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Chapter 1

Introduction.

Graphene is a planar hexagonal structure formed by carbon atoms. The sp2 hybridized

orbitals of the carbon atoms forms the covalent bonds between the carbon and its three

nearest neighbors. Graphene can visualized as the building block of some the carbon

allotropes, for example, 3d structures like graphite, quasi 1d structures carbon nanotubes

and quasi 0d structures fullerenes. Until recently, isolating the graphene has eluded the

scientific community.

One of the methods for isolating graphene for experiments is done by exfoliation [15].

Highly oriented pyrolytic graphite platelets pressed against glass substrate which has

freshly layered µm thick photoresist and baked so that mesas get attached to the pho-

toresist layer. The rest of the sample cleaved off and then repeatedly use scotch tape to

peel off the flakes of graphite. Thin flakes that are left on the photoresist and released

in acetone. A Si wafer is dipped in the solution and washed with water and propanol.

This captures some flakes on the wafer surface and the single graphene is selected from

the resulting films by using a combination of optical, electron beam and atomic force

microscopy. Graphene samples have been prepared on various substrates. The samples

prepared on boron nitride [17] and suspended graphene samples [4] have higher electron

mobilities than on SiO2.
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1.1 Lattice and band structure

A triangular lattice with each site decorated with two carbon atoms gives the honey-

comb structure of graphene. The lattice spacing for the triangular lattice, a = 2.46 Å for

graphene and the two carbon atoms separated by a distance a/
√

3. The lattice sites points

are defined by ordered pair of integers, n ≡ (n1, n2) where n1, n2 ∈ Z,

n = n1e1 + n2e2 (1.1)

e1 and e2 are the linearly independent vectors for the primitive translation vectors for the

triangular lattice. In Cartesian coordinates, with x̂ and ŷ as unit vectors along the axes,

the primitive vectors described as following,

e1 = a x̂

e2 = −1

2
a x̂ +

√
3

2
a ŷ

(1.2)

There are number of operations that leaves the graphene lattice invariant. This includes

e1
e2

Figure 1.1: The figure shows a honeycomb lattice structure. Triangular lattice with basis
vectors e1 and e2 with each site decorated with two geometrically nonequivalent carbon
atoms, shown here with blue and red circles

translations, rotations, mirror reflection and glide reflection. The space group assigned

2



for graphene is P6/mmm.

The electronic properties are obtained by studying the tight binding model for the π-

electrons of graphene,

H = −t
∑
n σ

c†n, 1, σ(cn, 2, σ + cn+e2, 2, σ + cn+e1+e2, 2, σ) + h.c. (1.3)

cn, r, σ are the lattice fermion operators for the π-electron at triangular lattice point n, r is

the sublattice index and σ specifies the spin of the electron. t ≈ 3.03 eV is value of the

overlap integral, which is the measure of energy cost for the electron hopping from one

site to another.

The spectrum for the tight binding model is obtained by taking Fourier transformation of

lattice fermion operators,

cn, r, σ =
∑
k

eik·n ck, r, σ (1.4)

Here k ≡ (k1, k2), reciprocal lattice vector

Γ

K+

K−

M E1

E2

(a)

E1

E2

Γ

K+

K−

(b)

Figure 1.2: The two figures show the same Brillouin zone. In (a) the high symmetry
points, Γ, K,M , of the Brillouin zone. The two K points in each is Brillouin zone is
more transparent in (b).

k = k1E1 + k2E2 (1.5)
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with E1, E2 primitive vectors in the reciprocal space is given by,

E1 =
4π√

3

(√
3

2
x̂ +

1

2
ŷ

)

E2 =
4π√

3
ŷ

(1.6)

and satisfy the condition, ej ·Ek = 2π δj,k. The invariance of scalar product of k ·n under

point group symmetry operations results in three points of high symmetry in the Brillouin

zone. Γ point has a six-fold rotation symmetry, K point and three-fold symmetry and M

has a two-fold symmetry as shown in Fig 1.2.

The eigenvalues are given by,

εk = ± t
(
1 + ei k2 + ei (k1+k2)

) 1
2 (1.7)

The Fermi surface are two points in the Brillouin zone. These points are given by the

roots of the 1 + ei k2 + ei (k1+k2) = 0, i.e. K± = (±2π/3,±2π/3) and are called Dirac

points. The interesting feature of the band structure that in the proximity of the Dirac

points, k = K± + q in Eq.(1.7), the energy has a linear dependence on the wavevector.

εq = ±~ vF |q| (1.8)

vF = (
√

3 a t)/(2 ~) ≈ 106msec−1 is the Fermi velocity.

1.2 Quantum Hall measurements

Graphene placed on the silicon [16, 23] or boron nitride substrate or suspended graphene

is almost an ideal realization of a two dimensional system and ideal for quantum Hall

measurement. It is very different from the physical realization of two dimensional systems

in the semiconductors which relies on the creation of inversion layers. Inversion layers are

4



formed at the interface between a semiconductor (Si) and an insulator(SiO2) or between

two semiconductors (GaAs-Al0.8Ga0.2As) where latter plays the role of the insulator. An

electric field perpendicular to the interface confines the electrons from the semiconductor

in a quantum well created by the electric field and the interface. The motion perpendicular

to interface is quantized and the orbital degrees of freedom are frozen to a single level by

conducting the experiments at very low temperatures. The wavelengths of these confined

electrons are long, so an effective mass approximation with parabolic bands is a good

theory to describe their behaviour. A metallic electrode is plated on one side of insulator

which is charged by application of external ‘gate voltage’ to control the density of the

electrons in the inversion layer.

In the case of graphene, there is no need for creation of inversion layer because of two

dimensional structure of the material. The device comprises of graphene placed on ther-

mally grown 300 nm thick SiO2 insulator over Si substrate. Si serves as gate electrode

and SiO2 acts as gate dielectric to control the carrier density in graphene. The graphene

samples are 3-10 µm in lateral size, multiple electrode arranged for the conductivity mea-

surements. The charge density induced on graphene is by tuning the gate voltage Vg and

this gives a way to control the desired fermi level.

Quantum Hall effect

The quantum Hall effect manifests in graphene in transport measurements of transverse

and longitudinal currents in samples with high mobilities as a function of magnetic field

at fixed gate voltage. At large magnetic fields, the transverse resistance exhibits plateaus

and the longitudinal resistance vanishes, which are signature of the quantum Hall effect.

The plateaus are observed at transverse conductivity equals to [16, 23]

σH = sgn(n) 4
(
|n|+ 1

2

)e2

h

5



Here n is an integer which is the index of highest completely occupied Landau level. The

factor of 4 corresponds to the degeneracy of each Landau level due to two spin and two

valley quantum number. The factor of 1/2 is related to the Berry’s phase in graphene.

A simple minded picture to understand the quantization of Hall conductivity is from the

one-particle picture. The energy eigenvalues for the Dirac particle in magnetic field is

given by

εn, l = sgn(n)
√

2|n|~vF
`c

Each Dirac particle comes in four flavors, two valley and two spin. Each Landau level with

positive index corresponds to electron states and the one with negative index corresponds

to hole states. The n = 0 level is shared by both electron and hole states, i.e. two electron

states and two hole states.

The samples with higher electron mobilities and high magnetic field, B ∼ 45 additional

plateaus were observed [22, 12, 21, 2]. In the first experiments [22, 12, 2], the degeneracy

of n = 0 Landau level was fully lifted with Hall plateaus at σH = 0,±1 were reported.

Only partial degeneracy was lifted for n = 1 Landau level with the occurrence of Hall

plateaus at σH = ±4. Quantum Hall measurements with tilted magnetic field, i.e. the

graphene plane makes an angle with the applied magnetic field, is an important tool to

understand the lifting of spin degeneracy. The Zeeman energy depends on the total applied

magnetic field, (BT ), whereas the orbital motion of electron only feels the magnetic field

perpendicular, (B⊥), to the planar motion. The measurements of activation gaps in tilted

magnetic field, where the B⊥ is kept constant to ensure magnetic field is the range for

quantum Hall plateaus and vary the BT by tilting the plane. The dependence of this gap

withBT enables helps to conclude if the lifting of degeneracy caused by Zeeman splitting.

It was concluded [22] that σH = ±4 was caused by lifting of the spin degeneracy from

the tilted magnetic field experiments. The gaps for quantum Hall states at σH = ±1

showed
√
B dependence [12], ruled out lifting of spin degeneracy. By excluding spin, it

was conclude that lifting of the valley degeneracy resulted in Hall plateaus at σH = ±1.
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The quantum Hall state for σH = 0 received more attention because of it unusual nature.

A quantum Hall plateau for the transverse conductivity is accompanied with a vanishing

longitudinal conductivity. The first few quantum Hall plateau at σH = 0 [22, 2] were

reported with finite large longitudinal resistivity. The experiments reported a diverging

longitudinal resistance [5, 6, 21], hence ruling out the counter propagating edge modes

for σH = 0 state. The state for quantum Hall plateau σH = 0 is a quantum Hall insulator,

i.e. vanishing transverse and diverging longitudinal resistivity, unlike the other plateaus

in graphene.

In this thesis, we investigate the nature of quantum Hall states for σH = 0,±1, hence the

review of the reported experimental works is centered around these states. The quantum

Hall experiments for graphene on boron nitride substrate [21] and suspended graphene [1]

are most relevant to us. The graphene on boron nitride [17] provided high quality samples

with mobilities three times larger than seen with graphene on silicon di-oxide. For mag-

netic field B⊥ ∼ 14T in [21], quantum Hall plateaus were observed at all integer values

and an insulating state for σH = 0. A detailed report on the tilted field measurements

have been presented and these measurements were used to extract information about the

spin of the charged excitation for the states for all quantum Hall plateaus. The gaps for

quantum Hall state at σH = 0 was reported to have a linear B⊥ dependence in the range

of 10T to 30T . The decrease in the activation gaps with BT for fixed B⊥ lead them to

conclude that state for σH = 0 is spin-unpolarized. The tilted field measurement for the

quantum Hall state at σH = −1 was reported to show increase in activation gaps with BT

suggesting that excitations are from a spin-polarized state. In reference [12], the activa-

tion gaps for quantum Hall state at σH = 1 was shown fitted with a
√
B⊥ dependence

for the range, 10 < B⊥ < 45. It was also noted that activation gaps for σH = ±1 were

approximately half of that seen for σH = 0.

In the reference [1], local compressibility measurements using scanning single-electron

transistor technique was used to extract energy gaps for quantum Hall states at σH =
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0,−1. The gap measurements were reported for a range of magnetic fields,∼ 1T to 12T .

Gaps for both these states were shown to have
√
B dependence and the magnitude of gaps

for σH = −1 was half when compared to gaps for σH = 0.

We now review theory paper that addressed SU(4) symmetry breaking phenomenon for

integer quantum Hall states in graphene.

Nomura and MacDonald [14] used the phenomenon of electron-electron interaction in-

duced gaps and symmetry breaking at integer filling factors, known as quantum Hall ferro-

magnetism, to explain the quantum Hall plateaus at integer values for high magnetic field

in graphene. Their model had kinetic and long ranged Coulomb interaction terms. They

neglected the Zeeman coupling and treating the Coulomb interaction in Hartree-Fock ap-

proximation and the disorder in the self-consistent Born approximation (SBCA). This

leads to a criterion where the exchange integral is competing with the Landau level spec-

tral function within SCBA, called it Stoner criterion for quantum Hall ferromagnetism.

The disorder potential was related to zero magnetic field mobility taken from the experi-

ments. The phase diagram obtained from the Stoner criterion is a figure with filling frac-

tion versus a quantity that is inversely proportional to sample mobility and magnetic field

strength. The results from the Stoner criterion are in agreement with the observed quan-

tum Hall plateaus. Quantum Hall ferromagnetism predicts plateaus should be observed at

all integer filling.

Alicea and Fisher [3] have considered two possible mechanism for additional plateaus.

First, quantum Hall ferromagnetism where screened Coulomb interaction modify the

single particle picture. Second, quantum Hall paramagnetism where explicit symmetry

breaking terms stabilize the states for additional quantum Hall plateaus. In the case of

quantum Hall ferromagnetism, the model adopted has kinetic term, long ranged Coulomb

and Hubbard terms at the lattice level and they obtain a continuum version by considering

the long wavelength modes around the Dirac points. To compute the mean field energies

they have projected out the states away from n = 0 Landau level and non-interacting wave

8



functions reside on one of the sub-lattice points. The long ranged Coulomb interaction

provided the spontaneous symmetry breaking and anisotropic terms decide the nature of

the ground state. For σH = 1, the ground state is a spin polarized charge density wave

and the excitation favor a valley flip. For σH = 0, they have considered two competing

ground states, first is spin-polarized valley singlet and second valley polarized spin singlet

which also exhibits charge ordering. The nature of the ground state will be decided by

the strength of Zeeman coupling and Hubbard repulsion relative to sub-lattice repulsion.

The second case considered the quantum Hall paramagnetism, they considered model

which comprises of kinetic and explicitly symmetry breaking terms. This also resulted in

similar ground states as seen in quantum ferromagnetism case, the only difference in the

two cases was that quantum ferromagnetism predicts Hall plateaus for all integer values,

where are paramagnetism case shows additional plateaus at σH = 0,±1,±4,±10 . . .

Goerbig et. al. in the reference [9] considered the lattice model with interaction and com-

puted the effective model for electrons restricted to single Landau level. They found the

leading symmetry breaking terms were proportional to small parameter, ratio of lattice

constant and magnetic length. They showed that for when one of the quartet for a Lan-

dau level is occupied, then n 6= 0 Landau levels will have easy-plane anisotropy order

parameter. The difference is most prominent between n = 0 and n = ±1.

Fuchs and Lederer in reference [7] consider the possibility of a spontaneous out-of-plane

lattice distortion breaks the inversion symmetry of graphene lattice in presence on mag-

netic field. This magnetic field dependent Peierls distortion breaks the valley symmetry

and the order parameter gives mass to Dirac particle. This order parameter is propor-

tional to difference in on-site energies of sub-lattice point resulting from electron phonon

interaction. This theory like the quantum Hall paramagnetism case [3] shows additional

plateaus at σH = 0,±1,±4,±10 . . . after Zeeman splitting is also taken into account.

Herbut in reference [11] considered the extended Hubbard model for graphene in weak

coupling limit and in presence of magnetic field. They solved the model by allowing an
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anti-ferromagnetic state with staggered magnetization parallel to magnetic field. In this

theory quantum Hall plateaus were predicted for all even integer values and also zero and

±1. The ground state for σH = 0 was shown to have charged ordering, anti-ferromagnetic

or ferromagnetic ordering depending on the strength of coupling parameters. And at

σH = ±1 it was reported that system is always in translation symmetry breaking phase

with finite magnetization.

Tőke et. al. in reference [19] presented gaps for pseudoskyrmion-antiskyrmion pair for

σH = 1 state. Yang et. al. [20] presented the gapless collective modes in absence

of symmetry breaking perturbations and discussed properties of skyrmions of graphene.

They both considered only the long ranged Coulomb interaction.

Kharitonov [13] considered the contact interaction terms took into account the valley and

sub-lattice asymmetric short ranged electron-electron interactions and electron-phonon

interactions. A renomalization analysis showed that some of the key anisotropic terms

exceeded the Zeeman coupling parameter and signs of anisotropic energies could also

change. The phase diagram showed four phases which had order parameters correspond-

ing to spin-polarized ferromagnetic, canted anti-ferromagnetic, charge density and Kekulé

distortion. Kekulé distortion order is characterized by unit vector for valley is on the equa-

tor of the Bloch sphere. In the absence of Zeeman coupling the canted anti-ferromagnetic

ordered state was replaced by anti-ferromagnetic ordered state.

We end this review section with a brief outline of the variational mean field presented in

this thesis to highlight its salient features when compared with works described above. We

start with interacting lattice model for graphene and present a systematic long wavelength

continuum approximation. We show that the short ranged interaction can be modeled

by considering nearest neighbour and Hubbard and treat their interaction strengths are

parameters. Our variational calculations also takes into account the filled Dirac sea of

Landau levels for Hall conductivities considered in this thesis. For this we have formu-

lated a new technique with heat kernel method for Dirac particle in graphene. We are
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the first to take into account the filled Dirac sea and long ranged Coulomb interaction at

mean field level. Moreover we explore a through search in SU(4) space for all possible

symmetry breaking with our model. We are also first to present the qualitative effects on

titled field measurements on particle-hole gaps for the ground states at σH = 0,±1.

1.3 Outline of the thesis

In this section we present the outline for subsequent chapters in this thesis.

In Chapter 2, we provide analytical and numerical solutions to the problem of electrons

in graphene subjected to cross electric and magnetic field. Within the continuum model,

we obtain the spectrum for graphene subjected to cross electric and magnetic field. We

utilize the relativistic structure of continuum theory and trick of Lorentz boost to obtain

exact analytical solutions. These solutions reveal collapse of Landau level spectrum for

a critical electric field. We also present numerical calculations for the same problem

on lattice to show that the electric field effects on the Landau levels are not artifacts of

continuum theory.

In Chapter 3 we show a systematic continuum approximation for the interacting lattice

model for graphene and provide motivation for the choice of continuum interacting model

studied in this thesis.

Chapter 4 presents a discussion on the choice of Landau levels for massive Dirac to con-

struct the variational wavefunctions. We describe the parameterization for the variational

wave functions for ground states for Hall conductivity at σH = 0 and σH = −1. Using the

heat kernel method we develop a suitable expression for two point correlator for massive

Dirac particle in magnetic field. The two point correlator are used to evaluate the mean

field energies and particle-hole excitation gaps.

In Chapter 5 we present the results of mean field calculation for the SU(4) symmetric
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model, which only takes into account the kinetic and long ranged Coulomb interaction.

We show that Coulomb interactions spontaneous break the SU(4) symmetry. We also

present results of particle-hole excitation within symmetric model.

In Chapter 6 we present the effects of symmetry breaking terms on the nature of ground

states and excitation for the ground states. We illustrate the role of various symmetry

breaking terms in obtaining the SU(4) polarization for the ground states. We also show

the effects of tilted magnetic field effects on the gaps and connect our results with those

reported in experiments.

Chapter 7 present summary of findings of this thesis.
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Chapter 2

Electric field effects on Landau levels in

graphene.

Graphene is an excellent system to study (2+1) dDirac particles. Even before the experi-

mental first quantum Hall effects were reported, Gusynin and Sharapov [10] had predicted

the novel nature of quantum Hall plateaus for Dirac particles in graphene. This can be un-

derstood by solving the single particle problem of Dirac particle in two spatial dimensions

subjected to magnetic field perpendicular to the plane. The eigenvalues have an square

root dependence on the Landau level index and the applied magnetic field.

εn,l =
√

2|n|~ vF
`c

(2.1)

here , n is the Landau level index which takes all integer values, vF the fermi velocity and

`c =
√
~/eB is the magnetic length and B is applied magnetic field. All these feature

make the Landau levels for a two dimension Dirac particles distinct from a non-relativistic

particle seen in semiconductor hetrostructure.

In this chapter we solve analytically the problem of Dirac particle in two dimension sub-

jected to magnetic field perpendicular to the plane and an electric field applied parallel
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to the plane. This problem of Dirac particle subjected to cross electric and magnetic

field is solved using by making use of Lorentz transformation. We highlight the new

features of inferred from the solutions which are different from that of similar problem

for non-relativistic particle. We solve the cross electric and magnetic field problem for

graphene electron on lattice and hence show that effects seen from the solutions of con-

tinuum model are not artifacts of continuum approximation used for graphene electrons.

We show a simple analysis from these solutions to arrive conclusion on the phenomena

of dielectric breakdown and the discuss the experimental realization of our predictions in

quantum Hall experiments conducted by Singh and Deshmukh [18].

2.1 Cross electric and magnetic field

In this section we present analytical results of the electric field effects on the Landau lev-

els in graphene. We have considered graphene placed in x-y plane with constant magnetic

field pointing along z-axis, B = Bẑ, and for simplicity we take constant electric field

along the x-axis, E = Ex̂. Here B and E are constants for magnitude of magnetic and

electric fields. The continuum hamiltonian derivation from the lattice model is handled

as described in section 3.1, with additional assumptions that the magnetic flux passing

through each honeycomb plaquette is small compared to the area of plaquette and the

variation of scalar potential corresponding to electric field is small on the length scale of

lattice spacing. The long wavelength approximation results in non-interacting hamilto-

nian,

H =

∫
d2x Ψ†(x)

((
vF α · π + eE x12

)
⊗ 14

)
Ψ(x) (2.2)

Here, Ψ(x) are the fermion field operators, π = p + eA, is covariant derivative, A is

vector potential, αx, αy are Pauli matrices and 12 is 2 × 2 identity matrix and vF is the

fermi velocity. The identity matrix 14 is 4×4 matrix with corresponds to SU(4) symmetry

which results from degeneracy of valley and spin quantum numbers. This implies that we
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have four decoupled copies of the 2×2 one particle hamiltonian, hence we restrict to only

one. We start with the one particle hamiltonian from the Eq.(2.2) to explore the effects of

electric field on the Landau levels.

h = vF α · π + eE x12 (2.3)

Eq.(2.3), has the Lorentz covariant form for a massless particle with Fermi velocity, vF ,

playing the role of the speed of light. It is well known fact from special relativity, when the

electric and magnetic fields are perpendicular (E ·B = 0), it is possible to find a Lorentz

frame where electric field vanishes, E = 0 if |E|/vF |B| < 1 or a frame where magnetic

field vanishes B = 0 provided that vF |B|/|E| < 1. And it is not possible to make a

Lorentz transformation that will take frame with pure magnetic field to another one with

only electric field. Making use of this fact and Lorentz transformation we transform the

problem of cross magnetic and electric field to pure magnetic field one with restriction

that |E|/vF |B| < 1.

Lorentz transformation on the space-time coordinate system for us is a mathematical con-

venience to find the exact solutions. The specific choice of the rapidity of the Lorentz

transformation enables to take the problem of cross magnetic and electric field to a pure

magnetic field case with reduced magnitude. The knowledge of exact spectrum of Landau

level problem, and inverse Lorentz transformation enables us to obtain the exact analyti-

cal solutions for the hamiltonian in Eq.(2.3). To implement the above procedure, we start

with time dependent Schrodinger equation for hamiltonian in Eq.(2.3),

i ~
∂

∂ t
Ψ(x, t) =

(
vF α · π + eE x12

)
Ψ(x, t) (2.4)

Here Ψ is two component object. We rewrite Eq.(2.4) in manifestly covariant time depen-

dent Dirac equation in (2 + 1)d for a massless Dirac particle subjected to electromagnetic
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fields,

i ~γµ(∂µ − i
e

~
Aµ)Ψ(xµ) = 0 (2.5)

Here coordinates, x0 = vF t, x1 = x, x2 = y are the contravariant components of the

three-vector, ∂µ = ∂/∂xµ is corresponding partial derivative. A0 = φ, the scalar poten-

tial, A1 = Ax, A2 = Ay are the components of three-vector potential. The 2 × 2 Dirac

matrices are defined in terms of Pauli matrices,

γ0 = αz, γ1 = iαy, γ2 = −iαx

These choices for the Dirac matrices are not unique, other choices are also possible and

they are related to each other by similarity transformation.

We choose to work with Landau gauge as it is the natural choice for our problem as this

keeps the analysis simple. We now apply a Lorentz boost along the y-direction. The

coordinates transformation is given by,


x̃0

x̃1

x̃2

 =


cosh(θ) 0 sinh(θ)

0 1 0

sinh(θ) 0 cosh(θ)




x0

x1

x2

 (2.6)

Here θ is the rapidity of the Lorentz transformation. The Lorentz transformation of the

coordinates in Eq.(2.6) results in spinor wave function to transform in the following way,

Ψ̃(x̃µ) = e
θ
2
αyΨ(xµ) (2.7)

We verify that Lorentz transformation leaves Ψ̄(xµ)Ψ(xµ) invariant, where Ψ̄(xµ) =

Ψ†(xµ)γ0. The mathematical convenience to obtain the spectrum of cross electric and

magnetic field problem lies in the specific choice of the rapidity of the transformation.

The specific choice of tanh(θ) can either reduce the cross electric and magnetic field

problem to either pure electric or magnetic field problem. Since our interest is to see
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the effect of electric fields on Landau levels, hence we restrict to the case, E/vFB < 1.

We make the choice tanh(θ) = E/(vFB) = β for the rapidity of the transformation in

Eq.(2.6) to transform the problem of cross magnetic and electric fields to pure magnetic

field problem in boosted coordinates. This specific choice of transformation is applied to

Eq.(2.5), the transformed Dirac equation,

(
γ0∂̃0 + γ1∂̃1 + γ2

(
∂̃2 +

i

`2
c

√
1− β2 x̃1)

)
Ψ̃(x̃µ) = 0 (2.8)

In the transformed coordinates, Eq. (2.8), the massless Dirac electron in a cross magnetic

and electric problem is reduced to a problem of massless Dirac particle subjected to pure

(reduced) magnetic field, B̃ = B
√

1− β2, with β < 1. The eigenvalue for the Landau

level problem is used to obtain the eigenvalues for the pure (reduced) magnetic field.

ε̃n,k̃y = sgn(n)
√

2|n|~vF
`c

(1− β2)
1
4 (2.9)

The magnetic length ˜̀
c = `c/(1 − β2)

1
4 increases in the boosted frame. Since energy is

time component of 3-momentum, is not an invariant quantity under Lorentz transforma-

tion. This implies that eigenvalues of boosted coordinates system, ε̃n,k̃y in Eq.(2.9) are

not the physical energy eigenvalues of our problem. We have to apply the inverse Lorentz

transformation with the same value for rapidity, β, to obtain the eigen solutions to the

original problem of massless Dirac particle subjected to cross magnetic and electric field.

After performing the inverse Lorentz transformation on 3-momentum, the eigenvalues are

εnky = sgn(n)
√

2|n| ~vF
`c

(1− β2)
3
4 − ~vFβ ky (2.10)

Here we made use of the fact that the scalar product of two 3-vectors is invariant under
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Lorentz transformation. The corresponding eigen states,

Ψn,ky(x, y) =
ei ky y√
Ly

e−
θ
2
αy√

2 cosh(θ)

 ϕ|n|−1,ky(ξ
′)

i sgn(n)ϕ|n|,ky(ξ
′
)

 (2.11)

Here ϕ(ξ
′
) are the orthonormal wave functions for non-relativistic electron gas in two

dimensions and the dimensionless ξ′ gives information about the center of gaussian peaks.

ξ′ ≡ (1− β2)
1
4

`c

(
x+ ky`

2
c + sgn(n)

√
2|n| `cβ

(1− β2)
1
4

)
(2.12)

The eigenstates in Eq.(2.11) were verified to be orthonormal. The details of the derivation

of the exact analytic solutions are provided in Appendix B.

The eigenstates for the case of non-relativistic electron is given by eigen solutions of

harmonic oscillator times plane waves , ei ky yϕn(ξ̄) and the dimensionless ξ̄

ξ̄ =
1

`c

(
x+ ky`

2
c +

m`2
c

~

(
E

B

))
(2.13)

Comparing the equations (2.12), (2.13) we can easily read off a non-trivial dependence

for the center of gaussian peaks on the Landau level index, n, in the case of graphene,

unlike the standard 2d electron gas where the center of cyclotron motion is independent

of Landau level index. The effect of the electric field is to (un)squeeze the oscillator

states as well as to mix the particle and hole wave-functions. Squeezing corresponds to

the change in magnetic length, `c and the eigenstates in Eq.(2.11) can be expanded as

superposition of Landau levels for massless Dirac particle.

Ψnky(x, y) =
∑
q

fqΦq ky(x, y) (2.14)

This is possible because of non-vanishing overlap of the integral of the oscillator states
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whose gaussian spread are different,

∫
dx ϕ∗n,ky(ξ)ϕñ,ky(ξ

′
) (2.15)

here ξ′ ≡ ξ(1−β2)
1
4 + sgn(n)

√
2|n|β. Thus, unlike in the usual semiconductor samples,

here in graphene the electric field causes Landau level mixing.

The eigenvalues Eq. (2.10) and the eigen states Eq. (2.11), in the limit E → 0 reduces to

the eigenvalues for pure magnetic field case. As the electric is tuned the effective magnetic

length increases `c → `c(1 − β2)−
3
4 . This implies that for massless Dirac electron in

two dimensions, effect of magnetic field decreases as the strength of the electric field is

increased. This is in contrast to the case of two dimensional non-relativistic electron gas

where the magnetic length is unaffected on applying an electric field. This can be readily

observed from the eigenvalues for the non-relativistic electron gas in two dimensions in

presence of cross magnetic and electric field,

ε̄n,ky =

(
n+

1

2

)
~ωc − ~ky

E

B
− m

2

(
E

B

)2

(2.16)

In both the cases, for non-relativistic electron gas and massless Dirac electron, the de-

generacy of the Landau levels is lifted by the linear dependence on quantum number

ky. The main difference between the two cases, besides the
√
n and

√
B, is that the

low lying graphene Landau levels spacing scales as (1 − β2)
3
4 , for a given value of ky,

Eq.(2.10), whereas the spacing is independent of the electric field in the non-relativistic

case Eq.(2.16). Another interpretation is, for a fixed magnetic field as the electric field is

increased the effect of magnetic field on the graphene electron reduces. There is a critical

electrical field corresponding to β = 1, which results in collapse of Landau levels.

As β → 1, from Eq.(2.12) we infer that, to keep the gaussian shifts within the linear

extent of the system

ky`
2
c + sgn

√
2|n| `c

β

(1− β2)
1
4

≤ Lx (2.17)
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Thus it requires larger values of ky. But our results are strictly valid for the long wave-

length approximation, which is valid for small values of wave vectors. As β → 1, the

results from the continuum approximation are not reliable because one of the condition in

continuum approximation requires scalar potential should be slowing varying over lattice

spacing is violated. Moreover, Eq.(2.10) hands a collapse of the Landau level spectrum at

β = 1. The obvious questions that arise from this is to what extent the continuum approx-

imation results are reliable and is the collapse of Landau levels in graphene an artifact

of the low energy approximation? To answer these questions, we performed numerical

diagonalization of full tight binding hamiltonian and discussed in the following sections.

As expected, we find that the eigenvalues from the continuum theory holds well for small

values of β. And the collapse of Landau levels persists, and in fact it occurs for a value of

β even smaller than unity as continuum theory suggests.

2.2 Numerical diagonalization of lattice model

In this section, we diagonalize the tight binding hamiltonian on honeycomb lattice. This

numerical computation is part of built up to solve the desired problem of cross electric

and magnetic field problem for graphene.

The tight binding model for graphene is a non-interacting one. This enables us to reduce

the many particle problem to solving a one particle problem on honeycomb lattice. Lattice

models with periodic boundary condition are well understood analytically after taking the

Fourier transform. It is desirable to find the spectrum of the tight binding model with

various boundary conditions and understand its effects. A finite size lattice can have a

variety of boundary conditions. We study the lattice model by solving the hamiltonian

numerically with a zig-zag boundary. To keep things simple, we consider a finite lattice

with periodic boundary condition along one axis of the unit cell of triangular lattice and

open boundary condition along the other axis. This boundary results in zig-zag boundary
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, well known boundary in carbon nanotube literature. There are other choices for the

boundary, but we will restrict our study to zig-zag boundary. The lattice sizes can be

decided based upon the computational power of the machines. In this section we present

the discussion of results from the tight binding model on finite size lattice varying from

60 × 60 to 600 × 600 lattice points. In order to formulate in matrix form, we start with

the tight binding model and the Schrödinger equation reads

ε cn,1,σ =− t(cn,2,σ + cn+e2,2,σ + cn+e1+e2,2,σ)

ε cn,2,σ =− t(cn,1,σ + cn−e2,1,σ + cn−e1−e2,1,σ)

(2.18)

There are two scales in the given problem - one is the length scale, the lattice spacing ‘a’

and second is the energy scale governed by the hopping parameter ‘t’. Since the inputs

in the numerical program are numbers we express all the lengths in the units of lattice

spacing and all the energies in the units of hopping parameter. For convenience, we put

both lattice spacing and hopping parameter to unity and expand the fermion operators in

terms of wave functions

cn,r,σ =
∑
p,k

φk,p
n,rck,p,σ (2.19)

Here k is the wave vector and p is the band index. The eigenvalue equations in terms of

wave functions are

−ε φk,p
n,1 = φk,p

n,2 + φk,p
n+e2,2

+ φk,p
n+e1+e2,2

(2.20)

−ε φk,p
n,2 = φk,p

n,1 + φk,p
n−e2,1

+ φk,p
n−e1−e2,1

(2.21)

We can solve equations (2.20),(2.21) written in plane wave function basis. This amounts

to diagonalizing a matrix of size 2N2 × 2N2 for a triangular lattice of size N × N . We

reduce the problem of diagonalizing one very large matrix of size O(N2) to solving N

matrices of size O(N) by taking periodic boundary condition along the e2-axis and open
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boundary along e1-axis, i.e. φk,p
n,1 → ei k2n2φk p

n1,1
.

−ε φk,p
n1,1

= (1 + ei k2)φk,p
n1,2

+ ei k2φk,p
n1+1,2 (2.22)

−ε φk,p
n1,2

= (1 + e−i k2)φk,p
n1,1

+ e−i k2φk,p
n1−1,1 (2.23)

After applying the periodic boundary condition along e2, equations (2.22) and (2.23), we

have reduced the problem of diagonalizing a matrix of size 2N2 × 2N2 to diagonalizing

N complex valued matrices of 2N × 2N size. Hence the periodic boundary condition

along one direction has reduced the problem of diagonalizing a very large matrix to di-

agonalizing a large number of smaller sized matrices and this increases the efficiency of

required computation time. To further increase efficiency of numerical computation, it

is desirable to transform the complex matrix to real matrix, i.e. getting rid of complex

coefficients with appropriate real coefficients with some suitable transformation. This is

amounts to finding a unitary transformation matrix that reduces the complex matrix to

real matrix. In the present case we can achieve this by pulling out a phase factor out of

the wave functions in equations (2.22) and (2.23),

φk,p
n1,r
→ ei θn1,r(k2) φk,p

n1,r
(2.24)

And then choosing phase appropriately, reduce the complex coefficients to real. With the

following choice of the phase factors,

θn1,1(k2) = −(n1 − 1)
k2

2

θn1,2(k2) = −n1
k2

2

(2.25)

The complex hermitian matrix is reduced to real symmetric.

−ε φk,p
n1,1

= 2 cos

(
k2

2

)
φk,p
n1,2

+ φk,p
n1+1,2 (2.26)

−ε φk,p
n1,2

= 2 cos

(
k2

2

)
φk p
n1,1

+ φk,p
n1−1,1 (2.27)
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Equations (2.26), (2.27) are used to construct the real matrix of size 2N × 2N for each
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Figure 2.1: Eigenvalues for 600 × 600 lattice points for graphene with zig-zag boundary
(a) along e2 and (b) with periodic boundary condition along both axes. Both spectrum
show the two Dirac point at ky = 2π/3 and ky = 4π/3 as expected from the continuum
model. For the zig-zag boundary there are a string of zero eigenvalue states for each value
of ky between the two Dirac points. The zero eigenvalue states are localized along the two
open boundaries

value of k2, which are N in number. We used Householder algorithm to diagonalize the

matrix and obtained the eigenvalues and eigenvectors for the tight binding model for the

graphene with zig-zag boundary. Fig.(2.1) shows the full spectrum obtained from numer-

ical diagonalization. Fig.(2.1b) is the spectrum with periodic boundary conditions applied

along both e1 and e2 axes of the N × N lattice and the Fig.(2.1a) is for the case when

the periodic boundary condition is applied only in the e2 direction. One consequence of

the zig-zag boundary is the presence of the string of zero eigenvalues for k2 between two

Dirac points. These zero eigenvalues are well known in literature as the edge states that

are localized at the boundary. These zero energy edge states are the consequence of the

open boundary condition can be confirmed by plotting the density of states. These zero

eigenvalue states give a finite density of states at zero energy and as the system size is

increases the contribution to density of states from these states decreases. These edge

states are unique to the zig-zag boundary of the graphene. In the zig-zag boundary for
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graphene, there are carbon atoms with one dangling bond, i.e. one of the covalent bond

is not attached to any other atom. This results in states that are localized at the boundary

and decay exponentially as we go into the sample.

These localized eigen-functions for edge states can be obtained by solving equations

(2.26), (2.27) for zero eigenvalue.

φk,p
n1,1

=

(
2 cos

(
k2

2

))−n
φk,p

0,1 (2.28)

φk,p
n1,2

=

(
2 cos

(
k2

2

))n
φk,p

0,2 (2.29)

For simplicity we consider the semi-infinite case, i.e., we have zig-zag boundary along

the e2-axis and the system extends to infinity along the positive e1 axis. For the given

boundary condition, the sub-lattice ‘2’ has one dangling bond, i.e., φk,p
0,2 can take any

value. To obtain normalized wave function, the condition on the wave-vector k2 is

∣∣∣∣2 cos

(
k2

2

)∣∣∣∣ < 1 ⇒ 2π

3
< k2 <

4π

3

For the zero eigenvalues for a semi-infinite system, the wave functions reside on one of the

sub-lattice for a range of values of k2 and they localized near boundary. This is consistent

with our numerically obtained wave functions for a finite system. These edge states are a

peculiar feature of the boundary condition on honeycomb lattice. The choice of armchair

boundary condition does not have these zero eigenvalue edge states.

2.3 Numerical solution for graphene lattice in magnetic

field

In this section we discuss the spectrum obtained from numerically solving the tight bind-

ing problem of graphene in magnetic field. We discuss the chiral edge states that are
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responsible for the Hall conductivity. The difference between wave functions of the de-

generate states at zero energy eigenvalue, i.e. chiral edge states and n = 0 Dirac-Landau

levels.

For purpose of numerical diagonalization, we choose the vector potential A in such a

way that only one of the hopping term in tight binding hamiltonian acquires phase due

to magnetic field and ensure that magnetic flux through each plaquette corresponds to the

applied magnetic field. The resulting hamiltonian is (here we have suppressed the display

of spin index),

H = −t
∑
n

c†n,1(cn,2 + ein1ϕcn+e2,2 + cn+e1+e2) + h.c. (2.30)

ϕ ≡ 2π

√
3

2
Ba2

h
e

ϕ is the magnetic flux passing through each plaquette. The eigenvalue equations in terms

of wave functions is

−ε
t
φk
n,1 = φk

n,2 + ein1ϕφk
n+e2,2

+ φk
n+e1+e2,2

(2.31)

−ε
t
φk
n,2 = φk

n,1 + e−in1ϕφk
n−e2,1

+ φk
n−e1−e2,1

(2.32)

The translation symmetry along the e2 axis of the lattice is preserved. We choose periodic

boundary condition along the e2 and apply the same method to reduce the complex matrix

eigenvalue problem to real matrix eigenvalue problem as we did for the case of zero

magnetic field problem, i.e. finding a unitary transformation. The choice of θ1 and θ2 are

θ1 = −(n1 − 1)
k2a

2
+
n1(n1 + 1)

4
ϕ (2.33)

θ2 = −n1
k2a

2
+
n1(n1 − 1)

4
ϕ (2.34)
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Figure 2.2: Eigenvalues of tight binding model for honeycomb lattice in presence of
magnetic field near the two Dirac points. Here the system size is 600 × 600 and the
magnetic field applied B ≈ 27.12T , which corresponds to magnetic length `c = 20a.
The zero eigenvalues that do not vary with ky are the n = 0 Landau levels and the edge
states that are localized at the sample edge (consequence of zig-zag edge). The non-
zero eigenvalues that do not vary with ky are Landau levels with index n > 0, the index
increases with energy (Landau level index decreases with the decrease in the value of
eigenvalue for negative energies). Energy eigenvalues are measured in units of ‘t’.
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The Harper equations that are solved numerically are

−ε
t
φk
n1,1

= 2 cos

(
k2 + n1ϕ

2

)
φk
n1,2

+ φk
n1+1,2 (2.35)

−ε
t
φk
n1,2

= 2 cos

(
k2 + n1ϕ

2

)
φk
n1,1

+ φk
n1−1,1 (2.36)

For numerical diagonalization, we choose the value of the magnetic field such that L �

`c � a, where L is the linear extent of the system. The condition `c � a, assures that a

very small magnetic flux passes through each plaquette. This ensures that we stay away

from the Hofstadter butterfly kind of commensurability effects on the spectrum. The other

condition that the system size is much larger than the magnetic length, L � `c, ensures

that a large number of cyclotron orbits fit in the sample. For the purpose of numerical

computations, we once again expressed all energies in units of t and all lengths in units

of a.

The resulting spectrum from the numerical diagonalization is shown in the Fig.(2.2). The

set of eigenvalues that have no variation with respect to k2 are the Landau levels. The

corresponding lattice wave functions have a prominent Gaussian peak and these Gaussian

peaks shifts across the length of system with k2. The low energy levels i.e. the eigenvalues

near the two Dirac points are in excellent agreement with continuum results. Comparison

between the exact results from the continuum model and the exact diagonalization are

shown in Fig.(2.3). The
√
n dependence of Landau level index of the eigenvalues is in

good agreement with the continuum model result.

The zero eigenvalue is doubly degenerate. There are two kinds of eigenstates correspond-

ing to the zero eigenvalue. They are identified by examining the corresponding wave

function. These are the Landau levels with index n = 0, identified due to the Gaussian

peaks and the second class of states are the wave functions that are localized at the two

boundaries for the zig-zag boundary conditions applied to Harper equations. The distinc-

tion between the n = 0 Landau levels and the localized edge states will become clear
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when we discuss the spectrum for cross electric and magnetic field.
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Figure 2.3: The blue asterisk points shows the eigenvalues computed from the numeri-
cal exact diagonalization of honeycomb lattice (blue points) and the eigenvalues from the
continuum approximation (red line). The size of the lattice is 600 × 600 and magnetic
field B = 27.12T or `c = 20a. The red line corresponds to eigenvalues obtained from
continuum theory,

√
2|n|~vF/`c. The blue points are the eigenvalues from exact diago-

nalization for a fixed value of ky. There is excellent agreement between results continuum
theory and the lattice theory.

The edge states, localized at the boundary, are reminiscent of the edge states that were

observed from the zero magnetic field case. As in the case of zero magnetic field, the

edge states continue to be localized at the boundary and have an exponential decay as we

move into the system.
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2.4 Numerical solution for graphene lattice in cross elec-

tric and magnetic field

The numerical diagonalization of the cross magnetic and electric problem for electrons

in graphene is simple extension of the magnetic problem done in section 2.3. The tight

binding hamiltonian for graphene subjected to constant magnetic field perpendicular to

plane of the graphene plane is incorporated by a phase term to the hopping terms and the

electric field along the e1-axis of the lattice is

H = −t
∑
n

c†n 1(cn 2 + ein1ϕcn+e2 2 + cn+e1+e2) + h.c. +
∑
n r

eE n1c
†
n rcn r (2.37)

The matrix equations are obtained in similar fashion as done in section 2.3 for the mag-

netic field case. We choose periodic boundary conditions along the e2-axis and e1-axis

is terminated with zig-zag boundary. The two dimension problem is reduced to solving

one dimensional problem for each value of k2. This results in finding out eigenvalues for

a finite dimensional complex matrix. The complex matrix eigenvalue problem is reduced

to real matrix problem by doing unitary transformation using equations 2.33 and 2.34 to

improve the efficiency of the numerical routine. For the lattice computations, the energies

are measured in units if ‘t’, tight-binding overlap parameter, and the length scales is mea-

sured in the units of ‘a’, the lattice parameter of graphene. The equations for the matrix

diagonalization are,

ε φk
n1, 1

= −2 t cos

(
k2 + n1ϕ

2

)
φk
n1, 2

+ φk
n1+1, 2 + eE n1φ

k
n1, 1

(2.38)

ε φk
n1, 2

= −2 t cos

(
k2 + n1ϕ

2

)
φk
n1, 1

+ φk
n1−1, 1 + eE n1φ

k
n1, 2

(2.39)

Fig.2.4 shows the spectrum at low energy for the cross magnetic and electric fields.

The Landau levels in Fig. 2.2 acquire a linear slope w.r.t. ky consistent with contin-
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Figure 2.4: Eigenvalues of tight binding model for honeycomb lattice in presence of
crossed electric and magnetic field near the two Dirac points. Here the system size is 600×
600 and the magnetic field applied B ≈ 27.12T , which corresponds to magnetic length
lc = 20a. The magnitude of applied electric field E = 0.1vFB. The eigenvalues that do
not vary with ky are the edge states that are localized at the sample edge (consequence of
zig-zag edge). The eigenvalues of these localized edge states is proportional to electric
field experienced by the two edges. The lines parallel to label ‘bulk Landau level’ are the
Landau levels with positive and negative index whose degeneracy is lifted by the applied
electric field. Energy eigenvalues are measured in units of ‘t’.
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uum result Eq.(2.10). The degeneracy of zero energy localized edge states and n = 0

Landau level gets lifted in the presence of electric field. For small electric fields the

wave-function of these edge states continues to be localized near edge of the sample.

The eigenvalues of these surface states are proportional to strength of the electric field

(eEn1a = (
√

3/2)(a2/l2c)βn1t) experienced at the two edges of the sample. In the Fig.

2.4, the energy eigenvalue for the left edge is zero (∵ n1 = 0) and the right edge is

≈ 0.1299 (n1 = 600). A characteristic feature of these edge states is that they do not

vary with the wavevector, whereas the Landau levels develop a linear ky dependence with

electric field.

The comparison between the results from the continuum theory and the exact diagonal-

ization is shown in Fig.2.5. We plot
√
n scaling of energy eigenvalues Landau levels for

various values of applied electric fields for a given ky value. Once again for the exact

numerical diagonalization, the magnetic field is chosen such that there magnetic length is

large compared to lattice spacing and system size is large compared to magnetic length

so that large number of cyclotron orbits can fit in the sample. For zero electric field,

as we have seen earlier, there is an excellent match between continuum theory and re-

sults from the numerical diagonalization on lattice. For very small values of β ∼ 0.001,

there is good agreement between the results from continuum and exact diagonalization

for Landau levels with small index. Now we further increase the electric field keeping

the magnetic field fixed, i.e on increasing β, there is systematic deviation between lattice

eigenvalues and continuum eigenvalues. This implies that gaps between the Landau lev-

els reduces much faster than what is expected from the continuum result. The collapse

of Landau levels, which happens at β = 1 for the continuum model, seem to happen at

much smaller electric fields for the lattice model than what is suggested by the continuum

theory. This disagreement between the lattice and continuum model is not surprising be-

cause the requirement of the slow variation of the scalar potential at lattice spacing of the

continuum model is not satisfied with the large electric field. Hence we can conclude that

the continuum results are reliable only for very small values of β.
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Figure 2.5: The figure shows the scaling of eigenvalues of Landau levels with Landau
level index for various various electric fields. The red curve denote the results from the
continuum model and blue curve are the results from exact diagonalization of the lattice
model. The system size for numerical diagonalization is 600×600 and magnetic fieldB ≈
27.12T . The eigenvalues plotted are for one fixed value of ky and measured in unit of
‘t’. Eigenvalues for three electric fields (E = βvFB) have been shown, β = 0.0, 0.5, 0.9.
A clear systematic deviation can be seen between the results from continuum model and
numerical exact diagonalization as the electric field is increased.
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2.5 Dielectric breakdown

In the following section we will discuss the consequences of contraction of Landau levels

on the phenomena of ‘dielectric breakdown’ in presence of electric field for Dirac par-

ticle. We will argue that the Landau level contraction Eq. (2.10), and the n dependent

guassian shift Eq. (2.12) will cause the dielectric breakdown, which is different from

the conventional ones seen in the 2d electron gas in semi-conductors. The single particle

spectrum and the corresponding eigenstates we have obtained for a givenE andB, can be

used to construct stable many-body quantum Hall ground states. However, the external

electric field not only modifies the single particle wave function and spectrum, but can

also destabilise the ground state through spontaneous creation of particle-hole pairs; i.e.,

by a dielectric breakdown.

Here we will show a simple argument based one particle solutions to present a simple

formula for dielectric breakdown for graphene. We also compare the two cases for non-

relativistic and relativistic 2D electron gas. The eigenvalues in Eq.(2.10) is expressed

using the quantum numbers n and ky. Another set of quantum number that can be used to

express these eigenvalues are n Landau level index and xc the centres of cyclotron motion,

xc = ky`
2
c + sgn(n)

√
2|n| `cβ

(1− β2)
1
4

(2.40)

We make a trade-off between ky and xc to express the eigenvalues in Eq.(2.10)

εn,xc = sgn(n)
√

2|n|~vF
`c

1

(1− β2)
1
4

+ V (xc) (2.41)

Here the V (xc) = −eE xc is the potential energy of the electron. Expressing the eigen-

values in Eq.(2.41) enables us to compute the gaps between the levels.

∆n = εn+1,xc1
− εn,xc2
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Note that here we have taken two different cyclotron centres for the levels in order to

compute the amount of energy needed to excite the electron from the ground state to

lowest unoccupied state, i.e. the state with Landau level index n + 1. The local gap is

given by

∆n = −δV + sgn(n)
~vF
`c

(√
2|n+ 1|

(1− β2
1)

1
4

−
√

2|n|
(1− β2

2)
1
4

)
(2.42)

Here δV = V (xc2) − V (xc1) represents the potential difference between the two points

xc1 , xc2 . Here we are considering the scenario that the sample has got disorder that causes

potential within a small region of sample to vary. The length scale associated with this

local variation in potential is `E and this length is large compared to lattice spacing. Ei ∝

βi, is the electric field at point xci , i = 1, 2. From Eq.(2.42), we can see that the local

gap depends on the Landau level index, n, coupled with magnitude of field at the two

points under consideration. Moreover the gaps seen by the particle and hole excitations

are also different. A similar analysis for the non-relativistic electron gas will results in an

expression for local gap, which is independent of Landau level index.

∆̃n = ~ωc − δV +
m

2

(
E2

1 − E2
2

B2

)
(2.43)

From our discussion in previous sections we had concluded that results from the contin-

uum model are reliable for small magnitudes of electric fields, i.e. β � 1. The local gap

Eq.(2.42) can be approximated,

∆n ≈ −δV + ∆0
n −

1

4
sgn(n)

~vF
`c

(√
2|n+ 1|β2

1 −
√

2|n|β2
2

)
(2.44)

∆0
n is the gap between the Dirac-Landau levels when no external electric field applied. We

arrive at an expression for the critical voltage for local breakdown by doing dimensional

analysis and assuming that electric field is also slowly varying over length scale `E .

Vc ≈
∆0
n

e

(
1− κn

(
`c
`E

)2
)

(2.45)
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here κ is a constant which depends on the square of ratio of energy associated to the

electric field fluctuations to energy associated with magnetic field (~vF/`c) . This means

that if we have an electric field, non-uniform over a nanoscopic scale (`E ∼ `c), it will

cause local breakdown. Such situations can be created through in plane or out of plane

charged impurities or STM tips, in addition to externally applied electric fields. It is

interesting that such a local breakdown is Landau level index n dependent and current

required to cause such a breakdown will decrease with the increase of Landau level index.

In the case of non-relativistic electron gas the critical voltage is independent of n,

Vc ≈
~ωc
e

(
1− κ

(
`c
`E

)2
)

Thus we expect that the quantum Hall breakdown in graphene should be qualitatively

different for n = 0 and n 6= 0 within graphene.

2.6 Experimental probing breakdown

Singh and Deshmukh [18] explored the breakdown phenomenon of quantum Hall states in

graphene. Their main motivation was to probe the mechanism of breakdown in graphene

which could either be from the inter-Landau level scattering due to wave function mixing

or as we predicted due to local electric field effects due to defects whose sizes are com-

parable to the magnetic lengths. They studied the quantum Hall breakdown for Hall states

ν = −10,−6,−2, 2, 6 on exfoliated graphene samples with mobilities∼ 11, 000 cm2(Vs)−1.

To probe the breakdown of quantum Hall effect, the sample was biased with a dc current

along with a small ac current at constant magnetic field. The dc current was varied as a

function of gate voltage in the vicinity of Hall plateau and voltage across the sample was

measured to find the longitudinal and transverse resistance. The minina of longitudinal

resistance was plotted function of dc current and the critical current for breakdown was

extracted by linear extrapolation. Interpretation for the experimental data,
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• The width of of the dissipationless transport reduces as the dc current is increased.

• The boundary on the either side of integer filling evolves asymmetrically.

• The critical current for the breakdown of the quantum Hall state depends on the

filling factor ν. It decreases with increase in |ν|.

They also compared the change in the resistance with temperature and current to ensure

that local heating of the sample was not responsible for the breakdown phenomena in

graphene. Hence the observed behaviour of the breakdown voltage is qualtitatively same

as what we had suggested in Eq.(2.45).

2.7 Summary

Here we summarize the finding of this chapter,

1. Exact analytical solutions for Dirac particle in cross electric and magnetic field were

found using the trick of Lorentz boost.

2. Numerical computations for the cross electric and magnetic field subjected to graphene

on lattice were shown to confirm the effects of Landau levels is not an artifact of

continuum model.

3. The phenomenon of dielectric breakdown was discussed and predictions were made

about difference of dielectric breakdown for n = 0 and n 6= 0 Landau levels. And

this was verified in quantum Hall experiments by Singh and Deshmukh [18]
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Chapter 3

Interacting model for graphene

The integral quantum Hall plateaus at [16, 23]

σH = 4

(
n+

1

2

)
e2

h
(3.1)

is well understood within the framework of the one particle picture [10]. Here n takes in-

teger values. In Eq.(3.1) the factor four is associated with degeneracy of each Landau level

with index, n. Its origin are in the SU(4) symmetry associated with the non-interacting

continuum theory.

The samples with high mobility and at high magnetic field reveals plateaus at all integral

values [21]. The inclusion of Zeeman term in the non-interacting model can possibility

explain the Hall plateaus at all even integral values. The Zeeman term lifts the spin de-

generacy which is part of the full SU(4) symmetry. Disorder is essential ingredient to

quantum Hall phenomena which results in broadening of Landau levels and believed not

lift the SU(4) degeneracy. An approach to resolve this issue is to study the effects of

electron-electron interactions. In this chapter, we provide the motivation for the model

continuum hamiltonian that is adopted in this thesis to understand the phenomena of

SU(4) symmetry breaking associated with quantum Hall plateaus that deviate from the
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Eq.(3.1).

We begin with lattice tight binding model for the graphene and perform a systematic long

wavelength expansion around Dirac points for fermion operators. The leading term ob-

tained after continuum approximation is well studied non-interacting model for graphene.

We have also derived the sub-leading term obtained from the lattice kinetic term. This

terms gives correction to non-interacting continuum model with magnitude proportional

to square of ratio of lattice constant and magnetic length. Hence a very small contribution

when compared to leading term.

We apply continuum approximation to the electron-electron interaction term of the lattice

model. We show that the leading term is SU(4) symmetric and sub-leading terms breaks

SU(4) symmetry explicitly. The sub-leading terms are short ranged as compared to the

leading term and they vary as inverse cube of distance. At short distance, point charge in-

teractions get modified between electron because of the finite extent of the wavefunctions.

We argue that physics of this symmetry breaking terms can be captured by considering

the nearest neighbour interaction at lattice level. The lattice nearest neighbour interactions

are incorporated in the lattice model to take into account the wave function effects of the

π-electrons of the carbon atoms. This contact interaction at continuum level enables us

to simplify the computations and capture the essential physics of symmetry breaking that

we want to explore. We also include the Hubbard interaction term which takes into ac-

count on-site interaction between the electron wave functions. We derive the continuum

approximation for lattice interactions and discuss the symmetry of our continuum model

hamiltonian. We treat the nearest neighbour and Hubbard interaction strengths as tun-

able parameters. In presence of strong magnetic field, Zeeman splitting of spin quantum

number is important, hence we have included Zeeman term in the model hamiltonian.
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3.1 Continuum approximation

The π-electrons of carbon atoms which constitute the graphene are only considered in the

tight binding model to understand the electronic properties. The lattice hamiltonian,

H = −t
∑
n,σ

c†n,1,σ
(
cn,2,σ + cn+e2,2,σ + cn+e1+e2,2,σ

)
+ h.c. (3.2)

Here t ≈ 3.033 eV , is the transfer integral, which is the measure of kinetic energy of the

electron hopping from a lattice site to other. cn,r,σ are the fermion operator. n specifies

the triangular lattice points, r = 1, 2, denotes the sub-lattice index associated with each

lattice point and σ =↑, ↓, is spin index. The fermion operators obey the anti-commutation

relation,

{cn,r,σ, c†ñ,r̃,σ̃} = δn,ñδr,r̃δσ,σ̃

The Fermi surface for the tight binding model for graphene is two points in the Brillouin

zone, Dirac points,K± = (±2π/3a,±2π/3a). The interesting feature of the Dirac points

is that the spectrum has linear dependence on the wave vector.

To obtain low energy effective theory from the lattice hamiltonian, we project the electron

operators to low energy sector and then separate the long wavelength modes from the fast

varying modes.

cn,r,σ ≈ eiK+·nαzr,s Ψs,+,σ(n) + eiK−·nαxr,s Ψs,−,σ(n) (3.3)

The label r = 1, 2, indicates the index of spinor structure, η = +,− for valley index i.e.

low energy excitations around Dirac points, K±. The spin is labeled by index σ =↑, ↓.

Ψr,η,σ(n) are the slow varying modes around the two Dirac points.

Ψr,η,σ(n) ≡
∫ Λ

0

d2k
(
φKη+k,s,σ(n)

)
r
cKη+k,s,σ (3.4)
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Λ is the cut-off on the wave vector around the Dirac points. One can get the estimate

for Λ as follows. Consider a system N × N triangular lattice with basis comprising of

two carbon atoms to form honeycomb structure. It implies that we have 2 × 2N2 states,

first 2 is for the spin and 2N2 number of π-electrons. So there are 4N2 states in the first

Brillouin zone and there are two Dirac points. An estimate for Λ is made by comparing

density of states and the area of the Brillouin zone.

∫ Λ

0

d2k ≈ 1

2

√
3

2

(
4π√
3a

)2

Λ2 =
4π√

3

1

a2
(3.5)

We substitute the projected fermion operators in lattice hamiltonian Eq.(3.2) and collect

the long wavelength modes around the Dirac points to obtain the effective hamiltonian.

(
cn,2,σ + cn+e2,2,σ + cn+e1+e2,2,σ

)
≈ −eiK+·n

(
Ψ2,+,σ(n) + eiK+·e2Ψ2,+,σ(n+ e2) + eiK+·(e1+e2)Ψ2,+,σ(n+ e1 + e2)

)
+ eiK−·n

(
Ψ1,−,σ(n) + eiK−·e2Ψ1,−,σ(n+ e2) + eiK−·(e1+e2)Ψ1,−,σ(n+ e1 + e2)

)

Ψr,η,σ(n+ ei), varies slowly at the lattice length scale, hence can be approximated about

n using Taylor expansion with lattice constant as the variable parameter.

Ψr,η,σ(n+ ei) ≈ Ψr,η,σ(n) + a∆iΨr,η,σ(n) +
a2

2!
∆2
iΨr,η,σ(n) + · · · (3.6)

In the process of deriving the effective hamiltonian, we make use of the following rela-

tions,

eiK±·ê1,2 = e±i 2π
3

1 + ei 2π
3 + ei 4π

3 = 0

(3.7)

Finally we take the continuum limit, a → 0 , difference operators are replaced by partial
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derivatives of Cartesian coordinates after taking into account coordinate transformation

∆1 →∂x
1

2
∆1 + ∆2 →

√
3

2
∂y

(3.8)

The summation of lattice points are substituted with the integral,

∑
n

→ 1

a2

∫∫
dx (3.9)

The field operator in continuum limit,

Ψr,η,σ(n)→ a Ψr,η,σ(x) (3.10)

The leading term of the continuum approximation

H0 =

∫∫
dx Ψ†(x)

(
vF α · p⊗ 14

)
Ψ(x) (3.11)

Henceforth we refer H0 as the non-interacting continuum hamiltonian. It describes is

four species of free massless Dirac particles. The speed of the massless particle is vF =
√

3 a t/2~, the fermi velocity at the Dirac point. The field operators, Ψ(x) are eight

component objects and labeled as Ψr,A(x), where r refers to Dirac spinor or sub-lattice

index and takes values r = 1, 2 and A is the SU(4) index with takes values 1 . . . 4. The

matrices αx, αy are the 2 × 2 Pauli matrices for the Dirac spinor space. To clarify the

notation, we explicitly write the continuum hamiltonian,

H0 =

∫∫
dx vF Ψ†r,A(x)

(
α · p

)
r,s

(
14

)
A,B

Ψs,B(x)

Under a SU(4) rotation of the field operators,

Ψ̃r,A(x) = UA,BΨr,B(x)
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where U ∈ SU(4), leaves theH0 unchanged. HereH0 is invariant under SU(4) rotation.

The continuum hamiltonian, Eq.(3.11), is the leading term that results after the long wave-

length approximation of the lattice kinetic term. There are series of sub-leading terms,

which can be expressed in power series of lattice constant a and they are lattice level

correction terms. The first of the sub-leading lattice level correction term to the non-

interacting model Eq.(3.11),

H1 =
a2t

8~2

∫
d2x Ψ†(x)

((
αx(p2

x + 3p2
y)− αy3(pxpy + pypx)

)
⊗ τ z

)
Ψ(x) (3.12)

This term will be required when to consider while considering all sub-leading terms for

the mean field computations. This term does not retain the full SU(4) symmetry as we

had seen in the case of Eq.(3.11)

3.2 Electron-electron interactions

The electron-electron interaction for π-electron on honeycomb lattice are taken into ac-

count by considering the on-site interaction and the interaction between electron sitting

on two distinct lattice points. We first consider the interaction between electrons on lattice

points, it can be written in the following form,

HI =
1

2

∑
n,m

∑
r,s

c†n,r,σcn,r,σ V (|nr −ms|) c†m,s,σ̃cm,s,σ̃ (3.13)

where,

V (|nr −ms|) =
1

4πε

e2

|nr −ms|
(3.14)

here |nr−ms| is the distance between the two sub-lattice points under consideration. And

there is constraint on summation: r 6= s when n = m. The long wavelength continuum

approximation for the interaction term Eq.(3.13) yields a leading SU(4) symmetric term
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d2

d1

θ

|r|

Figure 3.1: The figure shows the distance involved for Coulomb interaction between elec-
trons at lattice points n and m. |r| is the distance between the lattice point n and m. d1

and d2 is the distance between the different sub-lattice points placed at lattice points n
and m. θ is the angle between carbon-carbon bond at lattice point n and vector n −m.
The difference |(|r| − di)| ∝ a2/|r|2, i = 1, 2, hence very small at very large |r|.

(Details of derivation in Appendix C)

HC =
1

2

∫
x,y
x6=y

V (r)Ψ†(x)Ψ(x)Ψ†(y)Ψ(y) (3.15)

Here r = |x− y| and V (r) = e2/(4πεr). The sub-leading part of the continuum approx-

imation,

HX =
1

2

∫
x,y
x6=y

V (r)
(1

4

ã2

r2
(3 cos2 θ − 1) + . . .

)
(

Ψ†(x)Ψ(x)Ψ†(y)Ψ(y)−Ψ†(x) βτ z Ψ(x) Ψ†(y) βτ z Ψ(y)
)

(3.16)

For large separation, i.e. r >> ã, the effects resulting from HX can be ignored when

compared with that of HC . At shorter distances, i.e. r ≈ ã, the contributions can be

sizable and modified when we take into account the fact that electrons are not point charge

particles. The wave functions used to describe the π-orbitals have finite extent. The
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Coulomb interactions between these π-orbitals will be modified as compared to point

charges at same separations.

The nearest neighbour interaction at lattice level on honeycomb lattice,

HṼ = Ṽ
∑
n,σ,σ̃

c†n,1,σcn,1,σ
(
c†n,2,σ̃cn,2,σ̃ + c†n+e2,2,σ̃

cn+e2,2,σ̃

+ c†n+e1+e2,2,σ̃
cn+e1+e2,2,σ̃

)
(3.17)

which takes into account of interaction of electron wave functions at a site with its three

nearest neighbours. The continuum approximation of nearest neighbour interaction (Ap-

pendix D) yields,

HV =
3

4
V a2

∫
x

((
Ψ†(x)Ψ(x)

)2 −
(
Ψ†(x)βτ zΨ(x)

)2
)

(3.18)

And when compared withHX from Eq.(3.16),HV is local interaction version ofHX and

both of have same SU(4) structure. In our model hamiltonian, we combineHX withHṼ

and considerHV and treat the coupling constant V as parameter which takes into account

short ranged wave function effects and short ranged Coulomb interaction between the

point charges. In this process of approximating HX into HV , we forgo the variation of

short ranged interaction with distance but retain the essential physics of SU(4) symmetry

breaking terms. Moreover the two point Coulomb interaction does not take into account

the wave function extend at short distances.

The second type of electron-electron interaction for lattice model is the on-site interac-

tion for the wave functions effects of the π-electrons of carbon atoms. It is short ranged

interaction that results when the electrons with opposite spins are localized at same site.

This physics is captured by the Hubbard interaction term.

HU = U
∑
n

∑
r

n̂n,r,↑n̂n,r,↓ (3.19)
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A continuum approximation for Hubbard term (Details shown in Appendix. E) yields a

series of local interaction terms,

HU =
1

4
Ua2

∫
x

((
Ψ†(x)Ψ(x)

)2
+
(
Ψ†(x)βτ zΨ(x)

)2

+
1

2

∑
j,k=x,y

(
Ψ†(x)αjτ kΨ(x)

)2
)

(3.20)

3.3 Zeeman term

The presence of magnetic field brings in the Zeeman term for the lattice model which

takes into account the spin splitting,

HZ = −g µB
~
∑
n

∑
r

B · Sn,r (3.21)

The spin operator in terms of lattice fermion operator

San,r =
~
2
c†n,rσ

acn,r (3.22)

The continuum approximation results in term that breaks the spin rotation symmetry,

HZ = −1

2
g µB

∫
x

Ψ†(x)σ ·BΨ(x) (3.23)

3.4 Symmetries

The model hamiltonian in presence of magnetic field that we adopt in this thesis has non-

interacting term,

H0 =

∫∫
dx Ψ†(x)

(
vF α · π ⊗ 14

)
Ψ(x) (3.24)
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Here π is the conjugate momentum in presence of magnetic field.

π = p+ eA

A is the vector potential for the applied magnetic field. The sub-leading correction to

kinetic term in presence of magnetic field,

H1 =
a2t

8~2

∫
d2x Ψ†(x)

((
αx(π2

x + 3π2
y)− αy3(πxπy + πyπx)

)
⊗ τ z

)
Ψ(x) (3.25)

The full interacting model adopted in this thesis for variational mean field calculations

H = H0 +HC +HV +HU +HZ +H1 (3.26)

Here H0 is kinetic term given in Eq.(3.24), HC takes the long ranged Coulomb interac-

tion into account given in Eq.(3.15). The short ranged interaction are, HV , the nearest

neighbour interaction given in Eq.(3.18) and HU is the on-site Hubbard interaction term

given in Eq.(3.20). HZ take Zeeman splitting of spins into account given in Eq.(3.23) and

finallyH1 is sub-leading lattice correction to the kinetic term given in Eq.(3.25).

In presence of magnetic field the discrete symmetries: parity, charge conjugation and

particle-hole are no longer the symmetries of the interacting model. The non-interacting

term,H0 and long ranged Coulomb term,HC are the only SU(4) symmetric terms. Under

SU(4) transformation of fermion field operator,

Ψ̃r,A(r) = UA,BΨr,B(r) (3.27)

where U ∈ SU(4), is the unitary operator. Both H0 and HC are invariant under this

transformation, Eq.(3.27).

The short ranged interaction terms break this SU(4) symmetry. Both HV and HU are
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invariant under U(1)× SU(2), i.e.

U = e−
i
2
θτ τz ⊗ Uσ (3.28)

Here Uσ denotes a unitary rotation in SU(2) spin space. There is also a discrete symmetry

that leaves only the short ranged interactions invariant,

U = τx ⊗ Uσ (3.29)

This transformation amounts to interchanging the valley indices of the field operators.

The group that leave the contact interaction terms invariant is a semi-direct product of

Z2 o U(1)⊗ SU(2)

The sub-leading correction to kinetic term,H1 is only invariant under U(1)⊗ SU(2).

The Zeeman term,HZ breaks the spin symmetry and only U(1) symmetry of spin rotation

is remnant of the SU(2) spin rotation and leaves the SU(2) valley unbroken. Hence the

U = Uτ ⊗ e−
i
2
θσσz (3.30)

is the transformation on field operator that leaves the Zeeman term invariant. Here Uτ is

a unitary rotation in SU(2) valley space

The symmetry under which our model hamiltonian Eq.(3.26) is invariant is U(1)×U(1).

The transformation

U = e−
i
2
θτ τz ⊗ e−

i
2
θσσz (3.31)

on the field operators leavesH invariant.
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3.5 Summary

We have shown in this chapter a systematic continuum approximation for the interacting

lattice model for graphene. The lattice interaction terms yields a leading SU(4) terms

and sub-leading part. We justified replacing the sub-leading part with the terms resulting

from the nearest neighbour interaction to take into account the wave function effects at

the short distances. We have presented the interacting continuum model that we study in

this thesis in Eq.(3.26)
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Chapter 4

Variational wave function

In this thesis, we study the interacting model Eq.(3.26) described in the previous chapter

to explore the possible nature of ground state for the Hall conductivity at σH = 0,±1.

The route taken is that of variational mean field theory. We first motivate our choice of

single particle wave functions for massive Dirac particle in magnetic field to construct the

many body variational ground state wave functions. The variational ground state com-

prises of the Landau level indices with negative integers, which is referred as filled Dirac

sea. And partially filled quartet n = 0 Landau level that corresponds to the particular

Hall conductivity under consideration. Henceforth, the reference to partially filled quartet

n = 0 Landau level indicates, for example, one of the four SU(4) levels (sub-levels) is

occupied and orbital degeneracy is saturated in case of σH = −1. In the case for σH = 0,

two of SU(4) levels of n = 0 Landau levels are filled with orbital degeneracy saturated.

Though the filled Dirac sea has Landau levels with all negative indices is a feature of the

effective continuum Dirac theory for graphene, we have a cut-off for the highest Landau

level with negative index occupied. Justification for this ultraviolet cut-off comes from

the lattice model for the graphene. We construct the variational wave functions for the

Hall conductivity at σH = 0,±1 and discuss their parameterization.

To compute the variational mean field energy with the filled Dirac sea, a convenient route
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is to evaluate the equal time Euclidean Feynman propagator for a massive Dirac particle in

magnetic field. We derive the two point correlator for a massive Dirac particle in presence

of magnetic field with filled Dirac sea. The Wick’s decomposition of the four fermion

terms for the interaction can be expressed in terms of two point correlation functions.

And these correlation functions are computed from the imaginary time representation of

propagators. The two point correlation function and the coincident correlation function

are evaluated and used to compute the mean field energy and particle-hole excitation gaps.

4.1 Charge and spin ordering of n = 0 Landau level

In this thesis, we are interested in understanding the ground states for the Hall conductivity

σH = 0,±1. At single particle level, this can be understood by occupying the sub-levels

of Landau level with index n = 0 with the orbital degeneracy saturated for filled sub-level.

The Landau level with index n = 0 for a massless Dirac particle (Appendix. A)

φ0,l(x) =

 0

ϕ0,l(x)

 (4.1)

is special when compared with Landau levels with non-zero index. It has a staggered

charge distribution. The measure of the staggered charge for filled n = 0 Landau level

with saturated orbital degeneracy,

∫
dx

∞∑
l=0

(
φ0,l(x)

)†
β φ0,l(x) = −1 (4.2)

This staggered charge is absent for the Landau levels with non-zero integer indices, |n| 6=

0, ∫
dx

∞∑
l=−n

(
φn,l(x)

)†
β φn,l(x) = 0 (4.3)
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In the case of graphene, the eigen vectors also carry the SU(4) index as they are good

quantum numbers for non-interacting model,

Φn,l,q(x) = φn,l(x)χq (4.4)

Here χq is four component vector corresponding to SU(4) part of the hamiltonian. The

quantity that is physically relevant is the staggered charge on the two sub-lattice for

graphene and its measure is given by,

∫
dx

∞∑
l=0

(
Φ0,l,q(x)

)†
βτ z Φ0,l,q(x) = ±1 (4.5)

Here we are assumed for simplicity that χq is eigenvector of τ z, i.e. valley is good quan-

tum number. At lattice level for graphene, this means that a filled n = 0 Landau level

sub-level with orbital degeneracy saturated will result in charge localized on one of the

sub-lattice points. Thus leading to staggered charge distribution for graphene sub-lattice

points and average of the operator, β τ z, gives the measure for it. Another quantity which

is significance is the staggered spin on the two sub-lattice points and the operator β τ z σz

gives its measure. In the case, when χq is the eigenvector for the operator τ z σz, then

∫
dx

∞∑
l=0

(
Φ0,l,q(x)

)†
β τ z σz Φ0,l,q(x) = ±1 (4.6)

Third quantity that can be readily seen is the total spin, and the operator σz is a good

measure and once again it will depend on eigenstate of the vector χq.

The profile at lattice level for a occupied sub-level of n = 0 Landau level resides in the

eigenstate of SU(4) component. The Fig.4.1 shows the caricature at lattice level when χq

is an eigenstate of the operator τ z σz. This particular choice gives a non-zero value for

the operators, β τ z, βτ zσz and σz. The vector χq could have pointed in any direction in

the SU(4) space. For example, χq could have been a linear superposition of eigenstates

of τ z σz.
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Figure 4.1: This figure shows a profile for one of the n = 0 Landau level wave function.
The up arrow is caricature of the wave function that is localized on one of the sub-lattice
point with spin pointing along the z-axis.

In the case when two sub-levels of n = 0 Landau level are occupied, there are several

possibilities that can result in a profile at lattice level. We enumerate a few here. The

possible scenario that if both the sub-levels are eigenstates of operator σz and have same

eigenvalue. This results in a ferromagnetic ordering of spins at the lattice level as both

the sub-lattice points have spins pointing along z-axis. In the scenario when both the

sub-levels are eigenstates of operator τ z with same eigenvalue, then we have got a charge

ordered state. In this state, both the sub-levels are localized on one of the sub-lattice point

with spin pointing in opposite direction. Another possibility is when the two occupied

sub-levels result in a staggered spin orientation on two sub-lattice. This will result if both

the sub-levels have same eigenvalue for the operator τ z σz.

An important point to note is that in case of all four sub-levels of n = 0 Landau levels are

occupied then the staggered charge distribution vanishes.

∫
dx

4∑
q=1

∞∑
l=0

(
Φ0,l,q(x)

)†
βτ z Φ0,l,q(x) = 0 (4.7)

And so does the staggered spin distribution distribution. In the scenario when all the
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Ferromagnetic order Charge order Anti-ferromagnetic order

Figure 4.2: This figure shows a profile for two occupied of the n = 0 Landau level wave
function. The figure shows the possible ferromagnetic, charge and anti-ferromagnetic
ordering that can occur the way two sub-levels are filled.

n = 0 sub-levels are occupied we have a SU(4) singlet and no interesting lattice level

profile.

The case when three of sub-levels are occupied can be viewed from the hole perspective,

i.e. the wave function profile of the only unoccupied sub-level. The results will be same

as that of only one of n = 0 sub-level is occupied.

For massless Dirac particle with Landau level index n 6= 0, for each filled sub-level, the

staggered charge always vanishes,

∫
dx

∞∑
l=−n

(
Φn,l,q(x)

)†
βτ z Φn,l,q(x) = 0 (4.8)

And so does the staggered spin distribution, βτ zσz.

The ground state for the Hall conductivity σH = 0,±1, can be viewed having two com-

ponents: first partially filled sub-levels of n = 0 Landau levels occupied. The second

component is all the Landau levels with negative index are filled, that is, for each index

n, the sub-level and sub-band degeneracy is saturated. The case when all the four sub-

levels of the Landau level for any index n for the massless Dirac particle forms a SU(4)

singlet, i.e. invariant under any SU(4) rotation. The construction of variational state for

Hall conductivity, σH = 0,±1 with Landau levels for massless Dirac particles results in
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variational ground state where SU(4) symmetry is broken for n = 0 and SU(4) singlet

for all n < 0.

Taking hint from the staggered nature of n = 0 Landau level, we consider the ansatz

that electron-electron interaction induces mass to the massless Dirac particle of the non-

interacting theory. We will show self-consistently that indeed the non-zero value of mass

minimizes the ground state energy for the Hall conductivity under consideration in this

thesis. Moreover it provides a possibility of same symmetry for the partially occupied

sub-levels of n = 0 Landau level and the filled Dirac sea.

4.2 Landau levels for massive Dirac particle in graphene

In this section, we discuss the features of eigenvectors of massive Dirac particles for the

graphene in presence of magnetic field. These Landau states for massive Dirac particle

will be used to construct variational ground state in the next section. One particle hamil-

tonian for massive Dirac particles in graphene in presence of magnetic field,

h = vF α · π ⊗ 14 + β ⊗M (4.9)

Here the 14 andM are 4×4 matrices corresponding to the SU(4) space. And π = p+eA

is the conjugate momenta in presence of magnetic field. The only assumption made about

the matrix M is that it is hermitian to ensure the hermiticity of the hamiltonian. Hence

there exist a basis where M is diagonal and can be expressed as,

M =
4∑
q=1

mq|q〉〈q| (4.10)

The eigenvalues mq are the mass of Dirac particles and |q〉 are the corresponding eigen-

vectors.
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The eigenvalues and eigenvectors for the hamiltonian Eq.(4.9),

εn,l,q = sgn(n)
√

2|n|+m2
q (4.11)

Φn,l,q(x) =
1√

2εn,l,q(εn,l,q +mq)

 (εn,l,q +mq)ϕn−1,l+1(x)

i
√

2|n|ϕn,l(x)

χq (4.12)

And for n = 0

ε0,l,q = −mq (4.13)

Φ0,l,q(x) =

 0

ϕ0,l(x)

χq (4.14)

Here the energies, εn,l,q and masses mq are measured in the units of (~ vF/`c). So they

are dimensionless quantities. χq are four component vectors.

An interesting feature of the Landau levels for the massive Dirac particles is that they can

be expressed as the linear combination of Landau levels for massless Dirac particle. The

eigenstates Eq.(4.12), any n 6= 0,

Φn,l.q(x) = An,mq

 ϕn−1,l+1(x)

iϕn,l(x)

χq +Bn,mq

 ϕn−1,l+1(x)

−iϕn,l(x)

χq (4.15)

The coefficients

An,mq =
1

2

((
1 +

mq

εn,l.q

) 1
2

+
(

1− mq

εn,l.q

) 1
2
)

Bn,mq =
1

2

((
1 +

mq

εn,l.q

) 1
2 −

(
1− mq

εn,l.q

) 1
2
) (4.16)

This shows that for n 6= 0 the Landau level with index n of massive Dirac particle are

obtained by mixing positive and negative Landau levels of massless Dirac particle with

same index. This amounts to mixing massless Dirac particle and hole states with same

Landau level index. The breaking of particle-hole symmetry is justified as in presence of
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magnetic field, the non-interacting model no longer retains the particle-hole symmetry.

The n = 0 Landau level for massive Dirac particle is exactly same as that of massless

ones, hence it retains the staggered charge and spin ordering that we discussed in the

previous section. The n 6= 0 Landau levels for the massive Dirac particles, the staggered

charge distribution on two sub-lattice points is,

∫
dx

∞∑
l=−n

(
Φn,l,q(x)

)†
βτ z Φn,l,q(x) =

mq

εn,l,q
(χq)†τ zχq (4.17)

And the staggered spin distribution is,

∫
dx

∞∑
l=−n

(
Φn,l,q(x)

)†
βτ zσz Φn,l,q(x) =

mq

εn,l,q
(χq)†τ zσzχq (4.18)

This shows that n 6= 0 Landau levels also have staggered charge and spin distribution.

The symmetries partially occupied n = 0 Landau levels are translated to that of n 6= 0

with the choice of massive Dirac eigenstates and magnitude of SU(4) polarization of the

filled Dirac sea is proportional to the magnitude of eigenvalues mq. The quantities that

completely specify the matrix M are the variational parameters for ground state that we

are going to construct for Hall conductivity σH = 0,±1. The hermitian matrixM required

sixteen parameters to be completely specified but the additional symmetry constraints for

specific Hall conductivity will reduce the number of variational parameters required for

each case, which we discuss in the next section.

4.3 Variational states

The Landau level wave functions for massive Dirac particles are used to expand the field

operators,

Ψr,A(x) =
∑
n,l,q

Φn,l,q
r,A (x) ψn,l,q (4.19)
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Here the first subscript r is used for Dirac spinor index and secondA is used to specify the

SU(4) spinor index. ψn,l,q is annihilation operator for fermion with Landau level index n,

orbit degeneracy index l and the SU(4) quantum number q.

In this thesis we will be only investigating the nature of ground state and excitations about

the states for Hall conductivity σH = 0 and σH = −1. The state for σH = +1 is charge

conjugate state of σH = −1, so we are only going to study the σH = −1 here.

|σH = 0〉 =
( 2∏
q=1

∞∏
l=0

ψ†0,l,1

)( −1∏
n=−Nc

4∏
q=1

∞∏
l=−|n|

ψ†n,l,q

)
|0〉 (4.20)

|σH = −1〉 =
( ∞∏
l=0

ψ†0,l,1

)( −1∏
n=−Nc

4∏
q=1

∞∏
l=−|n|

ψ†n,l,q

)
|0〉 (4.21)

These states have partially occupied sub-levels of n = 0 Landau level and a filled Dirac

sea operators acting on the vacuum, |0〉, zero particle state. The Dirac theory has a sea

with no lower bound, but here the (2 + 1)d Dirac theory is an effective theory resulting

from the underlying lattice model. The lattice model set an ultraviolet cutoff which is

proportional to the inverse of the lattice constant. We estimate a cutoff for Landau level

index by equating the number of states of the lattice model to that of continuum model.

2valley × 2spin × 2bands,±

∫ Λ

0

d2k

(2π)2
= 2valley × 2spin ×

2Nc + 1

2π`2
c

(4.22)

In Eq.(4.22), LHS is number density of the states for the continuum model after equating

with lattice model

Λ2 =
4π√
3a2

Λ is the ultraviolet cutoff on the wavevector. RHS is total number density of states re-

sulting from the non-interacting model in presence of magnetic field. The cutoff on the

Landau level index,

Nc =
2π√

3

(`c
a

)2

(4.23)

The variational ground states described in Eq.(4.20) and Eq.(4.21) is parameterized by
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the elements that specifies the mass matrix M . As discussed earlier in previous section

that 4× 4 hermitian matrix M required sixteen parameters to be specified completely. A

hermitian matrix will have a unitary matrix, U , that will diagonalize it.

M = UMD U † (4.24)

Here MD = {m1,m2,m3,m4} is diagonal matrix, which accounts for four parameters.

In general n×n unitary matrix requires n2 parameters to specify it. In our case, a sixteen

parameters will be required for unitary matrix, U . This suggests that we have over count-

ing of parameter on the RHS of Eq.(4.24). The extra four parameters can be accounted

for by choice of matrix U . The matrix U is not unique as we free to choose as a product

of two unitary matrices,

U = Ũ Ṽ

such that it Ṽ leaves the MD invariant, i.e. ṼMDṼ† = MD. This is possible choosing a

diagonal form for Ṽ = {ei θ1 , ei θ2 , ei θ3 , ei θ4}. This takes into account of four parameters

and we need only twelve parameters to specify the matrix Ũ . So we have shown that we

actually only need twelve parameters to completely specify matrix U in Eq.(4.24) and

taking into account of parameter counting on either side of this equation.

An alternative route to confirm that we only need the twelve parameters for matrix U , up to

a right multiplication by a diagonal unitary matrix, is by counting the parameters required

to construct unitary matrix from the eigenvectors up to overall phases. An eigenvector

of matrix M is four component column vector with complex entries and taking orthonor-

mality into account implies that we need seven real parameters to describe it completely.

Four eigenvectors of M takes the count to twenty eight to construct U . The requirement,

U U † = 14 results in sixteen constraint equations. This leaves with twelve independent

parameters to describe an unitary matrix U up to a multiplication by a diagonal unitary

matrix.
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In general, full parameterization of mass matrix M can be done by four parameters to

specify the eigenvalues and twelve to describe the four eigenvectors. There are some

more symmetry consideration that will reduce the sixteen parameters to parameterize M

for our variational states as we shall see in following discussion.

4.3.1 Parameterization for ground state at σH = −1

The ground state for Hall conductivity σH = −1 requires only one of four sub-levels of

n = 0 Landau level to be occupied and rest three unoccupied. This choice implies that

n = 0 Landau level should be invariant under a subgroup, U(1)×SU(3), of SU(4). This

amounts that there is U(1) transformation for occupied sub-level of n = 0 Landau level

and SU(3) transformation for the unoccupied sub-levels should leave the ground state

invariant. The invariance of ground state underU(1)×SU(3) is ensured by the structure of

mass matrix M . The diagonal matrix MD = {mo,−mu,−mu,−mu} and the associated

unitary matrix that diagonalize M , belongs to the subgroup U(1)× SU(3). Here mo > 0

and mu > 0. The negative sign indicates the unoccupied levels for n = 0. This ensures

that ground state Eq.(4.21) is invariant under transformation SU(1) × SU(3). Thus the

set of all such mass matrix is a coset space SU(4)/(U(1) × SU(3)). This counting of

parameters for the coset space is equivalent to that of U(4)/(U(1) × U(3)), which is

42 − 12 − 32 = 6.

The mass matrix that is invariant under subgroup U(1)×SU(3) can be constructed explic-

itly by specifying the SU(4) component of the occupied level. A general four component

vector required four complex numbers to be specified. Orthonormality and an overall

phase factor gets rid of two and leaving with six parameters to specify single SU(4) com-

ponent,

|1〉 = cos(
γ1

2
)|+〉|n1〉+ ei Ω1 sin(

γ1

2
)|−〉| − n2〉 (4.25)

Here |±〉|ni〉 = |±〉 ⊗ |ni〉. And |±〉 are the eigenvectors of valley operator τ z. |ni〉 is
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an vector pointing in arbitrary direction in spin space.

|ni〉 = cos(
θi
2

)| ↑〉+ eiφi sin(
θi
2

)| ↓〉 (4.26)

Here | ↑〉 and | ↓〉 are the eigenvector for spin operator σz.

The mass matrix for the Hall conductivity σH = −1 is

M = (mo +mu)|1〉〈1| −mu14 (4.27)

Here we made use of the fact,
∑4

q=1 |q〉〈q| = 14

The two parameters mo and mu for the eigenvalues of M and six angle parameters for

vector |1〉 makes it eight variational parameters to describe the ground state in Eq.(4.21).

4.3.2 Parameterization for ground state at σH = 0

In case of hall conductivity at σH = 0, two of the sub-levels of n = 0 Landau level are

occupied and two are unoccupied. The subgroup that leaves the n = 0 Landau levels

invariant is SU(2) × SU(2), which means that both the occupied and unoccupied sub-

levels are invariant under SU(2) rotations among themselves. To achieve same invariance

under unitary rotation for the filled Dirac sea, for each Landau level with negative index,

the diagonal mass matrix takes the form, MD = {mo,mo,−mu,−mu}. The unitary

matrix that bring the mass matrix M to this form is a subgroup SU(4), same as for n = 0

Landau level, i.e. SU(2) × SU(2). The number of parameters need to describe this

subgroup from a coset space SU(4)/(SU(2)×SU(2))×U(1). This counting is equivalent

to counting the coset space for U(4)/(U(2)×U(2)), which amounts to 42− 22− 22 = 8.

In addition there are two parameters for the eigenvalues of mass matrix mo and mu. Thus

we need ten parameters to describe the variational ground state Eq.(4.20).

Similar to what we saw in previous subsection, we can construct the unitary matrix from
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the orthonormal four component column vectors with eight parameters. This can be done

by selecting a four component vector with six parameters as we did for the case of σH =

−1 and then choosing a second that is orthonormal to the first with addition of two more

parameters,

|1〉 = cos(
γ1

2
)|+〉|n1〉+ ei Ω1 sin(

γ1

2
)|−〉| − n2〉 (4.28)

|2〉 = cos(
γ2

2
)|+〉| − n1〉+ ei Ω2 sin(

γ2

2
)|−〉|n2〉 (4.29)

Parameter count for these two orthonormal vectors is eight.

The mass matrix for Hall conductivity σH = 0 has ten variational parameters,

M = (mo +mu)
(
|1〉〈1|+ |2〉〈2|

)
−mu14 (4.30)

The choice of massive Dirac particle for constructing the variational wave function with

mass matrix as the variational parameter allows us to have same SU(4) polarization for

both partially filled n = 0 Landau level and the filled Dirac sea. The specific values

taken by the variational parameters i.e. the mass matrix M , which will be decided by the

minimization of variational mean field energy is going to decide the SU(4) polarization

of the ground state.

4.4 Propagator for massive Dirac particle in presence of

magnetic field

In this section, we digress to evaluate the two point correlator using time ordered Feynman

propagator for a massive Dirac particle in presence of magnetic field. This two point

correlator that is encountered while computing the ground state energies. Here we are

considering a massive Dirac particle in (2 + 1)d and subjected to magnetic field along the
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z-axis. The hamiltonian,

h =
~vF
`c

 m πx − i πy

πx + i πy −m

 (4.31)

Here m > 0 is expressed in units of ~vF/`c, and the eigenvalues are,

εn,l = sgn(n)
(~ vF
`c

)√
2|n|+m2

ε0,l = −m
(4.32)

The completeness relation

12 =
∞∑

n=−∞

∞∑
l=−|n|

(
Θ(−εn)|n, l〉〈n, l|+ Θ(εn)‖n, l〉〈n, l|

)
(4.33)

Here 12 is 2× 2 identity matrix, εn > 0 and the first term is summation over all negative

energy eigenvalue states which includes all the Landau levels with negative indices and

the n = 0 Landau level since the eigenvalue is −m with m > 0. The second term is for

states with positive energies i.e. Landau levels with indices n > 0.

We are interested in constructing two point correlator,

Gs,s′ (r, r0) =
1

2
〈0|[Ψ†s(r),Ψs′ (r0)]|0〉 (4.34)

Here |0〉, the vacuum is constructed by occupying Landau levels with index n = 0 and

n < 0 that is all the Landau levels with negative energy eigenvalues. This definition takes

into account the subtraction of background charge from the positive charged ions.

G =
1

2

∞∑
n=−∞

∞∑
l=−|n|

(
Θ(−εn)−Θ(εn)

)
|n, l〉〈n, l| (4.35)

Let

K = Θ(−εn)−Θ(εn) (4.36)
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K can be defined as following by considering the equal time for time ordered Feynman

propagator,

K = lim
τ→0−

e−τεnΘ(−τ)Θ(−εn)− lim
τ→0+

e−τεnΘ(τ)Θ(εn) (4.37)

Define

K(τ) = e−τεnΘ(−τ)Θ(−εn)− e−τεnΘ(τ)Θ(εn) (4.38)

K = lim
τ→0−

K(τ) + lim
τ→0+

K(τ) (4.39)

K(τ) = −
+∞∫
−∞

dω

2π

eiωτ

εn + iω
(4.40)

= −
+∞∫
−∞

dω

2π
eiωτ (εn − iω)

∞∫
0

ds e−s(ε
2
n+ω2) (4.41)

Here we make use the integral representation,

1

ε2n + ω2
=

∞∫
0

ds e−s(ε
2
n+ω2) (4.42)

K(τ) = − 1

2
√
π

∞∫
0

ds√
s

e−(sε2n+ τ2

4s
)
(
εn +

τ

2s

)
(4.43)

Hence using Eq.(4.39)

K = − 1√
π
εn

∞∫
0

ds√
s

e−sε
2
n (4.44)

using it in Eq.(4.35), we obtain the correlator,

G = − 1

2
√
π

∞∫
0

ds√
s

h e−sh
2

(4.45)

This is the so called ‘heat kernel’ representation.

63



Now the task is find the real space representation for the heat kernel operator e−sh
2 .

h = ε

 m πx − i πy

πx + i πy −m

 (4.46)

Here ε = (~vF )/`c and h2 is diagonal.

h2 = ε2

 m2 + π2
x + π2

y + 1 0

0 m2 + π2
x + π2

y − 1

 (4.47)

From the knowledge of imaginary time, i.e. t = −i ~β propagator for hamiltonian (π2
x +

π2
y)(~ωc/2) in configuration space [8], Appendix. F

∑
n,l

ϕ∗n,l(r0)e−β( ~ωc
2

)(π2
x+π2

y)ϕn,l(r) =
1

2π`2
c

e
− 1

4`2c
|r−r0|2 coth(β~ωc

2
)

2 sinh(β~ωc
2

)
e

i

2`2c
(xy0−yx0)

(4.48)

This enables us to write e−sh
2 in configuration space,

〈r0|e−sh
2|r〉 =

1

2π`2
c

e
− 1

4`2c
|r−r0|2 coth(sε2)

2 sinh(sε2)
e

i

2`2c
(xy0−yx0)

 e−s(m
2+1)ε2 0

0 e−s(m
2−1)ε2


(4.49)

For our convenience, we rewrite the above equation in more compact notation. Since s

has dimension of inverse of energy square and r has the dimension of length, we employ.

s

ε2
→ s,

r

`c
→ r

and define,

ζs(r, r0) = e−
1
4
|r−r0|2 coth(s) e

i
2

(xy0−yx0) (4.50)
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The net result so far in compact notation,

〈r0|e−sh
2 |r〉 =

1

2π`2
c

ζs(r, r0)
e−sm

2

2 sinh(s)

 e−s 0

0 es

 (4.51)

To obtain the propagator, we need to evaluate h e−sh
2 . This achieved by finding the action

of operators π+ and π− on ζs(r, r0). To accomplish this we express the operators π± in

terms of complex variable z = x+ i y and its conjugate z̄.

π+ = (px −
1

2
y) + i (py +

1

2
x) = −i 2 ∂z̄ +

i

2
z

π− = (px −
1

2
y)− i (py +

1

2
x) = −i 2 ∂z −

i

2
z̄

(4.52)

And expressing ζs(r, r0) in terms of complex variables,

ζs(r, r0) = e−
1
4
|z−z0|2 coth(s) e

1
4

(z̄z0−zz̄0) (4.53)

We obtain,

π+ζs(r, r0) =
i

2
(z − z0)(coth(s) + 1)ζs(r, r0)

=
i

2
(z − z0)

es

sinh(s)
ζs(r, r0) (4.54)

π−ζs(r, r0) =
i

2
(z̄ − z̄0)(coth(s)− 1)ζs(r, r0)

=
i

2
(z̄ − z̄0)

e−s

sinh(s)
ζs(r, r0) (4.55)

The operator he−sh
2 in configuration space,

〈r0|h e−sh
2 |r〉 =

1

2π`2
c

ζs(r, r0)

2 sinh(s)

 m e−s(m
2+1) i (z̄−z̄0)

2
e−sm

2

sinh(s)

i (z−z0)
2

e−sm
2

sinh(s)
−m e−s(m

2−1)

 (4.56)
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The correlator in Eq.(4.45) the limits of integration for s were (0,∞). s has the dimen-

sions of inverse square of energy. We have to take into account the ultra-violet cut-off

because of the underlying lattice structure of graphene lattice. This is taken into account

by taking the limits of integration from 1/2NC to infinity for s. Hence the correlator for

the massive Dirac particle in magnetic field is,

G = − 1

2
√
π

∞∫
1

2NC

ds√
s

h e−sh
2

(4.57)

In configuration space the equal time two point correlator, 〈r2|G|r1〉 = Gm(r1, r2)

Gm(r1, r2) = − 1

2π`2
c

1

2
√
π

∞∫
1

2NC

ds√
s
ζs(r1, r2)

e−sm
2

2 sinh(s)

 m e−s i (z̄1−z̄2)
2 sinh(s)

i (z1−z2)
2 sinh(s)

−m es

 (4.58)

The ζs(r1, r2) is defined in Eq.(4.50).

Another quantity that we will require when we compute the mean field energy for the

contact terms in the interacting hamiltonian is coincident correlator. That is obtained by

evaluating propagator for a given point, 〈r0|G|r0〉 = G(r0, r0)

Gm(0) = − 1

2π`2
c

1

2
√
π

∞∫
1

2NC

ds√
s

e−sm
2

2 sinh(s)

 m e−s 0

0 −m es

 (4.59)

The coincident correlator for Dirac particle is independent of position. The correlator

obtained in this section are for a single Dirac particle. To obtain the correlator for the

Dirac particles in graphene we need to take into account the SU(4) structure of the eigen

functions. We will use these two point correlator and coincident one to construct the

correlator for the case of graphene in next section.
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4.5 Two point correlation functions

The computation of mean field energy requires the knowledge of two point correlation

function, which is expectation value of the two point field operators. This results from

Wick decomposition applied to four fermion terms in the interacting model. For example,

consider the case four fermion term occurring in Coulomb interaction term,

〈Ψ†r,A(x)Ψr,A(x)Ψ†s,B(x)Ψs,B(x)〉 = 〈Ψ†r,A(x)Ψr,A(x)〉〈Ψ†s,B(x)Ψs,B(x)〉

− 〈Ψ†r,A(x)Ψs,B(x)〉〈Ψ†s,B(x)Ψr,A(x)〉 (4.60)

Here the notation 〈. . .〉 stands for the expectation value 〈GS| . . . |GS〉 and |GS〉 is the

ground state under consideration. This requires the expectation value of two point fermion

operators,

〈Ψ†s,B(y)Ψr,A(x)〉 =
∑

(n,l,q)∈occ

Φn,l,q
s,B

∗
(y) Φn,l,q

r,A (x) (4.61)

Here the summation is over all the occupied states. We define an quantity, two-point

correlation function,

Γ(x,y) =
∑

(n,l,q)∈occ

Φn,l,q(x)
(
Φn,l,q(y)

)† (4.62)

By construction Γ(x,y) is 8 × 8 matrix and this will be computed from the propagator

for massive Dirac particle in magnetic field obtained in the previous section. For the Hall

conductivity we are considering in this thesis, is encoded in the mass matrix M , for the

masses of Dirac particles for graphene.

M =
4∑
q=1

mqχ
qχq† (4.63)

here χq is eigenvector corresponding to mq. For Hall conductivity σH = 0, m1 = m2 =

mo and m3 = m4 = −mu. And in the case for σH = −1 m1 = mo, m2 = m3 = m4 =
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−mu. We define projection operator,

Pq = χqχq† (4.64)

which satisfies P 2
q = Pq and the completeness relation,

14 =
4∑
q=1

Pq (4.65)

Using Eq.(4.58) to construct the correlator for the desired Hall conductivity,

Γ(r1, r2) =
4∑
q=1

Gmq(r1, r2)Pq (4.66)

Γ(r1, r2) =
1

2

1

2π`2
c

4∑
q=1

 −fmq(r1, r2) dmq(r1, r2)

bmq(r1, r2) gmq(r1, r2)

Pq (4.67)

Here,

fmq(r1, r2) =
mq

2
√
π

∞∫
1

2NC

ds√
s

e−s(m
2
q+1)

sinh(s)
ζs(r1, r2) (4.68)

gmq(r1, r2) =
mq

2
√
π

∞∫
1

2NC

ds√
s

e−s(m
2
q−1)

sinh(s)
ζs(r1, r2) (4.69)

bmq(r1, r2) = −i
(z1 − z2)

4
√
π

∞∫
1

2NC

ds√
s

e−sm
2
q

sinh2(s)
ζs(r1, r2) (4.70)

dmq(r1, r2) = −i
(z̄1 − z̄2)

4
√
π

∞∫
1

2NC

ds√
s

e−sm
2
q

sinh2(s)
ζs(r1, r2) (4.71)

The coincident correlator,

Γ =
1

2

1

2π`2
c

4∑
q=1

 −fmq 0

0 gmq

Pq (4.72)
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Here,

fmq =
mq

2
√
π

∞∫
1

2NC

ds√
s

e−s(m
2
q+1)

sinh(s)
(4.73)

gmq =
mq

2
√
π

∞∫
1

2NC

ds√
s

e−s(m
2
q−1)

sinh(s)
(4.74)

Γ =
1

2π`2
c

1

2

4∑
q=1

(
umq 12 − vmqβ

)
⊗ Pq (4.75)

Here,

umq =
mq

2
√
π

∞∫
1

2NC

ds√
s

e−sm
2
q

vmq =
mq

2
√
π

∞∫
1

2NC

ds√
s

e−sm
2
q coth(s)

For numerical evaluation it convenient to rewrite above equations,

vmq =
mq√
π

∞∫
1√

2NC

dξ e−m
2
qξ

2
(1 + e−2ξ2

1− e−2ξ2

)
(4.76)

umq =
mq√
π

∞∫
1√

2NC

dξ e−m
2
qξ

2

=
sgn(mq)

2
erfc
( |mq|√

2NC

)
(4.77)

The complementary error function is defined as

erfc(x) =
2√
π

∞∫
x

dt e−t
2

(4.78)

Making use of the structure of mass matrix M for the Hall conductivity under considera-
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tion here the two point coincident correlator can be written in convenient form

Γ =
1

2π`2
c

1

2

((
(umo + umu)12 − (vmo + vmu)β

)
⊗
∑
j∈occ

Pj

− (umu12 − vmuβ)⊗ 14

)
(4.79)

Here the summation over j = 1 for σH = −1 and j = 1, 2 for σH = 0.

4.6 Summary

We summarize the features of framework that we developed in this chapter to be used in

subsequent chapter for mean field computations,

1. We showed that Landau levels for massive Dirac particle will provided the same

SU(4) polarization for both partially occupied n = 0 Landau levels and filled Dirac

sea.

2. We described the number of parameters needed for the variational ground states for

the Hall conductivity σH = 0 and σH = −1.

3. Using the heat kernel method we developed a convenient expression for two point

correlator for a massive Dirac particle in magnetic field.

4. With the knowledge of two point correlator for a massive Dirac particle we con-

structed the two point correlator and coincident correlator for Dirac particle in

graphene to be used for variational mean field computations.
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Chapter 5

SU(4) symmetric model

In this chapter, we consider the SU(4) symmetric model for graphene, which includes the

leading terms from the kinetic and Coulomb terms in the continuum approximation. The

model used in this chapter

H = H0 +HC (5.1)

The kinetic term,

H0 =

∫
r

Ψ†(r)
(
vF α · π ⊗ 14

)
Ψ(r) (5.2)

The SU(4) symmetric part of electron-electron interaction,

HC =
1

2

∫
r1,r2

VC(|r1− r2|)
(

Ψ†(r1)Ψ(r1)Ψ†(r2)Ψ(r2)− 2ρ̄Ψ†(r1)Ψ(r1) + ρ̄2
)

(5.3)

here ρ̄ is the average charge density. This has been incorporated to take into account

the average background charge due to positive charge of the ions. Both H0 and HC are

invariant under SU(4) rotation performed on the field operator, i.e. UA,BΨ(x)r,B, leaves

both terms unchanged.

We will show that, the SU(4) symmetric model spontaneously breaks the SU(4) sym-

metry to SU(3) ⊗ U(1) for Hall conductivity at σH = −1 and SU(2) ⊗ SU(2) for Hall
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conductivity σH = 0. It does not throw light on the nature of the ground states of the Hall

conductivity for σH = 0,±1. The mean field energies for ground state turns out to be

independent of the angle parameters. These angle parameters are responsible for indicat-

ing the direction of the ground states in the SU(4) space i.e. the SU(4) polarization of

the ground states in not completely specified. In the case of particle-hole excitations also

gaps also turns out to be independent of the angle parameters. We will show that leading

contributions to the magnitude of the gaps comes from the Coulomb term but the SU(4)

component of the excitations are left unspecified.

5.1 Expectation value for symmetric model

In this section we use the two point correlator Eq.(4.67) to compute the expectation value

of kinetic and Coulomb term. We will show that the expectation value for the SU(4)

symmetric terms is independent of angle parameters that specify the SU(4) polarization.

The expectations values are reduced to evaluating the integration of s variable of the

correlator, Eq.(4.67), which is done numerically.

5.1.1 Kinetic term

The kinetic term has local fermion field operators and the expectation value can be ex-

pressed as,

〈H0〉 =

∫
r

hr,A;s,B〈Ψ†r,A(r)Ψs,B(r)〉 (5.4)

From Eq.(5.2), hr,A;s,B = vF
(
α · π

)
r,s

(
14

)
A,B

. To compute average of kinetic term we

need to take into account the action of operator h which makes it non-local because of

the action of conjugate momentum operator. We cannot apply the coincident correlator

here instead we compute the action of operator h on the two point correlator and take the
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coincident limit.

〈H0〉 =

∫
r

lim
r→r0

Tr[h Γ(r, r0)] (5.5)

Since the operator α · π has only off-diagonal elements, hence

Tr[h Γ(r, r0)] =
1

2π`2
c

1

2

(~vF
`c

) 4∑
q=1

(
π−bmq(r, r0) + π+dmq(r, r0)

)
(5.6)

Here π± = πx ± i πy and its action on the off-diagonal elements of the two-point corre-

lator provides the contributions. π = p + eA is the conjugate momenta in presence of

magnetic field. The action of π± can be easily obtained by expressing them as derivatives

of complex variable z = x + i y and its conjugate z̄ as shown in Eq.(4.52) and using the

Eq.(4.54) and Eq.(4.55), we obtain

π+

(
(z̄ − z̄0)ζs(z, z0)

)
= i
(
− 2− 1

2
z(z̄ − z̄0) +

1

2
|z − z0|2(coth(s) + 1)

)
ζs(z, z0)

π−
(
(z − z0)ζs(z, z0)

)
= i
(
− 2− 1

2
z̄(z − z0) +

1

2
|z − z0|2(coth(s)− 1)

)
ζs(z, z0)

Now taking limit z → z0 and we obtain,

lim
r→r0

π−bmq(r, r0) = − 1

2
√
π

∫
s

e−sm
2
q

√
s sinh2(s)

(5.7)

lim
r→r0

π+dmq(r, r0) = − 1

2
√
π

∫
s

e−sm
2
q

√
s sinh2(s)

(5.8)

The spatial integration in Eq.(5.5) is trivial and results in V, volume of the system

〈H0〉 = − V

2π`2
c

(~vF
`c

) 1

2
√
π

4∑
q=1

∫ ∞
1

2NC

ds
e−sm

2
q

√
s sinh2(s)

(5.9)

The integrand in Eq.(5.9), is a diverging function of s near zero. Although the point of

divergence, s = 0, is not part of range of integration but it diverges very rapidly in the

proximity of the lower limit of the integration. We note that leading contribution of this

integration is independent of variational parameter, which is just a constant from the min-
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imization point of view. Hence we remove this constant in the process of computing the

coefficients with variational parameter dependence and to keep the integration going out

of bounds for numerical computation. The integration can be rearranged in the following

way,

∫ ∞
1

2NC

ds
e−sm

2
q

√
s sinh2(s)

=

∫ ∞
1

2NC

ds
1√

s sinh2(s)
−
∫ ∞

1
2NC

ds
(1− e−sm

2
q)√

s sinh2(s)

The first term in the above equation is independent of variational parameter so we drop it

and second one carries the complete variational parameter dependence. The expectation

value of the kinetic term that has variational parameter dependence can be expressed as,

〈H0〉 =
V

2π`2
c

(~vF
`c

) 4∑
q=1

ηt(mq) (5.10)

The quantity

ηt(mq) =
4√
π

∫ ∞
1√

2NC

dξ
(1− e−m

2
qξ

2
)e−2ξ2

(1− e−2ξ2)2
(5.11)

is expressed with change of variable which suited best for it to be computed numerically.

Also note that the coefficient ηt(mq) will yield positive values for range of integration and

parameter values that are of our interest.

5.1.2 Coulomb term

The expectation value of Coulomb term, Eq.(5.3),

〈HC〉 =
1

2

e2

4πε

∫
r1

∫
r2

1

|r1 − r2|
(
〈Ψ†r,A(r1)Ψr,A(r1)〉〈Ψ†s,B(r2)Ψs,B(r2)〉

− 〈Ψ†r,A(r1)Ψs,B(r2)〉〈Ψ†s,B(r2)Ψr,A(r1)〉

− 2ρ̄〈Ψ†r,A(r1)Ψr,A(r1)〉+ ρ̄2 (5.12)
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In above equation four fermion term has undergone Wick’s decomposition. By defini-

tion ρ̄ = Tr[Γ(r, r)], the average charge. This leads to cancellation of the first and last

two terms. The mean field energy contributions from the Coulomb term comes from the

exchange term and can be expressed in terms of the two point correlator,

〈HC〉 = −1

2

e2

4πε

∫
r1

∫
r2

1

|r1 − r2|
Tr[Γ(r1, r2) Γ(r2, r1)] (5.13)

We use the fact, Tr[PqPq̃] = δq,q̃, to evaluate the trace of correlator,

Tr[Γ(r1, r2)Γ(r2, r1)] =
1

(2π`2
c)

2

1

4

4∑
q=1

(
fmq(r1, r2)fmq(r2, r1)

+ gmq(r1, r2)gmq(r2, r1) + bmq(r1, r2)d∗mq(r2, r1) + dmq(r1, r2)b∗mq(r2, r1)

)
(5.14)

This indicated that the Coulomb expectation value is independent of the angle parameters.

Now consider the integral

I1 =
(1

2

e2

4πε

) 1

(2π`2
c)

2

1

4

∫∫
r1,r2

1

|r1 − r2|
(
fmq(r1, r2)fmq(r2, r1)

+ gmq(r2, r1)gmq(r1, r2)
)

(5.15)

Once again we plug in fmq(r1, r2) from Eq.(4.68) and gmq(r1, r2) from Eq.(4.69) in the

above equation,

I1 =
(1

2

e2

4πε`c

) 1

(2π`2
c)

2

m2
q

8π

∫∫
s1,s2

e−(s1+s2)m2
q cosh(s1 + s2)√

s1 s2 sinh(s1) sinh(s2)∫∫
r1,r2

e−
1
4
|r1−r2|2(coth(s1)+coth(s2))

|r1 − r2|
(5.16)

The spatial integration involves only the magnitude of relative position coordinates, hence

we transform the spatial integration from two position coordinates to center of mass and

relative coordinates. The center of mass coordinate is trivial and yields the volume of the
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system and the relative coordinate is a gaussian integral.

I1 =
(1

2

e2

4πε`c

) V

2π`2
c

m2
q

8
√
π

∫∫
s1,s2

e−(s1+s2)m2
q

√
s1 s2 sinh(s1) sinh(s2)

cosh(s1 + s2)√
coth(s1) + coth(s2)

=
(1

2

e2

4πε`c

) V

2π`2
c

m2
q

8
√
π

∫∫
s1,s2

e−(s1+s2)m2
q

√
s1 s2

cosh(s1 + s2)√
sinh(s1) sinh(s2) sinh(s1 + s2)

=
(1

2

e2

4πε`c

) V

2π`2
c

ηfg(mq) (5.17)

The variational parameter dependent ηfg(mq) is computed numerically by implementing

the double integral

ηfg(mq) = m2
q

√
2

π

∞∫
1√

2NC

dξ1
e−ξ

2
1m

2
q√

(1− e2ξ2
1)

ξ1∫
1√

2NC

dξ2
e−ξ

2
2m

2
q(1 + e−2(ξ2

1+ξ2
2))√

(1− e2ξ2
2)(1− e−2(ξ2

1+ξ2
2))

(5.18)

Now consider the integral,

I2 =
(1

2

e2

4πε`c

) 1

(2π`2
c)

2

1

4

∫∫
r1,r2

1

|r1 − r2|
(
bmq(r1, r2)dmq(r2, r1)

+ bmq(r2, r1)dmq(r1, r2)
)

(5.19)

Taking bmq(r1, r2) from Eq.(4.70) and dmq(r1, r2) from Eq.(4.71) and plugging in above

equation,

I2 =
(1

2

e2

4πε`c

) 1

(2π`2
c)

2

1

32π

∫∫
s1,s2

e−s1m
2
q

√
s1 sinh2(s1)

e−s2m
2
q

√
s2 sinh2(s2)∫∫

r1,r2

|r1 − r2| e−
1
4
|r1−r2|2(coth(s1)+coth(s2)) (5.20)

Once again spatial integration done by transforming to center of mass and relative coor-

dinates and done analytically using gamma functions.

I2 =
(1

2

e2

4πε`c

) V

2π`2
c

1

16
√
π

∫∫
s1,s2

e−s1m
2
q

√
s1 sinh2(s1)

e−s2m
2
q

√
s2 sinh2(s2)

1

(coth(s1) + coth(s2))
3
2

(5.21)
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The double integral over s variable is diverging at lower limit and its leading contribution

is independent of variational parameter, a situation similar was seen in computation of

expectation value of kinetic term.

∫
s1

∫
s2

e−s1m
2
q

√
s1 sinh2(s1)

e−s2m
2
q

√
s2 sinh2(s2)

1

(coth(s1) + coth(s2))
3
2

=

∫
s1

∫
s2

1
√
s1
√
s2 sinh2(s1) sinh2(s2)

1

(coth(s1) + coth(s2))
3
2

+

∫
s1

∫
s2

(e−(s1+s2)m2
q − 1)

√
s1
√
s2 sinh2(s1) sinh2(s2)

1

(coth(s1) + coth(s2))
3
2

(5.22)

The first term on the right hand side of the above equation is independent of variational

parameter, hence we drop it and only retain the second term.

I2 =
(1

2

e2

4πε`c

) V

2π`2
c

ηbd(mq) (5.23)

The coefficient ηbd(mq) is computed numerically by implementing the double integral

ηbd(mq) =
2
√

2√
π

∞∫
1√

2NC

dξ1
1√

(1− e2ξ2
1)

ξ1∫
1√

2NC

dξ2
(e−(ξ2

1+ξ2
2)m2

q − 1)e−2(ξ2
1+ξ2

2)√
(1− e2ξ2

2)(1− e−2(ξ2
1+ξ2

2))3

(5.24)

The coefficients ηfg(mq) and ηbd(mq) both are function of m2
q . We club them together,

ηC(mq) = ηfg(mq) + ηbd(mq) (5.25)

The net variational parameter dependence of Coulomb term can be expressed as,

〈HC〉 =
V

2π`2
c

(1

2

1

4πε`c

) 4∑
q=1

ηC(mq) (5.26)
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5.2 Ground state energy minimization

In this section we compute the ground state energies for Hall conductivity states σH = 0

and σH = −1 for the symmetric model. The general expression from the previous section

are applied for each case and minimization is done numerically.

5.2.1 Ground state at σH = 0

The many body ground state has filled Dirac sea and two of four sub-levels of n = 0

Landau levels. As we discussed in section 4.3.2, the diagonal mass matrix takes the form

MD = {mo,mo,−mu,−mu}, i.e. m1 = m2 = mo the mass for the occupied n = 0

Landau levels and m3 = m4 = −mu are for the unoccupied ones.

The mean field energy for the ground state at Hall conductivity σH = 0 for the symmetry

model,

E = 〈H0〉+ 〈HC〉 (5.27)

We only retain the terms that depend on the variational parameters for the ground state

energy as other terms are inconsequential for the minimization routine. Using Eq.(5.10)

for the kinetic energy and Eq.(5.26) Coulomb energy, and denoting

κt =
(~vF
`c

)
(5.28)

κC =
(1

2

1

4πε`c

)
(5.29)

E =
V

2π`2
c

2

(
κt
(
ηt(mo) + ηt(−mu)

)
− κC

(
ηC(mo) + ηC(−mu)

))
(5.30)

The mean field energy is decoupled for variational parameters, mo andmu. Hence we can
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minimize the two equations separately,

Ẽ(mo) = κt ηt(mo)− κCηC2(mo) (5.31)

Ẽ(−mu) = κt ηt(−mu)− κCηC2(−mu) (5.32)

The coefficients ηt(m) and ηC2(m) are even functions of m. Hence Ẽ(−mu) = Ẽ(mo).

This implies that if mo = m̃ results in extreme value for Ẽ(mo) then mu = m̃ will be

yield same type of extreme value for Ẽ(−mu), because they are even function of the mass

parameter. The diagonal mass matrix for the ground state at Hall conductivity σH = 0

take the form

MD = {m̃, m̃,−m̃,−m̃} (5.33)

The angle parameters for the mass matrix M do not get fixed when working with the

SU(4) symmetric model for Hall conductivity at σH = 0.

5.2.2 Ground state at σH = −1

In the case for the ground state at σH = −1, there is the filled Dirac sea and one of the sub-

levels of the n = 0 Landau level is occupied. Following the discussion in section 4.3.1, the

diagonal mass matrix takes the form, MD = {mo,−mu,−mu,−mu}, i.e. the occupied

sub-level for n = 0 Landau level is attributed mass, m1 = mo and the unoccupied ones

m2 = m3 = m4 = −mu.

The mean field energy is computed by collecting variational parameter dependent of the

kinetic, 〈Ht〉 using Eq.(5.10) and the Coulomb term, 〈HC〉, using Eq.(5.26). Using the

definition of κt in Eq.(5.28) and κC in Eq.(5.29), the mean field energy can be arranged

as decoupled functions of variational parameters, mo and mu.

E =
V

2π`2
c

(
κt ηt(mo)− κCηC2(mo) + 3

(
κt ηt(mu)− κCηC2(mu)

))
(5.34)
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Figure 5.1: This figure shows the variation of dimensionless mass parameter with mag-
netic field. The mean field energy is minimized by these mass parameter for the particular
magnetic field. We have shown the variation of mass parameter with dielectric constant
of the substrates. εr = 1 corresponds for suspended graphene. The mass parameter is in
units of (~ vF/lc), som→ 0 asB → 0. Here dimensionless constant α is the ratio κC/κt.

The decoupling of variables mo and mu in the above equation yields us similar situation

as we had seen in the case for σH = 0. Once again the decoupled equations that needs to

minimized are exactly same as we had seen in Eq.(5.31) for parameter mo and Eq.(5.32).

And same argument holds for the extreme values, i.e. mo = m̃ = mu. Hence in the case

for Hall conductivity σH = −1, the diagonal mass matrix takes the form,

MD = {m̃,−m̃,−m̃,−m̃} (5.35)
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5.3 Particle-hole gaps

In this section we will compute the particle-hole excitation gaps for the ground states

we found for the Hall conductivity states that we found in the previous section. The

variational parameters are fixed by the minimization procedure. In the case for the sym-

metric model, the masses of the Dirac particle get fixed via minimization and the angle

parameters are still arbitrary as we saw in the previous section that mean field energy was

independent of variational angle parameters. For the particle-hole excitation gaps within

the symmetric model, is independent of angle parameters. We will see that the size of the

gaps are decided by the symmetric model.

We are considering the particle-hole excitations about the ground state, so in general the

excited state can be constructed,

|ES〉 = ψ†np,lp,qpψnh,lh,qh|GS〉 (5.36)

i.e. a hole is created by annihilate a state with quantum numbers (nh, lh, qh), here Lan-

dau level index, nh, of the hole created with lp its orbital angular momentum and qh the

SU(4) index. And a particle is created by the creation operator with quantum numbers

(np, lp, qp).

The particle-hole activation gap is computed from the expectation value of hamiltonian

for excited state and the ground state,

∆gap =
1

2

(
〈ES|H|ES〉 − 〈GS|H|GS〉

)
(5.37)

The ground state expectation value of hamiltonian can be expressed in terms of two

point correlator, used for mean field energy calculation. In the similar fashion as we

did for ground state computations, we can define two point correlator for excited states,
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Υ(r1, r2), which is excited state expectation value for two field operators, defined as

Υr,A;s,B(r1, r2) = 〈ES|Ψ†s,B(r2)Ψr,A(r1)|ES〉 (5.38)

This expectation value can be expressed in terms of the wave functions used to construct

the variational state,

Υr,A;s,B(r1, r2) = Φ
np,lp,qp
r,A (r1)

(
Φ
np,lp,qp
s,B (r2)

)∗ − Φnh,lh,qh
r,A (r1)

(
Φnh,lh,qh
s,B (r2)

)∗
+ Γr,A;s,B(r1, r2) (5.39)

This correlator is 8× 8 matrix and in compact notation we can write,

Υ(r1, r2) = Γ(p)(r1, r2)− Γ(h)(r1, r2) + Γ(r1, r2) (5.40)

Here, the correlator for the particle,

Γ(p)(r1, r2) = Φnp,lp,qp(r1)Φnp,lp,qp†(r2) (5.41)

and the correlator for the hole,

Γ(h)(r1, r2) = Φnh,lh,qh(r1)Φnh,lh,qh†(r2) (5.42)

Γ(r1, r2) is the two point correlator for the ground state.

In our case, the excited state for the ground states at Hall conductivity at σH = 0,−1 has

particle and hole state belong to different sub-levels of n = 0 Landau level.

|ES〉 = ψ†0,lp,qpψ0,lh,qh |GS〉 (5.43)
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The wave function for the n = 0 Landau level,

Φ0,l,q(r) =

 0

ϕ0,l(r)

χqχq† (5.44)

Here,

ϕ0,l(r) =
1√
2π`2

c

1√
2ll!

e−i lθrle−
1
4
r2

=
1√
2π`2

c

1√
l!

( z̄√
2

)l
e−

1
4
|z|2 (5.45)

the wave function expressed in complex variable will be useful for analytic computation

of the gaps as we shall see shortly.

The correlator for the particle or hole, (x = p, h)

Γ(x)(r1, r2) = Φ0,lx,qx(r1)Φ0,lx,qx†(r2)

=
1

2π`2
c

1

2
(12 − β)

1

lx!

( z̄1z2

2

)lx
e−

1
4

(|z1|2+|z2|2)Pqx

It is useful for computations to express the above expression in relative coordinates and

this achieved by using following relations,

|r1 − r2|2 = |z1 − z2|2 = |z1|2 + |z2|2 − (z̄1z2 + z1z̄2) (5.46)

Γ(x)(r1, r2) =
( 1

2π`2
c

)1

2
(12 − β)

1

lx!

( z̄1z2

2

)lx
e−

1
4

(z̄1z2+z1z̄2)e−
1
4
|z1−z2|2Pqx (5.47)

Note that we have not mentioned anything about the angle parameters for the hole and

particle states. Within symmetric model we will show that SU(4) component of the

correlator gets traced out leaving no angle dependence for the activation gaps.
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5.3.1 Kinetic term

To compute the contribution to the activation gap from the kinetic terms we need to eval-

uate

∆t =
1

2

(
〈ES|H0|ES〉 − 〈GS|H0|GS〉

)
(5.48)

We can express the left hand side of the above equation in terms of the correlator, follow-

ing the discussion of section 5.1.1.

∆t =
1

2

(~vF
`c

)(∫
r

lim
r0→r

Tr[h Υ(r, r0)]−
∫
r

lim
r0→r

Tr[h Γ(r, r0)]
)

(5.49)

Using the definition of two point correlator for excited state, Eq.(5.40), we find evaluation

of correlator for the particle and hole, Tr[hΓ(p)(r, r0)] = 0 and Tr[hΓ(h)(r, r0)] = 0. And

the Tr[hΓ(r, r0)] cancels and hence this leads to conclusion that there is no contribution to

activation gap from the kinetic term. This is has to do with the fact that both particle and

hole states which are n = 0 Landau levels are same for both massless and massive cases.

And here the hamiltonian h is for massless Dirac particle which have zero eigenvalue for

n = 0 Landau level.

5.3.2 Coulomb term

The contribution to the activation gap from the Coulomb term is computed by evaluating,

∆C =
1

2

(
〈ES|HC |ES〉 − 〈GS|HC |GS〉

)
(5.50)

Here HC is taken from Eq.(5.3). And use two point correlator to evaluate the above

expression in a similar fashion as we accomplished for mean field energy computation in

section 5.1.2
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The direct term contributions for ∆C

1

2

(1

2

e2

4πε

)∫∫
r1,r2

1

|r1 − r2|
(Tr[Γ(p)(r1, r1)− Γ(h)(r1, r1)])

(Tr[Γ(p)(r2, r2)− Γ(h)(r2, r2)]) (5.51)

The exchange contributions

1

2

(1

2

e2

4πε

)∫∫
r1,r2

1

|r1 − r2|

(
Tr
[(

Γ(p)(r1, r2)− Γ(h)(r1, r2)
)
Γ(r2, r1)

]
+ Tr

[(
Γ(p)(r2, r1)− Γ(h)(r2, r1)

)
Γ(r1, r2)

]
+ Tr

[(
Γ(p)(r1, r2)− Γ(h)(r1, r2)

)(
Γ(p)(r2, r2)− Γ(h)(r2, r2)

)])
(5.52)

On collecting the direct and exchange contributions together to find the final expression

for excitation gap, we find terms

Tr[Γ(p)(r1, r1)]Tr[Γ(p)(r2, r2)]− Tr
[
Γ(p)(r1, r2)Γ(p)(r2, r1)

]
and

Tr[Γ(h)(r1, r1)]Tr[Γ(h)(r2, r2)]− Tr
[
Γ(h)(r1, r2)Γ(h)(r2, r1)

]
on spatial integration have no contribution as the direct and exchange terms cancel each

other. The terms

Tr
[
Γ(p)(r1, r2)Γ(h)(r2, r1)

]
= 0

by virtue of orthonormal SU(4) components of the particle and hole wave functions.

In our simplified picture of activation process we are assuming that the hole is created at

one end of the sample and the particle is created on the other end. The overlap of particle

and hole wave functions, whose centers are separated by large distances can neglected.
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And the term ∫∫
r1,r2

1

|r1 − r2|
Tr[Γ(p)(r1, r1)]Tr[Γ(h)(r2, r2)]

which is essentially overlap of particle and hole wave functions with a weight factor of

inverse of distance between them, i.e. we are not considering the possibility that particle

and hole states can form a bound state. Hence we can neglect this integral.

The activation gap in SU(4) symmetric model comes from the exchange terms only,

1

2

(1

2

e2

4πε

)∫∫
r1,r2

1

|r1 − r2|

(
Tr
[(

Γ(p)(r1, r2)− Γ(h)(r1, r2)
)
Γ(r2, r1)

]
+ Tr

[(
Γ(p)(r2, r1)− Γ(h)(r2, r1)

)
Γ(r1, r2)

]
(5.53)

The activation gap from the Coulomb term,

∆C =
1

2

(1

2

e2

4πε

)
2

∫∫
r1,r2

1

|r1 − r2|
(

Tr[Γ(h)(r1, r2)Γ(r2, r1)]

− Tr[Γ(p)(r1, r2)Γ(r2, r1)]
)

(5.54)

Using the particle and hole correlator from Eq.(5.47) and the correlator for filled Dirac sea

from Eq.(4.67). And we convert the integrals to complex coordinates as we did earlier.

∆C =
(1

2

e2

4πε`c

)( 1

2π`2
c

)2 1

2

4∑
i=q

Tr[(Ph − Pp)Pq]∫∫
z1,z2

1

|z1 − z2|
1

l!

( z̄1z2

2

)l
e−

1
4

(z̄1z2+z1z̄2)e−
1
4
|z1−z2|2gmq(z2, z1) (5.55)

After plugging in gmq(z2, z1)

∆C =
(1

2

e2

4πε`c

)(1

2

4∑
q=1

Tr[PhPq − PpPq]
mq

2
√
π

∫
s

e−s(m
2
q−1)

√
s sinh(s)

1

(2π)2

∫∫
z1,z2

1

|z1 − z2|
1

l!

( z̄1z2

2

)l
e−

1
2
z̄1z2e−

1
4
|z1−z2|2(1+coth(s))

)
(5.56)
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Figure 5.2: This figure shows the variation of activation gap with applied magnetic field.
The gaps in meV and magnetic field in Tesla. The gaps for the Hall conductivity at
σH = 0 and σH = −1 are same. The points are values for the gap obtained from our
calculations where filled Dirac sea is taken into account and solid line curve is obtained
when lowest Landau level projection is considered. The thin solid line with the points
show the best fit. The best fit is function of magnetic field of the form a

√
B + bB + c,

with a, b and c are best fit parameters. We have shown the variation of gaps with change
in the dielectric constant of the substrate. The dielectric constant εr = 1 corresponds to
the suspended graphene. The best fit showed the dominant

√
B contribution and linear B

decreases as the dielectric constant of substrate increased. The constant term in the best
fit was negligible. Along with dielectric constant we have presented the value α = κC/κt.

The spatial integrals are solved analytically using the general solution from Appendix G.

∆C =
(1

2

e2

4πε`c

)1

2

4∑
q=1

Tr[PhPq − PpPq]
mq

2
√
π

∫
s

e−s(m
2
q−1)

√
s sinh(s)

√
π

(1 + coth(s))
(5.57)

Using the fact from the energy minimization mh = m̃ and mp = −m̃, the contribution to

gap from filled Dirac sea,

∆C =
(1

2

e2

4πε`c

)m̃
2

∫
s

e−sm̃
2

√
s

e
s
2√

sinh(s)
=
(1

2

e2

4πε`c

)
ηC1(m̃) (5.58)
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The coefficient ηC1 in numerically implemented as following

ηC1 = m̃
√

2

∞∫
1√

2NC

dξ
e−m

2ξ2

√
1− e−2ξ2

(5.59)

The activation gap for the symmetric model for the Hall conductivity at σH = 0 and

σH = −1,

∆gap = ∆C (5.60)

The variation of particle-hole gap with magnetic field is shown in Fig.5.2. The values

of gap were computed numerically and the result was best fitted to a curve of the form

a
√
B+ bB+ c. Here a, b, c are the best fit coefficients. We observe that dominant contri-

bution comes from the
√
B contribution and few percent contribution from the linear term

and the constant term was very small compared to
√
B contribution. We have compared

results of our calculations where filled Dirac sea is taken into account with that of lowest

Landau level projection. In Fig.5.2, we have also presented the variation of gaps with di-

electric constant of the substrate. It clearly shows decrease in gaps as dielectric constant

increases and also the linear magnetic field dependence of our best fit of the gaps. The

magnitude of gaps that we obtained from our computations is approximately double of

what is seen in the gap measurements for the suspended graphene [1].

5.4 Summary

We here summarize the results of our symmetric model calculations,

1. We have showed that the Coulomb interaction breaks the SU(4) symmetry sponta-

neously for the ground states for Hall conductivity at σH = 0 and σH = −1.

2. The order parameter for spontaneous symmetry breaking is the mass of the Dirac

particle which is proportional to a dimensionless α = κC/κt, which depends on
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dielectric constant.

3. The order parameter is proportional to magnetic field and tends to zero as mag-

netic field goes to zero which indicates spontaneous symmetry breaking of SU(4)

symmetry by Coulomb interaction in presence of magnetic field.

4. The particle-hole gaps from symmetric model showed a square root dependence

on the applied magnetic field. Our symmetric model without disorder taken into

account over estimates the gaps when compared with experimental values.
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Chapter 6

Symmetry breaking terms

In the previous chapter, we saw the spontaneous symmetry breaking of SU(4) symmetry

of the non-interacting model by considering the SU(4) symmetric long ranged Coulomb

interaction. Though the SU(4) symmetry is broken, the SU(4) polarization of the ground

state is ambiguous within the SU(4) symmetric model. In this chapter, we consider the

SU(4) symmetry breaking terms of the model adopted in this thesis. We obtain the mean

field energy of the interacting model in term of the variational angle parameters and min-

imize the energy with respect to these angle parameters to obtain the SU(4) polarization

for the ground states for the Hall conductivity σH = 0 and σH = −1. We obtain all pos-

sible ground states by conducting a complete search of the variational parameter space

for the coupling parameters used for short ranged interactions, V , nearest neighbour in-

teraction and U , Hubbard interaction. We have presented this in the phase diagram in

U -V space. The SU(4) polarization of the excitations from the ground states was also

ambiguous within the symmetric model as we had seen in the previous chapter. Incor-

porating the symmetry breaking term in the calculations for the particle-hole excitations

reveal possible excitations in the U -V parameter space for the ground states obtained in

this chapter. Although contributions of short ranged interactions to the particle-hole exci-

tations is considerably small compared long ranged Coulomb interaction but they decide
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the SU(4) polarization of the excitations. We also compared results from our calculations

with that of obtained from the experiments and present a detailed discussion.

6.1 Symmetry breaking terms

In this section we consider the all the symmetry breaking term of our interacting model

and express their expectation value for the variational ground states of σH = 0 and

σH = −1. This is expressed in terms of the coincident correlator, which contains all

the variational parameters. These general expressions will be used to find the explicit de-

pendence on the variational parameters ground states at Hall conductivity at σH = 0,−1

discussed in section 4.3. Unlike the computation of expectation value for Coulomb term,

the evaluation of expectation value for symmetry breaking terms involves coincident cor-

relator which have no spatial dependence. Hence the spatial integration is trivial and

results in a factor of volume of the system, V.

6.1.1 Nearest Neighbour term

The nearest neighbour interaction term was introduced into our interacting model to take

into account the sub-leading resulting after the continuum approximation of Coulomb in-

teraction and finite size wave function effects of the short ranged interaction. We had

approximated this sub-leading term was approximated with nearest neighbour interaction

because both break the SU(4) in similar fashion. At the lattice level, the nearest neighbour

interaction takes into account electron-electron interaction between a sub-lattice point and

its three nearest neighbour which belong to the second sub-lattice point. The bare strength

of this interaction is that of Coulomb interaction between two electron separated by bond

length, a/
√

3, a is lattice constant. In reality the electron are not point objects, instead

described by the wave functions. This interaction gets modified due to spread of the wave

function. We are going to treat this interaction strength, V , as a parameter. Moreover
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nearest neighbour is simplified form of much more complicated interaction term that re-

sulted from the continuum approximation of lattice Coulomb interaction. Treating V as

parameter allows us to explore the change in the ground state for a range of values. The

continuum approximation derivation of nearest neighbour interaction term is provided in

Appendix D. In the lattice model we also take into account the background charge from

positive ions. The nearest neighbour interaction at continuum level is given by,

HV =
3

4
V a2

∫
x

((
Ψ†(x)Ψ(x)

)2 −
(
Ψ†(x)β τ zΨ(x)

)2 − 2ρ̄Ψ†(x)Ψ(x) + ρ̄2
)

(6.1)

Here ρ̄ is the average charge density and is related to the coincident correlator, Γ

ρ̄ = Tr[Γ] (6.2)

The expectation value of nearest neighbour term,

〈HV 〉 = 〈GS|HV |GS〉

|GS〉 is the ground state under consideration. This expectation value can be expressed

in terms expectation value of pair of creation and annihilation field operators via Wick’s

decomposition as performed in section 5.1.2. A similar process to that we has seen in

the case of Coulomb interaction term, write the expectation value of nearest neighbour

interaction, Eq.(6.1), in terms of two point coincident correlator.

〈H〉 =
V

2π`2
c

κV

(
− Tr[Γ̃ Γ̃]−

(
Tr[β τ z Γ̃]

)2
+ Tr[β τ z Γ̃ β τ z Γ̃]

)
(6.3)

Here, Γ = Γ̃/(2π`2
c) and κV is function of coupling parameter, V ,

κV =
3V a2

8π`2
c

(6.4)
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The factor, a2/`2
c symbolizes the leading lattice order correction to the continuum energy.

The value of a2/`2
c ≈ 9.2 × 10−5B, varies linearly with magnetic field, B and magnetic

field is expressed in Tesla. The value of κV ≈ 10−2BmeV for V is order of few electron

volts. On comparison with the κt and κC which have square root magnetic field depen-

dence, κV is at least two order of magnitude smaller for the magnetic fields achieved in

laboratory.

6.1.2 Hubbard term

The second short ranged of interaction at lattice level is the Hubbard on-site interaction.

This takes into account the interaction between two electron wave function with spins

pointing in opposite direction interacting at same lattice point. The continuum derivation

of on-site Hubbard term is provided in Appendix E. Here also we have taken into account

the charge due to background positive ions, like the way did for nearest neighbour and

Coulomb interaction terms. The continuum approximation for Hubbard term results in,

HU =
1

4
Ua2

∫
x

((
Ψ†(x)Ψ(x)

)2
+
(
Ψ†(x)β τ zΨ(x)

)2

+
1

2

∑
j,k=x,y

(
Ψ†(x)αj τ kΨ(x)

)2 − 2ρ̄Ψ†(x)Ψ(x) + ρ̄2
)

(6.5)

For the mean field computation we are interested in evaluation of the expectation value of

the Hubbard term for the ground state under consideration,

〈HU〉 = 〈GS|HU |GS〉

Once again we make use of Wick’s decomposition to express this into expectation value

of pair of creation and annihilation field operators and to express in terms of the two point
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coincident correlator.

〈HU〉 =
V

2π`2
c

κU

(
− Tr[Γ̃ Γ̃] +

(
Tr[β τ z Γ̃]

)2 − Tr[β τ z Γ̃ β τ z Γ̃]

+
1

2

∑
j,k=x,y

((
Tr[αj τ k Γ̃]

)2 − Tr[αj τ k Γ̃αj τ k Γ̃]
))

(6.6)

Here κU is function of coupling parameter, U ,

κU =
Ua2

8π`2
c

(6.7)

Similar to that we had seen in the case of nearest neighbour interaction, the coupling

parameter, κU varies linearly with magnetic field and is also at least two order smaller

in magnitude when compared to κC and κt for magnetic fields used in the quantum Hall

experiments.

Both coupling parameters κV and κU has linear dependence on the perpendicular compo-

nent of the applied magnetic field and are of same order of magnitude.

6.1.3 Zeeman term

The Zeeman term is one-particle term that becomes relevant in presence of magnetic

field. This term lifts the spin degeneracy takes by the splitting in energy level of spins

pointing in direction of the magnetic field and in the opposite direction. The continuum

approximation of Zeeman term,

HZ = −1

2
gµB

∫
x

Ψ†(x)σ ·BΨ(x) (6.8)

The expectation value of Zeeman term can be expressed in terms of coincident correlator,

〈HZ〉 = − V
2π`2

c

κZ Tr[σz Γ̃] (6.9)
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Here κZ give the measure of strength of the Zeeman term,

κZ =
1

2
gµBB (6.10)

g ≈ 2 is the Lande’s g-factor. µB = 9.274 × 10−24JT is Bohr magneton. This term

also varies linearly with magnetic field like the other SU(4) symmetry breaking terms.

κZ = 5.78 × 10−2BT meV , here BT is total applied magnetic field. Whereas the orbital

motion of the electron only see the perpendicular component of the magnetic field to the

plane, B⊥ = BT cos(θ). θ here is the angle between applied magnetic field and the line

perpendicular to plane of graphene. In the case when BT = B⊥, the Zeeman term also

contribute energies of same order of magnitude as the nearest neighbour and Hubbard

terms. The linear dependence on BT of Zeeman coupling enables to distinguish the gaps

that are caused by the spin splitting.

6.1.4 Kinetic - Sub-leading term

Last SU(4) symmetry breaking term comes from the leading order lattice correction to

the continuum kinetic term which we had described in section 3.1. Taking the leading

order correction term to kinetic term of the lattice model from Eq.(3.12) and changing the

momenta operator to conjugate momenta to account for the presence of magnetic field,

H1 =
t

8

a2

`2
c

∫
x

Ψ†(x)

((
αx(π2

x + 3π2
y)− αy3(πxπy + πyπx)

)
⊗ τ z

)
Ψ(x) (6.11)

The expectation value of sub-leading correction to the kinetic term is obtained in the

similar fashion as we discussed in section 5.1.1 for the kinetic term.

〈H1〉 = κt1

∫
r

lim
r→r0

Tr[h1 Γ(r, r0)] (6.12)

96



Here

κt1 =
t

8

a2

`2
c

(6.13)

The value κt1 ≈ 3.485 × 10−2BmeV for t = 3.03 eV , has linear dependence on the

magnetic field and is of same order of magnitude like the other SU(4) symmetry breaking

terms.

We shall show later that this term does not contribute to the mean field energy for the Hall

conductivity σH = 0 and σH = −1.

6.2 Mean field energy minimization and phase diagrams

In the previous section we had demonstrated that energy contribution from the SU(4)

symmetry breaking interaction terms are all proportional to B⊥, perpendicular magnetic

field (via a2/`2
c) and they are at least two order of magnitude smaller when compared to

terms from the SU(4) symmetric terms. The single particle Zeeman term has got linear

dependence on BT , total applied magnetic field. In this section we compute the expec-

tation value of symmetry breaking terms for the Hall conductivity states of σH = 0 and

σH = −1. The mean field energy is expressed as a function of mass parameters and

SU(4) angle parameters. The angle parameters dependence solely comes from the sym-

metry breaking terms considered in this chapter and independent of contributions from

the symmetric model. Whereas the variational mass parameter dependence comes from

both symmetric and breaking terms of our model. In principle we should consider both

symmetric and symmetry breaking terms in order to evaluate the mass parameter that min-

imizes the mean field energy. We had shown in the previous section that energy contri-

butions to the mean field energy from the symmetry breaking terms are at least two order

smaller when compared to the symmetric terms for magnetic field employed in quantum

Hall experiments. As a consequence the values of mass parameter that minimizes the

mean field energy gets only few percent correction from the symmetry breaking terms.
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And subsequently the effect of the few percent change in mass parameter has negligible

effect on the mean field energy. Hence we use the minimum values of mass parameter

obtained from the symmetric model calculations. This amounts to treating the symmetry

breaking terms as perturbations about the symmetric model.

The computation of mean field energy from the symmetry breaking terms requires the in-

formation of two point coincident correlator for the Hall conductivity σH = 0,−1. These

correlator requires the information of mass matrix for specific Hall conductivity. The an-

gle parameterization of the mass matrix is described in section 4.3 and the diagonal mass

matrix form is taken from the solutions obtained from symmetric model computations for

respective Hall conductivity obtained in the previous chapter, which is

σH = 0 : MD = {m,m,−m,−m} (6.14)

σH = −1 : MD = {m,−m,−m,−m} (6.15)

First we show that the contributions from the sub-leading kinetic term Eq.(6.12) vanishes

for the Hall conductivity σH = 0 and − 1. The action of h1 on two point correlator and

traced over requires evaluation

Tr[h1Γ(r, r0)] = f1(m2)Tr[τ z] (6.16)

Here f1(m2) is evaluated by using bm(r, r0) from Eq.(4.70) and dm(r, r0) from Eq.(4.71)

which are functions of square of mass parameter,

(
π2
x + 3π2

y + i 3(πxπy + πyπx)
)
bm(r, r0)

+
(
π2
x + 3π2

y − i 3(πxπy + πyπx)
)
dm(r, r0) = f1(m2) (6.17)

We do not need to this explicitly as the trace over the SU(4) indices vanishes, hence

〈H1〉 = 0 (6.18)
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Hence we drop the kinetic sub-leading term completely and compute the mean field en-

ergy for Hall conductivity at σH = 0 and σH = −1 using nearest neighbour, Hubbard and

Zeeman terms.

6.2.1 Ground state at σH = 0

The mass matrix for the σH = 0 obtained from the symmetric model calculations,

MD = {m,m,−m,−m}

and the two point coincident correlator takes the form after this choice of diagonal mass

matrix,

Γ̃ = (2π`2
c)Γ = (um12 − vmβ)⊗

( ∑
j=1,2

Pi −
1

2
14

)
(6.19)

Here P1 = |1〉〈1| and P2 = |2〉〈2| are projection operators constructed from the vectors

of SU(4) component of occupied n = 0 Landau levels from parameterization scheme

discussed in section 4.3.2,

|1〉 = cos(
γ1

2
)|+〉|n1〉+ ei Ω1 sin(

γ1

2
)|−〉| − n2〉 (6.20)

|2〉 = cos(
γ2

2
)|+〉| − n1〉+ ei Ω2 sin(

γ2

2
)|−〉|n2〉 (6.21)

The expectation values of the symmetry breaking terms i.e the nearest neighbour interac-

tion, Hubbard and Zeeman terms by evaluating the various traces involved with two point

coincident correlator. The resulting mean field energy contributions from these terms is

expressed as function of the variational parameters. The details of the calculation is pro-

vided in Appendix. I and here we present the final results obtained for each symmetry

breaking term showing explicit the SU(4) angle dependence.
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Nearest neighbour interaction

The expectation value of nearest neighbour interaction, Eq(I.15),

〈HV 〉 = − V

2π`2
c

κV

(
8v2

m cos(γ1) cos(γ2)

+ 2
(
v2
m − u2

m

)(
cos2(γ1) + cos2(γ2)

)
+ 4
(
v2
m + u2

m

))
(6.22)

The nearest neighbour energy is function of only two angle parameters γ1 or γ2. Since

vm > um the nearest neighbour energy minimization is solely decided by the first term

in Eq.(6.22). It minimizes for the values γ1 = γ2 = 0 or π. Substituting these values in

Eq.(6.20) and Eq.(6.21), we obtain a charge ordering for the n = 0 Landau level.

Hubbard term

The expectation value for the Hubbard term, Eq.I.16

〈HU〉 =
V

2π`2
c

κU

(
8v2

m cos(γ1) cos(γ2)

+ 2
(
v2
m − u2

m

)(
cos(γ1)− cos(γ2)

)2|〈n1|n2〉|2
)

(6.23)

Here the mean field energy is function of γ1, γ2, θ1, θ2, φ1 and φ2. The Hubbard term

minimizes for the values γ1 = 0 or π, γ2 = π − γ1 and |〈n1|n2〉|2 = 0. These values

indicate that Hubbard term prefers an anti-ferromagnetic ordering for n = 0 Landau

levels.

Zeeman term

The Zeeman energy contributions to the mean field energy, Eq.(I.17),

〈HZ〉 = − V

2π`2
c

κZ um
(

cos(γ1)− cos(γ2)
)(

cos(θ1) + cos(θ2)
)

(6.24)
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Here the values of angle parameter that minimizes the Zeeman energy correspond to a

ferromagnetic ordering for n = 0 Landau level, for example γ1 = 0, γ2 = π, θ1 = 0 and

θ2 = 0.

Minimization

To obtain the SU(4) polarization of the ground state, we need to obtain the values of the

angle parameters that minimizes the mean field energy of the symmetry breaking terms.

For this we collect the angle dependent contributions from the nearest neighbour, Hubbard

and Zeeman terms.

E = 2
(
v2
m − u2

m

)(
− 4v2

m

v2
m − u2

m

(κV − κU) cos(γ1) cos(γ2)− κV
(

cos2(γ1) + cos2(γ2)
)

+
1

2
κU
(

cos(γ1)− cos(γ2)
)2(

1 + cos(θ1) cos(θ2) + cos(ϕ1 − ϕ2) sin(θ1) sin(θ2)
)

− κZ
um

2(v2
m − u2

m)

(
cos(γ1)− cos(γ2)

)(
cos(θ1) + cos(θ2)

)
(6.25)

The minimization with respect to angle variables was achieved numerically and details

are provided in section. I.1. These are three types of solutions corresponding to three

phases seen in the U -V parameter space.

1. Charge ordered state:

γ1 = γ2 = 0 or π

The corresponding energy

ECDW = −8v2
m(κV − κU)− 4(v2

m − u2
m)κV (6.26)

2. Ferromagnetic ordered state:

γ1 = 0(π), γ2 = 0(π), ϕ1 − ϕ2 = 0, θ1 = 0(π) and θ2 = 0(π)
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Figure 6.1: The figure shows the phase diagram for possible ground states for Hall con-
ductivity σH = 0 in U -V parameter space. Both parameters are expressed in electron
volts. This phase diagram is for magnetic field B = 40T . The region marked with dots
in the phase space where ferromagnetic spin ordering preferred. The region marked with
plus sign, ‘+’, corresponds to the charge ordered state. This region is doubly degenerate
the other possible ground will have |−〉| ↑〉, |−〉| ↓〉 SU(4) components for n = 0 Landau
level. The region marked with asterisk, ∗, is for the canted spin ordered state. The bold
line separating the three phases were obtained analytically after equating pair of the ana-
lytical expression for the mean field energies in Eq.(6.26), Eq.(6.27) and Eq.(6.28), which
are function of parameters U and V . Equations for these lines are shown in Eq.(6.29),
Eq.(6.31) and Eq.(6.32). Phase transition across these lines is first order.
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Ferromagnetic state energy

EFerro = 8v2
m(κV − κU)− 4(v2

m − u2
m)κV + 8(v2

m − u2
m)κU − 4umκZ (6.27)

3. Canted spin ordered state:

γ1 = 0(π), γ2 = π(0),

ϕ1 − ϕ2 = π, θ1 − θ2 = 0 and cos(
θ1 + θ2

2
) = +(−)

1

4

um
v2
m − u2

m

κZ
κU

Energy for canted state,

ECanted = 8v2
m(κV − κU)− 4(v2

m − u2
m)κV −

1

2

u2
m

v2
m − u2

m

κ2
Z

κU
(6.28)

The Fig.6.1 shows results of minimization of mean field energy obtained numerically.

These phases show first order phase transition with change in the parameters U and V .

The lines separating the three phases can be obtained by comparing the energies for the

corresponding phases. The equation of line separating the ferromagnetic and charge or-

dered phases is given by

3V =
1

2

(
1 +

u2
m

v2
m

)
U +

1

4

um
v2
m

Z̃ (6.29)

Here,

Z̃ =
κZ
e

8π`2
c

a2
=

4πgµB~
a2e2

(6.30)

is constant parameter independent of magnetic field and expressed in electron volts.The

equation of line separating ferromagnetic and canted spin ordered state is line parallel to

the V axis.

U =
1

4

um
v2
m − u2

m

Z̃ (6.31)
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The line separating the charge ordered and canted spin ordered state is straight line, 3V =

U , for large U and V limit. It has a singular nature in the limit U → 0.

3V = U +
1

32

u2
m

v2
m(v2

m − u2
m)

Z̃2

U
(6.32)

We can notice the deviation from the straight line near the point where three phases meet

in the phase diagram.

6.2.2 Ground state at σH = −1

The mass matrix for the σH = −1 obtained from the symmetric model calculations like

we did in the case for σH = 0,

MD = {m,−m,−m,−m}

and the two point coincident correlator is constructed incorporating the diagonal mass

matrix structure

Γ̃ = (2π`2
c)Γ = (um12 − vmβ)⊗

(
P1 −

1

2
14

)
(6.33)

Here P1 = |1〉〈1| is projection operators constructed from the vectors of SU(4) compo-

nent of occupied n = 0 Landau levels as we discussed in section 4.3.1

|1〉 = cos(
γ1

2
)|+〉|n1〉+ ei Ω1 sin(

γ1

2
)|−〉| − n2〉 (6.34)

The expectation values of the symmetry breaking terms i.e the nearest neighbour interac-

tion, Hubbard and Zeeman terms by evaluating the various traces involved with two point

coincident correlator. The resulting mean field energy contributions from these terms

is expressed as function of the variational parameters. The details of the calculation is

provided in Appendix. J.
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Nearest neighbour interaction

The nearest neighbour interaction is function of only one angle parameter,

〈HV 〉 = − V

2π`2
c

κV

(
2
(
v2
m − u2

m

)
cos2(γ1) + 2(v2

m + u2
m)

)
(6.35)

and this terms individually minimizes for γ1 = 0 or π, which implies that n = 0 Landau

level will be localized on one of the sub-lattice point

Hubbard term

The expectation value for Hubbard term,

〈HU〉 =
V

2π`2
c

κU

(
− 2
(
v2
m − u2

m

)
sin2(γ1)|〈n1|n2〉|2 − 4u2

m

)
(6.36)

minimizes for value γ1 = π/2, provided that |〈n1|n2〉|2 = 1. This indicates that occupied

n = 0 Landau level has equal weights on two sub-lattice points and spins are polarized in

opposite direction.

Zeeman term

The Zeeman term depends on three angle variables,

〈HZ〉 = − V

2π`2
c

κZ

(
um

((
cos(θ1)− cos(θ2)

)
+ cos(γ1)

(
cos(θ1) + cos(θ2)

)))
(6.37)

and it minimizes for either θ1 = 0, θ2 = π, γ1 = π/2 implying that equal weights on

two sub-lattice points with spins pointing in same direction that of magnetic field, or

γ1 = 0(π), θ1 = 0(θ2 = π), indicating that n = 0 Landau level is localized on one

sub-lattice with spin pointing in same direction of magnetic field.
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Minimization

We collect the angle parameter dependent terms for symmetry breaking terms

E = −2(v2
m − u2

m)κV cos2(γ1)

− (v2
m − u2

m)κU sin2(γ1)
(

1 + cos(θ1) cos(θ2) + cos(ϕ1 − ϕ2) sin(θ1) sin(θ2)
)

− umκZ
((

cos(θ1)− cos(θ2)
)

+ cos(γ1)
(

cos(θ1) + cos(θ2)
))

(6.38)

to evaluate the angle parameters that minimizes the energy numerically.

The results of numerical minimization resulted in two types of solutions corresponding to

two phases which we have enumerated below.

1. Valley-spin polarized state:

γ1 = 0, θ1 = 0 or γ1 = π, θ2 = π

This ground state is doubly degenerate and at n = 0 Landau level, the wave function

is localized on either sub-lattice point with spin pointing is same direction that of

magnetic field. The energy in terms of coupling parameter for this ground state is,

E1 = −2(v2
m − u2

m)κV − 2umκZ (6.39)

2. Canted valley ordered state:

θ1 = θ2 = 0(π)

cos(γ1) = +(−)
1

2

um
v2
m − u2

m

κZ
κU − κV

The SU(4) component of the occupied n = 0 Landau level,

|1〉 = cos(
γ1

2
)|+〉| ↑〉+ ei Ω0 sin(

γ1

2
)|−〉| ↓〉 (6.40)
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Figure 6.2: The figure shows the phase diagram for possible ground states for Hall con-
ductivity at σH = −1 in U -V parameter space. Both parameters are expressed in electron
volts. This phase diagram is for magnetic field B = 40T The region marked with plus
sign, ‘+’, corresponds to the valley-spin polarized state for n = 0 Landau level. This
state is doubly degenerate, we have shown one of the degenerate state in the figure and
the other is |−〉| ↑〉. green. The region marked with asterisk, ‘∗’, corresponds to ferri-
magnetic state. The SU(4) components shown in the figure has extra charge density for
|+〉 valley. This phase also doubly degenerate, where the second degenerate state has
extra charge density for |−〉 valley. The bold line separating the two phases is obtained by
equating the energies of these two phases give in Eq.(6.39) and Eq.(6.41). The equation
for this line is given in Eq.(6.42) and the order transition across this line is continuous.
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For n = 0 Landau level, these angle parameter values indicate that the wave func-

tion has anti-parallel spins residing on the two sub-lattice points. And the weight on

the wave function is more on the sub-lattice point which carries the spin pointing in

the direction of the magnetic field. The energy for this ground state as a function of

U and V parameters,

E2 = −2(v2
m − u2

m)κU −
1

2

u2
m

v2
m − u2

m

κ2
Z

κU − κV
(6.41)

Phase boundary is computed by comparing the energies and we obtain the straight line,

3V = U − 1

2

um
v2
m − u2

m

Z̃ (6.42)

separating the two phases. Unlike σH = 0 where the phase transition in U -V space was

first order, here we find a continuous phase transition.

6.3 Excitations for ground states

The particle-hole excitations from the symmetric model was only able to describe the

magnitude of the gaps. The exact nature of these excitation, i.e. polarization in SU(4)

space of the excitations was ambiguous. In this section we compute the contributions to

particle-hole excitations from the SU(4) symmetry breaking terms of our model. The

ground states has been fixed in the U -V phase space by the local terms as we had seen in

the previous section. The gaps from the local interaction terms is going to be two orders

smaller when compared with that resulting from long ranged Coulomb interaction. But

the angle parameter dependence that results from symmetry breaking terms decides the

SU(4) polarization of the excitations.

A general particle-hole excitations for the ground states at Hall conductivity σH = 0 and
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σH = −1 obtained in previous section can be constructed in the following way,

|ES〉 = ψ†0,lp,qpψ0,lh,qh|GS〉 (6.43)

i.e. a hole is created by annihilating a state with quantum numbers (0, lh, qh), for the

n = 0 Landau level with quantum numbers, lp, for orbital angular momentum and qh for

the SU(4) index. And a particle is created by the creation operator for n = 0 Landau

level with quantum numbers (0, lp, qp).

To compute the contribution to particle-hole gap from the short ranged interaction terms,

we need to compute

〈ES|
(
Ψ†(r)GΨ(r)

)2|ES〉 − 〈GS|
(
Ψ†(r)GΨ(r)

)2|GS〉 (6.44)

where the matrix G = 14, βτ
z, αjτ k and j, k = x, y. Similar procdure that we followed

for particle-hole excitations for symmetric model in section 5.3, we define two point co-

incident correlator for the excited state,

Υ(r, r) = Γ(p)(r, r)− Γ(h)(r, r) + Γ(r, r) (6.45)

Γ(p) and Γ(h) are correlator for particle and hole state. Γ(r, r) is the coincident correlator

for the ground state.

The contribution to particle-hole excitation from short ranged interaction terms can be
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written in general form,

〈ES|
(
Ψ†(r)GΨ(r)

)2|ES〉 − 〈GS|
(
Ψ†(r)GΨ(r)

)2|GS〉

=

∫
r

(
(Tr[GΦ(p)(r) Φ(p)†(r)])2 + (Tr[GΦ(h)(r) Φ(h)†(r)])2

− 2 Tr[GΦ(p)(r) Φ(p)†(r)] Tr[GΦ(h)(r) Φ(h)†(r)]

− Tr[GΦ(p)(r) Φ(p)†(r)GΦ(p)(r) Φ(p)†(r)]

− Tr[GΦ(h)(r) Φ(h)†(r)GΦ(h)(r) Φ(h)†(r)]

+ 2 Tr[GΦ(p)(r) Φ(p)†(r)GΦ(h)(r) Φ(h)†(r)]

+ 2
(
Tr[GΦ(p)(r) Φ(p)†(r)]− Tr[GΦ(h)(r) Φ(h)†(r)]

)
Tr[GΓ(r, r)]

− 2 Tr[GΦ(p)(r) Φ(p)†(r)GΓ(r, r)]

+ 2 Tr[GΦ(h)(r) Φ(h)†(r)GΓ(r, r)]
)

(6.46)

Similar arguments as we had seen in the case for symmetric model particle-hole exci-

tations computation in section 5.3, various terms cancel and the assumption that large

separation between particle and hole wave functions results

〈ES|(Ψ†(r)GΨ(r))2|ES〉 − 〈GS|(Ψ†(r)GΨ(r))2|GS〉

= 2

∫
r

( (
Tr[GΓ(p)(r, r)]− Tr[GΓ(h)(r, r)]

)
Tr[GΓ(r, r)]

− Tr[GΓ(p)(r, r)GΓ(r, r)] + Tr[GΓ(h)(r, r)GΓ(r, r)]
)

(6.47)

The two-point coincident correlator has no coordinate dependence and the position de-

pendence comes from the correlator for particle and hole. Expressing the correlator for

particle and hole in terms of complex variables, Eq.(5.47), the coordinate integration is
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accomplished using gamma functions,

Γ(q) =

∫
r

Γ(q)(r) =
( 1

2π`2
c

)1

2
(12 − β)Pq

∫
r

1

l!

(r2

2

)l
e−

1
2
r2

(6.48)

=
1

2
(12 − β)Pq (6.49)

In the above equation we made use of relation,

( 1

2π`2
c

)∫
r

1

l!

(r2

2

)l
e−

1
2
r2

= 1 (6.50)

As the result we are only left with computation of various traces for the excitation calcu-

lation,

〈ES|(Ψ†(r)GΨ(r))2|ES〉 − 〈GS|(Ψ†(r)GΨ(r))2|GS〉

= 2
( (

Tr[GΓ(p)]− Tr[GΓ(h)]
)
Tr[GΓ]− Tr[GΓ(p)

GΓ] + Tr[GΓ(h)
GΓ]

)
(6.51)

The particle-hole gap contribution from each term is given by

∆G =
1

2

(
〈ES|(Ψ†(r)GΨ(r))2|ES〉 − 〈GS|(Ψ†(r)GΨ(r))2|GS〉

)
(6.52)

The nearest neighbour interaction term contribution to gap is accounted by considering

the terms given Eq.(6.1),

∆V =
1

2

(3

4
V a2

)(
−
(

Tr[Γ(p) Γ]− Tr[Γ(h) Γ]
)

−
(

Tr[βτ z Γ(p)]− Tr[βτ z Γ(h)]
)

Tr[βτ z Γ]

+
(

Tr[βτ z Γ(p) βτ zΓ]− Tr[βτ z Γ(h) βτ zΓ]
) )

(6.53)

Similarly gap contributions from Hubbard interaction by taking into account the terms in
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Eq.(6.6),

∆U =
1

2

(1

4
Ua2

)(
−
(

Tr[Γ(p) Γ]− Tr[Γ(h) Γ]
)

+
(

Tr[βτ z Γ(p)]− Tr[βτ z Γ(h)]
)

Tr[βτ z Γ]

−
(

Tr[βτ z Γ(p) βτ zΓ]− Tr[βτ z Γ(h) βτ zΓ]
)

+
1

2

∑
j,k=x,y

( (
Tr[αjτ k Γ(p)]− Tr[αjτ k Γ(h)]

)
Tr[αjτ k Γ]

−
(

Tr[αjτ k Γ(p)αjτ kΓ]− Tr[αjτ k Γ(h) αjτ kΓ]
) ))

(6.54)

Finally the Zeeman term contribution is given by,

∆Z =
1

2

(
− 1

2
gµB B

)1

2

(
Tr[σzΓ(p)]− Tr[σzΓ(h)]

)
(6.55)

We now evaluate the gap contributions given in Eq.(6.53), Eq.(6.54) and Eq.(6.55) for

each phase obtained for the Hall conductivity σH = 0 and σH = −1 in the U -V parameter

space.

6.3.1 Excitations for ground states at σH = 0

In this section we compute the nature of excitations for the ground states for the Hall

conductivity at σH = 0 in the U -V phase space. We consider excitations from all three

possible ground states in the U -V phase space, i.e. ferromagnetic ordered ground state,

charge ordered state and canted spin ordered state. The details of the calculations for

exctiations for ground states at σH = 0 is shown in Appendix K. The ground state is

specfied by the specifying the two-point coincident correlator, which in turn requires the

mass parameter to be specified obtained from the symmetric model computations and the
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SU(4) component of occupied n = 0 Landau levels. The correlator for the ground state,

Γ =
1

2π`2
c

(
um12 − vmβ

)(
P1 + P2 −

1

2
14

)
(6.56)

Here P1 and P2 are the projection operators contructed from the SU(4) components of

occupied n = 0 Landau levels. The correlators for the hole and particle,

Γh =
1

2
(12 − β)Ph

Γp =
1

2
(12 − β)Pp

(6.57)

Here Ph and Pp are the projections operator constructed from the SU(4) components of

hole and particle states of excitations. We use these coincident correlators to compute the

contributions from the symmetry breaking terms in rest of this section.

At the end of this section we discuss variation of the gaps with the tilted magnetic field

and compare the results with that seen in the quantum Hall experiments in tilted magnetic

fields.

Excitations for ferromagnetic ordered state

The SU(4) component of occupied n = 0 Landau levels for ferromagetic ordered state

are,

|1〉 = |+〉| ↑〉

|2〉 = |−〉| ↑〉
(6.58)

A general hole state is linear combination occupied n = 0 Landau level. The SU(4)

component such a linear combination can be constructed as following,

|h〉 = cos(
γh
2

)|+〉| ↑〉+ ei Ωh sin(
γh
2

)|−〉| ↑〉 (6.59)
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In a similar fashion, a particle state state is constructed from the unoccupied levels of

n = 0 Landau levels. SU(4) components of such a particle state can be constructed as

following,

|p〉 = cos(
γp
2

)|+〉| ↓〉+ ei Ωp sin(
γp
2

)|−〉| ↓〉 (6.60)

The contributions to the gaps from the symmetry breaking terms are

∆V = 0

∆U = 2κUvm

∆Z = κZ

(6.61)

The net gap from the symmetry breaking terms comes from the Zeeman term and angle

independence implies that both particle and holes states can be in any linear combination

of unoccupied and occupied levels of n = 0 Landau level respectively. Since the ferro-

magnetic ordered states is fully spin polarized hence the excitations will involve a spin

flip, which costs Zeeman energy.

Excitations for charge ordered state

The charge ordered state is doubly degenerate as it can be localized on either valley. Here

we choose one of the SU(4) component of occupied n = 0 Landau levels for charge

ordered state,

|1〉 = |+〉|n1〉

|2〉 = |+〉| − n1〉
(6.62)

The hole state is constructed by choosing a spin in arbitrary direction localized in |+〉 for

valley,

|h〉 = |+〉|nh〉 (6.63)
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The particle state has spin pointing in arbitrary direction sitting in |−〉 state for valley.

|p〉 = |−〉|np〉 (6.64)

The contribution to gaps from the symmetry breaking terms,

∆V = −4κV vm

∆U = 2κUvm

∆Z = −1

2
κZ(cos(θp)− cos(θh))

(6.65)

The angle dependence comes only for Zeeman term and the net gap will minimize for

θp = 0 and θh = π. SU(4) components of particle and hole states

|p〉 = |−〉| ↑〉, |h〉 = |+〉| ↓〉 (6.66)

and resulting net gap will be

∆ = −4κV vm + 2κUvm − κZ (6.67)

The hole is created by removing a down spin from the occupied sub-lattice and particle

is created by placing it unoccupied sub-lattice point and this results in lowering Zeeman

energy.

Excitations for canted spin state

The canted spin state has both the sub-lattice points are occupied

|1〉 = |+〉|n1〉

|2〉 = |−〉|n2〉
(6.68)
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and the spins on each of the sub-lattice points satisfy

θ1 − θ2 = 0, cos(θ+) =
1

4

um
v2
m − u2

m

κZ
κU

(6.69)

here θ+ = (θ1 + θ2)/2. The hole state is constructed by taking a linear superposition of

these states,

|h〉 = cos(
θh
2

)|+〉|n1〉+ eiϕh sin(
θh
2

)|−〉|n2〉 (6.70)

And the particle state is constructed by taking the linear superpostion of unoccupied states

of n = 0 Landau level,

|p〉 = cos(
θp
2

)|+〉| − n1〉+ eiϕp sin(
θp
2

)|−〉| − n2〉 (6.71)

The contributions from the symmetry breaking terms,

∆V = 0

∆U = 2κUvm − 2κU(vm − um) cos2(θ+)

∆Z = κZ cos(θ+)

(6.72)

Here also like in the case of ferromagetic ordered state, the gap in independent of the

angle parameters of particle and hole states.

The titled magnetic field measurements for the activation gaps in quantum Hall experi-

ments is a good indicator to decipher the spin for the excitations. In tilted field experi-

ment, B⊥, the perpendicular component of the magnetic field is kept fixed and BT , the

total magnetic field is varied by rotation the sample. In Zeeman term, the spin sees only

the total magnetic field. Whereas for the interaction terms, the magnetic field comes from

the orbital motion of electron, which depends on the magnetic field perpendicular the

plane. The contributions to the total particle-hole excitations from the interaction terms

has a dominant contribution from the long ranged Coulomb term. The contribution from

the short ranged interactions is two orders smaller, hence we ignore them in the following
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Figure 6.3: The figure shows the variation of particle-hole gap with respect to BT for
all the three phases for quantum Hall state at σH = 0. The tilted field gap for ferro-
magnetic spin ordered state increases linearly with BT , whereas the charge ordered state
gap decreases linearly. The gap for canted spin phase shows an increase with BT with a
quadratic dependence. Moreover the in the canted phase, gap is inversely proportional to
Hubbard interaction strength U . In the figure we have choosen U = 4 eV for the shown
curve. The tilted field activation gap measurement for graphene on boron nitrite [21] has
been reported to decrease with tilt angle. This is consistent with behaviour that we find
for charge ordered phase.

analysis. The dependence of total gap can be written as

∆ = ∆C(B⊥) + ∆Z(BT ) (6.73)

For the fixed B⊥, the Coulomb contribution is constant, whereas the Zeeman contribution

vary with the BT . The ferromagnetic ordered is fully spin polarized state and excitations

will involve a flipping of spin and this will cost Zeeman energy, hence the dependence on

BT is linear and increasing as we have shown in the Fig.6.3. The charge ordered state is

spin unpolarized state and we find that it decreases linearly with the BT . The canted spin

ordered state is not fully spin polarized and gaps show an increasing quadratic dependence
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on BT . It also inversely proportional to the Hubbard interaction strength, U .

In the reference [21], activation gaps are measured in tilted field for graphene on boron

nitrite substrate. The authors have reported a decrease in gaps with increase in BT . This

variation of tilted field gap with BT is consistent with particle-hole excitations for charge

ordered ground state of our mean field calculations.

6.3.2 Excitations for ground states at σH = −1

In this section we compute the nature of all the possible excitations for both the ground

states for the Hall conductivity at σH = −1 in the U -V phase space. There are two

possible ground states in the U -V phase space, valley-spin polarized state and the ferri-

magnetic ordered state. The details of the calculations for excoriations for ground states

at σH = 0 is shown in Appendix L. The ground state is specified by the specifying the

two-point coincident correlator, which in turn requires the mass parameter to be specified

obtained from the symmetric model computations and the SU(4) component of occupied

n = 0 Landau level, a similar scenario seen for the case of σH = 0. The correlator for the

ground state,

Γ =
1

2π`2
c

(
um12 − vmβ

)(
P1 −

1

2
14

)
(6.74)

Here P1 is the projection operator constructed from the SU(4) components of occupied

n = 0 Landau level. The correlator for the hole and particle,

Γh =
1

2
(12 − β)Ph

Γp =
1

2
(12 − β)Pp

(6.75)

Here Ph and Pp are the projections operator constructed from the SU(4) components of

hole and particle states of excitations. We use these coincident correlator to compute the

contributions from the symmetry breaking terms in rest of this section.
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At the end of this section once again we discuss variation of the gaps with the tilted

magnetic field and compare the results with that seen in the quantum Hall experiments in

tilted magnetic fields.

Valley-spin polarized ground state

For the valley-spin polarized state, the SU(4) components of n = 0 Landau level is,

|1〉 = |+〉| ↑〉 (6.76)

The SU(4) components of hole wave function

|h〉 = |+〉| ↑〉 (6.77)

The SU(4) components of particle wave function are constructed by choosing a linear

combination of three unoccupied sub-levels of n = 0 Landau level,

|p〉 = cos(
θp
2

)|+〉| ↑〉+ eiϕp sin(
θp
2

)|γp| ↓〉
)

(6.78)

The details of computation for each symmetry breaking term is shown in section ??

Gap contribution from nearest neighbour term,

∆V = −2κV vm sin2(
θp
2

) cos2(
γp
2

) + 2κV vm (6.79)

From it dependence on the particle state angle variable we can infer that this term prefers

only a spin flip with no change in valley quantum number.

Hubbard term contribution is also depends on the angle parameters of particle state,

∆U = 2κUvm sin2(
θp
2

) cos2(
γp
2

)− κU(vm − um) sin2(
θp
2

) (6.80)
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This term prefers a flip in valley quantum number and spin in the eigenstate of σz operator.

The Zeeman term contribution,

∆Z = κZ sin2(
θp
2

) (6.81)

prefers the angle variables for particle state exactly similar to that of Hubbard term.

The minimization of total gap from symmetry breaking terms was preformed numerically

and we find three possible excitations for valley-spin polarized state.

(i). θp = π, γp = 0 |+〉| ↓〉 ∆ = −2κV vm + κU(vm + um) + κZ (6.82)

(ii). θp = 0 |−〉| ↑〉 ∆ = 0 (6.83)

(iii). γp = π, θp = π |−〉| ↓〉 ∆ = −κU(vm − um) + κZ (6.84)

The region in U -V phase space where these excitations are possible is shown in Fig.6.4.

The dependence of these excitation gap is shown in Fig.6.5. The excitation |−〉| ↑〉 has

no variation with BT whereas both the other excitations have linear and increasing depen-

dence on BT .

Ferrimagnetic ground state

The ferrimagnetic ground state is doubly degenerate, here choose on of them. The SU(4)

components of occupied n = 0 Landau level,

|1〉 = cos(
γ0

2
)|+〉| ↑〉+ ei Ω0 sin(

γ0

2
)|−〉| ↓〉 (6.85)

Here γ0 is obtained from the mean field energy minimization

cos(γ0) =
1

2

um
v2
m − u2

m

κZ
κU − κV
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Figure 6.4: The figure shows the variation of particle-hole excitations for both the phases
for Hall conductivity at σH = 1 i.e valley-spin polarized state and ferrimagnetic state.
These two phases are separated by the dashed line and ground state chosen for the exci-
tation calculation is mentioned on the top and right side. Each shaded region is labeled
with the excitation preferred
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The SU(4) components of hole wave function

|h〉 = cos(
γ0

2
)|+〉| ↑〉+ ei Ω0 sin(

γ0

2
)|−〉| ↓〉 (6.86)

The SU(4) components of particle wave function is obtained by taking a suitable linear

combination of unoccupied levels,

|p〉 = cos(
θp
2

)
(

sin(
γ0

2
)|+〉| ↑〉 − ei Ω0 cos(

γ0

2
)|−〉| ↓〉

)
+ eiφp sin(

θp
2

)
(

cos(
γp
2

)|+〉| ↓〉+ ei Ωp sin(
γp
2

)|−〉| ↑〉
)

(6.87)

Contributions to gap from nearest neighbour interaction

∆V = −1

2
κV

(
sin2(

θp
2

)
(

2vm(cos(γp) + cos(γ0)) cos(γ0) + (vm + um) sin2(γ0)
)

− 2(vm − um) cos2(γ0)− 2(vm + um)

)
(6.88)

and from the Hubbard term

∆U =
1

2
κU

(
sin2(

θp
2

)
(

2vm(cos(γp) + cos(γ0)) cos(γ0) + (vm + um) sin2(γ0)

+ (vm − um)(1− cos(γ0) cos(γp))
)
− 2(vm − um) cos2(γ0)

)
(6.89)

The Zeeman term results in

∆Z =
1

2

(
κZ sin2(

θp
2

)(cos(γp)− cos(γ0)) + 2κZ cos(γ0)
)

(6.90)

The gap that depends on angle parameters that was minimized numerically,

∆ = sin2(
θp
2

)
(

2(κU − κV )vm cos2(
γp
2

)− κU(vm − um) + κZ

)
(6.91)
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Figure 6.5: The figure shows the variation of particle-hole gap with respect to BT for all
the two phases for quantum Hall state at σH = −1. Top linear line and constant line are
the gaps for the valley-spin polarized state. The two curves with quadratic variation with
BT are for the ferrimagnetic state. The nature of excitation is indicated with each curve.

1.

θp = 0, |p〉 = sin(
γ0

2
)|+〉| ↑〉 − ei Ω0 cos(

γ0

2
)|−〉| ↓〉

∆ = 0 (6.92)

2.

θp = π, γp = π, |p〉 = |−〉| ↑〉

∆ =
1

2

(
(κU − κV )

(
− 2vm cos(γ0) + (vm + um)(1 + cos(γ0))

)
(1− cos(γ0))

+
(
κU(vm − um)− κZ

)
(1 + cos(γ0))

)
(6.93)
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Figure 6.6: Delineated region in U -V phase diagram marked with region where the
particle-hole gap decreases with increase in BT for the ground state at σH = 0 within
our interacting model hamiltonian. The region marked also corresponds to the charge
ordered state ground state for σH = 0.

The tilted magnetic field dependence of the excitations in valley-spin polarized state can

be divided into class. Either there is no variation or increases with BT . The excitations

for the ferrimagnetic state can also be classified into two categories, one has very small

quadratic dependence that increases with BT . The second one decreases with BT .

6.4 Connection with experiments

In this section we compare the results obtained from our interacting model with that ob-

served in experiments.

Young et. al. in reference [21] report that variation of activation gap with BT . They had

reported gaps for σH = 0 decreases with increasing BT , which lead them to conclude
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Figure 6.7: The region delineated here is for where particle-hole gaps increase with BT

for interacting continuum model at σH = −1 ground state. The region marked with
red ‘×’ is also the region for the valley-spin polarized ground state for σH = −1. And
region marked with green ‘∗’ is for ferrimagnet ordered ground state at Hall conductivity
σH = −1.

that the ground state for σH = 0 is spin unpolarized state. The Fig.(6.6) shows the region

in the U -V phase space where the particle-hole activation gaps decrease with BT . This

delineated region also corresponds to the charge ordered ground state for the Hall plateau

at σH = 0, which is spin unpolarized ground state. Our conclusion coincides with the one

drawn for σH = 0 with that of given in reference [21].

The activation gaps for the state at Hall conductivity σH = −1 showed a variation which

was given a linear fit, which increases with BT in reference [21]. It was also reported

that effective g-factor for the Zeeman coupling was greated than two and concluded that

excitation are caused by skyrmion-antiskyrmion from a valley-spin polarized ground state.

In Fig.6.7, we show the region in U -V phase space that show increase in particle-hole

gaps with BT . The delineated region conrresponds to region with valley-spin polarized
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Figure 6.8: Region delineated here is the intersection of regions shown in Fig.6.6 and
Fig.6.7. This shows the range of value for parameters U and V for our model that is
consistent with excitations observed in quantum Hall experiments.

and ferrimagnetic ordered ground states for σH = −1 within our model computations.

Fig.6.8 shows the region in the U -V phase space that is consistent with the excitations

observed in quantum Hall experiment [21]. This region was deduced by taking the inter-

section of delineated regions from the Fig.(6.6) and Fig.(6.7), which are regions consistent

with experiment for excitation observed for Hall plateaus at σH = 0 and σH = −1 [21].

6.5 Summary

We summarize the results obtained in this chapter

1. We obtained phase diagram for the ground state for σH = 0 using the symmetry

breaking terms of our model. The three possible phases in U -V parameter space

shown in Fig.6.1.
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2. Phase diagram was also obtained for σH = −1. The two possible ground states in

the U -V parameter space is shown in Fig.6.2

3. The tilted magnetic field gaps for the ground states for Hall conductivity σH = 0

is shown in Fig.6.3 and the charge ordered state behavior is consistent with that

seen in experiments. Fig.6.6 shows delineated region in U -V phase space that is

consistent activation gaps seen in experiments for our interacting model.

4. The tilted magnetic field gaps for σH = −1 shown in Fig.6.5 has also regions that

are consistent with the experiments. And the Fig.6.7 shows the region in U -V phase

space.

5. Fig.6.8 shows the range for the values U and V parameters for our model can take

that are consistent with current experiments.
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Chapter 7

Summary

In the chapter we enumerate the findings of this thesis.

1. Exact analytical solutions for Dirac particle in cross electric and magnetic field were

found using the trick of Lorentz boost.

2. Numerical computations for the cross electric and magnetic field subjected to graphene

on lattice were shown to confirm the effects of Landau levels is not an artifact of

continuum model.

3. The phenomenon of dielectric breakdown was discussed and predictions were made

about difference of dielectric breakdown for n = 0 and n 6= 0 Landau levels. And

this was verified in quantum Hall experiments by Singh and Deshmukh [18]

4. We have derived a systematic continuum approximation for the interacting lattice

model for graphene. The lattice interaction terms yields a leading SU(4) terms

and sub-leading part. We justified replacing the sub-leading part with the terms

resulting from the nearest neighbour interaction. We have presented the interacting

continuum model that we adopt in this thesis in Eq.(3.26)

5. We showed that the Landau levels for massive Dirac particle provides the same
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SU(4) polarization for both partially occupied n = 0 Landau levels and filled Dirac

sea.

6. We described the number of parameters needed for the variational ground states for

the Hall conductivity σH = 0 and σH = −1.

7. We developed the two point correlator for a massive Dirac particle in magnetic field.

8. With the knowledge of two point correlator for a massive Dirac particle we con-

structed the two point correlator and coincident correlator for Dirac particle in

graphene to be used for variational mean field computations.

9. We have showed that the Coulomb interaction breaks the SU(4) symmetry sponta-

neously for the ground states for Hall conductivity at σH = 0 and σH = −1.

10. The order parameter for spontaneous symmetry breaking is the mass of the Dirac

particle which is proportional to a dimensionless α = κC/κt, which depends on

dielectric constant.

11. The order parameter is proportional to magnetic field and tends to zero as mag-

netic field goes to zero which indicates spontaneous symmetry breaking of SU(4)

symmetry by Coulomb interaction in presence of magnetic field.

12. The particle-hole gaps from symmetric model showed a square root dependence

on the applied magnetic field. Our symmetric model without disorder taken into

account over estimates the gaps when compared with experimental values.

13. We obtained phase diagram for the ground state for σH = 0 using the symmetry

breaking terms of our model. The three possible phases in U -V parameter space

shown in Fig.6.1.

14. Phase diagram was also obtained for σH = −1. The two possible ground states in

the U -V parameter space is shown in Fig.6.2
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15. The tilted magnetic field gaps for the ground states for Hall conductivity σH = 0 is

shown in Fig.6.3 and the charge ordered state behavior is consistent with that seen

in experiments.

16. The tilted magnetic field gaps for σH = −1 shown in Fig.6.5 has also regions that

are consistent with the experiments.

17. Fig.6.8 is our prediction for the range of values U and V can take for our model to

explain the current quantum Hall experiments.
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Appendix A

Landau levels of massless and massive

Dirac particles

A.1 Massless Dirac particle

Hamiltonian for massless Dirac particle in (2 + 1)d in presence of magnetic field,

h = vF α · π (A.1)

π is the conjugate momenta in presence of magnetic field.

Eigenvalues for the hamiltonian

εn,l = sgn(n)
√

2|n| ~vF
`c

(A.2)

The corresponding wave functions, for n 6= 0

φn,l(r) =
1√
2

 ϕ|n|−1,l+1(r)

i sgn(n)ϕ|n|,l(r)

 (A.3)

135



For n = 0,

φ0,l(r) =

 0

ϕ0,l(r)

 (A.4)

`c is the magnetic length, ϕn,l(r) are wave functions of non-relativistic electron gas in

magnetic field.

ϕn,l(r) =
(−1)n√

2π`2
c

√
n!

(n+ l)!
e−i lθ ξ

l
2 e−

ξ
2Lln(ξ) (A.5)

Here ξ = r2/2`2
c

A.2 Massive Dirac particle

h = vF α · π + β m (A.6)

Eigenvalues

εn,l = sgn(n)

√
2|n|

(~vF
`c

)2

+m2 (A.7)

Corresponding wave functions for n 6= 0

φn,l(r) =
1√

2 εn,l(εn,l +m)

 (εn,l +m)ϕ|n|−1,l+1(r)

i
√

2|n|~vF
`c
ϕ|n|,l(r)

 (A.8)

For n = 0,

φ0,l(r) =

 0

ϕ0,l(r)

 (A.9)

ϕn,l(r) is given by Eq.A.5.
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Appendix B

Solution for cross electric and magnetic

field

h = vF α · π + eE x 12 (B.1)

Time dependent Schrodinger equation

i ~
∂

∂t
Ψ(x, t) = (vFα · π + eE x12)Ψ(x, t) (B.2)

x0 = vF t, x1 = x, x2 = y (B.3)

p0 =
i ~
vF

∂

∂t
, p1 = −i ~

∂

∂x
, p2 = −i ~

∂

∂y
(B.4)

(
(p0 −

eE

vF
x)1− αxpx − αy(py + eB x)

)
Ψ(x, t) = 0 (B.5) p0

py

 =

 cosh(θ) − sinh(θ)

− sinh(θ) cosh(θ)


 p̃0

p̃y

 (B.6)

(
eθαy p̃0 − αxp̃x − eθαy p̃y − eB

(
1 + αy

E

vFB

)
x̃
)

Ψ(x, t) = 0 (B.7)
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Choose β = E
vFB

= tanh(θ)

(
eθαy p̃0 − αxp̃x − eθαy

(
p̃y + e

B

cosh(θ)
x̃
))

Ψ(x, t) = 0 (B.8)

Making use of the identity

eαy
θ
2αxe

αy
θ
2 = αx (B.9)

and

Ψ̃(x̃, t̃) = e
θ
2
αyΨ(x, t) (B.10)(

p̃0 − αxp̃x − (p̃y + eB̃x̃)
)

Ψ̃(x̃, t̃) = 0 (B.11)

B̃ = B
√

1− β2 (B.12)

Eigenvalues

ε̃n,k̃y = sgn(n)
√

2|n|~vF
˜̀
c

(B.13)

here

˜̀
c = `c(1− β2)−

1
4

Eigenvectors for the time-independent Landau level problem,

φn,k̃y(x̃) =
1√
2

 ϕ|n|−1,k̃y
(x̃)

i sgn(n)ϕ|n|,k̃y(x̃)

 (B.14)

Here ϕn,k̃y(x̃) is eigen functions non-relativistic Landau level problem in Landau gauge.

ϕn,k̃y(x̃) = Anei k̃y ỹe−
ξ̃2

2 Hn(ξ̃) (B.15)

Here Hn(x) is hermite polynomial and proportionality constant, An is fixed by normal-

ization and depends on n.

ξ̃ =
x̃+ k̃y ˜̀2

c

˜̀
c

(B.16)
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Apply inverse Lorentz transformation on three-vector, we have following results,

εn,ky =
ε̃n,k̃y

cosh(θ)
− ~vFky tanh(θ)

= sgn(n)
√

2|n|~vF
`c

(1− β2)
3
4 − ~vFkyβ

(B.17)

k̃y =
ky

cosh(θ)
+
ε̃n,k̃y
~vF

tanh(θ)

= ky(1− β2)
1
2 + sgn(n)

√
2|n| 1

`c
β(1− β2)

1
4

(B.18)

We use invariance of scalar product of two 3-vectors under Lorentz transformation

ε̃n,k̃y t̃− k̃y ỹ = εn,kyt− ky y (B.19)

and

x̃+ k̃y ˜̀2
c

˜̀
c

→ ξ =
(1− β2)

1
4

`c

(
x+ ky `

2
c + sgn(n)

√
2|n|`c

β

(1− β2)
1
4

)
(B.20)

the eigen functions for the cross magnetic and electric field

φn,ky(x) =
e−

θ
2
αy√

2 cosh(θ)

 ϕ|n|−1,ky(x)

i sgn(n)ϕ|n|,ky(x)

 (B.21)

Here ϕn,ky(x) is eigen functions non-relativistic Landau level problem in Landau gauge.
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Appendix C

Continuum approximation:

Interactions

HC =
1

2

∑
n,m

∑
r,s

(n̂n,r −
1

2
〈n̂〉)VC(|nr −ms|)(n̂m,s −

1

2
〈n̂〉) (C.1)

The summation has a constraint that when n = m then r 6= s

n̂n,r,σ = c†n,r,σcn,r,σ (C.2)

n̂n,r =
∑
σ=↑,↓

n̂n,r,σ (C.3)

n̂n =
∑
r=1,2

n̂n,r (C.4)

n̂ =
∑
n

∑
r=1,2

n̂n,r (C.5)

Applying projection operator Eq.(3.3), applied on the number operators,

c†n,1,σcn,1,σ ≈ ψ†1,+,σ(n)ψ1,+,σ(n) + ψ†2,−,σ(n)ψ2,−,σ(n)

+ e−i (K+−K−)·nψ†1,+,σ(n)ψ2,−,σ(n)

+ ei (K+−K−)·nψ†2,−,σ(n)ψ1,+,σ(n) (C.6)
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c†n,2,σcn,2,σ ≈ ψ†2,+,σ(n)ψ2,+,σ(n) + ψ†1,−,σ(n)ψ1,−,σ(n)

− e−i (K+−K−)·nψ†2,+,σ(n)ψ1,−,σ(n)

− ei (K+−K−)·nψ†1,−,σ(n)ψ2,+,σ(n) (C.7)

Making the substitutions

ψ†1,+,σψ1,+,σ = Ψ†(n)
(1 + β

2

)(1 + τ z

2

)
Ψ(n)

ψ†1,−,σψ1,−,σ = Ψ†(n)
(1 + β

2

)(1− τ z
2

)
Ψ(n)

ψ†2,+,σψ2,+,σ = Ψ†(n)
(1− β

2

)(1 + τ z

2

)
Ψ(n)

ψ†2,−,σψ2,−,σ = Ψ†(n)
(1− β

2

)(1− τ z
2

)
Ψ(n)

ψ†1,+,σψ2,−,σ = Ψ†(n)
(αx + iαy

2

)(τx + i τ y

2

)
Ψ(n)

ψ†2,−,σψ1,+,σ = Ψ†(n)
(αx − iαy

2

)(τx − i τ y

2

)
Ψ(n)

ψ†2,+,σψ1,−,σ = Ψ†(n)
(αx − iαy

2

)(τx + i τ y

2

)
Ψ(n)

ψ†1,−,σψ2,+,σ = Ψ†(n)
(αx + iαy

2

)(τx − i τ y

2

)
Ψ(n)

(C.8)

The number operators can be approximated in terms of slow and fast varying modes as,

n̂n,1,σ ≈
1

2
Ψ†(n)Ψ(n) +

1

2
Ψ†(n)βτ zΨ(n)

+
1

4
e−iφ(n)

((
Ψ†(n)αxτxΨ(n)−Ψ†(n)αyτ yΨ(n)

)
+ i
(
Ψ†(n)αxτ yΨ(n) + Ψ†(n)αyτxΨ(n)

))
+

1

4
eiφ(n)

((
Ψ†(n)αxτxΨ(n)−Ψ†(n)αyτ yΨ(n)

)
− i
(
Ψ†(n)αxτ yΨ(n) + Ψ†(n)αyτxΨ(n)

))
(C.9)

142



n̂n,2,σ ≈
1

2
Ψ†(n)Ψ(n)− 1

2
Ψ†(n)βτ zΨ(n)

− 1

4
e−iφ(n)

((
Ψ†(n)αxτxΨ(n) + Ψ†(n)αyτ yΨ(n)

)
+ i
(
Ψ†(n)αxτ yΨ(n)−Ψ†(n)αyτxΨ(n)

))
− 1

4
eiφ(n)

((
Ψ†(n)αxτxΨ(n) + Ψ†(n)αyτ yΨ(n)

)
− i
(
Ψ†(n)αxτ yΨ(n)−Ψ†(n)αyτxΨ(n)

))
(C.10)

Here e±iφ(n) are the fast varying modes.

Consider the four fermion terms,

HI =
1

2

∑
n,m
n 6=m

(
V (r)n̂n,1,σn̂m,1,σ̃ + V (r)n̂n,2,σn̂m,2,σ̃

)

+
1

2

∑
n,m
n 6=m

(
V (d1)n̂n,1,σn̂m,2,σ̃ + V (d2)n̂n,2,σn̂m,1,σ̃

)

+
1

2
V (ã)

∑
n

(
n̂n,1,σn̂n,2,σ̃ + n̂n,2,σn̂n,1,σ̃

)
(C.11)

From the Figure 3.1

r = |ns −ms| (C.12)

d1 =
√
r2 − 2rã cos θ + ã2

d2 =
√
r2 + 2rã cos θ + ã2

(C.13)

Here ã = a/
√

3, a is the lattice constant.

V (r) =
1

4πε

e2

r
(C.14)

For r >> ã,

V (d1) = V (r)
(

1 +
ã

r
cos θ +

1

2

ã2

r2
(3 cos2 θ − 1) + . . .

)
V (d2) = V (r)

(
1− ã

r
cos θ +

1

2

ã2

r2
(3 cos2 θ − 1) + . . .

) (C.15)
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After long wavelength approximation,

|ns −ms| → |x− y| = r (C.16)

∑
n

→ 1

a2

∫
x

(C.17)

ψα,τ,σ(n)→ aΨα,τ,σ(x) (C.18)

〈n̂〉 =
1

N

∑
n

n̂n →
1

V
a2

∫
x

〈Ψ†(x)Ψ(x)〉 = a2ρ̄ (C.19)

ρ̄ =
1

V

∫
x

〈Ψ†(x)Ψ(x)〉 (C.20)

n̂n,1,σn̂m,1,σ̃ →
a2

4

(
Ψ†(x)Ψ(x) + Ψ†(x)βτ zΨ(x)

)(
Ψ†(y)Ψ(y) + Ψ†(y)βτ zΨ(y)

)
n̂n,2,σn̂m,2,σ̃ →

a2

4

(
Ψ†(x)Ψ(x)−Ψ†(x)βτ zΨ(x)

)(
Ψ†(y)Ψ(y)−Ψ†(y)βτ zΨ(y)

)
n̂n,1,σn̂m,2,σ̃ →

a2

4

(
Ψ†(x)Ψ(x) + Ψ†(x)βτ zΨ(x)

)(
Ψ†(y)Ψ(y)−Ψ†(y)βτ zΨ(y)

)
(C.21)

Separating the interaction term in the leading order of contribution at large separations,

HI =
1

2

∫
x,y
x6=y

V (r)Ψ†(x)Ψ(x)Ψ†(y)Ψ(y)

+
1

2

∫
x,y
x6=y

V (r)
(1

4

ã2

r2
(3 cos2 θ − 1) + . . .

)
(

Ψ†(x)Ψ(x)Ψ†(y)Ψ(y)−Ψ†(x) βτ z Ψ(x) Ψ†(y) βτ z Ψ(y)
)

+ Contact interaction term along one nearest bond (C.22)
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Appendix D

Continuum approximation: Nearest

neighbour terms

The nearest neighbour interaction on honeycomb lattice,

HV = V
∑
n,σ,σ̃

c†n,1,σcn,1,σ
(
c†n,2,σ̃cn,2,σ̃ + c†n+e2,2,σ̃

cn+e2,2,σ̃ + c†n+e1+e2,2,σ̃
cn−e1+e2,2,σ̃

)
(D.1)

Rewriting the nearest neighbour interaction term and subtracting the background charge

due to positive ions,

HV = V
∑
n

(
3∑
i=1

(n̂n,1 −
1

2
〈n̂〉)(n̂n+bi,2 −

1

2
〈n̂〉)

)
(D.2)

Here the summation over index i = 1, 2, 3 is for the three nearest neighbour for each

carbon site.

Now consider the four fermion terms,

HV = V
∑
n

n̂n,1

( 3∑
i=1

n̂n+bi,2

)
(D.3)
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Using Eq.(C.10) and retaining the leading terms and dropping the derivatives of fermion

operator terms and fast varying modes, we can approximate

3∑
i=1

n̂n+bi,2 ≈
3

4
Ψ†(n)Ψ(n)− 3

4
Ψ†(n)βτ zΨ(n) (D.4)

Here we make use of the fact, (1 + ei 2π
3 + ei 4π

3 ) = 0

Now using Eq.(C.9) and taking the continuum approximation as described in previous

chapter.

HV =
3

4
V a2

∫
x

((
Ψ†(x)Ψ(x)

)2 −
(
Ψ†(x)βτ zΨ(x)

)2
)

(D.5)

The net continuum limit for the nearest neighbour interaction when the background charge

is deducted,

HV =
3

4
V a2

∫
x

((
Ψ†(x)Ψ(x)

)2 −
(
Ψ†(x)βτ zΨ(x)

)2 − 2 ρ̄Ψ†(x)Ψ(x) + ρ̄2
)

(D.6)
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Appendix E

Continuum approximation: Hubbard

terms

The Hubbard interaction,

HU = U
∑
n

∑
r

n̂n,r,↑n̂n,r,↓ (E.1)

We rewrite the Hubbard term in manifestly SU(2) spin rotation invariant form,

HU = U
∑
n,r

(
− 2

3
San,rS

a
n,r +

1

2
n̂n,r

)
(E.2)

=
U

2

∑
n

∑
r

(n̂2
n,r − n̂n,r) (E.3)

Rewriting the above equation after subtracting the background charge,

HU =
U

2

∑
n

(
(n̂n,1)2 + (n̂n,2)2 − 〈n̂〉n̂n +

1

2
〈n̂〉2 − n̂n + 〈n̂〉

)
(E.4)
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Consider the four fermion terms and gathering slow varying modes for density-density

operators for each sub-lattice index

n̂n,1,σn̂n,1,σ ≈
1

4

(
Ψ†(n)Ψ(n) + Ψ†(n)βτ zΨ(n)

)2

+
1

16

((
Ψ†(n)αxτxΨ(n)−Ψ†(n)αyτ yΨ(n)

)2

+
(
Ψ†(n)αxτ yΨ(n) + Ψ†(n)αyτxΨ(n)

)2
)

(E.5)

n̂n,2,σn̂n,2,σ ≈
1

4

(
Ψ†(n)Ψ(n)−Ψ†(n)βτ zΨ(n)

)2

+
1

16

((
Ψ†(n)αxτxΨ(n) + Ψ†(n)αyτ yΨ(n)

)2

+
(
Ψ†(n)αxτ yΨ(n)−Ψ†(n)αyτxΨ(n)

)2
)

(E.6)

Taking the continuum approximation,

HU =
U

2
a2

∫
x

1

2

((
Ψ†(x)Ψ(x)

)2
+
(
Ψ†(x)βτ zΨ(x)

)2

+
1

2

∑
j,k=x,y

(
Ψ†(x)αjτ kΨ(x)

)2
)

(E.7)

Rewriting the Hubbard term after removing the background charge,

HU =
1

4
Ua2

∫
x

((
Ψ†(x)Ψ(x)

)2
+
(
Ψ†(x)βτ zΨ(x)

)2
+

1

2

∑
j,k=x,y

(
Ψ†(x)αjτ kΨ(x)

)2

− 2 ρ̄Ψ†(x)Ψ(x) + ρ̄2
)
− U

2

∫
x

(
Ψ†(x)Ψ(x)− ρ̄

)
(E.8)
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Appendix F

Propagator for non-relativistic electron

in magnetic field

In general to compute the propagator, we need to evaluate

K(x, t;x0, t0) =

∫
D[q(t)] e

i
~
∫ t
t0
dt L(q,q̇,t) (F.1)

with boundary condition q(t) = x and q(t0) = x0

Lagrangian for charged particle in electromagnetic field

L =
1

2
mṙ2 − qΦ(r) + qA(r) · ṙ (F.2)

For electron in a constant magnetic field along z-axis and working with symmetric gauge

for vector potential

q = −e, A(r) =
B

2
(−y, x, 0), Φ(r) = 0
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Lagrangian for electron in magnetic field,

L =
m

2

(
ẋ2 + ẏ2 − ωc(−yẋ+ xẏ)

)
(F.3)

Here ωc = eB/m is the cyclotron frequency.

The propagator is by evaluating contributions from the classical part which gives the

spatial part of the propagator and the fluctuations around the classical motion which con-

tributes to the normalization. The action S =
∫

dt L has contributions motions, classical

and fluctuations.

r = rcl + η

with boundary conditions,

(xcl(0), ycl(0) = (x0, y0) and (xcl(T ), ycl(T ) = (x, y)

(ηx(0), ηy(0)) = 0 = (ηx(T ), ηy(T ))

This results S = Scl + S
′

S
′
=

T∫
0

dt
m

2

(
η̇x

2 + η̇y
2 − ωc(−ηyη̇x + ηxη̇y)

)
(F.4)

the cross terms vanish after integration by parts and applying classical equations of mo-

tions

ẍcl + ωcẏcl = 0

ÿcl − ωcẋcl = 0

(F.5)

The propagator

K(r, T ; r0, 0) = e
i
~Scl

∫
D[η(t)] e

i
~S
′

(F.6)
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The solutions to classical equation of motion,

xcl = x̄+ c sin(ωct+ φ)

ycl = ȳ − c cos(ωct+ φ)

(F.7)

The constants are fixed by the boundary conditions,

x0 = x̄+ c sin(φ) y0 = ȳ − c cos(φ) (F.8)

x = x̄+ c sin(ωcT + φ) y = ȳ − c cos(ωcT + φ) (F.9)

x− x0 = 2c cos(
ωcT

2
+ φ) sin(

ωcT

2
)

y − y0 = 2c sin(
ωcT

2
+ φ) sin(

ωcT

2
)

c =
1

2

|r − r0|
sin(ωcT

2
)

tan(
ωcT

2
+ φ) =

y − y0

x− x0

(F.10)

T∫
0

dt
m

2
(ẋ2 + ẏ2) =

m

2
c2ω2

cT

T∫
0

dt
m

2
(−ωc)(−yẋ+ xẏ)

=
m

2
c ωc (ȳ sin(ωct+ φ) + x̄ cos(ωc + φ))|T0 −

m

2
c2ω2

cT

Scl =
m

2
c ωc
(
ȳ(sin(ωcT + φ)− sin(φ)) + x̄(cos(ωcT + φ)− cos(φ))

=
mωc

2
(ȳ(x− x0)− x̄(y − y0))
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Here we made use of Eq.(F.10)

x̄ =
1

2

(
(x+ x0)− (y − y0) cot(

ωcT

2
)

)
ȳ =

1

2

(
(y + y0) + (y − y0) cot(

ωcT

2
)

)

Scl =
mωc

2

(
1

2
|r − r0|2 cot(

ωcT

2
) + (xy0 − yx0)

)
(F.11)

e
i
~Scl = e

i
|r−r0|

2

4`2c
cot(ωcT

2
)+i 1

2`2c
(xy0−yx0)

(F.12)

Z = Tr[e−βH ] =
∑
n,l

e−β(n+ 1
2

)~ωc =

∫
dq〈q|e−βH |q〉

=
1

2 sinh(β~ωc
2

)
=

∫
dq K(q,−i ~β; q, 0)

The evaluation of fluctuation part with the boundary condition

∫
D[η(t)] e

i
~S
′

=
1

A

∑
n,l

eβ(n+ 1
2

)~ωc =
1

2π`2
c

1

2 sinh(i ωct
2

)
(F.13)

here β = i t/~ and using relation sinh(i θ) = i sin θ, the propagator for the non-relativistic

electron in magnetic field,

K(r, t; r0, 0) =
1

2π`2
c

1

2i sin(ωct
2

)
e

i
|r−r0|

2

4`2c
cot(ωct

2
)
e

i 1

2`2c
(xy0−yx0)

(F.14)
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Appendix G

Integral for Coulomb gap calculation

The integral that we want to consider,

I =
1

(2π)2

∫∫
z1,z2

1

|z1 − z2|
1

l!

( z̄1z2

2

)l
e−

1
2
z̄1z2e−

1
4

(1+α)|z1−z2|2 (G.1)

Here z1 and z2 are complex variables, l takes non-negative integer values and α ≥ 1 is

real number. Consider the integral,

I(λ) =
1

(2π)2

(−1)l

l!

∫∫
z1,z2

1

|z1 − z2|
( z̄1z2

2

)l
e−

λ
2
z̄1z2e−

1
4

(1+α)|z1−z2|2 (G.2)

Assuming we can solve the above integral, then the integral, I in Eq.(G.1) can be obtained

by repeated differentiation with respect to λ.

I =
dl

dλl
I(λ)

∣∣∣∣
λ=1

(G.3)

Make a change of variables in Eq.(G.2),

z1 = Z +
z

2
(G.4)

z2 = Z − z

2
(G.5)
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z̄1z2 = (Z̄ +
z̄

2
)(Z − z

2
) = |Z|2 − 1

4
|z|2 +

1

2
(Zz̄ − Z̄z) (G.6)

Now substitute, Z = X − iY

z̄1z2 = X2 + Y 2 − 1

4
|z|2 +

1

2

(
(X + iY )z̄ − (X − iY )z

)
= X2 + Y 2 − 1

4
|z|2 +X

z − z̄
2

+ Y
i (z + z̄)

2
(G.7)

Completing the squares for the variable X and Y

z̄1z2 = (X +
z − z̄

4
)2 + (Y +

i(z + z̄)

4
)2 − 1

4
|z|2 − (

z − z̄
4

)2 − (
i(z + z̄)

4
)2

=

(
X +

z − z̄
4

)2

+

(
Y +

i(z + z̄)

4

)2

(G.8)

I(λ) =
1

(2π)2

(−1)l

l!

∫
z

1

|z| e
− 1

4
(1+α)|z|2

∫ +∞

−∞
dX e−λ

1
2

(X+ z−z̄
4

)2

∫ +∞

−∞
dY e−λ

1
2

(Y+
i(z+z̄)

4
)2

(G.9)

The integration for X and Y and simple shifted gaussian integrals and converting back

the relative complex variable to real quantity,

I(λ) =
1

(2π)2

(−1)l

l!

(√
2π

λ

)2 ∫ ∞
0

2πdr e−
1
4

(1+α)r2

(G.10)

Thus,

I(λ) =
(−1)l

l!

1

λ

√
π

2α
(G.11)

Using the Eq.(G.3)

I =

√
π

(1 + α)
(G.12)
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Appendix H

Contact terms

Redefine the contact correlator to suppress 1/2π`2
c factor, Γ = 1

2π`2c
Γ̃ Here we are using

the fact that mass matrix takes the form

M = m
(
2
∑
j∈occ

Pj − 14

)
(H.1)

Γ̃ =
(
um 12 − vm β

)
⊗
(∑
j∈occ

Pj −
1

2
14

)
(H.2)

Here j ∈ occ is summation occupied SU(4) states of n = 0 Landau level. We make use

of completeness relation to arrive at,

∑
j∈unocc

Pj = 14 −
∑
j∈occ

Pj (H.3)

Γ̃ Γ̃ terms

Tr[Γ̃Γ̃] = 2(v2
m + u2

m) (H.4)

using the fact that Tr[PiPj] = δi,j
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βτ z Γ̃ terms

βτ zΓ̃ = −
(
vm 12 − um β

)
⊗
(∑
j∈occ

τ zPj −
1

2
τ z
)

(H.5)

Tr[βτ zΓ̃] = −2vm
∑
jocc

Tr[τ zPj] (H.6)

Tr[βτ zΓ̃βτ zΓ̃] = 2
(
v2
m + u2

m

) ∑
i,j∈occ

Tr[τ zPiτ
zPj] + 2

(
v2
m + u2

m

)
(1−

∑
j∈occ

1) (H.7)

(Tr[βτ zΓ̃])2 − Tr[βτ zΓ̃βτ zΓ̃]

=
∑
i,j∈occ

(
4v2

mTr[τ zPi]Tr[τ zPj]− 2
(
v2
m + u2

m

)
Tr[τ zPiτ

zPj]
)

− 2
(
v2
m + u2

m

)
(1−

∑
j∈occ

1) (H.8)

αaτ b Γ̃ terms

αaτ bΓ̃ =
(
um α

a − vm αaβ
)
⊗
(∑
j∈occ

τ bPj −
1

2
τ b
)

(H.9)

Tr[αaτ bΓ̃] = 0 (H.10)

Tr[αaτ bΓ̃αaτ bΓ̃] = 4
(
u2
m − v2

m

)( ∑
i,j∈occ

Tr[τ bPiτ
bPj] + (1−

∑
j∈occ

Pj)
)

(H.11)

1

2

∑
a,b=x,y

( (
Tr[αaτ bΓ̃]

)2 − Tr[αaτ bΓ̃αaτ bΓ̃]

= 2(v2
m − u2

m)
∑
i,j∈occ

(
Tr[τxPiτ

xPj] + Tr[τ yPiτ
yPj]

)
+ 4(v2

m − u2
m)
(
1−

∑
j∈occ

Pj
)

(H.12)

σzΓ̃ term

Tr[σz Γ̃] = um
∑
i∈occ

Tr[σz Pi] (H.13)

156



Appendix I

Ground state energy for σH = 0

M = {m,m,−m,−m} (I.1)

|1〉 = cos(
γ1

2
)|+〉|n1〉+ ei Ω1 sin(

γ1

2
)|−〉| − n2〉 (I.2)

|2〉 = cos(
γ2

2
)|+〉| − n1〉+ ei Ω2 sin(

γ2

2
)|−〉|n2〉 (I.3)

〈1|σz|1〉 =
1

2
(cos(θ1)− cos(θ2)) +

1

2
cos(γ1)(cos(θ1) + cos(θ2))

〈2|σz|2〉 = −1

2
(cos(θ1)− cos(θ2))− 1

2
cos(γ2)(cos(θ1) + cos(θ2))

(I.4)

Tr[σz Γ̃] = um
(

cos(γ1)− cos(γ2)
)(

cos(θ1) + cos(θ2)
)

(I.5)

Tr[Γ̃Γ̃] = 2(v2
m + u2

m) (I.6)

〈1|τ z|1〉 = cos(γ1) (I.7)

〈2|τ z|2〉 = cos(γ2) (I.8)

〈2|τ z|1〉 = 0 (I.9)
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(Tr[β τ z Γ̃])2 − Tr[β τ z Γ̃ β τ z Γ̃] = 8v2
m cos(γ1) cos(γ2)

+ 2(vm − um)2
(

cos2(γ1) + cos2(γ2)
)
− 2v2

m − 2u2
m (I.10)

|〈1|τx|1〉|2 + |〈1|τ y|1〉|2 = (1− cos2(γ1))|〈n1| − n2〉|2 (I.11)

|〈2|τx|2〉|2 + |〈2|τ y|2〉|2 = (1− cos2(γ2))|〈n1| − n2〉|2 (I.12)

|〈2|τx|1〉|2 + |〈2|τ y|1〉|2 = (1− cos(γ1) cos(γ2))|〈n1|n2〉|2 (I.13)

1

2

∑
a,b=x,y

((
Tr[αa τ b Γ̃]

)2 − Tr[αaτ bΓ̃αaτ bΓ̃
)

= −2(v2
m − u2

m)
(

cos2(γ1) + cos2(γ2)
)

+ 2(v2
m − u2

m)
(

cos(γ1)− cos(γ2)
)2|〈n1| − n2〉|2 (I.14)

〈HV 〉 = − V

2π`2
c

κV

(
8v2

m cos(γ1) cos(γ2)+2
(
v2
m−u2

m

)(
cos2(γ1)+cos2(γ2)

))
(I.15)

〈HU〉 =
V

2π`2
c

κU

(
8v2

m cos(γ1) cos(γ2)

+ 2
(
v2
m − u2

m

)(
cos(γ1)− cos(γ2)

)2|〈n1|n2〉|2 − 4
(
v2
m + u2

m

))
(I.16)

〈HZ〉 = − V

2π`2
c

κZum
(

cos(γ1)− cos(γ2)
)(

cos(θ1) + cos(θ2)
)

(I.17)
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I.1 Minimization

Collecting the angle dependent terms

E = 2
(
v2
m − u2

m

)(
− 4v2

m

v2
m − u2

m

(κV − κU) cos(γ1) cos(γ2)− κV
(

cos2(γ1) + cos2(γ2)
)

+
1

2
κU
(

cos(γ1)− cos(γ2)
)2(

1 + cos(θ1) cos(θ2) + cos(ϕ1 − ϕ2) sin(θ1) sin(θ2)
)

− κZ
um

2(v2
m − u2

m)

(
cos(γ1)− cos(γ2)

)(
cos(θ1)− cos(θ2)

)
(I.18)

Derivative w.r.t ϕ1 − ϕ2 :

(
cos(γ1)− cos(γ2)

)2
sin(ϕ1 − ϕ2) sin(θ1) sin(θ2) = 0

Energy minimizes for ϕ1 − ϕ2 = π

The minimum value for the rest of angle parameters that minimizes the mean field en-

ergy was obtained numerically. We used downhill simplex routine “amoeba” provided in

Numerical Recipes in C.
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Appendix J

Ground state energy σH = −1

M = {m,−m,−m,−m} (J.1)

|1〉 = cos(
γ1

2
)|+〉|n1〉+ ei Ω1 sin(

γ1

2
)|−〉| − n2〉 (J.2)

〈1|σz|1〉 =
1

2
(cos(θ1) + cos(θ2)) +

1

2
cos(γ1)(cos(θ1)− cos(θ2)) (J.3)

Tr[σ Γ̃] = um

((
cos(θ1) + cos(θ2)

)
+ cos(γ1)

(
cos(θ1)− cos(θ2)

))
(J.4)

Tr[Γ̃Γ̃] = 2(v2
m + u2

m) (J.5)

〈1|τ z|1〉 = cos(γ1) (J.6)

(Tr[β τ z Γ̃])2 − Tr[β τ z Γ̃ β τ z Γ̃] = 2
(
v2
m − u2

m

)
cos2(γ1) (J.7)

|〈1|τx|1〉|2 + |〈1|τ y|1〉|2 = (1− cos2(γ1))|〈n1| − n2〉|2 (J.8)

1

2

∑
a,b=x,y

((
Tr[αa τ b Γ̃]

)2 − Tr[αaτ bΓ̃αaτ bΓ̃
)

= −2
(
v2
m − u2

m

)
sin2(γ1)|〈n1| − n2〉|2 (J.9)
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〈HV 〉 = − V

2π`2
c

κV

(
2
(
v2
m − u2

m

)
cos2(γ1) + 2(v2

m + u2
m)

)
(J.10)

〈HU〉 =
V

2π`2
c

κU

(
− 2
(
v2
m − u2

m

)
sin2(γ1)|〈n1|n2〉|2 − 4u2

m

)
(J.11)

〈HZ〉 = − V

2π`2
c

κZ

(
um

((
cos(θ1)− cos(θ2)

)
+ cos(γ1)

(
cos(θ1) + cos(θ2)

)))
(J.12)

J.1 Minimization

Collect the angle parameter dependent terms for symmetry breaking terms

E = −2
(
v2
m − u2

m

)(
κV cos2(γ1)

+
1

2
κU sin2(γ1)

(
1 + cos(θ1) cos(θ2) + cos(ϕ1 − ϕ2) sin(θ1) sin(θ2)

)
+ κZ

um
2(v2

m − u2
m)

((
cos(θ1) + cos(θ2)

)
+ cos(γ1)

(
cos(θ1)− cos(θ2)

)))
(J.13)

Derivative w.r.t ϕ1 − ϕ2 :

sin(ϕ1 − ϕ2) sin(θ1) sin(θ2) = 0 (J.14)

The energy minimizes when ϕ1 − ϕ2 = 0 because the coefficient is always positive for

the range of θ1 and θ2

The minimum value for the rest angle parameters that minimizes the mean field energy

was obtained numerically. We used downhill simplex routine “amoeba” provided in Nu-

merical Recipes in C.
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Appendix K

Excitations : σH = 0

K.1 General expression for excitations

∆G =
(
Tr[GΓ(p)]− Tr[GΓ(h)]

)
Tr[GΓ]− Tr[GΓ(p)

GΓ] + Tr[GΓ(h)
GΓ] (K.1)

G = 1214, βτ
z, αjτ k

Γ = Gm(2(P1 + P2)− 14), Γ(x) = GPx (K.2)

Px is projection for particle or hole.

Tr[ατΓ(x)] = Tr[αG]Tr[τPx] (K.3)

Tr[ατΓ] = Tr[αGm]
(

2Tr[τP1] + 2Tr[τP2]− Tr[τ ]
)

(K.4)

Tr[ατΓ(x)ατΓ] = Tr[αGαGm]
(

2Tr[τPxτP1] + 2Tr[τPxτP2])− Tr[Px]
)

(K.5)

For a general ατ term,

∆ατ = Tr[αG]Tr[αGm]
(

Tr[τPp]− Tr[τPh]
)(

2Tr[τP1] + 2Tr[τP2]− Tr[τ ]
)

− 2Tr[αGαGm]
(

Tr[τPpτP1] + Tr[τPpτP2]− Tr[τPhτP1]− Tr[τPhτP2]
)

(K.6)
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∆σz = Tr[σzΓ(p)]− Tr[σzΓ(h)] = Tr[σzPp]− Tr[σzPh] (K.7)

Gm =
1

2π`2
c

G̃m

G̃m =
1

2
(um12 − vmβ) G =

1

2
(12 − β) (K.8)

Tr[G̃m] = um Tr[G] = 1 (K.9)

Tr[βG̃m] = −vm Tr[βG] = −1 (K.10)

Tr[αjG̃m] = 0 Tr[αjG] = 0 (K.11)

Tr[GG̃m] =
1

2
(um + vm) (K.12)

Tr[βGβG̃m] =
1

2
(um + vm) (K.13)

Tr[αjGαjG̃m] =
1

2
(um − vm) (K.14)

∆1 = 2Tr[GGm] = vm + um (K.15)

∆βτz = 2vm

(
Tr[τ zPp]− Tr[τ zPh]

)(
Tr[τ zP1] + Tr[τ zP2]

)
− (vm + um)

(
Tr[τ zPpτ zP1] + Tr[τ zPpτ zP2]− Tr[τ zPhτ zP1]− Tr[τ zPhτ zP2]

)
(K.16)

∆αjτk = (vm − um)
(

Tr[τ kPpτ kP1] + Tr[τ kPpτ kP2]− Tr[τ kPhτ kP1]− Tr[τ kPhτ kP2]
)

(K.17)

∆σz = Tr[σzPp]− Tr[σzPh] (K.18)
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K.2 Charge ordered state

Ground state SU(4) components,

|1〉 = |+〉|n〉 |2〉 = |+〉| − n〉 (K.19)

Particle and hole SU(4) components,

|p〉 = |−〉|np〉 |h〉 = |+〉|nh〉 (K.20)

Here,

|np〉 = cos(
θp
2

)|+〉+ eiφp sin(
θp
2

)|−〉

|nh〉 = cos(
θh
2

)|+〉+ eiφh sin(
θh
2

)|−〉

Tr[τ zPp]− Tr[τ zPh] = −2 (K.21)

Tr[τ zP1] + Tr[τ zP2] = 2 (K.22)

Tr[τ zPpτ zP1] = 0 Tr[τ zPpτ zP2] = 0 (K.23)

Tr[τ zPhτ zP1] = |〈n|nh〉|2 Tr[τ zPhτ zP2] = |〈−n|nh〉|2 (K.24)

Tr[τ kPpτ kP1] = |〈n|np〉|2 Tr[τ kPpτ kP2] = |〈−n|np〉|2 (K.25)

Tr[τ kPhτ kP1] = 0 Tr[τ kPhτ kP2] = 0 (K.26)

Tr[σzPp]− Tr[σzPh] = cos(θp)− cos(θh) (K.27)

∆14 = (vm + um) (K.28)

165



∆βτz = −8vm + (vm + um) (K.29)

∆αjτk = vm − um (K.30)

∆σz = cos(θp)− cos(θh) (K.31)

Gaps contribution from the symmetry breaking terms,

∆V = −4κV vm (K.32)

∆U = 2κUvm (K.33)

∆Z = −1

2
κZ(cos(θp)− cos(θh)) (K.34)

Minimum for θp = 0 and θh = π, hence

|p〉 = |−〉| ↑〉, |h〉 = |+〉| ↓〉 (K.35)

K.3 Ferromagnetic state

Ground state SU(4) components,

|1〉 = |+〉| ↑〉 |2〉 = |−〉| ↑〉 (K.36)

Particle and hole SU(4) components,

|p〉 = |γp〉| ↓〉 |h〉 = |γh| ↑〉 (K.37)

Here,

|γp〉 = cos(
γp
2

)|+〉+ ei Ωp sin(
γp
2

)|−〉
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|γh〉 = cos(
γh
2

)|+〉+ ei Ωh sin(
γh
2

)|−〉

Tr[τ zPp]− Tr[τ zPh] = cos(γp)− cos(γh) (K.38)

Tr[τ zP1] + Tr[τ zP2] = 0 (K.39)

Tr[τ zPpτ zP1] = 0 Tr[τ zPpτ zP2] = 0 (K.40)

Tr[τ zPhτ zP1] = cos2(
γh
2

) Tr[τ zPhτ zP2] = sin2(
γh
2

) (K.41)

Tr[τ kPpτ kP1] = 0 Tr[τ kPpτ kP2] = 0 (K.42)

Tr[τ kPhτ kP1] = sin2(
γh
2

) Tr[τ kPhτ kP2] = cos2(
γh
2

) (K.43)

Tr[σzPp]− Tr[σzPh] = −2 (K.44)

∆14 = (vm + um) (K.45)

∆βτz = (vm + um) (K.46)

∆αjτk = −(vm − um) (K.47)

∆σz = −2 (K.48)

Contributions from the symmetry breaking terms,

∆V = 0 (K.49)

∆U = 2κUvm (K.50)

∆Z = κZ (K.51)
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Gap contributions are independent of angle parameters.

K.4 Canted state

SU(4) components of the ground state,

|1〉 = |+〉|n1〉 |2〉 = |−〉|n2〉 (K.52)

θ1 − θ2 = 0, φ1 − φ2 = π, cos(
θ1 + θ2

2
) =

1

4

um
v2
m − u2

m

Z̃

U

Particle and hole SU(4) components,

|p〉 = cos(
θp
2

)|+〉| − n1〉+ eiφp sin(
θp
2

)|−〉| − n2〉 (K.53)

|h〉 = cos(
θh
2

)|+〉|n1〉+ eiφh sin(
θh
2

)|−〉|n2〉 (K.54)

(K.55)

Here,

|n1〉 = cos(
θ1

2
)|+〉+ eiφ1 sin(

θ1

2
)|−〉

|n2〉 = cos(
θ2

2
)|+〉+ eiφ2 sin(

θ2

2
)|−〉

Tr[τ zPp]− Tr[τ zPh] = cos(θp)− cos(θh) (K.56)

Tr[τ zP1] + Tr[τ zP2] = 2 (K.57)
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Tr[τ zPpτ zP1] = 0 Tr[τ zPpτ zP2] = 0 (K.58)

Tr[τ zPhτ zP1] = cos2(
θh
2

) Tr[τ zPhτ zP2] = sin2(
θh
2

) (K.59)

Tr[τ kPpτ kP1] = sin2(
θp
2

)|〈n1| − n2〉|2 Tr[τ kPpτ kP2] = cos2(
θp
2

)|〈−n1|n2〉|2 (K.60)

Tr[τ kPhτ kP1] = sin2(
θh
2

)|〈n1|n2〉|2 Tr[τ kPhτ kP2] = cos2(
θh
2

)|〈n1|n2〉|2 (K.61)

(K.62)

Tr[σzPp]− Tr[σzPh] = −2 cos(
θ1 + θ2

2
) (K.63)

∆14 = (vm + um) (K.64)

∆βτz = (vm + um) (K.65)

∆αjτk = (vm − um)− 2(vm − um) cos2(
θ1 + θ2

2
) (K.66)

∆σz = −2 cos(
θ1 + θ2

2
) (K.67)

Contributions from the symmetry breaking terms,

∆V = 0 (K.68)

∆U = 2κU

(
vm − (vm − um) cos2(

θ1 + θ2

2
)
)

(K.69)

∆Z = κZ cos(
θ1 + θ2

2
) (K.70)

Gap contributions turn out to be independent of angle parameters.
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Appendix L

Excitations : σH = −1

L.1 General expression for excitations

∆G =
(
Tr[GΓ(p)]− Tr[GΓ(h)]

)
Tr[GΓ]− Tr[GΓ(p)

GΓ] + Tr[GΓ(h)
GΓ] (L.1)

G = 1214, βτ
z, αjτ k

Γ = Gm(2P1 − 14), Γ(x) = GPx (L.2)

Here Px is projection for particle or hole state.

Tr[ατΓ(x)] = Tr[αG]Tr[τPx] (L.3)

Tr[ατΓ] = Tr[αGm]
(

2Tr[τP1]− Tr[τ ]
)

(L.4)

Tr[ατΓ(x)ατΓ] = Tr[αGαGm]
(

2Tr[τPxτP1]− Tr[Px]
)

(L.5)

∆ατ = Tr[αG]Tr[αGm]
(

Tr[τPp]− Tr[τPh]
)(

2Tr[τP1]− Tr[τ ]
)

− 2Tr[αGαGm]
(

Tr[τPpτP1]− Tr[τPhτP1]
)

(L.6)

∆σz = Tr[σzΓ(p)]− Tr[σzΓ(h)] = Tr[σzPp]− Tr[σzPh] (L.7)
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Gm =
1

2π`2
c

G̃m

G̃m =
1

2
(um12 − vmβ) G =

1

2
(12 − β) (L.8)

Tr[G̃m] = um Tr[G] = 1 (L.9)

Tr[βG̃m] = −vm Tr[βG] = −1 (L.10)

Tr[αjG̃m] = 0 Tr[αjG] = 0 (L.11)

Tr[GG̃m] =
1

2
(um + vm) (L.12)

Tr[βGβG̃m] =
1

2
(um + vm) (L.13)

Tr[αjGαjG̃m] =
1

2
(um − vm) (L.14)

∆1 = 2Tr[GGm] = vm + um (L.15)

∆βτz = 2vm

(
Tr[τ zPp]−Tr[τ zPh]

)
Tr[τ zP1]−(vm+um)

(
Tr[τ zPpτ zP1]−Tr[τ zPhτ zP1]

)
(L.16)

∆αjτk = (vm − um)
(

Tr[τ kPpτ kP1]− Tr[τ kPhτ kP1]
)

(L.17)

∆σz = Tr[σzPp]− Tr[σzPh] (L.18)

L.2 Valley and spin polarized state

SU(4) components of ground state, hole and particle state

|1〉 = |h〉 = |+〉| ↑〉

|p〉 = cos(
θp
2

)|−〉| ↑〉+ eiφp sin(
θp
2

)|γp〉| ↓〉
(L.19)
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Here,

|γp〉 = cos(
γp
2

)|+〉+ ei Ωp sin(
γp
2

)|−〉

Tr[τ zPp]− Tr[τ zPh] = − cos2(
θp
2

) + sin2(
θp
2

) cos(γp)− 1 (L.20)

Tr[τ zP1] = 1 (L.21)

Tr[τ zPpτ zP1] = 0 Tr[τ zPhτ zP1] = 1 (L.22)

Tr[τ kPpτ kP1] = cos2(
θp
2

) Tr[τ kPhτ kP1] = 0 (L.23)

Tr[σzPp]− Tr[σzPh] = cos(θp)− 1 (L.24)

∆14 = (vm + um) (L.25)

∆βτz = 2vm

(
− cos2(

θp
2

) + sin2(
θp
2

) cos(γp)− 1
)

+ (vm + um) (L.26)

= 2vm sin2(
θp
2

)(1 + cos(γp))− 3vm + um (L.27)

∆αjτk = (vm − um) cos2(
θp
2

) (L.28)

= −(vm − um) sin2(
θp
2

) + (vm − um) (L.29)

∆σz = cos(θp)− 1 = −2 sin2(
θp
2

) (L.30)

Contributions from symmetry breaking terms,

∆V = −4κV vm sin2(
θp
2

) cos2(
γp
2

) + 4κV vm (L.31)
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∆U = 4κUvm sin2(
θp
2

) cos2(
γp
2

)− 2κU(vm − um) sin2(
θp
2

) (L.32)

∆Z = 2κZ sin2(
θp
2

) (L.33)

The gap that depends on angle parameters that need to be minimized,

∆ = sin2(
θp
2

)
(

2(κU − κV )vm cos2(
γp
2

)− κU(vm − um) + κZ

)
(L.34)

Minimization(numerically) results

• θp = 0 i.e |p〉 = |−〉| ↑〉 and the gap is ∆ = 0

• θp = π and γp = 0 i.e. |p〉 = |+〉| ↓〉 for κV > κU

and the gap is ∆ = −2κV vm + κU(vm + um) + κZ

• θp = π and γp = π i.e. |p〉 = |−〉| ↓〉 for κV < κU

and the gap is ∆ = −κU(vm − um) + κZ

Equations of lines:

κV =
1

2

(
1 +

um
vm

)
κU +

1

2vm
κZ

κU =
1

vm − um
κZ

κV = κU

(L.35)

In the figure the line are given by equation

3V =
1

2

(
1 +

um
vm

)
U +

1

2vm
Z̃

U =
1

vm − um
Z̃

3V = U

(L.36)
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L.3 Canted valley - Ferrimagnet

Ground state, hole and particle state SU(4) components,

|1〉 = |h〉 = cos(
γ0

2
)|+〉| ↑〉+ ei Ω0 sin(

γ0

2
)|−〉| ↓〉

|p〉 = cos(
θp
2

)
(

sin(
γ0

2
)|+〉| ↑〉 − ei Ω0 cos(

γ0

2
)|−〉| ↓〉

)
+ eiφp sin(

θp
2

)
(

cos(
γp
2

)|+〉| ↓〉+ ei Ωp sin(
γp
2

)|−〉| ↑〉
) (L.37)

Tr[τ zPp]− Tr[τ zPh] = − cos2(
θp
2

) cos(γ0) + sin2(
θp
2

) cos(γp)− cos(γ0) (L.38)

= sin2(
θp
2

)(cos(γp) + cos(γ0))− 2 cos(γ0) (L.39)

Tr[τ zP1] = cos(γ0) (L.40)

Tr[τ zPpτ zP1] = cos2(
θp
2

) sin2(γ0) Tr[τ zPhτ zP1] = cos2(γ0) (L.41)

∑
k=x,y

Tr[τ kPpτ kP1] = sin2(
θp
2

)(1− cos(γ0) cos(γp))
∑
k=x,y

Tr[τ kPhτ kP1] = 0 (L.42)

Tr[σzPp]− Tr[σzPh] = − cos2(
θp
2

) cos(γ0)− sin2(
θp
2

) cos(γp)− cos(γ0) (L.43)

= − sin2(
θp
2

)(cos(γp)− cos(γ0))− 2 cos(γ0) (L.44)

∆14 = vm + um (L.45)
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∆βτz = 2vm

(
sin2(

θp
2

)(cos(γp) + cos(γ0))− 2 cos(γ0)
)

cos(γ0)

+ (vm + um)
(

sin2(
θp
2

) sin2(γ0) + cos(2γ0)
)

= sin2(
θp
2

)
(

2vm(cos(γp) + cos(γ0)) cos(γ0) + (vm + um) sin2(γ0)
)

− 2(vm − um) cos2(γ0)− (vm + um) (L.46)

∑
j,k=x,y

∆αiτk = 2(vm − um) sin2(
θp
2

)(1− cos(γ0) cos(γp)) (L.47)

∆σz = −
(

sin2(
θp
2

)(cos(γp)− cos(γ0)) + 2 cos(γ0)
)

(L.48)

The contributions from the SU(4) symmetry breaking terms,

∆V = −κV
(

sin2(
θp
2

)
(

2vm(cos(γp) + cos(γ0)) cos(γ0) + (vm + um) sin2(γ0)
)

− 2(vm − um) cos2(γ0)− 2(vm + um)

)
(L.49)

∆U = κU

(
sin2(

θp
2

)
(

2vm(cos(γp) + cos(γ0)) cos(γ0) + (vm + um) sin2(γ0)

+ (vm − um)(1− cos(γ0) cos(γp))
)
− 2(vm − um) cos2(γ0)

)
(L.50)

∆Z = κZ sin2(
θp
2

)(cos(γp)− cos(γ0)) + 2κZ cos(γ0) (L.51)

Gap that depends on the angle parameters,

∆ =
1

2
sin2(

θp
2

)

(
(κU−κV )

(
2vm(cos(γp)+cos(γ0)) cos(γ0)+(vm+um)(1−cos2(γ0))

)
+ κU(vm − um)(1− cos(γ0) cos(γp)) + κZ(cos(γp)− cos(γ0))

)
(L.52)

176



Minimization done numerically and the results are

• θp = 0, i.e. |p〉 = sin(γ0

2
)|+〉| ↑〉 − ei Ω0 cos(γ0

2
)|−〉| ↓〉, the gap ∆ = 0

• θp = π and γp = π |p〉 = |−〉| ↑〉 and the gap

∆ = 1
2

(
(κU − κV )

(
− 2vm cos(γ0) + (vm + um)(1 + cos(γ0))

)
(1− cos(γ0))

+
(
κU(vm − um)− κZ

)
(1 + cos(γ0))

)
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