
1

Aspects of Holographic Induced Gravities

By
Rohan Rahgava Poojary

PHYS10200904001

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfilment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

26th October, 2015



2

Homi Bhabha National Institute
Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we certify that we have read the dissertation pre-
pared by Rohan Raghava Poojary entitled "Aspects of Holographic Induced Gravities"
and recommend that it maybe accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy.

Date:

Chair - Balachandran Sathiapalan

Date:

Guide/Convener - Nemani Venkata Suryanarayana

Date:

Member 1 - Sujay K. Ashok

Date:

Member 2 - Syed R. Hassan

Date:

External Examiner

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it may be accepted as fulfilling the dissertation requirement.

Date:

Place: Guide



3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfilment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgement of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgement the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

Rohan Raghava Poojary



4

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me.

The work is original and has not been submitted earlier as a whole or in part for a degree

/ diploma at this or any other Institution / University.

Rohan Raghava Poojary



5

Dedicated To,

Mom.



6

ACKNOWLEDGEMENTS

I owe a great deal of debt and gratitude to Nemani Suryanarayana who guided me through

the course of my Phd. in IMSc. I would also like to thank him for his continued moti-

vations despite my shortcomings, and for having shared his unique insights into physics

time and again; which have always been good food for thought. I have also benefited

substantially from discussions with Sujay Ashok, who also motivated me tremendously

during my stay in IMSc; to which I find myself forever indebted. I would also like to

acknowledge the collaboration with Steven Avery on my first paper and for sharing his

useful insights in physics and Mathematica. I would also like to thank my doctoral com-

mittee members for having given useful suggestions throughout the course of my PhD.

I would further like to thank Alok Laddha, Sudipta Sarkar, Partha Mukhopadhyay, Prof.

Balachandran Sathiapalan, Prof. Kalyana Rama and Prof. Suresh Govindarajan for useful

discussions; primarily during the weekly string theory journal clubs, which have always

furthered my understanding and made me aware of current topics of interest in physics.

I am obliged to my colleagues I. Karthik, Sudipto, Swastik, Renjan, Pinaki, Nirmalya,

Madhu, Debangshu, Attanu and Arnab for useful discussions on related topics of interest,

in a warm and friendly atmosphere.

My stay in IMSc has been made memorable by the warmth and care of my dear friends

whom I met here. I would like to thank Alok, Soumyajit, Ramu, Belli, Madhushree,

Neha, Prem, Rajeev and Somdeb who have been an integral part of my stay in IMSc. I

would also like to thank Dude Karteek, Yadu, Gaurav and Tiger; and also Vinu, K.K.,

Ramanatha, Nitin, Meesum, Anup, Sreejith, Mubeena, Narayanan, Swaroop, Baskar,

Pranabendu, Raja, Joydeep, Vasan, Renjan, Madhu, Soumyadeep, Prathyush, Prateek,

Prashanth and Tanmoy who made my stay pleasant and memorable. I would be remiss if

I didn’t mention Abhra, Archana, Arya, Tanmay, Dibya, Sriluksmy, Subhadeep, Rajesh,

Kamil & family, Bahubali, Sudhir, Tanumoy, Panchu, Prateep, Sarbeswar, Drhiti, Samrat,

Arghya, Chandan, Nikhil, Suratno and Debangshu for making me feel at ease in Chen-



7

nai. I would also like to thank Jaya, Saumia and Arama for the wonderful memories. I

find myself specially obliged to the friendship of Prof. S. R. Hassan for making me truly

appreciate the science of simple cooking and for providing me with endless dāwats at his
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Synopsis

0.1 Overview

The AdS/CFT correspondence has emerged as one of the most powerful tools in theoreti-

cal physics in the past few years. In its simplest and most concrete form it is a statement

of equivalence (a duality) between a d-dimensional conformal field theory (CFTd) and a

string theory in a background with a (d + 1)-dimensional Anti-de Sitter (AdS d+1) factor.

The set of well studied examples of this correspondence include

• N = 4, d = 4 S U(N) Yang-Mills theory↔ type IIB string theory on AdS 5 × S 5,

• N = (4, 4), d = 2 D1-D5 CFT↔ type IIB string theory on AdS 3 × S 3 × T 4,

and various generalizations there of.

The symmetries of the vacuum of the CFTd get mapped to the isometries of the AdS d+1

space, while the symmetries of the CFT are isomorphic to the appropriately defined

asymptotic symmetries of the string/gravity theory in such a background. A famous

illustration of this aspect of the duality is the seminal work of Brown and Henneaux

[1] that was a precursor to the AdS/CFT conjecture. This involved exhibiting that the

asymptotic symmetry algebra of a (d + 1)-dimensional gravity with negative cosmologi-

cal constant (AdS d+1 gravity) is isomorphic to the algebra of conformal transformations

of the d-dimensional CFT. Brown and Henneaux were concerned with finding asymptotic

symmetries which included in them the set of global conformal transformations of the

13
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CFTd while demanding that the metric at the boundary of AdS d+1 is held fixed (Dirichlet

condition). Their boundary conditions provided a definition of the so called asymptoti-

cally locally AdS (AlAdS ) spaces. In more recent times the Brown-Henneaux analysis

has been generalised to AdS 3 supergravities [2] and AdS 3 higher spin gauge theories as

well.

In particular, when d = 2 the asymptotic symmetry algebra of AdS 3 gravity with Brown-

Henneaux boundary conditions is the sum of two commuting copies of the Virasoro alge-

bra with central charges of both the Virasoros given by c = 3l
2G , where G is the Newton’s

constant and l is the radius of the AdS 3 space in AdS 3 gravity. The CFT2 in this case

is thus expected to be a standard 2d conformal field theory with the left and right mov-

ing sectors treated symmetrically. Similarly in the AdS 3 higher spin context (containing

gauge fields with spins upto N) the asymptotic symmetry algebra is a sum of two com-

muting copies of WN algebra with Brown-Henneaux central charges, again, with perfect

parity between their left and right sectors.

However, there have been 2d CFTs which do not maintain such parity between their left

and right sectors. Perhaps the simplest way to break this parity is to consider cases where

the central charges appearing in the left and right Virasoro algebras are different. More

dramatic breaking of the left-right parity would be when the symmetry algebra either on

the left sector or the right sector is not a Virasoro/WN algebra. In fact there have been

such 2d CFTs in the literature and they are generically termed as chiral CFTs. Thus a

natural question is how to generalise the Brown-Henneaux type computation to allow for

asymptotic symmetry algebras of chiral CFTs.

This thesis concerns itself with studying different boundary conditions imposed on 3d

AdS spaces and thus uncovering new asymptotic symmetry algebras. We do this in differ-

ent settings, first involving pure AdS 3 gravity [3], then the 3d higher-spin gauge theories

[4] and finally some AdS 3 supergravities. It turns out that we need to consider boundary

conditions that are not the Dirichlet type, i.e. the fields and the metric at the AdS boundary
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can fluctuate. For the generalization to higher spin and supergravity it becomes necessary

to work in the first order formalism of AdS 3 gravity/3d higher-spin theories. Our investi-

gations fall into two different cases depending on whether or not the asymptotic symmetry

algebra contains fully the global part of the 2d conformal/higher-spin algebra.

There have appeared some works in the literature that provide examples of generaliza-

tions of Brown-Henneaux that belong to both these categories. In [5] Troessaert provided

boundary conditions that allow the conformal factor of the boundary metric to fluctuate

with the boundary metric having zero scalar curvature. In this case the asymptotic algebra

contains fully 2d conformal symmetry. In [6] Compère, Song and Strominger provided

boundary conditions with a symmetry algebra being one copy of Virasoro and one copy

of a U(1) Kaĉ-Moody algebra. Our investigations presented in this thesis will provide

results that are complementary to the results of [5], [6] and various generalizations.

The thesis contains the following results summarized in the next sections:

• Chiral boundary condition: Generalizations of Brown-Henneaux boundary con-

ditions for AdS 3 gravity in the second order (metric) formulation, with asymptotic

symmetry algebra equal to one copy of Virasoro algebra with Brown-Henneaux

central charge and one copy of sl(2,R) current algebra with level k = c/6 [3].

• Liouville boundary condition: Generalization of [5] where the conformal factor

of the boundary metric satisfies the Liouville equation both in second order and first

order formulations of AdS 3 gravity.

• Duals to chiral induced W gravities: Generalizations of the boundary conditions

of [7] pertaining to 3d spin-3 gravity with symmetry algebra equal to one copy of W3

algebra with Brown-Henneaux central charge and one copy of sl(3,R) algebra with

level k = c/6. Generalization of [6] to the 3d spin-3 gravity where the symmetry

algebra is a copy of W3 and two u(1) Kaĉ-Moody algebras [4].

• Chiral boundary condition for supergravities: We generalize these boundary
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conditions to minimal AdS 3 supergravities.

In what follows we give a brief summary of these results and juxtapose them with previous

works studying 2d CFTs and their AdS 3 duals.

0.2 Boundary condition analysis of AlAdS 3 in second or-

der formalism

The Brown-Henneaux(BH) boundary conditions on AlAdS 3 yield 2 copies of Virasoro as

their asymptotic symmetry algebra. These boundary conditions can be summarized quite

conveniently in the Fefferman-Graham gauge wherein AlAdS space metrics admit a series

expansion in a coordinate r:

ds2 =
l2

r2 dr2 +
r2

l2 (g(0)
ab + O( l

r )g(...)
ab )dxadxb. (1)

Here (ab) are the co-ordinates in the co-dimension one surface orthogonal to the radial

coordinate r. The BH boundary conditions are the ones which hold g(0)
ab fixed to ηab. The

central term in the Virasoro algebra c = 3l/2G. These boundary conditions were crucial

in understanding the relation between AlAdS 3 spaces and 2d CFT on the boundary, espe-

cially in the calculation of BTZ semiclassical black-hole entropy in the large charge limit

from the asymptotic growth of states of the 2d CFT.

CSS boundary condition

Compère et al [6] had given an alternative set of boundary conditions which allow holo-

morphic fluctuations of the g(0)
++ metric component. These set of boundary conditions

reveal a semi-direct sum of Virasoro and an affine u(1) Kaĉ-Moody algebra. The level of

the u(1) affine algebra is related to the central charge of the Virasoro c = 6k.
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Chiral boundary condition

In [3], we generalized the CSS[6] boundary conditions to allow for a priori generic

fluctuations of g(0)
++, which when constrained by Einstein’s eom restrict it to be of the

form,

g(0)
++ = F = f (x+) + g(x+)eix− + g̃(x+)e−ix− . (2)

For the theory in the bulk to be consistent with the variational principle, one is required

to add a boundary term of the form:

S bndy = −1
8πG

∫
∂M

d2x
√
−γ 1

2Tabγ
ab,

where T µν = −1
2r4 l2δ

µ
+δ

ν
−. (3)

This term in turn fixes the T−− component of the Brown-York stress tensor for the bulk ge-

ometries. Such boundary term basically minimizes the on-shell bulk action only for those

configurations which are allowed by the proposed boundary conditions. The Gibbons-

Hawking term alone is enough to define the Brown-Henneaux (Dirichlet) type boundary

condition. It is apparent that allowing any boundary metric component to fluctuate re-

quires holding requisite component of the Brown-York stress tensor fixed.

δS total =

∫
∂M

d2x
√
−γ 1

2T µνδγµν. (4)

A case where the boundary metric is completely free was considered in [8]. We would

here be describing cases where only certain components of the boundary metric are al-

lowed to fluctuate, thus corresponding to mixed (Robin) boundary conditions. For the

CSS case, the boundary term is chosen to allow for fluctuations of the type δg(0)
++ = F(x+).

The above boundary term similarly is chosen to allow for the fluctuations of the boundary

metric component g(0)
++ in accordance with (2).
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The asymptotic symmetry algebra we obtained is a semi-direct product of a Virasoro

with an affine Kaĉ-Moody sl(2,R) algebra with level k = c
6 = l

4G . Similar analysis is done

in Poincaré AdS 3[9] where the boundary is spatially non-compact. The Ward identities

thus derived from the bulk eom are seen to correspond to the chiral induced gravity theory

first written down by Polyakov[10].

Troessaert’s boundary condition

On the heels of [6] was a paper by Troessaert[5] which proposed boundary conditions

which freed up the conformal factor of the boundary metric. This conformal factor was

written as a product of holomorphic and anti-holomorphic components, thus restricting

the boundary metric to be conformally flat. The asymptotic symmetry algebra that re-

sulted from such considerations yielded left and right moving affine u(1)s along with two

copies of Virasoro with the central charge c = 3l
2G = 6k.
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Liouville boundary condition

The Liouville theory eom is ∂+∂− log F = 2χF. One can ask what possibly could be

a required set of boundary conditions on AlAdS 3 such that the conformal factor of the

boundary metric is this Liouville field? To this end we find that one needs to add an

appropriate boundary term of the form,

S bndy =
5χl
4πG

∫
∂M

d2x
√
−γ. (5)

apart from allowing the boundary metric to have an a priori arbitrary conformal factor

F(x+, x−). Upon imposing the variational principle on shell, F would obey the eom of the

Liouville theory.

One finds that the asymptotic symmetry algebra in this case would be two copies of

Virasoro corresponding to the Brown-Henneaux deformations, plus two copies of Vira-

soro corresponding to the holomorphic and anti-holomorphic components of the Liouville

stress-tensor. One also finds that the Liouville central charge is cLiouville = −cBH = − 3l
2G .

Therefore the total central charge of such a theory is zero.

0.3 Analysis of AlAdS 3 as Chern-Simons theory

The second order formalism described previously is not amenable to analysis if one wants

to generalize such mixed boundary conditions to higher-spins(hs) and supergravities in

AdS 3. The second order action for hs in AdS 3 is not completely known and the compu-

tation of the asymptotic algebra for the boundary conditions of interest is difficult in the

case of supergravity. 3d gravity with negative cosmological constant can be expressed as

a difference of two Chern-Simons theories with gauge group S L(2,R)[11]. The left and

right gauge fields are then given in terms of A = ω + e
l and Ã = ω − e

l , with torsionless
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condition and Einstein’s equations being imposed by flatness of gauge connections for the

2 gauge fields.

S CS [A] = k
4π

∫
dA ∧ A + 2

3 A ∧ A ∧ A,

S AdS 3 = S CS [A] − S CS [Ã]. (6)

The analysis of the previous sub-section can then be repeated in this first order formalism

by imposing different gauge field fall-off conditions.

AdS 3 gravity described thus was used to study the asymptotic dynamics by analysing

WZNW in 2d [12, 13]. It was found that the suitable constraints on the WZNW con-

served currents corresponded to the Brown-Henneaux boundary conditions. The CSS

boundary conditions were also translated into the WZNW theory by the same authors.

This formalism is particularly suitable to analyse supergravity with negative cosmologi-

cal constant in 3d [2], where the asymptotic symmetry algebra now consists of two copies

of super-Virasoro algebra i.e. the extended super conformal algebra with quadratic non-

linearities in the current.

The first order formalism is the only way one can analyze the higher-spins in AdS 3. Here

since sl(3,R) ⊂ hs[λ], one can analyze CS-CS theory with S L(3,R) gauge group as a

consistent truncation of the full hs[λ] theory. The asymptotic symmetry algebra for such

theory was studied in [7] and was found to be 2-copies of W3 algebra, which are the hs

analogues of Virasoro.

Chiral boundary conditions

The gauge fields corresponding to the metric configurations restricted by chiral bound-
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ary conditions are [4]:

A = b−1∂rbdr + b−1[(L1 + a(−)
+ L−1 + a(0)

+ L0)dx+(a(−)
− L−1)dx−]b,

Ã = b∂rb−1dr + b[(ã(+)
+ L+ + ã(0)

+ L0 + ã(−)
+ L−)dx+ + (−L− + ã(+)

− L+)dx−]b−1,

where b = elog r
l L0 . (7)

The A gauge field obeys the Brown-Henneaux type boundary condition but Ã has mode

ã(−)
+ which survives at boundary . The metric obtained from A and Ã does relate g(0)

++ = ã(−)
+ .

The Ward identity is given by the remaining eom for Ã:

(∂+ + 2∂−ã
(−)
+ + ã(−)

+ ∂−)ã
(+)
− = 1

2∂
3
−ã

(−)
+ . (8)

Suitable boundary terms have to be added to make the theory variationally well defined:

S bdy = −k
4π

∫
dx2tr(L0[a+, a−]) − k

4π

∫
dx2tr(L0[ã+, ã−] − 2κ̃0L+ã+),

=⇒ δS total = k
2π

∫
dx2(ã(+)

− − κ̃0)δã(−)
+ . (9)

For ã(+)
− = κ̃0 = −1

4 one gets the desired asymptotic symmetries as in the second order

formalism.

Liouville boundary condition

The Liouville theory obtained in the previous section, can also be cast in a first order

form. The gauge fields corresponding to configurations in [5] are:

a = (a(+)
+ (x+)L1 −

κ(x+)
a(+)

+

L−1)dx+, A = b−1ab + b−1db,

ã = (ã(−)
− (x−)L−1 −

κ̃(x−)
ã(−)
−

L1)dx−, Ã = bãb−1 + bdb−1,

b = elog r
l L0 . (10)
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If one needs the generic Liouville type of eom for the conformal factor F = −a(+)
+ ã(−)

−

of the boundary metric, then one would be forced to choose (ã)a which is not (anti-

)holomorphic.

a = (a(+)
+ L1 − ∂+(log a(−)

− )L0 −
κ(x+)
a(+)

+

L−1)dx+ + (∂−(log a(+)
+ )L0 − a(−)

− L−1)dx−,

ã = (ã(−)
− L−1 + ∂−(log ã(+)

+ )L0 −
κ̃(x−)
ã(−)
−

L1)dx− + (−∂+(log ã(−)
− )L0 − ã(+)

+ L1)dx+.

(11)

Duals to chiral induced W gravities

Massless higher-spin excitations can also be studied in a similar light in AdS 3 where

the bulk action is written as CS-CS with the gauge group being S L(3,R)1. Here we pro-

pose a new set of boundary conditions which allow for either an su(1, 2) or sl(3,R) or a

u(1)×u(1) affine Kaĉ-Moody algebra along with a W3 as an asymptotic symmetry algebra

[4].

The gauge fields are2

a = (L1 − κL−1 − ωW−2)dx+,

ã = (−L−1 + κ̃L1 + ω̃W−2)dx− + (
1∑

a=−1

f (a)La +

2∑
i=−2

g(i)Wi)dx+. (12)

The gauge algebra sl(3,R) is in the principle embedding with the Las denoting the sl(2,R).

The eom on the gauge fields yield a to be of the holomorphic form, while the components

of ã can be solved in terms of each other yielding chiral W3 induced gravity Ward identi-

ties. On the left gauge field we impose the usual constraints prevalent in literature [7, 14]

which would yield a copy of W3 algebra. The boundary term needed for the right gauge

1We restrict ourselves to the case of spins=2,3 although these can be generalized in a similar fashion to
include arbitrary higher spins.

2The small case a and ã have their radial dependence gauged away as in (10).
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field is:

S bndy = k
4π

∫
d2x tr(−L0[ã+, ã−] + 2κ̃0L1ã+ + 1

2αW0{ã+, ã−}) + 1
3 ã+ã− + 2ω̃0W2ã+),

=⇒ δS total = − k
2π

∫
d2x [(κ̃ − κ̃0)δ f (−1) + 4α2(ω̃ − ω̃0)δg(−2)] (13)

We impose κ̃ = κ̃0 and ω̃ = ω̃0 thus allowing for fluctuations of f (−1) and g(−2) which are

the most leading order components in the radial co-ordinate r. Along with the left copy

of W3 algebra we get different affine Kaĉ-Moody algebras depending on the choice of

parameters κ̃0 and ω̃0:

• κ̃0 = 0 , ω̃0 = 0:

This choice of the parameters yields an affine Kaĉ-Moody of sl(3,R) at level k = c
6

and describes a field theory on a boundary with a non-compact spatial direction.

• κ̃0 = −1
4 , ω̃0 = 0:

This choice of the parameters yields an affine Kaĉ-Moody of su(1, 2) at level k =

c
6 with the boundary having a spatial circle. Both sl(3,R) and su(1, 2) are non-

compact real forms of sl(3,C)3.

• κ̃0 , 0 , ω̃0 , 0:

In this case one can make a choice of currents such that one gets a u(1)× u(1) affine

Kaĉ-Moody as an asymptotic symmetry algebra. This generalizes results of [6] to

the case of hs.

The asymptotic symmetries and the Ward identities make it apparent that a suitable candi-

date for the duals of such bulk configurations are chiral induced W3 gravities. W-gravity

is the higher-spin analogue of gravity in 2d based on the underlying W-algebra[15, 16].

Here, W-algebra plays a similar role as that of Virasoro algebra in pure 2d gravity4. We

3This ambiguity doesn’t arise in pure gravity since the non-compact real forms of sl(2,C) are sl(2,R) ≡
su(1, 1)

4It is worthwhile to point out that although 2d gravity admits a higher-spin extension with an underlying
W-algebra, this is not a Lie algebra in the usual sense; the commutator of 2 generators generally consists
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will concern ourselves to W3 gravity in this text.

The induced (effective) action for pure 2d gravity in chiral gauge was shown to be de-

rived from a constrained sl(2,R) WZNW system[17, 18, 19, 20]. It was then derived to

all orders in c. This approach made the hidden sl(2,R) symmetry in the induced gravity

manifest. An identical approach was used to find the induced W3 gravity action to all

orders in the chiral gauge [21]. It was obtained by constraining the sl(3,R) WZNW field

theory which can be further regarded as a reduced sl(3,R) Chern-Simons theory in 3d.

0.4 Chiral boundary conditions for supergravity

It would be useful to see whether the boundary conditions in (0.2) can be extended to in-

clude minimal supergravity in AlAdS 3 spaces. This would ba a first step in realising such

boundary conditions in the context of string theory. Analogues work was done for the

case of Brown-Henneaux boundary conditions in [22, 23]. Extended AlAdS 3 supergrav-

ity were considered in [2] and their corresponding duals were proposed along the lines of

[12]. Since the number of fields increases in supergravity, it would also be worthwhile to

find the most general minimal supergravity extension which admits a bosonic truncation

down to the chiral case.

N = (1, 0) and higher supergravity in AdS3

The superalgebra for supergravity in locally AdS 3 with N = (1, 0) is osp(1|2) × sl(2,R).

Here we show that there exists a unique extension of the chiral boundary condition to in-

clude fluctuations of the Rarita-Schwinger field on the boundary. The analysis in second

order formalism is quite cumbersome as mentioned previously and we therefore analyse

of composites of generators. The restriction to W3 gravity on the other hand has only linear and quadratic
terms.
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it in the first order formalism. A large part of the analysis done in section (0.3) in the

first order formalism can be repeated, including the boundary terms to be added, since the

only difference here would be the change in the gauge algebra from sl(2,R) to osp(1|2).

We show here that the asymptotic symmetry algebra consists of a Virasoro and an affine

osp(1|2) Kaĉ-Moody algebra with level k = c
6 . The above generalizations of chiral bound-

ary condition can be easily extended to the N = (1, 1) and more generally to the N = (p, q)

case in the first order formalism. When Dirichlet boundary conditions were imposed on

these theories [22, 23], two copies of the super-Virasoro were found as the asymptotic

symmetry algebra. It turns out that for the bosonic sector to be containing configurations

corresponding to chiral boundary conditions of (0.2), it is enough to change one of the

gauge fields (Ã for ex.) to obey conditions similar to (0.3), while imposing Dirichlet (BH

generalizations) boundary condition on the other (A). Then, the asymptotic symmetry

algebra of A turns out to be the super extension of Virasoro while that obtained from Ã

gives rise to an affine Kaĉ-Moody algebra of the relevant super algebra under consid-

eration. These boundary conditions on N = (1, 0) supergravity must correspond to the

minimal supersymmetric extension of Polyakov’s induced gravity in 2d analysed by [24].

The case for 2d chiral induced N = (1, 1) and generic N = (p, q) supergravity was ad-

dressed in [25].

0.5 Conclusion

The above analysis shows that relaxing boundary conditions on AlAdS 3 in a systematic

way does enrichen the AdS /CFT holography in relating it to different possible CFTs. It

is known in AdS d for d > 3, the Dirichlet(BH) boundary conditions only yield the global

conformal transformations of the d − 1 boundary. Infinite dimensional symmetries are

know to exist in 3d and 4d asymptotically flat Minkowski spaces, known as the BMS
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group. The above analysis can be used as an indication that relaxing boundary conditions

in these cases might yield new asymptotic symmetries and corresponding dual CFTs on

the AdS boundary. This in turn may shed light on certain hidden infinite dimensional

symmetries of these CFTs − previously known or otherwise, of the kind envisaged by

Bershadsy and Ooguri [20, 26]. In a similar spirit it would be interesting to see how these

considerations are realized in the context of string theory on AdS sapces, where infinite

dimensional symmetries - like the Yangian, are know to occur in the CFTs.

The thesis would be organized as follows:

1. The first chapter would comprise of a brief review of 2d induced gravity theories.

2. The second chapter would summarize results in the second order formulation.

3. The third chapter would analyze the implications of different boundary conditions

in the first order formalism and would include results in hs and supergravity.

4. The fourth chapter would discuss possible implications of the results stated and

open problems.



Chapter 1

Introduction

The AdS /CFT correspondence has emerged as one of the most powerful tools from string

theory in the past one and a half decades. In its strongest form, it proposes a duality

between string theory (supergravity) on a product of (d + 1) dimensional Anti-de Sitter

space times a compact manifold (AdS d+1 × Σcompact) and the large N limit of certain CFTd

living on its boundary. The well studied examples of this duality include

• N = 4, d = 4 S U(N) Yang-Mills theory↔ type IIB string theory on AdS 5 × S 5,

• N = 6, d = 3 U(N)×U(N) ABJM theory↔ type IIA string theory on AdS 4×CP3,

• N = (4, 4), d = 2 D1-D5 CFT↔ type IIB string theory on AdS 3 × S 3 × T 4,

and other various generalizations.

This duality maps the symmetries of the two theories to each other. The symmetries

vacuum of the CFTd gets mapped to the symmetries of the maximally symmetric global

AdS d+1 space, whereas, the global symmetries of the CFTd are mapped to the appropri-

ately defined asymptotic symmetries of the theory in Asdd+1 × Σ space. Much of the

richness of this duality stems from some interesting properties of the AdS space itself.

The first statement can be understood from the fact that the Killing symmetries of AdS d+1

- SO(2, d), are exactly the conformal symmetries of the boundary - R × S d−1 where the

27
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CFT lives.

According to the AdS /CFT correspondence, there exists an operator OΦ on boundary

CFT for every field Φ in the bulk supergravity. The boundary value Φ(0), of the bulk field,

Φ can be identified as a source which couples to the operator OΦ. The bulk partition func-

tion is then a functional of the boundary values {Φ(0)} of the bulk fields {Φ}. Under this

duality, the bulk supergravity partition function is equal to the generating function of the

correlation functions in the conformal field theory at spatial infinity ∂AdS [27].

Zsugra[{Φ[0]}] ' 〈exp

−∫
∂AdS

∑
{Φ}

Φ(0)OΦ

〉CFT = ZCFT[{Φ(0)}] (1.1)

When the bulk theory is weakly coupled, the lhs in the above equation can be approxi-

mated by the leading contribution from the on-shell bulk configurations {Φ}cl, which solve

the classical equations of motion with the boundary values being {Φ(0)}, yielding

− S sugra[{Φ}cl]
∣∣∣
{Φ(0)}
' WCFT[{Φ(0)}] = − log ZCFT[{Φ(0)}]. (1.2)

The conformal dimension of the operators {OΦ} in the CFT are given in terms of the

masses and spins of the fields {Φ} in the supergravity in AdS 1. Boundary conditions

imposed on the bulk gravity theory play an important role as the duality requires one to

specify boundary conditions at the spatial infinity of the AdS space, which in particular

fixes the CFT to which its is dual to.

1.0.1 Brown-Henneaux analysis

A famous illustration of the relation between the boundary conditions on AdS d+1 space

and global symmetries of the CFTd was carried out in d = 3 by Brown and Henneaux [1].

Here although the Killing isometeries of AdS 3 form an SO(2,2), the conformal isome-
1We use the phrases (super)gravity with negative cosmological constant and (super)gravity in AdS space

interchangeably.
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tries of the boundary metric ηab are given by two copies of the infinite dimensional Witt

algebra.

ds2 = ηabdxadxb = −dx+dx− = −dτ2 + dφ2,

[Lm, Ln] = (m − n)Lm+n [L̄m, L̄n] = (m − n)L̄m+n,

where, Ln = einx+

∂+ L̄n = einx−∂−, (1.3)

where x± = τ ± φ. They were interested in finding the space of solutions to AdS 3 gravity

which would include the maximally symmetric global AdS 3

ds2 =
`2

r2 dr2 + r2
[
−dx+dx− − `2

4r2 (dx+2 + dx−2) − `4

32r4 dx+dx−
]
, (1.4)

of AdS radius ` and reproduce the above algebra from the bulk as an asymptotic symmetry

algebra. To this end they demanded that all solutions to Einstein’s equation with negative

cosmological constant in the bulk have the same induced metric at spatial infinity. This

amounted to imposing a Dirichlet boundary condition on the bulk geometries. The on-

shell variation of the bulk Einstein-Hilbert action reads:

S = −
1

16πG

∫
M

d3x
√
−g

(
R +

2
`2

)
−

1
8πG

∫
∂M

d2x
√
−γΘ +

1
8πG

S ct(γµν),

δS =

∫
∂M

d2x
√
−γT abδγab, (1.5)

where T ab is the Brown-York stress tensor defined on the co-dimension one time-like

surface orthogonal to the radial direction r and γab is the induced metric on the bound-

ary. Here, S ct contains counter terms that make the on-shell action finite and are deter-

mined through a procedure of holographic renormalization first outlined in [28]. Impos-

ing Dirichlet boundary condition implied δγab = 0 on the space of allowed solutions. The
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boundary fall-off conditions thus obtained are:

grr =
`2

r2 + O(
1
r4 )

gra ≈ O(
1
r3 )

gab = r2ηab + O(r0), (1.6)

since termed as the Brown-Henneaux boundary conditions2. The space of diffeomor-

phisms which respects these fall-off conditions are generated by:

ξr = r R(τ, φ) +
`2

r
R̄(τ, φ) + O(

1
r3 ),

ξτ = T (τ, φ) −
`2

2r2∂τR(τ, φ) + O(
1
r4 ),

ξφ = Φ(τ, φ) +
`2

2r2∂φR(τ, φ) + O(
1
r4 ), (1.7)

where R = ∂tT = ∂φΦ, ∂tΦ = ∂φT . These are termed as asymptotic Killing vectors since

they leave the boundary metric unchanged. These of course are unique only upto those

vector fields which are sub-leading in r i.e. begin at O(1/r). The commutator defined via

Lie derivative action of these vector fields obeys the Witt algebra. Brown and Henneaux

computed the central extension to this algebra by computing the change in the asymptotic

charge under such diffeomorphisms and uncovered two copies of Virasoro algebra:

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[L̄m, L̄n] = (m − n)L̄m+n +
c

12
m(m2 − 1)δm+n,0, (1.8)

with c = 3`
2G . Here ` is the AdS length and G is the three dimensional Newton’s constant.

Conserved currents of a two dimensional CFT are generally expected to obey the above

algebra where the central extension c is the central charge of the CFT. This was used

to derive the Bekenstein-Hawking entropy for the BTZ black hole by using the Cardy

2Here we denote the indices corresponding to the boundary directions by lower case Roman alphabets
a, b. The boundary metric γab is taken to be the flat space metric ηab
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formula for the asymptotic growth of states in a CFT in the large central charge limit.

Which in turn implies that the size of AdS 3 is much larger than the three dimensional

Newton’s constant; ` >> G.

1.0.2 Generalizing the Brown-Henneaux analysis

The Brown-Henneaux boundary conditions have since been adapted to different settings

in the context of AdS /CFT. Most notable works being the ones studying supergravity with

negative cosmological constant in three dimensions [22, 23, 2], and more recently in the

study of higher-spin gauge fields in AdS 3, which are conjectured to be duals to the coset

models proposed by Gaberdiel and Gopakuamar [29]. In these cases, generalizations of

the Virasoro have been obtained as the asymptotic symmetry algebra in d=3 dimensions.

The above works rely heavily on the fact that three dimensional AdS gravity can be cast

as a difference of two Chern-Simons theories at level k = `
4G ,

S AdS 3 = S CS [A]
∣∣∣
k
− S CS [Ã]

∣∣∣
k
,

S CS [A]
∣∣∣
k

=
k

4π

∫
tr(A ∧ A +

2
3

A ∧ A ∧ A), (1.9)

defined over a manifold Σdisk × R, where R is the time co-ordinate. Here, the fields in the

bulk are a derived concept as the vielbein and the spin connections are given in terms of

the gauge fields as

ω =
1
2

(A + Ã) & e =
`

2
(A − Ã). (1.10)

For the case of pure gravity, the gauge fields are valued in the adjoint of sl(2,R). The

equations of motion in this first order formalism translate to flatness of gauge connections

for the two gauge fields. The Brown-Henneaux analysis can be done in this formalism

too. Here, one imposes boundary fall-off conditions on the gauge fields such that the



32 CHAPTER 1. INTRODUCTION

metric obeys the fall-off conditions of Brown-Henneaux,

a =
[
L1 − κ(x+) L−1

]
dx+, ã =

[
−L1 + κ̃(x−) L1

]
dx−,

A = b−1(d + a)b, Ã = b(d + ã)b−1,

where, b = eL0 ln
( r
`

)
[Lm, Ln] = (m − n)Lm+n, m, n ∈ {−1, 0, 1}. (1.11)

The two copies of Virasoro algebra manifests themselves in the modes of κ(x+) and κ̃(x−)

with the same central extension. In terms of the Poisson brackets fro the right-moving

Virasoro look like

{
κ(x+), κ(x̃+)

}
= −κ′(x+) δ(x+ − x̃+) − 2 κ (x+) δ′(x+ − x̃+) − k

4π δ
′′′(x+ − x̃+). (1.12)

The first order formalism is useful in that allowing the gauge algebra to contain sl(2,R)

as a subset of a bigger algebra leads to theories with other gauge fields coupled to gravity

in d = 3 dimensions. As an example, supergravities in AdS 3 were studied to generalize

Brown-Henneaux boundary conditions by Henneaux et al [2]. This was done by replacing

the sl(2,R) gauge group with a Z2 graded algebra for the sl(2,R) ⊕ G̃ bosonic algebra,

where G̃ is the internal bosonic symmetry.

The guiding principle in the analysis of Henneaux et al [2] was to impose similar Dirich-

let type boundary conditions on the supergravity fields such that the bulk metric is still

asymptotically locally AdS 3 (AlAdS 3). This was done by demanding that the gauge fields

obey the following fall of conditions3

Γ = bdb−1 + bab−1, Γ̃ = b−1db + b−1ãb,

where b = eσ
0 ln(r/`),

a =
[
σ− + L(x+)σ+ + ψ+α+(x+)R+α + Ba+(x+)T a] dx+,

3The conventions and notations are taken from chapter 3.
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ã =
[
σ+ + L̄(x−)σ− + ψ̄−α−(x−)R−α + B̄a−(x−)T a

]
dx−. (1.13)

These boundary conditions, which were extensions of the Brown-Henneaux boundary

conditions to the supergravity case, uncovered two copies of super-Virasoro i.e. the ex-

tended super-conformal algebra as the asymptotic symmetry algebra4. This algebra, un-

like the Virasoro, contains quadratic non-linearities in currents. There were other works

which had reproduced special cases of the above result [22, 23].

In a similar light, one can obtain a bulk theory of higher-spin gauge fields coupled to

gravity in AdS 3 by demanding that the two Chern-Simons gauge fields be valued in the

adjoint of sl(N,R). Here, one would end up with a bulk theory for gauge fields with spins

ranging from 2, ...N, with the spin-2 gauge field being the graviton.

The asymptotic symmetry of higher-spin gauge fields coupled to gravity in d = 3 dimen-

sions was first done by Campoleoni et al [7], where they restricted to spin 3 fields coupled

to gravity yielding 2-copies of classical W3 algebra first written down by Zamalodchikov

[15]. Here too, the authors were concerned only with finding the asymptotic symmetry

algebra such that all the solutions admitted by the boundary conditions have a metric

(spin-2 field) which is AlAdS 3. The boundary conditions are given as fall-off conditions

on the gauge fields, as before

A = b−1ab + b−1db Ã = bãb−1 + bdb−1,

a = (L1 − κL−1 − ωW−2)dx+ ã = (−L−1 + κ̃L1 + ω̃W2)dx−,

b = eL0ln r
l , (1.14)

where the gauge fields are valued in the adjoint of sl(3,R) listed in the appendix 6.5. Here

one finds that the gauge field a only depends on x+ and as a 1-form has a component only

along the same coordinate. The same is true for ã and its x− dependence. The analysis

4This analysis is contained in part in chapter 3.
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is the same for either of the gauge fields. The spin fields are recovered from these gauge

fields as

gµν =
1
2

Tr(eµeν) ϕµνρ =
1
3!

Tr(e(µeνeρ)),

e =
`

2
(A − Ã) ω =

1
2

(A + Ã). (1.15)

Here, they uncovered two copies of the classical W3 algebra as the asymptotic symmetry

algebra, one each for the two gauge fields A and Ã. This algebra is represented by Poisson

brackets between the functions parametrizing the phase-space of solutions i.e. for instance

κ and ω for the gauge field A

− k
2π

{
κ(x+), κ(x̃+)

}
= −κ′(x+) δ(x+ − x̃+) − 2 κ (x+) δ′(x+ − x̃+) + 1

2 δ
′′′(x+ − x̃+),

− k
2π

{
κ(x+), ω(x̃+)

}
= −2ω′(x+) δ(x+ − x̃+) − 3ω(x+) δ′(x+ − x̃+),

−2kα2

π

{
ω(x+), ω(x̃+)

}
= 8

3 [κ2(x+) δ′(x+ − x̃+) + κ(x+) κ′(x+)δ(x+ − x̃+)]

−1
6 [5κ(x+)δ′′′(x+ − x̃+) + κ′′′(x+)δ(x+ − x̃+)]

−1
4 [3κ′′(x+)δ′(x+ − x̃+) + 5κ′(x+)δ′′(x+ − x̃+)] + 1

24δ
(5)(x+ − x̃+)

(1.16)

Here, the Virasoro is a part of the above algebra. Also the W3 algebra is not a Lie algebra

in the conventional sense since the rhs does contain quadratic non-linearities. The proce-

dure for obtaining the above algebra from the boundary conditions imposed is outlined in

detail in chapter 4. As mentioned earlier, these boundary conditions are generalizations

of the ones imposed by Brown and Henneaux in that for the above fall-off conditions on

the gauge fields 1.14, the bulk solutions are AlAdS 3. In other words, the spin-3 field ϕµνρ

doesn’t survive till the boundary of AdS 3 while gµν contains all the configurations allowed

by the Brown-Henneaux boundary condition.
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The case of the higher-spin (hs) theory with spins ranging from 2....N with N → ∞

in AdS 3 was dealt by Henneaux and Rey [14] where 2-copies ofW∞ were uncovered as

the asymptotic symmetry algebra. The gauge group in the bulk is hs[λ]×hs[λ], which for

suitable values of λ is equivalent to an S L(N,R) × S L(N,R).5 This as mentioned earlier,

describes fields with spins ranging from 2 to N. The asymptotic symmetry group in such

cases was shown to be two copies of WN algebra [7, 14]. These are the generalizations

of Virasoros to the higher-spin case with a similar peculiarity of having non-linearities in

the right hand sides of the algebra for finite N. Although, these analyses were similar in

spirit to the ones done by Brown and Henneaux [1], since they always demanded AlAdS 3

configurations; they differed in that they used the Chern-Simons formulation of gravity

coupled to higher-spin fields in three dimensions as the second order formulation of the

action is not yet completely known.

1.0.3 Deviations from the Brown-Henneaux type boundary condi-

tions

We would now like to summarize some works which have required deviations from the

Brown-Henneaux type boundary conditions in their analysis. Since- as already mentioned

at the very beginning, boundary conditions play a major role in the AdS /CFT correspon-

dence, it is worthwhile to see what kind of duality one unearths when one tries to impose

different boundary conditions from that of Brown and Henneaux’s.

In all the cases mentioned above, there is always a symmetry between the left and the

right sectors. But there have been interesting examples of CFTs where this symmetry

is broken, and further under the AdS /CFT correspondence these have been dual to in-

teresting geometries in the bulk. There have been several works relating the statistical

degeneracy of an extremal black hole to a thermal ensemble of a 1+1 dimensional chiral

CFT [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. It was observed that the near horizon ge-

5This requires moding the gauge algebra in the bulk by a suitable ideal.
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ometry of many extremal black holes in many dimensions, in both flat and AdS spaces,

contains an AdS 2 factor with a constant electric field [40]. A consistent application of the

AdS /CFT conjecture leads to a dual theory in 1+1 dimensions which is a Discrete Light

Cone Quantized (DLCQ) CFT [34, 35, 36, 37][41]. This is a chiral CFT with only one

copy of Virasoro, where the states in the CFT are not charged with respect to the other Vi-

rasoro. Here, three dimensional extremal BTZ plays a crucial role since it appears in the

near-horizon metric of many extremal black holes in asymptotically flat and AdS spaces,

`−2ds2
BTZ =

dr2

r2 − r2dx+dx− +
(`M + J)

2k
(dx+)2 +

(`M − J)
2k

(dx−)2

−
(`2M2 − J2)

4k2r2 dx+dx−,

where k =
`

4G
, ds2

BTZ−extremal = ds2
BTZ

∣∣∣
`M=J

. (1.17)

The DLCQ CFT mentioned above is obtained by applying a dimensional reduction on

the CFT dual to this BTZ [41]. The dual to this would be an AdS 2 with an electric flux

[35] obtained from an AdS 3 as a U(1) fibration over an AdS 2 base. The Virasoro of the

chiral CFT was then obtained by showing that a consistent set of boundary conditions ex-

isted which enhanced this U(1) isometery to a Virasoro [41]. Here, a chiral version of the

Brown-Henneaux boundary conditions were imposed breaking the left-right symmetry.

These analyses established that the DLCQ chiral CFTs are a feature of the extremal black

holes since non-extremal black holes do not have an AdS 2 throat.

There have been some works analysing from the bulk perspective what happens when one

tries to leave the domain of boundary conditions described by Brown and Henneaux. A

work by Compère and Marolf [8] analysed the effect of allowing the boundary metric of

the AdS space to fluctuate. The effect of completely freeing the boundary metric would

require holding the Brown-York stress tensor fixed to T ab = 0, as can be seen from the

variation of the bulk action (1.5). This would correspond to imposing completely Neu-

mann boundary conditions on the bulk gravitational dynamics in stead of the completely
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Dirichlet ones, as done by Brown and Henneaux. The CFT on the boundary would be a

theory of "induced gravity" where the boundary CFT partition function involves integrat-

ing over all possible fluctuations of the boundary metric.

Zinduced :=
∫
Dg(0)ZCFT [g(0)], (1.18)

where lnZCFT [g(0)] defines the effective action for g(0)
ab after integrating out all the fields in

the CFT. They further showed that such corresponding geometries in the bulk, described

by T ab = 0, are normalizable with respect to a simplectic structure defined by the full

bulk action. Here, the contribution from the appropriate boundary counter term S ct is

included. The additional S ct is added to make the variational principle well defined. This

term plays a crucial role in that it minimises the on-shell bulk action for those bulk con-

figurations which are allowed by the boundary conditions imposed. The authors of [8]

reached to similar conclusions when a mix of Dirichlet and Neumann boundary condi-

tions, also termed as Robin boundary conditions were imposed on the boundary metric.

This allowed for certain components of the boundary metric g(0) to be held fixed while

allowing the others to fluctuate. Again, this was achieved after suitable S ct was added in

accordance with the variational principle.

In [6], Compère et al introduced new boundary conditions for AdS 3 where they uncovered

a copy of Virasoro with a central charge c = 3`/2G along with an affine u(1) Kaĉ-Moody

algebra.6 These boundary conditions are chiral in nature, in that they do not respect the

left-right symmetry by allowing a component of the boundary metric g(0)
++ to fluctuate

along the x+ boundary direction.

grr =
l2

r2 + O(r−4), gr± = O(r−3),

g+− = −
r2

2
+ O(r0), g++ = r2 f (x+) + O(r0), g−− = −

l2

4
N2 + O(r−1),

(1.19)

6Since it is affine u(1) current, the value of its level can always be absorbed by scaling the currents with
real constants, but its sign remains unchanged.
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A suitable boundary term was added to the bulk Einstein-Hilbert action so as to allow for

the bulk solutions with such fall-of conditions be variationally consistent. They further

construct the CFT dual to their boundary conditions by writing the AdS 3 gravity action

in terms of difference of two Chern-Simons theories valued in sl(2,R) (6.3) and interpret-

ing their boundary conditions as constraints on WZNW theory dual to the Chern-Simon

theory. This analysis is similar to the work done by Coussaert et al [12] in the context

of Brown-Henneaux boundary conditions. Here they found a Liouville theory obtained

from a constrained WZNW theory. On the heels of [6] was a paper by Troessaert [5]

which allowed the boundary metric to fluctuate upto a conformal factor but restricted the

boundary metric to be conformally flat.

ds2 = −eΦ(x+,x−)dx+dx−,

where, Φ(x+, x−) = φ(x+) + φ(x−). (1.20)

The asymptotic analysis of this theory revealed two copies of affine u(1) Kaĉ-Moody

×Virasoro as the asymptotic algebra. Here the central extension of the Virasoro sector

from both halves is c = 3`/2G, while the two affine u(1) currents have a level k = −c/6,

implying that the total central charge vanishes. Although as pointed out earlier6 that the

affine u(1) levels can be scaled by scaling the u(1) currents.

In both the cases mentioned above there were boundary terms added to the bulk gravi-

tational action so as to allow the required boundary metric component to fluctuate. The

resultant dual CFT2 theory would be an induced gravity theory as mentioned in [8] and

the boundary terms are useful in defining a normalizable theory in the bulk. The induced

gravity theory is an effective theory of these fluctuating boundary gravity modes which

are obtained by first coupling them to a boundary CFT2 and then integrating out the fields

of the original CFT2. The concept of induced gravity was first introduced in 1967 by An-

drei Sakharov [42]. Here a psuedo-Riemannian manifold is considered as a background
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in which there are matter fields. The gravitational dynamics is not imposed but emerges

at one loop order when the matter fields are integrated over. This procedure was shown to

produce the Einstein-Hilbert term with a large cosmological constant along with higher

derivative terms. The induced gravity action that arises in the context of AdS 3/CFT2

would be the ones in which the original matter theory is a CFT. We would refer to this as

induced gravity in this thesis.

Next, we give a brief summary of works that were carried out more than two decades ago

when the subject of induced gravity was in vogue.

1.1 Induced gravity

A conformal field theory (CFT) in a background space-time with flat metric ηab admits a

spin-2 current namely the energy-momentum tensor Tab which is symmetric, traceless and

conserved (∂aTab = 0). In two dimensions it has two independent components T++(x+)

and T−−(x−) where x± = t±x are the null coordinates. Classically one can couple the CFT

to an arbitrary background metric making it a gravitational theory as well. Such a gravity

coupled to matter in two dimensions plays an important role as the world-sheet theory

of string theories. Classically this theory would be diffeomorphism and Weyl invariant

though quantum mechanically these symmetries may become anomalous. Demanding

that the Weyl symmetry is not anomalous constrains the matter content or the possible

metric backgrounds. For instance, for a string propagating in the flat n-dimensional space-

time the world-sheet theory being Weyl invariant at the quantum level means that the

string should propagate in critical dimensions (n = 26) and one can gauge fix the world-

sheet metric completely. Gauge fixing the world-sheet metric to the flat metric leaves

one with a 2d CFT in flat background whose symmetries are two commuting copies of

Virasoro algebra generated by the modes of the conserved stress-energy tensor of the
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CFT. However, away from the critical dimension the 2d metric cannot be gauged away

because of the Weyl anomaly - leaving one degree of freedom in the metric. Long ago, in

a seminal paper [10], Polyakov addressed the problem of quantizing this theory.

When one integrates over the matter sector one obtains a non-local theory [43] of the

metric referred to as the induced gravity theory. The covariant manifestation of such an

effective action for the now dynamical metric (induced gravity action) is non-local as is

made explicit in the expression for induced gravity in 2d arising in the quantization of

string world sheet [10, 43],

Γ =
c

96π

∫
d2x
√

g(R
1
∇2 R + Λ). (1.21)

The induced gravity theory is diffeomorphism invariant but not Weyl invariant as ex-

pected. One can use the diffeomorphisms to gauge fix the metric down to one independent

component. There are two standard gauge choices used in the literature:

• the conformal gauge: ds2 = −eφ(x+,x)dx+dx−

• the light-cone gauge: ds2 = −dx+dx + F(x+, x)(dx+)2

The induced gravity theory becomes local in either of these gauge choices7. In the con-

formal gauge it is known to reduce to the Liouville theory.

S Liou =

∫
d2x

(
∂aΦ∂

aΦ + e2χΦ
)
. (1.22)

In the light-cone gauge the induced gravity theory is called the chiral induced gravity

(CIG) theory. Polyakov examined the CIG and uncovered an sl(2, R) current algebra

worth of symmetries of it which in turn led to the determination of all correlation functions

in that theory [10]. This was achieved by studying the Ward identity of the stress-tensor

component in the chiral gauge. Subsequently people extended this analysis to the case
7In the light-cone gauge a further change of variables is required to make the action take a local form.

These were termed as Polyakov’s variables in the literature.
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of N = (1, 0),N = (1, 1) and N = (p, q) super-gravities in 2d [25, 44]. Here for the

chiral gauge8 analysis of what one may call 2d chiral induced supergravity, the conserved

currents obeyed the relevant super-Kaĉ-Moody current algebra.

On the other hand holography through the AdS /CFT correspondence has been a powerful

tool to study CFTs. Since global isometries of a 2d CFT are identical to the asymptotic

symmetry algebra of Brown-Henneaux, a natural question is whether one can generalize

AdS /CFT to include gravity on the CFT side. To generalize the CFT to include gravity

one requires to consider boundary conditions that are not Dirichlet type. We provide a

solution to this question in chapter 2 where we make explicit the boundary conditions

on gravity in AdS 3 which admits an sl(2,R) Kaĉ-Moody current algebra as one of the

asymptotic symmetries.

2d Chiral Induced W-gravity

A given conformal field theory in 2d flat space-time can admit more conserved currents

than the energy-momentum tensor Tab. The corresponding symmetry algebra should in-

clude the two commuting copies of Virasoro algebra. One such enhancement of symmetry

algebra involves extending each copy of the Virasoro algebra to a WN algebra first discov-

ered by Zamolodchikov [15]. It is worthwhile to point out that although 2d gravity admits

a higher-spin extension with an underlying W-algebra, this is not a Lie algebra in the usual

sense; the commutator of 2 generators generally consists of composites of generators. A

CFT with WN⊕WN symmetry (referred to as a WCFT) will have conserved currents given

by completely symmetric and traceless rank-s tensorsWa1...as with the spin s ranging from

2 to N (here Wab = Tab ). The two independent components of such a traceless spin-s

current areW+···+(x+) andW−···−(x−) in light-cone coordinates.

One can again couple such a CFT to background given by spin-s gauge fields. One then

writes a W−covariant action thus promoting the global W−symmetries of the original

8Also termed as light-cone gauge.
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theory to a local one; resulting in a higher spin extension of the 2d gravity referred to as the

W-gravity theory (see [45] for a review). Therefore, along with the usual diffeomorphism,

Weyl and Lorentz symmetries, W-gravity is supplemented with the WN analogues of the

above symmetries. But these symmetries are only obeyed classically, and at the quantum

level some of these symmetries become anomalous; just as seen in the previous section.

Again integrating out the WCFT field content will generically induce a dynamical theory

for these higher spin fields which is the induced W-gravity9.

Following Polyakov’s work [10] and the discovery of W-symmetries (see [16, 45] for a

review) people studied the induced W-gravity theories in a particular light-cone gauge.

In this gauge the background spin-s gauge field is coupled only to one of the two inde-

pendent components of the corresponding W-current, sayW−···−(x−). This is achieved by

considering the action

S W−gravity = S WCFT +

∫
d2x

N∑
s=2

µ(s)
+···+W

(s)
−···− (1.23)

before integrating out the WCFT fields, where S WCFT denotes the action of the WCFT in

2d flat space-time. After integrating out the WCFT field content the resulting theory of

µ(s)
+···+ fields is dubbed the chiral induced W-gravity (CIWG). This can be done purturba-

tively in 1/c expansion where c was the central charge of the original matter system. It was

shown in [20] that these CIWG theories are expected to have sl(n,R)-type current algebra

symmetries generalizing the sl(2,R) current algebra symmetry of the CIG of Polyakov.

The Ward identities are then obtained as the functional differential equation obeyed by

the variation of the induced gravity action. These generalize the Virasoro Ward identities

of 2d CIG and are also known for quite some time. For details of how these symmetries

and Ward identities emerge see, for instance, [20, 21]. It is an interesting question to ask

if CIWG theories also admit holographic descriptions.

In this thesis we also generalize the results of chapter 2 and [9] towards describing chiral
9This induced gravity action can be written in a covariant manner for the case of pure gravity, as seen in

the previous section. But no such W-covariant action is known for the case of induced W-gravity.
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induced W-gravities (CIWG) holographically. It is natural to expect that the bulk theory

should be a higher spin theory with one higher spin gauge field corresponding to each

higher spin field in the induced W-gravity theory of interest. As mentioned before, such

3d theories have a description in terms of Chern-Simons theories with gauge algebra

sl(n,R) ⊕ sl(n,R) [46]. We therefore expect that the 3d higher spin gauge theory based

on sl(n,R) ⊕ sl(n,R) Chern-Simons action admits a set of boundary conditions that can

describe a suitable chiral induced W-gravity with spins ranging from 2 to n.

We, in particular, provide and study a set of boundary conditions for the case of n = 3 and

compute their asymptotic symmetry algebras. We verify that these boundary conditions

give rise to the W3 -Ward identities of the CIWG. We find that, in this case, the higher

spin theory with our boundary conditions admits one copy of classical W3 algebra and

an sl(3,R) (or an su(1, 2)) current algebra as its asymptotic symmetry algebra. As a by-

product we also provide a generalization of the boundary conditions of [6] to this higher

spin theory and compute the corresponding symmetry algebra.
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Chapter 2

New boundary conditions in AdS 3

gravity

In his seminal 1987 paper [10], Polyakov provides a solution to the two-dimensional

induced gravity theory (such as the one on a bosonic string worldsheet) [43],

S =
c

96π

∫
d2x
√
−g R

1
∇2 R, (2.1)

by working in a light-cone gauge. The gauge choice puts the metric into the form

ds2 = −dx+dx− + F(x+, x−)(dx+)2. (2.2)

Polyakov shows that the quantum theory for the dynamical field F(x+, x−) admits an

sl(2,R) current algebra symmetry with level k = c/6. We would like to find the AdS 3

duals which would exhibit essential features of such an induced gravity on the boundary.

As espoused in the introduction, we seek this by allowing the (dx+)2 boundary term to

fluctuate.

The action of three-dimensional gravity with negative cosmological constant [47] is given

45
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by

S = −
1

16πG

∫
d3x
√
−g

(
R +

2
l2

)
−

1
8πG

∫
∂M

d2x
√
−γΘ +

1
8πG

S ct(γµν), (2.3)

where γµν is the induced metric and Θ is trace of the extrinsic curvature of the boundary.

Varying the action yields

δS =

∫
∂M

d2x
√
−γ

1
2

T µνδγµν , (2.4)

where

T µν =
1

8πG

[
Θµν − Θγµν +

2
√
−γ

δS ct

δγµν

]
. (2.5)

The variational principle is made well-defined by imposing δγµν = 0 (Dirichlet) or T µν = 0

(Neumann) at the boundary (see [8] for a recent discussion).

Recently Compère, Song and Strominger (CSS) [48, 6] and Troessaert [5] proposed new

sets of boundary conditions for three-dimensional gravity, which differ from the well-

known Dirichlet-type Brown–Henneaux boundary conditions [1].1 Before delving into

specifics, let us discuss the general strategy employed by [6]. One begins by adding a

term of the type

S ′ = −
1

8πG

∫
∂M

d2x
√
−γ

1
2
T µνγµν (2.6)

for a fixed (γµν-independent) symmetric boundary tensor T µν. The variation of this term

is

δS ′ = −
1

8πG

∫
∂M

d2x
√
−γT̃ µνδγµν, (2.7)

1In fact, the boundary conditions of [5] subsume those of [1].
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where T̃ µν = T µν − 1
2 (T αβγαβ) γµν. The variation of the total action then gives

δS + δS ′ =
1

8πG

∫
∂M

d2x
√
−γ(T µν − T̃ µν)δγµν. (2.8)

Now the boundary conditions consistent with the variational principle depend on T̃ µν.

Generically, this leads to “mixed” type boundary conditions. If for a given class of bound-

ary conditions some particular component of Tαβ − T̃ αβ vanishes sufficiently fast in the

boundary limit such that its contribution to the integrand in (2.8) vanishes, then the cor-

responding component of γαβ can be allowed to fluctuate. Since we want the boundary

metric to match (2.2), we would like Neumann boundary conditions for γ++. Therefore

we choose T µν such that the leading term of T ++ equals T̃ ++ in the boundary limit.

This condition has been imposed in [6], with the addition of an extra boundary term with2

T µν = −
1

2r4 N2lδµ+δ
ν
+, (2.9)

and the following boundary conditions are imposed on the metric:

grr =
l2

r2 + O(r−4), gr± = O(r−3),

g+− = −
r2

2
+ O(r0), g++ = r2 f (x+) + O(r0), g−− = −

l2

4
N2 + O(r−1),

(2.10)

where f (x+) is a dynamical field and N2 is fixed constant.3 These boundary conditions

give rise to an asymptotic symmetry algebra: a chiral U(1) current algebra with level

determined by N. They also ensure that T−− is held fixed in the variational problem,

whereas g++ is allowed to fluctuate as long as its boundary value is independent of x−.

In what follows, we show that (2.10) are not the most general boundary conditions con-

sistent with the variational principle and the extra boundary term given by (2.9). For this,

we introduce a weaker set of consistent boundary conditions that enhance the asymptotic

2The induced metric γµν differs from g(0)
µν of [6] by a factor of r2.

3To relate to the notation in [6], set N2 = − 16G∆
l and f (x+) = l2∂+P̄(x+).
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symmetry algebra to an sl(2,R) current algebra whose level is independent of N.

2.1 Chiral boundary conditions

In the new boundary conditions, the class of allowed boundary metrics coincides with that

of (2.2). Since we want to allow γ++ to fluctuate, we keep T−− fixed in our asymptotically

locally AdS 3 metrics. Therefore, we propose the following boundary conditions:

grr =
l2

r2 + O( 1
r4 ), gr+ = O( 1

r ), gr− = O( 1
r3 ),

g+− = −
r2

2
+ O(r0), g−− = l2κ̃ + O(1

r ),

g++ = r2F(x+, x−) + O(r0),

(2.11)

where, as above, we take F(x+, x−) to be a dynamical field and κ̃(x+, x−) fixed. We were

motivated to study this boundary condition after an analysis of the residual diffeomor-

phisms of linearised fluctuations of the metric in the covariant gauge (2.2, 6.1). The

crucial difference between these boundary conditions and those in (2.10) is the different

fall-off condition for gr+ which allows for the boundary component of g++ to depend on x−

as well. One must, of course, check the consistency of these conditions with the equations

of motion. This involves constructing the non-linear solution in an expansion in inverse

powers of r. Working to the first non-trivial order, one finds the following condition on

F(x+, x−):

2 (∂+ + 2 ∂−F + F ∂−) κ̃ = ∂3
−F . (2.12)

The above equation may be recognised as the Virasoro Ward identity of Polyakov[10]

expected from the 2d CIG. This Ward identity is integrable. To find the solution, inspired

by Polyakov, let us parametrize F = −
∂+ f
∂− f . With this parametrization one can show that
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the above constraint (2.12) can be cast into the following form:

(∂− f ∂+ − ∂+ f ∂−)
[
4 (∂− f )−2 κ̃ − (∂− f )−4 [3 (∂2

− f )2 − 2 ∂− f (∂3
− f )]

]
= 0 (2.13)

For an arbitrary f (x+, x−) the general solution to this equation is

κ̃(x+, x−) =
1
4

G[ f ](∂− f )2 +
1
4

(∂− f )−2 [3 (∂2
− f )2 − 2 ∂− f (∂3

− f )] (2.14)

where G[ f ] is an arbitrary functional of f (x+, x−). The second term in the solution may

be recognized as the Schwarzian derivative of f with respect to x−.

Along with this solution (2.14) for κ̃ the configurations in (2.34, 2.35, 2.36) provide the

most general solutions consistent with the boundary conditions in (2.11).

The AdS 3 gravity with the boundary conditions (2.11) should provide a holographic de-

scription of the 2d CIG with F playing the role of its dynamical field. However, the

classical solutions of the 2d CIG should correspond to bulk solutions with κ̃ either van-

ishing or an appropriate non-zero constant. In the latter case one needs to add additional

boundary terms to the action (2.3), see [6, 3]. When κ̃ = 0 one gets the solutions appro-

priate to asymptotically Poincare AdS 3, where as κ̃ = −1/4 correspond to the solutions

considered in [3].4

Now, the boundary term added to the action holds the value of the g−− component to be

fixed at −l2/4, i.e. κ̃ = −1/4. This implies

∂−F(x+, x−) + ∂3
−F(x+, x−) = 0, (2.15)

which forces F(x+, x−) to take the form

F(x+, x−) = f (x+) + g(x+)eix− + ḡ(x+)e−ix− (2.16)

4Let us note that these solutions also include those of [6] when one takes κ̃ = ∆ and ∂−F = 0.
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where f (x+) is a real function and ḡ(x+) is the complex conjugate of g(x+).

Let us note that this is directly analogous to the form of F(x+, x−) derived in [10]. Through-

out our discussion we think of φ = x+−x−
2 as 2π-periodic (and τ = x++x−

2 as the time coordi-

nate), and therefore we restrict our consideration to κ̃ < 0. Similarly, we impose periodic

boundary conditions on f (x+) and g(x+). If one takes the spatial part of the boundary to

be instead of S 1, there are no such restrictions and one may even consider κ̃ > 0 like in [6].

The form of eq.(2.12) is exactly the same as the Ward identity obtained in Polyakov’s

chiral induced gravity. It is interesting to note that this appears as an equation of motion in

the bulk and therefore satisfing this Ward identity doesn’t imply that one is on-shell with

respect to the boundary theory. In stead, it implies that on-shell bulk configurations as

described above, are dual to the space of solutions in the boundary theory which satisfy its

quantum symmetries. Further, when the required boundary term is added so as to impose

the variational principle on this space of solutions, the full bulk action is minimized for

only a subset of these bulk on-shell geometries specified by (2.15). Thus reducing the

space of solutions, which would now be dual to the boundary on-shell solutions with

respect to the induced gravity theory.

2.1.1 The non-linear solution

One can write a general non-linear solution of AdS 3 gravity in Fefferman–Graham coor-

dinates [49] as:

ds2 =
dr2

r2 + r2
[
g(0)

ab +
l2

r2 g(2)
ab +

l4

r4 g(4)
ab

]
dxadxb. (2.17)
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Therefore, the full set of non-linear solutions consistent with our boundary conditions is

obtained when

g(0)
++ = F(x+, x−), g(0)

+− = −
1
2
, g(0)

−− = 0,

g(2)
++ = κ(x+, x−), g(2)

+− = σ(x+, x−), g(2)
−− = κ̃(x+, x−),

g(4)
ab =

1
4

g(2)
ac gcd

(0)g
(2)
db ,

(2.18)

where in the last line gcd
(0) is g(0)

cd inverse. Imposing the equations of motion Rµν −
1
2R gµν −

1
l2 gµν = 0 one finds that these equations are satisfied for µ, ν = +,−. Then the remaining

three equations coming from (µ, ν) = (r, r), (r,+), (r,−) impose the following relations:

σ(x+, x−) =
1
2

[∂2
−F − 2 κ̃ F]

κ(x+, x−) = κ0(x+) +
1
2

[∂+∂−F + 2 κ̃ F2 − F ∂2
−F − 1

2 (∂−F)2] (2.19)

and

2 (∂+ + 2 ∂−F + F ∂−) κ̃ = ∂3
−F , (2.20)

with the general solution for κ̃ given in the last section 2.14. This solution reduces to

the one given in [6] when g(x+) = ḡ(x+) = 0, f (x+) → l2∂+P̄(x+) and κ̃ → −16G∆
`

. To

demonstrate the asymptotic symmetry of the simplest case we will confine ourselves to

holding κ̃(x+, x−) fixed at −1
4 ; this would imply that global AdS 3 would be part of the

solution space. The metric then takes the form

g(0)
++ = f (x+) + g(x+) eix− + ḡ(x+) e−ix− , g(0)

+− = −
1
2
, g(0)

−− = 0,

g(2)
++ = κ(x+) +

1
2

[
g2(x+) e2ix− + ḡ2(x+) e−2ix−

]
+

i
2

[
g′(x+)eix− − ḡ′(x+)e−ix−

]
,

g(2)
+− =

1
4

[
f (x+) − g(x+) eix− − ḡ(x+) e−ix−

]
, g(2)

−− = −
1
4
,

g(4)
ab =

1
4

g(2)
ac gcd

(0)g
(2)
db ,

(2.21)
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where in the last line gcd
(0) is g(0)

cd inverse. As above, demanding that the solution respects

the periodicity of φ-direction the functions f (x+), g(x+) and κ(x+) to be periodic.

Finally note that the global AdS 3 metric can be recovered by setting f = g = ḡ = 0 and

κ = −1
4 . Our solutions do not include the regular BTZ solutions. However by setting

f = g = ḡ = 0 and κ = −1
4 +∆ one can recover an extremal BTZ (with the horizon located

at r2 = ∆ − 1/4) solution.

As mentioned in the previous subsection one can take κ̃ > 0 implying that the boundary

spatial coordinate is not periodic. In this case too one can easily work out the the non-

linear solution of the form (2.21) with g(x+) and ḡ(x+) treated as two real and independent

functions. However, we will not consider this case further here.

2.1.2 Charges, algebra and central charges

It is easy to see that vectors of the form

ξr = −
1
2

[
B′(x+) + iA(x+)eix− − iĀ(x+)eix−

]
r + O(r0)

ξ+ = B(x+) −
l2

2r2

[
A(x+)eix− + Ā(x+)e−ix−

]
+ O( 1

r3 )

ξ− = A0(x+) + A(x+)eix− + Ā(x+)e−ix− + O( 1
r )

(2.22)

satisfy the criteria of [50], which allow us to construct corresponding asymptotic charges.

If, on the other hand, one demands that the asymptotic symmetry generators ξ leave the

space of boundary conditions invariant, one finds the same vectors but with the first sub-

leading terms appearing at one higher order for each component. For either set of vectors,

the Lie bracket algebra closes to the same order as one has defined the vectors.

Here, B(x+) and A0(x+) are real and A(x+) is complex; therefore, there are four real,

periodic functions of x+ that specify this asymptotic vector. We take the following basis
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for the modes of the vector fields:

Ln = iei n x+

[∂+ −
i
2

n r∂r] + · · ·

T (0)
n = iei n x+

∂− + · · ·

T (+)
n = iei(n x++ x−)[∂− −

i
2

r∂r −
1

2r2∂+] + · · ·

T (−)
n = iei(n x+− x−)[∂− +

i
2

r∂r −
1

2r2∂+] + · · · ,

(2.23)

which satisfy the Lie bracket algebra

[Lm, Ln] = (m − n) Lm+n, [Lm,T (a)
n ] = −n T (a)

m+n,

[T (0)
m ,T (±)

n ] = ∓T (±)
m+n, [T (+)

m ,T (−)
n ] = 2 T (0)

m+n .

(2.24)

Thus, the classical asymptotic symmetry algebra is a Witt algebra and an sl(2,R) current

algebra.

The variation of the parameters labelling the space of solutions under the diffeomorphisms

generated by the above vector fields can be summarized as

δξJa = ∂+λ
a − i f a

bcJb λc + ∂+(Ja λ)

= ∂+(λa + Ja λ) − i f a
bcJb (λc + Jc λ), (2.25)

where {J(−1), J(0), J(1)} = {ḡ, f , g} and {λ(−1), λ(0), λ(1)} = {Ā, A0, A} and λ = B. Here f a
bcs are

the structure constants in sl(2,R) written as [Lm, Ln] = (m − n)Lm+n for m, n ∈ {−1, 0, 1}.

One can note that the fluctuations of the currents can be cast in a form reminiscent of

transformation of gauge field Ja under gauge transformation parameter

Λa = λa + λ. (2.26)

This is should not be surprise since as mentioned earlier 3d pure gravity can be written as

a Chern-Simons theory. We will return to this point after computing the central terms for

the above algebra.
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Since a boundary metric component varies for different solutions in the space of allowed

geometries in the bulk, the determination of the conserved asymptotic charge is subtle.

Were this not the case we could have read the change in the asymptotic charge from the

holographically renormalized Brown-York stress tensor, first written down by Balasub-

ramanian and Kraus in [47]. Fortunately there does exist a generalized prescription for

computing asymptotic charges for gauge transformations given a set of boundary condi-

tions developed by Barnich and Brandt in [50] and further studied in [51]. We have review

it in the Appendix (6.2) were in some relevant examples have also been worked out.

Using this formalism for computing the corresponding charges of our geometry requires

computing charge via (6.99) after computing the super-potential (6.98) for pure AdS 3

gravity. We find that the charges are integrable over the solution with

δ/Qξ =
1

8πG
δ

∫
dφ

{
B(x+)

[
κ(x+) + (

1
2

f 2(x+) − g(x+)ḡ(x+))

+
1
2

(eix−g(x+) + e−ix− ḡ(x+))

+
i
2
∂+[B(x+) (eix−g(x+) − e−ix− ḡ(x+))]

]}
−

1
8πG

δ

∫
dφ

[1
2

A0(x+) f (x+) − (g(x+)A(x+) + ḡ(x+)Ā(x+))
]
.

(2.27)

These can be integrated between the configurations trivially in the solution space from

f (x+) = g(x+) = κ(x+) = 0 to general values of these fields to write down the charges

QB =
1

8πG

∫ 2π

0
dφ

[
B(x+)

(
κ(x+) +

1
2

( f 2(x+) − 2 g(x+)ḡ(x+))
)

+
1
2

(∂+ − ∂−)∂−[eix−g(x+) + e−ix− ḡ(x+)]
]

=
1

8πG

∫ 2π

0
dφ

[
B(x+)[κ(x+) +

1
2

( f 2(x+) − 2 g(x+)ḡ(x+))]

+
1

32πG
∂−[eix−g(x+) + e−ix− ḡ(x+)]

∣∣∣∣φ=2π

φ=0
,

(2.28)



2.1. CHIRAL BOUNDARY CONDITIONS 55

QA = −
1

8πG

∫ 2π

0
dφ

[1
2

A0(x+) f (x+) − (g(x+)A(x+) + ḡ(x+)Ā(x+))
]
. (2.29)

The boundary term in (2.28) vanishes as we assumed g(x+) to be periodic. It is important

to point out that these boundary conditions yield an expression asymptotic charge which

on the space of solutions is finite. In other words, the change in the asymptotic charge

while moving from one allowed solution to any other solution on the solution-space (via

suitable residual diffeomorphism generated by (2.22) ) is finite. Were this not true, then

it would imply that the boundary conditions are weak in that they relate the space of

bulk configurations to two or more phase spaces in the boundary separated by infinite

conserved charges; which belong to different boundary theories.

Next we compute possible central extensions for the charges computed above. We find

that the central term in the commutation relation between charges corresponding to two

asymptotic symmetry vectors ξ and ξ̃ is given by

(−i)
l

32πG

∫ 2π

0
dφ

[
B′(x+)B̃′′(x+) − B(x+)B̃′′′(x+)

+ 2 A0(x+)Ã′0(x+) − 4
(
A(x+) ¯̃A′(x+) + Ā(x+)Ã′(x+)

)]
. (2.30)

These give rise to the following algebra for the charges5

[Lm, Ln] = (m − n) Lm+n +
c

12
m3 δm+n,0 ,

[Lm,T a
n ] = −n T a

m+n ,

[T a
m,T

b
n ] = f ab

cT
c
m+n +

k
2
ηab m δm+n,0 (2.31)

with

c =
3l
2G

, k =
c
6
, f 0+

+ = −1, f 0−
− = 1, f +−

0 = 2, η00 = −1, η+− = 2.

(2.32)

5The bracket in (2.31) is i times the Dirac bracket.
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This is precisely the sl(2,R) current algebra found in [10].

We would like to mention here that the algebra (2.31) which consists of a semi direct prod-

uct of the Virasoro modes; Lms and the the sl(2,R) current modes; T (a)
m s can be decoupled

by redefining the Virasoro upto a suitable Sugawara stress tensor constructed from the

sl(2,R) Kaĉ-Moody currents. This procedure does not change the central extensions of

the the algebra but merely has the effect of putting the commutator between [L̂m,T a
n ] = 0,

where L̂ = L+Lsug(T a). The fact that the cross commutators can be put to zero by suitable

redefinitions without effecting the central extensions can be mimicked at by redefining the

residual gauge transformation parameters as in (2.26). It would turn out that the analysis

done in the Chern-Simons formalism naturally produces an asymptotic symmetry algebra

for the boundary conditions of this section where the commutators between the Virasoro

and the Kaĉ-Moody current algebra are zero.

It should be pointed out that although the boundary conditions imposed above seem to

generalize the ones given in [6], the space of allowed solutions in the bulk are very differ-

ent. The only solution common between the space of solutions in [6] and those allowed

by the above boundary conditions is the extremal BTZ. In fact, the boundary conditions

in [6] allow for non-extremal BTZs but do not allow for global AdS 3 to be in the space

of solutions; therefore they do not realize the full set of isometries of the global AdS 3 as

a subset of the resulting asymptotic symmetry algebra. The Brown-Henneaux boundary

conditions are one such boundary conditions which do realize the full global AdS 3 isome-

teries as a subset of the asymptotic symmetry algebra; however they contain all the BTZ

black-hole solutions too. The boundary conditions studied in this chapter on the other

hand do allow for global AdS 3 but contain only the extremal BTZ as the allowed black

hole solution.

Since the boundary metric in these boundary conditions is fixed to be in the light-cone

gauge; the boundary CFT must be an induced gravity theory similar to the one studied by

Polyakov in [10]. This is further lend credence to by the fact that the asymptotic sym-
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metry algebra contains an sl(2,R) Kaĉ-Moody current algebra spanned by the modes of

chiral component of the boundary metric, just as in Polyakov’s analysis of Chiral induced

gravity in [10].

Next we analyse the result of holding the boundary metric fixed in the conformal gauge,

and what happens when the conformal factor obeys the generic Liouville equation of

motion.

2.2 Boundary conditions as a result of gauge fixing lin-

earised fluctuations

There is an interesting way in which one can perceive how the chiral boundary conditions

and the Dirichlet boundary conditions imposed by Brown and Henneaux, naturally arise

as a result of gauge fixing linearised solutions to Einstein’s equation. This is covered in

the Appendix (6.1).

One begins with gauge fixing in de Donder gauge (6.15) (also called the covariant gauge)

the gravitational fluctuations about global AdS 3. The residual gauge transformations

would be those diffeomorphisms which respect this gauge choice. The vector fields gen-

erating these diffeomorphisms solve a either of the two first order linear differential equa-

tions (6.26) in the case of the background being globally AdS 3
6. Of the solutions to these

differential equations, interesting ones are those which survive till the boundary and these

can be given exactly in terms of hyperbolic functions everywhere in the bulk of global

AdS 3. These solutions can be categorized as to how they effect the boundary metric un-

der the Lie action, and as a whole they yield a Diff×Weyl action on the boundary metric.

In them one can find two copies of Witt algebra which commute with each other only

asymptotically. Interestingly, the asymptotic values of the components of the solutions

yield a semi-direct product of left moving Witt with left moving sl(2,R) Kaĉ-Moody cur-

6These are identical to the left and right Maurer-Cartan equations obeyed by vector fields on S 3.
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rent and a semi-direct product of right moving Witt with right moving sl(2,R) Kaĉ-Moody

current.

This gauge condition can be readily cast in the Chern-Simons formalism (6.1) which

therefore would admit ready generalisation to the cases of super-gravity and higher-spins

in AdS 3.

2.3 Holographic Liouville theory

The analysis of the previous section can be carried out for a different set of boundary con-

ditions which is such that the fluctuating field on the AdS 3 boundary obeys the Liouville

equation ∂+∂− log F = 2χF. Here we would choose F to be the conformal factor of the

metric on the AdS boundary. This is primarily motivated by the induced gravity obtained

after fixing the boundary metric in the conformal gauge in (2.1). Therefore we propose

the following boundary conditions on AlAdS 3:

grr =
l2

r2 + O(r−4), gr+ = O(r−1), gr− = O(r−3),

g+− = −
r2

2
F(x+, x−) + O(r0), g−− = O(r0),

g++ = O(r0),

(2.33)

where x+, x− are treated to be the boundary coordinates and r is the radial coordinate with

the asymptotic boundary at r−1 = 0. One can write a general non-linear solution of AdS 3

gravity in Fefferman–Graham coordinates [49] as:

ds2 = l2 dr2

r2 + r2
[
g(0)

ab +
l2

r2 g(2)
ab +

l4

r4 g(4)
ab

]
dxadxb. (2.34)
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Therefore, the full set of non-linear solutions consistent with our boundary conditions is

obtained when

g(0)
++ = 0, g(0)

+− = −
1
2

F(x+, x−), g(0)
−− = 0,

g(2)
++ = κ(x+, x−), g(2)

+− = σ(x+, x−), g(2)
−− = κ̃(x+, x−),

g(4)
ab =

1
4

g(2)
ac gcd

(0)g
(2)
db ,

(2.35)

where in the last line gcd
(0) is g(0)

cd inverse. Imposing the equations of motion Rµν −
1
2R gµν −

1
l2 gµν = 0 one finds that these equations are satisfied for µ, ν = +,−. Then the remaining

three equations coming from (µ, ν) = (r, r), (r,+), (r,−) impose the following relations:

σ(x+, x−) −
1
2
∂+∂− log F = 0,

∂−κ = F ∂+

(
σ

F

)
, ∂+κ̃ = F ∂−

(
σ

F

)
(2.36)

In general the equations can be solved for κ and κ̃ in terms of F as follows:

κ(x+, x−) = κ0(x+) +
1
2
∂2

+ log F −
1
4

(∂+ log F)2

κ̃(x+, x−) = κ̃0(x−) +
1
2
∂2
− log F −

1
4

(∂− log F)2 (2.37)

We now have to specialise to some subset of solutions such that we have Liouville equa-

tion satisfied by F. For this observe that when ∂−κ = ∂+κ̃ = 0 we have σ = χ F for some

constant χ. Then the ward identity σ = 1
2∂+∂− log F reads:

1
2
∂+∂− log F = χ F (2.38)

which is the famous Liouville’s equation. So if we add boundary terms such that we keep

σ = χ F then it follows that ∂−κ = ∂+κ̃ = 0. For this, it is useful to note that the boundary
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(holographic) stress tensor Ti j for the class of metrics we have is proportional to

g(2)
µν − R(0) g(0)

µν =

 κ 5σ

5σ κ̃

 (2.39)

Taking the trace with respect to the boundary metric gives

gµν(0)(g
(2)
µν − R(0) g(0)

µν ) = −20
σ

F
(2.40)

Therefore the constraint σ = χ F simply translates into demanding gµν(0)(g
(2)
µν − R(0) g(0)

µν ) =

−20 χ. The variation of the action along the solution space is

δS =
1
2

∫
bdy.

d2x
√
|g(0)| T i jδg(0)

i j = −
l

8πG

∫
bdy

d2x
5σ
F
δF. (2.41)

So we add the boundary term:

l
8πG

∫
bdy.

d2x 10χ
√
|g(0)| =

l
8πG

∫
bdy

d2x 5χ F (2.42)

such that the total variation of the action is

δS total = −
l

8πG

∫
bdy

d2x 5 (
σ

F
− χ) δF. (2.43)

Now we could choose either δF = 0 (Dirichlet) or σ = χ F (Neumann). Choosing the

latter gives rise to the Liouville equation as we desire.



2.3. HOLOGRAPHIC LIOUVILLE THEORY 61

2.3.1 Classical Solutions and asymptotic symmetries

It is well known that the general solution of the Liouville equation ∂+∂− log F = 2χ F is

given by

F = χ−1 ∂+ f (x+) ∂− f̃ (x−)
[1 + f (x+) f̃ (x−)]2

for χ , 0, F = f (x+) f̃ (x−) for χ = 0. (2.44)

The latter case was considered by [5]. It will be interesting to work out the asymptotic

symmetry algebra in the former case. We now proceed to get the asymptotic symmetries

for the above boundary conditions. The residual diffeomorphisms that the leave the metric

in the above form are:

ξ = rξr∂r + (ξ+ + (O)(1
r ))∂+ + (ξ− + O( 1

r ))∂−,

where ∂−ξ
+ = ∂+ξ

− = 0 , ∂+∂−ξ
r = 2ξrF, (2.45)

the subleading functions in r are all determined from the boundary values of components.

For convenience of calculation, let us introduce a field Φ = log(χF). The equation for Φ

then is:

∂+∂−Φ = 2eΦ. (2.46)

The first order variation of the above differential equation satisfies:

∂+∂−δΦ = 2eΦδΦ, (2.47)

therefore δΦ satisfies the same equation as ξr. Reading off δΦ from the general solution

of F and labelling δ f = g f ′ and δ f̃ = g̃ f̃ ′, the expression for ξr reads:

ξr = g′ + g̃′ + g∂+Φ + g̃∂−Φ,

where ∂−g = ∂+g̃ = 0. (2.48)
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The infinitesimal change in the asymptotic charge under such diffeomorphisms is given

by:

/δQ = −
l

8πG

∫
∂M

dφ
{

2(ξ+
(0)δκ + ξ−(0)δκ̃) +

δF
F2 ξ

r(∂+ + ∂−)F −
ξr

F
(∂+ + ∂−)δF +

δF
F

(∂+ + ∂−)ξr

}
(2.49)

Which can be simplified to be brought to an integrable form after throwing away terms

which are total derivatives of φ:

/δQ = −
l

8πG

∫
∂M

dφ
{
2(ξ+

(0)δκ + ξ−(0)δκ̃) + δΦ(∂+ + ∂−)ξr − ξr(∂+ + ∂−)δΦ
}
. (2.50)

One has to show that the above charge is integrable. The total integrated charge can be

written again (after similarly throwing away total derivatives in φ):

Q = −
l

4πG

∫
∂M

dφ
{
ξ+

(0)κ + ξ−(0)κ̃ + g(∂2
+Φ − 1

2 (∂+Φ)2) + g̃(∂2
−Φ −

1
2 (∂−Φ)2)

}
. (2.51)

The factors multiplying g and g̃ can be recognized as the stress-tensor modes of the Li-

ouville theory. One can proceed to construct the classical Poisson brackets by demanding

that the above charge gives rise to the fluctuations of the metric components F , κ and

κ̃ produced by the residual diffeomorphisms (2.45). The change in the parameters under

such boundary condition preserving gauge transformations are:

δF = 2Fξr + ∂+(Fξ+
(0)) + ∂−(Fξ−(0)),

δ f = (g + 1
2ξ

+
(0)) f ′,

δ f̃ = (g̃ + 1
2ξ
−
(0)) f̃ ′,

δκ = ξ+
(0)κ
′ + 2κξ+

(0)
′
+ g′′′ + g′ f̂ + 1

2g∂+ f̂ ,

δκ̃ = ξ−(0)κ̃
′ + 2κ̃ξ−(0)

′
+ g̃′′′ + g̃′ ˆ̃f + 1

2 g̃∂− ˆ̃f . (2.52)
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Where f̂ = 2∂2
+Φ − (∂+Φ)2 and ˆ̃f = 2∂2

−Φ − (∂−Φ)2. The variation in F can be cast in

terms of f̂ and ˆ̃f as:

1
2δ f̂ = (2g + ξ+

(0))
′′′ + (2g + ξ+

(0))
′ f̂ + 1

2 (2g + ξ+
(0))∂+ f̂ ,

1
2δ

ˆ̃f = (2g̃ + ξ−(0))
′′′ + (2g̃ + ξ−(0))

′ ˆ̃f + 1
2 (2g̃ + ξ−(0))∂−

ˆ̃f . (2.53)

Therefore the space of classical solutions allowed by the proposed boundary condition(2.33)

are parametrized by the functions ( f̂ , ˆ̃f , κ, κ̃), where as the diffeomorphisms that would

keep the metric under Lie derivative in this form are parametrized by (g, g̃, ξ+
(0), ξ

−
(0)). Re-

defining functions as:

f̂ → 1
2 f̂ , ˆ̃f → 1

2
ˆ̃f ,

κ → (κ − 1
2 f̂ ), κ̃ → (κ̃ − 1

2
ˆ̃f ),

g→ (g + 1
2ξ

+
(0)), g̃→ (g̃ + 1

2ξ
−
(0)), (2.54)

the Poisson algebra reads:

− k
2π

{
κ(x+′), κ(x+)

}
= −[κ(x+) + κ(x+′)]δ′(x+′ − x+) + δ′′′(x+′ − x+),

− k
2π

{
f̂ (x+′), f̂ (x+)

}
= −[ f̂ (x+) + f̂ (x+′)]δ′(x+′ − x+) − δ′′′(x+′ − x+),{

f̂ (x+′, κ(x+))
}

= 0. (2.55)

Similarly for the left sector, which commutes with the right sector. This shows that cen-

tral charge associated with the Virasoros of the Liouville theory to be negative of the

central charge of the Virasoros obtained from the Brown-Henneaux boundary conditions.

The space of bulk geometries allowed by the Brown-Henneaux boundary conditions is

contained in the space of solutions allowed by the above boundary condition.
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If one begins with a generic 3d asymptotically locally AdS 3 metric in the Fefferman

and Graham gauge then the residual diffeomorphisms are the ones which would gener-

ate the Diff×Weyl7 for the boundary metric. Restricting the boundary metric to have the

form as the one in (2.11) restricts the residual diffeomorphisms further to have an algebra

chiral-Diff×Witt to the leading order. Sub-leading order corrections to the residual dif-

feomorphisms further restrict it to an sl(2,R)×Virasoro. Similarly, if on the other hand

one imposed the boundary conditions of section (2.3), then the Diff×Weyl reduces to two

copies of left-right Virasoro with opposite central charges.

The analyses of the previous two sections were done in the second order formalism of

gravity using the Einstein-Hilbert action. As mentioned in the Introduction of this thesis,

generalizing these analyses to include super-gravity and higher-spin gauge fields in AdS 3

would require one to have the bulk action analysed in the first order formulation were the

bulk theory can be written as a difference of two Chern-Simons gauge fields. Therefore,

as a prelude to this we formulate the analyses of the previous two sections in the Chern-

Simons formulation of pure gravity in AdS 3.

2.4 Holographic CIG in first order formalism

It is well-known [11, 52] that the AdS 3 gravity in the Hilbert-Palatini formulation can be

recast as a Chern-Simons (CS) gauge theory with action8

S [A, Ã] =
k

4π

∫
tr(A ∧ A +

2
3

A ∧ A ∧ A) −
k

4π

∫
tr(Ã ∧ Ã +

2
3

Ã ∧ Ã ∧ Ã) (2.56)

up to boundary terms, where the gauge group is S L(2,R). These are related to veilbein

and spin connection through A = ωa + 1
l ea and Ã = ωa − 1

l ea. The equations of motion are

F = dA + A ∧ A = 0 and F̃ := dÃ + Ã ∧ Ã = 0. See appendix A for details on the most

7This is actually a semi-direct product where the commutator of Diff with Weyl is a Weyl.
8As is standard the symbol tr is understood to be 1

2TrL2
0
Tr where Tr is the ordinary matrix trace.
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general solutions to these flatness conditions.

Next we will write the solutions of AdS 3 gravity consistent with (2.11) in CS language.

For this we simply specialize the flat connections given in appendix A to

A = b−1∂rb dr + b−1[(L1 + a(−)
+ L−1 + a(0)

+ L0) dx+ + (a(−)
− L−1) dx−] b

Ã = b ∂rb−1 dr + b [(ã(0)
+ L0 + ã(+)

+ L1 + ã(−)
+ L−1) dx+ + (ã(+)

− L1 − L−1) dx−] b−1(2.57)

where b = eL0 ln r
l and all the functions are taken to be functions of both the boundary

coordinates (x+, x−). The equations of motion impose the following conditions:

a(−)
− =

1
2
∂−a

(0)
+ , a(−)

+ = −κ0(x+) +
1
4

(a(0)
+ )2 +

1
2
∂+a(0)

+

ã(0)
+ = −∂−ã

(−)
+ , ã(+)

+ = −ã(−)
+ ã(+)

− −
1
2
∂−ã

(0)
+ , (2.58)

and

(∂+ + 2 ∂−ã
(−)
+ + ã(−)

+ ∂−) ã(+)
− =

1
2
∂3
−ã

(−)
+ (2.59)

The last equation is a Virasoro Ward identity and it can be solved as before. To obtain

metric in the FG gauge we need to impose a(0)
+ = ã(0)

+ . With this choice it is easy to see

that the metric obtained matches exactly with the solution given above in (2.34 - 2.36)

with F = ã(−)
+ and κ̃ = ã(+)

− .

To be able to define a variational principle that admits a fluctuating F, we add the follow-

ing boundary action:

S bdy. = −
k

4π

∫
d2x tr(L0 [A+, A−]) −

k
4π

∫
d2x tr(L0 [Ã+, Ã−] − 2 κ̃0 L1 Ã+) (2.60)

where κ̃0 is some constant. Then it is easy to see that the variation of the full action gives

δS total =
k

2π

∫
d2x (κ̃ − κ̃0) δF. (2.61)
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In showing this we have to use all the constraints in (2.58) coming from the equations of

motion except the Virasoro Ward identity. Therefore, we again have two ways to impose

the variational principle δS = 0: (i) δF = 0 and (ii) κ̃ = κ̃0. The former is the usual

Brown-Henneaux [1] type Dirichlet boundary condition. We therefore consider the latter.

2.4.1 Residual gauge transformations

To analyze the asymptotic symmetries in the CS language we seek the residual gauge

transformations that leave κ̃ fixed, and the above flat connections form-invariant.

The gauge transformations act as δΛA = dΛ+ [A,Λ] which in turn act as δλa = dλ+ [a,Λ]

where A = b−1 a b + b−1 db with Λ = b−1 λ b (and similarly on the right sector gauge fields

ã with parameters labeled λ̃). The resulting gauge parameters are

λ = λ(−)(x+, x−) L−1 + [a(0)
+ λ(+)(x+) − ∂+λ

(+)(x+)] L0 + λ(+)(x+) L1

λ̃ = λ̃(−) L−1 − ∂−λ̃
(−) L0 − [ã(+)

− λ̃(−) −
1
2
∂2
−λ̄

(−)] L1, (2.62)

that induce the variations

δλa
(0)
+ = 2 [λ(−) − a(−)

+ λ(+)] − ∂+[∂+λ
(+) − a(0)

+ λ(+)]

δλa
(−)
+ = ∂+λ

(−) + a(0)
+ λ(−) + a(−)

+ [∂+λ
(+) − a(0)

+ λ(+) ] (2.63)

and

δλ̃ã
(−)
+ = (∂+ + ã(−)

+ ∂− − ∂−ã
(−)
+ ) λ̃(−)

δλ̃ã
(+)
− = −λ̃(−) ∂−ã

(+)
− − 2 ã(+)

− ∂−λ̃
(−) +

1
2
∂3
−λ̃

(−) (2.64)

respectively. In the global case when we hold ã(+)
− fixed at −1/4 we find that λ̃(−) =

λ f + ei x−λg + e−i x− λ̄ḡ. When we make a gauge transformation to ensure that we remain



2.4. HOLOGRAPHIC CIG IN FIRST ORDER FORMALISM 67

the FG coordinates for the metric we need to impose

(δλa
(0)
+ − δλ̃ã

(0)
+ )

∣∣∣∣
a(0)

+ =ã(0)
+

= 0 (2.65)

We find that this condition drastically reduces the number of independent residual gauge

parameters down to four functions of x+. In particular, the function λ(−)(x+, x−) is deter-

mined to be

λ(−)(x+, x−) = −
1
4
λ(+)(ḡ e−i x− − g ei x−)2 − κ0 λ

(+) +
1
2
∂2

+λ
(+) +

i
2

(g ei x− − ḡ e−i x−)∂+λ
(+)

+
1
2

[(λg ei x− + λ̄ḡ e−i x−) f − (g ei x− + ḡ e−i x−) λ f − i(∂+λg ei x− − ∂+λ̄ḡ e−i x−)] (2.66)

These induce the following transformations:

δλ f = λ′f + 2i (ḡ λg − λ̄ḡ g), δλg = λ′g + i ( f λg − g λ f ), δλḡ = λ̄′ḡ − i ( f λ̄ḡ − ḡ λ f ),

δκ0 = λ(+) κ′0 + 2κ0 ∂+λ
(+) −

1
2
∂3

+λ
(+) (2.67)

We could have obtained this result starting with the left sector a to be a = [L1−κ0(x+) L−1] dx+.

Now, comparing this result with (2.25) one finds that {λ f , λg, λ̄ḡ, λ
(+)} are not quite the

parameters in (2.25) that correspond to the asymptotic symmetry vector fields of [3]. For

this it turns out that we have to redefine the gauge parameters

{λ f , λg, λ̄ḡ, λ} → {λ f + f λ, λg + g λ, λ̄ḡ + ḡ λ, λ} (2.68)

Then the transformations read

δλ̃ f = λ′f + 2i (ḡ λg − λ̄ḡ g) + ( fλ(+))′, δλ̃g = λ′g + i ( f λg − g λ f ) + (gλ(+))′,

δλ̃ḡ = λ̄′ḡ − i ( f λ̄ḡ − ḡ λ f ) + (ḡλ(+))′, δκ0 = λ(+) κ′0 + 2κ0 ∂+λ
(+) −

1
2
∂3

+λ
(+) (2.69)

which match exactly with those in (2.25).
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A method for computing the charges corresponding to residual gauge transformations is

provided by the Barnich et al [50, 51]. Using their method one can show that the change

in the charge /δQ along the space of solutions of one copy of the Chern-Simons theory to

be:

/δQ = − k
2π

∫ 2π

0
dφ tr[Λ δAφ]. (2.70)

where Λ is the gauge transformation parameter. We will see that these charges are inte-

grable for all the residual gauge transformations considered below.

Now, demanding that the charge (corresponding to a given residual gauge transformation)

generates the right variations of the functions parametrizing the solutions via

δλ f (x) = {Q, f (x)}, (2.71)

allows one to read out the Poisson brackets between those functions.

If we compute the charges and the algebra of these symmetries it can be seen that they

match with those of (2.28) and (2.31) in the second order formalism. We do not show this

explicitly here since the above analyses in the first order formulation generalizing these

boundary conditions to supergravity and higher-spins in AdS 3 would be thoroughly dealt

with in the following chapters, and all these admit a consistent truncation to pure gravity

in AdS 3.

2.5 Liouville boundary conditions in CS formulation

The starting point here - as in the previous section, is to first find the gauge fields which

yield the metric proposed in (2.33). As before, one mods out the radial r dependence with
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a finite gauge transformation,

A = b−1ab + b−1db,

Ã = bãb−1 + bdb−1,

b = elog r
l L0 . (2.72)

Since the equations of motion for A and Ã are flatness of their connections, one can

equivalently work with a and ã for the rest of the analysis. Let us specialise the solution

in the Appendix (6.105) to:

a = (a(+)
+ L1 − a(−)

+ L−1 + a(0)
+ L0) dx+ + (−a(−)

− L−1 + a(0)
− L0) dx− (2.73)

Assuming that a(+)
+ does not vanish, the flatness conditions imply:

a(0)
− =

1

a(+)
+

∂−a
(+)
+ , a(+)

+ a(−)
− = −

1
2

(∂−a
(0)
+ − ∂+a(0)

− ) (2.74)

a(+)
+ a(−)

+ = κ0(x+) −
1
4

(a(0)
+ )2 −

1
2
∂+a(0)

+ +
1
2

a(0)
+ ∂+ ln a(+)

+ +
1
2
∂2

+ ln a(+)
+ −

1
4

(∂+ ln a(+)
+ )2

Similarly if we consider the 1-form

ã = (ã(+)
+ L1 + ã(0)

+ L0) dx+ + (−ã(+)
− L1 + ã(−)

− L−1 + ã(0)
− L0) dx− (2.75)

Then, assuming now that ã(−)
− does not vanish, the flatness conditions read

ã(−)
− ã(+)

+ = −
1
2

(∂−ã
(0)
+ − ∂+ã(0)

− ), ã(0)
+ = −

1

ã(−)
−

∂+ã(−)
− (2.76)

ã(−)
− ã(+)

− = κ̃0(x−) −
1
4

(ã(0)
− )2 +

1
2
∂−ã

(0)
− −

1
2

ã(0)
− ∂− ln ã(−)

− +
1
2
∂2
− ln ã(−)

− −
1
4

(∂− ln ã(−)
− )2

The corresponding analysis in the second order formulation made us of the Fefferman

and Graham (FG) gauge for the metric. One may impose this gauge on the above gauge

fields by demanding that the metric corresponding to them be in the FG gauge. This is not
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strictly necessary but this has a benefit of reducing the number of solution space param-

eters by those ones which do not contribute to the asymptotic charge. Imposing the FG

gauge on the metric translates to the following condition on the gauge field components:

a(0)
+ = ã(0)

+ , ã(0)
− = a(0)

− (2.77)

This gives the same metric as in (2.35) with the following identifications:

F = a(+)
+ ã(−)

− , κ = a(+)
+ a(−)

+ , κ̃ = ã(−)
− ã(+)

− , σ = a(+)
+ a(−)

− = ã(−)
− ã(+)

+ (2.78)

2.5.1 Asypmtotic symmetry analysis in the first order formalism

Here we try and reproduce the results obtained in the second order formulation by starting

out with the following gauge fields:

a = (a(+)
+ L1 − ∂+(log a(−)

− )L0 −
κ(x+)
a(+)

+

L−1)dx+ + (∂−(log a(+)
+ )L0 − a(−)

− L−1)dx−,

ã = (ã(+)
+ L−1 + ∂−(log ã(+)

+ )L0 −
κ̃(x−)
ã(−)
−

L1)dx− + (−∂+(log ã(−)
− )L0 − ã(+)

+ L1)dx+.(2.79)

Above we have relabelled the parameters for the sake of computational convenience. The

above gauge fields reproduce the desired form of the metric with a FG constraint that

a(0) = ã(0) along with the identifications

F = −a(+)
+ ã(−)

− , ∂+∂− log(a(+)
+ a(−)

− ) = 2a(+)
+ a(−)

− , ∂+∂− log(ã(+)
+ ã(−)

− ) = 2ã(+)
+ ã(−)

− . (2.80)

The residual gauge transformations are:

Λ = Λ(+)a(+)
+ L+ + Λ(0)L0 + (− κΛ

(+)

a(+)
+

+ (y − Λ̃(−))a(−)
− )L−1,

Λ̃ = Λ̃(−)ã(−)
− L− + Λ̃(0)L0 + (− κ̃Λ̃

(−)

ã(−)
−

+ (ỹ − Λ(+))ã(+)
+ )L+,

where ∂−Λ
(+) = 0 = ∂+Λ̃(−) , ∂−(a

(+)
+ a(−)

− ∂+y) = 0 = ∂+(ã(+)
+ ã(−)

− ∂−ỹ). (2.81)
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The solutions to y and ỹ can be given in terms of ξr (2.48):

y = −
∂+ξ

r

a(+)
+ a(−)

−

, ỹ = −
∂−ξ

r

ã(+)
+ ã(−)

−

. (2.82)

The FG constraint on the fluctuations yield the condition:

Λ̃(0) − Λ(0) = ∂−y + y∂− log(a(+)
+ a(−)

− ) = ∂+ỹ + ỹ∂+ log(ã(+)
+ ã(−)

− ). (2.83)

Therefore the residual gauge transformation parameters are labelled by {g, g̃,Λ(+),Λ(−)}.

After imposing the FG gauge the on can write

F = 1
χ
a(+)

+ a(−)
− , ã(+)

+ = − 1
χ
a(+)

+ , ã(−)
− = −χa(−)

− . (2.84)

It turns out that the fluctuations of the gauge field components yield the same result for

the metric components{F, κ, κ̃} as in the second order formalism with Λ(+) = ξ+
(0) and

Λ(−) = ξ−(0); explicitly given in (2.52). The asymptotic charge for such configurations can

then be written as:

/δQ = − k
2π

∫
dφ (Tr[Λ.Aφ] − Tr[Λ̃.Ãφ]),

= `
8πG

∫
dφ [Λ(+)δκ + Λ̃(−)δκ̃]

+
(Λ̃(0)−Λ(0))

2 ∂−δ log a(+)
+ − δa

(+)
+ a(−)

− y +
(Λ̃(0)−Λ(0))

2 ∂+δ log a(−)
− − δa

(−)
− a(+)

+ ỹ,

= `
16πG

∫
dφ

{
2(ξ+

(0)δκ + ξ−(0)δκ̃) + δΦ(∂+ + ∂−)ξr − ξr(∂+ + ∂−)δΦ
}
. (2.85)

The above expression for charge turns out to be the same as (2.50), as that in the second

order formalism. Since the expressions for the fluctuations and the charges are the same

in both the formalisms, we get the same asymptotic symmetry algebra as expected.

We are now ready to study the effects of generalizing boundary conditions studied in this

chapter to the case of supergravity and higher-spins in AdS 3. Since pure gravity in AdS 3

can be obtained as a consistent truncation of both supergravity and higher-spin gauge
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fields in AdS 3, demanding that the generalizations of the boundary conditions contain all

the configurations allowed by the boundary conditions studied in pure gravity may not be

enough. Tentatively one may consistently impose Dirichlet type boundary conditions on

all additional fields in the supergravity and higher-spin settings in AdS 3, while imposing

the boundary conditions studied in this chapter on the 3d metric components alone. We

would not be interested in such generalizations in this thesis.

In the pure gravity case studied here, the dynamical fields on the boundary are the bound-

ary metric(gauge field) components. In a similar spirit, we will demand that there be ad-

ditional supergravity and higher-spin gauge field components on the boundary of AdS 3,

apart from the metric(gauge field) components allowed by the boundary conditions stud-

ied in this chapter. In doing so we would be able study the properties of holographic duals

to induced supergravities and induced W-gravities.



Chapter 3

Holographic induced supergravities

We would now like to generalize the chiral and conformal boundary conditions pro-

posed for pure gravity in AdS 3 to a supersymmetric setting. This would primarily be a

first step in understanding how these boundary conditions arise in supersymmetric string

theories in AdS d×Σcompact spaces. Here, we would like to have configurations which allow

the additional supergravity fields to fluctuate along the boundary of AdS . We first analyse

this in a minimal set-up ofN = (1, 1) supergarvity with negative cosmological constant in

(2+1) dimensions, before commenting about generalizations to other more generic cases.

Here we uncover a relevant graded version of the sl(2,R) Kaĉ-Moody current algebra

along with a super-Virasoro as the asymptotic symmetry algebra. This exercise was done

to generalize the Brown-Henneaux boundary conditions in [22] for the case ofN = (1, 1),

while the boundary conditions for extended sugra in AdS 3 was done in [2]. Here, the

authors were concerned with imposing boundary conditions consistent with the Brown-

Henneaux result in the pure gravity sector while imposing similar Dirichlet conditions on

the other superfields. In [2], the authors made full use of the Chern-Simons formulation of

AdS 3 supergravity and showed that the asymptotic symmetry algebra is composed of two

copies of super-Virasoros, i.e. supersymmetric generalization of two dimensional local

conformal transformations (Witt algebras) with central extension c = 3l/2G. Although

a supersymmetric extension of the Virasoro, these contained quadratic non-linearities on

73
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their right-hand sides, just like the W3 algebra. We would also study in the last section

of this chapter boundary conditions which generalize the the analysis of [5] to extended

super-gravities in AdS 3. This boundary condition allowed for the boundary metric to have

a dynamical conformal factor with flat curvature. The asymptotic algebra consists in this

case two copies of a Virasoro with an algebra of what one may term as supersymmetrized

harmonic Weyl transformations.

The contents of this chapter may be found in future in a paper yet to appear in [53].

3.1 N = (1, 1) super-gravity in AdS 3

We first begin with a simple set up where we would like to see whether one can generalize

the chiral boundary conditions of chapter 2. We will work in the Chern-Simons formula-

tion as we would see that the calculations are easier in this formulation of super-gravity

in AdS 3. The graded Lie algebra of interest for us is osp(1|2) which contains in it the

bosonic sl(2,R). The commutation relations are as follows:

σ0 = 1
2σ

3,
[
σ0,R±

]
= ±1

2R±,[
σ0, σ±

]
= ±σ±,

[
σ±,R±

]
= 0,[

σ+, σ−
]

= 2σ0,
[
σ±,R∓

]
= R±,{

R±,R±
}

= ±σ±,
{
R±,R∓

}
= −σ0. (3.1)

The gauge-invariant, bi-linear, non-degenerate metric on the algebra is:

Tr(σaσb) = hab =
1
4


2 0 0

0 0 4

0 4 0

 , S Tr
(
R−R+) = −S Tr

(
R+R−

)
= 1. (3.2)
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3.1.1 Action

The N = (1, 1) supergravity action can be written as a difference to two Chern-Simons

actions,

S sugra−AdS 3 = S CS [Γ]
∣∣∣
k
− S CS [Γ̃]

∣∣∣
k
,

S CS [Γ] =
k

4π

∫
S Tr(Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ),

where Γ =
[
Aaµσ

a + ψ+µR+ + ψ−µR−
]

dxµ (3.3)

where the gauge algebra for the two CS terms is osp(1|2)1. One can rewrite the the above

Chern-Simons action in an explicit form for As and ψs as [23]

S CS [Γ] =
k

4π

∫ [
Tr(A ∧ dA + 2

3 A ∧ A ∧ A) + iψ̄ ∧ Dψ
]
,

ψ̄ = ψTγ0, where γ0 =

 0 1

−1 0

 , γ1 =

 1 0

0 −1

 , γ2 =

 0 1

1 0

 ,
ψ =

 ψ+

ψ−

 , Dψ = dψ + 1
2 Aa ∧ γaψ. (3.4)

Note that the above definition for ψ̄ would not be used from here on in this thesis. The

analysis can equivalently be carried out in the above form of the action and. We would

prefer to use the former form with the osp(1|2) algebra listed in the previous section. The

equation of motion- as mentioned earlier, is implied by the flatness condition imposed on

the two gauge fields valued in the adjoint of osp(1|2).

3.1.2 Boundary conditions

In order to obtain the required generalization, we first notice the form of the gauge fields

corresponding to the chiral boundary conditions written down in chapter 2. Referring back

1The product of two fermions differs by a factor of i from the standard Grasmann product ((ab)∗ = b∗a∗);
this amounts to using S Tr (R−R+) = −S Tr (R+R−) = −i and {R±,R±} = ∓iσ±, {R±,R∓} = iσ0.
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to the analysis in section 2.3 we notice that the Virasoro Ward identity can be obtained

even when the components a(0) and ã(−)
− are put to zero. Therefore for ease of analysis, we

write the following gauge fields which also yields the same chiral boundary conditions on

the metric but the metric will no longer be in Fefferman-Graham gauge.

a = [L1 − κL−1] dx+,

ã = [−L−1 + κ̃L1] dx− + f (a)Ladx+,

A = b−1(d + a)b,

Ã = b(d + ã)b−1, (3.5)

where we have used the notations and conventions of Appendix(6.3). The same conclu-

sions of section 2.3 can be reached by working with the above ansatz for the gauge fields

and they would indeed correspond to the chiral boundary conditions studied in sections

(2.3) and (2.2).

Here we note that the fluctuating field at the boundary comes from the f (−1) component of

ã+ in (3.5). The components of ã− play the role of sources i.e. functions that need to spec-

ified like a chemical potential. We further notice that all the ã+ components are a priori

turned on and are determined in terms of f (−1). On the other hand, the ã− component with

leading r dependence is fixed to be −1, while only the sub-leading component, L1 of ã− is

allowed to have functional dependence.

Therefore taking a cue from the above observation, we propose the following fall-off

conditions:

Γ = bdb−1 + bab−1,

Γ̃ = b−1db + b−1ãb,

where b = eσ
0 ln(r/`),

a =
[
σ− + Lσ+ + ψ+R+] dx+,



3.1. N = (1, 1) SUPER-GRAVITY IN ADS 3 77

ã =
[
σ+ + L̄σ− + ψ̄−R−

]
dx− +

[
Ãa+σ

a + ψ̃+R+ + ψ̃−R−
]

dx+.

(3.6)

Here the dx− component of the gauge field ã one form is that of a super-gauge field

corresponding to Dirichlet boundary condition as given in [23, 22]. All functions above

are a priori functions of both the boundary coordinates. The equations of motion imply

∂+Γ− − ∂−Γ+ + [Γ+,Γ−] = 0,

∂+Γ̃− − ∂−Γ̃+ + [Γ̃+, Γ̃−] = 0. (3.7)

For the left gauge field this implies that the functions are independent of the x− co-

ordinate. i.e. ∂−a = 0.

∂−L = ∂−ψ+ = 0. (3.8)

While for the right gauge field components, equation of motion allows one to express the

sub-leading components of ã+ in r in terms of its leading ones i.e. Ã++, ψ̃+,

Ã0+ = ∂−Ã++,

Ã−+ = Ã++L̄ − 1
2∂

2
−Ã++ + i

2 ψ̃+ψ̄−,

ψ̃− = Ã++ψ̄− − ∂−ψ̃+. (3.9)

The remaining relations imposed by equations of motion are differential equations relat-

ing components of ã− and leading r components of ã−. These are interpreted as Ward

identities for the boundary theory:

∂+L̄ + 1
2∂

3
−Ã++ − 2L̄∂−Ã++ − Ã++∂−L̄ + iψ̄−

(
Ã++ψ̄− + ∂−ψ̃+

)
+ i∂−(ψ̄−ψ̃+) = 0,

∂+ψ̄− − ∂−[Ã++ψ̄− − ∂−ψ̃+] − 1
2∂−Ã++ψ̄− − L̄ψ̃+ = 0. (3.10)

Here, conventionally (according to Brown-Henneaux analysis) the (̃) functions; Ã++, ψ̃+,

are sources i.e. chemical potentials coupling to conserved currents labelled by L̄, ψ̄− re-
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spectively. But our boundary conditions would require that the currents L̄, ψ̄− play the

role of sources. We will later choose these sources such that global AdS 3 is a part of the

moduli space of bulk solutions, i.e. L̄ = −1
4 and ψ̄ = 0.

The boundary terms required to make the set of solutions considered above variationally

well defined are:

S bndy =
k

8π

∫
∂M

d2x S Tr(−σ0[ã+, ã−]) − 2L̄0σ
−ã+ −

1
2 (ψ̄0)−R−ã+). (3.11)

The variation of the total action therefore reads:

δS total =
k

8π

∫
M

d2x 2(L̄ − L̄0)δÃ++ + i
2 (ψ̄− − (ψ̄0)−)δψ̃+ (3.12)

Here, choosing the fluctuations δÃ++ and δψ̃+ to vanish would be similar to imposing

Dirichlet type boundary condition, where as allowing for their fluctuations demands that

the variational principal is satisfied when L̄ = L̄0 and ψ̄− = ψ̄0. We choose the later case

as this would precisely imply fields fluctuating on the AdS boundary.

One may try and generalize the boundary conditions of Compère et al [6] by choosing

only x+ dependence for the fields fluctuating on the boundary -Ã++ and ψ̃+, for arbitrary

values of the sources L̄0 and ψ̄0−; but when one solves the above Ward identities then

one sees that ψ̃+ cannot just be a function of x+ unless L̄ = 0. Therefore extending the

boundary conditions of [6] to the super-gravity case yields no super-symmetrization of

the asymptotic symmetries of their boundary conditions in the pure gravity case.

3.1.3 Charges and asymptotic symmetry

We first solve the equation of motion (3.10) for a particular value of L̄ = −1
4 and ψ̄− = 0.

This choice of L̄ allows for global AdS 3 to be one of the allowed solutions. This implies
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that the boundary fields Ã++ and ψ̃+ take the following form:

Ã++ = f (x+) + g(x+)eix− + ḡ(x+)e−ix− ,

ψ̃+ = χ(x+)eix−/2 + χ̄(x+)e−ix−/2. (3.13)

The residual gauge transformations that leave ã form invariant are thus:

Λ̃ = ξaσ
a + ε±R±,

δã− = dΛ̃ + [ã−, Λ̃],

=⇒ ξ0 = ∂−ξ+,

ξ− = −1
4 (1 + 2∂2

−)ξ+,

ε− = −∂−ε+,

∂−(1 + ∂2
−)ξ+ = 0 = (∂2

− + 1
4 )ε+. (3.14)

One can solve for the residual gauge transformation parameters:

ξ+ = λ f (x+) + λg(x+)eix− + λ̄ḡ(x+)e−ix− ,

ε+ = ε(x+)eix−/2 + ε̄(x+)e−ix−/2. (3.15)

The left gauge field components are independent of x− and the corresponding residual

gauge transformation are parametrized by:

Λ = ζaσ
a + ε±R±,

δa = dΛ + [a,Λ] ,

ζ0 = −∂+ζ−,

ζ+ = −1
2∂

2
+ζ− + ζ−L − iψ+ε−,

ε+ = −∂+ε− + ζ−ψ+.,

0 = ∂−ζ− = ∂−ε−, (3.16)
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where all the parameters are determined in terms of ζ−(x+) and ε−(x+). We observe that the

arbitrary functions specifying the space of gauge fields a and ã and the space of residual

gauge transformations are specified by functions of x+ alone. Therefore the x+ depen-

dence of the functions will be suppressed further. The variation of the above parameters

under the residual gauge transformations for the right sector are:

δ f = λ′f + 2i(gλ̄ḡ − ḡλg) + i(χε̄ + χ̄ε),

δg = λ′g + i(gλ f − λg f ) + iχε,

δḡ = λ̄′ḡ − i(ḡλ f − λ̄ḡ f ) + iχ̄ε̄,

δχ = ε′ + i[gε̄ − f
2ε − λgχ̄ +

λ f

2 χ],

δχ̄ = ε̄′ − i[ḡε − f
2 ε̄ − λ̄ḡχ +

λ f

2 χ̄] (3.17)

Similar those for the left sector are:

δL = −
1
2
ζ′′′− +

[
(ζ−L)′ + ζ′−L

]
− i

[
1
2 (ψ+ε−)′ + ψ+ε

′
−

]
δψ+ = −ε′′− +

[
(ζ−ψ+)′ + 1

2ζ
′
−ψ+

]
+ Lε−. (3.18)

The charges corresponding to these transformation is given by:

/δQ[Λ, Λ̃] = k
2π

∫
dφ

{
S tr[Λ, δaφ] − S tr[Λ̃, δãφ]

}
. (3.19)

The above charge can be integrated and is finite. The charges for the two gauge fields

decouple:

Q[Λ̃] = − k
2π

∫
dφ[− f

2λ f + gλ̄ḡ + ḡλg + χε̄ − χ̄ε],

Q [Λ] = k
2π

∫
dφ (ζ−L + iε−δψ+) . (3.20)
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This charge is the generator of canonical transformations on the space of solutions parametrized

by set of functions F via the Poisson bracket.

δΛF = {Q[Λ], F} (3.21)

Therefore the Poisson bracket algebra for the right sector is:

{ f (x+′), f (x+)} = −2αQδ
′(x+′ − x+), {χ(x+′), f (x+)} = −iαQδ(x+′ − x+)χ,

{g(x+′), f (x+)} = −2iαQg(x+)δ(x+′ − x+), {χ̄(x+′), f (x+)} = iαQδ(x+′ − x+)χ̄,

{ḡ(x+′), f (x+)} = 2iαQḡ(x+)δ(x+′ − x+), {χ̄(x+′), g(x+)} = iαQδ(x+′ − x+)χ,

{ḡ(x+′), g(x+)} = iαQ f (x+)δ(x+′ − x+), {χ(x+′), ḡ(x+)} = −iαQδ(x+′ − x+)χ̄.

+αQδ
′(x+′ − x+) (3.22)

While the fermionic Poisson brackets are:

{χ̄(x+′), χ(x+)} =
iαQ

2 f (x+)δ(x+′ − x+) + αQδ
′(x+′ − x+),

{χ(x+′), χ(x+)} = iαQg(x+)δ(x+′ − x+),

{χ̄(x+′), χ̄(x+)} = iαQḡ(x+)δ(x+′ − x+). (3.23)

where αQ = 2π
k . Rescaling the above currents to:

f → k
4π f , g→ k

2πg, ḡ→ k
2π ḡ, χα →

k
2πχα, χ̄α →

k
2π χ̄α, (3.24)

and expanding them in the Fourier modes in x+ yields the following commutators:

[ fm, fn] = m k
2δm+n, [χm, fn] = 1

2χm+n,

[gm, fn] = gm+n, [χ̄m, fn] = −1
2 χ̄m+n,

[ḡm, fn] = −ḡm+n, [χ̄m, gn] = −χm+n,

[ḡm, gn] = −2 fm+n − mkδm+n,0, [χm, ḡn] = χ̄m+n, (3.25)
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and anti-commutators:

{χm, χn} = −gm+n, {χ̄m, χ̄n} = −ḡm+n,

{χ̄m, χn} = − fm+n − kmδm+n,0. (3.26)

This yields the familiar affine sl(2,R) current algebra at level k = c/6 with two additional

fermionic current parametrized by χ, χ̄. These fermionic currents form a semi-direct sum

with the sl(2,R) current algebra elements with their anti-commutators yielding the later.

Similarly the left sector yields the familiar Brown-Henneaux result. We first redefine the

currents by suitable scaling:

L→ k
2πL , ψ+ →

k
2πψ+. (3.27)

After these redefinitions one gets the following Poisson algebra:

{
L(x′+), L(x+)

}
=

k
4π
δ′′′(x′+ − x+) −

(
L(x′+−) + L(x+)

)
δ′(x′+ − x+),

i
{
ψ+(x′+), ψ+(x+)

}
= − k

π
δ′′(x′+ − x+) + 2L(x′+)δ(x′+ − x+),{

L(x′+), ψ+(x+)
}

= −
[
ψ+(x′+) + 1

2ψ+(x+)
]
δ′(x′+ − x+). (3.28)

The Fourier modes for the above algebra satisfy the following Dirac brackets:

[Lm, Ln] = (m − n)Lm+n + k
2m3δm+n,0,

{ψ+m, ψ+n} = 2Lm+n + 2km2δm+n,0,[
Lm, ψ+n

]
= (m

2 − n)ψ+(m+n). (3.29)

This is the Virasoro algebra with an affine super-current parametrized by ψ+.

The above result may also be obtained by working in the Hilbert-Palatini action for

super-gravity where the gauge transformations are recognized as diffeomorphisms and

local Lorentz transformations. This exercise was done for the Brown-Henneaux case in
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[54]. The bulk diffeomorphisms that respect the super-gravity generalization of Brown-

Henneaux boundary condition would be generated by asymptotic Killing vectors and

asymptotic Killing spinors. The spinor bi-linears of the later are again asymptotic Killing

vectors. For the case of chiral boundary conditions dealt with in this chapter, it is difficult

to define asymptotic charges via the formalism of Barnich, Brandt and Compère is one

uses the approach of [54]. However one would essentially reach at the same set of asymp-

totic symmetries. Here too, one finds that bulk diffeomorphisms are generated by a set

of generalized Killing spinors whose bi-linears are the vector fields generating residual

diffeomorphisms found in chapter 2.

3.2 Generalization to extended AdS 3 super-gravity

Next, we will generalize the analysis of the last section to a extended super-gravity setting

with negative cosmological constant. Since the number for gauge field components would

now increase to include the once corresponding to the internal bosonic directions, it would

be interesting to see whether the chiral boundary conditions proposed admit a unique non-

trivial generalization. That is, we would seek boundary fall-off conditions for the gauge

field components such that all of them admit a fluctuating mode at the AdS 3 boundary

with the solutions elucidated in the pure gravity case being a subset. The N(4, 4) case

which would be of interest for realizing these boundary conditions in a string theoretic

setting would therefore be a special case of this analysis.

One first begins by classifying the super algebras possible in AdS 3 [55, 2]. Let G denote

the graded Lie algebra, such that G = G0 ⊕ G1, where G0 denotes the even part where

as G1 denotes the odd part. The even part, G0 must contain a direct sum of sl(2,R)

and an internal symmetry algebra denoted by G̃. The fermions must transform in the 2-

dimensional spinor representation of sl(2,R). The dimension of the internal algebra G̃ is

denoted by D while the fermions transform under a representation ρ (dim ρ = d) of G̃
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which is real but not necessarily unitary. This is possible in the seven cases listed below:

G G̃ D ρ

osp(N |2,R) so(N) N(N − 1)/2 N

su(1, 1|N)N,2 su(N) + u(1) N2 N + N̄

su(1, 1|2)/u(1) su(2) 3 2 + 2̄

osp(4∗|2M) su(2) + usp(2M) M(2M+1)+3 (2M, 2)

D1(2, 1;α) su(2) + su(2) 6 (2, 2)

G(3) G2 14 7

F(4) spin(7) 21 8s

The super-traces defined above are consistent, invariant and non-degenerate with respect

to the super-algebra defined above and would be used in defining the action and the

charges. The detailed analysis is given in in Appendix (6.4).

3.2.1 Action

The gauge field is then written as a super gauge field valued in the adjoint of the above

(graded Lie) super-algebra.:

Γ =
[
Aaµσ

a + BaµT a + ψ+αµR+α + ψ−αµR−α
]

dxµ,

= ΓaµJadxµ. (3.30)

The gauge field as written above, separates as a sum of sl(2,R), G̃ and fermionic one

forms. The parameters Aa and Ba commute2, while ψ±αs are anti-commuting Grasmann

parameters. The gauge field Γ is a G valued one-form.

The super-gravity action is then given as the difference of two Chern-Simons action at
2It is understood in the above context that since Aa parametrizes the gauge one-form along the sl(2,R),

its index a runs from {0,+,−}. While the index a for the parameter Ba runs from {1..D} along the internal
G̃ basis.
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level k written for two such gauge fields Γ and Γ̃.

S [Γ, Γ̃] = S CS [Γ] − S CS [Γ̃]. (3.31)

We will concern ourselves with the case where both Γ and Γ̃ are valued in the same G.

The cases where this is not so leads to chiral action and can be regarded as one of the ways

to generate chiral asymptotic symmetries3. The detailed action is written out explicitly in

terms of the specific super-gauge field components in Appendix (6.4.2).

3.2.2 Boundary conditions

Now, we would like to impose boundary conditions on the gauge fields- just as in the

higher-spin case, which generalize the chiral boundary conditions on pure AdS 3 of chap-

ter 2. Here we would allow one of the super-gauge fields- Γ, to obey the boundary condi-

tions of [2] i.e. consistent with Brown-Henneaux, while proposing new boundary condi-

tions on Γ̃. The review of Brown-Henneaux type boundary conditions would be done in

the following analysis of Γ while the chiral boundary conditions generalized to extended

super-gravity would be analysed in Γ̃.

The fall-off conditions in terms of the gauge fields are:

Γ = bdb−1 + bab−1,

Γ̃ = b−1db + b−1ãb,

where b = eσ
0 ln(r/`),

a =
[
σ− + Lσ+ + ψ+α+R+α + Ba+T a] dx+,

3At the level of the action there is no reason to suspect that the left and the right gauge fields represent
left and right chiralities. A comment of such a nature can only be made in the light of suitable boundary con-
ditions, which we know are necessary to be supplemented with a Chern-Simons theory on a non-compact
gauge group. It so happens, that for the Brown-Henneaux boundary conditions the left and the right gauge
fields do represent left and right chiralities, and it is with this understanding that we refer to them as two
chiral sectors.
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ã =
[
σ+ + L̄σ− + ψ̄−α−R−α + B̄a−T a

]
dx− +

[
Ãa+σ

a + B̃a+T a + ψ̃±α+R±α
]

dx+.

(3.32)

Refer to Appendix (6.4.3) for more details. Provided they satisfy the following set of

differential equations:

∂+L̄ + 1
2∂

3
−Ã++ − 2L̄∂−Ã++ − Ã++∂−L̄

+iηαβψ̄−β−
(
Ã++ψ̄−α− + (λa)βαB̄a−ψ̃+β+ + ∂−ψ̃+α+

)
+ iηαβ∂−(ψ̄−β−ψ̃+α+) = 0,

∂+B̄a− − ∂−B̃a+ + f bc
aB̃b+B̄c− + id−1

2Cρ
(λa)αβψ̃+α+ψ̄−β− = 0,

∂+ψ̄−α− − ∂−[Ã++ψ̄−α− − ∂−ψ̃+α+ + (λa)βαB̄a−ψ̃+β+] − 1
2∂−Ã++ψ̄−α−

+(λa)βαB̄a−[Ã++ψ̄−β− − ∂−ψ̃+β+ + (λa)γβB̄b−ψ̃+γ+] − (λa)βαB̃a+ψ̄−β− − L̄ψ̃+α+ = 0.

(3.33)

These are the Ward identities expected to be satisfied by the induced gravity theory on the

boundary. Here, conventionally, the (̃) functions Ã++, B̃a+, ψ̃+α+, are sources coupling to

conserved currents L̄, B̄a−, ψ̄−α−, respectively. Since it is the sources which are the ones

which survive on the boundary- as can be seen if one plugs back the r dependence, we

would like to solve these differential equations for particular value of the currents. There-

fore, as expected yielding an effective theory of of fluctuating sources on the boundary.

We will later choose the (̄) functions such that global AdS 3 is a part of the moduli space

of bulk solutions.i.e. L̄ = −1
4 and B̄ = 0 = ψ̄.

The boundary term to be added so as to make the right sector ansatz variationally well

defined is given by:

S bndy =
k

8π

∫
∂M

d2x S Tr(−σ0[ã+, ã−]) − 2L̄0σ
−ã+ + (d−1

2Cρ
)2T aT bS Tr(ã+Ta)S Tr(ã−Tb)

−2(d−1
2Cρ

)B̄0aT aT bS Tr(ã+T b) − 1
2 (ψ̄0)−αR−αã+). (3.34)
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This implies the following desired variation of the total action:

δS total =
k

8π

∫
M

d2x 2(L̄ − L̄0)δÃ++ + 2( 2Cρ

d−1 )(B̄a− − B̄0a)δB̃a+ + i
2 (ψ̄−α− − (ψ̄0)−α)δψ̃+α+η

αβ

(3.35)

Here, one has an option of choosing δ(̃) functions to vanish at the AdS asymptote, imply-

ing a Brown-Henneaux type boundary condition where Ã++, B̃a+, ψ̃+α+ act as chemical po-

tentials. Or, alternatively, treat L̄, B̄0a, (ψ̄0)−α as chemical potentials allowing Ã++, B̃a+, ψ̃+α+

to fluctuate. Thus describing a theory of induced gravity on the boundary. In our present

case, we would be choosing the later by fixing L̄ = −1/4, B̄0a = 0 = (ψ̄0)−α. Thus the

variational principle is satisfied for configurations with L̄ = −1
4 and B̄a− = 0 = ψ̄−α− which

describes global AdS 3.

It turns out that one can choose the global AdS 3 configuration as the one with the zero

asymptotic charge i.e. the vacuum for the above boundary condition. If on the other hand

one chooses L̄ = 0 - which corresponds to an extremal BTZ blackhole, then one gets

the generalization of Compère et al’s [48] to minimal supergravity. Here the vacuum

can be chosen to be extremal BTZ with global AdS 3 configuration not being a part of

the allowed space of solution. It is however interesting to note that allowing for global

AdS 3 to be part of the solution space allows extremal BTZ to be in the space of solutions

while disallowing non-extremal BTZ solutions. In other words, the only BTZ black-hole

configuration allowed by the above boundary condition is an extremal one.

3.2.3 Charges and symmetries

Just as in the previous chapters, one needs to find the space of gauge transformations

that maintains the above form of the gauge fields, thus inducing transformations on the

functions Ãa+, B̃a+, ψ̃+α+, L, Ba, ψ+α+ which parametrize the space of solutions. Once this

is achieved, one can define asymptotic conserved charge associated with the change in-
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duced by such residual gauge transformations on the space of solutions. For the boundary

conditions to be well defined, this asymptotic charge must be finite and be integrable on

the space of solutions.

Left sector

The analysis of the left sector is exactly as in [2] and is covered in the Appendix (6.4.4).

One basically gets the super-Virasoro with quadratic non-linearities as the asymptotic

algebra for the modes of parameters labelling the left sector gauge filed Γ.

[Lm, Ln] = (m − n)Lm+n + k
2m3δm+n,0,[

Ba
m, B

b
n

]
= − f abcBc

m+n +
2kCρ

d−1 mδabδm+n,0,[
Lm, Ba

n
]

= −nBa
m+n,{

(ψ+α)m, (ψ+β)n

}
= 2ηαβLm+n − 2id−1

2Cρ
(m − n)(λa)αβ(Ba)m+n

+ 2kηαβm2δm+n,0

− k( d−1
2kCρ

)2
[{
λa, λb

}
αβ

+
2Cρ

d−1ηαβδ
ab
]

(BaBb)m+n,[
Lm, (ψ+α)n

]
= (m

2 − n)(ψ+α)m+n,[
Ba

m, (ψ+α)n
]

= i(λa)βα(ψ+β)m+n. (3.36)

This is the non-linear super-conformal algebra or the super-Virosoro algebra. The central

extension is k = c/6, and is the same for all the seven cases listed in the table previously.

This algebra, although a supersymmetric extension of the Virasoro algebra, is not a graded

Lie algebra in the sense that the right-hand sides of the fermionic (Rarita-Schwinger)

anti-commutators contains quadratic non-linearities in currents for the internal symmetry

directions.
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Right sector

The analysis of the right sector is similar to the one covered in the N = (1, 1) case and

is covered in the Appendix (6.4.4). Here we choose L̄ = −1
4 , B̄ = 0 = ψ̄ as the values

for the chemical potential as it would allow for global AdS 3 as one of the solutions. The

asymptotic symmetry algebra in Fourier modes of the parameters labelling the right gauge

field Γ̃ is

[ fm, fn] = m k
2δm+n,0, [(χα)m, fn] = 1

2 (χα)(m+n),

[gm, fn] = gm+n, [(χ̄α)m, fn] = −1
2 (χ̄α)(m+n),

[ḡm, fn] = −ḡm+n, [(χ̄α)m, gn] = −(χα)m+n,

[ḡm, gn] = −2 fm+n − mkδm+n,0, [(χα)m, ḡn] = (χ̄α)m+n,

{(χα)m, (χβ)n} = −ηαβgm+n, {(χ̄α)m, (χ̄β)n} = −ηαβḡm+n,

[(B̃a+)m, (χβ)n] = −(d−1
2Cρ

)(λa)αβ(χα)(m+n), [(B̃a+)m, (χ̄β)n] = −(d−1
2Cρ

)(λa)αβ(χ̄α)(m+n),

[(B̃a+)m, (B̃b+)n] = −i( d−1
2Cρ

) f c
ab (B̃c+)(m+n) − (d−1

2Cρ
)kmδabδm+n,0,

{(χ̄α)m, (χβ)n} = −ηαβ f(m+n) + i(λa)αβ(B̃c+)(m+n) − kmηαβδm+n,0. (3.37)

This is the affine Kaĉ-Moody super-algebra. Here, it is evident that the central extension

to the sl(2,R)current sub-algebra spanned by ( f , g, ḡ) is k = c/6. The quadratic non-

linearities that occur in the super-Virasoro are not present here.

Thus demanding that one considers all types of fields (Ã, B, ψ̃) have fluctuating compo-

nents on the boundary of asymptotic AdS 3, we have constructed a unique generalization

of the boundary condition studied in chapter 2 to extended super-gravity in asymptoti-

cally AdS 3 spaces. In doing so we uncovered the expected super-Virasoro algebra with

quadratic non-linearities for the left sector and a Kaĉ-Moody super-current algebra at
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level k = c/6 for the right sector. Here, we have demanded as before that the global AdS 3

remain in the space of allowed solutions.

3.3 Boundary conditions for holographic induced super-

Liouville theory

We now turn to generalizing boundary conditions proposed by [5] to extended super-

gravity in AdS 3 The boundary conditions proposed by [5] allow the boundary metric to

fluctuate upto a conformal factor; demanding that the boundary metric have vanishing

Ricci curvature. This corresponds to the χ = 0 case in chapter 2, in (2.44). The nota-

tions and conventions below are taken from Henneaux et al [2] and are summarized in

Appendix (6.4.1).

We would like to carry out this analysis in the Chern-Simons formulation of gravity in

d = 3, as the supergravity fields can be conveniently encapsulated as components of the

gauge fields along the graded gauge algebra which comprise the super-gravity algebra.

Like in the case for boundary conditions for induced Liouville theory in chapter 2, the

analysis for the two gauge fields are identical; hence we will give the details of only one

of the gauge fields - Ã. One begins with an ansatz,

Ã = bãb−1 + bdb−1,

ã =
[
e−Φ̃κ̃σ− + eΦ̃σ+ + B̃a−T a + ψ̃+α−R+α + ψ̃−α−R−α

]
dx−,

∂+ã = 0, b = eσ
0 ln(r/`). (3.38)

The equation of motion, ∂+ã− − ∂−ã+ + [ã+, ã−] = 0 is readily satisfied. The above form

of the gauge field ansatz doesn’t need extra boundary terms added to the Chern-Simons

action to make it variationally consistent. This is made apparent due to the fact that

the gauge field ã as an 1-form only has a dx− component along the boundary while the
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fluctuation of the action yields,

δS CS [Ã] = k
2π

∫
∂M

S tr[ã ∧ δã]. (3.39)

We now look for the space of gauge transformations which keep the above 1−form ã form

invariant.

δΛ̃ã = dΛ̃ + [ã, Λ̃] =⇒ δΛ̃ã
∣∣∣
σ0 = 0, ∂+Λ̃ = 0 (3.40)

where

Λ̃ = ξ̃aσ
a + b̃aT a + ε̃±αR±α. (3.41)

Solving these constraints on Λ̃, we get

δΛ̃ã
∣∣∣
σ0 = 0,

=⇒ ξ̃− = −1
2e−Φ̃∂−ξ̃0 + e−2Φ̃κ̃ξ̃+ −

1
2e−Φ̃ηαβ(ψ̃+α−ε̃−β + ψ̃−α−ε̃+β). (3.42)

The variations these induce on the functions parametrizing the 1−form ã are

δΛ̃Φ̃ = e−Φ̃∂−ξ̃+ − ξ̃0 + ie−Φ̃ηαβψ̃+α−ε̃+β,

δΛ̃κ̃ = −1
2∂

2
−ξ̃0 + 1

2∂−Φ̃∂−ξ̃0 − 2∂−Φ̃e−Φ̃κ̃ξ̃+e−Φ̃ + ∂−(κ̃ξ̃+),

− i
2

[
∂−Φ̃ − ∂−

]
ηαβ(ψ̃+α−ε̃−β + ψ̃−α−ε̃+β) + e−Φ̃κ̃∂−ξ̃+

−iηαβ
[
eΦ̃ψ̃−α−ε̃−β − e−Φ̃κ̃ψ̃+α− ˜ε+β

]
,

δΛ̃B̃a− = ∂−b̃a + f bc
a B̃b−b̃c − id−1

2Cρ
(λa)αβ(ψ̃−α−ε̃+β − ψ̃+α−ε̃−β),

δΛ̃ψ̃+α− = ∂−ε̃+α −
1
2 ψ̃+α−ξ̃0 + (eΦ̃ε̃−α − ψ̃−α−ξ̃+) − (λa)βα(B̃a−ε̃+β − b̃aψ̃+β−),

δΛ̃ψ̃−α− = ∂−ε̃−α + 1
2 ψ̃−α−ξ̃0 + eΦ̃κ̃ε̃+α − (λa)βα(B̃a−ε̃−β − b̃aψ̃−β−)

−ψ̃+α+

[
−1

2e−Φ̃∂−ξ̃0 + e−2Φ̃κ̃ξ̃+ + i
2e−Φ̃ηαβ(ψ̃+α−ε̃−β − ψ̃−α−ε̃+β)

]
. (3.43)

Associated to the above fluctuations that keeps the gauge field ã in the same form, are
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infinitesimal variations of a well defined asymptotic charge.

/δQ̃ = − k
2π

∫
dφ S tr[Λ̃δãφ],

= − k
2π

∫
dφ

{
ξ̃−δeΦ̃ + ξ̃+δ(e−Φ̃κ̃) − iηαβ(δψ̃+α−ε̃−β − δψ̃−α−ε̃+β) +

2Cρ

d−1δB̃a−ba
}
.(3.44)

The next step is to be able to write the above change in the charge such that it is a total

variation δQ̃ so that δ can be taken out of the integral and (the charge) can be integrated

from a suitable point (vacuum) on the solution space to any arbitrary point. Therefore, it

is important to recognize field independent parameters parametrizing the gauge transfor-

mations and accordingly functions of the fields parametrizing the space of solutions on

whom a phase space can be defined via the Poisson brackets induced by the integrated

charge.

The above expression for /δQ̃ can be simplified if one redefines

ψ̃±α− = Ψ̃±α−e±Φ̃, ε̃±α = ε±αe±Φ̃, ξ̃+ = Ξ̃+eΦ̃. (3.45)

δQ̃ = − k
2π

∫
dφ

{
1
2δΦ̃

′ξ̃0 + Ξ̃+δκ̃ +
2Cρ

d−1δB̃a−b̃a − iηαβ
[
δΨ̃+α−ε̃−β − δΨ̃−α−ε̃+β

]}
(3.46)

Therefore the total integrated charge is

Q̃ = − k
2π

∫
dφ

{
1
2Φ̃′ξ̃0 + Ξ̃+κ̃ +

2Cρ

d−1 B̃a−b̃a − iηαβ
[
Ψ̃+α−ε̃−β − Ψ̃−α−ε̃+β

]}
(3.47)

The redefined gauge transformation parameters in (3.45) are therefore to be considered

field independent. Also, one sees that it is Φ̃′ and not Φ̃ which is appropriate for defining

the phase space structure on the space of solutions. The variations of the redefined fields

in terms of the field independent gauge parameters are,

δΛ̃Φ̃′ = ∂−(Φ̃′Ξ̃+) + ∂2
−Ξ̃+ − ∂−ξ̃0 + iηαβ(∂−Ψ̃+α−ε̃+β + Ψ̃+α−∂−ε̃+β),

δΛ̃κ̃ = 2κ̃∂−Ξ̃+ + ∂−κ̃Ξ̃+ −
1
2∂

2
−ξ̃0 + 1

2Φ̃′∂−ξ̃0

− i
2η

αβ
[
(Φ̃′Ψ̃+α− − ∂−Ψ̃+α− − Ψ̃+α−∂− + 2Ψ̃−α−)ε̃−β
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+(Φ̃′Ψ̃−α− − ∂−Ψ̃−α− − 2κ̃Ψ̃+α− − Ψ̃−α−∂−)ε̃+β

]
,

δΛ̃Ψ̃+α− = −1
2Ψ̃+α−

[
Φ̃′Ξ̃+ + iηρσΨ̃+ρ−ε̃+σ

]
+ ∂−ε̃+α + 1

2Φ̃′ε̃+α + ε̃−α − Ψ̃−α−Ξ̃+

−(λa)βα(B̃a−ε̃+β − b̃aΨ̃+α−),

δΛ̃Ψ̃−α− = ∂−ε̃−α −
1
2Φ̃′ε̃−α + κ̃ε̃+α − (λa)βα(B̃a−ε̃−β − b̃aΨ̃−β−)

−Ψ̃+α−

[
−1

2∂−ξ̃0 + κ̃Ξ̃+ + iηαβ(Ψ̃+α−ε̃−β − Ψ̃−α−ε̃+β)
]

+1
2Ψ̃−α−

[
Ψ̃′Ξ̃+ + ∂−Ξ̃+ + iηαβΨ̃+α−ε̃+β

]
,

δΛ̃B̃a− = ∂−b̃a + f bc
a B̃a−b̃a − i d−1

2Cρ (λa)αβ(Ψ̃−α−ε̃+β − Ψ̃+α−ε̃−β). (3.48)

This leads to the following Poisson brackets amongst the solution space variables

−k
2π

{
κ̃(x−′), κ̃(x−)

}
= −2κ̃(x−)δ′(x−′ − x−) + κ̃′(x−)δ(x−′ − x−),

−k
2π

{
Φ̃′(x−′), κ̃(x−)

}
= −Φ̃′(x−)δ′(x−′ − x−) − δ′′(x−′ − x−),

−k
2π

{
Ψ̃+α−(x−′), κ̃(x−)

}
=

[
1
2Φ̃′Ψ̃+α− −

1
2∂−Ψ̃+α− + Ψ̃−α−

]
(x−)δ(x−′ − x−)

+1
2Ψ̃+α−(x−)δ′(x−′ − x−),

−k
2π

{
Ψ̃−α−(x−′), κ̃(x−)

}
=

[
−1

2Φ̃′Ψ̃−α− + 1
2∂−Ψ̃−α− − κ̃Ψ̃+α−

]
(x−)δ(x−′ − x−)

−1
2Ψ̃−α−δ

′(x−′ − x−),

−k
2π

{
Φ̃′(x−′), Φ̃′(x−)

}
= 2δ′(x−′ − x−),

−k
2π

{
Ψ̃−α−(x−′), Φ̃′(x−)

}
= −Ψ̃+α−(x−′)δ′(x−′ − x−),

−k
2π

{
Ψ̃+α−(x−′), Ψ̃+β−(x−)

}
= −iηαβδ(x−′ − x−),

−k
2π

{
Ψ̃−α−(x−′), Ψ̃+β−(x−)

}
= −iηαβδ′(x−′ − x−)

+
[

i
2ηαβΦ̃

′ − i(λa)αβB̃a− + 1
2Ψ̃+β−Ψ̃+α−

]
(x−)δ(x−′ − x−),

−k
2π

{
Ψ̃−α−(x−′), Ψ̃−β−(x−)

}
=

[
iκ̃ηαβ − Ψ̃+β−Ψ̃−α− −

1
2Ψ̃−β−Ψ̃+α−

]
(x−)δ(x−′ − x−),

−k
2π

{
B̃a−(x−′), Ψ̃+α−(x−)

}
= d−1

2Cρ (λa)βαΨ̃+β−(x−)δ(x−′ − x−),

−k
2π

{
B̃a−(x−′), Ψ̃−α−(x−)

}
= d−1

2Cρ
(λa)βαΨ̃−β−(x−)δ(x−′ − x−),

−k
2π

{
B̃a−(x−′), B̃b−(x−)

}
= −d−1

2Cρ

[
δabδ

′(x−′ − x−) − f c
ab B̃c−δ(x−′ − x−)

]
. (3.49)

The first Possion bracket among κ̃s can be easily recognized as that of the Witt algebra
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i.e. Virasoro without the central extension. The phase-space variable Φ̃′ can be used to

generate the central term in the Witt algebra of κ̃ by redefining

ˆ̃κ = κ̃ + αcΦ̃
′′. (3.50)

After further rescaling ˆ̃κ → k
2π one can show the central term in the Virasoro of ˆ̃κ to be

2αc(αc + 1)k/(2π); which for αc = −1
2 ±

1
√

2
yields the central extension of the Virasoro

found in Brown-Henneaux analysis.

We conclude this chapter mentioning some salient points. The Brown-Henneaux type

boundary conditions adapted to super-gravity in AdS 3 [2] yield the super-Virasoro alge-

bra which has quadratic non-linearities, while the current algebra obtained as a result of

imposing chiral boundary conditions yielding the super-Kaĉ-Moody current algebra do

not have such non-linearities on the rhs. We will see that this seems to be a recurrent

feature of the chiral boundary conditions imposed on gauge theories on AdS 3. We further

shown that the super-symmetrizing the boundary conditions of [5] yields a super exten-

sion of the harmonic Weyl transformations as the asymptotic algebra. Thus we see that

the Virosoro can be a sub-algebra of a new infinite dimensional super-algebra apart from

the super-Virasoro uncovered in [2].



Chapter 4

Holographic chiral induced W-gravities

In this chapter we turn to generalization of chiral boundary conditions studied in chapter

2 to the case of higher-spin gauge fields in AdS 3. We expect these boundary conditions

on such gauge fields in AdS 3 to be dual to a dynamical theory of higher-spin currents i.e.

induced theory of W-gravity, since according to the AdS /CFT prescription it is the gauge

fields in the bulk which couple to the boundary conserved currents. We study the case of

higher-spin fields with spin-2 and spin-3 fields are turned on; spin-2 field being the usual

metric or the graviton. As mentioned in the introduction, the only known complete action

for such theories when spins greater than 2 are included is in the Chern-Simons formalism

of gauge fields in AdS 3. For the higher spin theory based on sl(3,R)⊕ sl(3,R) algebra, our

boundary conditions give rise to one copy of classical W3 and a copy of sl(3,R) or su(1, 2)

Kaĉ-Moody as the asymptotic symmetry algebra. We propose that the higher spin theories

with these boundary conditions describe appropriate chiral induced W-gravity theories on

the boundary. We also consider boundary conditions of spin-3 higher spin gravity that

admit a u(1) ⊕ u(1) current algebra.

95
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4.1 Chiral boundary conditions for S L(3,R) higher spin

theory

We are interested in proposing boundary conditions for higher spin theories such that they

holographically describe appropriate chiral induced W-gravity theories. In the first order

formalism the theory is formulated on the same lines as AdS 3 gravity but with the gauge

group replaced by S L(3,R) [46, 56]. The Dirichlet boundary conditions of this theory

were considered by Campoleoni et al [56] and they showed that the asymptotic symmetry

algebra is two commuting copies of classical W3 algebra with central charges.

We now turn to generalising the boundary conditions of the section (2.1) to the 3-dimensional

higher spin theory based on two copies of sl(3,R) or su(1, 2) algebra [46, 56]. Motivated

by the CIG boundary conditions of chapter 2 we write the connections again as deforma-

tions of AdS 3 solution. We work in the principal embedding basis for the gauge algebra.

Our conventions very closely follow those of [56] and may be found in Appendix (6.5).

The action is given as difference of two chern-Simons theories valued with gauge fields -

A and Ã, valued in the adjoint of sl(3,R). The generalized dribein and spin connections

are still given by the same relation,

e =
`

2
(A − Ã) ω =

1
2

(A + Ã), (4.1)

with the spin fields given by,

gµν =
1
2

Tr(eµeν) ϕµνρ =
1
3!

Tr(e(µeνeρ)). (4.2)

We make use of the same observation; as in the super-gravity analysis, to propose bound-

ary fall-off conditions on the higher-spin gauge fields. The gauge fields given below

a = [L1 − κL−1] dx+,
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ã = [−L−1 + κ̃L1] dx− + f (a)Ladx+,

A = b−1(d + a)b,

Ã = b(d + ã)b−1, b = eL0 ln( r
` ), (4.3)

reproduce the same Ward identity as in (2.59) and asymptotic symmetry algebra as in the

case of chiral induced gravity boundary conditions of chapter 2. They can be constructed

as follows:

Begin with the generic solution corresponding to the Brown-Henneaux boundary condi-

tions; which after getting rid of their radial dependence have 1-form components in either

x+ or x− directions. Then add to one of the gauge fields; ã in the above case, a generic

adjoint valued component in the other direction; in this case f (a)Ladx+. Solving eom

with a priori generic functional dependence would subsequently yield the required Ward

identity.

Therefore we start with the following ansatz for the gauge connections:

A = b−1∂rb dr + b−1 [
(L1 − κ L−1 − ωW−2) dx+] b (4.4)

Ã = b ∂rb−1 dr + b

(−L−1 + κ̃ L1 + ω̃W2) dx− +

 1∑
a=−1

f (a)La +

2∑
i=−2

g(i)Wi

 dx+

 b−1

where b is again eL0 ln r
l . Note that, as in sl(2,R) case, our ansatz is the Dirichlet one

of [56] for the left sector. Similarly, the right sector includes the right sector ansatz of

previous section as a special case.1 All the coefficients of the algebra generators above

are understood to be functions of x+ and x−.

Imposing flatness conditions on A and Ã demand

∂−κ = 0, ∂−ω = 0, (4.5)

1A similar ansatz has been considered in [57].
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∂− f (−1) + f (0) = 0,

∂− f (0) + 2 f (1) + 2 κ̃ f (−1) − 16α2 ω̃ g(−2) = 0,

−∂+κ̃ + ∂− f (1) + κ̃ f (0) − 4α2 ω̃ g(−1) = 0

∂−g(−2) + g(−1) = 0,

∂−g(−1) + 2 g(0) + 4 κ̃ g(−2) = 0,

∂−g(0) + 3 g(1) + 3 κ̃ g(−1) = 0,

∂−g(1) + 4 g(2) + 2 κ̃ g(0) + 4 ω̃ f (−1) = 0,

−∂+ω̃ + ∂−g(2) + κ̃ g(1) + 2 ω̃ f (0) = 0. (4.6)

These equations enable one to solve for { f (0), f (1), g(−1), g(0), g(1), g(2)} in terms of {κ̃,

ω̃, f (−1), g(−2)} and their derivatives, provided the functions {κ̃, ω̃, f (−1), g(−2)} satisfy the

constraints coming from the 3rd and the 8th equations:

(∂+ + 2 ∂− f (−1) + f (−1) ∂−) κ̃ − α2 (12 ∂−g(−2) + 8 g(−2)∂−) ω̃ =
1
2
∂3
− f (−1), (4.7)

12 (∂+ + 3 ∂− f (−1) + f (−1)∂−) ω̃ + (10 ∂3
−g

(−2) + 15 ∂2
−g

(−2) ∂−+ 9 ∂−g(−2)∂2
−+ 2 g(−2)∂3

−) κ̃

− 16 (2 ∂−g(−2)+ g(−2) ∂−) κ̃2 =
1
2
∂5
−g

(−2). (4.8)

We point out that these are the Ward identities that the induced W3 gravity action is ex-

pected to satisfy. See Ooguri et al [21] for a comparison. These have also appeared

recently in [57] in a related context.

Next, we seek the residual gauge transformations of our solutions. Defining the gauge

parameter to be λ = λ(a)La + η(i) Wi and imposing the conditions that the gauge field

configuration a = (L1 − κ L−1 − ωW−2) dx+ is left form-invariant leads to the following

conditions [56]:

∂−λ
(a) = ∂−η

(i) = 0,
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∂+λ
(0) + 2 λ(−1) + 2 κ λ(1) − 16α2 ωη(2) = 0,

∂+λ
(1) + λ(0) = 0,

∂+η
(−1) + 4 η(−2) + 2 κ η(0) + 4ωλ(1) = 0,

∂+η
(0) + 3 η(−1) + 3 κ η(1) = 0,

∂+η
(1) + 2 η(0) + 4 κ η(2) = 0,

∂+η
(2) + η(1) = 0. (4.9)

Under these we have

δκ = λ κ′ + 2 λ′ κ −
1
2
λ′′′ − 8α2 ηω′ − 12α2 ωη′ (4.10)

δω = λω′ + 3ωλ′ −
8
3
κ (κ η′ + η κ′) +

1
4

(5 κ′ η′′ + 3 η′ κ′′) +
1
6

(5 κ η′′′ + η κ′′′) −
1

24
η
′′′′′

(4.11)

We parametrize the residual gauge transformations of ã by the gauge parameters λ̃ =

λ̃(a)La + η̃(i) Wi. The constraints on this parameter are

λ̃0 + ∂−λ̃
(−1) = 0,

∂−λ̃0 + 2 λ̃(1) + 2 κ̃ λ̃(−1) − 16α2 ω̃ η̃(−2) = 0,

∂−η̃
(−2) + η̃(−1) = 0,

∂−η̃
(−1) + 2 η̃(0) + 4 η̃(−2) κ̃ = 0,

∂−η̃
(0) + 3 η̃(1) + 3 η̃(−1) κ̃ = 0,

∂−η̃
(1) + 4 η̃(2) + 2 η̃(0) κ̃ + 4 λ̃(−1) ω̃ = 0. (4.12)

These induce the following variations:

δκ̃ = −2 κ̃ ∂−λ̃(−1) − λ̃(−1)∂−κ̃ + 8α2 η̃(−2) ∂−ω̃ + 12α2 ω̃ ∂−η̃
(−2) +

1
2
∂3
−λ̃

(−1) (4.13)
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δω̃ = −λ̃(−1) ∂−ω̃ − 3 ω̃ ∂−λ(−1) +
8
3
κ̃ (κ̃ ∂−η̃(−2) + η̃(−2) ∂−κ̃)

−
1
4

(5 ∂−κ̃ ∂2
−η̃

(−2) + 3 ∂−η̃(−2) ∂2
−κ̃) −

1
6

(5 κ̃ ∂3
−η̃

(−2) + η̃(−2) ∂3
−κ̃) +

1
24
∂5
−η̃

(−2)

(4.14)

δ f (−1) = ∂+λ̃
(−1) + f (−1) ∂−λ̃

(−1) − λ̃(−1) ∂− f (−1) +
32
3
α2 κ̃ (g(−2) ∂−η̃

(−2) − η̃(−2) ∂−g(−2))

+α2(∂−g(−2) ∂2
−η̃

(−2) − ∂−η̃
(−2) ∂2

−g
(−2)) −

2
3
α2 (g(−2) ∂3

−η̃
(−2) − η̃(−2) ∂3

−g
(−2)) (4.15)

δg(−2) = ∂+η̃
(−2) + f (−1) ∂−η̃

(−2) − λ̃(−1) ∂−g(−2) + 2 (g(−2) ∂−λ̃
(−1) − η̃(−2) ∂− f (−1)) (4.16)

For the residual gauge transformations to be global symmetries of the boundary theory

one needs to impose the variational principle δS = 0 as well. We add the following

boundary action:

S bdy.

=
k

4π

∫
d2x tr (−L0[Ã+, Ã−] + 2 κ̃0 L1 Ã+ +

1
2α

W0{Ã+, Ã−} +
1
3

Ã+ Ã− + 2 ω̃0 W2Ã+)

(4.17)

With this the variation of the total action can be seen to be:

δS total = −
k

2π

∫
d2x [(κ̃ − κ̃0) δ f (−1) + 4α2 (ω̃ − ω̃0) δg(−2)] (4.18)

where κ̃0 and ω̃0 are some real numbers. Again we have several ways to satisfy δS = 0:

1. δ f (−1) = 0 and δg(−2) = 0.

This is the Dirichlet condition again (has been considered by [57] recently for con-

stant f (−1) and g(−2)) and leads to W3 as the asymptotic symmetry algebra.

2. κ̃ = κ̃0 (ω̃ = ω̃0 ) and δg(−2) = 0 (δ f (−1) = 0).



4.2. SOLUTIONS OF W3 WARD IDENTITIES 101

These are the other mixed boundary conditions – we will not consider them further

here.

3. κ̃ = κ̃0 and ω̃ = ω̃0 are the free boundary conditions we will consider below.

4.2 Solutions of W3 Ward identities

The W3 Ward identities (4.7, 4.8) are also expected to be integrable (just as the Vira-

soro one in section 2 was) and general solutions can be written down by appropriate

reparametrization of f (−1) and g(−2).

However, we restrict to the case of κ̃ = κ̃0 and ω̃ = ω̃0 for constant κ̃0 and ω̃0, and holding

them fixed. This allows for classical solutions with fluctuating f (−1) and g(−2). Let us solve

the W3 Ward identities in this case. These read

∂3
− f (−1) + 24α2 ω̃0 ∂−g(−2) − 4 κ̃0 ∂− f (−1) = 0

∂5
−g

(−2) − 20 κ̃0 ∂
3
−g

(−2) + 64 κ̃2
0 ∂−g

(−2) − 72 ω̃0 ∂− f (−1) = 0 (4.19)

There are two distinct cases: ω̃0 = 0 and ω̃0 , 0. When ω̃0 = 0 there are further two

distinct cases:

1. ω̃0 = 0 and κ̃0 = 0 gives:

f (−1) = f−1(x+) + x− f0(x+) + (x−)2 f1(x+), (4.20)

g(−2) = g−2(x+) + x− g−1(x+) + (x−)2 g0(x+) + (x−)3 g1(x+) + (x−)4 g2(x+)

This solution is suitable for non-compact x+ and x− (such as the boundary of Poincare

or Euclidean AdS 3)
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2. ω̃0 = 0 and κ̃0 , 0:

f (−1) = fκ(x+) + gκ(x+) e2
√
κ̃0 x− + ḡκ(x+) e−2

√
κ̃0 x− , (4.21)

g(−2) = fω(x+) + gω(x+) e2
√
κ̃0 x−+ ḡω(x+) e−2

√
κ̃0 x−+ hω(x+) e4

√
κ̃0 x−+ h̄ω(x+) e−4

√
κ̃0 x−

Again any positive value for κ̃0 is suitable for non-compact boundary coordinates.

Among the negative values κ̃0 = −1
4 (times square of any integer) is suitable for

compact boundary coordinates (such as the boundary of global AdS 3).

3. When κ̃0 , 0 and ω̃0 , 0, again the Ward identities can be solved. The general

solutions involve eight arbitrary functions of x+ (just as in the cases with ω̃0 = 0).

Here we will only consider the special case where the solutions do not depend on

x−:

f (−1) = f (x+), g(−2) = g(x+). (4.22)

This case is the analogue of [6] in the higher spin context.

Next we analyse these cases one by one and find the asymptotic symmetries.

4.3 Asymptotic symmetries, charges and Poisson brack-

ets

To find the asymptotic symmetries to which we can associate charges one needs to look

for the residual gauge transformations of the solutions of interest. Just as in the sl(2,R)

case we can look at the residual gauge transformations of a and ã and translate the corre-

sponding gauge parameters λ and λ̃ using Λ = b−1λ b and Λ̃ = b λ̃ b−1. After finding these

one can compute the corresponding charges.

We are now ready to carry out this exercise for left sector and each of the cases (4.20,
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4.21, 4.22) in the right sector one by one.

4.3.1 The left sector symmetry algebra

The left sector is common for all of the cases we consider in this paper. The corresponding

/δQ is

/δQλ = − k
2π

∫ 2π

0
dφ (λ δκ − 4α2 η δω) (4.23)

This when integrated between (κ = 0, ω = 0) and generic (κ, ω) gives

Q(λ,η) = − k
2π

∫ 2π

0
dφ [λ κ − 4α2 ηω] (4.24)

This charge generates the variations (4.10, 4.11) provided we take the Poisson brackets

amongst the κ and ω to be:

− k
2π

{
κ(x+), κ(x̃+)

}
= −κ′(x+) δ(x+ − x̃+) − 2 κ (x+) δ′(x+ − x̃+) + 1

2 δ
′′′(x+ − x̃+),

− k
2π

{
κ(x+), ω(x̃+)

}
= −2ω′(x+) δ(x+ − x̃+) − 3ω(x+) δ′(x+ − x̃+),

−2kα2

π

{
ω(x+), ω(x̃+)

}
= 8

3 [κ2(x+) δ′(x+ − x̃+) + κ(x+) κ′(x+)δ(x+ − x̃+)]

−1
6 [5κ(x+)δ′′′(x+ − x̃+) + κ′′′(x+)δ(x+ − x̃+)]

−1
4 [3κ′′(x+)δ′(x+ − x̃+) + 5κ′(x+)δ′′(x+ − x̃+)] + 1

24δ
(5)(x+ − x̃+)

(4.25)

These brackets were computed by Campoleoni et al. [7]. To compare with their answers

one has to take κ → −2π
k κ, ω→

π
2kα2ω, α2 → −σ in the expressions here.

Next we turn to computing the charges and Poisson brackets on the right sector for all the

cases of interest.
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4.3.2 κ̃0 = 0 and ω̃0 = 0

In this case the residual gauge transformation parameters are

λ̃(−1) = λ−1(x+) + x− λ0(x+) + (x−)2 λ1(x+)

η̃(−2) = η−2(x+) + x− η−1(x+) + (x−)2 η0(x+) + (x−)3 η1(x+) + (x−)4 η2(x+) (4.26)

The corresponding action on the fields gives

δ f0 = λ′0 + 2 ( f−1 λ1 − λ−1 f1) − 2α2 (η−1 g1 − η1 g−1) − 16α2 (η2 g−2 − η−2 g2)

δ f1 = λ′1 + (λ1 f0 − λ0 f1) − 2α2 (η0 g1 − η1 g0) − 4α2 (η2 g−1 − η−1 g2)

δ f−1 = λ′−1 + (λ0 f−1 − λ−1 f0) − 2α2 (η−1 g0 − η0 g−1) − 4α2 (η1 g−2 − η−2 g1)

δg0 = η′0 + 3 (η1 f−1 − η−1 f1) + 3 (λ1 g−1 − λ−1g1)

δg1 = η′1 + (η1 f0 − λ0 g1) + 2 (λ1 g0 − η0 f1) + 4 (η2 f−1 − λ−1 g2)

δg−1 = η′−1 + (λ0 g−1 − η−1 f0) + 2 (η0 f−1 − λ−1 g0) + 4 (λ1 g−2 − η−2 f1)

δg2 = η′2 + (λ1 g1 − η1 f1) + 2 (η2 f0 − λ0 g2)

δg−2 = η′−2 + (η−1 f−1 − λ−1 g−1) + 2 (λ0 g−2 − η−2 f0) (4.27)

Defining

{Ja, a = 1, · · · , 8} = { f−1, f0, f1, g−2, g−1, g0, g1, g2}

{λa, a = 1, · · · , 8} = {λ−1, λ0, λ1, η−2, η−1, η0, η1, η2} (4.28)

these expressions can also be written in a compact form:

δJa = ∂+λ
a − f a

bcJbλc (4.29)
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where f a
bc are structure constants of our gauge algebra. The charge in this case is inte-

grable and has the expression:

Q[λ̃] = k
4π

∫
dx+ ηabJaλb (4.30)

The Poisson brackets can be read out and we find:

{Ja(x+), Jb(x̃+)} = f ab
c Jc(x+) δ(x+ − x̃+) − k

4π η
ab δ′(x+ − x̃+) (4.31)

where we have redefined: Ja → − 4π
k Ja. This may be recognized as level −k Kaĉ-Moody

extension of the algebra used in defining the higher spin theory.

4.3.3 κ̃0 = −1
4 and ω̃0 = 0

In this case the residual gauge transformation parameters are

λ̃(−1) = λ f (x+) + λg(x+) ei x− + λ̄ḡ(x+) e−i x−

η̃(−2) = η f (x+) + ηg(x+) ei x− + η̄ḡ(x+) e−i x− + ηh(x+) e2i x− + η̄h̄(x+) e−2i x− (4.32)

The symmetry transformations are:

δ fκ = λ′f + 2 i (ḡκ λg − λ̄ḡ gκ) + 2 iα2 (η̄ḡ gω − ηg ḡω) + 16 iα2 (ηh h̄ω − η̄h̄ hω)

δgκ = λ′g + i (λg fκ − λ f gκ) + 2 iα2 (η f gω − ηg fω) + 4 iα2 (ηh ḡω − η̄ḡ hω)

δḡκ = λ̄′ḡ + i (λ f ḡκ − λ̄ḡ fκ) + 2 iα2 (η̄ḡ fω − η f ḡω) + 4 iα2 (ηg h̄ω − η̄h̄ gω)

δ fω = η′f + 3i (ηg ḡκ − η̄ḡ gκ) + 3i (λg ḡω − λ̄ḡgω)

δgω = η′g + i (ηg fκ − λ f gω) + 2i (λg fω − η f gκ) + 4i (ηh ḡκ − λ̄ḡ hω)

δḡω = η̄′ḡ + i (λ f ḡω − η̄ḡ fκ) + 2i (η f ḡκ − λ̄ḡ fω) + 4i (λg h̄ω − η̄h̄ gκ)

δhω = η′h + i(λg gω − ηg gκ) + 2i (ηh fκ − λ f hω)

δh̄ω = η̄′h̄ + i (η̄ḡ ḡκ − λ̄ḡ ḡω) + 2i (λ f h̄ω − η̄h̄ fκ) (4.33)
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Defining the currents Ja and parameters λa as

{Ja, a = 1, · · · , 8} = {ḡκ, fκ, gκ, h̄ω, ḡω, fω, gω, hω}

{λa, a = 1, · · · , 8} = {λ̄ḡ, λ f , λg, η̄h̄, η̄ḡ, η f , ηg, ηh} (4.34)

these expressions can also be written in a compact form:

δJa = ∂+λ
a − i f̂ a

bcJbλc (4.35)

where (some what surprisingly) f̂ a
bc are obtained from the structure constants f a

bc by

replacing α2 → −α2. In this case the charge is:

Q[λa] = − k
4π

∫ 2π

0
dφ η̂ab λ

aJb (4.36)

where η̂ab is the one obtained from ηab by replacing α2 by −α2. The corresponding Poisson

brackets are

{Ja(x+), Jb(x̃+)} = i f̂ ab
c Jc(x+) δ(x+ − x̃+) +

k
4π

ĥabδ′(x+ − x̃+). (4.37)

where again we have redefined: Ja → 4π
k Ja. This again is a level-k Kaĉ-Moody algebra,

but for the difference that it is obtained from the gauge algebra by α2 → −α2 replacement.

4.3.4 κ̃0 , 0, ω̃0 , 0, ∂− f (−1) = ∂−g(−2) = 0

In this case the residual gauge transformation parameters are

λ̃(−1) = λ̃(x+), η̃(−2) = η̃(x+). (4.38)
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Under these gauge transformations the fields transform as

δ f (−1) = ∂+λ̃, δg(−2) = ∂+η̃. (4.39)

Thus the residual gauge symmetries generate two commuting copies of U(1) classically.

Restricted to the sl(2,R) sub-sector this case corresponds to [6]. The charge is

Qã = k
2π

∫ 2π

0
dφ 2 [λ̃ (κ̃0 f − 6α2 ω̃0 g) + η̃ 2α2 (8

3 κ̃
2
0 g − 3 ω̃0 f )] (4.40)

This leads to Poisson brackets:

{κ̃0 f (x+) − 6α2 ω̃0 g(x+), f (x̃+)} = −πkδ
′(x+ − x+′), {83 κ̃

2
0 g(x+) − 3 ω̃0 f (x+), f (x̃+)} = 0

{κ̃0 f (x+) − 6α2 ω̃0 g(x+), g(x̃+)} = 0, { 83 κ̃
2
0 g(x+) − 3 ω̃0 f (x+), g(x̃+)} = − π

2kα2 δ
′(x+ − x̃+)

(4.41)

These four relations are solved by the following three equations:

{ f (x+), f (x̃+)} = −πk
κ̃2

0
∆
δ′(x+ − x̃+), {g(x+), g(x̃+)} = −πk

3 κ̃0
16 ∆α2 δ

′(x+ − x̃+),

{ f (x+), g(x̃+)} = −πk
9 ω̃0
8 ∆
δ′(x+ − x̃+) (4.42)

where ∆ = κ̃3
0 −

27
4 α

2 ω̃2
0 which we have to assume not to vanish.2

The diagonal embedding of sl(2,R) in sl(3,R) gives rise to an asymptotic symmetry al-

gebra consisting of two copies ofW(2)
3 also known as the Polyakov-Bershadsky algebra

when one generalizes Brown-Henneaux boundary condition to this case [58]. The central

2Taking linear combinations f + χ g and f − χ g (for some constant χ) as the currents one can decouple
these two u(1) Kaĉ-Moody algebras.
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charge for the algebra turns out to be c/4. The gauge field choosen in [58] is of the type

A = eL̂0 ln(r/`)(Ŵ2 − T Ŵ−2 + jW0 + g1L−1 + g2W−1)e−L̂0 ln(r/`)dx+ + L̂0
dr
`
,

where, Ŵ±2 = ±1
4W±2, L̂0 = 1

2 L0. (4.43)

Here the equations of motion forces the gauge field parameters to be a function of of

x+ alone. One can propose chiral boundary conditions in a manner similar to the one

illustrated in this chapter; one considers a gauge field of the type

A = eL̂0 ln(r/`)(a)e−L̂0 ln(r/`) + L̂0
dr
`
,

where a = (Ŵ2 − T Ŵ−2 + jW0 + g1L−1 + g2W−1)dx+ + f (a)Jadx−,

& Ja ∈ {Ŵ−2,W−1, L−1, L̂0,W0, L1,W1, Ŵ2}. (4.44)

Here as before, the parameters are a priori functions of both the boundary co-ordinates.

The equation of motion can be used to to solve for f (a)s yielding differential equations

which are interpreted as Ward identities. The parameters {T , g1, g2, j} can be fixed to a

specific values by choosing boundary terms to be added to the Chern-Simons action fro

the gauge field A. One again expects to get an sl(3,R) and su(1, 2) current algebra for

certain values of these parameters {T , g1, g2, j}.

Thus the chiral boundary conditions studied in this chapter can be adapted to various

known W-algebras [45] yielding Ward identities for the corresponding chiral induced W-

gravities.

In this chapter, generalizing the results of chiral boundary conditions studied in chapter

2 and [9], we proposed boundary conditions for higher spin gauge theories in 3d in their

first order formalism that are different from the usual Dirichlet boundary conditions.3 The

left sector is treated with the usual Dirichlet boundary conditions where as in the right

3It should be noted that the ansatz for the right sector gauge field (4.4) studied here also appeared
recently in [59, 57] where the authors were still interested in generalizations of Dirichlet type boundary
conditions.
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sector we chose free boundary conditions. We restricted our attention to the spin-3 case

for calculational convenience. The Dirichlet boundary conditions for general higher spin

theory based on sl(n,R) Chern-Simons was discussed in [56] and for hs[λ] case in [14].

One should be able to generalize our considerations to these other higher spin theories as

well.

The boundary conditions considered here give one copy of W3 and a copy of sl(3,R) (or

su(1, 2) or u(1) ⊕ u(1)) Kaĉ-Moody algebra. This matches with the symmetry algebra

expected of the 2d chiral induced W-gravity with an appropriate field content.

Let us emphasize that there appears to be a surprising difference between the asymptotic

symmetry algebras of section (4.3.2) and section (4.3.3) namely the maximal finite sub-

algebra of (4.31) is isomorphic to the gauge algebra of the higher spin theory where as

for that in (4.37) differs from the gauge algbra by α2 → −α2 (this interchanges sl(3,R)

and su(1, 2)). It will be interesting to understand the source of this possibility of getting a

different real-form of the complexified gauge algebra out of our boundary conditions.

The Poisson brackets between κ or ω of the left sector and any of the right sector currents

vanish. Recall that in the sl(2,R) case, motivated by how the asymptotic vector fields in

the second order formalism [3] acted on the fields, we made (current dependent) redef-

initions of the residual gauge parameters. Here too one can do such a redefinition. For

instance, if we change variables

λa → λa + α1Ja λ + α2 da
bcJb Jc η + · · · (4.45)

where λa are the parameters defined in (4.28) and λ and η are the gauge parameters of the

left sector, dabc ∼ Tr(Ta{Tb,Tc}), then one finds that

κ → κ + #ηabJaJb + · · · , ω→ ω + #dabcJaJbJc + · · · , (4.46)

where the dots in these redefinitions represent possible terms of higher orders in Jas or
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terms involving derivatives of currents. The additional terms here may be recognized

as the (classical analogues) of Sugawara constructions of spin-2 and spin-3 currents out

of the Kaĉ-Moody currents. After such redefinitions the generators of the asymptotic

symmetry algebras of the left and the right sectors will not commute any longer.



Chapter 5

Conclusion and discussions

5.1 Conclusion

In this thesis we uncovered the effect of imposing a novel set of boundary conditions on

gravity in AdS 3 which allow the boundary metric - and other fields if present, to fluctuate

along the boundary of AdS 3. This we further divide into two cases; one when the fluctu-

ating component of the boundary metric is chiral; another when it is a conformal factor

of the boundary metric.

• For the chiral boundary conditions imposed on pure gravity in AdS 3, we uncov-

ered a Virasoro with c = 3`
2G times an sl(2,R) Kaĉ-Moody current algebra with

level k = c/6 as the asymptotic symmetry algebra. We proposed that such chiral

boundary conditions make the bulk theory dual to a chiral induced gravity in 2d

first studied by Polyakov [10]. This is also born out by the Ward identity one ob-

tains as the bulk equations of motion for generic configurations obeying the chiral

boundary conditions. We generalized the chiral boundary conditions to extended

super-gravities and higher-spin gauge fields in AdS 3.

• In the super-gravity case we found a copy of super-Virasoro along with a Kaĉ-

Moody super-current algebra with level k = c/6 as the asymptotic symmetry alge-

111
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bra corresponding to super-symmetric extension of chiral induced gravity. Here we

also obtained the Ward identities obeyed by the Kaĉ-Moody super-current algebra.

• In the higher-spin case we restricted the analysis to spins= 2, 3 and uncovered a

classical W3 algebra along with an su(1, 2) Kaĉ-Moody current algebra with level

k = c/6 when the solution space contains global AdS 3; and an sl(3,R) Kaĉ-Moody

current algebra with k = −c/6 when Poincaré AdS 3 is in the solution-space.

• We also generalized the boundary conditions of Compère et al [6] to the higher-

spin case and uncover a u(1) × u(1) along with a W3 as the asymptotic symmetry

algebra.

• For the case of conformal boundary conditions, we first provide a set of boundary

conditions for pure gravity in AdS 3 such that the boundary metric has non van-

ishing curvature and the boundary conformal factor satisfies the Liouville equa-

tions of motion. Here we uncovered 2-copies of Virasoro corresponding to the

Brown-Henneaux analysis with c = 3`
2G and 2-copies of Virasoro corresponding to

the Liouville field stress tensor with c = − 3`
2G . The conformal boundary conditions

with vanishing boundary curvature was studied by Troessaert [5] were 2-copies of

Virasoronu(1) were uncovered. We generalized these to extended super-gravity and

uncovered 2-copies of super-Virasoronsuper-current which is a super-symmetric

extension of the harmonic Weyl current obtained in [5].

5.2 Discussions

The chiral boundary conditions for pure gravity studied in this thesis have global AdS 3 in

the space of allowed solutions, implying that the asymptotic symmetry algebra contains

the sl(2,R) × sl(2,R) algebra; the symmetries of the maximally symmetric geometry in

3d with negative cosmological constant. This is not true for the boundary conditions

of Compère et al [6]. In this sense it is a solution to the question as to what boundary
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conditions allow for asymptotic symmetries which admit an sl(2,R) × sl(2,R); to which

Brown-Henneaux [1], Troessaert’s boundary condition [5] and the conformal boundary

condition studied in chapter 2 are other answers.

Since the Ward identity uncovered for the chiral boundary conditions are exactly the same

as those of the chiral induced gravity in 2d [10], it would be interesting to know how one

can recover the correlation functions of the boundary currents from the bulk analysis. The

chiral boundary conditions studied here are peculiar in having a non-vanishing boundary

curvature and therefore a Weyl anomaly. This is also true for chiral induced gravity whose

effective action is usually interpreted as ‘integrated anomaly’1. The action for the 2d

induced gravity can be seen as an effective action for the boundary currents [45, 21, 60]

and can be obtained from the bulk on-shell action after the addition of suitable boundary

terms as written down in chapter 2.

The Chern-Simons formalism of 3d gravity gives a better understanding of this as one

can write the boundary conditions imposed as constraints on the conserved currents of a

WZNW action derived from the Chern-Simons theory on the group S L(2,R) [61]. There-

fore one may view the different boundary conditions on gravity in AdS 3 being dual to dif-

ferent constrained WZNW theories on the boundary. Similarly, induced gravities can be

obtained from constraining WZNW field theories with an appropriate level. For ordinary

gravity this was first studied in [62] and was generalized to W−gravity in [21]. These

comments also apply for the generalization of chiral boundary conditions to the case of

super-gravities and higher-spin gauge fields in AdS 3 with appropriate gauge groups.

An interesting exercise would be generalizing the conformal boundary conditions to in-

clude the higher-spin gauge fields in AdS 3 which would correspond to the conformal

factors of the higher-spin fields obeying Toda equations of motion. Since the case studied

in [5] corresponds to vanishing of the boundary Ricci scalar, generalizing to higher-spin

gauge fields in AdS 3 would require the knowledge of higher-spin curvature tensors, a

1See chapter 8 of the review on ‘W-symmetry in conformal field theory’ - Bouwknegt and Schoutens
[16].
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form of which was proposed in [63]. It is worthwhile to point out that the Liouville action

and similarly the Toda action can be derived from a constrained WZNW action on appro-

priate gauge group2, where in suitable constraints are placed on the conserved currents of

the latter action; this was first demonstrated by Balog et al [64] and Forgacs et al [65].

It would also be of interest to work out the case of super-higher-spin gauge fields in

AdS 3 in a similar light; generalizing both, the chiral and conformal boundary conditions.

The work generalizing Brown-Henneaux boundary conditions to super-higher-spins in

AdS 3 was done by Henneaux et al [66] where they discovered two copies of a non-linear

(N,M) extended super-W∞ algebra when the Chern-Simons theory defining the super-

higher-spin theory in the bulk is based on an infinite dimensional super-higher-spin alge-

bra shsE(N|2,R) × shsE(M|2,R). Further investigations of higher-spin theories in AdS 3

super-gravities and their CFT duals were considered in [67],[68].

It would be interesting to see how the considerations of the boundary conditions studied

in this thesis can be adapted when the bulk dimensions is d > 3 with negative cosmolog-

ical constant. Here if one tries to use the Dirichlet type boundary conditions and repeat

the Brown-Henneaux analysis, one simply uncovers the conformal Killing algebra of the

boundary which is finite dimensional so(2, d − 1) algebra when the boundary has dimen-

sions greater than two. As was seen in the chiral boundary conditions studied in this

thesis, bulk equations of motions on generic bulk configurations obeying a certain chiral

boundary condition may yield Ward identities for induced gravities defined on the dim>2

boundary. As mentioned in the introduction, these would be the Ward identities obeyed

by the generating function of the stress-tensor correlators of the boundary CFT.

The Ward identities and asymptotic symmetry analysis done in the bulk corresponds to

the large central charge limit. This central charge must correspond to the original CFT on

the boundary which was integrated out after coupling to gauge fields yielding an effective

theory of the these fields which is the induced gravity action on the boundary. People

2S L(2,R) for Liouville and S L(N,R) higher-spins ranging from 2, ...,N corresponding to N − 1 fields
of the Toda theory.
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have found a 1/c expansion for this effective action, and in the chiral induced gravities an

exact action in all orders of c on the boundary was found by Ooguri et al [21]. It would

be interesting to get a perturbative or if possible exact in c Ward identities and asymptotic

symmetries from the bulk analysis.

The notion of small and large gauge transformations or equivalently diffeomorphisms de-

pends on the boundary conditions imposed on the theory in question. When considering

Brown-Henneaux type boundary conditions; in vogue for over two decades, large diffeo-

morphisms where those which changed the boundary metric. When one uses boundary

conditions studied in this thesis and in [6, 5], large diffeomorphisms would be those which

would change the fall-off behaviour of the bulk configurations such that the change in the

asymptotic charge computed by the Barnich and Brandt’s approach [50] is infinite3.

It has been known for a long time that 2d unitary, Poincare and rigid scale invariant

QFT with a discrete non-negative spectrum of scaling dimensions has an extended global

symmetry of left and right semi-local conformal symmetry [69]. It was shown by Hofman

and Strominger [70] that if one began with 2D translations and just scale invariance in the

left sector i.e. x− → λx−, then one finds that the left sector scale symmetry gets enhanced

to an infinite dimensional left conformal symmetry, whereas the right translations either

can be enhanced to a right conformal symmetry or a U(1) Kaĉ-Mood symmetry. This

seems to suggest the existence of 2d CFTs with infinite dimensional symmetries which

are not only of the left and right conformal symmetries i.e. the Virasoros. Given the fact

that 2d induced pure gravity has an S L(2,R) Kaĉ-Moody symmetry it should be possible

to generalize the considerations in [70] to see the rigid right translations get enhanced

to either of an U(1) or an S L(2,R) or a right conformal symmetry. Moreover one could

also find minimum symmetries to be demanded by a unitary, Poincare and scale invariant

2D super-symmetric QFT and higher-spin QFT so that one can generalize the results of

[69] and [70] and further seek minimal conditions on these 2d QFTs to have relevant

super-symmetric and higher-spin Kaĉ-Moody currents obtained in chapters 3 and 4.

3See Appendix (6.2) for a brief review.
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The asymptotic symmetries of flat space pure gravity and super gravity have been com-

puted using techniques similar to the ones employed in this thesis4. For pure gravity in 3d

asymptotically flat space-times the BMS3 algebra emerges as the asymptotic symmetry

algebra, its supergravity extension was studied in [71] where in a super-symmetric ex-

tension of BMS3 was uncovered. The BMS algebra in 4d asymptotically flat space times

is closely related to Weinberg’s soft theorems and was studied by Strominger [72, 73]

and by Laddha and Campiglia [74]. The implications of BMS group in critical bosonic

string theory was studied by Avery and Burkhard [75] were they showed that the gener-

alized Ward identity for the action of this group yields the Weinberg’s soft theorem. The

BMS3 algebra and its super-symmetric extension was shown to be related to the flat-space

limit of gravity and similarly super-gravity in AdS 3 with Dirichlet boundary conditions.

It would be interesting to work out the possible flat-space limits of for the chiral and

conformal boundary conditions studied here for gravity and super-gravity in AdS 3.

It would be interesting to investigate as to where in the world-sheet formulation of string

theory in space times with AdS factors does one have the information about the boundary

conditions imposed. For the case of string theories on AdS 3 there have been works were

operators corresponding to the boundary Virasoro and super-Virasoro algebra have been

constructed in the world-sheet theory [76, 77, 78, 79]. It would be exciting to investi-

gate how such analysis can be carried out in the string world-sheet when the boundary

conditions studied in this thesis are considered.

The boundary conditions of [6] pick a certain class of BTZ configurations in the bulk

with the vacuum being the extremal BTZ solution. While the chiral boundary conditions

of chapter 2 have the global AdS 3 as the vacuum and the only black-hole solution allowed

is the extremal BTZ. The bulk theory of gravity in AdS 3 with boundary conditions of [6]

were interpreted as an effective theory on AdS 2 after dimensional reduction describing

the near horizon geometry of a (near)extremal black-hole. It would be interesting to see

whether the chiral boundary conditions studied here can have any application in such

4Various other approaches also exist.
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a regard, especially since the boundary conditions of [8] do not yield a super-current

when generalized to super-gravities in AdS 3 but the chiral boundary conditions studied in

chapter 3 do.

It would in general be interesting to see how this duality between induced gravities on the

boundary with boundary condition similar to the ones proposed here on locally asymptotic

AdS spaces furthers our understanding of AdS/CFT and how it may give new insights into

quantities such as entanglement entropy, black-hole entropy etc.
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Chapter 6

Appendix

6.1 Gauge fixing linearised AdS 3 gravity

In this section we linearise n-dimensional gravity1 with negative cosmological constant

around its global AdS n vacuum. Our conventions are

Γλµν =
1
2

gλσ(∂µgσν + ∂νgµσ − ∂σgµν), Rλ
µσν = ∂σΓλµν − ∂νΓ

λ
µσ + ΓλδσΓδµν − ΓλδνΓ

δ
µσ

Rµν = Rλ
µλν, R = Rµνgµν . (6.1)

Then the variations of various terms are

δ(
√
−g) =

1
2
√
−g gµν δgµν = −

1
2
√
−g gµν δgµν, (6.2)

One useful variation is to find the physical fluctuations around any given background one

needs to consider the linearisation of GR:

gµν = ḡµν + hµν (6.3)

1We later fix n = 3.
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and hµν = −ḡµλḡνσhλσ. The background metric ḡµν is taken to satisfy the Einstein equation

R̄µν = x ḡµν. This leads to the following variation of the Christoffel connections

δΓρµν =
1
2

ḡρσ(∇̄µhσν + ∇̄νhµσ − ∇̄σhµν), (6.4)

for Riemann tensor

δRλ
µσν = 2∇̄[σδΓ

λ
ν]µ, (6.5)

and for Ricci tensor

δRµν = ∇̄σδΓ
σ
µν − ∇̄νδΓ

σ
µσ

= ∇̄λ∇̄(µhν)λ −
1
2

(∇̄2hµν + ∇̄µ∇̄νh) := RL
µν

δRµ
ν = hµσR̄σν + ḡµσRL

σν, (6.6)

where h = ḡµνhµν. The variation of the Ricci scalar is

δR = hµνR̄µν + ḡµνδRµν

= hµνR̄µν + ∇̄λ∇̄σhλσ − ∇̄2h := RL (6.7)

To simplify this further let us note the identity

[∇µ,∇ν]Tσκ···
αβ··· = Rσ

λµνT λκ···
αβ··· + Rκ

λµνTσλ···
αβ··· + · · · − Rλ

αµνTσκ···
λβ··· − Rλ

βµνTσκ···
αλ··· − · · ·(6.8)

The equation that we would like to linearlize is

Rµν −
1
2

R gµν =
(n − 1)(n − 2)

2l2 gµν (6.9)

which is equivalent to

Rµν = −
(n − 1)

l2 gµν. (6.10)
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We assume that the background solution is a locally AdS n space with R = −n(n − 1)/l2.

Then we can write the Riemann tensor as

R̄α
βµν = −

1
l2 (δαµ ḡβν − δαν ḡβµ) (6.11)

and we have

[∇̄µ, ∇̄ν] Tαβ = −ḡµαTνβ − ḡµβTαν + ḡνβTαµ + ḡναTµβ . (6.12)

Then the linearized equation is

−
1
2

(∇̄2hµν + ∇̄µ∇̄νh) + ∇̄λ∇̄(µhν)λ = −
n − 1

l2 hµν . (6.13)

Contracting this equation with ḡµν gives

∇̄λ∇̄σhλσ − ∇̄2h = −
n − 1

l2 h . (6.14)

We try the gauge ∇̄λhλσ = κ ∇̄σh. The most popular choices are κ = 0 and κ = 1. We

choose the latter

∇̄λhλσ = ∇̄σh (6.15)

which when contracted by ∇σ gives

∇̄λ∇̄σhλσ = ∇̄2h

Substituting this into the linearized equation gives h = 0 (for n ≥ 2). Then we use (6.12)

to write

ḡλσ∇̄λ∇̄µhνσ = −n hµν + ḡµν h .
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Finally we have

(
2
l2 + ∇̄2)hµν = 0, ∇̄µhµν = 0, ḡµνhµν = 0. (6.16)

Let us note that the gauge condition: ∇̄µhµν = 0 does not fix the diffeomorphism gauge

completely. If we perform a diffeomorphism by a vector ξ: hi j → hi j + ḡik∇̄ jξ
k + ḡ jk∇̄iξ

k

then if ξk satisfies ∇kξ
k = 0, ∇̄2 ξi + ḡikR̄k jξ

j = 0. On the AdS n background we have

∇̄kξ
k = ∇̄2 ξi −

n − 1
l2 ξi = 0. (6.17)

The former comes from demanding that h = 0 is preserved and the second follows from

requiring that the gauge condition is respected.2

From here on we restrict to n = 3 case and will solve these equations completely. The

equations (∇̄2 + 2
l2 )hi j = ḡ jk∇̄ jhki = h = 0 are implied by the first order equations:

1
l
hi j + εi

mn∇̄mhn j = 0 or
1
l
hi j − εi

mn∇̄mhn j = 0 (6.18)

In fact as noted by Li et al [80] one can write (∇̄2 + 2
l2 )hi j = 0 as DLDRhi j = 0 where

DL/Rhi j = 0 are the first order equations above. Therefore the most general solution for

hi j can be written as a linear combination of solutions to these first order equations.

Now, every solution to the fluctuation equations of AdS 3 gravity should be locally a pure

gauge - diffeomorphic to the background. This is true also of any solution to the above

first order equations where the diffeomorphism is generated by one of the solutions to the

residual gauge transformation equations. To see this one can show easily that gi j = ḡi j+hi j

where hi j is taken to be a solution of either of the first order equations has

δRλ
µσν = −

1
l2 (δλσhµν − δλνhµσ) . (6.19)

2These equations are precisely that satisfied by any Killing vector, but not necessary that ξi is Killing.



6.1. GAUGE FIXING LINEARISED ADS 3 GRAVITY 123

This in turn implies that the Riemann tensor of gi j takes the form expected of a locally

AdS 3 metric up to higher order terms. But the background metric ḡi j is already that of

AdS 3. Therefore hi j should be writable locally as hi j = Lξḡi j for some vector field ξi.

However, there are some diffeos that act non-trivially in the asymptotes and others don’t.

To discern which diffeomorphisms take one solution to a physically different solution,

one would have to take into account the boundary condition one imposes on the theory.

It is with regards to the boundary condition imposed that one would be able to determine

whether finite, infinite or zero charges are associated with these gauge transformations

rendering them as allowed, not allowed or trivial respectively. This would be dealt in the

next chapter of this Appendix.

Since we are working in a gauge we first look for all solutions to the residual gauge

transformation equations.

6.1.1 Solutions to residual gauge vector equation in AdS 3:

We work with the global coordinates for AdS 3:

ds2
AdS 3

= l2(dρ2 − cosh2ρ dτ2 + sinh2ρ dφ2). (6.20)

The Killing vectors of this metric are:

L30 = −∂τ, L12 = ∂φ

(L31 + iη1L32) + iη2(L01 + iη1L02) = −ei(η1φ+η2τ)[∂ρ + i(η1 coth ρ ∂φ + η2 tanh ρ ∂τ)]

(6.21)

where η1, η2 are ±1. Here the algebra involved is:

[Lmn, Lpq] = ηmqLnp + ηnpLmq − ηmpLnq − ηnqLmp (6.22)
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where m, n ∈ {3, 0, 1, 2} and ηmn = diag{−1,−1, 1, 1}. We also have for any Killing vector:

∇̄i∇̄ jξ
k = R̄k

i jmξ
m, ∇̄2ξi = −ḡikR̄kmξ

m . (6.23)

The isometry algebra S O(2, 2) can be separated into sl(2,R) ⊕ sl(2,R):

L0 =
i
2

(∂τ + ∂φ), L±1 = ±
1
2

e±i(τ+φ)(∂ρ ± i(tanh ρ ∂τ + coth ρ ∂φ) ,

L̄0 =
i
2

(∂τ − ∂φ), L̄±1 = ±
1
2

e±i(τ−φ)(∂ρ ± i(tanh ρ ∂τ − coth ρ ∂φ) . (6.24)

The equations satisfied by the vector fields that generate residual gauge transformations

are:

∇̄kξ
k = 0, ∇̄2ξk =

2
l2 ξ

k . (6.25)

One can in principle solve the above second order equation for ξk by solving for the

Green’s function3 for a massive vector field and using the vanishing divergence condition

in AdS 3, but we choose a different approach below. These can be decomposed into two

first order equations on ξi:

εmn
i ∇mξn = −

1
l
ξi, εmn

i ∇mξn =
1
l
ξi (6.26)

Where ετρφ = l3 cosh ρ sinh ρ; we call these left and right movers respectively. Since these

are each a set of three coupled linear differential equations in ρ, the independent data

must comprise of three arbitrary functions of the boundary co-ordinate. This is exactly

the number of parameters which are required to parametrize a Diff×Weyl action on the

boundary metric. We consider the following ansatz for vector fields and decompose each

of the above equations to a second order ODE in one of the components.

ξi = ei(E0τ+Sφ)V i(ρ) (6.27)

3This would correspond to a bulk to bulk propagator for the massive vector field in AdS 3.
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The left equation reduces to:

−iS Vρ − 2 sinh ρ cosh ρ
(
Vτ − Vφ

)
+ sinh2 ρ ∂ρVφ = 0,

2Vτ + i
(
E0 tanh ρVφ + S coth ρVτ

)
= 0,

iE0 Vτ + 2 sinh ρ cosh ρ
(
Vφ + Vτ

)
+ cosh2 ρ ∂ρVτ = 0,

(6.28)

Eliminating Vρ and Vτ we get :

2(3E2
0 − E0S + 4S 2 − E2

0S 2 − S 4 + (E2
0 − S 2)(−4 + S 2) cosh 2ρ

+E0(E0 + S ) cosh 4ρ)Vφ + (sinh 2ρ cosh 2ρ(−4 + 6S 2)

+4 sinh 2ρ(S 2 + cosh 4ρ))∂ρVφ(ρ) + sinh2 2ρ(−2 + S 2 + 2 cosh 2ρ) ∂2
ρV

φ = 0

(6.29)

The above differential equation has the boundary ρ→ ∞ as a regular singular point, hence

the solutions can be expanded in a series about the boundary. There are two solutions, one

which dies out at the boundary and one which doesn’t. Further we find that asymptotically

finite solutions exist when certain conditions between S and E0 hold true (6.31). We try

an ansatz for Vφ of the type:

Vφ(ρ) = sech2ρ tanhm ρ(a + cosh2 ρ). (6.30)



126 CHAPTER 6. APPENDIX

It turns out that the solution of this form implies the same conditions on E0 and S for

which it is asymptotically finite. Values of a and m for these solutions are:

E0 = S =⇒
{
m = −2 + S , a = 1/2(−2 + S + S 2)

}
&

{
m = −2 − S , a = 1/2(−2 − S + S 2)

}
,

E0 = −S =⇒ {m = −2 + S , a = 1/2(−2 + S )}

& {m = −2 − S , a = 1/2(−2 − S )} ,

E0 = 2 − S =⇒ {m = −2 + S , a = 0}

& {m = −4 + S , a = −1} ,

E0 = −2 − S =⇒ {m = −2 − S , a = 0}

& {m = −4 − S , a = −1} . (6.31)

Similar conditions are implied by the existence of asymptotic solutions of the right mov-

ing equation:

E0 = −S =⇒
{
m = −2 + S , a = 1/2(−2 + S + S 2)

}
&

{
m = −2 − S , a = 1/2(−2 − S + S 2)

}
,

E0 = S =⇒ {m = −2 + S , a = 1/2(−2 + S )}

& {m = −2 − S , a = 1/2(−2 − S )} ,

E0 = −2 + S =⇒ {m = −2 + S , a = 0}

& {m = −4 + S , a = −1} ,

E0 = 2 + S =⇒ {m = −4 − S , a = −1}

& {m = −2 − S , a = 0} . (6.32)

The first of the conditions in (6.31) and (6.32) give the left and right Virasoros in the bulk.

The 3rd and 4th conditions give only one solution instead of two, therefore there exist

more solutions linearly independent from those above for E0 = 2 − S , E0 = −2 − S for
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left movers and E0 = −2 + S , E0 = 2 + S for right movers. Also (6.29) has a symmetry of

E0 → −E0 , S → −S which enables us to write down solutions for condition 4 (in (6.31)

& (6.32)) interms of solution for condition 3. The 4 copies of Virasoros are:

Ln =
1
4

ieni(τ+φ)(1 + n + n2 + cosh 2ρ)sech2ρ tanhn ρ ∂τ

+
1
2

eni(τ+φ)n(n + cosh 2ρ)csch2ρ tanhn ρ ∂ρ

+
1
4

ieni(τ+φ)(−1 + n + n2 + cosh 2ρ)csch2ρ tanhn ρ ∂φ, & L†n

L̄n = −
1
4

iein(τ−φ)(−1 + n + n2 − cosh 2ρ)sech2ρ cothn ρ ∂τ+

1
2

ein(τ−φ)n(−n + cosh 2ρ)csch2ρ cothn ρ ∂ρ

−
1
4

ieni(τ−φ)(−1 − n + n2 + cosh 2ρ)csch2ρ cothn ρ ∂φ, & L̄†n (6.33)

Ln and L†n correspond to the left moving Virasoro with E0 = S and L̄n and L̄†n correspond

to the right moving Virasoro with E0 = −S . The remaining solutions to the left moving

equations are:

Tn = eni(τ−φ)[
1
4

i(1 − n + cosh 2ρ)sech2ρ cothn ρ∂τ −
1
2

n csch2ρ cothn ρ ∂ρ

+
1
4

i(−1 − n + cosh 2ρ) csch2ρ cothn ρ ∂φ] &

T †n for E0 = −S .

Bn =
1
2

ei(τ(2−n)+nφ)[i tanhn ρ ∂τ + tanh(n−1) ρ ∂ρ + i tanh(n−2) ρ ∂φ]

for E0 = 2 − S &

B†n for E0 = −2 − S ;

[L−1,Tn−1] = Dn

= 1
16ei(τ(n−2)−φn)

[−i(11 − 10n + 2n2 − 2(n − 3) cosh 2ρ + cosh 4ρ)sech4ρ cothn ρ ∂τ

+(−3 + 4n − 2n2 − 4(n − 1) cosh 2ρ + cosh 4ρ)cschρ sech3ρ cothn ρ ∂ρ

−i(−5 + 2n + 2n2 − 2(n − 1) cosh 2ρ + cosh 4ρ)

csch22ρ sech22ρ cothn ρ ∂φ]

for E0 = 2 − S &
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[L−1,Tn−1]† = [T †n−1, L1] = D†n for E0 = −2 − S .

Similarly the ones for the right moving equation are:

T̄n = ein(τ+φ)[
i
4

(1 + n + cosh 2ρ)sech2ρ tanhn ρ ∂τ −
1
2

n csch2ρ tanhn ρ ∂ρ

−
i
4

(−1 + n + cosh 2ρ) csch2ρ tanhn ρ ∂φ] &

T̄ †n for E0 = S

B̄n =
1
2

ei(τ(2+n)+φn)[i cothn ρ ∂τ + coth1+n ρ ∂ρ − i coth2+n ρ ∂φ],

for E0 = 2 + S &

B̄†n for E0 = −2 + S

[L̄1, T̄n] = D̄n

=
1
8

(1 + n)ei((n+2)τ+nφ)

[i(5 + 2n + cosh 2ρ + cosh 4ρ) cschρ sech3ρ tanhn ρ ∂τ

(−3 − 2n + cosh 2ρ cosh 4ρ) csch22ρ tanhn ρ ∂ρ

+i(1 + 2n + cosh ρ) csch3ρ sechρ tanhn ρ ∂φ]

for E0 = 2 + S

[L̄1, T̄n]† = [T̄ †n , L̄−1] = D̄†n for E0 = −2 + S .

Their commutation relations with the killing vectors are(to be read along with their her-

mitian conjugates):

[Tn,Tm] = 0 [T̄n, T̄m] = 0

[L0,Tn] = 0 [L̄0, T̄n] = 0

[L̄0,Tn] = −nTn [L0, T̄n] = −nT̄n

[L1,Tn] = B1−n [L̄−1, T̄n] = −B̄†
−n−1

[L̄1,Tn] = −nTn+1 [L1, T̄n] = −nT̄n+1

[L̄−1,Tn] = −nTn−1 [L−1, T̄n] = −nT̄n−1

(6.34)
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[Bn, Bm] = 0 [B̄n, B̄m] = 0

[L0, Bn] = −Bn [L̄0, B̄n] = −B̄n

[L̄0, Bn] = (n − 1)Bn [L0, B̄n] = −(n + 1)B̄n

[L1, Bn] = 0 [L̄1, B̄n] = 0

[L−1, Bn] = −2T1−n [L̄−1, B̄n] = −2T̄ †
−n−1

[L̄1, Bn] = (n − 1)Bn−1 [L1, B̄n] = −(n + 1)B̄n+1

[L̄−1, Bn] = (n − 1)Bn+1 [L−1, B̄n] = −(n + 1)B̄n−1

(6.35)

Also note that B1 = L1 & B̄−1 = L̄1.

Using these vector fields one can generate solutions to the metric fluctuation equation:

hi j = ∇̄iξ j + ∇̄ jξi. From Ln and L̄n we find that the behaviour of hi j near the asymptotes is

hρρ ≈ O(e−4ρ), hρτ ≈ O(e−2ρ) ≈ hρφ, hττ ≈ hτφ ≈ hφφ ≈ O(1) . (6.36)

Note these are consistent with Brown-Henneaux boundary conditions (in fact hrr ∼ 1/r6

seems to fall faster then BH requirement). Whereas for Tn and T̄n they are:

hρρ ≈ O(e−2ρ), hρτ ≈ O(e−2ρ) ≈ hρφ, hττ ≈ hτφ ≈ hφφ ≈ O(e2ρ) . (6.37)

and for Bn,Dn and their B̄n, D̄n they are:

hρρ ≈ O(e−2ρ), hρτ ≈ O(1) ≈ hρφ, hττ ≈ hτφ ≈ hφφ ≈ O(e2ρ) . (6.38)

If one tries to categorize these vector fields as to how they act on the boundary metric

then one can see that except for the Virasoros Ln, L̄n, all other vectors effect the boundary

metric. {T̄n, B̄n, B̄
†
n} and {Tn, Bn, B

†
n} change the dx+2 and dx−2 components while Dn, D̄n

change the boundary metric by a mix of chiral Diff and Weyl transformation. Therefore,



130 CHAPTER 6. APPENDIX

the residual gauge transformations in the covariant gauge have an action of Diff×Weyl

on the boundary metric, as was also expected from the analysis done in the Fefferman-

Graham gauge.

The asymptotic values of the components of {T̄n, B̄n, B̄
†
n} match exactly in form to the

asymptotic values of {T (0)
n ,T (+)

n ,T (−)
n }

4 in (2.23). The essential data defining these vector

fields is their most leading asymptotic value, the subleading terms into the bulk away from

the boundary are basically an artefact of which gauge one tries to work in.

Therefore in the covariant gauge we do obtain close form expressions for the vector fields

which comprise the two copies of Witt algebra and the two copies of of the sl(2,R) Kaĉ-

Moody current algebra. Which of these get choosen as the asymptotic algebra depends on

the boundary conditions and the boundary terms one adds to make the variational problem

well defined as discussed in all the chapters.

As was mentioned in chapter (2), one may have proceeded to work in the Fefferman-

Graham gauge where the residual gauge transformations generate a Diff×Weyl transfor-

mations of the boundary metric.

6.1.2 Gauge fixing in the Chern-Simons formalism

Since the the first order formalism for AdS 3 written as a difference of two Chern-Simons

theories can be a very useful, and in some cases the only construction, it would be inter-

esting to present the covariant gauge fixing approach outlined above in this formalism.

To this end it simply becomes necessary to write down the equivalent equations to (6.26)

on the gauge parameters Λ and Λ̃. The first order formalism is reviewed in the Appendix

(6.3) for details.

4The exact values of n might be different for either sides.
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The equations (6.26) on the vector fields is equivalent to

ea
[µDν]Λa = 0 & ea

[µD̃ν]Λ̃a = 0, (6.39)

where

ea
µ = (A − Ã)a

µ,

Dµ and D̃ν are the respective gauge covariant derivatives. Since the Chern-Simons for-

malism admits natural generalisations to super-gravity and higher-spins in AdS 3, the

above gauge fixing condition generalises as it stands to these cases. One may read out

what the above condition translates to the non-sl(2,R) components of the gauge transfor-

mation parameters in these cases. For example, in the case of N = (1, 1) super-gravity in

AdS 3, the above condition translates to

γµDµε = 0.

ε = e−ργ
2/2(ε0(x±) + e−ρε1(x±) + e−2ρε2(x±) . . . ).

where :

ε−0 = ε−0+(x+)eix−/2 + ε−0 (x+)e−ix−/2 + ε−00(x−),

ε+
0 = −2∂−ε−0 ,

ε1.3.5... = 0,

ε−2 = −4∂−∂+ε
−
0 ,

ε−4 = 1
2ε
−
0 + 4∂−ε−0 + 2∂+ε

+
2 (x±),

ε+
4 = ∂−ε

−
00 + 4i(eix−/2∂2

+ε
−
0+ − e−ix−/2∂2

+ε
−
0−) + 4∂3

−ε
−
00 + 2∂+∂−ε

+
2 . (6.40)

Where

Dµε = (∂µ +
1
4
ωµ

a.b.
Γa.b.)ε +

η

2l
γµε, (6.41)

and the frames are

e0 = l cosh ρ dτ, e1 = l sinh ρ dφ, e2 = l dρ. (6.42)
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Here we work with the following gamma matrices:

Γ
0.

=

 0 −1

1 0

 , Γ
1.

=

 0 1

1 0

 , Γ
2.

=

 −1 0

0 1

 , (6.43)

Above, the ± index denotes 2 dimensional chirality w.r.t. γ2. The spinor bi-linears con-

structed out of these residual gauge spinors - χ̄γµε are:

ξµ∂µ = −1
2∂− f (x±)∂ρ + f (x±)∂− + O(e−ρ).

where :

− f (x±) l
4 = χ−00ε

−
00 + χ−0−ε

−
0+ + χ−0+ε

−
0− + e−ix−χ−0 ε

−
0− + eix−χ−0+ε

−
0+ + e−ix−/2(χ−0−ε

−
00 + χ−00ε

−
0−)

+e−ix−/2(χ−0+ε
−
00 + χ−00ε

−
0+). (6.44)

The above expression for the vector field coincides with the vector fields (2.23) if the

spinor parameters χ−00 and ε−00 are put to zero. Therefore:

− f (x±) l
4 = χ−00ε

−
00 + χ−0−ε

−
0+ + χ−0+ε

−
0− + e−ix−χ−0−ε

−
0− + eix−χ−0+ε

−
0+. (6.45)

6.1.3 Gauge fixing the the Fefferman-Graham gauge

The considerations of the previous sub-sections are easily reflected if the analysis were

carried out in the Fefferman-Graham gauge. Since we already know that the fluctuation

hµν will be given by a Lie derivative of the background metric ḡµν we can start with the

ansatz

hµν = −∇̄µξν − ∇̄νξµ (6.46)

and impose the gauge fixing conditions to find ξ. We write the background metric of

global AdS 3 as

ds2
AdS 3

= l2
[
− cosh2ρ dτ2 + dρ2 + sinh2ρ dφ2

]
(6.47)
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Then the gauge conditions hρρ = hρτ = hρφ = 0 give the following equations:

∂ρξ
ρ = 0, − cosh2ρ ∂ρξ

τ + ∂τξ
ρ = 0, sinh2ρ ∂ρξ

φ + ∂φξ
ρ = 0. (6.48)

The general solution to these equations is given by the vector

ξ =
[
aτ(τ, φ) + (tanh ρ − 1) ∂τσ(τ, φ)

]
∂τ+

[
aφ(τ, φ) + (coth ρ − 1) ∂φσ(τ, φ)

]
∂φ+σ(τ, φ) ∂ρ .

(6.49)

The corresponding hµν is

hττ = 2 cosh ρ
[

sinh ρ (σ + ∂2
τσ) + cosh ρ ∂τ(aτ − ∂τσ)

]
hτφ = cosh2ρ ∂φ(aτ − ∂τσ) − sinh2ρ ∂τ(aφ − ∂φσ)

hφφ = −2 sinh ρ
[

cosh ρ (σ + ∂2
φσ) + sinh ρ ∂φ(aφ − ∂φσ)

]
(6.50)

The physical fluctuations therefore are characterized by a boundary scalar σ and a bound-

ary vector aµ. We have done the fluctuation analysis around the global AdS 3. The new

boundary metric changes and is given by

g(0)
ττ = −

1
4

+
1
2

(∂τaτ + σ), g(0)
τφ =

1
4

(∂φaτ − ∂τaφ), g(0)
φφ =

1
4
−

1
2

(∂φaφ + σ) (6.51)

It turns out that the physical fluctuations around asymptotically locally AdS 3 space are

also characterized by a boundary scalar and a boundary vector. To see this we start with a

asymptotically locally AdS 3 space in Fefferman-Graham expansion:

ds2 = l2 dr2

r2 + r2
[
g(0)

ab +
l2

r2 g(2)
ab + · · ·

]
dxadxb (6.52)

where xa are the boundary coordinates with boundary metric g(0). Then the gauge condi-

tions hrr = hra = 0 give rise to the residual gauge vector

ξ = σ(x) r∂r + aa(x) ∂a +
1

2r2 gab
(0)(x)∂bσ(x)∂a + O( 1

r4 ) (6.53)



134 CHAPTER 6. APPENDIX

with

hab = −r2
[
Lag(0)

ab + 2σ g(0)
ab + O( 1

r2 )
]

(6.54)

Therefore the residual diffeomorphisms in the Fefferman-Graham gauge have an action of

Diff×Weyl on the boundary metric g(0). The Diff×Weyl algebra in terms of the parameters

aa(x) and σ(x) is

[
(aa

(1)∂a, σ1), (aa
(2)∂a, σ2)

]
=

(
(ac

(2)∂caa
(1) − ac

(1)∂caa
(2)) ∂a, ac

(1)∂cσ2 − ac
(2)∂cσ1

)
, (6.55)

where aa(x) parametrises the vector fields generating infinitesimal diffeomorphisms and

σ(x) denotes the Weyl transformation parameter.

The 2d Lorentzian boundary metric is conformally flat and can always be locally written

as

ds2 = eϕ
′(x+,x−)dx+dx−. (6.56)

The Lorentzian version of the Beltrami transform on (x+, x−) to (z(x, x+), z̄(x+, x−)) such

that

∂z̄x+ = µ∂zx+, ∂zx− = µ̄∂z̄x−, (6.57)

brings the boundary metric in the form

ds2 = eϕ(dz + µdz̄)(dz̄ + µ̄dz). (6.58)

Here the parameters µ and µ̄ are such that |µ| < 1 and |µ̄| < 1. When the boundary has

just one spatial periodic direction, this parametrization captures arbitrary metric on the

boundary with fixed co-ordinates (z, z̄). For the case when µ = 0 = µ̄ one recovers

the conformal metric. While for the case of chiral or light-cone gauge corresponds to

µ̄ = 0 = φ. For either of these gauge choices one can recover the induced gravity action

on the boundary by considering appropriate boundary terms added to the bulk action. A
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similar exercise was done by Bañados et al in [13].
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6.2 Review of the asymptotic covariant charge formalism

6.2.1 Introduction

Noether’s first theorem gives a systematic way of associating conserved charges to con-

tinuous global symmetries of a theory. By global we mean that the parameters of these

symmetries are constants and have no space-time dependence. Gauge theories on the

other hand posses gauge symmetries which are parametrized by local functions of space-

time, and are a commonplace in physics. If one tries to associate conserved currents to

gauge symmetries following the usual procedure then one runs into a problem; the asso-

ciated current vanishes on-shell. This was first noticed by Noether herself and addressed

in Noether’s second theorem. We briefly outline the consequence of this theorem eluci-

dating the problem.

Consider a Lagrangian L(φi) which is function of fields φi and it’s space time deriva-

tives at a point in n dimensions. We denote by Xi the character of a symmetry of the

Lagrangian L i.e. Xi = δXφ
i. By definition a symmetry of the Lagrangian L satisfies

Xi δL

δφi = ∂µ jµX. (6.59)

The current jµX is conserved when Euler-Lagrange equations (eom) hold i.e. δL
δφi = 0. Con-

sider now a gauge symmetry of the same Lagrangian L whose character we denote by

δ fφ = Ri
α( f α), where Ri

α =
∑

k=0 Ri(µ1µ2...µk)
α ∂µ1 ...∂µk and f α are some arbitrary (possibly

field dependent) local functions. Since this is a symmetry therefore

Ri
α( f α)

δL

δφi = ∂µ jµf . (6.60)



6.2. REVIEW OF THE ASYMPTOTIC COVARIANT CHARGE FORMALISM 137

Now, since the gauge transformation character Ri
α(.) is linear in its argument, one can shift

derivatives from the later onto δL
δφi

Ri
α( f α)

δL

δφi = f αR+i
α (
δL

δφi ) + ∂µS µi
α (
δL

δφi , f α) = ∂µ jµf ,

=⇒ f αR+i
α (
δL

δφi ) = ∂µ

[
jµf − S µi

α (
δL

δφi , f α)
]
. (6.61)

The last equation implies that the r.h.s. is a total divergence for arbitrary local function

f α multiplying the l.h.s, implying

R+i
α

(
δL

δφi

)
= 0. (6.62)

Therefore, in the presence of gauge symmetries there exists associated identities among

the Euler-Lagrange equations of motion. It is easily seen that the Euler-Lagrange equa-

tions satisfy a system of equations which are same in number to the independent gauge

parameters, and of same order in derivatives as is the character of gauge transformations.

This is Noether’s second theorem. Therefore for any conserved current jµf associated with

gauge transformations,

∂µ( jµf − S µi
α (
δL

δφi , f α)) = 0 (6.63)

holds true off-shell. The current S µi
α ( δL

δφi , f α) depends linearly on the Euler-Lagrange equa-

tions of motion and the gauge transformation parameters. Using the algebraic Poincaré

lemma one concludes that the conserved current can be improved on-shell by a divergence

of a super-potential k[µν]
f

jµf = S µi
α (
δL

δφi , f α) − ∂νk
[µν]
f (6.64)

for space-time dimensions greater than one. The form of the super potential is chosen

such that it drops out when the divergence of jµf is computed. The associated Noether

charge is then given by

Q f [φ] =

∫
Σ

j f |φ =

∫
∂Σ

k f |φ (6.65)
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evaluated on-shell. Here, Σ is a n − 1 dimensional space-like surface with a boundary

∂Σ. This implies that the Noether charge associated with gauge transformation may be

given by some seemingly arbitrary super-potential thus giving rise to the fore mentioned

problem.

The work by Barnich and Brandt allows one to associate a certain equivalence class of

conserved n − 2 forms k[µν] to an equivalence class of gauge transformations respecting a

given set of boundary conditions. They further give conditions enabling one to associate

finite charges with such conserved n − 2 forms. Their analysis applies to quite a gen-

eral set of Lagrangian field theories as it is carried out independent of the specific details

Lagrangian in question. Prior to this work, prescriptions for computing finite conserved

charges associated to gauge theories prescribed with a particular set of boundary con-

ditions have been worked out for some specific Lagrangians, such as the Chern-Simons

theory defined on a non-compact gauge group and Einstein-Hilbert action for gravity in

2 + 1 dimensions. These results are readily reproduced from the general prescription

outlined in their work.

6.2.2 Definitions and result

We begin with a summary of definitions and notations required to state the result.

Let φ̄i denote a solution to the Euler-Lagrange equations near the boundary. We denote

a field configuration by φi = φ̄i + ϕi, where ϕi → O(χi) as one approaches the bound-

ary. Here, χi denote a set of functions which prescribes a desired fall-off condition, for

instance χi = 1/rmi
, where the boundary is reached by taking the limit r → ∞ and mis

being some integers. Therefore {χi} describe a set of boundary conditions.

We further assume that the theory is "asymptotically linear". More precisely the leading
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order contribution to the Euler-Lagrange equations as one approaches the boundary comes

from the Euler-Lagrange equations linearised around a background solution. Let the be-

haviour of the linearised Euler-Lagrange equations evaluated on arbitrary ϕi → O(χi) be

denoted by O(χi) i.e.

∀ϕi → O(χi) :
δL f ree

δϕi

∣∣∣∣∣
ϕ(x)

dxn → O(χi), (6.66)

where L f ree is the Lagrangian L linearised about a background solution φ̄i. Further, any

ϕi would be termed as an asymptotic solution if

δL f ree

δϕi

∣∣∣∣∣
ϕ(x)

dxn → o(χi), (6.67)

where o(χi) denotes asymptotic behaviour of a lower degree than that of χi. The theory

being asymptotically linear would imply

∀ϕi −→ O(χi) :
[
δL

δφi −
δL f ree

δϕi

]∣∣∣∣∣
ϕ(x)

dxn → o(χi). (6.68)

We call those gauge transformation parameters as reducibility parameters which vanish

when the Euler-Lagrange equations hold and denote them by f α i.e.

Ri
α( f α) ≈ 0 (6.69)

Just like the Lagrangian, both Ri
α(.) and f α can be expanded in a power series in ϕi about

a particular background solution φ̄i. We denote with a superscript as to how many powers

of ϕi they contain i.e.

Ri
α = Ri0

α + Ri1
α + ... ,

f α = f α0 + f α1 + ... . (6.70)
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Since δ fφ
i = Ri

α( f α) is a gauge symmetry of the full theory therefore we have

Ri
α( f α)

δL

δφi = ∂µS µi
α (
δL

δφi , f α). (6.71)

Expanding the above equation in powers of ϕi about φ̄i one can show that R+i0
α ( f α) gener-

ates gauge symmetries of L f ree. Further if f α = f̃ α(x) is a field independent reducibility

parameter of the free theory, then the defining equation (6.69) for reducibility parameter

yields

Ri0
α ( f̃ α) = 05 (6.72)

and Ri1
α ( f α) generates symmetries of the free theory.

As shown in the previous section, the Noether operators R+i
α can be obtained from the

generating set of gauge transformations Ri
α by integration by parts and ignoring the total

derivative term that vanishes on-shell. These operators too furnish an asymptotic expan-

sion. Let R+i
α denote the generating set of all Noether identities for the full theory i.e.

R+i
α (
δL

δφi ) = 0. (6.73)

Then, the generating set of Noether identities for the linearised theory is given by R+i0
α

such that

R+i0
α (

δL f ree

δφi )dxn −→ 0. (6.74)

Here as before, R+i0
α is the ϕi independent term in the linearisation of R+i

α . Further we

define χα as

∀ψi −→ O(χi) : R+i0
α (ψi) −→ O(χα). (6.75)

5Here the equality is evaluated while being on-shell w.r.t. the background field φ̄i but being off shell
w.r.t. to the linearised Lagrangian L f ree for ϕi
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Since the theory linearises as we approach the boundary therefore we assume

∀ψi −→ O(χi) : [R+i
α (ψi) − R+i0

α (ψi)] −→ o(χα). (6.76)

The operators R+i
α and R+i0

α are termed as the Noether operators of the full and the lin-

earised (free) theory respectively and act upon the left-hand sides of the respective Euler-

Lagrange equations of motion. The above statements on the linearisation of the full the-

ory implies that the linearised Euler-Lagrange equations and the corresponding linearised

Noether operators capture the leading order behaviour of the corresponding quantities of

the full theory as one approaches the boundary.

As explained in the previous section, a conserved current jµf defined in the usual manner

for any gauge transformation vanishes on-shell and can only be improved by a super-

potential k[µν]
f , the origin of which seems arbitrary. But one can systematically associate

equivalence class of conserved n − 2 forms k̃[µν]
f for equivalence class of asymptotic re-

ducibility parameters f̃ α.

Let us now define what one means by an asymptotic reducibility parameter in the context

of a linearisable theory. We begin by expanding the definition for a reducibility parameter

(6.69) about a background solution φ̄i in powers of the fluctuation ϕi.

Ri
α( f α) = M+i j(

δL

δφ j ),

φi = φ̄i + ϕi,

δL

δφi

∣∣∣∣∣
φ̄i

= 0 (6.77)

and the operator M+i j(.) is linear and homogeneous in its arguments. Here we assume in

all generality that the operators Ri
α, M+i j and parameters f α depend on φi. At the zeroth



142 CHAPTER 6. APPENDIX

order in ϕi we find that the r.h.s. vanishes giving

Ri0
α ( f α0) = 0 (6.78)

Further, if f α were field independent i.e. independent of ϕi6 then this would imply Ri0
α ( f α) =

0. This should be seen as a condition defining a field independent reducibility parameter

of the full theory linearised about a background solution. Therefore, in a sense this would

be similar to finding Killing vectors of a background solution in general relativity about

which a theory is linearised.

Since we are interested in studying the symmetries of the linearised theory as it ap-

proaches a boundary, we therefore relax this condition and define asymptotic reducibility

parameters as a field independent parameters f̃ α s.t.

∀ψi −→ O(χi) : ψiRi0
α ( f̃ α) −→ 0. (6.79)

Since R+i0
α (ψi) −→ O(χα) and assuming integration by parts does not change the asymp-

totic degree, the above condition holds trivially for

f̃ α −→ o(χα) ⇐⇒ f̃ α ∼ 0, (6.80)

where |χα| = −|χα|. Therefore, non-trivial asymptotic reducibility parameters: f̃ α −→

O(χα) - are defined upto asymptotic reducibility parameters with the above fall-off be-

haviour.

An asymptotically conserved n − 2 form is defined as

∀ϕi(x) : dH k̃|ϕ(x) −→ s̃i(
δL

δϕi )|ϕ(x), (6.81)

6Since we have linearised the theory about a background solution, field independence would refer to not
depending upon the fluctuation ϕi.
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where s̃i(.) is an n − 1 form which depends linearly and homogeneously on its argument

and its derivatives. A conserved n − 2 form is trivial if

∀ϕi(x) : k̃|ϕ(x) −→ t̃i(
δL f ree

δϕi )
∣∣∣∣∣
ϕ(x)

+ dH l̃|ϕ(x) (6.82)

where t̃i(.) is an n − 2 form which depends linearly and homogeneously on its argument

and its derivatives.

We use the above definitions to state the following bijective correspondence. An n − 1

form si
α can be defined for a set of functions Qi as

∀Qi : dnx QiRi0
α ( f̃ α) = dnx R+i0

α (Qi) f̃ α + dH si
α(Qi, f̃ α) (6.83)

For the case of Qi = δL f ree

δϕi the above equation reduces to

dH s̃i(
δL f ree

δϕi , f̃ α) = dnx
δL f ree

δϕi Ri0
α ( f̃ α). (6.84)

Further if f̃ α is an asymptotic reducibility parameter as defined above then

∀ϕi : dH s̃ f̃ |ϕ(x) −→ 0,

=⇒ ∀ϕi : s̃ f̃ |ϕ(x) −→ −dH k̃ f̃ |ϕ(x). (6.85)

As s̃ f̃ is linear and homogeneous in the linearised field equations, k̃ f̃ is therefore an asymp-

totically conserved n − 2 form. The explicit expression for k̃ f̃ can be obtained from ap-

plying the contracting homotopy of the algebraic Poincaré lemma to s̃ f̃ .

k̃[µν]
f̃

=
1
2
ϕi
∂S s̃ν

f̃

∂ϕi
µ

+

(
2
3
ϕi
λ −

1
3
ϕi∂λ

) ∂S s̃ν
f̃

∂ϕi
λµ

− (µ↔ ν), (6.86)

where ϕi
λ = ∂µϕ

i and ∂Sϕi
µ1µ2...µk

/∂ϕ
j
ν1ν2...νk = δi

jδ
ν1ν2...νk
(µ1µ2...µk), where indices are symmetrised

with weight one.
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6.2.3 Some examples

As mentioned in the last section, the above result - which applies for a generic Lagrangian

systems that admits linearisation, yields the same expression for asymptotic charges as

was known in the case of certain gauge theories. We illustrate this in the case of Chern-

Simons theory defined on non-compact gauge group S l(2,R). Next, the prescription can

be used to define an asymptotically conserved D−2 current for the case of Einstein-Hilbert

gravity with arbitrary cosmological constant and boundary fall-off conditions.

Chern-Simons theory for a non-compact gauge group

We illustrate this in the case of Chern-Simons theory with a non-compact gauge group

S l(2,R) and level k

S cs =
k

4π

∫
A ∧ dA +

2
3

A ∧ A ∧ A. (6.87)

The theory is defined on a disk times a time coordinate Σ × R parametrized by (r, φ, t).

The asymptotic charge in this case was derived from Hamiltonian constraint analysis to

be

Qλ = −
k

2π

∫
dφ tr(λ aφ). (6.88)

Where A = Ā + a with Ā being flat F̄ = dĀ + Ā ∧ Ā = 0 satisfies the Euler-Lagrange

equations. The gauge transformations and the linearised equation of motion for a are

described by

δλa = dλ + [Ā, λ] = ∇̄λ,

εσµν∇̄µaν = 0, (6.89)

respectively. Therefore, the analogue of Ri
α( f α) δL

δφi is

Ri
α( f α)

δL

δφi ∼ (∇̄σλa)εσµν∇̄µaa
ν. (6.90)
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One can show the existence of Noether’s identities by shifting the gauge covariant deriva-

tive from the gauge transformation parameter λ to the rest of the expression:

(∇̄σλa)εσµν∇̄µaa
ν = λaε

σµν∇̄σ∇̄µaa
ν + ∇̄σ(λaε

σµν∇̄µaa
ν),

= 2λaε
σµν[F̄σµ, aa

ν] + ∇̄σ(λaε
σµν∇̄µaa

ν). (6.91)

The first term on the r.h.s. vanishes off-shell for arbitrary aν, therefore εσµν[Fσµ, aa
ν] = 0

is the Noether’s identity. The remaining term is interpreted as the divergence of

s̃µλ = −
k

2π
εµρσλa∇̄µaa

ν (6.92)

which is the required n − 1 form. Using (6.86) one gets

k̃[µν]
λ = −

k
2π
εµνσλaaa

σ,

,

Qλ = −
k

2π

∫
dφ tr(λ aφ) (6.93)

as the super-potential and the conserved charge respectively.

Einstein-Hilbert gravity

We would now like to apply this technique to the case of classical gravity as defined by

the Einstein-Hilbert action in D space-time dimensions.

L =
1

16π
√
−g(R − 2Λ) +Lmatter. (6.94)

Here the field is the metric gµν and the gauge transformations on it are the diffeomor-

phisms generated infinitesimally by vector fields via the Lie derivative i.e. δgµν = ∇(µξν).

We will work with configurations where the matter fields do not survive till the boundary.

In this case only the asymptotic dynamics of the theory is not governed by Lmatter.
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The equation of motion linearised about a solution ḡµν for hµν = gµν − ḡµν reads as:

Hµν[h, ḡ] =

√
−g

32π

(
2Λ

D − 2
(2hµν‘ − ḡµνh) + D̄µD̄νh + D̄λD̄λhµν

−2D̄λD̄(µhν)λ − ḡµν(D̄λD̄λh − D̄λD̄ρhρλ)
)

(6.95)

where h = hµνḡµν and hµν = ḡµαḡνβhαβ7. The gauge transformations are given by δξhµν =

ḡρ(ν∇̄µ)ξ
ρ. Therefore

Ri
α( f α)

δL

δφi ←→ ∇̄(µξν)H
µν (6.96)

Thus the Noether identities which are obeyed for arbitrary fluctuations over the back-

ground hµν are given by ∇̄µHµν = 0, which can be easily verified by using equations of

motion R̄µν = 2Λ(D − 2)−1ḡµν satisfied by ḡµν and general properties of the Riemann cur-

vature tensor.

The asymptotic reducibility parameters are vector fields such that

∀hµν → O(χµν) : dDx∇̄µξνHµν −→ 0. (6.97)

Applying the general formula (6.86) to the D − 1 form conserved current ξνHµν we get

k̃[νµ]
ξ [h, ḡ] = −

√
−ḡ

16π
[
∇̄ν(hξµ) + ∇̄σ(hµσξν) + ∇̄µ(hνσξσ)

+3
2h∇̄µξν + 3

2hσµ∇̄νξσ + 3
2hνσ∇̄σξµ − (µ↔ ν)

]
(6.98)

as the asymptotically conserved D − 2 form. The asymptotic conserved charge is accord-

ingly given by the integral of the above current over the D − 2 space-like surface at the

asymptote.

The above charges yield the expected charges (mass, angular momenta etc.) for the global

7Here (̄) indicates quantities computed w.r.t. the background metric ḡµν.
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Killing vectors of the space-time w.r.t. a background metric (typically chosen to be the

maximally symmetric solution.).

/δQξ =

∫
∂Σ

dD−2x k̃ξ[h = δg, ḡ] (6.99)

hµν consists of infinitesimal parameters hµν[δ f1, δ f2 . . . ] = δgµν that takes one away from

the background metric ḡµν. For the boundary conditions implied on hµν to be consistent the

expression for the infinitesimal variation of the asymptotic charge, /δQξ must be integrable,

i.e. /δQξ must have an expression as δ(Qξ).
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6.3 AdS 3 gravity in first order formulation

The AdS 3 gravity in the Hilbert-Palatini formulation can be recast as a gauge theory with

action

S [A, Ã] =
k

4π

∫
tr(A ∧ A +

2
3

A ∧ A ∧ A) −
k

4π

∫
tr(Ã ∧ Ã +

2
3

Ã ∧ Ã ∧ Ã) (6.100)

up to boundary terms, where the gauge group is S L(2,R). These are related to vielbein

and spin connection through A = ωa + 1
l ea and Ã = ωa − 1

l ea. The equations of motion

are F = dA + A ∧ A = 0 and F̃ := dÃ + Ã ∧ Ã = 0. We work with the following defining

representation of the sl(2,R) algebra.

L−1 =

 0 −1

0 0

 , L0 =
1
2

 1 0

0 −1

 , L1 =

 0 0

1 0

 , , (6.101)

Satisfying [Lm, Ln] = (m − n)Lm+n. The metric defined by Tr(Ta,Tb) = 1
2hab is

hab =


0 0 −2

0 1 0

−2 0 0

 (6.102)

It is known that the connections

A = b−1∂rb dr + b−1(L1 − κ(x+) L−1) b dx+

Ã = b ∂rb−1 dr + b (κ̃(x−) L1 − L−1) b−1 dx− (6.103)

represent all the solutions of AdS 3 gravity satisfying Brown-Henneaux (Dirichlet) bound-

ary conditions (in FG coordinates) where b = eL0 ln r
l . In fact, any solution of the Chern-

Simons theory (locally) can be written as

A = b−1∂rb dr + b−1 a b, Ã = b ∂rb−1 dr + b ã b−1 (6.104)
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where a and ã are flat connections in two dimensions with coordinates (x+, x−). The

general solution can be written as a = g−1 dg and ã = g̃ dg̃−1 where g and g̃ are S L(2,R)

group elements that depend on (x+, x−). We now present general solution to this flatness

condition in a different parametrization that will be useful to us. Consider the most general

sl(2,R) 1-form on the boundary

a = (a(+)
+ L1 + a(−)

+ L−1 + a(0)
+ L0) dx+ + (a(+)

− L1 + a(−)
− L−1 + a(0)

− L0) dx− (6.105)

Assuming that a(+)
+ does not vanish, the flatness conditions imply:

a(0)
− =

1

a(+)
+

(
a(+)
− a(0)

+ + ∂−a
(+)
+ − ∂+a(+)

−

)
, a(−)

− =
1

2a(+)
+

(
2 a(+)
− a(−)

+ + ∂−a
(0)
+ − ∂+a(0)

−

)
1
2
∂3

+ f = ∂−κ − 2 κ ∂+ f − f ∂+κ (6.106)

where κ = a(+)
+ a(−)

+ −
1
4 (a(0)

+ )2 − 1
2∂+a(0)

+ + 1
2a(0)

+ ∂+ ln a(+)
+ + 1

2∂
2
+ ln a(+)

+ −
1
4 (∂+ ln a(+)

+ )2 and

f =
a(+)
−

a(+)
+

. Similarly if we consider the 1-form

ã = (ã(+)
+ L1 + ã(−)

+ L−1 + ã(0)
+ L0) dx+ + (ã(+)

− L1 + ã(−)
− L−1 + ã(0)

− L0) dx− (6.107)

Then, assuming now that ã(−)
− does not vanish, the flatness conditions read

ã(+)
+ =

1

2 ã(−)
−

(2 ã(+)
− ã(−)

+ + ∂−ã
(0)
+ − ∂+ã(0)

− ), ã(0)
+ =

1

ã(−)
−

(ã(0)
− ã(−)

+ + ∂−ã
(−)
+ − ∂+ã(−)

− )

1
2
∂3
− f̃ = ∂+κ̃ − 2 κ̃ ∂− f̃ − f̃ ∂−κ̃ (6.108)

where f̃ =
ã(−)

+

ã(−)
−

and κ̃ = ã(−)
− ã(+)

− −
1
4 (ã(0)
− )2 + 1

2∂−ã
(0)
− −

1
2 ã(0)
− ∂− ln ã(−)

− + 1
2∂

2
− ln ã(−)

− −

1
4 (∂− ln ã(−)

− )2. The last equation is again the famous Virasoro Ward identity that can be

solved explicitly as in section 2. Some special cases of the above formulae have appeared

before, for instance, in [61].
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6.4 Generalization to extended AdS 3 super-gravity

We give the detail analysis of generalizing the chiral induced boundary conditions in-

troduced in chapter 2 to extended super-gravity in AdS 3. Here, the left moving gauge

field Γ obeys the boundary conditions of the Dirichlet type studied in [2] and we repeat

their analysis as it is for the left sector while imposing generalization of chiral boundary

condition on the right moving gauge field Γ̃. The conventions are taken as it is from [2].

6.4.1 Conventions

We follow the conventions of [2]. The structure constants for the G̃ are fabc which are

completely anti-symmetric. The representation ρ has the basis (λa)αβ where a counts the

dimension of G̃ i.e. D. Therefore, [λa, λb] = f ab
cλ

c. the Killing metric on G̃ is denoted

by gab = − f acd f bcd = −Cνδ
ab, where Cν is the eigenvalue of the second Casimir in the

adjoint representation of G̃. Similarly tr(λaλb) = − d
DCρδ

ab, where Cρ is the eigenvalue of

the second Casimir in the representation ρ. We denote by ηαβ the G̃−invariant symmetric

metric on the representation ρ which is orthogonal. Its inverse is ηαβ, this is used to raise

and lower the supersymmetric (Greek) indices.

The list of all possible super-gravities in AdS 3 is given in section (3.2); we consider any

such generic extended sugra in AdS 3. Below we list all the super-algebra generators:

• The sl(2,R) generators are denoted as before by (σ0, σ±)

σ0 = 1
2σ

3,[
σ0, σ±

]
= ±σ±,[

σ+, σ−
]

= 2σ0. (6.109)
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The Killing form on sl(2,R) is:

Tr(σaσb) = hab =
1
4


2 0 0

0 0 4

0 4 0

 (6.110)

• The generators of G̃ which commute with σas are8:

[
T a,T b

]
= f ab

c T c, where aε {1,D} ,[
T a, σb

]
= 0, where bε {+,−, 0} ,

S Tr
(
T aT b

)
=

2Cρ

d−1δ
ab. (6.111)

• The fermionic generators are denoted by R±α, where ± denotes the spinor indices

with respect to the sl(2,R) and α (Greek indices) denotes the vector index in the

representation ρ of G̃.

[
σ0,R±α

]
= ±1

2R±α, whereαε {1, d} ,[
σ±,R±α

]
= 0,[

σ±,R∓α
]

= R±α,[
T a,R±α

]
= −(λa)αβR

±β,{
R±α,R±β

}
= ±ηαβσ±,{

R±α,R∓β
}

= −ηαβσ0 ± d−1
2Cρ

(λa)αβT a,

S Tr
(
R−αR+β

)
= −S Tr

(
R+αR−β

)
= ηαβ. (6.112)

Since the underlining algebra is now promoted to a graded Lie algebra, its genera-

tors satisfy the generalized Jacobi identity. The three fermion Jacobi identity thus

8The indices on σ always run over (0,+,−) while those on T run from (1...D), this is to be understood
from the context.
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yields an identity for the matrices in the representation ρ of the internal algebra G̃:

(λa)αβ(λa)γδ + (λa)γβ(λa)αδ =
Cρ

d − 1
(2ηαγηβδ − ηαβηγδ − ηγβηαδ) (6.113)

The super-traces defined above are consistent, invariant and non-degenerate with respect

to the super-algebra defined above and would be used in defining the action and the

charges.

6.4.2 Action

The super Chern-Simons action is defined as:

S CS [Γ] =
k

2π

∫
M

S tr[Γ ∧ dΓ +
2
3

Γ ∧ Γ ∧ Γ]. (6.114)

The above integration is over a three manifoldM = D × R, where D has a topology of

a disk. The level k of the Chern-Simons action is related to the Newton’s constant G in

three dimension and the AdS length ` through k = `/(4G). The product of two fermions

differs by a factor of i from the standard Grasmann product ((ab)∗ = b∗a∗).This basically

requires one the multiply a factor of −i where ever ηαβ occurs, and where ever d−1
2Cρ (λa)αβ

occurs while evaluating anti-commutator between fermionic generators in the calculations

below9.

In the Chern-Simons formulation of (super-)gravity, the metric (and other fields) which

occur in Einstein-Hilbert (Hilbert-Palatini) action are a derived concept. The equations of

motion for the Chern-Simons action can for example be satisfied by gauge field configu-
9This basically so because the product of two real Grasmann fields is imaginary. This is equivalent to

using {
R±α,R±β

}
= ∓iηαβσ±,{

R±α,R∓β
}

= iηαβσ0 ∓ i d−1
2Cρ

(λa)αβT a,

S Tr
(
R−αR+β

)
= −S Tr

(
R+αR−β

)
= −iηαβ, (6.115)

instead of the one stated in the commutation relations of the extended super-algebra.
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rations which may yield a non-singular metric. There fore one has to make sure that such

configurations are not considered in the analysis.

The super-gravity action for the above super-algebra can be written in full detail yielding

the action in the Hilbert-Palatini form:

S [Γ, Γ̃] = 1
8πG

∫
M

d3x{12eR +
e
`2 +

−
i`
2
εi jk(ψi)D

µν
j (ψk)ν +

i`
2
εi jk(ψ̃i)D̃

µν
j (ψ̃k)ν}

+
Cρ

d − 1
`εi jk(Ba

i ∂ jBa
k + 1

3 fabcBa
i Bb

j B
c
k)

−
Cρ

d − 1
`εi jk(B̃a

i ∂ jB̃a
k + 1

3 fabcB̃a
i B̃b

j B̃
c
k)

−
i
2
εi jkηαβea

i ([ψ̄ j]αta[ψk]β − [ ˜̄ψ j]αta[ψ̃k]β)} (6.116)

The square brackets denote the two-component sl(2,R) spinor representations. The spin

covariant operatorsD and D̃ are:

D
µν
j =

 2
(
ηαβ∂ j + (λa)αβBa

j
)
δ
µ
+αδ

ν
−β+

−ηαβ
( 1

2ω
3
j[δ

µ
+αδ

ν
−β + δ

µ
−αδ

ν
+β] + ω+

j δ
µ
−αδ

ν
−β − ω

−
j δ

µ
+αδ

ν
+β

)
 ,

D̃
µν
j =

 2
(
ηαβ∂ j + (λa)αβB̃a

j
)
δ
µ
+αδ

ν
−β+

−ηαβ
( 1

2ω
3
j[δ

µ
+αδ

ν
−β + δ

µ
−αδ

ν
+β] + ω+

j δ
µ
−αδ

ν
−β − ω

−
j δ

µ
+αδ

ν
+β

)
 (6.117)

From the form of the above action it is quite evident that the analysis done in the Hilbert-

Palatini formulation of super-gravity would be quite cumbersome if not difficult. Further,

it was found that computation of the asymptotic charge associated with gauge transfor-

mations which vary the super-gauge field at the AdS asymptote10 via the prescription of

Barnich et al [50] for the above form of the action is too difficult. The same prescription

of computing asymptotic charges in the Chern-Simons formalism yields a know expres-

sion for asymptotic charge in Chern-Simons theory. Therefore we proceed as before with

the analysis in the Chern-Simons prescription.

10By this we mean the boundary of the disk D
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6.4.3 Boundary conditions

The fall-off conditions in terms of the gauge fields are:

Γ = bdb−1 + bab−1,

Γ̃ = b−1db + b−1ãb,

where b = eσ
0 ln(r/`),

a =
[
σ− + Lσ+ + ψ+α+R+α + Ba+T a] dx+,

ã =
[
σ+ + L̄σ− + ψ̄−α−R−α + B̄a−T a

]
dx−

+
[
Ãa+σ

a + B̃a+T a + ψ̃+α+R+α + ψ̃−α+R−α
]

dx+. (6.118)

Here the dx− component of the gauge field ã one form is that of a super-gauge field corre-

sponding to Dirichlet boundary condition as given in [2]. All functions above are a priori

functions of both the boundary coordinates. The equation of motion- as mentioned earlier,

is implied by the flatness condition imposed on the two gauge fields. For the right gauge

field this implies that the functions are independent of the x− co-ordinate. i.e. ∂−a = 0.

∂−L = ∂−ψ+α+ = ∂−Ba+ = 0 (6.119)

For the left gauge field we would like to use the equations of motion to solve for the

ã+ components. This gives the ã+ components in terms of Ã++, B̃a+, ψ̃+α+ and the ã−

components:

Ã0+ = ∂−Ã++,

Ã−+ = Ã++L̄ − 1
2∂

2
−Ã++ + i η

αβ

2 ψ̃+α+ψ̄−β−,

ψ̃−α+ = Ã++ψ̄−α− − ∂−ψ̃+α+ + (λa)βαB̄aψ̃+β+. (6.120)

Provided they satisfy the following set of differential equations:

∂+L̄ + 1
2∂

3
−Ã++ − 2L̄∂−Ã++ − Ã++∂−L̄



6.4. GENERALIZATION TO EXTENDED ADS 3 SUPER-GRAVITY 155

+iηαβψ̄−β−
(
Ã++ψ̄−α− + (λa)βαB̄a−ψ̃+β+ + ∂−ψ̃+α+

)
+ iηαβ∂−(ψ̄−β−ψ̃+α+) = 0,

∂+B̄a− − ∂−B̃a+ + f bc
aB̃b+B̄c− + id−1

2Cρ
(λa)αβψ̃+α+ψ̄−β− = 0,

∂+ψ̄−α− − ∂−[Ã++ψ̄−α− − ∂−ψ̃+α+ + (λa)βαB̄a−ψ̃+β+] − 1
2∂−Ã++ψ̄−α−

+(λa)βαB̄a−[Ã++ψ̄−β− − ∂−ψ̃+β+ + (λa)γβB̄b−ψ̃+γ+] − (λa)βαB̃a+ψ̄−β− − L̄ψ̃+α+ = 0.

(6.121)

These are the Ward identities expected to be satisfied by the induced gravity theory on

the boundary. We will later choose the (̄) functions such that global AdS 3 is a part of the

moduli space of bulk solutions.i.e. L̄ = −1
4 and B̄ = 0 = ψ̄.

In the following analysis we will consider the sources i.e. the bared functions as constants

along the boundary directions. There is no need to assume this, and we have done so only

for simplicity in the expressions for change in the moduli space parameters. Either ways,

demanding that the bared functions- L̄, B̄, ψ̄, be treated as sources which determine aspects

of the theory requires adding of specific boundary term to the bulk action. As explained

previously, this is done so that the required set of bulk solutions obey the variational

principle.

The boundary term to be added is given by:

S bndy =
k

8π

∫
∂M

d2x S Tr(−σ0[ã+, ã−]) − 2L̄0σ
−ã+ + (d−1

2Cρ
)2T aT bS Tr(ã+Ta)S Tr(ã−Tb)

−2(d−1
2Cρ

)B̄0aT aT bS Tr(ã+T b) − 1
2 (ψ̄0)−αR−αã+). (6.122)

This implies the following desired variation of the total action:

δS total =
k

8π

∫
M

d2x 2(L̄ − L̄0)δÃ++ + 2( 2Cρ

d−1 )(B̄a− − B̄0a)δB̃a+ + i
2 (ψ̄−α− − (ψ̄0)−α)δψ̃+α+η

αβ

(6.123)

In our present case, we would be choosing the later by fixing L̄ = −1/4, B̄0a = 0 = (ψ̄0)−α.

Thus the variational principle is satisfied for configurations with L̄ = −1
4 and B̄a− = 0 =
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ψ̄−α− which describes global AdS 3.

6.4.4 Charges and symmetries

Just as in the previous chapters, one needs to find the space of gauge transformations

that maintains the above form of the gauge fields, thus inducing transformations on the

functions Ãa+, B̃a+, ψ̃+α+, L, Ba, ψ+α+ which parametrize the space of solutions. Once this

is achieved, one can define asymptotic conserved charge associated with the change in-

duced by such residual gauge transformations on the space of solutions. For the boundary

conditions to be well defined, this asymptotic charge must be finite and be integrable on

the space of solutions.

Left sector

The analysis of the left sector i.e. on the gauge field Γ is exactly the one done in [2]. We

first find the space of residual gauge transformations that maintain the form of Γ. The

residual gauge transformations acting on a are parametrized as Λ = ζaσ
a +ωaT a +ε±αR±α

where there is no explicit radial dependence. The radial dependence can be introduced

just as for the gauge fields b−1Λb. The variation of a under such gauge transformation is:

δa− = 0,

=⇒ ∂−Λ = 0,

δa+ = ∂+Λ + [a+,Λ],

=
(
∂+ζ0 + 2Lζ− − 2ζ+ − iηαβψ+αε−β

)
σ0

+
(
∂+ζ+ − Lζ0 + iηαβψ+αε+β

)
σ+

+ (∂+ζ− + ζ0)σ−

+
(
∂+ωc + f abcBaωb + id−1

2Cρ
(λc)αβψ+αε−β

)
T c

+
(
∂+ε+β + Lε−β − (λa)αβε+αBa − ζ0ψ+β + (λa)αβωaψ+α

)
R+β

+
(
∂+ε−β + ε+β − (λa)αβε−αBa − ζ−ψ+β

)
R−β (6.124)
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The above change in a under gauge transformation must preserve the form of a. This

allows for three independent gauge transformation parameters in terms of which the rest

of the gauge transformation parameters are determined.

ζ0 = −∂+ζ−,

ζ+ = −1
2∂

2
+ζ− + ζ−L − iηαβψ+αε−β,

ε+α = −∂+ε−α + ζ−ψ+α + (λa)βαε−βBa. (6.125)

Here, all the residual gauge parameters are independent of x−, just like the solution space

parameters for the gauge field Γ. The gauge transformation parameter Λ with the above

substitution parametrizes the space of residual gauge transformations for Γ. The corre-

sponding changes in the solution space parameters are:

δL = −
1
2
ζ′′′− +

[
(ζ−L)′ + ζ′−L

]
− iηαβ

[
1
2 (ψ+αε−β)′ + ψ+αε

′
−β

]
−(λa)αβψ+αBaε−β,

δBa = ω′a + f bc
a Bbωc + id−1

Cρ
(λa)αβψ+αε−β,

δψ+α = −ε′′−α +
[
(ζ−ψ+α)′ + 1

2ζ
′
−ψ+α

]
+ Lε−α + (λa)βα

[
(ε−βBa)′ + ε′−βBa

]
+

+ (λa)βαωaψ+β − ζ−(λa)βαψ+βBa −
1
2

{
λa, λb

}γ
α
ε−γBaBb. (6.126)

The asymptotic charge associated with the full bulk geometry splits as difference for the

ones corresponding to the left and the right sector, just like the action. The asymptotic

charge associated with the left sector is given by:

/δQ =
k

2π

∫
dφS Tr[Λδaφ],

δQ =
k

2π

∫
dφ

(
ζ−δL + d−1

2Cρ
ωaδBa + iηαβε−αδψ+β

)
. (6.127)
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Note that in the conventions adapted in this section there is no minus sign in front of the

asymptotic charge. We redefine the currents as follows:

L→ k
2πL , Ba →

kCρ

π(d−1) Ba , ψ+α →
k

2πψ+α. (6.128)

Further, we add a Sugawara energy-momentum operator related to Ba to L.

L→ L +
2π(d−1)

4Cρ
BaBa, ψ+α →

√
2ψ+α (6.129)

After suitable redefinitions one gets the following Poisson algebra:

{
L(x′+), L(x+)

}
=

k
4π
δ′′′(x′+ − x+) −

(
L(x′+−) + L(x+)

)
δ′(x′+ − x+),{

Ba(x′+), Bb(x+)
}

= −
k

2π
2Cρ

d−1δ
abδ′(x′+ − x+) + f c

ab δ(x′+ − x+)Bc(x′+),{
L(x′+), Ba(x+)

}
= −Ba(x′+)δ′(x′+ − x+),

i
{
ψ+α(x′+), ψ+β(x+)

}
= − k

π
ηαβδ

′′′(x′+ − x+) − 2(λa)αβ d−1
2Cρ
δ′(x′+ − x+)

[
Ba(x′+) + Ba(x+)

]
+

− 2πk(d−1
2Cρ

)2
[{
λa, λb

}
αβ

+
2Cρ

d−1ηαβδ
ab
]

Ba(x′+)Bb(x+)δ(x′+ − x+)

+ 2ηαβL(x′+)δ(x′+ − x+),{
L(x′+), ψ+α(x+)

}
= −

[
ψ+α(x′+) + 1

2ψ+α(x+)
]
δ′(x′+ − x+),{

Ba(x′+), ψ+α(x+)
}

= (λa)βαψ+β(x′+)δ(x′+ − x+). (6.130)

The Fourier modes for the above algebra satisfy the following Dirac brackets:

[Lm, Ln] = (m − n)Lm+n + k
2m3δm+n,0,[

Ba
m, B

b
n

]
= i f abcBc

m+n +
2kCρ

d−1 mδabδm+n,0,[
Lm, Ba

n
]

= −nBa
m+n,{

(ψ+α)m, (ψ+β)n

}
= 2ηαβLm+n − 2id−1

2Cρ
(m − n)(λa)αβ(Ba)m+n

+ 2kηαβm2δm+n,0

− k( d−1
2kCρ

)2
[{
λa, λb

}
αβ

+
2Cρ

d−1ηαβδ
ab
]

(BaBb)m+n,[
Lm, (ψ+α)n

]
= (m

2 − n)(ψ+α)m+n,
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Ba

m, (ψ+α)n
]

= i(λa)βα(ψ+β)m+n. (6.131)

This is the non-linear super-conformal algebra or the super-Virosoro algebra. The central

extension is k = c/6, and is the same for all the seven cases listed in the table chapter 3.

This algebra, although a supersymmetric extension of the Virasoro algebra, is not a graded

Lie algebra in the sense that the right-hand sides of the fermionic (Rarita-Schwinger)

anti-commutators contains quadratic non-linearities in currents for the internal symmetry

directions.

Right sector

For the choice of L̄ = −1
4 , B̄ = 0 = ψ̄ the eom can be solved and the solutions can be

parametrized as below:

Ã++ = f (x+) + g(x+)eix− + ḡ(x+)e−ix− ,

B̃a+ � B̃a+(x+),

ψ̃+α+ = χα(x+)eix−/2 + χ̄α(x+)e−ix−/2. (6.132)

We would now seek the residual gauge tranformation parameters that would keep the

above form of the gauge field Γ̃ form invariant. The residual gauge transformations are

generated by Λ̃ = ξaσ
a + baT a + ε+αR+α + ε−αR−α with the constraint that δã− = 0:

δã− = dΛ̃ + [ã−, Λ̃],

=⇒ ξ0 = ∂−ξ+,

ξ− = −1
4 (1 + 2∂2

−)ξ+,

ε−α = −∂−ε+α,

∂−(1 + ∂2
−)ξ+ = 0,

∂−ba = 0 = (∂2
− + 1

4 )ε+α. (6.133)
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One can solve for the residual gauge transformations:

ξ+ = λ f (x+) + λg(x+)eix− + λ̄ḡ(x+)e−ix− ,

ba � ba(x+),

ε+α = εα(x+)eix−/2 + ε̄α(x+)e−ix−/2. (6.134)

Here too, one finds that the functions parametrizing the space of solutions and residual

gauge transformations are functions of x+ alone. The x+ dependence of the functions will

be suppressed from here on for neatness. The variation of the above parameters under the

residual gauge transformations are:

δ f = λ′f + 2i(gλ̄ḡ − ḡλg) + iηαβ(χαε̄β + χ̄αεβ),

δg = λ′g + i(gλ f − λg f ) + iηαβχαεβ,

δḡ = λ̄′ḡ − i(ḡλ f − λ̄ḡ f ) + iηαβχ̄αε̄β,

δB̃a+ = b′a + f bc
a B̃b+bc + d−1

2Cρ
(λa)αβ(χ̄αεβ − χαε̄β),

δχα = ε′α − (λa)βα[B̃a+εβ − baχβ] + i[gε̄α −
f
2εα − λgχ̄α +

λ f

2 χα],

δχ̄α = ε̄′α − (λa)βα[B̃a+ε̄β − baχ̄β] − i[ḡεα −
f
2 ε̄α − λ̄ḡχα +

λ f

2 χ̄α] (6.135)

The charges corresponding to these transformation is given by:

/δQ[Λ̃] = −
k

2π

∫
dφ S tr[Λ̃, δãφ]. (6.136)

The above charge can be integrated to

Q[Λ] = − k
2π

∫
dφ[− f

2λ f + gλ̄ḡ + ḡλg +
2Cρ

d−1 B̃a+ba + ηαβ(χαε̄β − χ̄αεβ)]. (6.137)

This charge is the generator of canonical transformations on the space of solutions parametrized

by set of functions F via the Poisson bracket.

δΛ̃F = {Q[Λ̃], F} (6.138)
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Therefore the Poisson bracket algebra is:

{ f (x+′), f (x+)} = −2αQδ
′(x+′ − x+), {χα(x+′), f (x+)} = −iαQδ(x+′ − x+)χα,

{g(x+′), f (x+)} = −2iαQg(x+)δ(x+′ − x+), {χ̄α(x+′), f (x+)} = iαQδ(x+′ − x+)χ̄α,

{ḡ(x+′), f (x+)} = 2iαQḡ(x+)δ(x+′ − x+), {χ̄α(x+′), g(x+)} = iαQδ(x+′ − x+)χα,

{ḡ(x+′), g(x+)} = iαQ f (x+)δ(x+′ − x+) + αQδ
′(x+′ − x+), {χα(x+′), ḡ(x+)} = −iαQδ(x+′ − x+)χ̄α,

{B̃a+(x+′), B̃b+(x+)} = −αQ( d−1
2Cρ

)δ(x+′ − x+) f c
ab B̃c+(x+) + αQ( d−1

2Cρ
)δ′(x+′ − x+)δab, (6.139)

while those among the fermions is:

{χ̄α(x+′), χβ(x+)} =
iαQ

2 ηαβ f (x+)δ(x+′ − x+) + αQ(λa)αβB̃a+δ(x+′ − x+)

+αQηαβδ
′(x+′ − x+),

{χα(x+′), χβ(x+)} = iαQηαβg(x+)δ(x+′ − x+),

{χ̄α(x+′), χ̄β(x+)} = iαQηαβḡ(x+)δ(x+′ − x+),

{B̃a+(x+′), χβ(x+)} = −αQ( d−1
2Cρ

)(λa)αβχα(x+)δ(x+′ − x+),

{B̃a+(x+′), χ̄β(x+)} = −αQ( d−1
2Cρ

)(λa)αβχ̄α(x+)δ(x+′ − x+). (6.140)

where αQ = 2π
k . Rescaling the above currents to:

f → k
4π f , g→ k

2πg, ḡ→ k
2π ḡ,

B̃a+ →
k

2π B̃a+, χα →
k

2πχα, χ̄α →
k

2π χ̄α, (6.141)

and expanding it in the modes yields the following commutators:

[ fm, fn] = m k
2δm+n,0, [(χα)m, fn] = 1

2 (χα)(m+n),

[gm, fn] = gm+n, [(χ̄α)m, fn] = −1
2 (χ̄α)(m+n),

[ḡm, fn] = −ḡm+n, [(χ̄α)m, gn] = −(χα)m+n,
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[ḡm, gn] = −2 fm+n − mkδm+n,0, [(χα)m, ḡn] = (χ̄α)m+n,

{(χα)m, (χβ)n} = −ηαβgm+n, {(χ̄α)m, (χ̄β)n} = −ηαβḡm+n,

[(B̃a+)m, (χβ)n] = i(d−1
2Cρ

)(λa)αβ(χα)(m+n), [(B̃a+)m, (χ̄β)n] = i(d−1
2Cρ

)(λa)αβ(χ̄α)(m+n),

[(B̃a+)m, (B̃b+)n] = −i(d−1
2Cρ

) f c
ab (B̃c+)(m+n) − (d−1

2Cρ
)kmδabδm+n,0,

{(χ̄α)m, (χβ)n} = −ηαβ f(m+n) + i(λa)αβ(B̃c+)(m+n) − kmηαβδm+n,0. (6.142)

This is the affine Kaĉ-Moody super-algebra. Here, it is evident that the central extension

to the sl(2,R)current sub-algebra spanned by ( f , g, ḡ) is k = c/6. The quadratic non-

linearities that occur in the super-Virasoro are not present here.

6.5 sl(3,R) conventions

We work with the following basis of 3 × 3 matrices (see [7]) for the fundamental repre-

sentation of the gauge group used in the definition of the higher spin theory:

L−1 =


0 −2 0

0 0 −2

0 0 0

 , L0 =


1 0 0

0 0 0

0 0 −1

 , L1 =


0 0 0

1 0 0

0 1 0

 , W−2 = α


0 0 8

0 0 0

0 0 0

 ,

W−1 = α


0 −2 0

0 0 2

0 0 0

 , W0 = α 2
3


1 0 0

0 −2 0

0 0 1

 , W1 = α


0 0 0

1 0 0

0 −1 0

 , W2 = α


0 0 0

0 0 0

2 0 0

 .
(6.143)

The algebra satisfied by these matrices is

[Lm, Ln] = (m − n) Lm+n, [Lm,Wn] = (2m − n) wm+n,

[Wm,Wn] = −
α2

3
(m − n)(2m2 + 2n2 − mn − 8) Lm+n (6.144)
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For α2 = −1 this is the su(1, 2) algebra and for α2 = 1 this is the sl(3,R) algebra. We

take the Killing metric as ηab = 1
2 Tr(TaTb) where Ta are the above matrices. The

structure constants are fabc = 1
2Tr(Ta [Tb,Tc]).
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