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Notations

N The set of natural numbers
Z The ring of rational integers
Q The field of rational numbers
R The field of real numbers
R∗ The multiplicative subgroup of real numbers
R+ The set of positive real numbers
Q The field of algebraic numbers
C The field of complex numbers
<(s) Real part of the complex number s
=(s) Imaginary part of the complex number s
p A rational prime
F A number field
OF The ring of integers of the number field F
p A prime ideal in OF
(a, b) The greatest commont divisor of a and b
q | n q divides n
q - n q does not divide n
ζq A primitive q-th root of unity
∆ A fundamental discriminant
ϕ Euler’s phi-function
χ Dirichlet character
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Abstract

The objects which are central to our investigation are periodic Dirichlet
series of the form

L(s, f) :=
∞∑
n=1

f(n)

ns
, <(s) > 1

where f is some periodic arithmetic function. The classical Riemann zeta
function and the L-functions associated to Dirichlet characters are the pro-
totypical examples. We also have the Hurwitz zeta function ζ(s, x) defined
by

ζ(s, x) =
∞∑
n=0

1

(n+ x)s

for real x ∈ (0, 1] and s as before. The special values of such Dirichlet series
is part of a much larger picture, developed by Deligne, Zagier and others.
For instance, the conjectural transcendence of ζ(k) at odd positive integers
k constitutes a central theme in transcendence theory.

However, since these Dirichlet series in general do not have an Euler
product, even the existence of zeros in the domain of absolute convergence
<(s) > 1 cannot be ruled out. In 1982, P. Chowla and S. Chowla [12] stated
a conjecture which says that L(2, f) 6= 0 except when

f(1) = f(2) = · · · = f(p− 1) =
f(p)

1− p2
.

Here they considered only those f which are integer valued.
A little later, Milnor [26] put the conjecture of Chowlas’ in a conceptual

framework. He interpreted the conjecture of Chowlas’ in terms of the values
of the linear independence of the Hurwitz zeta function. More precisely, he
conjectured that, for a prime p and integer k > 1, the p− 1 real numbers

ζ(k, 1/p), ζ(k, 2/p), ..., ζ(k, (p− 1)/p)

are linearly independent over Q. In fact, Milnor suggested a generalization
of this conjecture for arbitrary integer q > 1. This conjecture has been
investigated in the recent works of Gun, Murty and Rath [19]. Following
their convention, for integers k, q > 1, let Vk(q) denotes the Q-vector space
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generated by the numbers ζ(k, a/q) where a runs over the co-prime residue
classes mod q. Then the conjecture of Milnor states that

Q− dimension of Vk(q) = ϕ(q).

In [19], the authors proved that the above conjecture of Milnor is intimately
linked to irrationality of ζ(k) for odd k. They derived a non-trivial lower
bound for the dimension of Vk(q), namely that

Q− dimension of Vk(q) ≥ ϕ(q)/2 .

They noted that any improvement of the above lower bound will have re-
markable consequences. For instance, it will establish the irrationality of
ζ(k)/πk for odd k > 1. In this context, they obtained a conditional im-
provement of this lower bound by exploiting the arithmetic of cyclotomic
fields of different moduli.

Further, the investigations carried out by them led them to formulate
the following extension of the original conjecture of Milnor. More precisely,
they conjecture that, in addition to Milnor’s conjecture, the Q-vector spaces
Vk(q) and Q are linearly disjoint.

In other words, the Q-vector space V̂k(q) generated by 1 and the Hurwitz
zeta values ζ(k, a/q) for (a, q) = 1 has Q-dimension ϕ(q) + 1.

As before, following Gun, Murty and Rath, we refer to this as the Strong
Chowla-Milnor conjecture. In the first part of our thesis, we investigate vari-
ous ramifications of this generalized conjecture. In many ways, this provides
a more natural framework than the original conjecture of Milnor. Further,
we formulate and investigate a number field analog of this conjecture.

We now briefly describe some of the result we have managed to derive
in our thesis.

To begin, in our work [8], we give an alternate proof of the following
theorem which was proved in [19].

Theorem 1. There exists an integer r such that for all integers q co-prime
to r and all odd integers k > 1, the dimension of Vk(q) is at least ϕ(q)/2+1.

In [9], we discuss our second set of problems. We prove a non-trivial
lower bound of the dimension of the Strong Chowla-Milnor spaces which is
the following.

Theorem 2. Let k > 1 and q > 2 be two integers. Then

dimQV̂k(q) ≥
ϕ(q)

2
+ 1.

We also prove a conditional lower bound of the dimension of those spaces
which is the following.

Theorem 3. Let q, r > 2 be two co-prime integers. Then for infinitely
many odd k > 1 either

dimQV̂k(q) ≥
ϕ(q)

2
+ 2
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or

dimQV̂k(r) ≥
ϕ(r)

2
+ 2.

For an integer k ≥ 1 and complex numbers z with |z| < 1, the polylog-
arithm function Lik(z) is defined by

Lik(z) :=
∞∑
n=1

zn

nk
.

If k > 1, then our definition extends to the complex numbers z with |z| ≤ 1.

We formulate the Strong Polylog conjecture which is a generalization of
Baker’s theorem about linear forms of logarithms and link this conjecture
to the Strong Chowla-Milnor conjecture. In this regard, our theorem is the
following:

Theorem 4. The Strong Polylog conjecture (1.2.1) implies the Strong
Chowla-Milnor conjecture for all q > 1 and k > 1.

Let l, a1, · · · , al be positive integers with a1 > 1. Then the multiple zeta
values (MZVs) are defined as

ζ(a1, · · · , al) :=
∑

n1>...>nl≥1

1

na11 ...n
al
l

.

Our third set of problems is related to a conjecture (1.1.7) (page no. 36)
of Gun, Murty and Rath. Assuming this conjecture, we prove the following
theorems:

Theorem 5. Let k, q > 1 be two integers and F be a number field with
F ∩Q(ζq) = Q. Let d be a positive integer. Then conjecture (1.1.7) implies

dimFV4d+2(F) ≥ 2,

where we define the “generalized Zagier spaces” Vk(F) as the F-linear space
defined by

Vk(F) = F− span of {ζ(a1, · · · , al)|a1 + · · ·+ al = k}

Theorem 6. Let F be an algebraic number field and F1 = F(e2πi/ϕ(q)).
Suppose that F1 ∩Q(ζq) = Q. Assume the conjecture (1.1.7). Then for any
positive integer k, the values L(k, χ) as χ ranges over non-trivial Dirichlet
characters mod q are linearly independent over F1.

In our fourth set of problems, we consider the possible number field
extension of Milnor’s conjecture. Noting that the arithmetic of the ambient
number field is relevant while carrying out such an extension, we formulate
the conjecture (1.2.2) (page no. 40). In this direction, we prove the following
theorems.
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Theorem 7. The Strong Polylog conjecture (1.2.1) implies the conjecture
(1.2.2) for all number field F with F ∩Q(ζq) = Q.

Further more we show the following propositions.

Proposition 8. Let k > 1 and q > 1 be two integers and F be a number
field with F ∩Q(ζq) = Q. Then

dimF V̂k(q,F) ≥ ϕ(q)

2
+ 1

where V̂k(q,F) be the F-linear space defined by

V̂k(q,F) := F− span of {1, ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}.

Proposition 9. Let k > 1 be an odd integer and F be a number field
with F ∩ Q(i) = Q. Then dimFV̂k(4,F) = 3 for all such F implies ζ(k) is
transcendental.

Proposition 10. Let k > 1 be an odd integer and ω be a primitive cube root
of unity. Let F be a number field with F∩Q(ω) = Q. Then dimFV̂k(3,F) = 3
for all such F implies ζ(k) is transcendental.

Our main theorem in this regard, is the following.

Theorem 11. Let k > 1 be an odd integer and q, r > 2 be two co-prime
integers. Also, let F ⊆ R ∩ Q such that F ∩ Q(ζq) = Q = F ∩ Q(ζr) and
F(ζq) ∩ F(ζr) = F. Assume ζ(k) /∈ F, then either

dimFV̂k(q,F) ≥ ϕ(q)

2
+ 2

or

dimFV̂k(r,F) ≥ ϕ(r)

2
+ 2.

The last part of our thesis addresses questions that are of analytic nature.
This is motivated by work of Davenport, Heilbronn [14] and Cassels [6]. In
[10], we study the zeros of L(s, f, a) in the region σ > 1. In this direction,
we have the following theorems.

Theorem 12. Let a be a positive transcendental number and f be a real
valued periodic arithmetic function with period q ≥ 1. If L(s, f, a) has a
pole at s = 1, then L(s, f, a) has infinitely many zeros for σ > 1.

Theorem 13. Let a be a positive algebraic irrational number and f be a
positive valued periodic arithmetic function with period q ≥ 1. Also let

c :=
max
n

f(n)

min
n

f(n)
< 1.15.

If L(s, f, a) has a pole at s = 1, then L(s, f, a) has infinitely many zeros for
σ > 1.
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In the other direction, we study zero-free regions for L(s, f, a) when f is
a periodic arithmetic function not identically zero and prove the following
theorem.

Theorem 14. Let f be a non-zero periodic arithmetic function with period
q ≥ 1. Also, let a be a positive real number and

c = max
1≤b≤q

{1, |f(b)|}.

Then we have L(s, f, a) 6= 0 for σ > 1 + c′(a+ n0), where n0 is the smallest
positive integer such that f(n0) 6= 0 and c′ = c/|f(n0)|.

Finally, as an application of the above theorem, we prove a variant of a
conjecture of Erdös. In this direction our theorem is the following:

Theorem 15. Let f be a non-zero periodic arithmetic function with period
q > 1 and

f(n) =

{
±λ if q - n,

0 otherwise.

Then L(k, f) 6= 0 for all integers k ≥ 2.
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Chapter 1

Introduction

Perhaps the most familiar function in mathematics, especially in number
theory is the Riemann zeta function ζ(s), which is defined by the series

ζ(s) :=
∞∑
n=1

1

ns

for s ∈ C with <(s) > 1. Although we call it the Riemann zeta function,
Leonhard Euler [16] was the first to study the function ζ(2k) for all integers
k ≥ 1. In 1731, he proved that ζ(2) = π2/6. In general for any integer
k ≥ 1, he proved in 1734 that

ζ(2k) =
(−1)k−1B2k(2π)2k

2(2k)!

where Bk is the k-th Bernoulli number given by the generating function

t

et − 1
:=

∞∑
k=0

Bk
tk

k!
.

Euler deduced the above formula for ζ(2k) by using the identity

sin πt = πt

∞∏
n=1

(
1− t2

n2

)
and taking logarithmic differentiation.

He also established the Euler product formula,

ζ(s) =
∏
p

1

1− p−s
, for <(s) > 1

where p runs through the set of all primes.
In 1859, Riemann [34] showed that the function ζ(s) can be analytically

continued to the whole complex plane except at s = 1, where it has a
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simple pole with residue 1. He also proved the functional equation of the
zeta function by establishing the following identity

ξ(s) = ξ(1− s),

where ξ(s) = π−s/2Γ(s/2)ζ(s) and Γ(s) is the gamma function defined by
the Hadamard factorization

1

Γ(s)
= seγs

∞∏
n=1

(
1 +

s

n

)
e−s/n

for s ∈ C. Here γ is the Euler’s constant defined as the limit

γ := lim
k→∞

(
k∑

n=1

1

n
− log k

)
= 0.57721566490....

We also have the Dirichlet L-function associated to a Dirichlet character
χ defined as

L(s, χ) :=
∞∑
n=1

χ(n)

ns

with s ∈ C and <(s) > 1. In 1837, Dirichlet introduced L(s, χ) in his cele-
brated paper [15] to prove that there are infinitely many primes in arithmetic
progressions.

Hurwitz studied the “shifted” zeta function, now called the Hurwitz zeta
function, which is defined as

ζ(s, x) :=
∞∑
n=0

1

(n+ x)s
,

where 0 < x ≤ 1 and s ∈ C with <(s) > 1. Note that ζ(s, 1) = ζ(s),
the classical Riemann zeta function. In 1882, he proved that ζ(s, x) can
be extended holomorphically to the entire complex plane except at s = 1,
where it has a simple pole with residue 1.

For a periodic arithmetic function f with period q > 1, the L-function
associated to f is defined as

L(s, f) :=
∞∑
n=1

f(n)

ns

with s ∈ C and <(s) > 1.
Since f is periodic with period q, the above series can be written as

L(s, f) = q−s
q∑

a=1

f(a)ζ(s, a/q), for <(s) > 1. (1.1)

This shows that L(s, f) extends holomorphically to the whole complex plane
with a possible simple pole at s = 1 with residue q−1

∑q
a=1

f(a). Hence
L(s, f) is an entire function if and only if

∑q
a=1

f(a) = 0.
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1.1 Historical Background

1.1.1 Chowla’s Conjecture

This work is motivated by the following conjecture of Paromita Chowla and
Sarvadaman Chowla. In 1982, P. Chowla and S. Chowla [12] made the
following conjecture.

Conjecture 1.1.1 (Chowla-Chowla). Let p be any prime and f be any
rational valued periodic function with period p. Then L(2, f) 6= 0 except in
the case when

f(1) = f(2) = ... = f(p− 1) =
f(p)

1− p2
.

Using equation (1.1) and the identity

(p2 − 1)ζ(2) =

p−1∑
a=1

ζ(2, a/p),

it is clear that if

f(1) = f(2) = ... = f(p− 1) = m

and
f(p) = m(1− p2)

for some number m, then L(2, f) = 0. The conjecture of Chowla-Chowla
demands that this is the only obstruction to the non-vanishing of L(2, f).

They also discussed the above conjecture in terms of the values of the
linear independence of the Hurwitz zeta function and conjectured the fol-
lowing.

For p > 3 an odd prime, the following p−1
2

real numbers

ζ(2, 1/p), ζ(2, 2/p), · · · , ζ(2, (p− 1)/2p)

are linearly independent over Q.
The above conjecture implies that if 1 ≤ a, b < p/2 and a 6= b, then all

the ratios
ζ(2, a/p)/ζ(2, b/p)

are irrational.

In 1983, John Milnor [26] interpreted the above conjecture in terms
of the values of the linear independence of the Hurwitz zeta function and
generalized it for all k > 1. He used the identity

(pk − 1)ζ(k) =

p−1∑
a=1

ζ(k, a/p) (1.2)
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in order to translate the question from the non-vanishing of certain L-
functions to the Q-linear independence of certain Hurwitz zeta values. He
substituted this identity to the above expression (1.1) of L(s, f) to get

L(k, f) = p−k
p−1∑
a=1

[
f(a) +

f(p)

(pk − 1)

]
ζ(k, a/p) (1.3)

and conjectured the following:

Conjecture 1.1.2 (Milnor). Let p be a prime. Then for any integer k > 1,
the real numbers

ζ(k, 1/p), ζ(k, 2/p), ..., ζ(k, (p− 1)/p)

are linearly independent over Q.

Further, for q not necessarily prime, he suggested the following general-
ization of the Chowla-Chowla conjecture.

Conjecture 1.1.3 (Chowla-Milnor). Let q > 1, k > 1 be two integers.
Then the following ϕ(q) real numbers

ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1,

are linearly independent over Q.

1.1.2 Recent Developments

In 2011, Sanoli Gun, Maruti Ram Murty and Purusottam Rath [19] inves-
tigated the above conjecture due to Chowla and Milnor and defined the
following Q-linear spaces.

Definition 1.1.1. For integers k > 1, q ≥ 2, define the Chowla- Milnor
space Vk(q) by

Vk(q) := Q− span of {ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}.

The conjecture of Chowla and Milnor is the assertion that the dimension
of Vk(q) is equal to ϕ(q), where ϕ is the Euler’s phi-function. As described in
[19], the dimension of these spaces are essential in understanding of Riemann
zeta values at odd positive integers greater than 1. In relation to Vk(q),
they proved the following non-trivial lower bound of the dimension of the
Chowla-Milnor spaces Vk(q).

Theorem 1.1.2. Let k > 1 and q > 2 be two integers. Then

dimQVk(q) ≥
ϕ(q)

2
.
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They note that any improvement of the above lower bound of the Chowla-
Milnor spaces will lead to irrationality of ζ(k)/πk for odd positive integers
k > 1. In relation to this, they proved the following theorem.

Theorem 1.1.3. Let k > 1 be an odd integer and q and r be two co-prime
integers > 2. Then either

dimQVk(q) ≥
ϕ(q)

2
+ 1

or

dimQVk(r) ≥
ϕ(r)

2
+ 1.

Thus in particular, there exists a q0 such that

dimQVk(q) ≥
ϕ(q)

2
+ 1

for any q co-prime to q0.

Definition 1.1.4. For an integer k ≥ 1 and complex numbers z with |z| < 1,
the k-th polylogarithm function Lik(z) is defined by

Lik(z) :=
∞∑
n=1

zn

nk
.

If k > 1, then our definition extends to the complex numbers z with |z| ≤ 1.

Note that for k = 1, the above series is equal to − log(1− z) for |z| < 1.
Using this polylogarithm function Gun, Murty and Rath [19] formulated
the following conjecture which is an analogue to Baker’s theorem on linear
forms in logarithms.

Conjecture 1.1.4 (Polylog). Suppose that α1, · · · , αn are algebraic num-
bers with |αi| ≤ 1 for 1 ≤ i ≤ n, such that Lik(α1), · · · , Lik(αn) are linearly
independent over Q. Then they are linearly independent over the field of
algebraic numbers Q.

Note that the case k = 1 is a special case of Baker’s theorem. Gun,
Murty and Rath investigated the Chowla-Milnor conjecture in terms of
linear independence of polylogarithm functions and proved the following
theorem.

Theorem 1.1.5. Assume that the Polylog conjecture is true. Then the
Chowla-Milnor conjecture is true for all q > 1 and k > 1.

Further the Chowla-Milnor conjecture is linked to a conjecture of Zagier
on multiple zeta values (MZVs). Let us recall the definition of MZV’s.
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Definition 1.1.6. Let l, a1, · · · , al be positive integers with a1 > 1. Then
the multiple zeta values (MZVs) are defined as

ζ(a1, · · · , al) =
∑

n1>...>nl≥1

1

na11 ...n
al
l

.

Clearly l = 1 gives the classical Riemann zeta function. The sum a1+· · ·+al
is called the weight of the multiple zeta value ζ(a1, · · · , al) while l is called
the depth of ζ(a1, · · · , al).

Definition 1.1.7. Let k > 1 be an integer. We define the k-th Zagier space
Wk to be the Q-linear space spanned by all ζ(a1, · · · , al) with integers l ≥ 1,
a1 > 1 such that a1 + · · ·+ al = k.

In 1992, Zagier [43] conjectured, after discussions with Drinfel’d, Kontse-
vich and Goncharov, that the dimension of Wk satisfies a recurrence relation
like Fibonacci recurrence. His conjecture is given below.

Conjecture 1.1.5 (Zagier). The dimension dk of the space Wk for integers
k > 2 is given by the recurrence relation

δk = δk−2 + δk−3

with the initial conditions δ0 = 1, δ1 = 0 and δ2 = 1.

But not a single example of a Zagier space is known with dimension at
least 2. In 2001, Goncharov [18] and in 2002, Terasoma [39] independently
proved that the dimension dk of the space Wk is at most δk. In [19], Gun,
Murty and Rath have proved the following interesting theorem about the
dimension of Zagier spaces.

Theorem 1.1.8. The Chowla-Milnor conjecture implies that the dimension
of W4d+2 is at least 2 for all d ≥ 1.

In the same paper [19], they also formulated a stronger version of the
Chowla-Milnor conjecture in the following sence;

Conjecture 1.1.6 (Strong Chowla-Milnor). For any integers k > 1 and
q > 1, the following ϕ(q) + 1 real numbers

1, ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1

are Q-linearly independent.

In relation with the above conjecture, Gun, Murty and Rath defined the
following Q-linear spaces.

Definition 1.1.9. For any two integers k > 1 and q ≥ 2, define the Strong
Chowla-Milnor space V̂k(q) by

V̂k(q) := Q− span of {1, ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}.
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The Strong Chowla-Milnor conjecture is the assertion that the dimension
of V̂k(q) is equal to ϕ(q) + 1. In relation to V̂k(q), they proved the following
proposition.

Proposition 1.1.10. Let k > 1 be an odd integer. Then the following
statements are equivalent:

1. Either dimQV̂k(3) = 3 or dimQV̂k(4) = 3.

2. The number ζ(k) is irrational.

Let F be a number field. In [20], Gun, Murty and Rath considered a
number field extension of the conjecture of Chowla and Milnor. To begin
with, they defined the following F-linear spaces;

Definition 1.1.11. Let q > 1 be an integer. For any integers k > 1, let
Vk(q,F) be the F-linear space defined by

Vk(q,F) := F− span of {ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}.

Note that the F-dimension of Vk(q,F) for any fixed k and q depends
on the arithmetic of the ambient number field. However, if the number
field F is linearly disjoint from the cyclotomic field Q(ζq), then the story is
expected to be similar to the linear independence over Q. In this direction,
Gun, Murty and Rath [20] have the following theorem;

Theorem 1.1.12. Let q > 1 be an integer and F be a number field such
that F ∩Q(ζq) = Q. Then

dimFVk(q,F) ≥ ϕ(q)

2

for all integers k > 1.

They also showed a conditional improvement of the lower bound of the
dimension of Vk(q,F). Their theorem is the following:

Theorem 1.1.13. Let k > 1 be an odd integer and q, r > 2 be two co-prime
integers. Also, let F be a subfield of the real numbers such that F∩Q(ζq) =
Q = F ∩Q(ζr) and also F(ζq) ∩ F(ζr) = F. Then either

dimFVk(q,F) ≥ ϕ(q)

2
+ 1

or

dimFVk(r,F) ≥ ϕ(r)

2
+ 1.

In the same paper [20], Gun, Murty and Rath formulated a variant of
the Chowla-Milnor conjecture which is the following:
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Conjecture 1.1.7. Let q > 1 be an integer and F be a number field such
that F ∩Q(ζq) = Q. Then dimFVk(q,F) = ϕ(q) for all integers k > 1.

Clearly, the above conjecture is the assertion that the following ϕ(q) real
numbers

ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1,

are linearly independent over the number field F which is linearly disjoint
from Q(ζq). This conjecture is a generalization of the Chowla-Milnor con-
jecture and has many implications. They showed that this conjecture is also
related to the Polylog conjecture.

Theorem 1.1.14. Assume that the Polylog conjecture is true. Then the
conjecture (1.1.7) is true.

1.1.3 Results of Davenport and Heilbronn and recent
developments

In a classical paper [14], Davenport and Heilbronn studied the zeros of
Hurwitz zeta function in the half plane beyond the line <(s) > 1. In 1931,
they proved the following theorems:

Theorem 1.1.15. If a is a rational number and a 6= 1/2 or 1, ζ(s, a) has
infinitely many zeros for <(s) > 1.

Theorem 1.1.16. For transcendental a, ζ(s, a) has infinitely many zeros
for <(s) > 1.

Note that for a = 1/2 or 1, ζ(s, a) has an Euler product since ζ(s, 1) =
ζ(s) and ζ(s, 1/2) = (2s − 1)ζ(s). Therefore ζ(s, 1) and ζ(s, 1/2) can not
have zeros for <(s) > 1. On the other hand, when a is an algebraic irra-
tional, the question becomes rather delicate. In an ingenious paper, Cassels
[6] proved the existence of infinitely many zeros of ζ(s, a) for such an a in
the half plane <(s) > 1.

Let f be a periodic arithmetic function and L(s, f) be the L-function
associated to f . Recently in 2009, E. Saias and A. Weingartner [36] showed
that L(s, f) has infinitely many zeros for <(s) > 1, if L(s, f) is not a product
of L(s, χ) and a Dirichlet polynomial.

For the precise statement of their theorem, let us first define some no-
tations. Let a = (an)n≥1 be a periodic sequence of complex numbers and
Fa(s) be the meromorphic continuation of

∑
n≥1

an
ns

. Also let Na(σ1, σ2, T )
(respectively N ′a(σ1, σ2, T )) be the number of zeros of Fa(s) in the rectangle
σ1 < <(s) < σ2, |=(s)| ≤ T , counted with their multiplicities (respectively
without their multiplicities). Then they proved the following theorem;

36



Theorem 1.1.17. Let a = (an)n≥1 be a periodic sequence of complex num-
bers such that Fa(s) is not of the form P (s)L(s, χ), where P is a Dirichlet
polynomial and L(s, χ) is the L-function associated with a Dirichlet charac-
ter χ. Then there exists a positive number η such that, for all real numbers
σ1 and σ2 with 1/2 < σ1 < σ2 ≤ 1 + η, there exist positive real numbers
c1, c2 and T0 with the property that for all T ≥ T0,

c1T ≤ N ′a(σ1, σ2, T ) ≤ Na(σ1, σ2, T ) ≤ c2T.

1.2 Main Results

In [8], we give an alternate proof of theorem (1.1.3) by an explicit compu-
tation of Hurwitz zeta values in terms of cotangents, avoiding the Fourier
expansion of Bernoulli function which was the strategy employed by Gun,
Murty and Rath [19].

In [9], we study the Strong Chowla-Milnor conjecture and establish cer-
tain consequences of the Strong Chowla-Milnor conjecture. In this direction,
we have the following proposition.

Proposition 1.2.1. Let k > 1, q > 1 be two integers and f be a rational
valued arithmetic periodic function with period q. Suppose that f(a) = 0 for
1 < (a, q) < q. Then the following statements are equivalent:

1. The Strong Chowla-Milnor conjecture is true.

2. The L-value L(k, f) is irrational, unless

f(a) = − f(q)q−k∏
p∈P,
p|q

(1− p−k)

for 1 ≤ a < q, (a, q) = 1. Here P denotes the set of primes.

Following the Polylog conjecture (1.1.4) of Gun, Murty and Rath, We
formulate a stronger conjecture about the polylogarithms, which is a gen-
eralization of Baker’s theorem about linear forms in logarithms. Our con-
jecture is given below.

Conjecture 1.2.1 (Strong Polylog). Suppose α1, · · · , αn are algebraic
numbers with |αi| ≤ 1 for 1 ≤ i ≤ n, such that Lim(α1), · · · , Lim(αn)
are linearly independent over Q. Then 1, Lim(α1), · · · , Lim(αn) are linearly
independent over Q.

Clearly for m = 1 the above conjecture reduces to a consequence of Baker’s
theorem about linear forms in logarithms. In [9], we establish a link between
the Strong Polylog conjecture and the Strong Chowla-Milnor conjecture
which is stated as follows.
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Theorem 1.2.2. The Strong Polylog conjecture implies the Strong Chowla-
Milnor conjecture for all q > 1 and k > 1.

The Strong Chowla-Milnor spaces V̂k(q) and their dimensions are of spe-
cial interest to us. The dimension of these spaces are expected to illuminate
our understanding of Riemann zeta values at odd positive integers greater
than 1.

Clearly from the definition of the Strong Chowla-Milnor space,

dimQ V̂k(q) ≤ ϕ(q) + 1.

In relation to V̂k(q), we prove the following non-trivial lower bound of the

dimension of the Strong Chowla-Milnor spaces V̂k(q).

Theorem 1.2.3. Let k > 1 and q > 2 be two integers. Then

dimQV̂k(q) ≥
ϕ(q)

2
+ 1.

One can show that any improvement of the above lower bound of the
Strong Chowla-Milnor spaces will imply the irrationality of both the num-
bers ζ(k) and ζ(k)/πk simultaneously for all odd positive integers k > 1.

In the theorem (1.1.3), Gun, Murty and Rath proved a conditional im-
provement of the lower bound of the Chowla-Milnor spaces. One can ask
a similar type of question for the dimension of the Strong Chowla-Milnor
space i.e., for an odd integer k > 1 and two co-prime integers q, r > 2,
whether or not either

dimQV̂k(q) ≥
ϕ(q)

2
+ 2

or

dimQV̂k(r) ≥
ϕ(r)

2
+ 2.

But if the above statement is true, then clearly the Strong Chowla-
Milnor conjecture is true for either q = 3 or q = 4 i.e. either dimQV̂k(3) = 3

or dimQV̂k(4) = 3. Then from the proposition (1.1.10) we get that ζ(k) is
irrational for all odd k > 1. In general we do not know for all odd integers
k whether ζ(k) is irrational or not. It is known, thanks to Apery, that ζ(3)
is irrational. On the other hand by a theorem of K. Ball and T. Rivoal
(see [35] and [4]), it is known that ζ(k) is irrational for infinitely many odd
k > 1. In this regards, we prove the following theorem.

Theorem 1.2.4. Let k > 1 be an odd integer with ζ(k) irrational and
q, r > 2 be two co-prime integers. Then either

dimQV̂k(q) ≥
ϕ(q)

2
+ 2

or

dimQV̂k(r) ≥
ϕ(r)

2
+ 2.
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Thus in particular, for infinitely many odd integers k > 1 there exists an
integer q0 such that

dimQV̂k(q) ≥
ϕ(q)

2
+ 2

for any integer q co-prime to q0.

We note that an unconditional improvement of the above lower bound
about the dimension of these spaces would imply the irrationality of both
ζ(2k + 1) and ζ(2k + 1)/π2k+1 simultaneously for all k ≥ 1. A curious
corollary of the above theorem is the following:

Corollary 1.2.5. Either both the numbers given by the infinite series

1

13
+

1

43
+

1

73
+ · · ·

and
1

23
+

1

53
+

1

83
+ · · ·

are irrational or both the numbers given by the infinite series

1

13
+

1

53
+

1

93
+ · · ·

and
1

33
+

1

73
+

1

113
+ · · ·

are irrational.

Now if we consider the Strong Chowla-Milnor space over the field of alge-
braic numbers Q, then we can not expect the same bound for the dimensions
of these spaces. The following is our proposition about their dimensions.

Proposition 1.2.6. 2 ≤ dimQ V̂k(q) ≤
ϕ(q)

2
+ 2.

We also investigate multiple zeta values over a certain class of algebraic
number fields. To begin with, let us define the following linear space of
MZVs over certain class of algebraic number fields as follows.

Definition 1.2.7. Let q > 1 be an integer and F be a number field such
that F ∩ Q(ζq) = Q. For any integer k > 1, we define the generalized k-th
Zagier space as the F-linear space Vk(F) defined by

Vk(F) = F− span of {ζ(a1, · · · , al)|a1 + · · ·+ al = k}

where l is varying.

We also study the conjecture (1.1.7) and apply this conjecture to prove
the following theorem analogous to the theorem (1.1.8) over certain class of
number fields.
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Theorem 1.2.8. Let d be a positive integer. Then the conjecture (1.1.7)
implies

dimFV4d+2(F) ≥ 2.

One can use the conjecture (1.1.7) to study various interesting problems.
For instance, we investigate linear independence of the values of the Dirichlet
L-function L(k, χ), as χ ranges over non-trivial Dirichlet characters modulo
some integer q > 1, over certain family of algebraic number fields. This is
in the spirit of a theorem of Murty and Saradha [28]. Here is our theorem.

Theorem 1.2.9. Let F be an algebraic number field and F1 = F(e2πi/ϕ(q)).
Suppose that F1 ∩Q(ζq) = Q. Assume the conjecture (1.1.7). Then for any
positive integer k, the values L(k, χ) as χ ranges over non-trivial Dirichlet
characters mod q are linearly independent over F1.

In fact for k > 1, the above theorem is true for any Dirichlet characters
mod q, i.e. one can include the principal character mod q.

Next in [11], we consider the possible number field extension of the
Strong Chowla-Milnor conjecture. Noting that the arithmetic of the am-
bient number field is relevant while carrying out such an extension, we
formulate the following conjecture:

Conjecture 1.2.2. Let q > 1 be any integer and ζq be a primitive q-th root
of unity. Let F be a number field which is linearly disjoint with Q(ζq). Then
for any integer k > 1, the following ϕ(q) + 1 real numbers

1, ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1

are linearly independent over F.

This conjecture has many consequence. For example, if this conjecture is
true for all number fields F which are linearly disjoint with Q(ζq), then both
the numbers ζ(2k+1) and ζ(2k+1)/π2k+1 are transcendental simultaneously
for all k ≥ 1. We begin with the following proposition:

Proposition 1.2.10. Let k > 1, q > 1 be two integers and F be an algebraic
number field such that F ∩Q(ζq) = Q. Let f : Z/qZ→ F with f(a) = 0 for
1 < (a, q) < q. Then the following statements are equivalent:

1. The conjecture (1.2.2) is true.

2. The L-value L(k, f) /∈ F , unless

f(a) = − f(q)q−k∏
p prime,
p|q

(1− p−k)

for 1 ≤ a < q, (a, q) = 1.
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Using the above proposition (1.2.10), we link the Strong Polylog conjec-
ture and the conjecture (1.2.2). Here is the precise statement.

Theorem 1.2.11. The Strong Polylog conjecture implies the conjecture
(1.2.2) for all number field F with F ∩Q(ζq) = Q.

Definition 1.2.12. For any two integers k > 1 and q > 1, let V̂k(q,F) be
the F-linear space defined by

V̂k(q,F) := F− span of {1, ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}.

Then for any number field F with F ∩Q(ζq) = Q, the conjecture (1.2.2)

implies that the dimension of V̂k(q,F) is equal to ϕ(q) + 1. Without any
assumption, we also manage to derive lower bounds for these F-linear spaces
analogous to those obtained for the Q-linear spaces V̂k(q) by us. Here we
have the following theorem:

Theorem 1.2.13. Let k > 1 and q > 1 be two integers and F be a number
field with F ∩Q(ζq) = Q. Then

dimF V̂k(q,F) ≥ ϕ(q)

2
+ 1.

We note that any improvement of the above lower bound for all number
fields F with F ∩ Q(ζq) = Q will imply both ζ(k) and ζ(k)/πk are tran-
scendental for all integers k > 1. In particular, we prove the following two
propositions.

Proposition 1.2.14. Let k > 1 be an odd integer and F be a number field
with F ∩ Q(i) = Q. Then dimFV̂k(4,F) = 3 for all such F implies ζ(k) is
transcendental.

Proposition 1.2.15. Let k > 1 be an odd integer and ω be a primitive
cube root of unity. Let F be a number field with F ∩ Q(ω) = Q. Then

dimFV̂k(3,F) = 3 for all such F implies ζ(k) is transcendental.

Our main theorem in this connection, is the following.

Theorem 1.2.16. Let k > 1 be an odd integer and q, r > 2 be two co-prime
integers. Also, let F ⊆ R ∩ Q such that F ∩ Q(ζq) = Q = F ∩ Q(ζr) and
F(ζq) ∩ F(ζr) = F. Assume that ζ(k) /∈ F. Then either

dimFV̂k(q,F) ≥ ϕ(q)

2
+ 2

or

dimFV̂k(r,F) ≥ ϕ(r)

2
+ 2.
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The last part of our thesis address questions that are of analytic nature.
This work [10] is motivated by a work of Davenport, Heilbronn [14] and
Cassels [6] mentioned before.

For a periodic arithmetic function f with period q ≥ 1 and a > 0,
consider the L-function

L(s, f, a) :=
∞∑
n=0

f(n)

(n+ a)s
,

where s ∈ C with <(s) = σ > 1. This can be thought of as generalized
Hurwitz zeta function. In a recent work, Saias and Weingartner [36] showed
that L(s, f, a) has infinitely many zeros for σ > 1 for a = 1 and L(s, f) is
not a product of L(s, χ) and a Dirichlet polynomial. In [10], we study the
zeros of L(s, f, a) in the region σ > 1 for arbitrary positive real number a.
In this direction, we have the following theorem.

Theorem 1.2.17. Let a be a positive transcendental number and f be a
real valued periodic arithmetic function with period q ≥ 1. If L(s, f, a) has
a pole at s = 1, then L(s, f, a) has infinitely many zeros for σ > 1.

Theorem 1.2.18. Let a be a positive algebraic irrational number and f be
a positive valued periodic arithmetic function with period q ≥ 1. Also let

c :=
max
n

f(n)

min
n

f(n)
< 1.15.

If L(s, f, a) has a pole at s = 1, then L(s, f, a) has infinitely many zeros for
σ > 1.

In particular, we show that for each δ > 0, there is a zero of L(s, f, a) in
the region 1 < <(s) < 1 + δ. Moreover L(s, f, a) has infinitely many zeros
on the line <(s) = σ.

In the other direction, we study zero-free regions for L(s, f, a) when f is
a periodic arithmetic function not identically zero and prove the following
theorem.

Theorem 1.2.19. Let f be a non-zero periodic arithmetic function with
period q ≥ 1. Also, let a be a positive real number and

c = max
1≤b≤q

{1, |f(b)|}.

Then we have L(s, f, a) 6= 0 for σ > 1 + c′(a+ n0), where n0 is the smallest
positive integer such that f(n0) 6= 0 and c′ = c/|f(n0)|.

Finally, as an application of the above theorem, we prove a variant of
a conjecture of Erdös (see [25]) about non vanishing of L(1, f), where f
belongs to a certain class of rational valued arithmetic functions. In this
direction our theorem is the following:
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Theorem 1.2.20. Let f be a non-zero periodic arithmetic function with
period q > 1 and

f(n) =

{
±λ if q - n,

0 otherwise.

Then L(k, f) 6= 0 for all integers k ≥ 2.

1.3 Organization of the Thesis

In this section, we give a concise summary of the topics we discuss in this
thesis for the convenience of the reader.

The first chapter deals with the history of our research problems and
our main results. We briefly discuss a conjecture of Chowla-Chowla and
Milnor’s generalization of this conjecture. We also discuss about recent de-
velopments towards this conjecture by Gun, Murty and Rath. We mention a
classical problem of Davenport, Heilbronn and Cassels. Finally we mention
all our results link with this thesis.

The second chapter recalls various basic definitions, known results etc.
To begin with, we define number fields, its discriminants and some theorem
about ramified primes. We mention all the theorems which are required for
the later chapters.

In the third chapter, we discuss our first research problem. We give
an alternate proof of theorem (1.1.3) about the lower bound of the Chowla-
Milnor spaces. Okada’s theorem (see (2.6.2)) is one of the main tools for
proving this result. We prove this by an explicit computation of Hurwitz
zeta values in terms of cotangents at rational arguments.

In the fourth chapter, we study the dimension of the Strong Chowla-
Milnor spaces. We prove a conditional lower bound of the dimension of
those spaces. We note that an unconditional improvement of the lower
bound of the dimension of these spaces would imply the irrationality of
both ζ(2k + 1) and ζ(2k + 1)/π2k+1 simultaneously for all k ≥ 1. We also
establish a relation between the Strong Polylog conjecture (1.2.1) and the
Strong Chowla-Milnor conjecture (1.1.6).

In the fifth chapter, we investigate the conjecture (1.1.7) of Gun, Murty
and Rath. This conjecture is a variant of the Chowla-Milnor conjecture over
number fields which are linearly disjoint from the cyclotomic field. We define
“generalized Zagier spaces” generated by multiple zeta values of a fixed
weight over number fields which are linearly disjoint from the cyclotomic
field. Assuming conjecture (1.1.7), we prove that a family of these spaces
has dimension at least 2. We also investigate the values of L(k, χ), as χ
ranges over non-trivial Dirichlet characters modulo a positive integer q, over
a certain family of algebraic number fields. Assuming conjecture (1.1.7), we
prove that this L-values are linearly independent over the said family of
number fields.
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In the penultimate chapter, we consider a possible number field ex-
tension of the Strong Chowla-Milnor conjecture. Assuming this conjecture
(1.2.2) for all number fields F with F ∩ Q(ζq) = Q, we show that ζ(k) is
transcendental for all odd integers k > 1. We also prove that the Strong
Polylog conjecture (1.2.1) implies this conjecture for all number fields F
with F ∩ Q(ζq) = Q. For a number field F and integers k, q > 1, we define

an F-linear space V̂k(q,F). For any k, q > 1, we prove a lower bound of
the dimension of these spaces over F, when F ∩ Q(ζq) = Q and F = Q(ζq)
separately. we also establish a conditional improvement of the lower bound
of the dimension of these spaces.

In the last chapter, we consider a generalization of a problem of Dav-
enport, Heilbronn and Cassels. We study certain generalized Hurwitz zeta
functions for periodic arithmetic functions. We show that there exists in-
finitely many zeros of certain generalized Hurwitz zeta functions in its half
plane of absolute convergence. We also give a zero-free region for these
functions. Finally, as an application we prove a variant of a conjecture of
Erdös.
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Chapter 2

Preliminaries

In this chapter we recall some basic definitions, state some known results
and fix some notations which will be used throughout the thesis. We also
provide proof of some of the preliminary results which have a significant
role in proving some of the theorems in this thesis. In the first section, we
recall some basic facts from algebraic number theory which we will use in
the later chapters. We follow [31], [42] and [22] for most of the material
of this section. In the second section, we recall some basic definitions and
properties of Dirichlet characters. We follow [1], [27] and [31] for most of
the material in this section. In the third section, we recall some definitions
related to the Dirichlet series and L-functions. We also note down Dirichlet’s
theorem about the non-vanishing of L(1, χ) and establish some important
identities. We follow [27] for most of the material in this section. In the
fourth section, we define Gauss sums and Kronecker’s symbol associated
to a fundamental discriminant. We follow [27] and [31] for the mentioned
theorem of this section. In the fifth section, we discuss about the Dedekind-
Frobenius determinant. We mention a proof of this result. The sixth section
is devoted to a theorem of Okada [32]. We give a proof of this theorem
following Wang [41]. In the seventh section, we state a theorem of Kronecker
and a well known theorem of Rouché from the complex function theory. We
also state a crucial lemma due to Cassels [6] and make some remarks about
the results. In the penultimate section, we state a fundamental theorem
of Baker [2]. We also note some consequence of this theorem. In the last
section, we mention a conjecture of Erdös and discuss about all the known
results towards this conjecture.

2.1 Some results from Algebraic Number The-

ory

Definition 2.1.1. An algebraic number field K is a finite extension of the
field of rational numbers.

By degree of an algebraic number field K, we mean the dimension of K
over Q as a vector space.

45



Definition 2.1.2. An element α ∈ K is said to be an algebraic integer if
there is a monic polynomial P (X) ∈ Z[X] with P (α) = 0. The collection of
all such algebraic integers forms a ring, which is called the ring of integers
of the number field K and is denoted by OK.

Let K/Q be an algebraic number field and p = (p) be a prime ideal in
Z. The prime ideal p may not remain prime in OK . The ideal pOK of OK
has a factorization as

pOK = pe11 · · · pegg ,

where p1, · · · , pg are distinct prime ideals in OK and e1, · · · , eg are positive
integers. The integer ei is called the ramification index of the prime ideal
pi with respect to Z and is denoted either by e(pi/p) or e(pi/Z). Again we
have pi ∩ Z = p for each i as p ⊂ pi and p is also a maximal ideal in Z.

Definition 2.1.3. Let K/Q be an algebraic number field and p be a non
zero prime ideal of OK such that p∩Z = p. We say p is ramified over Z if
the ramification index e(p/Z) is greater than 1. We say the prime ideal p
is ramified in OK if pOK is divisible by some ramified prime ideal of OK.
A prime ideal p is said to be unramified in OK if it is not ramified.

Definition 2.1.4. Let K/Q be an algebraic number field and α ∈ K. The
relative trace and norm of α over Q are defined respectively to be the trace
and determinant of the endomorphism of the Q-vector space K

Tα : K → K

defined by
Tα(x) = αx,

i.e.,
TrK/Q(α) = Tr(Tα), NK/Q(α) = det(Tα).

Definition 2.1.5. Let K/Q be an algebraic number field with [K : Q] = n
and {α1, · · · , αn} be a basis for OK over Z. The discriminant of the number
field K is defined by

∆(α1, · · · , αn) = det[TrK/Q(αiαj)].

One denotes it by ∆(OK/Z) or ∆K.

Let d be a square-free integer and K = Q(
√
d) be a quadratic extension.

Then the discriminant of K is called a fundamental discriminant and is
equal to

∆K =

{
d if d ≡ 1(mod)4
4d if d ≡ 2, 3(mod)4.

Hence any fundamental discriminant is congruent to 0 or 1 modulo 4.
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Theorem 2.1.6. Let K/Q be a number field, and let ∆(OK/Z) be the
discriminant of K. A rational prime p ramifies in OK if and only if p
divides ∆(OK/Z).

For a proof of the above theorem see theorem 7.3 of [22].

Theorem 2.1.7. Let K/Q be a number field in which no rational prime
ramifies, then K = Q.

For a proof of the above theorem see lemma 14.3 of [42].

Let us now discuss about cyclotomic fields. Let p be a rational prime
and consider the cyclotomic field K = Q(ζpn), where ζpn denote a primitive
pn-th root of unity. The ring of integers of this field is OK = Z[ζpn ]. The
discriminant of OK over Z is

±ppn−1(pn−n−1).

We will now mention two propositions which we will use in future chap-
ters.

Proposition 2.1.8. Let m be a positive integer. A rational prime p ramifies
in Q(ζm) if and only if p divides m.

Proposition 2.1.9. Let m and n be two positive integers with (m,n) = 1.
Then Q(ζm) ∩Q(ζn) = Q.

2.2 Dirichlet Characters

An arithmetic function f is a complex-valued function defined on the set of
positive integers. We say that f is multiplicative if

f(mn) = f(m)f(n)

for all co-prime integers m and n. On the other hand if the above equation
holds for all integers m and n, then f is completely multiplicative.

Definition 2.2.1. Let G be a finite group. A character of G is a group
homomorphism

χ : G→ S1 = {z ∈ C : |z| = 1}.

The collection of all characters of a group G forms a group, which is
called the character group of G. We denote this character group by Ĝ.

Definition 2.2.2. Let q be a positive integer. A Dirichlet Character χ
modulo q is a homomorphism

χ : (Z/qZ)∗ → S1 = {z ∈ C : |z| = 1}.
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One can extend the domain of the definition of Dirichlet characters using
periodicity, i.e., for any integer n with (n, q) = 1 define

χ(n) = χ(a),

where n = kq + a with 1 ≤ a < q, (a, q) = 1 and define zero otherwise. For
a given modulus q, there are ϕ(q) many Dirichlet characters.

The Dirichlet characters are completely multiplicative arithmetic func-
tions. A Dirichlet character is called primitive if it does not factor through
any (Z/q′Z)∗, where q′ is a proper divisor of q. In other words, it does not
arise as the composite

(Z/qZ)∗ −→ (Z/q′Z)∗
χ′−→ S1

where q′ is a proper divisor of q and χ′ is a Dirichlet character mod q′.

A Dirichlet character mod q is called principal if it takes value 1 for
co-prime residue classes mod q and zero otherwise. We denote the principal
Dirichlet character by χ0. The trivial Dirichlet character is the unique
character of modulus 1.

A Dirichlet character χ is said to be an even character if χ(−1) = 1 and
is said to be an odd character if χ(−1) = −1.

A quadratic Dirichlet character is a non trivial involution in the group of
characters modulo q, that is, it has order 2 in the said group. So a quadratic
character takes values 1, 0 and −1 only, with at least one −1. We say a
character is real if all its values are real. Consequently a real character can
be either the principal character or a quadratic character.

Proposition 2.2.3. Let q be a positive integer and χ be a Dirichlet char-
acter modulo q. Then

q∑
n=1

(n,q)=1

χ(n) =

{
ϕ(q), if χ = χ0,
0 otherwise.

If (n, q) = 1, then∑
χ

χ(n) =

{
ϕ(q), if n ≡ 1 (mod q),
0 otherwise,

where χ runs over the ϕ(q) Dirichlet characters modulo q.

Proposition 2.2.4. (Orthogonality). Let q be a positive integer and
χ1, χ2 be two Dirichlet characters modulo q. Then

q∑
n=1

(n,q)=1

χ1(n)χ2(n) =

{
ϕ(q), if χ1 = χ2,
0 otherwise.
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Let m and n be two integers with (n, q) = 1. Then we have∑
χ

χ(m)χ(n) =

{
ϕ(q), if m ≡ n (mod q),
0 otherwise,

where χ runs over the ϕ(q) Dirichlet characters modulo q.

Theorem 2.2.5. (Artin). Let G be a group and χ1, · · · , χn be distinct
characters of G. Then they are linearly independent over C.

For a proof, see Theorem 4.1 of [24].

2.3 Dirichlet series and L-functions

A Dirichlet series on C is a complex valued function f of the form

f(s) =
∞∑
n=1

an
ns

where an are complex number and s ∈ C. A prototypical example of such
function is the classical Riemann zeta function, which is defined by

ζ(s) =
∞∑
n=1

1

ns

for s ∈ C with <(s) > 1.
Let q a positive integer and χ be a Dirichlet character modulo q. The

Dirichlet L-function associated with χ is defined by

L(s, χ) =
∞∑
n=1

χ(n)

ns

for s ∈ C with <(s) > 1. Since χ is completely multiplicative, L(s, χ) has
an Euler product

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

for <(s) > 1,

where the product is over all primes p.
Now for principal Dirichlet character χ0, we have

L(s, χ0) =
∞∑
n=1

(n,q)=1

1

ns
= ζ(s)

∏
p|q

(1− p−s)

for s ∈ C with <(s) > 1. Hence L(s, χ0) has a simple pole at s = 1 with
residue ϕ(q)/q and can be meromorphically extend to the whole complex
plane. If χ 6= χ0, then L(s, χ) can be extend to an entire function.
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Theorem 2.3.1. (Dirichlet) Let q be a positive integer and χ be a Dirichlet
character modulo q such that χ 6= χ0. Then L(1, χ) 6= 0.

For a proof of the above theorem see theorem 4.9 in [27].

The Hurwitz zeta function is a complex valued function defined by

ζ(s, x) :=
∞∑
n=0

1

(n+ x)s
,

where 0 < x ≤ 1 and s ∈ C with <(s) > 1. Note that ζ(s, 1) = ζ(s), the
classical Riemann zeta function.

For a periodic arithmetic function f with period q > 1 and s ∈ C, the
Dirichlet L-function associated to f is defined as

L(s, f) :=
∞∑
n=1

f(n)

ns

with s ∈ C and <(s) > 1.

Since f is periodic with period q, the above series can be written as

L(s, f) =

q∑
a=1

f(a)
∞∑
m=0

1

(mq + a)s
(2.1)

= q−s
q∑

a=1

f(a)ζ(s, a/q) (2.2)

for s ∈ C with <(s) > 1.

This shows that L(s, f) extends holomorphically to the whole complex
plane with a possible simple pole at s = 1 with residue q−1

∑q
a=1

f(a).
Hence L(s, f) is an entire function if and only if

∑q
a=1

f(a) = 0.

Now if we substitute the principal Dirichlet character modulo q for f
and integer k > 1 for s in the equation (2.2), we get the identity

ζ(k)
∏
p∈P,
p|q

(1− p−k) = q−k
q−1∑
a=1

(a,q)=1

ζ(k, a/q) (2.3)

where P denotes the set of all primes.

For q = p, a prime, the above identity (2.3) becomes

(pk − 1)ζ(k) =

p−1∑
a=1

ζ(k, a/p). (2.4)
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2.4 Gauss sums and Kronecker symbol

Let q be a positive integer and χ be a Dirichlet character modulo q. Let

ζq = e
2πi
q and b be an integer. The Gauss sum associated to χ and b, denoted

by τ(χ, b), is defined as

τ(χ, b) =

q∑
a=1

χ(a)ζabq .

For b = 1, we write the Gauss sum associated to χ by τ(χ) = τ(χ, 1). For
χ = χ0, it is the Ramanujan’s sum

cq(b) =

q∑
a=1

(a,q)=1

ζabq .

Proposition 2.4.1. Let q be a positive integer and χ be a primitive Dirichlet
character modulo q. Then

τ(χ, b) = χ(b)τ(χ) and |τ(χ)| = √q.

For a proof of the above proposition see proposition (2.6) of [31].

Definition 2.4.2. Let ∆ be a fundamental discriminant. We define the
Kronecker symbol (∆

n
) by the following relations:

(i) (∆
p

) = 0 when p|∆ and p prime,

(ii) (∆
2

) =

{
1 when ∆ ≡ 1 (mod 8),
−1 when ∆ ≡ 5 (mod 8),

(iii) (∆
p

) = (∆
p

)L, the Legendre symbol, when p > 2,

(iv) ( ∆
−1

) =

{
1 when ∆ > 0,
−1 when ∆ < 0,

(v) (∆
n

) is a completely multiplicative function of n.

The following theorem shows that the Kronecker symbol gives rise to a
quadratic character. For a proof, see theorem (9.13) of [27].

Theorem 2.4.3. Let ∆ be a fundamental discriminant. Then χ∆(n) = (∆
n

)
is a primitive quadratic character modulo |∆| and every primitive quadratic
character is given uniquely in this way.

Clearly from the definition χ∆(n) is an even character if ∆ > 0 and an
odd character if ∆ < 0.

Proposition 2.4.4. Let ∆ be a fundamental discriminant and χ∆(n) = (∆
n

)

be a primitive quadratic character modulo |∆|. If ∆ > 0, then τ(χ∆) =
√

∆.
If ∆ < 0 then τ(χ∆) = i

√
−∆.

For a proof of the above proposition, see theorem (9.17) of [27].
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2.5 Dedekind-Frobenius determinant

The following proposition due to Dedekind will play an important role in
the proofs of some theorems in the later chapters.

Proposition 2.5.1. Let G be any finite abelian group of order n and Ĝ
be its character group. Let F : G → C be any complex-valued function on
G. The determinant of the n × n matrix given by (F (xy−1)) as x, y range
over the group elements is called the Dedekind-Frobenius determinant and
is equal to ∏

χ

(∑
x∈G

χ(x)F (x)

)
,

where the product is over all χ ∈ Ĝ.

Proof. Let V be the space of all complex valued functions on G. Then V
is a vector space over C of dimension equal to n which has two natural
bases. First, the collection of all characters of G and secondly the functions
{δy : y ∈ G}, where

δy(z) =

{
1 if z = y,
0 otherwise.

Now for each x ∈ G, define

Tx : V → V

by,

(Txf)(z) = f(xz),

where z ∈ G. Then for any character χ ∈ Ĝ, we have

(Txχ)(z) = χ(xz) = χ(x)χ(z)

i.e.,

Txχ = χ(x)χ.

Hence χ is a eigen vector of Tx with eigen value χ(x).

Now consider the map T : V → V by

Tf =
∑
x∈G

F (x)Txf.
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We now show that T is a linear map. For that observe that

T (f + g)(z) =
∑
x∈G

F (x)Tx(f + g)(z)

=
∑
x∈G

F (x)(f + g)(xz)

=
∑
x∈G

F (x)f(xz) +
∑
x∈G

F (x)g(xz)

=
∑
x∈G

F (x)(Txf)(z) +
∑
x∈G

F (x)(Txg)(z)

= (Tf + Tg)(z)

and for any c ∈ C
T (cf) = cTf.

This shows that T is a linear map. Now we compute the determinant of T
with respect to the two bases mentioned above.

For each χ ∈ Ĝ, we have

Tχ =
∑
x∈G

F (x)Txχ

=

(∑
x∈G

F (x)χ(x)

)
χ.

Hence each χ is an eigen vector of T with eigen value (
∑

x∈G χ(x)F (x)). So
the determinant of T is

detT =
∏
χ

(∑
x∈G

χ(x)F (x)

)
.

Again for each x, y ∈ G, we have

(Txδy)(z) = δy(xz) = δx−1y(z)

and hence

Tδy =
∑
x∈G

F (x)Txδy

=
∑
x∈G

F (x)δx−1y

=
∑
x∈G

F (yx−1)δx.

This shows that T = (F (xy−1)) and hence we have

det(F (xy−1)) =
∏
χ

(∑
x∈G

χ(x)F (x)

)
.

This completes the proof of the proposition.
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2.6 Okada’s theorem

In 1970, S. Chowla [13] proved the following theorem about the linear in-
dependence of co-tangent values at rational arguments:

Theorem 2.6.1. Let p be a prime. Then the 1
2
(p−1) real numbers cot(πa/p),

a = 1, · · · , 1
2
(p− 1), are linearly independent over the field of rational num-

bers Q.

In 1981, T. Okada [32] generalized Chowla’s theorem for all derivatives
of cotangent values. This theorem plays a significant role in proving some
of the theorems in this thesis.

Theorem 2.6.2. Let k and q be positive integers with k ≥ 1 and q > 2. Let
T be a set of ϕ(q)/2 representations mod q such that the union T ∪ (−T )
constitutes a complete set of co-prime residue classes mod q. Then the set
of real numbers

dk−1

dzk−1
cot(πz)|z=a/q, a ∈ T

is linearly independent over Q.

Immediately after that, K. Wang [41] gave another proof of Okada’s
theorem. Here we present a proof basically by Wang and modified by P.
Rath.

Proof. Let ζq be a primitive q-th root of unity and K = Q(ζq) be the
cyclotomic extension of Q with the Galois group G isomorphic to (Z/qZ)∗

via the map a 7→ σa where σa(ζq) = ζaq . Let us define the following sets

K+ = K ∩ R and K− = K ∩ Ri.

Note that K+ and K− are Q vector spaces of dimension ϕ(q)/2 and
are invariant under every Galois action. Moreover, K± is the eigen space
of K corresponding to the eigen value ±1 of the involution σ−1. That is,
K± = {α ∈ K|σ−1(α) = ±α} and K = K+ ⊕K−. Clearly K+ is a subfield
of K, but K− is not a subfield of K.

We first prove the following assertions.

1. Let α ∈ K− and suppose that the sum∑
a∈T

χ(a)σa(α)

does not vanish for all odd Dirichlet characters mod q. Then the set of
numbers {σa(α), a ∈ T} forms a Q basis for K−.

2.Let α ∈ K+ and suppose that the sum∑
a∈T

χ(a)σa(α)
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does not vanish for all even Dirichlet characters mod q. Then the set of
numbers {σa(α), a ∈ T} forms a Q basis for K+.

Let us now prove these assertions. We begin by noting that, since
{1,−1} is a subgroup of G = (Z/qZ)∗, there exists a subgroup H of G
such that the quotient G/H ' {±1} and hence

G = (Z/qZ)∗ = H ∪ −H.

Further note that restrictions of the ϕ(q)/2 even Dirichlet characters
mod q to H gives all the distinct characters of H. Also every character ψ
of H extends to an odd Dirichlet character ψ mod q by defining ψ(−h) =
−ψ(h) for h ∈ H.

Now suppose that α ∈ K− and∑
a∈T

raσa(α) = 0

for some ra ∈ Q. Let us define the following function F : H → {±1} where

F (h) =

{
1 if h ∈ T,
−1 if h /∈ T.

Then we have ∑
a∈T

raσa(α) =
∑
a∈H

Raσa(α) = 0

where Ra = F (a)rF (a)a ∈ Q. Now applying the automorphism σh−1 , h ∈ H,
we get ∑

a∈H

Raσah−1(α) = 0

for all h ∈ H. Thus we are done if the determinant of the matrix M =
(σah−1)a,h∈H is non-zero. Now by the evaluation of the Dedekind-Frobenius
determinant (2.5.1) on the group H, we get the determinant of the matrix
M given by

det(M) =
∏
ψ∈Ĥ

∑
h∈H

ψ(h)σh(α).

As remarked before, every character ψ of H extends to an odd Dirichlet
character ψ of G by defining ψ(−h) = −ψ(h) for h ∈ H. Again note that∑

h∈H

ψ(h)σh(α) =
∑
h∈T

ψ(h)σh(α).

But the later sum is non-zero by hypothesis and hence det(M) 6= 0.
Now in the second case, we have∑

a∈T

raσa(α) =
∑
a∈H

Raσa(α) = 0
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where Ra = rF (a)a ∈ Q. Now as before applying the automorphism σh−1 ,
h ∈ H, we get ∑

a∈H

Raσah−1(α) = 0

for all h ∈ H. Thus as before we are done if the determinant of the matrix
M = (σah−1)a,h∈H is non-zero and this determinant is given by

det(M) =
∏
ψ∈Ĥ

∑
h∈H

ψ(h)σh(α).

Now since, the restrictions of the ϕ(q)/2 even Dirichlet characters mod
q to H gives all the distinct characters of H, we have

∑
h∈H ψ(h)σh(α) =∑

h∈T ψ(h)σh(α), and hence we see that∏
ψ∈Ĥ

∑
h∈H

ψ(h)σh(α) =
∏
χ∈Ĝ
χ even

∑
h∈T

χ(h)σh(α).

Again by the hypothesis, we get det(M) 6= 0.

Now go back to the proof of the theorem. Let q > 2 be an integer
and T be a subset of G = (Z/qZ)∗ such that T has cardinality ϕ(q)/2 and

T∪(−T ) = G. For simplicity, we denote dk−1

dzk−1 cot(πz)|z=a/q by cotk−1(πa/q).
Define

G(k, a/q) = ζ(k, a/q) + (−1)kζ(k, 1− a/q).
Now for a Dirichlet character χ mod q having the same parity with k,

we have
χ(q − a) = (−1)kχ(a)

and hence, we get∑
a∈T

χ(a)G(k, a/q) =
∑
a∈T

χ(a)[ζ(k, a/q) + (−1)kζ(k, 1− a/q)]

=
∑
a∈T

χ(a)ζ(k, a/q) +
∑
a∈T

χ(q − a)ζ(k, 1− a/q)

=
∑
a∈G

χ(a)ζ(k, a/q)

= qkL(k, χ).

Again note the following:

1. i cot π/q = 1+ζq
1−ζq ∈ K

−.

2. For any a ∈ T , we have

σa(i cotπ/q) = σa

(
1 + ζq
1− ζq

)
=

1 + σa(ζq)

1− σa(ζq)
= i cot(πa/q).
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3. σa(i(
i
π
)k−1 cotk−1(π/q)) = i( i

π
)k−1 cotk−1(πa/q) and

i(
i

π
)k−1 cotk−1(πa/q) ∈ K±

according as k is even or odd.
Thus to prove the theorem we need to show∑

a∈T

χ(a) cotk−1(πa/q) 6= 0

whenever k and χ have the same parity.
Now since for a non-integral z ∈ C,

π cot(πz) =
∑
n∈Z

1

z + n
,

we have the following identity (for a proof see lemma (3.2.3))

G(k, a/q) =
(−1)k−1

(k − 1)!
(π cotk−1 πa/q).

And hence we get

i(
i

π
)k−1 cotk−1(πa/q) = (−1)k−1(

i

π
)k(k − 1)!G(k, a/q).

Again we see that∑
a∈T

χ(a)σa(i(
i

π
)k−1 cotk−1(π/q)) =

∑
a∈T

χ(a)(i(
i

π
)k−1 cotk−1(πa/q))

= (−1)k−1(
i

π
)k(k − 1)!

∑
a∈T

χ(a)G(k, a/q)

= (−1)k−1(
i

π
)k(k − 1)!qkL(k, χ).

Since L(k, χ) 6= 0 for all k ≥ 1, we deduce that the set of numbers

i

(
i

π

)k−1

cotk−1(π/q), a ∈ T

is linearly independent over Q and hence cotk−1(π/q), a ∈ T are linearly
independent over Q for all k ≥ 1. This completes the proof of the theorem.

In 2009, Murty and Saradha [28] showed that the Okada’s theorem can
be generalized over number fields which are linearly disjoint from the cyclo-
tomic field Q(ζq). Their theorem is the following:
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Lemma 2.6.3. Let k and q be positive integers with k > 0 and q > 2. Let
T be a set of ϕ(q)/2 representations mod q such that the union T ∪ (−T )
constitutes a complete set of co-prime residue classes mod q. Let F be a
number field which is linearly disjoint with the cyclotomic field Q(ζq). Then
the set of real numbers

dk−1

dzk−1
cot(πz)|z=a/q, a ∈ T

is linearly independent over F.

2.7 Kronecker’s theorem, Rouché’s theorem

and Cassels lemma

The following theorem due to Kronecker will play an important role in
proving some of the theorems in the later chapters.

Theorem 2.7.1. (Kronecker). Let a1, · · · , aN be real numbers which are
linearly independent over the integers and b1, · · · , bN be arbitrary real num-
bers. Then for any real number T and ε > 0, there exists a real number
t > T and integers x1, · · · , xN such that

|tan − bn − xn| < ε

for all n = 1, · · · , N .

For a proof of the above theorem see Theorem 8 of [7].

We will need a well known theorem due to Rouché to prove some theo-
rems in the later chapters. Several versions of this theorem are available in
the literature. We mention a version, which is useful in the later chapters.

Theorem 2.7.2. (Rouché). Let G be a domain (i.e. open and connected)
in C and K be a compact subset of G which is connected and simply con-
nected. Again let f and g be two holomorphic functions in G such that
|f(z)− g(z)| < |f(z)| for every point z in the boundary of K. Then f and
g have the same number of zeros in the interior of K, taking into account
multiplicities.

Lemma 2.7.3. (Cassels). Let a be a real algebraic irrational number and
K = Q(a). Also let b be an integral ideal such that baOK is an integral
ideal. Then there exists an N0 > 106 satisfying the following property;

for any N > N0 and M = [10−6N ], there are at least 51M/100 integers
n in N < n ≤ N +M such that (n+ a)b is divisible by a prime ideal pn for
which

pn -
∏

m≤N+M
m 6=n

(m+ a)b.
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Remarks

1. The hypothesis of the Rouché theorem implies that both the functions
f and g do not vanish on the boundary of K. The theorem says
approximately, the number of zeros of a holomorphic function, in a
compact set is stable under small perturbations of the function on the
boundary, provided it has no zero on the boundary of the compact
set.

2. The proof of the lemma of Cassels is intricate involving some deep
tools from algebraic number theory. It is not difficult to see that the
proof of Cassels yields at least 27M/50 integers n in N < n ≤ N +M
with the above property. We will make use of this fact in proving
some theorems.

2.8 Baker’s theorem

In 1966, Alan Baker proved a fundamental theorem about linear forms in
logarithms. This theorem is a strong motivation for us to formulate the
Strong Polylog conjecture (1.2.1). The following are the theorems of Baker
about linear forms in logarithms.

Theorem 2.8.1. If α1, · · · , αn are non-zero algebraic numbers such that
logα1, · · · , logαn are linearly independent over the field of rational numbers,
then 1, logα1, · · · , logαn are linearly independent over the field of algebraic
numbers.

Theorem 2.8.2. Any non-vanishing linear combination of logarithms of
non-zero algebraic numbers with algebraic coefficients is transcendental.

For proofs of the above theorems, see Theorems 2.1 and 2.2 of [2].
From the above theorems, we see that for any non-zero algebraic num-

bers α1, · · · , αn and any algebraic numbers β1, · · · , βn

β1 logα1 + · · ·+ βn logαn

is either zero or transcendental. It is transcendental if logα1, · · · , logαn are
linearly independent over Q and β1, · · · , βn are not all zero.
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2.9 Erdös conjecture

Erdös made the following conjecture (see [25] ):

Conjecture 2.9.1. (Erdös). If f is a periodic arithmetic function with period
q > 1 and

f(n) =

{
±1 if q - n,

0 otherwise,

then
∞∑
n=1

f(n)

n
6= 0.

In 1973, Baker, Birch and Wirsing, using Baker’s theory of linear forms in
logarithms, proved a theorem (see Theorem 1 of [3]) which settles the above con-
jecture for prime number q. In 1982, Okada[33] proved that the above conjecture
is true if 2ϕ(q) + 1 > q. Hence, if q is a prime power or a product of two distinct
primes, the conjecture is true. In 2002, R. Tijdeman [40] proved that the con-
jecture is true for periodic completely multiplicative function f (see Theorems 9
and 10 of [33]). In the next year, Saradha and Tijdeman [38] (see Corollary 2)
proved that the conjecture is also true if f is periodic and multiplicative with
|f(pk)| < p− 1 for every divisor p of q and every positive integer k.

In 2007, Murty and Saradha [29] proved that if q is odd and f is a odd valued
odd periodic function then the above conjecture is true. In 2010, they further
proved that the Erdös conjecture is true if q ≡ 3 ( mod 4) (see Theorem 7 of
[30]). Again we know that

L(1, f) =
∞∑
n=1

f(n)

n

exists if and only if
∑q

n=1 f(n) = 0. Now if q is even and f takes values ±1 with
f(q) = 0, then

∑q
n=1 f(n) 6= 0. Hence this conjecture is trivially true. Thus, the

only case of the Erdös conjecture is open when q ≡ 1 (mod 4).
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Chapter 3

The Chowla-Milnor spaces

3.1 Introduction

In this chapter, we discuss our first research problem. In 1982, P. Chowla and
S. Chowla [12] asked a seemingly innocent question about the non-vanishing of
L(2, f) for some period arithmetic function f . They formulated the conjecture
(1.1.1), which says that L(2, f) 6= 0 except when

f(1) = f(2) = · · · = f(p− 1) =
f(p)

1− p2
.

In the next year, J. Milnor put the conjecture of Chowla and Chowla in a concep-
tual framework. He interpreted the conjecture of Chowla and Chowla in terms
of the linear independence of Hurwitz zeta values and formulated the conjec-
ture (1.1.2). The raison de’tre for his formulation rests on the following identity
(studied by D. Kubert [23])

f(x) = qs−1
q−1∑
k=0

f

(
x+ k

q

)
, (∗s)

valid for complex valued functions f over R/Z and positive integer q. Inspired
by this basic identity, Milnor conjectured that every Q-linear relation between
the real numbers ζ(2, x), for x ∈ Q ∩ (0, 1) is a consequence of the above Kubert
relations for the case s = −1. More generally, for q not necessarily prime, he
suggested the conjecture (1.1.3). This conjecture says that for any two integers
k > 1 and q > 1 the following ϕ(q) real numbers

ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1, (3.1)

are linearly independent over the field of rational numbers. Note that the co-
primality condition between a and q is necessary. For instances, we have the
following Q-linear relation

ζ(k, 1/4) + ζ(k, 3/4) = 2kζ(k, 1/2).

In 2011, Gun, Murty and Rath [19] investigated the Chowla-Milnor conjecture
and defined a family of Q-linear spaces Vk(q) for integers k > 1 and q > 1. In
relation to the dimension of these spaces, they proved Theorem (1.1.3) using the
expansion of Bernoulli polynomials. In this chapter, we give another proof of this
theorem (1.1.3) by an explicit evaluation of co-tangent derivatives.
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3.2 Basic lemmas

We begin with some basic lemmas in order to prove Theorem (1.1.3), which recall
is the following assertion:

Theorem 3.2.1. Let k > 1 be an odd integer and q and r be two co-prime
integers > 2. Then either

dimQVk(q) ≥
ϕ(q)

2
+ 1

or

dimQVk(r) ≥
ϕ(r)

2
+ 1.

Thus in particular, there exists a q0 such that

dimQVk(q) ≥
ϕ(q)

2
+ 1

for any q co-prime to q0.

Lemma 3.2.2. For an integer k ≥ 1,

Dk−1(π cotπz) = πk × Z linear combination of (cscπz)2l(cotπz)k−2l,

for some non-negative integer l. Here Dk−1 = dk−1

dzk−1 .

Proof. We will prove this by induction on k. For k = 1, we have
Dk−1(π cot(πz)) = π cot(πz). Assume that the statement is true for k − 1, i.e.

Dk−2(π cot(πz)) = πk−1
∑

ai(cscπz)2li(cotπz)(k−1)−2li

where ai’s are integers.
Differentiating both sides with respect to z we get,

Dk−1(π cotπz) = πk
∑[

bi(cscπz)2li(cotπz)k−2li

+ ci(cscπz)2li+2(cotπz)k−(2li+2)
]
,

where bi, ci’s are integers. This completes the proof of the lemma.

Lemma 3.2.3. For an integer k ≥ 2,

ζ(k, a/q) + (−1)kζ(k, 1− a/q) =
(−1)k−1

(k − 1)!
Dk−1(π cotπz)|z=a/q.
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Proof.

L.H.S. = ζ(k, a/q) + (−1)kζ(k, 1− a/q)

=
∞∑
n≥0

1

(n+ a/q)k
+ (−1)k

∞∑
n≥0

1

(n+ 1− a/q)k

=
∞∑
n≥0

1

(n+ a/q)k
+ (−1)k

∞∑
n=1

1

(n− a/q)k

=

∞∑
n≥0

1

(n+ a/q)k
+ (−1)2k

∞∑
n=1

1

(−n+ a/q)k

=
∑
n∈Z

1

(n+ a/q)k
.

Again we know that for z /∈ Z,

π cotπz =
∑
n∈Z

1

z + n
.

This implies that

Dk−1(π cotπz) = (−1)k−1(k − 1)!
∑
n∈Z

1

(z + n)k
.

So,

(−1)k−1

(k − 1)!
Dk−1(π cotπz)|z=a/q =

∑
n∈Z

1

(n+ a/q)k
,

which completes the proof of the lemma.

Finally, we have the identity (2.3), which is the following:

ζ(k)
∏
p∈P,
p|q

(1− p−k) = q−k
q−1∑
a=1

(a,q)=1

ζ(k, a/q)

where P denotes the set of all primes.
Now we are ready to give an alternative proof of the theorem (3.2.1).

3.3 Proof of theorem (3.2.1)

Proof. First note that the space Vk(q) is also spanned by the following sets of
real numbers:

{ζ(k, a/q) + ζ(k, 1− a/q)|(a, q) = 1, 1 ≤ a < q/2},

{ζ(k, a/q)− ζ(k, 1− a/q)|(a, q) = 1, 1 ≤ a < q/2}.
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Now from the lemma (3.2.3), we have the following

ζ(k, a/q) + (−1)kζ(k, 1− a/q) =
(−1)k−1

(k − 1)!
Dk−1(π cotπz)|z=a/q.

Applying the Okada’s theorem (2.6.2), we see that

dimQVk(q) ≥
ϕ(q)

2
.

Now from lemma (3.2.2) and lemma (3.2.3) for an odd integer k > 1, we have

ζ(k, a/q)− ζ(k, 1− a/q)
(2πi)k

=
i

2k
×Q linear combinations of (cscπa/q)2l(cotπa/q)k−2l.

We note that

i cot(πa/q) =
1 + ζaq
1− ζaq

belongs to Q(ζq) and hence so do the numbers csc(πa/q)2l and cot(πa/q)2l. Since
k is odd, we have

ζ(k, a/q)− ζ(k, 1− a/q)
(2πi)k

∈ Q(ζq) (3.2)

Now we go back to the main part of the proof. Let q and r be two co-prime
integers. Suppose that

dimQVk(q) =
ϕ(q)

2
.

Then the numbers

ζ(k, a/q)− ζ(k, 1− a/q), where (a, q) = 1, 1 ≤ a < q/2

generate Vk(q). Now from the identity (2.3), we get

ζ(k)
∏
p|q

(1− p−k) = q−k
q−1∑
a=1,

(a,q)=1

ζ(k, a/q) ∈ Vk(q).

and hence

ζ(k) =
∑

(a,q)=1
1≤a<q/2

λa[ζ(k, a/q)− ζ(k, 1− a/q)], λa ∈ Q

so that
ζ(k)

(2πi)k
=

∑
(a,q)=1

1≤a<q/2

λa[ζ(k, a/q)− ζ(k, 1− a/q)]
(2πi)k

.

Thus by (3.2)
ζ(k)

iπk
∈ Q(ζq).
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Similarly , if

dimQVk(r) =
ϕ(r)

2
,

then
ζ(k)

iπk
∈ Q(ζr)

and hence
ζ(k)

iπk
∈ Q(ζq) ∩Q(ζr).

Since any non-trivial finite extension of Q is ramified, if Q(ζq) ∩Q(ζr) 6= Q then
there exists a prime which is ramified in Q(ζq) ∩Q(ζr), hence both in Q(ζq) and
Q(ζr). Note a prime which ramifies in this intersection must necessarily divide
both q and r. This is impossible because (q, r) = 1. So Q(ζq)∩Q(ζr) = Q. Hence

we arrive at a contradiction as ζ(k)
πk

is a real number. Thus

dimQVk(q) ≥
ϕ(q)

2
+ 1 or dimQVk(r) ≥

ϕ(r)

2
+ 1.

This completes the proof of the theorem.

3.4 Concluding Remarks

The conjecture of Chowla and Milnor has many interesting consequences. In [19],
Gun, Murty and Rath mentioned some of them. For example,

1. If the Chowla-Milnor conjecture is true for q = 4, then one can show that
ζ(2k + 1)/π2k+1 is irrational for all k ≥ 1.

2. If the Chowla-Milnor conjecture is true for q = 12 and k = 2 then the real
number

α :=
1−2 − 3−2 + 5−2 − 7−2 + ...

1−2 − 2−2 + 4−2 − 5−2 + ...

is irrational. This number is mentioned in the paper of P. Chowla and
S. Chowla [12]. A. Borel, Lichtenstein, Milnor and Thurston have raised
question about the irrationality of this number.

3. Suppose that Chowla-Milnor conjecture is true. Then for any rational
valued periodic function f with prime period, L(s, f) is holomorphic at
s = 1 implies that it does not vanish at all integers k > 1.

Here we want to add the following proposition in the above list.

Proposition 3.4.1. Let k > 1 be an odd integer and suppose that the Chowla-
Milnor conjecture is true for q = 3, i.e. dimQVk(3) = 2. Then ζ(k)/πk /∈ Q(

√
3).
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Proof. We know that Vk(3) is generated by ζ(k, 1/3) and ζ(k, 2/3) and we have
the identity

ζ(k, 1/3) + ζ(k, 2/3) = (3k − 1)ζ(k).

Since k is odd, from lemma (3.2.3) we get

ζ(k, 1/3)− ζ(k, 2/3) =
1

(k − 1)!
Dk−1(π cotπz)|z=1/3.

But Dk−1(π cotπz)|z=1/3 is a rational multiple of
√

3πk. Again we know that the
following set

{ζ(k, 1/3) + ζ(k, 2/3), ζ(k, 1/3)− ζ(k, 2/3)}

generates Vk(3). So the dimension of Vk(3) is equal to 2 implies that the ratio

ζ(k, 1/3) + ζ(k, 2/3)

ζ(k, 1/3)− ζ(k, 2/3)
=

ζ(k)√
3πk

is an irrational number. Hence ζ(k)/πk /∈ Q(
√

3). This completes the proof of
the proposition.
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Chapter 4

The Strong Chowla-Milnor
spaces

4.1 Introduction

In this chapter, we discuss our second set of research problems. In 2011, Gun,
Murty and Rath [19] formulated a stronger version the Chowla-Milnor conjecture
(1.1.3) which they called the Strong Chowla-Milnor conjecture. This conjecture
(1.1.6) states that for all q > 1, k > 1, the following ϕ(q) + 1 real numbers

1, ζ(k, a/q) with 1 ≤ a < q and (a, q) = 1

are linearly independent over Q. In relation to their conjecture (1.1.6), Gun,
Murty and Rath defined the Strong Chowla-Milnor space V̂k(q), for any integer
k > 1 and q > 2, by

V̂k(q) := Q− span of {1, ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}

Clearly, the Strong Chowla-Milnor conjecture implies that dimQ V̂k(q) =
ϕ(q) + 1. We prove a non-trivial lower bound about the dimension of the Strong
Chowla-Milnor spaces which is theorem (1.2.3). In the last section, we note that
any improvement of the above lower bound of the Strong Chowla-Milnor spaces
will imply simultaneously both the numbers ζ(k) and ζ(k)/πk are irrational for
all odd positive integers k > 1. We also establish a conditional improvement
of the lower bound of the Strong Chowla-Milnor spaces V̂k(q) in terms of the
theorem (1.2.4).

4.2 Dimension of the Strong Chowla-Milnor

Spaces

In this section, we give proofs of the theorems (1.2.3) and (1.2.4). We also
establish the corollary (1.2.5) as a consequence of the theorem (1.2.4). Let us
first recall the theorem (1.2.3).
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Theorem 4.2.1. Let k > 1 and q > 2 be two integers. Then

dimQV̂k(q) ≥
ϕ(q)

2
+ 1.

4.2.1 Proof of theorem (4.2.1)

Proof. Notice that the space V̂k(q) is also spanned by the following sets of real
numbers:

1, {ζ(k, a/q) + ζ(k, 1− a/q)|(a, q) = 1, 1 ≤ a < q/2},

{ζ(k, a/q)− ζ(k, 1− a/q)|(a, q) = 1, 1 ≤ a < q/2}.

Then by lemma (3.2.3), for k ≥ 2 we have the following

ζ(k, a/q) + (−1)kζ(k, 1− a/q) =
(−1)k−1

(k − 1)!

dk−1

dzk−1
(π cotπz)|z=a/q.

Now using Okada’s theorem (2.6.2), we get

ζ(k, a/q) + (−1)kζ(k, 1− a/q)

for 1 ≤ a < q/2, (a, q) = 1, are linearly independent over Q. Again by lemma
(3.2.2), we have

dk−1

dzk−1
(π cotπz) = πk × Z linear combination of (cscπz)2l(cotπz)k−2l,

for some non-negative integer l and for an integer k ≥ 1. Since cscπz and cotπz
are algebraic at rationals, we have all the numbers ζ(k, a/q) + (−1)kζ(k, 1 −
a/q) are transcendental for any k as they are algebraic multiple of π. Hence

dimQ V̂k(q) ≥ ϕ(q)
2 +1 as 1 and π are linearly independent over Q. This completes

the proof of the theorem.

Now we give a proof of theorem (1.2.4) which is the following:

Theorem 4.2.2. Let k > 1 be an odd integer with ζ(k) irrational and q, r > 2
be two co-prime integers. Then either

dimQV̂k(q) ≥
ϕ(q)

2
+ 2

or

dimQV̂k(r) ≥
ϕ(r)

2
+ 2.

Thus in particular, for infinitely many odd integers k > 1 there exists an integer
q0 such that

dimQV̂k(q) ≥
ϕ(q)

2
+ 2

for any integer q co-prime to q0.
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4.2.2 Proof of theorem (4.2.2)

Proof. Suppose not, then we have

dimQV̂k(q) =
ϕ(q)

2
+ 1.

This gives that the numbers

1, ζ(k, a/q)− ζ(k, 1− a/q), where (a, q) = 1, 1 ≤ a < q/2

generate V̂k(q).
Since k is odd, we have the equation (3.2) (See also Hecke [21] and paper 41 of

E. Hecke, Mathematische Werke, Dritte Auflage, Vandenhoeck und Rupertecht,
Gottingen, 1983),

ζ(k, a/q)− ζ(k, 1− a/q)
(2πi)k

∈ Q(ζq). (4.1)

Again we have the identity (2.3)

ζ(k)
∏
p∈P,
p|q

(1− p−k) = q−k
q−1∑
a=1,

(a,q)=1

ζ(k, a/q) ∈ V̂k(q),

where P is the set of primes.
Thus ζ(k) ∈ V̂k(q) and hence we have

ζ(k) = q1 +
∑

(a,q)=1
1≤a<q/2

λa[ζ(k, a/q)− ζ(k, 1− a/q)] for some q1, λa ∈ Q

so that
ζ(k)− q1

(2πi)k
=

∑
(a,q)=1

1≤a<q/2

λa[ζ(k, a/q)− ζ(k, 1− a/q)]
(2πi)k

.

Thus by (4.1)
ζ(k)− q1

iπk
= a1(say) ∈ Q(ζq).

Similarly, if

dimQV̂k(r) =
ϕ(r)

2
+ 1,

then
ζ(k)− q2

iπk
= a2(say) ∈ Q(ζr), with q2 ∈ Q.

So we have
a1iπ

k + q1 = a2iπ
k + q2

which implies
(a1 − a2)iπk = q2 − q1.

The L.H.S of the above equation is algebraic number times transcendental number
hence transcendental and the R.H.S is a rational number. Hence we get that
q1 = q2 and a1 = a2.
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Thus we have

ζ(k)− q1

iπk
∈ Q(ζq) ∩Q(ζr) = Q( see theorem (2.1.9)).

Let
ζ(k)− q1

iπk
= a ∈ Q.

Since L.H.S of the above equation is purely imaginary and R.H.S is rational, we
have a = 0 and ζ(k) = q1, a rational number. This is a contradiction to the
irrationality of ζ(k). Thus either

dimQV̂k(q) ≥
ϕ(q)

2
+ 2

or

dimQV̂k(r) ≥
ϕ(r)

2
+ 2.

This completes the proof of the theorem.

As a consequence of the above theorem, we prove the corollary (1.2.5).

Proof. (Proof of the corollary (1.2.5)) We know, from the Apery’s theorem,
that ζ(3) is irrational. Now using the above theorem for q = 3 and r = 4, we get
that either

dimQV̂3(3) ≥ 3

or
dimQV̂3(4) ≥ 3.

But both the dimQV̂3(3) and dimQV̂3(4) are less than equal to 3. So we get either

dimQV̂3(3) = 3 or dimQV̂3(4) = 3. This implies that either both the numbers
ζ(3, 1/3) and ζ(3, 2/3) are irrational or both the numbers ζ(3, 1/4) and ζ(3, 3/4)
are irrational. But we have

ζ(3, 1/3) = 27

(
1

13
+

1

43
+

1

73
+ · · ·

)
,

ζ(3, 2/3) = 27

(
1

23
+

1

53
+

1

83
+ · · ·

)
,

ζ(3, 1/4) = 64

(
1

13
+

1

53
+

1

93
+ · · ·

)
,

and

ζ(3, 3/4) = 64

(
1

33
+

1

73
+

1

113
+ · · ·

)
.

Hence we get either both the numbers given by the infinite series

1

13
+

1

43
+

1

73
+ · · ·

and
1

23
+

1

53
+

1

83
+ · · ·

are irrational or both the numbers given by the infinite series
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1

13
+

1

53
+

1

93
+ · · ·

and
1

33
+

1

73
+

1

113
+ · · ·

are irrational. This completes the proof of the corollary.

4.3 Relation with Strong Polylog conjecture

In this section, we discuss the relationship between the Strong Polylog conjecture
(1.2.1) and the Strong Chowla-Milnor conjecture (1.1.6). We formulated the
Strong Polylog conjecture (1.2.1), following the Polylog conjecture (1.1.4) of Gun,
Murty and Rath, which is a stronger conjecture about the polylogarithms. This
conjecture is a generalization of Baker’s theorem about linear forms in logarithms.
In relation to this conjecture we prove the theorem (1.2.2), which says that the
Strong Polylog conjecture implies the Strong Chowla-Milnor conjecture. First we
give a proof of proposition (1.2.1) which is the following:

Proposition 4.3.1. Let k > 1, q > 1 be two integers and f be a rational valued
arithmetic periodic function with period q. Suppose that f(a) = 0 for 1 < (a, q) <
q. Then the following statements are equivalent:

1. The Strong Chowla-Milnor conjecture is true.

2. The L-value L(k, f) is irrational, unless

f(a) = − f(q)q−k∏
p∈P,
p|q

(1− p−k)

for 1 ≤ a < q, (a, q) = 1. Here P denotes the set of primes.

Proof. Consider the identity (2.3)

ζ(k)
∏
p∈P,
p|q

(1− p−k) = q−k
q−1∑
a=1

(a,q)=1

ζ(k, a/q).

Substituting this in the expression (1.1) for L(s, f) and using f(a) = 0 for 1 <
(a, q) < q and s = k, we get

L(k, f) = q−k
q−1∑
a=1

(a,q)=1

f(a) +
f(q)q−k∏

p|q
(1− p−k)

 ζ(k, a/q). (4.2)

If L(k, f) is rational, then the above equation shows that 1, ζ(k, a/q) for 1 ≤ a <
q, (a, q) = 1 are linearly dependent over the rationals since f is a rational-valued
function.
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Conversely, if 1, ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1 are linearly dependent
over the rationals, then there are rational numbers c0, ca, 1 ≤ a < q, (a, q) = 1,
not all zero, such that

c0 +

q−1∑
a=1

(a,q)=1

caζ(k, a/q) = 0.

Now define the following rational-valued periodic function f with period q. Set
f(a) = 0 for 1 < a ≤ q, (a, q) > 1 and f(a) = ca for 1 ≤ a < q, (a, q) = 1.
Then, our identity shows that qkL(k, f) = −c0 so that L(k, f) is rational. This
completes the proof of the proposition.

Now we are ready to prove the theorem (1.2.2), which is the following:

Theorem 4.3.2. The Strong Polylog conjecture implies the Strong Chowla-Milnor
conjecture for all q > 1 and k > 1.

4.3.1 Proof of theorem (4.3.2)

Proof. Let k > 1 and q > 1. Let f be a rational valued period function with
period q satisfying f(a) = 0 for 1 < (a, q) < q. Suppose that L(k, f) = r is a
rational number. Then we have

L(k, f) =
∞∑
n=1

f(n)

nk
= r.

As f is a periodic function, we have the Fourier transformation of f given by

f̂(n) =
1

q

q∑
a=1

f(a)ζ−anq

where ζq = e
2πi
q and hence we have the Fourier inversion formula

f(n) =

q∑
a=1

f̂(a)ζanq .

Then we have

L(k, f) =

∞∑
n=1

f(n)

nk
=

∞∑
n=1

1

nk

q∑
a=1

f̂(a)ζanq = r

and hence
q∑

a=1

f̂(a)Lik(ζ
a
q )− r = 0.

Let Lik(α1), ..., Lik(αt) be a maximal linearly independent subset of

{Lik(ζaq )|1 ≤ a < q}

over Q.
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Then

Lik(ζ
a
q ) =

t∑
b=1

CabLik(αb)

for some Cab ∈ Q. So we have

t∑
b=1

βbLik(αb)− r = 0

where

βb =

q∑
a=1

f̂(a)Cab.

Since f is rational valued, f̂ is algebraic valued. So by the Strong Polylog
conjecture (1.2.1), we have

r = 0 and βb =

q∑
a=1

f̂(a)Cab = 0, 1 ≤ b ≤ t.

Now for any automorphism σ of the field Q over Q, we have

q∑
a=1

σ(f̂(a))Cab = 0, 1 ≤ b ≤ t,

and hence
q∑

a=1

σ(f̂(a))Lik(ζ
a
q ) = 0.

In particular, if for 1 ≤ h < q, (h, q) = 1, σh is the element of the Galois group of
Q(ζq) over Q such that

σh(ζq) = ζhq ,

then we have,
σh(f̂(n)) = f̂h(n)

where
fh(n) = f(nh−1).

Thus, we have

L(k, fh) =
∞∑
n=1

fh(n)

nk

=

q∑
a=1

f̂h(a)Lik(ζ
a
q )

=

q∑
a=1

σh(f̂(a))Lik(ζ
a
q ) = 0

for all 1 ≤ h < q, (h, q) = 1. Thus by equation (4.2), we get

L(k, fh) = q−k
q−1∑
a=1

(a,q)=1

fh(a) +
fh(q)q−k∏

p|q
(1− p−k)

 ζ(k, a/q) = 0
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for all 1 ≤ h < q, (h, q) = 1.
Now, putting ah−1 = b and noting that fh(q) = f(q), we have

L(k, fh) = q−k
q−1∑
b=1

(b,q)=1

f(b) +
f(q)q−k∏

p|q
(1− p−k)

 ζ(k, bh/q) = 0 (4.3)

for all 1 ≤ h < q, (h, q) = 1.
Thus we get a matrix equation with M being the ϕ(q) × ϕ(q) matrix whose

(b, h)-th entry is given by ζ(k, bh/q). Then by the evaluation of the Dedekind-
Frobenius determinant as in proposition (2.5.1), we get

Det(M) = ±
∏
χ

qkL(k, χ) 6= 0.

Thus the matrix M is invertible and hence by the equation (4.3), we have

f(a) +
f(q)q−k∏

p|q
(1− p−k)

= 0, 1 ≤ a < q, (a, q) = 1

and hence

f(a) = − f(q)q−k∏
p|q

(1− p−k)

for all 1 ≤ a < q, (a, q) = 1. This completes the proof of the theorem.

4.4 Concluding Remarks

Let us now investigate the linear independence of the real numbers 1, ζ(k, a/q)
with 1 ≤ a < q and (a, q) = 1, over the field of algebraic numbers. In this case,
one can not expect result similar to the theorem (1.2.3). In this direction, we
prove proposition (1.2.6), which is the following:

Proposition 4.4.1. 2 ≤ dimQ V̂k(q) ≤
ϕ(q)

2 + 2.

Proof. We know that ζ(k, a/q)+(−1)kζ(k, 1−a/q) ∈ πkQ∗ for 1 ≤ a < q/2, (a, q) =
1. As 1 and π are linearly independent over Q, we have dimQ V̂k(q) ≥ 2.

Now for k even, the ϕ(q)/2 real numbers ζ(k, a/q) + ζ(k, 1− a/q) for 1 ≤ a <
q/2, (a, q) = 1, are linearly dependent over Q, and for k odd ζ(k, a/q)− ζ(k, 1−
a/q) for 1 ≤ a < q/2, (a, q) = 1, are linearly dependent over Q. So in any case
whether k is even or odd, this ϕ(q)/2 real numbers contribute at most 1 in the

dimension. Hence we have dimQ V̂k(q) ≤
ϕ(q)

2 + 2. This completes the proof of
the proposition.
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Chapter 5

The Chowla-Milnor conjecture
over number fields

5.1 Introduction

In this chapter, we discuss our third set of research problems. In 2012, Gun,
Murty and Rath [20] formulated the conjecture (1.1.7) which is a generalization
of Chowla-Milnor conjecture over number fields which are linearly disjoint from
the cyclotomic extension Q(ζq). This conjecture says that the following ϕ(q) real
numbers

ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1, (5.1)

are linearly independent over the number field F which is linearly disjoint from
Q(ζq). This is a natural generalization of the Chowla-Milnor conjecture. For that

ζ(k, a/q)− ζ(k, 1− a/q)
(2πi)k

∈ Q(ζq),

and hence one can expect that if F∩Q(ζq) = Q, then the above set of real numbers
is linearly independent over F.

5.2 Generalized Zagier spaces

In [19], Gun, Murty and Rath provided an infinite family of Zagier spaces Wk

having Q dimension at least 2, assuming the Chowla-Milnor conjecture. In this
section, we investigate a similar kind of question over certain family of number
fields. For that, we define the generalized k-th Zagier space Vk(F) as F –span of
the multiple zeta values ζ(a1, · · · , al) with a1 + · · ·+ al = k, where F is a number
field linearly disjoint from the cyclotomic field Q(ζq). Assuming the conjecture
(5.1), we prove the theorem (1.2.8), which we recall here:

Theorem 5.2.1. Let d be a positive integer. Then the conjecture (5.1) implies

dimFV4d+2(F) ≥ 2.
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5.2.1 Proof of theorem (5.2.1)

To prove theorem (5.2.1), we need two lemmas. We first state and prove the
lemmas, then proceed to the proof of the theorem (5.2.1).

Lemma 5.2.2. Let F be an algebraic number field. Then
[
ζ(2d+1)
π2d+1

]2
/∈ F implies

dimFV4d+2(F) ≥ 2.

Proof. To begin with, let us multiply ζ(s1) with ζ(s2) and using the definition of
multiple zeta values we get

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2).

Now substituting s1 = s2 = 2d+ 1 in the above equation, we get

ζ(2d+ 1)2 = 2ζ(2d+ 1, 2d+ 1) + ζ(4d+ 2).

Dividing both sides by π4d+2, to get[
ζ(2d+ 1)

π2d+1

]2

= 2
ζ(2d+ 1, 2d+ 1)

π4d+2
+
ζ(4d+ 2)

π4d+2
.

Since [
ζ(2d+ 1)

π2d+1

]2

/∈ F and
ζ(4d+ 2)

π4d+2
∈ Q ⊂ F

it follows that ζ(2d+ 1, 2d+ 1) is not in the F- span of ζ(4d+ 2) and hence the
F-dimension of the space V4d+2(F) ≥ 2.

Lemma 5.2.3. Suppose the conjecture (5.1) is true. Then[
ζ(2d+ 1)

π2d+1

]2

/∈ F,

for all d ≥ 1.

Proof. Let ∆ < 0 be a fundamental discriminant. Then from the theorem (2.4.3),
we know that the Kronecker symbol χ∆(n) = (∆

n ) is an odd, primitive, quadratic
character modulo |∆|. Let q = |∆|.

Now from the theory of Gauss sums we know that the Gauss sum τ(χ∆)
associated with the Kronecker symbol χ∆ (see theorem (2.4.4)) is given by

τ(χ∆) =

q∑
a=1

χ∆(a)ζaq = i
√
q.

Again using the primitivity of χ∆, we have

τ(χ∆, b) =

q∑
a=1

χ∆(a)ζabq = χ∆(b)i
√
q.
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Since χ∆ is an odd character, we have

q/2∑
a=1

χ∆(a)(ζabq − ζ−abq ) = χ∆(b)i
√
q.

Let Bl(x) be the lth Bernoulli polynomial. Multiplying both sides of the above
equation by B2d+1(b/q) and taking sum over b = 1 to q we get,

q/2∑
a=1

χ∆(a)

q∑
b=1

(ζabq − ζ−abq )B2d+1(b/q) = i
√
q

q∑
b=1

χ∆(b)B2d+1(b/q).

Let k = 2d+ 1. Then from proposition 1 of [19], we have

ζ(k, a/q)− ζ(k, 1− a/q)
(2πi)k

=
qk−1

2k!

q∑
b=1

(ζabq − ζ−abq )Bk(b/q)

for any (a, q) = 1 and 1 ≤ a < q/2. As χ∆ is a quadratic character we get that
the number i

√
q lies in the F-linear space generated by the real numbers

ζ(k, a/q)− ζ(k, 1− a/q)
(2πi)k

with (a, q) = 1 and 1 ≤ a < q/2.
Again from the identity (2.3), we know that

ζ(k)
∏
p∈P,
p|q

(1− p−k) = q−k
q−1∑
a=1

(a,q)=1

ζ(k, a/q)

where P be the set of primes. So that

ζ(k)
∏
p∈P,
p|q

(1− p−k) = q−k
q/2∑
a=1

(a,q)=1

[ζ(k, a/q) + ζ(k, 1− a/q)].

Hence ζ(k)/(2πi)k lies in the F-linear space generated by the real numbers

ζ(k, a/q) + ζ(k, 1− a/q)
(2πi)k

with (a, q) = 1 and 1 ≤ a < q/2.
Thus the conjecture (5.1) for the modulus q implies that i

√
q and ζ(k)/(2πi)k

lie in two disjoint F-spaces. Hence for any such q, we have

ζ(2d+ 1)

π2d+1
√
q
/∈ F.

Thus, if the conjecture (5.1) is true for all modulus, then[
ζ(2d+ 1)

π2d+1

]2

/∈ F

for all d ≥ 1.
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Now we prove theorem (5.2.1) using the above two lemmas.

Proof. (Proof of theorem (5.2.1)) Suppose the conjecture (5.1) is true. Then
the lemma (5.2.3) implies [

ζ(2d+ 1)

π2d+1

]2

/∈ F.

Hence from the lemma (5.2.2), we get

dimFV4d+2(F) ≥ 2.

This completes the proof of the theorem.

5.3 Linear independence of L-functions

In this section, we discuss the linear independence of the values of the Dirichlet
L-functions over a certain family of number fields. Let F be a number field and
q be a positive integer. Set F1 = F(e2πi/ϕ(q)). Suppose that F1 ∩ Q(ζq) = Q. In
[28], Murty and Saradha showed that the values L(1, χ), as χ ranges over non-
trivial primitive characters mod q, are linearly independent over F1. Their proof
involves a fundamental lemma of Baker, Birch and Wirsing [3]. Further for any
integer k > 1, they proved that the L-values L(k, χ) as χ ranges over Dirichlet
characters mod q with the same parity as k are linearly independent over F1. In
the spirit of their theorem we prove theorem (1.2.9), which is the following:

Theorem 5.3.1. Let F be an algebraic number field and F1 = F(e2πi/ϕ(q)). Sup-
pose that F1 ∩ Q(ζq) = Q. Assume the conjecture (5.1). Then for any positive
integer k, the values L(k, χ) as χ ranges over non-trivial Dirichlet characters mod
q are linearly independent over F1.

Proof. The case k = 1 is a theorem of M. Ram Murty and N. Saradha [28]. Let
k > 1 and assume that ∑

χ

cχL(k, χ) = 0, cχ ∈ F1

where the summation is over all Dirichlet characters mod q.

Again we know that

L(k, χ) = q−k
∑

1≤a<q
(a,q)=1

χ(a)ζ(k, a/q).

So from the above equation we get

q−k
∑
χ

cχ
∑

1≤a<q
(a,q)=1

χ(a)ζ(k, a/q) = 0,
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and hence we have ∑
1≤a<q
(a,q)=1

ζ(k, a/q)
∑
χ

cχχ(a) = 0.

The values of χ lie in the field F1. Therefore the sum
∑
χ
cχχ(a) ∈ F1 which is

disjoint from Q(ζq). Hence using conjecture (5.1), we get∑
χ

cχχ(a) = 0

for all a ∈ (Z/qZ)∗. Hence we see that∑
χ

cχχ = 0

where the sum is over all the Dirichlet characters modulo q.
Again from Artin’s Theorem 2.2.5, we know that the Characters of a group are

linearly independent over the field of complex numbers. Hence we have cχ = 0 for
all Dirichlet characters χ modulo q. This completes the proof of the theorem.

5.4 Concluding Remarks

Let F be a number field and q be a positive integer such that F1 = F(e2πi/ϕ(q)).
Suppose that

Γ =
∑
χ

cχL(k, χ) (5.2)

is any non-trivial linear combination of L(k, χ) over F1, where χ ranges over non-
trivial Dirichlet characters mod q. Then Theorem 5.3.1 implies that Γ is non
zero.

Now for each χ, consider the Fourier transformation of χ given by

χ̂(n) =
1

q

q∑
a=1

χ(a)ζ−anq .

So we have the Fourier inversion formula given by

χ(n) =

q∑
a=1

χ̂(a)ζanq .

Again we have

L(k, χ) =

∞∑
n=1

χ(n)

nk
.

Substituting the Fourier inversion formula in the above equation, we get

L(k, χ) =

q∑
a=1

χ̂(a)Lik(ζ
a
q ). (5.3)
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Now taking a maximal Q-linearly independent subset of {Lik(ζaq )|1 ≤ a < q}, we
can write the above equation (5.3) as

L(k, χ) =

t∑
a=1

caLik(αa)

for some ca ∈ Q and positive integer t.
Finally substituting the above equation of the L(k, χ) for each χ in the equa-

tion (5.2), we get that Γ can be expressed as an algebraic linear combination
of polylogarithms of algebraic numbers satisfying the hypothesis of the Strong
Polylog conjecture (1.2.1). Hence by the Strong Polylog conjecture, we deduce
that Γ is transcendental.
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Chapter 6

The Strong Chowla-Milnor
conjecture over number fields

6.1 Introduction

In this chapter, we discuss our fourth set of research problems. We consider the
number field extension of the Strong Chowla-Milnor conjecture (1.1.6) formulated
before. We recall this conjecture for the sake of completion. Let q be a positive
integer and F be a number field which is linearly disjoint from the cyclotomic
field Q(ζq). Then conjecture (1.2.2) says that for any integer k > 1, the following
ϕ(q) + 1 real numbers

1, ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1 (6.1)

are linearly independent over F. We show that if the above conjecture is true for
all number fields F which are linearly disjoint with Q(ζq), then both the numbers
ζ(2k + 1) and ζ(2k + 1)/π2k+1 are transcendental simultaneously for all integers
k ≥ 1. In connection to the conjecture (6.1), we define the F linear space V̂k(q,F)
spanned by the ϕ(q) + 1 real numbers 1, ζ(k, a/q) with 1 ≤ a < q, and (a, q) = 1.
In the next section, we study the dimension of these spaces.

6.2 Dimension of V̂k(q,F)

We investigate the dimension of V̂k(q,F) in two separate cases. First we assume
that F is linearly disjoint with the cyclotomic field Q(ζq). With this assumption
we prove theorem (1.2.13) and theorem (1.2.16). Next we discuss about case
when F = Q(ζq).

6.2.1 The case F ∩Q(ζq) = Q
In this case, our main tool for proving the theorems (1.2.13) and (1.2.16) is lemma
(2.6.3). This is a generalization of theorem (2.6.2) of Okada due to Murty and
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Saradha [28] about linear independence of cotangent values at rational arguments.
We first recall the theorem (1.2.13).

Theorem 6.2.1. Let k > 1 and q > 1 be two integers and F be a number field
with F ∩Q(ζq) = Q. Then

dimF V̂k(q,F) ≥ ϕ(q)

2
+ 1.

Proof. The space V̂k(q, F ) is also spanned by the following sets of real numbers:

1, {ζ(k, a/q) + ζ(k, 1− a/q)|(a, q) = 1, 1 ≤ a < q/2},

{ζ(k, a/q)− ζ(k, 1− a/q)|(a, q) = 1, 1 ≤ a < q/2}

over F.
Now from the lemma (3.2.3), we get for k > 1

ζ(k, a/q) + (−1)kζ(k, 1− a/q) =
(−1)k−1

(k − 1)!

dk−1

dzk−1
(π cotπz)|z=a/q.

Using the lemma (2.6.3) of Murty and Saradha [28], we get

dk−1

dzk−1
(π cotπz)|z=a/q

for 1 ≤ a < q/2, (a, q) = 1, are linearly independent over F. Then from the above
identity, we get that the following ϕ(q)/2 real numbers

ζ(k, a/q) + (−1)kζ(k, 1− a/q)

for 1 ≤ a < q/2, (a, q) = 1, are linearly independent over F.
Again by the lemma (3.2.2), we have

dk−1

dzk−1
(π cotπz) = πk × Z linear combination of (cscπz)2l(cotπz)k−2l,

for some non-negative integer l and for an integer k ≥ 1. Since cscπz and
cotπz are algebraic at rationals, all these numbers ζ(k, a/q) + (−1)kζ(k, 1− a/q)
are transcendental for any k > 1, being algebraic multiple of π. Since π /∈ F,
dimF V̂k(q,F) ≥ ϕ(q)

2 + 1. This completes the proof of the theorem.

Now let us recall the theorem (1.2.16).

Theorem 6.2.2. Let k > 1 be an odd integer and q, r > 2 be two co-prime
integers. Also, let F ⊆ R ∩ Q such that F ∩ Q(ζq) = Q = F ∩ Q(ζr) and F(ζq) ∩
F(ζr) = F. Assume that ζ(k) /∈ F. Then either

dimFV̂k(q,F) ≥ ϕ(q)

2
+ 2

or

dimFV̂k(r,F) ≥ ϕ(r)

2
+ 2.
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Proof. On the contrary, we assume first that both

dimFV̂k(q,F) =
ϕ(q)

2
+ 1

and

dimFV̂k(r,F) =
ϕ(r)

2
+ 1.

Now for the first case, the numbers

1, ζ(k, a/q)− ζ(k, 1− a/q), where (a, q) = 1, 1 ≤ a < q/2

generate V̂k(q,F) over F.
Since k is odd, from equation (3.2) we have

ζ(k, a/q)− ζ(k, 1− a/q)
(2πi)k

∈ Q(ζq) ⊆ F(ζq). (6.2)

Now consider the identity (2.3)

ζ(k)
∏

p prime,
p|q

(1− p−k) = q−k
q−1∑
a=1,

(a,q)=1

ζ(k, a/q) ∈ V̂k(q,F).

Thus ζ(k) ∈ V̂k(q,F) and hence we have

ζ(k) = q1 +
∑

(a,q)=1
1≤a<q/2

λa[ζ(k, a/q)− ζ(k, 1− a/q)] for some q1, λa ∈ F.

So we get

ζ(k)− q1

(2πi)k
=

∑
(a,q)=1

1≤a<q/2

λa[ζ(k, a/q)− ζ(k, 1− a/q)]
(2πi)k

.

Thus by (6.2)
ζ(k)− q1

iπk
= a1(say) ∈ F(ζq). (6.3)

Similarly, for the second case, i.e. when

dimFV̂k(r,F) =
ϕ(r)

2
+ 1,

we get
ζ(k)− q2

iπk
= a2(say) ∈ F(ζr), with q2 ∈ F. (6.4)

Hence from the equations (6.3) and (6.4), we get

a1iπ
k + q1 = a2iπ

k + q2

which implies

(a1 − a2)iπk = q2 − q1.
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The L.H.S of the above equation is algebraic number times transcendental number
hence transcendental and the R.H.S is an algebraic number belonging to F. Hence
we deduce that q1 = q2 and a1 = a2.

Thus we have
ζ(k)− q1

iπk
∈ F(ζq) ∩ F(ζr) = F.

Let
ζ(k)− q1

iπk
= a ∈ F.

Clearly the L.H.S of the above equation is purely imaginary and the R.H.S belongs
to F, hence a real number as F ⊂ R. So we have a = 0 and ζ(k) = q1 ∈ F. This
is a contradiction to the fact that ζ(k) /∈ F. Thus either

dimFV̂k(q,F) ≥ ϕ(q)

2
+ 2

or

dimFV̂k(r,F) ≥ ϕ(r)

2
+ 2.

This completes the proof of the theorem.

6.2.2 The case F = Q(ζq)

For F = Q(ζq), we do not have the same result as in theorem (6.2.1). We show
that there are some linear relations between the generators over Q(ζq). In this
direction, we prove the following propositions.

Proposition 6.2.3. 2 ≤ dimF V̂k(q,F) ≤ ϕ(q)
2 + 2.

Proof. From (3.2.2) and (3.2.3), we have

ζ(k, a/q)+(−1)kζ(k, 1−a/q) = πk×Q linear combination of (cscπz)2l(cotπz)k−2l,

at z = a/q and for some non-negative integer l.
Now note that

i cot(πa/q) =
1 + ζaq
1− ζaq

belongs to Q(ζq) and hence so do the numbers csc(πa/q)2l and cot(πa/q)2l. Hence
from the above equation, we deduce that

ζ(k, a/q) + (−1)kζ(k, 1− a/q) ∈ ikπkQ(ζq) (6.5)

for all 1 ≤ a < q/2 with (a, q) = 1.
Clearly for k even, the ϕ(q)/2 real numbers

ζ(k, a/q) + ζ(k, 1− a/q)

for 1 ≤ a < q/2, (a, q) = 1 are linearly dependent over Q(ζq), and for k odd
ζ(k, a/q) − ζ(k, 1 − a/q) for 1 ≤ a < q/2, (a, q) = 1, are linearly dependent
over Q(ζq). So in any case whether k is even or odd, this ϕ(q)/2 real numbers

contribute at most 1 in the dimension. Hence we have dimF V̂k(q,F) ≤ ϕ(q)
2 + 2.

Again since 1 and π are linearly independent over Q(ζq), we have dimF V̂k(q,F) ≥
2. This completes the proof of the proposition.
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Proposition 6.2.4. Let k > 1 be an odd integer such that ζ(k) is irrational. Then
there exists an integer q0 > 1 such that for all integers q > 2 with (q0, q) = 1, the
dimension of the space V̂k(q,Q(ζq)) is at least 3.

Proof. On the contrary, suppose that this is not true. Then for any two coprime
integers q and r, we have

dimQ(ζq) V̂k(q,Q(ζq)) = 2 and dimQ(ζr) V̂k(q,Q(ζr)) = 2.

As k is an odd integer, we get from (6.5)

ζ(k, a/q)− ζ(k, 1− a/q) ∈ iπkQ(ζq)

for all 1 ≤ a < q/2 with (a, q) = 1 and

ζ(k, a/r)− ζ(k, 1− a/r) ∈ iπkQ(ζr)

for all 1 ≤ a < r/2 with (a, r) = 1.

Hence both the spaces V̂k(q,Q(ζq)) and V̂k(r,Q(ζr)) are generated by 1 and
iπk over Q(ζq) and Q(ζr) respectively.

Again we know that ζ(k) belongs to both the spaces V̂k(q,Q(ζq)) and V̂k(r,Q(ζr)).
Hence ζ(k) can be written as

ζ(k) = q1 + q2iπ
k = r1 + r2iπ

k (6.6)

for some q1, q2 ∈ Q(ζq) and r1, r2 ∈ Q(ζr).

From (6.6), we get

(q2 − r2)iπk = r1 − q1.

The L.H.S of the above equation is transcendental while the R.H.S is an algebraic
number. Hence we deduce that q1 = r1 and q2 = r2. As Q(ζq) ∩ Q(ζr) = Q, we
see that both q1, q2 are rational numbers. Since ζ(k) is irrational, from (6.6) we
get q2 6= 0. Again, from (6.6) we have

ζ(k)− q1

q2
= iπk.

Note that L.H.S of the above equation is a non zero real number. But the R.H.S of
the above equation is a purely imaginary number. Hence we get a contradiction.
Thus either

dimQ(ζq) V̂k(q,Q(ζq)) ≥ 3

or

dimQ(ζr) V̂k(q,Q(ζr)) ≥ 3.

In particular, for infinitely many odd integers k > 1 there exists an integer q0

such that

dimQ(ζq)V̂k(q,Q(ζq)) ≥ 3

for any integer q coprime to q0.
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6.3 Transcendence of ζ(k)

We prove that if the conjecture (6.1) holds for all number fields F which are
linearly disjoint from the cyclotomic field Q(ζq), then ζ(k) is transcendental for
all odd integers k > 1. In particular we prove the following two propositions.

Proposition 6.3.1. Let k > 1 be an odd integer. If dimFV̂k(4,F) = 3 for all
number fields F such that F ∩Q(i) = Q, then ζ(k) is transcendental.

Proof. Assume that dimFV̂k(4,F) = 3 for all such number fields F. We have

ζ(k, 1/4) + ζ(k, 3/4) = (4k − 2k)ζ(k).

Suppose that ζ(k) ∈ Q. Then ζ(k) ∈ R∩Q since ζ(k) is real for real k. Consider
the number field F = Q(ζ(k)). Then F∩Q(i) = Q as F is subfield of real numbers.
Now from the above equation we get dimFV̂k(4,F) < 3 for F = Q(ζ(k)), Which
is a contradiction. Hence ζ(k) is transcendental.

Proposition 6.3.2. Let k > 1 be an odd integer and ω be a primitive cube root
of unity. If dimFV̂k(3,F) = 3 for all number fields F such that F ∩ Q(ω) = Q,
then ζ(k) is transcendental.

Proof. Assume that dimFV̂k(3,F) = 3 for all such number fields F. We have

ζ(k, 1/3) + ζ(k, 2/3) = (3k − 1)ζ(k).

Suppose that ζ(k) ∈ Q. Then ζ(k) ∈ R ∩ Q. Consider the number field F =
Q(ζ(k)). Then F ∩ Q(ω) = Q as F is a subfield of real numbers. Now from
the above equation, we get that dimFV̂k(3,F) < 3 for F = Q(ζ(k)) which is a
contradiction. Hence ζ(k) is transcendental.

6.4 Relation with the Strong Polylog conjec-

ture

In this section, we discuss the relationship between the Strong Polylog conjecture
(1.2.1) and the conjecture (6.1). Let q be a positive integer and F be a number
field which is linearly disjoint from the cyclotomic field Q(ζq). We prove that
the Strong Polylog conjecture (1.2.1) implies conjecture (6.1) for all such number
fields. We first prove the proposition (1.2.10), which is the following:

Proposition 6.4.1. Let k > 1, q > 1 be two integers and F be an algebraic
number field such that F ∩ Q(ζq) = Q. Let f : Z/qZ → F with f(a) = 0 for
1 < (a, q) < q. Then the following statements are equivalent:

1. The conjecture (1.2.2) is true.
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2. The L-value L(k, f) /∈ F , unless

f(a) = − f(q)q−k∏
p prime,
p|q

(1− p−k)

for 1 ≤ a < q, (a, q) = 1.

Proof. To prove the proposition, let us Consider the identity (2.3)

ζ(k)
∏

p prime,
p|q

(1− p−k) = q−k
q−1∑
a=1

(a,q)=1

ζ(k, a/q).

Substituting this in the expression (1.1) for L(s, f) and using f(a) = 0 for 1 <
(a, q) < q, we get

L(k, f) = q−k
q−1∑
a=1

(a,q)=1

f(a) +
f(q)q−k∏

p|q
(1− p−k)

 ζ(k, a/q). (6.7)

Now if L(k, f) ∈ F, then the above equation shows that 1, ζ(k, a/q) for 1 ≤ a <
q, (a, q) = 1 are linearly dependent over F since f is an F-valued function.

Conversely, assume that 1, ζ(k, a/q) with 1 ≤ a < q, (a, q) = 1 are linearly
dependent over F. Then there are numbers β0, βa ∈ F, 1 ≤ a < q, (a, q) = 1, not
all zero, such that

β0 +

q−1∑
a=1

(a,q)=1

βaζ(k, a/q) = 0.

Now define the following F-valued periodic function f with period q. Set f(a) = 0
for 1 < a ≤ q, (a, q) > 1 and f(a) = βa for 1 ≤ a < q, (a, q) = 1. Then using the
above identity we get qkL(k, f) = −β0 so that L(k, f) ∈ F. This completes the
proof of the proposition.

6.4.1 Proof of theorem (1.2.11)

In this subsection we give a proof of theorem (1.2.11) using the above proposition.
Let us first recall theorem (1.2.11).

Theorem 6.4.2. The Strong Polylog conjecture implies the conjecture (6.1) for
all number field F with F ∩Q(ζq) = Q.

Proof. Let k > 1 and q > 1 be two integers and F be an algebraic number field
such that F ∩Q(ζq) = Q. Consider a map

f : Z/qZ→ F
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satisfying f(a) = 0 for 1 < (a, q) < q. Then f can be thought of as an F-valued
period function with period q.

On the contrary, let us assume that L(k, f) = α ∈ F. Then we have

L(k, f) =
∞∑
n=1

f(n)

nk
= α.

As f is a periodic function, we have the Fourier transformation of f given by

f̂(n) =
1

q

q∑
a=1

f(a)ζ−anq .

Hence we have the Fourier inversion formula

f(n) =

q∑
a=1

f̂(a)ζanq .

Using the Fourier inversion formula we get

L(k, f) =

∞∑
n=1

f(n)

nk

=
∞∑
n=1

1

nk

q∑
a=1

f̂(a)ζanq

and hence
q∑

a=1

f̂(a)Lik(ζ
a
q )− α = 0.

Let Lik(α1), ..., Lik(αt) be a maximal linearly independent subset of

{Lik(ζaq )|1 ≤ a < q}

over F.
Then

Lik(ζ
a
q ) =

t∑
b=1

CabLik(αb)

for some Cab ∈ F. So we have

t∑
b=1

βbLik(αb)− α = 0

where

βb =

q∑
a=1

f̂(a)Cab.

Since f is an F-valued function, f̂ is algebraic valued. So by the Strong
Polylog conjecture (1.2.1), we have

α = 0 and βb =

q∑
a=1

f̂(a)Cab = 0, 1 ≤ b ≤ t.

88



Now for any automorphism σ of the field extension F(ζq) over F, we have

q∑
a=1

σ(f̂(a))Cab = 0, 1 ≤ b ≤ t,

so we get that
q∑

a=1

σ(f̂(a))Lik(ζ
a
q ) = 0.

In particular, for 1 ≤ h < q, (h, q) = 1, let σh ∈ Gal(F(ζq)/F) be such that

σh(ζq) = ζhq .

Then we have,

σh(f̂(n)) = f̂h(n)

where

fh(n) = f(nh−1).

Now we have

L(k, fh) =
∞∑
n=1

fh(n)

nk

=

q∑
a=1

f̂h(a)Lik(ζ
a
q )

=

q∑
a=1

σh(f̂(a))Lik(ζ
a
q ) = 0

for all 1 ≤ h < q with (h, q) = 1. Thus by equation (6.7), we get

L(k, fh) = q−k
q−1∑
a=1

(a,q)=1

fh(a) +
fh(q)q−k∏

p|q
(1− p−k)

 ζ(k, a/q) = 0

for all 1 ≤ h < q with (h, q) = 1.

Now, putting ah−1 = b and noting that fh(q) = f(q), we have

L(k, fh) = q−k
q−1∑
b=1

(b,q)=1

f(b) +
f(q)q−k∏

p|q
(1− p−k)

 ζ(k, bh/q) = 0 (6.8)

for all 1 ≤ h < q with (h, q) = 1.

Thus we get a matrix equation with M being the ϕ(q) × ϕ(q) matrix whose
(b, h)-th entry is given by ζ(k, bh/q). Then by the evaluation of the Dedekind-
Frobenius determinant as in proposition (2.5.1), we get

Det(M) = ±
∏
χ

qkL(k, χ) 6= 0.
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Thus the matrix M is invertible and hence by the equation (6.8), we have

f(a) +
f(q)q−k∏

p|q
(1− p−k)

= 0, 1 ≤ a < q, (a, q) = 1

and hence

f(a) = − f(q)q−k∏
p|q

(1− p−k)

for all 1 ≤ a < q with (a, q) = 1. This completes the proof of the theorem.
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Chapter 7

Generalized Hurwitz zeta
functions

7.1 Introduction

In this chapter we discuss the last set of research problems. This work is moti-
vated by works of Davenport, Heilbronn [14] and Cassels [6]. In 1936, Davenport
and Heilbronn [14] proved that if a 6= 1/2, 1 is a rational or transcendental num-
ber, then ζ(s, a) has infinitely many zeros for σ > 1. Note that ζ(s, 1) = ζ(s) and
ζ(s, 1/2) = (2s − 1)ζ(s). Hence ζ(s, 1) or ζ(s, 1/2) can not have zeros for σ > 1.
In 1961, Cassels [6] showed the existence of infinitely many zeros of ζ(s, a) for
σ > 1, when a is an algebraic irrational number.

For a periodic arithmetic function f with period q ≥ 1 and a > 0, consider
the generalized Hurwitz zeta function L(s, f, a) associated to f

L(s, f, a) :=

∞∑
n=0

f(n)

(n+ a)s
,

where s ∈ C with <(s) = σ > 1. In 2009, Saias and Weingartner [36] showed that
L(s, f, a) has infinitely many zeros for σ > 1 provided a = 1 and L(s, f, 1) is not
a product of L(s, χ) and a Dirichlet polynomial, where χ is a Dirichlet character.

Since f is periodic with period q ≥ 1, the generalized Hurwitz zeta function
L(s, f, a) can be written as

L(s, f, a) = q−s
q∑
b=1

f(b)ζ(s, (a+ b)/q),

for s ∈ C with σ > 1. This shows that L(s, f, a) extends meromorphically
to the whole complex plane with a possible simple pole at s = 1 with residue
q−1

∑q
b=1

f(b). Hence L(s, f, a) has a simple pole at s = 1 if and only if
∑q

b=1
f(b) 6=

0. In the later section, we prove theorems (1.2.17) and (1.2.18), which recall are
the following:

Theorem 7.1.1. Let a be a positive transcendental number and f be a real valued
periodic arithmetic function with period q ≥ 1. If L(s, f, a) has a pole at s = 1,
then L(s, f, a) has infinitely many zeros for σ > 1.
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Theorem 7.1.2. Let a be a positive algebraic irrational number and f be a
positive valued periodic arithmetic function with period q ≥ 1. Also let

c :=
max
n

f(n)

min
n

f(n)
< 1.15.

If L(s, f, a) has a pole at s = 1, then L(s, f, a) has infinitely many zeros for
σ > 1.

7.2 Some propositions

In order to prove Theorem 7.1.1 and Theorem 7.1.2, we need the following propo-
sitions.

Proposition 7.2.1. Let a > 0 be any transcendental number and N ≥ 1 be an
integer. Also, let g0, · · · , gN be a sequence of complex numbers having absolute
value 1. Then for any real number T and ε > 0, there exists a real number t > T
such that

|(n+ a)−it − gn| < ε

for all 0 ≤ n ≤ N .

Proof. Since a is transcendental, the numbers log(n+a) are linearly independent
over Q. Otherwise there will be integers qn, not all zero, with the relation

N∑
n=0

qn log(n+ a) = 0

and this implies
N∏
n=0

(n+ a)qn = 1.

Hence we get a contradiction.
Now we write gn = e−iαn , where αn’s are real numbers. Let δ > 0 be

arbitrary. Then by Kronecker’s theorem, there exists a real number t > T and
integers x1, · · · , xN such that∣∣∣∣t log(n+ a)

2π
− αn

2π
− xn

∣∣∣∣ < δ

2π
,

for all 0 ≤ n ≤ N . Multiplying both sides by 2π, we get

|t log(n+ a)− αn − 2πxn| < δ,

for all 0 ≤ n ≤ N . Hence using the continuity of the function e−ix, we get

|e−it log(n+a) − e−iαn | < ε,

which implies
|(n+ a)−it − gn| < ε,

for all 0 ≤ n ≤ N . This completes the proof of the proposition.
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Our next proposition shows that with a little modification in the properties
of gn, one can get a similar result as above when a ∈ R+ is an algebraic number.
In this case, consider the number field K = Q(a). For each prime ideal p in the
ring of integers OK , let χ(p) be a complex number with |χ(p)| = 1. We extend χ
to the elements γ of the number field K by setting

χ(γ) =
∏
p

χ(p)νp if γOK =
∏
p

pνp .

Here, we have the following proposition.

Proposition 7.2.2. Let N ∈ N, a ∈ Q ∩ R+. Also let K = Q(a) and χ be as
before. Then for any real number T and ε > 0, there exists a real number t > T
such that

|(n+ a)−it − χ(n+ a)| < ε

for all 0 ≤ n ≤ N .

Proof. Consider the multiplicative subgroup A of R∗ generated by

{n+ a | 0 ≤ n ≤ N}.

One can choose a Z-basis B := {sj | 1 ≤ j ≤ l} of A. Then for any 0 ≤ n ≤ N ,
there exists an integer M > 0 such that

n+ a =

l∏
j=1

s
uj
j ,

where uj ∈ Z with |uj | ≤M . This implies that

χ(n+ a) =

l∏
j=1

χ(sj)
uj . (7.1)

By Kronecker’s theorem, for any ε > 0, there exists a real number t > T such
that

|s−itj − χ(sj)| < ε, (7.2)

for all sj ∈ B. Now for any n+ a ∈ A and ε > 0, we have by (7.1) and (7.2) that

|(n+ a)−it − χ(n+ a)|

=

∣∣∣∣∣∣
l∏

j=1

sj
−ituj −

l∏
j=1

χ(sj)
uj

∣∣∣∣∣∣ , where uj ∈ Z and |uj | ≤M

≤ M

l∑
j=1

∣∣sj−it − χ(sj)
∣∣ < ε.

This completes the proof of the proposition.

Now we prove another proposition which will play an important role to prove
Theorem 7.1.2.
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Proposition 7.2.3. Let 0 < r1 ≤ r2 ≤ · · · ≤ rn be real numbers. Then the set

∆n := {c1r1 + · · ·+ cnrn | |ci| = 1, ci ∈ C}

for n ≥ 1 is a closed annulus with outer radius Rn := r1 + · · · + rn and inner
radius

Tn :=

{
rn −Rn−1 if Rn−1 ≤ rn,

0 otherwise.

Here R0 := 0.

Proof. Note that the set ∆n is compact, connected and invariant under rotation
around the origin. Hence ∆n is a closed annulus with outer radius Rn = r1 +
· · ·+ rn and inner radius, say Tn for any n.

We will prove by induction on n that Tn has the desired form. For n = 1, it is
trivially true. Suppose that it is true for Tn−1. In order to prove that the result
is true for Tn, we consider two cases: either rn ≥ Rn−1 or rn ≤ Rn−1. In the
first case, Tn clearly has the desired form. When rn ≤ Rn−1 and Tn−1 = 0, then
rn ∈ ∆n−1 and hence 0 ∈ ∆n. If Tn−1 6= 0, then there is an element r ∈ ∆n−1

with |r| ≤ rn−1. Since rn−1 ≤ rn ≤ Rn−1, once again 0 ∈ ∆n. This completes
the proof.

Before we state our next proposition, we shall formulate a hypothesis which
is integral to our proofs.

Hypothesis: For any δ > 0, there exists a function F (s) analytic in the
region <(s) > 1 satisfying the following properties;

1. There exists a σ0 with F (σ0) = 0 and 1 < σ0 < 1 + δ.

2. For any real number T and any real numbers ε, θ > 0, there exists a real
number t > T such that

|L(s+ it, f, a)− F (s)| < ε for all σ > 1 + θ.

In this context, we have the following proposition.

Proposition 7.2.4. Let a be a positive real number and f be as before. Assume
the previous hypothesis. Then L(s, f, a) has infinitely many zeros for σ > 1.

Proof. Let T, β > 0 be real numbers. We will show that there exists a zero s1 of
L(s, f, a) with 1 < <(s1) < 1 + β and =(s1) > T .

Let F (s) be the function corresponding to β in the hypothesis. By property
(1) of F (s), it has a zero σ0 with 1 < σ0 < 1 + β. Since F (s) is an analytic
function, one can choose β1 > 0 such that 1 + β1 < 1 + β and 1 + β1 < σ0 with
F (s) 6= 0 for |s− σ0| = β1. Set

ε := min
|s−σ0|=β1

|F (s)| and θ < σ0 − β1 − 1.

Then σ0 − β1 > 1 + θ and hence by the property (2) of F (s), there exists a real
number t > T such that

|L(s+ it, f, a)− F (s)| < |F (s)|

on |s − σ0| = β1. Thus by Rouché’s theorem, the function L(s + it, f, a) has a
zero s1 which gives a zero s1 + it of L(s, f, a).
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7.3 Proofs of Theorem 7.1.1 and Theorem 7.1.2

In view of the proposition (7.2.4), our task is reduced to constructing functions
F (s) as described in the above hypothesis.

7.3.1 Proof of the Theorem 7.1.1

Proof. Let a be a positive transcendental number. In this case, replacing f by −f
if needed, we can assume that the residue 1

q

∑q
b=1 f(b) of L(s, f, a) is a positive

real number.
Since L(s, f, a) converges absolutely for σ > 1, for any δ > 0, one can choose

an integer m such that

m∑
n=0

f(n)

(n+ a)1+δ
>

∞∑
n=m+1

f(n)

(n+ a)1+δ
. (7.3)

Define

F (s) :=

∞∑
n=0

f(n)α(n)

(n+ a)s
for <(s) > 1,

where α is an arithmetic function defined by

α(n) :=

{
−1 if n > m,

1 otherwise.

By (7.3), it is clear that F (1+δ) > 0. On the other hand, since L(s, f, a) has a pole
at s = 1, F (s)→ −∞ as s→ 1+. Since F (s) is a real valued continuous function
when s is real and s > 1, it follows that F (s) has a zero in the interval (1, 1 + δ).
Thus F (s) is an analytic function satisfying (1). It follows from Proposition 7.2.1
that given any real numbers T, ε > 0, there exists a real number t > T such that

|L(s+ it, f, a)− F (s)| < ε for <(s) > 1.

Since F (s) is a function satisfying properties (1) and (2), Theorem 7.1.1 follows
from Proposition 7.2.4.

7.3.2 Proof of the Theorem 7.1.2

Proof. Suppose that a is a positive algebraic irrational number and f is a positive
real valued periodic function satisfying the conditions of Theorem 7.1.2. Let δ > 0
be fixed. We shall define for <(s) > 1, a function

F (s) =
∞∑
n=0

f(n)χ(n+ a)

(n+ a)s
,

where χ is a suitable character on the group of fractional ideals of
K = Q(a). Here χ(n + a) is the value of this character on the principal ideal
(n+ a)OK .

Clearly, such a function is holomorphic in <(s) > 1. Furthermore, it follows
from Proposition 7.2.2 that F (s) satisfies property (2).
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We shall show that it is possible to define χ suitably to ensure the existence
of a σ with 1 < σ < min (1 + δ, 2) satisfying

F (σ) =

∞∑
n=0

f(n)χ(n+ a)

(n+ a)σ
= 0. (7.4)

Thus this function also satisfies property (1) and hence will establish the theorem.
We first begin by setting N1 = [max (N0, 107, 107a)], where [x] is the integral

part of a real number x. Then since L(s, f, a) has a pole at s = 1, there exists a
σ such that

N1∑
n=0

f(n)

(n+ a)σ
< 10−2

∞∑
n=N1+1

f(n)

(n+ a)σ
(7.5)

and 1 < σ < min (1 + δ, 2).
We now define an infinite sequence of integer pairs Nj ,Mj for j ≥ 1 by

Mj :=

[
Nj

106

]
and Nj+1 := Nj +Mj .

To prove (7.4), it is sufficient to show that we can construct a character χ such
that ∣∣∣∣∣∣

Nj∑
n=0

f(n)χ(n+ a)

(n+ a)σ

∣∣∣∣∣∣ < 10−2
∞∑

n=Nj+1

f(n)

(n+ a)σ
(7.6)

for all j.
Let b be the ideal denominator of a so b(aOK) is an integral ideal for every

integer n. If p|b or p|(n + a)b for n ≤ N1, we choose χ(p) := 1. Then by (7.5),
we see that (7.6) is true for j = 1.

Suppose that (7.6) is true for all integers ≤ j. Define two sets of integers as
follows;

P1 :=

Nj < n ≤ Nj+1 | ∃pn|(n+ a)b but pn -
∏

m≤Nj+1
m 6=n

(m+ a)b


and

P2 := {Nj < n ≤ Nj+1 | n 6∈ P1} .

By Cassels’s lemma and the choice of Nj , we have |P1| ≥ 27Mj/50.
Note that if p|

∏
m≤Nj+1

(m + a)b then either p|
∏
m≤Nj (m + a)b or p = pn

for some n ∈ P1 or p is not in either of these sets. By induction hypothesis, we
already know the values of χ(p) for p in the first set and we define χ(p) := 1 for
p in the third set. Now we will define the value of χ(p) for p in the second set in
such a way that (7.6) is true for j + 1.

By the hypothesis of the theorem, we have

f(n)

f(m)
≤ 1.15 for all n,m ∈ N,

and hence
f(n)

(n+ a)σ
< 4

f(m)

(m+ a)σ
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for any n,m ∈ P1. Since |P1| > 5, it follows from Proposition 7.2.3 that∑
n∈P1

f(n)χ(n+ a)

(n+ a)σ

can take any value x with

|x| ≤
∑
n∈P1

f(n)

(n+ a)σ
= A1, say.

Write

Γ :=
∑
n≤Nj

f(n)χ(n+ a)

(n+ a)σ
+

∑
n∈P2

f(n)χ(n+ a)

(n+ a)σ

and set

A2 : =

∣∣∣∣∣∣
∑
n≤Nj

f(n)χ(n+ a)

(n+ a)σ

∣∣∣∣∣∣
A3 : =

∑
n∈P2

f(n)

(n+ a)σ
.

Also set

x :=


−Γ if 0 < |Γ| ≤ A1,

−A1Γ/|Γ| if |Γ| > A1,

0 if Γ = 0.

Then by appropriate choice of χ(n+ a) for n ∈ P1, we have∣∣∣∣∣∣
∑

n≤Nj+1

f(n)χ(n+ a)

(n+ a)σ

∣∣∣∣∣∣ ≤ max {0, A2 +A3 −A1} .

Since |P2| ≤ 23Mj/50 and |P1| ≥ 27Mj/50, we have

A1

A3
≥ 27

23c

(Nj + a)σ

(Nj+1 + a)σ

>
27× 107 × 107

23(107 + 11)2 × 1.15
>

101

99
.

This implies that
100(A1 −A3) > A1 +A3. (7.7)

Set

A4 :=
∑

n>Nj+1

f(n)

(n+ a)σ
.

By induction,
A2 < 10−2(A1 +A3 +A4).

Thus by (7.7), we have
A2 +A3 −A1 < 10−2A4.

This proves (7.6) by induction and hence we have (7.4). This completes the proof
of the theorem.
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7.4 Zero-free region for L(s, f, a)

In the other direction, we establish zero-free regions for L(s, f, a) for an arbitrary
periodic arithmetic function f not identically zero and prove Theorem 1.2.19
which is the following:

Theorem 7.4.1. Let f be a non-zero periodic arithmetic function with period
q ≥ 1. Also, let a be any positive real number and

c = max
1≤b≤q

{1, |f(b)|}.

Then we have L(s, f, a) 6= 0 for σ > 1 + c′(a + n0), where n0 is the smallest
integer such that f(n0) 6= 0 and c′ = c/|f(n0)|.

Proof. Let f be an arbitrary non-zero periodic arithmetic function with period
q ≥ 1. Note that for <(s) = σ > 1, one has

|L(s, f, a)| =

∣∣∣∣∣
∞∑
n=0

f(n)

(n+ a)s

∣∣∣∣∣
≥ |f(n0)|

(n0 + a)σ
− c

(n0 + a+ 1)σ
− c

∞∑
n=2

1

(n0 + a+ n)σ

≥ |f(n0)|
(n0 + a)σ

− c

(n0 + a+ 1)σ
− c

∫ ∞
1

dx

(n0 + a+ x)σ

≥ |f(n0)|
(n0 + a)σ

− c

(n0 + a+ 1)σ
− c (n0 + a+ 1)1−σ

σ − 1
.

In order to prove that |L(s, f, a)| 6= 0 for σ > 1 + c′(n0 + a), it is sufficient to
prove that

|f(n0)|
(n0 + a)σ

> c

[
1

(n0 + a+ 1)σ
+

(n0 + a+ 1)1−σ

σ − 1

]

i.e.
(n0 + a+ 1)σ

(n0 + a)σ
> c′

[
1 +

n0 + a+ 1

σ − 1

]

i.e.

(
1 +

1

n0 + a

)σ
> c′

[
1 +

n0 + a+ 1

σ − 1

]
in that region. Here c′ = c/|f(n0)|. To prove this, we consider two functions

h1(σ) := 1 +
σ

n0 + a

and h2(σ) := c′
[
1 +

n0 + a+ 1

σ − 1

]
for σ > 1. After evaluating the value of above two functions at σ = 1+c′(n0 +a),
we get

h1(1 + c′(n0 + a)) = h2(1 + c′(n0 + a)) = 1 + c′ +
1

n0 + a
.
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Again note that h1 is an increasing function of σ whereas h2 is a decreasing
function of σ and they are equal where σ = 1 + c′(n0 + a). Hence if σ > 1 +
c′(n0 + a), we have

h1(σ) > h2(σ).

which implies (
1 +

σ

n0 + a

)
> c′

[
1 +

n0 + a+ 1

σ − 1

]
.

Thus we have(
1 +

1

n0 + a

)σ
>

(
1 +

σ

n0 + a

)
> c′

[
1 +

n0 + a+ 1

σ − 1

]
.

Hence we get |L(s; a, f)| > 0. This completes the proof of the theorem.

7.5 Application

As a curious application of the above theorem, we prove a variant of a conjecture
of Erdös (see also [25]) about non vanishing of L(1, f), where f belongs to a
certain class of rational valued arithmetic functions. In this direction we prove
the Theorem 1.2.20, which is the following:

Theorem 7.5.1. Let f be a non-zero periodic arithmetic function with period
q > 1 and

f(n) =

{
±λ if q - n,

0 otherwise.

Then L(k, f) 6= 0 for all integers k ≥ 2.

Proof. We first assume that

f(n) =

{
±1 if q - n,

0 otherwise .

In this case we have a = 1, n0 = 1, c = 1 and c′ = 1. Then by Theorem 7.4.1,
we see that L(k, f) 6= 0 for all k > 3.

Now if f(1) = 1, then for k = 2, we note that

L(2, f) > 1− {ζ(2)− 1} = 2− ζ(2) > 0

and for k = 3, we note that

L(3, f) > 1− {ζ(3)− 1} = 2− ζ(3) > 0.

Again if f(1) = −1, then for k = 2, we note that

L(2, f) < −1 + {ζ(2)− 1} = ζ(2)− 2 < 0

and for k = 3, we note that

L(3, f) < −1 + {ζ(3)− 1} = ζ(3)− 2 < 0.

Hence L(k, f) 6= 0 for all integers k ≥ 2.
In the general case write g(n) = λf(n). Then L(k, g) = λL(k, f) and hence

L(k, g) = 0 if and only if L(k, f) = 0. This completes the proof.
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Birkhäuser, Basel, 1994.

103


	Notations
	Abstract
	List Of Publications Related to This Thesis
	Introduction
	 Historical Background
	Chowla's Conjecture
	Recent Developments 
	Results of Davenport and Heilbronn and recent developments

	Main Results
	Organization of the Thesis

	Preliminaries
	Some results from Algebraic Number Theory 
	Dirichlet Characters
	Dirichlet series and L-functions
	Gauss sums and Kronecker symbol
	Dedekind-Frobenius determinant
	Okada's theorem
	Kronecker's theorem, Rouché's theorem and Cassels lemma
	Baker's theorem
	Erdös conjecture

	The Chowla-Milnor spaces
	Introduction
	Basic lemmas
	Proof of theorem (3.2.1)
	Concluding Remarks

	The Strong Chowla-Milnor spaces
	Introduction
	Dimension of the Strong Chowla-Milnor Spaces
	Proof of theorem (4.2.1)
	Proof of theorem (4.2.2)

	Relation with Strong Polylog conjecture
	Proof of theorem (4.3.2)

	Concluding Remarks

	The Chowla-Milnor conjecture over number fields
	Introduction
	Generalized Zagier spaces
	Proof of theorem (5.2.1)

	Linear independence of L-functions
	Concluding Remarks

	The Strong Chowla-Milnor conjecture over number fields
	Introduction
	Dimension of V"0362Vk(q,F)
	The case FQ(q)=Q
	The case F=Q(q)

	Transcendence of (k)
	Relation with the Strong Polylog conjecture
	Proof of theorem (1.2.11)


	Generalized Hurwitz zeta functions
	Introduction
	Some propositions
	Proofs of Theorem 7.1.1 and Theorem 7.1.2
	Proof of the Theorem 7.1.1
	 Proof of the Theorem 7.1.2

	Zero-free region for L(s,f,a)
	Application

	Bibliography

