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Abstract

Let A be a discrete valuation ring whose maximal ideal is generated by a uniformizing

element π, and which has a finite residue field Fq. Let Λ denote the set of all

sequences of symbols of the form

(λρ11 , λ
ρ2
2 , . . . , λ

ρk
k ),

where λ1 > λ2 > . . . > λk is a strictly decreasing sequence of positive integers

and ρ1, ρ2, . . . , ρk are positive integers. We allow the case where k = 0, resulting

in the empty sequence, which we denote by ∅. Every finite A-module Aλ is, up to

isomorphism, of the form

Aλ = (A/πλ1A)⊕ρ1 ⊕ (A/πλ2A)⊕ρ2 ⊕ . . .⊕ (A/πλkA)⊕ρk

for a unique λ ∈ Λ. Let Gλ denote the automorphism group of Aλ.

Fix a λ ∈ Λ, the corresponding finite A-module Aλ and its automorphism group Gλ.

The group Gλ acts on Aλn by the diagonal action

g · (x1, . . . , xn) = (g(x1), . . . , g(xn)) for xi ∈ Aλ and g ∈ Gλ.

In this thesis we study the set of Gλ-orbits in Aλn under the above action for n = 2.

We find that the cardinality of each orbit is a polynomial in q with integer coefficients

and moreover, given such a polynomial, the number of orbits with that cardinality

is a polynomial in q with integer coefficients which does not depend on A, but

only on the cardinality of the residue field of A. When q = p is a prime, the two

possibilities for Aλ are finite abelian p-groups and finite dimensional primary Fp[t]-

modules (isomorphism classes of which correspond to similarity classes of matrices).
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In the case of finite abelian p-groups, A is the ring of p-adic integers. For general

q, A can either be taken to be the ring of Witt vectors of Fq or the ring Fq[[t]] of

formal power series with coefficients in Fq.

On the representation theory side, we use these results to analyze the permutation

representation of Gλ on the vector spaces C[O] whereO runs over Gλ-orbits inAλ. So

first we get a description of the suborbits in similar orbit of pairsO×O corresponding

to a general ideal which is useful to prove that the permutation representation

corresponding to any orbit is multiplicity free.
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Chapter 1

Synopsis

1.1 Synopsis Abstract

Let A be a discrete valuation ring whose maximal ideal is generated by a uniformizing

element π, and which has a finite residue field Fq. Let Λ denote the set of all

sequences of symbols of the form

(λρ11 , λ
ρ2
2 , . . . , λ

ρk
k ), (1.1)

where λ1 > λ2 > . . . > λk is a strictly decreasing sequence of positive integers

and ρ1, ρ2, . . . , ρk are positive integers. We allow the case where k = 0, resulting

in the empty sequence, which we denote by ∅. Every finite A-module Aλ is, up to

isomorphism, of the form

Aλ = (A/πλ1A)⊕ρ1 ⊕ (A/πλ2A)⊕ρ2 ⊕ . . .⊕ (A/πλkA)⊕ρk (1.2)

for a unique λ ∈ Λ. Let Gλ denote the automorphism group of Aλ.

Fix a λ ∈ Λ, the corresponding finite A-module Aλ and its automorphism group Gλ.

16



The group Gλ acts on Aλn by the diagonal action

g · (x1, . . . , xn) = (g(x1), . . . , g(xn)) for xi ∈ Aλ and g ∈ Gλ.

In this thesis we study the set of Gλ-orbits in Aλn under the above action for n = 2.

We find that the cardinality of each orbit is a polynomial in q with integer coefficients

and moreover, given such a polynomial, the number of orbits with that cardinality

is a polynomial in q with integer coefficients which does not depend on A, but

only on the cardinality of the residue field of A. When q = p is a prime, the two

possibilities for Aλ are finite abelian p-groups and finite dimensional primary Fp[t]-

modules (isomorphism classes of which correspond to similarity classes of matrices).

In the case of finite abelian p-groups, A is the ring of p-adic integers.

For general q, A can either be taken to be the ring of Witt vectors of Fq or the ring

Fq[[t]] of formal power series with coefficients in Fq.

We use these results to analyze the permutation representation of Gλ on the vector

spaces C[O] where O runs over Gλ-orbits in Aλ. We are able to prove that these

permutation representations are multiplicity free.
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1.2 Background

The monograph of Lynne M. Butler titled Subgroup Lattices and Symmetric Func-

tions [5] describes two approaches to studying subgroup lattices of finite abelian

p-groups. The first approach is linear-algebraic in nature and yields a combinatorial

interpretation of the Betti polynomials of these Cohen-Macaulay posets. The second

approach, which employs Hall-Littlewood symmetric functions, exploits properties

of Kostka polynomials to obtain enumerative results such as rank-unimodality. How-

ever, the theory of automorphism-orbits of subgroups of finite abelian groups seems

to be largely unexplored. A classification of orbits of elements in finite abelian groups

has been available for a long time (G.A. Miller [11], Birkhoff [4], Dutta-Prasad [8]).

Calvert, Dutta and Prasad ([6]) have used the notion of degeneration to give a poset

structure to the set of automorphism classes of subgroups and tuples of elements in

Aλ. However, these posets are not very well-understood.

The general representation theory of finite groups, along with the representation the-

ory of symmetric groups was developed by Dedekind, Frobenious, Burnside, Schur,

Brauer in the early part of the 20th century. In his 1955 paper, Green [9] com-

puted the characters of the irreducible representations of GLn(Fq). In contrast, for

the representation theory of groups such as GLn(Z/pkZ), despite the existence of

extensive literature, is not well understood. These developments are surveyed in

Pooja Singla’s PhD thesis [14]. In her thesis, she studies the irreducible complex

representations of the general linear groups over principal ideal local rings of length

two. Using Clifford theory, she exhibits a bijective correspondence between irre-

ducible representations of GLn(O2) and irreducible representations of centralizers

in GLn(O1) of representative elements in various similarity classes of Mn(O1). These

centralizers turn out to be products of the groups Gλ in the case where A is Fq[[t]].

In [12], Uri Onn classifies representations of automorphism groups of finite A-

modules of rank two completely. Dutta and Prasad ([7]) show that the Weil repre-
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sentation of the symplectic group associated to a finite abelian group of odd order

has multiplicity-free decomposition.

In all the available results, it is observed that methods of construction and the

dimensions of irreducible representations of groups of the form Gλ do not depend on

the ring A but only on the cardinality of its residue field. The results of this thesis

are consistent with this trend.
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1.3 Main Results

The key result of this thesis is a description of the Gλ-orbit of pairs in Aλ × Aλ.

This is acheived by describing the stabilizer GλI of a representative e(I) ∈ Aλ of a

Gλ-orbit in Aλ (see Dutta and Prasad [8] page 8), where I is an ideal in a poset

J(P)λ which classifies the Gλ-orbits in Aλ. Decompose Aλ into a direct sum of two

A-modules (this decomposition depends on I):

Aλ = A
λ
′ ⊕A

λ
′′ , (1.3)

where A
λ
′ consists of those cyclic summands in the decomposition (3.2) of Aλ where

e(I) has non-zero coordinates, and A
λ
′′ consists of the remaining cyclic summands.

Let the projection of Aλ to A
λ
′ take e(I) to e(I)

′ ∈ A
λ
′ .

Theorem 1.4. The stabilizer of e(I) in Gλ consists of matrices of the form

idA
λ
′ + n y

z w

 ,

where n ∈ Nλ
′
⊂ EndA(A

λ
′ ), y ∈ HOM(A

λ
′′ ,A

λ
′ ) is arbitrary, z ∈ M(λ

′
, λ
′′
) ⊂

HOM(A
λ
′ ,A

λ
′′ ) and w ∈ G

λ
′′ is invertible. Here

• Nλ
′

= {n ∈ EndA(A
λ
′ ) | n(e(I)′) = 0} is a nilpotent ideal in EndA(A

λ
′ ).

• M(λ
′
, λ
′′
) = {z ∈ HOM(A

λ
′ ,A

λ
′′ ) | z(e(I)′) = 0}.

Theorem 4.12 allows us to describe the orbit of m under the action of GλI , which is

the same as describing the Gλ-orbits in Aλ × Aλ whose first component lies in the

orbit AλI
∗

of e(I). Write each element m ∈ Aλ as m = (m′,m′′) with respect to the

decomposition (4.9) of Aλ. Also, for any m′ ∈ A
λ
′ , let m̄′ denote the image of m′

in A
λ
′/Ae(I)′.

20



Theorem 1.5. Given m and n in Aλ, l lies in the GλI-orbit of m in Aλ if and only

if the following conditions hold:

• l′ ∈ m′ +A
λ
′
I(m̄′)∪I(m′′).

• l′′ ∈ A
λ
′′
I(m′′)∗ +A

λ
′′
I(m̄′).

Here, for each I ∈ J(Pλ), AλI denotes the smallest Gλ-invariant submodule of Aλ

which contains e(I).

Using this it is shown that the cardinality of each orbit of pairs is a monic polynomial

in q with integer coefficients, where q is the cardinality of the residue field A/πA

independent of the ring A:

Theorem 1.6. Let A be a discrete valuation ring with residue field of order q. Fix

λ ∈ Λ and take Aλ as in (3.2). Let Gλ denote the group of A-module automorphisms

of Aλ. Fix order ideals I, L ∈ J(P)λ (and hence Gλ-orbits AλI
∗

and AλL
∗

in Aλ).

1. The cardinality of each Gλ-orbit in AλI
∗ × AλL

∗
is a monic polynomial in q

whose coefficients are integers.

2. Given a monic polynomial β(q) with integer coefficients, the number of Gλ-

orbits in AλI
∗ ×AλL

∗
of cardinality β(q) is a polynomial in q with coefficients

that are integers which do not depend on A.

3. The total number of Gλ-orbits in AλI
∗ × AλL

∗
depends only on whether ρi is

0, 1, or any cardinal greater than 1 (and not on the exact value of ρi) for each

of the multiplicities ρi in (3.1).

On the representation theory side, first we get a description of the suborbits in

similar orbit of pairs corresponding to a general ideal which is useful to prove that

the permutation representation corresponding to any orbit is multiplicity free.
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Theorem 1.7. Let I ∈ J(P)λ be an ideal then the component of an orbit of pair

O ⊂ OI ×OI ⊂ Aλ ×Aλ corresponding to any isotypic part (A/πλiA)ρi of Aλ is a

set of ordered pairs having the following description.

if (∂λiI, λi) ∈ max(I)

• {(a, b) ∈ (π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi)×

(π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi)

| b− ay ∈ πr(A/πλiA)ρi for some r > ∂λiI and for some slope unit y ∈ A∗}

• {(a, b) ∈ (π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi)×

(π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi)

| b− ay ∈ πr(A/πλiA)ρi − πr+1(A/πλiA)ρi for some r ≥ ∂λiI

and for some slope unit y ∈ A∗ and

π−r(b− ay)(mod π) is linearly independent with π−∂λiIa(mod π) in (Fq)ρi}

if (∂λiI, λi) /∈ max(I)

• {(a, b) ∈ π∂λiI(A/πλiA)ρi × π∂λiI(A/πλiA)ρi}

• {(a, b) ∈ π∂λiI(A/πλiA)ρi × π∂λiI(A/πλiA)ρi | b− ay ∈ πr(A/πλiA)ρi

for some r > ∂λiI and for some slope unit y ∈ A∗}

• {(a, b) ∈ π∂λiI(A/πλiA)ρi × π∂λiI(A/πλiA)ρi |

b− ay ∈ πr(A/πλiA)ρi − πr+1(A/πλiA)ρi

for some r ≥ ∂λiI and for some slope unit y ∈ A∗}

Moreover O is the product of these components of pairs.

Theorem 1.8. Let (λ = λρ11 > λρ22 > λρ33 > . . . > λρkk ) be a partition. Consider the

permutation representation of the automorphism group Gλ of a finite module Aλ on

any orbit OI ⊂ Aλ for I ∈ J(P)λ. Suppose Fq ∼= A/πA has atleast three elements

or the multiplcity ρi of each part λi in λ is > 2 corresponding to every element

(∂λiI, λi) ∈ max(I).Then this permutation representation is multiplicity-free.
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1.4 The Organization of the Thesis

The thesis has the following chapters with chapterwise summary.

1. Introduction:

2. Preliminaries:

This chapter contains some important notions that are used in the later chap-

ters. Most important is the combinatorial description of orbits due to Dutta

and Prasad [8]. This description of orbits is going to be very useful in the

analysis of orbits of pairs in chapter three. It also has a section on some basic

observations of permutation representations. Apart from this it also contains

sections describing some observations on the additive group structure and the

unit group structure of (A/πlA). The units occur as part of the parameters

for similar orbits of pairs which enable us to prove multiplicity-free results for

all orbits.

3. Orbit of Pairs:

The chapter contains results on orbits of pairs of elements in Aλ2 under the

diagonal action of Aλ. The key result being the description of the Gλ-orbit

of a pair in Aλ × Aλ (refer theorem (4.13)). Using this it is shown that

the cardinality of each orbit of pair is a monic polynomial in q with integer

coefficients where q is the cardinality of the residue field A/πA independent

of the ring A. Moreover it is also shown that the number of orbits of a given

cardinality is also a monic polynomial in q with integer coefficients which do

not depend on the ring A (refer Theorem 4.27).

4. Multiplicity-Free Representations:

In this chapter we further analyze similar orbit of pairs of elements in Aλ2 and

23



describe the suborbits in OI × OI . We prove that the permutation represen-

tation of Gλ on any orbit OI ⊂ Aλ is multplicity-free.
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Chapter 2

Introduction

2.1 The nature of the problem

Let A be a discrete valuation ring with maximal ideal generated by a uniformizing

element π and having a finite residue field Fq. We study two closely related problems

concerning finite torsion modules over A.

1. Let Aλ denote a finite A-module corresponding to a partition λ ∈ Λ as given

in equations (3.1) and (3.2). Let Gλ denote its automorphism group. In this

thesis we study the set of Gλ-orbits of Aλn under the diagonal action of Gλ

for n = 2. There are integer polynomials in one variable x i.e in the ring Z[x]

which upon evaluation at the cardinality q of the residue field A/π1A gives

cardinalities of orbits of pairs as well as the number of orbits of pairs for any

given pair of orbits. Moreover, given such a polynomial, the number of orbits

with that cardinality is an integer polynomial in q which does not depend on

A, but only on the cardinality of the residue field of A. When q = p is a prime,

the two possibilities for Aλ are finite abelian p-groups and finite dimensional

primary Fp[t]-modules (isomorphism classes of which correspond to similarity

classes of matrices). In the case of finite abelian p-groups, A is the ring of

25



p-adic integers. For general q, A can either be taken to be the ring of Witt

vectors of Fq or the ring Fq[[t]] of formal power series with coefficients in Fq.

2. We use these results to analyze the permutation representation of Gλ on the

vector spaces C[O] where O runs over Gλ-orbits in Aλ. We obtain a descrip-

tion of the suborbits of similar orbit of pairs which we use to prove that the

permutation representation on any orbit is multiplicity-free.

The monograph of Lynne M. Butler titled Subgroup Lattices and Symmetric Func-

tions [5] describes two approaches to studying subgroup lattices of finite abelian

p-groups. The first approach is linear-algebraic in nature and yields a combinatorial

interpretation of the Betti polynomials of these Cohen-Macaulay posets. The second

approach, which employs Hall-Littlewood symmetric functions, exploits properties

of Kostka polynomials to obtain enumerative results such as rank-unimodality. How-

ever, the theory of automorphism-orbits of subgroups of finite abelian groups seems

to be largely unexplored. A classification of orbits of elements in finite abelian

groups has been available for a long time (Miller [11], Birkhoff [4], Dutta-Prasad

[8]). Calvert, Dutta and Prasad [6] have used the notion of degeneration to give

a poset structure to the set of automorphism classes of subgroups and tuples of

elements in Aλ. However, these posets are not very well-understood.

The general representation theory of finite groups, along with the representation the-

ory of symmetric groups was developed by Dedekind, Frobenious, Burnside, Schur,

Brauer in the early part of the 20th century. In his 1955 paper, Green [9] computed

the characters of the irreducible representations of GLn(Fq). In contrast, for the

representation theory of groups such as GLn(Z/pkZ), despite the existence of exten-

sive literature, is not well understood. These developments are surveyed in Pooja

Singla’s PhD thesis [14] and her paper [13]. In her thesis, she studies the irreducible

complex representations of the general linear groups over principal ideal local rings

of length two. Using Clifford theory, she exhibits a bijective correspondence between

26



irreducible representations of GLn(O2) and irreducible representations of centraliz-

ers in GLn(O1) of representative elements in various similarity classes of Mn(O1).

These centralizers turn out to be products of the groups Gλ in the case where the

discrete valuation ring A is Fq[[t]].

In [12], Uri Onn classifies representations of automorphism groups of finite A-

modules of rank two completely. Dutta and Prasad [7] show that the Weil rep-

resentation of the symplectic group associated to a finite abelian group of odd order

has multiplicity-free decomposition.

In all the available results, it is observed that methods of construction and the

dimensions of irreducible representations of groups of the form Gλ do not depend on

the ring A but only on the cardinality of its residue field. The results of this thesis

are consistent with this trend.
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Chapter 3

Preliminaries

3.1 Overview

Here we assume we work with a discrete valuation ring A with maximal ideal gener-

ated by a uniformizing element π. We also assume that the residue field A/πA ∼= Fq

is finite. Typical examples are the following two rings:

• The ring of p-adic integers.

• The power series ring in one variable over a finite field.

3.2 Some Observations on the Finite Modules of

Discrete Valuations Rings with Finite Residue

Fields

Let Λ denote the set of all sequences of symbols of the form

(λρ11 , λ
ρ2
2 , . . . , λ

ρk
k ), (3.1)

where λ1 > λ2 > . . . > λk is a strictly decreasing sequence of positive integers

and ρ1, ρ2, . . . , ρk are positive integers. We allow the case where k = 0, resulting

in the empty sequence, which we denote by ∅. Every finite A-module Aλ is, up to
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isomorphism, of the form

Aλ = (A/πλ1A)⊕ρ1 ⊕ (A/πλ2A)⊕ρ2 ⊕ . . .⊕ (A/πλkA)⊕ρk (3.2)

for a unique λ ∈ Λ. let Gλ denote its automorphism group. Then the automorphism
group Gλ can be represented by a matrix of the form



GLρ1 (A/πλ1A) Hom((A/πλ2A)ρ2 , (A/πλ1A)ρ1 ) . . . Hom((A/πλkA)ρk , (A/πλ1A)ρ1 )

Hom((A/πλ1A)ρ1 , (A/πλ2A)ρ2 ) GLρ2 (A/πλ2A) . . . Hom((A/πλkA)ρk , (A/πλ2A)ρ2 )

Hom((A/πλ1A)ρ1 , (A/πλ3A)ρ3 ) Hom((A/πλ2A)ρ2 , (A/πλ3A)ρ3 ) . . . Hom((A/πλkA)ρk , (A/πλ3A)ρ3 )

...
...

. . .
...

Hom((A/πλ1A)ρ1 , (A/πλkA)ρk ) Hom((A/πλ2A)ρ2 , (A/πλkA)ρk ) . . . GLρk (A/πλkA)



Each element g of the automorphism group Gλ is represented by a matrix gmat of

the following type:

gmat =



A11 A12π
λ1−λ2 · · · A1kπ

λ1−λk

A21 A22 · · · A2kπ
λ2−λk

...
...

. . .
...

Ak1 Ak2 · · · Akk


(3.3)

where each Aij is a ρi × ρj matrix of elements from A and det(Aii) is a unit in A.

Observation 3.4. This observation has many parts.

• |Hom((A/πλA)r, (A/πµA)s)| = qmin(µ,λ)sr.

• In case µ ≥ λ and φ ∈ Hom((A/πλA)r, (A/πµA)s) then

Image(φ) ⊂ (πµ−λA/(πµ)A)s.

• |End(Aλ)| = q

∑
i,j
min(λi,λj)ρiρj

.

• |Gλ| =
∏
i

|GLρi(A/πλiA)|q
∑

i,j3i6=j
min(λi,λj)ρiρj

• There is an exact sequence as follows

0 −→Mρ(A/πA) −→ GLρ(A/πλA) −→ GLρ(A/πλ−1A) −→ 1
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• |GLρ(A/πλA)| = q(λ−1)ρ2|GLρ(A/πA)|.

• |GLρ(A/πA)| = (qρ − 1)(qρ − q)(qρ − q2) . . . (qρ − qρ−1).

• There is a filtration of subgroups of GLρ(A/πλA) such that each succesive

quotient is isomorphic to Mρ(A/πA) hence elementary abelian and the last

succesive quotient is isomorphic to GLρ(A/πA) ∼= GLρ(Fq). This series can

be completed to Jordan-Holder series and its length can be determined.

Proof. Let us prove the exactness of the sequence

0 −→Mρ(A/πA) −→ GLρ(A/πλA) −→ GLρ(A/πλ−1A) −→ 1

Since πλ−1A/πλA is a one dimensional vector space over Fq, we may fix an ad-

ditive group isomorphism t : A/πA −→ πλ−1A/πλA. Then define a map φ :

Mρ(A/πA) −→ GLρ(A/πλA) as follows. φ(A)
defn

= I + t(A). The image of φ is

independent of the isomorphism t we choose. The exactness at Mρ(A/πA) and

GLρ(A/πλA) follows. Now let us prove that the reduction map GLρ(A/πλA) −→

GLρ(A/πλ−1A) is onto. For any α, β ∈ GLρ(A/πλ−1A) such that αβ = identity,

there exist A,B ∈ Mρ(A) such that AB = I + πλ−1Ψ for some Ψ ∈ Mρ(A). So

AB(I − πλ−1Ψ) = I − π2(λ−1)Ψ2. Now λ ≥ 2 and we have A,B′ = B(I − πλ−1Ψ)

such that ĀB̄′ = identity in GLρ(A/πλA) whose further reduction mod πλ−1 gives

α, β.

Observation 3.5. (Generators for the automorphism group, see Birkhoff [4]). The

transformations on an element x = (x1, x2, . . . , xr) ∈ Aλ and on an element g =

(Rt
1, R

t
2, . . . , R

t
r)
t = (C1, C2, . . . , Cr) ∈ Gλ which effect the following moves on x

• xi 7→ xi + πλi−λjαxj for some α ∈ A and i < j

• xi 7→ xi + αxj for some α ∈ A and j < i

• xi 7→ βxi for some unit β ∈ A
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• xi ←→ xj when λi = λj (interchange of coordinates)

and respectively on g ∈ Gλ given by

• Ri 7→ Ri + πλi−λjαRj; Cj 7→ Cj + πλi−λjαCi for some α ∈ A and i < j

• Ri 7→ Ri + αRj; Cj 7→ Cj + αCi for some α ∈ A and j < i

• Ri 7→ βRi; Cj 7→ βCj for some unit β ∈ A

• Ri ←→ Rj; Ci ←→ Cj when λi = λj

generate Gλ. For DVR’s like A = Zp we can choose α = 1 in the above transforma-

tions which effect these moves as generators of Gλ.

Proof. Any element of the automorphism group can be reduced to identity matrix

by using transformations of the above type. In the case of Zp, we only need trans-

formations with α = 1 to get generators for the automorphism group.

Observation 3.6. (Characteristic forms of an element)

(a) By applying a sequence of automorhisms of Aλ we can reduce any element to a

unique characteristic form

(πr1(1, 0, 0, . . . , 0)
(ρ1)−tuple

, πr2(1, 0, 0, . . . , 0)
(ρ2)−tuple

, . . . , πri(1, 0, 0, . . . , 0)
(ρi)−tuple

, . . . , πrk(1, 0, 0, . . . , 0)
(ρk)−tuple

)t

such that ri+1 ≤ ri ≤ ri+1 + λi − λi+1 for all i.

(b) For the abelian group Aλ we can reduce any element to an alternative charac-

teristic form namely

(πr1 , πr1 , πr1 , . . . , πr1

ρ1elements

, πr2 , πr2 , πr2 , . . . , πr2

ρ2elements

, πr3 , πr3 , πr3 , . . . , πr3

ρ3elements

, . . . , πrk , πrk , . . . , πrk

ρkelements

)t

such that ri+1 ≤ ri ≤ ri+1 + λi − λi+1 for all i. (See Birkhoff [4] and Miller [11]).

Also look at Observation 3.21.
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3.3 Fundamental Poset and Characteristic Sub-

modules

The group Gλ acts on Aλn by the diagonal action:

g · (x1, . . . , xn) = (g(x1), . . . , g(xn)) for xi ∈ Aλ and g ∈ Gλ.

For n = 1, this is just the action on Aλ of its automorphism group Gλ. The Gλ-orbits

in Aλ have been understood quite well for over a hundred years (see Miller [11],

Birkhoff [4]). Some qualitative results concerning Gλ-orbits in Aλn for general n were

obtained by Calvert, Dutta and Prasad [6]. For the present purposes, however, the

combinatorial description of orbits due to Dutta and Prasad [8] is the most helpful.

This section will be a quick recapitulation of those results. Later in Chapter 2, we

describe the set of Gλ-orbits in Aλ2 under the above action for n = 2.

It turns out that for any module Aλ of the form given in equation (3.2), the Gλ-orbits

inAλ are in bijective correspondence with a certain class of ideals in a poset P , which

we call the fundamental poset. As a set,

P = {(v, k) | k ∈ N, 0 ≤ v < k}.

The partial order on P is defined by setting

(v, l) ≤ (v′, l′) if and only if v ≥ v′ and l − v ≤ l′ − v′.

The Hasse diagram of the fundamental poset P is shown in Figure 3.1. Let J(P)

denote the lattice of order ideals in P . A typical element of Aλ from equation (3.2)

is a vector of the form

e = (eλi,ti),
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Figure 3.1: The Fundamental Poset

where i runs over the set {1, . . . , k}, and for each i, ti runs over the set {1, . . . , ρi}.

To e ∈ Aλ associate the order ideal I(e) ⊂ P generated by the elements

( min
ti∈{1,...,ρi}

vπ(eλi,ti), λi)

for all ti and for all i such that the coordinate eλi,ti 6= 0 in A/πλiA. Here vπ(eλi,ti)

is the unique integer j such that vπ(eλi,ti) = uπj for some unit u in A/πλiA. In

particular, v(0) =∞. Note that the order ideal I(0) equals the empty ideal.

Consider for example, in the finite abelian p-group (or Zp-module):

Aλ = Z/p5Z⊕ Z/p4Z⊕ Z/p4Z⊕ Z/p2Z⊕ Z/p1Z. (3.7)

The order ideal I(e) of e = (0, up, p2, vp, 1), when u and v are coprime to p is the

ideal generated by {(1, 4), (1, 2), (0, 1)} represented inside P by filled-in circles (both

grey and black; the significance of the colours will be explained later) in Figure 3.2.
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Figure 3.2: The ideal I(e) of e = (0, up, p2, vp, 1) is generated by {(1, 4), (1, 2), (0, 1)}

Since the labels of the vertices can be inferred from their positions, they are omitted.

A key observation of Dutta and Prasad [8] is the following theorem:

Theorem 3.8. Let Aλ and Aµ be two finite A-modules. An element f ∈ Aµ is

a homomorphic image of e ∈ Aλ (in other words, there exists a homomorphism

φ : Aλ → Aµ such that φ(e) = f) if and only if I(e) ⊃ I(f).

It turns out that when the ideals I(e), I(e′) corresponding to two elements e, e′ ∈ Aλ

are equal then the elements e, e′ are automorphic.

Theorem 3.9. For any e, e′ ∈ Aλ, if I(e) = I(e′), then e and e′ lie in the same

Gλ-orbit.

This establishes the partial order on the Gλ-orbits of elements of an abelian group.

Let J(P)λ denote the sublattice of J(P) consisting of ideals such that max(I) is
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contained in the set

Pλ = {(v, l) ∈ P | l = λi for some 1 ≤ i ≤ k}.

Then the Gλ-orbits in Aλ are in bijective correspondence with the order ideals in

J(P)λ. For each order ideal I ⊂ P , we use the notation AλI
∗

or OI for the orbit

corresponding to I, namely,

AλI
∗

= OI = {e ∈ Aλ | I(e) = I}.

A convenient way to think about ideals in P is in terms of what we call their

boundaries: for each positive integer l define the boundary valuation of I at l to be

∂lI = min{v | (v, l) ∈ I}. (3.10)

We denote the sequence {∂lI} of boundary valuations by ∂I and call it the boundary

of I. This is indeed the boundary of the region with colored dots in Figure 3.2.

For each order ideal I ⊂ P , let max(I) denote its set of maximal elements. For

example, the maximal elements of the ideal in Figure 3.2 are represented by grey

circles.

The ideal I is completely determined by max(I): in fact taking I to max(I) gives a

bijection from the lattice J(P)λ to the set of antichains in Pλ.

Theorem 3.11. The orbits AλI
∗

consists of elements e = (eλi,ti) such that v((eλi,ti))

≥ ∂λiI for all λi and ti, and such that v(mλi,ti) = ∂λiI for at least one ti if (∂λiI, λi) ∈

max(I).

In other words, the elements of AλI
∗

are those elements all of whose coordinates

have valuations not less than the corresponding boundary valuation, and at least

one coordinate corresponding to each maximal element of I has valuation exactly
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equal to the corresponding boundary valuation.

In the running example with Aλ as given in equation (3.7) and I as in Figure 3.2,

the conditions for e = (e5,1, e4,1, e4,2, e2,1, e1,1) to be in AλI
∗

are:

1. v(e5,1) ≥ 4,

2. min(v(e4,1), v(e4,2)) = 1,

3. v(e2,1) ≥ 1,

4. v(e1,1) = 0.

For each I ∈ J(P)λ, with

max(I) = {(v1, l1), . . . , (vs, ls)}

define an element e(I) of Aλ whose coordinates are given by

eλi,ti =


πvj if λi = lj and tj = 1

0 otherwise.

In other words, for each element (vj, lj) of max I, pick λi such that λi = lj. In the

summand (A/πλiA)⊕ρi , set the first coordinate of e(I) to πvj , and the remaining

coordinates to 0.

For example, in the finite abelian p-group of the form given in equation (3.7), and

the ideal I of Figure 3.2,

e(I) = (0, p, 0, 0, 1) max(I) = {(1, 4), (0, 1)}

Theorem 3.12. Let Aλ be a finite A-module of the type given in equation (3.2).

The functions O 7→ I(e) for any e ∈ O and I 7→ OI the orbit of e(I) are mutually
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inverse bijections between the set of Gλ-orbits in Aλ and the set of order ideals in

J(P)λ.

We shall say that an element of Aλ is a canonical form if it is equal to e(I) for some

order ideal I ∈ J(P)λ = J(Pλ).

The set of endomorphic images of elements in this orbit is a Gλ-invariant submodule

of Aλ which we denote by AλI . We have

AλI =
⊔

{J∈J(P)λ|J⊂I}

AλJ
∗
. (3.13)

This submodule is a characteristic submodule as it is a union of Gλ invariant sets

(a submodule of Aλ is said to be characteristic if it is a Gλ invariant submodule of

Aλ).

The description ofAλI in terms of valuations of coordinates and boundary valuations

is very simple:

AλI = {e = (eλi,ti) | v(eλi,ti) ≥ ∂λiI}. (3.14)

Note that the map I 7→ AλI is not injective on J(P). It becomes injective when

restricted to J(P)λ. For example, if J is the order ideal in P generated by (2, 6),

(1, 4) and (0, 1), then the ideal J is strictly larger than the ideal I of Figure 3.2, but

when Aλ is as given in equation (3.7), AλI = AλJ .

The Gλ-orbits in Aλ are parametrized by the finite distributive lattice J(P)λ. More-

over, each order ideal I ∈ J(P)λ gives rise to a Gλ-invariant submodule AλI of Aλ.

The lattice structure of J(P)λ gets reflected in the poset structure of the submodules

AλI when they are partially ordered by inclusion:

Theorem 3.15. Let Aλ be a finite A module as given in equation (3.2). The func-

tion I 7→ AλI , with AλI as in equation (3.13), is a lattice isomorphism between the

the set of order ideals in J(P)λ and the set of characteristic submodules of Aλ of
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the form AλI .

In other words, for ideals I, J ∈ J(P)λ,

AλI∪J = AλI +AλJ and AλI∩J = AλI ∩ AλJ .

In fact, when Fq ∼= A/π1A with Fq having at least three elements, every Gλ-invariant

submodule is of the form AλI , therefore J(P)λ is isomorphic to the lattice of Gλ-

invariant submodules (Kerby and Rode [10]). This is not true for q = 2. Consider

the abelian group Z/23Z ⊕ Z/2Z and the subgroup H = {(0, 0), (2, 1), 2(2, 1) =

(4, 0), 3(2, 1) = (6, 1)}. This subgroup is characteristic but it does not correspond

to any ideal in J(P)λ where λ = (23, 1) ∈ Λ.

The cardinality of the orbit AλI
∗

is given by

|AλI
∗| = q[I]λ

∏
(vi,λi)∈max I

(1− q−ρi). (3.16)

Here [I]λ denotes the number of points in I ∩ Pλ counted with multiplicity :

[I]λ =
l∑

i=1

∑
{v|(v,λi)∈I}

ρi.

In particular, we have:

Theorem 3.17. Let q denote the cardinality of the residue field of A. When Aλ

is finite, the cardinality of AλI
∗

is a monic polynomial in q of degree [I]λ whose

coefficients are integers which do not depend on A.

The formula for the cardinality of the Gλ-invariant submodule is much simpler:

|AλI | = q[I]λ . (3.18)
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3.3.1 Illustrations with some Examples

For the sake of concreteness, take A = Zp (p-adic integers) for some prime p. Then

a finite A module Aλ is just a finite abelian p-group. However these examples can

be worked out for a general DVR A with uniformizer π.

Example 1 :

1. Aλ = Z/pZ and Gλ = Aut(Z/pZ) = (Z/pZ)∗

2. Number of orbits of the group under the automorphism group = 2.

3. Partition λ = (11) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(0, 1)} {1, 2, 3, . . . , p− 1} Z/pZ

max I = ∅ {0} 0

Example 2 :

1. Aλ = (Z/pZ)n and Gλ = Aut((Z/pZ)n) = GLn(Z/pZ)

2. Number of orbits of the group under the automorphism group = 2.

3. Partition λ = (1n) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(0, 1)} {v ∈ (Z/pZ)n | v 6= 0} (Z/pZ)n

max I = ∅ {0} 0

Example 3 :

1. Aλ = Z/pkZ and Gλ = Aut(Z/pkZ) = (Z/pkZ)∗ = (Z/pkZ)− p(Z/pkZ)

2. Number of orbits of the group under the automorphism group = k + 1.
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3. Partition λ = (k1) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(j, k)}, 0 ≤ j < k pj(Z/pkZ)− pj+1(Z/pkZ) pj(Z/pkZ)

max I = ∅ {0} 0

Example 4 :

1. Aλ = (Z/pkZ)n and Gλ = Aut((Z/pkZ)n) = GLn(Z/pkZ)

2. Number of orbits of the group under the automorphism group = (k + 1).

3. Partition λ = (kn) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(j, k)}, 0 ≤ j < k pj(Z/pkZ)n − pj+1(Z/pkZ)n pj(Z/pkZ)n

max I = ∅ {0} 0

In the following cases, the orbit description is given below the table in each case.

Example 5 :

1. Aλ = Z/p2Z⊕ Z/pZ and Gλ = Aut(Z/p2Z⊕ Z/pZ)

2. Number of orbits of the group under the automorphism group = 4.

3. Partition λ = (2, 1) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(0, 2)} O3 (Z/p2Z)⊕ (Z/pZ)

max I = {(0, 1)} O2 p(Z/p2Z)⊕ (Z/pZ)

max I = {(1, 2)} O1 p(Z/p2Z)⊕ 0

max I = ∅ {0} 0
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O3 = {(y, x) ∈ Aλ 3 p - y}

O2 = {(y, x) ∈ Aλ 3 p - x & p | y}

O1 = {(y, 0) ∈ Aλ 3 p | y & p2 - y}

Example 6 :

1. Aλ = (Z/p2Z)i ⊕ (Z/pZ)j and Gλ = Aut((Z/p2Z)i ⊕ (Z/pZ)j)

2. Number of orbits of the group under the automorphism group = 4.

3. Partition λ = (2i, 1j) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(0, 2)} O3 (Z/p2Z)i ⊕ (Z/pZ)j

max I = {(0, 1)} O2 p(Z/p2Z)i ⊕ (Z/pZ)j

max I = {(1, 2)} O1 p(Z/p2Z)i ⊕ 0

max I = ∅ {0} 0

O3 = {(y, x) ∈ Aλ 3 y ∈ (Z/p2Z)i − p(Z/p2Z)i}

O2 = {(y, x) ∈ Aλ 3 x ∈ (Z/pZ)j − {0} & y ∈ p(Z/p2Z)i}

O1 = {(y, 0) ∈ Aλ 3 y ∈ p(Z/p2Z)i − {0}}

Example 7 :

1. Aλ = Z/pk+1Z⊕ Z/pkZ and Gλ = Aut(Z/pk+1Z⊕ Z/pkZ)

2. Number of orbits of the group under the automorphism group = 2k + 2.

3. Partition λ = (k + 1, k) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(j, k + 1)}, 0 ≤ j < k + 1 O1j pj(Z/pk+1Z)⊕ pj(Z/pkZ)

max I = {(i, k)}, 0 ≤ i < k O2i p(i+1)(Z/pk+1Z)⊕ pi(Z/pkZ)

max I = ∅ {0} 0
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O1j = {(y, x) ∈ Aλ 3 pj ‖ y & pj | x} (Here pα ‖ a means pα exactly divides a)

O2i = {(y, x) ∈ Aλ 3 pi ‖ x & p(i+1) | y}

Example 8 :

1. Aλ = (Z/pk+1Z)r ⊕ (Z/pkZ)s and Gλ = Aut((Z/pk+1Z)r ⊕ (Z/pkZ)s)

2. Number of orbits of the group under the automorphism group = 2k + 2.

3. Partition λ = ((k + 1)r, ks) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(j, k + 1)}, 0 ≤ j < k + 1 O1j pj(Z/pk+1Z)r ⊕ pj(Z/pkZ)s

max I = {(i, k)}, 0 ≤ i < k O2i p(i+1)(Z/pk+1Z)r ⊕ pi(Z/pkZ)s

max I = ∅ {0} 0

O1j = (pj(Z/pk+1Z)r − pj+1(Z/pk+1Z)r)× (pj(Z/pkZ)s)

O2i = (pi+1(Z/pk+1Z)r)× (pi(Z/pkZ)s − p(i+1)(Z/pkZ)s)

Example 9 :

1. Aλ = Z/plZ⊕ Z/pkZ with l > k and Gλ = Aut(Z/plZ⊕ Z/pkZ)

2. Number of orbits of the group under the automorphism group = (l−k+1)(k+

1).

3. Partition λ = (l, k) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(j, l)}, 0 ≤ j < l O1j pj(Z/plZ)⊕ pj(Z/pkZ)

max I = {(i, k)}, 0 ≤ i < k O2i p(i+l−k)(Z/plZ)⊕ pi(Z/pkZ)

max I = ∅ {0} 0

max I = {(i+ r, l), (i, k)}, O3ir p(i+r)(Z/plZ)⊕ pi(Z/pkZ)

0 ≤ i < k & 0 < r < l − k
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O1j = {(y, x) ∈ Aλ 3 pj ‖ y & pj | x}

O2i = {(y, x) ∈ Aλ 3 pi ‖ x & pi+l−k | y}

O3ir = {(y, x) ∈ Aλ 3 pi ‖ x & pi+r ‖ y}

Here in the case of O3ir the corresponding ideal contains two elements. The ideal is

called a non-principal ideal.

Example 10 :

1. Aλ = (Z/plZ)r ⊕ (Z/pkZ)s with l > k and Gλ = Aut((Z/plZ)r ⊕ (Z/pkZ)s)

2. Number of orbits of the group under the automorphism group = (l−k+1)(k+

1).

3. Partition λ = (lr, ks) ∈ Λ

Ideal Orbit AλI
∗ AλI

max I = {(j, l)}, 0 ≤ j < l O1j pj(Z/plZ)r ⊕ pj(Z/pkZ)s

max I = {(i, k)}, 0 ≤ i < k O2i p(i+l−k)(Z/plZ)r ⊕ pi(Z/pkZ)s

max I = ∅ {0} 0

max I = {(i+ r, l), (i, k)}, O3ir p(i+r)(Z/plZ)r ⊕ pi(Z/pkZ)s

0 ≤ i < k & 0 < r < l − k

O1j = (pj(Z/plZ)r − pj+1(Z/plZ)r)× (pj(Z/pkZ)s)

O2i = (pi+l−k(Z/plZ)r)× (pi(Z/pkZ)s − p(i+1)(Z/pkZ)s)

O3ir = (p(i+r)(Z/plZ)r − p(i+r+1)(Z/plZ)r)× (pi(Z/pkZ)s − p(i+1)(Z/pkZ)s)

Here in the case of O3ir the corresponding ideal contains two elements. This ideal

cannot be generated by a single element.

Observation 3.19. Let Aλ be a finite A-module and Gλ denote its automorphism

group. Given an ideal I ⊂ Pλ, the structure of the orbit OI is given by
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∏
(∂λlI,λl)/∈max(I)

π(∂λlI)(A/πλlA)ρl ×
∏

(∂λlI,λl)∈max(I)

(π(∂λlI)(A/πλlA)ρl −

π(∂λlI)+1(A/πλlA)ρl)

and the characteristic submodule AλI is given by

∏
(∂λlI,λl)

π(∂λlI)(A/πλlA)ρl

Observe that each orbit is a product set or a box set in terms of its isotypic compo-

nents and its cardinality is a polynomial in q = |Fq ∼= A/π1A|.

Observation 3.20. (See Miller [11]). Let Aλ be a finite A-module of type λ ∈ Λ

as given in equation (3.2). The number of characteristic submodules of Aλ is given

by

(
k−1∏
i=1

(λi − λi+1 + 1)

)
(λk + 1).

Observation 3.21. (See Dutta and Prasad [8], page 8). Given any element a ∈ Aλ

with ideal I(a) = I ⊂ Pλ such that max(I) = {(ri1 , λi1), . . . , (ris , λis)} there exists a

unique element in the orbit OI of the type

(0, 0, 0, . . . , πri1 (1, 0, 0, . . . , 0)
(ρi1 )−tuple

, . . . , 0, 0, 0, . . . , πri2 (1, 0, 0, . . . , 0)
(ρi2 )−tuple

, . . . , 0, 0, 0, . . . ,

πrit (1, 0, 0, . . . , 0)
(ρit )−tuple

, . . . , 0, 0, 0, . . . , πris (1, 0, 0, . . . , 0)
(ρis )−tuple

, . . . , 0, 0, 0, . . . , 0, 0, 0)t

Observation 3.22. Let Aλ = A/πλ1A⊕ A/πλ2A. Let πr1(A/πλ1A)⊕ πr2(A/πλ2A)

be a characterisitic submodule. i.e., we have

• λ1 ≥ λ2, r1 ≤ λ1, r2 ≤ λ2

• r1 ≥ r2, λ1 − r1 ≥ λ2 − r2

The number of characteristic submodules in Aλ containing

πr1(A/πλ1A)⊕ πr2(A/πλ2A) is
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• (r1 +λ2−λ1 +1)(λ1−λ2 +1)+ 1
2
((λ1−λ2)− (r1−r2))((λ1−λ2)+(r1−r2)+1)

if 0 ≤ r1 + λ2 − λ1 < r2 ⇔ (r1 − r2 < λ1 − λ2 ≤ r1)

• (r2 + 1)(λ1 − λ2 + 1) = (r2 + 1)(r1 − r2 + 1)

if 0 ≤ r1 + λ2 − λ1 = r2 ⇔ (r1 − r2 = λ1 − λ2 ≤ r1)

• 1
2
(r2 + 1)(2r1 − r2 + 2) if r1 + λ2 − λ1 < 0⇔ r1 < λ1 − λ2

Proof. Case 1: Suppose 0 ≤ r1 +λ2−λ1 < r2 ⇔ (r1− r2 < λ1−λ2 ≤ r1). Then the

position of s2 has two possibilities.

• Case a: 0 ≤ s2 ≤ r1 + λ2 − λ1

• Case b: r1 + λ2 − λ1 + 1 ≤ s2 ≤ r2

The possibilities for s1 are

• Case a: s2 ≤ s1 ≤ s2 + λ1 − λ2

• Case b: s2 ≤ s1 ≤ r1

Hence the total number of characteristic submodules containing πr1(A/πλ1A) ⊕

πr2(A/πλ2A) is (r1 + λ2 − λ1 + 1)(λ1 − λ2 + 1) +
r2∑

s2=r1+λ2−λ1+1

(r1 − s2 + 1) =

(r1 + λ2 − λ1 + 1)(λ1 − λ2 + 1) + 1
2
((λ1 − λ2)− (r1 − r2))((λ1 − λ2) + (r1 − r2) + 1).

Case 2: Suppose 0 ≤ r1 + λ2 − λ1 = r2 ⇔ (r1 − r2 = λ1 − λ2 ≤ r1). Then

the position of s2 has only one possibility namely 0 ≤ s2 ≤ r1 + λ2 − λ1 = r2.

And the possibilities for s1 are s2 ≤ s1 ≤ s2 + λ1 − λ2. In this case 2 the to-

tal number of characteristic submodules containing πr1(A/πλ1A) ⊕ πr2(A/πλ2A) is
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(r2 + 1)(λ1− λ2 + 1) = (r2 + 1)(r1− r2 + 1) which is equal to the number of charac-

teristic submodules in (A/πr1A) ⊕ (A/πr2A) = A/πλ1A⊕A/πλ2A
πr1 (A/πλ1A)⊕πr2 (A/πλ2A)

.In this case a

submodule of (A/πr1A)⊕ (A/πr2A) is characteristic iff its corresponding submodule

in (A/πλ1A)⊕ (A/πλ2A) containing πr1(A/πλ1A)⊕ πr2(A/πλ2A) is characteristic.

Case 3:Suppose r1 + λ2 − λ1 < 0 ⇔ r1 < λ1 − λ2. Then the position of s2

has only one possibility namely 0 ≤ s2 ≤ r2. And the possibilities for s1 are

s2 ≤ s1 ≤ r1. In this case 3, the total number of characteristic submodules contain-

ing πr1(A/πλ1A)⊕ πr2(A/πλ2A) is
r2∑
s2=0

(r1 − s2 + 1) = 1
2
(r2 + 1)(2r1 − r2 + 2).

Observation 3.23. Let Aλ = A/πλ1A ⊕ A/πλ2A ⊕ A/πλ3A ⊕ . . . ⊕ A/πλkA. Let

πr1(A/πλ1A)⊕πr2(A/πλ2A)⊕πr3(A/πλ3A)⊕ . . .⊕πrk(A/πλkA) be a characterisitic

submodule. Suppose we also have λ1 − r1 = λ2 − r2 = λ3 − r3 = . . . = λk − rk.

Then we exhibit that a submodule of A/πr1A ⊕ A/πr2A ⊕ A/πr3A ⊕ . . . ⊕ A/πrkA

is characteristic iff its corresponding submodule in Aλ containing πr1(A/πλ1A) ⊕

πr2(A/πλ2A)⊕ πr3(A/πλ3A)⊕ . . .⊕ πrk(A/πλkA) is characteristic. Note A/πr1A⊕

A/πr2A⊕ A/πr3A⊕ . . .⊕ A/πrkA =
Aλ

πr1 (A/πλ1A)⊕πr2 (A/πλ2A)⊕πr3 (A/πλ3A)⊕...⊕πrk (A/πλkA)

Proof. The proof is omitted here. As it can be extracted from Case 2 in the proof

of the Observation 3.22, if one goes through it carefully.

3.4 Some Observations on the Additive Group

Structure and the Unit Group Structure in

the Ring A/πlA

Let A be a discrete valuation ring with uniformizing element π with a finite residue

field A/πA ∼= Fq. We have the cardinality of A/πlA is ql and the units (A/πlA)∗ has

cardinality is ql − ql−1. In general the unit group satisfies the split exact sequence
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1 −→ (1 + πA/πlA) −→ (A/πlA)∗
←↩−→ (A/πA)∗ ∼= F∗q −→ 1

Here |(1+πA/πlA)| = ql−1. One way to prove that this sequence splits is to produce

an element of order q−1 in (A/πlA)∗ which is as follows. Since the map to F∗q is onto

and F∗q is cyclic, pick an element α ∈ (A/πlA)∗ such that it maps to the generator

of F∗q. Then αq−1 has order a power of p say pr where char(Fq) = p a prime. We

find αp
r

has order q − 1.

We get a filtration of subgroups using the exact sequence

1 −→ (1 + πl−1A/πlA) −→ (A/πlA)∗ −→ (A/πl−1A)∗ −→ 1

as follows. First observe that for any l > 1, Fq ∼= A/πA
∼=−→ (1 + πl−1A/πlA).

For i ≤ l let τil : (A/πlA)∗ −→ (A/πiA)∗ be the reduction modulo πi map. The

filtration is given by

0 ⊂ τ−1
(l−1)l(1) = (1 + πl−1A/πlA) ⊂ τ−1

(l−1)l(1 + πl−2A/πl−1A) ⊂ τ−1
(l−2)l(1 +

πl−3A/πl−2A) ⊂ . . . ⊂ τ−1
2l (1 + πA/π2A) ⊂ τ−1

1l (1) = (1 + πA/πlA) ⊂ (A/πlA)∗

Except for the last successive quotient, each one is isomorphic to Fq and the last

one is isomorphic to F∗q.

Observation 3.24. This has two parts. For the first part see Apostol [3, Chap-

ter 10])

1. If A is the ring of p-adic integers Zp then we exhibit that (A/πlA)∗ is cyclic of

order pl−1(p− 1) if p is an odd prime and if p = 2 then it is cyclic iff l ≤ 2.

2. If A is the power series ring in one variable over Fp then we exhibit that

(A/πlA)∗ is cyclic iff l = 1, 2.

Proof. Part 1 : Here (A/πlA)∗ ∼= (Z/plZ)∗. And(1 + p)p
l−1 ≡ 1 (mod pl) and (1 + p)p

l−2 ≡ (1 + pl−1) (mod pl) if p is an odd prime

(1 + xp)p
l−2 ≡ 1 (mod pl) if p = 2 for all x ∈ (Z/plZ)
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So if p is an odd prime then there is an element of order pl−1 and there is an element

of order p− 1. Hence (Z/plZ)∗ is cyclic. If p = 2 then any element in (Z/plZ)∗ is of

the form (1+xp) (mod pl) for some x ∈ (Z/plZ) and has order dividing pl−2 whereas

order of (Z/plZ)∗ is pl−1. Hence (Z/plZ)∗ is not cyclic, unless when l ≤ 2.

Part 2 : Let l = qp+ r with 0 ≤ r < p. Consider the equation xp = 1. We observe

that if (q+2) < l < (q+1)p then (1+xtq+1 +ytq+2)p = 1 for all x, y ∈ Fp. Hence the

number of solutions to the equation xp = 1 is more than p. So the group (Fp[[t]]/tl)∗

is not cyclic in general. If q + 2 ≥ l which occurs in the following cases which we

examine.

q = 0, r = l = 1, p any prime

q = 0, r = l = 2, p any prime

q = 1, r = 0, l = p = 3

q = 1, r = 0, l = p = 2

q = 1, r = 1, l = 3, p = 2

q = 2, r = 0, l = 4, p = 2

Note that the ring Fp[[t]]/tl can be embedded in upper triangular matrices in Ml(Fp)

with equal entries on the diagonal and on each of the super diagonals. If l = 1 then

(Fp[[t]]/tl)∗ ∼= F∗p is cyclic. If l = 2 then (Fp[[t]]/tl)∗ has elements of order p and p−1.

Order of 1 + t is p and order of the generator of F∗p which is cyclic is p− 1. So here

again (Fp[[t]]/tl)∗ is cyclic. If l = 3 and p ≥ 3 then (1 + xt+ yt2)p = 1 for x, y ∈ Fp.

Hence it is not cyclic. If l = 3 and p = 2 then again (Fp[[t]]/tl)∗ ∼= (Z/p1Z)⊕2 which

is not cyclic. So the only case left is l = 4, p = 2 in this case again (1+xt2 +yt3)p = 1

for x, y ∈ Fp. Hence it is not cyclic. This finishes the proof and we conclude that

(Fp[[t]]/tl)∗ is cyclic iff l = 1 or l = 2

Observation 3.25. Observe that the abelian group structure upto isomorphism of

the succesive quotients in the above filtration is elementary abelian and the last

successive quotient in the filtration is cyclic.
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Proof. Since this is fairly straight forward the details of the proof are omitted.

Observation 3.26. This has two parts.

• If char(A) = p then the additive group (A/πlA) is elementary abelian.

• If char(A) = 0 and let Â be the completion of A with respect to the π-adic

filtration and Â is finitely generated over the ring of p-adic integers and suppose

πe = p for some integer e > 0 (called the ramification index) then the additive

group structure of (A/πlA) can be determined and it is given by

(A/πlA) ∼= (Z/ps+1Z)⊕tr ⊕ (Z/psZ)⊕t(e−r)

Proof. Part 1 : (A/πlA) is a vector space over Fp. Hence the claim follows.

Part 2 : Since char(A) = 0,Z ⊂ A and (π) ∩ A is a prime ideal in Z and we have

(π) ∩ A = pZ where p is the characteristic of the finite residue field A/π1A ∼= Fq.

Since A is a DVR, pA = (πe) for some e > 0. In the hypothesis it is given that

infact p = πe. We use this now. First consider the subring B = Z((p))[π] ⊂ Â. This

subring is a complete discrete valuation ring with the same uniformizer π and Â is

finitely generated over B, since Â is finitely generated over Z((p)). So Â is a finitely

generated free module over B as Â is torsion free module over a PID B, hence it is

free of finite rank (say = t).

Now consider the unit element 1 ∈ Â/πlÂ. Let l = es + r for some 0 ≤ r < e. We

have that by adding 1 repeatedly to itself 1+1+1+ . . .+1, ps+1 times we get ps+1 =

πes+e = 0 since es+ e > l. Note (ps+1 − 1) = (πes+e − 1) = (πl+(e−r) − 1) = −1 6= 0.

Also note that

• If r > 0, ps = πl−r 6= 0.

• If r = 0, ps = πl−r = 0, ps − 1 = −1 6= 0.
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We conclude that order(1) = ps+1 if r > 0 and order(1) = ps if r = 0. By similar

observations we conclude that

• If 0 ≤ i < r the order(πi) = p(s+1).

• And for e > i ≥ r we have order(πi) = ps.

We also observe that the additive group B/πlB splits < 1 > ⊕ < π > ⊕ < π2 >

⊕ . . .⊕ < πe−1 >. Note that πe = p an integer multiple of 1, πe+1 = pπ an integer

multiple of π and so on. So the additive group A/πlA ∼= Â/πlÂ is isomorphic to

(B/πlB)t ∼= (Z/ps+1Z)⊕tr ⊕ (Z/psZ)⊕t(e−r)

This gives the additive group structure of (A/πlA).

3.5 Permutation Representations

In this section we develop some preliminaries about the complex permutation repre-

sentations. Let G,H, . . . denote finite groups and X, Y, . . . denote sets on which they

act. The actions give rise to complex permutation representations C[X],C[Y ], . . . of

the finite groups G,H, . . .. We will examine some properties of these permutation

representations.

Observation 3.27. Let V = C[X],W = C[Y ] be two complex vector spaces associ-

ated to two permutation representations of G on the sets X, Y . Then Hom(V,W)

is isomorphic to C[X × Y ] as representations of G.

Observation 3.28. Let V = C[X],W = C[Y ] be two complex vector spaces as-

sociated to two permutation representations of G on the sets X, Y . Observe that

HomG(V,W) is isomorphic to C[G\(X×Y )] as representations of G. Let X =
⊔
i

Xi
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and Y =
⊔
j

Yj is the partition of X and Y into disjoint transitive subsets. Let

xi ∈ Xi, yj ∈ Yj be a collection of representatives. Let Hi and Kj denote their stabi-

lizers respectively. The dimension of HomG(V,W) is equal to the number of double

cosets of Hi and Kj in G for all i, j.

Observation 3.29. Let X, Y be two transitive G-sets. Let x ∈ X and y ∈ Y be two

elements with stabilizers Gx and Gy respectively. Then there are natural bijections

among the following.

• The set of G orbits in X × Y under the diagonal action of G.

• The set of Gx orbits in Y

• The set of Gy orbits in X

• The set of double cosets of Gx and Gy in G.

Observation 3.30. Let X, Y be two G-sets. Let xi ∈ Xi and yj ∈ Yj be a collec-

tion of representatives in their transitive subset-partitions X =
⊔
i

Xi and Y =
⊔
j

Yj

respectively. Let Gxi and Gyj be their stabilizer subgroups in G respectively. Then

there is a natural bijection among the following.

• The set of G orbits in X × Y under the diagonal action of G which contain

xi in the first coordinate for some element in those orbits with the set of Gxi

orbits in Y

• The set of G orbits in X ×Y under the diagonal action of G which contain yj

in the second coordinate for some element in those orbits with the set of Gyj

orbits in X

• The set of double cosets of Gxi and Gyj in G with the G-orbits of Xi × Yj.

• The set of double cosets of Gxi and Gyj in G for all i, j with the G-orbits of

X × Y
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Observation 3.31. Let X, Y be two transitive G-sets. Let x ∈ X and y ∈ Y be

two representatives with stabilizers Gx and Gy respectively. Let Ox,y be the orbit of

(x, y) ∈ X × Y . Then the following holds.

• |G| = |Gx||X| = |Gy||Y |.

• Cardinality of Gx orbit of y ∈ Y = |Gx|/|Gx ∩Gy|

• Cardinality of Gy orbit of x ∈ X = |Gy|/|Gx ∩Gy|

• |Ox,y| = |G/Gx| (Cardinality of Gx orbit of y ∈ Y ) = |G/Gy|(Cardinality of

Gy orbit of x ∈ X) = |G/(Gx ∩Gy)|.

• The number of G-orbits in X ×Y = (1/|G|)(
∑
g∈G
|Xg||Yg|) where Xg and Yg are

the number of fixed points of g in X and Y respectively.

Observation 3.32. Let H,K ⊂ G be two finite subgroups of a finite group G. Let

C1, C2, . . . , Ck be the various conjugacy classes of G. Then the number of double

cosets is given by

m = (
|G|
|H||K|

)(
k∑
i=1

|Ci ∩H||Ci ∩G|
|Ci|

)

Observation 3.33. Any permutation representation of G on C[X] contains a trivial

subrepresentation. The dimension of C[X]G is the number of distinct transitive

orbits. And if the action of G is doubly transitive on X then the C[X] is a direct

sum of two irreducible representations one of which is trivial one dimensional.

Observation 3.34. Let H ⊂ G be a subgroup. Then the IndGH1 is isomorphic to

C[G/H] the permutation representation of G on the cosets of H in G. When H

is trivial it is isomorphic to the left regular representation. If H = G then it is

isomorphic to trivial 1-dimensional represenation.

Observation 3.35. Let N ⊂ G be a normal subgroup. Then the permutation repre-

sentation C[G/N ] ∼= IndGN1 of G gives rise to the left regular representation of G/N

on C[G/N ].
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Observation 3.36. The representation of a finite group G on a vector space V is

multiplicity free if and only if EndG(V ) is commutative.

Observation 3.37. The left regular representation of G is multplicity free if and

only if the G is abelian. The permutation representation of G on the cosets of the

commutator subgroup is multiplicity free.

Observation 3.38. The character table of the cyclic group is the Discrete Fourier

Transform matrix upto a constant. We can express the character table of a finite

abelian group as a Kronecker product of the character table of the cyclic groups using

the structure theorem of finite abelian groups.
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Chapter 4

Polynomials for Orbits of Pairs

Let Gλ be the automorphism group of a finite A module Aλ. Consider two orbits

OI and OL corresponding to two ideals I and L in the poset J(P)λ. In this chapter

we describe the structure of the decomposition of OI ×OL into orbits of pairs and

the structure of orbit of pairs.

We prove that there are integer polynomials in one variable x i.e in the ring Z[x]

which upon evaluation at the cardinality q of the residue field A/π1A gives cardi-

nalities of orbits of pairs as well as the number of orbits of pairs for any given set

of two orbits OI ⊂ Aλ and OL ⊂ Aλ.

4.1 A Lattice Homomorphism

Theorem 4.1. Let Aλ and Aµ be two finite modules over the discrete valuation ring

A of type λ, µ ∈ Λ (refer equation (3.1)) and suppose AλI ⊂ Aλ be a characteristic

submodule of Aλ corresponding to ideal I ∈ J(P)λ. Let ∂I = {(∂λlI, λl) = (νl, λl) |

1 ≤ l ≤ k}. Define

HOM(Aλ,Aµ)AλI =

( ∑
φ∈HOM(Aλ,Aµ)

φ(AλI)
)
⊂ Aµ

Then

• HOM(Aλ,Aµ) is a lattice homomorphism from the lattice of characteristic

submodules of Aλ to the lattice of characteristic submodules of Aµ.
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• HOM(Aλ,Aµ)AλI = AµJ where AµJ is a characteristic submodule of Aµ

such that ∂J = {(∂µlJ, µl) = (σl, µl) | 1 ≤ l ≤ m} where the determination of

boundary valuations of σ is mentioned below.

σi =


min(νji−1, µi − λji + νji), if there exists ji such that λji−1 ≥ µi > λji

νk, if λk ≥ µi

µi − λ1 + ν1, if µi > λ1

• The ideal I ∈ J(P)λ generates an ideal in the fundamental poset J(P) which

when restricted to J(P)µ gives the ideal J ∈ J(P)µ.

Proof. -

• It is clear that HOM(Aλ,Aµ) maps characteristic submodules to characteristic

submodules and it is a lattice homomorphism.

• Now that λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λk), µ = (µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ µl) and

ν ⊂ λ is given by ν = (ν1 ≥ ν2 ≥ ν3 ≥ . . . ≥ νk) and λ− ν = (λ1 − ν1 ≥ λ2 − ν2 ≥

. . . ≥ λk − νk), define σ = (σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σl) as follows. Define σi as in the

Theorem 4.1.

Claim: σ = (σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σl) and µ − σ = (µ1 − σ1 ≥ µ2 − σ2 ≥ . . . ≥

µk − σk).

Let us prove that σ2 ≤ σ1. Rest is similar. νj1−1 ≥ νj2−1 ≥ σ2. If j1 = j2

then σ2 ≤ µ2 − λj2 + νj2 ≤ µ1 − λj1 + νj1 . If j1 6= j2 then j1 ≤ j2 − 1 and so

σ2 ≤ νj2−1 ≤ νj1 ≤ µ1 − λj1 + νj1 . So σ2 ≤ min(νj1−1, µ1 − λj1 + νj1).

Now let us prove that µ1 − σ1 ≥ µ2 − σ2. i.e µ1 − min(νj1−1, µ1 − λj1 + νj1) ≥

µ2 −min(νj2−1, µ2 − λj2 + νj2). Rest is again similar. We will show that max(µ1 −

νj1−1, λj1−νj1) ≥ max(µ2−νj2−1, λj2−νj2). λj2−νj2 ≤ λj1−νj1 so λj2−νj2 ≤ max(µ1−
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νj1−1, λj1 − νj1). If j1 = j2 then µ2 − νj2−1 ≤ µ1 − νj1−1 ≤ max(µ1 − νj1−1, λj1 − νj1).

if j1 ≤ j2− 1 then µ2− νj2−1 ≤ λj2−1− νj2−1 ≤ λj1 − νj1 ≤ max(µ1− νj1−1, λj1 − νj1).

Therefore max(µ1 − νj1−1, λj1 − νj1) ≥ max(µ2 − νj2−1, λj2 − νj2) follows.

So this implies that ideal J is well determined in J(P)µ and AµJ ⊂ Aµ is a character-

istic submodule by the correspondence Theorem 3.15 and also HOM(Aλ,Aµ)AλI =

AµJ .

• We also observe that σi ≤ νji−1, νji ≤ νji−1, νji ≤ µi − λji + νji . Hence νji ≤ σi ≤

νji−1. Similarly for µi − σi = max(µi − νji−1, λji − νji). λji−1 − νji−1 ≥ λji − νji and

λji−1 − νji−1 ≥ µi − νji−1 hence λji−1 − νji−1 ≥ µi − σi ≥ λji − νji .

So we have the following chain of inequalities.

ν1 ≥ ν2 ≥ ν3 ≥ . . . ≥ νj1−1 ≥ σ1 ≥ νj1 ≥ . . . ≥ νj2−1 ≥ σ2 ≥ νj2 ≥ . . . ≥ νj3−1 ≥

σ3 ≥ νj3 ≥ . . .

and similarly

λ1 − ν1 ≥ λ2 − ν2 ≥ λ3 − ν3 ≥ . . . ≥ λj1−1 − νj1−1 ≥ µ1 − σ1 ≥ λj1 − νj1 ≥ . . . ≥

λj2−1− νj2−1 ≥ µ2− σ2 ≥ λj2 − νj2 ≥ . . . ≥ λj3−1− νj3−1 ≥ µ3− σ3 ≥ λj3 − νj3 ≥ . . ..

Now the Theorem 4.1 follows.

Lemma 4.2. Let Aλ and Aµ be two finite modules over the discrete valuation ring

A. The image of the lattice homomorphism HOM(Aλ,Aµ) is a sublattice of char-

acteristic submodules of Aµ which is isomorphic to characteristic submodule lattice

of Aν which is J(P)ν for some partition ν.

Proof. Let λ = (λρ11 , . . . , λ
ρk
k ) and µ = (µσ11 , . . . , µ

σl
l ) be the partitions corresponding

to λ and µ. And suppose Bor(λ, µ) = (λi1 > λi2 > . . . > λir) are the border

parts of the partition λ with respect to partition µ. i.e parts of the partition λ

that are adjacent to parts of µ on the number line as shown in the example figure

above. Then it is clear that given an ideal I ∈ J(P)λ it gives rise to an ideal
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Figure 4.1: mu-values in between lambda-values

I∩PBor(λ,µ) ∈ J(P)Bor(λ,µ). This map I → I∩PBor(λ,µ) is not injective in general but

it is onto set of all ideals in J(P)Bor(λ,µ). However ideals in J(P)Bor(λ,µ) bijectively

correspond to characteristic submodules of Aµ which lie in the image of the lattice

homomorphism HOM(Aλ,Aµ) which maps characteristic submodules of Aλ into

characteristic submodules of Aµ. Now the lemma follows.

4.2 Sum of Orbits

This section proves a combinatorial lemma on the sum of two Gλ-orbits in Aλ which

will be needed in Section 4.3. Given order ideals I, J ⊂ J(P)λ, the set

AλI
∗

+AλJ
∗

= {e+ f | e ∈ AλI
∗

and f ∈ AλJ
∗}.
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This set is clearly Gλ-invariant, and therefore a union of Gλ-orbits. In this section,

we determine exactly which Gλ-orbits occur in AλI
∗

+AλJ
∗
.

Lemma 4.3. For I, J ∈ J(P)λ, every element (eλi,ri) of AλI
∗

+ AλJ
∗

satisfies the

conditions

1. v(eλi,ri) ≥ max(∂λiI, ∂λiJ).

2. If (∂λiI, λi) ∈ max I − J , then minri v(eλi,ri) = ∂λiI.

3. If (∂λiJ, λi) ∈ max J − I, then minri v(eλi,ri) = ∂λiJ .

If the residue field of A has at least three elements, then every element of Aλ satis-

fying these three conditions is in AλI
∗

+AλJ
∗
.

To see why the condition on the residue field is necessary consider the case where

Aλ = Z/2Z, and AλI
∗

is the non-zero orbit (corresponding to the ideal I in P

generated (0, 1)), AλI
∗

+AλI
∗

consists only of 0. If, on the other hand, the residue

field has at least three elements, this phenomenon does not occur.

Proof of the lemma. Let Aλi denote the summand (A/πλiA)⊕ρi of Aλ in the decom-

position given in the equation (3.2). Let Aλ∗i = Aλi − πAλi. By Theorem 3.11 it

suffices to show that

πkAλ∗i + πlAλ∗i =


πmin(k,l)Aλ∗i if k 6= l,

πkAλi if k = l and |A/π1A| ≥ 3.

(4.4)

which follows from the well-known non-Archimedean inequality

v(x+ y) ≥ min(v(x), v(y)),

and the fact that strict inequality is possible only if v(x) = v(y).
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Together with Theorem 3.11, the above lemma gives the following description of the

set of orbits which occur in AλI
∗

+AλJ
∗
:

Theorem 4.5. Assume that the residue field of A has at least three elements. For

ideals I, J ∈ J(P)λ,

AλI
∗

+AλJ
∗

=
⊔

K⊂I∪J, maxK⊃(max I−J)∪(max J−I)

AλK
∗
.

In the following lemma the restriction on the residue field of A in Lemma 4.3 is not

needed:

Lemma 4.6. For ideals I and J in J(P)λ, an element (eλi,ri) is in AλI
∗

+ AλJ if

and only if the following conditions are satisfied:

1. v(eλi,ri) ≥ min(∂λiI, ∂λiJ).

2. If (∂λiI, λi) ∈ max I − J , then minri v(eλi,ri) = ∂λiI.

Proof. The proof is similar to that of Lemma 4.3, except that instead of the equa-

tion (4.4), we use:

πkAλi + πlAλ∗i =


πkAλi if k ≤ l,

πlAλ∗i if k > l.

The above lemma allows us to describe the sum of an orbit and a characteristic

submodule:

Theorem 4.7. For ideals I, J ∈ J(P)λ,

AλI
∗

+AλJ =
⊔

K⊂I∪J, maxK⊃max I−J

AλK
∗
. (4.8)
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4.3 Stabilizer of Canonical Forms

By Theorem 3.12, every Gλ-orbit of pairs of elements (a, b) ∈ Aλ × Aλ contains a

pair of the form (e(I), f), for some I ∈ J(P)λ. Now fix an ideal I ∈ J(P)λ. Let

GλI denote the stabilizer in Gλ of e(I). Then the Gλ-orbits of pairs (a, b) ∈ Aλ ×Aλ

which contain an element of the form (e(I), f) are in bijective correspondence with

GλI-orbits in Aλ. In this section, we give a description of GλI which facilitates the

classification of GλI-orbits in Aλ.

The main idea here is to decompose Aλ into a direct sum of two A-modules (and

this decomposition depends on I):

Aλ = Aλ′ ⊕Aλ′′ , (4.9)

where Aλ′ consists of those cyclic summands in the decomposition given in the

equation (3.2) of Aλ where e(I) has non-zero coordinates, and Aλ′′ consists of the

remaining cyclic summands. In the example mentioned above, Aλ is given by equa-

tion (3.7), and the ideal I is given in the Figure 3.2. We have

Aλ′ = Z/p4Z⊕ Z/pZ, Aλ′′ = Z/p5Z⊕ Z/p4Z⊕ Z/p2Z.

Note that e(I)
′ ∈ Aλ′ . The reason for introducing this decomposition is that the

description of the stabilizer of e(I)
′

in the automorphism group of Aλ′ is quite nice:

Lemma 4.10. The stabilizer of e(I)
′ 6= 0 in Gλ′ is

Gλ′
I = {idA

λ
′ + n | n ∈ EndA(Aλ′ ) satisfies n(e(I)′) = 0}.

Proof. Obviously, the elements of Gλ′
I are all the elements of EndA(Aλ′ ) which map

e(I)
′

to itself. The only thing to check is that they are all invertible. For this, it

suffices to show that if n(e(I)
′
) = 0, then n is nilpotent, which will follow from
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Lemma 4.11 below.

Lemma 4.11. For any A-module of the form

Aµ = A/πµ1A⊕ · · · ⊕ A/πµmA,

with µ1 > · · · > µm, and x = (πv1 , . . . , πvm) ∈ Aµ such that the set

(v1, µ1), . . . , (vm, µm)

is an antichain in P, if n ∈ EndAAµ is such that n(x) = 0, then n is nilpotent.

Proof. Case: m = 1. In this case n = (n11) : A/πµ1A → A/πµ1A and n(πv1) =

n11π
v1 = 0 with v1 < µ1. So n11 ∈ (π). Hence n is nilpotent.

Case: m > 1. Write n as a matrix (nij), where nij : A/πµjA→ A/πµiA. We have

n(πv1 , . . . , πvm)i = nii(π
vi) +

∑
j 6=i

nij(π
vj) = 0,

for 1 ≤ i ≤ m. If nii1 is a unit, then niiπ
vi has valuation vi, hence at least one of

the summands nijπ
vj must have valuation vi or less. It follows from Theorem 3.8

(applied to A/πµjA and A/πµiA) that (vi, µi) ≤ (vj, µj) contradicting the antichain

hypothesis. Thus, for each i, nii(1) ∈ π(A/πµiA). It follows that n is nilpotent.

Every endomorphism of Aλ can be written as a matrix

x y

z w

, where x : Aλ′ →

Aλ′ , y : Aλ′′ → Aλ′ , z : Aλ′′ → Aλ′ and w : Aλ′′ → Aλ′′ are homomorphisms.

We are now ready to describe the stabilizer of e(I) in Gλ:

• Let Nλ
′

= {n ∈ EndA(Aλ′ ) | n(e(I)′) = 0} is a nilpotent ideal in EndA(Aλ′ ).

• And M(λ
′
, λ
′′
) = {z ∈ HOM(Aλ′ ,Aλ′′ ) | z(e(I)′) = 0}.
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Theorem 4.12. The stabilizer of e(I) in Gλ consists of matrices of the form

idA
λ
′ + n y

z w

 ,

where n ∈ Nλ
′
⊂ EndA(Aλ′ ), y ∈ HOM(Aλ′′ ,Aλ′ ) is arbitrary, z ∈ M(λ

′
, λ
′′
) ⊂

HOM(Aλ′ ,Aλ′′ ), and w ∈ Gλ′′ is invertible.

Proof. Clearly, all the endomorphisms of Aλ which fix e(I) are of the form stated

in the theorem, except that w need not be invertible. We need to show that the

invertibility of such an endomorphism is equivalent to the invertibility of w.

To begin with, consider the case where Aλ = (A/πkA)n for some positive integers

k, n. Then, if e(I) 6= 0 (the case e(I) = 0 is trivial), then Aλ′ = (A/πkA), and

Aλ′′ = (A/πkA)n−1. The endomorphisms which fix e(I) are all of the form

1 + n y

z w

 ,

where n, z ∈ (π). Such endomorphisms, being block upper-triangular modulo π, are

invertible if and only if w is invertible, proving the claim when Aλ = (A/πkA)n. In

general, Aλ is a sum of such modules, and an endomorphism of Aλ is invertible if

and only if its diagonal block corresponding to each of these summands is invertible.

Therefore the claim follows in general as well.

To elaborate more on the above proof consider the following example. Let

Aλ = (A/πλ1A)ρ1 ⊕ (A/πλ2A)ρ2 ⊕ (A/πλ3A)ρ3

with

λ = (λρ11 , λ
ρ2
2 , λ

ρ3
3 ) ∈ Λ
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(refer equation (3.1)) with ρi ≥ 2 for all i. Consider the non-principal ideal I

generated by an antichain of the form {(v1, λ1), (v3, λ3)} in P . Let v2 = ∂λ2I, and

suppose that (v2, λ2) /∈ max(I). We have λ1 − v1 > λ2 − v2, v2 > v3 and

Aλ′ = A/πλ1A⊕A/πλ3A, Aλ′′ = (A/πλ1A)⊕(ρ1−1)⊕(A/πλ2A)⊕ρ2⊕(A/πλ3A)⊕(ρ3−1).

Note that e(I)
′
= (πv1 , πv3) ∈ Aλ′ and e(I) = (πv1 , 0, . . . , 0

ρ1−tuple
, 0, 0, . . . , 0

ρ2−tuple
, πv3 , 0, . . . , 0

ρ3−tuple
) ∈

Aλ. A typical element g of Gλ is of the form

• g11 =

 (m1,1)1×1 (m1,2)(1×(ρ1−1))

(m2,1)((ρ1−1)×1) (m2,2)((ρ1−1)×(ρ1−1))


(ρ1×ρ1)

• g12 =

 m1,3 m1,4

m2,3 m2,4


(ρ1×ρ2)

πλ1−λ2

• g13 =

 (m1,5)(1×1) (m1,6)(1×(ρ3−1))

(m2,5)((ρ1−1)×1) (m2,6)((ρ1−1)×(ρ3−1))


(ρ1×ρ3)

πλ1−λ3

• g21 =

 (m3,1)(1×1) (m3,2)(1×(ρ1−1))

(m4,1)((ρ2−1)×1) (m4,2)((ρ2−1)×(ρ1−1))


(ρ2×ρ1)

• g22 =

 m3,3 m3,4

m4,3 m4,4


(ρ2×ρ2)

• g23 =

 (m3,5)(1×1) (m3,6)(1×(ρ3−1))

(m4,5)((ρ2−1)×1) (m4,6)((ρ2−1)×(ρ3−1))


(ρ2×ρ3)

πλ2−λ3

• g31 =

 (m5,1)(1×1) (m5,2)(1×(ρ1−1))

(m6,1)((ρ3−1)×1) (m6,2)((ρ3−1)×(ρ1−1))


(ρ3×ρ1)
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• g32 =

 m5,3 m5,4

m6,3 m6,4


(ρ3×ρ2)

• g33 =

 (m5,5)(1×1) (m5,6)(1×(ρ3−1))

(m6,5)((ρ3−1)×1) (m6,6)((ρ3−1)×(ρ3−1))


(ρ3×ρ3)

Bringing together the coordinates corresponding to Aλ′ (namely the first and fifth

coordinates) and the coordinates corresponding to Aλ′′ (the remaining coordinates),

we get that with respect to the decomposition Aλ = Aλ′ ⊕Aλ′′ we conclude that g

is in the following form

g11 =

 (m1,1)(1×1) (m1,5)(1×1) π
λ1−λ3

(m5,1)(1×1) (m5,5)(1×1)


(2×2)

g12 =


(m1,2)(1×(ρ1−1))

[
m1,3 m1,4

]
(1×ρ2)

πλ1−λ2 (m1,6)(1×(ρ3−1)) π
λ1−λ3

(m5,2)(1×(ρ1−1))

[
m5,3 m5,4

]
(1×ρ2)

(m5,6)(1×(ρ3−1))



g21 =



(m2,1)((ρ1−1)×1) (m2,5)((ρ1−1)×1) π
λ1−λ3 (m3,1)(1×1)

(m4,1)((ρ2−1)×1)


 (m3,5)(1×1)

(m4,5)((ρ2−1)×1)

 πλ2−λ3
(m6,1)((ρ3−1)×1) (m6,5)((ρ3−1)×1)


g22 =

(m2,2)((ρ1−1)×(ρ1−1)) [m2,3 m2,4 ]((ρ1−1)×ρ2) π
λ1−λ2 (m2,6)((ρ1−1)×(ρ3−1)) π

λ1−λ3[
(m3,2)(1×(ρ1−1))

(m4,2)((ρ2−1)×(ρ1−1))

] [
m3,3 m3,4

m4,3 m4,4

]
(ρ2×ρ2)

[
(m3,6)(1×(ρ3−1))

(m4,6)((ρ2−1)×(ρ3−1))

]
πλ2−λ3

(m6,2)((ρ3−1)×(ρ1−1)) [m6,3 m6,4 ]((ρ3−1)×ρ2) (m6,6)((ρ3−1)×(ρ3−1))



The invertibility of g is equivalent to invertibility of the following diagonal block

matrices in g given in
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 (m1,1)(1×1) (m1,2)(1×(ρ1−1))

(m2,1)((ρ1−1)×1) (m2,2)((ρ1−1)×(ρ1−1))


(ρ1×ρ1)

,

 m3,3 m3,4

m4,3 m4,4


(ρ2×ρ2)

,

 (m5,5)(1×1) (m5,6)(1×(ρ3−1))

(m6,5)((ρ3−1)×1) (m6,6)((ρ3−1)×(ρ3−1))


(ρ3×ρ3)

Since g is in the stabilizer GλI of e(I), the diagonal blocks corresponding to one and

three (max(I) = {(v1, λ1), (v3, λ3)}) co-ordinates mentioned above have the following

property.

• (m1,1)(1×1) and (m5,5)(1×1) are units

• (m2,1)((ρ1−1)×1) and (m6,5)((ρ3−1)×1) are 0 mod π.

Hence invertibilty of g is equivalent to invertibility of the following matrices.

(m2,2)((ρ1−1)×(ρ1−1)),

 m3,3 m3,4

m4,3 m4,4


(ρ2×ρ2)

,(m6,6)((ρ3−1)×(ρ3−1))

Observe that this is equivalent to invertibility of the following matrix because w is

triangular mod π.
(m2,2)((ρ1−1)×(ρ1−1)) [m2,3 m2,4 ](ρ1−1×ρ2) π

λ1−λ2 (m2,6)((ρ1−1)×(ρ3−1)) π
λ1−λ3[

(m3,2)(1×(ρ1−1))

(m4,2)((ρ2−1)×(ρ1−1))

] [
m3,3 m3,4

m4,3 m4,4

]
(ρ2×ρ2)

[
(m3,6)(1×(ρ3−1))

(m4,6)((ρ2−1)×(ρ3−1))

]
πλ2−λ3

(m6,2)((ρ3−1)×(ρ1−1)) [m6,3 m6,4 ]((ρ3−1)×ρ2) (m6,6)((ρ3−1)×(ρ3−1))


Now the claim about invertibility follows.

4.4 Cardinality of the Stabilizer

Here we compute the cardinality of the stabilizing group GλI . This is going to be

polynomial in q. Let λ′/I denote the partition corresponding to the isomorphism
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class of Aλ′/Ae(I)′. The partition λ′/I is completely determined by the partition

λ′ and the ideal I ∈ J(P)λ where λ′ and λ′′ arise as partitions with respect to

the decomposition 4.9 of Aλ with respect to I. We will show later that λ′/I is

completely independent of A (refer Lemma 4.26) for the stucture of λ′/I). By using

Theorem 4.12 and Observation 3.4 we compute the cardinality of GλI . We have

• |Nλ
′
| = |HOM(Aλ′/I ,Aλ′ )|

• |M(λ
′
, λ
′′
)| = |HOM(Aλ′/I ,Aλ′′ )|

• |HOM(Aα,Aβ)| = |HOM(
k⊕
i=1

(A/παiA)ρi ,
l⊕

j=1

(A/πβjA)σj)| = q

k∑
i=1

l∑
j=1

min(αi,βj)ρiσj

• |Gα| = q

k∑
i=1

k∑
j=1

i 6=j

min(αi,αj)ρiρj
k∏
i=1

q(αi−1)ρ2i |GLρi(Fq)|

Here α = (αρ11 , α
ρ2
2 , . . . , α

ρk
k ) and β = (βσ11 , β

σ2
2 , . . . , β

σl
l ).

So by knowing the partitions λ, λ
′
, λ
′′
, λ
′
/I the cardinality of GλI is given by

|GλI | = |HOM(Aλ′/I ,Aλ′ )| × |HOM(Aλ′′ ,Aλ′ )| × |HOM(Aλ′/I ,Aλ′′ )| × |Gλ′′ |

4.5 The Stabilizer Orbit of an Element

Let GλI denote the stabilizer of e(I) ∈ Aλ. Write each element m ∈ Aλ as m =

(m′,m′′) with respect to the decomposition given in the equation (4.9)) of Aλ. Also,

for any m′ ∈ Aλ′ , let m̄′ denote the image of m′ in Aλ′/Ae(I)′.

Theorem 4.12 allows us to describe the orbits of m under the action of GλI , which

is the same as describing the Gλ-orbits in Aλ×Aλ whose first component lies in the

orbit AλI
∗

of e(I).

Theorem 4.13. Given l and m in Aλ, l lies in the GλI-orbit of m in Aλ if and only

if the following conditions hold:
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• l′ ∈ m′ +Aλ′
I(m̄′)∪I(m′′).

• l′′ ∈ Aλ′′
I(m′′)∗ +Aλ′′

I(m̄′).

Proof. By Theorem 4.12, l = (l′, l′′) lies in the GλI-orbit of m if and only if

l′ = m′ + n̄(m̄′) + y(m′′) and l′′ = z̄(m̄′) + w(m′′)

for homomorphisms n̄ ∈ HomA(Aλ′/Ae(I)′,Aλ′ ), y ∈ HomA(Aλ′′ ,Aλ′ ),

z̄ ∈ HomA(Aλ′/Ae(I)′,Aλ′′ ) and w ∈ AutA(Aλ′′ ). By Theorems 3.8 and 3.9, this

means

l′ ∈ m′ +Aλ′
I(m̄′) +Aλ′

I(m′′) and l′′ ∈ Aλ′′
I(m̄′) +Aλ′′

I(m′′)∗ .

By the remark following Theorem 3.15, Aλ′
I(m̄′) + Aλ′

I(m′′) = Aλ′
I(m̄′)∪I(m′′), giving

the conditions in the lemma.

Given m = (m′,m′′) ∈ Aλ, the ideals I(m̄′) and I(m′′) may be regarded as combina-

torial invariants of m. Now suppose that the residue field k of A is finite of order q.

We can show that, having fixed these combinatorial invariants, the cardinality of the

orbit of m is a polynomial in q whose coefficients are integers which do not depend

on A. Also, the number of elements of Aλ having these combinatorial invariants is

a polynomial in q whose coefficients are integers which do not depend on A. Using

these observations, we will be able to conclude that the number of orbits of pairs in

Aλ is a polynomial in q whose coefficients are integers which do not depend on A.

Theorem 4.14. Fix J ∈ J(P)λ′/I , K ∈ J(Pλ′′). Then the cardinality of the

GλI-orbit of any element m = (m′,m′′) such that I(m̄′) = J and I(m′′) = K is

given by

αI,J,K = |Aλ′
J∪K |

( ∑
K′⊂JUK, maxK′⊃maxK−J

|Aλ′′
K′∗ |

)
. (4.15)

Proof. This is a direct consequence of Theorems 4.7 and 4.13.
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Applying Theorem 3.17 and 3.18 to Theorem 4.14 gives:

Theorem 4.16. Given the module Aλ and q denoting the cardinality of the residue

field of A, the cardinality of every GλI-orbit in Aλ is of the form αI,J,K = α̂I,J,K(q)

for some J ∈ J(P)λ′/I and some K ∈ J(P)λ′′. Each α̂I,J,K(q) is a monic polynomial

in q of degree [J ∪K]λ whose coefficients are integers which are independent of the

ring A.

If the sets

XI,J,K = {(m′,m′′) ∈ Aλ | I(m̄′) = J and I(m′′) = K}

were GλI-stable, we could have concluded that XI,J,K consists of

|XI,J,K |
αI,J,K

many orbits, each of cardinality αI,J,K . However, XI,J,K is not, in general, GλI-stable

(this can be seen easily by viewing the condition 4.13 in the context of Theorem 4.7).

Note that this condition involves many ideals instead of just one single ideal K.

However they do give a partition of Aλ i.e Aλ =
⊔

J∈J(P)λ′/I ,K∈J(P)λ′′

XI,J,K . The

dependence of XI,J,K on I comes via the homomoprhism Aλ′ → Aλ′/Ae(I)′. The

following lemma gives us a way to work around the non-GλI-stability of XI,J,K :

Lemma 4.17. Let S be a finite set with a partition S =
⊔N
i=1 Si (for the application

we have in mind, these will be the GλI-orbits in Aλ). Suppose that S has another

partition S =
⊔Q
j=1 Tj, such that there exist positive integers n1, n2, . . . , nQ for which,

if x ∈ Tj ∩Si, then |Si| = nj (in our case, the Tj’s will be the sets XI,J,K). Then the

number of i ∈ {1, . . . , N} such that |Si| = n is given by

1

n

∑
{j|nj=n}

|Tj|.
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Proof. Note that ⊔
{j|nj=n}

|Tj|

is the union of all the Si’s for which |Si| = n.

Taking S to be the set Aλ, the Si’s to be the GλI-orbits in Aλ, and Tj’s to be the

sets XI,J,K in Lemma 4.17 gives:

Theorem 4.18. Let α(q) be a monic polynomial in q with integer coefficients. Then

the number of GλI-orbits in Aλ with cardinality α(q) is

Nα(q) =
1

α(q)

∑
{(I,J,K)|αI,J,K(q)=α(q)}

|XI,J,K |.

Since α(q) and |XI,J,K | are polynomials in q, the number Nα(q) of GλI-orbits in Aλ

of cardinality α(q) is a rational function in q. The following lemma will show that

it is in fact a polynomial in q with integer coefficients:

Lemma 4.19. Let r(q) and s(q) be polynomials in q with integer coefficients. Sup-

pose that r(q)/s(q) takes integer values for infinitely many values of q. Then r(q)/s(q)

is a polynomial in q with rational coefficients. If, in addition s(q) is primitive i.e

has content 1 (for example s(q) is monic) , then r(q)/s(q) has integer coefficients.

Proof. Suppose we could write r(q) = s(q)t(q) + u(q) where t(q), u(q) 6= 0 are

polynomials with rational coefficients with deg u(q) < deg s(q). So r(q)/s(q) =

t(q) + u(q)/s(q). Now multiply both sides by a positive integer n > 0 such that

nt(q) is a polynomial in q with integer coefficients. We have nr(q)/s(q) = nt(q) +

nu(q)/s(q) and nr(q)/s(q) takes integer values for infinitely many values of q by

hypothesis. So it follows that nu(q)/s(q) takes integer values for infinitely many

values of q. However deg u(q) < deg s(q) and therefore nu(q)/s(q) −→ 0 as q −→∞

which is a contradiction. So u(q) = 0. Hence r(q)/s(q) = t(q) a polynomial with

rational coefficients.
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Now if in addition s(q) is primitive then choose a positive integer n > 0 such that

nt(q) is a polynomial in q with integer coefficients with content 1 i.e primitive.

Then nr(q) = nt(q)s(q). Here we observe that RHS = nt(q)s(q) has content 1 i.e.

primitive being a product of two primitive polynomials whereas LHS = nr(q) is

certainly not primitive unless n = 1 in which case t(q) is a polynomial with integer

coefficients.

Example 4.20. Consider an arbitrary λ ∈ Λ, and take I to be the maximal ideal

in J(P)λ (this is the ideal in P generated by Pλ) itself. Then, in the notation of

equation (3.1),

λ′ = (λ1), λ′′ = (λρ1−1
1 , λρ22 , . . . , λ

ρl
l ).

The element e(I)′ is a generator of Aλ′ , and so Aλ′/Ae(I)′ = 0. It follows that

the only possibility for the ideal J ∈ J(P)λ′/I is J = ∅. As a result, the only

combinatorial invariant of GλI-orbits in Aλ is K ∈ J(P)λ′′ . We have

αI,∅,K(q) = |Aλ′
K ||Aλ′′

K∗|.

On the other hand,

|XI,∅,K | = qλ1|Aλ′′
K∗|.

Therefore, given a polynomial α(q), the number of GλI-orbits of cardinality α(q) is

∑
{K∈J(P)λ′′ |αI,∅,K=α(q)}

qλ1

|Aλ′
K |
.

For example, if λ = (2, 1ρ2), then the number of GλI-orbits in Aλ is q2 + q, and if

λ = (2ρ1 , 1ρ2) with ρ1 > 1, then the number of GλI-orbits in Aλ is q2 + 2q + 1.

Example 4.21. Now consider the case where λ = (5, 4, 4, 2, 1) and I is the ideal of

Figure 3.2. Then the first column of Table 4.1 gives all the possible cardinalities for

GλI-orbits in Aλ.
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Cardinality Number of Orbits
1 q3

(q − 1)q7 (q − 1)q
(q − 1)q12 (q − 1)
q4 (q − 1)q2

(q − 1)2q11 1
(q − 1)2q8 q
(q − 1)2q10 1
(q − 1)q2 q2

(q − 1)2q6 q
(q − 1)2q3 q2

(q − 1)2q5 q
(q − 1) q3

(q − 1)q15 1
(q − 1)q5 q
q9 (q − 1)q
(q − 1)q8 q
(q − 1)q14 1
(q − 1)q11 (q − 1)
(q − 1)q6 q2

(q − 1)q4 (q − 1)q2

(q − 1)q3 2q2

(q − 1)q9 q2

(q − 1)q10 q

Table 4.1: Cardinalities and numbers of stabilizer orbits
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The corresponding element of the second column is the number of orbits with that

cardinality. The total number of GλI-orbits in Aλ is given by the polynomial

4q3 + 6q2 + 6q + 2.

This data was generated using a computer program written in sage. In general the

total number of GλI-orbits in Aλ need not be a polynomial with positive integer

coefficients, for example, take λ = (2) (A = Zp so Aλ = Z/p2Z) and I is the ideal

generated by (1, 2) (the corresponding orbit in Aλ contains p). The total number of

GλI-orbits in Aλ is 2p− 1.

The above results can be summarized to give the following Theorem:

Theorem 4.22. Let A be a discrete valuation ring with finite residue field. Fix

λ ∈ Λ and take Gλ as given in equation (3.2). Let Gλ denote the group of A-module

automorphisms of Aλ. Fix an order ideal I ∈ J(P)λ (and hence the Gλ-orbit AλI
∗

in Aλ).

1. The cardinality of each Gλ-orbit in AλI
∗×Aλ is a monic polynomial in q whose

coefficients are integers.

2. Given a monic polynomial β(q) with integer coefficients, the number of Gλ-orbits

in AλI
∗ ×Aλ of cardinality β(q) is a polynomial in q with coefficients that are

integers which do not depend on A.

3. The total number of Gλ-orbits in AλI
∗ × Aλ depends only on whether ρi is 0,

1, or any cardinal greater than 1 (and not on the exact value of ρi) for each

of the multiplicities ρi in equation (3.1).

For part three of the above Theorem 4.22 we request the reader to refer Corol-

lary 4.28.
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For the total number of orbits in Aλ ×Aλ, we have:

Theorem 4.23. Let A be a discrete valuation ring with finite residue field of order

q. Fix λ ∈ Λ and take Aλ as in equation (3.2). Let Gλ denote the group of A-module

automorphisms of Aλ. Then there exists a monic polynomial nλ(q) of degree λ1

with integer coefficients (which do not depend on A or q) such that the number of

Gλ-orbits in Aλ ×Aλ is nλ(q).

Proof. The only thing that remains to be proved is the assertion about the degree

of nλ(q). By Theorem 4.18,

deg nλ(q) = max
I,J,K

(deg|XI,J,K | − degαI,J,K(q)).

Recalling the definitions of XI,J,K and αI,J,K(q), we find that we need to show that

[J ∪K]λ′/I + logq |Ae(I)′|+ [K]λ′′ ≤ λ1 + [J ∪K]λ.

Observe that [J ∪K]λ = [J ∪K]λ′ + [J ∪K]λ′′ , and [K]λ′′ ≤ [J ∪K]λ′′ . Moreover,

it turns out that [J ∪ K]λ′/I ≤ [J ∪ K]λ′ (see Lemma 4.24 below). Therefore,

the inequality to be proved reduces to logq |Ae(I)′| ≤ λ1, which is obviously true.

Furthermore, if equality holds, then |Ae(I)′| = qλ1 , which is only possible if I is

the maximal ideal in J(P)λ, which was considered in Example 4.20, where a monic

polynomial of degree 0 was obtained.

Lemma 4.24. For any ideal J ∈ J(P),

[J ]λ′/I ≤ [J ]λ′ .

Proof. The partition λ′/I is described in Lemma 4.26. Observe that

k1 ≥ v1 + k2 − v2 ≥ k2 ≥ v2 + k3 − v2 ≥ · · · ≥ vs−1 + ks − vs ≥ vs,
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In other words, the parts of λ′/I alternate with the parts of λ′. For each ideal

J ∈ J(P)λ′/I , the contribution of J to [J ]λ′/I in a given chain (∗, vi + ki+1 − vi+1) ⊂

Pλ′/I (or (∗, vs) ⊂ Pλ′/I) is less than equal to its contribution to [J ]λ′ in the chain

(∗, ki) ⊂ Pλ′ (resp. (∗, ks) ⊂ Pλ′). It follows that [J ]λ′ ≥ [J ]λ′/I .

4.6 Product of Two Orbits I and L

In order to refine Theorem 4.22 to the enumeration of Gλ-orbits in AλI
∗×AλL

∗
for a

pair of order ideals (I, L) ∈ J(P)2
λ, we need to repeat the calculations in section 4.5

with XI,J,K replaced by its subset

XI,J,K,L = {m ∈ XI,J,K | m ∈ AλL
∗}.

Thus our goal is to show that |XI,J,K,L| is a polynomial in q whose coefficients are

integers which do not depend on A. By using Mœbius inversion on the lattice J(P)λ,

it suffices to show that

YI,J,K,L = {m ∈ XI,J,K | m ∈ AλL}

has cardinality polynomial in q whose coefficients are integers which do not depend

on A. This is easier, because m = (m′,m′′) ∈ AλL if and only if m′ ∈ Aλ′
L and

m′′ ∈ Aλ′′
L. If (m′,m′′) ∈ YI,J,K,L, we also have that m′′ ∈ Aλ′′

K∗ . Thus YI,J,K,L = ∅

unless K ⊂ L, in which case

|YI,J,K,L| = #{m′ ∈ Aλ′
L | I(m̄′) = J}|Aλ′′

K∗|.

Therefore, we are reduced to proving the following lemma:
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Lemma 4.25. The cardinality of the set

{m′ ∈ Aλ′ | I(m′) ⊂ L and I(m̄′) = J}

is a polynomial in q whose coefficients are integers which do not depend on A.

Proof. Let Āλ′ denote the quotient Aλ′/Ae(I)′ (so Āλ′ is isomorphic to Aλ′/I in the

notation of section 4.5). Suppose that max I = {(v1, k1), . . . , (vs, ks)}. Then

Aλ′ = A/πk1A⊕ · · · ⊕ A/πksA.

Lemma 4.26. Let λ′/I be the partition given by

λ′/I = (v1 + k2 − v2, v2 + k3 − v3, . . . , vs−1 + ks − vs, vs).

and Aλ′/I be the corresponding A-module as given by equation (3.2) with all multi-

plicities equal to 1. If Q ∈ SLs(A) is the matrix

Q =



1 πv1−v2 πv1−v3 · · · πv1−vs

0 1 πv2−v3 · · · πv2−vs

0 0 1 · · · πv3−vs

...
...

...
. . .

...

0 0 0 · · · 1


then the isomorphism As → As whose matrix is Q descends to a homomorphism Q̄ :

Aλ′ → Aλ′/I such that ker Q̄ ⊃ Aλ′e(I)′. The induced homomorphism Aλ′/Ae(I)′ →

Aλ′/I is an isomorphism of A-modules.

Proof. Let e1, e2, . . . , es denote the standard basis of As, and f1 = Q(e1), f2 =

Q(e2), . . . , fs = Q(es) denote another basis of As which is the image of the stan-

dard basis under the isomorphism Q. Let ē1, . . . , ēs denote the generators of Aλ′ ,
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and f̄1, . . . , f̄s denote the generators of Aλ′/I . We have

Qej =


f1 for j = 1,

−πvj−1−vjfj−1 + fj for 1 < j ≤ n.

By using the inequalities λj > vj + λj+1− vj+1 for 1 ≤ j < s and λs ≥ vs, one easily

verifies that Q(πλjej) is 0 in Aλ′/I . Therefore Q induces a well-defined A-module

homomorphism Q̄ : Aλ′ → Aλ′/I . Now

Q̄(e(I)) = Q̄(
∑

πvj ēj)

= πv1 f̄1 + (−πv2+v1−v2 f̄1 + πv2 f̄2) + (−πv3+v2−v3 f̄2 + πv3 f̄2) +

· · ·+ (−πvs+vs−1−vs f̄s−1 + πvs f̄s)

= 0.

Therefore Q̄ induces a homomorphismAλ′/Ae(I)′ → Aλ′/I . Because Q ∈ SLs(A), Q̄

is onto. When the residue field of A is finite, one easily verifies that |Ae(I)′||Aλ′/I | =

|Aλ′ |, whereby Q̄ is an isomorphism. Indeed, |Ae(I)′| = qλ1−v1 , |Aλ′ | = q|λ
′| and

|Aλ′/I | = q
|A
λ
′
/I
|
= qv1+λ2+···+λs . In general, this argument using cardinalities can be

easily replaced by an argument using the lengths of modules of A.

We now return to the proof of Lemma 4.25. Using Mœbius inversion on the lattice

J(P)λ′/I , in order to prove Lemma 4.25, it suffices to show that the cardinality of

the set

S = {m′ ∈ Aλ′ | m
′ ∈ Aλ′

L and m̄′ ∈ Aλ′/I
J}

is a polynomial in q whose coefficients are integers which do not depend on A. Write

m′ ∈ Aλ′ as m′1e1 + · · ·+m′ses, and n ∈ Aλ′/I as n1f1 + · · ·+nsfs. By equation (3.14)
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and Lemma 4.26, S consists of elements m′ ∈ Aλ′ such that

v(m′i) ≥ ∂kiL for i = 1, . . . , s,

v(Q̄(m′)i) ≥ ∂vi+ki+1−vi+1
J for i = 1, . . . , s− 1, and

v(Q̄(m′)s) ≥ ∂vsJ,

which can be rewritten as

v(m′i) ≥ ∂kiL for i = 1, . . . , s,

v(m′i − πvi−vi+1m′i+1) ≥ ∂vi+ki+1−vi+1
J for i = 1, . . . , s− 1, and

v(m′s) ≥ ∂vsJ.

Therefore we are free to choose for ms any element of A/πksA which satisfies

v(m′s) ≥ max(∂ksL, ∂vsJ).

Thus the number of possible choices of m′s of any given valuation is a polynomial

in q with coefficients that are integers which do not depend on A. Having fixed m′s,

we are free to choose m′s−1 satisfying

v(m′s−1) ≥ ∂ks−1
L

v(m′s−1 + πvs−1−vsm′s) ≥ ∂vs−1+ks−vsJ.

Note that for any x, y ∈ A/πkA and non-negative integers u, v, the cardinality of

the set

{x | v(x+ y) ≥ v and v(x) = u}

is a polynomial in q with coefficients that are integers which do not depend on A.

This shows that for each fixed valuation of m′s, the number of possible choices for
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m′s−1 of a fixed valuation is again a polynomial in q whose coefficients are integers

that do not depend on A. Continuing in this manner, we find that the cardinality of

S is a polynomial in q whose coefficients are integers which do not depend on A.

Proceeding exactly as in the proof of the Theorem 4.22 we can obtain the following

refinement:

Theorem 4.27 (Main Theorem). Let A be a discrete valuation ring with finite

residue field. Fix λ ∈ Λ and take Aλ as given in equation (3.2). Let Gλ denote the

group of A-module automorphisms of Aλ. Fix order ideals I, L ∈ J(P)λ (and hence

Gλ-orbits AλI
∗

and AλL
∗

in Aλ).

1. The cardinality of each Gλ-orbit in AλI
∗ × AλL

∗
is a monic polynomial in q

whose coefficients are integers.

2. Given a monic polynomial β(q) with integer coefficients, the number of Gλ-orbits

in AλI
∗ × AλL

∗
of cardinality β(q) is a polynomial in q with coefficients that

are integers which do not depend on A.

3. The total number of Gλ-orbits in AλI
∗ ×AλL

∗
depends only on whether ρi is 0,

1, or any cardinal greater than 1 (and not on the exact value of ρi) for each

of the multiplicities ρi in equation (3.1).

Proof. If we are only interested in the number of orbits, Corollary 4.28 below al-

lows us to reduce any λ ∈ Λ to λ(2) ∈ Λ. Here we give a different proof of

part 3 of Theorem 4.27. Once we fix an I , the partitions λ, λ′, λ′′ and λ′/I

are all well determined. Let L ∈ J(P)λ be as given in Theorem 4.27. Let J ∈

J(P)λ′/I and K ∈ J(P)λ′′ . The ideal corresponding to the characteristic submodule

HOM(Aλ′/I ,Aλ′ )(Aλ′/I
J) + HOM(Aλ′′ ,Aλ′ )(Aλ′′

K) of Aλ is [J ∪ K]λ′ the ideal

generated by J and K in Pλ′ . Let an element m′ ∈ Aλ′ be such that I(m̄′) = J .

Then they determine the following GλI orbit Om′,J,K
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• m′ +Aλ′
J∪K .

• Aλ′′
K∗ +Aλ′′

J .

So we have a surjection onto the GλI-orbits in AλL
∗

from the space S = {(m′, J,K) |

J ∈ J(P)λ′/I , K ∈ J(P)λ′′ ,m
′ ∈ Aλ′ with I(m̄′) = J and Om′,J,K ⊂ AλL

∗} to the

stabilizer suborbits in AλL
∗

or to the orbits under the diagonal action of Gλ in

AλI
∗ ×AλL

∗
.

Now we immediately see that (m′, J1, K1) and (n′, J2, K2) gives rise to the same GλI

orbit if and only if

• [J1]λ′ ∪ [K1]λ′ = [J2]λ′ ∪ [K2]λ′

• [J1]λ′′ ∪ [K1]λ′′ = [J2]λ′′ ∪ [K2]λ′′

• max([K1]λ′′)− [J1]λ′′ = max([K2]λ′′)− [J2]λ′′

• m′ − n′ ∈ Aλ′
J1∪K1 = Aλ′

J2∪K2

We observe that λ, λ′, λ′′ and λ′/I and the above conditions do not depend on the

multiplicities ρi when we change them when they are already greater than 1. Hence

the proof of 3 in Theorem 4.27 follows.

Corollary 4.28 (Independence of multiplicities larger than two). Consider the par-

tition λ(m) derived from λ by:

λ(m) = (λ
min(m1,m)
1 , λ

min(m2,m)
2 , . . . , λ

min(ml,m)
l ).

Let Aλ(m) denote the A-module corresponding to λ(m), with automorphism group

Gλ(m). Then the standard inclusion map Aλ(2) ↪→ Aλ induces a bijection

Gλ(2)\Aλ(2) ×Aλ(2)→̃Gλ\Aλ ×Aλ. (4.29)
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Proof. We shall use the fact that the canonical forms e(I) of Theorem 3.12 lie in

Aλ(1) ⊂ Aλ. Thus given a pair (x, y) ∈ Aλ × Aλ, we can reduce x to e(I) ∈

Aλ(1) using automorphisms of Aλ. Theorem 4.12 shows that, while preserving e(I),

automorphisms of Aλ can be used to further reduce y to an element of Aλ′⊕Aλ′′(1) ⊂

Aλ(2) . This proves the surjectivity of the map in (4.29).

To see injectivity, suppose that two pairs (x1, y1) and (x2, y2) in Aλ(2)×Aλ(2) lie in the

same Gλ-orbit. Since Aλ(2) is a direct summand of Aλ, we can write Aλ = Aλ(2) ⊕B.

If g ∈ Gλ has matrix

g11 g12

g21 g22

 with respect to this decomposition, then g11 ∈ Gλ(2)

also maps (x1, y1) ∈ Aλ(2) ×Aλ(2) to (x2, y2) ∈ Aλ(2) ×Aλ(2) .

Remark 4.30. Corollary 4.28 and its proof remain valid if we restrict ourselves to

Gλ-orbits in AλI
∗ ×AλJ

∗
for order ideals I, J ∈ J(P)λ.
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Chapter 5

Multiplicity-Free

In this chapter we consider the permutation representation of the automorphism

group Gλ of a module Aλ on any particular orbit OI . We prove that C[OI ] decom-

poses as a direct sum of distinct irreducible representations of the automorphism

group Gλ by showing that the endomorphism algebra ENDGλ(C[OI ]) is commuta-

tive. We use both the notations OI and AλI
∗

for the orbit in Aλ corresponding to

an ideal I.

5.1 Two Simple Cases

Here are two simple cases:

Theorem 5.1. For λ = (n) ∈ Λ, the permutation representation of Gλ on any

Gλ-orbit OI in Aλ is multiplicity-free.

Proof. In this case we have that the number of orbits of the group under the auto-

morphism group is (n+ 1).

Ideal I Orbit AλI
∗

= OI AλI

max I = {(j, n)} such that 0 ≤ j < n πj(A/πnA)− πj+1(A/πnA) πj(A/πnA)

max I = ∅ {0} 0

Consider the orbit OI with max(I) = {(j, n)}. For each y ∈ (A/πn−jA)∗, let

Oy
I = {(a, ya)| for all a ∈ OI}.
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The partition of OI ×OI into suborbits under the diagonal action of Gλ is given by

OI ×OI =
⊔

y∈(A/πn−jA)∗

Oy
I .

Let Iy denote the indicator function of Oy
I . Then we have Iy1∗Iy2 = Iy1y2 for all y1, y2

∈ (A/πn−jA)∗ which is obvious in this case (convolution of two lines in the plane

corresponding to Oy1 and Oy2 passing through the origin with slopes not in the set

{0,∞} correspond to multiplication of their slopes y1, y2). So the endomorphism

algebra ENDGλ(C[OI ]) is commutative. The permutation representation on the

zero orbit is the trivial representation. Hence the permutation representation on

any orbit in the case λ = (n) ∈ Λ is multiplicity-free.

Theorem 5.2. For λ = (nk) ∈ Λ, the permutation representation of Gλ on any

Gλ-orbit OI in Aλ is multiplicity-free.

Proof. Here also the number of orbits of the group under the automorphism group

is (n+ 1).

Ideal I Orbit AλI
∗

= OI AλI

max I = {(j, n)}, 0 ≤ j < n πj(A/πnA)k − πj+1(A/πnA)k πj(A/πnA)k

max I = ∅ {0} 0

Consider the orbit OI with max(I) = {(j, k)}. Again for each y ∈ (A/πn−jA)∗

we have a suborbit Oy
I of OI × OI defined as Oy

I = {(a, ya)| for all a ∈ OI}. The

complement of
⋃

y∈(A/πn−jA)∗
Oy
I in OI ×OI is also a suborbit, which we denote by Og.

Thus the decomposition of (OI ×OI) into suborbits under the action of Gλ is given

by

(OI ×OI) = Og
⊔( ⊔

y∈(A/πn−jA)∗

Oy
I

)
.

Note that here the suborbits are parametrized by the set (A/πn−jA)∗ ∪ {g}. Let Iy

denote the indicator function of Oy
I . Then we have Iy1 ∗ Iy2 = Iy1y2 for all y1, y2 ∈
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(A/πn−jA)∗. Let Ig denote the indicator function of Og then Ig commutes with Iy

because the indicator function of the whole set OI ×OI commutes with Iy for each

y. So the endomorphism algebra ENDGλ(C[OI ]) is commutative. The permutation

representation on the zero orbit is trivial and 1-dimensional. Hence the permutation

representation on any orbit in the case λ = (nk) ∈ Λ is multiplicity-free.

5.2 Description Model

Each orbit OI ⊂ Aλ intersects any isotypic part (A/πλiA)ρi of Aλ in a set of the

form

1. π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi if (∂λiI, λi) ∈ max(I).

2. π∂λiI(A/πλiA)ρi if (∂λiI, λi) /∈ max(I).

and moreover OI is the product of these intersections. We are going to show in

Section 5.3 that each orbit of pair O ⊂ OI ×OI ⊂ Aλ ×Aλ intersects any isotypic

part (A/πλiA)ρi × (A/πλiA)ρi of Aλ2 in a set of ordered pairs having the following

description given below. Moreover O is the product of these intersections of ordered

pairs.

In case 1, if (∂λiI, λi) ∈ max(I)

• {(a, b) ∈ (π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi)×

(π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi)

| b − ay ∈ πr(A/πλiA)ρi for some r > ∂λiI and for some slope unit y ∈ A∗}

OR

• {(a, b) ∈ (π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi)×

(π∂λiI(A/πλiA)ρi − π(∂λiI)+1(A/πλiA)ρi)
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| b− ay ∈ πr(A/πλiA)ρi − πr+1(A/πλiA)ρi for some r ≥ ∂λiI

and for some slope unit y ∈ A∗ and

π−r(b− ay)(mod π) is linearly independent with π−∂λiIa(mod π) in (Fq)ρi}

In case 2, if (∂λiI, λi) /∈ max(I)

• {(a, b) ∈ π∂λiI(A/πλiA)ρi × π∂λiI(A/πλiA)ρi}

OR

• {(a, b) ∈ π∂λiI(A/πλiA)ρi × π∂λiI(A/πλiA)ρi | b− ay ∈ πr(A/πλiA)ρi

for some r > ∂λiI and for some slope unit y ∈ A∗}

OR

• {(a, b) ∈ π∂λiI(A/πλiA)ρi × π∂λiI(A/πλiA)ρi |

b− ay ∈ πr(A/πλiA)ρi − πr+1(A/πλiA)ρi

for some r ≥ ∂λiI and for some slope unit y ∈ A∗}

Note that unrestricted condition does not arise in Case 1 and linear independence

condition does not arise in Case 2.

As we have seen in the single component case in Theorem 5.2, the Figure 5.1 be-

low gives a pictorial description of the suborbits in ((A/πnA)k − π(A/πnA)k) ×

((A/πnA)k − π(A/πnA)k).
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Figure 5.1: Component Model
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5.3 Description of Orbit of Pairs for an Ideal

Let I ∈ J(P)λ be an ideal. Let the orbit OI corresponding to the ideal I ∈ J(P)λ

be the box set of the form:

∏
(∂λlI,λl)/∈max(I)

π(∂λlI)(A/πλlA)ρl ×
t∏

j=1

(πsij (A/πλijA)ρij − πsij+1(A/πλijA)ρij ) (5.3)

Theorem 5.4. Let I ∈ J(P)λ be an ideal with

max I = {(sij , λij) | j = 1 to t}

Let λ′ and λ′′ be the partitions associated to the finite modules which arise in the

decomposition( 4.9) of Aλ with respect to the ideal I. Let Om′,J,K = {(l′, l′′) ∈

Aλ′ ⊕ Aλ′′ = Aλ | l′ ∈ m′ + Aλ′
J∪K , l′′ ∈ Aλ′′

K∗ + Aλ′′
J , I(m̄′) = J} ⊂ OI ⊂ Aλ

be any GλI-suborbit. Then there exists a vector made up of units in A (need not be

unique) with y = (yi1 , yi2 , yi3 , . . . , yit) ∈ (A∗)t such that

1. If we take x to be the characteristic element of O[J∪K]λ′′
⊂ Aλ′′ : (refer part (a)

of Observation 3.6)

x = (πr1(1, 0, 0, . . . , 0)
(ρ1)−tuple

, πr2(1, 0, 0, . . . , 0)
(ρ2)−tuple

, . . . , πrk(1, 0, 0, . . . , 0)
(ρk)−tuple

)t ∈ O[J∪K]λ′′
⊂ Aλ′′

here x excludes the coordinates that occur in Aλ′ and if ρi > 1 then ri =

∂λi([J ∪K]λ′′).

2. And if we take

f = ((πsi1yi1 , π
si2yi2 , . . . , π

sityit), x)

then f ∈ Om′,J,K ⊂ OI and the suborbit O of OI×OI corresponding to Om′,J,K (refer
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Observation 3.30) is

O = {(a, b) = (ge, gf) ∈ OI ×OI ⊂ Aλ ×Aλ | g ∈ Gλ}

where a and b satisfy:

For any given i ∈ {1, 2, . . . , k}

• If i = il ∈ S = {i1, i2, . . . , it}, then

ail , bil ∈ (πsil (A/πλilA)ρil − πsil+1(A/πλilA)ρil )

• if we define

mil =min

(
min

j<il,j∈S
(sj + val(yj − yil)),

min
j>il,j∈S

(λil − λj + sj + val(yj − yil)),

min
j<il,j∈S,ρj>1

(rj), min
j<il,j /∈S

(rj),

min
j>il,j∈S,ρj>1

(λil − λj + rj), min
j>il,j /∈S

(λil − λj + rj)

)

then we have mil > sil and exactly one of the following holds.

A. (bil − yilail) ∈ πmil (A/πλilA)ρil if mil ≤ ril , ρil > 1 or if ρil = 1.

B. (bil−yilail) ∈ πril (A/πλilA)ρil if mil > ril , ρil > 1 and π−ril (bil−yilail)(mod π)

is linearly independent with π−silail(mod π) in Fρilq .

• If i /∈ S, there exists an il ∈ S, ∂λiI = sil or ∂λiI = λi − λil + sil such that

ai, bi ∈ π∂λiI(A/πλiA)ρi

87



• if we define

mi = min

(
min

j<il,j∈S
(sj + val(yj − yil)),

min
j>il,j∈S

(λi − λj + sj + val(yj − yil)),

min
j<i,j∈S,ρj>1

(rj), min
j<i,j /∈S

(rj),

min
j>i,j∈S,ρj>1

(λi − λj + rj), min
j>i,j /∈S

(λi − λj + rj)

)

then we have mi ≥ ∂λiI and exactly one of the following holds.

a. bi − yilai ∈ πmi(A/πλiA)ρi if ri ≥ mi > ∂λiI

b. bi−yilai ∈ (π∂λi ([J ]λ′′∪[K]λ′′ )(A/πλiA)ρi−π∂λi ([J ]λ′′∪[K]λ′′ )+1(A/πλiA)ρi) with

mi > ri = ∂λi([J ]λ′′ ∪ [K]λ′′) ≥ ∂λiI

c. (ai, bi) ∈ π∂λiI(A/πλiA)ρi ⊕ π∂λiI(A/πλiA)ρi can be any element.

Proof. Consider the suborbit Om′,J,K ⊂ OI . Let m′ = (m′i1 ,m
′
i2
, . . . ,m′it) = (πni1y′i1 ,

πni2y′i2 , . . . , π
nity′it) where val(m′il) = nil . We modify m′ as follows. First of all, using

Theorems 4.12 and 4.13, we note that m′il can be changed to any new element m̃il in

the coset m′il+π
∂λil

([J ]λ′∪[K]λ′ )A/πλilA. If nil > sil then ρil > 1, sil = ril = ∂λil ([J ]λ′′∪

[K]λ′′) = ∂λil ([J ]λ′ ∪ [K]λ′). So we modify m′il in this coset to get a new element

m̃′il with valuation sil . So m̃′ = (m̃′i1 , m̃
′
i2
, . . . , m̃′it) = (πsi1yi1 , π

si2yi2 , . . . , π
sityit) for

some unit vector y = (yi1 , yi2 , yi3 , . . . , yit) ∈ (A∗)t. So if we can take f = m̃′ ⊕ x ∈

Aλ′ ⊕ Aλ′′ = Aλ then f ∈ Om′,J,K ⊂ OI and O = {(a, b) = (ge, gf) ∈ OI × OI ⊂

Aλ × Aλ | g ∈ Gλ} is the suborbit corresponding to the GλI-suborbit Om′,J,K by

Observation 3.30. Now we describe the orbit of pairs containing (e, f).

Let g ∈ Gλ be an element as described in equation (3.3). Then we get the following
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equations. For 1 ≤ l ≤ t

ail =
∑

j<il,j∈S

Ailjπ
sj(1, 0, 0, . . . , 0)

(ρj)−tuple

t + Aililπ
sil (1, 0, 0, . . . , 0)

(ρil )−tuple

t

+
∑

j>il,j∈S

Ailjπ
λil−λj+sj(1, 0, 0, . . . , 0)

(ρj)−tuple

t

(5.5)

bil =
∑

j<il,j∈S

Ailjπ
sj(yj, π

rj−sj , 0, . . . , 0)
(ρj)−tuple

t
+ Aililπ

sil (yil , π
ril−sil , 0, . . . , 0)
(ρil )−tuple

t

+
∑

j>il,j∈S

Ailjπ
λil−λj+sj(yj, π

rj−sj , 0, . . . , 0)
(ρj)−tuple

t

+
∑

j<il,j /∈S

Ailjπ
rj(1, 0, 0, . . . , 0)

(ρj)−tuple

t +
∑

j>il,j /∈S

Ailjπ
λil−λj+rj(1, 0, 0, . . . , 0)

(ρj)−tuple

t

(5.6)

Note that because f ∈ OI and from the structure of the box set of OI in equa-

tion (5.3) we get that for any i ∈ S = {i1, i2, . . . , it}

si1 > si2 > . . . > sit

λi1 − si1 > λi2 − si2 > . . . > λit − sit

rj ≥ sj > si for all j < i, j /∈ S and for all j < i, j ∈ S if ρj > 1

λi − λj + rj ≥ λi − λj + sj > si for all j > i, j /∈ S and for all j > i, j ∈ S if ρj > 1

(5.7)

Hence from equations (5.5) and (5.6) we have that ail , bil ∈ πsil ((A/πλilA)ρi)∗ (which

automatically holds because a, b ∈ OI). In addition we also have

bil − yilail =
∑

j<il,j∈S

Ailjπ
sj(yj − yil , π

rj−sj , 0, . . . , 0)
(ρj)−tuple

t

+ Aililπ
sil (0, πril−sil , 0, . . . , 0)

(ρil )−tuple

t

+
∑

j>il,j∈S

Ailjπ
λil−λj+sj(yj − yil , π

rj−sj , 0, . . . , 0)
(ρj)−tuple

t

+
∑

j<il,j /∈S

Ailjπ
rj(1, 0, 0, . . . , 0)

(ρj)−tuple

t +
∑

j>il,j /∈S

Ailjπ
λil−λj+rj(1, 0, 0, . . . , 0)

(ρj)−tuple

t

(5.8)

89



If we define mil as in Theorem 5.4 we conclude that from inequalities( 5.7), mil > sil

and also exactly one of the following holds.

• bil − yilail ∈ πmil (A/πλilA)ρil if mil ≤ ril , ρil > 1 or if ρil = 1.

• bil − yilail ∈ πril (A/πλilA)ρil if mil > ril , ρil > 1 and π−ril (bil − yilail)(mod π)

is linearly independent with π−silail(mod π) in Fρilq .

For i /∈ S = {i1 < i2 < . . . < it} ⊂ {1, 2, 3, . . . , k}

ai =
∑

j<i,j∈S

Aijπ
sj(1, 0, 0, . . . , 0)

(ρj)−tuple

t +
∑

j>i,j∈S

Aijπ
λi−λj+sj(1, 0, 0, . . . , 0)

(ρj)−tuple

t (5.9)

bi =
∑

j<i,j∈S

Aijπ
sj(yj, π

rj−sj , 0, . . . , 0)
(ρj)−tuple

t

+
∑

j>i,j∈S

Aijπ
λi−λj+sj(yj, π

rj−sj , 0, . . . , 0)
(ρj)−tuple

t

+
∑

j<i,j /∈S

Aijπ
rj(1, 0, 0, . . . , 0)

(ρj)−tuple

t + Aiiπ
ri(1, 0, 0, . . . , 0)

(ρi)−tuple

t+

∑
j>i,j /∈S

Aijπ
λi−λj+rj(1, 0, 0, . . . , 0)

(ρj)−tuple

t

(5.10)

Suppose il < i < il+1 if such an il and il+1 exist (otherwise either i < i1+1 = il or

il = it < i). Then we have the following cases.

1. sil < λi − λil+1
+ sil+1

, ∂λiI = sil

2. sil > λi − λil+1
+ sil+1

, ∂λiI = λi − λil+1
+ sil+1

3. if i < i1 = il+1, ∂λiI = λi − λil+1
+ sil+1

4. if i > it = il, ∂λiI = sil

5. sil = λi − λil+1
+ sil+1

= ∂λiI
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First we note that ai, bi ∈ π∂λiI(A/πλiA)ρi . Let mi be as defined in the Theorem 5.4.

Cases 1, 2, 3, 4 : ∂λiI = sil or ∂λiI = λi − λil+1
+ sil+1

Let l0 be any element having the following property.

• l0 ≤ i and l0 /∈ S such that rl0 = ∂λiI

• l0 < i and l0 ∈ S with ρl0 > 1 such that rl0 = ∂λiI

• l0 > i and l0 /∈ S such that λi − λl0 + rl0 = ∂λiI

• l0 > i and l0 ∈ S with ρl0 > 1 such that λi − λl0 + rl0 = ∂λiI

1. If there does not exist any such l0 then

• we conclude that mi > ∂λiI

• bi − yilai ∈ πmi(A/πλiA)ρi if ri ≥ mi

• bi − yilai ∈ πri(A/πλiA)ρi − πri+1(A/πλiA)ρi if ri < mi

2. If there exist unique such l0 then

• If l0 = i and rl0 = ri then

• mi > ∂λiI = rl0 = ri.

• bi − yilai ∈ πri(A/πλiA)ρi − πri+1(A/πλiA)ρi

• If l0 6= i then (ai, bi) can be any element of π∂λiI(A/πλiA)ρi⊕π∂λiI(A/πλiA)ρi .

3. If there exist more than one l0 then (ai, bi) can be any element of π∂λiI(A/πλiA)ρi⊕

π∂λiI(A/πλiA)ρi .

Case 5 : sil = λi − λil+1
+ sil+1

= ∂λiI

In this case (ai, bi) can be any element of π∂λiI(A/πλiA)ρi ⊕ π∂λiI(A/πλiA)ρi .

Now we look at the converse. Let I be the ideal with its corresponding orbit OI ,

and associated partitions λ
′
, λ
′′
. Let Om′,J,K be the GλI-suborbit and y ∈ (A∗)k be
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the unit vector. These are all given as defined in Theorem 5.4. Let (e, f),mi, i ∈

{1, 2, ..., k} be also as defined in the Theorem 5.4. Let (a, b) ∈ OI × OI such that

for each 1 ≤ i ≤ k, similar to (ei, fi), (ai, bi) also satisfies the same one of the cases

with the conditions given in the hypothesis of these cases then we observe that there

exists a g ∈ Gλ such that (ge, gf) = (a, b). The construction of an invertible matrix

g ∈ Gλ is done in each block row. The conditions are such that we can perform

this construction independently in each block row using appropriate valuations and

linearly independent conditions.

Let g ∈ Gλ be an element as described in equation (3.3).

Suppose there exists il ∈ S such that sil < mil ≤ ril and the minimum is attained

at sj + val(yj − yil) for some j < il, j ∈ S. Also suppose (a, b) satisfies the hypoth-

esis of this condition i.e. bil − ailyil ∈ πmil (A/πλiA)ρil . This occurs in Case A of

Theorem 5.4. We determine the ithl block row of g ∈ Gλ as follows. Set Ailε = 0 for

ε 6= il and ε 6= j. To determine Ailj and Ailil we solve the equations.

Ailj(π
sj , 0, 0, 0, . . . , 0)t

ρil−tuple
+ Ailil(π

sil , 0, 0, 0, . . . , 0)t

ρil−tuple
= ail .

Ailj(yjπ
sj , πrj , 0, 0, . . . , 0)t

ρil−tuple
+ Ailil(yilπ

sil , πril , 0, 0, . . . , 0)t

ρil−tuple
= bil .

Ailj((yj − yil)π
sj , πrj , 0, 0, . . . , 0)t

ρil−tuple
+ Ailil(0, π

ril , 0, 0, . . . , 0)t

ρil−tuple
= bil − ailyil = πmilC

for some column vector C ∈ (A/πλilA)ρil .

Let (yj − yil)πsj = πmily′ for some unit y′ ∈ A. Let C1
ilj
, C2

ilj
, C1

ilil
, C2

ilil
denote the

first and second columns of Ailj, Ailil respectively. Choose C2
ilil

to be any vector in

(A/πλilA)ρil such that C2
ilil

(mod π) is linearly independent from π−silail(mod π).
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Choose Cp
ilj

= 0 for p > 2. We get the following equations for the columns.

πsjC1
ilj

+ C1
ilil

= ail .

y′πmilC1
ilj

+ πrjC2
ilj

+ πrilC2
ilil

= πmilC.

Choose C2
ilj

= 0 and solving for C1
ilj

and then for C1
ilil

we get C1
ilj

= (y′)−1(C −

πril−milC2
ilil

) and C1
ilil

= ail − πsjC1
ilj

. Since sj > sil , π
−silC1

ilil
≡ π−silail(mod π)

and is linearly independent from C2
ilil

(mod π). Now extend the columns of Ailil to

a matrix such that Ailil(mod π) is invertible.

Suppose there exists il ∈ S such that mil > ril ≥ sil . Also suppose (a, b) satisfies

the hypothesis of this condition i.e. bil − ailyil ∈ πril (A/πλilA)ρil and π−ril (bil −

yilail)(mod π) is linearly independent with π−silail(mod π). This occurs in Case B

of Theorem 5.4. We determine the ithl block row of g ∈ Gλ as follows. Set Ailε = 0

for ε 6= il. To determine Ailil we solve the equations.

Ailil(π
sil , 0, 0, 0, . . . , 0)t

ρil−tuple
= ail .

Ailil(yilπ
sil , πril , 0, 0, . . . , 0)t

ρil−tuple
= bil .

Ailil(0, π
ril , 0, 0, . . . , 0)t

ρil−tuple
= bil − ailyil = πrilC

for some column vector C ∈ (A/πλilA)ρil − π(A/πλilA)ρil .

Let C1
ilil
, C2

ilil
denote the first and second columns of Ailil respectively. Choose C1

ilil

to be π−silail and C2
ilil

to be the vector π−ril (bil − yilail) ∈ (A/πλilA)ρil . Then we

have the linearly independent condition satisfied for Ailil and extend the columns of

Ailil such that the matrix Ailil(mod π) is invertible.

Now suppose there exists an i /∈ S and il < i < il+1 such that ri ≥ mi > ∂λiI and the

minimum is attained at sj + val(yj − yil) for some j < il, j ∈ S. Also suppose (a, b)

satisfies the hypothesis of this condition i.e. bi − aiyi ∈ πmi(A/πλiA)ρi . This occurs
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in Case a of Theorem 5.4. We determine the ith block row of g ∈ Gλ as follows. Set

Aiε = 0 for ε 6= il, j, i. To determine Aij, Aiil , Aii we solve the equations.

Aij(π
sj , 0, 0, 0, . . . , 0)t

ρj−tuple
+ Aiil(π

sil , 0, 0, 0, . . . , 0)t

ρil−tuple
= ai.

Aij(yjπ
sj , πrj , 0, 0, . . . , 0)t

ρj−tuple
+ Aiil(yilπ

sil , πril , 0, 0, . . . , 0)t

ρil−tuple
+ Aii(π

ri , 0, 0, . . . , 0)t

ρi−tuple
= bi.

Aij(π
sj(yj − yil), π

rj , 0, 0, . . . , 0)t

ρj−tuple
+ Aiil(0, π

ril , 0, 0, 0, . . . , 0)t

ρil−tuple
+ Aii(π

ri , 0, 0, 0, . . . , 0)t

ρi−tuple

= bi − aiyil = πmiC for some column vector C ∈ (A/πλiA)ρi .

Let (yj − yil)π
sj = πmiy′ for some unit y′ ∈ A. Let C1

iil
, C2

iil
, C1

ilj
, C2

ilj
, C1

ii denote

the first and second columns of Aiil , Aij and first column of Aii respectively. Set

the columns Cε
ij = Cε

iil
= 0 for ε > 2. Choose C1

ii to be any vector in (A/πλiA)ρi −

π(A/πλiA)ρi . Now extend the columns of Aii to a matrix such that Aii(mod π) is

invertible. We get the following equations for the columns.

πsjC1
ij + πsilC1

iil
= ai.

y′πmiC1
ij + πrjC2

ij + πrilC2
iil

+ πriC1
ii = πmiC.

Choose C2
ij = C2

iil
= 0 and solving for C1

ij and then for C1
iil

we get C1
ij = (y′)−1(C −

πri−miC1
ii) and C1

iil
= ai − πsj−silC1

ij.

The rest of the cases are similar.

Here is a worked out example that describes the orbit of pairs in the two component

case. Consider the finite module A/πlA⊕A/πkA with k < l and without multiplicity

corresponding to the partition λ = (l1, k1) ∈ Λ. Consider the orbit OI ⊂ A/πlA ⊕

A/πkA of the non-principal ideal I with max(I) = {(s + r, l), (s, k)} ∈ P . Hence

OI = (πs+r(A/πlA) − πs+r+1(A/πlA)) × (πs(A/πkA) − πs+1(A/πkA)) with 0 < r <

l − k. The suborbits of OI × OI under the diagonal action Gλ is given as follows.

Given two units y and x in A∗, the suborbit Iy,x = {((πr+su, πsw), (πr+su
′
, πsw

′
)) |
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u, u
′
, w, w

′
are units & (πr+su

′ − πr+suy, πsw′ − πswx) ∈ πl−k+s+t(A/πlA)⊕

πr+s+t(A/πkA)} where t‖(x − y). Similarly the unit pair (y, x) parameter group is

(A/πl−k−r+tA)∗ ⊕ (A/πr+tA)∗ which is independent of the shift parameter s.

5.4 Commutativity

For j = 1, 2 let Oj ⊂ OI × OI denote two suborbits. The multiplication in the

endomorphism algebra ENDGλ(C[OI ]) is given by convolution. Let IO1
and IO2

denote the indicator functions of these two orbits. Suppose (α, β) ∈ Aλ2 be an

element. Then IO1
∗ IO2

(α, β) =
∑
γ∈Aλ
IO1

(α, γ)IO2
(γ, β) and IO2

∗ IO1
(α, β) =∑

δ∈Aλ
IO2

(α, δ)IO1
(δ, β). To prove commutativity we need to prove that the existence

of an element γ ∈ Aλ such that IO1
(α, γ) = 1 = IO2

(γ, β) is equivalent to the

existence of an element δ ∈ Aλ such that IO2
(α, δ) = 1 = IO1

(δ, β) and that the

number of solutions for γ to the equations

IO1
(α, γ) = 1

IO2
(γ, β) = 1

(5.11)

is equal to the number of solutions for δ to the equations

IO2
(α, δ) = 1

IO1
(δ, β) = 1

(5.12)

We prove this componentwise for IO1
and IO2

corresponding to each isotypic com-

ponent (A/πλiA)ρi of Aλ.

First we prove a simple lemma on counting number of solutions to certain congru-

ences with certain conditions.

Lemma 5.13. Let y, y
′ ∈ An,k = (A/πnA)k and r, r

′ ∈ {0, 1, 2, . . . , n}. Let A∗n,k

denote the set An,k − πAn,k. Then

95



1. |(y + πrA∗n,k) ∩ (y
′
+ πr

′
A∗n,k)| = |(y

′
+ πrA∗n,k) ∩ (y + πr

′
A∗n,k)|

• For r > r′ if ((y + πrA∗n,k) ∩ (y
′
+ πr

′
A∗n,k)) 6= ∅ then

|((y + πrA∗n,k) ∩ (y
′
+ πr

′
A∗n,k))| = q(n−r−1)k(qk − 1).

• For r = r′ if ((y + πrA∗n,k) ∩ (y
′
+ πr

′
A∗n,k)) 6= ∅ then

|((y+πrA∗n,k)∩(y
′
+πr

′
A∗n,k))| =


q(n−r−1)k(qk − 1) if y − y′ ∈ π(r+1)An,k

q(n−r−1)k(qk − 2) if y − y′ ∈ πrA∗n,k

2. |(y + πrAn,k) ∩ (y
′
+ πr

′
An,k)| = |(y

′
+ πrAn,k) ∩ (y + πr

′
An,k)|

• For r ≥ r′ if ((y + πrAn,k) ∩ (y
′
+ πr

′
An,k)) 6= ∅ then

|((y + πrAn,k) ∩ (y
′
+ πr

′
An,k))| = q(n−r)k.

3. |(y + πrAn,k) ∩ (y
′
+ πr

′
A∗n,k)| = |(y

′
+ πrAn,k) ∩ (y + πr

′
A∗n,k)|

• For r > r′ if ((y + πrAn,k) ∩ (y
′
+ πr

′
A∗n,k)) 6= ∅ then

|((y + πrAn,k) ∩ (y
′
+ πr

′
A∗n,k))| = q(n−r)k.

• For r ≤ r′ if ((y + πrAn,k) ∩ (y
′
+ πr

′
A∗n,k)) 6= ∅ then

|((y + πrAn,k) ∩ (y
′
+ πr

′
A∗n,k))| = q(n−r′−1)k(qk − 1).

Proof. Suppose r ≥ r
′

we produce a bijection between the sets (y + πrA∗n,k) ∩ (y
′
+

πr
′
A∗n,k) and (y

′
+ πrA∗n,k) ∩ (y + πr

′
A∗n,k) as follows. Let

(y + πrA∗n,k) ∩ (y
′
+ πr

′
A∗n,k)

x=y+πra1=y
′
+πr

′
a2

←→ B ⊂ A∗n−r,k ×A∗n−r′ ,k
(a1,a2)

←−

−→ B
′ ⊂ A∗n−r,k ×A∗n−r′ ,k

(b1,b2)=(a1,−a2+2a1πr−r
′
)

←→ (y
′
+ πrA∗n,k) ∩ (y + πr

′
A∗n,k)

z=y
′
+πrb1=y+πr

′
b2

.

Note that the middle bijection extends to an automorphism Ik 0k

2πr−r
′
Ik −Ik


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of the finite torsion module An−r,k ×An−r′ ,k = Aλ for λ = ((n− r)k, (n− r′)k) ∈ Λ.

This proves the equality of the cardinality of sets in case 1.

Now we note that the existence of a solution to the congruences

x ≡ y (mod πr)

x ≡ y′ (mod πr
′
)

with conditions

x− y ∈ πrA∗n,k

x− y′ ∈ πr′A∗n,k

is equivalent to existence of a solution to the congruences

x ≡ y (mod πr
′
)

x ≡ y′ (mod πr)

with conditions

x− y ∈ πr′A∗n,k

x− y′ ∈ πrA∗n,k

And to exactly find the cardinality of the number of solutions, we use standard ideal

filtration of A/πnA and deduce that the number of solutions to both these sets of

equations with the respective given conditions is

q(n−r−1)k(qk − 1) if r > r′

q(n−r′−1)k(qk − 1) if r′ > r

q(n−r−1)k(qk − 1) if r = r′ and y − y′ ∈ π(r+1)An,k

q(n−r−1)k(qk − 2) if r = r′ and y − y′ ∈ πrA∗n,k

The other cases 2 and 3 are similar.

Lemma 5.14. Let x be a nonzero vector in a finite dimensional vector space Fkq . Let

A be a discrete valuation ring with a uniformizing parameter π such that the residue
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field is Fq. Let S ⊂ (A/πnA)k be the set consisting of k-tuples such that S(mod π)is

a set of vectors in Fkq which are linearly independent to x. Let a, b ∈ (A/πnA)k be

two elements such that a ≡ b(mod πr) where 0 ≤ r < n. Consider the equations

e ≡ a (mod πr)

e ≡ b (mod πr)

(5.15)

with conditions

π−r(e− a) ∈ S

π−r(e− b) ∈ S
(5.16)

If there exists a solution to the equations (5.15) satisfying conditions (5.16), then

the total number of such solutions is


qk(n−r−1)(qk − 2q) if π−r(a− b) ∈ S

qk(n−r−1)(qk − q) if π−r(a− b) /∈ S

Proof. Since A/πA ∼=φ Fq. Let tk : Ak −→ Fkq with tk = φk o prk where pr : A −→

(A/πA) be the quotient map. Let sk : Fkq −→ Ak be any section. Then given any

element c ∈ (A/πnA)k there exists a unique set {c0, c1, c2, ..., cn−1} of vectors in Fkq

such that

c = sk(c0) + sk(c1)π + sk(c2)π
2 + ...+ sk(cn−1)π

n−1 (5.17)

with condition

tk(sk(ci)) = ci for all i = 0, 1, 2, ..., (n− 1) (5.18)

Let

a =sk(a0) + sk(a1)π + sk(a2)π
2 + ...+ sk(an−1)π

n−1

b =sk(b0) + sk(b1)π + sk(b2)π
2 + ...+ sk(bn−1)π

n−1

(5.19)

Since a solution to the equations (5.15) satisfying conditions (5.16) exists, we have

a ≡ b(mod πr) and hence

ai = bi ∈ Fkq for all i = 0, 1, 2, ..., (r − 1)
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The conditions (5.16) implies that we need to count the number of solutions e ∈

(A/πnA)k such that the vectors

ei = ai = bi for 0 ≤ i ≤ (r − 1).

er − ar, er − br are both linearly independent with x.

ei can be any element in Fkq for r + 1 ≤ i < n.

Suppose ar− br /∈ S. Then {ar + εx | ε ∈ Fq} = {br + εx | ε ∈ Fq}. So the number of

such solutions e ∈ (A/πnA)k in this case is q(n−r−1)k(qk − q). Suppose ar − br ∈ S.

Then {ar + εx | ε ∈ Fq} ∩ {br + εx | ε ∈ Fq} = ∅. So the number of such solutions

e ∈ (A/πnA)k in this case is q(n−r−1)k(qk − 2q).

Lemma 5.20. Let s, r1, r2 be nonnegative integers such that s ≤ r1, s ≤ r2, s ≤ λ.

Let a, b ∈ πs(A/πλA)ρ − πs+1(A/πλA)ρ. Let y1, y2 be two units in A∗. Suppose the

residue field Fq ∼= A/π1A has at least three elements or the multiplicity ρ is > 2.

Then the number of solutions for e ∈ πs(A/πλA)ρ−πs+1(A/πλA)ρ to the congruences

b ≡ ey2 (mod πr2)

e ≡ ay1 (mod πr1)

(5.21)

with conditions

{π−r2(b− ey2) (mod π), π−se (mod π)} are linearly independent in Fρq

{π−r1(e− ay1) (mod π), π−sa (mod π)} are linearly independent in Fρq
(5.22)

is the same as the number of solutions for e ∈ πs(A/πλA)ρ − πs+1(A/πλA)ρ to the

congruences

b ≡ ey1 (mod πr1)

e ≡ ay2 (mod πr2)

(5.23)
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with conditions

{π−r1(b− ey1) (mod π), π−se (mod π)} are linearly independent in Fρq

{π−r2(e− ay2) (mod π), π−sa (mod π)} are linearly independent in Fρq
(5.24)

Also the number of solutions for e ∈ πs(A/πλA)ρ−πs+1(A/πλA)ρ to the congruences

b ≡ ey2 (mod πr2)

e ≡ ay1 (mod πr1)

(5.25)

with conditions

{π−r2(b− ey2) (mod π), π−se (mod π)} are linearly independent in Fρq (5.26)

is the same as the number of solutions for e ∈ πs(A/πλA)ρ − πs+1(A/πλA)ρ to the

congruences

b ≡ ey1 (mod πr1)

e ≡ ay2 (mod πr2)

(5.27)

with conditions

{π−r2(e− ay2) (mod π), π−sa (mod π)} are linearly independent in Fρq (5.28)

Proof. First let us look at the congruence equations (5.21) with conditions (5.22)

and congruence equations (5.23) with conditions (5.24). Without loss of generality,

let s ≤ r1 ≤ r2. Existence of such a solution e in any of the equations implies

b ≡ ay1y2 (mod πr1) (5.29)
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and if r1 < r2 then we also have

{π−r1(b− ay1y2) (mod π), π−se (mod π)} are linearly independent in Fρq
(5.30)

If there exists an element e satisfying equation (5.21) and condition (5.22) then we

choose ẽ = ay2 + πr2α (mod πλ) for some α ∈ Aρ such that

• α (mod π) is linearly independent with π−sa (mod π) in Fρq .

• (π−r1(b−ay1y2)−πr2−r1(y1α) (mod πλ)) (mod π) is linearly independent with

π−sa (mod π) in Fρq

Existence of such an α in the case when

• r1 = r2

• π−r1(b− ay1y2) is linearly independent with π−sa (mod π) in Fρq

• The residue field A/πA ∼= Fq has exactly two elements

requires that the multiplicity ρ must be > 2. This element ẽ gives rise to a solution

to the equation (5.23) satisfying the condition (5.24).

Conversely if there exists an element e satisfying equation (5.23) and condition (5.24)

then we choose ẽ = by−1
2 + πr2y−1

2 α (mod πλ) for some α ∈ Aρ such that

• α (mod π) is linearly independent with π−sa (mod π) in Fρq .

• (π−r1(by−1
2 − ay1) + πr2−r1(y−1

2 α) (mod πλ)) (mod π) is linearly independent

with π−sa (mod π) in Fρq

Again existence of such an α in the case when

• r1 = r2
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• π−r1(by−1
2 − ay1) is linearly independent with π−sa (mod π) in Fρq

• The residue field A/πA ∼= Fq has exactly two elements

requires that the multiplicity ρ must be > 2.

This element ẽ gives rise to a solution to the equation (5.21) satisfying the condi-

tion (5.22).

And to exactly count the cardinality of the number of solutions, we use standard

ideal filtration of A/πnA and deduce that the number of solutions e ∈ (A/πλA)ρ to

the set of equations (5.21) satisfying the conditions (5.22) is same as the number of

solutions e ∈ (A/πλA)ρ to the set of equations (5.23) satisfying the conditions (5.24)

and it is given by

• q(ρ)(λ−r2−1)(qρ − q) if s ≤ r1 < r2

• |(ay1y2 + πr1=r2S) ∩ (b+ πr1=r2S)| if s < r1 = r2 where S ⊂ (A/πλA)ρ is a set

such that S (mod π) is a set of vectors linearly independent to π−sa (mod π)

in Fρq . This cardinality can be easily calculated and it is
q(ρ)(λ−r−1)(qρ − 2q) if (ay1y2 − b) ∈ πrS where r = r1 = r2.

q(ρ)(λ−r−1)(qρ − q) if (ay1y2 − b) /∈ πrS where r = r1 = r2.

• Cardinality of the set {e ∈ πs(A/πλA)ρ | π−se (mod π) is linearly independent

to both π−sa (mod π) and π−sb (mod π) in Fρq} if s = r1 = r2. Again this

cardinality can be easily calculated and it is q(ρ)(λ−s−1)(qρ − 2q + 1).

The proof of the cardinalities of the number of solutions is similar to the one given

in Lemma 5.14.
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Now let us look at the congruence equations (5.25) with conditions (5.26) and con-

gruence equations (5.27) with conditions (5.28). Existence of such a solution e in

any of these congruence equations implies

• If r1 ≤ r2 then

b ≡ ay1y2 (mod πr1) (5.31)

• If r1 > r2 then

b ≡ ay1y2 (mod πr2) (5.32)

and

{π−r2(b− ay1y2) (mod π), π−sa (mod π)} are linearly independent in Fρq
(5.33)

Suppose r1 ≤ r2. If there exists an element e satisfying equation (5.25) and condi-

tion (5.26) then we choose ẽ = ay2 + πr2α (mod πλ) for some α ∈ Aρ such that

• α (mod π) is linearly independent with π−sa (mod π) in Fρq .

This element ẽ gives rise to a solution to the equation (5.27) satisfying the condi-

tion (5.28).

Conversely if there exists an element e satisfying equation (5.27) and condition (5.28)

then we choose ẽ = by−1
2 + πr2y−1

2 α (mod πλ) for some α ∈ Aρ such that

• α (mod π) is linearly independent with π−sa (mod π) in Fρq .

This element ẽ gives rise to a solution to the equation (5.25) satisfying the condi-

tion (5.26).

Suppose r1 > r2. If there exists an element e satisfying equation (5.25) and con-

dition (5.26) then choose ẽ = by−1
1 . This element ẽ gives rise to a solution to the

equation (5.27) satisfying the condition (5.28).
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Conversely if there exists an element e satisfying equation (5.27) and condition (5.28)

then we choose ẽ = ay1. This element ẽ gives rise to a solution to the equation (5.25)

satisfying the condition (5.26).

And to exactly count the cardinality of the number of solutions, we use standard

ideal filtration of A/πnA and deduce that the number of solutions e ∈ (A/πλA)ρ to

the set of equations (5.25) satisfying the conditions (5.26) is same as the number of

solutions e ∈ (A/πλA)ρ to the set of equations (5.27) satisfying the conditions (5.28)

and it is given by

• q(ρ)(λ−r2−1)(qρ − q) if s ≤ r1 < r2

• q(ρ)(λ−r1) if s ≤ r2 < r1

• |(ay1y2+π
r1=r2(A/πλA)ρ)∩(b+πr1=r2S)| = |(ay1y2+π

r1=r2S∩(b+πr1=r2(A/πλA)ρ))|

if s < r1 = r2 where S ⊂ (A/πλA)ρ is a set such that S (mod π) is a set of

vectors linearly independent to π−sa (mod π) in Fρq . This cardinality can be

easily calculated and it is and it is q(ρ)(λ−r−1)(qρ − q) where r = r1 = r2.

• Cardinality of the set {e ∈ πs(A/πλA)ρ | π−se (mod π) is linearly indepen-

dent to π−sa (mod π) in Fρq} = Cardinality of the set {e ∈ πs(A/πλA)ρ |

π−se (mod π) is linearly independent to π−sb (mod π) in Fρq} if s = r1 = r2

Again this cardinality can be easily calculated and it is q(ρ)(λ−s−1)(qρ − q).

Again the proof of the cardinalities of the number of solutions is similar to the one

given in Lemma 5.14.

Theorem 5.34. Let (λ = λρ11 > λρ22 > λρ33 > . . . > λρkk ) be a partition. Let Aλ be

the corresponding finite A-module. Let Gλ be its automorphism group. Let I be an
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ideal in J(P)λ. Suppose Fq ∼= A/πA has at least three elements or the multiplcity

ρi of each part λi in λ is > 2 corresponding to every element (∂λiI, λi) ∈ max(I).

Then the endomorphism algebra ENDGλ(C[OI ]) is commutative.

Proof. For j = 1, 2 let Oj ⊂ OI ×OI denote two suborbits. Let (a, b) ∈ Aλ2. Then

IO1
∗ IO2

(a, b) = 0 = IO2
∗ IO1

(a, b) if (a, b) /∈ OI ×OI . So assume (a, b) ∈ OI ×OI .

Now suppose (∂λiI, λi) ∈ max(I). Then the ith-component of orbit of pair corre-

sponding to the ith-component π∂λiI(A/πλiA)ρi−π(∂λiI+1)(A/πλiA)ρi of the orbit OI

is given by

A. (O1)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi)×

(π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi)

| bi − aiy1 ∈ πri1(A/πλiA)ρi for some ri1 > ∂λiI and for some slope unit y1 ∈

A∗}

OR

B. (O1)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi)×

(π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi)

| bi − aiy1 ∈ πri1(A/πλiA)ρi − πri1+1(A/πλiA)ρi for some ri1 ≥ ∂λiI

and for some slope unit y1 ∈ A∗ and

π−ri1(bi−aiy1)(mod π) is linearly independent with π−∂λiIai(mod π) in (Fq)ρi}

and

a. (O2)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi)×

(π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi)

| bi − aiy2 ∈ πri2(A/πλiA)ρi for some ri2 > ∂λiI and for some slope unit y2 ∈

A∗}
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OR

b. (O2)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi)×

(π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi)

| bi − aiy2 ∈ πri2(A/πλiA)ρi − πri2+1(A/πλiA)ρi for some ri2 ≥ ∂λiI

and for some slope unit y2 ∈ A∗ and

π−ri2(bi−aiy2)(mod π) is linearly independent with π−∂λiIai(mod π) in (Fq)ρi}

Consider case A and case a. From the Lemma 5.13 the number of solutions ei ∈

π∂λiI(A/πλiA)ρi − π(∂λiI+1)(A/πλiA)ρi such that ei − aiy1 ∈ πri1(A/πλiA)ρi and bi −

eiy2 ∈ πri2(A/πλiA)ρi is the same as the number of solutions ei ∈ π∂λiI(A/πλiA)ρi −

π(∂λiI+1)(A/πλiA)ρi such that ei−aiy2 ∈ πri2(A/πλiA)ρi and bi−eiy1 ∈ πri1(A/πλiA)ρi .

Consider case B and case a. From the Lemma 5.20 the number of solutions ei ∈

π∂λiI(A/πλiA)ρi−π(∂λiI+1)(A/πλiA)ρi such that ei−aiy1 ∈ πri1(A/πλiA)ρi , π−ri1(ei−

aiy1)(mod π) is linearly independent with π−∂λiIai(mod π) in (Fq)ρi and bi−eiy2 ∈

πri2(A/πλiA)ρi is the same as the number of solutions ei ∈ π∂λiI(A/πλiA)ρi −

π(∂λiI+1)(A/πλiA)ρi such that ei−aiy2 ∈ πri2(A/πλiA)ρi and bi−eiy1 ∈ πri1(A/πλiA)ρi ,

π−ri1(bi − eiy1)(mod π) is linearly independent with π−∂λiIei(mod π) in (Fq)ρi .

Consider case A and case b. This case is similar to the above case B and case a.

Consider case B and case b. Again from the Lemma 5.20 the number of solutions ei ∈

π∂λiI(A/πλiA)ρi−π(∂λiI+1)(A/πλiA)ρi such that ei−aiy1 ∈ πri1(A/πλiA)ρi , π−ri1(ei−

aiy1)(mod π) is linearly independent with π−∂λiIai(mod π) in (Fq)ρi and bi−eiy2 ∈

πri2(A/πλiA)ρi , π−ri2(bi−eiy2)(mod π) is linearly independent with π−∂λiIei(mod π)

in (Fq)ρi is the same as the number of solutions ei ∈ π∂λiI(A/πλiA)ρi−π(∂λiI+1)(A/πλiA)ρi

such that ei−aiy2 ∈ πri2(A/πλiA)ρi , π−ri2(ei−aiy2)(mod π) is linearly independent

with π−∂λiIai(mod π) in (Fq)ρi and bi−eiy1 ∈ πri1(A/πλiA)ρi , π−ri1(bi−eiy1)(mod π)

is linearly independent with π−∂λiIei(mod π) in (Fq)ρi .
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Now suppose (∂λiI, λi) /∈ max(I). Then the ith-component of orbit of pair corre-

sponding to the ith-component π∂λiI(A/πλiA)ρi of the orbit OI is given by

A. (O1)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi)× (π∂λiI(A/πλiA)ρi)

OR

B. (O1)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi)× (π∂λiI(A/πλiA)ρi) |

bi − aiy1 ∈ πri1(A/πλiA)ρi for some ri1 > ∂λiI and for some slope unit y1 ∈

A∗}

OR

C. (O1)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi)× (π∂λiI(A/πλiA)ρi) |

bi − aiy1 ∈ πri1(A/πλiA)ρi − πri1+1(A/πλiA)ρi for some ri1 ≥ ∂λiI

and for some slope unit y1 ∈ A∗}

and

a. (O2)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi)× (π∂λiI(A/πλiA)ρi)

OR

b. (O2)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi)× (π∂λiI(A/πλiA)ρi) |

bi − aiy2 ∈ πri2(A/πλiA)ρi for some ri2 > ∂λiI and for some slope unit y2 ∈

A∗}

OR

c. (O1)λi = {(ai, bi) ∈ (π∂λiI(A/πλiA)ρi)× (π∂λiI(A/πλiA)ρi) |

bi − aiy2 ∈ πri2(A/πλiA)ρi − πri2+1(A/πλiA)ρi for some ri2 ≥ ∂λiI

and for some slope unit y2 ∈ A∗}
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Here in all pairs of the cases {A,B,C} × {a, b, c}, we have from the Lemma 5.13,

the number of solutions ei in both way convolutions agree for each pair.

Hence IO1
∗ IO2

(a, b) = IO2
∗ IO1

(a, b) for all (a, b) ∈ Aλ2 and the endomorphism

algebra ENDGλ(C[OI ]) is commutative.

Theorem 5.35. Let (λ = λρ11 > λρ22 > λρ33 > . . . > λρkk ) be a partition. Let Aλ be

the corresponding finite A-module. Let Gλ be its automorphism group. Let I be an

ideal in J(P)λ. Suppose Fq ∼= A/πA has at least three elements or the multiplcity

ρi of each part λi in λ is > 2 corresponding to every element (∂λiI, λi) ∈ max(I).

Then the permutation representation C[OI ] of Gλ is multiplicity-free.

Proof. From Theorem 5.34, we observe that the endomorphism algebra ENDGλ(C[OI ])

is commutative. So it follows that the permutation representation C[OI ] of Gλ is

multiplicity-free.

Note that even though we have the conditions that are given in the Theorem 5.35

under which the Theorem 5.35 holds, here in this thesis we are mainly interested

in the case where the residue field Fq has atleast three elements in which case we

have a lattice isomorphism between the set of order ideals in J(P)λ and the set of

characteristic submodules of Aλ.
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