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Abstract

In the first part, we address a fundamental question, unique factorization of tensor prod-

ucts, that arises in representation theory. We consider integrable, category O modules of

indecomposable symmetrizable Kac-Moody algebras. We prove that unique factorization of

tensor products of irreducible modules holds in this category, upto twisting by one dimensional

modules. This generalizes a fundamental theorem of Rajan for finite dimensional simple Lie

algebras over C. Our proof is new even for the finite dimensional case, and uses an interplay

of representation theory and combinatorics to analyze the Kac-Weyl character formula.

In the second part, we get a new interpretation of the chromatic polynomials using Kac-

Moody theory and derive some of its properties using this new interpretation.
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Chapter 1

Introduction

1.1 Unique Factorization Of Tensor Products For Kac-Moody

Algebras

In the first part of this thesis, we address a fundamental question, unique factorization of tensor

products, that arises in representation theory.

More precisely we prove unique factorization of tensor products in a natural category of

representations of Kac-Moody algebras. This is a generalization of Rajan’s theorem, [5] where

he proved the unique factorization of tensor products for finite dimensional simple Lie algebras.

We now give a brief description of our results.

Our base field will be the complex numbers C throughout. In [5], Rajan proved the following

fundamental theorem:

Theorem 1.1.1. Let g be a finite dimensional simple Lie algebra, and C be the category of finite

dimensional g-modules. Let n,m be positive integers and V1, V2, · · · , Vn and W1,W2, · · · ,Wm

be non-trivial irreducible g-modules in C such that

V1 ⊗ V2 ⊗ · · · ⊗ Vn ∼= W1 ⊗W2 ⊗ · · · ⊗Wm.

Then n = m and there is a permutation σ of {1, 2, · · · , n} such that Vi ∼= Wσ(i) for 1 ≤ i ≤ n.

The following is an equivalent formulation of theorem 1.1.1 in which n = m, but with trivial

modules allowed.

Theorem 1.1.2. Let g be a finite dimensional simple Lie algebra, and C be the category

of finite dimensional g-modules. Let n be a positive integer, and suppose V1, V2, · · · , Vn and

W1,W2, · · · ,Wn are irreducible g-modules in C such that

V1 ⊗ V2 ⊗ · · · ⊗ Vn ∼= W1 ⊗W2 ⊗ · · · ⊗Wn.

Then there is a permutation σ of {1, 2, · · · , n} such that Vi ∼= Wσ(i) for 1 ≤ i ≤ n.
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It is natural to ask what is the analogous result for Kac-Moody algebras. We will be

concerned with this question in the first part of this thesis.

In chapter 3, we give an alternate, elementary proof of theorem 1.1.2, and obtain a gener-

alization to symmetrizable Kac-Moody algebras.

When g is a symmetrizable Kac-Moody algebra, a natural category of representations is

Oint, whose objects are integrable g-modules in category O. When the generalized Cartan

matrix of g is singular (for example, when g is affine), we have g/[g, g] 6= 0; in other words,

there are non-trivial one dimensional g-modules in Oint. Thus, unique factorization of tensor

products fails in general for (g,Oint). We show that this is essentially the only obstruction, i.e.,

uniqueness still holds up to twisting by one-dimensional representations. The following is the

statement of our main theorem:

Theorem 1.1.3. ([1]) Let g be an indecomposable symmetrizable Kac-Moody algebra. Let n

be a positive integer and suppose V1, V2, · · · , Vn and W1,W2, · · · ,Wn are irreducible g-modules

in category Oint such that

V1 ⊗ · · · ⊗ Vn ∼= W1 ⊗ · · · ⊗Wn. (1.1.1)

Then there is a permutation σ of the set {1, ..., n}, and one-dimensional g-modules Zi such that

Vi ⊗ Zi ∼= Wσ(i), 1 ≤ i ≤ n.

If g is finite dimensional, then (a) Oint = C, (b) indecomposable is the same as simple and

(c) the only one dimensional g-module is the trivial one. Thus, theorem 1.1.3 is indeed a

generalization of theorem 1.1.2.

Theorem 1.1.3 can be interpreted at the level of characters. Characters play a very impor-

tant role in the representation theory of Kac-Moody algebras. Any question about representa-

tions of Kac-Moody algebras can be interpreted at the level of characters. We prove theorem

1.1.3 by proving an analogous result at the character level.

1.2 New Interpretation Of Chromatic Polynomials Using Kac-

Moody Theory

On the other hand, representations also give more information about combinatorial objects.

Our analysis of the characters in the proof of theorem 1.1.3 leads to an unexpected connection

with chromatic polynomials of graphs.

In chapter 4, we obtain a new interpretation of chromatic polynomials using the represen-

tation theory of Kac-Moody algebras. We briefly explain our results here.

Let G be a connected simple graph with vertex set Π and |Π| = `. There is a natural way of

associating a generalized Cartan matix (and hence symmetrizable Kac-Moody algebra) with G.

Let M(G) be the symmetric generalized Cartan matrix associated with G, defined as follows:

10



M(G)ij =


2 if i = j

−1 if i 6= j and there is an edge between i and j

0 otherwise.

Let g = g(G) be the symmetrizable Kac-Moody algebra associated with M(G) (or with

G). Let us identify the vertex set Π with the set of simple roots of g. Let ∆ be the set of

roots, and ∆+ the set of positive roots of g. Let W be the Weyl group of g, generated by the

simple reflections {sα : α ∈ Π}, and let ε be its sign character. Let (−,−) be the standard

nondegenerate, W -invariant symmetric bilinear form on h∗.

Note that G is the graph underlying the Dynkin diagram of g, i.e., G has vertex set Π, with

an edge between two vertices α and β iff (α, β) < 0.

Let us recall the definition of the chromatic polynomial of G.

Definition 1.2.1. Let q ∈ N. A mapping f : Π → {1, · · · , q} is called a q-colouring of G if

f(α) 6= f(β) whenever the vertices α and β are adjacent in G. Two q-colourings f and g of G
are regarded as distinct if f(α) 6= g(α) for some vertex α of G.

The number of distinct q-colourings of G is denoted by PG(q). By convention PG(0) = 0.

The following proposition is well known.

Proposition 1.2.2. For q ∈ N, we have PG(q) =
∑
k≥1

ck(G)
(
q
k

)
, where ck(G) was defined in

3.3.1. It is thus a polynomial in q, known as the chromatic polynomial of G. The coefficients

of PG(q) are alternating in sign.

We define P̃G(q) := (−1)`PG(−q), it is easy to see that P̃G(q) ∈ N[q].

We prove the following theorem in this thesis.

Theorem 1.2.3. P̃G(q) = K(β; q), where K(β; q) is the q-Kostant partition function of g and

β =
∑
α∈Π

α.

Equivalently we have,

Theorem 1.2.4.

PG(q) = (−1)`
∑̀
k=1

(−1)k

k!

 ∑
β∈Sk(G)

mβ1 . . .mβk

 qk,

where mα denotes the multiplicity of α, i.e., the dimension of the root space gα of g and

Sk(G) :=

{
β = (β1, . . . , βk) : βi ∈ ∆+ and

k∑
i=1

βi =
∑
α∈Π

α

}
.
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We prove theorem 1.2.4 by comparing the coefficient of the monomial
∏
α∈Π

e−α in

( ∑
w∈W

ε(w)ewρ−ρ
)q

in two different ways, where ρ is the Weyl vector, satisfying 2(ρ,α)
(α,α) = 1 for all α ∈ Π.

This new interpretation throws light on a classical expression for PG(q) by Birkhoff. To

state this, we recall the definition and properties of the bond lattice of G.

We begin with the definition of connected partition of G.

Definition 1.2.5. Let k be a positive integer. A connected k-partition of the graph G is an

unordered k-tuple {S1, ..., Sk} such that (a) the Si’s are non-empty pairwise disjoint subsets

of the vertex set Π of G, (b)
k⋃
i=1

Si = Π, and (c) each Si is a connected subset of Π, i.e. the

subgraph spanned by Si in G is connected .

Let G be a connected graph with ` vertices. Consider the poset LG whose elements are

connected k-partitions of Π for all k, partially ordered by refinement. LG is known as the

bond lattice of G. The maximum element is 1̂ := {Π} and the minimum element is 0̂ :=

{{α1}, · · · , {α`}}, where ` is the cardinality of Π. Now we collect some facts about the bond

lattice of G from [2].

(1) An atom, by definition, is an element of LG that covers 0̂. Atoms of LG are bi-

jective correspondence with the set of edges of G. The bijection is given as follows: e 7→
{{αk}k 6=i,j , {αi, αj}}, where αi, αj are end points of e.

(2) LG is a geometric lattice.

(3) LG has a rank function: rk(π) := ` − |π|, where |π| is the number of parts in π, i.e. if

π is a connected k-partition then |π| = k.

The Möbius function of LG , µ : LG → Z, is defined recursively by :

µ(π) =

 1 if π = 0̂

−
∑
π′<π

µ(π′) if π > 0̂,

Note that µ is the unique Z-valued function on LG such that
∑
π′≤π

µ(π′) = δ0̂π (Kronecker

delta).

(4) The Möbius function of LG strictly alternates in sign: (−1)`−|π|µ(π) > 0, for all π ∈ LG .

Theorem 1.2.6 (Birkhoff, Whitney, Rota). For a connected graph G, PG(q) =
∑
π∈LG

µ(π)q|π|.

Comparing theorem 1.2.6 with theorem 1.2.4 one is led to expect that the absolute value of

the mysterious integers µ(π) occurs as a product of root multiplicities of g(G). More precisely,

we prove the following result in this thesis.

Theorem 1.2.7. Let G be a connected graph with ` vertices. Let π = {S1, · · · , Sk} ∈ LG and

mπ := mβS1
· · ·mβSk

, where βS :=
∑
α∈S

α for all S ⊆ Π. Then µ(π) = (−1)`−k mπ.
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It is known that, mβS 6= 0 if and only if the subgraph induced by S ⊆ Π is connected (see

4.2.6 and 4.2.7). So, to understand the coefficient of the chromatic polynomials, it is enough

to understand mβ’s.

Towards this direction, we get a nice recursion formula for the mβ, by applying the Peterson

recursion formula [4] to β =
∑
α∈Π

α. More precisely, we show

mβ =
∑

(β′,β′′)∈Q+×Q+

β′+β′′=β

E(β′, β′′)

E(β)
mβ′mβ′′ , (1.2.2)

where E(β) = the number of edges in G and E(β′, β′′) = the number of edges between

graph(β′) and graph(β′′), where graph(β′) is the subgraph induced by the support of β′ (see

4.2.10).

We also show that for k ≥ 1,

the coefficient of qk in P̃G(q) =
∑

p∈P (LG)

ω(p), (1.2.3)

where (if π′ → π′′ denotes the covering relation in LG) the sum runs over all paths p in LG such

that p : π → π1 → · · · → π`−k → 0̂, and ω(p) are certain multiplicative edge weights associated

with p and |π| = k.
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Chapter 2

Kac-Moody algebras

V. G. Kac and R. V. Moody independently introduced the Kac-Moody algebras in 1967. They

are generalizations of the well known finite dimensional simple Lie algebras. But the theory of

Kac-Moody algebras is much broader than the theory of finite dimensional simple Lie algebras.

It includes many interesting infinite dimensional examples as well. In recent decades, Kac-

Moody algebras have found applications in many areas of mathematics, including group theory,

combinatorics, modular forms, differential equations and invariant theory. It has also proved

important in mathematical physics. Accordingly, their representations are of great interest as

well.

We work over the complex field throughout, although any algebraically closed field of char-

acteristic zero would do equally well. In this chapter, we recall certain well known definitions

and results which will be used in the thesis.

2.1 Generalized Cartan Matrices(GCM)

Definition 2.1.1. An n× n complex matrix A = (aij) is called a generalized Cartan matrix if

it satisfies the following conditions:

(1) aii = 2 for i = 1, · · · , n
(2) aij ∈ Z≤0 if i 6= j

(3) aij = 0 implies aji = 0.

2.1.1 Realizations of a matrix

A realization of an n× n complex matrix A is a triple (h,Π,Π∨), where:

1. h is a finite dimensional vector space over C

2. Π = {α1, α2, · · · , αn} is a linearly independent subset of h∗

14



3. Π∨ = {α∨1 , α∨2 , · · · , α∨n} is a linearly independent subset of h

4. 〈α∨i , αj〉 = aij for all i, j

5. dim h = 2n− rank(A).

Two realizations (h1,Π1,Π
∨
1 ) and (h2,Π2,Π

∨
2 ) are said to be isomorphic if there exists a

vector space isomorphism φ : h1 → h2 such that φ(Π∨1 ) = Π∨2 and φ∗(Π2) = Π1. It is well

known that realization exists and is unique upto isomorphism.

2.1.2 Auxiliary Lie algebras

Definition 2.1.2. Let A = (aij) be an n× n matrix over C, and let (h,Π,Π∨) be a realization

of A. Define an auxiliary Lie algebra g̃(A) with generators ei, fi (i = 1, · · · , n) and h, and the

following defining relations:

[ei, fj ] = δijα
∨
i for all i, j (2.1.1)

[h, h′] = 0 for all h, h′ ∈ h (2.1.2)

[h, ei] = 〈αi, h〉ei ∀ i, j, h ∈ h (2.1.3)

[h, fi] = −〈αi, h〉fi ∀ i, j, h ∈ h (2.1.4)

Denote the subalgebra of g̃(A) generated by e1, · · · , en (resp. f1, · · · , fn) by ñ+ (resp. ñ−).

The following theorem can be found in [4]:

Theorem 2.1.3. 1. g̃(A) = ñ+ ⊕ h⊕ ñ− (as direct sum of vector spaces),

2. ñ+ (resp. ñ−) is freely generated by e1, · · · , en(resp. f1, · · · , fn),

3. Among the ideals of g̃(A) intersecting h trivially, there exists a unique maximal ideal τ .

Furthermore,

τ = (τ ∩ ñ−)⊕ (τ ∩ ñ+).

2.1.3 The Kac-Moody Lie algebra g(A)

Definition 2.1.4. For a given n × n generalized Cartan matrix A, let g̃(A) be the auxiliary

Lie algebra as defined above. By theorem 2.1.3 the natural map h→ g̃(A) is an imbedding. Let

τ be the maximal ideal of g̃(A), with τ ∩ h = 0. Define,

g(A) := g̃(A)/τ

The Lie algebra g(A) is called the Kac-Moody algebra associated with GCM A, and n is

called the rank of g(A).
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The matrix A is said to be symmetrizable if there exists an invertible diagonal matrix

D = diag(d1, · · · , dn) such that DA is symmetric.

Definition 2.1.5. Let A = (aij) be a symmetrizable generalized Cartan matrix. Then the

Kac-Moody algebra associated with the matrix A is called the symmetrizable Kac-Moody algebra

associated with A.

We drop A in g(A), if the underlying matrix A is understood.

2.1.4 Properties of Kac-Moody algebras

We continue to denote ei, fi, h for the images of ei, fi, h in g. This should not lead to confusion

as we will subsequently be concentrating on g rather than on g̃. The ei and fi are called

Chevalley generators of g. Let h′ be the span of Π∨ and g′ = [g, g] be the derived subalgebra

of g.

Theorem 2.1.6. Let g be a Kac-Moody algebra. Then,

1. g = n+⊕h⊕n−, where n+, n− are the Lie subalgebras generated by ei and fi (i = 1, · · · , n)

respectively,

2. g = g′ + h and g′ ∩ h = h′,

3. h acts diagonalizably on g i.e.,

g =
⊕
α∈h∗

gα

where gα = {x ∈ g : [h, x] = α(h)x, ∀h ∈ h}.

The subspace h is called the Cartan subalgebra of g and gα the root space of α. An element

α ∈ h∗ is said to be a root of g if α 6= 0 and gα 6= 0. The integer dim gα is called multiplicity of

α, denoted by mα. Let ∆ denote the set of all roots of g. Elements of Π are called the simple

roots of g, and elements of Π∨ are called the simple co-roots of g.

Let

P := {λ ∈ h∗ : 〈λ, α∨〉 ∈ Z, ∀ α ∈ Π}, Q :=
∑
α∈Π

Zα,

P+ := {λ ∈ h∗ : 〈λ, α∨〉 ∈ Z≥0, ∀ α ∈ Π}, Q+ :=
∑
α∈Π

Z≥0α

be the weight lattice, the root lattice, the sets of dominant weights and non-negative integer

linear combinations of simple roots respectively. Then ∆ = ∆+ ∪∆−(a disjoint union), where

∆+ := ∆∩Q+,∆− := −∆+ are the sets of positive roots and negative roots respectively. Given

λ ∈ h∗, define λ := λ |h′ .
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2.1.5 Weyl group of Kac-Moody algebras

Let A be a n × n generalized Cartan matrix and let g be the associated Kac-Moody algebra.

For each α ∈ Π, define the fundamental reflection sα by

sα(λ) = λ− 〈λ, α∨〉α

for λ ∈ h∗.

The subgroup W of GL(h∗) generated by {sα : α ∈ Π} is called the Weyl group of g. The

Weyl group plays an important role in the representation theory of Kac-Moody algebras.

For a symmetrizable Kac-Moody algebra g there exists a nondegenerate symmetric bilinear

form (−,−) on g such that:

(1) ([x, y], z) = (x, [y, z]) for all x, y, z ∈ g, and

(2) the restriction of (−,−) to h∗ is nondegenerate and W -invariant.

2.2 Representation theory of Kac-Moody algebras

A g-module V is called h-diagonalizable if it admits a weight space decomposition V = ⊕λ∈h∗Vλ,

where Vλ = {v ∈ V : h(v) = λ(h)v, ∀ h ∈ h}. A nonzero vector of Vλ is called a weight vector

of weight λ. Let P (V ) := {λ ∈ h∗ : Vλ 6= 0} denote the set of all weights of V. For λ ∈ h∗,

denote D(λ) := {µ ∈ h∗ : µ ≤ λ}.
We shall not consider arbitrary representations, but restrict our attention to those in the

category O, which is introduced by Kac for Kac-Moody algebras. Objects of O are defined as

follows:

Definition 2.2.1. A g-module V is said to be in category O if

1. It is h-diagonalizable and with finite dimensional weight spaces, and

2. There exists a finite number of elements λ1, · · · , λm ∈ h∗ such that P (V ) ⊆ ∪mi=1D(λi).

The morphisms in O are homomorphisms of g-modules. The category O is abelian.

2.2.1 Highest weight modules

Highest weight modules are important examples of objects from the category O. For any Lie

algebra a, we let U(a) be the universal enveloping algebra of a.

Definition 2.2.2. A g-module V is said to be a highest weight module with highest weight

λ ∈ h∗ if there exists a nonzero vector vλ such that

1. n+(vλ) = 0 ; h(vλ) = λ(h)vλ, ∀h ∈ h ; and

2. U(g).vλ = V .
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Remark 2.2.3. By conditions (1) and (2) it is easy to see that U(n−).vλ = V and we have

V = ⊕µ≤λVµ, Vλ = Cvλ, dim(Vλ) < ∞. Therefore, a highest weight module is an object of

category O.

Now, we define an important family of highest weight modules known as Verma modules.

Definition 2.2.4. A g-module M(λ) with highest weight λ is called a Verma module if every

g-module with highest weight λ is a quotient of M(λ).

The following proposition justifies the importance of Verma modules.

Proposition 2.2.5. (see [4])

1. For every λ ∈ h∗ there exists a unique (up to isomorphism) Verma module M(λ),

2. Viewed as a U(n−)-module, M(λ) is a free module of rank 1 generated by the highest

weight vector,

3. M(λ) contains a unique proper maximal submodule M ′(λ).

It follows from 3 that for λ ∈ h∗, there is a unique irreducible module of highest weight

λ which we denote by L(λ) := M(λ)/M ′(λ). The g-modules L(λ), for λ ∈ h∗, exhaust all

irreducible modules of the category O.

2.2.2 Integrable modules

Definition 2.2.6. A g-module V is called as integrable if the following holds:

• It is h-diagonalizable with finite dimensional weight spaces

• The Chevalley generators ei and fi (i = 1, ..., n) are locally nilpotent on V. i.e., For any

v ∈ V , e
n(v)
i .v = 0, f

m(v)
i .v = 0 for some n(v),m(v) ∈ Z≥0.

We will further restrict our attention to the category of integrable modules in category O
denoted as Oint(g). We record the following fact from [4].

Proposition 2.2.7. Let g be a symmetrizable Kac-Moody algebra and L(λ) be an irreducible

g-module in the category O. Then L(λ) is integrable if and only if λ ∈ P+.

2.3 Character of a representation

Given a function f : h∗ → Z we define Supp(f), the support of f , to be the set of λ ∈ h∗

for which f(λ) 6= 0. Let E be the set of all functions f : h∗ → Z such that there exists a
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finite set λ1, · · · , λk ∈ h∗ with Supp(f) ⊂ D(λ1) ∪ · · · ∪ D(λk). Given f, g ∈ E we define

(f + g)(λ) = f(λ) + g(λ) and (fg)(λ) =
∑

µ,ν∈h∗
µ+ν=λ

f(µ)g(ν).

It is clear that f + g, fg ∈ E , thus E is an algebra over C. For each λ ∈ h∗ we define eλ ∈ E
to be the characteristic function of λ. Now it is convenient to write f =

∑
λ∈h∗

f(λ)eλ, for any

f ∈ E . Let us now define the character of the representation.

Definition 2.3.1. Let V be a module from the category O and let V = ⊕λ∈h∗Vλ be its weight

space decomposition. We define formal character of V by

chV :=
∑
λ∈h∗

(dimVλ) eλ

By the definition it is clear that chV ∈ E .

Let us fix an element ρ ∈ h∗ such that 〈ρ, α∨〉 = 1 for all α ∈ Π, ρ is called a Weyl vector

of g. Now we are in a position to state the fundamental result of the representation theory of

Kac-Moody algebras.

2.3.1 Weyl-Kac character formula

Theorem 2.3.2. Let g be a symmetrizable Kac-Moody algebra, and let L(λ) be the irreducible

g-module with highest weight λ ∈ P+. Then

chL(λ) =

∑
w∈W

ε(w)e(w(λ+ρ)−ρ)∏
α∈∆+

(1− e−α)mα

(This is an equality in the ring E.)

Corollary 2.3.3. (Weyl-Kac denominator identity) For a symmetrizable Kac-Moody algebra

we have
∏

α∈∆+

(1− e−α)mα =
∑
w∈W

ε(w)ew(ρ)−ρ (this is an equality in the ring E).

We define the normalized character by χλ := e−λ ch(L(λ)), and the normalized Weyl nu-

merator by:

Uλ := e−(λ+ρ)
∑
w∈W

ε(w)ew(λ+ρ). (2.3.5)

where ρ is the Weyl vector. The Weyl-Kac character formula gives:

χλ = Uλ/U0. (2.3.6)

Next, we define the q-Kostant partition function.
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2.3.2 q-Kostant partition function of g

Definition 2.3.4. Let g be a Kac-Moody algebra. Let h, h∗, Q be its Cartan subalgebra, dual

of Cartan subalgebra and root lattice respectively. The q-Kostant partition function K defined

on h∗ by

K(β; q) := the coefficient of e−β in
∏
α∈∆+

1

(1− qe−α)mα

Note that, K(β; q) = 0 unless β ∈ Q+. For β ∈ Q+, K(β; 1) is the usual Kostant partition

function, which counts the number of partitions of β into a sum of positive roots, where each

root is counted with its multiplicity.
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Chapter 3

Unique factorization of tensor

products for Kac-Moody algebras

The contents of this chapter have appeared in [1].

3.1 The Main Theorem

Let us recall the statement of our main theorem:

Theorem 3.1.1. Let g be an indecomposable symmetrizable Kac-Moody algebra. Let n be a

positive integer and suppose V1, V2, · · · , Vn and W1,W2, · · · ,Wn are irreducible g-modules in

category Oint such that

V1 ⊗ · · · ⊗ Vn ∼= W1 ⊗ · · · ⊗Wn. (3.1.1)

Then there is a permutation σ of the set {1, ..., n}, and one-dimensional g-modules Zi such that

Vi ⊗ Zi ∼= Wσ(i), 1 ≤ i ≤ n.

We make few remarks before seeing the proof.

Remark 3.1.2. If g is finite dimensional, then (a) Oint = C, (b) indecomposable is the same

as simple and (c) the only one dimensional g-module is the trivial one. Thus, theorem 3.1.1 is

a generalization of Rajan’s theorem 1.1.2.

Remark 3.1.3. Unique factorization of tensor products upto twisting by one dimensional mod-

ules also appears naturally in the finite dimensional context when g 6= [g, g], for instance, when

considering the Lie algebra gln instead of sln [5, theorem 3]. We will not be considering this in

this thesis.

Remark 3.1.4. Theorem 3.1.1 can be interpreted at the level of characters. For example, the

characters of finite dimensional irreducible sln-modules are the Schur functions; so if a symmet-

ric polynomial can be factored as a product of Schur functions, then this factorization is unique
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(cf. [?, proposition 5.1] and [?, theorem 2.6]). Analogously, when g is an affine Kac-Moody

algebra, the formal characters of irreducible modules in category Oint form a distinguished ba-

sis for the space of theta functions considered as a module over the algebra of holomorphic

functions on the upper half plane [4, chapter 13]. In this setting, our main theorem implies

that if a theta function has a factorization as a product of irreducible characters, then such a

factorization is unique.

3.1.1 Proof of the main theorem when g = sl2

The main idea of our proof of theorem 3.1.1 is easily illustrated in the simplest case of g = sl2.

Here, the highest weights of Vi and Wj are indexed by positive integers ai and bj . Comparing

highest weights of the modules in equation (3.1.1), one obtains
∑n

i=1 ai =
∑n

j=1 bj . Taking

formal characters on both sides and simplifying, one gets:

n∏
i=1

(1− xai+1) =

n∏
j=1

(1− xbj+1) (3.1.2)

where x := e−α and α is the positive root of sl2. Note that equation (3.1.2) is essentially just

the equality of the product of numerators that appear in the Weyl character formula. It is a

classical fact that equation (3.1.2) implies the equality of the multisets {ai+ 1 : 1 ≤ i ≤ n} and

{bj +1 : 1 ≤ j ≤ n}. We recall [5, proposition 4] that one way to prove this is by observing that

if these multisets are disjoint (which can be ensured by cancelling common terms in equation

(3.1.2)), then x := exp(2πi/K), where K is the largest element in the union of these multisets,

is a zero of exactly one side of equation (3.1.2).

Alternatively, we can apply the logarithm to equation (3.1.2) to obtain an equality of formal

power series:
n∑
i=1

∑
p>0

xp(ai+1)

p
=

n∑
j=1

∑
p>0

xp(bj+1)

p
(3.1.3)

Now, letting k denote the minimal element in the union of the (disjoint) multisets as above, we

observe that (a) all terms appearing on both sides of equation (3.1.3) involve only xr for r ≥ k
and (b) the term xk appears on exactly one side of the equation (and with coefficient 1). This

is the required contradiction.

Our proof of theorem 3.1.1 is based on this latter approach. We reinterpret the given

isomorphism of tensor products as an equality of products of (normalized) Weyl numerators.

These are now power series in l-variables, where l is the the rank of g. We then show that

the logarithm of a Weyl numerator has a unique monomial of smallest degree containing all

variables (propositions 3.2.2, 3.2.3). This is sufficient to establish uniqueness of the irreducible

factors in the tensor product, along the same lines as for sl2.
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We remark that if g is a finite dimensional simple Lie algebra, then the Weyl numerator is

a priori a polynomial, but its logarithm is in the larger ring of formal power series. When g is

infinite dimensional, the Weyl numerator is a formal power series to begin with.

This chapter is organized as follows: §3.2 contains the key statements concerning the loga-

rithm of normalized Weyl numerators, and the proof of our main theorem, while §3.3 uses an

interplay of combinatorics and representation theory to prove the key propositions of §3.2.

3.2 Proof of the main theorem

Let us start with the definition of graph of g.

3.2.1 Graph of g

Let G be the graph underlying the Dynkin diagram of g, i.e., G has vertex set Π, with an edge

between two vertices α and β iff (α, β) < 0. We will refer to G as the graph of g. Observe that

G does not keep track of the Cartan integers 2(α,β)
(β,β) ; thus for instance the classical series An, Bn

and Cn all have the same graph.

Now we fix some notations, let Xα := e−α, α ∈ Π and consider the algebra of formal power

series A := C[[Xα : α ∈ Π ]]. Since L(λ) has highest weight λ, it is clear that χλ ∈ A (see

2.3.1). We also have that Uλ ∈ A, since (λ+ ρ)− w(λ+ ρ) ∈ Q+ for all w ∈W . Both χλ and

Uλ have constant term 1.

We call a monomial κ =
∏
α∈Π

Xpα
α ∈ A regular if pα ≥ 1 for all α ∈ Π. Given f ∈ A, say

f =
∑

κ bκ κ (the sum running over monomials κ), the regular part of f , denoted f#, is defined

to be the sum of only the regular terms in f , i.e., f# :=
∑

κ regular

bκ κ. It is easy to see that f#

is given by the formula f# =
∑
J⊂Π

(−1)|J | f |Xα=0,α∈J but we will not need this.

Also given γ ∈ P+, define the associated regular monomial Mγ :=
∏
α∈Π

X
〈γ+ρ,α∨〉
α , and let

deg(γ) := degree(Mγ) =
∑
α∈Π

〈γ + ρ, α∨〉.

Recall that for λ ∈ h∗, we denote λ |h′ by λ. The following lemma collects together some

well-known properties :

Lemma 3.2.1. Let g be a symmetrizable Kac-Moody algebra and λ, µ ∈ P+. The following

statements are equivalent: (a) χλ = χµ, (b) Uλ = Uµ, (c) Mλ = Mµ, (d) λ = µ, (e) L(λ) ∼=
L(µ) as g′-modules, (f) L(λ)⊗Z ∼= L(µ) as g-modules, for some one dimensional g-module Z.

Proof. The Weyl character formula (equation (2.3.6)) shows that (a) and (b) are equivalent,

while (c)⇔ (d) follows from definitions. The equivalence of (d), (e) and (f) can be found in [4,

§9.10]. The implication (b) ⇒ (d) follows from the observation that the only monomial in Uλ
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of the form Xn
α is −X〈λ+ρ,α∨〉

α (corresponding to w = sα in equation (2.3.5)). Finally, (d) ⇒
(b) because the expression w(λ+ ρ)− (λ+ ρ) only depends on the values 〈λ+ ρ, α∨〉 for α ∈ Π

(for instance, this follows from equation (3.3.7) below and induction). 2

Next, recall that if η ∈ A is a formal power series with constant term 1, its logarithm is a

well defined formal power series: log η = −
∑

p≥1(1− η)p/p. The next two propositions are the

key ingredients in the proof of our main theorem.

Proposition 3.2.2. Let g be a symmetrizable Kac-Moody algebra. Given λ ∈ P+, we have:

(− logUλ)# = c(g, λ)Mλ + regular monomials of degree > deg(λ)

for some c(g, λ) ∈ Z≥0. Further, c(g, λ) is independent of λ, and only depends on the graph of

g.

Proposition 3.2.3. Letting c(g) := c(g, λ), we have further that c(g) ≥ 1 iff g is indecompos-

able, or equivalently, iff the graph of g is connected.

Thus, when g is indecomposable, the above propositions imply that Mλ is the unique regular

monomial of minimal degree appearing with nonzero coefficient in logUλ. When g is a finite

dimensional simple Lie algebra, we will in fact show (Corollary 3.3.6) that c(g) = 1. We defer

the proofs of propositions 3.2.2 and 3.2.3 to section 3.3. We first deduce a unique factorization

theorem for Weyl numerators (see also [5, theorem 2]), and use this to prove our main theorem.

Theorem 3.2.4. Let g be an indecomposable symmetrizable Kac-Moody algebra. Let n,m be

positive integers and suppose λ1, · · · , λn, µ1, · · · , µm ∈ P+ are such that the following identity

holds in A:

Uλ1 · · ·Uλn = Uµ1 · · ·Uµm . (3.2.4)

Then n = m, and there is a permutation σ of the set {1, 2, · · · , n}, such that Uλi = Uµσ(i)
, 1 ≤

i ≤ n.

Proof. Let a := min({deg(λi) : 1 ≤ i ≤ n} ∪ {deg(µj) : 1 ≤ j ≤ m}). We can assume without

loss of generality that deg(λ1) = a. Now apply the operator − log to equation (3.2.4) and

consider the regular monomials on both sides :

n∑
i=1

(− logUλi)
# =

m∑
j=1

(− logUµj )
#. (3.2.5)

By propositions 3.2.2 and 3.2.3, it is clear that Mλ1 occurs on the left hand side of equation

(3.2.5) with nonzero coefficient. Since all µj ’s have degree ≥ a, there must exist 1 ≤ j ≤ m

for which Mµj = Mλ1 . By lemma 3.2.1, Uλ1 = Uµj . Cancelling these terms and proceeding by

induction, we obtain the desired conclusion. 2
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We now complete the proof of theorem 3.1.1. Given irreducible g-modules Vi,Wj as in

equation (3.1.1), we let λi, µj be dominant integral weights such that Vi = L(λi) and Wj =

L(µj) for 1 ≤ i, j ≤ n. Observe that (a) all weights of the module
n⊗
i=1

Vi are ≤
∑n

i=1 λi where ≤

is the usual partial order on the weight lattice, and (b)
∑n

i=1 λi is a weight of this module. Thus,

comparing highest weights of the modules⊗iVi and⊗jWj , we conclude
∑n

i=1 λi =
∑n

j=1 µj =: β

(say). Taking formal characters of the modules in equation (3.1.1) one obtains:

n∏
i=1

ch(L(λi)) =
n∏
j=1

ch(L(µj))

Multiplying both sides by e−βUn0 and using the Weyl-Kac character formula (equation (2.3.6)),

we get Uλ1 · · ·Uλn = Uµ1 · · ·Uµn . Theorem 3.2.4 and lemma 3.2.1 now complete the proof. 2

3.3 Proof of propositions 3.2.2 and 3.2.3

Throughout this section, we fix a dominant integral weight λ of g.

Let aα := 〈λ+ ρ, α∨〉 ∈ Z>0 for each α ∈ Π; thus Mλ :=
∏
α∈Π

Xaα
α . We write

λ+ ρ− w(λ+ ρ) =
∑
α∈Π

cα(w)α (3.3.6)

where cα(w) ∈ Z≥0, and define X(w) :=
∏
α∈Π

X
cα(w)
α = ew(λ+ρ)−(λ+ρ) .

For w ∈W , let w denote a reduced word for w. We define I(w) := {α ∈ Π : sα appears in w};
this is a well defined subset of Π, since I(w) is independent of the reduced word chosen [3].

A non-empty subset K ⊂ Π is said to be totally disconnected if (α, β) = 0 for all distinct

α, β ∈ K, i.e., there are no edges in G between vertices of K. Let I := {w ∈ W\{e} :

I(w) is totally disconnected}. Given a totally disconnected subset K of Π, there is a unique

element w(K) ∈ I with I(w(K)) = K; it is clear that w(K) is just the product of the commut-

ing simple reflections {sα : α ∈ K}. Thus, I is in natural bijection with the set of all totally

disconnected subsets of Π. Note that the elements of I are involutions in W . We now have the

following key lemma.

Lemma 3.3.1. Let w ∈W . Then

(a) I(w) = {α ∈ Π : cα(w) 6= 0}, i.e., X(w) =
∏
α∈I(w)X

cα(w)
α .

(b) cα(w) ≥ aα for all α ∈ I(w).

(c) If w ∈ I, then cα(w) = aα for all α ∈ I(w).

(d) If w /∈ I ∪ {e}, then there exists β ∈ I(w) such that cβ(w) > aβ.
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Proof. We set γ := λ+ρ. First, observe that (c) follows immediately from definitions. Further,

equation (3.3.6) shows that cα(w) = 0 for all α /∈ I(w). Thus (a) follows from (b). We now

prove (b) by induction on l(w). If w = e, then (b) is trivially true. Suppose that l(w) ≥ 1,

write w = σsα with l(σ) = l(w)− 1 and α ∈ Π. This implies σ(α) ∈ ∆+. Now

γ − wγ = (γ − σγ) + σ(γ − sαγ) = (γ − σγ) + aα σα (3.3.7)

Now, either (i) I(w) = I(σ) or (ii) I(w) = I(σ)t{α}. In case (i), we are done by the induction

hypothesis. If (ii) holds, observe that σα = α+α′ for some α′ in the Z≥0-span of I(σ). Equation

(3.3.7) and the induction hypothesis now complete the proof of (b).

The proof of (d) is along similar lines, by induction on l(w). Observe l(w) ≥ 2 since w /∈
I ∪ {e}. Write w = σsα as above. If σ /∈ I, then the result follows by the induction hypothesis

and the fact that I(σ) ⊂ I(w). If σ ∈ I, then clearly I(w) 6= I(σ) and so I(w) = I(σ) t {α}.
Since I(w) is not totally disconnected, we must have σα 6= α, i.e., σα = α + α′ for some

non-zero α′ ∈ Z≥0-span of I(σ). We are again done by (c) and equation (3.3.7). 2

3.3.1 The c(G)

We now make the following useful definition.

Definition 3.3.2. Let k be a positive integer. A k-partition of the graph G is an ordered k-tuple

(J1, ..., Jk) such that (a) the Ji’s are non-empty pairwise disjoint subsets of the vertex set Π of

G, (b)
k⋃
i=1

Ji = Π, and (c) each Ji is a totally disconnected subset of Π.

We let Pk(G) denote the set of k-partitions of G and ck(G) :=| Pk(G) |. We also define

c(G) := (−1)l
l∑

k=1

(−1)k
ck(G)

k
(3.3.8)

where l = |Π| is the cardinality of the vertex set of G. Finally, given J := (J1, · · · , Jk) in Pk(G),

define w(J ) := w(J1)w(J2) · · ·w(Jk) (this is in fact a Coxeter element of W , i.e., product of

all generators in some order).

We now proceed to analyze (− logUλ)#. Write Uλ = 1− ξ, where

ξ := −
∑

w∈W\{e}

ε(w)X(w) = ξ1 + ξ2

with ξ1 := −
∑
w∈I

ε(w)X(w) and ξ2 := −
∑

w/∈I∪{e}
ε(w)X(w).

Since − logUλ = ξ + ξ2/2 + ... + ξk/k + · · · , lemma 3.3.1 clearly implies that any regular

monomial κ =
∏
α∈Π

Xpα
α that occurs in − logUλ must satisfy pα ≥ aα for all α ∈ Π. It

further implies that there is no contribution of ξ2 to the coefficient of the regular monomial
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Mλ =
∏
α∈Π

Xaα
α , i.e., Mλ occurs with the same coefficient in − log(1− ξ) and in − log(1− ξ1).

Thus, the coefficient of Mλ in − log(Uλ) is:

∑
k≥1

∑
J∈Pk(G)

(−1)k

k
ε(w(J ))

Since ε(w(J )) = (−1)l for all J ∈ Pk(G) and all k ≥ 1, we deduce that this coefficient is equal

to c(G). Thus c(g, λ) = c(G) only depends on the graph G of g. This establishes all assertions

of proposition 3.2.2, except for the non-negative integrality of the coefficient c(G). This will be

established in proposition 3.3.3 below.

3.3.2 Characterization Of c(G)

In this section, we obtain another characterization of c(G). Since c(G) = c(g, λ) is independent

of λ, we can take λ = 0. Thus, c(G) is the coefficient of M0 in − logU0. Now, by the Weyl-Kac

denominator identity, we have

U0 =
∑
w∈W

ε(w)ewρ−ρ =
∏
β∈∆+

(1− e−β)multβ

where multβ is the root multiplicity of β. So

− logU0 =
∑
β∈∆+

multβ
∑
k≥1

e−kβ

k

Since M0 =
∏
α∈ΠXα = e−

∑
α∈Π α, we have thus proved:

Proposition 3.3.3. c(G) is the multiplicity of the root
∑
α∈Π

α in g. Thus c(G) ∈ Z≥0.

The following statement about roots is well-known, but is included for completeness sake.

Proposition 3.3.4.
∑

α∈Π α is a root of g⇔ g is indecomposable.

Proof. One half (⇒) follows from [4, Lemma 1.6]. For the converse, observe that the connect-

edness of G allows us to order the set Π of simple roots as (α1, α2, · · · , αl) such that the partial

sums βj :=
∑j

i=1 αi satisfy (βj , αj+1) < 0 for 1 ≤ j < l = |Π|. Since (βj − αj+1) /∈ ∆, a stan-

dard sl2 argument proves that βj+1 ∈ ∆ if βj ∈ ∆. Since β1 ∈ ∆, we conclude βl =
∑

α∈Π α is

also a root. 2

Finally, observe that propositions 3.3.3 and 3.3.4 prove proposition 3.2.3.
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3.3.3 An Algorithm to compute c(G)

In this subsection, we obtain an algorithm for the computation of c(G), and give an alternate

proof of proposition 3.2.3.

We note that the definitions of §3.3.1 only need G to be an abstract graph. The main results

of this subsection can be viewed as statements about abstract graphs.

Proposition 3.3.5. Let G be a graph containing at least two vertices, and p a vertex of G that

is adjacent to a unique vertex of G. Let G′ be the graph which is obtained from G by deleting

the vertex p. Then c(G) = c(G′).

Proof. Let q denote the unique vertex adjacent to p. Consider J = (J1, · · · , Jk) ∈ Pk(G).

Then, there are only two (mutually exclusive) possibilities: (a) Ji = {p} for some i, or (b)

p ∈ Ji for some i for which |Ji| ≥ 2. We enumerate the number of k-partitions of each type. If

J is of type (a), then removing Ji gives us a (k − 1)-partition of G′. Thus, the number of J ’s

of type (a) is precisely kck−1(G′), since there are k possibilities for i. Next, if J is of type (b),

deleting p from the part in which it occurs leaves us with a k-partition J ′ of G′. Conversely

given J ′ ∈ Pk(G′), the vertex p can be inserted into any of the k − 1 parts of J ′ which do not

contain q. Thus the number of J ’s of type (b) is (k − 1)ck(G′). Putting these together, we

obtain for all k ≥ 1:

ck(G) = kck−1(G′) + (k − 1)ck(G′)

where c0(G′) := 0. Plugging this into equation (3.3.8), we obtain

c(G)− c(G′) = (−1)l
∑
k≥1

(−1)k(ck(G′) + ck−1(G′))

where l is the number of vertices in G. Since c0(G′) = 0 and ck(G′) = 0 for all k ≥ l, the

telescoping sum on the right evaluates to 0. 2

Corollary 3.3.6. (1) Let G be a tree. Then c(G) = 1. (2) Let g be an indecomposable Kac-

Moody algebra of finite or affine type with g 6= A
(1)
n (n ≥ 2) (in the notation of Kac [4]). Then

c(g) = 1.

Proof. The first part immediately follows from the above theorem by induction on the number

of vertices of G. The second follows from the first since for such g, the associated graph is a

tree. 2

Next, let G be a graph and e be an edge in G. Define G†e to be the graph obtained from G
by deleting the edge e alone (keeping all vertices, and edges other than e intact). Let Ge be the

graph which is obtained from G by contraction of the edge e [2, §1.7], in other words, letting

p, q denote the vertices at the two ends of e, Ge is constructed in two steps as follows: (i) delete
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the vertices p, q of G and all edges incident on them; call this graph Γ, (ii) create a new vertex

r; for each vertex s in Γ, draw an edge between r and s iff s was adjacent to either p or q (or

both) in G.

Proposition 3.3.7. With notation as above, c(G) = c(G†e) + c(Ge).

Proof. Let l be the number of vertices in G. Suppose J = (J1, · · · , Jk) is a k-partition of

G†e . Then either (a) p and q occur in different Ji’s, or (b) they occur in the same Ji. In case

(a), J is also a k-partition of G. In case (b), observe that if we delete p and q from Ji and

add r to Ji, keeping the remaining Jp’s the same, we obtain a k-partition of Ge. So we get

ck(G) + ck(Ge) = ck(G†e) for all k ≥ 1. From equation (3.3.8), we get

(−1)l
∑
k≥1

(−1)k
ck(G)

k
= (−1)l

∑
k≥1

(−1)k
ck(G†e)
k

+ (−1)l−1
∑
k≥1

(−1)k
ck(Ge)
k

Since the number of vertices in Ge is l − 1, this proves the proposition. 2

Corollary 3.3.8. Let g be the affine Kac-Moody algebra of type A
(1)
n , n ≥ 2. Then c(g) = n.

Proof. This follows from the above theorem since the graph of g is an (n + 1)-cycle. Alterna-

tively, this also follows from proposition 3.3.3 since
∑

α∈Π α is just the null root of this affine

root system, which has multiplicity n. 2

Next, we give a purely combinatorial proof of proposition 3.2.3 and proposition 3.3.4.

Proposition 3.3.9. Let G be a graph. (i) If G is connected, then c(G) > 0, and (ii) if G is

disconnected, then c(G) = 0.

Proof. Suppose G is a tree then we are done, since c(G) = 1. So assume that G contains a

cycle, and pick an edge e of this cycle. Then, G†e remains connected. It is easy to see that

Ge is also connected. Both G†e and Ge have strictly fewer edges than G. Thus, proposition

3.3.7 together with an induction on the number of edges of G proves (i). For (ii), suppose

there is no edge in G, then G has at least two vertices. Let v be a vertex in G. Then since

ck(G) = k(ck(G − v) + ck−1(G − v)), equation (3.3.8) gives c(G) = 0. So assume that G contains

an edge, and let e be a choosen edge. Then, both Ge and G†e remain disconnected and have

strictly fewer edges than G. Thus, proposition 3.3.7 together with an induction on the number

of edges of G proves the result. 2

Remark 3.3.10. We note that proposition 3.3.7 gives a recursive algorithm to compute c(G).

Since both G†e and Ge have fewer edges than G, this process terminates in at most p steps, where

p is the number of edges in G. In practice, it is even better, terminating as soon as the resulting

graphs are trees.
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Finally, putting together the two points of view on c(G), we deduce the following corollary

concerning multiplicities of certain roots of symmetrizable Kac-Moody algebras.

Corollary 3.3.11. Let g be an indecomposable symmetrizable Kac-Moody algebra and let α(g)

denote the sum of the simple roots of g; recall that α(g) is a root of g. Let A = (aij) be the

generalized Cartan matrix of g.

• The root multiplicity of α(g) only depends on the graph G of g. In other words, multα(g)

only depends on the set {(i, j) : aij 6= 0} and not on the actual values of the aij.

• If G†e and Ge are as in proposition 3.3.7 and if g†e and ge are symmetrizable Kac-Moody

algebras with graphs G†e and Ge respectively, then multα(g) = multα(g†e) + multα(ge) 2
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Chapter 4

New interpretation of chromatic

polynomials using Kac-Moody

theory

In the last chapter, we have seen some applications of combinatorics in representation theory.

On the other hand, representations also give more information about combinatorial objects.

Our analysis of the characters in the proof of theorem 3.1.1 leads to an unexpected connection

with chromatic polynomials of graphs.

4.1 Kac-Moody algebra associated with the given graph G

Let G be a connected simple graph with vertex set Π and |Π| = `. There is a natural way of

associating a generalized Cartan matix (and hence symmetrizable Kac-Moody algebra) with

G. Let M(G) be a symmetric generalized Cartan matrix associated with G, defined as follows:

M(G)ij =


2 if i = j

−1 if i 6= j and there is an edge between i and j

0 otherwise.

Let g(G) be the symmetrizable Kac-Moody algebra associated with M(G) (or with G). We

will drop G in g(G), if the underlying graph is understood. Let h be the Cartan subalgebra

of g. Let us identify the vertex set Π with the set of simple roots of g. Let ∆ be the set of

roots, and ∆+ the set of positive roots of g. For α ∈ Π, let α∨ denote the corresponding simple

coroot. Let P , Q, P+, Q+ be the weight lattice, the root lattice and the sets of dominant

weights and non-negative integer linear combinations of simple roots respectively. Let W be

the Weyl group of g, generated by the simple reflections {sα : α ∈ Π}, and let ε be its sign

character. Let (−,−) be the standard nondegenerate, W -invariant symmetric bilinear form on
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h∗ (see [4, Chapter 2]). Let us fix an element ρ ∈ h∗ such that (ρ, α∨) = 1 for all α ∈ Π, ρ is

called the Weyl vector of g.

Note that G is the graph underlying the Dynkin diagram of g, i.e., G has vertex set Π, with

an edge between two vertices α and β iff (α, β) < 0.

4.1.1 Chromatic Polynomial of G

We recall the definition of chromatic polynomial of G here.

Definition 4.1.1. Let q ∈ N. A mapping f : Π → {1, · · · , q} is called a q-colouring of G if

f(α) 6= f(β) whenever the vertices α and β are adjacent in G. Two q-colourings f and g of G
are regarded as distinct if f(α) 6= g(α) for some vertex α of G.

The number of distinct q-colourings of G is denoted by PG(q). By convention PG(0) = 0.

The following proposition is well known.

Proposition 4.1.2. For q ∈ N, we have PG(q) =
∑
k≥1

ck(G)
(
q
k

)
, where ck(G) was defined in

3.3.1. It is thus a polynomial in q and is known as the chromatic polynomial of G. The

coefficients of PG(q) are alternating in sign.

We define P̃G(q) := (−1)`PG(−q), it is easy to see that P̃G(q) ∈ N[q].

4.2 Chromatic polynomials and some of its properties using

Kac-Moody theory

The notations in this section are from 3.2.1 and 3.3.1.

Lemma 4.2.1. PG(q) = (−1)`. the coefficient of M0 in U q0 .

Proof. Write U0 = 1− ξ0, where

ξ0 := −
∑

w∈W\{e}

ε(w)X(w) = ξ1 + ξ2

with ξ1 := −
∑
w∈I

ε(w)X(w) and ξ2 := −
∑

w/∈I∪{e}
ε(w)X(w).

Since U q0 =
∑
k≥0

(−1)k
(
q
k

)
ξk0 , lemma 3.3.1 clearly implies that there is no contribution of ξ2 to

the coefficient of the regular monomial M0 =
∏
α∈Π

Xα, i.e., M0 occurs with the same coefficient

in (1− ξ0)q and in (1− ξ1)q. Thus, the coefficient of M0 in U q0 is:

∑
k≥1

(−1)k
(
q

k

) ∑
J∈Pk(G)

(−1)k ε(w(J ))
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Since ε(w(J )) = (−1)` for all J ∈ Pk(G) and all k ≥ 1, we deduce that this coefficient is equal

to:

(−1)`
∑
k≥1

(
q

k

)
ck(G) = (−1)`PG(q)

This completes the proof. 2

Now, we have U qo = exp(q logU0) = 1 + q
1! logU0 + q2

2! (logU0)2 + . . . , and the Weyl-Kac

denominator identity states that U0 =
∏
α∈∆+

(1− e−α)mα . Thus we have,

(−1)k(logU0)k = (− logU0)k =
∑
β∈∆+

mβ{e−β +
e−2β

2
+ . . . }.

So the coefficient of M0 =
∏
α∈Π

Xα in (−1)k(logU0)k is:

∑
β∈Sk(G)

mβ1mβ2 ...mβk ,

where Sk(G) =

{
β = (β1, . . . , βk) : βi ∈ ∆+ and

k∑
i=1

βi =
∑
α∈Π

α

}
.

So the coefficient of
∏
α∈Π

Xα in U q0 is:

∑̀
k=1

(−1)k

k!

 ∑
β∈Sk(G)

mβ1 . . .mβk

 qk.

Thus by comparing the coefficients of
∏
α∈Π

Xα in U q0 in two different ways we get:

(−1)`
∑
k≥1

(
q

k

)
ck(G) =

∑̀
k=1

(−1)k

k!

 ∑
β∈Sk(G)

mβ1 . . .mβk

 qk.

Thus we have proved,

Theorem 4.2.2.

PG(q) = (−1)`
∑̀
k=1

(−1)k

k!

 ∑
β∈Sk(G)

mβ1 . . .mβk

 qk.

Corollary 4.2.3. Let ` ≥ 2 and β =
∑
α∈Π

α. Then

mβ =
∑̀
k=2

(−1)k

k!

 ∑
β∈Sk(G)

mβ1 . . .mβk

 .
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Proof. For any connected graph G with atleast two vertices, we have PG(1) = 0. 2

Corollary 4.2.4. P̃G(q) = K(β; q), where K(β; q) is the q-Kostant partition function of g and

β =
∑
α∈Π

α.

Proof. This directly follows from the definition of q-Kostant partition function 2.3.4. 2

Corollary 4.2.5. Let S ⊆ Π, βS =
∑
α∈S

α and GS be subgraph of G induced by S. The coefficient

of M0
S =

∏
α∈S

Xα in U q0 is (−1)|S|PGS (q). Hence we have

PGS (q) = (−1)|S|
∑̀
k=1

(−1)k

k!

 ∑
β∈Sk(βS)

mβ1 . . .mβk

 qk.

where Sk(βS) =

{
β = (β1, . . . , βk) : βi ∈ ∆+ and

k∑
i=1

βi =
∑
α∈S

α

}
.

Proof. The coefficient ofM0
S =

∏
α∈S

Xα in U q0 = exp(q logU0) is
|S|∑
k=1

(−1)k

k!

{ ∑
β∈Sk(βS)

mβ1 . . .mβk

}
qk.

On the other hand, the coefficient ofM0
S =

∏
α∈S

Xα in U q0 =
∑
k≥0

(−1)k
(
q
k

)
ξk0 is (−1)|S|

∑
k≥1

(
q
k

)
ck(GS).

This completes the proof. 2

The proofs of the following facts follow from the arguments used in the proof of Theorem

3.1.1. So we omit them here.

Proposition 4.2.6. Let S ⊆ Π and βS =
∑
α∈S

α. Then mβS is the coefficient of M0
S =

∏
α∈S

Xα

in − logU0.

Proposition 4.2.7. Let S ⊆ Π and βS =
∑
α∈S

α. Then βS ∈ ∆+ if and only if S is connected,

i.e., the subgraph induced by S in G is connected.

Now we use these results to get some properties of chromatic polynomials.

Proposition 4.2.8. d
dqPG(q) =

∑
S⊆Π

(−1)|S|+1mβSPGS′ (q), where S′ = Π\S.

Proof. It is easy to see that ∂
∂qU

q
0 = (logU0)U q0 . Now compare the coefficient of M0 on both

sides and use corollary 4.2.5 and proposition 4.2.6 to get desired result. 2

The following proposition is well known and can be proved by using the definition of chro-

matic polynomials. We give an alternate proof using our interpretation of chromaitc polyno-

mials.
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Proposition 4.2.9. PG(q1 + · · ·+ qn) =
∑
PGS1

(q1) · · ·PGSn (qn), where the sum runs over all

ordered set partitions (S1, · · · , Sn) of Π, and we use the convention that PGS (q) = 1 if S is

empty.

Proof. Use the identity U q1+···+qn
0 = U q10 · · ·U

qn
0 and compare the coefficient of M0 using corol-

lary 4.2.5. 2

Remark 4.2.10. (1) Since
k∑
i=1

βi =
∑
α∈Π

α and βi ∈ ∆+, for each i there exists a connected

subset Si ⊆ Π such that βi = βSi and (S1, · · · , Sk) form a connected k-partition of Π. Define

support of βi to be Si, and it is denoted by supp(βi).

(2) Thus Sk(G) is naturally in bijective correcpondence with the set of all ordered con-

nected k-partitions of G, see definition 4.3.1 below. The bijection is given by (β1, · · · , βk) 7→
(supp(β1), · · · , supp(βk)). Often we identify (β1, · · · , βk) with (supp(β1), · · · , supp(βk)) using

this bijection, similarly we identify the unordered tuple {β1, · · · , βk} with {supp(β1), · · · , supp(βk)}.

4.3 Bond lattice of G

This new interpretation throws light on a classical expression for PG(q) by Birkhoff. To state

this, first we recall the definition and properties of the bond lattice of G.

We begin with the definition of connected partition of G.

Definition 4.3.1. Let k be a positive integer. A connected k-partition of the graph G is an

unordered k-tuple {S1, ..., Sk} such that (a) the Si’s are non-empty pairwise disjoint subsets

of the vertex set Π of G, (b)
k⋃
i=1

Si = Π, and (c) each Si is a connected subset of Π, i.e. the

subgraph induced by Si in G is connected .

Let G be a connected graph with ` vertices. Consider the poset LG whose elements are

connected k-partitions of Π for all k, partially ordered by refinement. LG is known as the bond

lattice of G. The maximum element is 1̂ := {Π} and minimum element is 0̂ := {{α1}, · · · , {α`}},
where ` is the cardinality of Π. Now we collect some facts about the bond lattice of G from [2].

(1) An atom, by definition, is an element of LG that covers 0̂. Atoms of LG are bijec-

tive correspondence with the set of edges of G. The bijection is given as follows : e 7→
{{αk}k 6=i,j , {αi, αj}}, where αi, αj are end points of e.

(2) LG is a geometric lattice.

(3) LG has a rank function: rk(π) := ` − |π|, where |π| is the number of parts in π, i.e. if

π is a connected k-partition then |π| = k.

The Möbius function of LG , µ : LG → Z, is defined recursively by :
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µ(π) =

 1 if π = 0̂

−
∑
π′<π

µ(π′) if π > 0̂,

Note that µ is the unique Z-valued function on LG such that
∑
π′≤π

µ(π′) = δ0̂π (Kronecker

delta).

(4) The Möbius function of LG strictly alternates in sign: (−1)`−|π|µ(π) > 0, for all π ∈ LG .

Theorem 4.3.2 (Birkhoff, Whitney, Rota). For a connected graph G, PG(q) =
∑
π∈LG

µ(π)q|π|.

Comparing theorem 4.3.2 with theorem 4.2.2 one is led to expect that the absolute value of

the mysterious integers µ(π) occurs as a product of root multiplicities of g(G). More precisely,

we have the following result.

Theorem 4.3.3. Let G be a connected graph with ` vertices. Let π = {S1, · · · , Sk} ∈ LG and

mπ := mβS1
· · ·mβSk

, where βS :=
∑
α∈S

α for all S ⊆ Π. Then µ(π) = (−1)`−k mπ.

Proof. If ` = 1, then the result is clear. So we assume that ` ≥ 2.

It is clear that m0̂ = 1. Now we claim that
∑
π′≤π

(−1)`−|π
′|mπ′ = 0, for all 0̂ 6= π ∈ LG .

If π = 1̂, then
∑
π′≤1̂

(−1)`−|π
′|mπ′ = PG(1) = 0, since G has at least two vertices (since we

may now assume that 1̂ 6= 0̂).

Assume that 0̂ < π < 1̂. Let π = (S1, · · · , Sk) and Gi = the subgraph induced by Si in G.

Then it is easy to see that,

∑
π′≤π

(−1)`−|π
′|mπ′ =

k∏
i=1

 ∑
π′(Gi)≤1̂(Gi)

(−1)`−|π
′(Gi)|mπ′(Gi)

 =
k∏
i=1

PGi(1)

Now, since 0̂ < π, there exists i such that 1̂(Gi) 6= 0̂(Gi), i.e. Gi has atleast two vertices and

so PGi(1) = 0. This completes the proof. 2

4.4 Peterson recursion formula

It is known that, mβS 6= 0 if and only if the subgraph generated by S ⊆ Π is connected, see

3.3.4. So, to understand the coefficient of the chromatic polynomials, it is enough to understand

mβ’s.

Towards this direction, we get a nice recursion formula for the mysterious number mβ, by

applying the Peterson recursion formula (§Chapter 11, [4]) to β =
∑
α∈Π

α.

For β ∈ Q+, set cβ =
∑
n≥1

n−1m(β/n). Then Peterson recursion formula says
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(β, β − 2ρ)cβ =
∑

(β′,β′′)∈Q+×Q+

β′+β′′=β

(β′, β′′)cβ′cβ′′

Now we apply this to β =
∑
α∈Π

α. It is easy to see that, in this particular case, Peterson

recursion formula becomes

(β, β − 2ρ)mβ =
∑

(β′,β′′)∈Q+×Q+

β′+β′′=β

(β′, β′′)mβ′mβ′′ (4.4.1)

But (β, β − 2ρ) = 2(the number of edges in G) and

(β′, β′′) = the number of edges between supp(β′) and supp(β′′).

Denote E(β) = the number of edges in G and E(β′, β′′) = the number of edges between

supp(β′) and supp(β′′). Then (5) becomes

mβ =
∑

(β′,β′′)∈Q+×Q+

β′+β′′=β

E(β′, β′′)

E(β)
mβ′mβ′′ . (4.4.2)

Given π = {β1, · · · , βk} ∈ LG , let π+ = {β ∈ π : |supp(β)| > 1}. We write π → π′ to denote

the covering relations, i.e., there exists only one βi in π such that π′ = {β1, · · · , βi−1, β
′, β′′, βi+1, · · · , βk}

with β′ + β′′ = β. For such pair π and π′ we define

ω(π, π′) =
1

|π+|
E(β′, β′′)

E(βi)
.

With the notations above, we have the following theorem.

Theorem 4.4.1. For all 0̂ 6= π ∈ LG, we have

mπ =
∑
π′∈LG
π→π′

ω(π, π′)mπ′

Proof. Using Peterson formula one can easily see that,

mπ =
1

|π+|
∑
βi∈π+

∑
β′+β′′=βi

E(β′, β′′)

E(βi)
mβ1 · · ·mβi−1

mβ′mβ′′mβi+1
· · ·mβk .

Now rewrite this using above notations to get desired result. 2

Theorem 4.4.2. For k ≥ 1, the coefficient of qk in P̃G(q) =
∑

p∈P (LG)

ω(p), where sum runs over

all paths p such that p : π → π1 → · · · → π`−k → 0̂, and ω(p) = ω(π, π1)ω(π1, π2) · · ·ω(π`−k, 0̂).

Proof. This immediately follows from theorem 3. 2
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