
Role of Topological Defects in Breaking and Enhancing
Discrete Symmetries

By
Soumyadeep Bhattacharya

PHYS10201004008

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

June, 2016



Homi Bhabha National Institute
Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we certify that we have read the dissertation pre-
pared by Soumyadeep Bhattacharya entitled “Role of Topological Defects in Breaking
and Enhancing Discrete Symmetries” and recommend that it maybe accepted as fulfilling
the dissertation requirement for the Degree of Doctor of Philosophy.

Date:

Chairman - Balachandran Sathiapalan

Date:

Guide/Convener - Purusattam Ray

Date:

Examiner - Chandan Dasgupta

Date:

Member 1 - Rajesh Ravindran

Date:

Member 2 - Ronojoy Adhikari

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it may be accepted as fulfilling the dissertation requirement.

Date:

Place: Guide



STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permisiion, provided

that accurate acknowledgement of source is made. Requests for permisiion for extended

quotation from or reproduction of this manuscriptin whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgement the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

Soumyadeep Bhattacharya



DECLARATION

I, hereby declare that the investigtion presented in the thesis has been carried out by me.

The work is original and has not been submitted earlier as a whole or in part for a degree

/ diploma at this or any other Institution / University.

Soumyadeep Bhattacharya



ACKNOWLEDGEMENTS

I thank Purusattam Ray for suggesting that I examine the phase diagram of spin models

with discrete symmetries as a part of my research work towards a thesis and for helpful

discussions regarding the topic. I also thank the members of the Doctoral Committee for

their lasting patience in allowing me to work on the present topic at my own pace.

I thank Rajesh Ravindran for introducing me to a variety of computational techniques

in statistical physics, Ronojoy Adhikari for discussions on the fundamentals of thermo-

dynamics, renormalization and the role of topological defects in classical systems, Syed

Hassan for discussions on the physics of quantum phase transitions beyond the Landau

paradigm, Deepak Dhar for discussions on the percolation properties of domain walls and

Kedar Damle for discussions on the role of defects in spin models with higher symmetries.

I also thank Bikas Chakrabarti, Parongama Sen, Chandan Dasgupta, Satya Majumder,

Krishnendu Sengupta, Subir Sachdev, Ganapathy Baskaran, Ganapathy Murthy, Naina

Shah, Gabriel Aeppli, Mukul Laad, David Mukamel, Christophe Chatelain, Tim Garoni,

Martin Weigel, Wolfhard Janke, Ramesh Anishetty, Sanatan Digal, Biswanath Layek, Ajit

Srivastava, Pushan Majumdar, Subhash Karbelkar, Diptarka Das, Suman Sinha and Joyjit

Kundu for interesting discussions on various aspects of the present topic.

I also thank Mangala Pandi, Malladi Ramakrishna and Tejaswi Nanditale for discussions

on methods for optimizing the numerical techniques used in simulation of spin models.



Abstract

Phase transitions accompanied by spontaneous breaking of continuous symmetries have

been studied extensively in condensed matter and high energy physics. In this thesis we

investigate the spontaneous breaking of discrete symmetries, specifically in spin models

with three-fold, four-fold and higher discrete symmetries. We show that an interplay

between the topological defects - domain walls and vortices - in these models drives

the discrete symmetry to be completely broken, partially broken and even enhanced to a

continuous U(1) symmetry. We show that in two dimensions, percolation of domain walls

drives a transition from a symmetry broken ordered phase to a symmetry enhanced quasi

long range ordered phase which, in turn, undergoes a transition to the symmetry restored

disordered phase when vortices proliferate. We highlight a flaw in the standard method

for calculating winding numbers and propose a new method which correctly identifies

vortices. We show that suppression of vortices in models with even number of states leads

to an intermediate partially ordered phase and that additional suppression of domain walls,

separating opposite spin states, is required to manifest the symmetry enhanced phase. We

show that spin models with three or higher number of states exhibit a partial symmetry

broken phase instead of symmetry enhanced phase in three dimensions as individual types

of domain walls are able to percolate on their own. We also obtain a variety of phases by

suppressing defects belonging to subgroups of the model’s symmetry. Upon enhancing

the formation of vortices instead of suppressing them, we obtain a vortex-antivortex lattice

phase in two dimensions and a vortex condensate phase in three dimensions.
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Synopsis

Different phases of matter can be classified according to the manner in which the symme-

try of the constituent microscopic atoms manifests itself at the macroscopic scale. Com-

monly studied systems usually exhibit phases where the symmetry gets spontaneously

broken or remains fully restored. Systems with discrete symmetries, on the other hand,

exhibit richer variety of intermediate phases where the symmetry can get partially bro-

ken [1,2] or even enhanced to a continuous one [3-8]. The manifestation of these inter-

mediate phases in statistical and quantum condensed matter models has triggered exciting

advances in materials science and their manifestation in lattice gauge models has provided

key insights into high energy physics.

While the notion of symmetry serves as a useful tool for characterizing phases and track-

ing transitions between them, it does not provide an answer to the question of what leads

to the formation of the phases or what drives the transitions. Transitions characterized

by spontaneous breaking of continuous symmetries have been shown to be driven by the

proliferation of topological defects. Defects are regions of singularity in the system which

cannot be removed by continuous deformations [9-11]. Depending on the symmetry and

dimensionality of the system, these regions can appear as points (vortices, monopoles),

lines (vortex strings) or, in some cases, even extend throughout the system (skyrmions,

textures). The superfluid-normal transition, for example, is driven by the proliferation of

vortices in thin films of superfluid [12] and by the proliferation of vortex strings in bulk

superfluid [13,14]. The onset of paramagnetism in the Heisenberg ferromagnet is driven

19



by the proliferation of monopoles [15]. Phase transitions in superconductors [16] and liq-

uid crystals [17] are also driven by the proliferation of defects. Extensive investigations

into these systems have highlighted the important role played by topological defects in

governing many-body physics. However, most of the studies have remained restricted to

the role of a single type of defect. Models with discrete symmetries sustain domain wall

defects in addition to the defects of their continuous symmetric counterparts. The inter-

play between the multiple defects can drive a variety of phase transitions and lead to a

rich phase diagram [18,19]. A systematic study of this intriguing possibility is lacking as

defects in systems with discrete symmetries have not received as much attention as those

in systems with continuous symmetries.

In this thesis, we study the role played by defects in some simple spin models with discrete

symmetries. The systems under consideration sustain domain wall and vortex defects. We

show that phase transitions in the models, which have hereto been extensively character-

ized using symmetry based observables, are driven either by the proliferation of a single

type of defect or by the simultaneous proliferation of multiple types of defects. Addi-

tionally, we demonstrate that manipulation of these defects can shift or split the phase

transitions and lead to the formation of new phases which have not been reported before.

Here, we briefly outline the work presented in the thesis.

Quasi-Long- Range Order Via Proliferation of Domain Walls

We begin our investigation by considering the simplest spin model which can sustain do-

main walls and vortices: the three state Potts ferromagnet on a square lattice. We show

that the order-disorder transition in this model is driven by a simultaneous proliferation of

the two types of defects. When we increase the core energy of the vortices, their forma-

tion gets suppressed and the transition is observed to shift towards higher temperatures.

Above a certain threshold of suppression, the simultaneous proliferation decouples and

the vortices proliferate at a temperature higher than that of the domain walls. This de-

coupling is shown to split the order-disorder transition and open up an intermediate phase



where the three-fold symmetry enhances to U(1) and the order becomes quasi-long-range.

We demonstrate that the transition from the symmetry broken ordered phase to the sym-

metry enhanced phase is driven by the proliferation of domain walls while the transition

from the symmetry enhanced to the symmetry restored disordered phase is driven by the

proliferation of vortices. Does this picture carry over to n-state models for all values

of n? Such a scenario seems plausible because energy versus entropy balance [18-19],

renormalization group [3] and Monte Carlo [6-8] calculations suggest that n-state clock

models exhibit an intermediate quasi-long-range ordered phase for large n. We show that

the models, for higher n, indeed exhibit such an intermediate phase due to the proliferation

of domain walls. However, the disordering transition for models with even values of n is

no longer driven solely by the proliferation of vortices. We show that domain walls sep-

arating opposite pairs of spin states play a crucial role along with the vortices in driving

the transition. The significance of these opposite state domain walls decreases for large

n. In the n → ∞ limit (XY model), the disordering transition is found to be driven solely

by the proliferation of vortices as expected [12]. In presenting this result, we also point

out a fundamental flaw in the current procedure for calculating winding numbers on lat-

tices. This flaw, which results in the identification of unphysical vortices, arises because

a rule of modular arithmetic is satisfied. We propose a modified method for calculating

the winding number which violates the rule and is, therefore, able to identify the correct

vortices.

Partial Order via Percolation of a Single Domain Wall

The formation of a symmetry enhanced phase via domain wall proliferation raises an

important question: can the same mechanism lead to symmetry enhancement in higher

dimensions? We consider the three state Potts ferromagnet on a simple cubic lattice and

find that the order-disorder transition in the model is also driven by a simultaneous pro-

liferation of domain walls and vortex strings. Suppression of the vortex strings shifts the

transition to higher temperatures and above a certain threshold, splits the transition into



two. Interestingly, however, we find that the intermediate phase in this case is not sym-

metry enhanced. Even though domain walls proliferate in the intermediate phase while

vortex strings do not, the three-fold symmetry is broken, albeit in a manner different from

that in the ordered phase, which leads to partial order. This phase poses an interesting

question: how can domain wall proliferation lead to symmetry enhancement in two di-

mensions but symmetry breaking in three dimensions? We investigate the proliferation

pattern of the domain walls in terms of percolation observables We find that a single type

of domain wall percolates on its own in the symmetry broken phase and stabilizes the

partial order. Such a stabilizing mechanism is found to be absent in the two dimensional

system as the domain wall appears to remain at a percolation threshold throughout the

symmetry enhanced phase. A similar picture is obtained for the four-state Ashkin-Teller

model in three dimensions. The order-disorder transition in the model is found to be

driven by the simultaneous proliferation of domain walls and vortex strings. When the

vortex strings and opposite state domain walls are suppressed, the transition splits and

opens up the partially ordered intermediate phase.

Partial Order Via Proliferation of Subgroup Defects

Following the results obtained in the previous section, we would expect that the order-

disorder transition in n-state models with larger n will split and make way for a partially

ordered intermediate phase when vortices (and opposite state domain walls for even n) is

suppressed. Suprisingly, however, this expectation does not hold true even for the next

simplest model with even n: the six state ferromagnet. Suppression of the two types of

defects destroys the disordering transition but the model appears to exhibit an intermediate

region where the six-fold symmetry is broken in a manner similar to that in the ordered

phase. This intermediate region, as we show, is a prime example of how defects belonging

to symmetry subgroups can drive new types of phase transitions. The six state model can

be decomposed into an Ising and a three state model. Naturally, the relevant defects

in the system are domain walls belonging to the Ising model, domain walls and vortices



belonging to the three state model and vortices belonging to the six state model as a whole.

We show that suppression of the six state vortices and opposite state domain walls leaves

the vortices and domain walls of the three state model to proliferate and form a three state

disordered intermediate phase. Interestingly, this intermediate phase appears to break the

same symmetry as that broken in the ordered phase. We show that the phase transition

from the ordered phase to the intermediate phase is missed when using the standard six

state order parameter but is clearly captured using an effective three state order parameter.

Following this observation, we demonstrate that the six state model can exhibit a rich

cascade of phases where the Ising model is disordered but the three state model is ordered

and vice versa.

Role of Defects in Antiferromagnets

In the previous sections, we restricted ourselves to the physics of ferromagnets. A va-

riety of statistical and quantum systems, on the other hand, are modelled by discrete

spin models with antiferromagnetic interactions. Antiferromagnets on bipartite lattices,

in particular, are particularly interesting because their physics can be effectively mapped

onto that of certain ferromagnets. Specifically, n-state antiferromagnets map onto n-state

ferromagnets for even n and 2n-state ferromagnets for odd n. Does the defect driven

mechanism discussed so far for the ferromagnets carry over to the antiferromagnets as

well? We start with the three state Potts antiferromagnet and show that its phase diagram

can be explained in terms the interplay between defects of the six state ferromagnet. In

particular, we show that the antiferromagnet on a square lattice exhibits disorder at all

non-zero temperatures because the six state vortices begin to proliferate near zero tem-

perature. In three dimensions, the antiferromagnet exhibits a disordering transition at a

non-zero temperature from a broken sublattice symmetry phase at low temperatures. We

show that this phase corresponds to the three state vortex proliferated intermediate phase

in the six state ferromagnet and is, therefore, an example of a partially ordered phase. We

also show how the manipulation of domain walls and vortices opens up phases discovered



for the six state ferromagnet in this antiferromagnet as well.

Melting of Vortex-Antivortex Lattice

A major portion of this thesis has focussed on the effect of suppressing vortices. In a

variety of systems, superfluids and superconductors in particular, the core energy of vor-

tices can be quite low. The resulting enhancement of vortex formation can lead to a

qualitatively different set of phases. We revisit the three state Potts model on the square

lattice and show that the order-disorder transition becomes sharper when the vortex core

energy is decreased. Below a certain threshold of decrease, the transition splits and an

intermediate phase opens up in which the vortices and antivortices pile up into alternate

sublattice sites and form a vortex-antivortex lattice of their own. As the core energy is de-

creased further, the transition from the ordered phase to this intermediate phase is pushed

towards zero temperature while the lattice melting transition from the intermediate phase

to the disordered phase is pushed towards higher temperature. We show that this melt-

ing transition cannot be captured by a conventional symmetry based order parameter as

the spin texture in the intermediate phase involves an equal proportion of all spin states,

albeit in a weave pattern. However, the transition is shown to be clearly captured by a

dilute antiferromagnetic Ising order parameter in terms of the vortices. Demonstration of

vortex-antivortex lattice formation in the even state models, on the other hand, is shown

to be quite tricky because its requires the simultaneous enhancement of vortices as well

as opposite state domain walls. In three dimensions, characterization of the phase in even

the three state Potts model is shown to be quite difficult as the vortices and antivortices

cannot form a perfect lattice due to geometrical contraints. The presence of voids in the

lattice pattern results in a large ground state entropy and the system appears to form a

vortex string condensate instead. Response functions indicate a phase transition from this

phase to the disordered phase but an order parameter capturing the transition remains as

an open problem.
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Chapter 1

Introduction

It is a remarkable aspect of nature that a collection of inanimate microscopic molecules

possess the ability to rearrange themselves and drastically change their collective behav-

ior when subjected to different ambient conditions. A glass of water turns into solid ice

or steam depending on the temperature. Liquid helium suddenly looses its viscosity and

begins to flow past, and even over, obstacles when cooled below a certain temperature.

A number of physical properties characterizing a material undergo drastic change when

the material transitions from one phase to another. From the physicist’s point of view, the

fundamental property which changes across a phase transition is the manifested symme-

try [1].

Water molecules, for example, shoot around in a nearly arbitrary fashion and distribute

themselves homogeneously across space when existing in the liquid phase. This ensures

that the results obtained from a physical measurement made at a particular location ap-

pears identical to that obtained from any other location in the container. Such an invari-

ance is possible because the liquid phase manifests a continuous translational symmetry.

When the temperature is lowered and the liquid freezes to form ice, the invariance no

longer holds true. In the ice phase, the molecules rearrange themselves into the periodic

structure of a crystalline lattice. The presence of molecules at certain points in space and
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their absence at other points breaks the continuous symmetry to a discrete translational

symmetry 1. Phase transitions of this kind, characterized by the spontaneous breaking of a

continuous symmetry, have been studied extensively because ubiquitous symmetries like

rotation and translation, as well as those describing the fundamental interactions in the

Standard Model of particle physics, are continuous in nature [2].

Symmetries characterizing parity, charge conjugation and time reversal are, however, dis-

crete in nature. Furthermore, a wide variety of systems, which possess continuous sym-

metries at the microscopic scale, are effectively described by simpler models possessing

discrete symmetries. The deconfinement of quarks and gluons, from a bound state in

hadrons to a free plasma, is effectively described by a model possessing a three-fold sym-

metry [3]. Numerical algorithms used to simulate the formation of cosmic strings during

cooling in the early universe also use a model with three-fold symmetry [4]. Models

with three-fold and four-fold symmetries are studied to obtain insights into the possibil-

ity of deconfined phase transitions in quantum antiferromagnets [5–7]. The formation

of a phase, where ferromagnetism and ferroelectricity coexists, in multiferroic hexagonal

manganite is described by a model with six-fold symmetry [8, 9]. A fascinating feature

of systems possessing a discrete symmetry is that they can, in addition to spontaneous

breaking, also exhibit a spontaneous enhancement of the discrete symmetry [10–12].

1.1 Symmetry Enhancement

One of the simplest examples of symmetry enhancement can be observed in the equilib-

rium texture of crystal surfaces [13]. Each surface atom tends to pull other atoms in a

small neighborhood around itself to its own height. At low temperature, the surfaces tend

to be flat and maintain an average height in integer multiples of the atom size. Therefore,

1The ice phase is called the symmetry broken phase and the liquid phase is called the symmetry restored
or fully symmetric phase. The later phase is termed as the fully symmetric one because it fully manifests,
at the macroscopic scale, the continuous translational symmetry possessed by the microscopic molecules.
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(a) Flat Phase (b) Rough Phase

Figure 1.1: Typical cross sections showing equilibrium texture of crystal surfaces at (a)
low and (b) high temperatures.

the various possible values of the average height correspond to elements in the group of

integers Z. However, the layer chooses a particular average height for a given instance

and breaks the Z symmetry in this flat phase (Fig. 1.1a). At high temperature, on the

other hand, the layers tend to be rough. The average layer height no longer takes values in

integer multiples of the atom size but covers a continuum of fractional values (Fig. 1.1b).

The symmetry in this rough phase is, therefore, enhanced to a continuous symmetry R.

Another example of symmetry enhancement is provided by n-state models of ferromag-

nets [10, 11]. The microscopic constituents of these models are spin vectors which can

orient along one of n equispaced angles between zero and 2π. Each spin prefers to align

itself along the orientation of its neighbors while thermal fluctuations attempt to arbi-

trarily orient them along any of the n directions. At low temperature, a majority of the

spins on the square lattice align along a common direction and maintain long range or-

der (Fig. 1.2a). By choosing a particular direction among the n possibilities, the system

breaks a Zn symmetry, which is associated with the group of integers closed under addi-

tion modulo n. At high temperature, where the thermal fluctuations are strong enough to

align each spin arbitrarily, the Zn symmetry gets restored and the system exhibits a dis-

ordered phase (Fig. 1.2c). The models show only these two phases on the square lattice

when n ≤ 4. When n > 4, the aligning tendency and the thermal fluctuations balance each

other out across an intermediate range of temperatures in a manner such that the spins

remain correlated but gradually change their orientation over large distances (Fig. 1.2b).

As a result the average orientation of the system keeps fluctuating uniformly over a con-

tinuum of angles between zero and 2π. In effect, a continuous U(1) symmetry emerges in
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(a) Ordered Phase (b) Emergent U(1) Phase (c) Disordered Phase

Figure 1.2: Typical spin configurations in different phases of a Z6 ferromagnet on the
square lattice.

this intermediate phase [12].

While the consequences of symmetry enhancement on the physical properties of the sys-

tem has been the subsequent topic of investigation in the literature [12, 14–19], a few

fundamental questions have remained relatively unexplored.

1. What determines the extent of the symmetry enhanced phase?

2. What stops the n ≤ 4 models from exhibiting symmetry enhancement?

3. What is the general criterion that determines whether a discrete symmetry ( Z, Zn

or otherwise) exhibits enhancement to a continuous symmetry.

Since these questions have not been answered clearly, the existence of a symmetry en-

hanced phase in Zn models has itself become a topic of debate [20–27]. On the simple

cubic lattice no robust signature of an emergent U(1) phase has been obtained for any

value of n. The n ≤ 4 models exhibit a single order-disorder transition. The n > 4 models

exhibit an apparent U(1) emergence at intermediate temperatures in Monte Carlo sim-

ulations. However, this intermediate region continues to shrink with increasing system

size [27]. This has led to proposals for three alternate scenarios:

1. The apparent U(1) emergence is a finite size effect which will vanish in the ther-

modynamic limit, leaving a simple order-disorder phase diagram for all n in three

dimensions [20–24, 27].
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2. The intermediate region will stop shrinking above a certain system size and a stable

U(1) phase will emerge in the thermodynamic limit [25–27].

3. An intermediate phase might be present but it will not exhibit an emergent U(1)

symmetry [23, 25].

If we successfully figure out a general criterion which determines the possibility of sym-

metry enhancement, we will be able to choose the correct candidate between the first

two scenarios in a straightforward manner. However, the third scenario brings in a very

different possibility amidst this debate. What kind of a phase exists at intermediate tem-

peratures but does not exhibit symmetry enhancement?

1.2 Partial Symmetry Breaking

A simple example of an intermediate phase which does not exhibit symmetry enhance-

ment is, again, provided by the texture of crystal surfaces. Suppose the property of the

crystal atoms are modified in a manner such that each surface atom pulls nearby atoms

to its own height across a larger neighborhood around itself [13, 28]. This modified sys-

tem exhibits an intermediate disordered flat phase, between the flat and rough phases,

where the atoms display an up-down-up-down height profile (Fig. 1.3a). The average

layer height is, therefore, limited to half-integer multiples of the atom size. These heights

again correspond to the elements of the group Z and for a given layer, a Z symmetry

is broken. However, the fact that the average values in this phase are offset from that

in the flat phase by half of the atom size makes the transition between the two phases

quite fascinating. What kind of symmetry gets broken across this transition? A layer, in

the process of formation, always has an implicit up-down symmetry. It is this two-fold

symmetry which remains broken in the flat phase but gets restored in the disordered flat

phase [29]. Since only a part of the symmetry characterizing the system gets restored

and the remaining part stays broken, this phase is known as a partially symmetry broken
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(a) Disordered Flat Phase (b) Partially Ordered Phase

Figure 1.3: Partial symmetry breaking leads to (a) an up-down-up-down texture for layers
of crystals, and (b) dominance of two consecutive spin directions in a three dimensional
Z4 ferromagnet (a two dimensional slice is shown here).

phase.

Similar examples of partially symmetry broken phases have been reported for Zn models

as well. The Z6 model on a square lattice, as mentioned earlier, exhibits a low temperature

ordered phase, an intermediate emergent U(1) phase and a high temperature disordered

phase. This phase diagram is obtained when each spin interacts only with its nearest

neighbors. When the range of interaction is increased to include next-nearest-neighbors

and the interaction potential is modified a little, the intermediate phase shows a partially

ordered or incompletely ordered phase [30]. In three dimensions, when the potential of the

Z4 model is modified a little, the single order-disorder transition splits and an intermediate

phase appears in which half of the spins align along one direction and the other half

align along an adjacent direction [31, 32]. This makes the average orientation of the

system lie midway between the n original directions, i.e. offset from the original angles

by π/n (Fig. 1.3b). In a manner similar to that of the disordered flat phase (Fig. 1.3a), the

texture of this phase results from the restoration of an implicit symmetry. In this case, the

implicit symmetry can be exposed clearly by decomposing the Z4 model into a Z2 × Z2

model [33]. The partially order appears because one of the Z2 symmetries gets restored

and the other remains broken. Similar phases, where a Z2 symmetry gets restored, have

been obtained for a Z6 model [34] and a Z3 model [35] in three dimensions. In the latter

case, however, the Z2 restoration is explicitly driven by an external magnetic field in order
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to model the effect of dynamical quarks on deconfinement.

The appearance of these partially symmetry broken intermediate phases serves to com-

pound our questions even further:

1. What determines if an intermediate phase will be symmetry enhanced or partially

symmetry broken?

2. What determines the extent of the partially symmetry broken phase?

3. Can symmetry enhanced and partially symmetry broken phases exist side by side

in Zn models as it does in the texture of crystal surfaces?

Are there other types of intermediate phases in the Z and Zn models? In order to answer

this question, it would be useful to chart out the maximal set of phases that can appear

in these models. It is also fascinating to observe how each phase in the Z model has a

counterpart in the Zn models. The reverse, however, does not hold true. The latter model

exhibits a fully symmetric disordered phase which is absent in the former. Since the

disordered phase acts as a natural boundary, demarcating the extent of the intermediate

phases, we will primarily focus on the Zn models, hereafter. Once our queries have been

answered satisfactorily for these models, we can map our answers to the Z model as well.

However, we note that the close similarity between the phases present in the two models

is not a coincidence. Both models are described by very similar theories in the continuum

limit [23, 29]. And the continuum theory for the Zn models is a good place to start a

systematic characterization of the different types of possible phases.

1.3 Continuum Theory for Models with Zn Symmetries

The continuum theory represents the coarse-grained description of the model which, up

till now, we have considered placed on a lattice. Since the spins are two dimensional unit
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vectors, their coarse-grained counterparts at each point x in the continuum space can be

represented as two component vectors, whose magnitude can vary due to coarse-granining

and averaging effects. They can also be represented, equivalently, as complex numbers

Φ(x). The continuum theory for Φ(x) is the well-known complex scalar theory [36].

The Zn symmetry is factored in by perturbing the theory using n-fold symmetry breaking

fields [23]. The perturbed action is given by

S =

∫
dx [|∇Φ|2 + V(Φ)]

V(Φ) = a|Φ|2 + b|Φ|4 − hn(Φn + Φ̄n) − h2n(Φ2n + Φ̄2n) (1.1)

We will restrict ourselves to cases where b > 0. While the h2n term is ignored in most

calculations reported in the literature [10, 23, 37], we have included it here because it can

lead to the formation of an exotic phase where a Z2n symmetry emerges. Approximate

recursion relations, describing how the initial or bare parameters of the action renormal-

ize with scale, have been developed for the theory in two dimensions [10]. In addition,

an approximate picture for the renormalization flow has been suggested for the three di-

mensional theory using scaling arguments [23, 24]. Instead of going through the specific

details of these calculations, we briefly summarize their salient features with particular

focus on the symmetry manifest at each fixed point governing the different phases. For

ease of visualization, we have plotted the shape of the potential V(Φ) at representative

values of the renormalized parameters along with a projection of their minima on the

complex order parameter space mx + imy (Fig. 1.4). Although the plots are shown for

n = 4 perturbations, some of them are realized for higher values of n.

1. When the perturbations become irrelevant, i.e. their renormalized values are hn =

0 and h2n = 0, the action corresponds to that of the unperturbed complex scalar

theory. This unperturbed theory has a fixed point at a = 0, which corresponds to the

symmetry restoring transition. Both hn and h2n remain irrelevant at a = 0 for n > 4

in two dimensions and for n ≥ 4 in three dimensions. Therefore a U(1) symmetry is
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(a) a = 0.5, hn = −0.15, h2n = 0 (b) a = −1, hn = −0.15, h2n = 0

(c) a = −0.5, hn = −0.15, h2n = 0 (d) a = −0.5, hn = 0, h2n = −0.15

(e) a = −1, hn = 0, h2n = 0

Figure 1.4: Schematic of the potential (above) for the complex scalar theory in the pres-
ence of symmetry breaking perturbations for n = 4 is shown with projection of the poten-
tial minima on the order parameter space (below) at different values of the renormalized
parameters, correspnding to (a) the Z4 symmetry restored phase, (b) the Z4 symmetry bro-
ken phase, (c) the partial symmetry broken phase, (d) the emergent Z8 phase, and (e) the
emergent U(1) phase.
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expected to emerge at the disordering transition in Zn ferromagnets for these values

of n.

2. For a > 0, the system renormalizes to the infinite temperature fixed point, inde-

pendent of whether hn and h2n are relevant or not. This fixed point governs the

disordered phase of the ferromagnets and the potential shows a single minima at

mx = 0,my = 0 (Fig 1.4a).

3. For a < 0, the behavior of the renormalization flow is quite varied. When hn renor-

malizes to a positive value, the system flows to the zero temperature fixed point

where the Zn symmetry is broken and the potential shows n discrete minima at

angles {0, 2π/n, . . . , 2π(n − 1)/n} (Fig 1.4b). This fixed point governs the ordered

phase of the ferromagnets. It has been argued that hn renormalizes to a positive

value below the disordering transition temperature for all n in three dimensions.

In two dimensions, hn renormalizes to a positive value below the transition tem-

perature when n ≤ 4. For n > 4, hn renormalizes to a positive value only at low

temperatures a < a∗, where a∗ depends on n.

4. If, in some cases, hn starts with a bare positive value but renormalizes to a negative

value, then the potential displays n discrete minima located at intermediate angles

{π/n, 3π/n, . . . , π(2n − 1)/n} (Fig. 1.4c). This would correspond to a partially sym-

metry broken phase.

5. If hn becomes irrelevant but h2n remains relevant, then the potential displays 2n

discrete minima located at angles {2πα/n | α ∈ {0, 1/2, 1, . . . , n − 1/2}} if the renor-

malized h2n < 0 or at angles {2πα/n | α ∈ {1/4, 3/4, 5/4, . . . , n − 1/4}} if the renor-

malized h2n > 0 (Fig. 1.4d). Although this possibility has not been discussed for Zn

models, it has been mentioned in the context of the crystal surface model, which has

a similar action (a real scalar field theory perturbed by periodic symmetry breaking

fields) [29]. In this case, the system will exhibit an emergent Z2n symmetry.
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6. Finally, when both hn and h2n become irrelevant for a < 0, the potential shows an

emergent U(1) symmetry with a continuum of tranverse minima (Fig 1.4e). This

represents the ordered phase of the unperturbed theory in three dimensions where

the system sustains a massless Goldstone mode. However, it has been argued that

the hn perturbation is always relevant at this Nambu-Goldstone fixed point. There-

fore, the system flows over to the zero temperature Zn symmetry broken fixed point

and the emergent U(1) phase is never realized in three dimensions. In two dimen-

sions, however, both hn and h2n become irrelevant across an intermediate range of

temperatures a∗ < a < 0 for n > 4 and the system exhibits an emergent U(1) phase

extending across that range.

While the renormalization picture for the continuum theory lists out a set of possible

phases, it effectively describes the behavior of ferromagnets with clock or Villain poten-

tials [10]. However, most of the partially symmetry broken phases have been reported for

ferromagnets with potentials modified away from the clock form [30–32,34,38–40]. The

renormalization group calculation discussed above fails to capture the phase diagram of

these ferromagnets and, instead, merely provides a plausibility argument for their exis-

tence of a partially symmetry broken phase or a Z2n symmetric phase. In addition, it does

not provide an answer to one of our fundamental questions: What is the physical mecha-

nism which drives the phase transitions and leads to the formation of these intermediate

phases?

In this thesis, we demonstrate that symmetry restoration, partial symmetry breaking and

symmetry enhancement in Zn models are all driven by the proliferation of topological

defects.
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1.4 Topological Defects

Topological defects are regions of singularity in the order parameter field which cannot

be removed by continuous deformations [41–44]. Depending on the symmetry of the or-

der parameter and the dimensionality of the system, these regions can appear as points

(vortices, monopoles), lines (domain walls, vortex strings) or, in some cases, even ex-

tend throughout the system (skyrmions, textures). Formally, the existence of topological

defects is determined by the non-trivial homotopy groups of the local order parameter as-

sociated with each point in the system [41]. Due to the numerous possible ways of placing

them in a system, defects carry a high configurational entropy. The triumph of entropy

over energy as a criterion for the onset of a phase transition, therefore, manifests itself via

the proliferation of defects.

Defect driven phase transitions, particularly those which restore spontaneously broken

continuous symmetries, are known to occur in superfluids [45–60], superconductors [61–

68], solids [69–74], liquid crystals [75–82], Heisenberg ferromagnets [83–85], gauge the-

ories [86–93] and the early universe [44, 94]. In bulk superfluids, for example, vortex

string defects appear as small closed loops at low temperatures. When the temperature

is raised above a certain value, the loops grow large and proliferate across the system.

This restores the broken U(1) symmetry of the superfluid order parameter and turns the

superfluid into a normal fluid (Fig. 1.5). The order-disorder transition which restores a

broken O(3) symmetry in bulk Heisenberg ferromagnets is driven by the proliferation of

monopole defects. One of the most popular examples of defect driven transitions, how-

ever, is the Berezinskii-Kosterlitz-Thouless transition in thin films of superfluids driven

by the unbinding and proliferation of point vortices. A special feature of this transition is

that it occurs between two phases where the U(1) symmetry remains unbroken [47, 48].

While the role of topological defects in systems with continuous symmetries has received

a lot of attention, the role of defects in systems with discrete symmetries has remained

relatively unexplored. Discrete symmetries sustain the defects of their continuous sym-
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T = 1.0 T = 2.1 T = 2.2 T = 5.0

Figure 1.5: Superfluid-normal phase transition driven by the proliferation of vortex (blue)
and antivortex (red) strings in three dimensions. Top layers show two dimensional slices
of field configurations belonging to the XY model of superfluid at each temperature T .

metric counterparts. In addition, they also exhibit domain wall defects. The interplay

between domain walls and the other types of defects raises the possibility of obtaining

multiple phase transitions and, consequently, a rich phase diagram. Furthermore, the for-

mation of the defects can be manipulated to change the location of the associated phase

transitions, which in turn, can alter the phase diagram itself.

In this thesis, we will consider Zn models which exhibit simple order-disorder phase di-

agrams that have been studied extensively. By manipulating the formation of defects

which appear in these models, we will open up new phases that have not been reported

before. This would also allow us to map the proliferation of each type of defect to the

corresponding phase that it generates.

1.5 Defects in Models with Zn Symmetries

Consider a Zn spin model on a lattice Λ. Each spin at vertex i ∈ Λ can orient itself

at an angle θi = 2πsi/n, where the integer value of the state si is taken from the set

{0, 1, . . . , n − 1}. The spins can be addressed using the angular representation θi or the

state representation si, in an equivalent manner.

While the spins reside on the vertices of Λ, the defects reside on the dual lattice Λ′. If Λ

is an integer lattice, then Λ′ is also the same integer lattice but shifted from Λ by half a
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lattice spacing along each axis. The cyclic nature of the Zn symmetry allows us to map the

n angles to elements of U(1), for which the first homotopy group is non-trivial [42]. This

allows formation of vortices, or rather discrete versions of vortices, in the Zn models 2.

The discrete nature of Zn, on the other hand, allows formation of domain wall defects

which correspond to the zeroth homotopy group.

1.5.1 Domain Walls

Domain walls are defects with codimension one. This implies that if the spins reside

on the vertices of a d-dimensional lattice Λ, domain walls appear as d − 1 dimensional

elements on Λ′.

Definition. If a pair of neighboring spins on the vertices of Λ are in states a and b, then a

domain wall segment of unit size bearing a label (a | b) appears on the d − 1 dimensional

element of Λ′ which separates the two spins.

For example, if the two spins reside on a square lattice Λ′, then a domain wall segment

appears on the edge in Λ′ separating the spins (Fig. 1.6a). For ferromagnets, it is implied

that a domain wall segment is valid only when a , b. This may not be the case for

antiferromagnets. When referring to a particular type of domain wall, we will always

mention the two states it separates in the form (a | b). Since we will not consider chiral

interactions, a domain wall of type (a | b) is equivalent to one of type (b | a). If the states

are not mentioned, it is implied that we are referring to the collection of all types of valid

domain walls that can appear in the model under consideration.

2The only exception is the case n = 2 (Ising model). This model does not support vortices because the
Z2 angles are mapped onto R and not to U(1) [95]. This mapping also explains why the Ising model does
not show symmetry enhancement to U(1).
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Figure 1.6: Domain walls (gray) residing on elements of the dual lattice (dashed lines)
are shown for configurations of Z4 spins on (a) the square lattice, and (b) the simple cubic
lattice.

1.5.2 Domain Wall Driven Phase Transitions

The behavior of domain walls in models with discrete symmetries, like the Ising model

and the Potts models, has been studied in different representations: as the hull of geo-

metrical spin clusters or domains, as closed graphs of high temperature expansion series,

as closed loops in loop models, as Schramm-Loewner stochastic evolution curves and as

kinks in quantum spin chains [96–111].

Two Dimensional Ising Ferromagnet

In the standard formulation of the Ising ferromagnet on a square lattice, spins σi, which

can be in one of two states σi ∈ {−1,+1}, are placed at each vertex i of a square lattice Λ

and the Hamiltonian with nearest neighbor interaction is given by

H = −
∑
〈i, j〉∈Λ

σiσ j (1.2)

The minimum energy configuration, realized at zero temperature, is a ferromagnetic one

where all the spins are in the same state. When the temperature T is increased, thermal

fluctuations flip a few spins to the opposite state and the system maintains long range order
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T = 2.0 T = 2.2 T = 2.3 T = 3.0

(a) Ising transition on the square lattice

T = 2.5 T = 3.7 T = 4.1 T = 6.5

(b) Ising transition on the simple cubic lattice

Figure 1.7: Proliferation of domain walls (black) across the order-disorder transition of
the Ising model in (a) two dimensions, and (b) three dimensions.

(Fig. 1.7a). With further increase in temperature, flipped spins appear more frequently and

tend to form domains or droplets of their own.

The domain walls correspond to the boundaries of these geometrical droplets [112]. At

low temperatures, the domain walls appear as small closed loops (Fig. 1.7a). When a sin-

gle spin fluctuates to the opposite state, it gets surrounded by a loop four segments long.

When consecutive spins fluctuate to the opposite state, the length of the loop increases

and the geometry of the loop becomes more tortuous, representing higher-order polyomi-

nos. Above a critical temperature Tc = 1/ ln(1 +
√

2) = 2.269 . . ., the loops become so

numerous that in any given configuration, on an average, they are able to connect with

each other to form a giant network which spans across the system. This effectively breaks

the system down into numerous domains, results in the destruction of long range order

and the onset of disorder where the spins align arbitrarily.
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Three Dimensional Ising Ferromagnet

In three dimensions, the Ising model shows an order-disorder transition as well. In this

case, however, the domain walls reside on the plaquettes of the dual lattice. A single spin

flipped to the opposite state is surrounded by six plaquettes. Larger domains of flipped

spins are separated by cuboidal bubbles of domain walls instead of loops. Even though

the geometrical unit of the domain wall has changed, the thermodynamic behavior of

the three dimensional system remains qualitatively similar to that of its two dimensional

counterpart. At low temperatures, most spins are ordered and only a few domain wall

bubbles are present in the system (Fig. 1.7b). With increasing temperature, the bubbles

begin to grow in size and density. At high temperatures, the bubbles proliferate and break

the system into numerous domains, allowing the spins to disorder.

1.5.3 Vortices

Vortices represent one of the simplest topological defects associated with continuous

symmetric order parameters. They play a crucial role in the physics of superfluids [42,

43, 45–55, 57, 60, 65, 86], superconductors [61–64, 66–68], and Josephson junction ar-

rays [113, 114]. Vortices are defects with codimension two and they appear as d − 2 di-

mensional elements on the dual lattice (Fig. 1.8). The winding number at a point in space,

which acts as a measure of vorticity, is usually calculated in the continuum by traversing

a closed circuit around that point and counting the number of signed rotations
∮
∇θ/2π

completed in the order parameter space by the spin orientations on the circuit [42]. On

the lattice, the circuit integral is replaced by a circuit sum while the gradient is replaced

by a finite difference. On an integer lattice, the circuit is usually chosen to be a square

plaquette, although a smaller triangular plaquette would work as well.

Definition.3 Suppose the four spins at the corners of a square plaquette in Λ are oriented

3This definition will be updated in Sec. 3.3.3. Throughout this work, thereafter, the new definition will
be used.
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Figure 1.8: Vortices (blue) and antivortices (red) residing on elements of the dual lattice
(dashed lines) are shown for configurations of Z4 spins on (a) the square lattice, and (b)
the simple cubic lattice.

at angles θi, θ j, θk and θl when read in an anticlockwise sense. The winding number ωi′

associated with the d − 2 dimensional element i′ ∈ Λ′ which pierces the center of the

square plaquette, is given by [59, 115]

ωi′ =
1

2π
([θ j − θi]2π + [θk − θ j]2π + [θl − θk]2π + [θi − θl]2π) (1.3)

Here [θ j−θi]2π = θ j−θi +2πα, with α ∈ Z chosen such that θ j−θi +2πα lies in (−π,+π]. A

vortex or an antivortex appears at i′ if ωi′ > 0 or ωi′ < 0, respectively. Unless mentioned

otherwise, the term vortex will henceforth be used to refer to both vortex and antivortex

defects.

1.5.4 Relationship Between Vortices and Domain Walls

The formula (1.3) for calculating winding number on the lattice brings out a remarkable

connection between domain walls and vortices. Non-zero values for terms like [θ j − θi]2π

imply the presence of a domain wall between the two spins θ j and θi. If the domain

wall is viewed as carrying a flux [θ j − θi]2π, then the winding number represents the net

imbalance of four flux lines incoming at i′. This shows that the formation of vortices is
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dependent on the formation of domain walls. The system cannot sustain any vortex defect

if domain walls do not form because all the terms contributing to the winding number will

be zero. The dependence, however, does not hold true in reverse. The system can sustain

numerous domain walls in a manner such that the contributions to the winding number

cancel out at each i′ and not a single vortex is formed. In this thesis, we will show that

these special types of domain wall configurations are responsible for the existence of some

of the intermediate phases.

1.5.5 Vortex Driven Phase Transitions

The most popular as well as one of the oldest example of a vortex driven phase transition

is the Berezinskii-Kosterlitz-Thouless transition in the two dimensional XY ferromag-

net [42, 47, 48].

Two Dimensional XY Ferromagnet

In the standard formulation of the XY ferromagnet on a square lattice, two dimensional

unit vector spins θi, which can orient at any angle between 0 and 2π, are placed at each

vertex i of a square lattice Λ and the Hamiltonian with nearest neighbor interaction is

given by

H = −
∑
〈i, j〉∈Λ

cos
(
θi − θ j

)
(1.4)

The minimum energy configuration obtained at zero temperature is one where all the spins

are in the same state. When the temperature becomes non-zero, the spins fluctuate gently

and produce spin waves. In two dimensions, however, the spin waves destroy long-range

order [116] and the system exhibits quasi-long-range order instead. The U(1) symmetry

of the model, which could have been broken at low temperatures, now remains restored

at all non-zero temperatures. Since the model does not exhibit symmetry breaking at any
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T = 0.5 T = 0.9 T = 2.0

Figure 1.9: Phase transition in the XY model driven by proliferation of vortices (red) and
antivortices (blue) on a square lattice.

non-zero temperature, the existence of a phase transition in the model had been a topic

of debate in the past. It is now known that the unbinding and proliferation of vortices

drives the transition. At low temperatures, vortices and antivortices form tightly bound

dipoles with spin waves in the background (Fig. 1.9). As the temperature is increased, the

density and average separation between the dipoles increases slightly [117, 118]. Across

a certain temperature T ≈ 0.90, the density increases considerbaly and the dipoles unbind

into a plasma of free vortices and antivortices. This drives a phase transition from the

quasi-long-range ordered phase to the disordered phase.

Three Dimensional XY Ferromagnet

The phase diagram of the XY model in three dimensions differs qualitatively from that

of its two dimensional counterpart. Even though spin waves appear in the system at

non-zero temperatures, they are not sufficient to destroy long-range order. Therefore the

U(1) symmetry gets broken, the system exhibits a non-zero magnetization and sustains a

massless Goldstone mode. At low temperatures, in the ordered phase, the vortex string

defects form small loops (Fig. 1.5). The density and average size of these loops increase

with temperature. Above a critical temperature, the strings begin to proliferate and the

system undergoes a disordering transition.
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1.5.6 Energy versus Entropy Balance for Defects

We now return to the Zn models, where domain walls and vortices can appear simultane-

ously. Given the widespread use of Zn models as effective theories for condensed matter

systems, quantum phase transitions and lattice gauge theories, there is a surprising lack

of direct studies regarding the interplay of the defects in these models. A few sugges-

tions regarding the interplay has ensued from approximate energy versus entropy balance

calculations, which provide an estimate of the temperature range in which formation of

the defects becomes favorable [95, 115]. These estimates have focussed only on a par-

ticular form of interaction: the ferromagnetic clock potential. This potential assigns an

energy cost − cos(θi − θ j), proportional to the extent of alignment between neighboring

spin angles. The corresponding Hamiltonian with nearest neighbor interaction is

H =
∑
〈i, j〉∈Λ

1 − cos(θi − θ j) (1.5)

The balance calculation leading to an estimate of the proliferation temperature for the

defects in this model goes as follows.

Proliferation of Domain Walls

First, we calculate the temperature at which the formation of a domain wall of length l

becomes favorable. Extended loops of domain walls can modelled by non-backtracking

random walks, which provides an upper bound 4 × 3l−1 for the number of walls of length

l on a square lattice. For simplicity, we assume that spins in the system differ from their

neighbors by either zero states or one state, i.e. [θi − θ j]2π = 0,±2π/n. Therefore our

system sustains domain wall defects which only separate neighboring spins which differ

by one state. The free energy at temperature T for such a domain wall, of a given length
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l, is obtained by subtracting the entropy term from the energy.

F(l) = l(1 − cos(2π/n) − T ln 3) (1.6)

We have neglected the terms which are independent of l. Assuming a positive value of

l, F(l) changes sign at Tdw = (1 − cos(2π/n)) ln 3. For T < Tdw, F(l) has a minimum at

l = 0. Above this temperature, the minimum shifts to l → ∞ and the formation of large

domain walls is expected to be favorable.

Proliferation of Vortices

Next, we calculate the temperature at which the formation of a single vortex becomes

favorable. The existence of domain walls separating spins by only one state implies that a

2πwinding of the Zn spin space is completed for a vortex when at least n domain walls, all

with [θi − θ j]2π = +2π/n or all with [θi − θ j]2π = −2π/n, meet at the vortex. For this calcu-

lation, we assume that the vortex resides on a lattice with coordination number n. A lattice

with periodic boundary conditions can never sustain the formation of a single vortex as

any valid configuration of spins will always generate a complimentary antivortex with

such a boundary condition [95, 118]. Therefore, we impose open boundary conditions on

the lattice. In doing so, the n domain walls starting from the single vortex can terminate at

the boundaries without looping back into the lattice. Assuming that each of the n domain

walls continue for a length l, the energy cost of the vortex is evx ≈ e0
vx + nl(1 − cos(2π/n))

where e0
vx is the core energy of the vortex. Assuming that the lattice is two dimensional,

the single vortex can be placed at any of the L2 vertices, where L is the lattice length along

each axis. The free energy of the vortex at a temperature T is therefore F = evx − 2T ln L.

Since the length of the domain walls emanating from the vortex to the system boundaries

will be of the order of L, the energy term will be linear in L while the entropy term is

logarithmic in L. Therefore, in the thermodynamic limit, the free energy will be positive

at all finite temperatures and formation of vortices will be unfavorable. This argument
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suggests that only domain walls can proliferate in Zn models while vortices cannot.

There is, however, an interesting possibility which makes proliferation of vortices quite

feasible, and it has to do with symmetry enhancement. When proliferation of domain

walls becomes favorable above the temperature Tdw, which we estimated previously, the

entire system fragments into numerous domains. Therefore, the spins are able to change

their orientations arbitrarily over large distances. The net orientation of a block of spins

in such a configuration is no longer restricted to the n discrete angles but takes values

uniformly between 0 and 2π. The order parameter, which captures the macroscopic sym-

metry of the system, therefore exhibits a continuous U(1) symmetry [95]. This emergent

symmetry makes the Zn clock ferromagnet indistinguishable from the XY ferromagnet

at macroscopic length scales. Therefore, the standard Kosterlitz-Thouless estimate for

the formation energy of a single XY vortex becomes valid [48]. According to this es-

timate, the linear dependence of the vortex energy on L reduces to a logarithmic one:

evx ≈ e0
vx + π ln L. This can now be countered by the logarithmic L dependence of the

entropy term. The free energy

F(L) ∼ e0
vx + π ln L − 2T ln L (1.7)

changes sign at Tvx = π/2, if the constant core energy term is assumed to be negligible

while L is taken to be a positive integer multiple of the lattice spacing. When T > Tvx, F

becomes negative and formation of vortices becomes favorable. This calculation suggests

that domain wall proliferation can lead to symmetry enhancement, which in turn can lead

to favorable conditions for vortex proliferation.

For n = 3, our calculation provides an estimate of Tdw ≈ 1.65 and Tvx ≈ 1.57. Therefore,

vortex proliferation is expected to preempt the formation of the symmetry enhanced phase

and directly lead the system to disorder from the ordered phase. For n ≥ 4, however, Tdw

is smaller than Tvx and the possibility of a symmetry enhanced intermediate phase exists.

These estimates are, however, valid only for the two dimensional clock ferromagnets. For
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three dimensional clock ferromagnets, on the other hand, it has been suggested that the

domain walls and vortices proliferate together at the same temperature and the interme-

diate phase is absent for all n [95]. With this rough picture in mind, we begin a direct

investigation, using Monte Carlo simulation, into the role played by the two types of

defects in Zn spin models.

1.6 Outline of the Thesis

In Chapter 2, we simulate the Z3 clock ferromagnet on a square lattice and show that the

vortices and domain walls proliferate simultaneously across the order-disorder transition.

In order to decouple the proliferation, we suppress the formation of the vortices by in-

creasing their core energy. For weak suppression, we find that the two types of defects

continue to proliferate simultaneously, but at a higher temperature. The order-disorder

transition shifts to that temperature as well. For strong suppression, the simultaneous

proliferation decouples and the order-disorder transition splits into two revealing an in-

termediate phase in between. We find that a U(1) symmetry emerges in this intermediate

phase and the system exhibits quasi-long-range order (QLRO). We demonstrate that the

QLRO-disorder transition is driven by the proliferation of vortices while the order-QLRO

transition is driven by domain wall proliferation. More specifically, we demonstrate that

the latter transition is driven by the percolation of domain walls.

In Chapter 3, we show that vortex suppression splits the order-disorder transition in the Z4

clock ferromagnet on the square lattice and opens up an intermediate symmetry enhanced

QLRO phase. However, a visual inspection of defect configurations in the disordered

phase reveals an anomaly. We notice that the number of vortices in this phase is much

larger than the number of antivortices, even though the system has periodic boundary

conditions. We trace this anomaly back to a flaw in the standard method for calculating

winding number. The flaw stems from adherence of the calculation to a rule of modular
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arithmetic and manifests itself in models with even number of discrete states. We pro-

pose a modification to the calculation which violates the rule and, therefore, identifies the

vortex defects correctly. When we repeat our simulation using this modified calculation

and suppress the vortices, a partial symmetry broken region appears instead of the QLRO

phase. The QLRO phase is recovered only when ±π domain walls, which separate oppo-

site spin states, are suppressed as well. We show that this combination of vortex and ±π

domain walls drives the QLRO-disorder transition in models with higher values of even n

as well. We also show how this combination plays a role in the Z3 antiferromagnet on the

square lattice.

In Chapter 4, we show that the order-disorder transition in the Z3 ferromagnet on a simple

cubic is accompanied by a simultaneous percolation of domain walls and vortex strings.

Strong suppression of the vortex strings splits the transition and opens up an intermediate

phase where the domain walls percolate but the symmetry is partially broken instead of

being enhanced. Since the transition from the ordered phase to the intermediate phase in

this model and that in the model on the square lattice are both driven by percolation of

domain walls, it is surprising that the resultant phase has different characteristics. In order

to distinguish between the percolation process in the two cases, we study the percolation

properties of individual types of (a | b) domain walls, for each pair of states a and b.

We find that the (0 | 1) domain walls percolate on their own in the partial symmetry

broken phase but remain at a percolation threshold throughout the QLRO phase. We also

show that the order-disorder transition in the Z4 clock ferromagnet on a simple cubic

lattice is also driven by a simultaneous percolation of vortex strings and domain walls.

By suppressing the vortex strings, we obtain a partially symmetry broken phase in which

the (0 | 1) domain walls are observed to percolate on their own.

In Chapter 5, we investigate the phase diagram of the Z6 clock ferromagnet on the simple

cubic lattice for which the apparent emergence of U(1) symmetry in an intermediate re-

gion has been a topic of debate. We show that the apparent emergence, which has been
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attributed to fluctuations induced by the disordering transition, persists even when that

transition is destroyed by complete suppression of vortex strings and ±π domain walls.

We demonstrate that the intermediate region is generated by the proliferation of of vortex

strings belonging to the Z3 subgroup of Z6 and is characterized by the simultaneous per-

colation of two types of domain walls. When the Z3 vortex strings are suppressed, the two

types of domain walls stop percolating but the Zn symmetry broken behavior continues.

When we suppress the formation of domain walls separating spins which differ by two

states, Zn symmetry breaking is replaced by partial symmetry breaking due to restoration

of a Z2 symmetry.

In Chapter 6, we study effect of lowering the core energy of vortices on the Zn ferro-

magnets. We start with the Z3 ferromagnet on the square lattice and show that the order-

disorder transition splits into two for strong enhancement of vortices. The intermediate

phase exhibits a sublattice ordering of vortices and antivortices. This vortex-antivortex

lattice phase cannot be captured using a conventional symmetry-based order parameter.

Therefore, we define a sublattice order parameter using the vortices themselves and show

how this order parameter is able to clearly demarcate the vortex-antivortex lattice phase -

from the ordered phase at the low temperature side and the disordered phase at the high

temperature side. The formation of the vortex-antivortex lattice is demonstrated using

vortex enhancement for ferromagnets on the square lattice for higher n as well. In three

dimensions, however, the vortex strings are observed to form a condensate instead of a

vortex-antivortex lattice.

In Chapter 7, we summarize the main results arising out of this work and conclude with a

list of open problems.
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Chapter 2

Symmetry Enhancement via Domain

Wall Percolation

An approximate energy versus entropy balance calculation (Sec. 1.5.6) for domain walls

and vortices suggests that the temperature for vortex proliferation lies below that of do-

main wall proliferation for the Z3 ferromagnet on the square lattice. However, the forma-

tion of a vortex necessarily requires the presence of domain walls (Sec. 1.5.4), making it

impossible for the vortices to proliferate before the domain walls. Does this imply that

vortices proliferate simultaneously with domain walls, if not later, in the Z3 ferromagnet?

Does the proliferation temperature lie close to that of the order-disorder transition in the

model? Can we identify the defect responsible for driving the transition?
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2.1 Z3 Clock Ferromagnet on the Square Lattice

2.1.1 Hamiltonian

The Z3 clock ferromagnet on the square lattice Λ is defined by the Hamiltonian

H =
∑
〈i, j〉∈Λ

1 − cos(θi − θ j) (2.1)

where the spin vector at vertex i ∈ Λ can orient at three different angles θi ∈ {0, 2π/3, 4π/3}.

The cosine potential has been subtracted from unity in order to set the lowest energy level

at zero. The model is known to undergo an order-disorder transition at T = 3/2 ln(1 +

√
3) = 1.49 . . . [119].

2.1.2 Monte Carlo Simulation Algorithm

We have performed Monte Carlo simulation of this model, on square lattices containing

N = L2 spins, at different temperatures T using the Metropolis algorithm [120]. In this

algorithm, the sum

Ei =
∑

{ j | 〈i, j〉∈Λ}

1 − cos(θi − θ j) (2.2)

representing the interaction between a spin θi at vertex i ∈ Λ and its nearest neighbors

at vertices j is calculated twice: once with the current angle of the spin, and once after

proposing a new candidate angle θ′i , which is chosen arbitarily from the n = 3 possible

values. The difference ∆E - between Ei with θ′i and Ei with θi - determines whether the

candidate angle will be accepted as the new angle of the spin. Specifically, the candidate is

accepted with a probability min[1, exp(−∆E/T )]. These stochastic updates are performed

at the vertices of the lattice in an arbitrary sequence. One Monte Carlo step is said to be

completed after a complete lattice sweep, i.e. L2 attempted updates.
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Figure 2.1: Typical spin configurations obtained on a L = 16 square lattice for the Z3

ferromagnet at different temperatures T overlaid with domain wall (black), vortex (blue)
and antivortex (red) defects. The order parameter distribution obtained for a L = 32
system is also shown at the corresponding temperatures.

After each step, we have calculated the winding number (1.3) at each vertex i′ ∈ Λ′ in

order to generate the configuration of vortices corresponding to the spin configuration.

We have also determined the configuration of domain walls, identified by θi , θ j at each

edge of Λ′.

At low temperatures, the configurations show long range order wherein a majority of the

spins are aligned along a common direction. The few spins which are misaligned get

surrounded by domain walls. Vortices are absent at these temperatures (Fig. 2.1a). As

the temperature is increased, the number of domain walls increases and a few vortices

begin to appear in the form of bound vortex-antivortex dipoles (Fig. 2.1b). Beyond a

certain temperature, the number of domain walls and vortices increase drastically and the

system disorders. Some of the vortices separate out from their antivortices, while the

others remain paired (Fig. 2.1c).

67



2.1.3 Order Parameter

We have also studied the symmetry manifested by the system at each of these tempera-

tures. The order parameter for the Z3 model, in its two component vector form (mx,my),

is given for a system of N = L2 spins by

mx =
∑
i∈Λ

cos θi/N

my =
∑
i∈Λ

sin θi/N (2.3)

At high temperatures, the symmetry is restored as evidenced by the single peak at mx =

0,my = 0 (Fig. 2.1f). At low temperatures, the distribution P(mx,my) of the order param-

eter clearly shows a breaking of the three-fold symmetry (Fig. 2.1d).

Once in a while, over the course of a simulation, the system can muster sufficient fluc-

tuation to jump over the transverse barriers (Fig 1.4b) and change the state in which it’s

symmetry is broken. However, the frequency of these jumps decreases at lower temper-

atures. The frequency also decreases with increase in system size and in the thermody-

namic limit, the system is expected to remain symmetry broken in one particular state.

In such a case, the state in which in the symmetry is broken will depend on the state in

which the system was initialized.

In order to ascertain that the system breaks it’s symmetry in each of the n = 3 states,

we have run an ensemble of twenty simulations. In each simulation of the ensemble, the

system was initialized in a completely ordered configuration. The ordering spin state was

chosen arbitrarily over the n = 3 possibilities across the ensemble. The n = 3 spots in

Fig. 2.1d shows that the system is indeed capable of breaking symmetry in each of the

n possible states. The same procedure of accumulating the order parameter distribution

over an ensemble of simulations will be followed for subsequent models as well.
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2.1.4 Thermodynamic Observables

In order to capture the phase transition in a quantitative manner, we have measured the

magnetization |m| and the magnetic susceptibility χ.

|m| =

√
m2

x + m2
y

χ = N(〈|m|2〉 − 〈|m|〉2)/T (2.4)

In addition, we have also measured the number density of the vortex and domain wall

defects. In the case of vortices, the density ρvx is given by the fraction of dual vertices

i′ ∈ Λ′ which contain a non-zero winding number. For domain walls, the density ρdw is

given by the fraction of dual edges in Λ′ across which θi , θ j. In order to calculate the

thermodynamic averages of these observables at each temperature, we have discarded the

first 104 uncorrelated configurations for equilibriation and performed measurements over

the next 105 uncorrelated configurations.

2.1.5 Phase Diagram

The order-disorder transition is clearly captured by a decay of the magnetization across

T ∼ 1.5 (Fig. 2.2a). The susceptibility peaks at the same temperature and the peak grows

with L (Fig. 2.2c). The density of both types of defects is found to increase simultane-

ously across the transition (Fig. 2.2b). Since there is no ascertainable gap between the

proliferation of the two defects, an intermediate phase with emergent U(1) behavior can

be ruled out. However, this same observation raises an interesting possibility. If the in-

termediate phase does not appear because the vortex proliferation preempts its formation,

can we uncover the phase by delaying the proliferation of vortices?
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Figure 2.2: Top Panel: The density of domain walls and vortices increases simultaneously
across the order-disorder transition captured by the decay in magnetization and the peak
in magnetic susceptibility. Bottom Panel: Upon slightly raising the core energy of the
vortices by an amount λ, proliferation of the two types of defects as well as the transition
shift to a higher temperature. System sizes correspond to L = 16 (circle), L = 32 (square)
and L = 64 (triangle).
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2.2 Vortex Suppression

The standard method for delaying the proliferation of vortices is to raise their core energy

e0
vx (1.7) by an amount λ [50, 53, 59, 60]. For λ > 0, the proliferation temperature of

vortices shifts to a higher value. When this increment is applied to every vortex in a given

configuration, the modified Hamiltonian becomes

H =
∑
〈i, j〉∈Λ

1 − cos(θi − θ j) + λ
∑
i′∈Λ′
|ωi′ | (2.5)

In the Z3 model, all spin configurations that are possible on a square plaquette are found

to generate winding numbers 0, +1 or -1. This allows us to take the absolute value of the

winding number as an indication of whether a vortex defect is present at the dual vertex.

The introduction of the second term requires a modification in the energy calculation

step of the Metropolis algorithm. In addition to the nearest-neighbor interaction energy,

we have to calculate the number of vortices present in the four plaquettes neighboring a

vertex i ∈ Λ. The candidate spin will be accepted with a probability depending on the

difference between the initial and final energies, now calculated including the λ term.

2.2.1 Increased Cost of Computation

The calculation of winding numbers for the four plaquettes surrounding each vertex i ∈ Λ

increases the computational cost of the algorithm drastically. In addition, the Metropolis

algorithm is known to suffer from large autocorrelation times near critical points [120].

In general, cluster algorithms are used as a way out of this problem [121, 122]. However,

we are not aware of any cluster algorithm which can tackle the plaquette interactions that

are effectively introduced into this model by the calculation of the winding number. The

use of the Metropolis algorithm, coupled with the computational cost of the numerous

winding number calculations, have severely limited our ability to investigate the behavior
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of the model at large system sizes, specially near the transitions. As a consequence, we

have not been able to obtain reliable values of the critical exponents which would allow

us to determine the nature and order of the transitions in this and subsequent models.

Instead, we have focussed on the nature of the phases themselves.

2.2.2 Weak Suppression of Vortices

For a slight suppression of the vortices using λ = 3, we find that the rise of vortex density

shifts to a higher temperature T ≈ 2 (Fig. 2.2e). However, the rise in domain wall density

shifts to this temperature as well. The slight increase in λ is, therefore, unable to decouple

the simultaneous proliferation of the defects. Interestingly, the temperature, at which the

magnetization decays and the susceptibility peaks, also shifts to a higher value (Fig. 2.2d).

This suggests that the order-disorder transition is driven by the simultaneous proliferation

of the two types of defects.

We also note that with λ > 0, the decay of the magnetization and the increase in de-

fect densities become more gradual. Usually, first-order transitions are accompanied by

a strong jump in the order-parameter. Across second-order transitions, in comparision,

the order-parameter gradually decays to zero. If the decay becomes even more gradual,

does it indicate that the transition is changing it’s order to a higher one like that of the

infinite order BKT transition? Since we have not measured the critical exponents for the

transition, we are unable to address this question at the moment. However, we have found

that the trend of the transition shifting to higher temperature with increasing λ contin-

ues till λ ≈ 8. This trend is accompanied by the increase in defect density and decay of

magnetization becoming even more gradual with increasing λ.
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Figure 2.3: With strong suppression of vortices, the vortices proliferate at a temperature
higher than that of domain wall proliferation. This decoupling of defect proliferation
forces the order-disorder transition to split and admit an intermediate phase. The split
is evidenced by a two-step decay in the magnetization |m| and double peaks in the sus-
ceptibility χ. The transition from the intermediate phase to the disordered phase shifts
to higher temperatures with increasing λ. System sizes correspond to L = 16 (circle),
L = 32 (square) and L = 64 (triangle).
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2.2.3 Strong Suppression of Vortices

For λ = 9, the vortices begin to proliferate at a temperature T ≈ 3.5 which is clearly

higher than the temperature T ≈ 2.2 of domain wall proliferation (Fig. 2.3b). However,

the maximum value attained by the vortex density (〈ρvx〉 = 0.015 at T = 4.0) for this λ

is much smaller than that attained at lower values of λ, e.g. 〈ρvx〉 = 0.24 at T = 4.0 for

λ = 0. This confirms that the formation of vortices is being suppressed by increasing

λ. With further increase in suppression, using λ = 15 (Fig. 2.3e), the proliferation of

vortices shifts further in temperature and finally receedes to very high temperatures for

λ = 100 (Fig. 2.3h). Since the vortex proliferation has decoupled from domain wall

proliferation, the manner in which the domain wall density increases around T ≈ 2.2

remains constant, independent of the change in λ.

The decoupling of defect proliferation has a drastic influence on the thermodynamic ob-

servables. The order-disorder transition appears to split and the magnetization exhibits

a two-step decay for λ = 9 (Fig. 2.3a). The gap between the two decay steps increases

with λ. The first decay from the ordered phase to the intermediate region, which occurs

at T ≈ 2.2, is close to the temperature where the domain walls start proliferating. The

second decay, from the intermediate region to the disordered phase, continues to shift

to higher temperatures closely following the shift in vortex proliferation. For extreme

suppression of vortices with λ = 100, the second decay receedes to very high tempera-

tures (Fig. 2.3g). This behavior is also reflected in the data for susceptibility. At λ = 9, we

observe the formation of two peaks (Fig. 2.3c). With increasing λ, the second peak shifts

to higher temperatures while the first peak remains at T ≈ 2.2. This set of observations

establishes that the transition from the ordered phase to the intermediate phase is driven

by the proliferation of domain walls while the transition from the intermediate phase to

the disordered phase is driven by the proliferation of vortices.

We have also measured the specific heat of the system cv = (〈H2〉−〈H〉2)N/T 2 at different

temperatures for each value of λ. For λ = 0, cv peaks at T ≈ 1.5 (Fig. 2.4a). The peak
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Figure 2.4: Variation of specific heat in the 2D Z3 ferromagnet at different values of λ.
System sizes correspond to L = 16 (purple), L = 32 (green) and L = 64 (red).

is observed to grow with increasing system size. This reflects the second-order nature of

the order-disorder transition. With λ = 9, we find that the peak splits into a sharp peak at

T ≈ 1.7 and a shallow bump around T ≈ 4.2 (Fig. 2.4b). Neither of these two features

show a system size dependence. With increasing λ, the shallow bump keeps shifting to

higher temperatures while the sharp peak remains at T ≈ 1.8. The observation that this

peak does not scale with system size suggests that the order of transition has increased

from second order to, possibly, one with an essential singularity. In fact, it is known

that the transition from order to intermediate phase in two dimensional Z5 and higher

models is a BKT transition with an essential singularity and that the specific heat which

accompanies the transition does not show any system size dependence [15, 16].

Before exploring the nature of the intermediate phase, we note that the manner in which

the thermodynamic observables change with system size, makes it difficult to accurately

ascertain the extent of the intermediate phase for the range of λ values considered here.

We find that for λ = 9, the second peak in the susceptibility moves closer towards the first

peak with increasing system size (Fig. 2.3c). Therefore, it is possibile that the two peaks

will merge above a certain system size. Even for λ = 15, the second peak starts to move

towards the first with increasing system size (Fig. 2.3f). On the other hand, we find that

the location of the second peak shifts to higher temperatures with increasing values of λ,

for a given system size. The competing effect of system size and λ, therefore, gives rise

to two alternate scenarios:
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1. There exists a threshold λ+, above which the intermediate phase has a non-zero

extent in the thermodynamic limit.

2. The intermediate region shrinks to a point in the thermodynamic limit for all finite

λ and the model exhibits an extended intermediate phase only in the λ→ ∞ limit.

A systematic characterization of the rate at which the intermediate region shrinks with

system size and the rate at which the region expands with λ is required in order to answer

this question.

2.3 Symmetry Enhanced Intermediate Phase

The data for λ = 100, provides a large range of temperatures in which the properties

of the intermediate phase can be studied clearly. A measurement of the order parameter

distribution, accumulated over an ensemble of simulations, inside this phase shows an

annular structure which indicates the emergence of U(1) symmetry (Fig. 2.5a). Typical

spin configurations obtained in this phase show a gradual change of the states across large

distances. In addition, the configurations show absence of vortices but proliferation of

domain walls (Fig. 2.5b). The manner in which the domain walls span across the entire

system suggests that their proliferation can be captured in a quantitative manner usingx

the framework of percolation theory.

2.3.1 Domain Wall Percolation

Percolation theory deals with the statistics of clustering processes [123]. A variety of

clustering processes exhibit two types of phases: one in which a constituent cluster is

large enough to span across the entire system, and another in which none of the clus-

ters are large enough to do so. Suitably defined clusters of spins in a variety of spin

models like the Ising, Potts and XY models exhibit a percolation transition which can
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Figure 2.5: The intermediate phase uncovered using strong suppression of vortices (λ =

100) reveals (a) an emergent U(1) symmetry in the order parameter distribution obtained
at T = 5 for a L = 32 system, and (b) proliferation of domain walls but absence of vortices
in typical spin configurations obtained at the same temperature.

be mapped exactly onto the thermodynamic transition [96–98, 104, 122, 124, 125]. The

key to this mapping lies in joining two neighboring spins into the same cluster using a

particular stochastic scheme. The perimeter of these stochastically generated clusters can

be viewed as a stochastic version of the domain walls. While a study of the percolation

properties exhibited by such domain walls are an interesting topic in its own right, we will

restrict ourselves to the percolation properties of geometric domain walls in this thesis.

The percolation transition of these geometric domain walls need not coincide with the

thermodynamic transition.

For each configuration, geometric domain walls are constructed by joining two domain

wall segments which reside on adjacent edges of Λ′, i.e. which share a common vertex

i′ ∈ Λ′. We have labelled isolated domain wall clusters using the Hoshen-Kopelman

algorithm [123] and identified the largest cluster. The fraction Pdw of dual edges in this

largest cluster measures the strength of percolation and serves as an order parameter for

the percolation transition. Setting aside the largest cluster for each configuration, we have

binned the sizes of all the other clusters into a distribution n(s). By accumulating data for

this distribution over 105 uncorrelated configurations, we have measured the average size
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Figure 2.6: Measurement of standard percolation observables for geometric domain walls
show that (a) the percolation strength Pdw increases in the intermediate phase T > 2.2,
(b) the spanning probability Πdw saturates to unity in that phase and (c) the average size
of domain walls χdw peaks near the transition from the ordered phase to the intermediate
phase. System sizes correspond to L = 16 (circle), L = 32 (square) and L = 64 (triangle).

of clusters according to the formula

χdw =

∑
s s2n(s)∑
s sn(s)

(2.6)

This observable is similar to magnetic susceptibility and diverges at a continuous percola-

tion transition [123]. In addition, for each configuration, we have checked if any cluster,

formed using open boundary conditions, spans from one face of the system to the op-

posite face. The average of this Boolean measurement over the configurations gives the

spanning probability Πdw. In the thermodynamic limit, the value of this observable is one

in the percolated phase, and zero otherwise.

Our measurements show that the size of the largest cluster rises across the transition from

the ordered to the intermediate symmetry enhanced phase (Fig. 2.6a). The spanning prob-

ability saturates to unity in the intermediate phase and the curves for different L cross near

T ≈ 2.2, which is very close to our estimate for the temperature of the thermodynamic

transition from the ordered phase to the intermediate phase (Fig. 2.6b). A high precision

estimate of the thermodynamic transition and percolation temperatures is required to as-

certain if the two transitions actually coincide without the need for a stochastic scheme.
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This result shows that the symmetry enhancing transition from the ordered phase is driven

not just by the proliferation, but more specifically, by the percolation of domain walls. We

have checked that the domain walls continue to percolate in the symmetry enhanced phase

and also in the disordered phase. Therefore, domain wall percolation does not distinguish

between these two phases. It is the proliferation of vortex defects which brings about the

distinction between the symmetry enhanced phase and the disordered phase.

2.3.2 Two-Point Correlations

While the result obtained for domain wall percolation vindicates the picture of symmetry

enhancement due to domain wall proliferation, it does not provide any answer regarding

the nature of ordering in the symmetry enhanced phase. The magnetization, at each tem-

perature in this phase, is found to gradually decay with increasing system size (Fig. 2.3g)

in a manner characteristic of critical behavior. Such a slow decay at each temperature has

also been reported for the quasi-long-range ordered (QLRO) phase in the two dimensional

XY ferromagnet [126]. In the XY model, the phase exhibits QLRO because a system with

a continuous symmetry cannot exhibit long-range order in two dimensions [116]. Does

the continuous U(1) symmetry, even though emergent, bring about QLRO in the interme-

diate phase of the present model? This type of order can be characterized using two-point

spin-spin correlations C(r) = 〈cos(θ0−θr)〉, where θ0 and θr are spins located an Eucledian

distance r apart on the lattice and the average is over all such pairs. In the QLRO phase,

the correlation is expected to decay as a power-law C(r) ∝ r−η, where the exponent η

changes with temperature [115]. Since a power-law decay of C(r) is typically obtained at

a critical point, the entire QLRO phase can be viewed as a line of critical points.

We have measured C(r) at different temperatures in the intermediate phase and for dif-

ferent system sizes. In order to capture the expected power-law behavior over a range of

r, we have simulated the systems with upto L = 256, despite the computational difficul-

ties (2.2.1). Our results clearly show that C(r) decays as a power-law with an exponent
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Figure 2.7: Measurement of two-point correlation for a L = 256 system shows a power-
law decay whose exponent η changes with temperature, thus confirming the QLRO nature
of the phase.

which changes with temperature (Fig. 2.7a). The small tapering effect at the end of C(r)

is due to the finite size of the system. In the thermodynamic limit, this effect is expected

to vanish and C(r) is expected to exhibit a full power-law decay. We have also measured

the exponent η at different temperatures (Fig. 2.7b) and find that it increases from a value

η ≈ 0.35, obtained right after the order-QLRO transition, and saturates at η ≈ 0.75 for

higher temperatures. This result is quite surprising because η in the QLRO phase of Zn

clock models with n > 4, increases from η = 4/n2 at the order-QLRO transition to η = 1/4

at the QLRO-disorder transition [16]. Our results show that η in the QLRO phase of the

Z3 model starts from η > 1/4 at the order-QLRO transition itself. It would be interesting

to adapt the Kosterlitz renormalization group equations for the XY model [127] to the

present model and analyze the behavior of η in this QLRO phase.

Z3 is the smallest Zn group which is cyclic in nature. By demonstrating that this symmetry

can get enhanced to U(1), we have made a strong case for the possibility that every dis-

crete and cyclic symmetry can show enhancement to U(1). This demonstration has been

possible because we have correctly identified the mechanism which drives symmetry en-

hancement: percolation of domain walls in the absence of vortex proliferation. Does the

same mechanism enhance Zn symmetries to U(1) for higher n as well?
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Chapter 3

Vortex Winding Number and Role of ±π

Domain Walls

The energy versus entropy balance calculation (Sec. 1.5.6) suggests that the temperature

for vortex proliferation in Zn clock models is higher than that for domain wall proliferation

when n ≥ 4. Therefore, an intermediate symmetry enhanced phase, in which the domain

walls proliferate but vortices do not, is expected to occur naturally for n ≥ 4. However, Zn

clock models are known to exhibit such an intermediate phase only for n ≥ 5 [10,12,16].

The Z4 clock model exhibits a single order-disorder transition. Is this single transition

driven by a simultaneous proliferation of domain walls and vortices, in a manner similar

to the Z3 case?

The Z4 ferromagnet supports a family of interaction potentials, of which the clock po-

tential is only a special case [128]. Another member of this family is the Potts potential

which prefers neighboring spins to be in the same state and penalizes any dissimiliarity

with an energy cost, i.e it has a Kronecker delta form −δ(θi, θ j). These two potentials can

be smoothly changed into one another by varying a single parameter [128]. For all the

potentials characterized by the variation of this parameter, the Z4 ferromagnet exhibits a

single order-disorder transition which is continuous in nature. Surprisingly, however, the
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critical exponents of these transitions vary continuously with the parameter in an appar-

ent violation of the universality paradigm. This continuously varying critical behavior is

generated by an interplay between n-fold symmetry breaking perturbations (which has

the effect of generating domain walls) and vortices at the transition [37]. It implies that

a simultaneous proliferation of domain walls and vortices is responsible for driving the

order-disorder transition. However, there has been no direct demonstration of this si-

multaneous proliferation. Furthermore, the behavior of the system under suppression of

vortices has not been studied. Can the suppression split the order-disorder transition and

open up an intermediate symmetry enhanced phase in the Z4 clock ferromagnet, as it did

in the Z3 case?

3.1 Z4 Clock Ferromagnet on the Square Lattice

3.1.1 Hamiltonian

The Z4 clock ferromagnet with a λ increment of the vortex core energy is described by

the Hamiltonian

H =
∑
〈i, j〉∈Λ

1 − cos(θi − θ j) + λ
∑
i′∈Λ′
|ωi′ | (3.1)

where the spin vector at vertex i ∈ Λ can orient at four different angles θi ∈ {0, π/2, π, 3π/2}.

3.2 Phase Diagram

We have simulated the Z4 model using the Metropolis algorithm and measured the n = 4

version of the vector order parameter (mx,my) (), the density of domain walls ρdw and the

density of vortices ρvx for different system sizes.
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Figure 3.1: Top panel: The magnetization |m| decays across the order-disorder transition
in the Z4 clock ferromagnet on a square lattice, accompanied by a simultaneous increase in
the densities of domain walls ρdw and vortices ρvx. Bottom panel: With extreme suppres-
sion of vortices, the order-disorder transition splits and the disordering transition recedes
to very high temperatures. The system shows a single transition order-QLRO transition
accompanied by the proliferation of domain walls. Data has been obtained for system
sizes L = 16 (circle), L = 32 (square) and L = 64 (triangle).

The order-disorder transition, in the model without vortex suppression (λ = 0), is captured

by a decay in magnetization at T ≈ 1.1 (Fig. 3.1a). The magnetic susceptibility χ shows a

peak at this temperature as well (Fig. 3.1c). We find that the density of domain walls and

vortices both increase simultaneously across the transition temperature (Fig. 3.1b). This

explains why the Z4 clock ferromagnet does not exhibit an intermediate phase.

With increase in vortex suppression strength λ, the simultaneous proliferation of the two

types of defects and the accompanying transition shift to higher temperatures and then

split into two in a manner similar to that observed in the case of the Z3 ferromagnet. An

intermediate phase appears between the split transitions. The transition from the interme-
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Figure 3.2: Typical spin and defect configurations obtained for the Z4 clock ferromagnet
on a L = 16 lattice and the order parameter distribution obtained for a L = 32 system
obtained in the ordered phase (a),(d); in the disordered phase (b),(e); in the intermediate
symmetry enhanced phase (c),(f). Note the unsual dominance of vortices (blue) over
antivortices (red) in the disordered phase. A vortex with winding number +2 (green) is
also present in the configuration for that phase.

diate phase to the disordered phase, which is associated with vortex proliferation, recedes

to very high temperatures with extreme suppression of vortices using λ = 100 (Fig. 3.1d).

On the other hand, the transition from the ordered phase to the intermediate phase, which

is associated with domain wall proliferation, remains at T ≈ 1.5.

Our measurement of the order parameter distribution P(mx,my) for λ = 0, reveals that the

ordered phase breaks a four-fold symmetry (Fig. 3.2a), which gets restored in the disor-

dered phase (Fig. 3.2b). In the intermediate phase obtained for λ = 100, the distribution

clearly shows an enhancement of the symmetry to U(1) (Fig. 3.2c). So far the behavior

of the system is similar to that obtained for the Z3 model. This might suggest that domain

wall driven symmetry enhancement and vortex driven symmetry restoration is a generic

feature of Zn ferromagnets on the square lattice.

84



An inspection of the spin and defect configurations shows that a few domain walls ap-

pear in the ordered phase (Fig. 3.2d) and begin to proliferate in the symmetry enhanced

phase (Fig. 3.2f). However, we come across a glaring anomaly, when we inspect the

defect configurations obtained in the disordered phase. While vortices are expected to

proliferate in the disordered phase, we also expect an equal number of vortices and an-

tivortices to appear in any given configuration because we are simulating a system with

periodic boundary conditions (Sec. 1.5.6). However, our simulation shows an outright

dominance of vortices over antivortices in the disordered phase (Fig. 3.2e). In addition,

we find vortices with winding number +2 but no antivortices with winding number -2.

This unphysical behavior suggests that we should verify the correctness of our method

for identifying the vortex defects. Our attempt at this verification has revealed a flaw in

the standard method for calculating winding number.

3.3 Winding Number Calculation

Consider a small region (Fig. 3.3) of the spin configuration (Fig. 3.2e) which appears to

sustain more vortices than antivortices, and even a vortex with winding number +2. Let us

evaluate the winding number for each plaquette explicitly using the standard method (Eq. 1.3).

3.3.1 Standard Method

On the bottom-left plaquette, the angles when read in an anticlockwise sense are: 0,3π/2,π

and π/2. Their contribution to the winding number is calculated as ([3π/2 − 0]2π + [π −

3π/2]2π + [π/2 − π]2π + [0 − π/2]2π)/2π. Upon evaluating the modular difference for each

term, the winding number becomes (−π/2 − π/2 − π/2 − π/2)/2π = −1. Therefore, we

obtain an antivortex in this region. The negative sign obtained in this case arises from

our convention of going anticlockwise around the plaquette. If we go clockwise, the

sign should flip. We can verify this by computing the winding number in the reverse
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Figure 3.3: Vortex defects identified using the standard method in (a) the anticlockwise
sense and (b) the clockwise sense for a configuration of Z4 spin states. Red, blue and
green denote defects with winding number -1, +1 and +2, respectively.

sense, which gives us ([π/2 − 0]2π + [π − π/2]2π + [3π/2 − π]2π + [0 − 3π/2]2π)/2π =

(+π/2 + π/2 + π/2 + π/2)/2π = +1. Indeed, we obtain a vortex with winding number +1

on the bottom-left plaquette (Fig. 3.3b).

On the top-left plaquette, the angles when read in an anticlockwise sense are {π/2, π, 0, 0}

(Fig. 3.3a). Their contribution is evaluated as ([π − π/2]2π + [0 − π]2π + [0 − 0]2π + [π/2 −

0]2π)/2π = (+π/2 + π + 0 + π/2)/2π = +1, indicating the presence of a vortex. The

calculation when carried out in the clockwise sense, should give an antivortex. When we

actually carry out this calculation: ([0− π/2]2π + [0− 0]2π + [π− 0]2π + [π/2− π]2π)/2π =

(−π/2 + 0 + π − π/2)/2π = 0, we find absence of a vortex, which should not be the

case (Fig. 3.3b). The calculation on this plaquette clearly results in unphysical behavior.

We will show that this behavior arises from a rule of modular arithmetic.

3.3.2 Violation of Modular Arithmetic

We note that every contributing term in the anticlockwise calculation has flipped sign dur-

ing the clockwise computation, expect for one: that representing the modular difference

between angles 0 and π on the right edge of the top-left plaquette. In the anticlockwise

calculation, this term appears as [0−π]2π = [−π]2π. According to the rule of modular arith-

86



metic, the value should be adjusted to lie in (−π,+π]. Therefore we obtain the adjusted

value [−π]2π = +π. In the clockwise calculation, this term appears as [π − 0]2π = [+π]2π.

Since the argument already lies in the interval (−π,+π], we obtain [+π]2π = +π. Due

to this half-closed nature of the interval, we obtain +π as the answer for the modular

difference of the term, in both anticlockwise and clockwise calculation. However, for

identifying a physical vortex, we need the answer to flip sign when the sense is reversed.

Clearly, this cannot be achieved if we continue to adjust the answer to lie within the half-

closed interval as dictated by modular arithmetic. The interval should be symmetric, i.e.

it should either be closed on both ends or be open on both ends. If it is open on both

ends, the calculation of [+π]2π as well as [−π]2π becomes undefined. If, on the other hand,

we use an interval [−π,+π], which is closed at both ends, we obtain [+π]2π = +π and

[−π]2π = −π, which is precisely what we require. We conclude that in order to obtain a

physical winding number, we must violate the interval criterion of modular arithmetic.

3.3.3 Modified Method

Using our new criterion for choosing the interval, we propose a modification to the wind-

ing number calculation which remedies the flaw in the standard method (Eq. 1.3). Our

new definition of winding number, to be used hereafter, is as follows.

Definition. The winding number ωi′ associated with the d−2 dimensional element i′ ∈ Λ′

which pierces the center of the square plaquette, is given by

ωi′ =
1

2π
([θ j − θi]2π + [θk − θ j]2π + [θl − θk]2π + [θi − θl]2π) (3.2)

Here [θ j − θi]2π = θ j − θi + 2πα, with α ∈ Z chosen such that θ j − θi + 2πα lies in [−π,+π].

This modification, although subtle, can imply a drastic change in the physics of vortex

defects. In particular, the numerical results in statistical models, quantum condensed mat-

ter systems and gauge theories, which have identified vortices using the standard method,
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Figure 3.4: Vortex defects identified using the modified method in (a) the anticlockwise
sense and (b) the clockwise sense for a configuration of Z4 spin states. Red, blue and
green denote defects with winding number -1, +1 and +2, respectively.

are now suspect. However, we note that the need for the modified method arises only

when angle differences of ±π are present in the system. Such differences do not appear

in models with odd number of states. Therefore, our results for the Z3 ferromagnet, ob-

tained in Chapter 2, do not need revision. However, we need to revise the simulation

results obtained for the Z4 ferromagnet. Before proceeding to revise the results, let us

complete the evaluation of winding number for the other plaquettes (Fig. 3.3a) using the

standard method and compare them to the new winding numbers obtained for the same

spin configurations using our modified calculation.

Using the standard method, we obtain a vortex with winding number +1 in the anticlock-

wise sense on the bottom-right plaquette (Fig. 3.3a) and find that the vortex disappears

when the sense is reversed (Fig. 3.3b). This unphysical behavior occurs due to the pres-

ence of angles 0 and π on the top edge of the plaquette. The vortex with winding number

+2 appears on the top-right plaquette (Fig. 3.3a) due to the presence of ±π angle differ-

ences on all the four edges. Upon reversal of sense, the winding number does not flip sign

but remains as +2 (Fig. 3.3b). This explains the absence of antivortices with winding num-

ber −2 in the disordered phase (Fig. 3.2e). The only legitimate vortex identified among all

the four plaquettes seems to be the one belonging to the bottom-left plaquette (Fig. 3.3).
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We now evaluate the winding number for the same spin configuration using our modified

method (Eq. 3.2). As expected, we find the legitimate vortex on the bottom-left plaque-

tte even using our modified method (Fig. 3.4a). Upon reversal to a clockwise sense, the

vortex turns into an antivortex (Fig. 3.4b). Surprisingly, we do not find any vortex on the

top-left and top-right plaquettes using our method. The vortices identified on these pla-

quettes using the standard method were, therefore, false vortices. If the standard method

identifies such false vortices in large numbers, we should be careful in interpreting the

data reported in the literature for models with even states. On the bottom-right plaquette

we find a vortex in the anticlockwise sense, which turns into an antivortex in the clockwise

sense (Fig. 3.4b). Of particular interest is the identification of vortices with +2 winding

number using the standard method. We have evaluated the winding number for all possi-

ble spin configurations on a square plaquette for models with different values of n using

our modified method. In none of the configurations did we find vortices with winding

number ±2. Therefore, none of the models with finite n on a square lattice should exhibit

winding numbers other than 0,-1 or +1. Hereafter, we discard the use of the standard

method and resort to the use of our modified method for calculating winding number.

3.4 Z4 Clock Ferromagnet on the Square Lattice Revis-

ited

As we begin our revision of the simulation results obtained for the Z4 clock ferromagnet,

we find that the behavior of magnetization, susceptibility and domain wall density remains

the same as that obtained in the previous case (Fig. 3.5a). This is expected because the

winding number calculation has no relation to these quantities if we are not suppressing

the vortices (λ = 0). However, the vortex density is found to be halved form a saturation

value of ρvx ≈ 0.4 at T = 4 in the previous simulation (Fig. 3.1b) to a value of ρvx ≈ 0.2

at the same temperature in the modified simulation (Fig. 3.5b).
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Figure 3.5: Revision of the data displayed in Fig. 3.1 and Fig. 3.2, arising due to the
simulation being reperformed using our modified method for calculating winding number.
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With extreme suppression of the vortices (λ = 100), all the thermodynamic observ-

ables (Fig. 3.5b) show a change in behavior compared to the previous results (Fig. 3.1).

The domain wall density now touches a higher value ρdw ≈ 0.6 at T = 4 (Fig. 3.5e) com-

pared to a value of ρdw ≈ 0.5 at the same temperature in the previous simulation (Fig. 3.1e).

The magnetization, which showed a gradual decrease with system size at each point in the

symmetry enhanced phase due to the onset of QLRO, now remains nearly constant with

system size at each temperature (Fig. 3.5d). A similar change in behavior is observed in

the portion of the susceptibility curve to the right of the peak (Fig. 3.5f). These results

suggest that the QLRO of the symmetry enhanced phase, obtained in the previous simu-

lation, has been replaced by a different type of order. The order parameter distribution at

a temperature in this new phase shows a breaking of the four-fold symmetry but at angles

offset from the spin angles by π/4 (Fig. 3.5i). This is precisely the pattern we had obtained

for a partial symmetry broken phase from the renormalization picture of the continuum

theory (Fig. 1.4c). This result suggests that the ordered phase undergoes a partial sym-

metry breaking transition driven by the proliferation of domain walls when the vortices

are suppressed. Is this behavior particular to the Z4 ferromagnet? Does it occur for all Zn

ferromagnets with n > 3? Or does it occur only for ferromagnets with even n? In order to

answer this question, we study the effect of vortex suppression on the next ferromagnet in

the series, the Z5 ferromagnet.

3.5 Z5 Clock Ferromagnet on the Square Lattice

The Z5 clock ferromagnet with vortex suppression on the square lattice is described by the

same Hamiltonian (3.1), except that each spin vector at vertex i ∈ Λ can now orient at five

different angles θi ∈ {0, 2π/5, 4π/5, 6π/5, 8π/5}. This is the first model in the series of Zn

clock ferromagnets which naturally exhibits an intermediate symmetry enhanced QLRO

phase between a low temperature ordered phase and a high temperature disordered phase

without the need for vortex suppression [15, 16]. While the decay in magnetization can
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be used to locate the disordering transition, the order-QLRO transition can be located by

noting the temperature at which the n-fold symmetry breaking perturbation (1.1) becomes

irrelevant and gives way to the U(1) symmetric phase. In other words, we can search for

the temperature across which m5φ decays to zero [14], where

mnφ = 〈cos nφ〉

φ = arctan(my/mx) (3.3)

We have simulated the ferromagnet and measured the thermodynamic observables, once

without vortex suppression (λ = 0) and once with extreme vortex suppression (λ = 100).

For λ = 0, we find that the vortex density increases at a temperature T ≈ 1, which

is slightly higher than the temperature T ≈ 0.9 across which the domain wall density

increases (Fig. 3.6b). This is reflected in the behavior of the order parameter as well. The

measure of symmetry breaking m5φ decays from a unity to zero across T ≈ 0.9 (Fig. 3.6a)

while the magnetization decays at a slightly higher temperature T ≈ 1. Therefore, the Z5

symmetry, which is broken in the ordered phase T < 0.9, gets enhanced to U(1) in the

intermediate phase and restored at higher temperatures.

For λ = 100, the proliferation of vortices recedes to very high temperatures (Fig. 3.6e)

along with the disordering transition. The narrow extent of symmetry enhanced phase

obtained in the λ = 0 case, gets extended across a large range of temperatures above T ∼

0.9. The QLRO nature of the phase is reflected in the gradual decay of the magnetization

with increasing system size at each temperature (Fig. 3.6d). The decay of m5φ, which

marks the order-QLRO transition, and the proliferation of domain walls occurs around

T ≈ 0.9 (Fig. 3.6e). This result suggests that domain wall proliferation leads to symmetry

enhancement and vortex proliferation leads to symmetry restoration in the Z5 ferromagnet.

The intermediate symmetry enhanced region occurs naturally, without the need for vortex

suppression, in ferromagnets with higher n ≥ 5 as well. [12, 15–18]. We have shown that
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Figure 3.6: Top panel: The decay of m5φ marks the onset of symmetry enhancement and
the decay of magnetization marks the disordering transition in the Z5 clock ferromagnet
on a square lattice. The former is accompanied by an increase in the density of domain
walls ρdw while the latter is accompanied by increase in vortex density ρvx. Middle panel:
With extreme suppression of vortices, the disordering transition recedes to very high tem-
peratures. The system shows a single transition order-QLRO transition accompanied by
the proliferation of domain walls. System sizes are the same as those in (Fig. 3.1). Bottom
panel: Two-point correlations at different temperatures in the QLRO phase for a L = 256
system with λ = 100.
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the Z3 ferromagnet also exhibits symmetry enhancement, albeit with the suppression of

vortices. This raises an important question. Does the Z4 ferromagnet exhibit only partial

symmetry breaking and never symmetry enhancement? This would be rather odd because

there is no apparent reason for the Z4 ferromagnet to display a special behavior. On the

other hand, we remind ourselves that we did obtain a symmetry enhanced phase in the

Z4 ferromagnet when we suppressed the formation of vortices using the standard method

for calculating winding number (Fig. 3.2c). It implies that, while using the standard

method, some feature of the model got suppressed along with the vortices and opened

up a symmetry enhanced phase but is no longer getting suppressed when the modified

method is being used. In order to identify this feature, we need to revisit the sample spin

configurations for which we calculated the winding numbers explicitly (Fig. 3.3a).

3.6 Role of ±π Domain Walls

We observe that the standard method always places a non-zero winding number on pla-

quettes which contain at least one angle difference of ±π, whereas the modified method

does not necessarily identify a vortex in such cases. This implies that with a non-zero vor-

tex suppression λ, every instance of a ±π angle difference gets suppressed when using the

standard method. Every instance of a ±π angle difference represents a ±π domain wall

segment. For example, the four edges containing ±π angle differences in the top-right

plaquette (Fig. 3.3a) represent four ±π domain wall segments. When using the standard

method in the anticlockwise sense, a vortex is identified on this plaquette and λ suppresses

this vortex, thus effectively suppressing the formation of the ±π domain walls. However,

the modified method does not identify a vortex on that plaquette (Fig. 3.4a) and, therefore,

does not suppress any of those ±π domain walls. Is suppression of ±π domain walls the

feature which holds the key to obtaining a symmetry enhanced phase in the Z4 ferromag-

net?
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In order to answer this question, we have simulated the Z4 clock ferromagnet with extreme

suppression of vortices as well as ±π domain walls. The Hamiltonian which includes

energy costs for suppressing the two types of defects is given by

H =
∑
〈i, j〉∈Λ

1 − cos(θi − θ j) + λ
∑
i′∈Λ′
|ωi′ | + δε±π

∑
〈i, j〉

δ([θi − θ j]2π,±π) (3.4)

where the last term increases the energy cost of a domain wall separating ±π angle differ-

ences by an amount δε±π.

For λ = 100 and δε±π = 100, we find that the behavior of the thermodynamic vari-

ables (Fig. 3.7) precisely match the behavior of the variables obtained when suppressing

the vortices identified by the standard method (Fig. 3.1). The magnetization shows a decay

from the ordered phase to an intermediate phase throughout which its value decays grad-

ually with system size at each temperature, indicating the onset of QLRO (Fig. 3.7a). The

order parameter distribution clearly shows an emergence of U(1) symmetry (Fig. 3.7d).

In summary, if we start with the order-disorder transition in the λ = 0 Z4 clock ferro-

magnet and suppress the formation of vortices alone, then the transition splits and the

intermediate phase shows partial symmetry breaking. The transition from the ordered

phase to the intermediate phase is driven by the proliferation of domain walls, including

±π domain walls while the transition from the intermediate phase to the disordered phase

is driven by vortices. If instead, we start with the order-disorder transition and suppress

the formation of vortices as well as ±π domain walls, the transition splits and the inter-

mediate phase exhibits symmetry enhancement with QLRO. The order-QLRO transition

is driven by all domain walls, expect for the ±π type, while the QLRO-disorder transition

is driven by a simultaneous proliferation of vortices and ±π domain walls.

The ±π domain walls do not appear in ferromagnets with odd n. However, they do ap-

pear in ferromagnets with higher values of even n. This naturally raises the question: Is

the QLRO-disorder transition in those models driven by the combined proliferation of
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Figure 3.7: Extreme suppression of vortices and ±π domain walls in the Z4 clock fer-
romagnet on the square lattice removes the disordered phase and leaves the model with
a single order-QLRO transition, which is accompanied by the rise in the density of the
remaining domain walls. In the QLRO phase at T = 3.0, (d) the order parameter distribu-
tion obtained for a L = 32 system shows emergence of U(1) symmetry and (e) typical spin
configurations show the proliferation of domain walls. System sizes are the same as those
in (Fig. 3.1). (f) The specific heat peak accompanying the order-QLRO transition does not
show any system size dependence, the sizes reported here being L = 16 (purple), L = 32
(green) and L = 64 (red). The QLRO nature of the phase is established by the power-law
decay of two-point correlations obtained at different temperatures for a L = 256 system
with λ = 100 and δε±π = 100.
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vortices and ±π domain walls as well?

3.7 Z6 Clock Ferromagnet on the Square Lattice

We have simulated the Z6 clock ferromagnet on the square lattice, which is described by

the same Hamiltonian (3.4) but with spin vectors at each vertex i′ ∈ Λ′ pointing along one

of six angles θi ∈ {2πsi/6 | si ∈ {0, 1, . . . , 5}}.

For λ = 0, we find that the vortices proliferate at T ≈ 1.0 while the domain walls prolif-

erate at T ≈ 0.5 (Fig. 3.8b). However, the density of ±π domain walls, labelled as ρdw,±π,

increases across T ≈ 1.0, close to the temperature of vortex proliferation (Fig. 3.8c). m6φ

decays at T ∼ 0.4, indicating the existence of an intermediate symmetry enhanced phase

from that temperature to T ∼ 1.0 (Fig. 3.8a). Above this temperature, the magnetiza-

tion shows a decay and signals the onset of disorder. When we suppress the formation

of vortices alone, the disordered phase recedes to very high temperatures and leaves be-

hind a partially symmetry broken phase as indicated clearly by the value of m6φ flipping

sign and going negative (Fig. 3.8d). The ±π domain walls continue to proliferate in this

phase while vortices are absent. When the ±π domain walls are suppressed as well using

δε±π = 100, we find that the partially symmetry broken phase is replaced by a symmetry

enhanced QLRO phase (Fig. 3.8g).

This result suggests that the combined proliferation of vortices and ±π domain walls

drives the QLRO-disorder transition in ferromagnets with higher values of even n as well.

With increasing n, however, the number of angle differences that are possible in the Zn

ferromagnet increases and a specific angle difference, particularly an angle difference of

precisely ±π, appears in relatively smaller proportions. Since the contribution of ±π do-

main walls starts diminishing with increasing n, we expect that the partially symmetry

broken phase will not appear under vortex suppression in the n → ∞ XY model. For

small n, however, the effect of ±π domain walls is clearly significant.
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Figure 3.8: The Z6 clock ferromagnet on a square lattice shows an order-QLRO tran-
sition accompanied by increase of domain wall density and a QLRO-disorder transition
accompanied by increase in the densities of vortices and ±π domain walls. Upon extreme
suppression of domain walls, the system shows a single transition from the ordered phase
to a partially symmetry broken phase. When ±π domain walls are also suppressed, the
system exhibits a single order-QLRO transition driven by the proliferation of the remain-
ing vortices. System sizes are the same as those in (Fig. 3.1).
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Figure 3.9: The QLRO nature of the intermediate phase obtained by suppression of vor-
tices and ±π domain walls in the 2D Z6 ferromagnet is established by observing the power-
law decay of the two-point correlation function (a) for a L = 256 system at different tem-
peratures in that phase. (b) The exponent η of the power-law continues to increase with
temperature and saturates around η ≈ 0.52 at large temperatures.
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Figure 3.10: For even values of n, the fraction of spin configurations on a plaquette for
which the standard method identifies unphysical vortices is shown in (a), while the net
vorticity for a L = 32 square lattice with periodic boundary conditions, averaged over 104

random configurations, is shown in (b).
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We would like to provide a rough estimate of how severe the effect of the false vortices,

identified by the standard winding number calculation, might be for larger values of even

n. For each n, we have generated all the n4 possible configurations of spins on a square

plaquette and calculated the fraction of configurations which contain a false or unphys-

ical vortex (for which the winding number does not flip sign upon reversal of sense).

Our results show that the effect is quite severe for n = 4 and n = 6 (Fig. 3.10a). For

these cases, the number of plaquette configurations with unphysical vortices is higher

than those with physical vortices. Although the relative proportion of false vortices de-

creases with increasing n, we still find a significant fraction of such vortices for n = 30.

The false identification of will have severe effects in the phase where vortices proliferate,

i.e. the disordered phase. For example, we found that the disordered phase obtained in the

simulation of the Z4 ferromagnet contains a larger number of vortices than antivortices,

resulting in a net positive winding number for the spin configuration, even though a sys-

tem with periodic boundary conditions is expected to show net zero winding number. We

have measured the net winding number of configurations containing Zn spins, averaged

over 104 random (disordered) configurations. The standard method leads to a net positive

winding number for all even n. Surprisingly, the n = 2 Ising case also shows a net winding

number even though vortices should not be present in that model at all (Fig. 3.10b). On

the other hand, we have verified that our modified method does not identify any unphys-

ical vortices. It always identifies an equal number of vortices and antivortices on lattices

with periodic boundary conditions.

3.8 Z3 Antiferromagnet on the Square Lattice

The role played by topological defects is not restricted to ferromagnets alone. Antifer-

romagnets with discrete symmetries on a bipartite lattice can be mapped onto equivalent

ferromagnetic models [129]. Therefore, the defects present in the ferromagnetic model

might govern the physics of antiferromagnets as well. One of the simplest examples which
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Figure 3.11: Schematic spin configuration showing Z3 spin states for the antiferromag-
netic model which get mapped onto effective spins states of a Z6 ferromagnetic model.
Vortices and domain walls are identified using the Z6 representation.

demonstrates this feature is provided by the Z3 antiferromagnet [130–134]. On the square

lattice, this antiferromagnet is shows a disordered phase at all non-zero temperatures. It

has been suggested that effective Z6 vortices, which proliferate at zero temperature, are

responsible for the disorder [134]. If the vortices indeed drive the system to disordere,

then suppression of the vortices should uncover an ordered phase at low temperatures.

We have simulated the Z3 antiferromagnet on the square lattice which is described by the

Hamiltonian

H =
∑
〈i, j〉∈Λ

1 + cos(θi, θ j) (3.5)

where each spin at vertex i ∈ Λ can orient along one of three angles si ∈ {0, 2π/3, 4π/3}.

An effective six-fold order parameter can be defined for this model by moving to a Z6

staggered representation of the Z3 spins, which is given by [129, 135]

θi → θ′i =
(
2θi + 3δpi,0

)
mod 2π (3.6)

Here pi = 0 if i is on one sublattice and pi = 1 if i is on the other. Under this transforma-

tion, each configuration of the antiferromagnetic Z3 spins can be equivalently represented

as a configuration of ferromagnetic Z6 spins (Fig. 3.11). We can formulate an effective Z6

ferromagnetic model for the Z3 antiferromagnet using this transformation.
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Consider a spin configuration of the antiferromagnet with angle 0 at a vertex on the sub-

lattice with pi = 1 and angle 0 on the neighboring vertex which belongs to the sublattice

with pi = 0. The energy cost between these spins is 2. In the Z6 representation, the ef-

fective angles are 0 and π. Therefore angle differences of ±π in the effective Z6 model

are assigned an energy cost of 2. Similarly, keeping an angle 0 on the pi = 1 sublattice,

if we place an angle 4π/3 on the vertex of the pi = 0 sublattice, then the energy cost

1 + cos(4π/3) = 1/2 is assigned to the effective angle differences ±π/3 in the Z6 repre-

sentation. By definition, two effective spins oriented in the same direction cannot appear

as neighbors. So the ±0 angle difference is assigned an infinite energy cost. By the same

argument, an infinite energy cost is assigned to angle differences ±3π/2.

We have simulated this effective Z6 ferromagnetic model on the square lattice and mea-

sured the standard thermodynamic observables in the Z6 representation at different tem-

peratures. We find that the order parameter decays at a low temperature T ≈ 0.5 (Fig. 3.12a)

The decay is accompanied by a rise in the density of Z6 vortices (Fig. 3.12b). The order

parameter distribution obtained at T = 4 shows symmetry restoration. This indicates that

the system is disordered for T > 0.5 (Fig. 3.12c). Since similarly aligned spins can never

appear as neighbors in this Z6 model, the density of domain walls remains as unity at all

temperatures and is, therefore, not shown in the plots.

Upon suppressing the formation of the Z6 vortices, the order parameter distribution shows

that the disordered phase, previously obtained for T > 0, has turned into a partially

symmetry broken phase (Fig. 3.12f). This is expected as the ±π domain walls, which

were found to be responsible for the partial symmetry breaking behavior in the Z6 fer-

romagnet (Fig. 3.8d), are still allowed to proliferate (Fig. 3.12e). When we suppress

their formation as well, the order parameter distribution exhibits an emergent U(1) sym-

metry (Fig. 3.12i) and the magnetization exhibits a slow decay with system size at each

temperature, characteristic of a QLRO phase (Fig. 3.12g). These results show that by sup-

pressing the formation of effective Z6 vortices and ±π domain walls, we have been able
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Figure 3.12: The Z3 antiferromagnet on the square lattice displays disorder at all non-zero
temperatures due to proliferation of Z6 vortices. When the vortices are suppressed, the
model shows a partial symmetry broken phase in which ±π domain walls of the Z6 rep-
resentation proliferate. When the formation of these types of domain walls is suppressed
as well, the model shows enhancement to U(1) symmetry in the effective Z6 order pa-
rameter space. System sizes are the same as those in (Fig. 3.1). The Z6 order parameter
distribution is shown for the different cases of suppression at T = 4 for a L = 16 system.
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to change the disordered phase diagram of the Z3 antiferromagnet to that with a QLRO

phase.

The same technique can be extended to antiferromagnets with higher values of n. On a bi-

partite lattice, antiferromagnets with even n get mapped onto Zn ferromagnets while those

with odd n get mapped onto Z2n ferromagnets [129]. Therefore, the Z4 antiferromagnet

would map onto a Z4 ferromagnet [128], for which we have already discussed the phase

diagram and the role played by defects.
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Chapter 4

Partial Symmetry Breaking via (0 | 1)

Domain Wall Percolation

Our investigation into the role of defects in two dimensional Zn ferromagnets was moti-

vated by an approximate energy versus entropy calculation (Sec.1.5.6). The calculation

suggested the possibility of obtaining an intermediate symmetry enhanced phase by de-

coupling the proliferation of defects. A key ingredient in this calculation was an estimate

for the temperature at which the domain walls, modelled by random walks, begin to pro-

liferate. In three dimensions, the domain walls appear as two dimensional sheets. Since

it is difficult to obtain an analytical expression for the free energy of a two dimensional

sheet which crinkles randomly, we cannot estimate the proliferation temperature of do-

main walls in three dimensions in a manner similar to that done in two dimensions. This,

in turn, restricts us from carrying out an approximate calculation which describes the

interplay between domain walls and vortex strings in three dimensions.

Monte Carlo simulations carried out for Z3 [4, 136–138] and Z6 [9] models on the simple

cubic lattice have shown that vortex strings proliferate across the order-disorder transition

in these systems. However, the interplay between domain walls and vortex strings at this

transition has remained unexplored. Instead, it has been conjectured that the two types of
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defects proliferate simultaneously for all n, which forces the ferromagnets to undergo a

single order-disorder transition without realizing an intermediate phase [95]. We would

like to verify whether this conjecture holds true for different values of n. If the order-

disorder transition is indeed driven by the simultaneous proliferation of the defects, can

we suppress the formation of vortex strings and open up an intermediate phase? Does

the intermediate phase exhibit symmetry enhancement? The existence of a symmetry

enhanced intermediate phase in three dimensions is a topic of debate [20–27]. A direct

demonstration revealing the existence of such a phase would help settle the debate.

4.1 Z3 Ferromagnet on the Simple Cubic Lattice

4.1.1 Hamiltonian

As a first step, we consider the Z3 clock ferromagnet on a simple cubic lattice, which is

described by the Hamiltonian

H =
2
3

∑
〈i, j〉∈Λ

1 − cos(θi − θ j) (4.1)

where the spin vector at vertex i ∈ Λ can orient at three different angles θi ∈ {0, 2π/3, 4π/3}.

A prefactor of 2/3 is used here to scale the gap between the low and high energy levels

down to unity. This makes (Eq. 4.1) identical to the three state Potts Hamiltonian, which is

the standard form used for studying three-fold symmetry breaking in the context of quan-

tum chromodynamics and formation of cosmic strings in the early universe. This model

is known to undergo a single order-disorder transition at a temperature T ≈ 1.81 [139].
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4.1.2 Order Parameter Distribution

We have simulated the model using the Metropolis algorithm at different temperatures.

We find that most of the spins align along a common direction in the ordered phase at low

temperatures and align arbitarily in the disordered phase at high temperatures (Fig. 4.1).

The order parameter distribution P(mx,my) shows that the three-fold symmetry, which is

broken in the ordered phase, gets restored in the disordered phase. Our first task is to

verify if this order-disorder transition is driven by a simultaneous proliferation of domain

walls and vortex strings.

We have identified the defects corresponding to spin configurations obtained at different

temperatures in our simulation. We observe that small bubbles of domain walls form in the

ordered phase along with very small loops of vortex strings (Fig. 4.1e). With increasing

temperature, both types of defects grow in size and density. When the system transitions

to the disordered phase, the domain walls span across the entire system, as do the vortex

strings (Fig. 4.1f). This suggests that the proliferation of both types of defects can be

characterized using percolation observables.

4.2 Percolation of Domain Walls and Vortex Strings

In order to form the extended vortex strings from their individual segments, we have

joined the edges of Λ′ which carry a non-zero winding number and are adjacent to each

other, i.e. share a vertex of Λ′ in common. In particular, we have not discriminated be-

tween vortex and antivortex strings in this joining procedure. The domain walls, on the

other hand, reside on the plaquettes of Λ′. To form extended domain walls, we have

joined adjacent domain wall plaquettes, i.e. those which share an edge of Λ′ in common.

We have labelled the clusters of vortex strings and domain walls formed in this manner

using the Hoshen-Kopelman algorithm [123]. For each configuration, we have measured

the standard percolation observables that we had defined previously for the domain walls
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Figure 4.1: Typical spin configurations obtained on a L = 16 simple cubic lattice for the
Z3 ferromagnet in (a) the ordered phase at T = 1.5 and (b) the disordered phase at T = 2.5.
The results have been obtained using λ = 0, i.e. without suppressing the formation of
vortices. The order parameter distribution obtained at the corresponding temperatures are
shown in (c) and (d). The largest vortex strings and domain walls obtained for each of the
spin configurations are shown in (e) and (f).
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Figure 4.2: Measurement of standard percolation observables show that the percolation
strength P and the spanning probability Π of the defects rise rapidly at T ≈ 1.8. The
average defect size for both types show a peak at that temperature as well. The data has
been obtained for system sizes L = 8 (circle), L = 12 (square) and L = 16 (triangle).

in two dimensions (Sec. 2.3.1). Namely, we have measured the fraction Pvx of dual edges

in the largest cluster of vortex strings and the fraction Pdw of dual plaquettes in the largest

cluster of domain walls. We have also measured the respective spanning probabilities Πvx

and Πdw. By binning the sizes of all clusters apart from the largest one in each configu-

ration, we have formed the distribution n(s) and calculated the average cluster size using

n(s) for each of the two types of defects.

Our simulation results show that the sizes of the largest domain walls and vortex strings

increase sharply across T ≈ 1.8 (Fig. 4.2). The spanning probabilities jump to unity

above that temperature. The average size of the two types of defects peak near that tem-

perature as well. These results demonstrate that both types of defects begin to percolate

simultaneously across the order-disorder transition.
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4.2.1 Phase Diagram

We have also measured the thermodynamic observables like magnetization, the measure

of symmetry breaking m3φ and the magnetic susceptibility. The magnetization shows a

sharp decay across T ≈ 1.8, and so does m3φ (Fig. 4.3).

In addition we have also measured the density of domain walls ρdw and the density of

vortex strings ρvx. The latter observable is defined as the fraction of edges in the dual

lattice Λ′ which are associated with a non-zero winding number. The former is defined as

the fraction of plaquettes in Λ′ which separate a pair of dissimilar spin states residing on

Λ. The densities of both types of defects are found to increase sharply and simultaneously

across T ∼ 1.8 (Fig. 4.3). Since the defects proliferate simultaneously, it is understandable

that the model does not exhibit an intermediate phase.

4.3 Suppression of Vortex Strings

In order to uncover the possibility of an intermediate phase, we increase the core energy

of each vortex string segment by an amount λ. The Hamiltonian with this suppression

term becomes

H =
2
3

∑
〈i, j〉∈Λ

1 − cos(θi − θ j) + λ
∑
e′∈Λ′
|ωe′ | (4.2)

where ωe′ represents the winding number associated with the dual edge e′ ∈ Λ′.

4.3.1 Weak Suppression

For weak suppression with λ = 0.4, we find that vortex strings begin to proliferate at a

higher temperature T ≈ 2.2 and the domain wall proliferation shifts to that temperature as

well (Fig. 4.3e). The decay of the magnetization and m3φ also shifts to T ≈ 2.2 (Fig. 4.3d).

110



0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0

T

〈|m|〉

m3φ

(a)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

(b)

0.01

0.1

1

10

0 1 2 3 4 5 6

T

χ

0.01

0.1

1

10

0 1 2 3 4 5 6

T

χ

0.01

0.1

1

10

0 1 2 3 4 5 6

T

χ

(c)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0.
4

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0.
4

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0.
4

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0.
4

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0.
4

T

〈|m|〉

m3φ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

λ
=

0.
4

T

〈|m|〉

m3φ

(d)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T

〈ρdw〉

〈ρvx〉

(e)

0.01

0.1

1

10

0 1 2 3 4 5 6

T

χ

0.01

0.1

1

10

0 1 2 3 4 5 6

T

χ

0.01

0.1

1

10

0 1 2 3 4 5 6

T

χ

(f)

Figure 4.3: Top panel: The simultaneous decay of magnetization and m3φ across T ≈
1.8 in the Z3 ferromagnet on the simple cubic lattice is accompanied by a peak in the
magnetic susceptibility and a simultaneous increase of defect densities. Bottom panel:
Weak suppression of vortex strings shifts the simultaneous proliferation of defects and
the decay of magnetization as well as m3φ to a higher temperature T ≈ 2.2. System sizes
correspond to those in Fig. 4.2.
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With increasing λ, the shift in the transition temperature and the proliferation temperatures

of the defects continue until λ ≈ 1.2. The manner in which a weak suppression is unable to

decouple the simultaneous proliferation is reminiscent of the behavior obtained for the Z3

ferromagnet in two dimensions. We also note that the decay of the magnetization and the

increase in defect densities become more gradual with increasing λ. If this is a signature

of the transition weakening with increased suppression of vortex strings, there exists a

possibility that the weakly first-order transition in the model without any suppression can

turn into a second order transition at some λ. Discovery of a second-order transition

in a three dimensional model with Z3 symmetry has direct implications for the order of

the deconfinement transition in quantum chromodynamics [3, 140]. However, since we

are unable to perform reliable finite size scaling in our simulation, we keep this exciting

possibility only as a conjecture.

4.3.2 Strong Suppression

For strong suppression of vortex strings with λ = 1.5, the behavior of the model changes

qualitatively. The simultaneous proliferation of the defects decouple and the vortex string

density increases at a temperature T ≈ 3.5, which is higher than the temperature T ≈ 1.5

where the domain wall density increases (Fig. 4.4b). With further increase in λ, the rise

in vortex density continues to shift to higher temperatures and for extreme suppression,

recedes to a very high temperature (Fig. 4.4h). On the other hand, the temperature across

which the domain wall density rises, remains fixed at T ≈ 3 with increasing λ.

The first signs of an intermediate phase is observed in the system with λ = 1.5. m3φ shows

a positive value in the ordered phase but becomes negative across an intermediate range

of temperatures (Fig. 4.4a). In addition, the magnetization begins to exhibit a two-step

decay. The first decay marks a transition from the ordered phase to the intermediate phase

and occurs near the temperature T ≈ 3, where the domain walls proliferate. The second

decay, marking a transition from the intermediate phase to the disordered phase, occurs
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Figure 4.4: With strong suppression, the simultaneous proliferation of the defects decou-
ples and the rise in vortex string density shifts to higher temperature along with the decay
in magnetization and the second peak of susceptibility. The decay of m3φ and the rise of
domain wall density continues to occur at T ≈ 3.0. For extreme suppression, the model
shows a single transition from the ordered phase to the intermediate phase. System sizes
correspond to those in Fig. 4.2.
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at T ≈ 4.2 where the vortex strings proliferate. The two decays are also accompanied by

corresponding peaks in the magnetic susceptibility. With increasing λ, this intermediate

phase grows in extent as the second decay of the magnetization shifts to higher temper-

atures (Fig. 4.4d). The peaks in the magnetic susceptibility shift as well (Fig. 4.4f). For

extreme suppression (λ = 100), the intermediate phase extends across a large range of

temperatures starting from T ≈ 3 and the disordering transition recedes to a very high

temperature (Fig. 4.4g). This set of results establish that the first transition, from the or-

dered phase to the intermediate phase is driven by the proliferation of domain walls. The

transition from the intermediate phase to the disordered phase, which shifts with increas-

ing λ, is driven by the proliferation of vortex strings. While these results closely match

those obtained for the two dimensional model, the intermediate phase appears to be of a

different kind.

4.4 Partial Symmetry Broken Intermediate Phase

4.4.1 Order Parameter

In order to investigate the nature of the intermediate phase, we focus on the case with λ =

100. The order parameter distribution at different temperatures in this phase show that the

three-fold symmetry is broken with a π/3 offset in the angles (Fig. 4.5a) compared to the

symmetry breaking pattern obtained in the ordered phase (Fig. 4.1c). This establishes the

partial symmetry broken nature of the intermediate phase. The decay of the magnetization

from near unity in the ordered phase to an intermediate value of 〈|m|〉 ∼ 0.5 (Fig. 4.4g) in

this phase also suggests that the system is partially ordered.

Typical defect configurations show absence of vortex strings but reveal that domain walls

span across the entire system (Fig. 4.5c). This suggests that the domain walls perco-

late in the partially symmetry broken phase. Indeed, a measurement of the percola-

114



−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

m
y

mx

(a) (b) (c)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
d
w

T

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
d
w

T

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
d
w

T

(d)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Π
d
w

T

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Π
d
w

T

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Π
d
w

T

(e)

0

20

40

60

80

100

0 1 2 3 4 5 6

χ
d
w

T

0

20

40

60

80

100

0 1 2 3 4 5 6

χ
d
w

T

0

20

40

60

80

100

0 1 2 3 4 5 6

χ
d
w

T

(f)

Figure 4.5: The order parameter distribution for a L = 8 system at T = 6, in the inter-
mediate phase obtained via extreme suppression of vortex strings with λ = 100, shows a
three-fold symmetry breaking, offset from the spin angles by π/3 while defect configura-
tions obtained at the same temperature show that domain walls proliferate in the absence
of vortex strings. This behavior is captured by the percolation properties of the domain
walls as well. System sizes correspond to those in Fig. 4.2.
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(a) (b)

Figure 4.6: Spin and domain wall configurations obtained in (a) the partially symmetry
broken phase of the three-dimensional model at T = 6 (a two-dimensional slice is shown
here), and (b) the symmetry enhanced QLRO phase of the two-dimensional model at
T = 4. Both configurations have been obtained from the models with extreme suppression
of vortices with λ = 100.

tion observables in this phase reveals that the largest domain wall size increases across

T ≈ 2, close to the temperature of the transition from the ordered phase to the in-

termediate phase (Fig. 4.5d). The spanning probability saturates to unity in the latter

phase (Fig. 4.5e). In addition, the average cluster size shows a peak near the transi-

tion (Fig. 4.5f). These percolation characteristics are very similar to those obtained for

the domain walls in the intermediate phase of the two dimensional model (Fig. 2.6). And

this is a source of concern.

The intermediate phase in the two dimensional model, which forms via the percolation

of domain walls, shows symmetry enhancement and QLRO. The intermedite phase in the

three-dimensional model also forms via the percolation of domain walls but shows partial

symmetry breaking and partial order. How is it possible that the same defect proliferation

mechanism results in the formation of two different types of phases?

4.4.2 Proliferation Pattern of Domain Walls

We have established (Fig. 2.6 and Fig. 4.5) that both intermediate phases form due to

percolation of domain walls. The distinguishing feature which results in the different
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properties for the two phases must, therefore, lie in the percolation pattern of the domain

walls themselves. In order to identify this difference, we visually inspect typical config-

urations of domain walls obtained in the intermediate phase of the two-dimensional and

three-dimensional models (Fig. 4.6).

In the sliced configuration of the three-dimensional model (Fig. 4.6a), we find that the

percolating domain walls mostly separate two particular spin states. We now specifically

consider domain walls by their individual types (a | b), where a and b are the pair of spin

states they separate (Sec. 1.5.1). The two dominant states in the configuration (Fig. 4.6a)

are states 0 and 1. We observe that domain walls percolate across the configuration solely

because domain walls of a particular type, say (0 | 1), percolate on their own. This,

however, is not the case for the configuration in the two-dimensional model (Fig. 4.6b).

In that configuration, all the three spin states are present and the domain walls appear to

percolate because we have joined the different types of (a | b) domain walls into the same

cluster. There is a possibility that if we do not join the different types of domain walls

into the same cluster and, instead, study their percolation properties individually, none of

the particular domain wall types might percolate on their own in this configuration, and

more generally, the QLRO phase.

In order to investigate this possibility, we have formed clusters belonging to each type of

(a | b) domain walls and measured their percolation properties for the models in two and

three dimensions, in the limit of extreme suppression with λ = 100.

4.4.3 Relative Relabelling of Spin States

Before presenting the results, we mention a feature of Monte Carlo simulations that needs

to be accounted for this particular type of (a | b) measurement. All the observables which

we measured previously were invariant under the symmetry operations of the Z3 group.

For example, if all the spins in a given configuration are rotated by 2π/3, the values of
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magnetization, susceptibility and even the density of the defects would remain invariant.

On the other hand, state or angle specific observables, like the largest cluster size of do-

main wall type (0 | 1) which we will measure next, would change under such a global

rotation. This becomes a problem in finite size simulations because the system keeps mi-

grating from one symmetry broken state to the other over the course of the simulation [22].

We have mitigated this problem by rotating all the spins by an angle such that the angle

of the symmetry broken minima gets relabelled to 0 (state 0). Since discrete rotations are

constituent members of the Zn symmetry group, this procedure of relabelling keeps the

Hamiltonian (4.2) invariant. However, this relabelling is not sufficient. Even if we fix the

symmetry broken state, the system can show fluctuations between the angles on the left

and right hand side of angle 0 (state 0). In order to counter such fluctuations, we reflect

all the spins in the configuration across angle 0, in a manner such that the most populous

of the two angles adjacent to 0 gets relabelled to angle 2π/n or state 1. Consequently, the

angle on the other side gets relabelled to 2π(n − 1)/n or state n − 1. Again, this reflection

operation is a constituent member of the Zn symmetry group and, therefore, keeps the

Hamiltonian (4.2) invariant.

4.4.4 Percolation Properties of (a | b) Domain Walls

We have applied the relabelling scheme to every configuration generated in our simulation

before measuring the percolation observables. Under this relabelling, we find that (0 | 1)

domain walls begin to percolate on their own at T ≈ 3, across the transition from the

ordered phase to the partial symmetry broken phase in three dimensions (Fig. 4.7a). The

spanning probability of this particular type saturates to unity in the latter phase and the

average (0 | 1) domain wall size peaks at the transition (Fig. 4.7b). As expected from the

visual inspection, none of the other types of domain walls are found to percolate on their

own across the transition.

In the intermediate QLRO phase of the two dimensional model, however, we find that the
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Figure 4.7: Percolation properties of (0 | 1) domain walls. Top panel (a,b,c) shows the
behavior for the three-dimensional model. The spanning probability saturates to unity
and the average size peaks at the percolation transition at T ≈ 2.5. Bottom panel (d,e,f)
shows the behavior for the two-dimensional model. The spanning probability saturates
to a value around 0.42. The percolation strength decays and the average size increases
with system size throughout the QLRO phase, representative of behavior at a percolation
threshold. System sizes correspond to those in Fig. 4.2.
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(0 | 1) domain walls show a different behavior. The spanning probability does not saturate

to unity but remains at Πdw(0 | 1) ∼ 0.5 (Fig. 4.7e). The largest size of (0 | 1) domain

walls gradually decreases with increasing system size at each temperature in the QLRO

phase (Fig. 4.7d). In addition, the average size of (0 | 1) domain walls not only peaks at

the transition but continues to grow with system size at each temperature in the QLRO

phase (Fig. 4.7f). This kind of behavior is found among the percolation observables at the

percolation threshold. In this case, however, the entire QLRO phase appears to be a line

of percolation thresholds. None of the other types of domain walls appear to percolate on

their own in this case as well.

In order to elaborate on the percolation threshold behavior of the (0 | 1) domain walls,

we have studying the system size dependence of the percolation observables at different

temperatures in the QLRO phase (Fig. 4.8). We find that the cluster size distribution

n(s) follows a power-law with a cut-off which grows with increasing system size. In the

thermodynamic limit, we expect an asymptotic behavior of the form n(s) ∼ s−τ, where we

have estimated the Fisher exponent τ = 2.10(1) (Fig. 4.8a). Using a hyperscaling relation,

we can estimate the fractal dimension of the domain walls as d f = d/(τ−1) = 1.81, which

suggests that the walls are quite tortuous in this phase. We also note that τ does not change

with temperature in this phase.

We also find a power-law system size dependence Pdw(0 | 1) ∼ L−β/ν, where β/ν is found

to decrease with temperature from β/ν = 0.45 at T = 1.70 to β/ν = 0.36 at T =

9.0 (Fig. 4.8c). On the other hand, the power-law size dependence of the mean domain

wall size χdw(0 | 1) ∼ Lγ/ν does not appear to change significantly with temperature and

falls within the range 1.06 < γ/ν < 1.18 (Fig. 4.8d).
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Figure 4.8: System size dependence of percolation observables at different temperatures
in the QLRO phase of the 2D Z3 ferromagnet obtained by suppressing vortex formation
with λ = 100.

4.4.5 Percolation of (0 | 1) Domain Walls

The percolation of the (0 | 1) domain walls is, therefore, the salient feature which distin-

guishes between the intermediate phases in the two models. This feature also explains

why the intermediate phase breaks a partial symmetry in the three-dimensional model but

not in the two-dimensional one. The percolation of (0 | 1) domain walls implies a per-

colation of state 0 clusters and state 1 clusters as well. This implies that the spin texture

is dominated by angles 0 and 2π/3. Consequently, the average orientation of the system

becomes π/3. Such an intermediate value of the order parameter orientation is a signature

of partial symmetry breaking (Fig. 4.5a). For an ensemble of simulations initialized in

an ordered configuration arbitrarily from one of the three states, the symmetry will be

partially broken along the π and 5π/3 directions as well. The order parameter distribution

accumulated from across these ensembles will show the π/3 offset pattern of three-fold

partial symmetry breaking (Fig. 4.5a).
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Another viewpoint towards the same result is obtained by mapping the states 0 and 1 of the

Z3 model onto the two states of the Z2 Ising model. This effectively highlights an implicit

Z2 symmetry hidden in the Z3 ferromagnet. In the ordered phase of the ferromagnet, most

of the spins are in state 0. This implies that most of the spins are in one state of the

mapped Ising model, i.e. the Z2 symmetry is broken. In the intermediate phase, most of

the spins in the Z3 ferromagnet arbitrarily pick up either state 0 or state 1. In terms of the

Ising model, the Z2 symmetry gets restored. We infer that restoration of the implicit Z2

symmetry forces the system to show a partial order instead of complete order [29].

The crucial difference between the two-dimensional and three-dimensional behavior lies

in the fact that simultaneous percolation of multiple clusters (also known as polychromatic

percolation) can be sustained by the simple cubic lattice due to its higher connectivity, but

not by the square lattice [141]. Since the two-dimensional system cannot accomodate the

simultaneous percolation of state 0 and state 1 clusters, and yet the temperature is ripe

for domain wall proliferation, the (0 | 1) domain walls are unable to percolate and remain

only at a percolation threshold.

The natural question which arises next is: do ferromagnets with higher n exhibit a partial

symmetry breaking on the simple cubic lattice as well? For the next ferromagnet in the

series, the Z4 clock ferromagnet, we have obtained a QLRO phase on the square lattice

(Sec. 3.6). Does the QLRO phase transform into a partial symmetry broken phase when

the model is placed on the simple cubic lattice?

4.5 Z4 Clock Ferromagnet on the Simple Cubic Lattice

We have simulated the Z4 clock ferromagnet, described by the Hamiltonian (3.4), on the

simple cubic lattice. Without suppression of either vortex strings or ±π domain walls

(λ = 0 and δε±π = 0), the model exhibits a single order-disorder transition at T ≈ 2.2 ac-

companied by a simultaneous proliferation of vortex strings and domain walls (Fig. 4.9b).
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Figure 4.9: The order-disorder transition in the Z4 clock ferromagnet on a simple cubic
lattice, captured by the decay in magnetization at T ≈ 2.2, is accompanied by a simulta-
neous proliferation of domain walls and vortex strings (a,b,c). Upon extreme suppression
of the vortex strings and ±π domain walls, the system shows a transition from the ordered
phase to a partially symmetry broken phase (d,e,f).

This is reflected in the decay of the magnetization at the temperature where the densities of

both types of defects show an increase. On the square lattice, a single order-QLRO transi-

tion was obtained for the model by suppressing both vortex strings and ±π domain walls.

With λ = 100 and δε±π = 100 on the simple cubic lattice, the model again shows a single

transition but from the ordered phase to a phase where m4φ becomes negative (Fig. 4.7d).

This order parameter shows a four-fold symmetry breaking pattern offset from the angles

of symmetry breaking in the ordered phase by π/4 (Fig. 4.10b). Upon measuring the

percolation properties of individual types of domain walls, we find that none of the types

apart from (0 | 1) domain walls percolate on their own in this phase (Fig. 4.10c). This

result suggests that the partial order in the partially symmetry broken phase of this model

is generated because the spins align arbitarily along one of the two angles: 0 and π/2.
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In the Z2 × Z2 Ashkin-Teller representation of the Z4 ferromagnet [128], the four states

of the Z4 spin space can be mapped on to a combination of two Ising states (σ, τ) as:

{0, 1, 2, 3} → {(+,+), (+,−), (−,−), (−,+)}. Using this representation, it is easy to see that

a phase in which states 0 and 1 appear in equal proportion translates to a phase where

one of the Ising models (the τ Ising model in this case) gets disordered but the other (σ

Ising model) remains ordered. Such a phase is known as the 〈σ〉 phase in the Ashkin-

Teller literature [31, 32]. And this is precisely the phase which we have uncovered by

suppressing the formation of the ±π domain walls. The decomposition of the model into

the two Ising models also provides an explanation for the percolation behavior. We have

discussed (Sec. 1.5.2) that the order-disorder phase transition in the three dimensional

Ising model is driven by the percolation of domain walls. Since one of the Ising models

get disordered in the partially symmetry broken phase, the domain walls corresponding to

that Z2 symmetry, which we have labelled as (0 | 1) domain walls, percolate on their own

in that phase. Incidentally, we have suppressed the domain walls belonging to the other

Z2 symmetry group in the guise of ±π domain walls.

This result demonstrates that the phase diagram of the model is dictated by the interplay

between the defects of the symmetry group (Z4 vortices) as well as its subgroups (two

types of Z2 domain walls). It is, therefore, natural to expect rich phase diagrams in sys-

tems possessing symmetries which decompose into multiple subgroups. For example, if

we consider a Z6 → Z2 × Z3 decomposition, we should be able to uncover a rich phase

diagram governed by the interplay of Z2 domain walls, Z3 domain walls, Z3 vortices and

Z6 vortices. And this example is precisely what we explore next.

124



−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

m
y

mx

(a) T = 1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

m
y

mx

(b) T = 6.0

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
d
w
,(
0

|
1
)

T

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
d
w
,(
0

|
1
)

T

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
d
w
,(
0

|
1
)

T

(c)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Π
d
w
,(
0

|
1
)

T

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Π
d
w
,(
0

|
1
)

T

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Π
d
w
,(
0

|
1
)

T

(d)

0

20

40

60

80

100

0 1 2 3 4 5 6

χ
d
w
,(
0

|
1
)

T

0

20

40

60

80

100

0 1 2 3 4 5 6

χ
d
w
,(
0

|
1
)

T

0

20

40

60

80

100

0 1 2 3 4 5 6

χ
d
w
,(
0

|
1
)

T

(e)

Figure 4.10: The order parameter distribution shows how the four-fold symmetry which
is broken in (a) the ordered phase is offset by π/4 in (b) the partially symmetry broken
phase. The latter phase also shows percolation of (0 | 1) domain walls (c,d,e).
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Chapter 5

Role of Subgroup Defects

The Z6 clock ferromagnet on the simple cubic lattice has been studied extensively be-

cause, apart from a being statistical model in its own right, the ferromagnet serves as an

effective theory for the three-state Potts antiferromagnet on the simple cubic lattice and

the stacked triangular Ising antiferromagnet [20–24, 34]. It also models the breaking of

a six-fold symmetry which characterizes ferroelectric domains in hexagonal manganite

multiferroics [9]. The phase diagram of the Z6 model, however, has been a topic of de-

bate. In two dimensions, the model clearly exhibits an emergent U(1) phase, which lies

intermediate between the low temperature ordered phase and the high temperature disor-

dered phase. In three dimensions, on the other hand, there is no clear indication for the

existence of such a phase. Monte Carlo simulations show an intermediate region where

the order parameter distribution shows an emergence of U(1) symmetry [27]. However,

the extent of the region continues to shrink with increasing system size. There has been

no direct demonstration of whether the intermediate region stops shrinking above a cer-

tain system size and becomes a stable phase or if the continues to shrink and vanishes

in the thermodynamic limit. While suggestions have been made for a stable intermediate

phase [25,26], renormalization group calculations suggest that the apparent emergence of

U(1) symmetry is a finite size effect [23, 24]. In contrast, the U(1) symmetry is known to
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emerge, and remain thermodynamically stable, at the disordering transition point as the

transverse length scale of the system diverges at that point. In particular, this length scale

begins to grow rapidly below the disordering transition temperature. Therefore, systems

with small sizes, i.e. with sizes falling below the growing length scale, exhibit an ap-

parent U(1) emergence below the disordering transition. For sufficiently large systems,

the apparent emergent behavior is likely to give way to a Z6 symmetry broken phase and

the model is expected to exhibit a single order-disorder transition [23,24]. There has also

been a suggestion that vortex strings and domain walls proliferate at the same temperature

in this model, due to which an intermediate phase is not realized [95].

5.1 Z6 Clock Ferromagnet on the Simple Cubic Lattice

We have simulated the Z6 clock ferromagnet, described by the Hamiltonian

H =
∑
〈i, j〉∈Λ

1 − cos(θi − θ j) (5.1)

on a simple cubic lattice. The spin vectors at each vertex i ∈ Λ can orient at six different

angles θi ∈ {2πs/6 | s ∈ {0, 1, . . . , 5}}.

We have measured the vector order parameter at different temperatures. The magneti-

zation decays across T ≈ 2.2 (Fig. 5.1a). However, m6φ decays at a lower temperature

at T ≈ 1.5. The distribution of the order parameter shows that the six-fold symmetry

is broken in the ordered phase T < 1.5, enhances to U(1) in the intermediate region

1.5 < T < 2.2 and gets restored in the disordered phase T > 2.2. Monte Carlo simulation

using cluster algorithms for larger system sizes show that the extent of the intermedi-

ate region shrinks with increasing system size, and hence the controversy regarding the

existence of the intermediate phase [27]. We will, however, adopt a different approach.

Instead of performing simulations on larger system sizes and tracking the rate at which the

region shrinks, we will attempt to infer the nature of the intermediate region by studying
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the behavior of the topological defects in the model.

We have measured the density of vortex strings ρvx and the density of domain walls ρdw

at different temperatures (Fig. 5.1b). Our results show that, contrary to previous sugges-

tions [95], the defects do not proliferate simultaneously. The vortex strings proliferate

at a higher temperature T ≈ 2.2 while the domain walls proliferate at a lower tempera-

ture T ≈ 1.5. However, a decoupled proliferation of the defects does not guarantee that

the intermediate phase exhibits symmetry enhancement. In fact, for the Z3 and Z4 clock

ferromagnets we have obtained a partially symmetry broken phase at intermediate tem-

peratures. Is the apparent symmetry enhancement a result of large transverse fluctuations

induced by the disordering transition? If it so, the fluctuations should vanish when the

disordering transition is shifted to very high temperatures. We have demonstrated that

the transition from the symmetry enhanced phase to the disordered phase in the two di-

mensional Z6 clock ferromagnet shifts to very high temperatures when the formation of

vortices and ±π domain walls are suppressed.

5.1.1 Suppression of Z6 Vortex Strings and ±π Domain Walls

We have simulated the clock model with the suppression terms, given by the Hamiltonian

H ′ =
∑
〈i, j〉∈Λ

1 − cos(θi − θ j) + λ
∑
e′∈Λ′
|ωe′ | + δεπ

∑
〈i, j〉

δ([θi − θ j]2π,±π) (5.2)

For extreme suppression of the vortex strings and ±π domain walls using λ = 100 and

δεπ = 100, we find that the disordering transition shifts to very high temperatures (Fig. 5.1f).

However, the apparent U(1) emergence continues in a manner identical to the model with-

out suppression. In fact, the shift of the disordering transition only serves to extend the

apparent U(1) region. This result suggests that the emergent behavior might not be caused

by fluctuations induced by the disordering transition but, instead, is a feature of the region

itself.
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Figure 5.1: The Z6 clock ferromagnet on the simple cubic lattice shows an intermediate
region below the order-disorder transition where the order parameter distribution obtained
for a L = 8 system exhibits apparent emergence of U(1) symmetry and m6φ become zero.
The density of vortex strings rises near the disordering transition whereas the density of
domain walls rises near the decay of m6φ. Upon suppression of the vortex strings and ±π
domain walls, m6φ continues to decay at the temperature where domain walls begin to
proliferate. The data has been obtained for system sizes L = 8 (circle), L = 12 (square)
and L = 16 (triangle).
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With the vortex strings and ±π domain walls suppressed, the domain walls are left in

charge of dictating the nature of the intermediate region. We note that m6φ decays close

to the temperature where the remaining domain walls begin to proliferate. When we sup-

press the formation of these remaining domain walls, the system shows complete ordering

and the apparent emergent behavior gets destroyed. While this trivially establishes the

necessity of domain walls for the existence of the emergent behavior, it does not provide

much information. We, therefore, turn to a visual inspection of the spin configurations

obtained in the ordered phase and in the intermediate region.

In the ordered phase, most of the spins align along a common direction with a few spins

fluctuating to the adjacent angles to the left and right of the common angle (Fig. 5.2a).

This is expected because the cosine potential of the model gradually increases the en-

ergy cost for larger differences between angles. In the intermediate region, however, we

find that the common angle and its two adjacent angles are present in a nearly equal pro-

portion (Fig. 5.2b). Effectively, the change from the ordered phase to the intermediate

region mimics that of a three state model. Does the change actually represent a transition

belonging to the Z3 subgroup of the Z6 model?

In order to verify this conjecture, we need to choose an effective Z3 order parameter.

5.1.2 Restoration of Z3 Symmetry

A simple scheme to transform Z6 spin states into effective Z3 spin states is given by

s → s3 = s mod 3. While the Z6 angles are θ = 2πs/6, the effective Z3 angles are

θ3 = 2πs3/3. Under this scheme, if any three consecutive angles in the Z6 spin space

are present in equal proportion in a system, all the three angles of the Z3 order parameter

space get represented in equal proportion. In such a case, the effective Z3 vector order
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Figure 5.2: Suppression of vortex strings and ±π domain walls leaves the model with an
ordered phase (a) and a high temperature region (b) where three consecutive spin states
appear in equal proportion. The Z3 magnetization decays in this region (c) and the decay
grows sharper (d) when the energy cost between the three states is made degenerate to
mimic a Potts potential. The order parameter distribution obtained at T = 2.0 for the
dengenerate Hamiltonian shows Z6 symmetry breaking with increasing system size.
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parameter (m3x,m3y) shows zero magnetization |m3| = 0.

m3x =
∑
i∈Λ

cos θ3i/N

m3y =
∑
i∈Λ

sin θ3i/N (5.3)

where N is the number of spins and the magnetization is given by |m3| =
√

m2
3x + m2

3y.

Since we know that the disordering transition in the Z3 ferromagnet is driven by a simul-

taneous proliferation of domain walls and Z3 vortex defects, it would be useful to check

if conjectured effective Z3 transition in the present case is also driven by the simultaneous

proliferation of the domain walls and vortices associated with the Z3 subgroup. In order

to identify these subgroup vortices, we calculated the winding number ω3e′ at each dual

edge e′ ∈ Λ′ using our proposed method (3.2), but with the θ values replaced by their

corresponding θ3 values. We have measured the density ρ3vx of these Z3 vortices.

We find that the density of the Z3 vortices increases simultaneously with the density of

domain walls across T ≈ 1.5 (Fig. 5.2c). This is accompanied by a decay in the effec-

tive Z3 magnetization from the ordered phase into the intermediate region. However, the

magnetization does not decay fully to zero but saturates at a small positive value. The

change, therefore, appears to be a crossover rather than a transition. One reason behind

this crossover behavior might be that the effective Z3 model, which the mapping θ → θ3

tries to generate, is not really a Z3 model. Consider three consecutive angles in the Z6 spin

space: 0, π/3 and 2π/3. The energy cost between angles 0 and π/3 is 1− cos(π/3) = 1/2.

The cost between angles π/3 and 2π/3 is also 1 − cos(−π/3) = 1/2. However, the cost

between angles 0 and 2π/3 is 1 − cos(2π/3) = 3/2. In a Z3 ferromagnet, the energy cost

between all pairs of dissimilar angles is expected to be the same. Can we transform the

crossover behavior into a transition by bringing down the interaction energy of angles

differing by 2π/3, thus making the interaction energy between three consecutive states
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degenerate? For this purpose, we introduce a new term into the previous Hamiltonian

H = H ′ −
∑
〈i, j〉

δ([θi − θ j]2π,±2π/3) (5.4)

Upon simulating the model described by this Hamiltonian, we find that densities of

both domain wall and Z3 vortex string defects begin to increase at a lower temperature

T ≈ 1 (Fig. 5.2d). In addition, this increase is found to be sharper than that obtained

in Fig. 5.2c. This change in the behavior of defect densities, in turn, has an effect on

the magnetization which now decays in a sharper manner at T ∼ 1. However, even by

making the ±2π/3 domain wall cost degenerate with that of the ±π/3 domain walls, the

magnetization does not decay to zero but saturates at a small positive value 〈|m3|〉 ∼ 0.07.

This suggests that the intermediate region, while closely resembling the characteristics of

a Z3 disordered phase, might not be truly Z3 disordered. Before investigating the nature

of the phase further, we note that the order parameter distribution in this region shows ap-

parent U(1) emergence for small systems but shows a clear breaking of the Z6 symmetry

for larger systems (Fig. 5.2f).

The residual Z3 magnetization in the intermediate region is reminiscent of the interme-

diate values for magnetization obtained in partially ordered phases. We have shown that

a characteristic signature of partial symmetry breaking in three dimensions is the perco-

lation of a single type of domain wall. Clearly, the order parameter distribution in the

intermediate region does not display the π/6 offset pattern expected of a partially symme-

try broken phase. However, a measurement of the percolation properties characterizing

the particular types of domain walls might provide a clue regarding the nature of this

region.
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Figure 5.3: Top panel: Measurement of spanning probability show that two types of
domain walls (0 | 1) and (0 | 5) percolate in the intermediate region, while a third type
(1 | 5) appears to remain on a percolation threshold. Bottom panel: In the disordered
phase of the Z3 ferromagnet on the simple cubic lattice, all the three types of domain
walls percolate.
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5.1.3 Percolation of (a | b) Domain Walls

Our measurements show that, in the intermediate region, not one but two particular types

of domain walls percolate on their own. The particular types are: (0 | 1) and (0 | 5).

The spanning probability saturates to unity for (0 | 1) domain walls in the intermediate

region (Fig. 5.3a). In addition, the increase in spanning probability with system size for

(0 | 5) suggests that the probability will reach unity in the thermodynamic limit (Fig. 5.3b).

Although a third type (1 | 5) shows a non-zero spanning probability, the system size de-

pendence suggests that it will not percolate in the thermodynamic limit (Fig. 5.3c). This

result provides a fresh impetus to the proposal that the intermediate region is indeed Z3

disordered. We have measured the percolation properties of the three particular types

of domain walls in the Z3 clock ferromagnet on the simple cubic lattice. We find that

all the three types begin to percolate on their own at the order-disorder transition in the

model (Fig. 5.3d). This result suggests two alternate scenarios:

1. the change from the ordered phase to the intermediate region of the Z6 ferromagnet

with the degenerate Hamiltonian is truly a phase transition, or

2. the change does not appear as a thermodynamic transition but as a percolation tran-

sition in terms of the particular types of domain walls. In the latter case, the perco-

lation transition would be reminiscent of that obtained across a Kertesz line [123].

5.1.4 Suppression of Z3 Vortex Strings

The natural question which comes up next is: does an intermediate phase appear if we

decouple the simultaneous proliferation of the domain walls and Z3 vortex strings by

suppressing the latter? In order to suppress the formation of the Z3 vortices, we raise

their core energy by an amount λ3. The Hamiltonian with the addition of this new term
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Figure 5.4: Top panel: When Z3 vortex strings are suppressed, m6φ saturates at unity
along with the magnetization. None of the individual types of domain walls percolate
in this region. Bottom panel: When ±2π/3 domain walls are also suppressed, the system
exhibits a transition from the ordered phase to a partially symmetry broken phase in which
only the (0 | 1) domain walls begin to percolate again.
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becomes:

H = H ′ −
∑
〈i, j〉

δ([θi − θ j]2π,±2π/3) + λ3

∑
e′∈Λ′
|ω3e′ | (5.5)

With extreme suppression of the Z3 vortex strings, using λ3 = 100, we find that the simul-

taneous proliferation of the domain walls and Z3 vortex strings decouples (Fig. 5.4b). The

proliferation of the latter defects recedes to higher temperatures and leaves behind a new

region where the domain walls proliferate alone. Interestingly, we find that the magneti-

zation, of both the Z6 (Fig. 5.4a) and Z3 order parameters jump to a value close to unity

in this region. The most interesting change, however, appears in the behavior of mcos 6φ.

Th value of this observable shifts from a near zero value in the previous intermediate re-

gion (Fig. 5.1f) to a value close to unity in this new region (Fig. 5.4a). Therefore, in terms

of the order parameter, this new region is very similar to the ordered phase. However, we

find a crucial difference between the ordered phase and the new region. Domain walls

do not proliferate in the ordered phase while they do so in the new region (Fig. 5.4b).

In addition, we find that none of the individual types of domain walls percolate in this

new region (Fig. 5.4c). Since the change from the ordered phase to this new region is

not marked by any change in symmetry but is distinguished by the percolation of domain

walls, we have yet another example of a Kertesz line scenario in the present model.

5.1.5 Suppression of ±2π/3 Domain Walls

By suppressing the different types of defects one after the other, we have nearly exhausted

the set of defects supported by the Z6 model. The only defects remaining are the do-

main walls which separate angles differing by ±π/3 and ±2π/3. The energy cost of the

later type had been made degenerate to that of the former type artifically in the Hamil-

tonian (Eq. 5.4). We remove this degeneracy and, instead, suppress the formation of

the ±2π/3 domain walls by increasing their energy cost by an amount δε±2π/3. The new
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Hamiltonian becomes

H = H ′ + δε±2π/3

∑
〈i, j〉

δ([θi − θ j]2π,±2π/3) + λ3

∑
e′∈Λ′
|ω3e′ | (5.6)

For δε±2π/3 = 100, the proliferation of the ±2π/3 domain walls recedes to a very high

temperature and the model is essentially left with ±π/3 domain walls only. In effect,

the neighboring spins can either orient along the same direction or differ by ±π/3. This

is precisely the situation encountered for the Z3 ferromagnet with λ = 100 and the Z4

clock ferromagnet with λ = 100 and δε±π. In all these cases, the Zn spins were allowed

to differ in orientation within a range of ±2π/n. aed in a manner similar to those cases,

we find that in the current case: a single transition from the ordered phase to a partially

symmetry broken phase (Fig. 5.4c) where domain walls of type (0 | 1) percolate on their

own (Fig. 5.4f) and a Z2 symmetry gets restored.

5.2 Z3 Antiferromagnet on the Simple Cubic Lattice

We have discussed (Sec. 3.8) how the Z3 antiferromagnet can be equivalently written as

a Z6 ferromagnet. This mapping holds true on the simple cubic lattice because the lattice

is bipartite. Using the information obtained about the different phases from our study

of the Z6 ferromagnet, we can now embark on exploring the phase diagram of the Z3

antiferromagnet as well.

The antiferromagnet on the simple cubic lattice is known to undergo a single order-

disorder transition, although there have been suggestions for a rotationally symmetric

phase, which is similar to the symmetry enhanced phase suggested for Zn ferromag-

nets [142–146]. However, the ordered phase of the Z3 antiferromagnet is not a conven-

tional one. In this phase, one of the sublattices picks up a spin state while the other two

spins states are arbitrarily distributed on the other sublattice. Therefore, the phase exhibits

a broken sublattice symmetry (BSS). What drives the transition from the BSS phase to the
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Figure 5.5: Top panel: The Z3 antiferromagnet on the simple cubic lattice exhibits a
single transition from the BSS phase to the disordered phase, which is accompanied by the
proliferation of Z6 vortex strings, Z3 vortex strings and ±π domain walls. Bottom panel:
Upon suppressing the formation of the Z6 vortex strings, the system shows a partially
symmetry broken phase due to the proliferation of the ±π domain walls.

disordered phase?

We have simulated the effective Z6 ferromagnet which is equivalent to the Z3 antiferro-

magnet as dsecribed in Sec. 3.8. We find that the order-disorder transition, captured by

the decay of the magnetization, is accompanied by the simultaneous proliferation of Z6

vortex strings, Z3 vortex strings and ±π domain walls (Fig. 5.5a). When we suppress the

formation of the Z6 vortex strings, the transition changes to one between the BSS phase

and a partially symmetry broken phase (Fig. 5.5d). When the ±π domain walls are sup-

pressed as well, the system exhibits a BSS phase throughout. We find that the Z3 vortex

strings are not able to drive any transitions on their own because they get suppressed when

the ±π domain walls are suppressed.
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Chapter 6

Melting of Vortex-Antivortex Lattice

The method of raising the core energy of vortices and suppressing their formation has not

only allowed us to demonstrate their role in driving phase transitions but has also assisted

us in uncovering a rich variety of phases. Can we also uncover new phases by lowering

the core energy of vortices and enhancing their formation?

The effect of vortex enhancement has been studied in models with continuous symmetries

and rich phase diagrams have been obtained wherein a new vortex-antivortex lattice phase

appears for strong enhancement [53,147–152]. Another approach involves a modification

to the potential of the XY model, in order to make it more steep like the Kronecker delta

potential of the Potts model. In doing so, the infinite order BKT transition of the two

dimensional XY model has been shown to become first-order in nature [153]. This change

has been attributed to a sudden proliferation of vortices due to their enhancement [60,154].

However, the effect of enhancing the formation of vortices has not been studied for models

with discrete symmetries.
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6.1 Z3 Clock Ferromagnet on the Square Lattice

As a first case, we revisit the Z3 clock ferromagnet on the square lattice. We consider the

Hamiltonian

H =
∑
〈i, j〉∈Λ

1 − cos(θi − θ j) + λ
∑
i′∈Λ

|ωi′ | (6.1)

with negative values of λ. We have measured the magnetization |m| and the number densi-

ties of domain walls ρdw and vortices ρvx at each temperature. For reasons, to be clarified

soon, we have also measured the specific heat cv = (〈H2〉 − 〈H〉2)N/T 2. For λ = 0, the

model exhibits a order-disorder transition at T = 1.49 which is driven by the simultaneous

proliferation of vortices and domaIe walls. For weak suppression with λ > 0, we found

that the fall of the order parameter appears to become smoother (Sec. 2.2.2). Therefore,

we can expect the fall to become sharper as we make λ negative.

6.2 Weak Enhancement of Vortices

For λ = −1.5, the rise in vortex density shifts to a lower temperature T ≈ 1.1 and becomes

sharper as compared to the λ = 0 case (Fig. 6.1e). The rise in domain wall density also

sharpens and shifts to the same temperature. This behavior is also observed in the decay

of the magnetization and the peak of specific heat, both of which shift to T ≈ 1. The

rapid growth of the specific heat and the sharper decay of the magnetization suggests that

the transition is becoming stronger. With increasingly negative values of λ, the decay of

the magnetization and the rise of defect densities continue to grow sharper, while shifting

to lower temperatures. This trend continues upto λ ≈ 2. Below this λ, the shift of the

magnetization continues but a qualtitative change is observed in the rise of the defect

densities.
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Figure 6.1: The order-disorder transition of the Z3 clock ferromagnet on the square lattice,
which is accompanied by a simultaneous proliferation of vortices and domain walls (top
panel), shifts to a lower temperature when the vortices are weakly enhanced (bottom
panel). The rise in the defect densities and the decay of magnetization becomes sharper
as well. Data has been obtained for system sizes L = 16 (circle), L = 32 (square) and
L = 64 (triangle).
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6.2.1 Strong Enhancement of Vortices

In the data for λ = −2.1, however, the vortex density rises above the domain wall density

across an intermediate range of temperatures (Fig. 6.2b). This is interesting because for

λ > −2.1, the vortex density was always smaller than the domain wall density, even in

the disordered phase. In addition to the change in the intermediate region, the rise in both

densities appear to be discontinuous. With stronger enhancement using λ = −3, this inter-

mediate region appears to increase in extent (Fig. 6.2e). Additionally, the discontinuous

rise of the densities as well as the decay in magnetization shifts to a lower temperature

T ≈ 0.3 (Fig. 6.1d). Surprisingly, however, the specific heat peak shifts to a higher tem-

perature T ≈ 1.2 (Fig. 6.1f), which appears close to the point where the vortex density

returns below the domain wall density. The intermediate region marked out by the defect

densities, is therefore, of significant interest.

6.3 Vortex-Antivortex Lattice

A visual inspection of the spin configurations obtained in the intermediate region reveals

that the vortices and antivortices have arranged themselves in alternate sublattice sites,

i.e. they have formed a vortex-antivortex lattice (vv̄l) (Fig. 6.2h). The vv̄l structure also

exhibits a few vacancies. The number of these vacancies to grows with increasing temper-

ature and becomes considerable in the disordered phase, where the vv̄l structure appears

to melt away (Fig. 6.2i). At the low temperature side, on the other hand, we find a com-

pletely ordered configuration devoid of domain walls or vortices (Fig. 6.2g) upto the point

marked by the discontinuous jump in the defect densities.

The formation of the vv̄l structure is justified because by lowering the core energy, we have

made the formation of vortices quite favorable and the sublattice ordering of the defects is

the only space-filling pattern allowed by the orientation of the spins. However, with such

a negative value of λ, the vv̄l should also be the minimum energy configuration which
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Figure 6.2: For strong suppression of vortices, the decay of magnetization shifts to lower
temperatures but the specific heat reverses its trend and starts shifting to higher temper-
atures. The density of vortices is observed to rise sharply to a value higher than that of
domain walls before coming down to a lower value at a higher temperature. In the in-
termediate region, the vortices and antivortices are found to display a sublattice ordering.
System sizes correspond to those in Fig. 6.1.
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can be realized at zero temperature. Instead, we find a completely ordered configuration,

which has a higher energy, at zero temperature for this λ (Fig. 6.2g).

6.3.1 Non-ergodic Nature of Single Spin-Flip Algorithm

The reason behind this discrepancy lies in the use of a single spin-flip algorithm for the

Monte Carlo simulation. If we initialize the system to a completely ordered configura-

tion, the first candidate spin state proposed for the update will be surrounded by spins

all belonging to a different state. This configuration never generates a non-zero winding

number and therefore, the candidate spin can never utilize the strongly negative values of

λ to get accepted as a energy lowering flip. On the contrary, it gets surrounded by four

domain walls which have a high energy cost. Therefore, the candidate never gets accepted

at low temperatures and the system remains stuck in a completely ordered configuration.

This continues till the system is provided a temperature large enough to accept the cost of

creating a few domain walls. In such cases, a few candidate spins start getting accepted.

Once in a while, two candidate spin flips can get accepted next to each other, which might

prove to be sufficient for generating a non-zero winding number. Once a vortex defect

has been generated, it begins to seed vortices in its neighborhood, which in turn seed

newer vortices. In this process, the system gets covered soon, by a tiling of vortices and

antivortices.

In order to alleviate the problem of non-ergodicity at low temperatures, we have repeated

the simulation with a complete vv̄l as the initial configuration. For λ = −3, the vv̄l appears

at zero temperature and continues upto the disordering point, as evidenced by the density

of vortices reaching unity (Fig. 6.3h). However, our initial condition is found to distort

the results for lower values of λ. At λ = −1.5, where we obtained a single order-disorder

transition, the system now shows a vv̄l phase at low temperatures (Fig. 6.2b). For λ =

−2.1, it is difficult to interpret the data as the defect densities show a two step jump

towards zero temperature (Fig. 6.2e). We have observed that this behavior at intermediate
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Figure 6.3: Values of the thermodynamic observables obtained by simulating the model
with a vv̄l as the initial spin configuration at each temperature. System sizes correspond
to those in Fig. 6.1.
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values of λ occurs because the system starts from the vv̄l configuration and gets jammed

while trying to reach an ordered configuration. In other words, there are no local spin

moves available to take the system out of the jammed configuration. We conclude that

while the ordered configuration is a justifiable starting condition at small negative values

of λ and the vv̄l is justified as a starting condition for large negative values of λ, the

intermediate region cannot be reliably simulated using the single spin-flip algorithm. In

addition, we have already discussed that cluster algorithms cannot take into account the

plaquette based winding number calculation required for the λ term.

6.3.2 Wang-Landau Algorithm for Defects

In order to obtain reliable information about this intermediate region, we have simulated

the model using the Wang-Landau algorithm [155, 156]. This algorithm directly solves

for the density of states and does not suffer from the jamming problem. We note that

Hamiltonian (Eq. 6.1) can be written as

H = Ndw + λNvx (6.2)

where Ndw and Nvx are the number of domain walls and vortices, respectively, in a given

configuration. We have estimated the density of states g(Ndw,Nvx) in terms of these two

variables.

For a system of size L = 16, we started with a uniform density of states g(Ndw,Nvx) = 1 as

the initial condition and maintained a histogram h(Ndw,Nvx) which counts the number of

times a particular combination of the two variables is visited in course of the simulation.

We visited each vertex i of the lattice Λ, proposed a candidate value θ′i to update the angle

θi and noted the values N′dw and N′vx for the configuration which would be generated if θ′i

is accepted. We compared these values to the existing values Ndw and Nvx. The candidate

was accepted with a probability min[1, g(Ndw,Nvx)/g(N′dw,N
′
vx)]. If the candidate was
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accepted, we multiplied the value g(N′dw,N
′
vx) by a factor f and incremented h(Ndw,Nvx)

by one. The initial value of f was chosen to be f = e1 ≈ 2.718. After every 103 lattice

sweeps, we checked for the flatness of h(Ndw,Nvx) by demanding that the count in any bin

of h(Ndw,Nvx) is not less than 80% of the average count. Odd values of Ndw and Nvx do

not occur on the square lattice with periodic boundary conditions. We were careful not

to include these bins while checking for the flatness of the histogram. If the histogram

was found to be sufficiently flat, we reduced the modification factor as f →
√

f . The

simulation was terminated when f reached O(10−8).

6.4 Phase Diagram of the Z3 Ferromagnet on the Square

Lattice

Using the density of states generated in this manner, we calculated the values of a few

thermodynamic observables as

〈O〉 =

∑
Ndw,Nvx

Og(Ndw,Nvx)e−H/T∑
Ndw,Nvx

g(Ndw,Nvx)e−H/T
(6.3)

In particular, we measured the density of domain walls 〈Ndw/L2〉, the density of vortices

〈Nvx/L2〉 and the specific heat cv = (〈H2〉−〈H〉2)L2T−2. Since the same density of states is

used to calculate the observables at different parameters λ and T , we were able to sweep

through a large area of the parameter space with fine-grained increments.

Our simulation shows that the density of vortices and domain walls increases drastically

across λ ≈ −2.2 along the zero temperature axis (Fig. 6.4). While the region λ > −2.2

has been addressed correctly using a completely ordered initial configuration, the region

λ < −2.2 is where the single spin-flip algorithm runs the risk of becoming non-ergodic.

For large negative λ, however, even the results obtained using the Wang-Landau algo-

rithm indicate the presence of vv̄l at low temperatures and the disordered phase at high
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Figure 6.4: Densities of domain walls and vortices and the specific heat obtained using
Wang-Landau algorithm for a L = 16 system is shown over the parameter space of tem-
perature T and suppression strength λ.

temperatures. This is also reflected in the way the specific heat peaks. For λ < −2.2, the

peak moves gradually towards higher temperatures as λ grows more negative. We also

note that the data also vindicates the phase diagram obtained for λ > 0.

6.5 Defect Based Order Parameter

Independent of the specific location where the vv̄l transitions to the disordered phase or

the ordered phase, it is interesting to note that the magnetization is unable to capture

the difference between the disordered phase and vv̄l (Fig. 6.3h). This is because the spin

configuration in the latter phase displays a weave pattern with all the three states present in

a nearly equal proportion (Fig. 6.2h). The symmetry based order parameter is, therefore,

unable to capture the melting of the lattice structure and a different order parameter is

required to characterize it. We also note that since the magnetization cannot distinguish

between the two phases, the use of magnetic susceptibility for locating the transition is

unreliable. It is for this reason that we have shifted from the measurement of susceptibility

to the measurement of specific heat in this chapter.

The defects exhibit only two types of winding number: +1 and -1. If the +1 defects

occupy sublattice A, the -1 defects occupy sublattice B. This is precisely the ordering
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Figure 6.5: Variation of the vv̄l order parameter across temperature for different values
of λ. In cases (a) and (b), the initial configuration at each temperature was a completely
ordered one, while a complete vv̄l was used for (c). System sizes correspond to those in
Fig. 6.1.

pattern displayed by an Ising antiferromagnet. In addition, the vv̄l lattice displays voids,

which are characteristic of dilute systems. Therefore, the diluted antiferromagnetic Ising

order parameter [147,157] is a natural choice for characterizing the vv̄l phase. In terms of

the winding numbers, the order parameter is defined as:

mvx =
∑
i′∈Λ′

pi′ωi′/L2 (6.4)

where pi′ = ±1 depending upon the sublattice to which the dual vertex i′ belongs. We find

that the equivalent of magnetization for this order parameter 〈|mvx|〉 takes on zero value in

the ordered phase, rises to unity in the vv̄l phase and goes down to zero in the disordered

phase (Fig. 6.5).
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Figure 6.6: Melting transition from the vv̄l phase to the disordered phase obtained with
λ = −2 for n-state Potts models on the square lattice. System sizes correspond to those in
Fig. 6.1.

6.6 Melting in n-state Potts Ferromagnets on the Square

Lattice

The three-state ferromagnet is not the only one which displays a vv̄l structure. We have

considered n-state Potts ferromagnets described by the Hamiltonian

H =
∑
〈i, j〉∈Λ

1 − δ(si, s j) + λ
∑
i′∈Λ′
|ωi′ | (6.5)

where each spin at vertex i ∈ Λ can be in one of n states si ∈ {0, 1, . . . , n − 1}. We have

simulated these models for some values of n on the square lattice with negative values of

λ. For strong enhancement of vortices with λ = −2, we find that the Potts models also

exhibit a vv̄l phase which melts into the disordered phase at high temperatures (Fig. 6.6).

6.7 Z3 Ferromagnet on the Simple Cubic Lattice

As a next step, we have studied the effects of vortex enhancement on the Z3 Potts ferro-

magnet on the simple cubic lattice. Before simulating the model using the single spin-flip

algorithm, we have obtained the values of the thermodynamic observables over the pa-
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Figure 6.7: Densities of domain walls and vortex strings and the specific heat obtained
using Wang-Landau algorithm for the Z3 ferromagnet on a L = 4 simple cubic lattice is
shown over the parameter space of temperature T and suppression strength λ.

rameter space of λ and T using the Wang-Landau algorithm.

We find that similar to the two dimensional case, the three dimensional model exhibits

a sudden increase in the densities of domain walls and vortices at large negative values

of λ along the zero temperature axis (Fig. 6.7). In addition, the specific heat shows a

stronger peak which shifts to higher temperatures as λ grows more negative. Although

the observables show the presence of a phase transition from a low temperature phase at

large negative λ to the disordered phase, we have not been able to characterize the phase

using a vortex based sublattice order parameter as we did in the two dimensional case.

This is because the vortex strings in the low temperature phase do not show complete

sublattice ordering (Fig. 6.8b). However, they do not form a random tangle in this phase

either. We have attempted to sustain a sublattice ordering by initializing the system with a

flux lattice structure (Fig. 6.8a). However, over the course of our Monte Carlo simulation,

the structure disintegrates, but only in patches. Formulating a suitable order parameter

which captures the transition from this vortex condensate phase to the disordered phase

therefore remains as an open problem.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.8: Upon initializing the three dimensional Z3 ferromagnet on the simple cubic
lattice in a manner such that it exhibits a flux lattice structure for the vortex strings (a), the
lattice structure breaks down into a vortex condensate (b) over the course of Monte Carlo
simulation at T = 0.5 with λ = −1.2. The vortex condensate clearly has more structure
than the arrangement of vortex strings at T = 2.0 in the disordered phase (c). The panels
below the configurations show two dimensional slices along the three different axes of the
corresponding configurations.

154



Chapter 7

Conclusion

The existence of various phases characterized by different signatures of manifested sym-

metry, which has been the main topic of discussion in this thesis, appear ubiquitously

across statistical, quantum condensed matter and high energy physics. By considering a

minimal model which exhibits these phases, we have investigated the underlying mecha-

nism that drives the phase transitions and leads to the formation of these phases. While

previous attempts to understand the nature of these phases have relied on techniques based

on symmetry and mappings onto random cluster models, we have approached the problem

using the role played by topological defects as a guiding principle.

We have shown that the order-disorder transitions in simple models, like the three-state

Potts, Ashkin-Teller and six-state clock models, are driven by a coupled proliferation

of domain walls and vortices. By decoupling the transition using vortex suppression,

we have uncovered intermediate phases which are either symmetry enhanced, symmetry

broken or partially symmetry broken. Some of the phases that have been discussed in this

work are summarized here.

155



Model Defect Manipulated Phases Sec.

2D Z3

none order-disorder 2.1.5

vortex weak suppress order-disorder 2.2.2

vortex strong suppress order-QLRO-disorder 2.2.3

vortex full suppress order-QLRO 2.2.3

vortex weak enhance order-disorder 6.2

vortex strong enhance order-vv̄l-disorder 6.2.1

vortex full enhance vv̄l-disorder 6.2.1

2D Z4

none order-disorder 3.4

vortex full suppress order-partial order 3.4

vortex + dw±π full suppress order-QLRO 3.6

2D Z5

none order-QLRO-disorder 3.5

vortex full suppress order-QLRO 3.5

2D Z6

none order-QLRO-disorder 3.7

vortex full suppress order-partial order 3.7

vortex + dw±π full suppress order-QLRO 3.7

2D Z3

antiferro

none disorder 3.8

ferro Z6 vortex full suppress partial order 3.8

ferro Z6 vortex + dw±π full suppress QLRO 3.8
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Model Defect Manipulated Phases Sec.

3D Z3

none order-disorder 4.2.1

vortex weak suppress order-disorder 4.3.1

vortex strong suppress order-partial order-disorder 4.3.2

vortex full suppress order-partial order 4.3.2

vortex weak enhance order-disorder 6.7

vortex weak enhance order-vortex cond.-disorder 6.7

vortex full enhance vortex cond.-disorder 6.7

3D Z4

none order-disorder 4.5

vortex + dw±π full suppress order-partial order 4.5

We have shown that symmetry enhancement in two dimensions, which is associated with

quasi-long-range order, is driven by the percolation of domain walls. However, none of

the individual types of domain walls percolate on their own in the quasi-long-range or-

dered phase. We have discovered that the standard method for calculating vortex winding

number contains a flaw which stems from its adherence to modular arithmetic. We have

proposed a modified calculation which remedies the flaw. Using the modified method we

have correctly identified the role of defects in systems with even number of spin states.

This correction has turned out to be crucial for ferromagnets as well as antiferromagnets.

In particular, it has revealed that the transition from quasi-long-range order to disorder is

not driven solely by vortices, but by a combination of vortices and ±π domain walls.

We have found that symmetry enhancement is replaced by partial symmetry breaking in

three dimensions. We have observed that individual types of domain walls percolate on

their own in these partial symmetry broken phases. In addition, the proliferation of defects

belonging to subgroups of the model’s symmetry has been found to play a crucial role in

the formation of intermediate phases.

While our results have focussed on the nature of the phases, we have not been able to

ascertain the nature of the phase transitions due to computational difficulties. One factor
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contributing to this difficulty has been the calculation of winding number at all the ver-

tices of the lattice in each step of the update algorithm. Due to the irregular location of

the vertices, which contribute to the winding number calculation, vectorization [158] of

the update algorithms has proven to be difficult. This implementation-based slowdown

has been amplified by the critical slowing down related to large autocorrelation times

observed at the transition and throughout the quasi-long-range ordered phase. The issue

of critical slowing down, in particular, is generally avoided by using cluster algorithms.

However, we are not aware of any cluster algorithm which can take into account plaquette

based computation, like the one required for the winding number calculation at each ver-

tex. Meron cluster algorithms appear to incorporate plaquette interactions [159]. It would,

therefore, be interesting to study how such an algorithm can be adapted to the problem

of vortex suppression. Such an algorithm would not only allow better characterization of

the phases, but also allow simulation of larger systems which are required for finite size

scaling and reliable calculation of critical exponents.

The interesting feature of vortex suppression is that it can, in turn, suppress defects in

models with other symmetries. Models with O(3) symmetries sustain monopole defects in

three dimensions and skyrmion defects in two dimensions. A discrete version of the O(3)

model is the tetrahedron model or simply the four-state Potts model. This model would

exhibit the discrete versions of monopole and skyrmion defects. However, suppression

of extended defects like skyrmions is difficult. Since the plaquette based suppression of

discrete vortices effectively suppresses discrete skyrmions, we can obtain insights into

the physics of these defects indirectly by using vortex suppression techniques. This, in

turn, can provide insights into the behavior of skyrmions in quantum antiferromagnets.

For example, can the Heisenberg antiferromagnet exhibit an emergent U(1) phase when

skyrmions are suppressed? Similar methods of suppression can be used to search for

symmetry enhancement in models with non-Abelian discrete symmetries [160–164]. The

dodecahedron model, for example, shows a symmetry enhanced intermediate phase, the

physics of which is closely related to the existence of asymptotic freedom in the Yang-
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Mills theory [160–162]. A closely related model, the icosahedron model does not show

such an intermediate phase [162]. Can vortex suppression in this model open up such a

phase?

We have considered the behavior of defects in the equilibrium regime. Non-equilibrium

behavior of defects is an equally important topic [165, 166]. It is surprising that a sub-

stantial amount of work has gone into studying the coarsening behavior of domains and

the evolution of domain walls in spin models with discrete states [167–170]. However,

the non-equilibrium behavior of vortices in these models has not been studied. We have

shown that the phase diagram of these models in the equilibrium regime is governed by

the proliferation of domain walls and vortices. Therefore, research into the evolution of

these defects in the non-equilibrium regime is a natural step forward. The non-equilibrium

behavior of vortex strings during quenching in multiferroics has become a topic of inter-

est [8, 9, 171]. Our results suggest that an investigation into the behavior of three-fold

vortex strings, apart from that of six-fold vortex strings, will be able to shed light on the

nature of intermediate phases in these systems.

This work demonstrates that the study of defects responsible for driving phase transitions

combined with the study of symmetries used for characterizing the transitions provides a

powerful toolkit for understanding the behavior of systems across condensed matter and

high energy physics. It is our hope that this toolkit will be used to, not only discover but

also, synthesize new phases of matter with interesting properties and beneficial applica-

tions.
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