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Notations

Symbol Description

N The set of non-negative integers

Z The ring of integers

Z≤n The set of integers less than or equal to n

Q The field of rational numbers

R The field of real numbers

C The field of complex numbers

ζ(s) The Riemann zeta function

ζr(s1, . . . , sr) The multiple zeta function of depth r

ι The primitive 4-th root of unity with positive imaginary part

<(s) The real part of a complex number s

=(s) The imaginary part of a complex number s

Iq The set {k ∈ N | 0 ≤ k ≤ q − 1} where q is a positive integer

Jq The set {k ∈ N | k ≥ q} where q is a positive integer
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0
Synopsis

For an integer r ≥ 1, consider the open subset Ur of Cr given by

Ur := {(s1, . . . , sr) ∈ Cr : <(s1 + · · ·+ si) > i for all 1 ≤ i ≤ r}.

The multiple zeta function of depth r, denoted by ζr(s1, . . . , sr), is a function on Ur defined

by

ζr(s1, . . . , sr) :=
∑

n1>···>nr>0

n−s11 · · ·n−srr .

Note that the above series converges normally on any compact subset of Ur and hence defines

an analytic function on Ur. When r = 1, this is the classical Riemann zeta function.

Riemann zeta function has been the focus of study for sometime now, playing a central role

both in the development of modern number theory as well as arithmetic geometry. However,

the study of multiple zeta functions has achieved prominence only in recent times though its

origin can be traced back to Euler who studied the case r = 2 (see [11] for more details).

Euler showed that the Riemann zeta values are inter-connected to the multiple zeta values. In

xxi
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particular, it is easy to see that

ζ1(s1) · ζ1(s2) = ζ2(s1, s2) + ζ2(s2, s1) + ζ1(s1 + s2). (0.0.1)

Thus the question of algebraic independence of Riemann zeta values gets related to the ques-

tion of linear independence of certain multiple zeta values. There have been some recent

developments by Hoffman, Goncharov, Terasoma, Zagier, Kaneko, Brown among others in

the context of discovering possible structures in the set of special values of the multiple zeta

functions at integral points.

In another direction, one can ask the question of analytic continuation of these multiple zeta

functions. The first result in this direction is due to Atkinson who considered this question for

r = 2. The question for general r was studied by Arakawa and Kaneko [4]. They showed

that for a fixed tuple (k1, · · · , kr−1), the function ζr(k1, · · · , kr−1, s) has a meromorphic con-

tinuation to the complex plane. The analytic continuation of the multiple zeta functions as a

function of several complex variables was first proved by Zhao [33]. He also provided a list

of the possible polar singularities. The exact location of these polar singularities was later de-

termined by Akiyama, Egami and Tanigawa [1]. The vanishing of the odd Bernoulli numbers

played a crucial role in their work.

In order to establish the analytic continuation of the Riemann zeta function, Ramanujan

[28] wrote down an identity involving the translates of the Riemann zeta function. More

precisely, Ramanujan proved the following theorem.

Theorem 0.0.1 (S. Ramanujan). The Riemann zeta function satisfies the following identity:

1 =
∑
k≥0

(s− 1)k
(
ζ1(s+ k)− 1

)
, <(s) > 1

where for k ≥ 0

(s)k :=
s · · · (s+ k)

(k + 1)!
.
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Since this identity involves translates of the Riemann zeta function, from now on we refer

to it as the translation formula for the Riemann zeta function. In this thesis, we built upon

this idea of Ramanujan to study the analytic continuation and singularities of the multiple zeta

functions and their various generalisations.

A later work of Ecalle [10] alluded to the possibility of extending the idea of Ramanujan

for the multiple zeta functions. In a recent work with Mehta and Viswanadham [24], following

the idea of Ecalle, we prove the following theorem.

Theorem 0.0.2. For each integer r ≥ 2, the multiple zeta function of depth r extends to a

meromorphic function on Cr satisfying the translation formula

ζr−1(s1 + s2 − 1, s3, . . . , sr) =
∑
k≥0

(s1 − 1)kζr(s1 + k, s2, . . . , sr), (0.0.2)

where the series of meromorphic functions on the right hand side converges normally on all

compact subsets of Cr.

We could also recover the following theorem of Akiyama, Egami and Tanigawa.

Theorem 0.0.3 (Akiyama-Egami-Tanigawa). The multiple zeta function of depth r is holo-

morphic in the open set obtained by removing the following hyperplanes from Cr and it has

simple poles at the hyperplanes given by the equations

s1 = 1; s1 + s2 = 2, 1, 0,−2,−4,−6, . . . ;

s1 + · · ·+ si = n for all n ∈ Z≤i for all 3 ≤ i ≤ r.

Here Z≤i denotes set of all integers less than or equal to i.

In order to prove Theorem 0.0.3, we introduce the method of “matrix formulation" to

write down the residues along the possible polar hyperplanes (listed by Zhao) in a computable

form. Here we would like to mention that while Zhao had given a formula to calculate the
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residues along the possible polar hyperplanes, the non-vanishing of these residues could not

be concluded from that expression.

As a natural generalisation of the multiple zeta functions, Akiyama and Ishikawa [2] intro-

duced the notion of multiple Hurwitz zeta function.

Definition 0.0.4. Let r ≥ 1 be an integer and α1, . . . , αr ∈ [0, 1). The multiple Hurwitz

zeta function of depth r is denoted by ζr(s1, . . . , sr; α1, . . . , αr) and defined by the following

convergent series in Ur:

ζr(s1, . . . , sr; α1, . . . , αr) :=
∑

n1>···>nr>0

(n1 + α1)
−s1 · · · (nr + αr)

−sr .

The analytic continuation of this function was established by Akiyama and Ishikawa. In

the same paper [2], they also provided a list of possible singularities and were able to determine

the exact set of singularities in some special cases. Here is their theorem.

Theorem 0.0.5 (Akiyama-Ishikawa). The multiple Hurwitz zeta function of depth r can be

extended as a meromorphic function to Cr with possible simple poles at the hyperplanes given

by the equations

s1 = 1; s1 + · · ·+ si = n for all n ∈ Z≤i and 2 ≤ i ≤ r.

Later Kelliher and Masri [19] extended Zhao’s method to reprove this theorem. They also

obtained an expression for the residues along these possible polar hyperplanes but could not

isolate the exact set of polar singularities.

We are now able to determine the exact set of singularities of the multiple Hurwitz zeta

functions. Just as the vanishing of odd Bernoulli numbers plays a central role in determin-

ing the exact location of polar hyperplanes of the multiple zeta functions, in the case of the

multiple Hurwitz functions an analogous pivotal role is played by the zeros of the Bernoulli

polynomials. The Bernoulli polynomials Bn(t) ∈ Q[t] are defined by the following exponen-
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tial generating function. ∑
n≥0

Bn(t)
xn

n!
=

xetx

ex − 1
.

In this context we proved the following theorem.

Theorem 0.0.6. The multiple Hurwitz zeta function ζr(s1, . . . , sr;α1, . . . , αr) of depth r can

be analytically continued to an open subset Vr of Cr, where the Vr is obtained by removing the

hyperplanes given by the equations

s1 = 1; s1 + · · ·+ sk = n for all n ∈ Z≤k, for all 2 ≤ k ≤ r

from Cr. It has at most simple poles along each of these hyperplanes.

Further suppose that I is the set of i ∈ N such that Bi(α2 − α1) = 0. Let us define

a subset J of Z≤2 by J := {2 − i : i ∈ I}. Then the multiple Hurwitz zeta function

ζr(s1, . . . , sr;α1, . . . , αr) of depth r can be analytically continued to an open subset Wr of

Cr, where Wr is obtained by removing the hyperplanes given by the equations

s1 = 1; s1 + s2 = n for all n ∈ Z≤2 \ J ;

s1 + · · ·+ sk = n for all n ∈ Z≤k, for all 3 ≤ k ≤ r

from Cr. It has simple poles along each of these hyperplanes.

Akiyama and Ishikawa [2] also considered the multiple Dirichlet L-function.

Definition 0.0.7. Let r ≥ 1 be an integer and χ1, . . . , χr be Dirichlet characters. The multiple

Dirichlet L-function of depth r is denoted by Lr(s1, . . . , sr; χ1, . . . , χr) and defined by the

following convergent series in Ur:

Lr(s1, . . . , sr; χ1, . . . , χr) :=
∑

n1>···>nr>0

χ1(n1) · · ·χr(nr)
ns11 · · ·nsrr

.
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When r = 1, classically the analytic continuation is achieved by writing the function in

terms of the classical Hurwitz zeta function. For r > 1, one may attempt to do that. In this case

some variants of the multiple Hurwitz zeta functions come up. The exact set of singularities

of the multiple Dirichlet L-functions are not well understood. For r = 2 and specific choices

of characters χ1 and χ2, Akiyama and Ishikawa provided a complete description of the polar

hyperplanes and for general r, they could prove the following theorem.

Theorem 0.0.8 (Akiyama-Ishikawa). Let χ1, . . . , χr be Dirichlet characters of same conduc-

tor. Then the multiple Dirichlet L-function Lr(s1, . . . , sr; χ1, . . . , χr) of depth r can be ex-

tended as a meromorphic function to Cr with possible simple poles at the hyperplanes given

by the equations

s1 = 1; s1 + · · ·+ si = n for all n ∈ Z≤i and 2 ≤ i ≤ r.

To address this difficult question, we aim to obtain a translation formula satisfied by the

multiple Dirichlet L-functions. In this direction, we are able to establish such a translation for-

mula for the classical Dirichlet L-functions and obtain their meromorphic continuation in [31],

the proof of which in fact carries over for Dirichlet series associated to periodic arithmetical

functions.

Theorem 0.0.9. Let f be a periodic arithmetical function with period q. Then the associated

Dirichlet series D(s, f) :=
∑

n≥1
f(n)
ns satisfies the following translation formula:

q∑
a=1

f(a)

a(s−1)
=
∑
k≥0

(s− 1)kq
k+1

(
D(s+ k, f)−

q∑
a=1

f(a)

a(s+k)

)
, (0.0.3)

where the infinite series on the right hand side converges normally on every compact subset of

<(s) > 1.

Using Theorem 0.0.9, we can derive the meromorphic continuation of D(s, f).
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Theorem 0.0.10. Let f be as in Theorem 0.0.9. Then, by means of the translation formula

(0.0.3), the Dirichlet series D(s, f) can be analytically continued to the entire complex plane

except at s = 1, where the function has simple pole with residue 1
q

∑q
a=1 f(a). If

∑q
a=1 f(a) =

0, then D(s, f) can be extended to an entire function.

However, obtaining such a translation formula for multiple Dirichlet L-functions seems

harder and we plan to take it up in near future. On the other hand, if we consider additive

characters, that is, group homomorphisms f : Z → C∗ in place of Dirichlet characters, the

problem becomes tractable.

Definition 0.0.11. For a natural number r ≥ 1 and additive characters f1, . . . , fr, the multiple

L-function associated to f1, . . . , fr is denoted as Lr(f1, . . . , fr; s1, . . . , sr) and defined by

following series:

Lr(f1, . . . , fr; s1, . . . , sr) :=
∑

n1>···>nr>0

f1(1)n1 · · · fr(1)nr

ns11 · · ·nsrr
.

The necessary and sufficient condition for absolute convergence of the above series is given

by

|gi(1)| ≤ 1 for all 1 ≤ i ≤ r,

where gi :=
∏

1≤j≤i fj for all 1 ≤ i ≤ r. With these conditions, the above series converges

normally on any compact subset of Ur and hence defines an analytic function there. If fi(1) =

e2πιλi for some λi ∈ C, the conditions |gi(1)| ≤ 1 can be rewritten as=(λ1+ · · ·+λi) ≥ 0. For

simplicity, we will assume that λi ∈ R for all 1 ≤ i ≤ r so that the conditions are vacuously

true. In this context, we have the following theorem which is valid also for complex λi’s.

Theorem 0.0.12. The multiple L-function Lr(f1, . . . , fr; s1, . . . , sr), associated to additive

characters f1, . . . , fr has different set of singularities depending on the values of

µi :=
i∑

j=1

λj, for 1 ≤ i ≤ r.
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(a) If µi 6∈ Z for all 1 ≤ i ≤ r, then Lr(f1, . . . , fr; s1, . . . , sr) can be extended analytically

to the whole of Cr.

Let i1 < · · · < im be all the indices such that µik ∈ Z for all 1 ≤ k ≤ m. Then the set of

all possible singularities of Lr(f1, . . . , fr; s1, . . . , sr) is described in the following two cases.

(b) If i1 = 1, then Lr(f1, . . . , fr; s1, . . . , sr) can be extended analytically to an open subset

Vr of Cr, where Vr is obtained by removing the hyperplanes given by the equations

s1 = 1; s1 + · · ·+ sik = n for all n ∈ Z≤k, for all 2 ≤ k ≤ m

from Cr. It has at most simple poles along each of these hyperplanes.

(c) If i1 6= 1, then Lr(f1, . . . , fr; s1, . . . , sr) can be extended analytically to an open subset

Wr of Cr, where Wr is obtained by removing the hyperplanes given by the equations

s1 + · · ·+ sik = n for all n ∈ Z≤k, for all 1 ≤ k ≤ m

from Cr. It has at most simple poles along each of these hyperplanes.

We further determine the exact set of singularities when λi ∈ R for all i. We call the

corresponding additive characters to be real additive characters.

Theorem 0.0.13. The exact set of singularities of the multiple L-function associated to real

additive characters f1, . . . , fr differs from the set of all possible singularities as described in

Theorem 0.0.12 only in the following two cases.

(a) If i1 = 1 and i2 = 2 i.e. both λ1 = λ2 = 0, then Lr(f1, . . . , fr; s1, . . . , sr) can

be extended analytically to an open subset Xr of Cr, where Xr is obtained by removing the

hyperplanes given by the equations

s1 = 1; s1 + s2 = n for all n ∈ Z≤2 \ J ;

s1 + · · ·+ sik = n for all n ∈ Z≤k, for all 3 ≤ k ≤ m
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from Cr, where J := {−2n−1 : n ∈ N}. It has simple poles along each of these hyperplanes.

(b) If i1 = 2 and λ1 = 1/2 i.e. both λ1 = λ2 = 1/2, then Lr(f1, . . . , fr; s1, . . . , sr) can

be extended analytically to an open subset Yr of Cr, where Yr is obtained by removing the

hyperplanes given by the equations

s1 + s2 = n for all n ∈ Z≤1 \ J ;

s1 + · · ·+ sik = n for all n ∈ Z≤k for all 2 ≤ k ≤ m

from Cr, where J := {−2n−1 : n ∈ N}. It has simple poles along each of these hyperplanes.

In fact, one can unify the previous notions and consider the following general function. For

a natural number r ≥ 1 and two sets of real numbers λ1, . . . , λr and α1, . . . , αr in [0, 1), one

can consider the complex valued function defined by the following convergent series in Ur:

∑
n1>···>nr>0

e(λ1n1 + · · ·+ λrnr)

(n1 + α1)s1 · · · (nr + αr)sr
,

where for a real number a, e(a) means the complex number e2πιa. This function is a gener-

alisation of one variable Lerch zeta function, and hence we call it as the multiple Lerch zeta

function of depth r.

We extend the idea of Ecalle to obtain a translation formula for the multiple Lerch zeta

functions analogous to the one discovered by Ramanujan for the Riemann zeta function. Using

this translation formula, we can then establish the meromorphic continuation of the Lerch zeta

function, of which Theorem 0.0.12 and first part of Theorem 0.0.6 are particular cases.





1
Introduction

1.1 Riemann zeta function and its special values

For a complex number s with <(s) > 1, the Riemann zeta function ζ(s) is defined by the

absolutely convergent series

ζ(s) :=
∑
n≥1

1

ns
.

Before Riemann, this function was considered by Euler for positive integer values, and is there-

fore also referred to as the Euler-Riemann zeta function. Euler derived many beautiful results

about these special values. For instance, he proved that ζ(2) = π2/6, and more generally that

ζ(2n) =
(−1)n−122n−1B2n

(2n)!
π2n for all n ≥ 1. (1.1.1)

Here Bn denotes the n-th Bernoulli number which is defined by the generating function

t

et − 1
=
∑
n≥0

Bn
tn

n!
.

1
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The relation (1.1.1) together with the fact that π is transcendental, proved by F. Lindemann

in 1882, yields that the zeta values at positive even integers are transcendental numbers and

furthermore linearly independent over Q.

On the other hand the arithmetic nature of the zeta values at odd positive integers are yet to

be determined and any relations among these special values are yet to be found. In this context

we have the following conjecture which is regarded as a mathematical folklore.

Conjecture 1.1.1. The numbers π, ζ(2n + 1) for all n ≥ 1 are algebraically independent

i.e. there are no polynomial relations among any of these numbers. In particular they are all

transcendental.

While this conjecture is far from being proved, there have been a number of recent devel-

opments in this direction. Besides π, the lone number in the above list whose arithmetic nature

has been revealed to some extent is ζ(3). R. Apéry [3] proved it to be irrational in 1978. Later

in 2000, K. Ball and T. Rivoal [6] proved the following notable theorem from which it follows

that there are infinitely many odd zeta values which are irrational.

Theorem 1.1.2 (Ball-Rivoal). Given any ε > 0, there exists an integer N = N(ε) such that

for all n > N , the dimension of the Q-vector space generated by the numbers

1, ζ(3), . . . , ζ(2n+ 1)

exceeds
1− ε

1 + log 2
log n.

About the specific values, Zudilin [34] proved that at least one of the numbers ζ(5), ζ(7),

ζ(9) and ζ(11) is irrational.

As we can see that Conjecture 1.1.1 predicts no algebraic relation among the odd Riemann

zeta values, but on the other hand when we consider the set of special values of the so-called

multiple zeta functions, which also contains the Riemann zeta values, has a rich structure with
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a number of known relations and hence is more amenable for investigation. These multiple

zeta functions and their various generalisations are the principal objects of study in this thesis

and we introduce them in the following sections.

1.2 Multiple zeta functions and their special values

For an integer r ≥ 1, consider the open subset Ur of Cr:

Ur := {(s1, . . . , sr) ∈ Cr : <(s1 + · · ·+ si) > i for all 1 ≤ i ≤ r}.

The multiple zeta function of depth r, denoted by ζr(s1, . . . , sr), is a function on Ur defined

by

ζr(s1, . . . , sr) :=
∑

n1>···>nr>0

n−s11 · · ·n−srr .

The above series converges normally on any compact subset of Ur (see §3.2 of Chapter 3 for

a proof) and hence defines an analytic function on Ur. This is a multi-variable generalisation

of the classical Riemann zeta function. The origin of these functions can again be traced

back to Euler who studied the case r = 2. Euler showed that the Riemann zeta values are

inter-connected to the multiple zeta values. In particular, it is easy to see that

ζ(s1) · ζ(s2) = ζ2(s1, s2) + ζ2(s2, s1) + ζ(s1 + s2). (1.2.1)

Thus the question of algebraic independence of special values of the Riemann zeta function

gets linked to the question of linear independence of some other special values of the multiple

zeta functions.

In this context it is convenient to introduce the following terminology. The special values

of the multiple zeta function of depth r at the points (k1, . . . , kr) of Ur such that ki’s are

positive integers for all 1 ≤ i ≤ r, are called the multi zeta values of depth r. The number
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(k1 + · · · + kr) is called the weight of multi zeta value ζr(k1, . . . , kr). Besides the relations

coming from (1.2.1), Euler could also prove that

ζ(3) = ζ2(2, 1).

More generally, he proved the following theorem.

Theorem 1.2.1 (Euler). For any integer k ≥ 3, we have

ζ(k) =
k−1∑
j=2

ζ2(j, k − j).

A generalisation of this theorem was later proposed by M.E. Hoffman [16], which is now

known as the sum theorem. It has been proved independently by A. Granville [14] and D.

Zagier.

Theorem 1.2.2 (Granville-Zagier). For any integers s ≥ 2 and r ≥ 1, the identity

ζ(k) =
∑

k1>1,k2≥1,...,kr≥1
k1+···+kr=k

ζr(k1, . . . , kr)

holds.

The relation ζ(3) = ζ2(2, 1) can also be seen as a special instance of the so called duality

relation. To elaborate on this we need some more notations. For any r-tuple of positive

integers k = (k1, . . . , kr), we associate a (k1 + · · ·+ kr)-tuple with entries in the set {0, 1} by

the following prescription:

(k1, . . . , kr)↔ ( 0 . . . 0︸ ︷︷ ︸
k1−1

1 0 . . . 0︸ ︷︷ ︸
k2−1

1 . . . 0 . . . 0︸ ︷︷ ︸
kr−1

1 ). (1.2.2)

We denote this tuple by w(k). One often writes ζr(w(k)) to denote ζr(k1, . . . , kr).

We now introduce the dual map τ on the set of tuples with entries in {0, 1} to itself as
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follows. First of all, for ε ∈ {0, 1}, let ε̄ := 1 − ε. Then for any tuple w = (ε1 . . . εn) with

entries in {0, 1}, we define its dual τ(w) = w̄ to be the tuple w̄ := (ε̄n . . . ε̄1). Note that

if w = w(k) for some r-tuple of positive integers k = (k1, . . . , kr) ∈ Ur, then w̄ is also

associated to an (k1 + · · ·+ kr − r)-tuple of positive integers in U(k1+···+kr−r), say k̄. We call

k̄ to be the dual of k. In this context, the following theorem, due to Zagier, is known as the

duality theorem.

Theorem 1.2.3 (Zagier). Let k = (k1, . . . , kr) ∈ Ur be an r-tuple of positive integers and

k̄ ∈ U(k1+···+kr−r) denote its dual. Then we have

ζr(k) = ζ(k1+···+kr−r)(k̄).

For example, note that (3) ↔ (001) and τ(001) = 011. Further, (011) ↔ (2, 1). Hence,

Euler’s identity ζ(3) = ζ2(2, 1) follows as a special case of this more general theorem.

Further, we also have the shuffle product formula of multi zeta values. The formula (1.2.1)

can be seen as a special case of the stuffle product formula of multiple zeta functions. Below

we define the notion of shuffling and stuffling.

Let p and q be two non-negative integers. We define a stuffling of p and q to be a pair

(A,B) of sets such that |A| = p, |B| = q and A∪B = {1, . . . , r} for some integer r. We then

have max(p, q) ≤ r ≤ p + q. We call this r to be the length of the stuffling. Such a stuffling

is called a shuffling when A and B are disjoint, i.e. when r = p + q. We denote the stuffle

product by ? and the shuffle product is denoted by X.

Let (s1, . . . , sp) and (t1, . . . , tq) be two sequences of complex numbers and (A,B) be a

stuffling of p and q, with A ∪ B = {1, . . . , r}. Let σ and τ denote the unique increasing

bijections from A→ {1, . . . , p} and B → {1, . . . , q} respectively. Let us define a sequence of
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complex numbers (z1, . . . , zr) as follows:

zi :=


sσ(i) when i ∈ A \B,

tτ(i) when i ∈ B \ A,

sσ(i) + tτ(i) when i ∈ A ∩B.

We call it the sequence deduced from (s1, . . . , sp) and (t1, . . . , tq) by the stuffling (A,B).

Clearly, if (s1, . . . , sp) ∈ Up and (t1, . . . , tq) ∈ Uq, then (z1, . . . , zr) ∈ Ur. With the above

notation one has the following theorem, which is known as the stuffle product formula.

Theorem 1.2.4. Let (s1, . . . , sp) ∈ Up and (t1, . . . , tq) ∈ Uq. Then we have,

ζp(s1, . . . , sp) ζq(t1, . . . , tq) =
∑
(A,B)

ζr(z1, . . . , zr), (1.2.3)

where in the summation on the right hand side (A,B) runs over the stufflings of p and q, and

(z1, . . . , zr) denotes the sequence deduced from (s1, . . . , sp) and (t1, . . . , tq) by this stuffling.

On the other hand, the shuffle product formula of multi zeta values involves the correspon-

dence given in (1.2.2).

Theorem 1.2.5. Let k = (k1, . . . , kp) ∈ Up be a p-tuple of positive integers of weight m and

l = (l1, . . . , lq) ∈ Uq be a q-tuple of positive integers of weight n. Then we have,

ζp(k1, . . . , kp) ζq(l1, . . . , lq) =
∑
(A,B)

ζp+q(ε1 . . . εm+n), (1.2.4)

where in the summation on the right hand side, (A,B) runs over the shufflings of m and n,

and (ε1 . . . εm+n) denotes the sequence deduced from w(k) and w(l) by this shuffling.

Note that in the above theorem, by ζp+q(ε1 . . . εm+n) we mean the multi zeta value ζp+q(u),

where u ∈ Up+q is the element corresponding to (ε1 . . . εm+n) as per (1.2.2).
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One can further equate the right hand sides of (1.2.3) and (1.2.4) to obtain more relations.

The relations obtain this way are called the double shuffle relations. For example,

(2) ? (2) = 2(2, 2) + (4).

Now

(2)↔ (01) and (01) X (01) = 4(0011) + 2(0101)↔ 4(3, 1) + 2(2, 2).

Thus we get,

ζ2(3, 1) =
ζ(4)

4
.

The most significant property of all these relations among multi zeta values that we have

discussed here, is the ‘preservation of weight’, i.e. the weights of all the multi zeta values

involved in any of the above discussed relations are the same. In view of this observation, the

following conjecture seems reasonable.

Conjecture 1.2.6. There are no non-trivial Q-linear relations among multi zeta values of

different weights.

Here by a non-trivial Q-linear relation we mean that such a relation cannot be further

reduced to two or more uniform-weight relations. An example of a trivial relation is the fol-

lowing:

ζ(3) + ζ(4) = ζ2(2, 1) + 4 ζ2(3, 1).

The above conjecture can also be formulated in an abstract setting.

We define a graded Q-vector space Z of multi zeta values where the grading is over the

weight of the multi zeta values. Let us set

Z :=
⊕
n∈N

Zn,
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where Z0 := Q, Z1 := {0} and for n ≥ 2

Zn := Q〈ζ(k1, . . . , kr) : r, k1, . . . , kr are integers ≥ 1 with k1 > 1 and k1 + · · ·+kr = n〉.

Then the above conjecture can be reformulated as the following one.

Conjecture 1.2.7. For all m,n ∈ N such that m 6= n,

Zn ∩ Zm = {0}

There are some other conjectures concerning the structure of Z. For instance, the following

conjecture due to Zagier predicts the dimension of each Zn.

Conjecture 1.2.8. The dimension dn of Q-vector space Zn is given by the recurrence relation

dn = dn−2 + dn−3,

with the initial data that d1 = 0 and d0 = d2 = 1. In other words, the generating series of dn

is the following: ∑
n≥0

dnX
n =

1

1−X2 −X3
.

This conjecture is far from being proved. Though this conjecture predicts exponential

growth of dn, till date we do not have a single example of dn ≥ 2. For all n ∈ N, a set Dn of

basis elements of Zn was predicted by Hoffman. Recently, Brown [8] has showed that Dn in

fact generates Zn for all n ∈ N.

The theory of multi zeta values has been expanded to a great extent in the past couple

of decades by the likes of Hoffman, Zagier, Goncharov, Terasoma, Kaneko, Ohno and more

recently, by Brown. Beside this, the analytic theory of the multiple zeta functions has also

been a subject of development in these years. In the following section we discuss this briefly.
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1.3 Analytic theory of the multiple zeta functions

We begin this section by recalling the analytic properties of ζ(s) :=
∑

n≥1
1
ns . Riemann

showed that the function defined by the above series on the half plane <(s) > 1 can be

continued analytically to the entire complex plane except at s = 1, where it has simple pole

with residue 1, i.e.

lim
s→1

(s− 1)ζ(s) = 1.

In fact, it is possible to extend the Riemann zeta function to the half plane <(s) > 0 by just

using the Abel’s partial summation formula.

For a real number x > 1 and complex number s such that <(s) > 1, we get that

∑
n≤x

n−s =
[x]

xs
+ s

∫ x

1

[t]

ts+1
dt.

Then letting x→∞ we get

ζ(s) = s

∫ ∞
1

[t]

ts+1
dt =

s

s− 1
−
∫ ∞
1

{t}
ts+1

dt,

where the integral ∫ ∞
1

{t}
ts+1

dt

converges in <(s) > 0. Thus using the above expression one can extend the Riemann zeta

function to the half plane <(s) > 0 as a meromorphic function with a simple pole at s = 1

with residue 1.

In 1859, Riemann [30] established its meromorphic continuation to the entire complex

plane satisfying the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s),
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where Γ denotes the gamma function. This is undoubtedly the most fundamental and the most

referred functional equation of the Riemann zeta function. But there is another elegant but

not so well-known functional equation of the Riemann zeta function due to Ramanujan [28].

Ramanujan proved that the Riemann zeta function satisfies the following formula:

1 =
∑
k≥0

(s− 1)k(ζ(s+ k)− 1),

where for k ≥ 0

(s)k :=
s(s+ 1) · · · (s+ k)

(k + 1)!
,

and the series on the right hand side converges normally on compact subsets of <(s) > 1. It

is convenient to define (s)−1 := 1. One can deduce the meromorphic continuation of the Rie-

mann zeta function from the above translation formula. Since this identity involves translates

of the Riemann zeta function, from now on we refer to it as the translation formula for the

Riemann zeta function.

A similar translation formula was obtained by V. Ramaswami [29] in 1934. He proved that

the Riemann zeta function satisfies the following translation formula:

(1− 21−s)ζ(s) =
∑
k≥0

(s)k
ζ(s+ k + 1)

2s+k+1
,

where the series on the right hand side converges normally on compact subsets of <(s) > 0.

On the contrary, even though the multiple zeta function of depth 2, often called the double

zeta function, was known since the time of Euler, its meromorphic continuation was studied

much later. In 1949, almost a century after Riemann’s fundamental work, F.V. Atkinson [5]

addressed the question of meromorphic continuation of the double zeta function while studying

the mean-values of the Riemann zeta function.

For general r, initially the meromorphic continuation of the multiple zeta function of depth

r was obtained for each variable separately. Such treatment can be found in [4]. As a function
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of several variable, the analytic continuation was first established by J. Zhao [33] in 1999. He

used the theory of generalised functions.

Theorem 1.3.1 (Zhao). The multiple zeta function of depth r can be extended as a meromor-

phic function to Cr with possible simple poles at the hyperplanes given by the equations

s1 = 1; s1 + · · ·+ si = n for all n ∈ Z≤i and 2 ≤ i ≤ r.

Here Z≤i denotes set of all integers less than or equal to i.

Around the same time, S. Akiyama, S. Egami and Y. Tanigawa [1] gave a simpler proof

of the above fact using the classical Euler-Maclaurin summation formula. Besides, what was

even more special in their work is that they could identify the exact set of singularities. The

vanishing of the odd Bernoulli numbers played a central role in this context.

Theorem 1.3.2 (Akiyama-Egami-Tanigawa). The multiple zeta function of depth r is holo-

morphic in the open set obtained by removing the following hyperplanes from Cr and it has

simple poles at the hyperplanes given by the equations

s1 = 1; s1 + s2 = 2, 1, 0,−2,−4,−6, . . . ;

s1 + · · ·+ si = n for all n ∈ Z≤i and 3 ≤ i ≤ r.

Thereafter, the problem of the meromorphic continuation of the multiple zeta functions

received a lot of attention. In this process, a variety of methods evolved to address this prob-

lem. For instance, Goncharov [13] obtained the meromorphic continuation using the theory

of distributions. Alternate proofs using Mellin-Barnes integrals was given by K. Matsumoto.

Later he went on to apply this method to a set of other related problems. His expositions can

be found in [22, 23]. Matsumoto’s work has further been generalised in [26].

However, the simplest possible approach to this problem was indicated by J. Ecalle [10].

His idea germinated from Ramanujan’s translation formula for the Riemann zeta function. In
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his article [10], he indicated how one could have obtained Ramanujan’s identity in an elemen-

tary way and extend it for the multiple zeta functions. His idea has recently been penned down

explicitly in a joint work [24] with J. Mehta and G.K. Viswanadham, carried out under the

supervision of J. Oesterlé.

In this work we further introduce the method of matrix formulation to write down the

residues along the possible polar hyperplanes (listed by Zhao) in a computable form. Here we

would like to mention that Zhao [33] had also given a formula to calculate the residues along

the possible polar hyperplanes. But the non-vanishing of these residues could not be concluded

from that expression, whereas our expression of residues enabled us to isolate the non-existing

polar hyperplanes from his list and recover the above mentioned theorem of Akiyama, Egami

and Tanigawa.

Soon after Zhao and Akiyama, Egami and Tanigawa’s work, several generalisations of the

multiple zeta functions were introduced and their analytic properties were discussed. One

important example is the multiple Hurwitz zeta functions. In 2002, Akiyama and Ishikawa [2]

introduced the notion of multiple Hurwitz zeta functions.

Definition 1.3.3. Let r ≥ 1 be an integer and α1, . . . , αr ∈ [0, 1). The multiple Hurwitz

zeta function of depth r is denoted by ζr(s1, . . . , sr; α1, . . . , αr) and defined by the following

convergent series in Ur:

ζr(s1, . . . , sr; α1, . . . , αr) :=
∑

n1>···>nr>0

(n1 + α1)
−s1 · · · (nr + αr)

−sr .

Following the method of [2], they established meromorphic continuations of these func-

tions as well as listed possible polar singularities for them. They were able to determine the

exact set of singularities for some specific values of αi’s.

Theorem 1.3.4 (Akiyama-Ishikawa). The multiple Hurwitz zeta function of depth r can be

extended as a meromorphic function to Cr with possible simple poles at the hyperplanes given
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by the equations

s1 = 1; s1 + · · ·+ si = n for all n ∈ Z≤i and 2 ≤ i ≤ r.

Perhaps motivated by the classical relation between the Hurwitz zeta function and Dirichlet

L-functions, Akiyama and Ishikawa also considered the following several variable generalisa-

tion of the Dirichlet L-functions in [2].

Definition 1.3.5. Let r ≥ 1 be an integer and χ1, . . . , χr be Dirichlet characters of any modu-

lus. The multiple Dirichlet L-function of depth r is denoted by Lr(s1, . . . , sr; χ1, . . . , χr) and

defined by the following convergent series in Ur:

Lr(s1, . . . , sr; χ1, . . . , χr) :=
∑

n1>···>nr>0

χ1(n1) · · ·χr(nr)
ns11 · · ·nsrr

.

It is classically known that the Dirichlet L-functions can be written as linear combinations

of the Hurwitz zeta functions. Thus the meromorphic continuation of Dirichlet L-functions

follows from that of the Hurwitz zeta functions. To obtain the meromorphic continuation of

the multiple Dirichlet L-functions, they followed this very approach and derived the following

theorem.

Theorem 1.3.6 (Akiyama-Ishikawa). Let χ1, . . . , χr be primitive Dirichlet characters of same

conductor. Then the multiple Dirichlet L-function Lr(s1, . . . , sr; χ1, . . . , χr) of depth r can

be extended as a meromorphic function to Cr with possible simple poles at the hyperplanes

given by the equations

s1 = 1; s1 + · · ·+ si = n for all n ∈ Z≤i and 2 ≤ i ≤ r.

But till date, we do not have precise information about the exact set of singularities of

the multiple Hurwitz zeta functions and the multiple Dirichlet L-functions. Major part of this
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thesis is devoted to study these yet to be resolved problems, following the methods developed

in [24]. In the next section we give a brief outline of this thesis.

1.4 Arrangement of the thesis

In the second chapter, we derive translation formulas and thereby the meromorphic contin-

uation of certain families of Dirichlet series along the line of Ramanujan. To establish such

formulas we follow Ecalle’s indication to obtain an elementary proof of Ramanujan’s theorem.

In the third chapter we discuss the analytic properties of the multiple zeta functions. We

obtain translation formulas for these functions and then write them in terms of infinite matrices

to obtain a matrix formulation of these translation formulas. We also deduce the meromorphic

continuation of the multiple zeta functions by means of such a translation formula and induc-

tion on the depth. We use the matrix formulation to write down an expression for residues

along the possible polar hyperplanes and study the non-vanishing of these residues.

In the fourth chapter we consider the multiple Hurwitz zeta functions. Building upon

the work on the previous chapter, we derive translation formulas for the multiple Hurwitz

zeta functions. We then deduce the meromorphic continuation and derive a list of possible

singularities. Using a fundamental property of the zeros of the Bernoulli polynomials we then

determine the exact set of singularities of the multiple Hurwitz zeta functions.

In the penultimate chapter, we consider multiple Dirichlet series associated to additive

characters and derive their meromorphic continuations as well as their exact list of polar sin-

gularities. We next show that the multiple Dirichlet series associated to additive characters are

related to the multiple Dirichlet L-functions. Using such relations, we then derive meromor-

phic continuations and possible list of polar singularities for multiple Dirichlet L-functions.

Our last chapter deals with a weighted variant of the multiple zeta functions. Study of this

weighted variant is not esoteric. We show that this weighted variant has some rich arithmetic

structures and their location of singularities have an uniform pattern.



2
Dirichlet series and their

translation formulas
We begin this chapter by proving the aforementioned theorem of S. Ramanujan following an

outline by J. Ecalle [10]. We then extend Ecalle’s idea to prove analogous theorems for certain

Dirichlet series. To the best of our knowledge, such results were not known before. In later

chapters we extend some of these results for certain multiple Dirichlet series.

2.1 Proof of Ramanujan’s theorem

We first recall Ramanujan’s theorem.

Theorem 2.1.1 (S. Ramanujan). The Riemann zeta function satisfies the following identity

1 =
∑
k≥0

(s− 1)k
(
ζ(s+ k)− 1

)
for <(s) > 1, (2.1.1)

where the series on the right hand side converges normally on any compact subset of <(s) > 1

and for any k ≥ 0, s ∈ C,

(s)k :=
s(s+ 1) · · · (s+ k)

(k + 1)!
.

15
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Since this identity involves translates of the Riemann zeta function, from now on we refer

to it as the translation formula for the Riemann zeta function. Proof of this theorem is obtained

following an elegant idea of Ecalle [10]. However in order to write down the complete proof,

we need couple of short lemmas. We state and prove these lemmas here so that we can refer to

them whenever required. The notion of normal convergence is integral to our study. We first

recall the definition.

For a complex valued function f on a set X , let ‖f‖X := supx∈X |f(x)|. We say that a

family (fi)i∈I of complex valued functions on X is normally summable if ‖fi‖X < ∞ for all

i ∈ I and the family of real numbers (‖fi‖X)i∈I is summable. In this case, we also say that

the series
∑

i∈I fi converges normally on X .

Lemma 2.1.2. Let m ∈ R and K be a compact subset of <(s) > −(m+ 1). Then the family

(∥∥∥∥ 1

ns+m+2

∥∥∥∥
K

)
n≥1

is summable. Here for a function f : K → C,

‖f‖K := sup
s∈K
|f(s)|.

Proof. We have that K is a compact subset of <(s) > −(m+ 1) and the set

L := {s ∈ C : <(s) = −(m+ 1)}

is closed. Hence we get that the distance of L and K is positive, as they are disjoint. More

precisely, there exists a δ > −(m+ 1) such that <(s) > δ for all s ∈ K. Thus

∥∥∥∥ 1

ns+m+2

∥∥∥∥
K

= sup
s∈K

∣∣∣∣ 1

ns+m+2

∣∣∣∣ = sup
s∈K

1

n<(s)+m+2
<

1

nδ+m+2
.

Since δ +m+ 2 > 1, we get the desired result.
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Lemma 2.1.3. Let m ∈ R, K be a compact subset of <(s) > −(m + 1) and q ≥ 1 be an

integer . Then the family (
(s− 1)k

qk+1

ns+k

)
n>q,k≥m+2

is normally summable in K.

Proof. Let S := sups∈K |s− 1|. Then for n > q, we have

∥∥∥∥(s− 1)k
qk+1

ns+k

∥∥∥∥
K

≤ qm+3(S)k

(
q

q + 1

)k−(m+2) ∥∥∥∥ 1

ns+m+2

∥∥∥∥
K

.

Further note that the series ∑
k≥m+2

(S)k

(
q

q + 1

)k−(m+2)

is convergent. This together with Lemma 2.1.2 proves our claim.

We are now ready to prove Ramanujan’s theorem.

Proof of Theorem 2.1.1. Following Ecalle, we start with the following identity which is valid

for any n > 1 and s ∈ C:

(n− 1)1−s − n1−s =
∑
k≥0

(s− 1)k n
−s−k. (2.1.2)

This identity is easily obtained by writing the left hand side as n1−s ((1− 1
n
)1−s − 1

)
and

expanding (1 − 1
n
)1−s as a Taylor series in 1

n
. We know by Lemma 2.1.3 (for m = −2 and

q = 1) that the family (
(s− 1)k

1

ns+k

)
n>1,k≥0

is normally summable on every compact subset of <(s) > 1. Then we sum the left hand side

of (2.1.2) for n > 1 and <(s) > 1. Upon interchanging the summations, we get (2.1.1).
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2.2 Ramanujan’s theorem for some Dirichlet series

We now generalise Ramanujan’s idea in order to derive meromorphic continuation of some

classes of Dirichlet series. In this process we recover some classical results in this direction.

But the aim of this chapter is to unify some of these proofs and to provide an elementary and

simple way to reach the state of the art.

By an arithmetical function we mean a function f : N → C. Now for an arithmetical

function f and complex parameter s, we define the associated Dirichlet series D(s, f) by

D(s, f) :=
∑
n≥1

f(n)

ns
.

If the function f has polynomial growth then the above series converges in some half plane.

More generally, the necessary growth condition on f , so as to make sense of the above defini-

tion, can be given in terms of the partial sums F (x) :=
∑

n≤x f(n). If F (x) has polynomial

growth i.e. F (x) = O(xδ) for some positive real number δ, then the Dirichlet series D(s, f)

converges absolutely in the half plane <(s) > δ.

Here we mainly consider two types of arithmetical functions. First we consider an arith-

metical function f which is periodic i.e. there exists a natural number q ≥ 1 such that

f(n+ q) = f(n) for all n ∈ N.

Note that for such an arithmetical function f , the Dirichlet seriesD(s, f) converges absolutely

for <(s) > 1. Such Dirichlet series are known as periodic Dirichlet series.

Next we consider a non-zero arithmetical function f which satisfies

f(m+ n) = f(m)f(n) for all m,n ∈ N.

Such an arithmetical function can be extended to Z so that it becomes a homomorphism from
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Z → C∗. These homomorphisms are known as additive characters. On the other hand, an

additive character f : Z → C∗ gives rise to such an arithmetical function. In this case,

the function is determined by its value at 1 as f(n) = f(1)n. Hence the sum
∑

n≥1
f(n)
ns

converges only if |f(1)| ≤ 1 and in that case the Dirichlet series D(s, f) converges absolutely

for <(s) > 1. In fact if |f(1)| < 1, then the Dirichlet series D(s, f) converges normally on

any compact subset of C, hence defines an entire function. For Dirichlet series associated to

these arithmetical functions we prove the following theorems.

Theorem 2.2.1. Let f be a periodic arithmetical function with period q. Then the associated

Dirichlet series D(s, f) satisfies the following translation formula:

q∑
a=1

f(a)

a(s−1)
=
∑
k≥0

(s− 1)kq
k+1

(
D(s+ k, f)−

q∑
a=1

f(a)

a(s+k)

)
, (2.2.1)

where the infinite series on the right hand side converges normally on every compact subset of

<(s) > 1.

The above theorem includes Ramanujan’s theorem as a special case. Using Theorem 2.2.1,

we can now derive the meromorphic continuation of D(s, f). Classically it was derived by

writing such Dirichlet series as linear combinations of the Hurwitz zeta functions and then

using the meromorphic continuation of these Hurwitz zeta functions.

Theorem 2.2.2. Let f be as in Theorem 2.2.1. Then using the translation formula (2.2.1), the

Dirichlet series D(s, f) can be analytically continued to the entire complex plane except at

s = 1, where the function has simple pole with residue 1
q

∑q
a=1 f(a). If

∑q
a=1 f(a) = 0, then

D(s, f) can be extended to an entire function.

Example 2.2.3. Besides obtaining the meromorphic continuation of the Riemann zeta func-

tion, we can also recover the following results from Theorem 2.2.2. Let χ be a non-trivial

Dirichlet character mod q. Then it is known that
∑q

a=1 χ(a) = 0. Hence, the Dirichlet L-
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function

L(s, χ) :=
∑
n≥1

χ(n)

ns

can be extended to an entire function. If χ = χ0, the trivial Dirichlet character mod q, then∑q
a=1 χ0(a) = ϕ(q). Hence L(s, χ0) has a simple pole at s = 1 with residue ϕ(q)

q
.

Next we consider additive characters. The Dirichlet series associated to the trivial character

is the Riemann zeta function. Hence we consider a non-trivial additive character f : Z → C∗

such that |f(1)| ≤ 1. For such functions we prove the following theorems.

Theorem 2.2.4. Let f : Z → C∗ be a non-trivial additive character such that |f(1)| ≤ 1.

Then the associated Dirichlet series D(s, f) satisfies the following translation formula:

f(1) = (1− f(1))D(s, f) +
∑
k≥0

(s)k (D(s+ k + 1, f)− f(1)) , (2.2.2)

where the series on the right hand side converges normally on any compact subset of<(s) > 1.

It is not difficult to see that for a non-trivial additive character f : Z → C∗ such that

|f(1)| < 1, the Dirichlet series D(s, f) itself is an entire function. But for any non-trivial

additive character f : Z → C∗ such that |f(1)| ≤ 1, Theorem 2.2.4 enables us to deduce the

following theorem in general.

Theorem 2.2.5. Let f be as in Theorem 2.2.4. Then using the translation formula (2.2.2), the

Dirichlet series D(s, f) can be extended to an entire function.

2.3 Proof of the theorems

Now we give the proofs of the above mentioned theorems.
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2.3.1 Proof of Theorem 2.2.1

We start with the following identity which is valid for any n > q and s ∈ C:

(n− q)1−s − n1−s =
∑
k≥0

(s− 1)k q
k+1 n−s−k. (2.3.1)

This identity is obtained by writing the left hand side as n1−s ((1− q
n
)1−s − 1

)
and expanding

(1− q
n
)1−s as a Taylor series in q

n
. Now by Lemma 2.1.3 (for m = −2), the family

(
(s− 1)k

qk+1

ns+k

)
n>q,k≥0

is normally summable on compact subsets of <(s) > 1. Now we multiply f(n) to both the

sides of (2.3.1) and sum for n > q and <(s) > 1. By interchanging the summations we

obtain (2.2.1).

2.3.2 Proof of Theorem 2.2.2

To prove Theorem 2.2.2, we establish the analytic continuation of (s− 1)D(s, f) to the entire

complex plane which takes the value 1
q

∑q
a=1 f(a) at s = 1. This is done recursively.

First we establish the analytic continuation to <(s) > 0, then to <(s) > −1 and so on.

Since the half planes <(s) > −m, for m ∈ N form an open cover of C, we will obtain the

desired analytic continuation. Note that the left hand side of (2.2.1) is entire, and all but finitely

many terms on the right hand side of (2.2.1) are holomorphic in any proper half plane of C.

Analytic continuation to <(s) > 0

If <(s) > 0, then all the summands corresponding to k ≥ 1 on the right hand side of

(2.2.1) are holomorphic. Next note that by Lemma 2.1.3 (for m = −1), the family

(
(s− 1)k

qk+1

ns+k

)
n>q,k≥1
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is normally summable on every compact subset of <(s) > 0. Hence the sum

∑
k≥1

(s− 1)kq
k+1

(
D(s+ k, f)−

q∑
a=1

f(a)

a(s+k)

)

defines a holomorphic function on <(s) > 0. Thus by means of translation formula (2.2.1),

we can extend (s− 1)D(s, f) as a holomorphic function on <(s) > 0. Note that for all k ≥ 1,

D(s+ k, f) is holomorphic in <(s) > 0. Hence from (2.2.1) we get

lim
s→1

(s− 1)D(s, f) =
1

q

q∑
a=1

f(a).

Analytic continuation to <(s) > −1 and so on

Now we establish the analytic continuation of (s−1)D(s, f) to<(s) > −(m+1) assuming

that it has been analytically continued to <(s) > −m. Note that if <(s) > −(m+ 1), then all

the summands corresponding to k ≥ m+ 2 on the right hand side of (2.2.1) are holomorphic.

Again by Lemma 2.1.3, the family

(
(s− 1)k

qk+1

ns+k

)
n>q,k≥m+2

is normally summable on every compact subset of <(s) > −(m+ 1).

Now the analytic continuation of (s − 1)D(s, f) to <(s) > −m implies the analytic con-

tinuation of (s + k − 1)D(s + k, f) to <(s) > −(m + 1) for all 1 ≤ k ≤ m + 1. Hence the

sum ∑
k≥1

(s− 1)kq
k+1

(
D(s+ k, f)−

q∑
a=1

f(a)

a(s+k)

)

defines a holomorphic function on <(s) > −(m + 1). Thus by means of translation formula

(2.2.1), we can extend (s− 1)D(s, f) as a holomorphic function on <(s) > −(m+ 1).
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2.3.3 Proof of Theorem 2.2.4

To prove the Theorem 2.2.4, we need the following variant of Lemma 2.1.3.

Lemma 2.3.1. Let m ∈ R and K be a compact subset of <(s) > −(m+ 1). Then for integers

k ≥ m+ 1, the family (
(s)k n

−s−k−1)
n>1,k≥m+1

is normally summable in K.

Proof. This proof almost follows the argument presented in the proof of Lemma 2.1.3. Let

S := sups∈K |s|. Then for n > 1, we have

∥∥∥∥(s)k
1

ns+k+1

∥∥∥∥
K

≤ (S)k
2k−m−1

∥∥∥∥ 1

ns+m+2

∥∥∥∥
K

.

Note that the series ∑
k≥m+1

(S)k
2k−m−1

is convergent. This together with Lemma 2.1.2 completes the proof.

Now we resume the proof of Theorem 2.2.4. Here we work with a variant of (2.1.2). The

following identity is valid for any n > 1 and s ∈ C:

(n− 1)−s − n−s =
∑
k≥0

(s)k n
−s−k−1. (2.3.2)

By Lemma 2.3.1 (for m = −1), we get that the family

(
(s)k n

−s−k−1)
n>1,k≥0

is normally summable on every compact subset of <(s) > 1. In fact they are normally

summable on every compact subset of <(s) > 0. Now we multiply f(n) to both the sides
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of (2.3.2), and then sum for n > 1 and <(s) > 1. Since f(n) can be written as f(1)f(n− 1),

we obtain (2.2.2).

2.3.4 Proof of Theorem 2.2.5

As in the proof of Theorem 2.2.2, here also we first establish the analytic continuation of

D(s, f) to <(s) > 0, then to <(s) > −1 and so on.

By Lemma 2.3.1 (for m = −1), we know that the family

(
(s)k n

−s−k−1)
n>1,k≥0

is normally summable on every compact subset of <(s) > 0. Hence the sum

∑
k≥0

(s)k (D(s+ k + 1, f)− f(1))

defines a holomorphic function on the half plane <(s) > 0. Thus by means of the translation

formula (2.2.2), we can extend D(s, f) to <(s) > 0.

Next we establish the analytic continuation of D(s, f) to <(s) > −(m+ 1) assuming that

it has been analytically continued to <(s) > −m, for m ∈ N. Note that if <(s) > −(m + 1),

then all the summands corresponding to k ≥ m + 1 on the right hand side of (2.2.2) are

holomorphic. Further using Lemma 2.3.1, we see that the family

(
(s)k n

−s−k−1)
n>1,k≥m+1

is normally summable on every compact subset of <(s) > −(m+ 1).

Now the analytic continuation of D(s, f) to <(s) > −m implies the analytic continuation
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of D(s+ k + 1, f) to <(s) > −(m+ 1) for all 0 ≤ k ≤ m. Hence the sum

∑
k≥0

(s)k (D(s+ k + 1, f)− f(1))

defines a holomorphic function on the half plane <(s) > −(m + 1). Thus by means of the

translation formula (2.2.2), we can extend D(s, f) to <(s) > −(m + 1). This completes the

proof, as the half planes of the form <(s) > −m for m ∈ N cover C.

2.4 Hurwitz zeta function and shifted Dirichlet series

One considers Hurwitz zeta function as another natural genralisation of the Riemann zeta

function. For a complex parameter s and a real number x ∈ (0, 1], the Hurwitz zeta function

is denoted by ζ(s, x) and defined by the following absolutely convergent sum for <(s) > 1:

ζ(s, x) :=
∑
n≥0

1

(n+ x)s
.

A. Hurwitz [17] proved that the above function can be extended analytically to the entire

complex plane except at s = 1, where it has simple pole with residue 1.

Now for an arithmetical function f such that its partial sums F (y) :=
∑

n≤y f(n) have

polynomial growth i.e. F (y) = O(yδ) for some positive real number δ, we can define the

following analogue of Dirichlet series, which we denote by D(s, x, f) and call it the shifted

Dirichlet series associated to f . For <(s) > δ and x ∈ (0, 1],

D(s, x, f) :=
∑
n≥0

f(n)

(n+ x)s
.

For the function f(n) = 1 for all n, we get back the Hurwitz zeta function.

For the shifted Dirichlet series associated to the arithmetical functions we have considered

in this chapter before, we can prove the following analogous theorems. The proofs of these
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theorems are omitted, as they can be obtained by imitating the proofs of the theorems in the

case of Dirichlet series. However, we indicate how to obtain the relevant translation formulas.

Theorem 2.4.1. Let f be as in Theorem 2.2.1. Then the associated shifted Dirichlet series

D(s, x, f) satisfies the following translation formula:

q−1∑
a=0

f(a)

(a+ x)(s−1)
=
∑
k≥0

(s− 1)kq
k+1

(
D(s+ k, x, f)−

q−1∑
a=0

f(a)

(a+ x)(s+k)

)
, (2.4.1)

where the infinite series on the right hand side converges normally on every compact subset of

<(s) > 1.

To obtain this theorem we follow the proof of Theorem 2.2.1 starting with the following

identity which is valid for any n ≥ q, any x ∈ (0, 1] and s ∈ C:

(n+ x− q)1−s − (n+ x)1−s =
∑
k≥0

(s− 1)k q
k+1 (n+ x)−s−k. (2.4.2)

As a particular case of the above theorem, we get a translation formula for the Hurwitz zeta

function. The meromorphic continuation of the Hurwitz zeta function and the shifted Dirichlet

series D(s, x, f) for periodic arithmetical function f , follows from Theorem 2.4.1.

Theorem 2.4.2. Let f be as in Theorem 2.2.1. Then using the translation formula (2.4.1), the

shifted Dirichlet series D(s, x, f) can be analytically continued to the entire complex plane

except at s = 1, where the function has simple pole with residue 1
q

∑q−1
a=0 f(a). If

∑q−1
a=0 f(a) =

0, then D(s, x, f) can be extended to an entire function.

The shifted Dirichlet series D(s, x, f) associated to an additive character f : Z → C∗

is a specialization of the famous Lerch transcendent. The Lerch transcendent is denoted by

Φ(z, s, x) and defined by the following convergent series

Φ(z, s, x) :=
∑
n≥0

zn

(n+ x)s
,
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for x ∈ C \ {0,−1,−2, . . .} and |z| < 1 with s ∈ C or |z| = 1 with <(s) > 1. Now for this

type of shifted Dirichlet series D(s, x, f) we can prove the following theorems.

Theorem 2.4.3. Let f be as in Theorem 2.2.4. Then the associated shifted Dirichlet series

D(s, x, f) satisfies the following translation formula:

1

xs
= (1− f(1))D(s, x, f) +

∑
k≥0

(s)k

(
D(s+ k + 1, x, f)− 1

x(s+k+1)

)
, (2.4.3)

where the series on the right hand side converges normally on any compact subset of<(s) > 1.

To obtain this theorem we follow the proof of Theorem 2.2.4 and we work with the fol-

lowing variant of (2.3.2). The identity is valid for any n ≥ 1, x ∈ (0, 1] and s ∈ C:

(n+ x− 1)−s − (n+ x)−s =
∑
k≥0

(s)k (n+ x)−s−k−1. (2.4.4)

This theorem enables us to deduce the following theorem about the analytic continuation of

such shifted Dirichlet series D(s, x, f).

Theorem 2.4.4. Let f be as in Theorem 2.2.4. Then using the translation formula (2.4.3), the

shifted Dirichlet series D(s, x, f) can be extended to an entire function.

Example 2.4.5. A prototypical shifted Dirichlet series of this kind is the Lerch zeta function,

which is also a genralisation of the Hurwitz zeta function. These zeta functions were first

considered by M. Lerch [21]. For real numbers λ, α ∈ (0, 1], the Lerch zeta function is

denoted by L(λ, α, s) and defined by the following convergent sum in <(s) > 1:

L(λ, α, s) :=
∑
n≥0

e(λn)

(n+ α)s
,

where for a real number a, e(a) denotes the uni-modulus complex number e2πιa. Lerch [21]

showed that the meromorphic continuation of the Lerch zeta function L(λ, α, s) depends on
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the values of the parameter λ. If λ = 1, the Lerch zeta function has an analytic continuation

to the whole complex plane except at s = 1, where it has simple pole with residue 1. If λ 6= 1,

the Lerch zeta function can be extended to an entire function. These two assertions follow

from Theorem 2.4.2 and Theorem 2.4.4 respectively.



3
Multiple zeta functions

3.1 Introduction

We begin this chapter by recalling the definition of the multiple zeta functions.

Definition 3.1.1. For an integer r ≥ 1, the multiple zeta function of depth r, denoted by

ζr(s1, . . . , sr), is a function on Ur defined by

ζr(s1, . . . , sr) :=
∑

n1>···>nr>0

n−s11 · · ·n−srr ,

where

Ur := {(s1, . . . , sr) ∈ Cr : <(s1 + · · ·+ si) > i for all 1 ≤ i ≤ r}.

When r = 1, the multiple zeta function of depth 1 is nothing but the Riemann zeta function,

which is generally denoted by ζ(s), in place of ζ1(s). The series

∑
n1>···>nr>0

n−s11 · · ·n−srr

29



30 CHAPTER 3. MULTIPLE ZETA FUNCTIONS

converges normally on any compact subset of Ur and hence the function (s1, . . . , sr) 7→

ζr(s1, . . . , sr) is holomorphic on Ur.

For any r ≥ 1, the multiple zeta function of depth r can be extended meromorphically

to Cr. This was proved by J. Zhao [33] in 1999, using the theory of generalised functions.

Later in 2001, a simpler proof was given by Akiyama, Egami and Tanigawa [1], where the

coveted meromorphic continuation was obtained by applying the classical Euler-Maclaurin

summation formula to the first index of the summation n1. An alternate proof using Mellin-

Barnes integrals was given by K. Matsumoto. In fact he applied this method to a number of

variants of multiple zeta functions. A brief summary of his works can be found in [22, 23].

The most recent contribution to this topic is due to T. Onozuka [27] in 2013.

In this chapter we explain, to the best of our knowledge, the simplest proof of the mero-

morphic continuation of the multiple zeta functions. In fact, expanding on a remark of J. Ecalle

[10], in [24] we prove that the meromorphic continuation of the multiple zeta functions follows

from the following identity.

Theorem 3.1.2. For any integer r ≥ 2 and any (s1, . . . , sr) ∈ Ur, we have

ζr−1(s1 + s2 − 1, s3, . . . , sr) =
∑
k≥0

(s1 − 1)k ζr(s1 + k, s2, . . . , sr), (3.1.1)

where the series on the right hand side converges normally on any compact subset of Ur and

for any k ≥ 0 and s ∈ C,

(s)k :=
s(s+ 1) · · · (s+ k)

(k + 1)!
.

We call (3.1.1) the translation formula for the multiple zeta function of depth r ≥ 2. This is

the several variable generalisation of the identity (2.1.1) proved by Ramanujan for the Riemann

zeta function.

Note that the left hand side of (3.1.1), only involves the multiple zeta function of depth

(r − 1), whereas the multiple zeta functions appearing on the right hand side are all translates
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by non-negative integers in the first variable of the multiple zeta function of depth r. This

feature of this formula allows us, by induction on r, to meromorphically extend the multiple

zeta function of depth r from Ur to Cr essentially in the same way as we did in case of the

Riemann zeta function and its variants in Chapter 2.

It is very useful to view the translation formula (3.1.1) as the first of an infinite family

of relations, each obtained successively by applying the translation s1 7→ s1 + n for n ≥ 0,

to both the sides of (3.1.1). We express this infinite family of relations in terms of infinite

matrices. This method allows us to write down explicitly the residues along the possible polar

hyperplanes as certain matrix coefficients which in turn helps us to examine the non-vanishing

of these residues.

3.2 Normal convergence of the multiple zeta functions

For the sake of completeness, we include the properties of normal convergence of the multiple

zeta functions.

For a complex valued function f on a set X , let

‖f‖X := sup
x∈X
|f(x)|.

Recall that we say that a family (fi)i∈I of complex valued functions onX is normally summable

if ‖fi‖X < ∞ for all i ∈ I and the family of real numbers (‖fi‖X)i∈I is summable. In this

case, we also say that the series
∑

i∈I fi converges normally on X .

As a consequence of Weierstrass M-test, it is easy to show that normal convergence implies

uniform convergence. Thus if X is an open subset of Cr and all the fi’s are holomorphic on

X , then their sum is also holomorphic on X .

The normal convergence of the multiple zeta functions follows from the following propo-

sition as an easy consequence.
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Proposition 3.2.1. Let r ≥ 1 be an integer and (σ1, . . . , σr) be an r-tuple of real numbers in

Ur. Then the family of functions

(n−s11 · · ·n−srr )n1>···>nr>0 (3.2.1)

is normally summable on D(σ1, . . . , σr) := {(s1, . . . , sr) ∈ Cr : <(si) > σi for 1 ≤ i ≤ r}.

Proof. Note that for sequence of integers n1 > · · · > nr > 0, we have

‖n−s11 · · ·n−srr ‖D(σ1,...,σr) = n−σ11 · · ·n−σrr . (3.2.2)

Thus we have to prove that the family of real numbers

(n−σ11 · · ·n−σrr )n1>···>nr>0

is summable. We have σ1 > 1 by definition of Ur. Hence our assertion is true for r = 1. If

r ≥ 2, then note that for every integer n2 ≥ 1, we have

∑
n1≥n2+1

n−σ11 ≤
∫ ∞
n2

x−σ1dx =
1

σ1 − 1
n1−σ1
2 . (3.2.3)

Since (σ1, . . . , σr) ∈ Ur, we get that (σ1 +σ2− 1, σ3, . . . , σr) ∈ Ur−1. Thus our claim follows

from induction on r.

We conclude this section with the following corollary.

Corollary 3.2.2. For r ≥ 1 is an integer, the series

∑
n1>···>nr>0

n−s11 · · ·n−srr ,

converges normally on any compact subset of Ur.
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Proof. Any point of Ur has a neighbourhood of the form D(σ1, . . . , σr) with (σ1, . . . , σr) in

Ur ∩ Rr. To see this, let (s1, . . . , sr) ∈ Ur. Set τi := <(si) for all i. Since (s1, . . . , sr) ∈ Ur,

we have τ1 + · · ·+ τi > i for all 1 ≤ i ≤ r.

Hence it is possible to choose ε1, . . . , εr such that

0 < εi < (τ1 + · · ·+ τi)− i− (ε1 + · · ·+ εi−1)

for all 1 ≤ i ≤ r. For these choices of εi’s, let us set σi := τi − εi for all 1 ≤ i ≤ r. Then

(σ1, . . . , σr) ∈ Ur ∩ Rr and (s1, . . . , sr) ∈ D(σ1, . . . , σr).

Now any compact subset K of Ur can be covered by finitely many open sets of the form

D(σ1, . . . , σr) and hence applying Proposition 3.2.1, we get the corollary.

3.3 The translation formula

In this section, we establish the translation formula (3.1.1) for the multiple zeta functions. As

in the case of Riemann zeta function, we deduce it from the following identity which is valid

for any integer n ≥ 2 and any s ∈ C:

(n− 1)1−s − n1−s =
∑
k≥0

(s− 1)k n
−s−k. (3.3.1)

The following proposition is key to the interchange of summations involved in the proof of

Theorem 3.1.2.

Proposition 3.3.1. Let r ≥ 2 be an integer. The family of functions

(
(s1 − 1)kn

−s1−k
1 n−s22 · · ·n−srr

)
n1>···>nr>0, k≥0 (3.3.2)

is normally summable on any compact subset of Ur.
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Proof. Let K be a compact subset of Ur and set

S := sup
(s1,...,sr)∈K

|s1 − 1|.

Since r ≥ 2, for any strictly decreasing sequence n1, . . . , nr of r positive integers, we have

n1 ≥ 2. Hence for k ≥ 0, we get

∥∥(s1 − 1)k n
−s1−k
1 n−s22 · · ·n−srr

∥∥
K
≤ (S)k

2k
‖n−s11 n−s22 · · ·n−srr ‖K .

By Corollary 3.2.2, we know that the family (‖n−s11 · · ·n−srr ‖K)n1>···>nr>0 is summable. Fur-

ther, by ratio test one can see that for any real number a, the series

∑
k≥0

(a)k
2k

is convergent. This completes the proof of Proposition 3.3.1.

We are now ready to prove Theorem 3.1.2.

3.3.1 Proof of Theorem 3.1.2

If we sum the family (3.3.2) successively with respect to the variables k, n1, . . . , nr and use

identity (3.3.1) with (n, s) replaced by (n1, s1), we get the left hand side of (3.1.1). On the

other hand, if we sum it successively with respect to the variables n1, . . . , nr, k, we get the

right hand side of (3.1.1). As this interchange of summation is justified by Proposition 3.3.1,

we obtain (3.1.1).

From Proposition 3.3.1, we also get that the series on the right hand side of (3.1.1) con-

verges normally on any compact subset of Ur. This completes the proof of Theorem 3.1.2.
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3.4 Meromorphic continuation

Let (fi)i∈I be a family of meromorphic functions on an open subset U of Cr. We say that the

series
∑

i∈I fi is normally convergent on all compact subsets of U if for any compact subset K

of U , there exists a finite subset J of I such that each function fi for i ∈ I \J is holomorphic in

an open neighbourhood of K, and the family of functions (fi|K)i∈I\J is normally summable

on K. The sum of the family (fi)i∈I is then a well defined meromorphic function on U . This

definition agrees with the one given before in case of holomorphic functions.

We now establish the meromorphic continuation of the multiple zeta function to Cr.

Theorem 3.4.1. For each integer r ≥ 2, the multiple zeta function of depth r extends to a

meromorphic function on Cr satisfying the translation formula

ζr−1(s1 + s2 − 1, s3, . . . , sr) =
∑
k≥0

(s1 − 1)k ζr(s1 + k, s2, . . . , sr), (3.4.1)

where the series of meromorphic functions on the right hand side converges normally on all

compact subsets of Cr.

Proof. We argue by induction on r. When r = 2, the left hand side of (3.4.1) is the Riemann

zeta function and hence has a meromorphic continuation. For r ≥ 3, the left hand side of

(3.4.1) can be extended to a meromorphic function on Cr by induction hypothesis. Now for

each integer m ≥ 0, let

Ur(m) := {(s1, . . . , sr) ∈ Cr : <(s1 + · · ·+ si) > i−m for 1 ≤ i ≤ r}.

We shall prove by induction on m that the multiple zeta function of depth r extends to a

meromorphic function on Ur(m) satisfying (3.4.1) and the series of meromorphic functions

on the right hand side of (3.4.1) converges normally on all compact subsets of Ur(m). Since

{Ur(m)}m≥0 is an open covering of Cr, Theorem 3.4.1 will follow.
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The case m = 0 is nothing but Theorem 3.1.2. Now suppose that m ≥ 1 and our assertion

is true for (m−1). Then all terms of the series on the right hand side of (3.4.1), except possibly

the first one, are meromorphic on Ur(m). In fact, those corresponding to indices k ≥ m are

even holomorphic on Ur(m). It is therefore sufficient to prove that the series

∑
k≥m

(s1 − 1)k ζr(s1 + k, s2, . . . , sr)

is normally convergent on any compact subset K of Ur(m).

Here we follow the argument as in the proof of Proposition 3.3.1. We just have to note that

if S is the supremum of |s1 − 1| in K, then for any strictly decreasing sequence n1, . . . , nr of

r positive integers and any integer k ≥ m,

∥∥(s1 − 1)k n
−s1−k
1 n−s22 · · ·n−srr

∥∥
K

is bounded above by
(S)k
2k−m

∥∥n−s1−m1 n−s22 · · ·n−srr

∥∥
K
.

Now as (s1, . . . , sr) varies over K, (s1 + m, s2 . . . , sr) varies over the compact subset of Ur

which is obtained by translating K by (m, 0, . . . , 0). Hence the family

(∥∥n−s1−m1 n−s22 · · ·n−srr

∥∥
K

)
n1>···>nr>0

is summable by Proposition 3.2.1. Finally, we note that the series
∑

k≥m
(S)k
2k−m is convergent.

This completes the proof of Theorem 3.4.1.

3.5 Matrix formulation of the translation formula

In this section we deal with infinite upper triangular matrices. Let R be a ring and T(R)

denote the set of upper triangular matrices of type N × N with coefficients in R. Adding or
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multiplying such matrices involves only finite sums. Hence T(R) has a ring structure. The

group of invertible elements of T(R) consists of the matrices whose diagonal elements are

invertible. With the topology induced by the product topology on RN×N, where each factor

is considered as a discrete space, T(R) becomes a topological ring. Now if M is a matrix in

T(R) with all diagonal elements equal to 0, and f =
∑

n≥0 anx
n ∈ R[[x]] is a formal power

series, then the series
∑

n≥0 anM
n converges in T(R) and its sum is denoted by f(M). For

our purpose we take R to be the field of rational fractions Q(t) in one indeterminate t over Q.

As indicated before, we shall now give a matrix formulation of the translation formula (3.4.1).

For this we set up some further notations. Let M = (mij) be a matrix of type N × N, where

for each (i, j) ∈ N× N, mij is a meromorphic function on Cr. Also let u = (ui), v = (vi) be

column vectors with entries indexed by N, where each ui, vi is a meromorphic function on Cr.

Then we write Mu = v if for each i ∈ N, the series of meromorphic functions
∑

j∈ N mijuj

converges normally on compact subsets of Cr, and its sum is equal to vi.

With these notations, the translation formula (3.4.1), together with the relations obtained

by applying successively the change of variables s1 7→ s1 + n for n ≥ 0 in (3.4.1), are

represented on Cr as follows:

Vr−1(s1 + s2 − 1, s3, . . . , sr) = A1(s1 − 1)Vr(s1, . . . , sr), (3.5.1)

where Vr(s1, . . . , sr) denotes the infinite column vector

Vr(s1, . . . , sr) :=



ζr(s1, s2, . . . , sr)

ζr(s1 + 1, s2, . . . , sr)

ζr(s1 + 2, s2, . . . , sr)

...


. (3.5.2)
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and for an indeterminate t, A1(t) denotes the matrix in T(Q(t)) defined by

A1(t) :=



t t(t+1)
2!

t(t+1)(t+2)
3!

· · ·

0 t+ 1 (t+1)(t+2)
2!

· · ·

0 0 t+ 2 · · ·
...

...
... . . .


. (3.5.3)

This matrix A1(t) is invertible in T(Q(t)). To see this note that A1(t) can be written as

A1(t) = U(t)∆(t) = ∆(t)U(t+ 1), (3.5.4)

where

∆(t) =



t 0 0 · · ·

0 t+ 1 0 · · ·

0 0 t+ 2 · · ·
...

...
... . . .


and U(t) =



1 t
2!

t(t+1)
3!

· · ·

0 1 t+1
2!

· · ·

0 0 1 · · ·
...

...
... . . .


. (3.5.5)

Hence the matrix A1(t) is invertible in T(Q(t)) and its inverse matrix B1(t) is given by

B1(t) = ∆(t)−1U(t)−1 = U(t+ 1)−1∆(t)−1.

Next we note that the matrix U(t) can be written as

U(t) = f(M(t)),

where f is the formal power series

ex − 1

x
=
∑
n≥0

xn

(n+ 1)!
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and

M(t) =



0 t 0 · · ·

0 0 t+ 1 · · ·

0 0 0 · · ·
...

...
... . . .


. (3.5.6)

Thus

U(t)−1 = g(M(t)),

where g is the exponential generating series of Bernoulli numbers

x

ex − 1
=
∑
n≥0

Bn

n!
xn.

Thus we have

B1(t) = ∆(t)−1g(M(t)) = g(M(t+ 1))∆(t)−1,

or equivalently, we have

B1(t) =



1
t

B1

1!
(t+1)B2

2!
(t+1)(t+2)B3

3!
· · ·

0 1
t+1

B1

1!
(t+2)B2

2!
· · ·

0 0 1
t+2

B1

1!
· · ·

0 0 0 1
t+3

· · ·
...

...
...

... . . .


. (3.5.7)

This suggests that one may attempt to express the column vector Vr(s1, . . . , sr) in terms

of Vr−1(s1 + s2 − 1, s3, . . . , sr), so as to obtain an expression of the multiple zeta function of

depth r in terms of the translates of the multiple zeta function of depth (r− 1), by multiplying

both sides of (3.5.1) by B1(s1−1). However this is not allowed. The reason is that the product

of infinite matrices B1(s1−1)Vr−1(s1 + s2−1, s3, . . . , sr) is not defined, as the entries of the

formal product of the matrix B1(s1− 1) with the column vector Vr−1(s1 + s2− 1, s3, . . . , sr)
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are not convergent series.

We get around this difficulty by writing (3.5.1) in the form

∆(s1 − 1)−1Vr−1(s1 + s2 − 1, s3, . . . , sr) = U(s1)Vr(s1, . . . , sr). (3.5.8)

We then choose an integer q ≥ 1 and define

I = Iq := {k ∈ N : 0 ≤ k ≤ q − 1} and J = Jq := {k ∈ N : k ≥ q}.

This allows us to write the previous matrices as block matrices such as, for example

U(s1) =

 UII(s1) UIJ(s1)

0JI UJJ(s1)

 .

From (3.5.8) we then deduce that

∆II(s1 − 1)−1VI
r−1(s1 + s2 − 1, s3, . . . , sr)

= UII(s1)V
I
r(s1, . . . , sr) + UIJ(s1)V

J
r (s1, . . . , sr).

(3.5.9)

Now UII(s1) is a finite square invertible matrix and we have

UII(s1)
−1∆II(s1 − 1)−1 = B1

II(s1 − 1).

Hence from (3.5.9) we get that

VI
r(s1, . . . , sr) = B1

II(s1 − 1)VI
r−1(s1 + s2 − 1, s3, . . . , sr) + WI(s1, . . . , sr), (3.5.10)

where

WI(s1, . . . , sr) = −UII(s1)
−1UIJ(s1)V

J
r (s1, . . . , sr). (3.5.11)
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All the series of meromorphic functions involved in the products of matrices in formulas

(3.5.10) and (3.5.11) converge normally on all compact subsets of Cr. Moreover, all entries of

the matrices on the right hand side of (3.5.11) are holomorphic on the open set Ur(q), trans-

late of Ur by (−q, 0, . . . , 0). Therefore the entries of WI(s1, . . . , sr) are also holomorphic in

Ur(q).

If we write ξq(s1, . . . , sr) to be the first entry of the column vector WI(s1, . . . , sr), we

then get from (3.5.10) that

ζr(s1, . . . , sr) =
1

s1 − 1
ζr−1(s1 + s2 − 1, s3, . . . , sr)

+

q−2∑
k=0

s1 · · · (s1 + k − 1)

(k + 1)!
Bk+1 ζr−1(s1 + s2 + k, s3, . . . , sr)

+ ξq(s1, . . . , sr),

(3.5.12)

and ξq is holomorphic on the open set Ur(q). In fact, this formula can also be obtained by using

the Euler-Maclaurin summation formula. This has been done in [1]. Note that in (3.5.12), we

get a more explicit remainder term.

3.6 Poles and residues

In this section, we shall recover the exact list of polar hyperplanes of the multiple zeta func-

tions and write down the residues explicitly along these polar hyperplanes as certain matrix

coefficients. We shall proceed by induction on r. When r = 1, it is well known that the Rie-

mann zeta function has meromorphic continuation to C with simple pole at s = 1 with residue

1. So from now on we fix the depth r ≥ 2 and we shall prove Theorem 3.6.1, Theorem 3.6.2

and Theorem 3.6.3 below by assuming that they hold for multiple zeta functions of smaller

depths. For 1 ≤ i ≤ r and k ≥ 0, we denote by Hi,k the hyperplane of Cr defined by the

equation s1 + · · ·+ si = i− k. It is disjoint from Ur(q) when q ≤ k.
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3.6.1 Set of all possible singularities

In the following theorem, we give a tentative list of polar hyperplanes. This theorem was

proved by Zhao [33] in 1999.

Theorem 3.6.1. The multiple zeta function of depth r is holomorphic outside the union of the

hyperplanes H1,0 and Hi,k, where 2 ≤ i ≤ r and k ≥ 0. It can have at most simple poles

along these hyperplanes.

Proof. Let q ≥ 1 be an integer. We adopt the notations from previous section and in particular

denote by I and J the sets {k ∈ N : 0 ≤ k ≤ q − 1} and {k ∈ N : k ≥ q} respectively. We

will make use of equation (3.5.10) for our proof.

The entries of the first row of the matrix B1
II(s1 − 1) are holomorphic outside the hyper-

plane H1,0 and have at most simple pole along this hyperplane. By the induction hypothesis,

the entries of the column vector VI
r−1(s1 + s2 − 1, s3, . . . , sr) are holomorphic outside the

union of the hyperplanes Hi,k, where 2 ≤ i ≤ r and k ≥ 0 and have at most simple poles

along these hyperplanes. Finally, the entries of the column vector WI(s1, . . . , sr) are holo-

morphic in Ur(q). Since Cr is covered by the open sets Ur(q) for q ≥ 1, Theorem 3.6.1

follows.

3.6.2 Expression for residues

To check if each Hi,k is indeed a polar hyperplane, we compute the residue of the multiple

zeta function of depth r along this hyperplane. We define this residue to be the restriction of

the meromorphic function (s1 + · · ·+ si − i+ k) ζr(s1, . . . , sr) to Hi,k. This definition, while

somewhat ad hoc, is the one generally used in the literature on multiple zeta functions.

Theorem 3.6.2. The residue of the multiple zeta function of depth r along the hyperplane H1,0

is the restriction of ζr−1(s2, . . . , sr) to H1,0 and its residue along the hyperplane Hi,k, where
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2 ≤ i ≤ r and k ≥ 0, is the restriction to Hi,k of the product of ζr−i(si+1, . . . , sr) with the

(0, k)th entry of the matrix
i−1∏
d=1

B1(s1 + · · ·+ sd − d).

Proof. Let q ≥ 1 be an integer. As in the proof of Theorem 3.6.1, we deduce from (3.5.10)

(or (3.5.12)) that

ζr(s1, . . . , sr)−
1

s1 − 1
ζr−1(s1 + s2 − 1, s3, . . . , sr)

has no pole along H1,0 inside the open set Ur(q). These open sets cover Cr. Hence the

residue of ζr(s1, . . . , sr) along H1,0 is the restriction to H1,0 of the meromorphic function

ζr−1(s1 + s2 − 1, s3, . . . , sr) or equivalently of ζr−1(s2, . . . , sr). This proves the first part of

Theorem 3.6.2.

Now let i and k be integers with 2 ≤ i ≤ r and k ≥ 0. Also let q ∈ N be such that q > k.

Now if one iterates (i− 1) times the formula (3.5.10), one gets

VI
r(s1, . . . , sr) =

(
i−1∏
d=1

B1
II(s1 + · · ·+ sd − d)

)
VI
r−i+1(s1 + · · ·+ si − i+ 1, si+1, . . . , sr)

+ Wi,I(s1, . . . , sr),

where Wi,I(s1, . . . , sr) is a column matrix whose entries are finite sums of products of rational

functions in s1, . . . , si−1 with meromorphic functions which are holomorphic in Ur(q). These

entries therefore have no pole along the hyperplane Hi,k in Ur(q). The entries of

i−1∏
d=1

B1
II(s1 + · · ·+ sd − d)

are rational functions in s1, . . . , si−1 and hence have no poles along Hi,k. It now follows from

the induction hypothesis that the only entry of VI
r−i+1(s1 + · · ·+ si − i+ 1, si+1, . . . , sr) that
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can possibly have a pole along Hi,k in Ur(q) is the one of index k, which is

ζr−i+1(s1 + . . .+ si − i+ k + 1, si+1, . . . , sr).

Its residue is the restriction of ζr−i(si+1, . . . , sr) to Hi,k ∩Ur(q). Since the open sets Ur(q) for

q > k cover Cr, the residue of ζr(s1, . . . , sr) along Hi,k is the restriction to Hi,k of the product

of the (0, k)th entry of the matrix
∏i−1

d=1 B1(s1 + · · · + sd − d) with ζr−i(si+1, . . . , sr). This

proves the last part of Theorem 3.6.2.

3.6.3 Exact set of singularities

We shall now deduce the exact list of poles from Theorem 3.6.2. The exact set of poles of the

multiple zeta function of depth r (with a proof for r = 2) were mentioned by Akiyama, Egami

and Tanigawa (see [1], Theorem 1 for details). But the residues were not determine explicitly

in their work.

Theorem 3.6.3. The multiple zeta function of depth r has simple pole along the hyperplane

H1,0. It also has simple poles along the hyperplanes Hi,k, for 2 ≤ i ≤ r and k ≥ 0, except

when i = 2 and k ≥ 3 is an odd integer.

Proof. When 1 ≤ i ≤ r and k ≥ 0, the restriction to Hi,k of ζr−i(si+1, . . . , sr) is a non-zero

meromorphic function. Hence in order to prove Theorem 3.6.3 we need to show that when

2 ≤ i ≤ r and k ≥ 0, the (0, k)th entry of the matrix
∏i−1

d=1 B1(s1 + · · ·+ sd− d) is identically

zero if and only if i = 2, k ≥ 3 is odd. By changing co-ordinates, the above statement

is equivalent to say that when t1, . . . , ti−1 are indeterminate, the (0, k)th entry of the matrix∏i−1
d=1 B1(td) is non-zero in Q(t1, . . . , ti−1) except when i = 2 and k ≥ 3 is an odd integer.

We complete the proof by induction on i. For i = 2, our matrix is B1(t1) and hence our

assertion follows from the fact that the Bernoulli numbers Bk are non-zero except when k ≥ 3

is an odd integer.
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Now assume that i ≥ 3. The entries of the first row of the matrix
∏i−2

d=1 B1(td) belong to

Q(t1, . . . , ti−2). The first two of them are not equal to zero, by above discussion when i = 3

and by the induction hypothesis when i ≥ 4.

The entries of the k-th column of B1(ti−1) belong to Q(ti−1) and the non-zero entries are

linearly independent over Q, as can be seen on formula (3.5.7), hence also over Q(t1, . . . , ti−2).

At least one of the first two entries in this column is not equal to zero. This implies that the

(0, k)th entry of
∏i−1

d=1 B1(td) is a non-zero element of Q(t1, . . . , ti−1). This completes the

proof of Theorem 3.6.3.

Remark 3.6.4. Theorem 3.6.2 implies that, when 1 ≤ i ≤ r and k ≥ 0, the meromorphic func-

tion ζr(s1, . . . , sr) − ζi(s1, . . . , si) ζr−i(si+1, . . . , sr) has no pole along the hyperplane Hi,k.

This in fact follows from Theorem 3.6.1. The function ζi(s1, . . . , si) ζr−i(si+1, . . . , sr) can be

expressed as the sum, over all possible stufflings of i and (r − i), of ζl(z(s1, . . . , sr)), where

z(s1, . . . , sr) is the sequence of complex numbers deduced from (s1, . . . , si) and (si+1, . . . , sr)

by the chosen stuffling and l is the length of the stuffling. Moreover, Theorem 3.6.1 implies

that the meromorphic function ζl(z(s1, . . . , sr)) has no pole along the hyperplane Hi,k, except

for the unique stuffling for which z(s1, . . . , sr) = (s1, . . . , sr).

Remark 3.6.5. By Theorem 3.6.2 we get that, for r ≥ 1 and k ≥ 0, the residue of ζr(s1, . . . , sr)

along the hyperplane Hr,k is a rational function of the variables s1, . . . , sr−1. More precisely,

this rational function can be written as

∑
k1,...,kr−1≥0
k1+···+kr−1=k

Fk1,...,kr−1(s1, . . . , sr−1)
Bk1

k1!
· · ·

Bkr−1

kr−1!
, (3.6.1)

where the Bi’s are the Bernoulli numbers, the rational functions Fk1,...,kr−1 are defined by

Fk1,...,kr−1(s1, . . . , sr−1) :=
∏

1≤i≤r−1

Gki(s1 + · · ·+ si − i+ k1 + · · ·+ ki−1), (3.6.2)
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and the rational fractions Gj(t) in one indeterminate t are defined by

G0(t) = t−1 and Gj(t) = (t+ 1) · · · (t+ j − 1) if j ≥ 1. (3.6.3)

The rational fractions Gj(t), for j ≥ 0, are linearly independent over Q. Hence it follows

from (3.6.2) that the rational functions Fk1,...,kr−1 in the (r − 1) variables s1, . . . , sr−1, where

k1, . . . , kr−1 ≥ 0, are linearly independent over Q. Hence, Theorem 3.6.3 can also be deduced

from Remark 3.6.4, formula (3.6.1) and the following observations :

1. When r ≥ 3, any integer k ≥ 0 can be written as k1 + · · · + kr−1, where ki ≥ 0 and

Bki 6= 0 for 1 ≤ i ≤ r − 1.

2. When r = 2, the same is true except when k is an odd integer ≥ 3.



4
Multiple Hurwitz zeta functions

4.1 Introduction

In this chapter, we discuss the analytic properties of the multiple Hurwitz zeta functions which

are several variable generalisations of the classical Hurwitz zeta functions. These functions

were introduced by S. Akiyama and H. Ishikawa [2] in 2002. Some of the notations that have

been introduced earlier will be used here as well.

Definition 4.1.1. Let r ≥ 1 be an integer and α1, . . . , αr ∈ [0, 1). The multiple Hurwitz

zeta function of depth r is denoted by ζr(s1, . . . , sr; α1, . . . , αr) and defined by the following

convergent series in Ur:

ζr(s1, . . . , sr; α1, . . . , αr) :=
∑

n1>···>nr>0

(n1 + α1)
−s1 · · · (nr + αr)

−sr .

Normal convergence of the above series follows from the normal convergence of the mul-

tiple zeta function of depth r and we have the following proposition.

Proposition 4.1.2. Let r ≥ 1 be an integer and α1, . . . , αr be non-negative real numbers.

47
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Then the family of functions

(
(n1 + α1)

−s1 · · · (nr + αr)
−sr
)
n1>···>nr>0

is normally summable on compact subsets of Ur.

Hence (s1, . . . , sr) 7→ ζr(s1, . . . , sr; α1, . . . , αr) defines a holomorphic function on Ur.

Following the method described in [1], Akiyama and Ishikawa [2] established its meromor-

phic continuation to Cr. They also obtained a list of all possible singularities and determined

the exact set of singularities in some specific cases. Later J.P. Kelliher and R. Masri [19], fol-

lowing the work of Zhao [33], wrote down expressions for residues along these possible polar

hyperplanes but could not conclude their non-vanishing. Another proof for the meromorphic

continuation of these multiple zeta functions, using the binomial theorem and Hartogs’ theo-

rem, can be found in the work of M. R. Murty and K. Sinha [25].

In this chapter, we determine the exact set of singularities of the multiple Hurwitz zeta

functions. In this process, we also obtain their meromorphic continuation following the method

of Ramanujan and Ecalle.

In [24], we exhibited how one can obtain a translation formula for the multiple Hurwitz

zeta function. Following that indication and the proof in case of the multiple zeta functions it

is not difficult to prove the following theorem.

Theorem 4.1.3. For any integer r ≥ 2, α1, . . . , αr ∈ [0, 1) and all (s1, . . . , sr) in the open set

Ur, we have

ζr−1(s1 + s2 − 1, s3, . . . , sr;α2, α3, . . . , αr)

=
∑
k≥0

(s1 − 1)k
(
(1 + α1 − α2)

k+1 − (α1 − α2)
k+1
)
ζr(s1 + k, s2, . . . , sr;α1, α2, . . . , αr),

where the series on the right hand side converges normally on any compact subset of Ur.

But for our purpose we prove the following translation formula for the multiple Hurwitz
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zeta functions. This particular translation formula has the advantage that its matrix formulation

is somewhat similar to the one for the multiple zeta functions.

Theorem 4.1.4. For any integer r ≥ 2 and α1, . . . , αr ∈ [0, 1), the multiple Hurwitz zeta

function ζr(s1, . . . , sr;α1, . . . , αr) satisfies the following translation formula in Ur:

∑
k≥−1

(s1 − 1)k (α2 − α1)
k+1 ζr−1(s1 + s2 + k, s3, . . . , sr;α2, α3, . . . , αr)

=
∑
k≥0

(s1 − 1)k ζr(s1 + k, s2, . . . , sr;α1, α2, . . . , αr),

(4.1.1)

where the series on both the sides of (4.1.1) converge normally on any compact subset of Ur.

From now on, we will call (4.1.1) the translation formula for the multiple Hurwitz zeta

function of depth r ≥ 2. The left hand side of (4.1.1) involves the multiple Hurwitz zeta

function of depth (r − 1) and its translates by integers k ≥ −1 in the first co-ordinate, and

the right hand side of (4.1.1) comprises of the translates of the multiple Hurwitz zeta function

of depth r by non-negative integers in the first variable. As in the case of the multiple zeta

functions, here also we use induction on r and the translation formula (4.1.1) to extend the

multiple Hurwitz zeta function of depth r to Cr meromorphically.

Next we obtain a matrix formulation of the translation formula (4.1.1) so that we can write

down an expression for residues along the possible polar hyperplanes, from which we are

going to determine the exact set of singularities of the multiple Hurwitz zeta functions.

4.2 The translation formula

In this section we prove the translation formula (4.1.1) for the multiple Hurwitz zeta functions.

To begin with we need the following two identities. For any integer n ≥ 2, α ∈ R with α ≥ 0
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and s ∈ C, one has

(n+ α− 1)1−s − (n+ α)1−s =
∑
k≥0

(s− 1)k(n+ α)−s−k. (4.2.1)

We prove this identity by writing

(n+ α− 1)1−s − (n+ α)1−s = (n+ α)1−s

((
1− 1

n+ α

)1−s

− 1

)

and then expanding (1− 1
n+α

)1−s as a Taylor series in 1
n+α

.

The next identity is valid for any natural number n ≥ 1, s ∈ C α, β ∈ R with α, β ≥ 0

and |α− β| < 1. We have

(n+ α)1−s =
∑
k≥−1

(s− 1)k(β − α)k+1(n+ β)−s−k. (4.2.2)

The proof follows by writing the left hand side as (n+β)1−s
(

1− β−α
n+β

)1−s
and then expanding(

1− β−α
n+β

)1−s
as a Taylor series in β−α

n+β
.

We now prove the following propositions which are needed to justify the interchange of

summations involved in the proof of Theorem 4.1.4.

Proposition 4.2.1. Let r ≥ 2 be an integer and α1, . . . , αr be non-negative real numbers.

Then the family of functions

(
(s1 − 1)k(n1 + α1)

−s1−k(n2 + α2)
−s2 · · · (nr + αr)

−sr
)
n1>···>nr>0, k≥0

is normally summable on any compact subset of Ur.

Proof. This proposition is an immediate consequence of Proposition 3.3.1.

Proposition 4.2.2. Let r ≥ 2 be an integer and α1, . . . , αr be non-negative real numbers such
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that |α1 − α2| < 1. Then the family of functions

(
(s1 − 1)k(α2 − α1)

k+1(n2 + α2)
−s1−s2−k(n3 + α3)

−s3 · · · (nr + αr)
−sr
)
n2>···>nr>0, k≥−1

is normally summable on any compact subset of Ur.

Proof. Let K be a compact subset of Ur and

S := sup
(s1,...,sr)∈K

|s1 − 1|.

Then for k ≥ −1,

∥∥(s1 − 1)k(α2 − α1)
k+1(n2 + α2)

−s1−s2−k(n3 + α3)
−s3 · · · (nr + αr)

−sr
∥∥
K

≤ (S)k |α2 − α1|k+1 ‖n−s1−s2−k2 n−s33 · · ·n−srr ‖K

Now since |α1 − α2| < 1, using normal convergence of the multiple zeta function of depth

(r − 1), we get the desired result.

We are now ready to prove Theorem 4.1.4.

4.2.1 Proof of Theorem 4.1.4

We first replace n, α, s by n1, α1, s1 in (4.2.1) and then multiply (n2 +α2)
−s2 · · · (nr +αr)

−sr

to both the sides of (4.2.1) and obtain that

(
(n1 + α1 − 1)1−s1 − (n1 + α1)

1−s1
)

(n2 + α2)
−s2 · · · (nr + αr)

−sr

=
∑
k≥0

(s1 − 1)k(n1 + α1)
−s1−k(n2 + α2)

−s2 · · · (nr + αr)
−sr .

(4.2.3)
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Now we sum both the sides of (4.2.3) for n1 > · · · > nr > 0. Using Proposition 4.2.1, we get

∑
n2>···>nr>0

(n2 + α1)
1−s1(n2 + α2)

−s2 · · · (nr + αr)
−sr

=
∑
k≥0

(s1 − 1)k ζr(s1 + k, s2, . . . , sr;α1, α2, . . . , αr).

(4.2.4)

To evaluate the left hand side of the above expression, we use (4.2.2) with n, α, β, s re-

placed by n2, α1, α2, s1 respectively and then appeal to Proposition 4.2.2. With the interchange

of summations being justified by Proposition 4.2.2, we obtain

∑
k≥−1

(s1 − 1)k (α2 − α1)
k+1 ζr−1(s1 + s2 + k, s3, . . . , sr;α2, α3, . . . , αr)

=
∑
k≥0

(s1 − 1)k ζr(s1 + k, s2, . . . , sr;α1, α2, . . . , αr).

This together with Proposition 4.2.1 and Proposition 4.2.2, completes the proof of Theo-

rem 4.1.4.

4.3 Meromorphic continuation

In this section, we establish the meromorphic continuation of multiple Hurwitz zeta function

ζr(s1, . . . , sr;α1, . . . , αr) to Cr.

Theorem 4.3.1. For integer r ≥ 2, the multiple Hurwitz zeta function ζr(s1, . . . , sr;α1, . . . , αr)

extends to a meromorphic function on Cr satisfying the translation formula

∑
k≥−1

(s1 − 1)k (α2 − α1)
k+1 ζr−1(s1 + s2 + k, s3, . . . , sr;α2, α3, . . . , αr)

=
∑
k≥0

(s1 − 1)k ζr(s1 + k, s2, . . . , sr;α1, α2, . . . , αr),

(4.3.1)

where both the above series of meromorphic functions converge normally on all compact sub-
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sets of Cr.

To complete the proof, we need the following propositions which can be viewed as ex-

tensions of Proposition 4.2.1 and Proposition 4.2.2 respectively. We start by recalling the

following notation. For an integer m ≥ 0,

Ur(m) := {(s1, . . . , sr) ∈ Cr : <(s1 + · · ·+ si) > i−m for all 1 ≤ i ≤ r}.

Proposition 4.3.2. Let r ≥ 2 be an integer and α1, . . . , αr be non-negative real numbers.

Then the family of functions

(
(s1 − 1)k(n1 + α1)

−s1−k(n2 + α2)
−s2 · · · (nr + αr)

−sr
)
n1>···>nr>0, k≥m

is normally summable on any compact subset of Ur(m).

Proof. Note that if (s1, . . . , sr) ∈ Ur(m), then (s1 + m, s2, . . . , sr) ∈ Ur. Now the proof

follows from the proof of Proposition 4.2.1 (or Proposition 3.3.1).

Proposition 4.3.3. Let r ≥ 2 be an integer and α1, . . . , αr be non-negative real numbers such

that |α1 − α2| < 1. Then the family of functions

(
(s1 − 1)k(α2 − α1)

k+1(n2 + α2)
−s1−s2−k(n3 + α3)

−s3 · · · (nr + αr)
−sr
)
n2>···>nr>0, k≥m−1

is normally summable on any compact subset of Ur(m).

Proof. Note that if (s1, . . . , sr) ∈ Ur(m), then (s1 + s2 − 1, s3, . . . , sr) ∈ Ur−1(m) and hence

(s1 + s2 +m− 1, s3 . . . , sr) ∈ Ur−1. Now the proof can be completed following the proof of

Proposition 4.2.2.
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4.3.1 Proof of Theorem 4.3.1

We first show by induction on depth r that ζr(s1, . . . , sr;α1, . . . , αr) can be extended meromor-

phically to Ur(1) satisfying (4.3.1). We then extend it to Ur(m) for all m ≥ 1, by induction.

This will complete the proof as {Ur(m) : m ≥ 1} is an open cover of Cr.

When r = 2, all the terms on the left hand side of (4.3.1) are translates of the Hurwitz

zeta function and hence have a meromorphic continuation to C2. If r ≥ 3, then by induction

hypothesis all the terms in the left hand side of (4.3.1) have a meromorphic continuation to Cr.

In fact, for any integer r ≥ 2 and m ≥ 0, all the summands for k ≥ m − 1 on the left

hand side of (4.3.1) are holomorphic in Ur(m). Hence by applying Proposition 4.3.3, we can

now extend the left hand side of (4.3.1) as a meromorphic function to Ur(m). Since Ur(m)

for m ≥ 0 form an open cover of Cr, we see that the left hand side of (4.3.1) extends to a

meromorphic function on Cr.

Now by Theorem 4.1.4, the identity (4.3.1) is valid on Ur. We have already proved that the

left hand side of (4.3.1) extends to a meromorphic function on Cr. Applying Proposition 4.3.2,

we see that the series

∑
k≥1

(s1 − 1)k ζr(s1 + k, s2, . . . , sr;α1, α2, . . . , αr)

defines a holomorphic function on Ur(1). Hence ζr(s1, . . . , sr;α1, . . . , αr) can be extended

meromorphically to Ur(1), by means of (4.3.1).

We now assume that for integers m ≥ 2, the function ζr(s1, . . . , sr;α1, . . . , αr) has been

extended meromorphically to Ur(m − 1) and it satisfies (4.3.1). Again by Proposition 4.3.2,

the series ∑
k≥m

(s1 − 1)k ζr(s1 + k, s2, . . . , sr;α1, α2, . . . , αr)

defines a holomorphic function on Ur(m). As ζr(s1, . . . , sr;α1, . . . , αr) has been extended

meromorphically to Ur(m−1), we can extend ζr(s1 +k, . . . , sr;α1, . . . , αr) meromorphically
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to Ur(m) for all 1 ≤ k ≤ m− 1.

Thus we can now extend ζr(s1, . . . , sr;α1, . . . , αr) meromorphically to Ur(m) by means

of (4.3.1). This completes the proof as the open sets Ur(m) for m ≥ 0 form an open cover of

Cr.

4.4 Matrix formulation of the translation formula

As in Chapter 3, we now write down the matrix formulation of the translation formula (4.3.1).

The translation formula (4.3.1) together with the set of relations obtained by applying succes-

sively the change of variable s1 7→ s1 + n for n ≥ 1 to (4.3.1), can be written as

A2(α2 − α1; s1 − 1)Vr−1(s1 + s2 − 1, s3, . . . , sr;α2, . . . , αr)

= A1(s1 − 1)Vr(s1, . . . , sr;α1, . . . , αr).

(4.4.1)

Here for an indeterminate t, we have

A1(t) :=



t t(t+1)
2!

t(t+1)(t+2)
3!

· · ·

0 t+ 1 (t+1)(t+2)
2!

· · ·

0 0 t+ 2 · · ·
...

...
... . . .


, (4.4.2)

A2(α2 − α1; t) :=



1 t(α2 − α1)
t(t+1)

2!
(α2 − α1)

2 · · ·

0 1 (t+ 1)(α2 − α1) · · ·

0 0 1 · · ·
...

...
... . . .


(4.4.3)
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and

Vr(s1, . . . , sr;α1, . . . , αr) :=



ζr(s1, s2, . . . , sr;α1, . . . , αr)

ζr(s1 + 1, s2, . . . , sr;α1, . . . , αr)

ζr(s1 + 2, s3 . . . , sr;α1, . . . , αr)

...


. (4.4.4)

Note that the matrix A1(t) has also featured in the previous chapter. Thus we have that

A1(t) = ∆(t)f(M(t+ 1)),

where f is the formal power series

f(x) :=
ex − 1

x
=
∑
n≥0

xn

(n+ 1)!
,

and ∆(t),M(t) are as in Chapter 3, i.e.

∆(t) =



t 0 0 · · ·

0 t+ 1 0 · · ·

0 0 t+ 2 · · ·
...

...
... . . .


and M(t) =



0 t 0 · · ·

0 0 t+ 1 · · ·

0 0 0 · · ·
...

...
... . . .


.

It is easy to see that ∆(t),M(t) satisfy the following commuting relation:

∆(t)M(t+ 1) = M(t)∆(t). (4.4.5)

Thus using (4.4.5), we have

A1(t) = f(M(t))∆(t).
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Further, it is also possible to write that

A2(α2 − α1; t) = h(M(t)),

where h denotes the power series

e(α2−α1)x =
∑
n≥0

(α2 − α1)
nx

n

n!
.

Clearly the matrix A2(α2 − α1; t) is invertible and we see that

A2(α2 − α1; t)
−1A1(t) =

f

h
(M(t)) ∆(t) = ∆(t)

f

h
(M(t+ 1)).

Hence the inverse of the matrix A2(α2 − α1; t)
−1A1(t) is given by

B2(α2 − α1; t) := A1(t)−1A2(α2 − α1; t) =
h

f
(M(t+ 1)) ∆(t)−1 = ∆(t)−1

h

f
(M(t)),

where h
f

is the exponential generating series of the Bernoulli polynomials evaluated at the

point (α2 − α1), i.e.

h

f
(x) =

xe(α2−α1)x

ex − 1
=
∑
n≥0

Bn(α2 − α1)

n!
xn.

More precisely, we have

B2(α2 − α1; t) =



1
t

B1(α2−α1)
1!

(t+1)B2(α2−α1)
2!

(t+1)(t+2)B3(α2−α1)
3!

· · ·

0 1
t+1

B1(α2−α1)
1!

(t+2)B2(α2−α1)
2!

· · ·

0 0 1
t+2

B1(α2−α1)
1!

· · ·

0 0 0 1
t+3

· · ·
...

...
...

... . . .


. (4.4.6)
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As in the case of the multiple zeta functions, here also we can not express the column vector

Vr(s1, . . . , sr;α1, . . . , αr) as the product of the matrix B2(α2 − α1; s1 − 1) and the column

vector Vr−1(s1 + s2 − 1, s3, . . . , sr;α2, . . . , αr). To get around this difficulty we essentially

repeat what we did in the case of the multiple zeta functions.

We first rewrite (4.4.1) in the form

∆(s1 − 1)−1Vr−1(s1 + s2 − 1, s3, . . . , sr;α2, . . . , αr)

=
f

h
(M(s1))Vr(s1, . . . , sr;α1, . . . , αr).

(4.4.7)

For notational convenience, let us denote f
h
(M(s1)) by X(s1). We then choose an integer

q ≥ 1 and define

I := {k | 0 ≤ k ≤ q − 1} and J := {k | k ≥ q}.

Then we write our matrices as block matrices, for example

X(s1) =

 XII(s1) XIJ(s1)

0JI XJJ(s1)

 .

Hence from (4.4.7) we get that

∆II(s1 − 1)−1VI
r−1(s1 + s2 − 1, s3, . . . , sr;α2, . . . , αr)

= XII(s1)V
I
r(s1, . . . , sr;α1, . . . , αr) + XIJ(s1)V

J
r (s1, . . . , sr;α1, . . . , αr).

(4.4.8)

Since XII(s1) is a finite invertible square matrix, we have

XII(s1)
−1∆II(s1 − 1)−1 = B2

II(α2 − α1; s1 − 1).
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Therefore we deduce from (4.4.8) that

VI
r(s1, . . . , sr;α1, . . . , αr)

= B2
II(α2 − α1; s1 − 1)VI

r−1(s1 + s2 − 1, s3, . . . , sr;α2, . . . , αr)

+ YI(s1, . . . , sr;α1, . . . , αr),

(4.4.9)

where

YI(s1, . . . , sr;α1, . . . , αr) = −XII(s1)
−1XIJ(s1)V

J
r (s1, . . . , sr;α1, . . . , αr). (4.4.10)

All the series of meromorphic functions involved in the products of matrices in formulas

(4.4.9) and (4.4.10) converge normally on all compact subsets of Cr. Moreover, all entries

of the matrices on the right hand side of (4.4.10) are holomorphic on the open set Ur(q),

translate of Ur by (−q, 0, . . . , 0). Therefore the entries of YI(s1, . . . , sr;α1, . . . , αr) are also

holomorphic in Ur(q). Let us denote ξq(s1, . . . , sr;α1, . . . , αr) to be the first entry of the

column vector YI(s1, . . . , sr;α1, . . . , αr). Then we get from (4.4.9) that

ζr(s1, . . . , sr;α1, . . . , αr)

=
1

s1 − 1
ζr−1(s1 + s2 − 1, s3, . . . , sr;α2, . . . , αr)

+

q−2∑
k=0

s1 · · · (s1 + k − 1)

(k + 1)!
Bk+1(α2 − α1) ζr−1(s1 + s2 + k, s3, . . . , sr;α2, . . . , αr)

+ ξq(s1, . . . , sr;α1, . . . , αr),

(4.4.11)

and ξq(s1, . . . , sr;α1, . . . , αr) is holomorphic in the open set Ur(q). In the above formula,

whenever empty products and empty sums appear, they are assumed to be 1 and 0 respectively.

Formula (4.4.11) can also be obtained by using the Euler-Maclaurin summation formula which

was done in [2].
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4.5 Poles and residues

As we have already mentioned in §4.1 that the exact set of singularities of the multiple Hurwitz

zeta functions were only known for some specific values of αi’s from the work of Akiyama

and Ishikawa [2]. In this section, we shall determine the exact list of polar hyperplanes of the

multiple Hurwitz zeta functions for any values of αi’s and write down the residues explicitly

along these polar hyperplanes as certain matrix coefficients.

We shall proceed by induction on r. When r = 1, it is well known that the Hurwitz zeta

function has meromorphic continuation to C with simple pole at s = 1 with residue 1. So from

now on, we fix the depth r ≥ 2 and we shall prove Theorems 4.5.1, 4.5.2 and 4.5.6 below by

assuming that they hold for multiple Hurwitz zeta functions of smaller depths. As in Chapter

3, for 1 ≤ i ≤ r and k ≥ 0, we define the hyperplane Hi,k as follows:

Hi,k := {(s1, · · · , sr) ∈ Cr | s1 + · · ·+ si = i− k}.

It is disjoint from Ur(q) := {(s1, · · · , sr) ∈ Cr | <(s1 + · · ·+ si) > i− q} when q ≤ k.

4.5.1 Set of all possible singularities

Before deriving the exact set of polar hyperplanes, in the following theorem we derive a pos-

sible list of polar hyperplanes. This result was proved by Akiyama and Ishikawa [2] and later

reproved by Kelliher and Masri [19]. Our proof here is different from the works [2, 19].

Theorem 4.5.1. The multiple Hurwitz zeta function of depth r is holomorphic outside the

union of the hyperplanes H1,0 and Hi,k, where 2 ≤ i ≤ r and k ≥ 0. It has at most simple

poles along each of these hyperplanes.

Proof. We will make use of equation (4.4.11) for our proof. For q ≥ 1, consider the open set
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Ur(q) of Cr. By induction hypothesis, we know that in Ur(q), the functions

ζr−1(s1 + s2 +m, s3, . . . , sr;α2, . . . , αr) for all − 1 ≤ m ≤ q − 2

are holomorphic outside the union of the hyperplanes Hi,k, where 2 ≤ i ≤ r and 0 ≤ k < q

and they have at most simple poles along these hyperplanes. Also ξq(s1, . . . , sr;α1, . . . , αr) is

holomorphic in Ur(q). Hence from (4.4.11), we see that the only possible polar hyperplanes

of ζr(s1, . . . , sr;α1, . . . , αr) in Ur(q) are H1,0 and Hi,k for 2 ≤ i ≤ r, 0 ≤ k < q. Since Cr is

covered by the open sets Ur(q) for q ≥ 1, Theorem 4.5.1 follows.

4.5.2 Expression for residues

To check if eachHi,k is indeed a polar hyperplane, we compute the residue of the multiple Hur-

witz zeta function of depth r along this hyperplane. Recall that it is defined as the restriction

of the meromorphic function (s1 + · · ·+ si − i+ k) ζr(s1, . . . , sr;α1, . . . , αr) to Hi,k.

Theorem 4.5.2. The residue of the multiple Hurwitz zeta function ζr(s1, . . . , sr;α1, . . . , αr)

along the hyperplane H1,0 is the restriction of ζr−1(s2, . . . , sr;α2, . . . , αr) to H1,0 and its

residue along the hyperplane Hi,k, where 2 ≤ i ≤ r and k ≥ 0, is the restriction to Hi,k

of the product of ζr−i(si+1, . . . , sr;αi+1, . . . , αr) with the (0, k)th entry of the matrix

i−1∏
d=1

B2(αd+1 − αd; s1 + · · ·+ sd − d).

Proof. Let q ≥ 1 be an integer. As in the proof of Theorem 4.5.1, we know from (4.4.11) that

ζr(s1, . . . , sr;α1, . . . , αr)−
1

s1 − 1
ζr−1(s1 + s2 − 1, s3, . . . , sr;α2, . . . , αr)

has no pole along H1,0 inside the open set Ur(q). These open sets cover Cr. Hence the residue

of ζr(s1, . . . , sr;α1, . . . , αr) along H1,0 is the restriction to H1,0 of the meromorphic function
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ζr−1(s1 + s2 − 1, s3, . . . , sr;α2, . . . , αr) or equivalently of ζr−1(s2, . . . , sr;α2, . . . , αr). This

proves the first part of Theorem 4.5.2.

Now let i, k be integers with 2 ≤ i ≤ r and 0 ≤ k < q. Also let I and J be as in §4.4.

Now if one iterates (i− 1) times the formula (4.4.9), one gets

VI
r(s1, . . . , sr;α1, . . . , αr) =

(
i−1∏
d=1

B2
II(αd+1 − αd; s1 + · · ·+ sd − d)

)

×VI
r−i+1(s1 + · · ·+ si − i+ 1, si+1, . . . , sr;αi, . . . , αr)

+ Yi,I(s1, . . . , sr;α1, . . . , αr),

where Yi,I(s1, . . . , sr;α1, . . . , αr) is a column matrix whose entries are finite sums of products

of rational functions in s1, . . . , si−1 with meromorphic functions which are holomorphic in

Ur(q). These entries therefore have no pole along the hyperplane Hi,k in Ur(q). The entries of

i−1∏
d=1

B2
II(αd+1 − αd; s1 + · · ·+ sd − d)

are rational functions in s1, . . . , si−1 and hence have no poles along Hi,k. It now follows from

the induction hypothesis that the only entry of VI
r−i+1(s1+· · ·+si−i+1, si+1, . . . , sr;αi, . . . , αr)

that can possibly have a pole along Hi,k in Ur(q) is the one of index k, which is

ζr−i+1(s1 + . . .+ si − i+ k + 1, si+1, . . . , sr;αi, . . . , αr).

Its residue is the restriction of ζr−i(si+1, . . . , sr;αi+1, . . . , αr) to Hi,k ∩ Ur(q), where 2 ≤

i ≤ r and 0 ≤ k < q. Since the open sets Ur(q) for q > k cover Cr, the residue of

ζr(s1, . . . , sr;α1, . . . , αr) along Hi,k is the restriction to Hi,k of the product of the (0, k)th

entry of the matrix
i−1∏
d=1

B2(αd+1 − αd; s1 + · · ·+ sd − d)

with ζr−i(si+1, . . . , sr;αi+1, . . . , αr). This proves the last part of Theorem 4.5.2.
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4.5.3 Exact set of singularities

We shall now deduce the exact list of poles from Theorem 4.5.2. For this we need the following

important theorem due to Brillhart and Dilcher.

Theorem 4.5.3 (Brillhart-Dilcher). Bernoulli polynomials do not have multiple roots.

This theorem was first proved for the odd Bernoulli polynomials by Brillhart [7] and later

extended for the even Bernoulli polynomials by Dilcher [9]. Theorem 4.5.3 amounts to say that

the Bernoulli polynomials Bn+1(t) and Bn(t) are relatively prime as they satisfy the relation

B′n+1(t) = (n+ 1)Bn(t) for all n ≥ 1.

whereB′n+1(t) denotes the derivative of the polynomialBn+1(t). With the theorem of Brillhart

and Dilcher in place we can now describe the exact set of singularities of the multiple zeta

functions. For that it is convenient to have the following lemmas in place.

Lemma 4.5.4. Let x, y be two indeterminates. Then all the entries in the first row of the matrix

B2(β − α;x) B2(γ − β; y),

where 0 ≤ α, β, γ < 1, are non-zero rational functions in x, y with coefficients in R.

Proof. Since entries of these matrices are indexed by N × N, the entries of the first row are

written as (0, k)th entry for k ≥ 0. Let us denote the (0, k)th entry by a0,k. Then we have the

following formula:

x(y + k) a0,k =
k∑
i=0

(x)i−1(y + i+ 1)k−i−1Bi(β − α) Bk−i(γ − β)

for all k ≥ 0. As the Bernoulli polynomial B0(t) is equal to 1, we get a0,0 = 1
xy

and hence
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non-zero. For k ≥ 1, we first note that the set of polynomials

P := {(x)i−1(y + i+ 1)k−i−1 : 0 ≤ i ≤ k}

is linearly independent over R.

Now suppose, B1(β − α) 6= 0. We know by Theorem 4.5.3 that at least one of Bk(γ − β)

and Bk−1(γ−β) is non-zero. Hence using the linearly independence of the set of polynomials

P , we get a0,k 6= 0.

Next suppose, B1(β − α) = 0, i.e. β − α = 1/2. Thus γ − β 6= 1/2 as 0 ≤ α, γ < 1.

Hence B1(γ − β) 6= 0. Again by Theorem 4.5.3 we know that at least one of Bk(β − α) and

Bk−1(β − α) is non-zero. Hence using the linearly independence of the set of polynomials P ,

we get a0,k 6= 0. This completes the proof of Lemma 4.5.4.

Lemma 4.5.5. Let n ≥ 0 be an integer and x, x1, . . . , xn be indeterminates. Suppose that D

be an infinite square matrix whose entries are indexed by N × N and coming from the ring

R(x1, . . . , xn). Further suppose that all the entries in the first row of D are non-zero. Then

for any α, β ∈ R, all the entries in the first row of DB2(β − α;x) are non-zero.

Proof. We first note that each column of B2(β − α;x) has at least one non-zero entry and the

non-zero entries of each of these columns are linearly independent over R as rational functions

in x with coefficients in R. Since all the entries in the first row of D are non-zero, the proof is

complete by the above observation.

Theorem 4.5.6. The multiple Hurwitz zeta function ζr(s1, . . . , sr;α1, . . . , αr) has simple pole

along the hyperplane H1,0. It also has simple poles along the hyperplanes Hi,k, for 2 ≤ i ≤ r

and k ≥ 0, except when i = 2 and k ∈ J , where J denotes the set of indices j such that

Bj(α2 − α1) = 0, i.e.

J = {j ∈ N : Bj(α2 − α1) = 0}.

Proof. When 1 ≤ i ≤ r and k ≥ 0, the restriction of ζr−i(si+1, . . . , sr, αi+1, . . . , αr) to Hi,k is
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a non-zero meromorphic function. Hence in order to prove Theorem 4.5.6, we need to show

that when 2 ≤ i ≤ r and k ≥ 0, the (0, k)th entry of the matrix

i−1∏
d=1

B2(αd+1 − αd; s1 + · · ·+ sd − d)

is identically zero if and only if i = 2, k ∈ J . By changing co-ordinates, the above statement

is equivalent to say that when t1, . . . , ti−1 are indeterminates, the (0, k)th entry of the matrix

i−1∏
d=1

B2(αd+1 − αd; td)

is non-zero in R(t1, . . . , ti−1) except when i = 2 and k ∈ J .

For i = 2, our matrix is B2(α2−α1; t1) and hence our assertion follows immediately. Now

assume that i ≥ 3. By Lemma 4.5.4, we know that all the entries in the first row of the matrix

B2(α2 − α1; t1)B2(α3 − α2; t2)

is non-zero in R(t1, t2). Hence the theorem follows from Lemma 4.5.4 if i = 3 and from

repeated application of Lemma 4.5.5 if i > 3.

We have precise knowledge about the rational zeros of the Bernoulli polynomials due to

K. Inkeri [18].

Theorem 4.5.7 (Inkeri). The rational roots of a Bernoulli polynomialBn(t) can only be 0, 1/2

and 1. This happens only when n is odd and precisely in the following cases:

1. Bn(0) = Bn(1) = 0 for all odd n ≥ 3,

2. Bn(1/2) = 0 for all odd n ≥ 1.

Using Theorem 4.5.7, we deduce the following results as an immediate consequence of

Theorem 4.5.6.
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Corollary 4.5.8. If α2−α1 = 0, then the exact set of singularities of the multiple Hurwitz zeta

function ζr(s1, . . . , sr;α1, . . . , αr) is given by the hyperplanes

H1,0, H2,1, H2,2k and Hi,k for all k ≥ 0 and 3 ≤ i ≤ r.

If α2 − α1 = 1/2, then the exact set of singularities of the multiple Hurwitz zeta function

ζr(s1, . . . , sr;α1, . . . , αr) is given by the hyperplanes

H1,0, H2,2k and Hi,k for all k ≥ 0 and 3 ≤ i ≤ r.

If α2 − α1 is a rational number 6= 0, 1/2, then the exact set of singularities of the multiple

Hurwitz zeta function ζr(s1, . . . , sr;α1, . . . , αr) is given by the hyperplanes

H1,0 and Hi,k for all k ≥ 0 and 2 ≤ i ≤ r.

A particular case of this result, namely when αi ∈ Q for all 1 ≤ i ≤ r, was proved by

Akaiyama and Ishikawa [2]. Corollary 4.5.8 above shows that such condition can be removed.



5
Multiple Dirichlet series with

additive characters

5.1 Introduction

Akiyama and Ishikawa [2] introduced the notion of multiple Dirichlet L-functions which are

several variable generalisations of the classical Dirichlet L-functions.

Definition 5.1.1. Let r ≥ 1 be an integer and χ1, . . . , χr be Dirichlet characters of arbitrary

modulus. The multiple Dirichlet L-function of depth r associated to the Dirichlet characters

χ1, . . . , χr is denoted by Lr(s1, . . . , sr; χ1, . . . , χr) and defined by the following normally

convergent series in Ur:

Lr(s1, . . . , sr; χ1, . . . , χr) :=
∑

n1>···>nr>0

χ1(n1) · · ·χr(nr)
ns11 · · ·nsrr

.

It is worthwhile to mention that Akiyama and Ishikawa defined the multiple Dirichlet L-

functions for characters with same conductor, but their definition also makes sense for Dirichlet

characters of arbitrary modulus. The normal convergence of the above series follows from the

67
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normal convergence of the multiple zeta function of depth r as an immediate consequence and

we record it here in the following proposition. Throughout this chapter, whenever we consider

a set of characters, they are not necessarily of same modulus unless otherwise stated.

Proposition 5.1.2. Let r ≥ 1 be an integer and χ1, . . . , χr be Dirichlet characters. Then the

family of functions (
χ1(n1) · · ·χr(nr)

ns11 · · ·nsrr

)
n1>···>nr>0

is normally summable on compact subsets of Ur.

Hence (s1, . . . , sr) 7→ Lr(s1, . . . , sr; χ1, . . . , χr) defines a holomorphic function on Ur.

Akiyama and Ishikawa have also discussed the question of meromorphic continuation of the

multiple Dirichlet L-functions. When r = 1, classically the meromorphic continuation is

achieved by writing the function in terms of the Hurwitz zeta function. For r > 1, one may try

to mimic this. In this case some variants of the multiple Hurwitz zeta functions come up. This

is exactly what they have done and they could prove the following theorem.

Theorem 5.1.3 (Akiyama-Ishikawa). Let χ1, . . . , χr be primitive Dirichlet characters of the

same modulus. Then the multiple Dirichlet L-function Lr(s1, . . . , sr; χ1, . . . , χr) of depth r

can be extended as a meromorphic function to Cr with possible simple poles at the hyperplanes

given by the equations

s1 = 1; s1 + · · ·+ si = n for all n ∈ Z≤i and 2 ≤ i ≤ r.

The exact set of singularities of the multiple Dirichlet L-functions is not well understood.

For r = 2 and specific choices of the characters χ1 and χ2, Akiyama and Ishikawa provided

a complete description of the polar hyperplanes. To address this difficult question, one can

aim to obtain a translation formula satisfied by the multiple Dirichlet L-functions. However,

obtaining such a translation formula for multiple Dirichlet L-functions seems harder and so is

the analogue of Theorem 2.2.1.



5.1. INTRODUCTION 69

On the other hand, if we consider additive characters, i.e. group homomorphisms f :

Z→ C∗ in place of Dirichlet characters the problem seems to be more amenable to study and

we could derive analogues of Theorem 2.2.4 and Theorem 2.2.5. It is interesting to note that

Dirichlet characters are linked with additive characters and so is the Dirichlet L-functions with

the Dirichlet series associated to additive characters. Thus studying multiple Dirichlet series

associated to additive characters are very much relevant to the study of multiple Dirichlet L-

functions. We elaborate below.

Let a, b,N be natural numbers with 1 ≤ a, b ≤ N and χ denote a Dirichlet character

modulo N . For <(s) > 1, we consider the following Dirichlet series:

L(s;χ) :=
∑
n≥1

χ(n)

ns
,

Φ(s; a) :=
∑
n≥1

n≡a mod N

1

ns
,

Ψ(s; b) :=
∑
n≥1

e2πιbn/N

ns
.

Here L(s;χ) is the Dirichlet L-function associated to the Dirichlet character χ, Φ(s; a) is the

product of N−s with the Hurwitz zeta function ζ(s; a/N) and Ψ(s; b) is essentially a constant

multiple of the Lerch zeta function L( b
N

; 1; s). Now note that we have the following relations

among these Dirichlet series:

L(s;χ) =
∑

1≤a≤N

χ(a)Φ(s; a), (5.1.1)

Ψ(s; b) =
∑

1≤a≤N

e2πιab/NΦ(s; a). (5.1.2)

Further using (5.1.2), we can deduce that

Φ(s; a) =
1

N

∑
1≤b≤N

e−2πιab/NΨ(s; b). (5.1.3)
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Thus we get that

L(s;χ) =
1

N

∑
1≤a≤N

χ(a)
∑

1≤b≤N

e−2πιab/NΨ(s; b). (5.1.4)

In fact (5.1.4) can be generalised for multiple Dirichlet L-functions. Let r ≥ 1 be a natural

number and for each 1 ≤ i ≤ r, let ai, bi, Ni be natural numbers with 1 ≤ ai, bi ≤ Ni. Also let

χi be a Dirichlet character mod Ni. Then the depth-r multiple Dirichlet L-function associated

to χ1, . . . , χr can be written as follows:

Lr(s1, . . . , sr; χ1, . . . , χr) =
∑

1≤ai≤Ni
for all 1≤i≤r

χ1(a1) · · ·χr(ar)Φr(s1, . . . , sr; a1, . . . , ar), (5.1.5)

where Φr(s1, . . . , sr; a1, . . . , ar) is defined as the following multiple Dirichlet series in Ur:

Φr(s1, . . . , sr; a1, . . . , ar) :=
∑

n1>···>nr>0
ni≡ai mod Ni
for all 1≤i≤r

n−s11 · · ·n−srr .

Next we consider the following multiple Dirichlet series in Ur:

Ψr(s1, . . . , sr; b1, . . . , br) :=
∑

n1>···>nr>0

e
2πι
(

b1n1
N1

+···+ brnr
Nr

)
ns11 · · ·nsrr

.

Now we can write down a several variable generalisation of (5.1.2):

Ψr(s1, . . . , sr; b1, . . . , br) =
∑

1≤ai≤Ni
for all 1≤i≤r

e
2πι
(

a1b1
N1

+···+arbr
Nr

)
Φr(s1, . . . , sr; a1, . . . , ar). (5.1.6)

Further using (5.1.6), we get

Φr(s1, . . . , sr; a1, . . . , ar)

=
1

N1 · · ·Nr

∑
1≤bi≤Ni

for all 1≤i≤r

e
−2πι

(
a1b1
N1

+···+arbr
Nr

)
Ψr(s1, . . . , sr; b1, . . . , br).

(5.1.7)
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Using (5.1.5) and (5.1.7) we then obtain that

Lr(s1, . . . , sr; χ1, . . . , χr)

=
1

N1 · · ·Nr

∑
1≤ai≤Ni

for all 1≤i≤r

χ1(a1) · · ·χr(ar)
∑

1≤bi≤Ni
for all 1≤i≤r

e
−2πι

(
a1b1
N1

+···+arbr
Nr

)
Ψr(s1, . . . , sr; b1, . . . , br).

(5.1.8)

We now introduce the notion of multiple Dirichlet series associated to additive characters.

Definition 5.1.4. For a natural number r ≥ 1 and additive characters f1, . . . , fr, the multiple

L-function associated to f1, . . . , fr is denoted by Lr(f1, . . . , fr; s1, . . . , sr) and defined by the

following series:

Lr(f1, . . . , fr; s1, . . . , sr) :=
∑

n1>···>nr>0

f1(n1) · · · fr(nr)
ns11 · · ·nsrr

=
∑

n1>···>nr>0

f1(1)n1 · · · fr(1)nr

ns11 · · ·nsrr
.

From now on we refer to this function as multiple additive L-function of depth r associated

to the additive characters f1, . . . , fr. A necessary and sufficient condition for the absolute

convergence of the above series in Ur is given in terms of the partial products gi :=
∏

1≤j≤i fj

for all 1 ≤ i ≤ r. The condition is that

|gi(1)| ≤ 1 for all 1 ≤ i ≤ r.

The sufficiency of this condition is easily established by noting that for any arbitrary r integers

n1 > · · · > nr > 0, one has

|f1(1)n1 · · · fr(1)nr | ≤
∣∣g1(1)n1−n2 · · · gr−1(1)nr−1−nrgr(1)nr

∣∣ .
It can also be shown that if |gi(1)| > 1 for some i, the above series does not converge absolutely

in Ur, in fact, anywhere in Cr. To see this let i be one of the index such that |gi(1)| > 1. Now
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if possible let for a complex r-tuple (s1, . . . , sr), the series

∑
n1>···>nr>0

f1(n1) · · · fr(nr)
ns11 · · ·nsrr

converges absolutely i.e. the series

∑
n1>···>nr>0

|f1(n1) · · · fr(nr)|
nσ11 · · ·nσrr

of non-negative real numbers converges, where σi denotes the real part of si. Hence the fol-

lowing smaller series

∑
n>r−i

|f1(n+ i− 1)f2(n+ i− 2) · · · fi(n)fi+1(r − i) · · · fr(1)|
(n+ i− 1)σ1(n+ i− 2)σ2 · · ·nσi(r − i)σi+1 · · · 1σr

is convergent. Note that the numerator of the summand in the above series is nothing but

|g1(1) · · · gi−1(1)gi(1)nfi+1(r − i) · · · fr(1)|

and the denominator is smaller than

(n+ i− 1)σ1+···+σi(r − i)σi+1 · · · 1σr .

Now we get a contradiction since the series

∑
n>r−i

|gi(1)|n

(n+ i− 1)σ1+···+σi

does not converge for any choice of complex r-tuple (s1, . . . , sr) as |gi(1)| > 1.

If we write fi(1) = e2πιλi for some λi ∈ C, the condition |gi(1)| ≤ 1 for 1 ≤ i ≤ r can be

rewritten as

=(λ1 + · · ·+ λi) ≥ 0 for 1 ≤ i ≤ r.
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For simplicity one can assume that λi ∈ R for 1 ≤ i ≤ r so that the above conditions are

vacuously true. If f is an additive character such that f(1) = e2πιλ for some λ ∈ R, then we

call such an f a real additive character.

With the necessary and sufficient condition for absolute convergence of the multiple addi-

tive L-functions in place, we derive the following result as an immediate consequence of the

normal convergence of the multiple zeta function of depth r.

Proposition 5.1.5. Let r ≥ 1 be an integer and f1, . . . , fr be additive characters such that the

partial products gi :=
∏

1≤j≤i fj satisfy the condition |gi(1)| ≤ 1 for all 1 ≤ i ≤ r. Then the

family of functions (
f1(n1) · · · fr(nr)

ns11 · · ·nsrr

)
n1>···>nr>0

is normally summable on compact subsets of Ur.

Thus for a natural number r ≥ 1 and additive characters f1, . . . , fr such that the partial

products gi :=
∏

1≤j≤i fj satisfy the condition |gi(1)| ≤ 1 for all 1 ≤ i ≤ r, the multiple

additive L-function Lr(f1, . . . , fr; s1, . . . , sr) defines an analytic function in Ur.

In this chapter, we will discuss the question of meromorphic continuation of such multiple

additive L-functions, their translation formulas and the location of their singularities. Major

part of this chapter is the reproduction of the work [32].

5.2 The Translation formulas

In this section, we shall derive translation formulas satisfied by the multiple additiveL-functions

and using these we are going to establish their meromorphic continuation in the subsequent

section. As before, we start with a natural number r ≥ 1 and additive characters f1, . . . , fr

such that the partial products gi :=
∏

1≤j≤i fj satisfy the condition |gi(1)| ≤ 1 for all 1 ≤

i ≤ r. Then the associated multiple additive L-function Lr(f1, . . . , fr; s1, . . . , sr) satisfies the

following translation formulas depending on the condition that whether f1(1) = 1 or not.
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Theorem 5.2.1. For any integer r ≥ 2 and additive characters f1, . . . , fr such that the partial

products gi :=
∏

1≤j≤i fj satisfy the condition |gi(1)| ≤ 1 for all 1 ≤ i ≤ r with f1(1) = 1,

the associated multiple additive L-function Lr(f1, . . . , fr; s1, . . . , sr) satisfies the following

translation formula in Ur:

Lr−1(f2, . . . , fr; s1 + s2 − 1, s3, . . . , sr) =
∑
k≥0

(s1 − 1)k Lr(f1, . . . , fr; s1 + k, s2, . . . , sr),

(5.2.1)

where the series on the right hand side converges normally on any compact subset of Ur .

Theorem 5.2.2. Let r ≥ 2 be an integer and f1, . . . , fr be additive characters such that

the partial products gi :=
∏

1≤j≤i fj satisfy the condition |gi(1)| ≤ 1 for all 1 ≤ i ≤ r

with f1(1) 6= 1. Then the associated multiple additive L-function Lr(f1, . . . , fr; s1, . . . , sr)

satisfies the following translation formula in Ur:

f1(1)Lr−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr) + (f1(1)− 1)Lr(f1, . . . , fr; s1, . . . , sr)

=
∑
k≥0

(s1)k Lr(f1, . . . , fr; s1 + k + 1, s2, . . . , sr),
(5.2.2)

where the series on the right side converges normally on any compact subset of Ur .

It is worthwhile to note that Theorem 5.2.2 is the multiple Dirichlet series analogue of

Theorem 2.2.4. To prove Theorem 5.2.1, we need the ubiquitous identity which is valid for

any integer n ≥ 2 and any complex number s:

(n− 1)1−s − n1−s =
∑
k≥0

(s− 1)k n
−s−k. (5.2.3)

Whereas to prove Theorem 5.2.2, we need the following version of (5.2.3), obtained by re-

placing s with s+ 1 in (5.2.3):

(n− 1)−s − n−s =
∑
k≥0

(s)k n
−s−k−1. (5.2.4)
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Besides, we need the following proposition.

Proposition 5.2.3. Let r ≥ 2 be an integer and f1, . . . , fr be additive characters such that the

partial products gi :=
∏

1≤j≤i fj satisfy the condition |gi(1)| ≤ 1 for all 1 ≤ i ≤ r. Then the

family of functions (
(s1 − 1)k

f1(n1) · · · fr(nr)
ns1+k1 ns22 · · ·nsrr

)
n1>···>nr>0,k≥0

is normally summable on compact subsets of Ur.

Proof. This proposition is an immediate consequence of Proposition 3.3.1 as for any r integers

n1 > · · · > nr > 0, we have

|f1(n1) · · · fr(nr)| = |f1(1)n1 · · · fr(1)nr | ≤
∣∣g1(1)n1−n2 · · · gr−1(1)nr−1−nrgr(1)nr

∣∣ ≤ 1

from the hypothesis.

We are now ready to prove Theorem 5.2.1 and Theorem 5.2.2.

5.2.1 Proof of Theorem 5.2.1

We replace n, s by n1, s1 in (5.2.3) and multiply f1(n1)···fr(nr)

n
s2
2 ···n

sr
r

to both sides of (5.2.3) and obtain

that

(
1

(n1 − 1)s1−1
− 1

ns1−11

)
f1(n1) · · · fr(nr)

ns22 · · ·nsrr
=
∑
k≥0

(s1 − 1)k
f1(n1) · · · fr(nr)
ns1+k1 ns22 · · ·nsrr

.

Now we sum both the sides for n1 > · · · > nr > 0. Since f1(1) = 1, using Proposition 5.2.3,

we get

Lr−1(f2, . . . , fr; s1 + s2 − 1, s3, . . . , sr) =
∑
k≥0

(s1 − 1)k Lr(f1, . . . , fr; s1 + k, s2, . . . , sr).

This together with Proposition 5.2.3 completes the proof.
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5.2.2 Proof of Theorem 5.2.2

For this we replace n, s by n1, s1 in (5.2.4) and multiply f1(n1)···fr(nr)

n
s2
2 ···n

sr
r

to both the sides of (5.2.4)

and obtain that

(
1

(n1 − 1)s1
− 1

ns11

)
f1(n1) · · · fr(nr)

ns22 · · ·nsrr
=
∑
k≥0

(s1)k
f1(n1) · · · fr(nr)
ns1+k+1
1 ns22 · · ·nsrr

.

Now we sum both the sides for n1 > · · · > nr > 0 and use Proposition 5.2.3 with s1 replaced

by s1 + 1. We then obtain

f1(1)Lr−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr) + (f1(1)− 1)Lr(f1, . . . , fr; s1, . . . , sr)

=
∑
k≥0

(s1)k Lr(f1, . . . , fr; s1 + k + 1, s2, . . . , sr).

This together with Proposition 5.2.3 completes the proof.

5.3 Meromorphic continuation

In this section, we establish the meromorphic continuation of the multiple additive L-functions

using the translation formulas (5.2.1) and (5.2.2).

Theorem 5.3.1. Let r ≥ 2 be an integer and f1, . . . , fr be additive characters such that the

partial products gi :=
∏

1≤j≤i fj satisfy the condition |gi(1)| ≤ 1 for all 1 ≤ i ≤ r. Then the

associated multiple additive L-function Lr(f1, . . . , fr; s1, . . . , sr) extends to a meromorphic

function on Cr satisfying the following translation formulas on Cr:

Lr−1(f2, . . . , fr; s1 + s2 − 1, s3, . . . , sr)

=
∑
k≥0

(s1 − 1)k Lr(f1, . . . , fr; s1 + k, s2, . . . , sr) if f1(1) = 1
(5.3.1)
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and

f1(1)Lr−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr) + (f1(1)− 1)Lr(f1, . . . , fr; s1, . . . , sr)

=
∑
k≥0

(s1)k Lr(f1, . . . , fr; s1 + k + 1, s2, . . . , sr) if f1(1) 6= 1.
(5.3.2)

The series of meromorphic functions on the right hand sides of (5.3.1) and (5.3.2) converge

normally on every compact subset of Cr.

We prove this theorem by induction on depth r. Assuming induction hypothesis for mul-

tiple additive L-functions of depth (r − 1), we first extend the multiple additive L-function

Lr(f1, . . . , fr; s1, . . . , sr) as a meromorphic function to Ur(m) for each m ≥ 1, where

Ur(m) := {(s1, . . . , sr) ∈ Cr : <(s1 + · · ·+ si) > i−m for all 1 ≤ i ≤ r}.

Since open sets of the form Ur(m) for m ≥ 1 form an open cover of Cr, we get the coveted

meromorphic continuation to Cr. Here we need the following variant of Proposition 5.2.3.

Proposition 5.3.2. Let r ≥ 2 be an integer and f1, . . . , fr be additive characters such that the

partial products gi :=
∏

1≤j≤i fj satisfy the condition |gi(1)| ≤ 1 for all 1 ≤ i ≤ r. Then the

family of functions (
(s1)k

f1(n1) · · · fr(nr)
ns1+k+1
1 ns22 · · ·nsrr

)
n1>···>nr>0,k≥m−1

is normally summable on compact subsets of Ur(m).

Proof. LetK be a compact subset of Ur(m) and S := sup(s1,...,sr)∈K |s1|. Then for k ≥ m−1,

∥∥∥∥(s1)k
f1(n1) · · · fr(nr)
ns1+k+1
1 ns22 · · ·nsrr

∥∥∥∥ ≤ (S)k
2k−m+1

∥∥∥∥ 1

ns1+m1 ns22 · · ·nsrr

∥∥∥∥ .
Now as (s1, . . . , sr) varies over Ur(m), (s1+m, . . . , sr) varies over Ur. Then the proof follows

from Corollary 3.2.2 as the series
∑

k≥m−1
(S)k

2k−m+1 converges.
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5.3.1 Proof of Theorem 5.3.1

As mentioned before, we prove this theorem by induction on the depth r. If r = 2, then the

left hand side of (5.3.1) has a meromorphic continuation to C2 by Theorem 2.2.2 if f2(1) = 1

and by Theorem 2.2.5 if f2(1) 6= 1. Similarly when r = 2, the first term on the left hand

side of (5.3.2) has a meromorphic continuation to C2 by Theorem 2.2.2 if g2(1) = 1 and by

Theorem 2.2.5 if g2(1) 6= 1. For r ≥ 3, the left hand side of (5.3.1) and the first term in the

left hand side of (5.3.2) have a meromorphic continuation to Cr by the induction hypothesis.

We now establish the meromorphic continuation of the multiple additive L-function

Lr(f1, . . . , fr; s1, . . . , sr) separately for each of the cases f1(1) = 1 and f1(1) 6= 1.

First we consider the case f1(1) = 1. As we have shown that in this case the multiple

additive L-function Lr(f1, . . . , fr; s1, . . . , sr) satisfies the translation formula (5.2.1) in Ur.

Note that the translation formula (5.2.1) is exactly the same as (3.1.1) which is satisfied by the

multiple zeta functions of depth r. Hence in this case the meromorphic continuation follows

exactly as in the case of the multiple zeta function.

Next we consider the case f1(1) 6= 1. Now by induction hypothesis we know that

f1(1)Lr−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr)

has a meromorphic continuation to Cr and by Proposition 5.3.2, (for m = 1) we have that

∑
k≥0

(s1)k Lr(f1, . . . , fr; s1 + k + 1, s2, . . . , sr)

is a holomorphic function on Ur(1). Hence we can extend Lr(f1, . . . , fr; s1, . . . , sr) to Ur(1)

as a meromorphic function satisfying (5.2.2).

Now we assume that for an integer m ≥ 2, Lr(f1, . . . , fr; s1, . . . , sr) has been extended
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meromorphically to Ur(m− 1) satisfying (5.2.2). Again by Proposition 5.3.2, the series

∑
k≥m−1

(s1)k Lr(f1, . . . , fr; s1 + k + 1, s2, . . . , sr)

defines a holomorphic function on Ur(m). As Lr(f1, . . . , fr; s1, . . . , sr) has been extended

meromorphically to Ur(m − 1), we can extend Lr(f1, . . . , fr; s1 + k + 1, . . . , sr) meromor-

phically to Ur(m) for all 0 ≤ k ≤ m− 2.

Thus we can now extend Lr(f1, . . . , fr; s1, . . . , sr) meromorphically to Ur(m) by means

of (5.2.2). This completes the proof as {Ur(m) : m ≥ 1} is an open cover of Cr.

5.4 Matrix formulation of the translation formulas

Since the translation formulas (5.3.1) and (3.4.1) are similar, one can easily notice that their

matrix formulation will be identical. We briefly write down the matrix formulation of the

translation formula (5.3.1).

The translation formula (5.3.1) together with the other relations obtained by applying suc-

cessively the change of variables s1 7→ s1 + n to it for each n ≥ 0 is equivalent to the single

relation

Vr−1(f2, f3, . . . , fr; s1+s2−1, s3, . . . , sr) = A1(s1−1)Vr(f1, . . . , fr; s1, . . . , sr), (5.4.1)

where Vr(f1, . . . , fr; s1, . . . , sr) denotes the infinite column vector

Vr(f1, . . . , fr; s1, . . . , sr) :=



Lr(f1, . . . , fr; s1, s2, . . . , sr)

Lr(f1, . . . , fr; s1 + 1, s2, . . . , sr)

Lr(f1, . . . , fr; s1 + 2, s2, . . . , sr)

...


(5.4.2)
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and for an indeterminate t, A1(t) is defined by

A1(t) :=



t t(t+1)
2!

t(t+1)(t+2)
3!

· · ·

0 t+ 1 (t+1)(t+2)
2!

· · ·

0 0 t+ 2 · · ·
...

...
... . . .


. (5.4.3)

As in Chapter 3, for any integer q ≥ 1, we write

I = Iq = {k ∈ N | 0 ≤ k ≤ q − 1} and J = Jq = {k ∈ N | k ≥ q}.

We can then reformulate (5.4.1) to write

VI
r(f1, . . . , fr; s1, . . . , sr)

= B1
II(s1 − 1)VI

r−1(f2, . . . , fr; s1 + s2 − 1, s3, . . . , sr) + WI(f1, . . . , fr; s1, . . . , sr),

(5.4.4)

where

WI(f1, . . . , fr; s1, . . . , sr) = −UII(s1)
−1UIJ(s1)V

J
r (f1, . . . , fr; s1, . . . , sr), (5.4.5)

and for an indeterminate t,

B1(t) :=



1
t

B1

1!
(t+1)B2

2!
(t+1)(t+2)B3

3!
· · ·

0 1
t+1

B1

1!
(t+2)B2

2!
· · ·

0 0 1
t+2

B1

1!
· · ·

0 0 0 1
t+3

· · ·
...

...
...

... . . .


and U(t) :=



1 t
2!

t(t+1)
3!

· · ·

0 1 t+1
2!

· · ·

0 0 1 · · ·
...

...
... . . .


.

All the series of meromorphic functions involved in the products of matrices in formulas
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(5.4.4) and (5.4.5) converge normally on all compact subsets of Cr. Moreover, all the en-

tries of the matrices on the right hand side of (5.4.5) are holomorphic in the open set Ur(q),

translate of Ur by (−q, 0, . . . , 0). Therefore the entries of WI(f1, . . . , fr; s1, . . . , sr) are also

holomorphic in Ur(q).

If we write ξq(f1, . . . , fr; s1, . . . , sr) to be the first entry of WI(f1, . . . , fr; s1, . . . , sr), we

then get from (5.4.4) that

Lr(f1, . . . , fr; s1, . . . , sr)

=
1

s1 − 1
Lr−1(f2, . . . , fr; s1 + s2 − 1, s3, . . . , sr)

+

q−2∑
k=0

s1 · · · (s1 + k − 1)

(k + 1)!
Bk+1 Lr−1(f2, . . . , fr; s1 + s2 + k, s3, . . . , sr)

+ ξq(f1, . . . , fr; s1, . . . , sr),

(5.4.6)

where ξq(f1, . . . , fr; s1, . . . , sr) is holomorphic in the open set Ur(q).

On the other hand, the translation formula (5.3.2) and the other relations obtained by ap-

plying successively the change of variable s1 7→ s1 + n to it for each n ≥ 0, is equivalent

to

f1(1)Vr−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr) = A3(f1; s1)Vr(f1, . . . , fr; s1, . . . , sr),

(5.4.7)

where for an indeterminate t and a non-trivial group homomorphism f : Z→ C∗ with f(1) 6=

1, the matrix A3(f ; t) is defined as follows:

A3(f ; t) :=



1− f(1) t t(t+1)
2!

t(t+1)(t+2)
3!

· · ·

0 1− f(1) t+ 1 (t+1)(t+2)
2!

· · ·

0 0 1− f(1) t+ 2 · · ·

0 0 0 1− f(1) · · ·
...

...
...

... . . .


. (5.4.8)
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Clearly the matrix A3(f ; t) is invertible in T(C(t)). To find the inverse of A3(f ; t) explicitly,

we notice that

A3(f ; t) = e(M(t))− f(1)IN×N

where IN×N denotes the identity matrix in T(C(t)) and as in the previous chapters

M(t) :=



0 t 0 · · ·

0 0 t+ 1 · · ·

0 0 0 · · ·
...

...
... . . .


.

We would like to invert the power series ex − c in C[[x]] for some c 6= 1. Now for the sake

of convenience, let us replace the variable x by (c − 1)y, where c 6= 1. Now our aim is to

invert the power series e(c−1)y − c when c 6= 1. For this we recall the generating function

for the Eulerian polynomials. The Eulerian polynomials An(t)’s are defined by the following

exponential generating function

∑
n≥0

An(t)
yn

n!
=

1− t
e(t−1)y − t

.

Thus
1

e(c−1)y − c
=

1

1− c
∑
n≥0

An(c)
yn

n!
as c 6= 1.

Hence
1

ex − c
=

1

1− c
∑
n≥0

An(c)
xn

(c− 1)nn!
when c 6= 1.

This in turn yields that the inverse of A3(f ; t), which we denote by B3(f ; t), is given by the

formula

B3(f ; t) =
1

1− f(1)

∑
n≥0

An(f(1))
M(t)n

(f(1)− 1)nn!
(5.4.9)
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as f(1) 6= 1. It can be calculated that A0(t) = A1(t) = 1. Hence

B3(f ; t) =
1

1− f(1)



1 1
f(1)−1t

A2(f(1))
(f(1)−1)2

t(t+1)
2!

A3(f(1))
(f(1)−1)3

t(t+1)(t+2)
3!

· · ·

0 1 1
f(1)−1(t+ 1) A2(f(1))

(f(1)−1)2
(t+1)(t+2)

2!
· · ·

0 0 1 1
f(1)−1(t+ 2) · · ·

0 0 0 1 · · ·
...

...
...

... . . .


.

Thus one may attempt to express the column vector Vr(f1, . . . , fr; s1, . . . , sr) in terms of

Vr−1(g2, f3, . . . , fr; s1+s2, s3, . . . , sr) so as to obtain an expression of the multiple additiveL-

function of depth r in terms of translates of the multiple additive L-function of depth (r−1) by

multiplying both sides of (5.4.7) by B3(f1; s1). However this is not allowed as the coefficients

of the Eulerian polynomials grow very fast. In fact it is known that the sum of the coefficients

of An(t) is n! for each n ≥ 0.

To get around this difficulty we do what we have been doing in last few chapters. For an

integer q ≥ 1, let I = Iq, J = Jq be as before. Then we rewrite (5.4.7) as follows:

f1(1)VI
r−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr)

= A3
II(f1; s1)V

I
r(f1, . . . , fr; s1, . . . , sr) + A3

IJ(f1; s1)V
J
r (f1, . . . , fr; s1, . . . , sr).

Now inverting A3
II(f1; s1), we get

VI
r(f1, . . . , fr; s1, . . . , sr)

= f1(1)B3
II(f1; s1)V

I
r−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr) + ZI(f1, . . . , fr; s1, . . . , sr),

(5.4.10)

where

ZI(f1, . . . , fr; s1, . . . , sr) = −B3
II(f1; s1)A3

IJ(f1; s1)V
J
r (f1, . . . , fr; s1, . . . , sr). (5.4.11)
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All the series of meromorphic functions involved in the products of matrices in formulas

(5.4.10) and (5.4.11) converge normally on all compact subsets of Cr. Moreover, all the en-

tries of the matrices on the right hand side of (5.4.11) are holomorphic on the open set Ur(q).

Therefore the entries of ZI(f1, . . . , fr; s1, . . . , sr) are also holomorphic in Ur(q).

If we write πq(f1, . . . , fr; s1, . . . , sr) to be the first entry of ZI(f1, . . . , fr; s1, . . . , sr), we

then get from (5.4.10) that

Lr(f1, . . . , fr; s1, . . . , sr)

= f1(1) Lr−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr)

+ f1(1)

q−1∑
k=1

(s1)k
Ak(f(1))

(f(1)− 1)k
Lr−1(g2, f3, . . . , fr; s1 + s2 + k, s3, . . . , sr)

+ πq(f1, . . . , fr; s1, . . . , sr),

(5.4.12)

where πq(f1, . . . , fr; s1, . . . , sr) is holomorphic in the open set Ur(q).

5.5 Poles and residues

In this section, using the formulas (5.4.4), (5.4.10) and the induction on depth r, we obtain a

list of possible singularities of the multiple additive L-functions. When r = 1, from Theo-

rem 2.2.2, we know that if f(1) = 1 then L1(f ; s) = D(s, f) can be extended to a meromor-

phic function with simple pole at s = 1 with residue 1 and from Theorem 2.2.5, we know that

if f(1) 6= 1 then L1(f ; s) = D(s, f) can be extended to an entire function.

First we obtain an expression for the residues along the possible polar hyperplane of the

multiple additive L-functions and then we deduce the exact set of singularities of these func-

tions. A theorem of G. Frobenius [12] about the zeros of Eulerian polynomials plays a crucial

role in this analysis.
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5.5.1 Set of all possible singularities

The following theorem gives a description of possible singularities of the multiple additive

L-functions.

Theorem 5.5.1. The multiple additive L-function Lr(f1, . . . , fr; s1, . . . , sr) has different set

of singularities depending on the values of gi(1) for 1 ≤ i ≤ r.

(a) If gi(1) 6= 1 for all 1 ≤ i ≤ r, then Lr(f1, . . . , fr; s1, . . . , sr) is a holomorphic function

on Cr.

Now let i1 < · · · < im be all the indices such that gij(1) = 1 for all 1 ≤ j ≤ m. Then the

set of all possible singularities of Lr(f1, . . . , fr; s1, . . . , sr) is described as follows:

(b) If i1 = 1, then Lr(f1, . . . , fr; s1, . . . , sr) is holomorphic outside the union of hyper-

planes given by the equations

s1 = 1; s1 + · · ·+ sij = n for all n ∈ Z≤j and 2 ≤ j ≤ m.

It has at most simple poles along each of these hyperplanes.

(c) If i1 6= 1, then Lr(f1, . . . , fr; s1, . . . , sr) is holomorphic outside the union of hyper-

planes given by the equations

s1 + · · ·+ sij = n for all n ∈ Z≤j and 1 ≤ j ≤ m.

It has at most simple poles along each of these hyperplanes.

Proof. We prove the assertions (a), (b) and (c) separately.

Proof of (a): From Theorem 2.2.5, we know that the assertion (a) is true for depth 1

multiple additive L-function. Now let q ≥ 1 be an integer and I = Iq, J = Jq be as before.

We will make use of equation (5.4.10) for our proof.

The entries of the first row of the matrix B3
II(f1; s1) are holomorphic on Cr and by the
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induction hypothesis, the entries of the column matrix VI
r−1(g2, f3, . . . , fr; s1 +s2, s3, . . . , sr)

are holomorphic on Cr. Further the entries of the column vector ZI(f1, . . . , fr; s1, . . . , sr) are

holomorphic in Ur(q). Since the open sets Ur(q) for q ≥ 1 cover Cr, the assertion (a) follows.

Proof of (b): For depth 1 multiple additive L-function, the assertion (b) follows from

Theorem 2.2.2. Again let q ≥ 1 be an integer and I = Iq, J = Jq be as defined earlier. We

now complete the proof of assertion (b) by making use of the equation (5.4.4).

The entries of the first row of the matrix B1
II(s1 − 1) are holomorphic outside the hyper-

plane given by the equation s1 = 1 and have at most simple pole along this hyperplane. By the

induction hypothesis, the entries of the column vector VI
r−1(f2, . . . , fr; s1+s2−1, s3, . . . , sr)

are holomorphic outside the union of the hyperplanes given by the equations

s1 + · · ·+ sij = n for all n ∈ Z≤j, for all 2 ≤ j ≤ m.

and have at most simple poles along these hyperplanes. Finally the entries of the column vector

WI(f1, . . . , fr; s1, . . . , sr) are holomorphic in Ur(q). Since Cr is covered by open sets of the

form Ur(q) for q ≥ 1, the assertion (b) follows.

Proof of (c): The proof of this assertion follows along the lines of the assertion (a). The

only difference is the induction hypothesis. Here the induction hypothesis implies that the

entries of the column matrix VI
r−1(g2, f3, . . . , fr; s1 + s2, s3, . . . , sr) are holomorphic outside

the union of the hyperplanes given by the equations

s1 + · · ·+ sij = n for all n ∈ Z≤j, for all 1 ≤ j ≤ m.

Now the proof of the assertion (c) follows mutatis mutandis the proof of the assertion (a). This

completes the proof of Theorem 5.5.1.



5.5. POLES AND RESIDUES 87

5.5.2 Expression for residues

Here we compute the residues of the multiple additive L-function of depth r along the possible

polar hyperplanes.

Theorem 5.5.2. The residues of the multiple additive L-function Lr(f1, . . . , fr; s1, . . . , sr)

are described below. Let i1 < · · · < im be the indices such that gij(1) = 1 for all 1 ≤ j ≤ m.

If i1 = 1, then Lr(f1, . . . , fr; s1, . . . , sr) has a polar singularity along the hyperplane given

by the equation s1 = 1 and the residue is the restriction of Lr−1(f2, . . . , fr; s2, . . . , sr) to this

hyperplane.

In general, the residue along the hyperplane given by the equation

s1 + · · ·+ sij = n for n ∈ Z≤j and 1 ≤ j ≤ m

is the restriction of the product of Lr−ij(fij+1, . . . , fr; sij+1, . . . , sr) with (0, j−n)-th entry of

Cj :=

(
i1−1∏
i=1

gi(1)B3(gi; s1 + · · ·+ si)

)

×
j−1∏
k=1

(
B1(s1 + · · ·+ sik − k)

ik+1−1∏
i=ik+1

gi(1)B3(gi; s1 + · · ·+ si − k)

)

to the above hyperplane.

Proof. First suppose that i1 = 1. Then for any integer q ≥ 1, we deduce from (5.4.6) and

Theorem 5.5.1 that

Lr(f1, . . . , fr; s1, . . . , sr)−
1

s1 − 1
Lr−1(f2, . . . , fr; s1 + s2 − 1, s3, . . . , sr)

has no pole inside the open setUr(q) along the hyperplane given by the equation s1 = 1. These

open sets cover Cr and hence the residue of Lr(f1, . . . , fr; s1, . . . , sr) along the hyperplane

given by the equation s1 = 1 is the restriction of the meromorphic functionLr−1(f2, . . . , fr; s2, . . . , sr)
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to the hyperplane given by the equation s1 = 1. This proves the first part of Theorem 5.5.2.

Next let q ≥ j − n + 1 be an integer and I = Iq, J = Jq be as before. Now to determine

the residue along the hyperplane

s1 + · · ·+ sij = n for n ∈ Z≤j and 1 ≤ j ≤ m,

we iterate the formulas (5.4.4) and (5.4.10) according to the applicable case and obtain that

VI
r(f1, . . . , fr; s1, . . . , sr)

= CII
j VI

r−ij+1(gij , fij+1, . . . , fr; s1 + · · ·+ sij − (j − 1), sij+1, . . . , sr)

+ Zj,I(f1, . . . , fr; s1, . . . , sr).

(5.5.1)

Here Zj,I(f1, . . . , fr; s1, . . . , sr) is a column matrix whose entries are finite sums of products

of rational functions in s1, . . . , sij−1 with meromorphic functions which are holomorphic in

Ur(q). These entries therefore have no singularity along the hyperplane given by the equation

s1 + · · · + sij = n in Ur(q). The entries of CII
j are rational functions in s1, . . . , sij−1 and

hence again have no singularity along the above hyperplane. It now follows from the first part

of Theorem 5.5.2 that the only entry of

VI
r−ij+1(gij , fij+1, . . . , fr; s1 + · · ·+ sij − (j − 1), sij+1, . . . , sr)

that can possibly have a pole in Ur(q) along the hyperplane given by the equation s1 + · · · +

sij = n is the one of index j − n, which is

Lr−ij+1(gij , fij+1, . . . , fr; s1 + · · ·+ sij − n+ 1, sij+1, . . . , sr).

Again by the first part of Theorem 5.5.2, the residue of this function along the hyperplane

given by the equation s1 + · · ·+ sij = n is the restriction of Lr−ij(fij+1, . . . , fr; sij+1, . . . , sr)
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to this hyperplane. Thus the residue of Lr(f1, . . . , fr; s1, . . . , sr) along the hyperplane given

by the equation s1 + · · · + sij = n is the product of Lr−ij(fij+1, . . . , fr; sij+1, . . . , sr) with

(0, j−n)-th entry of CII
j . Since open sets of the form Ur(q) cover Cr, this completes the proof

of Theorem 5.5.2.

5.5.3 Exact set of singularities

Now we will deduce the exact set of singularities of the multiple additive L-functions. As

mentioned earlier, a theorem of Frobenius [12] about the zeros of Eulerian polynomials helps

us in determining the exact set of singularities. We recall that the Eulerian polynomialsAn(t)’s

are defined by the following exponential generating function

∑
n≥0

An(t)
yn

n!
=

1− t
e(t−1)y − t

.

These polynomials satisfy the following recurrence relation

A0(t) = 1 and An(t) = t(1− t)A′n−1(t) + An−1(t)(1 + (n− 1)t) for all n ≥ 1.

Frobenius [12] proved the following theorem about the zeros of the Eulerian polynomialsAn(t).

Theorem 5.5.3 (Frobenius). All the zeros of the Eulerian polynomials An(t) are real, negative

and simple.

From this theorem and the above recurrence formula, we can now deduce the following

corollary.

Corollary 5.5.4. For any n ≥ 0, An+1(t) and An(t) do not have a common zero.

Proof. To see this, let a be a zero of An(t). Then by Theorem 5.5.3, A′n(a) 6= 0. Again by

Theorem 5.5.3, a 6= 0, 1. Using the above recurrence formula, we deduce that An+1(a) 6= 0.
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Recall that for an indeterminate t and a non-trivial additive character f : Z→ C∗, we have

B1(t) =



1
t

B1

1!
(t+1)B2

2!
(t+1)(t+2)B3

3!
· · ·

0 1
t+1

B1

1!
(t+2)B2

2!
· · ·

0 0 1
t+2

B1

1!
· · ·

0 0 0 1
t+3

· · ·
...

...
...

... . . .


and

B3(f ; t) =
1

1− f(1)



1 1
f(1)−1t

A2(f(1))
(f(1)−1)2

t(t+1)
2!

A3(f(1))
(f(1)−1)3

t(t+1)(t+2)
3!

· · ·

0 1 1
f(1)−1(t+ 1) A2(f(1))

(f(1)−1)2
(t+1)(t+2)

2!
· · ·

0 0 1 1
f(1)−1(t+ 2) · · ·

0 0 0 1 · · ·
...

...
...

... . . .


.

Clearly non-zero elements of each row and each column of these matrices are linearly inde-

pendent as elements of C(t). Also the first two entries of the first row of these matrices are

non-zero. Since we know that the Bernoulli numbers

Bn = 0 ⇐⇒ n is odd and n ≥ 3, (5.5.2)

we get that at least one of the first two entries in every column of B1(t) is non-zero. On

the other hand, Corollary 5.5.4 implies that at least one of the first two entries in every col-

umn of B3(f ; t) is non-zero. Hence we know that all entries of the first row of the matrices

B1(t1) B1(t2), B1(t1) B3(f ; t2), B3(f ; t1) B1(t2) and B3(f ; t1) B3(f ; t2) are non-zero. Here

t1 and t2 are two indeterminates.

With this observation in place, we are now ready to determine the exact set of singularities

of the multiple additive L-functions.
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Theorem 5.5.5. The exact set of polar singularities of the multiple additive L-function

Lr(f1, . . . , fr; s1, . . . , sr) of depth r differs from the set of all possible singularities (as listed in

Theorem 5.5.1) only in the following two cases. Here we keep the notations of Theorem 5.5.1.

a) If i1 = 1 and i2 = 2 i.e. f1(1) = f2(1) = 1, then Lr(f1, . . . , fr; s1, . . . , sr) is holomor-

phic outside the union of hyperplanes given by the equations

s1 = 1; s1 + s2 = n for all n ∈ Z≤2 \ J ;

s1 + · · ·+ sij = n for all n ∈ Z≤j, 3 ≤ j ≤ m,

where J := {−2n− 1 : n ∈ N}. It has simple poles along each of these hyperplanes.

b) If i1 = 2, thenLr(f1, . . . , fr; s1, . . . , sr) is holomorphic outside the union of hyperplanes

given by the equations

s1 + s2 = n for all n ∈ Z≤1 \ J ;

s1 + · · ·+ sij = n for all n ∈ Z≤j, 2 ≤ j ≤ m,

where J := {1 − n : n ∈ I} and I := {n ∈ N : An(f1(1)) = 0}. It has simple poles along

each of these hyperplanes.

Proof. When 1 ≤ j ≤ m and n ∈ Z≤j , the restriction of Lr−ij(fij+1, . . . , fr; sij+1, . . . , sr) to

the hyperplane given by the equation s1 + · · ·+ sij = n is a non-zero meromorphic function.

First suppose that i1 = 1 and i2 = 2. Then by (5.5.2), we deduce that only non-zero entries

in the first row of C2 are of index (0, 1) and of index (0, 2n) for n ∈ N. Also we know that

all the entries in the first row of Cj for 3 ≤ j ≤ m are non-zero. We now conclude from

Theorem 5.5.2 that the exact set of singularities in this case consists of the hyperplanes given
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by the equations

s1 = 1; s1 + s2 = n for all n ∈ Z≤2 \ J ;

s1 + · · ·+ sij = n for all n ∈ Z≤j, for all 3 ≤ j ≤ m,

where J := {−2n− 1 : n ∈ N}. This completes the proof of assertion (a).

Next let i1 = 2. Clearly the entries in the first row of C1 that are zero are of index (0, n)

for all n ∈ I . Also we know that all entries in the first row of Cj for 2 ≤ j ≤ m are non-zero.

Hence using Theorem 5.5.2, we have that the exact set of singularities in this case consists of

the hyperplanes given by the equations

s1 + s2 = n for all n ∈ Z≤1 \ J ;

s1 + · · ·+ sij = n for all n ∈ Z≤j, for all 2 ≤ j ≤ m,

where J := {1− n : n ∈ I}.

Now in all other cases, applying Theorem 5.5.1, we see that the hyperplanes given by the

equations of the form s1 + s2 = n are not singularities of Lr(f1, . . . , fr; s1, . . . , sr). Using

Theorem 5.5.2, we know that the expression for residues along the possible polar hyperplanes

given by the equations of the form s1 + · · ·+ sij = n involves product of at least two matrices

of the form B1(x) and B3(f ; y) where x and y are two different indeterminates. Hence such

an expression is non-zero. This completes the proof of Theorem 5.5.5.

Example 5.5.6. We know that t = −1 is a zero for the Eulerian polynomials An(t) only when

n is even. Suppose that we are in a case when f1(1) = −1 and i1 = 2 i.e. f1(1) = f2(1) = −1.

Now Theorem 5.5.5 implies that the exact set of singularities of Lr(f1, . . . , fr; s1, . . . , sr)
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consists of the hyperplanes given by the equation

s1 + s2 = n for all n ∈ Z≤1 \ J ;

s1 + · · ·+ sij = n for all n ∈ Z≤j, 2 ≤ j ≤ m,

where J := {−2n − 1 : n ∈ N}. Further Lr(f1, . . . , fr; s1, . . . , sr) has simple poles along

these hyperplanes.

5.6 Multiple Dirichlet L-functions

Though at this moment it seems difficult to determine the exact set of singularities of the

multiple Dirichlet L-functions, we can still extend the theorem of Akiyama and Ishikawa

(Theorem 5.1.3) for Dirichlet characters, not necessarily of same modulus. As an immedi-

ate consequence of (5.1.8) and Theorem 5.5.1, we derive the following theorem.

Theorem 5.6.1. Let r ≥ 1 be an integer and χ1, . . . , χr be Dirichlet characters of arbitrary

modulus. Then the multiple Dirichlet L-function Lr(s1, . . . , sr; χ1, . . . , χr) of depth r can be

extended as a meromorphic function to Cr with possible simple poles at the hyperplanes given

by the equations

s1 = 1; s1 + · · ·+ si = n for all n ∈ Z≤i, 2 ≤ i ≤ r.

5.7 Multiple Lerch zeta functions

We recall that the Lerch zeta function L(λ, α, s) is defined by the following convergent sum in

<(s) > 1:

L(λ, α, s) :=
∑
n≥0

e(λn)

(n+ α)s
,
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where for a real number a, e(a) denotes the uni-modulus complex number e2πιa and λ, α ∈

(0, 1]. This is an example of a shifted Dirichlet series associated to additive characters. Now

we can consider multi-variable generalisations of the Lerch zeta function, and more generally

of the shifted Dirichlet series associated to additive characters. Such functions, which we

studied in [15], can be viewed as a unification of the multiple Hurwitz zeta functions and the

multiple additive L-functions.

Definition 5.7.1. Let r ≥ 1 be an integer and λ1, . . . , λr, α1, . . . , αr ∈ [0, 1). Then the multiple

Lerch zeta function of depth r is denoted by Lr(λ1, . . . , λr;α1, . . . , αr; s1, . . . , sr) and defined

by the following convergent series in Ur:

Lr(λ1, . . . , λr;α1, . . . , αr; s1, . . . , sr) :=
∑

n1>···>nr>0

e(λ1n1) · · · e(λrnr)
(n1 + α1)s1 · · · (nr + αr)sr

.

Normal convergence of the above series follows from the normal convergence of the mul-

tiple Hurwitz zeta function of depth r. Hence Lr(λ1, . . . , λr;α1, . . . , αr; s1, . . . , sr) defines an

analytic function in the open set Ur. Next we define the shifted multiple additive L-functions,

which further generalise the multiple Lerch zeta functions.

Definition 5.7.2. Let r ≥ 1 be an integer and α1, . . . , αr ∈ [0, 1). Further suppose f1, . . . , fr

are additive characters such that the partial products gi :=
∏

1≤j≤i fj satisfy the condition

|gi(1)| ≤ 1 for all 1 ≤ i ≤ r.

Then the shifted multiple additiveL-function of depth r associated to f1, . . . , fr and α1, . . . , αr

is denoted by Lr(f1, . . . , fr; α1, . . . , αr; s1, . . . , sr) and defined by the following convergent

series n Ur:

Lr(f1, . . . , fr; α1, . . . , αr; s1, . . . , sr) :=
∑

n1>···>nr>0

f1(n1) · · · fr(nr)
(n1 + α1)s1 · · · (nr + αr)sr

.
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Again as a consequence of the normal convergence of the multiple Hurwitz zeta function

of depth r, we get that the above series is normally summable on compact subsets of Ur, and

hence defines an analytic function in the open set Ur.

Now the meromorphic continuation and the location of possible polar singularities of the

shifted multiple additive L-function Lr(f1, . . . , fr; α1, . . . , αr; s1, . . . , sr) are described in the

following anticipated theorem, whose proof we omit for brevity.

Theorem 5.7.3. The set of all possible singularities of the shifted multiple additive L-function

Lr(f1, . . . , fr; α1, . . . , αr; s1, . . . , sr) depends on the values of gi(1) for 1 ≤ i ≤ r.

a) If gi(1) 6= 1 for all 1 ≤ i ≤ r, then Lr(f1, . . . , fr; α1, . . . , αr; s1, . . . , sr) can be

extended analytically to the whole of Cr.

Now let i1 < · · · < im be all the indices such that gij(1) = 1 for all 1 ≤ j ≤ m, then

the set of all possible singularities of Lr(f1, . . . , fr; α1, . . . , αr; s1, . . . , sr) is described in the

following two cases.

b) If i1 = 1, then Lr(f1, . . . , fr; α1, . . . , αr; s1, . . . , sr) can be extended analytically to an

open subset Vr of Cr, where Vr is obtained by removing the hyperplanes given by the equations

s1 = 1; s1 + · · ·+ sij = n for all n ∈ Z≤j, for all 2 ≤ j ≤ m

from Cr. It has at most simple poles along each of these hyperplanes.

c) If i1 6= 1, then Lr(f1, . . . , fr; α1, . . . , αr; s1, . . . , sr) can be extended analytically to

an open subset Wr of Cr, where Wr is obtained by removing the hyperplanes given by the

equations

s1 + · · ·+ sij = n for all n ∈ Z≤j, for all 1 ≤ j ≤ m

from Cr. It has at most simple poles along each of these hyperplanes.

Here we would like to mention that an intricate multi-variable generalisation of the Lerch

zeta function was studied by Y. Komori [20]. He derived the meromorphic continuation of
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these functions through their integral representations. Such an integral representation is anal-

ogous to one such integral representation of the Riemann zeta function. He also obtained a

‘rough estimation’ of its possible singularities (see [20], §3.6). It seems Theorem 5.7.3 above

provides a more precise information about the singularities of the multiple Lerch zeta func-

tions.



6
Weighted multiple zeta functions

6.1 Introduction

Euler [11] considered (for r = 2) a variant of the multiple zeta function ζ(s1, . . . , sr), where

the summation over the sequences (n1, . . . , nr) is replaced by n1 ≥ · · · ≥ nr ≥ 1 in place of

n1 > · · · > nr > 0. For an integer r ≥ 1,

ζEuler
r (s1, . . . , sr) :=

∑
n1≥n2≥···≥nr≥1

n−s11 · · ·n−srr . (6.1.1)

These functions are closely related to the multiple zeta functions. It is easy to see that

ζEuler
2 (s1, s2) = ζ2(s1, s2) + ζ(s1 + s2).

More generally, these functions can be expressed as linear combinations of the usual multiple

zeta functions of various depths. For this, we need the following notation. We say that a

partition (A1, . . . , At) of {1, . . . , r} is admissible if each subset Ai is non empty, and the

elements of Ai are smaller than the elements of Aj when i < j. Let Pr denote the set of all

97
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admissible partitions of {1, . . . , r}. We then have

ζEuler
r (s1, . . . , sr) =

∑
(A1,...,At)∈Pr

ζt

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
. (6.1.2)

The above formula holds on the open subset Ur of Cr. All functions involved in the right hand

side of (6.1.2) are holomorphic on Ur. Hence ζEuler
r (s1, . . . , sr) also defines a holomorphic

function on Ur. Further, it is also possible to extend it to a meromorphic function on Cr using

the meromorphic continuation of the multiple zeta functions and (6.1.2).

In this chapter, we study the following weighted variant of the functions considered by

Euler. For an integer r ≥ 1,

ζweight
r (s1, . . . , sr) :=

∑
n1≥···≥nr≥1

n1
−s1 · · ·nr−sr

w(n1, . . . , nr)
. (6.1.3)

Here for a sequence of integer n1 ≥ · · · ≥ nr, w(n1, . . . , nr) denotes the number of permu-

tations σ of {1, . . . , r} such that nσ(i) = ni for all 1 ≤ i ≤ r. In other words, w(nr, . . . , nr)

denotes the order of the stabilizer of (n1, . . . , nr) in the symmetric group Sr, where the group

action is the permutation of the co-ordinates. We call these functions as weighted multiple zeta

functions. These functions can also be expressed as linear combinations of the usual multiple

zeta functions of various depths and we have

ζweight
r (s1, . . . , sr) =

∑
(A1,...,At)∈Pr

1

|A1|! · · · |At|!
ζt

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
. (6.1.4)

These weighted multiple zeta functions have some special properties, which are compara-

ble to the ones satisfied by the multiple zeta functions. We give couple of instances here.

(a) Product formulas: It is known that, when (s1, . . . , sp) ∈ Up and (t1, . . . , tq) ∈ Uq, then

ζp(s1, . . . , sp) ζq(t1, . . . , tq) =
∑

ζr(z1, . . . , zr)



6.2. INVERSION FORMULA 99

holds, where (z1, . . . , zr) runs over the family of finite sequences of complex numbers deduced

from (s1, . . . , sp) and (t1, . . . , tq) by a stuffling (see §6.3 for the precise definition of this term).

We shall prove in §6.3 that a similar formula holds for weighted multiple zeta functions, but

with stufflings replaced by shufflings. For example,

ζ(s1)ζ2(s2, s3) = ζ3(s1, s2, s3)+ζ3(s2, s1, s3)+ζ3(s2, s3, s1)+ζ2(s1+s2, s3)+ζ2(s2, s1+s3),

whereas

ζweight
1 (s1)ζ

weight
2 (s2, s3) = ζweight

3 (s1, s2, s3) + ζweight
3 (s2, s1, s3) + ζweight

3 (s2, s3, s1).

(b) Location of poles: Due to some cancellations of residues, the set of polar hyperplanes

of our weighted multiple zeta functions is smaller than that of the usual ones. More precisely,

we shall prove in §6.4 that the meromorphic extension of ζweight
r (s1, . . . , sr) to Cr is in fact

holomorphic outside the hyperplanes given by the equations

s1 = 1; s1 + · · ·+ si = i− 2k for all 2 ≤ i ≤ r and k ≥ 0 an integer,

and it has simple poles along each of these hyperplanes. The location of the poles in this case

has an uniform pattern, which was not the case for the usual multiple zeta functions. Here we

use some of the notations from Chapter 3.

6.2 Inversion formula

Interestingly, the formulas (6.1.2) and (6.1.4) can be inverted to express the usual multiple zeta

functions in terms of the functions ζEuler
r (s1, . . . , sr) and the weighted multiple zeta functions

respectively. To do this, it is more useful to see these formulas in a more general setup. We

elaborate below.
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Let f =
∑

n≥1 anx
n be a formal power series with complex coefficients without constant

term. We define

ζ(f)(s1, . . . , sr) :=
∑

(A1,...,At)∈Pr

a|A1| · · · a|At| ζt

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
. (6.2.1)

According to the above definition ζEuler
r = ζ(f) where f = x

1−x and ζweight
r = ζ(f) where

f = ex − 1.

Let g =
∑

n≥1 bnx
n be another formal power series with complex coefficients and without

constant term. We then define

(ζ(f))(g)(s1, . . . , sr) :=
∑

(A1,...,At)∈Pr

b|A1| · · · b|At| ζ
(f)

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
. (6.2.2)

With these notations we now prove the following theorem.

Theorem 6.2.1. Let f =
∑

n≥1 anx
n, g =

∑
n≥1 bnx

n be two formal power series with

complex coefficients without constant term. Then we have (ζ(f))(g) = ζ(f◦g).

Proof. By formulas (6.2.1) and (6.2.2), we get that (ζ(f))(g)(s1, . . . , sr) is equal to

∑
(B1,...,Bs)∈Pr

b|B1| · · · b|Bs|
∑

(A1,...,At)∈Ps

a|A1| · · · a|At| ζt

(∑
i∈A1

∑
j∈Bi

sj, . . . ,
∑
i∈At

∑
j∈Bi

sj

)
.

When (B1, . . . , Bs) ∈ Pr and (A1, . . . , At) ∈ Ps, then (C1, . . . , Ct) where Ck =
⋃
i∈Ak

Bi, is

an admissible partition of {1, . . . , r} and we have

∑
i∈Ak

∑
j∈Bi

sj =
∑
i∈Ck

si

for all 1 ≤ k ≤ t. Thus (ζ(f))(g)(s1, . . . , sr) is equal to

∑
(C1,...,Ct)∈Pr

ζr

(∑
i∈C1

si, . . . ,
∑
i∈Ct

si

)
t∏

k=1

∑
i≥1

ai
∑

j1+···+ji=|Ck|

bj1 · · · bji

 .
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If
∑

n≥1 cnx
n denotes the formal power series f ◦ g, then we have

c|Ck| =
∑
i≥1

ai
∑

j1+···+ji=|Ck|

bj1 · · · bji .

This completes the proof of Theorem 6.2.1.

As an immediate consequence we get the following corollary.

Corollary 6.2.2. Let f =
∑

n≥1 anx
n be a formal power series and g =

∑
n≥1 bnx

n be the

formal power series such that f ◦ g = x. Then for an integer r ≥ 1, we have

ζr(s1, . . . , sr) =
∑

(A1,...,At)∈Pr

b|A1| · · · b|At| ζ
(f)

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
.

Applying Corollary 6.2.2 for f = x
1−x and g = x

1+x
=
∑

n≥1(−1)n−1xn, we get

ζr(s1, . . . , sr) =
∑

(A1,...,At)∈Pr

(−1)r−tζEuler
t

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
. (6.2.3)

For f = ex − 1 and g = log(1 + x) =
∑

n≥1
(−1)n−1

n
xn we get

ζr(s1, . . . , sr) =
∑

(A1,...,At)∈Pr

(−1)r−t

|A1| · · · |At|
ζweight
t

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
. (6.2.4)

It follows from Theorem 3.4.1, Theorem 3.6.1 and the definition of ζ(f)(s1, . . . , sr) that it

can be extended meromorphically to Cr and has possible simple poles along the hyperplanes

H1,0 and Hi,k, where 2 ≤ i ≤ r and k ≥ 0. We end this section by the following analogue of

Remark 3.6.4.

Theorem 6.2.3. Let 1 ≤ i ≤ r and k ≥ 0. The meromorphic function

ζ(f)(s1, . . . , sr)− ζ(f)(s1, . . . , si)ζ(f)(si+1, . . . , sr) (6.2.5)
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has no pole along the hyperplane Hi,k of Cr defined by equation s1 + · · ·+si = i−k. In other

words, the residue of ζ(f)(s1, . . . , sr) along this hyperplane is the product of ζ(f)(si+1, . . . , sr)

with the residue of ζ(f)(s1, . . . , si) along the hyperplane of Ci defined by the same equation.

Proof. By replacing each ζ(f) by its expression (6.2.1), we see that the meromorphic function

(6.2.5) is the sum over all (A1, . . . , At) in Pr, of a|A1| · · · a|At| times the meromorphic function

ζt

(∑
j∈A1

sj, . . . ,
∑
j∈At

sj

)
−ζp

∑
j∈A1

sj, . . . ,
∑
j∈Ap

sj

 ζt−p

 ∑
j∈Ap+1

sj, . . . ,
∑
j∈At

sj

 , (6.2.6)

if i is the largest element of one of the subsets Ap, and times the meromorphic function

ζt

(∑
j∈A1

sj, . . . ,
∑
j∈At

sj

)
(6.2.7)

otherwise. But the meromorphic functions occurring in (6.2.6) have no singularity along Hi,k

by Remark 3.6.4, and those occurring in (6.2.7) have no singularity along Hi,k by Theo-

rem 3.6.1. This completes the proof.

6.3 Product of weighted multiple zeta functions

We first recall the notion of shuffling and stuffling. Let p and q be two non-negative integers.

We define a stuffling of p and q to be a pair (A,B) of sets such that |A| = p, |B| = q and

A∪B = {1, . . . , r} for some integer r. We then have max(p, q) ≤ r ≤ p+ q. We call this r to

be the length of the stuffling. Such a stuffling is called a shuffling when A and B are disjoint,

i.e. when r = p+ q.

Let (s1, . . . , sp) and (t1, . . . , tq) be two sequences of complex numbers and (A,B) be a

stuffling of p and q, with A ∪ B = {1, . . . , r}. Let σ and τ denote the unique increasing

bijections from A→ {1, . . . , p} and B → {1, . . . , q} respectively. Let us define a sequence of
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complex numbers (z1, . . . , zr) as follows:

zi :=


sσ(i) when i ∈ A \B;

tτ(i) when i ∈ B \ A;

sσ(i) + tτ(i) when i ∈ A ∩B.

We call it the sequence deduced from (s1, . . . , sp) and (t1, . . . , tq) by the stuffling (A,B).

Clearly, if (s1, . . . , sp) belongs to the open set Up and (t1, . . . , tq) to Uq, then (z1, . . . , zr)

belongs to Ur.

It is well known that, for (s1, . . . , sp) ∈ Up and (t1, . . . , tq) ∈ Uq, we have

ζp(s1, . . . , sp) ζq(t1, . . . , tq) =
∑
(A,B)

ζr(z1, . . . , zr), (6.3.1)

where the index of the summation on the right hand side runs over the stufflings of p and q, and

(z1, . . . , zr) denotes the sequence deduced from (s1, . . . , sp) and (t1, . . . , tq) by this stuffling.

Our purpose in this section is to prove that the weighted multiple zeta functions have

similar properties, where stufflings are replaced by shufflings. More precisely:

Theorem 6.3.1. For (s1, . . . , sp) ∈ Up and (t1, . . . , tq) ∈ Uq, we have

ζweight
p (s1, . . . , sp) ζ

weight
q (t1, . . . , tq) =

∑
(A,B)

ζweight
p+q (z1, . . . , zp+q), (6.3.2)

where in the summation on the right hand side, (A,B) runs over the shufflings of p and q,

and (z1, . . . , zp+q) denotes the sequence deduced from (s1, . . . , sp) and (t1, . . . , tq) by this

shuffling.

Proof. By formula (6.1.4), the right hand side of (6.3.2) is equal to

∑
(A,B)

∑
(C1,...,Ct)∈Pp+q

1

|C1|! · · · |Ct|!
ζt

(∑
i∈C1

zi, . . . ,
∑
i∈Ct

zi

)
, (6.3.3)
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where (A,B) runs over the shufflings of p and q, and (z1, . . . , zp+q) denotes the sequence

deduced from (s1, . . . , sp) and (t1, . . . , tq) by this shuffling.

For a given choice of (A,B) and (C1, . . . , Ct), let σ denote the unique increasing bijection

from A→ {1, . . . , p} and τ denote the unique increasing bijection from B → {1, . . . , q}. Let

A′ := {i : 1 ≤ i ≤ t and Ci ∩ A 6= ∅}

and

B′ := {i : 1 ≤ i ≤ t and Ci ∩B 6= ∅}.

Suppose that p′ and q′ denotes the cardinalities of A′ and B′ respectively. Then A′ ∪ B′ =

{1, . . . , t} and (A′, B′) is a stuffling of p′ and q′. Let σ′ denote the unique increasing bijection

from {1, . . . , p′} → A′ and τ ′ denote the unique increasing bijection from {1, . . . , q′} →

B′. Then the sequence (A1, . . . , Ap′), where Ai = σ(A ∩ Cσ′(i)), is an admissible partition

of {1, . . . , p} and (B1, . . . , Bq′), where Bi = τ(B ∩ Cτ ′(i)), is an admissible partition of

{1, . . . , q}. Moreover,
(∑

i∈C1
zi, . . . ,

∑
i∈Ct

zi
)

is the sequence deduced from the sequences(∑
i∈A1

si, . . . ,
∑

i∈Ap′
si

)
and

(∑
i∈B1

ti, . . . ,
∑

i∈Bq′
ti

)
by the stuffling (A′, B′) of p′ and

q′.

Note that on the other hand, when an admissible partition (A1, . . . , Ap′) of {1, . . . , p}, an

admissible partition (B1, . . . , Bq′) of {1, . . . , q} and a stuffling (A′, B′) of p′ and q′ are given,

they fully determine (C1, . . . , Ct), but correspond to

t∏
i=1

|Ci|!
|A ∩ Ci|!|B ∩ Ci|!

=
|C1|! · · · |Ct|!

|A1|! · · · |Ap′|!|B1|! · · · |Bq′|!
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many different choices of the pair (A,B). Hence expression (6.3.3) can be written as

∑
(A1,...,Ap′ )∈Pp

∑
(B1,...,Bq′ )∈Pq

1

|A1|! · · · |Ap′ |!|B1|! · · · |Bq′ |!
∑

(A′,B′)

ζt

(∑
i∈C1

zi, . . . ,
∑
i∈Ct

zi

)

=
∑

(A1,...,Ap′ )∈Pp

∑
(B1,...,Bq′ )∈Pq

ζp′
(∑

i∈A1
si, . . . ,

∑
i∈Ap′

si

)
ζq′
(∑

i∈B1
ti, . . . ,

∑
i∈Bq′

ti

)
|A1|! · · · |Ap′ |!|B1|! · · · |Bq′ |!

= ζweight
p (s1, . . . , sp) ζ

weight
q (t1, . . . , tq).

6.4 Singularities of weighted multiple zeta functions

We have already seen in §6.2 that the weighted multiple zeta function of depth r extends to

a meromorphic function on Cr, which is holomorphic outside the hyperplanes H1,0 and Hi,k,

where 2 ≤ i ≤ r and k ≥ 0, and has at most simple poles along these hyperplanes. Our

goal in this section is to show that, due to some residue cancellations, not all of them are

polar hyperplanes. The precise list of polar hyperplanes has already been mentioned in the

introduction of this chapter.

For our purpose it is convenient to introduce another variant of the multiple zeta functions.

We define

ζ̃r(s1, . . . , sr) :=
∑

n1≥···≥nr≥1

2t−rn−s11 · · ·n−srr , (6.4.1)

where t denotes the number of distinct terms in the sequence (n1, . . . , nr). We can write ζ̃ as

ζ(f) with the notations of §6.2, where f is the formal power series
∑

n≥1 21−nxn = 2x
2−x . Hence

as per our discussion in §6.2, we know that ζ̃r(s1, . . . , sr) can be extended meromorphically

to Cr and has possible simple poles along the hyperplanes H1,0 and Hi,k, where 2 ≤ i ≤ r and

k ≥ 0. The following theorem about the singularities of ζ̃r(s1, . . . , sr) is used to determine the

singularities of the weighted multiple zeta functions.
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For this we need to set up some notations. Let us define the modified Bernoulli numbers

B̃n for n ≥ 0 as follows:

B̃n :=


Bn if n 6= 1,

0 otherwise.

In other words,

B̃n :=


Bn if n is even,

0 otherwise.

The corresponding generating series is

∑
n≥0

B̃n

n!
xn =

x

ex − 1
+
x

2
=

x

2 tanh x
2

.

Let t be an indeterminate and B̃1(t) denote the infinite N × N upper triangular matrix with

coefficients in Q(t), defined in the same way as the matrix B1(t) in formula (3.5.7), except

that we replace the Bernoulli numbers Bn in B1(t) by their modified counterparts B̃n.

With the above notations, we prove:

Theorem 6.4.1. Let r ≥ 1 and k ≥ 0. The residue of the meromorphic function ζ̃r(s1, . . . , sr)

along the hyperplane Hr,k is the (0, k)th entry of the matrix
∏r−1

d=1 B̃1(s1 + · · · + sd − d). In

other words, with the notations of Remark 3.6.5, it is given by the formula

∑
k1,...,kr−1≥0
k1+···+kr−1=k

Fk1,...,kr−1(s1, . . . , sr−1)
B̃k1

k1!
· · ·

B̃kr−1

kr−1!
. (6.4.2)

Moreover, when r ≥ 2, this residue is 0 if and only if k is odd.

Proof. The meromorphic function ζ̃(s1, . . . , sr) is the sum of the meromorphic functions

2t−rζt

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
, (6.4.3)



6.4. SINGULARITIES OF WEIGHTED MULTIPLE ZETA FUNCTIONS 107

indexed over all (A1, . . . , At) ∈ Pr. Note that the equation s1 + · · · + sr = r − k of the

hyperplane Hr,k can be written as

∑
i∈A1

si + · · ·+
∑
i∈At

si = t− (k + t− r).

Therefore by Remark 3.6.5, the residue of the meromorphic function (6.4.3) along this hyper-

plane is

2t−r
∑

`1,...,`t−1≥0
`1+···+`t−1=k+t−r

F`1,...,`t−1

∑
i∈A1

si, . . . ,
∑
i∈At−1

si

 B`1

`1!
· · ·

B`t−1

`t−1!
.

For a given sequence (`1, . . . , `t−1) of non-negative integers with sum k + t− r, by formulas

(3.6.2) and (3.6.3), we have

F`1,...,`t−1

∑
i∈A1

si, . . . ,
∑
i∈At−1

si

 = Fk1,...,kr−1(s1, . . . , sr−1), (6.4.4)

where ki is equal to `j when i is the largest element of the subset Aj for some index j such

that 1 ≤ j ≤ t − 1, and ki is equal to 1 otherwise. We then have k1 + · · · + kr−1 = k. This

observation allows to write the residue of the meromorphic function (6.4.3) along Hr,k as

∑
k1,...,kr−1≥0
ki=1 if i 6∈J

k1+···+kr−1=k

Fk1,...,kr−1(s1, . . . , sr−1)

(
1

2

)r−1−|J |∏
i∈J

Bki

ki!
,

where J denotes the set consisting of the largest elements of the subsets A1, . . . , At−1. The

map (A1, . . . , At)→ J is a bijection from the set Pr of admissible partition of {1, . . . , r} onto
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the set of subsets of {1, . . . , r − 1}. Hence the residue of ζ̃(s1, . . . , sr) along Hr,k is

∑
J⊂{1,...,r−1}

∑
k1,...,kr−1≥0
ki=1 if i 6∈J

k1+···+kr−1=k

Fk1,...,kr−1(s1, . . . , sr−1)

(
1

2

)r−1−|J |∏
i∈J

Bki

ki!

=
∑

k1,...,kr−1≥0
k1+···+kr−1=k

Fk1,...,kr−1(s1, . . . , sr−1)
∑

J⊂{i∈{1,...,r−1}:ki=1}

(
1

2

)r−1−|J |∏
i∈J

Bki

ki!

=
∑

k1,...,kr−1≥0
k1+···+kr−1=k

Fk1,...,kr−1(s1, . . . , sr−1)
B̃k1

k1!
· · ·

B̃kr−1

kr−1!
.

Here the last equality follows from the fact that B̃n

n!
is equal to 1

2
+B1 when n = 1 and Bn

n!
when

n 6= 1. This completes the proof of formula (6.4.2). Now since B̃n = 0 for odd n, B̃n 6= 0 for

even n, and the rational functions Fk1,...,kr−1 in the (r − 1) variables s1, . . . , sr−1 are linearly

independent over Q by Remark 3.6.5, the last assertion of the lemma follows.

We are now ready to determine the singularities of the weighted multiple zeta functions.

Theorem 6.4.2. The weighted multiple zeta function of depth r is holomorphic outside the

union of the hyperplanes H1,0 and Hi,k, where 2 ≤ i ≤ r, k ≥ 0 and k is even. It has simple

poles along each of these hyperplanes.

Proof. Theorem 6.2.3 tells us that the residue of ζweight
r (s1, . . . , sr) along the hyperplane H1,0

is ζweight
r−1 (s2, . . . , sr) and its residue along the hyperplane Hi,k, where 2 ≤ i ≤ r and k ≥ 0, is

the product of ζweight
r−i (si+1, . . . , sr) with the residue of ζweight

i (s1, . . . , si) along the hyperplane

of Ci defined by the equation s1 + · · ·+ si = i− k.

Therefore to prove Theorem 6.4.2, we are reduced to prove that, when r ≥ 2 and k ≥ 0,

the residue of ζweight
r (s1, . . . , sr) along the hyperplane Hr,k is different from 0 if and only if k

is even.

Recall that the weighted multiple zeta function ζweight is equal to ζ(h), where h is the formal

power series
∑

n≥1
xn

n!
= ex − 1. Note that h = f ◦ g, where f is the formal power series
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∑
n≥1 21−nxn = 2x

2−x and g =
∑

n≥1 bnx
n is the formal power series expansion of 2 tanh t

2
.

Hence we have ζweight = ζ̃(g) by Theorem 6.2.1. In other words, we have for (s1, . . . , sr) in

Ur,

ζweight
r (s1, . . . , sr) =

∑
(A1,...,At)∈Pr

b|A1| · · · b|At|ζ̃t

(∑
i∈A1

si, . . . ,
∑
i∈At

si

)
. (6.4.5)

Here, like before, Pr denotes the set of all admissible partitions of {1, . . . , r}.

We now assume r ≥ 2 and k ≥ 0 and investigate the residue of the weighted multiple

zeta function ζweight(s1, . . . , sr) along the hyperplane Hr,k. By formula (6.4.5), this residue is

the sum, over all (A1, . . . , At) ∈ Pr, of b|A1| · · · b|At| times the residue along this hyperplane

of ζ̃t
(∑

i∈A1
si, . . . ,

∑
i∈At

si
)
. Here the numbers bn are the coefficients of the generating

series 2 tanh t
2

=
∑

n≥1 bnx
n. Note that bn = 0 for even n. Therefore, we only have to sum

over all (A1, . . . , At) ∈ Pr such that each subset Aj has odd number of elements. For such

a partition, the residue of ζ̃
(∑

i∈A1
si, . . . ,

∑
i∈At

si
)

along Hr,k vanishes when k is odd, by

Theorem 6.4.1. Hence the residue of ζweight(s1, . . . , sr) along Hr,k is zero when k is odd.

Next assume k to be even. Then Theorem 6.4.1 tells us that the residue of ζ̃(s1, . . . , sr)

along Hr,k is a non-zero linear combination of the rational functions Fk1,...,kr−1(s1, . . . , sr−1),

where all the ki’s are even. On the other hand, for any (A1, . . . , At) ∈ Pr where at least one

of the sets Aj is not a singleton, Theorem 6.4.1 and formula (6.4.4) show that the residue

of ζ̃
(∑

i∈A1
si, . . . ,

∑
i∈At

si
)

along Hr,k is a linear combination of the rational functions

Fk1,...,kr−1(s1, . . . , sr−1), where at least one of the ki’s is equal to 1. By the linear indepen-

dence of the rational functions Fk1,...,kr−1(s1, . . . , sr−1) (see Remark 3.6.5), we deduce that

the residue of ζweight
r (s1, . . . , sr) along Hr,k is not equal to 0. This completes the proof of

Theorem 6.4.2.
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