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Synopsis

A discussion on the preliminaries required to understand this thesis and brief intro-

ductions to the chapters are given here.

Preliminaries

This thesis is based on a few observations on applications and analogues of certain features

of Probability theory in non-commutative W ∗-probability spaces. A non-commutative W ∗-

probability space is a pair (A, φ) of an algebra and a linear functional on it. For us, A

is a finite von Neumann algebra ([Tak02]) (or finite W ∗-algebra) with a separable pre-

dual. More precisely A is a unital *-subalgebra of the algebra of bounded operators on a

separable Hilbert space - closed in the weak* topology (known as the σ-weak topology),

with φ - a unital, positive, faithful, tracial linear functional on it - continuous with respect

to the σ-weak topology; in other words φ is a faithful normal tracial state ([Tak02]) on A.

Probability theory - the branch of Mathematics that analyzes random phenomena - deals

with random variables, which are scalar-valued functions on a non-empty set equipped

with a σ-algebra and a probability measure on it. In the case of von Neumann algebras,

random variables are replaced by elements of non-commutative probability spaces, that

is, bounded linear operators on separable Hilbert spaces.

For the sake of simplicity we introduce a common notation here. If S is a subset of a

von Neumann algebra A, then W ∗(S) denotes the von Neumann algebra generated by S

in A.

Spectral theory and the theory of measurable functional calculus ([Sun97]) for a

bounded normal operator a on a separable Hilbert Space, assures the existence of a

*-algebra isomorphism from L∞(σ(a), ν) to W ∗({a}), for some probability measure ν.

Through this *-isomorphism the symbol f(a) - for any f ∈ L∞(σ(a), ν) - makes sense as

an element of W ∗({a}). Conversely, any element of W ∗({a}) can be written as f(a) for
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some bounded Borel function f .

Our work is based on observations regarding certain behaviours of such non-commutative

random variables. The underlying notion of their probabilistic independence, wherever

relevant, is taken to be a well-known non-commutative analogue of the classical indepen-

dence - known as free independence ([VDN92]). We define this notion of independence

restricting to the context of von Neumann algebras:

Definition 0.0.1. (Ai)i∈I - *-subalgebras of a non-commutative W ∗ probability space

(A, φ), are said to be freely independent or simply free if φ(a1a2 · · · an) = 0 whenever

• n ∈ N;

• ij ∈ I and aj ∈ Aij ,∀j = 1, · · ·n;

• φ(aj) = 0,∀j = 1, · · · , n and

• i1 6= i2 6= · · · 6= in, or in other words a1a2 · · · an is an alternating product.

(Si)i∈I - subsets of A are called freely independent if the *-algebras generated by these

sets are free in (A, φ). In particular, (ai)i∈I - elements of A are called freely independent

if the *-algebras generated by these elements are free in (A, φ).

The following result, assumed frequently in this work without clarification, is well

known ([VDN92]):

Proposition 0.0.2. If (Ai)i∈I - *-subalgebras are freely independent in W ∗-non-commutative

probability space (A, φ), then (W ∗(Ai))i∈I are also freely independent in (A, φ).

Introduced by Ching in 1973 ([Chi73]) for II1 factors (infinite-dimensional finite W ∗-

algebras), and later in the ’80s by Voiculescu for general operator algebras, Free probability

theory studies non-commutative random variables in various *-algebras and their distri-

butions, with ‘freeness’ or free independence property as the analogue of the classical

notion of independence in Probability theory. This theory gives rise to the notion of free

product of algebras - a universal product of non-commutative probability spaces, denoted

by ‘∗’. We define this notion in the context of von Neumann algebras:

4



Definition 0.0.3. Given a collection of W ∗-non-commutative probability spaces (Ai, φi)i∈I,

their free product is defined as a universal W ∗-non-commutative probability space (A, φ),

with the notation A = ∗i∈I Ai, φ = ∗i∈Iφi, such that there exist *-algebra homomorphisms

ψi : Ai → A with the following properties:

• φ ◦ ψi = φi,

• A = W ∗(∪i∈I ψi(Ai)) and

• (ψi(Ai))i∈I are freely independent in (A, φ).

Free probability theory is closely related to the theory of non-commutative distribu-

tions. The natural non-commutative analogue of distributions of random variables in

classical Probability theory is given in the following definition:

Definition 0.0.4. Given a non-commutative probability space (A, φ), a self-adjoint ele-

ment a of A is said to have distribution µ - a compactly supported probability measure

on R with its support contained in σ(a), if for all Borel subset E of R, φ(1E(a)) = µ(E).

The above definition and the previous discussion regarding measurable functional

calculus together imply that for a = a∗ ∈ A with distribution µ,

W ∗({a}) = L∞(σ(a), µ).

An alternate way of defining the distribution of a self-adjoint operator is through

the moments of the operator. We now define the moments and free cumulants of non-

commutative random variables. The definitions of these objects hold for any *-algebra,

hence in particular for von Neumann algebras and are discussed in various books and

articles, for example in [NS06].

Definition 0.0.5. • Given a *-algebra A, a family of functions (fn : An → C)n∈N

is said to be multiplicatively extended, when for all n ∈ N, a new family of
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functions is defined on An, indexed by NC(n)= the set of non-crossing partitions

on n, as follows:

fπ(a1, · · · , an) := ΠV ∈π fV [a1, · · · , an],

where for V = {i1, · · · , ir} with ij ∈ {1, · · · , n},

fV [a1, · · · , an] = fr(ai1 , · · · , air).

In particular f1n = fn,∀ n, where 1n is the full partition on {1, · · · , n}, that is,

{{1, · · · , n}}.

• Given a non-commutative probability space (A, φ), where A is a *-algebra and φ is

a unital linear functional on it, the multiplicatively extended family obtained from

(φn)n∈N is called the family of moment functions, where

φn(a1, · · · , an) := φ(a1 · · · an).

In particular for a single element a ∈ A, φn(a, · · · , a) = φ(an) is simply called its

nth moment. For more than one element, the term ‘joint moment’ is used.

• The multiplicatively extended family of functions obtained from (κn)n∈N, where

κn(a1, · · · , an) :=
∑

π∈NC(n)

φπ(a1, · · · , an) · µ(π, 1n),

where µ(·, ·) is the Mobius function on the lattice NC(n) × NC(n), is called the

family of cumulant functions. Similarly as moments the terms ‘nth cumulant’

and ‘joint cumulant’ are used.

The moments and cumulants form the base of combinatorial Free probability theory

(as developed in [Spe94], [NS96] [NS97], [Spe97], [KS00] etc.). Moments of a self-adjoint

bounded operator are closely related to its distribution in a W ∗-non-commutative prob-

ability space. In fact distribution of a self-adjoint bounded operator a can be defined as
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the compactly supported probability measure µ, for which

φ(an) =

∫
σ(a)

tn dµ(t)1.

The study of free cumulants is an equivalent analogue of studying moments since each

can be expressed in terms of the other explicitly - as can be observed in the following

chapters. In particular, being additive for free non-commutative random variables, free

cumulants make various computations easier.

The theory of W ∗-free probability can be generalized in an operator-valued setup (as

introduced in [VDN92], [Spe98], [Shl98], [Shl99], [NSS02] etc.), by replacing (A, φ) with

(A, E), where A is as above and E : A → B is a conditional expectation ([Tak03]) onto

a von Neumann subalgebra B of A. In this setup the moments and cumulants take

values in B and we use such B-valued free probability in the second chapter of our work.

For B = C, the operator-valued free probability theory coincides with the usual free

probability.

This thesis is divided in three chapters. The first two chapters describe certain non-

commutative probabilistic models in Free Probability theory. The main tools for the

discussions in these two chapters are the moments and cumulants of non-commutative

random variables. The last chapter proves an analogue of a minmax theorem - character-

izing a certain extremal behaviour of sums of eigenvalues of finite dimensional Hermitian

matrices - for a bounded self-adjoint operator with continuous spectra, involving its dis-

tribution function - denoted by Fµ - corresponding to the distribution µ of that operator

- as the main tool.

1Positivity and unital property of φ imply that µ defined as above indeed gives a unique probability
measure ([Akh65]). Stone-Weierstrass theorem, Lusin’s theorem, measurable fucntional calculus and
continuity of φ in the σ-weak topology determine µ.
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Introduction to the chapters

Chapter 1: In this chapter we compute free products of certain finite dimensional W ∗-

probability space. The motivation behind the computations done in this chapter

comes from trying to understand [Dyk94] and [Dyk93]. Most of the results here

were proved in those two papers in much more general context. However as against

Dykema’s general results, our proofs are elementary and require little prior knowl-

edge beyond basic trigonometry and combinatorics; but they do have the disad-

vantage of constraining us to direct sums and matrix algebras equipped with the

‘uniform trace’, and consequently to results, where powers of 2 keep cropping up as

certain rational indices of the resulting interpolated free group factors.

The results in this chapter are in the form of isomorphisms between W ∗-probability

spaces, where the left hand side is always a free product of two W ∗-probability

spaces. Our idea is to find equivalent models of these two spaces inside the W ∗-

probability space on the right hand side and prove that

(i) they are free inside the latter, and that

(ii) they generate the latter.

We start with the proof of:

• (C⊕ C) ∗ (C⊕ C) ∼= M2(C)⊗ LZ,

For the proof, the suitable choice of models of the spaces on the left hand side, turn

out to be the two well-known projections in generic positions on the 2-dimensional

Hilbert space.

Using the above, we continue with the following results:

• (C⊕ C) ∗M2(C) ∼= M2(C)⊗ LF2; and

• M2(C) ∗M2(C) ∼= M2(C)⊗ LF3,
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where LFn denotes the free group factor ([MvN43]) corresponding to the free group

Fn with n generators.

In the following sections we give further alternate proofs (using similar models) of

results in [Dyk94] that extend the above results to:

• (A1 ⊕ A2) ∗ (B1 ⊕B2) ∼= M2(A1 ∗ A2 ∗B1 ∗B2 ∗ LZ);

• (A1 ⊕ A2) ∗M2(B) ∼= M2(A1 ∗ A2 ∗B ∗ LF2); and

• M2(A) ∗M2(B) ∼= M2(A ∗B ∗ LF3).

In the final section of this chapter we portray a few applications of our method of

computation. The main proposition of this section enables one to easily compute

free products involving certain finite dimensional commutative and non-commutative

W ∗-spaces as well as certain free group factors:

For m,n ∈ N, k, l ∈ N ∪ {0} and LF0 = C,

• (LFk)
2n ∗ (LFl)

2m ∼= M2(LF
5+

2(k−1)

2n−1 +
2(l−1)

2m−1
). In particular (LZ)2n ∗ (LZ)2m ∼=

M2(LF5).

• M2n(LFk)∗(LFl)
2m ∼= M2(LF

5+ k−1

4n−1 +
2(l−1)

2m−1
). In particular M2n(LZ)∗(LZ)2m ∼=

M2(LF5).

• M2n(LFk)∗M2m(LFl) ∼= M2(LF5+ k−1

4n−1 + l−1

4m−1
). In particularM2n(LZ)∗M2m(LZ) ∼=

M2(LF5).

We conclude this chapter by reproving Dykema’s result involving the hyperfinite

II1 factor ([MvN43]), as an application of our computations:

• R ∗R ∼= LF2.

Chapter 2: This chapter is devoted to graphical models for finite von Neumann algebras,

associating them to finite weighted graphs ([KS11]). The motivation behind this

work comes from trying to understand [KS09] and [KS11], in which V. Kodiyalam

and V. S. Sunder introduced this graph-von Neumann algebra association and gave
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independent proofs of some of the results proved in [GJS10] and [GJS11] by A.

Guionnet, V. Jones and D. Shlyakhtenko, from slightly different viewpoints. How-

ever, unlike [KS09] and [KS11] we allow non-bipartite graphs that leads us to the

pleasant, but not surprising fact that the von Neumann algebra associated to to a

‘flower with n petals’ (i.e. a graph with a single vertex and n loops) is isomorphic

to the group von Neumann algebra of the free group on n generators. In general

too, the associated algebra gives a free product of algebras corresponding to sub-

graphs ‘with one edge’ (actually a pair of dual edges), with amalgamation over a

finite-dimensional abelian subalgebra corresponding to the vertex set. This yields

certain natural examples of

(i) a non-commutative random variable with a free Poisson distribution;

(ii) non-commutative random variables with operator-valued circular and operator-

valued semicircular distribution.

The intuitive idea of associating a weighted graph Γ = (V, E , µ) (V is a (finite) set

of vertices, E is a (finite) set of directed edges and µ : V → (0,∞) is a normalized

weight or spin function to a finite von Neumann algebra, was to identify a path in

the graph - in the form of concatenation of edges from E - to a suitable product of

operators in the algebra. However we discuss two different but isomorphic notions

([KS11]) of the graph-von Neumann algebra association, one of which is equipped

with the above notion of product and a complicated tracial state on it, where as the

other one is equipped with a complicated product but a simple trace on it. In our

work we first consider the latter and later on we bring in its equivalent graph-von

Neumann algebra associate that eases the cumulant calculation considerably.

We let Pn = Pn(Γ) denote the set of paths of length n in Γ (P0 := V ) and let Pn(Γ)

denote the vector space with basis {[ξ] : ξ ∈ Pn(Γ)}. ξ = ξ1ξ2 · · · ξn is thought as

the ‘concatenation product’ where ξi denotes the i-th edge of ξ.

Then F (Γ) := ⊕n≥0Pn(Γ) - equipped with the a slightly complicated multiplication,
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but with an easy choice of tracial state on it given as µ2◦E, where E : F (Γ)→ P0(Γ),

is the natural conditional expectation (µ2 is the linear extension of the original µ2 to

P0(Γ)) - is a *-probability space and the finite von Neumann algebra that we want

to associate with Γ, denoted by M(Γ, µ), is chosen as the von Neumann algebra

generated by F (Γ).

With the above association and the fact that any such finite graph can be thought

of as concatenation of the following three types of graphs: |V | = 1, |E| = 1 (a single

vertex with a self-adjoint loop), |V | = 1, |E| = 2 (a single vertex with a non-self-

adjoint loop and its adjoint) and |V | = 2, |E| = 2 (two vertices with an edge and

its adjoint), we first compute the von Neumann algebras associated to these three

graphs. In the first two cases the results turn out to be LZ and LF2 respectively.

In the third case, M(Γ, µ) is shown to be C ⊕M2(LZ), the LZ being the singly

generated von Neumann algebra generated by a certain operator that we denote by

a. We give an analytic proof of the fact that a follows free Poisson distribution.

In the next section we move on to the alternate concept of graph-von Neumann

algebra denoted by Gr(Γ). The main result of this section is:

• The P0(Γ)-valued mixed cumulants in Gr(Γ) are given as, κn([e1], [e2], · · · , [en]) =

0, unless n = 2 and e2 = ẽ1, in which case with the source and range of e1 as

v and w respectively, κ2([e1], [ẽ1]) = µ(w)
µ(v)

[v].

This leads us to the examples of P0-valued circular and semicircular elements. We

end this section with a corollary, stating a slightly more generalized version of the

result regarding the graph of a ‘a flower with n petals’ as mentioned above:

• Gr(Γ, µ) = ∗P0(Γ){Gr(Γe, µe) : {e, ẽ} ⊂ E}, and hence, also

• M(Γ, µ) = ∗P0(Γ){M(Γe, µe) : {e, ẽ} ⊂ E}.

We conclude this chapter with an alternate (combinatorial) proof of the fact that

the operator a that appears in the computation of M(Γ, µ) in the case of a graph
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with two vertices and two edges, does indeed have free Poisson distribution. This

proof involves Narayana polynomials Nn(T ) =
∑n

k=1 N(n, k)T k, with coefficients

as Narayana numbers, denoted by N(n, k).

Chapter 3: This chapter extends a well-known minmax characterization by Ky Fan

([Fan49]), of the sum of the k largest eigenvalues of an n × n Hermitian matrix

(k, n ∈ N, k ≤ n), to a statement about a self-adjoint element of an appropriate

finite von-Neumann algebra.

We were motivated by Lemma 3.2 of [BV93]) that suggested a possible analogue

for self-adjoint operators in finite von Neumann algebras, of the classical Courant-

Fischer-Weyl minmax characterization ([CH89]) of eigenvalues of Hermitian matri-

ces:

If a ∈Mn(C) has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn; λj ∈ R, then

λj = min
N⊂Cn

dimN=j

max
ξ∈N
||ξ||=1

〈aξ, ξ〉.

Ky Fan’s result says: For an operator a as above,

k∑
j=1

λj = min
M1⊂···⊂Mk⊂Cn

dimMj=j

max
ξj∈Mj

(ξj) orthonormal

k∑
j=1

〈aξj, ξj〉

= min
(ξj)kj=1 orthonormal in H

k∑
j=1

〈aξj, ξj〉 .

We extend Ky Fan’s theorem - or more precisely Ky Fan’s theorem for the case,

where the Hermitian matrix a has distinct eigenvalues - to an analogous result for

a self-adjoint element of a II1 factor M equipped with faithful normal tracial state

τ , with the help of the quantile function. We use certain properties of the distri-

bution function Fa (or Fµa) and the quantile function Xa (or Xµa) corresponding
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to a, where a is assumed to have a compactly supported probability measure -

given by µa - with no atoms, as its distribution, i.e. µa(E) = τ(1E(a)). For us,

Fµa(t) := µa(−∞, t), and Xµa(s) := inf{t ∈ R : F (t) > s}, i.e. we follow the

same convention as Voiculescu and Bercovici, wherein the distribution function is

a left-continuous function. Consequently for us, the quantile function turns out to

be right-continuous. The main result of this chapter is:

• Let a be a self-adjoint element of a finite von Neumann algebra M equipped

with a faithful normal tracial state τ . Let A be the von-Neumann algebra

generated by a. Then, for all s ∈ Fa(R),

inf{τ(ap) : p ∈ P(M), τ(p) ≥ s}

= min{τ(ap) : p ∈ P(A), τ(p) ≥ s}

=

∫ s

0

Xadm,

if either (i) (‘continuous case’) µa has no atoms, or (ii) (‘finite case’) M =

Mn(C) and a has spectrum {λ1 < · · · < λn}.

We also give an alternate proof of Ky Fan’s original result for Hermitian matrices

- not just for the special case stated in the above result - but even for non-distinct

eigenvalues.
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Chapter 1

Free products of certain finite

dimensional algebras

This chapter is dedicated to working out some ‘bare hands’ computations of a few finite

von-Neumann algebras. We start with the most elementary possible free products involv-

ing C2 (= C ⊕ C), with the ‘uniform trace’ given by tr(z1, z2) = 1
2
(tr(z1) + tr(z2)), and

M2 (= M2(C)), with the normalized trace of the matrix. Using these, we identify all free

products of the form C ∗D, such that {C,D} ⊂ {A1⊕A2,M2(B)}, where Ai, B are finite

von Neumann algebras, as is A1 ⊕ A2, (with the trace 1
2
(tr(a1) + tr(a2)) for the element

(a1, a2)), and M2(B) (∼= M2⊗B) (with the trace trM2 ⊗ trB, where trM2 and trB are the

‘uniform trace’ on M2 and the tracial state on B respectively). Those results are then

used to compute various possible free products involving certain finite dimensional von-

Neumann algebras, the free-group von-Neumann algebras and the hyperfinite II1 factor.

In the process we reprove Dykema’s result ‘R ∗R ∼= LF2’ ([Dyk94]), and construct some

interpolated free group factors with certain rational indices.

1.1 The building blocks

The interval [0, π/2] and the unit circle T in the complex plane are both non-atomic com-

pact Borel spaces with respect to the corresponding Haar measures. Hence (L∞([0, π/2], 2
π

∫ π/2
0
· dt) ∼=
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L∞(T), which in turn, as we have seen in Lemma 2.6.5 of [VDN92], is isomorphic to LZ.

Often as an interpolated free group factor of the form LFt appears in our computation

with t ≥ 2, we make use of the fact that LFr ∗ LFs ∼= LFr+s ([Dyk94]), and work with

the model L∞([0, π/2], 2
π

∫ π/2
0
· dt) ∗ LFt−1 of LFt.

Let u and v be Haar unitaries generating the two copies of LZs, and let c, s ∈

L∞([0, π/2]) be the functions defined by c(θ) = cos θ and s(θ) = sin θ respectively.

Let the trace (as described above) and cumulant on M2(LFt) with t ≥ 1, be denoted

by Tr and κ, and the same for LFt by tr and k respectively.

Let U =

0 u

0 0

, V =

0 v

0 0

, W =

c −s
s c

, and letX = WVW ∗ =

−cvs cvc

−svs svc

.

Then U and X are partial isometries satisfying U∗U+UU∗ = 1 and X∗X+XX∗ = 1;

so each of them generates a copy of M2.

Let P = UU∗ =

1 0

0 0

 and Q = XX∗ =

c2 cs

cs s2

 = WPW ∗. Then P,Q are

projections of trace 1
2
, each generating a copy of C2. Our proofs, are strictly restricted to

the case where C2 has the ‘uniform trace’, whereas [Dyk93] considers the most general

(possibly non-uniform) trace.

Also, for finite von-Neumann algebra A,B, we will often use the notations Ak and

Mk(B) for A⊕A⊕ · · · (k times)⊕A and Mk(C)⊗B respectively, with the trace always

being taken as the ‘uniform trace’.

1.2 C2 ∗ C2 ∼= M2(LZ)

In this section, we compute the free product of the simplest finite dimensional algebra,

namely C2 with itself, depending only on the definition of free independence and basic

trigonometry. The two free copies of C2 here are taken to be generated by projections P

and Q. We prove that P and Q freely generate M2(LZ) as a von-Neumann algebra.

Lemma 1.2.1.

W ∗({P,Q}) = M2(LZ)
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Proof. We have PQ(1−P ) =

0 cs

0 0

. Since cs is positive (in L∞([0, π
2
]), 2

π

∫ π/2
0
· dt) and

has no kernel, we see that the polar decomposition of PQ(1−P ) is given by

0 cs

0 0

 =

0 1

0 0


0 0

0 cs

 . Thus W ∗({P,Q}) contains all the matrix units, viz., P = e11, 1−P =

e22, e12 and e21 = e∗12. On the other handW ∗({P,Q}) clearly contains PQP = e11⊗c2, and

hence also e11 ⊗W ∗({c2}); therefore we see that W ∗({P,Q}) ⊃ e11 ⊗ L∞([0, π
2
]); finally,

by pre- and post-multiplying by appropriate matrix units, we see that W ∗({P,Q}) ⊃

eij ⊗ L∞([0, π
2
]) for all i, j, and the proof of the lemma is complete. 2

Lemma 1.2.2. P and Q are free in M2(LF3).

Proof. Let P0 = P−1/2 =

1/2 0

0 −1/2

 and Q0 = Q−1/2 =

c2 − 1/2 cs

cs s2 − 1/2

 be

the trace-less versions (i.e., translates with trace 0) of P andQ. We shall find it convenient

to write cn, respectively sn, for the elements of L∞([0, π
2
]) defined by cn(θ) = cos nθ,

respectively, sn(θ) = sin nθ.

We need to verify that the trace of any alternating product in 2P0 =

1 0

0 −1

 and

2Q0 =

c2 s2

s2 −c2

is zero. Since we are working with a trace here and since (2P0)2 = 1 =

(2Q0)2, it is enough to prove that Tr((2P0.2Q0)r) = 0 = Tr((2P0.2Q0)r2P0).

However,

(2P0.2Q0)r =


1 0

0 −1


c2 s2

s2 −c2



r

=


 c2 s2

−s2 c2



r

=

 c2r s2r

−s2r c2r
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whereas

(2P0.2Q0)r2P0 =

 c2r s2r

−s2r c2r


1 0

0 −1

 =

 c2r −s2r

−s2r −c2r

 ,

and the desired assertions follows from

2

π

∫ π
2

0

c2rdθ =
2

π

1

2r
(s2r(π)− s2r(0))

= 0 ∀r ∈ N

2

Now the validity of Proposition 1.2.3 follows immediately from Lemmas 1.2.1 and

1.2.2.

Proposition 1.2.3.

C2 ∗ C2 ∼= M2(LZ)

1.3 M2 ∗M2
∼= M2(LF3)

In this section, we compute the free products of the smallest non-commutative finite

dimensional matrix algebra, namely M2 = (M2(C)), with C2 and with itself, using the

results of the previous section. The copies of M2(C) used here are taken to be generated

by partial isometries U and X, and the copies of C2 are taken to be generated by P and Q

as above. As in the previous section, we now prove that U and X freely generate M2(LF3)

(and also that X and P freely generate M2(LF2); though their free independence in fact

follows from that of X and U).

The two main propositions of this section, along with Proposition 1.2.3 above, are

the basic steps for computing free products of von-Neumann algebras of the general form

A1 ⊕ A2 and M2(B).
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Proposition 1.3.1.

M2 ∗ C2 ∼= M2(LF2)

Proposition 1.3.2.

M2 ∗M2
∼= M2(LF3)

The key for proving Proposition 1.3.1 is contained in the proof of 1.3.2. We start with

the following crucial lemma.

Lemma 1.3.3. U and X are ∗- free in M2(LF3).

Proof. Observe the following simple facts:

1. U2 = 0 = (U∗)2, V 2 = 0 = (V ∗)2,

2. P 2
0 , Q

2
0 ∈ C,

3. PU = U,QX = X,UP = 0, XQ = 0,

4. P,Q are free in M2(L∞).

In view of the above relations, the sets of trace zero words in W ∗({U}) and W ∗({X})

are linearly generated by A = {U,U∗, 2P0} and B = {X,X∗, 2Q0} respectively. So we

need to check that every alternating product of elements from A and B has trace zero.

We may dispose of the ‘trivial case’ when Π is an alternating word in only P0 and Q0,

since that is covered by Lemma 1.2.2.

Consider a typical such product, say Π; we shall prove that tr(Πij) = 0 for all i, j (for

the non-trivial case). Thus in particular we will have Tr(Π) = tr(Π1,1)+tr(Π2,2)

2
= 0

One can see that each Πij is a sum of elements of the form

ω = f0(c, s)w0f1(c, s)w1f2(c, s) · · ·wn−1fn(c, s) · · · (1.3.1)

where the fis are (possibly constant) polynomials in {c, s} and wi ∈ {u, u∗, v, v∗}. The

assumption that we are not dealing with the trivial case (cf. the previous paragraph)
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implies that there must exist at least one wi in the string in the right hand side of equation

1.3.1.

Now, fix any such word ω is (of total length m, say) as in equation 1.3.1, which occurs

as a summand of Π; then

tr(ω) =
∑

σ∈NC(m)

kσ[f0(c, s), w0, f1(c, s), · · · , wn−1, fn(c, s), · · · ] .

We shall show that kσ(= kσ[f0(c, s), w0, f(c, s), · · · , wn−1, fn(c, s), · · · ]) = 0 for each

σ ∈ NC(m), for each such ω.

But u and v are free Haar unitaries and hence R-diagonal. So following Proposition

15.1 in [NS06], in order for kσ to be possibly non zero, it must be the case that the blocks

of σ must consist of either only {u, u∗} in alternate positions, or only {v, v∗} in alternate

positions (in each block the number of u = number of u∗ and same for v, v∗), or only

{fi(c, s) : i}, all occurring in a non-crossing fashion. Note that in effect ω must have the

same number of u and u∗ as well as the same number of v and v∗.

Example 1.3.4. ω0 = u(cs)v (cs(c2 − 1/2)s) v∗(c2s)u∗ = uf1(c, s)vf2(c, s)v∗f3(c, s)u∗ -

with m = 7 - can possibly give non zero cumulant only corresponding to two elements of

NC(7), namely

((1, 7), (3, 5), (2), (4), (6)) and ((1, 7), (3, 5), (2, 6), (4)) .

(Here, f1(c, s) = cs, f2(c, s) = cs(c2 − 1/2)s, f3(c, s) = c2s) 2

As at least one wi and necessarily also w∗i must occur in the string defining ω, and σ

is non-crossing, we see that kσ can hope to be non-zero only if ω has a substring of the

form wf(c, s)w∗, with w ∈ {u, u∗, v, v∗} and f(c, s) as above, and with w and w∗ in the

same block of σ; thus ω must contain one of the one of the following four substrings:

1. uf(c, s)u∗,
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2. u∗f(c, s)u,

3. vf(c, s)v∗,

4. v∗f(c, s)v.

Now we consider the above four cases in the following way:

1. uf(c, s)u∗ can occur as a string in some summand ω of Πij only if USU∗ occurs as

a substring in the alternating product expression of Π, where S = (2Q02P0)r2Q0.

Observe in this case that USU∗ =

−uc2r+2u
∗ 0

0 0

 and that f(c, s) = −c2r+2.

2. Similarly u∗f(c, s)u can occur as a string in some summand ω of Πij only if

U∗SU occurs as a substring in the alternating product expression of Π, where

S = (2Q02P0)r2Q0. Observe in this case that U∗SU =

0 0

0 u∗c2r+2u

 and that

f(c, s) = c2r+2.

3. Similarly vf(c, s)v∗ can occur as a string in some summand ω of Πij only if XSX∗

occurs as a substring in the alternating product expression of Π, where S =

(2P02Q0)r2P0. Observe in this case that XSX∗ =

−cvc2r+2v
∗c cvc2r+2v

∗s

−svc2r+2v
∗c −svc2r+2v

∗s


and that again, f(c, s) = ±c2r+2.

4. Similarly v∗f(c, s)v can occur as a string in some summand ω of Πij only if X∗SX

occurs as a substring in the alternating product expression of Π, where S =

(2P02Q0)r2P0. Observe in this case that X∗SX =

 sv∗c2r+2vs −sv∗c2r+2vc

−cv∗c2r+2vs cv∗c2r+2vc


and that again, f(c, s) = ±c2r+2.

Thus, in any case, we find that for any σ ∈ NC(m) for which kσ can possibly be

non-zero, it must be the case that ω must contain a substring of the form wc2r+2w
∗ with

w ∈ {u, u∗, v, v∗} and with w and w∗ in the same block of σ. Since W ∗({c}) and W ∗({w})
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are free, we see that the only way kσ can be non-zero is for {c2r+2} to be a block of σ;

but then kσ has k(c2r+2) = tr(c2r+2) = 0 as a factor. Hence, indeed, every kσ = 0, as

asserted, and the proof is complete. 2

Corollary 1.3.5. P and X are free in M2(LF3).

Proof. This follows from P ∈ W ∗({U}). 2

Lemma 1.3.6.

W ∗({P,X}) = M2(LF2)

Proof. Since Q = XX∗, it follows from Lemma 1.2.1 that W ∗({P,X}) contains each

matrix unit eij. It follows that W ∗({P,X}) contains M2(N ) whereN is the von Neumann

algebra generated by the entries of X. By the last line in the proof of Lemma 1.2.1 shows

that L∞([0, π
2
]) ⊂ N .

Consider the bounded Borel functions fn defined on [0, 1] by fn(t) =


1
t
t ≥ 1

n

0 t < 1
n

;

observe that fn(c)c converges strongly to 1 (since c is injective). Since cvc ∈ N , deduce

that v = limn(fn(c)cvcfn(c)) ∈ N . Since c and v are ∗-free, and c, v ∈ N , it follows

that N ⊃ LF2. Since the entries of P and X all lie in LF2, the proof of the Lemma is

complete. 2

Remark 1.3.7. We can prove the above lemma also by proving W ∗({U,Q}) = M2(LF2)

(where U and Q are free), in an exactly similar way.

Lemma 1.3.8.

W ∗({U,X}) = M2(LF3)

Proof. In view of Lemma 1.3.6, we only need to observe that {u, v, c}′′ = LF3. 2

Finally, Proposition 1.3.1 follows from Lemma 1.3.6 and Corollary 1.3.5, while Propo-

sition 1.3.2 follows from Lemma 1.3.8 and Lemma 1.3.3.
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1.4 (A1 ⊕ A2) ∗ (B1 ⊕B2) ∼= M2(A1 ∗ A2 ∗B1 ∗B2 ∗ LZ)

Let A1, A2 and B1, B2 be finite von-Neumann algebras. In this section, we compute the

free product of A1⊕A2 and B1⊕B2 (with uniform traces, as mentioned above). We denote

the trace and cumulant on matrix algebras over the finite von-Neumann algebras as Tr

and κ and those on the finite von-Neumann algebras themselves as tr and k respectively.

Following the steps in the previous proofs, here too we find freely independent copies

of A1 ⊕ A2 and B1 ⊕ B2 inside M2(A1 ∗ A2 ∗ B1 ∗ B2 ∗ LZ) as subalgebras generating it

as a W ∗- probability space.

The computations in this section and the next are dependent on the Kreweras com-

pliment ([NS06]) of a non-crossing partition π ∈ NC({1, · · · , n}), i.e. the biggest

element, say σ ∈ NC({1̄, · · · , n̄}) such that π ∪ σ is a non-crossing partition over

{1, 1̄, 2, 2̄, · · · , n, n̄}. The Kreweras compliment of π is denoted by K(π).

For example, if π = {{1, 2, 7}, {3}, {4, 6}, {5}, {8}}, thenK(π) = {{1̄}, {2̄, 3̄, 6̄}, {4̄, 5̄}, {7̄, 8̄}},

as is clearly seen from the following diagram:

Figure 1.1: π and K(π) for π = {{1, 2, 7}, {3}, {4, 6}, {5}, {8}} ∈ NC(8)

We start with a simple but useful lemma on K(π):

Lemma 1.4.1. Let π ∈ NC(n) and 1 ∼π n. Let V = (k′, · · · , (k + l)′) be an interval in

its Kreweras compliment K(π) for 1 ≤ k ≤ n, 0 ≤ l ≤ n − k. Then k ∼π (k + l + 1),

where all positive integers are taken modulo n.

Proof. Note that if (k) is a singloton block then (k − 1)′ ∼K(π) k
′, a contradiction since

V is an interval. Similarly (k + l + 1) cannot be a singleton block. More generally

suppose rk ∈ {1, · · · , k} and sk ∈ {k, (k + l + 1), · · · , n} are minimum positive integers
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such that k ∼π rk and k ∼π sk. Suppose rk+l+1 ∈ {1, · · · , k, (k + l + 1)} and sk+l+1 ∈

{(k + l + 1), · · · , n} are the same for (k + l + 1). We already saw that we cannot have

rk = sk = k or rk+l+1 = sk+l+1 = (k+ l+ 1). For simplicity, we assume 1 < k, l < (n−k).

The cases k = 1 or l = n− k will follow similarly.

Case sk  k: In this case sk being minimum in {(k + l + 1), · · · , n} such that k ∼π sk

we must have (sk − 1)′ ∼K(π) (k + l)′, a contradiction unless k + l + 1 = sk ∼π k.

Case sk = k: In this case rk being minimum in {1, · · · , k − 1} such that k ∼π rk, unless

rk = 1 we must have (rk − 1)′ ∼K(π) k
′, a contradiction. On the other hand if rk = 1,

then rk+l+1 is forced to be (k+ l+ 1). Thus similarly we must have sk+l+1 = n, otherwise

leading into a contradiction. But 1 ∼π n. Hence k ∼π rk = 1 ∼π n = sk+l+1 ∼π (k+ l+1)

2

Proposition 1.4.2.

(A1 ⊕ A2) ∗ (B1 ⊕B2) ∼= M2(A1 ∗ A2 ∗B1 ∗B2 ∗ LZ)

Proof. Consider the two matrix subalgebras

A1 0

0 A2

 (∼= A1⊕A2) andW

B1 0

0 B2

W ∗(∼=

B1⊕B2) of A1 ∗A2 ∗B1 ∗B2 ∗LZ, where W is the unitary matrix of the previous sections.

Following the method used in Lemma 1.3.6 we know that these two subalgebras indeed

generate the matrix algebra on the right side. We need to show that these are free.

Note that W

b1 0

0 b2

W ∗ =

cb1c+ sb2s cb1s− sb2c

sb1c− cb2s sb1s+ cb2c


Suppose Π is an alternating product of matrices of the form

a1 0

0 a2

 andW

b1 0

0 b2

W ∗,

with aj ∈ Aj, bj ∈ Bj, tr(a1 + a2) = 0 = tr(b1 + b2).

Instead of directly proving Tr(Π) = 0, we will prove a stronger statement: tr(Πi1,i1) =

0∀i1 ∈ {1, 2}.
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We will need to look at alternating products of the form

Π =

a1
1 0

0 a1
2


cb2

1c+ sb2
2s cb2

1s− sb2
2c

sb2
1c− cb2

2s sb2
1s+ cb2

2c

 · · ·
a2r−1

1 0

0 a2r−1
2


cb2r

1 c+ sb2r
2 s cb2r

1 s− sb2r
2 c

sb2r
1 c− cb2r

2 s sb2r
1 s+ cb2r

2 c


a2r+1

1 0

0 a2r+1
2

 ,

where aij ∈ Aj, bij ∈ Bj, tr(a
i
1 + ai2) = 0 = tr(bi1 + bi2)∀i - as well as three other kinds of

products (depending on which sort of matrix the product starts or ends with).

Note that by taking

a1
1 0

0 a1
2

 or both

a1
1 0

0 a1
2

 and

a2r+1
1 0

0 a2r+1
2

 as

1 0

0 −1

,

and using the fact that we are working with traces here, we find that it is sufficient to

consider the one special case listed above.

For i1 ∈ {1, 2}, the (i1, i1)th diagonal entry Πi1,i1 of Π is a sum of words of the form

ω = a1
i1
ti1,i2(ω)b

2
i2(ω)t

′
i2(ω),i3(ω)a

3
i3(ω)ti3(ω),i4(ω)b

4
i4(ω)t

′
i4(ω),i5(ω) · · · a2r−1

i2r−1(ω)ti2r−1(ω),i2r(ω)b
2r
i2r(ω)t

′
i2r(ω),i1

a2r+1
i1

,

for i2(ω), · · · , i2r(ω) ∈ {1, 2} and tij(ω),ij+1(ω), t
′
ij(ω),ij+1(ω) ∈ {c, s} (the reason behind using

the cumbersome notation ij(ω) is to emphasize the dependence of the indices ij on the

particular summand ω).

Now since the a’s and b’s are free from the t’s and t′’s, we see from Theorem 14.4,

[NS06], that

tr(ω) =
∑

π∈NC(2r+1)

kπ(a1
i1
, b2
i2(ω), · · · , a2r+1

i1
)trK(π)(ti1,i2(ω), t

′
i2(ω),i3(ω), · · · , ti2r−1(ω),i2r(ω), t

′
i2r(ω),i1

, 1).

Thus, in order to prove that tr(Πi1,i1) = 0, it is enough to prove that for any π ∈

NC(2r + 1), i1 ∈ {1, 2},
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∑
ω a summand of Πi1,i1
i2(ω),··· ,i2r(ω)∈{1,2}

kπ(a1
i1
, b2
i2(ω), · · · , a2r+1

i1
)trK(π)(ti1,i2(ω), t

′
i2(ω),i3(ω) · · · , ti2r−1(ω),i2r(ω), t

′
i2r(ω),i1

, 1) = 0 .

(1.4.1)

The crux of the proof lies in the following key lemma.

Lemma 1.4.3. Let p ∈ N, i1 ∈ {1, 2}. For aji ∈ Ai, b
j
i ∈ Bk, where i = 1, 2, j =

1, 2, · · · , p+ 1, write aj =

a2j−1
1 0

0 a2j−1
2

 and bj =

cb2j
1 c+ sb2j

2 s cb2j
1 s− sb

2j
2 c

sb2j
1 c− cb

2j
2 s sb2j

1 s+ cb2j
2 c

; and

define

Π′ = a1b1a2 · · · apbpap+1 and Π′′ = b1a2 · · · apbp.

Then

∑
ω a summand of Π′

i1,i1
i2(ω),··· ,i2p(ω)∈{1,2}

k02p+1(a1
i1
, b2
i2(ω), · · · , b

2p
i2p(ω), a

2p+1
i1

)tr12p+1(ti1,i2(ω), t
′
i2(ω),i3(ω),

· · · , ti2p−1(ω),i2p(ω), t
′
i2p(ω),i1

, 1) = 0 .

(1.4.2)

In particular, when a1 = ap+1 =

1 0

0 −1

,

∑
ω a summand of Π′′

i1,i1
i2(ω),··· ,i2p(ω)∈{1,2}

k02p−1(b2
i2(ω), a

3
i3(ω), · · · , b

2p
i2p(ω))tr12p(ti1,i2(ω), t

′
i2(ω),i3(ω),

· · · , ti2p−1(ω),i2p(ω), t
′
i2p(ω),i1

) = 0 .

(1.4.3)
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Proof. In this proof we write ij(ω) as ij for simplicity.

∑
ω is a summand of Π′

i1,i1
i2,··· ,i2p∈{1,2}

k02p+1(a1
i1
, b2
i2
, · · · , a2p+1

i1
)tr12p+1(ti1,i2 , t

′
i2,i3

, · · · , ti2p−1,i2p , t
′
i2p,i1

, 1)

=
∑

ω is a summand of Π′
i1,i1

i2,··· ,i2p∈{1,2}

tr(a1
i1

)tr(b2
i2

) · · · tr(a2p+1
i1

)tr(ti1,i2t
′
i2,i3
· · · ti2p−1,i2pt

′
i2p,i1

),

which is the (i1, i1) entry of

tr(a1
1) 0

0 tr(a1
2)


ctr(b2

1)c+ str(b2
2)s ctr(b2

1)s− str(b2
2)c

str(b2
1)c− ctr(b2

2)s str(b2
1)s+ ctr(b2

2)c

 · · ·
tr(a2p−1

1 ) 0

0 tr(a2p−1
2 )


ctr(b2p

1 )c+ str(b2p
2 )s ctr(b2p

1 )s− str(b2p
2 )c

str(b2p
1 )c− ctr(b2p

2 )s str(b2p
1 )s+ ctr(b2p

2 )c


tr(a2p+1

1 ) 0

0 tr(a2p+1
2 )

 = λ(2P02Qo)
p2P0,

where λ


= 0 if ∃i : tr(ai1) = tr(ai2) = 0 or tr(bi1) = tr(bi2) = 0

∈ C \ {0} if ∀i, tr(ai1) = −tr(ai2) 6= 0, tr(bi1) = −tr(bi2) 6= 0

Now the proof follows since by the proof of Lemma 1.2.2, each diagonal entry of an

alternating product in 2P0 and 2Q0 has trace zero. 2

Now let us fix an arbitrary π ∈ NC(2r + 1).

If π = 02r+1, then equation 1.4.1 follows from equation 1.4.2 for p = r.

If π 6= 02r+1 then ∃m < n ∈ {1, · · · , 2r + 1} such that m ∼π n.

Consider an interval, say V = (k, · · · , l − 1) in K(π) for 1 ≤ m ≤ k ≤ l − 1 ≤ n ≤

(r + 1). Then by Lemma 1.4.1, k ∼π l (since m ∼π n).

Case 1: Suppose |V | is odd. Then either akik and blil or bkik and alil are joined through π

(depending on whether k or l is odd), which leads to corresponding kπ being zero, since

Ai, Bj are free ∀i, j (Theorem 11.20 [NS06]).
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Case 2: Suppose |V | is even, both k and l are odd. Then akik and alil are joined through

π. Thus l − 1  k.

Also note that if ik 6= il then due to Aik and Ail being free the corresponding kπ would

be zero. So we now assume that ik = il.

Let π0 = π \ {(k + 1) ∨ · · · ∨ (l − 1)} and π1 = K(π) \ {(k, · · · , l − 1)}.

Then

∑
ω is a summand of Πi1,i1

i2(ω),··· ,i2r(ω)

kπ(a1
i1
, b2
i2(ω), · · · , a2r+1

i1
)trK(π)(ti1,i2(ω), · · · , t′i2r(ω),i1

)

=
∑

ω is a summand of Πi1,i1
i2(ω),··· ,ik(ω)(=il(ω)),il+1(ω),··· ,i2r(ω)

kπ0(a1
i1
, b2
i2
, · · · , akil , a

l
il
, bl+1
il+1

, · · · , b2r
i2r
, a2r+1

i1
)

trπ1(ti1,i2 , · · · , t′ik−1,ik
, til,il+1

, · · · , t′i2r,i1)
(∑

ik+1(ω),··· ,il−1(ω)

k0V (bk+1
ik+1

, · · · , bl−1
il−1

)tr1V (tik,ik+1
, · · · , t′il−1,il

)
)

=
∑

ω is a summand of Πi1,i1
i2(ω),··· ,ik(ω)(=il(ω)),il+1(ω),··· ,i2r(ω)

kπ0(a1
i1
, b2
i2
, · · · , akil , a

l
il
, bl+1
il+1

, · · · , b2r
i2r
, a2r+1

i1
)

trπ1(ti1,i2 , · · · , t′ik−1,ik
, til,il+1

, · · · , t′i2r,i1)
(∑

ik+1(ω),··· ,il−1(ω)

k0l−k−1
(bk+1
ik+1

, · · · , bl−1
il−1

)tr1l−k(tik,ik+1
, · · · , t′il−1,ik

)
)
.

Write Π = Π(1,k)Π(k+1,l−1)Π(l,2r+1),

where Π(1,k) = a1b1 · · · a k+1
2 , Π(k+1,l−1) = b

k+1
2 a

k+3
2 · · · b l−1

2 , Π(l,2r+1) = a
l+1
2 · · · b2rar+1.

Further let Π̃ = Π(1,k)Π(l,2r+1). Note that Π(1,k) or Π(l,2r+1) can be trivial for the

extreme cases.

Then using the fact that ik(ω) = il(ω) the above sum may be re-written as
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∑
ω̃ is a summand of Π̃i1,i1

i2(ω̃),··· ,ik(ω̃)(=il(ω̃)),il+1(ω̃),··· ,i2r(ω̃)

kπ0(a1
i1
, b2
i2
, · · · , akil , a

l
il
, bl+1
il+1

, · · · , b2r
i2r
, a2r+1

i1
)

trπ1(ti1,i2 , · · · , t′ik−1,il
, til,il+1

, · · · , t′i2r,i1)
( ∑

˜̃ω is a summand of Π
(k+1,l−1)
ik,ik

ik+1(˜̃ω),··· ,il−1(˜̃ω)

k0l−k−1
(bk+1
ik+1

, · · · , bl−1
il−1

)

tr1l−k(tik,ik+1
, · · · , t′il−1,ik

)
)
.

Now we put p = l−k
2
,Π′′ = Π

(k+1,l−1)
ik,ik

in equation 1.4.3 to get for any ik(ω̃) = ik(= il =

il(ω̃)) ∈ {1, 2},

∑
˜̃ω is a summand of Π

(k+1,l−1)
ik,ik

ik+1(˜̃ω),··· ,il−1(˜̃ω)

k0l−k−1
(bk+1

ik+1(˜̃ω)
, · · · , bl−1

il−1(˜̃ω)
)tr1l−k(tik,ik+1(˜̃ω), · · · , t

′
il−1(˜̃ω),ik

) = 0,

thus proving 1.4.1, as desired.

Case 3: The case when |V | is even and both k and l are even is proved exactly as in the

previous case. 2

Corollary 1.4.4.

(A1 ⊕ A2) ∗ LZ ∼= M2(A1 ∗ A2 ∗ LF3)

Proof. Follows from Proposition 1.4.2 as well as by noting the fact that LZ ∼= LZ⊕ LZ,

both being singly generated von Neumann algebras with non atomic distributions 2

1.5 M2(A) ∗M2(B) ∼= M2(A ∗B ∗ LF3)

Let A,B be finite von-Neumann algebras. In this section we compute the free product of

M2(A) and M2(B) (with ‘normalized’ traces, as mentioned before). While in the process

of computing the above, we also compute the free product of A1 ⊕ A2 and M2(B). The

notations for trace and cumulant remain same as above.
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As above, the proofs consist of finding representatives (models) of the free copies of

the finite von-Neumann algebras on the left hand side inside the finite von-Neumann

algebra on the right hand side, as subalgebras generating it as a W ∗-probability space.

Proposition 1.5.1.

M2(A) ∗M2(B) ∼= M2(A ∗B ∗ LF3)

Proof. Set Y =

1 0

0 u

 and Z =

1 0

0 v

 in M2(LF3), where u, v are Haar unitaries as

in the introduction, such that A,B, {u}, {v}, {c} are free.

We want to show that Y ∗M2(A)Y (∼= M2(A)) and WZ∗M2(B)ZW ∗(∼= M2(B)) are

free in M2(A ∗ B ∗ LF3). As before, following the method used in Lemma 1.3.6, we can

conclude that these two subalgebras generate the algebra on the right in the proposition.

For ai,j ∈ A, bi,j ∈ B,

Y ∗(ai,j)Y =

1 0

0 u∗


a1,1 a1,2

a2,1 a2,2


1 0

0 u


=

 a1,1 a1,2u

u∗a2,1 u∗a2,2u

 ;

WZ∗(bi,j)ZW
∗ =

c −s
s c


1 0

0 v∗


b1,1 b1,2

b2,1 b2,2


1 0

0 v


 c s

−s c


=

c −s
s c


 b1,1 b1,2v

v∗b2,1 v∗b2,2v


 c s

−s c


=

cb1,1c− sv∗b2,1c− cb1,2vs+ sv∗b2,2vs cb1,1s− sv∗b2,1s+ cb1,2vc− sv∗b2,2vc

sb1,1c+ cv∗b2,1c− sb1,2vs− cv∗b2,2vs sb1,1s+ cv∗b2,1s+ sb1,2vc+ cv∗b2,2vc

 .

As above, to prove freeness, it is enough to check on an alternating product of the
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form

Π =

 a1
1,1 a1

1,2u

u∗a1
2,1 u∗a1

2,2u

(
c −s
s c


 b2

1,1 b2
1,2v

v∗b2
2,1 v∗b2

2,2v


 c s

−s c

)

· · ·
(c −s

s c


 b2r

1,1 b2r
1,2v

v∗b2r
2,1 v∗b2r

2,2v


 c s

−s c

)
 a2r+1

1,1 a2r+1
1,2 u

u∗a2r+1
2,1 u∗a2r+1

2,2 u

 ,

for tr(ai1,1) + tr(ai2,2) = 0 = tr(bj1,1) + tr(bj2,2).

Here too we will prove that each diagonal entry of Π has trace zero.

Let ω be a summand of (i1, i1)th diagonal entry of the above product. Then ω is an

alternating product of the form

a1
i1,i2

w2
i2,i3

b3
i3,i4

w4
i4,i5
· · ·w2r−2

i2r−2,i2r−1
b2r−1
i2r−1,i2r

w2r
i2r,i2r+1

a2r+1
i2r+1,i1

,

where wkik,ik+1
∈ ±{c, sv∗, us, ucv∗, vs, su∗, vcu∗} depending on ω.

As before from [NS06] we can say that

tr(ω) =
∑

π∈NC(r+1)

kπ(a1
i1,i2

, b3
i3,i4

, · · · , b2r−1
i2r−1,i2r

, a2r+1
i2r+1,i1

)trK(π)(w
2
i2,i3

, w4
i4,i5

, · · · , w2r
i2r,i2r+1

, 1).

Using the fact that u∗u = v∗v = 1, as in Lemma 1.4.3, here also

∑
ω is a summand of Πi1,i1

k0r+1(a1
i1,i2

, b3
i3,i4

, · · · , b2r−1
i2r−1,i2r

, a2r+1
i2r+1,i1

)tr1r+1(w2
i2,i3

, w4
i4,i5

, · · · , w2r
i2r,i2r+1

, 1)

is the (i1, i1)th entry of the matrix
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(
tr(a1

1,2)U + tr(a1
2,1)U∗ + tr(a1

1,1)2P0

)(
W (tr(b2

1,2)V + tr(b2
2,1)V ∗ + tr(b2

1,1)2P0)W ∗
)

· · ·
(
W (tr(b2r

1,2)V + tr(b2r
2,1)V ∗ + tr(b2r

1,1)2P0)W ∗
)(
tr(a2r+1

1,2 )U + tr(a2r+1
2,1 )U∗ + tr(a2r+1

1,1 )2P0

)
=
(
tr(a1

1,2)U + tr(a1
2,1)U∗ + tr(a1

1,1)2P0

)(
tr(b2

1,2)X + tr(b2
2,1)X∗ + tr(b2

1,1)2Q0

)
· · ·
(
tr(b2r

1,2)X + tr(b2r
2,1)X∗ + tr(b2r

1,1)2Q0

)(
tr(a2r+1

1,2 )U + tr(a2r+1
2,1 )U∗ + tr(a2r+1

1,1 )2P0

)
,

where U, V,X are trace zero partial isometries in M2(LF3) as defined in the introduc-

tion,

But by proof of Lemma 1.3.3, each diagonal entry of an alternating product in

{U,U∗, 2P0} and {X,X∗, 2Q0} has trace zero.

Thus exactly as Lemma 1.4.3, for any i1 ∈ {1, 2},

∑
ω is a summand of Πi1,i1

k0r+1(a1
i1,i2

, b3
i3,i4

, · · · , b2r−1
i2r−1,i2r

, a2r+1
i2r+1,i1

)tr1r+1(w2
i2,i3

, w4
i4,i5

, · · · , w2r
i2r,i2r+1

, 1) = 0.

Now rest of the proof follows similarly as Proposition 1.4.2. 2

Proposition 1.5.2.

(A1 ⊕ A2) ∗M2(B) ∼= M2(A1 ∗ A2 ∗B ∗ LF2)

Proof. Here one needs to prove that

A1 0

0 A2

 (∼= A1 ⊕ A2) and WZ∗M2(B)ZW ∗(∼=

M2(B)) are free and they generate the right hand side. The proof is exactly similar to

that of Proposition 1.4.2 or Proposition 1.5.1 using Corollary 1.3.5. 2

Remark 1.5.3. As in Remark 1.3.7 here too we can have an exactly similar alternate

proof using W

A1 0

0 A2

W ∗ and YM2(B)Y ∗ as model.
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Corollary 1.5.4.

M2(A) ∗ LZ ∼= M2(A ∗ LF4)

Corollary 1.5.5. For k1, k2, l1, l2 ∈ N ∪ {0},

1. (LFk1 ⊕ LFk2) ∗ (LFl1 ⊕ LFl2) ∼= M2(LFk1+k2+l1+l2+1);

2. (LFk1 ⊕ LFk2) ∗ LZ ∼= M2(LFk1+k2+3);

3. M2(LFk) ∗M2(LFl) ∼= M2(LFk+l+3);

4. (LFk1 ⊕ LFk2) ∗M2(LFl) ∼= M2(LFk1+k2+l+2);

5. LZ ∗M2(LFl) ∼= M2(LFl+4).

Proof. (1), (3) and (4) are direct consequences of Proposition 1.4.2, Proposition 1.5.1 and

Proposition 1.5.2 respectively. (2) and (5) follow from those as well as Corollary 1.4.4

and 1.5.4 (In fact (3) follows directly from Theorem 5.4.1 [VDN92]). 2

1.6 Applications

In this section, we use the results proved in the previous sections and compute various

possible free products involving the hyperfinite II1 factor R, (LFl)
2m and M2n(LFk),

where m,n ∈ N, k, l ∈ N ∪ {0} (LF0 is considered as C). These results were proved in

section 1-3 of [Dyk93] in a much more general context, but with a different approach.

The resulting von-Neumann algebras, as we know from [Dyk93], turn out to be certain

II1 factors known as interpolated free group factors ([Dyk94], [Rad94]). In particular,

these interpolated free group factors appearing here, are of the form LF2+d, where d is a

dyadic rational number ≥ −2.

We now need to use Theorem 5.4.1 of [VDN92]. For our purpose it will be enough to

stick to the following 2-dimensional version of the theorem: For k ≥ 2, k ∈ N,
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LFk ∼= M2(LF(k−1)4+1).

However Theorem 2.4 of [Dyk94] shows that even for k not an integer, the above

result holds, i.e. ∀t ≥ 2, t ∈ R,

LFt ∼= M2(LF(t−1)4+1), (1.6.1)

and it is this version of the theorem that we will frequently use for the following

computations.

Example 1.6.1. C2n ∗ C2m ∼= M2(LF5−2( 1
2n−1 + 1

2m−1 )), n ≥ 1. In particular, C2n ∗ C2n ∼=

M2(LF5− 4
2n−1

), n ≥ 1.

Proof. We first prove inductively that C2n ∗ C2n ∼= M2(LFan) for some an ∈ [1,∞), for

all n ≥ 1. Then the basic step follows from Proposition 1.2.3. Also a1 = 1 by the same

Proposition.

C2n+1 ∗ C2n+1 ∼= (C2n ⊕ C2n) ∗ (C2n ⊕ C2n)

∼= M2(C2n ∗ C2n ∗ C2n ∗ C2n ∗ LZ), by Proposition 1.2.3

∼= M2(M2(LFan) ∗M2(LFan) ∗ LZ), by induction hypothesis

∼= M2(M2(LF2an+3) ∗ LZ), by Corollary 1.5.5

∼= M2(LF 2an+3−1
4

+2 ∗ LZ), by equation 1.6.1

∼= M2(LFan
2

+ 5
2
) .

Thus the induction is complete. Moreover we have the recurrence relation an+1 =

an
2

+ 5
2
.
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Now,

an+1 =
an
2

+
5

2
=

an−1

2
+ 5

2

2
+

5

2

=
an−1

22
+

5

2.2
+

5

2
=
a1

2n
+

5

2
(

1

2n−1
+

1

2n−2
+ · · ·+ 1)

=
1

2n
+

5

2
(

1

2n−1
+

1

2n−2
+ · · ·+ 1) =

1

2n
+

5(2n − 1)

2n
= 5− 4

2n
.

From the above calculations and equation 1.6.1,

C2n ∗ C2n ∼= M2(LF5− 4
2n−1

), as required

∼= LF2− 1
2n−1

, n ≥ 1.

Without loss of generality we can assume that n ≥ m. For m = n = 1 the proof

follows from Proposition 1.2.3.

Let n ≥ 2. Then,

C2n ∗ C2m ∼= M2(C2n−1 ∗ C2n−1 ∗ C2m−1 ∗ C2m−1 ∗ LZ)

∼= M2(LF2− 1
2n−2
∗ LF2− 1

2m−2
∗ LZ)

∼= M2(LF5−2( 1
2n−1 + 1

2m−1 )) .

2

Before stating the final result of this section, we compute few more similar examples

using Corollary 1.5.5:

Example 1.6.2.

C2n ∗ LFk ∼= M2(LF4k+1− 2
2n−1

), n, k ≥ 1.
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Proof. Let k = 1. First let n = 1. Then

C2 ∗ LZ ∼= M2(LF3), by Corollary 1.5.5

= M2(LF4.1+1− 2
21−1

), thus proving the Proposition for this case.

Again,

C4 ∗ LZ ∼= (C2 ⊕ C2) ∗ (LZ⊕ LZ)

∼= M2(C2 ∗ C2 ∗ LZ ∗ LZ ∗ LZ), by Proposition 1.4.2

∼= M2(M2(LZ) ∗ LZ ∗ LF2), by Proposition 1.2.3

∼= M2(M2(LF5) ∗ LF2), by Corollary 1.5.5

∼= M2(LF4), by equation 1.6.1

= M2(LF4.1+1− 2
22−1

) .

Now let n ≥ 3. Then by Proposition 1.4.2 and equation 1.6.1,

C2n ∗ LZ ∼= (C2n−1 ⊕ C2n−1

) ∗ (LZ⊕ LZ)

∼= M2(LF5− 1
2n−2

)

= M2(LF4.1+1− 2
2n−2

)

∼= LF2− 1
2n
.

Finally let k ≥ 2. Then

C2n ∗ LFk ∼= LF2− 1
2n
∗ LFk−1

∼= LFk+1− 1
2n

∼= M2(LF4k+1− 2
2n−1

) .

2
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Example 1.6.3.

M2n ∗ LFk ∼= M2(LF4k+1− 1
4n−1

), n, k ≥ 1.

Proof. We first prove it for k = 1.

M2 ∗ LZ ∼= M2(LF4), by Corollary 1.5.5

Similarly as before, we inductively prove that for n ≥ 1, M2n ∗ LZ ∼= M2(LFbn), where

b1 = 4 by the above calculation.

M2n+1 ∗ LZ ∼= M2(M2n) ∗ (LZ⊕ LZ)

∼= M2(M2n ∗ LZ ∗ LZ ∗ LF2)

∼= M2((M2n ∗ LZ) ∗ (LZ ∗ LF2))

∼= M2(M2(LFbn) ∗ LF3), by induction hypothesis

∼= M2(LF bn−1
4

+1 ∗ LF3), by equation 1.6.1

∼= M2(LF bn
4

+ 15
4

) .

So we have bn+1 = bn
4

+ 15
4

(b1 = 4), solving which, we get bn = 5− 1
4n−1 . Hence,

M2n ∗ LZ ∼= M2(LF5− 1
4n−1

) (1.6.2)

Let k ≥ 2.

M2n ∗ LFk ∼= (M2n ∗ LZ) ∗ LFk−1

∼= M2(LF5− 1
4n−1

) ∗ LFk−1

∼= LF2− 1
4n
∗ LFk−1, by equation 1.6.1

∼= LFk+1− 1
4n

∼= M2(LF4k+1− 1
4n−1

), by equation 1.6.1.
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2

Remark 1.6.4. The above result was proved for a more general case in Theorem 5.4.1

of [VDN92], using approximation of semicircular elements by random matrices in distri-

bution. It also uses the fact that a symmetric square matrix with free entries such that

the diagonal entries follow standard semicircular distribution and the off diagonal entries

follow circular distribution, is free from the matrix algebra over the scalars1.

Corollary 1.6.5. C4 ∗ LFk ∼= M2 ∗ LFk ∼= M2(LF4k), k ≥ 1.

Example 1.6.6. M2n ∗ C2m ∼= M2(LF5− 1
4n−1−

2
2m−1

), n,m ≥ 1.

Proof. Note that the case of n = m = 1 follows from Proposition 1.3.1. Let n = 1,m ≥ 2.

Then

M2 ∗ C2m ∼= M2(C2m−1 ∗ C2m−1 ∗ LF2), by Proposition 1.5.2

∼= M2(C2m−1 ∗ LZ ∗ C2m−1 ∗ LZ)

∼= M2(LF2(2− 1
2m−1 )), by Example 1.6.2 and equation 1.6.1

∼= M2(LF4− 2
2m−1

) .

Finally let n ≥ 2. Then,

M2n ∗ C2m ∼= M2(M2n−1 ∗ C2m−1 ∗ C2m−1 ∗ LF2)

∼= M2(M2n−1 ∗ LF2− 1
2m−2

∗ LF2), by Example 1.6.1

∼= M2(M2n−1 ∗ LF2 ∗ LF2− 1
2m−2

)

∼= M2(M2(LF9− 1
4n−2

) ∗ LF2− 1
2m−2

), by Example 1.6.3

∼= M2(LF3− 1
4n−1 +2− 1

2m−2
)

∼= M2(LF5− 1
4n−1−

1
2m−2

) .

1This can also be argued from Lecture 20 of [NS06], according to which, such a matrix turns out to
be R-cyclic, where the value of a mixed cumulant depends only on its size, and thus is free from scalar
matrices

37



In particular,

M2n ∗ C2n ∼= M2(LF5− 1
4n−1−

2
2n−1

) . (1.6.3)

2

Example 1.6.7.

M2n ∗M2m
∼= M2(LF5−( 1

4n−1 + 1
4m−1 )), n,m ≥ 1.

Proof. Without loss of generality let us assume n ≥ m. We first note the following facts:

• The case of n = m = 1 follows from Proposition 1.3.2.

• M2n ∗M2
∼= M2(LF4− 1

4n−1
), n ≥ 2, which follows from Proposition 1.5.1, Example

1.6.3 and equation 1.6.1.

• For all n ≥ m ≥ 1, M2n ∗M2m
∼= M2(LFen,m) for some en,m ∈ [1,∞).

• en+1,m+1 = en,m
4

+ 15
4

, where en+1−m,1 = 4 − 1
4n+1−m−1 = 4 − 1

4n−m
, considering the

free product of M2n and M2 as given above.

Solving the above doubly recursive relation, we get em,n = 5 − ( 1
4n−1 + 1

4m−1 ), as

required.

In particular,

M2n ∗M2n
∼= M2(LF5− 2

4n−1
), n ≥ 1. (1.6.4)

2

We are now ready to state the following proposition that summarizes the promised

computations of the free products involving certain finite dimensional von-Neumann al-

gebras and the free-group von-Neumann algebras. We will omit the proof since it is a

simple exercise of induction using the previous sections, similar to the above examples.
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Proposition 1.6.8. For m,n ∈ N, k, l ∈ N ∪ {0} and LF0 = C,

1. (LFk)
2n∗(LFl)2m ∼= M2(LF

5+
2(k−1)

2n−1 +
2(l−1)

2m−1
). In particular (LZ)2n∗(LZ)2m ∼= M2(LF5).

2. M2n(LFk) ∗ (LFl)
2m ∼= M2(LF

5+ k−1

4n−1 +
2(l−1)

2m−1
). In particular M2n(LZ) ∗ (LZ)2m ∼=

M2(LF5).

3. M2n(LFk)∗M2m(LFl) ∼= M2(LF5+ k−1

4n−1 + l−1

4m−1
). In particular M2n(LZ)∗M2m(LZ) ∼=

M2(LF5).

Equation 1.6.1 shows that these resulting interpolated free group factors are indeed

of the form LF2+d, where d ≥ −2 is a dyadic rational number.

Remark 1.6.9. There exist explicitly computable functions f, g : [1,∞) → [1,∞), such

that whenever finite von-Neumann algebras A,B satisfy A∗B ∼= LFt for some t ∈ [1,∞),

then, for all n ∈ N, we have

• A2n ∗B2n ∼= M2(LFf(t));

• M2n(A) ∗M2n(B) ∼= M2(LFg(t)).

Remark 1.6.10. One can obviously extend the above proposition by taking LFk1 ⊕ · · · ⊕

LFk2n
for ki ≥ 0, instead of (LFk)

2n.

We know that the hyperfinite II1 factor R can be constructed as an infinite tensor

product of type I2n factors, i.e. scalar matrix algebras of dimension 2n. Again LZ ∼=

L∞([0, π
2
]) can be thought of as an infinite tensor product of C2n .

Proposition 1.6.8 suggests that on ‘taking the limit as m,n→∞’ , with k = l = 0,

1. LZ ∗ LZ ∼= M2(LF5) (trivially true);

2. R ∗ LZ ∼= M2(LF5) (Theorem 5.4.3 [VDN92]);

3. R ∗R ∼= M2(LF5).
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We could not come up with a matrix model to prove the above statements, approx-

imating LZ and R as by finite dimensional algebras as n → ∞ in Proposition 1.6.8.

But we shall indeed give a rigorous proof for the assertion about R ∗ R, as against the

‘limiting’ heuristics:

In view of the uniqueness of the hyperfinite II1 factor ([MvN43]), we know that

R ∼= M2(R) (1.6.5)

Now using Theorem 5.4.3 of [VDN92], i.e.

LFk ∗R ∼= LFk+1 (1.6.6)

we may deduce the following:

Proposition 1.6.11. For finite von-Neumann algebra A1, A2, B,

1. R ∗ (A1 ⊕ A2) ∼= M2(A1 ∗ A2 ∗ LF3);

2. R ∗M2(B) ∼= M2(B ∗ LF4).

Proof. By above equations and Proposition 1.5.2

R ∗ (A1 ⊕ A2) ∼= M2(R) ∗ (A1 ⊕ A2)

∼= M2(A1 ∗ A2 ∗R ∗ LZ)

∼= M2(A1 ∗ A2 ∗ LF3)

The other statement follows similarly using Proposition 1.5.1. 2

Corollary 1.6.12. R ∗R ∼= M2(LF5)

Proof. It follows from equation 1.6.5 and the above proposition. 2
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We now observe that our proof can also be led to the strengthened version Propo-

sition 1.6.13 of Corollary 1.6.12). Following [Dyk94], let us write the left side as R ∗ R̃

to emphasize the distinction between the two free copies of the hyperfinite II1 factor.

Consider R ∼= M2(R), R̃ ∼= M2(R̃). Then we notice that by proof of Proposition 1.5.1,

M2(R) on the left hand side gets mapped into M2(R) on the right hand side (which

is M2(R ∗ R̃ ∗ LF3) ∼= M2(R ∗ LF4)) as conjugated by the unitary matrix Y ∗ where

Y =

1 0

0 u

.

On the other hand, by Proposition 1.5.2 and Theorem 5.4.3 of [VDN92], we have

M2(R) ∗ LZ ∼= M2(R) ∗ (LZ⊕ LZ)

∼= M2(R ∗ LF4),

where by Remark 1.5.3, M2(R) on the left hand side is mapped into M2(R) on the right

hand side in exactly the same manner as above, i.e. as conjugated by the same unitary

matrix Y ∗.

In fact we note here that for projection P =

1 0

0 0

 ∈M2(R),

P (M2(R) ∗M2(R̃))P ∼= PM2(R)P ∗ LF4
∼= P (M2(R) ∗ LZ)P,

where the isomorphisms restricted to PM2(R)P (which is naturally isomorphic to R), in

all three cases are the identity maps.

Thus similarly as in Corollary 3.6 of [Dyk94], we can conclude that

Proposition 1.6.13.

R ∗ R̃ ∼= R ∗ LZ ∼= M2(LF5),

where the first isomorphism restricted to R on the left hand side is the identity map to R

on the right hand side.
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Chapter 2

Graphical models for von-Neumann

algebras

In this chapter we discuss the construction of a graphical model for finite von Neumann

algebras by associating them to finite weighted graphs ([KS11]). The resulting associated

algebra to a given graph gives a free product of algebras corresponding to subgraphs ‘with

one edge’ (actually a pair of dual edges), with amalgamation over a finite-dimensional

abelian subalgebra corresponding to the vertex set. This yields certain natural examples

of a non-commutative random variables with free Poisson distribution, operator-valued

circular and operator-valued semicircular distribution.

2.1 The graph-von-Neumann algebra association

This short section is dedicated to revisiting the construction in [KS11] of the associated

W ∗-probability space to a weighted graph, without assuming that the graph is bipartite1.

A weighted graph is a tuple Γ = (V, E , µ), where

• V is a (finite) set of vertices;

1Actually, [KS11] treated only the case of bipartite graphs, and sometimes restricted attention to the
case of the Perron-Frobenius weighting; but for the proof of statements made in this section, none of
those restrictions is necessary.
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• E is a (finite) set of edges, equipped with ‘source’ and ‘range’ maps s, r : E → V

and ‘(orientation) reversal’ involution map E 3 e 7→ ẽ ∈ E with (s(e), r(e)) =

(r(ẽ), s(ẽ)); and

• µ : V → (0,∞) is a ‘weight or spin function’ so normalized that
∑

u∈V µ
2(v) = 1

Let Pn = Pn(Γ) denote the set of paths of length n in Γ and let Pn(Γ) denote the

vector space with basis {[ξ] : ξ ∈ Pn(Γ)}. ξ = ξ1ξ2 · · · ξn is thought as the ‘concatenation

product’ where ξi denotes the i-th edge of ξ.

With the above notations, F (Γ) := ⊕n≥0Pn(Γ) is equipped with the following slightly

complicated multiplication:

If ξ ∈ Pm(Γ), η ∈ Pn(Γ), then

[ξ]#[η] =

min(m,n)∑
k=0

[ζk],

where ζk ∈ Pm+n−2k is defined by

ζk =


µ(vξm)

µ(vξm−k)
[ξ1ξ2 · · · ξm−kηk+1ηk+2 · · · ηn] if ξm−j+1 = η̃j∀1 ≤ j ≤ k

0 otherwise.

Following [KS11], we adopt the convention throughout this chapter that if ξ ∈ Pn,

then ξ = ξ1ξ2 · · · ξn denotes concatenation product, with ξi ∈ E and we write s(ξi) = vξi−1

(so also r(ξi) = s(ξi+1) = vξi ).

In particular, P0(Γ) = {v : v ∈ V }, and if v = s(ξ), w = r(ξ) for some ξ ∈ Pn, and if

u1, u2 ∈ V , then [u1][ξ][u2] = δu1,vδu2,w[ξ]; and less trivially, if ξ ∈ P1 and η ∈ Pm,m ≥ 1,

then

[ξ]#[η] =


0 if r(ξ) 6= s(η)

[ξη1 · · · ηm] if r(ξ) = s(η) but ξ 6= η̃1

[ξη1 · · · ηm] + µ(r(ξ))
µ(s(ξ))

[η2 · · · ηm] if ξ = η̃1.

However the definition of the trace τ on F (Γ) is fairly simple -

τ := µ2 ◦ E,
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where E : F (Γ)→ P0, such that for ξ ∈ Pn, E([ξ]) =


0 if n > 0

[ξ] if n = 0,

and µ2 is simply the linear extension to P0(Γ) that agrees with µ2 on the basis P0(Γ).

It was shown in [KS11] that (F (Γ), τ) is a tracial non-commutative *-probability

space, with e∗ = ẽ, that the mapping y 7→ xy extends to a ∗-algebra representation

F (Γ) → B(L2(F (Γ)), τ) and that M(Γ, µ) := λ(FΓ))′′ ⊂ B(L2(F (Γ)), τ) is in standard

form.

Then for ξ, η ∈ ∪nPn(Γ),

τ([ξ]#[η]∗) = δξ,ηµ(r(ξ))µ(s(ξ)),

and hence, if {ξ} = (µ(s(ξ))µ(r(ξ)))−
1
2 [ξ], then {{ξ} : ξ ∈ ∪n≥0Pn(Γ)} is an orthonormal

basis for H(Γ) = L2(F (Γ), τ).

2.2 The building blocks

In this section we tend to observe just how M(Γ, µ) depends on (Γ, µ). We begin by

spelling out some simple examples, which turn out to be building blocks for the general

case.

Example 2.2.1. 1. Suppose |V | = |E| = 1, say V = {v} and E = {e}. Then we

must have e = ẽ, s(e) = r(e) = v, µ(v) = 1,Pn = {en} and {ξ(n) = {en} : n ≥ 0}

(where {e0} = {v}) is an orthonormal basis for H(Γ); and the definitions show that

x = λ(e) satisfies xξn = ξ(n+ 1) + ξ(n− 1). Thus x is a semicircular element and

M(Γ) = {x}′′ ∼= LZ.

2. Suppose |V | = 1, |E| = 2, say V = {v} and E = {e1, e2} suppose e2 = ẽ1. Then we

must have s(ej) = r(ej) = v, µ(v) = 1. Further {{e1}, {e2}} is an orthonormal basis

for H2 = P1(Γ), and Pn(Γ) is isomorphic to ⊗nH2. Thus H(Γ) may be identified

with the full Fock space F(H2) and the definitions show that x1 = λ(e1) may be
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identified as x1 = l1 + l∗2, where the lj denote the standard creation operators. It

follows that x1 is a circular element and M(Γ) = {x1}′′ ∼= LF2.

3. Suppose |V | = 2, |E| = 2, say V = {v, w} and E = {e, ẽ} and suppose s(e) =

v, r(e) = w and µ(w) ≤ µ(v). Write ρ = µ(v)
µ(w)

(≥ 1). If we let pv = λ([v]), pw =

λ([w]), it follows that Hv = ran pv (respectively, Hw = ran pw) has an orthonormal

basis given by {{η(n)} : n ≥ 0} (respectively, {{ξ(n)} : n ≥ 0} where η(n) ∈ Pn

(respectively, ξ(n) ∈ Pn) and η(n)k = e or ẽ (respectively., ξ(n)k = ẽ or e according

as k is odd or even).

Writing x = λ(e), we see that with respect to the decomposition H(Γ) = Hv ⊕Hw,

the operator x has a matrix decomposition of the form

x =

0 t

0 0


where t ∈ B(Hw,Hv) is seen to be given by

t[ξ(n)] = x[ξ(n)]

[e]#[ẽeẽe · · · (n terms)]

[η(n+ 1)] + ρ−1[η(n− 1)];

and hence,

t{ξ(n)} = (µ(s(ξ(n))µ(r(ξ(n)))−
1
2 t[ξ(n)]

= (µ(w)µ(r(ξ(n)))−
1
2

(
[η(n+ 1)] + ρ−1[η(n− 1)]

)
= (ρ−1µ(v)µ(r(η(n± 1)))−

1
2

(
[η(n+ 1)] + ρ−1[η(n− 1)]

)
= ρ

1
2{η(n+ 1)}+ ρ−

1
2{η(n− 1)}.

It is a fact - see Proposition 2.2.2 - that t∗t has has absolutely continuous spectrum.
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This fact has two consequences:

(i) if t = u|t| is the polar decomposition of t, then u maps Hw isometrically onto

the subspace M = ran t of Hv, and if z is the projection onto Hv 	M then

τ(z) = µ2(v)− µ2(w); and

(ii) W ∗(|t|) ∼= LZ.

Since pv+pw = 1 and z ≤ pv, the definitions show that M(Γ, µ) is isomorphic to C⊕

M2(LZ) via the unique isomorphism which maps pv, pw, z, u and |t|, respectively, to

(1,

1 0

0 0

), (0,

0 0

0 1

), (1,

0 0

0 0

), (0,

0 1

0 0

), and (0,

0 0

0 a

) for some

positive a with absolutely continuous spectrum that generates LZ as a von Neumann

algebra. (This must be compared with Lemma 17 of [GJS11], bearing in mind that

their µ is our µ2.)

2

We now analyze the operator t∗t by calculating its spectrum and its distribution so

as to testify the claim made above.

Proposition 2.2.2. Let `2(N0) have its standard orthonormal basis {δn : n ∈ N0}, where

N0 = N ∪ {0}. Let `δn = δn+1 denote the creation operator (or unilateral shift), with

`∗δn = δn−1 (where δ−1 := 0). Let ρ > 1 and t = ρ
1
2 `+ ρ−

1
2 `∗. Then,

1. t∗t leaves the subspace `2(2N0) invariant;

2. δ0 is a cyclic vector for aρ := the restriction of t∗t on `2(2N0); and

3. the (scalar) spectral measure of aρ associated to δ0 is absolutely continuous with

respect to Lebesgue measure; in fact aρ has a free Poisson distribution.

Proof. A little algebra shows that

t∗t = (ρ
1
2 `∗ + ρ−

1
2 `)(ρ

1
2 `+ ρ−

1
2 `∗)

= `2 + `∗2 + (ρ+ ρ−1)− ρ−1p0,
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where p0 is the rank-one projection onto Cδ0. It is seen that this operator leaves both

subspaces `2(2N) and `2(2N+ 1) invariant, with its restrictions to these subspaces being

unitarily equivalent to `+`∗+(ρ+ρ−1)−ρ−1p0 and `+`∗ respectively. Since the spectral

type does not change under scalar translation, we may assume without loss of generality

that aρ = ` + `∗ − ρ−1p0 and establish that a0 has absolutely continuous scalar spectral

measure corresponding to δ0.

Write a0 = `+ `∗ so that aρ = a0 − ρ−1p0. Let the scalar spectral measures of a0 and

aρ be denoted by µ and µρ respectively, and consider their Cauchy transforms given by

Fλ(z) = 〈(aλ − z)−1δ0, δ0〉 =

∫
R

dµλ(x)

x− z

for λ ∈ {0, ρ} and z ∈ C+ = {ζ ∈ C : =(ζ) > 0}.

It follows from the resolvent equation that

Fρ(z) = 〈(aρ − z)−1δ0, δ0〉

= 〈(a0 − z)−1δ0, δ0〉+ 〈(aρ − z)−1ρ−1p0(aλ − z)−1δ0, δ0〉

= F0(z) + ρ−1Fρ(z)F0(z) ;

Hence

Fρ(z) =
F0(z)

1− ρ−1F0(z)
=

ρF0(z)

ρ− F0(z)
(2.2.1)

It is seen from Lemma 2.21 of [NS06] - after noting that theG of that lemma is the negative

of the F0 here - that F0(z) = z−
√
z2−4
2

, where
√
z2 − 4 is a branch of that square root such

that
√
z2 − 4 =

√
z + 2

√
z − 2 where the two individual factors are respectively defined by

using the branch-cuts {∓2− it : t ∈ (0,∞). (This choice ensures that lim|z|→∞F0(z) = 0,

which is clearly necessary.) It follows that F0, which is holomorphic in C+, actually

extends to a continuous function on C+∪R, and that if we write f0(a) = limb↓0 F0(a+ ib),
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then we have

2f0(t) =


−t+

√
t2 − 4if t ≥ 2

−t+ i
√

4− t2if t ∈ [−2, 2]

−t−
√
t2 − 4if t ≤ −2.

(2.2.2)

It is easy to check that f0 is strictly increasing in (−∞,−2), as well as in in (2,∞), has

non-zero imaginary part in (−2, 2), and satisfies f(R \ (−2, 2)) = [−1, 0) ∪ (0, 1]. Since

ρ > 1, we may deduce that F0(z) 6= ρ ∀z ∈ C+∪R, and hence Fρ extends to a continuous

function on C+ ∪ R, with equation 2.2.1 continuing to hold for all z ∈ C+ ∪ R. Writing

fλ(t) = Fλ(t+ i · 0) for λ ∈ {0, ρ}, we find that

fρ(t) =
ρf0(t)

ρ− f0(t)
=

1

f0(t)−1 − ρ−1
,

and hence

=(fρ(t)) = − =(f0(t)−1)

|f0(t)−1 − ρ−1|2

=
=(f0(t))

|1− f0(t)ρ−1|2

= ρ2 =(f0(t))

|f0(t)− ρ|2

= 1[−2,2](t)
ρ2
√

4− t2
2|f0(t)− ρ|2

.

Now, for t ∈ [−2, 2],

|f0(t)− ρ|2 = |−t+ i
√

4− t2
2

− ρ|2

=
1

4

(
(t+ 2ρ)2 + 4− t2

)
= ρ2 + ρt+ 1 .

It follows from Stieltjes’s inversion formula that our aρ has absolutely continuous scalar
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spectral measure µρ, with density given by

gρ(t) =
1

π
=fρ(t)

= 1[−2,2](t)
ρ2
√

4− t2
2π(ρ2 + ρt+ 1)

.

Hence the operator t∗t = aρ+(ρ+ρ−1)1 has absolutely continuous scalar spectral measure,

with density given by

g(t) = gρ(t− (ρ+ ρ−1))

= 1[(ρ+ρ−1)−2,(ρ+ρ−1)+2](t)
ρ2
√

4− (t− (ρ+ ρ−1)
2

2πρ−2(ρ2 + ρ(t− ρ− ρ−1) + 1)

= 1[(ρ+ρ−1)−2,(ρ+ρ−1)+2](t)
ρ2
√

4− (t− (ρ+ ρ−1)
2

2πρ−1t

If we write λ = ρ2 and α = ρ−1 (⇒ ρ+ρ−1 = α(1+λ)), then by comparing with equation

12.15 of [NS06] we see that not only does t∗t have absolutely continuous spectrum, but

it actually has a free Poisson distribution, with rate ρ2 and jump size ρ−1. However, we

actually discovered this fact about t∗t having a free Poisson distribution with the stated

λ and α by a cumulant computation that we present in the final section of this chapter,

both for giving a combinatorial rather than analytic proof of the above proposition, and

because we came across that proof first. 2

2.3 Free cumulants on an equivalent alternative graph-

ical model

Before proceeding with further study of a general (Γ, µ), we need an alternative but

equivalent description of M(Γ, τ), since the calculation of cumulants turns out to be

much simpler with respect to the trace that appears in this other description.

Let Gr(Γ) := ⊕n≥0Pn(Γ) be equipped with a ∗-algebra structure, where [ξ]◦ [η] = [ξη]
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and [ξ]∗ = [ξ̃] = [ξ̃n · · · ξ̃1] for ξ = ξ̃1 · · · ξ̃n ∈ Pn, η ∈ Pm. It was proved in [KS11]2

that Gr(Γ) and F (Γ) are isomorphic as ∗-algebras. While the multiplication is simpler

in Gr(Γ), the trace on it, i.e. τ on F (Γ) transported by the above isomorphism, is given

by a slightly more complicated formula. (It is what has been called the Voiculescu trace

by Jones et al.) We shall write tr for this transported trace on Gr(Γ), and E for the

tr-preserving conditional expectation of M(Γ, µ)(= λ(Gr(Γ))′′) onto P0(Γ). We shall use

the same letter E to denote restrictions to subalgebras which contain P0(Γ).

Consider (Gr(Γ), E) as an operator-valued non-commutative probability space over

P0(Γ), our first order of business being the determination of the P0(Γ)-valued mixed

cumulants in Gr(Γ).

Proposition 2.3.1. The P0(Γ)-valued mixed cumulants in Gr(Γ) are given as

κn([e1], [e2], · · · , [en]) = 0, unless n = 2 and e2 = ẽ1; in which case, with s(e1) =

v, r(e1) = w, κ2([e1], [ẽ1]) = µ(w)
µ(v)

[v].

Proof. The proof depends on the ‘moment-cumulant’ relations, that completely determine

one another.

(a) We first define for all n ∈ N0, κn : (Gr(Γ))n → P0(Γ) to be the unique multilinear

map tuples of paths as arguments, as asserted in the proposition. Then it is easy to

see that these κn is

• ‘balanced’ over P0(Γ) in the sense that

κn(x1, · · · , xi−1b, xi, · · · , xn) = κn(x1, · · · , xi−1, bxi, · · · , xn), ∀xj ∈ Gr(Γ), b ∈

P0(Γ) and 1 < i ≤ n; and

• P0(Γ)-bilinear in the sense that

κn(bx1, x2, · · · , xn−1, xnb
′) = bκn(x1, x2, · · · , xn−1, xn)b′ ∀xj ∈ Gr(Γ), b, b′ ∈ P0(Γ);

(b) we inductively define the ‘multiplicative extensions’ κπ : (Gr(Γ))n → P0(Γ) for π ∈

NC(n) by requiring that if [k, l] is an interval constituting a class of π. If we write

2The remark made in an earlier footnote, concerning assumptions regarding bipartiteness of Γ, applies
here as well.
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σ for the element of NC(n − l + k − 1) given by the restriction of π to {1, · · · , k −

1, l + 1, · · · , n}, i.e. π = σ
∨

1[k,l] following the notation of Lecture 9, [NS06], then

κπ(x1, · · · , xn) = κσ(x1, · · · , xk−1κl−k+1(xk, · · · , xl), xl+1, · · · , xn)

= κσ(x1, · · · , xk−1, κl−k+1(xk, · · · , xl)xl+1, · · · , xn);

(c) finally we verify that for any e1, · · · , en ∈ P1(Γ),

E([e1] · · · [en]) =
∑

π∈NC(n)

κπ([e1], [e2], · · · , [en]). (2.3.1)

For this verification, we first assert that

if e1, e2, · · · , en ∈ E and π ∈ NC(n), then κπ([e1], [e2], · · · , [en]) (yielded by the unique

‘multiplicative extension’ of the κn’s as in (b) above) can be non-zero only if

(i) e1e2 · · · en is a meaningfully defined loop based at s(e1), meaning f(ei) = s(ei+1) for

1 ≤ i ≤ n, with en+1 being interpreted as e1;

(ii) n is even and π ∈ NC2(n), i.e. π is a pair partition of n, such that {i, j} ∈ π ⇔

ej = ẽi;

and if that is the case, then,

κπ([e1], [e2], · · · , [en]) =

 ∏
{i,j}∈π
i<j

µ(r(ei)

µ(r(ej)

 [s(e1)]. (2.3.2)

We prove this assertion by induction on n. This is trivial for n = 1 since κ1 ≡ 0. By the

inductive definition of the multiplicative extension, it is clear that if κπ([e1], [e2], · · · , [en])

is to be non-zero, π must contain an interval class of the form {k, k + 1} such that
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ek+1 = ẽk; if σ denotes π|{1,2,··· ,k−1,k+2,···n} we must have

κπ([e1], · · · , [en]) =
µ(r(ek))

µ(r(ek+1))
κσ([e1], · · · , [ek−1][s(ek)], [ek+2], · · · , [en])

=
µ(r(ek))

µ(r(ek+1))
κσ([e1], · · · , [ek−1], [s(ek)][ek+2], · · · , [en])

=
µ(r(ek))

µ(r(ek+1))
κσ([e1], · · · , [ek−1][r(ek+1)], [ek+2], · · · , [en]);

and for this to be non-zero, we must have r(ek−1) = s(ek) = r(ek+1) = s(ek+2), in which

case we would have

κπ([e1], · · · , [en]) =
µ(r(ek))

µ(r(ek+1))
κσ([e1], · · · , [ek−1], [ek+2], · · · , [en]).

The requirement that κσ([e1], · · · , [ek−1], [ek+2], · · · , [en]) be non-zero, along with the in-

duction hypothesis, finally completes the proof of the assertion.

Now, in order to verify equation 2.3.1, it suffices to check that for any v ∈ V , we have

tr([e1][e2] · · · [en][v]) =
∑

π∈NC(n)

tr(κπ([e1], [e2], · · · , [en])[v]). (2.3.3)

First observe that both sides of equation 2.3.3 vanish unless e1 · · · en is a meaningfully

defined path with both source and range equal to v (since tr is a trace and [v] is idempo-

tent). In view of our description above of the multiplicative extension κπ, we thus need

to verify that for such a loop, we have

tr([e1 · · · en]) =
∑

π∈NC2(n)

 ∏
{i,j}∈π
i<j

δej ,ẽi
µ(r(ei)

µ(r(ej)

µ2(s(e1)),

but that is indeed the case ([KS09] ). 2

In order to derive the true import of Proposition 2.3.1, we should first introduce some
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notation:

For each dual pair e, ẽ of edges with, say - s(e) = v, r(e) = w, we shall write Γe =

(Ve, Ee, µe) where Ve = V, µe = µ and Ee = {e, ẽ} (with source, range and reversal in Ee

as in E). If e = ẽ, the above definitions are to be suitably interpreted. Now for ‘the true

import of Proposition 2.3.1’:

Corollary 2.3.2. With the foregoing notation, we have:

Gr(Γ, µ) = ∗P0(Γ){Gr(Γe, µe) : {e, ẽ} ⊂ E},

and hence, also

M(Γ, µ) = ∗P0(Γ){M(Γe, µe) : {e, ẽ} ⊂ E}.

Proof. An operator valued analogue of Proposition 2.5.5 of [VDN92] (see Proposition

3.3.3 in [Spe98] for validity of this analogue) combined with Theorem 11.16 of [NS06]

show that if A
E→ B is a ‘non-commutative probability space over B’, if {Ai : i ∈ I} is

a family of subalgebras of A containing B, such that {Ai : i ∈ I} generates A, and if Gi

is a set of generators of the algebra Ai, then A is the free product with amalgamation

over B of {Ai : i ∈ I} if and only if the mixed B-valued cumulants κn(x1, · · · , xn) vanish

whenever x1, · · · , · · ·xn ∈ ∪iGi, unless all the xi belong to the same Gk for some k. The

desired assertion then follows from Proposition 2.3.1. 2

The following corollary is an immediate consequence of Corollary 2.3.2 and Examples

2.2.1 (1) and (2).

Corollary 2.3.3. If Γn denotes the ‘flower with n petals’ (thus |V | = 1, |E| = n), then

M(Γ) ∼= LFn, independent of the reversal map on E.

Remark 2.3.4. We may deduce from Proposition 2.3.1 that the x = λ(e) of Example

2.2.1 (3) is a P0(Γ)-valued circular operator, in the sense of Definition 4.1 of [Dyk05],

with covariance (α, β) where α(b) = E(x∗bx) and β(b) = E(xbx∗) for all b ∈ P0 are the
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completely positive self-maps of P0(Γ)(= Cpv ⊕ Cpw) induced by the matrices

α =

0 ρ−1

0 0

 and β =

0 0

ρ 0

 .

It follows that s := x+x∗ is a P0(Γ)-valued semicircular element, since κn(sb1, sb2, · · · sbn−1, s) =

0 unless n = 2, and κ2(sb, s) = η(b) where η is the (completely) positive self-map of C⊕C

induced by the matrix

η =

0 ρ−1

ρ 0

 .

2.4 Narayana numbers

The Narayana numbers N(n, k) are defined for all n, k ∈ N with 1 ≤ k ≤ n by

N(n, k) = |{π ∈ NC(n) : |π| = k}|.

The associated polynomials Nn are defined by

Nn(T ) =
n∑
k=1

N(n, k)T k.

From [NS06] we know that a random variable in a non-commutative probability space

(A, τ) is said to be free Poisson with rate λ and jump size α if its free cumulants are

given by κn = λαn for all n ∈ N. An easy application of the moment-cumulant relations

shows that an equivalent condition for a random variable to be free Poisson with rate λ

and jump size α is that its moments are given by µn = αnNn(λ) for all n ∈ N.

We now illustrate an application of this characterization of a free Poisson variable in

the situation of Example 2.2.1 (3). There, x = λ(e) has a matrix decomposition involving

t ∈ L(Hw,Hv) where t∗t was shown to have a free Poisson distribution. We will verify

below by a cumulant computation that t∗t is free Poisson with rate ρ2 and jump size
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ρ−1 in the non-commutative probability space pwM(Γ, µ)pw. Let us denote the trace on

pwM(Γ, µ)pw by trw.

We begin by observing that x∗x has a non-zero entry only in the w-corner and that

this entry is t∗t. Thus the trace in M(Γ, µ) of (x∗x)n is µ2(w)trw((t∗t)n). We now compute

tr((x∗x)n) = tr(([e]∗[e])n).

We first apply the moment-cumulant relations and Proposition 2.3.1 to conclude that

E(([e]∗[e])n) =
∑

π∈NC(2n)

κπ([e]∗, [e], · · · , [e]∗, [e]).

While this sum ranges over all π ∈ NC(2n), Proposition 2.3.1 enables us to conclude

that unless π is a non-crossing pair partition, its contribution vanishes. Thus we have:

E(([e]∗[e])n) =
∑

π∈NC2(2n)

κπ([e]∗, [e], · · · , [e]∗, [e]).

Now we use the well-known bijection between non-crossing pair partitions (or equiv-

alently, Temperley-Lieb diagrams) on 2n points and all non-crossing partitions on n

points. We denote this bijection as π ∈ NC2(2n) ↔ π̃ ∈ NC(n). This is illustrated

by example in the following figure for π = {{1, 8}, {2, 5}, {3, 4}, {6, 7}, {9, 12}, {10, 11}}

and may be summarized by saying that the black regions of the Temperley-Lieb diagram

for π ∈ NC2(2n) correspond to the classes of π̃ ∈ NC(n). Note that in the figure the

numbers above refer to the vertices while those below refer to the black segments.

5 64321

{{1,3,4},{2},{5,6}}
1 2 3 4 5 6 7

8 9 10 11
12

Figure 2.1: π ∈ NC2(12)↔ π̃ ∈ NC(6)

It follows from Proposition 2.3.1 that for any π ∈ NC2(2n), the term κπ([e]∗, [e], · · · , [e]∗, [e])
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is a scalar multiple of pw, where the scalar is given by a product of n terms each of which

is ρ = µ(v)
µ(w)

or ρ−1 = µ(w)
µ(v)

. Classes of π for which the smaller element is odd give ρ, while

those for which the smaller element is even give ρ−1. Thus κπ([e]∗, [e], · · · , [e]∗, [e]) eval-

uates to ρ(|π|odd−|π|even)pw = ρ(2|π|odd−n)pw, where, of course, |π|odd (respectively, |π|even)

denotes the number of classes of π whose smaller element is odd (respectively, even).

Our main combinatorial observation is contained in the following simple lemma.

Lemma 2.4.1. For any π ∈ NC2(2n), |π|odd = |π̃|.

Proof. We induce on n with the basis case n = 1 having only one π with |π|odd = |π̃| = 1.

For larger n, consider a class of π of the form {i, i+1}, and remove it to get ρ ∈ NC2(2n−

2). A moment’s thought shows that if i is odd then |π|odd = |ρ|odd + 1 = |ρ̃| + 1 = |π̃|,

while if i is even then |π|odd = |ρ|odd = |ρ̃| = |π̃|. 2

Thus:

E(([e]∗[e])n) =
∑

π∈NC2(2n)

ρ(2|π|odd−n)pw

=
∑

π̃∈NC(n)

ρ(2|π̃|−n)pw

=
n∑
k=1

∑
{π̃∈NC(n):|π̃|=k}

ρ2k−npw

=
n∑
k=1

N(n, k)ρ2k−npw

Hence tr(([e]∗[e])n) =
∑n

k=1N(n, k)ρ2k−nµ2(w) and thus trw((t∗t)n) =
∑n

k=1N(n, k)ρ2k−n.

Now the characterization of free Poisson elements in terms of their moments shows that

t∗t is free Poisson with rate ρ2 and jump size ρ−1.

Remark 2.4.2. 1. Thus, for t = ρ
1
2 ` + ρ−

1
2 `∗(where ρ > 1), we have shown that

t∗t is a free Poisson element with rate ρ2 and jump size ρ−1. By scaling with an

appropriate constant, we can similarly obtain such simple Fock-type models of free

Poisson elements with arbitrary jump size and rate.
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2. Similar scaling, and the fact that eiθ` is unitarily equivalent to ` (by a unitary

operator which fixes δ0) show that, in fact, if t = a`+ b`∗ for any a, b ∈ C, then t∗t

is a free Poisson element.
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Chapter 3

Continuous minmax theorems

This chapter extends a well-known result by Ky Fan, regarding a ‘minmax statement’

about the sum of first k eigenvalues of an n× n matrix (k, n ∈ N, k ≤ n), for a suitable

self-adjoint operator in a finite von-Neumann algebra1. We were motivated by [BV93]

describing an extremal characterization of the distribution of a self-adjoint operator af-

filiated to a finite von Neumann algebra - suggesting a possible analogue of the classical

Courant-Fischer-Weyl minmax theorem for a Hermitian matrix to the case of a self-adjoint

operator in a finite von Neumann algebra.

3.1 The building blocks

In order to describe our result, we re-prove the well-known fact that any monotonic

function with appropriate one-sided continuity is the distribution function of a random

variable X - which can in fact be assumed to be defined on the familiar Lebesgue space

[0, 1) equipped with the Borel σ-algebra and Lebesgue measure. (We adopt the con-

vention of [BV93] that the distribution function Fµ of a compactly supported probabil-

ity measure2 µ defined on the σ-algebra BR of Borel sets in R, is left-continuous; thus

1The only von Neumann algebras considered here have separable pre-duals.
2Actually Bercovici and Voiculescu considered possibly unbounded self-adjoint operators affiliated to

M , so as to also be able to handle probability measures which are not necessarily compactly supported,
but we shall be content with the case of bounded a ∈ M , having a compactly supported probability
measure as its distribution.
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Fµ(x) = µ((−∞, x)).

Proposition 3.1.1. If F : R→ [0, 1] is monotonically non-decreasing and left continuous

and if there exists α, β ∈ R with α < β such that

F (t) = 0, for t ≤ α and F (t) = 1 for t ≥ β, (3.1.1)

then there exists a monotonically non-decreasing right-continuous function X : [0, 1)→ R

such that F is the distribution function of X, i.e., F (t) = m({s : X(s) < t}), where m

denotes the Lebesgue measure on [0, 1). Moreover range(X) ⊂ [α, β].

Proof. Define X : [0, 1)→ R by

X(s) = inf{t : F (t) > s} (3.1.2)

= inf{t : t ∈ Es} ,

where Es = {t ∈ R : F (t) > s} ∀s ∈ [0, 1). (The hypothesis 3.1.1 is needed to ensure

that Es is a non-empty bounded set for every s ∈ [0, 1) so that, indeed X(s) ∈ R.)

First deduce from the monotonicity of F that

s1 ≤ s2 ⇒ Es2 ⊂ Es1

⇒ X(s1) ≤ X(s2)

and hence X is indeed monotonically non-decreasing.

The definition of X and the fact that F is monotonically non-increasing and left

continuous are easily seen to imply that Es = (X(s),∞), and hence, it is seen that

X(s) < t ⇔ ∃t0 < t such that F (t0) > s

⇔ F (t) > s (since F is left-continuous) (3.1.3)
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Hence, if t ∈ R

m({s ∈ [0, 1) : X(s) < t}) = m([0, F (t)) = F (t), proving the required statement.

(3.1.4)

Moreover, if for any s ∈ [0, 1), X(s) < α, then by definition of X, ∃ t′ < α such that

F (t′) > s ≥ 0, a contradiction to the first hypothesis in 3.1.1. On the other hand, if for

any s ∈ [0, 1), X(s) > β, then by 3.1.3, s ≥ F (β) =1 (by the second hypothesis in 3.1.1)

- a contradiction. Hence indeed range(X) ⊂ [α, β]. 2

This function X is known as quantile function3 of the distribution F . If F = Fµ for

a probability measure µ on R, then X is denoted as Xµ. X can also be thought of as an

element of L∞(R, µ), where µ is a compactly supported probability measure on R such

that µ = m ◦ X−1 and supp µ ⊂ [α, β]. We will elaborate on this later in Proposition

3.2.1.

In the von-Neumann algebra setting, given a a bounded self-adjoint element a in a

von Neumann algebra M and a (usually faithful normal) tracial state τ on M , define

µa(E) := τ(1E(a))

(for the associated scalar spectral measure) to be the distribution of a. Since τ is positivity

preserving, µa indeed turns out to be a probability measure on R.

For simplicity, we write Fa, Xa for the distribution and the quantile function corre-

sponding to a instead of Fµa , Xµa , and also avoid indicating the dependence on (M, τ),

which is usually clear from the context. Note that only the abelian von Neumann subal-

gebra A generated by a and τ |A are relevant for the definition of Fa and Xa.

3This function acts as the inverse of the distribution function at every point that is not an atom of
the probability measure µ.
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For M,a, τ as above, it was shown4 in [BV93] that

1− Fa(t) = max{τ(p) : p ∈ P(M), pap ≥ ta}. (3.1.5)

Example 3.1.2. Let M = Mn(C) with τ as the uniform normalized tracial state on this

M If a = a∗ ∈ M has distinct eigenvalues λ1 < λ2 < · · · < λn, then Fa(t) = 1
n
|{j :

λj < t}| =
∑n

j=1
j
n
1(λj ,λj+1]. We see that the distinct numbers less than 1 in the range

of Fa are attained at the n distinct eigenvalues of a, and further that equation 3.1.5 for

t = λj says that n − j + 1 is the largest possible dimension of a subspace W of Cn such

that 〈aξ, ξ〉 ≥ λj for every unit vector ξ ∈ W . In other words equation 3.1.5 suggests

a possible extension of the classical Courant-Fischer minmax theorem for a self-adjoint

operator in a von Neumann algebra, involving its distribution (see [BS12]).

It is also true and not hard to see that the right side of equation 3.1.5 is indeed a

maximum (and not just a supremum), and is in fact attained at a spectral projection of

a; i.e., the two sides of equation 3.1.5 are also equal to max{τ(p) : p ∈ P(A), pap ≥ ta},

where A = {a}′′.

3.2 The main result

We now proceed towards obtaining non-commutative counterparts of the classical Ky

Fan’s minmax theorem formulated for appropriate self-adjoint elements of appropriate

finite von Neumann algebras.

Proposition 3.2.1. Let (Ω,B, P ) be a probability measure, and suppose Y : Ω→ R is a

random variable. Let σ(Y ) = {Y −1(E) : E ∈ BR} and let µ = P ◦Y −1 be the distribution

4Actually Bercovici and Voiculescu consider possibly unbounded self-adjoint operators affiliated to
M , so as to also be able to handle probability measures which are not necessarily compactly supported,
but we shall be content with the case of a ∈ M , i.e. when the distribution of a is indeed compactly
supported.
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of Y . Then, for any s0 ∈ Fµ(R), we have

inf{
∫

Ω0

Y dP : Ω0 ∈ σ(Y ), P (Ω0) = s0}

= inf{
∫
E

f0dµ : E ∈ BR, µ(E) = s0}

= inf{
∫
G

Xµdm : G ∈ σ(Xµ),m(G) = s0}

=

∫ s0

0

Xµdm, (3.2.1)

where f0 = idR and m denotes Lebesgue measure on [0,1).

Proof. The version of the change of variable theorem we need says that if (Ωi,Bi, Pi), i =

1, 2 are probability spaces and T : Ω1 → Ω2 is a measurable function such that P2 =

P1 ◦ T−1, then ∫
Ω2

gdP2 =

∫
Ω1

g ◦ TdP1 , (3.2.2)

for every bounded measurable function g : Ω2 → R.

For every Ω0 ∈ σ(Y ), which is of the form Y −1(E) for some E ∈ BR, set G = X−1
µ (E).

Notice, from equations 3.1.3 and 3.1.4 that

m ◦X−1
µ (−∞, t) = µ({s ∈ [0, 1) : Xµ(s) < t})

= µ({s ∈ [0, 1) : s < Fµ(t)})

= Fµ(t)

= µ(−∞, t) ;

i.e. m ◦X−1
µ = µ = P ◦Y −1. Now, set g = 1E · f0. Since g ◦Y = 1E ◦Y ·Y = 1Y −1(E)Y =

1Ω0Y , and (similarly) g ◦ Xµ = 1GXµ, we see that the first two equalities in 3.2.1 are

immediate consequences of two applications of the version stated in equation 3.2.2 above,

of the ‘change of variable’ theorem.

As for the last, if G ∈ B[0,1) with m(G) ≥ s0, then write I = G ∩ [0, s0), J =

[0, s0) \ I,K = G \ I and note that G = I
∐
K, [0, s0) = I

∐
J (where

∐
denotes disjoint
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union, and K = G \ [0, 1) ⊂ [s0, 1). So we may deduce that

∫
G

Xµdm−
∫ s0

0

Xµdm =

∫
K

Xµdm−
∫
J

Xµdm

≥ Xµ(s0)m(K)−Xµ(s0)m(J)

≥ 0 ,

since s1 ∈ J, s2 ∈ K ⇒ s1 ≤ s0 ≤ s2 ⇒ Xµ(s1) ≤ Xµ(s0) ≤ Xµ(s2) (by the monotonicity

of Xµ), and m(K) ≥ m(J). Thus, we see that

inf{
∫
G

Xµdm : G ∈ σ(Xµ),m(G) ≥ s0} ≥
∫ s0

0

Xµdm ,

while conversely,

inf{
∫
G

Xµdm : G ∈ BR,m(G) ≥ s0} ≤
∫

[0,s0)

Xµdm =

∫ s0

0

Xµdm ,

thereby establishing the last equality in 3.2.1. 2

Theorem 3.2.2. Let a be a self-adjoint element of a von Neumann algebra M equipped

with a faithful normal tracial state τ . Let A be the von-Neumann algebra generated by a.

Then, for all s ∈ Fa(R),

inf{τ(ap) : p ∈ P(M), τ(p) ≥ s}

= inf{τ(ap) : p ∈ P(A), τ(p) ≥ s}

=

∫ s

0

Xadm (3.2.3)

(hence the infima are attained and are actually minima),

if either

1. (‘continuous case’) µa has no atoms, or

2. (‘finite case’) M = Mn(C) for some n ∈ N and a has spectrum {λ1 < · · · < λn}.
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Proof. We begin by noting that in both the cases, the last equality in 3.2.3 is an immediate

consequence of Proposition 3.2.1. Moreover the set {τ(ap) : p ∈ P(A), τ(p) ≥ s} being

contained in {τ(ap) : p ∈ P(M), τ(p) ≥ s}, it is clear that

inf{τ(ap) : p ∈ P(A), τ(p) ≥ s} ≥ inf{τ(ap) : p ∈ P(M), τ(p) ≥ s}.

So we just need to prove that

inf{τ(ap) : p ∈ P(A), τ(p) ≥ s} ≤ inf{τ(ap) : p ∈ P(M), τ(p) ≥ s}. (3.2.4)

1. (the continuous case) Due to the assumption of µa being compactly supported and

having no atoms, it is clear that Fa is continuous and that Fa(R) = [0, 1].

Under the standing assumption of separability of pre-duals of our von Neumann

algebras, the hypothesis of this case implies the existence of a probability space

(Ω,B, P ) and a map π : A → L∞(Ω,B, P ) such that
∫
π(x)dP = τ(x) ∀x ∈ A,

Y := π(a) is a random variable and π is an isomorphism onto L∞(Ω, σ(Y ), P ).

We shall establish the first equality of 3.2.3 by showing that if p0 ∈ P(M) and

τ(p0) = s, then τ(ap0) ≥ min{τ(ap) : p ∈ P(A), τ(p) ≥ s}. For this, first note

that since τ is a faithful normal tracial state on M , there exists a τ -preserving

conditional expectation E : M → A. Then

τ(ap0) = τ(aE(p0)) =

∫
Y ZdP,

where Z = π(E(p0)). Since E is linear and positive, it is clear that 0 ≤ Z ≤ 1, P -a.e.

So it is enough to prove that

inf{
∫

Ω

Y ZdP : 0 ≤ Z ≤ 1,

∫
ZdP ≥ s} = inf{

∫
E

Y dP : E ∈ B, P (E) ≥ s}.

For this, it is enough, thanks to the Krein-Milman theorem (see, e.g. [KM40]), to
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note that K = {Z ∈ L∞(Ω,B, P ) : 0 ≤ Z ≤ 1,
∫
ZdP ≥ s} is a convex set which is

compact in the weak* topology inherited from L1(Ω,B, P ), and prove that the set

∂e(K) of its extreme points is {1E : P (E) ≥ s}.

For this, suppose Z ∈ K is not a projection, Clearly then P ({Z ∈ (0, 1)}) > 0, so

there exists ε > 0 such that P ({ε < Z < 1 − ε}) > 0. Since µa, and hence P has

no atoms, we may find disjoint Borel subsets E1, E2 ⊂ {Z ∈ (ε, 1 − ε)} such that

P (E1) = P (E2) > 0. If we now set Z1 = Z+ε(1E1−1E2) and Z2 = Z+ε(1E2−1E1),

it is not hard to see that Z1, Z2 ∈ K,Z1 6= Z2 and Z = 1
2
(Z1 + Z2) showing that

Z /∈ ∂e(K) , thereby proving 3.2.4.

2. (the finite case) Since a has distinct eigenvalues λ1 < λ2 < · · · < λn, A is a maximal

abelian self-adjoint subalgebra of Mn(C). Recall that in this case, Fa(t) = 1
n
|{j :

λj < t}| =
∑n

j=1
j
n
1(λj ,λj+1]. It then follows that Fa(R) = { j

n
: 0 ≤ j ≤ n} and

that Xa =
∑n

j=1 λj1[ j−1
n
, j
n

) and 3.2.3 is then (after multiplying by n) precisely the

statement of Ky Fan’s theorem (in the case of self-adjoint matrices with distinct

eigenvalues):

For 1 ≤ j ≤ n,

inf{τ(ap) : p ∈ P(Mn(C)), rank(p) ≥ j}

= inf{τ(ap) : p ∈ P(A), rank(p) ≥ j} =
1

n

j∑
i=1

λi =

∫ j
n

0

Xa(s)ds.

It suffices to prove the following:

inf{τ(ap) : p ∈ P(A), rank(p) ≥ j} ≤ inf{τ(ap) : p ∈ P(Mn(C)), rank(p) ≥ j}.

For this, begin by deducing from the compactness of P(Mn(C)) that there exists a

p0 ∈ P(Mn(C)) with rank(p0) ≥ j such that τ(ap0) ≤ τ(ap) ∀p ∈ P(Mn(C)) with rank(p) ≥

j. We assert that any such minimizing p0 must belong to A. The assumption that A

is a masa means we only need to prove that p0a = ap0. For this pick any self-adjoint

65



x ∈Mn(C), and consider the function f : R→ R defined by f(t) = τ(eitxp0e
−itxa).

Since clearly eitxp0e
−itx ∈ P(M) and rank(eitxp0e

−itx) = rank(p0) ≥ j, for all

t ∈ R, we find that f(t) ≥ f(0) ∀t. As f is clearly differentiable, we may conclude

that f ′(0) = 0. Hence,

0 = τ(ixp0a− ip0xa) = i(τ(xp0a)− τ(p0xa)) = i(τ(xp0a)− τ(xap0)),

so that τ(x(p0a− ap0)) = 0 for all x = x∗ ∈M , and indeed ap0 = p0a as desired.

2

Case 1 of Theorem 3.2.2 is our continuous formulation of Ky Fan’s result while Case 2

only captures the classical Ky Fan’s theorem for the case of distinct eigenvalues. However

the general case of non-distinct eigenvalues can also be deduced from our proof, as we

show in the following corollary:

Corollary 3.2.3. Let a be a Hermitian matrix in Mn(C) with spectrum {λ1 ≤ · · · ≤ λn},

where not all λjs are necessarily distinct. Then for all j ∈ {1, · · · , n},

min{τ(ap) : p ∈ P(Mn(C)), rank(p) ≥ j} =
1

n

j∑
i=1

λi.

Proof. We may assume that a is diagonal. Let A1 be the set of all diagonal matrices, so

that A ( A1. Pick a(m) = diag(λ
(m)
1 , λ

(m)
2 , · · · , λ(m)

n ) ∈ A1 such that λ
(m)
j s are all distinct

and limm→∞ λ
(m)
j = λj ∀1 ≤ j ≤ n. Then the already established case of Theorem 3.2.2

in the case of distinct eigenvalues shows that for all p ∈ P(Mn(C)) with rank(p) ≥ j,

τ(ap) = lim
m→∞

τ(a(m)p)

≥ lim
m→∞

1

n

j∑
i=1

λ
(m)
i

=
1

n

j∑
i=1

λi .
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The above, along with the fact that τ(apj) = 1
n

∑j
i=1 λi, where pj is the obvious diago-

nal projection, completes our proof of Ky Fan’s theorem for Hermitian matrices in full

generality. 2

Remark 3.2.4. It is not difficult to see that equation 3.2.3 holds even if we replace the

inequality τ(p) ≥ s with equality.

Remark 3.2.5. Notice that the hypothesis and hence the conclusion, of the ‘continuous

case’ of Theorem 3.2.2 are satisfied by any self-adjoint generator of a masa in a II1

factor.
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