It is useful to define the parameter tanβ =

v2/v1. The fluctuations of Φi around the V.E.Vs can be parametrized as

Φi =

 Φ+
i

1√
2(vi+ρi+ iηi)

 . (5.0.5)

Using Eq. (5.0.4) the mass matrix for the CP-even scalar sector (ρ1,ρ2) is given by

M2
1 =

 2λ1v2
1 +m2

12
v2
v1

−m2
12 +λ345v1v2

−m2
12 +λ345v1v2 2λ2v2

1 +m2
12
v1
v2

 . (5.0.6)
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The M2
1 can be diagonalized by the orthogonal rotation

H
h

=

 cosα sinα

−sinα cosα


ρ1

ρ2

 (5.0.7)

with the mixing angle α given by

tan2α = 2C
A−B

(5.0.8)

withC =−m2
12 +λ345v1v2,A= 2λ1v2

1 +m2
12
v2
v1

,B = 2λ2v2
1 +m2

12
v1
v2

. The mass eigenvalues

are given by

m2
h,H = 1

2

(
A+B∓

√
(A−B)2 + 4C2

)
. (5.0.9)

We will identify the lighter eigenstate h with the 125 GeV Higgs boson. The mass matrix

for the CP-odd sector (η1,η2) is given by

M2
2 =

 −λ5v2
1 +m2

12
v2
v1

−m2
12 +λ345v1v2

−m2
12 +λ345v1v2 −λ5v2

2 +m2
12
v1
v2

 (5.0.10)

which can be diagonalized via the orthogonal rotation

G0

A

=

 cosβ sinβ

−sinβ cosβ


η1

η2

 . (5.0.11)

whereG0 is a Goldstone boson which will be eventually eaten by the SM Z boson. The mass

(mA) of the physical eigenstate A is given by

m2
A =m2

12
v2

v1v2
−λ5v

2. (5.0.12)
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The mass matrix for the charged sector is

M2
3 =

 m2
11 +λ1v2

1 + 1
2λ3v2

2 −m2
12 + 1

2(λ4 +λ5)v1v2

−m2
12 + 1

2(λ4 +λ5)v1v2 m2
22 +λ2v2

1 + 1
2λ3v2

1

 (5.0.13)

which can be diagonalized by the orthogonal rotation

G±
H±

=

 cosβ sinβ

−sinβ cosβ


Φ±1

Φ±2

 (5.0.14)

where G± are the Goldstone bosons which will be eaten by the SM W± bosons. Using

Eq. (5.0.4), the charged Higgs mass is given by

m2
H± = m2

12v
2

v1v2
− 1

2(λ4 +λ5)v2. (5.0.15)

From Eq. (5.0.6) we have

m2
H +m2

h = 2λ1v
2
1 + 2λ2v

2
2 +m2

12
v2

v1v2
. (5.0.16)

For a 2HDM with exact Z2 symmetry (m2
12 = 0) Eq. 5.0.16 gives

λ1v
2
1 = 1

2(m2
H +m2

h)−λ2v
2
2. (5.0.17)

It follows from Eq. 5.0.17 that λ1 has an upper bound given by

λ1v
2 cos2β ≥ 1

2(mH2 +m2
h) (5.0.18)

since λ2 ≥ 0 (required for the stability of the vacuum). Since mH >mh the upper bound on

λ1 is given by

λ1 >
m2
h

v2 (1 + tan2β)

≈ 0.25(1 + tan2β). (5.0.19)
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We see from Eq. (5.0.19) that for large tanβ, λ1 will become nonperturbative. If we require

the λ1 to be perturbative, i.e λ1 < 4π, then we have the upper bound on tanβ as tanβ. 7 (for

m2
12 = 0). This is the same result obtained in Ref. [70]. We will always work with a non-zero

m2
12 so that we can explore higher values of tanβ. In total, there are eight free parameters in

the 2HDM scalar potential. After fixing v = 246 GeV, we are left with seven free parameters

which we take to be α, tanβ, m2
12 and the physical mass parameters mh,mA,mH ,mH± .

The gauge couplings (gφV V ) of the h,H with the SM gauge bosons (VV) can be obtained

from the the gauge terms

L= (DµΦ1)2 + (DµΦ2)2 (5.0.20)

with Dµ = ∂µ− ig/
√

2(W+
µ T

+ +W−µ T
−)− i(g/2cosθW )Zµ. Substituting Eq. (5.0.5) in

Eq. , the terms involving ρi,ηi,vi can be written as

L ⊃ g2

2 (v1ρ1 +v2ρ2)W+µW−µ + g2

4cos2 θW
(v1ρ1 +v2ρ2)ZµZµ+ g2

4 (η2
1 +η2

2)W+µW−µ

+ g2

8cos2 θW
(η2

1 +η2
2)ZµZµ+ g2

4 (v2
1 +v2

2)W+µW−µ + g2

8 (v2
1 +v2

2)ZµZµ (5.0.21)

Using Eq. (5.0.7) the terms involving the physical states A,H,h can be written as

L= g2

2 v cos(β−α)HWW−µ + g2

2 v sin(β−α)hW+µW−µ + g2

4cos2 θW
v cos(β−α)HZµZµ

+ g2

2cos2 θW
v sin(β−α)hZµZµ+ g2

4 A
2W+µW−µ + g2

8cos2 θW
A2ZµZµ+ g2

4 v
2W+µW−µ

+ g2

8cos2 θW
v2ZµZµ (5.0.22)
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From Eq. (5.0.7) we can read of the hV V and HV V gauge couplings (gφV V ) as

ghWW = sin(β−α)g
2v

2 ,

gHWW = cos(β−α)g
2v

2 ,

ghZZ = sin(β−α) g2v

2cos2 θW
,

gHZZ = cos(β−α) g2v

2cos2 θW
. (5.0.23)

The tree level AV V couplings are zero, as expected from CP invariance. We see that for

β −α = π/2, the ghV V couplings become identical to that of the SM Higgs. Therefore,

the limit β−α = π/2 is called the 2HDM “alignment limit”. We also see that the gHV V

couplings become zero in the alignment limit.

5.1 The Yukawa couplings

In the absence of any additional symmetries (apart from the EW gauge symmetry), the SM

fermions will have Yukawa couplings with both the Φ1 and Φ2. For example the most general

Yukawa term involving the charge -1/3 SM fermions (di) can be written as

LY uk = y1
ij q̄iLΦ1djR+y2

ij q̄iLΦ2djR (5.1.1)

where qiL are the SM-quark SU(2) doublet. Substituting the V.E.Vs of Φ1 and Φ2 in Eq. (5.1.1)

gives the mass terms

Lmass = y1
ij d̄Liv1dRj +y2

ij d̄Liv2dRj . (5.1.2)

In general the the LY uk and Lmass cannot be diagonalized simultaneously and there will be

flavor changing neutral currents (FCNC). So a necessary condition for the absence of tree

level FCNCs is that all the quarks of a given charge must have Yukawa couplings with only

one Higgs doublet [128]. However to guarantee the absence of tree level FCNCs, we need a
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second condition. To derive this let’s consider the neutral Z current

JµZ = (g/cosθW ) [q̄LKLqL+ q̄RKRqR] (5.1.3)

with, KL = T 3
L−Qsin2

θW

KR = T 3
R−Qsin2

θW
(5.1.4)

We diagonalize the mass terms in Eq. (5.1.2) by a bi-unitary rotations qL → ULqL, qR →

URqR. Under these bi-unitary rotations theKL andKR transform asKL,R→U †L,RKL,RUL,R.

From Eq. (5.1.3) we see that the conservation of flavor requires that [UL,KL] = [UR,KR] = 0.

Also, the charge conservation requires that [UL,Q] = 0, [UR,Q] = 0. Then from Eq. (5.1.4)

we arrive at the condition
[
T 3
L,Q

]
=
[
T 3
R,Q

]
= 0, that is all the quarks of a given charge

Q and helicity must have the same T 3. Combining this with the first condition, we con-

clude that the necessary and sufficient condition for the absence of tree-level FCNC is that

all the quarks of a given charge must have the same T 3 for a given helicity, and should have

Yukawa couplings with only one Higgs doublet [128]. In the 2HDM this condition can be

enforced by imposing a Z2 symmetry under which the 2HDM scalars and the SM fermions

transform in a certain way. The Z2 transformation of the 2HDM scalars can be taken to be

Φ1→−Φ1,Φ2→Φ2. Whether a given SM fermion couple to Φ1 or Φ2 depends on its trans-

formation property under the Z2. Usually three types of Yukawa structures are considered in

the literature, the so called 2HDM of type-I, type-II, type-X. Below we briefly discuss each

of these types .

2HDM type-I:

In 2HDM of type-I (2HDM-I) all the SM fermions are left unchanged under the Z2. In this

case all the SM fermions couple to the Φ2. This Yukawa term is given by
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L ⊃−ydq̄LΦ2dR−yuq̄LΦ̃2uR+h.c. , (5.1.5)

where Φ̃2 = iσ2Φ∗2. The Yukawa couplings of h,H,A are given by

LY uk ⊃− 1√
2
(
yuhcαūLuR+ydhcαd̄LdR+yucβiAūLuR−ydcβiAd̄LdR+h.c.

)
(5.1.6)

and the mass terms for the SM fermions are given by

Lmass ⊃− v√
2

(ydsβ d̄LdR+yusβūLuR+h.c.). (5.1.7)

The h,H andAYukawa couplings can be written as yhdd = (md/v)(cα/sβ), yhuu = (mu/v)(cα/sβ),

yHdd = (md/v)(sα/sβ), yHuu = (mu/v)(sα/sβ), yAdd =−(md/v)cotβ, yAuu = (md/v)cotβ,

where md,u = yd,usβ/
√

2 and we have introduced the notation cθ = cosθ,sθ = sinθ. In the

alignment limit the H and A Yukawa couplings become the same and the h Yukawa cou-

plings become identical to that of the SM Higgs boson.

2HDM type-II:

In 2HDM type-II (2HDM-II) all the right-handed down-type SM fermions transforms under

Z2 as dR→−dR and the up-type fermions remain unchanged. In this case all the down-type

fermions couple to Φ1, while all the up-type fermions couple to Φ2. The Yukawa term for

the 2HDM-II is given by

L ⊃−ydq̄LΦ1dR−yuq̄LΦ̃2uR+h.c. . (5.1.8)

The h,H,A Yukawa couplings in this case are given by yhdd = −(md/v)(sα/cβ), yhuu =

(mu/v)(cα/sβ), yHdd = (md/v)(cα/cβ), yHuu = (mu/v)(sα/sβ), yAdd = (md/v)tanβ,

yAuu = (md/v)cotβ, where md = yd cosβ/
√

2, mu = yu sinβ/
√

2.
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2HDM type-X:

In 2HDM type-X (2HDM-X) all the right-handed SM leptons (e) transform under Z2 as

eR→−eR and all other fermions remains unchanged. In this case The Yukawa term for the

2HDM-X is given by

L ⊃− (ydq̄LΦ2dR+yuq̄LΦ̃2uR+yel̄LΦ1eR+h.c). (5.1.9)

The h,H,A Yukawa couplings in this case are given by yhee = −(me/v)(sα/cβ), yHee =

(me/v)(cα/cβ), yAee = (me/v)tanβ, where me = ye cosβ/
√

2 for the leptons. The quark

Yukawa couplings are same as in 2HDM-I.

The measurements of the Higgs signal strengths µXX at the 8 TeV LHC [81, 82] reveals

that the hXX couplings are very close to that of their SM values, where µXX = σ(h)×

BR(h→XX)/ [σ(h)×BR(h→XX)]SM. For example, measurement of the µWW puts a

95% confidence level constraint on the hWW coupling (ghWW ) as 0.81< ghWW /g
SM
hWW <

1.01 (Table 14 of Ref. [129]). Therefore in the 2HDM, the “alignment limit” (β−α = π/2)

is strongly favored (see for example Ref. [63]). Also, since in the alignment limit the tree

level gauge couplings of the H,A are zero, the heavy Higgs searches [125] in the WW,ZZ

channel do not put any significant constraints on the parameter space. In the chapters to

follow we will always work in the alignment limit.

In the next chapter we will discuss the phenomenology of the neutral heavy scalars (H,A)

in 2HDM-II, X. Then we will analyze several models where we introduce new vector-like

fermion to 2HDM-II and X.
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Chapter 6

Phenomenology of neutral scalars in Two

Higgs doublet model with vector-like

fermions

This chapter is based on the work done in Ref. [9]. As discussed in Chapter 5, the two Higgs

doublet model is one of the simplest extensions of the SM, obtained by extending its scalar

sector. Apart from the 125 GeV Higgs boson (h), the 2HDM has three new scalars, namely

the neutral heavy scalars A,H and a heavy charged scalar H±. Their phenomenology is

very rich and has been studied extensively in the literature (see for example Refs. [65, 66,

67, 68, 69, 130]). It will be interesting to explore the possibility of extending the 2HDM

to include new fermions. One possibility is to simply add an extra generation of chiral

fermions. Such chiral fermions are strongly disfavored from experiments [24]. However,

there exists the possibility where the new fermions are vector-like under SU(2)×U(1)Y . In

fact there are several UV complete models [3, 4, 100, 105] which has a 2HDM structure with

new vector-like fermions also present. In this chapter, we will study the phenomenology

of some effective theories which has the structure of the 2HDM, and also contain VLFs.

We will focus on the neutral scalars A,H . We present the branching ratios of A,H to two-

body decay channels and obtain the LHC cross sections in the gluon fusion channel. We

also present the constraint on the parameter space from the 8 TeV LHC ττ channel results.
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We will first briefly discuss the phenomenology of the neutral scalars (H,A) of 2HDM-II

and X with the SM fermions only. We will then study several models where we introduce

vector-like fermions to the 2HDM-II and X.

6.1 2HDM with SMF only

As mentioned before, the 2HDM has two neutral heavy scalars H and A (collectively called

φ here). The phenomenology of these neutral scalars has already been studied for example

in Refs. [62, 63, 64, 76]. The 8 TeV LHC constraints on the 2HDM parameter-space are

discussed for example in Refs. [71, 72, 73, 75]. Here we will briefly review some of the

phenomenological aspects ofH,A. We present the branching ratios of the neutral scalars and

the effective φgg couplings. We focus on the scenario where the lightest 2HDM scalar h is

identified with the 125 GeV Higgs. Ref. [60] considered the possibility that the observed 125

GeV state at the LHC is the CP-odd scalar (A), and found that this possibility is disfavored

by the LHC data. The couplings of the φ to the SM gauge bosons and the SM fermions

are given in Chapter 5. As we have mentioned in Chapter 5 we will work in the 2HDM

alignment limit which is strongly favored from the measurements of the Higgs observables.

For a detailed discussion of 2HDM alignment limit see [130] . We recall that in the alignment

limit the tree level couplings of the H and A are similar. Also, the tree level couplings of

both the H and A to the SM gauge bosons become zero in the alignment limit. In this

case the couplings of the H and A to the SM gauge bosons are generated by loop level

processes with SM fermions running in the loop. The effective φgg couplings (κφgg) can

be obtained from the general expressions given in Appendix A using which one can obtain

σ(gg→ φ) from Fig. 3.1.1 in Chapter 3. Production cross sections of A,H in 2HDM has

been studied for example in Refs. [131, 132]. If A and H have nearly degenerate masses

so that experiments cannot distinguish them, their contributions must be added in any given

channel. Because of different CP properties of the A and H , their sum will be incoherent

i.e. σ(pp→ φ→XX) = σ(pp→A→XX)+σ(pp→H→XX). Below we present the φ

branching ratios and κφgg for 2HDM-II and 2HDM-X.
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6.1.1 2HDM-II

The Lagrangian and the φ couplings for the 2HDM-II is given in Chapter 5. In Fig. 6.1.1

we plot the branching ratios BR(A→ ττ,bb) as a function of mA for tanβ = 1,5,10,15,30

and BR(A→ tt) for tanβ = 1,5,10,15, in the alignment limit. We see that for mA <

2mt, the dominant decay channel is A→ bb since the Aττ coupling (∝mτ tanβ) is smaller

than the Abb coupling (∝ mb tanβ). For mA > 2mt, the A→ tt channel opens up and

dominates for small tanβ. However for large tanβ the Att coupling (∝ cotβ) is suppressed

and BR(A→ bb) dominates as can be seen from Fig. 6.1.1. The loop level branching ratios

BR(A→ γγ,Zγ) are shown in Fig. 6.2.5 (by the dashed curve) in Sec. 6.2.2 where we

discuss 2HDM-II with VLFs. We see that the BRs into γγ and Zγ are smaller compared to

that of the corresponding loop induced SM Higgs branching ratios even for tanβ = 1 when

the couplings of A to the SM fermions are equal to the Higgs Yukawa couplings. This is

because the partial width Γ(h→ γγ,γZ), being dominated by the W loop, is larger than

the partial width Γ(A→ γγ,γZ) in which only the fermions contribute (see for example

Fig. 2.10 of Ref. [133]). For larger tanβ the branching ratios are even smaller because of

the increased Γ(A→ bb̄) and Γ(A→ τ+τ−). The discontinuity at mA = 2mt in the BRs

in Fig. 6.2.5 for tanβ = 1 is because of the onset of A→ tt̄ on-shell decay. For larger

tanβ, the discontinuity is smaller since the Att̄ coupling becomes smaller. The h→ AA

decay, possible for mA <mh/2, is studied in Ref. [63] and we will not discuss it here. Since

the coupling of the H to the SM fermions are same as the A in the alignment limit, the H

branching ratios to the SM fermions will be quite similar to that of the A and we do not

explicitly show them here.

The effective couplings κAgg and κHgg can be obtained from the general expressions

given in Eq. (A.0.7) in Appendix A. In Fig. 6.1.2 we plot contours of κAgg and κHgg in the

mA− tanβ plane. Using this one can calculate the σ(φ→ gg) from Fig. 3.1.1 in Chapter 3.

Nearmφ≈ 2mt, κAgg ≈ 2.5×κHgg, since FA1/2≈ 2.5×FH1/2 formφ≈ 2mt (see Fig. A.0.2 in

Appendix A) which explains the difference in the behavior of κAgg and κHgg nearmA≈ 2mt.

In 2HDM-II, the Hbb coupling and Htt have a relative sign between them which results in
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Figure 6.1.1: BR(A→ τ+τ−, bb̄)(left, middle) for tanβ = 1,5,10,15,30 and BR(A→ tt̄)
(right) for tanβ = 1,5,10,15 in 2HDM Type-II model. The loop-level BR(A→ V V ) in the
Type-II 2HDM are shown in Fig. 6.2.5 by the dashed-black curves.

Figure 6.1.2: Contours of κAgg (left) and Contours of κAgg (left) and κHgg (right) in the
Type-II 2HDM. (right) in the Type-II 2HDM..

destructive interference between the t contribution and the b contribution. For mA ∼ 10

GeV the cancellation becomes significant since b can go onshell at this value of mA and can

contribute significantly to κHgg which explains the behavior of κHgg near mH ≈ 10 GeV in

Fig. 6.1.2.

We saw in Chapter 3 that the φ→ ττ channel 8 TeV LHC results puts stringent constraint

on κφgg and BR(φ→ ττ). Here we present the constraints on mA− tanβ plane from the 8

TeV LHC φ→ ττ results for the 2HDM-II. As mentioned before, if mA and mH are within

the experimental resolution so that they cannot be separated, then both of this contributions

must be added. For the φ→ ττ channel the experimental invariant-mass resolution is about

30%. Therefore, we consider two cases, one when mA and mH are within 30% and add

the contributions from the “degenerate” A and H , and another when they are split by more
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Figure 6.1.3: For Type-II 2HDM, regions of the mAetanβ plane (blue region) which is
excluded at 95% confidence level from φ→ τ+τ− decay when only A is present (left) and
when mA and mH are degenerate (right).

Figure 6.1.4: For the Type-X 2HDM, BR(A → τ+τ−, tt̄) (left, right) for tanβ =
1,5,10,15,30, and BR(A→ bb̄) (middle) for tanβ = 1, 5. The BR(A→ γγ,Zγ) for the
Type-X 2HDM is shown in Fig. 6.3.1 as the dashed-black curve.

than 30% and treat them separately. When they are degenerate, we have BR(A→ τ+τ−)≈

BR(H→ τ+τ−) in the alignment limit and we can use the constraints obtained in Chapter 3

if we interpret κφgg shown there as
√
κ2
Agg +κ2

Hgg and BR(φ→ ττ) as BR(A→ τ+τ−) +

BR(H → τ+τ−). In Fig. 6.1.3 we plot the constraints on mA− tanβ plane from the 8 TeV

LHC ττ channel results for these two scenarios.

6.1.2 2HDM type-X

We recall from Chapter 5 that in 2HDM-X, all the quarks couple to the H,A like cotβ and

all the leptons couple to H,A as tanβ. Since all the SM quarks couple very weakly to A

for large tanβ, σ(gg → A) becomes very small for large tanβ. As a consequence there

are no constraints from σ(pp→ A)×BR(A→ τ+τ−). In Fig. 6.1.4 we show the tree-level

BR(A→ τ+τ−, bb̄, tt̄). The BR(A→ V V ) for the Type-X 2HDM is shown in Fig. 6.3.1 (by

the dashed-black curve) in section 6.3.
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Figure 6.1.5: For the Type-X 2HDM, contours of κAgg (left) and κHgg (right).

In Fig. 6.1.5 we plot contours of κAgg and κHgg. From this one can read off σ(gg→ φ)

for 8 TeV and 14 TeV LHC from Fig. 3.1.1 in Chapter 3.

6.2 2HDM with vectorlike fermions

In this section we will extend the 2HDM to include new vector-like fermions. As mentioned

before, there are several examples of UV complete models that have a 2HDM structure struc-

ture. In order make the theory symmetric under the larger group, they also necessarily have

new vector-like fermions which together with the SM fermions furnish a complete repre-

sentation of the bigger symmetry group. Instead of committing to a single UV complete

model, here we study the phenomenology of the A,H in some effective models where we

add vector-like fermions to the 2HDM. Such an analysis will capture many of the common

features present in realistic BSM theories as far as the phenomenology of A,H is concerned.

We mainly focus on the scenario where mφ < 2MV LF . We do not study the scenario where

φ can decay to a pair of vector-like fermions. In order to be safe from direct search lim-

its [111, 134, 135, 136] on VLQ mass we will take MV LQ > 920 GeV. We first study the

scenario where the VLFs have off-diagonal couplings with the third generation SM fermions.

Subsequently we consider the scenario where the off-diagonal coupling of the VLFs with the

SM fermions are absent.
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6.2.1 2HDM with VLQ-SM Yukawa coupling

In this section we consider the scenario where VLFs couple to the third generation SM

quarks. These kinds of models are very similar in nature to many of the realistic BSM

theories. We analyze three situations separately: the MV U model where we introduce an

SU(2) singlet VLQ of charge 2/3 to the 2HDM-II, the MVD model where we introduce an

SU(2) singlet VLQ of charge -1/3 to the 2HDM-II and the MVQ model where we introduce

a VLQ SU(2) doublet to the 2HDM-II. We also consider an explicit example of an UV com-

plete model namely SU(6)/Sp(6) little-Higgs model [5] where our analysis can be used to

obtain the effective κφgg couplings and σ(gg→ φ).

MVU model:

Here we introduce an SU(2)-singlet VLF ψ, with EM charge 2/3, and add to the 2HDM

Type-II Lagrangian the following terms

L ⊃Mψ ψ̄ψ−
(
y1 q̄LΦ̃1ψR+h.c.

)
. (6.2.1)

After EWSB the mass terms for the EM-charge 2/3 fermions can be written as

Lmass =− 1√
2
(
yuv2t̄LtR+y1v1t̄LψR+h.c.

)
+Mψψ̄ψ. (6.2.2)

We define the mass eigenstates t0L,R and t2L,R, for the EM-charge 2/3 quarks as

tL,R = cosθUL,Rt0L,R− sinθUL,Rt2L,R,

ψL,R = sinθUL,Rt0L,R+ cosθUL,Rt2L,R. (6.2.3)
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The mixing angles are given by

tan2θUL = 2
√

2y1v1Mψ

y2
uv

2
2−2M2

ψ +y2
1v

2
1

tan2θUR = 2
√

2y1yuv1v2
y2
uv

2
2−2M2

ψ−y2
1v

2
1
. (6.2.4)

The mass eigenvalues are given by

mt0,t2 = 1
2


√√√√( yu√

2
v2 +Mψ

)2
+ y2

1
2 v

2
1∓

√√√√( yu√
2
v2−Mψ

)2
+ y2

1
2 v

2
1

 . (6.2.5)

For notational brevity we call t0 simply as t, which we will identify with the SM top-quark.

Constraints on the mixing from EWPT and a vector-like top decaying to Wb,Zt,Ht are

studied in Refs. [112, 116, 137, 138]. The A couplings to the EM-charge 2/3 fermions in

terms of the mass eigenstates are given by

L= i√
2
A
(
yAttt̄LtR+yAt2t2 t̄2Lt2R+yAt2tt̄2LtR+yAtt2 t̄Lt2R

)
+h.c. , (6.2.6)

where

yAtt = (yucULcUR cosβ−y1c
U
Ls

U
R sinβ),

yAt2t2 = (yusULsUR cosβ+y1s
U
Lc

U
R sinβ),

yAt2t =−(yusULcUR cosβ−y1c
U
Ls

U
R sinβ),

yAtt2 =−(yucULsUR cosβ+y1c
U
Lc

U
R sinβ). (6.2.7)
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Figure 6.2.1: For the MV U model, contours of κhtt for tanβ = 1 (left) and tanβ = 5 (right)
with yu chosen such that mt = 163 GeV.

The h couplings to the EM-charge 2/3 fermions are given by,

yhtt = (−yucULcUR cosα+y1c
U
Ls

U
R sinα),

yht2t2 = (−yusULsUR cosα−y1s
U
Lc

U
R sinα),

yht2t = (yusULcUR cosα−y1c
U
Ls

U
R sinα),

yhtt2 = (yucULsUR cosα+y1c
U
Lc

U
R sinα). (6.2.8)

Because of the t−ψ mixing the yhtt will be different from its SM value (ySMhtt ). We define

the quantity κhtt = yhtt/y
SM
htt which parametrizes the deviation of the htt coupling from its

SM value. The experimental limit on κhtt is 0.63 < |κhtt| < 1.2 [50]. In Fig. 6.2.1 we plot

κhtt in the y1−Mψ plane for tanβ=1 and 5. For large y1 and small Mψ, the mixing is large

and the κhtt differs from 1 by about 15% as can be seen from Fig. 6.2.1.

In Fig. 6.2.1 we show contours of κVLF
Agg/y

2
1 in the mA-Mψ plane for {tanβ,yu} = {1,1.4}

and {5,1}, and also show κVLF
Agg as a function of y1 for 1000 GeV, Mψ = 1250 GeV and tanβ

= 0.1,1, 5,10,15. For large tanβ, the mixing angles become small, which makes κVLF
Agg small.

For Fig. 6.2.1, we fix yu = 1.4 so that mt is close to its MS value mMS
t = 163 GeV [139],

and once a specific choice of y1 is made, mt can be fixed exactly by choosing yu slightly

differently; the resulting change in κVLF
Agg due to such differences in yu is insignificant. The
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Figure 6.2.2: Contours of kVLF
Agg /y

2
1 for {tanβ, yu} = {1, 1.4} (left) and {5, 1} (middle)

for the MV U model. kVLF
Agg as a function of y1, for mA = 1000 GeV, Mψ = 1250GeV and

tanβ = 0.1,1,5,10,15 is plotted on the right.

Figure 6.2.3: Contours of BR(A→ tt) (black), BR(A→ bb) (blue), BR(A→ t2t) (red),
BR(A→ gg) (green) with Mψ = 1000 GeV, y1 = 1 for tanβ = 1 (left) and 5 (right), for the
MV U model, with yu chosen such that mt = 163 GeV.

fermionic BRs formA< (Mt2 +mt) will be largely unchanged from the Type-II 2HDM plots

shown in Fig. 6.2.3. However, if mA> (Mt2+mt) the A→ t2t decay becomes kinematically

allowed. In Fig. 6.2.3 we plot BR(A→ tt), BR(A→ bb), BR(A→ gg) and BR(A→ t2t),

for Mψ = 1 TeV, y1 = 1 and tanβ = {1,5} with yu fixed such that mt is at the physical

value. For tanβ=5, BR(A→ tt) becomes small since yAtt ∝ cotβ. BR(A→ γγ,Zγ) do

not change by much from the 2HDM-II case.

MVD model:

In the MVD model, we introduce an SU(2)-singlet VLF χ, with EM charge -1/3, and add to

the 2HDM Type-II Lagrangian the following terms
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LA =Mχ χ̄χ− (y2 q̄LΦ1χR+h.c.) . (6.2.9)

The mass eigenstates, b0L,R and b2L,R for the EM-charge −1/3 fermions are defined in the

same way as in Eq. 6.2.3 with the mixing angles θDL,R. The mixing angles are given by

tan2θDL = 2
√

2y2v1Mψ

y2
dv

2
1−2M2

χ+y2
2v

2
1

tan2θUR = 2
√

2y1yuv1v2
y2
dv

2
1−2M2

χ−y2
2v

2
1
.

(6.2.10)

The mass eigenvalues are given by

mt,t2 = 1
2


√√√√( yd√

2
v1 +Mχ

)2
+ y2

2
2 v

2
1∓

√√√√( yd√
2
v1−Mχ

)2
+ y2

2
2 v

2
1

 . (6.2.11)

The A couplings to the EM-charge−1/3 fermions are given by

yAtt = (ydcDL cDR sinβ−y2c
D
L s

D
R sinβ),

yAt2t2 = (ydsDL sDR sinβ+y2s
D
L c

D
R sinβ),

yAt2t =−(ydsDL cDR sinβ−y2c
D
L s

D
R sinβ),

yAtt2 =−(ydcDL sDR sinβ+y2c
D
L c

D
R sinβ). (6.2.12)

The h couplings to the charge −1/3 fermions are given by

yhtt = (ydcDL cDR sinα+y2c
D
L s

D
R sinα),

yht2t2 = (ydsDL sDR sinα−y2s
D
L c

D
R sinα),

yht2t = (−ydsDL cDR sinα−y2c
D
L s

D
R sinα),

yhtt2 = (−ydcDL sDR sinα+y2c
D
L c

D
R sinα). (6.2.13)

As in the case of charge 2/3 fermions, we choose yd such that mMS
b = 4.2 GeV [140]; yhbb

stays close its SM value. In Fig. 6.2.4, we plot contours of κVLF
Agg/y

2
2 in the mA−Mχ plane
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Figure 6.2.4: Contours of kVLF
Agg /y

2
2 for {tanβ,yd} = {1,0.03} (left) and {5, 0.12} (middle)

for the MVD model. kVLF
Agg with y2 for mA = 1500 GeV, Mχ = 1000 GeV and tanβ =

1,5,10,15 is plotted on the right..

for {tanβ, yd}= {1,0.03} and {5,0.12}, and κVLF
Agg as a function of y2 for mA = 1500 GeV,

Mχ = 1000 GeV for tanβ = 1,5,10,15.

MVQ model

For the MVQ model, we add an SU(2) doublet VLF Q′ and add to the Type-II 2HDM

Lagrangian the terms

L ⊃MQQ Q̄
′Q′+

(
MqQ q̄LQ

′
R− ỹ1Q̄

′
LΦ̃2tR− ỹ2Q̄

′
LΦ1bR+h.c.

)
. (6.2.14)

Below we only show the top-sector since in most of the BSM models, usually the top sector

is relevant. The MqQ induces a mixing between Q′L and qL. We diagonalize the VLF masses

by redefining the q and Q′ fields by an orthogonal rotation to obtain

L ⊃Meff
QQ Q̄

′Q′+
(
−yeff

u q̄LΦ̃2tR− ỹeff
1 Q̄′LΦ̃2tR+h.c.

)
, (6.2.15)

withMeff
QQ≡

√
(M2

QQ+M2
qQ), yeff

u ≡ (yuMQQ− ỹ1MqQ)/Meff
QQ, ỹeff

1 ≡ (yuMqQ+ ỹ1MQQ)/Meff
QQ,

which imply yeff
u = (yu− ỹ1MqQ/MQQ)/

√
1 + (MqQ/MQQ)2 and ỹeff

1 = yeff
u MqQ/MQQ+

ỹ1
√

1 + (MqQ/MQQ)2. The κφgg due to the t′, b′ in theMVQmodel are qualitatively similar

to the MV U case presented earlier and we do not show this explicitly.
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SU(6)/Sp(6) little-Higgs model

Here we apply the results of our analysis to a specific example of a BSM model namely

the SU(6)/Sp(6) little-Higgs model (LSS) [5]. In the LSS model, an SU(6) global sym-

metry is broken down to Sp(6) by the expectation value of an antisymmetric condensate.

Interestingly, the scalar sector of this model has a 2HDM structure and to complete the sym-

metry representation of the bigger symmetry group it also has new vector-like fermions. In

Ref. [10] we have studied this model in detail. It has two charge 2/3 VLQs t2, t3 and two

charge −1/3 VLQs b2, b3. Here we apply some of the results of Sec. 6.2.1 to this model.

While comparing with Ref. [10], one should keep in mind that there we had tanβ = v1/v2

while in this analysis we have tanβ = v2/v1, and therefore tanβ here is related to that of

Ref. [10] via tanβ = (1/tanβLSS). In Ref. [10] we have found the allowed points of the

parameter space from the 8 TeV LHC Higgs measurements and the precision electroweak

constraints. Some of the allowed points can be found in Appendix B of Ref. [10]. Here we

focus on two such sample points namely sample-points 1 and 2. For the sample-point-1, the

two lightest VLFs are the t2 with a mass of 1218 GeV, the b2 with a mass of 1315 GeV, and

we have tanβ = 1.36, mA = 1671 GeV, y1 = 1.7, yu = 1.2 and mt ≈164 GeV. Here y1 is

given by y1 = yLSS1 c23, and for point-1, since y1� y4, to a very good approximation s14 ≈ 1

and c14 ≈ 0. Also mt ≈ c23y2v2/
√

2 in the limit where t3 is decoupled away, i.e. yu = y2c23,

and c23 ≈ 0.9. The b2 is an SU(2)-singlet since it does not mix with the other charge -1/3

states. Keeping only the lighter t2 since the t3 is somewhat heavier, a good approximation is

obtained by considering the addition of only a singlet EM charge +2/3 state ψ as introduced

in Eq. 6.2.1. Ignoring the smaller b2 contribution, the κV LAgg due to the t2 can be read off from

the tanβ = 1 curve of the rightmost panel of Fig. 6.2.1 to be approximately 0.4. This is about

10% of the SM-fermion contribution. For the sample-point-2 the the lightest VLQ is the b2

with a mass of 947.5 GeV. The b2 is an SU(2)-singlet state and does not mix with the other

charge -1/3 states. For this point, mA = 1671 GeV, tanβ = 1.36, y2 = 1.422, c23 = 1.15.

κAgg can be read off from the tanβ = 1 curve of the rightmost panel of Fig. 6.2.4 to be

approximately 0.3.
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6.2.2 2HDM-II with VLQ-VLQ Yukawa coupling

In this section we study few example models where the off-diagonal couplings of the VLFs

with the SM fermions are shut-off. We add SU(2) doublet and singlet VLFs with SM-like hy-

percharge assignments, and write Yukawa couplings between them both involving the Φ1,2.

We separately consider three minimal extensions of 2HDM-II: MVQD11 model where we

introduce an SU(2) doublet VLQ and an SU(2) singlet down-type VLQ which have Yukawa

couplings only with Φ1, MVQU22 model which is similar to MVQD11 model but with an

up-type VLQ singlet (instead of a down-type one) and has Yukawa couplings involving only

Φ2, MVQU12 model where the right-handed up-type singlet couples to Φ1, whereas the left

handed up-type singlet couples to Φ2. We also consider a model similar to MVQD11 but

for 2HDM type-X and denote it by MVQDX11. Although there could be Yukawa couplings

between a VLF and an SMF also present, we do not write them here for simplicity, and their

effects are investigated separately in section 6.2.1 .

MVQD11 model:

To the Type-II 2HDM we introduce one doublet VLQ, ψ = (ψ1,ψ2) with hypercharge Yψ

and one singlet VLQ (χ) with hypercharge (Yψ− 1/2) so that VLF couplings with Φ1 are

allowed. The additional Lagrangian terms to the 2HDM-II are

L ⊃ ψ̄i /Dψ+ χ̄i /Dχ− (y1ψ̄LΦ1χR+ ỹ1ψ̄RΦ1χL+ h.c)−Mψψ̄ψ−Mχχ̄χ. (6.2.16)

We can also write the terms ψ̄LΦ2χR and ψ̄RΦ2χL, which we do not add here but will

consider them subsequently as another model. These terms are forbidden if χ→−χ under
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the Z2 symmetry of 2HDM-II. The terms involving h, A, H and VLFs after EWSB are

L ⊃−Mψψ̄ψ−Mχχ̄χ+ 1√
2
Asinβ(iy1ψ̄2LχR+ iỹ1ψ̄2RχL+h.c.)

− v√
2

cosβ(y1ψ̄2LχR+ ỹ1ψ̄2RχL+h.c.) + 1√
2
hsinα(y1ψ̄2LχR+ ỹ1ψ̄2RχL+h.c.)

− 1√
2
H cosα(y1ψ̄2LχR+ ỹ1ψ̄2RχL+h.c.) (6.2.17)

Gauge interactions of the VLFs are present and not shown explicitly. ψ2 and χ mix after

EWSB, while ψ1 is itself a mass eigenstate. We define the mass eigenstates ζ1 and ζ2 as

ψ2L,R =ζ1L,R cosθL,R− ζ2L,R sinθL,R,

χL,R =ζ1L,R sinθL,R+ ζ2L,R cosθL,R, (6.2.18)

where the mixing angles are given by

tan2θL = 2
√

2vcβ(y1Mχ+ ỹ1Mψ)
2(M2

ψ−M2
χ)−v2s2

β(ỹ2
1−y2

1) ,

tan2θR = 2
√

2vcβ(y1Mχ+ ỹ1Mψ)
2(M2

ψ−M2
χ) +v2s2

β(ỹ2
1−y2

1) . (6.2.19)

The mass eigen values are given by

M1,2 = 1
2

√
(Mψ +Mχ)2 + 1

2c
2
βv

2(y1− ỹ1)2±
√

(Mψ−Mχ)2 + 1
2v

2c2β(y1 + ỹ1)2. (6.2.20)

In terms of these mass eigenstates, Eq. (6.2.17) can be written as

L ⊃−Miζ̄iζi−Mψψ̄1ψ1 +κijZµζ̄iγµζj + eQiAµζ̄iγµζi−yAij(iAζ̄iLζjR+ h.c)

−yhij(hζ̄iLζjR+h.c)−yHij (Hζ̄iLζjR+h.c), (6.2.21)
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where i, j = 1,2. Theκij are given by

κ11 = (g/cW )[(T 3/2)(c2L+ c2R)−Qs2
W ],

κ22 = (g/cW )[(T 3/2)(s2
L+ s2

R)−Qs2
W ],

κ12 =−(g/cW )(T 3/2)(sLcL+ sRcR) (6.2.22)

and the yAij are given by

yA11 = (1/
√

2)sβ(−y1cLsR+ ỹ1sLcR),

yA22 = (1/
√

2)sβ(y1sLcR− ỹ1cLsR),

yA12 =−(1/
√

2)sβ(y1cLcR+ ỹ1sLsR),

yA21 = (1/
√

2)sβ(y1sLsR+ ỹ1cLcR). (6.2.23)

The yhij are given

yh11 =−(1/
√

2)sα(y1cLsR+ ỹ1sLcR),

yh22 = (1/
√

2)sα(y1sLcR+ ỹ1cLsR),

yh12 =−(1/
√

2)sα(y1cLcR− ỹ1sLcR),

yh21 =−(1/
√

2)sα(−y1sLsR+ ỹ1cLcR). (6.2.24)

The couplings yHij can be be obtained from theyhij by the replacement,sα→−cα.We take the

y1 and ỹ1 to be real, enforcing CP invariance in the BSM sector. The relative sign between

y1 and ỹ1 in Eq. (6.2.16) is physical for the following reason. If we want to get rid of this

relative sign we need to make the transformations χL→−χL and χR→ χR, or χL→ χL

and χR→−χR. In either case, the Mχ changes its sign and is therefore a physical effect.

For chiral fermions, the sign of the mass term is not physical since one can rotate it away by

the above transformations.
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Figure 6.2.5: BR(A→ γγ) (top-panel) and BR(A→ Zγ) (bottom-panel) with Mψ = Mχ =
1000 (GeV), tanβ = 1 (left) and 30 (right) in MVQD11 model (solid-black) and in 2HDM
Type-II (dashed-black). BR(A→ ff̄) in Type-II 2HDM are as shown in Fig. 6.1.1

Instead of the χ (with hypercharge (Yψ− 1/2)), if we consider a VLF (say ξ) of hyper-

charge (Yψ +1/2), we get a different model where the ξ couples to the Φ̃1 instead of the Φ1.

This model will have similar phenomenology as MVQD11 model, which we discuss later.

The effective kAV V couplings for this model are given in Appendix A. When y1 =ỹ1,

in addition to CP invariance, the Lagrangian in Eq. (6.2.17) is also invariant under P and

C individually, with A transforming as A P−→ A, A
C−→ −A. This implies that the VLF

contribution to κAV V is zero since AVµν Ṽ µν is not P invariant (although it is CP invariant).

Also, the VLF contributions are maximum forMψ =Mχ when the mixing between the VLFs

(ψ2 and χ) is maximum. We will take Mψ and Mχ to be equal from now on.

In Fig. 6.2.5, we plot BR(A→ V V ), for Yψ = 1/6 as an example, which is the SM

quark-doublet hypercharge assignment. The tree-level decays to SM fermions BR(A →

bb̄, τ+τ−, tt̄) are unchanged from what is shown in Fig. 6.1.1 for the Type-II 2HDM. We

see that for small values of tanβ the VLF contribution to BR(A→ V V ) is small compared

to the 2HDM-II. This is because the yij are proportional to sinβ. For large tanβ and for

large mA, the VLF contributions to the BR(A→ γγ) become significant.

In Fig. 6.2.6, we plot contours of κAgg for Mψ = 800 GeV, 1700 GeV. Using this, one

can read-off the σ(gg → A) at the 8 and 14 TeV LHC from Fig. 3.1.1 in Chapter 3. The

corresponding contours in the Type-II 2HDM (without the VLFs) are shown in Fig. 6.2.7. In

Fig. 6.2.7 (left) we plot yh11 and yA11 (defined in Eq. (6.2.21)) in the alignment limit (β−α =

π/2), which shows that the h couplings to the VLFs become very small as tanβ increases.
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Figure 6.2.6: Contours of κAgg (top) and κHgg (bottom) for Mψ = Mχ = 800 GeV (left),
1700 GeV (right), y1 = 0.5, ỹ1 = 1 for MVQD11 model.

Thus, the VLFs can modify σ(gg→ A) and Γ(A→ V V ) significantly, while the h remains

SM-like as required by the LHC measurements of the 125 GeV state. We find that the VLF

contributions partially cancel the SM fermion contributions for a range of low tanβ values

and for some ranges of themA, while for larger tanβ the effective couplings always increase

compared to the 2HDM-II. To illustrate this point more explicitly, we plot κAgg as a function

of tanβ in Fig. 6.2.7 for mA = 300 GeV and 600 GeV.

In Fig. 6.2.6, we also plot contours of κHgg for mA = mH , in the alignment limit. Cor-

responding contours in Type-II 2HDM are shown in Fig. 6.1.2.

The constraint on the 2HDM was nontrivial only for large tanβ (see Fig. 6.1.3). There-

fore, for large tanβ, since the κφgg is bigger for this model compared to 2HDM (see Fig. 6.2.7),

and BR(φ→ ττ ) from which the tightest constraint appears is almost unchanged, the con-
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Figure 6.2.7: For the MVQD11 model, yA11 (red), yh11 (blue) as a function of tanβ (left);
κAgg as a function of tanβ for GeV (middle) and 600 GeV (right), with y1 = 0.5, ỹ1 = 1 and
Mψ = 800 GeV (blue), 1000 GeV (green) .

straint on this model will be tighter.

MVQU22 model:

We introduce one doublet VLQ (ψ) with hypercharge Yψ and one singlet VLQ (ξ) with

hypercharge Yψ+1/2, which couples only to Φ2. We add the following terms to the 2HDM-

II Lagrangian

L ⊃ ψ̄i /Dψ+ ξ̄i /Dξ−y2ψ̄LΦ̃2ξR− ỹ2ψ̄RΦ̃2ξL+ h.c−Mψψ̄ψ−Mξ ξ̄ξ. (6.2.25)

Here we do not include the terms ψ̄LΦ̃1ξR and ψ̄RΦ̃1ξL as their effects have been considered

in MVQD11 model. As the BR(A→ V V )s do not change much compared to the 2HDM-II

case, we do not show them here. Similar toMVQD11 model we diagonalize the mass matrix

by an orthogonal rotation and define the couplings yφij . The mass eigenvalues, mixing angles

can be obtained from that of MVQD11 by the replacements y1→ y2 and cβ→ sβ . The yhij’s

in MVQU22 model can be obtained from yhij’s in MVQD11 model by the replacements

y1 → y2 and sα → −cα. The yAij’s in MVQU22 model can be obtained from the yAij’s in

MVQD11 model by the replacements y1 → y2 and sβ → cβ . The couplings yHij can be

obtained from the yhij’s in MVQD11 model by the replacement sα → −sα. The effective

κφgg in this model can obtained the general expressions given in Appendix A.

In Fig. 6.2.8 we plot contours of κAgg and κHgg in mA-tanβ plane. Since the yφij in this

case goes like cosβ, for large tanβ the κφgg do not change by much from the 2HDM-II.
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Figure 6.2.8: Contours of κAgg (top) and κHgg (bottom) for Mψ = Mχ = 800 GeV (left),
1700 GeV (right), y1 = 0.5, ỹ1 = 1 for MVQU22 model.
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MVQU12 model

We introduce one doublet VLQ(ψ) with hypercharge Yψ and one singlet VLQ (ξ) with hy-

percharge (Yψ + 1/2). We consider the case where ξR couples only to Φ1 and ξL couples

only to Φ2. To the 2HDM-II Lagrangian, we add

L ⊃ ψ̄i /Dψ+ ξ̄i /Dξ− (yψ̄LΦ̃1ξR+ ỹ1ψ̄RΦ̃2ξL+ h.c)−Mψψ̄ψ−Mχξ̄ξ. (6.2.26)

We get different models if instead of the couplings above, the ψR couples to Φ̃1 and ψL cou-

ples to Φ̃2, or, if instead of ξ we introduce a VLF singlet (say χ) with hypercharge (Yψ−1/2)

with couplings to Φ1 and Φ2. All these models have similar phenomenology as MVQU12

model. After EWSB, EM charge Yψ + 1/2 component of ψ mixes with ξ. We define the

mass eigenstates ζ1, ζ2 as

ψ1L,R = ζ1L,R cosθL,R− ζ2L,R sinθL,R,

ξL,R = ζ1L,R sinθL,R+ ζ2L,R cosθL,R. (6.2.27)

The mixing angles are given by

tan2θL = 2
√

2v(y1cβMξ + ỹ1sβMψ)
2(M2

ψ−M2
ξ )−v2(ỹ2

1s
2
β−y2

1c
2
β) ,

tan2θR = 2
√

2v(y1cβMξ + ỹ1sβMψ)
2(M2

ψ−M2
ξ ) +v2(ỹ2

1s
2
β−y2

1c
2
β) . (6.2.28)

The mass eigenstates are given by

M1,2 = 1
2

√(Mψ +Mξ)2 + 1
2v

2(y1cβ− ỹ1sβ)2±
√

(Mψ−Mξ)2 + 1
2v

2(y1cβ + ỹ1sβ)2

 .
(6.2.29)
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The gauge interactions of the ζi, and the φζiζj Yukawa couplings are defined in the same

way as in Eq. (6.2.21). The effective couplings κij are of the same from as in Eq. (6.2.21).

The effective couplings yAij are given by

yA11 = (1/
√

2)(y1sβcLsR+ ỹ1cβsLcR),

yA22 =−(1/
√

2)(y1sβsLcR+ ỹ1cβcLsR),

yA12 = (1/
√

2)(y1sβcLcR− ỹ1cβsLsR),

yA21 =−(1/
√

2)(y1sβsLsR− ỹ1cβcLcR). (6.2.30)

The effective couplings yhij are given by

yh11 = (1/
√

2)(−y1sαcLsR+ ỹ1cαsLcR),

yh22 = (1/
√

2)(y1sαsLcR− ỹ1cαcLsR),

yh12 =−(1/
√

2)(y1sαcLcR+ ỹ1cαsLsR),

yh21 = (1/
√

2)(y1sαsLsR+ ỹ1cαcLcR). (6.2.31)

The effective couplings yHij can be obtained from the yhij by the replacements sα→−cα and

cα→ sα. In this model, the effective couplings do not reduce to zero for y1 = ỹ1, unlike in

MVQD11and MVQU22 models, as there are no additional P and C symmetries in the VLF

sector.

In Fig. 6.2.9, we plot the BR(A→V V ) for an example choice of Yψ = 1/6. TheBR(A→

γγ,Zγ) for tanβ = 1,y1 = 0.5, ỹ1 = 1 and the tree-levelBR(A→ ττ,bb, tt) are not explicitly

shown in Fig. 6.2.9 as they are identical to those shown for theMVQD11 model in Fig. 6.2.5,

and Type-II 2HDM in Fig. 6.1.1 respectively.

In Fig. 6.2.10, we plot contours of κAgg for y1 = ỹ1 = 1 and Mψ = Mξ = 800 GeV and

1700 GeV. From this, one can obtain σ(gg→ A) at the 8 and 14 TeV LHC from Fig. 3.1.1

in Chapter 3. For low values of tanβ the effective coupling increases compared to the
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Figure 6.2.9: BR(A→ γγ) (left) and BR(A→ Zγ) (right) with Mψ = Mχ = 1000 GeV for
tanβ = 30 for MVQU12 model (solid-black), and the corresponding variation in the Type-II
2HDM (dashed-black). TheseBR for tanβ = 1 and theBR(A→ ττ,bb, tt) are not explicitly
shown here as they are identical to those in Figs. 6.2.5 and 6.1.1 respectively.

2HDM-II case, while for larger values of tanβ the effective coupling decreases compared

to the 2HDM-II. To show this more explicitly, we plot κAgg with tanβ in Fig. 6.2.11. The

decreased coupling is due to a destructive interference between the contributions from SM

fermions and the VLFs. If we reverse the sign of y1 or ỹ1, we get the opposite effect; for low

values of tanβ the effective coupling decreases compared to the 2HDM-II while for larger

values of tanβ the effective coupling increases compared to the 2HDM-II. In Fig. 6.2.10 we

also plot contours of κHgg in the alignment limit. From this, one can also obtain σ(gg→H)

from Fig. 3.1.1 by reading κAgg there as κHgg as mentioned earlier.

In Fig. 6.2.12 we plot the region of the mA-tanβ parameter-space which is excluded

at 95% confidence level for two cases, when only A is present, and when A and H are

degenerate and both present. For comparison, we have also plotted the corresponding limit

for the 2HDM-II case. We see that the constraints are loosened compared to the 2HDM-

II due to the presence of VLFs. This happens because of the reduction of κAgg (κHgg)

compared to the 2HDM-II.

6.3 2HDM-X with VLQ-VLQ Yukawa coupling

To the 2HDM Type-X model in Eq. 5.1.1 in Chapter 5, we introduce VLFs in a similar

fashion as in MVQD11 model as a representative case, and call it MVQDX11 model. The

other ways of coupling VLFs similar to MVQU22 or MVQU12 model will be qualitatively
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Figure 6.2.10: Contours of κAgg (top) and κHgg (bottom) for y1 = 1, ỹ1 = 1, forMψ =Mχ =
800 GeV (left) and 1700 GeV (right) for MVQU12 model.

Figure 6.2.11: κAggwith tanβ for mA = 300 GeV (left) and 600 GeV (right) with y1 = 1,
ỹ1 = 1 and Mψ = 800 GeV (blue), 1000 GeV (green) for MVQU12 model and 2HDM-II
(dashed-black).
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Figure 6.2.12: For MVQU12 model, regions of the mA-tanβ parameter-space excluded at
the 95% CL from φ→ τ+τ− decay when only A is present (left), and when A and H are
degenerate and both present (right), with y1 = ỹ1 = 1, Mψ = Mχ = 800 GeV (dark-blue
region), 1000 GeV (light-blue and dark-blue regions). All shaded regions are excluded in the
2HDM-II.

similar to our results here. We introduce a doublet VLQ ψ = (ψ1,ψ2) with hypercharge

Yψ, and a singlet VLQ (χ) with hypercharge (Yψ− 1/2) which couples only to Φ1. To the

2HDM-X Lagrangian we add

L ⊃ ψ̄i /Dψ+ χ̄i /Dχ− (y1ψ̄LΦ1χR+ ỹ1ψ̄RΦ1χL+ h.c)−Mψψ̄ψ−Mχχ̄χ. (6.3.1)

After EWSB ψ2 and χ mix to give two mass eigenstates ζ1, ζ2. Since the VLQs couple to

the Φ1 in the same way as in MVQD11 model, the mixing angles and the mass eigenstates

are identical to those of MVQD11 and can be read off from Eqs. (6.2.19) and (6.2.20) re-

spectively. The gauge interactions of ζi and the φζiζj couplings also remains the same as in

MVQD11 model and can be read off from Eqs. (6.2.30) and (6.2.31). In Fig. 6.3.1 we show

BR(A→ V V ) including the VLF contributions for theMVQDX11 model, and the tree-level

BR(A→ τ+τ−, bb̄, tt̄) is unchanged from what are shown in Fig. 6.1.4 BR(A→ γγ,Zγ) for

tanβ = 1, y1 = 0.5, ỹ1 = 1 are almost identical to the 2HDM values shown in Fig. 6.2.5

and are therefore not shown explicitly in Fig. 6.3.1. For tanβ = 30, BR(A→ γγ,Zγ) is

increased compared to 2HDM-II, because for large tanβ, Γ(A→ bb̄) becomes much smaller

in 2HDM-X.

In Fig. 6.3.2 we plot contours of κAgg and κHgg . The κφgg contours in 2HDM-X (without

VLFs) are shown in Fig. 6.1.5. Using these plots, one can read off σ(gg→A) for 8 TeV and
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Figure 6.3.1: BR(A→ γγ,Zγ) with Mψ =Mχ = 1000 GeV (solid-black) for tanβ = 30 for
the MVQDX11 model, and the corresponding variation in the 2HDM-X (dashed-black).

14 TeV LHC from Fig. 3.1.1 in Chapter 3. As expected, for large tanβ, κAgg is significantly

larger in this model compared to 2HDM-X since the VLFs contribute substantially while

the SM quark contributions alone are very small. In order to show explicitly how large the

change is, we plot κAgg as a function of tanβ for mA = 300 GeV and 600 GeV in Fig. 6.3.3.

6.4 2HDM-II with VLL-VLL Yukawa couplings

In this section we investigate the scenario in which we add vector-like leptons instead of

VLQs. We introduce one doublet VLL (ψ) with hypercharge, Yψ and one singlet VLL

(χ) with hypercharge, Yψ − 1/2. The Lagrangian we consider is exactly the same as in

Eq. (6.2.16), except here the VLLs ψ and χ do not couple to gluons. Although vector-like

leptons do not contribute in gg → A, they contribute in A→ γγ,Zγ. As an example, we

choose Yψ =−1/2 and plot BR(A→ γγ) as a function of mA in Fig. 6.4.1, with Mψ =Mχ=

500 GeV, for tanβ = 1 and 30. We see that the effect of VLLs is qualitatively similar to

vector-like quarks; for low tanβ the effect of VLLs is negligible while for large tanβ and

large mA VLL contributions are significant. Near mA = 1000 GeV, the VLL contribution is

quite large due to them going onshell for our choice of VLL mass of 500 GeV (see Fig. A.0.2

in Appendix A). BR(A→ Zγ) will show the same behavior and we do not show this explic-

itly.

To summarize, we considered several effective theories which has a 2HDM with VLFs

also present. We presented the 2-body branching ratios of the neutral scalars H,A and the
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Figure 6.3.2: Contours of κAgg (top) and κHgg (bottom) for y1 = 0.5, ỹ1 = 1, forMψ =Mχ =
800 GeV (left) and 1700 GeV (right) for MVQDX11 model.

Figure 6.3.3: κAggwith tanβ for mA = 300 GeV (left) and 600 GeV (right) with y1 = 0.5,
ỹ1 = 1 and Mψ = 800 GeV (blue), 1000 GeV (green) for MVQDX11 model and 2HDM-II
(dashed-black).
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Figure 6.4.1: BR(A→ γγ) with Mψ =Mχ = 500 GeV, y1 = 0.5, ỹ1 = 1 for tanβ = 1 (left)
and tanβ = 30 (right) for MV LE11 model.

effective φgg couplings in each of these models. We found that the VLFs can modify the

BR(A→ V V ) and κφgg significantly compared to the 2HDM with SM fermions only. Using

these effective couplings one can calculate the 8 TeV and 14 TeV LHC σ(gg→ φ). We also

discussed the constraints on the parameter space from the 8 TeV LHC φ→ ττ results. We

found one particular model in which the constraints on the parameter space is relaxed due to

addition of VLFs. Our analysis should be applicable to many realistic BSM theories which

has a 2HDM structure and also VLFs.

72



Chapter 7

Diphoton rates in 2HDM and a singlet

scalar model

This chapter is based on the work done in Ref. [12]. In this chapter we analyze the 13 TeV

LHC σ(pp→ φ→ γγ) for a scalar (φ) coupled to the SM fermions and new vector-like

fermions. As before we will assume that this scalar is produced via the gluon fusion process.

We first perform a model independent analysis to obtain the 13 TeV LHC σ(pp→ φ→ γγ)

as a function of effective φgg and φγγ couplings. We also perform a model independent

analysis of the 8 TeV LHC constraints and the perturbative unitarity constraints. We then

consider few specific models namely the 2HDM-II, X, I and a singlet scalar model. For each

of these models we obtain the 13 TeV LHC σ(pp→ φ→ γγ) and the constraints on the

parameters space from the 8 TeV LHC results and the perturbative unitarity.

Earlier, both the ATLAS and the CMS had reported an excess in the di-photon channel

at an invariant mass of about 750 GeV [1, 2]. The predicted σ(pp→ φ)×BR(φ→ γγ)

were 10± 3 fb at ATLAS and 3.75± 1.2 fb at CMS with both the 8 TeV and 13 TeV LHC

data combined. The best-fit width of these resonance was Γφ ≈ 45 GeV at ATLAS and

Γφ ≈ 0.1 GeV at CMS. However, recent results from both ATLAS and CMS indicate that

the presupposed excess was a statistical fluctuation [141, 142]. In this work we also present

from our publication [12], the regions of parameter space which could have explained the

di-photon excess.
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7.1 Model Independent analysis

In this section we present a model independent analysis of a general scalar φ coupled to the

SM and vector-like fermions. We consider the following effective Lagrangian

L ⊃−
yψ√

2
φψ̄ψ−

yf√
2
f̄LHfR−

y′f√
2
φf̄f −

κφhhMφ

2
√

2
φh2−mψψ̄ψ+h.c., (7.1.1)

where f denotes the SM fermions and ψ collectively denotes the new vector-like quarks (Q)

or leptons (L). We present the σ(pp→ φ→ γγ) at 13 TeV in terms of the effective φgg and

φγγ couplings. We also present the constraints on yψ from the 8 TeV LHC results and the

unitarity constraints.

7.1.1 13 TeV LHC σ(gg→ γγ)

In this section we present the the 13 TeV LHC σ(gg→ φ→ γγ) as a function of effective

φgg and φγγ couplings for different values of φ width. As in Chapter 3 we work with the

narrow width approximation (NWA) σ(gg → φ→ γγ) ≈ σ(gg → φ) ∗BR(φ→ γγ) and

obtain σ(gg→ φ) from σ(gg→ φSM ) via the relation in Eq. (3.1.1). The cross sections for

the 14 TeV LHC σ(gg → φSM ) is given in Ref. [32] for Mφ up to 1000 GeV. To get the

approximate 13 TeV LHC σ(gg→ φSM ) we scale down the 14 TeV σ(gg→ φSM ) numbers

by 10%. In order to get an approximate analytical form of the σ(gg→ φSM ) we fit a curve

to the 13 TeV LHC σ(gg→ φSM ) numbers. We take the following functional form for the

13 TeV LHC σ(gg→ φSM ):

σ(gg→ φSM ) = 8.7× e
400−Mφ

133 for 400<Mφ < 700 GeV

= 0.922× e
700−Mφ

163 for 700<Mφ < 1000 GeV. (7.1.2)

In Fig. 7.1.1 we plot the 13 TeV LHC σ(gg→ φ→ γγ) as obtained from 7.1.2. The cross

sections for the 13 TeV LHC σ(gg → φ→ γγ) obtained from Ref. [32] is also shown in
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Figure 7.1.1: 13 TeV LHC σ(gg→ φ→ γγ) (in fb)with Mφ as obtained from Eq. 7.1.2. The
13 TeV LHC σ(gg→ φ→ γγ) cross sections obtained from Ref. [32] is shown by the blue
dots.

Figure 7.1.2: For Mφ = 750 GeV, contours of 13 TeV LHC σ(gg→ φ→ γγ) (in fb) (top left
and bottom) and the regions 0.5 < σ(gg→ φ→ γγ) < 5 fb(top right) and 4 < σ(gg→ φ→
γγ)< 10 fb for various κ2

Γ shown .

Fig. 7.1.1 by the blue dots. We write φ width (Γφ) as

Γφ = κ2
Γ

16πMφ, (7.1.3)

where κ2
Γ include the φ couplings and the phase space factors for all the relevant processes.

As the benchmark point we chose Mφ = 750 GeV. In Fig. 7.1.2 we plot contours of σ(φ)×

BR(γγ) and the region 0.5 < σ(gg→ φ→ γγ) < 5 fb as a function of κφgg and κφγγ for

various κ2
Γ.
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7.1.2 8 TeV LHC constraints

If the φtt,φττ couplings y′t,τ and κφhh couplings in Eq. (7.1.1) are nonzero then φ →

tt, ττ,hh (collectively called XX) decays are possible and 8 TeV LHC φ→ tt, ττ,hh re-

sults [6, 7, 11] can put constraints on y′t,τ ,yQ and κφhh . In this section we analyze these

constraints.

In the NWA we have

σ(gg→ φ→XX) = σ(gg→ φ)×BR(φ→XX)

= σ(gg→ φ)× Γ(φ→XX)
Γtot

. (7.1.4)

Using Eq. 3.1.3 in Chapter 3 σ(gg→ φ) can be written as

σ(gg→ φ) = σ(gg→ φSM )×
κ2
φgg

κ2
φSMgg

(7.1.5)

which can be written using the expressions for κφgg in Appendix A as

σ(gg→ φ) = σ(gg→ φSM )× yψ
yt

F1/2(rψ)
F1/2(rt)

mt

mψ
. (7.1.6)

The Γ(φ→ ff) are given by

Γ(φ→ ff) = Nc
16π (y′f )2mφ

(
1−4rf

)n/2
, (7.1.7)

where n =1 and 3 for CP-odd and CP-even scalar respectively. The Γ(φ→ hh) is given by

Γ(φ→ hh) =
κ2
φhh

4

(
1−4m

2
h

M2
h

) 1
2
. (7.1.8)

Let κmaxφgg(X) be the value of κφgg for which the σ(pp→ φ→ XX) reaches its upper limit

from the 8 TeV LHC φ→ XX results. Then an upper bound on yQ ,y′f and κ2
φhhcan be
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Figure 7.1.3: Feynman diagram for the processes ψψ→ ψψ and φφ→ φφ .

obtained from

∣∣∣∣∣∣
∑
Q

y′Q
yt

F1/2(rQ)
F1/2(rt)

mt

mψ

∣∣∣∣∣∣
2

× κ
2
X

κ2
Γ
<

(
κmaxφgg(X)
κφSMgg

)2

, (7.1.9)

where κ2
X is related to the partial φ → XX width via κ2

X = 16πΓ(φ → XX)/Mφ. The

κmaxφgg(X) for φ→ tt, ττ,γγ channels can be found in Chapter 3.

7.1.3 Unitarity constraints

In this section we obtain the constraints on the Yukawa couplings (yψ) from the perturbative

unitarity of ψψ→ ψψ and φφ→ φφ processes. We consider the loop level processes given

by the diagrams shown in Fig. 7.1.3. We first consider the process ψψ→ ψψ. We expand

the amplitudes (al) in partial waves as

M(cosθ) = 16π
∑
l

(2l+ 1)alPl(cosθ). (7.1.10)

A necessary condition for perturbative unitarity is Im(al) < 1 [24]. By optical theorem, the

imaginary part of any scattering amplitude Im[M(ψψ→ ψψ)] is related to the total cross-

section σ(ψψ→ φφ) via the relation

ImM [ψ(p1)ψ(p2)→ ψ(p1)ψ(p2)] = 2ECMpCMσ [ψ(p1)ψ(p2)→ φ(k1)φ(k2)] (7.1.11)
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The Feynman diagram for the ψψ→ φφ process is shown in Fig. 7.1.4. In the CM frame we

parametrize the momenta as

p1 = (Eψ,0,0,pψ),p2 = (Eψ,0,0,−pψ)

k1 = (Eφ,0,0,pφ cosθ),k2 = (Eφ,0,0,−pφ cosθ). (7.1.12)

In the CM frame the differential cross section is given by

dσ

dcosθ = (1−2rφ)1/2

32πs
1
4 |M|

2 (7.1.13)

where rφ =m2
φ/2E2

ψ and

|M|2 = y4
ψ

(1−2rφ)(1− cos2 θ)
2(1− rφ−

√
1−2rφ cosθ)2

. (7.1.14)

Collecting all the terms we have

dσ

dcosθ =
y4
ψ

128πsf̃(cosθ) (7.1.15)

where

f̃(cosθ) = (1−2rφ)3/2(1− cos2 θ)
2(1− rφ−

√
1−2rφ cosθ)2

. (7.1.16)

For Eψ &mφ the integration of f̃(cosθ) over cosθ gives≈ 1 and hence σ ' y4
ψ/(128πs). To

get a conservative bound we assume that M(ψψ→ ψψ) is dominated by the l = 0 partial

wave. Using Eq. (7.1.10) and Eq. (7.1.11) we obtain Im(a0) = y4
ψ

(
4× (16π)2

)
< 1 which

gives yψ < 10. For the φφ→ φφ process shown in Fig. 7.1.3 we obtain a similar result for

theM(φφ→ φφ) but multiplied by the color factor (Nc) due to the fermions running in the

loop. Therefore the bound on yψ from the φφ→ φφ process is given by yψN
1/4
c < 10.
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Figure 7.1.4: Feynman diagram for the process ψψ→ φφ .

7.2 Diphoton rates in the 2HDM and a singlet scalar model

In this section we consider few specific models. We present the 13 TeV LHC σ(gg→ φ→

γγ) for each of these models and present the constraints on the parameter space form the

8 TeV LHC results and the unitarity constraint. We first consider the case where φ is one

or both of the 2HDM scalars coupled to VLFs and then consider a model where φ is an

SU(2) singlet coupled to VLFs. In the 2HDM we consider the types II, X and I. For the

2HDM we consider two scenarios, one in which MA�MH so that only the H contribute

to σ(gg → φ→ γγ) and one in which MH ,MA are within the experimental resolution in

which case both the A,H contribution has to be included in σ(gg→ φ→ γγ). As discussed

in Chapter 3, because of different CP properties of H and A their sum is incoherent i.e

σ(gg→ φ→ γγ) = σ(gg→H→ γγ) +σ(gg→ A→ γγ).

7.2.1 Two Higgs doublet model

In this section we obtain the 13 TeV LHC σ(gg→φ→ γγ) for the scalars of 2HDM-II, X and

I. As our benchmark points we take MH = 750 GeV for the case when only the H contribute

and MH = 735 GeV MA = 750 GeV when both the H and A contribute. Our results are not

very sensitive to the mass splitting of H and A. For the 2HDM-II we analyze the situation
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where only the SM fermions (SMF) are present and subsequently we analyze the scenario

where we introduce new vector-like fermions. For 2HDM-X and I we present our results

only for the scenario with SMF and VLFs since for 2HDM-X and I the SM contribution to

the κφV V are small. We show our results only for SM-like charge assignments. For other

charge assignments on can scale our results by Q4
f .

2HDM type-II

We already discussed 2HDM type-II in Chapter 5. We restrict ourselves to the 2HDM align-

ment limit. We recall that in 2HDM-II all the up-type SM fermions couple to the A as cotβ

while all the down-type fermions couple as tanβ and in the alignment limit the H couples

in the same way as A. It follows that κ2
Γ can not be made arbitrarily small in this model; the

minimum occurs at tanβ ' 5.7 corresponding to κ2
Γ = 0.12 when only H contribute, and

0.24 when both H and A contribute. Any value of κ2
Γ (other than 0.24) can be realized by

two values of tanβ; one for tanβ < 5.7 and the other for tanβ > 5.7.

2HDM + SMF only:

We first consider the case when only the H contributes to σ(gg→ φ→ γγ). In this case we

have κ2
Γ = 3 and σ∗BRγγ ' 0.002 fb for tanβ = 0.83. Next we consider the case when both

H and A contribute. As mentioned earlier we take MH = 735 GeV and MA = 750 GeV. In

Fig. 7.2.1 we plot σ(gg→ φ→ γγ) vs. κ2
Γ obtained by varying tanβ. The two branches of

σ ∗BRγγ in Fig. 7.2.1 correspond to two values of tanβ that gives the same κ2
Γ. The upper

branch for which tanβ < 5.7 has larger cross sections because of the larger contribution from

the top.
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Figure 7.2.1: 13 TeV LHC σ(gg→ φ→ γγ) (in fb) vs. κ2
Γ for MH = 735 GeV, MA = 750

GeV .

2HDM-II + SMF + VLL:

We add one doublet VLL ψl with hypercharge Yψl , and one singlet VLL χ with hypercharge

(Yψl−1/2). To the 2HDM-II Lagrangian we add

L ⊃ ψ̄li /Dψl+ χ̄i /Dχ− (yl1ψ̄Φ1χR+ h.c)−M l
ψψ̄

lψl−Mχχ̄χ. (7.2.1)

This model is same as the MVQD11 model in Chapter 6 with ỹ set equal to zero. As in

MVQD11 model we define the mass eigenstates ζ l1 and ζ l2. The mass eigen states, mixing

angles and the effective φζ liζ
l
i couplings (yφij) can be obtained from those of the MVQD11

model in Sec. 6.2.2. We take Yψl =−1/2 and choose the mass parameters of the VLLs such

that the lighter mass eigenstates (ζ l2) of the charge −1 VLL is MV L = 375 GeV. In Fig. 7.2.2

we plot σφ ∗BRγγ as a function of yl1 for various values of {tanβ,κ2
Γ}, and also the unitarity

constraint from ψψ→ ψψ process given by
√

2(yH22 +yA22)< 10 as a red vertical line where.

2HDM-II+SMF+VLL+VLQ:

We introduce one doublet VLQ ψq with hypercharge Yψq , one singlet VLQ ξ with hyper-

charge Yψq + 1/2, one doublet VLL ψl with hypercharge Yψl , and one singlet VLL χ with
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Figure 7.2.2: 13 TeV LHC σ(gg→ φ→ γγ) (in fb) for MH = 735 GeV, MA = 750 GeV
for 2HDM-II +VLL model. The region to the right of the red vertical ψψ→ ψψ channel is
shown by the red vertical line.

hypercharge (Yψl−1/2). To the 2HDM-II Lagrangian we add

L ⊃ψ̄li /Dψl+ χ̄i /Dχ− (yl1ψ̄Φ1χR+ h.c)−Mψlψ̄
lψl−Mχχ̄χ+ ψ̄li /Dψl+ ψ̄qi /Dψq + ξ̄i /Dξ

− (y ¯q
2ψ

q

LΦ̃2ξR+ h.c)−Mψq ψ̄
qψq−Mξ ξ̄ξ. (7.2.2)

In this model the VLQ couplings are are same as in MVQU22 model of Chapter 6 in

Sec. 6.2.2 and the VLL couplings are same as MVQD11 model in section in Sec. 6.2.2.

As before we define the mass eigenstates ζq1 , ζ
q
2 for the VLQs and ζ l1, ζ

l
2 for the VLLs. The

mass eigenstates, mixing angles and the effective φζiζj couplings (yφij) can be obtained from

MVQU12 for the VLQs and MVQD11 model for the VLLs. We take N ′c = 3, Yψq = 1/6,

Yψl = −1/2 and choose the mass parameters of the VLFs such that the lighter mass eigen-

states (ζ l2) of the charge −1 VLLs has mass 375 GeV .

We first consider the case when only the H contributes to σ(gg→ φ→ γγ). In Fig. 7.2.3

we plot contours of σ(gg → φ→ γγ) = 0.5 fb in the yq2 − yl1 plane with the VLQ mass

parameter chosen so that the lightest VLQ mass eigenstate has mass Mζq2
= 1200 GeV. We

also show in Fig. 7.2.3, the unitarity constraint on yq1,y
l
1 from φφ→ φφ (shown in solid red)

and ψψ → ψψ (dashed red) channels given by the equations [yq22(N ′c)1/4 + yl22] < 10 and
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Figure 7.2.3: 13 TeV LHC σ(gg → φ → γγ) (in fb) for MH = 750 GeV in the
2HDM+VLL+VLQ model for Mζq2

= 1200 GeV MV L = 375 GeV and unitarity constraints
from φφ→ φφ (solid red), ψψ→ ψψ (dashed red)

(yq22 + yl22) < 10 respectively, where yq22 and yl22 are the couplings of the H to the lighter

VLQ and the lighter VLL respectively. In this case the 8 TeV LHC φ→ tt results do not put

any additional constraints.

Next we consider the case when both the H and A contribute to σ(gg→ φ→ γγ). In

Fig. 7.2.4 we show the contours of σ(gg→ φ→ γγ) and the region 0.5<σ(gg→ φ→ γγ)<

5 fb for MH = 735, MA = 750 GeV and Mζq2
= 1200 GeV for various κ2

Γ. The unitarity

constraint from ψψ→ ψψ is now 21/4[yq22 + yl22] < 10, since both the H and A contribute.

In Fig. 7.2.4 we also show the unitarity constraints on yq1 and yl1 from φφ→ φφ (solid red)

and ψψ→ ψψ (dashed red). The constraints on yq from the 8 TeV LHC φ→ tt results are

also shown in Fig. 7.2.4 by the red dots. In Fig. 7.2.5 we plot contours of σ(gg→ φ→ γγ)

in the Mφ− yq plane obtained by saturating the unitarity bound [yq22(N ′c)1/4 + yl22] < 10

and choosing MV L = Mφ/2 with Mζq2
= 1200 and 1500 GeV for tanβ=5.7 for which the

maximum cross section occur. One can use this plot to estimate the largest possible cross

section in this model. Because of saturating the unitarity constraint, for yq small, yl is large

and therfore the κφgg is small and the BR(φ→ γγ) is large. On the other hand, for yq large,

yl is small and therefore the κφgg is large but BR(φ→ γγ) is small. For this reasons there
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Figure 7.2.4: For 2HDM-X + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) (left) and the region 0.5 < σ(gg → φ→ γγ) < 5 fb (right), for various κ2

Γ shown,
for MH = 735, MA = 750 GeV, Mζq2

= 1200 GeV and MV L = 375 GeV. To the right of the
red dots and the gray dots are excluded from 8 TeV LHC φ→ tt data and the 8 TeV LHC
φ→ ττ data respectively.

are two values of yq which gives the same σ(gg→ φ→ γγ).

2HDM-X+VLFs:

We now move on to the 2HDM type-X. As discussed in Chapter 5, all the SM-quarks in this

model couple to the H,A as cotβ, while all the SM-leptons couples as tanβ. As a result,

the Γφ in this model is dominated by φ→ ττ decay for large tanβ. Since mτ is smaller than

mb, the Γφ can be smaller than that of the 2HDM-II. Specifically, the smallest κ2
Γ ≈ 0.028

occurs for tanβ = 11.5.

We introduce VLQs and VLLs in the same way as in 2HDM-II. As before we start with

considering only theH contribution. We first chooseMζq2
= 1200 GeV. In Fig. 7.2.6 we show

contours of σ(gg→ φ→ γγ) in the yq1− yl1 plane for various κ2
Γ, for Mζq2

= 1200 GeV and

MH = 750 GeV. We also show in Fig. 7.2.6 the unitarity constraints on yq1,y
q
1 from φφ→ φφ

(solid red) and ψψ→ ψψ (dashed red). As in the 2HDM-II case there are no constraints on

yq1 from the 8 TeV LHC φ→ tt results. However, for large tanβ, BR(φ→ ττ ) can be large

in this model and the 8 TeV LHC φ→ ττ puts an upper bound on yq1. For tanβ = 11.5 this
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Figure 7.2.5: For 2HDM-II + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) with yl1 chosen to saturate the unitarity bound [yq22(N ′c)1/4 + yl22] < 10 for MV LL =
Mφ/2, tanβ = 5.7, Mζq2

= 1200 (left) and 1500 GeV (right).

bound is shown by the gray dot in Fig. 7.2.6.

We now consider the case when both the H and A contribute. We start with choosing

Mζq2
= 1200 GeV. In Fig. 7.2.7 we show contours of σ(gg → φ→ γγ) = 1 fb and region

0.5 < σ(gg → φ→ γγ) < 5 fb in the yq1− yl1 plane for Mζq2
= 1200 GeV, MH = 735 and

MA = 750 GeV. We also show in Fig. 7.2.7 the unitarity constraints on yq1,y
l
1 from φφ→ φφ

(solid red) and ψψ→ψψ (dashed red). The upper bounds on yq1 from the 8 TeV LHC φ→ ττ

results and φ→ tt results are shown in red and gray dots respectively. In Fig. 7.2.8 we plot

contours of σ(gg→ φ→ γγ) in theMφ−yq plane obtained by saturating the unitarity bound

[yq22(N ′c)1/4 + yl22] < 10 and choosing MV L = Mφ/2, for Mζq2
= 1200 and 1500 GeV with

tanβ=6.8 for which the maximum cross section occurs in the 2HDM-X

2HDM-I + VLFs:

Finally, we analyze the 2HDM type-I with VLFs. As discussed in Chapter 5, all the SM

fermions couple to H,A as cotβ. The Γφ can be very small for large tanβ and therefore the

σ(gg→ φ→ γγ) can be quite large in this model. We first discuss the case when only VLLs

are introduced and subsequently discuss the case when both VLLs and VLQs are introduced.
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Figure 7.2.6: For 2HDM-X + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) for various κ2

Γ shown, forMH = 750, GeV forMζq2
= 1200 GeV. Unitarity constraints

from φφ→ φφ and ψψ→ ψψ are shown in solid red and dashed red respectively. The region
to the right of the gray dots are excluded from the 8TeV LHC φ→ ττ results.

Figure 7.2.7: For 2HDM-X + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) (left) and the region 0.5 < σ(gg → φ→ γγ) < 5 fb (right), for various κ2

Γ shown,
for MH = 735, MA = 750 GeV, Mζq2

= 1200 GeV and MV L = 375 GeV. To the right of the
red dots and the gray dots are excluded from 8 TeV LHC φ→ tt data and the 8 TeV LHC
φ→ ττ data respectively.
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Figure 7.2.8: For 2HDM-X + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) with yl1 chosen to saturate the unitarity bound [yq22(N ′c)1/4 + yl22] < 10 for MV LL =
Mφ/2, tanβ = 6.8 , Mζq2

= 1200 (left) and 1500 GeV (right).

Here we only present the results for the scenario when both H and A contribute.

2HDM-I + VLLs:

We introduce the VLLs in the same way as in 2HDM-II + VLL model. We again take

Yψl = −1/2 and choose the mass parameters of the VLLs such that the lighter mass eigen-

value of the charge −1 VLL is 375 GeV. In Fig. 7.2.9 we plot σ(gg→ φ→ γγ) vs. yl1 for

various {tanβ,κ2
Γ} for MH = 735, MA = 750 GeV. We also show in Fig. 7.2.9, the unitarity

constraint on yl1 from the ψψ→ ψψ process as a red vertical line. We see that in this case,

σ ∗BRγγ & 10 fb can be comfortably reached within the unitarity constraint, but for small

κ2
Γ.

2HDM-I+VLL+VLQ:

We introduce the VLLs and the VLQs in the same way as in 2HDM+VLL+VLQ model. As

before we take Yψl =−1/2 and choose the VLF mass parameters such that the lighter mass

eigenvalue of the VLL is MV L =375 GeV. We first present our results for Mζq2
= 1200 GeV.

In Fig. 7.2.10 we plot contours of σ(gg→ φ→ γγ) = 1 fb and the region 0.5< σ(gg→ φ→

87



Figure 7.2.9: For 2HDM-I +VLL model,13 TeV LHC σ(gg→ φ→ γγ) (in fb) with MV L =
375 GeV. The unitarity constraint from ψψ→ ψψ channel is shown by the red vertical line.

γγ) < 5 for Mζq2
= 1200 GeV and MH = 735 , MA = 750 GeV. The unitarity constraints

on yq1,y
l
1 from φφ→ φφ and ψψ → ψψ channels are shown in solid red and dashed red

respectively. In Fig. 7.2.11 we plot contours of σ(gg → φ→ γγ) in the Mφ− yq plane

obtained by saturating the unitarity bound [yq22(N ′c)1/4 + yl22] < 10 and choosing MV L =

Mφ/2, for Mζq2
= 1200 and 1500 GeV with tanβ=25.

7.2.2 Singlet scalar model

In this section we analyze a scenario where an SU(2) singlet CP-even scalar φ is coupled to a

VLL ψ with hypercharge Yψ and VLQ U with hypercharge YU . We also introduce a coupling

of the φ̂ with the SM-Higgs ĥ. We call this the SV Uψ model. We consider the following

Lagrangian:

L ⊃−M
2
h

2 H†H−
M2
φ

2 Φ2− κ2 Φ2H†H− µ√
2

ΦH†H−Mψψ̄ψ

−MU ŪU −
yψ√

2
Φψ̄ψ− yU√

2
ΦŪU (7.2.3)

We assume that φ gets an expectation value 〈Φ〉= ξ and expand φ around ξ as Φ = φ̂+ξ and

as usual H is expanded around the its vacuum expectation value v/
√

2 as H = (ĥ+ v)/
√

2

(in the unitary gauge). The κφhh as defined in Eq. (7.1.1) becomes κφhh =
√

2(µ+κξ)/Mφ.
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Figure 7.2.10: For 2HDM-I + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) (left) and the regions 0.5< σ(gg→ φ→ γγ)< 5 fb (right), for various κ2

Γ shown, for
MH = 735, MA = 750 GeV, Mζq2

= 1200 GeV and MV L = 375 GeV.

Figure 7.2.11: For 2HDM-I + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) with yl1 chosen to saturate the unitarity bound [yq22(N ′c)1/4 + yl22] < 10 for MV L =
Mφ/2, tanβ = 25, Mζq2

= 1200 (left) and 1500 GeV (right).
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After EWSB φ̂ and ĥ mix, giving rise to two mass eigenstates φ and h which we define as

φ= cosθhφ̂+ sin ˆθhh

h=−sinθhφ̂+ cosθhĥ (7.2.4)

The lighter eigenstate h is identified as the SM Higgs boson. The mixing angle is given by

tan2θh =
√

2κφhh
(1−M2

h/M
2
φ)

v

Mφ
. (7.2.5)

In terms of the mass eigenstates the Lagrangian Eq. (7.2.3) can be written as

L ⊃−1
4 tan2θh(c3h−2chs2

h)
(M2

φ−M2
h)

v
φhh. (7.2.6)

In our numerical analysis we will take sh as an input parameter. For a given model sh can be

related to the model parameters using Eq. (7.2.5).

If U and ψ can not decay to any SM particles it will be stable at cosmological scale. But,

if YU = 2/3 than we can write down the mixed operator

L ⊃−ỹU Ūq3
L.H+h.c, (7.2.7)

where q3
L is the third generation SM quark doublet. In this case U→ q3h decays are possible.

We can take ỹU to be small enough so that FCNCs are small but large enough so that U is

not stable at the cosmological scale. If Yψ = 0 then we write down the mixed operator

L ⊃−ỹψψ̄l3L.H+h.c, (7.2.8)

where l3L is third generation lepton. If ỹψ = 0 thenL has aZ2 symmetry under which ψ→−ψ

and all the SM particles are unchanged. In this case ψ cannot decay to any SM particles and

can be a dark matter candidate. We will explore this scenario later in this thesis.
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13 TeV LHC σ(gg→ φ→ γγ)

In this section we discuss the 13 TeV LHC σ(gg→ φ→ γγ) in this model. The effective

couplings κφgg,κφγγ in this model can be obtained from the general expressions given in

Appendix A. As in the 2HDM we take Mφ = 750 GeV as the benchmark point. In the φ

width (Γφ) we include the partial widths Γ(φ→ ψψ,hh,tt,gg). The unitarity constraints on

yU ,yψ from UU →UU and ψψ→ ψψ processes obtained from the general expression given

in Sec. 7.1.3 is given by

yψ +N1/4
c yU < 10. (7.2.9)

We chose Mψ = 350 GeV, Yψ = 0, YU = 2/3, sh = 0.01 and plot in Fig. 7.2.12 the σ(gg→

φ→ γγ) by scanning yU ,yψ in the range 0 < yU < ymaxU ,0 < yψ < ymaxψ subject to the uni-

tarity constraint given by Eq. (7.2.9). The 8 TeV LHC hh channel as discussed in Sec. 7.1.2

constrains κφhh or equivalently sh to be very small. For example sh . 0.05 for yU = 5,

κ2
Γ = 0.1. For yψ & 0.1, the BR(φ→ ψψ) is dominant and yψ largely controls κ2

Γ. For

κ2
Γ = 3, the σφ×BRγγ can reach only 0.01 fb for sh = 0.01 as seen in the left plot. For very

small yψ . 0.1, the total width (i.e. κ2
Γ) is small and dominated by φ→ gg decay through

the top and U loops and the tree-level φ→ hh,tt decays. For yψ→ 0, sh→ 0 both σ ∗BRγγ

and κ2
Γ comes from U loops and scales as y4

U and y2
U respectively; σ ∗BRγγ increases with

κ2
Γ in this region up to around κ2

Γ ' 0.03 as can be seen from Fig. 7.2.12. We can see that for

sh = 0.01 we can get σ ∗BRγγ ' 10 fb.

In Fig. 7.2.13 we show contours of σφ ∗BRγγ (in fb), and various κ2
Γ as colored regions,

with the parameters not along the axes fixed at sh = 0.01, Mψ = 350 GeV, MU = 1000

GeV, yψ = 1, yU = 5. We also show in Fig. 7.2.13 the unitarity constraint on yψ (shown

here by red line) for yU = 5. For yU = 5, σφ ' 1.5 pb and the partial widths Γ{hh,tt,gg} for

sh = 0.01, MU = 1000 GeV are 0.0065,0.0031,0.16 GeV respectively. For very small yψ

or Mψ >Mφ/2, Γ(φ→ ψψ) ' 0 and Γφ is dominated by Γ{hh,tt,gg}; in this limit BRγγ '

3.3∗10−3 and σ∗BRγ ' 5 fb for the set of parameters chosen with sh = 0.01. If we decrease

MU , σ ∗BRγγ can be even larger; for MU ' 650 GeV, Mψ >Mφ/2, σ ∗BRγγ ' 12 fb can
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Figure 7.2.12: In the SV Uψ model for Yψ = 0, YU = 2/3, the σφ ∗BRγγ (in fb) vs. κ2
Γ, for

Mψ = 350 GeV, MU = 1000 GeV, sh = 0.01 and yU ,yψ scanned over the range 0 < yU <
ymaxU , 0< yψ < ymaxψ subject to the unitarity constraint.

be reached as can be seen from Fig. 7.2.13 although for a small κ2
Γ ' 0.03. For Mψ <Mφ/2

and yψ large, Γφ is large being dominated by φ→ψψ decay resulting in very small σ∗BRγγ .

Thus, in the SV Uψ model, it is not possible to generate both a large σφ×BRγγ of a few

fb and also a large κ2
Γ ≈ 3. The reason is simply because a large Γ corresponding to κ2

Γ ≈ 3

suppresses theBRγγ to tiny values. In order to get an idea of how large σ(gg→ φ→ γγ) can

be within the unitarity constraint, in Fig. 7.2.14 we plot contours of σ(gg→ φ→ γγ) in the

Mφ− yU plane with Mψ = Mφ/2− 25 GeV, sh = 0 and yψ chosen to saturate the unitarity

constraint yUN
1/4
c +yψ < 10 from the ψψ→ ψψ channel.

We could take Yψ =−1, and since ψ is an SU(2) singlet, it has EM chargeQψ = Yψ =−1.

For this case, to prevent a cosmologically stable charged relic, we additionally include a

mixing term to a SM lepton that allows ψ to decay. Of course in this case ψ cannot be

dark matter. One such example of a mixing term is to the SM SU(2) singlet τR, namely,

L⊃−M ′ψτψτ c+h.c., with M ′ψτ taken small enough that leptonic FCNC constraints are not

violated, but large enough that the ψ decay life-time due to ψ→ hτ decays is much smaller

than cosmological time scales. Since ψ has EM charge, it will contribute to Γγγ also. In

Fig. 7.2.15 we show for Yψ = −1, contours of σφ ∗BRγγ and regions of κ2
Γ for parameters
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Figure 7.2.13: In the SV Uψ model for Yψ = 0, YU = 2/3, the contours of σφ ∗BRγγ (in fb),
and regions of κ2

Γ < 0.1 (red), 0.1<κ2
Γ < 0.5 (blue), 0.5<κ2

Γ < 1 (gray), 1<κ2
Γ < 2 (green),

2 < κ2
Γ < 3 (pink), κ2

Γ > 3 (orange); parameters not along the axes are fixed at sh = 0.01,
Mψ = 350 GeV, MU = 1000 GeV, yψ = 1, yU = 5. Unitarity constraint on yψ for yU = 5 is
shown by the red horizontal line. .
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Figure 7.2.14: In SV Uψ model, contours of σφ ∗BRγγ (in fb) for MU = 1200 GeV (left)
and 1500 GeV (right) with Mψ = Mφ/2− 25 GeV, sh = 0 and yψ chosen to saturate the
unitarity constraint yUN

1/4
c +yψ < 10.

not shown along the axes fixed at yψ = 1, yU = 5, sh = 0, MU = 1000 GeV. We also show

in Fig. 7.2.15 the unitarity constraint on yψ from φφ→ φφ process for yU = 5. In order to

see how large the σ(gg→ φ→ γγ) can be in this case, in Fig. 7.2.16 we plot contours of

σ(gg→ φ→ γγ) in the Mφ−yU plane with Mψ =Mφ/2 , sh = 0 and yψ chosen to saturate

the unitarity constraint yUN
1/4
c +yψ < 10 from the ψψ→ ψψ channel.

7.3 750 GeV diphoton excess

In this section we show the regions of parameter space that are consistent with the earlier 750

GeV excess. We start with a model independent analysis. In Fig. 7.3.1 we show the required

values of κφgg and κφgg which gives the required σ(gg→ φ→ γγ) for various κ2
Γ. We next

present the regions of parameter space which would have explained the diphoton excess in

the 2HDM-II, X, I + VLF models and the SV Uψ model.
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Figure 7.2.15: In the SV Uψ model for Yψ = −1, YU = 2/3, sh = 0, yU = 5, contours of
σ ∗BRγγ (in fb), showing the regions κ2

Γ < 0.1 (red), 0.1 < κ2
Γ < 0.5 (blue), 0.5 < κ2

Γ < 1
(gray), 1< κ2

Γ < 2 (green), 2< κ2
Γ < 3 (pink), κ2

Γ > 3 (orange), with MU = 1000 GeV (left),
and yψ = 1 (right). Unitarity constraint on yψ from φφ→ φφ for yU = 5 is shown by the red
horizontal line..

Figure 7.2.16: In SV Uψ model, contours of σ(gg→ φ→ γγ) (in fb) for MU = 1200 GeV
(left), 1500 GeV (right) with Mψ = Mφ/2 GeV, sh = 0, Yψ =−1 and yψ chosen to saturate
the unitarity constraint yUN

1/4
c +yψ < 10.
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Figure 7.3.1: For Mφ = 750 GeV, contours of 13 TeV LHC σ(gg→ φ→ γγ) (in fb) (left)
and the regions 4< σ(gg→ φ→ γγ)< 10 fb (right) for various κ2

Γ shown.

2HDM-II +VLL +VLQ model:

In the 2HDM-II+VLL+VLQ model we set Mζq2
= 1000 GeV and MV L = 375 GeV. In

Fig. 7.3.2 we plot contours of σ(gg → φ→ γγ) = 6 fb with MH = 735, MA = 750 GeV

for Mζq2
= 1000 GeV and show the regions that give the required cross section. Since both

BRtt and κ2
Γ are largely controlled by tanβ, a given κ2

Γ implies a certain BRtt. In Fig. 7.3.2

we show by thick red dots the upper limit on yq1 for a given κ2
Γ from the LHC tt̄ search limits.

For κ2
Γ & 0.5 (tanβ < 3), BR(φ→ tt)> 0.9; therefore we get a nontrivial constraint on yq1 in

this region. For κ2
Γ ' 0.24 (tanβ ' 5.7), the BR(φ→ tt) is reduced to ' 0.5 and we do not

get any constraint on yq1 from the φ→ tt results in the range we consider. We see that in this

case it is possible to generate σ ∗BRγγ = 6 fb for κ2
Γ ' 0.24, without violating the unitarity

constraint and the constraints from 8 TeV LHC φ→ tt searches. For σ ∗BRγγ = 6 fb the

maximum κ2
Γ ' 0.5. The reason for the larger cross section is the inclusion of A contribu-

tion; κAV V ≈ 2.5 ∗κHV V when Mf 'Mφ/2 with Mf the mass of the fermion in the loop,

and about 1.33∗κHV V for Mψ�Mφ .

2HDM-X+VLL+VLQ model:

We again choose Mζq2
= 1000 GeV and MV L = 375 GeV and show the regions that are

compatible with the excess. In Fig. 7.3.3 we show contours of σ(gg→ φ→ γγ) = 6 fb and
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Figure 7.3.2: For 2HDM-II + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) (left), 4 < σ(gg → φ→ γγ) < 10 fb (right) for various κ2

Γ shown, for MH = 735,
MA = 750Mζq2

= 1000 GeV and MV L = 375 GeV. The region to the right of the red dots are
excluded from 8 TeV LHC φ→ tt data. Unitarity constraints from φφ→ φφ and ψψ→ ψψ
are shown in solid red and dashed red respectively.

the regions 4 < σ(gg→ φ→ γγ) < 10 fb. Because of the enhanced σ(gg→ φ), the 8 TeV

LHC φ→ tt results put constraints on yq1 for Mζq2
= 1000 GeV. The upper bound on yq1 is

shown by the red dots. The upper bound yq1 from the 8 TeV LHC φ→ ττ result is shown by

the gray dot. We see that in this case it is possible to generate σ ∗BRγγ = 6 fb for κ2
Γ ' 0.1.

For σ ∗BRγ = 6 fb a maximum of κ2
Γ ' 0.5 can be reached in this model as in the 2HDM-II.

2HDM-I +VLL model:

In Fig. 7.2.9 we have plotted the 13 TeV LHC σ(gg → φ→ γγ) with MV L = 375 GeV

for MH = 735 and MA = 750 GeV and also show the unitarity constraint from ψψ→ ψψ

channel by the red vertical line for 2HDM-I+VLL model. We see from Fig. 7.2.9 that within

the unitarity bound σ(gg → φ→ γγ) ∼ 6 fb can reached in this model for {tanβ,κ2
Γ} =

{25,0.007}.
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Figure 7.3.3: For 2HDM-X + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) (left) and the region 4 < σ(gg→ φ→ γγ) < 10 fb (right) for various κ2

Γ shown, for
MH = 735, MA = 750 GeV, Mζq2

= 1000 GeV, MV L = 375 GeV. To the right of the red dots
and the gray dots are excluded from 8 TeV LHC φ→ tt data and the 8 TeV LHC φ→ ττ
data respectively.

2HDM-I+VLL+VLQ model:

In the 2HDM-I +VLL +VLQ we chooseMζq2
= 1000 GeV andMV L = 375 GeV. In Fig. 7.3.4

we show contours of σ(gg→ φ→ γγ) = 6 fb and the region 4 < σ(gg→ φ→ γγ) < 10 fb

for various κ2
Γ withMζq2

= 1000 GeV andMH = 735,MA = 750 GeV. SinceBR(φ→ tt, ττ)

becomes small for large tanβ, there are no constraints on yq1 from the 8 TeV LHC φ→ tt, ττ

results, for the range of parameters we have considered. We see that at Mζq2
= 1000 GeV,

σ ∗BRγγ ' 10 fb can be reached within the unitarity constraint for κ2
Γ ' 0.5.

SV Uψ model:

In Figs. 7.2.13 and 7.2.15 we have plotted in the Mψ− yψ plane, the 13 TeV LHC σ(φ)×

BR(γγ) for sh = 0.01,Yψ = 0 and sh = 0,Yψ =−1 respectively with MU = 1000 GeV and

yU = 5, for SV Uψ model. For Yψ =−1, σ(φ)×BR(γγ)∼ 10 fb can reached for κ2
Γ as can

be seen from Fig. 7.2.15. For Yψ = 0 the maximum cross section for yU = 5,MU = 1000

GeV is ∼ 5 fb. However, for lower values of yU , σ(φ)×BR(γγ)∼ 10 fb can be reached for

yψ = 1,yU = 5 as we can see from Fig. 7.2.15 (bottom right plot).
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Figure 7.3.4: For 2HDM-I + VLL+VLQ model, contours of 13 TeV LHC σ(gg→ φ→ γγ)
(in fb) (left) and the region 4 < σ(gg→ φ→ γγ) < 10 fb (right) for various κ2

Γ shown, for
MH = 735, MA = 750 GeV, Mζq2

= 1200 GeV (top) and Mζq2
= 1000 GeV (bottom).
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Chapter 8

WIMP dark Matter

Astrophysical and cosmological experimets in the last few decades have revealed a substan-

tial abundance of dark matter. The most convincing evidence for the existence of dark matter

comes from the study of the rotation curves of the galaxies and clusters of galaxies. The

circular velocity vr of any point located at a distance r from the center of a given galaxy

is given by v =
√
GM(r)/r where M(r) is the total mass contained within the radius r.

Study of the optical signals emitted from galaxies indicates that the visible matter is mostly

concentrated near the center of the galaxy and therefore vr should fall off as we move away

from the center. However, the observed rotation curves reveal that vr remains almost con-

stant with r. This observation strongly suggests that there must be a halo of invisible matter

surrounding every galaxy. Further evidence of the dark matter comes from the gravitational

lensing studies of the bullet cluster. The most favoured candidate for dark matter are the

so called “weakly interacting massive particles” (WIMP). As the name suggests the WIMPs

have weak interactions with the SM particles and have masses in the 100 GeV to few TeV

range.

8.1 Relic density

Here we consider a stable DM species in the thermal equilibrium in the early universe. The

early universe was hot and dense and the dark matter particles (ψ) were in thermal equilib-
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rium with the SM particles (X), since both the ψψ→ XX and the reverse processes hap-

pened at the same rate. When the universe cooled down to a temperature (T ) less than the

dark matter mass (Mψ), the XSMXSM → ψψ processes became energetically unfavorable

and the equilibrium dark matter density was Boltzmann suppressed by∼ e−Mψ/T . However,

since the universe is expanding and cooling, after a certain amount of time rate of the self

annihilation processes ψψ→ XSMXSM fell below the expansion rate and the dark matter

particles “freezed out” when their density became almost constant. This process is governed

by the Boltzmann equation

dn

dt
=−3Hn−〈σXXvrel〉(n2−n2

eq) (8.1.1)

where n is the number density of the dark matter, neq is the equilibrium number density of the

dark matter, H is the Hubble constant and 〈σXXvrel〉 is the thermally averaged cross section

for the process ψψ→ XX . In the radiation dominated era the Hubble’s constant is given

by H(T ) = 1.66√g∗(T 2/Mpl) where g∗ is the effective degree of freedom at temperature

T . The dark matter particles freezes out when the interaction rate becomes equal to the

expansion rate of the universe

H(Tf )∼ n〈σXXvrel〉 (8.1.2)

H(Tf ) ∼ n〈σXXvrel〉. Introducing the variable Y = n/s, where s is the entropy density

given by s= 2π2g∗T 3/45, Eq. (8.1.1) can be written as

dY

dt
=−〈σXXv〉s(Y 2−Y 2

eq) (8.1.3)

where we have used the conservation of entropy per co moving volume a3 (where a is the

scale factor for the expansion of the universe)

d(sa3)
dt

= 0 (8.1.4)

101



which implies ds/dt+ 3H = 0. For 〈σXXv〉 small, Y is approximately conserved. After

freeze out, the conserved value is given by Yf = nf/sf . Using Eq. (8.1.2) we have

Yf = 3.78xf√
g∗fMψMpl〈σXXv〉

(8.1.5)

where xf = Mψ/Tf . The present entropy density is given by s0 = 2π2g∗0T 3
0 /45 = 22.1×

10−12 eV3 where we have used present the temperature T0 = 2×10−4 eV and g∗0 = 6.3 [143].

The present number density is then no = s0Yf . The relic density of ψ is given by

Ωdm = n0Mψ

ρc

= 10−10xf√
g∗fMplρc〈σXXvrel〉

eV3 (8.1.6)

where ρc is the critical density given by ρc = (2.95×10−3√h eV)4 with h=H/100 km s−1

Mpc−1. Using g∗f ≈ 100 [143] we have

Ωdm = 10−29xf
〈σXXvrel〉

eV−2. (8.1.7)

For xf � 1, the dark matter particles are non relativistic and 〈σXXv〉 can be expanded

as [144]

〈σXXvrel〉= a+ b〈v2〉+O(v4)

= a+ 6b
xf

+O(v4) (8.1.8)

The second line in Eq. (8.1.8) follows from the fact that the dark matter particles obeys the

Maxwell-Boltzmann velocity distribution and therefore 〈v2〉 = 3g/xf where g = 2 is the

relativistic degree of freedom for Dirac fermions. The xf can be determined iteratively from

Eq. (8.1.2) as

xf = ln 0.038gMplMψ〈σXXvrel〉√
xf
√
g∗f

. (8.1.9)
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The observed value of the relic density is given by Ωdm ≈ 0.26± 0.015 [145]. In order to

obtain the correct relic density we need 〈σXXvrel〉 ≈ 2.3×10−27 eV−2 for xf ≈ 25. We will

fix xf = 25, since xf depends only logarithmically on the parameters.

8.2 Dark matter direct detection

As we have discussed earlier, the WIMP dark matter must have interaction with the SM

particles to get the correct relic density. This means that the WIMPs can be detected by

earth based experiments as the WIMPs pass through the earth. The most promising method

is direct detection in which one sets up a very sensitive detector on earth and measures

the recoil energy of the detector nuclei as the WIMPs elastically scatters off them due to

the ψX → ψX processes. In this work we are interested in the case when the interaction

is mediated by a scalar in which case the scattering cross section is spin independent. For a

WIMP (ψ) of massMψ scattering off a target nucleon (N ) of massMN , the spin independent

cross section is given by [146]

σDD(ψN → ψN) =
M2
ψM

2
N

π(Mψ +MN ) |M(ψN → ψN)|2. (8.2.1)

For a nucleus with N neutrons and Z protons, this cross section has to be multiplied by a

factor of A2 = (Z+N)2 to get the total direct detection cross section. Several experiments

are now operating to detect the direct detection signals of dark matter. So far no signals

have been observed which puts stringent limits on the WIMP direct detection cross sections.

The most stringent limit comes from the LUX experiment, which sets a bound on the direct

detection cross section of about σDD . 10−45 cm2 [147].

There are several BSM theories that have dark matter candidates. One very popular can-

didate is the neutralino in the R-parity symmetric supersymmetric theories. Some little-Higgs

theories with T-parity also have scalar dark matter candidates. In Chapter 9, we will analyze

a specific model namely the abelian hidden sector model with new vector-like fermions [59]

that have a fermionic dark matter candidate.
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Chapter 9

Singlet scalar model and dark matter

This chapter is based on the work done in Ref. [12]. In Sec. 7.2.2 of Chapter 7 we analyzed

the SV Uψ model defined by the Lagrangian in Eq. (7.2.3). This model has an SU(2) singlet

neutral CP-even scalar φ, an SU(2) singlet vector-like quark U with hypercharge YU and an

SU(2) singlet vector-like lepton ψ with hypercharge Yψ. When the mixing between the ψ

and the SM fermions is zero then this model has a discrete Z2 symmetry (ψ→−ψ), as we

have mentioned in Chapter 7. This Z2 symmetry makes the ψ stable and therefore the ψ can

be a good dark matter candidate. In this chapter we analyze the dark matter implications of

this model. We obtain the allowed regions of the parameter space which gives the correct

relic density while also satisfying the dark matter direct detection cross section.

9.1 Relic density

The relevant self annihilation channels are ψψ→ ff,hh,ZZ,W+W−,gg through the φ and

the h exchange. Here we present the cross sections for these processes. The Feynman

diagrams contributing to these processes are shown in Fig. 9.1.1. The ψψ→ hh process also

has a t channel contribution which is not shown in Fig. 9.1.1. The t channel contribution is

small because it involves the hψψ coupling which is suppresses by sh. Therefore we do not

include the t channel contribution to the ψψ→ hh process.

In the CM frame, the 4-momenta of the initialψ particles can be written as p1 = (Eψ,0,0,pψ),
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Figure 9.1.1: Feynman diagrams contributing to the ψψ→ ff,hh,V V,gg processes.

p2 = (Eψ,0,0,−pψ). In this frame the spin averaged cross sections for the process σ(ψψ→

XX) can be written in terms of the amplitudesM(ψψ→XX) (abbreviated asMXX ) as

σXX = 1
8πsvrel

(
1− 4m2

X

s

)1/2(1
4 |MXX |2

)
(9.1.1)

where vrel is the relative velocity of the ψ particles and s is the center of mass energy. Using

Eq. (9.1.1) one can get the relic density Ωdm from Eq. (8.1.7) in Chapter 8. The squared

amplitude for the SM fermion final states are given by

1
4 |Mff |2 =1

4
y2
fy

2
ψ

4 c2hs
2
hTr(p2.p1−m2

ψ)Tr(p3.p4−m2
f )SBW

=1
4
y2
fy

2
ψ

4 c2hs
2
h

64p2
ψM

2
ψ

1−
4m2

f

s

SBW (9.1.2)

where

SBW =
(M2

φ−M2
h)2

[(s−M2
φ)2−M2

φΓ2
φ][(s−M2

h)2−M2
hΓ2

h] (9.1.3)

and we have used p3.p4 = s/2−m2
f . In the non-relativistic limit s ≈ 4M2

ψ and pψ ≈
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Mψvrel/2, using which Eq. (9.1.2) can be written as

σff = y2
t y

2
ψc

2
hs

2
hM

4
ψ

1−
4m2

f

s

v2
relSBW . (9.1.4)

For the s channel ψψ→ hh process, the squared amplitude is given by

1
4 |Mhh|2 =

y2
ψM

2
ψ

16

 c8hκ
2
φhhM

2
φ

[(s−M2
φ)2−M2

φΓ2
φ] + s2

hc
6
hκ

2
3hv

2

[(s−M2
h)2−M2

hΓ2
h]

−
2c7hshκφhhκ3hvMφ

[(s−M2
h)(s−M2

φ)−MhMφΓhΓφ]

v2
rel (9.1.5)

where κ3h is the hhh coupling. The squared amplitude for the ψψ →W+W− channel is

given by

1
4 |MWW |2 = 1

4
y2
ψ

2 s2
hc

2
hTr(p2.p1−m2

ψ)g
4v2

4 gµνgρσ
∑
λ1λ2

εµλ1
(p3)ε∗ρλ1

(p3)ενλ2(p4)ε∗σλ2 (p4)SBW .

(9.1.6)

Summing over the polarizations and using
∑
εµλ1

(k)ε∗νλ1
(k) = (gµν−kµkν/M2

w) we get

1
4 |MWW |2 = 1

4y
2
ψs

2
hc

2
hg

4v2M2
ψ

(
1
2 + (s/2−M2

W )
4M4

W

)
v2
relSBW . (9.1.7)

The ψψ→ gg process proceeds via the φ and h exchange through the triangle loops as shown

in Fig. 9.1.1. Both the SM fermions and the U contribute in the loop. In terms of the effective

φgg coupling (κφgg) defined in Chapter 3, the |Mgg|2 is given by

1
4 |Mgg|2 = 1

4
y2
ψ

2 Tr(p2.p1−m2
ψ)(pβ3pα4 −p3.p4g

αβ)(pν3p
µ
4 −p3.p4g

µν)×8× c2hκ
2
φgg

[(s−M2
φ)2−M2

φΓ2
φ] +

s2
hκ

2
hgg

[(s−M2
h)2−M2

hΓ2
h] −

2chshκhggκhgg
[(s−M2

h)(s−M2
φ)−MhMφΓhΓφ]


×
∑
λ1,λ2

ε∗αλ1 ε
∗µ
λ1
ε∗βλ2

ε∗νλ2×v
2
rel (9.1.8)

where εµλi are the gluon polarization. The factor of 8 in Eq. (9.1.8) comes from the color
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Figure 9.2.1: Feynman diagrams contributing to direct detection process ψN → ψN .

sum. After summing over gluon polarizations we have

1
4 |Mgg|2 =

16y2
ψM

6
ψ

(16π2M)2

 c2hκ
2
φgg

[(s−M2
φ)2−M2

φΓ2
φ] +

s2
hκ

2
hgg

[(s−M2
h)2−M2

hΓ2
h]

−
2chshκhggκhgg

[(s−M2
h)(s−M2

φ)−MhMφΓhΓφ]

v2
rel. (9.1.9)

The κφgg in this model can be obtained from the general expression given in Appendix A.

9.2 Dark matter direct detection cross section

The spins independent dark matter direct detection cross section (σDD) on the nucleon N

is mediated by the h and φ exchange as shown in Fig. 9.2.1. The scalar coupling to the

nucleon is generated through the quark content of the nucleon and also through the gluon

content of the nucleon by the φgg,hgg effective couplings . Since the h is lighter, the σDD

is dominated by the h contribution for large sh. But for small sh (. 0.05) the hψψ coupling

becomes small and the φ contribution becomes comparable to that of the h. We define an

effective Lagrangian for the scalar nucleon coupling as

L= λφNN φ̂NN +λφNN ĥNN

= (chλhNN − shλφNN )hNN + (chλφNN + shλhNN )φNN. (9.2.1)
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The σDD in the non-relativistic limit is given by

σDD =
y2
ψ

8π

sh(chλhNN − shλφNN )
M2
h

−
ch(chλφNN + shλhNN )

M2
φ


=
y2
ψc

2
hs

2
hλ

2
hNN

8π
(|pψ|2−m2

N )
M4
h

1− λφNN
λhNN

ch
sh

1 + ∆φ

1−∆h

M2
h

M2
φ

2

(9.2.2)

where ∆h = (λφNN/λhNN )(sh/ch) and ∆φ = (λhNN/λφNN )(sh/ch), pψ ≈ Mψvψ with

vψ = 10−3 [148] and the nucleon mass mN = 1 GeV. We take λhNN = 2×10−3 [148, 149].

The φNN coupling is generated by the effective φgg coupling induced by the U loop. Fol-

lowing Ref. [150] we obtain the φNN coupling as λφNN = (2/27)f (p,n)
TG (yUmN/MU ) where

f
(p,n)
TG = 1− ∑

q=u,d,s
f

(p,n)
Tq and the f (p,n)

Tq is defined by the relationmp,nf
(p,n)
Tq = 〈p,n|mq q̄q|p,n〉.

The numerical values of f (p,n)
Tq are given in Ref. [150] using which we get λφNN ≈ 0.063yUmN/MU .

In Fig. 9.2.2 we plot contours of Ωdm = 0.1,0.25,0.3 and for λN = 2× 10−3, mN =

1 GeV, show the regions with σDD > 5 ∗ 10−45cm2, 10−45 cm2 < σDD < 5 ∗ 10−45cm2,

10−46cm2<σDD < 10−45cm2, 10−47cm2<σDD < 10−46cm2, 10−48cm2<σDD < 10−47cm2,

10−49cm2 <σDD < 10−48 cm2, σDD < 10−49cm2 with parameters not varied along the axes

fixed at sh = 0.01, Mψ = 350 GeV, yU = 5 and MU = 1000 GeV. We also show in Fig. 9.2.2

the unitarity constraint on yψ from φφ→ φφ process for yU = 5 and the constraint on sh from

the 8 TeV LHC φ→ hh results [11]. We see that for sh = 0.01, yψ ≤ 3 the direct detection

cross section is close to or less than the current experimental limit σDD ≤ 10−45 cm2 [147].

We see that in order to get the correct relic density while also satisfying the dark matter direct

detection cross section, we should be near the φ or the h poleMψ =Mφ,h/2. We also see that

in order to satisfy the 8 TeV LHC φ→ hh constraint, sh has to be small (. 0.05). In Fig. 9.2.3

we plot contours of Ωdm = 0.1,0.25,0.3 and the regions σDD < 10−48 cm2 (gray shaded),

10−48 < σDD < 10−47 cm2 (blue shaded), 10−47 < σDD < 10−46 cm2 (yellow shaded) and

σDD > 10−46 cm2 (orange shaded) in theMφ−yU plane withMψ =Mφ/2−25 GeV, sh = 0

and yψ chosen to saturate the unitarity constraint yUN
1/4
c +yψ < 10 from the ψψ→ψψ chan-

nel. Since sh = 0, the only relevant self annihilation channel is ψψ→ gg. For yU large, yψ is

small (because of saturating the unitarity constrain) and therefore the φψψ coupling and the
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Figure 9.2.2: In the SV Uψ model for Yψ = 0, YU = 2/3, contours of Ωdm = 0.1 (dashed
blue), 0.25 (solid blue), 0.3 (dotted blue) with the colored bands showing σDD as marked,
for yU = 5, MU = 1000 GeV, and with the parameters not varied along the axes fixed at
sh = 0.01 and Mψ = 350 GeV. The red horizontal line shows the unitarity constraint for
yU = 5, and the thick red line shows the 8 TeV LHC hh channel constraint.

κφgg is large. On the other hand for yU small, yψ is large and therefore the φψψ coupling is

large and κφgg is small. As a result, for a given Mφ there are two values of yU which gives

the correct relic density. Similar result also hold for the σDD. In Chapter 7 we obtained the

13 TeV LHC σ(φ)×BR(φ→ γγ) in the Mφ−yU plane for the same choice of parameters.

Using Fig. 9.2.3 and Fig. 7.2.14 one can obtain the 13 TeV LHC σ(φ)×BR(φ→ γγ) for any

Mφ,yU which also gives the correct relic density and satisfies the experimental constraints

on σDD. For example Mφ = 550 GeV, yU ∼ 7.5 gives the correct relic density of 0.25 and

σDD < 10−46 cm2. For the same value of Mφ and yψ, σ(φ)×BR(φ→ γγ)∼ 0.25 fb.

The direct-detection cross section bands we show in Fig. 9.2.2 is per nucleon, and without

including a factor of A = Z+N for coherent spin-independent scattering [146], where Z is

the number of protons and N is the number of nucleons inside the nucleus. Thus our direct

detection cross section is to be multiplied by a factor of A for the spin-independent case,

before comparing with an experiment. For instance, for the LUX experiment [147] with a

Xe target, our direct detection cross section numbers are to be multiplied by A= 131.
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Figure 9.2.3: In the SV Uψ model for Yψ = 0, YU = 2/3, sh = 0, contours of Ωdm = 0.1
(dashed blue), 0.25 (solid blue) and 0.3 (dotted blue) with the colored bands showing σDD
for MU = 1200 GeV (left), 1500 GeV (right) with yψ chosen to saturate the unitarity bound
yUN

1/4
c +yψ ≤ 10 and Mψ =Mφ/2−25 GeV.
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Chapter 10

Summary and conclusions

Chapter 1 is an introductory chapter where we discuss some drawbacks of the SM on both

theoretical and observational sides. Several BSM extensions have been proposed to over-

come these issues. One important class of such theories are those, where the Higgs is real-

ized as a pNGB of some spontaneously broken global symmetry. Examples of such theories

are the little-Higgs models, technicolor models, composite Higgs models etc. In these theo-

ries, the Higgs is often accompanied by additional neutral scalars, either CP-odd or CP-even.

Depending on the group structures and symmetry breaking patterns, these scalars can either

be SU(2) singlets or can be embedded in an SU(2) doublet scalar. To complete the symmetry

group representation these theories also contain new heavy VLFs. In this thesis we focus on

the phenomenology of neutral BSM scalars with VLFs also present. In Chapter 1 we also

briefly summarize some references that are relevant to our work. In Chapter 2 we briefly

review some of the some of the BSM theories, namely theories with extended scalar sector,

supersymmetric theories, extradimensional theories, little-Higgs theories and theories with

strong dynamics. In Chapter 2 we also briefly discuss the phenomenology of vector-like

fermions.

In Chapter 3 we perform a model independent analysis of BSM neutral scalars coupled

to SM fermions and gauge bosons and also to new VLFs. We assume that these scalars are

produced through the gluon fusion channel. We obtain the 8 TeV and 14 TeV LHC σ(gg→

φ) as a function of the effective φgg couplings (κφgg). We obtain the σ(gg→ φ) by relating
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it to the corresponding cross section σ(gg→ hSM ) for the SM Higgs given in Ref. [32]. We

obtain the constraints from the 8 TeV LHC tt, ττ,γγ channel. We find that the most stringent

constraint comes from the ττ channel. ForBR(φ→ ττ)∼ 1, the upper limit on κφgg is about

∼ 3. The φ→ tt channel results puts an upper limit κφgg . 20 for BR(φ→ tt)∼ 1. In any

given BSM model one can calculate the κφgg and BR(φ→ tt, ττ,γγ) and use our results to

obtain the LHC cross sections and the constraints on the parameter space of the model.

In Chapter 4 we present a simple model where a CP-odd SU(2) singlet scalar (A) is

coupled to the VLFs, either SU(2) singlet or SU(2) doublet, and also to the SM Higgs.

We obtain the effectiveAgg couplings and BR(A→ V V ) for each of these models. For

mA < mh/2, the h can decay to a pair of A thereby modifying the h→ γγ signal strength

(µγγ) from its SM value. We also obtain the constraints on the parameter space from the

8 TeV LHC µγγ results for mA < mh/2. There exists many BSM theories [122, 123, 124]

with a similar structures to our effective model. For such models, one can use the results of

this chapter to obtain the LHC cross sections and constraints on the parameter space.

In Chapter 5 we present a brief review of two-Higgs doublet models. We present the

details of the mass spectrum of the physical scalars in the 2HDM and their couplings to the

SM fermions in the 2HDM type-I, II and X. We discuss the so called 2HDM “alignment

limit” and also the constraint on tanβ from the perturbativity argument for the 2HDM with

an exact Z2 symmetry. In Chapter 6, we briefly discuss the phenomenology of the neutral

scalars (collectively called φ) of 2HDM-II and X. We present the effective φgg couplings

and the branching ratios of the φ to the SM fermions and gauge bosons. We also obtain the

constraint on the parameter space of the 2HDM-II from the 8 TeV LHC φ→ ττ results. We

then add vector-like fermions to the 2HDM-II and X. We separately consider two cases, one

in which the VLFs mix with the SM third generation fermions and one in which this mixing

is shut off. We present the effective φgg couplings and the branching ratios of φ in each of

these models. We find that the addition of vector-like fermions can significantly modify the

κφgg and BR(φ→ V V ). The modification is even more prominent in the 2HDM-X. We also

find that in one of these models, the constraint on the parameters space of the 2HDM-II is

relaxed because of adding the VLFs. The results of this chapter can be used to obtain the
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σ(gg→ φ) and BRφ for realistic BSM theories which has the 2HDM structure with VLFs

also present.

In Chapter 7, we specialize to the di-photon channel. We first perform a model indepen-

dent analysis for a scalar coupled to the SM fermions and the new VLFs (ψ). We obtain the

13 TeV LHC σ(gg→ φ→ γγ) as a function of the κφgg for various φ widths. We discuss

the constraints on the parameter space from the 8 TeV LHC φ→ tt, ττ,hh results. We com-

pute the constraints on the φψψ couplings from the perturbative unitarity of ψψ→ ψψ and

φφ→ φφ processes. We obtain the 13 TeV LHC σ(gg→ φ→ γγ) in few specific models,

namely the 2HDM-I,II,X and a singlet scalar model with VLFs also added. Whenever rele-

vant, we present the constraints on the parameter space of these models from the 8 TeV LHC

φ→ tt, ττ,hh channel results and the perturbative unitarity constraints. In the 2HDM we

consider two scenarios, one in which only the H contributes to σ(gg→ φ→ γγ) and one in

which both theH andA contribute. In our analysis, we choose a benchmark pointMφ = 750

GeV and obtain the 13 TeV LHC σ(gg→ φ→ γγ) as a function of the VLF couplings for

VLL and VLQ masses fixed. Subsequently, we obtain the 13 TeV LHC σ(gg→ φ→ γγ) as

a function of the VLQ coupling and Mφ with VLQ mass fixed, MV L ∼Mφ/2 and the VLL

Yukawa couplings chosen to saturate the unitarity constraint. Such plots give an estimate

of how large σ(gg→ φ→ γγ) can be within the unitarity constraint. For example, in the

2HDM-II, σ(gg → φ→ γγ) ∼ 70 fb can be reached (see Fig. (7.2.5)) within the unitarity

bound. Earlier both ATLAS and CMS had reported an excess in the di-photon channel at

an invariant mass of 750 GeV [1, 2]. But recent results form ATLAS and CMS [141, 142]

suggest that the observed signal was merely a statistical fluctuation. Here we also show the

regions of parameter space compatible with the earlier excess.

In Chapter 8 we briefly review the WIMP dark matter, where we discuss the dark matter

relic density and the direct detection cross section. In Chapter 9 we analyze the dark matter

implications of the singlet scalar model (SV Uψ model) presented in Chapter 7. The SV Uψ

model has a discrete Z2 symmetry under which the ψ is odd, while the SM particles are

even. Therefore the ψ cannot decay to any SM particle and can be a dark matter candidate.

In Chapter 9 we find the regions of the parameter space which gives the correct relic den-
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sity while also satisfying the constraints from the dark matter direct detection experiments.

The relevant self annihilation channels are ψψ→ tt,hh,WW,ZZ,gg through the φ and h

exchange. The ψψ→ tt,WW,ZZ channels are possible if the SM Higgs mix with φ. The

ψψ→ gg process can be nonzero even for sh = 0 (where sh is the mixing angle for the h−φ

mixing) because the φ can couple to gg through the VLQ loops and can give the correct relic

density as can be seen from Fig. 9.2.3. In general we find that in order to get the correct relic

density while also satisfying the direct detection limits, the ψ mass (Mψ) should be close to

the φ pole (Mψ ∼Mφ/2).

Typically, BSM theories add a set of new heavy particles along with the SM particles.

Therefore to test these theories we must study the phenomenology of these new particles

in detail. We saw in Chapter 2 that there exist several BSM theories which have additional

scalars and also new VLFs. In this thesis we study the phenomenology of the BSM neutral

scalars (φ) in the presence of VLFs in a model independent way, without focusing on a spe-

cific model. To this end, we consider several effective models of BSM scalars with VLFs

also present. We provide predictions for LHC cross sections, branching ratios and possible

constraints on the parameter space for each of these models. Predictions of LHC cross sec-

tions and branching ratios are crucial for testing any BSM model. Using our results one can

obtain the LHC cross sections and branching ratios of the BSM neutral scalars for a large

class of models. One of the models namely the singlet scalar model also has a dark matter

candidate in the form of a vector-like lepton (VLL). Here we highlight the role of the VLQ

to the relic density and dark matter direct detection cross section. Both of these processes

receive significant contributions from the φgg effective coupling induced via the VLQ. Inter-

estingly, we find that even if the φ−h mixing is small, the VLQ contribution is sufficient to

give the correct relic density while also satisfying the constraints from the dark matter direct

detection cross section.

Here we discuss some of the possible directions that can be pursued in the future. We

saw in Chapter 6 that in cases where VLQs mix with the SM third generation quarks (t, b),

the decays φ→ t2t, b2b can be large for Mφ &Mt2,b2 +Mt,b as can be seen from Fig. 6.2.3.

It will be interesting to study in detail, the φ→ t2t, b2b→ btW decay channels as signatures
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of both φ and t2, b2. Due to mixing with the SM quarks (SMQ), the VLQs will also make

additional contributions to the flavor changing processes such as B→Kl+l−, B→K∗l+l−

decays and B0− B̄0, K0− K̄0, D0− D̄0 mixings. It will be worthwhile to find out the

amount of allowed SMQ↔VLQ mixing consistent with the flavor observables in the context

of the 2HDM. Studies of such flavor changing processes in certain vector-like extensions of

the SM is done for example in Refs. [137, 151, 152, 153, 154, 155, 156, 157], to list a few.

The other issue that should also be investigated is the stability of the electroweak vacuum.

In general, fermions through their Yukawa couplings with the Higgs, contribute negatively

to the beta function (βλ) of the Higgs quartic coupling (λ). The VLFs therefore may drive λ

negative, rendering the electroweak vacuum unstable at some finite energy scale (Λ). It will

be important to find out the constraints on the VLF Yukawa couplings and masses requiring

the vacuum to be stable up to a certain Λ.
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Appendix A

The effective φgg and φγγ couplings

In this appendix we present the decay widths Γ(φ→ γγ,gg) and the effective κφgg,κφγγ

couplings for a general scalar φ coupled to a set of fermions f with charge Qf . We define

the Yukawa couplings from the Lagrangian

L ⊃−mf f̄f −yφffφf̄f. (A.0.1)

They feynman diagrams contributing to these processes are shown in Fig. A.0.1.

The amplitude for the φ→ γγ process is given by

iM(φ→ γγ) =
∑
f

Nf
c

8π2

(
yφff
mf

)
(eQf )2Dφ

µνε
µ
1 (p1)∗εν2(p2)∗Fφ1/2(rf ,mf ), (A.0.2)

Figure A.0.1: Feynman diagrams contributing to φ→ γγ (left) and φ→ gg (right).
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where

DA
µν = εµναβp

α
1 p

β
2 ,

DH
µν = (p2µp1ν−p1.p2gµν),

FA(rf ,mf ) = 4rf
∫ 1

0
dx
∫ 1

0
dy

(
1

rf −xy

)
,

FH(rf ,mf ) = 4rf
∫ 1

0
dx
∫ 1

0
dy

(
1−4xy
rf −xy

)
,

rf =
m2
f

M2
φ

.

Squaring M, summing over the photon polarizations and including the appropriate phase

space factors, the decay width is given by

Γ(φ→ γγ) = 1
256π3

∑
f

(
yφff
mf

)e2Q2
f

4π

(NcFφ1/2(rf ,mf )
)2

. (A.0.3)

From the expression of Γ(φ→ γγ) in Eq. (3.0.2) we infer

κφγγ = 2e2∑
f

Nf
c Q

2
f yφff

M

mf
Fφ1/2(rf ). (A.0.4)

The amplitude for φ→ gg is given by,

iM(φ→ gg) = 1
8π2

∑
f

(
y

mf

)
(gs)2Dφ

µνε
µ
1 (p1)∗εν2(p2)∗Fφ1/2(rf ,mf )

(1
2δab

)
. (A.0.5)

SquaringM, summing over the gluon polarizations and the color indices and including the

appropriate phase space factors, the decay width Γ(φ→ gg) is given by

Γ(φ→ gg) = 1
128π3

∑
f

[(
yφff
mf

)(
g2
s

4π

)(
NcF

φ
1/2(rf ,mf )

)]2
. (A.0.6)
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Figure A.0.2: FA1/2 and FH1/2 vs. Mφ for mf = 250 GeV.

From the expression of Γ(φ→ gg) in Eq. (3.0.2) we again infer

κφgg = g2
s

∑
f

yφff
M

mf
F

(1)
1/2(rf ). (A.0.7)

To demonstrate the dependence of κφgg on Mφ and mf , we plot in Fig. A.0.2 the functions

FA1/2 and FH1/2 as a function of Mφ for an example value of mf = 250 GeV. We see that when

Mφ ≈ 2mf , the F 1/2 becomes very large because of f going onshell. We also see that at

Mφ ≈ 2mf , FA1/2 becomes ≈ 2.5FH1/2.
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Appendix B

Effective couplings in SVU and MVU

models

Here we present the effective AV V couplings (κAV V ) in the SV U and MV U models. The

κφgg and κφγγ in these models can be obtained from the general expressions given in App.

A. The κAZγ is given by

κAZγ = 2e g
cW

∑
i

N i
cQi(T i3−Qis2

W )yA
M

mi
F

(2)
1/2(ri, rZ) (B.0.1)

with rZ =m2
Z/m

2
A and

F
(2)
1/2(ri, rZ) = 4ri

∫ 1

0
dy
∫ 1−y

0
dx

1
ri+ (rZ −1)xy+ rZ(x2−x) . (B.0.2)

The κAZZ for SV U and SV Q model is given by

κAZZ = 2
(
g

cW

)2∑
i

N i
c(T i3−Qis2

W )2yA
M

mi
F

(3)
1/2(ri, rZ) (B.0.3)

with

F
(3)
1/2(ri, rZ) = 4

∫ 1

0
dy
∫ 1−y

0
dx

ri
ri−xy+ rZ [(x+y)2− (x+y)] . (B.0.4)
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The κAWW for SVQ model is given by

κAWW = 2
(
g√
2

)2∑
i

N i
cyA

M

mi
F

(3)
1/2(ri, rW ) (B.0.5)

with rW =m2
W /m

2
A.
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