
GEOMETRY OF TENSOR
TRIANGULATED CATEGORIES

By
Umesh Vanktesh Dubey

MATH10200604010

The Institute of Mathematical Sciences
Chennai 600113

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

October, 2011



Homi Bhabha National Institute
Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation
prepared by Umesh Vanktesh Dubey entitled “GEOMETRY OF TENSOR
TRIANGULATED CATEGORIES” may be accepted as fulfilling the disser-
tation requirement for the Degree of Doctor of Philosophy.

Date :
Chairman - R. Balasubramanian

Date :
Convener - Kapil Hari Paranjape

Date :
External Examinar - S. Ramanan

Date :
Member - D. S. Nagaraj

Date :
Member - P. Sankaran

Final approval and acceptance of this dissertation is contingent upon the
candidate’s submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my
direction and recommend that it may be accepted as fulfilling the dissertation
requirement.

Date :
Guide - Kapil Hari Paranjape Place :



STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements

for an advanced degree at Homi Bhabha National Institute (HBNI) and is

deposited in the Library to be made available to borrowers under rules of

the HBNI. Brief quotations from this dissertation are allowable without spe-

cial permission, provided that accurate acknowledgement of source is made.

Requests for permission for extended quotation from or reproduction of this

manuscript in whole or in part may be granted by the Competent Authority

of HBNI when in his or her judgment the proposed use of the material is in

the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

UMESH VANKTESH DUBEY



Declaration

I hereby declare that the investigation presented in this thesis has been

carried out by me. The work is original and has not been submitted ear-

lier as a whole or in part of a degree/diploma at this or any other Institu-

tion/University.

UMESH VANKTESH DUBEY



Acknowledgements

I thank my advisor Prof. K. H. Paranjape for suggesting to me this problem.
I learned a lot while discussing with him. It gives me a great pleasure to
thank him for his support and encouragement. I also thank him for lending
a helping hand whenever I had trouble.

I would like to thank Prof. S. Ramanan, for many discussions and for his
constant encouragement. I am very grateful to him for teaching me through
various courses in IMSc and CMI. I consider myself very fortunate for having
found his generous help.

I record my thanks to Prof. D. S. Nagaraj for many important discussions.
I thank him for teaching me basics of Algebraic Geoemtry. The reading
course on Hartshorne’s book with Ajay and Preena under his guidance is a
major source for my understanding of Algebraic Geometry.

I thank Prof. Amritanshu Prasad for teaching me representation theory
on many occasions, specially reading course with Pooja under his guidance
was a great help to me.

I also thank my friend Vivek for helping me on many occasions to learn
this subject. A major part of thesis is based on work done in collaboration
with him.

I thank all the academic and the administrative members of the Insti-
tute of Mathematical Sciences for giving a conducive environment to pursue
research. I also thank Indian Institute of Science Education and Research
Mohali for providing me great hospitality during my numerous visits to my
advisor in that institute.

I thank Prof. R. C. Cowsik and my other teachers from Mumbai Univer-
sity for providing encouragement and motivation to do research.

I thank my friends Ajay, Sundar, Prem, Pooja, Preena, Shilpa, Vivek,
Tejas, Sarbeswar, Soumya, Neeraj, Sudhir, Ramchandra, Srikanth, Panchu,
Gopal, Prateep, Ajay kumar, Preetinder, Aditya, Ritabrata and junaid for
keeping my spirits high throughout. I thank my office mates Sundar, Ajay,
Krishnan and Issan. It has been a pleasant experience to share office with
them.

I thank my sister Sadhana for her support and encouragement. I also
thank my other relatives for their support, special thanks to Kamlesh and
Renu. Last but not least I thank my parents for giving me the freedom to
pursue research. This thesis is dedicated to them.

UMESH VANKTESH DUBEY



Abstract

Given a quasi-projective scheme X with an action of a finite group G we
consider the tensor triangulated category DG(X) . We relate the spectrum
of this category, as defined by P. Balmer, with the spectrum of the category
of all perfect complexes over the scheme X/G. Similarly, we consider the
category of perfect complexes Dper(X) over a split super-scheme X. We give
isomorphism of the spectrum of Dper(X) with the spectrum of Dper(X0).
Here X0 denotes the even part of the super-scheme X ; it is a scheme in the
usual sense.
The computation of these two spectrums gives examples of two distinct cat-
egories with isomorphic Balmer spectrums. Our result also shows the limita-
tions of the geometric notion spectrum beyond the category of schemes. We
suggest some possible generalisations of Balmer’s notion of spectrum.
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Chapter 1

Introduction

This work is motivated by Balmer’s construction of the triangular spectrum.
We have tried to understand geometric objects coming from a derived cat-
egory of coherent sheaves and some triangulated categories. The study of
geometric objects coming from triangulated category is interesting for many
reasons. One reason is to extend the study of schemes from commutative
algebras to non-commutative algebras. Another reason is to capture some
geometry which is not visible via scheme structure; the formulation of homo-
logical mirror symmetry by Kontsevich is one such example. There are other
examples outside algebraic geometry which make the study of such geometric
association interesting.

The notion of triangulated categories was first axiomatized by
Grothendieck and Verdier in order to develop Serre duality in a relative set-
ting. It was an idea of Grothendieck to extract more homological information
from the totality of complexes. Verdier and Illusie had developed triangu-
lated categories, like the derived category of coherent sheaves and perfect
complexes respectively, for better understanding of dualities.

Now triangulated categories have found many applications in other
branches of mathematics outside algebraic geometry.

In algebraic geometry triangulated categories arose as the derived cate-
gory of coherent sheaves and also as the category of perfect complexes on
schemes; which was later realized as compact objects in the derived cat-
egory of quasi-coherent sheaves over quasi compact and separated schemes
by Neeman[33]. In modular representation theory triangulated categories ap-
pear in the form of the stable module category. The introduction to Balmer[3]
contains more examples and motivation to study such abstract objects.

Gabriel[15] and later Rosenberg[37] proved that abelian category of quasi-
coherent sheaves completely determines the underlying variety. Mukai[29]
had given examples of two non-isomorphic varieties, which have equivalent
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derived categories of coherent sheaves. So the derived category of a coher-
ent sheaves cannot reconstruct the underlying variety for these cases. How-
ever Bondal and Orlov[9] proved it does determine the scheme whenever the
canonical sheaf or the anti-canonical sheaf is ample. Still it is an interesting
question to find an optimal class of varieties with such reconstruction results.

Since the triangulated structure alone is not enough for reconstruction
Balmer[3] used tensor structure to reconstruct a smooth scheme from its
bounded derived category of coherent sheaves. In fact, Balmer used the cat-
egory of perfect complexes for quasi compact and quasi separated schemes
to reconstruct the underlying schemes. The category of perfect complexes
with tensor structure contains enough information about the scheme even in
singular case. Balmer first constructs a topological space, which he called
the triangular spectrum, associated with any essentially small tensor trian-
gulated category. Balmer proved this topological space gives the universal
support data on a triangulated category. Construction of the triangular spec-
trum depends on a classification of certain thick subcategories. Balmer used
the classification of thick subcategories given by Thomason[39], which was
motivated by results of Neeman[31] and Hopkins[21] for the affine case, to re-
late the triangular spectrum with the underlying scheme. Further, using the
localisation result of Thomason[40], Balmer defined a sheaf of local triangu-
lated categories. By considering endomorphisms of this sheaf of triangulated
categories, Balmer constructs a sheaf of rings which reconstructs the scheme
structure. Balmer firstly gave the reconstruction of quasi compact and quasi
separated schemes using atomic subcategories, (see [2]). Later Balmer gen-
eralized the notion of prime ideal from commutative algebra to this abstract
setting and demonstrated the usefulness of this concept in this generality,
(see [3]). Balmer proved his reconstruction theorem under the assumption
that the space is topologically Noetherian which was later removed by Krause
et. al.[11]. Balmer proved later that this construction always gives a locally
ringed space. He also gave an example coming from topology where this
locally ringed space fails to be a scheme.

Using his definition of triangular spectrum Balmer applied many tech-
niques from algebraic geometry to modular representation theory like gluing
and the Picard group[5]. One question that naturally arises is how good
is Spec as an invariant of the tensor triangulated category? It turns out
that there do exist pairs of tensor triangulated categories which have iso-
morphic Specs (isomorphic as ringed spaces). We give two such examples.
This motivates the need for some other finer geometric object attached to
tensor triangulated categories. We shall compute the triangular spectrum in
an equivariant setting, and for some superschemes by relating it with already
known triangular spectrums. This computation is the starting point of this
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work and occupies a large part of it. More precisely, the first example con-
sists of smooth quasi projective scheme, say X, with action of a finite group
G as an automorphism. Hence we get the finite map π : X → Y := X/G
which will give an exact functor

π∗ : Dper(X/G)→ DG(X).

We prove the following theorem.

Theorem 1.0.1. Assume that the scheme X is smooth quasi projective and
G is a finite group acting on X. The induced map

Spec(π∗) : Spec(DG(X))→ Spec(Db(X/G))

is an isomorphism of locally ringed spaces.

Here Spec denotes the construction due to Balmer[3]. The proof involves
a computation using some results from representation theory. The second
example is a computation of the Balmer spectrum for a split superscheme
X. Superschemes, defined by Manin and Deligne (see for example [27]), are
also an important object of study in modern algebraic geometry, specially due
to applications in physics. We consider the triangulated category Dper(X)
of “perfect complexes” (the definition being modified appropriately in the
super setting) on this superscheme.

Theorem 1.0.2. Let X be a split superscheme. Let X0 = (X,OX,0) be the
0-th part of this superscheme. X0 is by definition a scheme. Then we have
an isomorphism of locally ringed spaces

f : X0 → Spec(Dper(X)).

The proof of homeomorphism adapts the classification of thick tensor
ideals due to Thomason[39] as demonstrated by Balmer[3]. Again, follow-
ing Balmer[3] we use the generalized localization theorem of [Theorem 2.1,
Neeman[33]] to finish the proof.

We also tried to explore some ways to strengthen the geometric associa-
tion of Balmer so that we can recover the tensor triangulated category. This
is the problem of categorical reconstruction, of realizing the tensor triangu-
lated category which we started with, as the tensor triangulated category
canonically associated with a geometric object.
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Overview of thesis

Now we shall give the content of each chapter for the convenience of the
reader.

The first chapter recalls various preliminaries which are well known.
We shall start with the definition of triangulated categories and exact func-
tors between them. We shall also recall the definition of a derived category
which is an important example of a triangulated category. Then we state
the existence of derived functors and various relations between them. We
recall the definitions of various functors in the theory of schemes. Next, by
relating the sheaves of modules over superschemes with usual schemes, we
give generalizations of many definitions and properties of perfect complexes
for the super scheme case.

The second chapter recalls the definition of spectrum of a tensor tri-
angulated category defined by Balmer. We recall various properties and
general results from the papers of Balmer. We state the reconstruction re-
sult of Balmer as extended to non-Noetherian case by Krause[11]. We recall
the definition of support data and the universal property of Balmer spectrum
which is used crucially for the reconstruction. We state the functoriality re-
sult for the Balmer spectrum under non-unital functors (but the proof is not
very different).

The third chapter contains new results which relate the spectrum of
the bounded derived category of equivariant sheaves over a smooth quasi
projective scheme with the spectrum of perfect complexes over the orbit
space. First, we recall some basics on equivariant sheaves and we then prove
the main theorem by dividing it into three cases - trivial action, free action
and the general case. We also give the proof for curves as an interesting and
important example.

The fourth chapter computes the spectrum for the tensor triangulated
category of a split superscheme. In fact, this computation follows the steps
laid down by Balmer for usual schemes. We get a relation between the spec-
trum of the underlying even scheme with the spectrum of a superscheme. We
also recall the result of Neeman which is a generalization of the localization
result of Thomason. The classification of radical thick tensor ideals is given
by relating them with usual schemes. Here we use the generalization of the
category of perfect complexes given earlier.

The fifth chapter contains some of our suggestions for the enrichment of
Balmer spectrum. In the first section we give two ways of defining generalized
spaces using the underlying topological space of the Balmer spectrum. In
second section we give a functor of points approach to the Balmer spectrum.
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Chapter 2

Background material and basic
tools

In this chapter we recall some basic definitions and useful results. We briefly
describe the contents of this chapter. We start with definition of triangulated
category in first section and we then recall some basic results. Later, in var-
ious subsections we recall the definition of an exact functor between two tri-
angulated categories, the definition of subcategories and localization. These
notions are used by Balmer to define his spectrum. We also briefly mention
the relation between a thick subcategory and the Verdier localization. The
second section describes the derived category, which is an important example
of a triangulated category. We recall Grothendieck’s result on the existence
of a derived functor. In various subsections we describe derived categories of
schemes, superschemes and G-schemes. At the end we relate the category of
perfect complexes over a superscheme with the category of perfect complexes
over usual scheme. A reference to each result is given. We mostly follow the
references [23][20][16][19] [40][42][22][26].

2.1 Triangulated category

The notion of a triangulated category was defined by Grothendieck and
Verdier in order to extend Serre duality. We shall follow[20][16][23] for basic
definitions and some basic properties. Also, we use auto-equivalence in place
of automorphism for the translation functor in the definition. For simplicity,
we shall not mention the various natural isomorphisms.

Definition 2.1.1. An additive category T with an additive auto-equivalence
S : T → T ;A 7→ A[1], suspension or translation, is called a suspended
category.
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Here we have used A[1] in place of S(A) and in general we shall use A[i]
for Si(A). A triangle in a suspended category is a sextuple (A,B,C, f, g, h)
of three objects and three morphisms as follows,

A
f−→ B

g−→ C
h−→ A[1].

A morphism between two triangles (A,B,C, f, g, h) and (A′, B′, C ′, f ′, g′, h′)
is defined as a commutative diagram,

A
f //

��

B
g //

��

C
h //

��

A[1]

��
A′

f ′ // B′
g′ // C ′

h′ // A′[1].

Definition 2.1.2. A suspended category with a triangulation is called tri-
angulated category. Here triangulation on a suspended category is defined as

a collection of triangles A
f−→ B

g−→ C
h−→ A[1], called distinguished triangles,

s.t. following axioms are satisfied,

(TR1) Given objects A and B, and a morphism f : A→ B in T
(i) The triangle A

id−→ A→ 0→ A[1] is a distinguished triangle.

(ii) There exists a distinguished triangle A
f−→ B

g−→ C
h−→ A[1] contain-

ing the morphism f .
(iii) Every triangle isomorphic to a distinguished triangle is also a dis-
tinguished triangle.

(TR2) A triangle A
f−→ B

g−→ C
h−→ A[1] is distinguished iff the triangle B

g−→
C

h−→ A[1]
−f [1]−−−→ B[1] is distinguished.

(TR3) Following commutative diagram can be completed to a morphism of
triangles

A
f //

��

B
g //

��

C
h //

���
�
� A[1]

��
A′

f ′ // B′
g′ // C ′

h′ // A′[1]

(TR4) (Verdier Axiom) Given three distinguished triangles
A

f−→ B → C ′ → A[1]

B
g−→ C → A′ → B[1]

A
g◦f−−→ C → B′ → A[1]

6



there exists a distinguished triangle

C ′ → B′ → A′ → C ′[1]

s.t. following diagram is commutative,

A
f //

idA

B //

g

��

C ′ //

��

A[1]

idA[1]

��
A

g◦f //

f

��

C //

idC

B′ //

��

A[1]

f [1]

��
B

g //

��

C //

��

A′ //

idA′

B[1]

��
C ′ // B′ // A′ // C ′[1]

Originally Verdier called it Octahedral Axiom due to following descrip-
tion of this axiom,

B′

**TTTTTT

����

+1������

������

A′

+1

��

44jjjjjj
C ′

+1oo

+1

�������������������

A
g◦f //

f **TTTTTTTTTTTTT C

OO

????

??????

__????

B
g

44jjjjjjjjjjjj

__?????????????????
.

All non cyclic squares and non cyclic triangles are commutative and
cyclic triangles are distinguished triangles in above octahedron.

Remark 2.1.3. 1. A category that satisfies all axioms except the last
Verdier axiom (TR4) is called a pre-triangulated category.

2. As shown by May[28] some of the conditions are redundant; e.g. in
above definition (TR3) and necessary part of (TR2) follows from the
remaining axioms.

(While writing the sets of homomorphisms, we will avoid writing the
category as a subscript with Hom(, ) to avoid cluttering the notation.)

There exist many triangulated structures on a suspended category. One
such example is obtained by just changing sign in a distinguished triangle as

follows. We say A
f−→ B

g−→ C
h−→ A[1] is an anti-distinguished triangle if the

7



triangleA
f−→ B

g−→ C
−h−→ A[1] is a distinguished triangle. The collection of all

such anti-distinguished triangles gives another triangulation of the category
T , see [ Def 1.5.9, Kashiwara[23]]. Given a triangulated category T , we have
following well known results,

Proposition 2.1.4. 1. For any distinguished triangle A
f−→ B

g−→ C
h−→

A[1], the composite g ◦ f is zero.

2. Given a distinguished triangle A
f−→ B

g−→ C
h−→ A[1], the triangle A

−f−→
B
−g−→ C

−h−→ A[1] is also distinguished.

3. The collection of distinguished triangles is closed under taking finite
direct sums.

4. There is a canonical triangulation on the opposite category of T i.e.
dual triangulation.

There are some useful results which can be proved using these results and
definitions, see Hartshorne[20] or Manin[16].

Proposition 2.1.5. 1. Every distinguished triangle A
f−→ B

g−→ C
h−→ A[1]

gives a long exact sequences of abelian groups as follows,

→ Hom(D,A)→ Hom(D,B)→ Hom(D,C)→ Hom(D,A[1])→ .

Similarly we have an exact sequence using the other functor,

→ Hom(C,D)→ Hom(B,D)→ Hom(A,D)→ Hom(C[−1], D)→ .

2. (five lemma) Given a commutative square with the vertical maps as
isomorphisms, there exists a third vertical morphism using [TR3]. This
vertical morphism is an isomorphism,

A
f //

o
��

B
g //

o
��

C
h //

���
�
� A[1]

o
��

A′
f ′ // B′

g′ // C ′
h′ // A′[1]

3. Given a distinguished triangle A
f−→ B

g−→ C
h−→ A[1], the object C is

referred as a cone of the morphism f . A cone of any morphism is
unique up to (non-unique) isomorphism.
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The last statement of previous proposition says that a cone of any mor-
phism is not unique in general however a lemma proved by Deligne et. al.[7]
in this context is quite useful.

Lemma 2.1.6 ([7]). Given two distinguished triangles and a map v : B → B′

,

A
f //

u

���
�
� B

g //

v

��

C
h //

w

���
�
� A[1]

u[1]

���
�
�

A′
f ′ // B′

g′ // C ′
h′ // A′[1]

following conditions are equivalent,

1. g′vf = 0

2. there exists a map u s.t. first box in diagram is commutative.

3. there exists a map w s.t. second box in diagram is commutative.

4. (u, v, w) is a map of triangles.

If one of the above conditions is satisfied and also Hom(A,C ′[−1]) = 0 then
morphism u(resp. w) in 2.(resp 3.) is unique.

Orlov[Lemma 3.1.2, [35]] gave a generalization of this result for uniqueness
of the total object (or convolution) of a Postnikov tower.

2.1.1 Exact functor

Recall, that a functor F : C → C ′ between additive categories is called an
additive functor if the maps,

F (A,B) : Hom(A,B)→ Hom(F (A), F (B)),

are group homomorphisms for any pair of objects A and B of C. The functor
F is called fully faithful if, in addition further F (A,B) is an isomorphism
for each pair of objects A and B. An essentially surjective functor is defined
as a functor F s.t. for every object A′ of C ′ there exists an object A in C
with A′ ' F (A). An additive functor is an isomorphism if there exists an
additive functor G : C ′ → C s.t. G ◦ F = IdC and F ◦G = IdC′ . Recall that
a natural transformation η between two functors F and G is by definition a

9



map ηA : F (A)→ G(A) for each object A s.t. for each morphisms f : A→ B
following diagram is commutative,

F (A)

F (f)

��

ηA // G(A)

G(f)

��
F (B)

ηB // G(B).

We shall denote the collection of all natural transformations between two
functors F and G by Nat(F,G). A natural transformation is called a natural
isomorphism if every ηA is an isomorphism. An additive functor is called an
equivalence if there exist an additive functor G and natural isomorphisms

η : F ◦G ∼−→ IdC′ and µ : G ◦ F ∼−→ IdC.

We use the following well known result to check whether a given functor is
an equivalence of categories (see [Prop. 1.16, A. Vistoli [14]])

Lemma 2.1.7. A functor F is an equivalence of categories if and only if it
is fully faithful and essentially surjective.

We define a cohomological functor as follows, see [20],

Definition 2.1.8. An additive functor H : T → A from a triangulated
category T to an abelian category A is called a cohomological functor, if for

any distinguished triangle A
f−→ B

g−→ C
h−→ A[1] the following sequence is

exact,

· · · → H(A)
H(f)−−−→ H(B)

H(g)−−→ H(C)
H(h)−−−→ H(A[1])→ · · · .

We analogously define a contravariant cohomological functor by reversing the
arrows in the long exact sequence.

An example of a cohomological functor (resp. contravariant cohomologi-
cal functor) is given by the functor Hom(A, ) (resp. Hom( , A)) for an object
A in the triangulated category T , see 2.1.5. We denote by Ab the category of
all abelian groups. Since by definition the triangulated category T is an addi-
tive category, we have canonical additive functors given by homomorphisms
as follows,

Hom(A, ) : T → Ab;C 7→ Hom(A,C)

Hom( , B) : T ◦ → Ab;C 7→ Hom(C,B).

10



Following Manin[16], we use the notation

Homi(A,B) := Hom(A[−i], B) = Hom(A,B[i]) for each i ∈ Z.

An additive covariant functor from an additive category to the abelian cat-
egory Ab is called representable if it is naturally isomorphic to a functor of
the form Hom(A, ). The object A is called the representing object of the
functor and it is unique up to unique isomorphism. The following well known
lemma gives an embedding of any category as a full subcategory of category
of all contravariant functors on it.

Lemma 2.1.9 (Yoneda). The functor taking an object A to the representable
functor Hom(A, ) is a fully faithful functor from an additive category T to
Fun(T ◦,Ab). Here Fun(T ◦,Ab) is the category of all contravariant additive
functors from T to Ab.

Remark 2.1.10. The lemma is also valid for all categories by replacing Ab by
Set, the category of sets.

Definition 2.1.11. An additive functor F : T → T ′ between two triangu-
lated categories is called exact or triangulated if it commutes with translation,
i.e. F (A[1]) ' F (A)[1] for each object A of T , and preserves distinguished
triangles, i.e. the triangle

F (A)
F (f)−−→ F (B)

F (g)−−→ F (C)
F (h)−−→ F (A)[1]

is distinguished for every distinguished triangle A
f−→ B

g−→ C
h−→ A[1].

An exact functor is called an isomorphism (resp. equivalence) of trian-
gulated categories if it is an isomorphism (resp. equivalence) as an additive
functor.

We recall some definitions and properties of an adjoint functor. A functor
F : C → C ′ is called left adjoint of a functor G : C ′ → C or a functor G is
called right adjoint of a functor F if the following conditions are satisfied,
i.e. there exist functorial isomorphisms,

Hom(F (A), A′) ' Hom(A,G(A′)) for all A ∈ ob(C) and A′ ∈ C ′.

If F is a left adjoint of a functor G then there exist adjunction natural
transformations as follows,

σ : IdC → G ◦ F ;A 7→ G ◦ F (A) and ρ : F ◦G→ IdC′ ;F ◦G(A′) 7→ A′.

These maps are given by the image of identity elements via the adjunc-
tion isomorphisms. We recall now some properties of adjoint functors, see
Kashiwara[23] for details.

11



Proposition 2.1.12. Suppose F : T → T ′ is a left adjoint of a functor
G : T ′ → T .

1. The adjoint functor G can be defined using a representing object of the
functor Hom(F ( ), A′) : T ′◦ → Ab for each object A′ ∈ ob(T ′).

2. If F is an exact functor between two triangulated categories then G is
also an exact functor.

3. The adjoint functor of a functor is unique up to isomorphism.

Note that the first assertion relates the existence of an adjoint functor
with the representability of certain functors.

2.1.2 Triangulated subcategory and localization

A triangulated subcategory of a triangulated category T is defined as a full
additive subcategory which is preserved under the suspension functor and
is a triangulated category with induced triangulation from the category T .
Here the induced triangulation is defined as the collection of distinguished
triangles of T with all three objects of triangle from the subcategory. In
other words, we can define triangulated subcategory as a full subcategory
with a triangulated structure s.t the inclusion functor is an exact functor of
triangulated categories.

Definition 2.1.13. 1. A triangulated subcategory is called thick if it is
closed under direct summands of its objects. In other words, a subcat-
egory is called thick if the kernel and cokernel of any projector1 is an
object of the subcategory.

2. A triangulated subcategory is called a triangulated ideal if whenever
two objects of a distinguished triangle are in the subcategory then the
third object is also in the subcategory.

3. A strictly full subcategory is called left (resp. right) admissible subcat-
egory if the inclusion of the subcategory has left (resp. right) adjoint
functor.

4. A left (resp. right) orthogonal subcategory of a triangulated subcategory
S of a triangulated category T is defined as a full subcategory consisting
of objects A ∈ T s.t. Hom(A,B) = 0 (resp. Hom(B,A) = 0) for every
object B ∈ S.

1any endomorphism with p2 = p.
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The definition of an orthogonal subcategory of a given category was intro-
duced by Verdier[41]. He also related it with the quotient by subcategories.
Later we shall describe the definition of quotient in detail. Using [TR1] (i)
and the result 2.1.4 we can see that any triangulated ideal is a thick subcat-
egory.

Localization is another important construction which is used to produce
new examples of triangulated categories from old ones. It has universal
properties similar to localizations in commutative algebra. Localization is
used to invert certain classes of morphisms and this can be done in gen-
eral by formally inverting the arrows. However, we are interested in some
more structure on the collection of homomorphisms. The first problem with
the localization of a class of morphisms in an additive category is to get
an additive category structure on the localized category. The collection of
homomorphisms between two objects might not be a set in general after
localization, see [10.3.6, Weibel[42]] for more discussion on this. As men-
tioned in Weibel[42], this set theoretic difficulty can be avoided by fixing
some Grothendieck universe where this collection is small or by taking a
locally small multiplicative collection. We shall now define the self dual no-
tion of a multiplicative family which ensures the existence of triangulated
structure after the localization, see [41][20][16][23][42].

Definition 2.1.14. A collection S of morphisms in a triangulated category
T is said to be a multiplicative family compatible with the triangulation if
following conditions are satisfied,

SM1 The collection S is closed under composition, i.e. f ◦ g ∈ S whenever
f, g ∈ S, and contains the identity morphism for every objects, i.e.
idA ∈ S for every object A in T .

SM2 (Ore condition) Given two morphisms f and s with s ∈ S there exists
a map s′ ∈ S and a map f ′ s.t. following diagram is commutative,

A′

s′

���
�
�

f ′ //___ B′

s

��
A

f // B.

Similarly we have a dual diagram with arrow reversed i.e. given two
morphisms f ′ ∈ T and s′ ∈ S following diagram is commutative,

A′

s′

��

f ′ // B′

s

���
�
�

A
f //___ B.
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SM3 Following two statements are equivalent for two morphisms f, g : A⇒
B,

1. there exists a morphism s : A′ → A in S s.t. f ◦ s = g ◦ s.
2. there exists a morphism t : B → B′ in S s.t. t ◦ f = t ◦ g.

SM4 (Saturatedness) The map f ◦ g ∈ S and g ◦ h ∈ S if and only if g ∈ S.

SM5 The family S is closed under the action of the translation functor i.e.
s[±1] ∈ S for every s ∈ S.

SM6 The following commutative diagram, with s1, s2 ∈ S, can be completed
to a morphism of a distinguished triangles,

A
f //

s1

��

B
g //

s2

��

C
h //

s3

���
�
� A[1]

s1[1]
��

A′
f ′ // B′

g′ // C ′
h′ // A′[1]

where s3 ∈ S.

If the family satisfies only axioms [Sm1]-[SM3] then it is called a multi-
plicative family and it is called a saturated multiplicative family if, in addition,
the axiom [SM4] is satisfied, see [41]. We recall the explicit construction of
localization, see [III.2.8 lemma [16]] for proof,

Proposition 2.1.15. An additive category C and a multiplicative set S of
morphisms in C define a new category C[S−1]. The objects of C[S−1] are the
same as objects of C and the morphisms between two objects in C[S−1] are
given by equivalence classes,

HomC[S−1](A,B) := {A s←− A′
f−→ B/s ∈ S and f ∈ HomC(A

′, A)}/ ∼ .

Here the pair of morphisms A
s←− A′

f−→ B is equivalent to A
t←− A′′

g−→ B if
there exist a morphism r : A′′′ → A′ in S and a morphism h : A′′′ → A′′ s.t.

s ◦ r = t ◦ h and f ◦ r = g ◦ h. Given two morphisms A
s←− A′

f−→ B and

B
t←− B′

g−→ C there exist morphisms t′ : A′′ → A′ in S and f ′ : A′′ → B′

using [SM2].

A′′′

r

}}{{{{{{{{
h

!!CCCCCCCC

A′

s

~~~~~~~~~ f

**VVVVVVVVVVVVVVVVVVVVVVVV A′′
g

  AAAAAAAA
t

ttiiiiiiiiiiiiiiiiiiiiiiii

A B
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We define the composition as A
s◦t′←−− A′′

g◦f ′−−→ C. There is a canonical functor
Q : C → C[S−1] given by identity on objects and the additive map Q(A,B) :

HomC(A,B) → HomC[S−1](A,B) given by (f : A → B) 7→ (A
idA←−− A

f−→ B).
This functor sends each morphism in S to an isomorphism.

The collections of morphisms in the localization category can also be
defined as a filtered limit (or inductive limit) of certain functors which we
will briefly indicate here. Given an object A of an additive category C we
can define a new category S/A. The objects of S/A consist of arrows of the
form s : A′ → A with s ∈ S and morphisms consist of a map t : A′′ → A′

with following commutative diagram

A′′

s′′ !!BBBBBBBB
t // A′

s′

��
A.

The axioms [Sm1]-[SM3] ensures that the category (S/A)◦ is a filtered
category, see Verdier[41]. Hence the morphism can be defined as a filtered
limit

HomC[S−1](A,B) := lim
A′∈(S/A)◦

HomC(A
′, B).

For an additive category C and a multiplicative set (or locally small multi-
plicative family) S the localization has the following universal property,

Proposition 2.1.16. An additive functor F : C → D which takes any mor-
phism from the multiplicative set S to an isomorphism factors uniquely (up
to isomorphism) through the functor Q. In other words, there exists a unique
additive functor G : C[S−1]→ D s.t. following diagram is commutative,

C

F ""EEEEEEEEE
Q // C[S−1]

G

���
�
�

D.

The proof of this universal property can be found in Verdier[41].
Now if we take a multiplicative set compatible with the triangulation

then the localization of a triangulated category is again a triangulated cat-
egory and the natural functor Q is an exact functor, see [IV.2.2 Theorem,
Manin[16]].

In fact, Verdier also related this localization with the quotient of the
triangulated category by certain subcategories. For this we need the saturat-
edness of the multiplicative set. To any saturated multiplicative set S we can
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associate the thick subcategory ϕ(S) which is the full subcategory generated
by all objects C which fit in some distinguished triangle

A
s−→ B → C → A[1]

where s is a morphism contained in the saturated multiplicative set S. Simi-
larly we can associate a saturated multiplicative set ψ(q) to any thick subcat-
egory q by taking the collection of all morphism which fit in a distinguished
triangle

A
f−→ B → C → A[1]

with C as an object of the thick subcategory q. We have following result
relating these two collections, see [41] [16],

Proposition 2.1.17. The two maps defined above give an order2 preserving
bijection between following two collections,

{ saturated multiplicative sets }
ϕ // { thick subcategories}.
ψ
oo

If we take the sub-collection of saturated multiplicative sets compatible
with the triangulation in a triangulated category then the same association
gives a bijection of this collection with the collection of thick triangulated
ideals, see [Cor 2.2.11, Verdier[41]]. We define the quotient by any thick
triangulated ideal q in a triangulated category T as a localization category
T [ψ(q)−1] and we shall denote this quotient by T /q.

2.2 Derived category

In this section we shall give some examples of triangulated categories. First,
we give the definition and certain properties of the derived category of an
abelian category which gives an important class of examples of triangulated
categories, see [16][23] for more details.

Recall that an abelian category is defined as an additive category with
existence of kernel and cokernel of each morphism and a natural isomorphism,
say f̄ , for each morphism f : A → B which fits in following commutative
diagram,

A //

f

33A/ker(f)
f̄ // Im(f) � � // B.

2Orders on both sides are given by inclusion.
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Given an additive categoryA we can define the category of complexes, C#(A)
for # ∈ {+,−, b, ∅}, which is again an additive category. The morphism
f . between two complexes A. and B. is defined as following commutative
diagram,

· · · // Ai−1 di−1
//

f i−1

��

Ai
di //

f i

��

Ai+1 di+1
//

f i+1

��

· · ·

· · · // Bi−1 di−1
// Bi di // Bi+1 di+1

// · · · .

If the category A is an abelian category then the category C#(A) for # ∈
{+,−, b, ∅} is also an abelian category. The homotopy between two mor-
phisms is defined as a collection of morphisms hi : Ai → Bi−1 for each i ∈ Z

· · · // Ai−1 di−1
//

hi−1

||yyyyyyyyy
Ai

di //

hi

||yyyyyyyy
Ai+1 di+1

//

hi+1

||yyyyyyyy
· · ·

hi+2

{{wwwwwwwww

· · · // Bi−1 di−1
// Bi di // Bi+1 di+1

// · · · .

s.t. f i − gi = hi+1 ◦ di + di−1 ◦ hi holds. We say that two morphisms f . and
g. are equivalent, denoted as f . ∼ g., if f . is homotopic to g.. We can easily
check that this defines an equivalence relation on group HomC#(A)(A

., B.) for
# ∈ {+,−, b, ∅}. We define the new category K#(A) by taking the same
objects as C#(A) and morphisms given by quotient

HomK#(A)(A
., B.) := HomC#(A)(A

., B.)/ ∼ .

We can also define the homotopy category by taking the quotient of mor-
phisms by the subgroup containing all morphisms which are homotopic to
the zero map. Since the category A is an additive category, the quotient
category will have structure of an additive category. Hence K#(A) for
# ∈ {+,−, b, ∅} is an additive category. The category K#(A) is called
the homotopy category associated with a category A. We shall denote the
homotopy category without any boundedness assumption on complexes by
K(A) in place of K∅(A) for simplicity. It is easy to see that other three
categories Kb(A),K+(A) and K−(A) are also full additive subcategories of
K(A). The homotopy category associated to an abelian category may not be
an abelian category, see [Ex IV.1.1 , Manin[16]]. We shall now give a transla-
tion functor and a collection of distinguished triangles on the category K(A)
to get a triangulated category structure. The translation functor is defined
as (A.[k])i := Ai+k and di(A.[k]) := (−1)kdi+kA. for each object A.. The map
between morphisms is given as follows

T k(A., B.) : Hom(A., B.)→ Hom(A.[k], B.[k]); f 7→ f [k]
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where f [k]i := f i+k for each i ∈ Z. To define a distinguished triangle we need
definition of the cone of a morphism. The cone of a morphism f : A. → B.

is defined as the following complex

C(f) := A.[1]⊕B. and diC(F ) :=

(
diA.[1] 0

f [1]i diB.

)
=

(
−di+1

A. 0
f i+1 diB.

)
.

It is easy to see that there are maps g : B. → C(f) and h : C(f) → A.[1]
given by canonical inclusion and projection respectively. Hence we get a
triangle for each morphism in category of complexes as follows,

A.
f−→ B. g−→ C(f)

h−→ A.[1].

This will give a triangle in the homotopy category of any additive category.
Now define any triangle isomorphic to above triangle as a distinguished tri-
angle. The homotopy category K(A) with the above defined translation is a
suspended category and moreover there is a following result.

Proposition 2.2.1 (Prop. 1.4.4, Kashiwara[23]). The category K(A) with
translation functor T and the collection of distinguished triangles defined as
above is a triangulated category.

If we take the additive full subcategories Kb(A),K+(A) and K−(A) then
the cone construction of a morphism in any of these subcategories is again
in the same subcategory. Hence these full subcategories, with the induced
translation functor and the induced collection of triangles, are full triangu-
lated subcategories. We assume that the category A is an abelian category.
Hence we can define the cohomological functors H i : K(A) → A for each
i ∈ Z. Recall that the cohomology of a complex A. is defined as a sub-
quotient of A.. If we take Zi(A.) := Ker(diA.) and Bi(A.) := Im(di+1

A. ) then
the cohomology of a complex A. is given by Hi(A.) := Zi(A.)/Bi(A.). Using
these cohomological functors we have following definition,

Definition 2.2.2. A morphism f : A. → B. between two complexes is said
to be a quasi-isomorphism if the induced morphisms Hi(f) are isomorphisms
for each i ∈ Z. We say that A. is quasi-isomorphic to B..

The collection of all quasi-isomorphisms is denoted as Qis. Note that the
definition of quasi isomorphism is not symmetric i.e. there exists an example
of quasi isomorphism which does not have inverse quasi isomorphism. More
precisely if we consider the category K(Z−mod) then the map

0 // Z
2 //

��

Z

��

// 0

��
0 // Z/2Z // 0
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is a quasi isomorphism but there does not exists a map in other direction.
Now to define the derived category we need to invert the collection of quasi
isomorphisms.

Proposition 2.2.3 (Prop 4.1, Hartshorne[20]). The collection Qis is a sat-
urated multiplicative family compatible with the triangulation.

Using the bijection between the collection of saturated multiplicative fam-
ilies and thick subcategories, we get the thick subcategory N , also referred as
a null system in [def 1.6.6 Kashiwara[23]]. The full subcategory N is given
by all objects A. s.t. Hi(A.) = 0 for each i ∈ Z i.e it contains all acyclic
complexes. We define the derived category as the localization of quasi iso-
morphisms or the quotient by the null system.

Definition 2.2.4 (Derived category). The derived category D(A) associated
to any abelian category A is defined as a triangulated category

D(A) := K(A)[Qis−1] = K(A)/N .

Similarly we can also define D(A)± and D(A)b as the localization of the
collection of induced quasi isomorphisms. These triangulated subcategories
can be realized as full subcategories of D(A) due to following result,

Proposition 2.2.5 (Prop. 2.3.5, [41] or Prop. 1.6.5, [23]). Suppose T is
a triangulated category and T ′ is a full triangulated subcategory. We shall
denote by S a multiplicative family and by S ′ the induced family T ′ ∩ S.
Further assume that either of these two conditions is satisfied.

1. Given a morphism s : A→ B with B ∈ Ob(T ′) and s ∈ S there exists
a morphism s′ : B′ → A in multiplicative family S s.t. B′ ∈ Ob(T ′)
and the composition s ◦ s′ ∈ S ′.

2. Similar condition as above with arrow reversed.

Then following assertions are true,

1. The family S ′ is a multiplicative family. If S is a saturated multiplica-
tive family (resp. compatible with the triangulation) then the family
S ′ is also a saturated multiplicative family (resp. compatible with the
triangulation).

2. The induced functor ī : T ′[S ′−1] → T [S−1] given by the canonical in-
clusion functor i : T ′ → T is fully faithful and T ′[S ′−1] is equivalent to
full triangulated subcategory of T [S−1].

Now using above result it is enough to observe that the multiplicative
family Qis satisfies the hypothesis, see [Prop. 1.7.2 , [23]]. Also we can see
that these full subcategories of D(A) satisfies Db(A) = D+(A) ∩ D−(A).
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Digression

We shall extend above construction of derived category associated to an
abelian category. Suppose A is an additive category with a fixed embedding
in an abelian category. It is always possible to choose one such embedding due
to Yoneda’s lemma which gives an embedding ofA inside the abelian category
Fun(A◦,Ab). Let us denote by B a fixed abelian category containing the
additive category A as a full subcategory. Using this embedding we can
get the embedding of the category of complexes C(A) → C(B) . Since A
is a full subcategory of B therefore the inclusion functor will give a fully
faithful functor I : K(A) → K(B) which is an exact functor of triangulated
categories. Since the composition of an exact functor with a cohomological
functor is again a cohomological functor therefore the embedding I gives a
cohomological functors

Hi : K(A)→ B;A. 7→ Hi(A.) := Hi(I(A.)) for each i ∈ Z.

We can define the quasi isomorphism between two complexes as a map f :
A. → B. s.t. the maps Hi(f) : Hi(A.) → Hi(B.) are isomorphisms in B
for each i ∈ Z. This collection of quasi isomorphisms is denoted as Qis as
before. We have following result similar to the abelian category case.

Proposition 2.2.6. The collection Qis is a saturated multiplicative family
compatible with triangulation of triangulated category K(A).

We shall define the derived category associated to an additive category A
as the localization D(A) := K[Qis−1]. Note that this construction depends
on the choice of fully faithful embedding A → B. Hence, for definiteness, we
use the embedding of A in Fun(A◦,Ab) to define the quasi isomorphisms.

2.3 Derived functors

We have already defined an exact functor between two triangulated cate-
gories. There are certain exact functors between derived categories which
approximate the functors at the level of abelian categories. These are called
(left or right) derived functors associated to a functor. We shall recall the
definition of derived functors and some criterion for existence of derived func-
tors. Let A1 and A2 be two abelian categories and F : A1 → A2 be an
additive functor. Recall that the functor F is called left (resp. right) exact
if for each short exact sequence 0 → A′ → A → A′′ → 0 following sequence
is exact,

0→ F (A′)→ F (A)→ F (A′′)( resp. F (A′)→ F (A)→ F (A′′)→ 0).
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We say an additive functor is exact if it is both left and right exact. If we
have any additive functor F : A1 → A2 then we can extend this functor
canonically to the category of complexes. Hence we get an additive functor
C(F ) : C(A1) → C(A2) which takes any complex A. to a complex F (A.). A
morphism f between two complexes A. and B. is homotopic to 0 if there exists
a map (not morphism of complexes) h : A. → B.[−1] s.t. f = d ◦ h + h ◦ d.
Hence we have F (f) = d ◦ F (h) + F (h) ◦ d and therefore the morphism
F (f) is homotopic to 0. This will give the functor K(F ) : K(A1) → K(A2)
which will be an exact functor between these triangulated categories. Recall
the canonical localization functor is denoted as QA1 : K#(A1) → D#(A1)
which is an exact functor. We shall fix the notation # ∈ {+,−, b, ∅} for
boundedness conditions as earlier.

Definition 2.3.1 (Derived functor). The right (resp. left) derived functor
associated to an additive functor F : A1 → A2 is a pair consist of an exact
functor RF# : D#(A1) → D#(A2) (resp. LF# : D#(A1) → D#(A2))and a
natural transformation εF : QA2 ◦ K(F ) → RF# ◦ QA1 (resp. ξF : LF# ◦
QA1 → QA2 ◦ K(F )),

K#(A1)
K(F ) //

QA1

��

K#(A2)

QA2

��

εF

yyr
r

r
r

r

D#(A1)
RF#

// D#(A2)

(resp. similar diagram with ξF in reverse direction), s.t. for any exact functor
G : D#(A1) → D#(A2) and a natural transformation ε : QA2 ◦ K(F ) →
G ◦QA1 (resp. ξ : LF# ◦QA1 → QA2 ◦ K(F )) there exists a unique natural
transformation η : RF# → G (resp. η′ : G → LF#) s.t. (η ◦ QA1) ◦ εF =
ε( resp. ξF ◦ (η ◦ QA1) = ξ). We can also define RF# (resp. LF#)as an
additive functor s.t. following map is a bijection for each exact functor G,

Nat(RF#, G)→ Nat(QA2 ◦ K(F ), G ◦QA1)

( resp. Nat(G,LF#)→ Nat(G ◦QA1 , QA2 ◦ K(F ))).

Remark 2.3.2. 1. If RF# exists then it is unique up to unique isomor-
phism.

2. If we take any full triangulated subcategory of K(A1) which satisfies
the hypothesis of prop.2.2.5 in place of K#(A1) then we have similar
definition of derived functors.

3. If we compose RF# (resp. LF#) with cohomological functor Hi we
get the classical ith right (resp. left) derived functors. We denote it by
Ri(F )# (resp. Li(F )# ).
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Now we describe some cases where derived functors exists. Firstly to get
an isomorphism of derived functor with the satellite functors we assume semi-
exactness on the functor, see [2.3, Grothendieck[19]] for more details. Also
the construction of left derived functors is similar to right derived functors,
so we briefly recall the construction for right derived functors. We need
following definition of adapted class to a given left exact (covariant) functor
F : A1 → A2, [II.6.3 , Manin[16]].

Definition 2.3.3 (F-adapted class). A collection of objects R, stable under
finite direct sum, is said to be adapted to a left exact functor F if following
conditions are satisfied,

1. Every object of A1 is embedded in some object of the collection R.

2. If A → A′′ → 0 is an exact sequence of objects from the collection R
then the sequence F (A)→ F (A′′)→ 0 is also an exact sequence.

3. Given a short exact sequence 0 → A′ → A → A′′ → 0, if objects A′

and A are contained in the collection R, then the object A′′ is also
contained in the collection R.

The category A1 with a collection of objects R which satisfies the condi-
tion (i) above is called a category with sufficient (or enough) R-objects. The
conditions (ii) and (iii) are equivalent to saying that the functor K+(F ) re-
stricted to K+(R) preserves acyclic objects. Therefore the functor Q◦K+(F )
restricted to the subcategory K+(R) takes an acyclic complex to the zero ob-
ject. Hence using the universal property, it factors through localization of
quasi isomorphisms inside K+(R). Now using prop.2.2.5 we get the embed-
ding of K+(R)[Qis−1] inside D+(A1). Since A1 has enough R-objects this
functor is also an essentially surjective functor. Hence it gives an equivalence
of categories K+(R)[Qis−1] and D+(A1) . We have following commutative
diagram,

K+(R) � � //

Q

��

K+(A1)
K+(F ) //

Q

��

K+(A2)

Q

��

D+(A1)

RF+

&&L
L

L
L

L

��

fjo
t

z
�

K+(R)[Qis−1]

∼

77ooooooooooo
// D+(A2).

The derived functor RF+ is defined as a composition of two maps as shown
in above diagram and RiF+(A) represents the i-th cohomology of this com-
plex. A priori, this definition of derived functor depends on the choice of
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F -adapted class and a choice of equivalence coming from it, but using the
universal property of derived functors, we get isomorphisms between all such
constructions.

If an abelian category has sufficiently many injective objects then any
left exact functor admits a right derived functor (or collection of all injec-
tive objects is adapted to every left exact functors), see[ Theorem III.6.12
,[16]]. Later we shall see many examples of derived functors. In our case
we always consider an abelian category with enough injective objects. As
we mentioned before, by changing the arrow we can define an adapted class
for a right exact functor. We can also see that the collection of projective
objects will be adapted to every right exact functor. The lack of interest-
ing abelian categories with enough projective objects is the main motivation
behind the definition of adapted class of objects. Hence given a right exact
functor G : A1 → A2 with enough G-adapted (or projective ) objects there
exists a left derived functor LG− : D−(A1) → D−(A2). If the category A1

has enough injective (resp. projective) objects then the canonical inclusion
of K+(R) (resp. K−(R)) is an equivalence of categories, see [Prop. I.4.7,
[20]]. The classical definition of left (resp. right) derived functors was given
by considering first an injective (resp. projective) resolution and taking co-
homology after applying the functor term by term. This is same as choosing
a quasi-inverse of the canonical equivalence given by the inclusion of K+(R)
(or K−(R) ). If we have a bi-functor F : A1×A2 → A3 with a semi exactness
in each variable then the existence of an adapted class gives the derived func-
tor. We shall assume for simplicity that F is left exact in both variables and
A2 has enough injectives (resp. A1 has enough projective objects). We have
following result on the existence of right derived functor similar to [lemma
I.6.2, [20]].

Proposition 2.3.4. Suppose I . ∈ K+(A2) is a complex of injective objects
and A.1 ∈ K(A1) is any complex of objects. Assume that if either I . is
acyclic or A.1 is acyclic then F (A.1, I

.) is acyclic. Then the derived functor
RF : D(A1)×D+(A2)→ D(A3) exists. An analogous assumption for the case
of enough projective objects gives the derived functor LF : D−(A1)×D(A2)→
D(A3).

A justification similar to [lemma I.6.3 , [20]] can be used here for the
ambiguous notation for derived bi-functor. An important example of a bi-
functor comes from the functor given by Hom. If an abelian category has
enough injectives then we have a derived functor RHom( , ) : D(A)◦ ×
D(A)+ → A(Ab). We also define the bi-functor

Exti(A1, A2) := HomD(A)(A1, A2[i]) = HomD(A)(A1[−i], A2)
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which we call Yoneda extensions. There is a relation between the derived
functors of Hom and the Yoneda extensions defined as above, see [Theorem
6.4, [20]].

Proposition 2.3.5. There is a functorial isomorphism

Exti(A1, A2) ' Hi(RHom+(A1, A2))

for each A1 ∈ Ob(D(A)) and A2 ∈ Ob(D+(A)) .

Given two left exact functors F1 : A1 → A2 and F2 : A2 → A3, the fol-
lowing result gives a relation between the derived functor of the composition
of two functors, and the composition of their derived functors.

Proposition 2.3.6 ( Thm 2.4.1 ,[19]). Suppose R1 and R2 are adapted class
w.r.t. functor F1 and F2 respectively. Further, suppose that the image of the
adapted class R1 is contained in the adapted class of F2 i.e. F (R1) ⊆ R2.
Then the right derived functors RF+

1 , RF
+
2 and R(F2 ◦ F1)+ exist and the

natural map R(F2 ◦ F1)+ → RF+
2 ◦RF+

1 is an isomorphism.

Similar statements can be made in the case of right exact functors defined
on categories with enough projective objects. Classically, the composite of
two derived functors was related to derived functor of the composite via a
spectral sequence. If we have two functors with all hypothesis as in above
proposition then there exists a spectral sequence, called Grothendieck spec-
tral sequence, as follows

Ep,q
2 = RpG(RqF (A.))⇒ Rn(G ◦ F )(A.).

This spectral sequence is functorial in A., see [Theorem III.7.7, [16]] for a
proof and more details.

2.4 Examples

2.4.1 Derived category of a commutative ring

We specialize to some particular cases of abelian categories to get the derived
categories which are used later. Let R be a ring with unity. We denote by
Mod(R) the category of all left modules over R. We know thatMod(R) is an
abelian category. Now we can define the category of complexes C(Mod(R))
and denote it by C(R). Similarly, we define homotopy category of complexes
of R modules which is denoted as K(R). Using the localization of quasi
isomorphisms we get the derived category of R modules and denoted asD(R).
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A boundedness conditions on complexes gives full subcategories D±(R) and
Db(R). Since every left R module is embedded in an injective object, we
have a quasi isomorphism of any object in D+(R) with a bounded below
complex of injective objects. Hence, using the result [Prop. 4.7 ,[20]] there
exists an equivalence of triangulated categories D+(R) and K+(I) where I is
the additive category of all R-injective objects. Since there exists a bounded
above free resolution for any module M , there are enough projective objects.
Hence we have a canonical equivalence between K−(R) and D−(R) given by
the natural inclusion. Suppose f : R→ S is a ring homomorphism. We can
define functor

f ∗ :Mod(R)→Mod(S);A 7→ S ⊗R A.

Note that the ring homomorphism f gives a left as well as right R module
structure on S and hence the above pull back functor is well defined right
exact functor. Since there are enough flat objects which are adapted to this
functor we get a left derived functor Lf ∗. Also, the ring homomorphism gives
a left R module structure on every left S module, we have push forward or
forgetful functor

f∗ :Mod(S)→Mod(R);B 7→R B.

Since this functor is an exact functor, we get a derived functor f∗. The
functor Lf ∗ is a left adjoint of the functor f∗. In this thesis we are mainly
interested in rings with some commutativity constraints. So, in later sections
we shall restrict to commutative and super commutative rings. Since these
categories are equivalent to categories coming from the more general notion
of scheme and superschemes, we shall postpone various relations among these
functors to later sections. For the case of commutative rings, the classical
functors

Ext(A1, A2) : D◦R ×D+
R → DZ and Tor(A1, A2) : D−R ×D

−
R → D

−
Z

are defined as derived functors associated with the bi-functors

Hom( , ) :Mod(R)◦ ×Mod(R)→ Ab and ⊗ :Mod(R)×Mod(R)→ Ab

respectively. For the case of arbitrary rings we have to replace the category
of left module by right module in first coordinate of tensor functor. We shall
use the notation DR for the triangulated category Kb(R − Proj) i.e. the
bounded homotopy category associated to the category of finitely generated
projective modules over commutative ring R.
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2.4.2 Derived category of a scheme

A ringed space is a pair consist of a topological spaceX and a sheaf of ringOX
which is called the structure sheaf. We denote by Mod(X) the category of
all sheaves of left modules of OX . We shall not discuss general ringed spaces
here. We start with a scheme3 in this section which is an important example
of a locally ringed space. Firstly, recall that a ringed space is called locally
ringed space if stalk of the structure sheaf at each point is a local ring. Fur-
ther a morphism f : (X,OX) → (Y,OY ) between two locally ringed spaces
is local i.e. induced morphism f#

x : OY,f(X) → OX,x for each x ∈ X satisfies
(f#
x )−1(mf(x)) = mx wheres mf(x) and mx are maximal ideals. We restrict

to the class of locally ringed spaces coming from schemes. Recall that for a
scheme there is an abelian categoryMod(X) containing all sheaves of mod-
ules . We shall denote by Qcoh(X), the full subcategory containing all quasi
coherent sheaves. The category of coherent sheaves is denoted as Coh(X).
As in the case of rings the category of complexes and homotopy category
of complexes are denoted as C(X) and K(X) respectively. The categories
Dqc(X) and Dc(X) (or DX for simplicity) represent the derived category of
quasi coherent sheaves and coherent sheaves respectively. We have similar
notations as earlier for various boundedness restrictions on complexes. Since
there exist enough injectives in the abelian category Qcoh(X), by using [
Theorem III.6.12 ,[16]] we get derived functors of some well known functors.
We shall recall some of these functors which we need later.

Since there are enough flat objects, therefore the bi-functor given by usual
tensor product gives a derived bi-functor, see [Page 95, [20]],

⊗L : D−(Mod(X))×D−(Mod(X))→ D−(Mod(X)).

Further this functor restricted to full thick subcategories D−qc(X) and D−c (X)
gives an induced tensor derived bi-functor. The classical Tor functor is a
restriction of hypertor functor, Tori(F .1,F .2) := H−i(F .1⊗LF .2) for each i ∈ Z,
on the abelian category. Similarly there is another bi-functor called internal
Hom and denoted asHom(F1,F2) for each pair of sheaves F1,F2 ∈Mod(X).
This functor is left exact in both coordinates. Since there are enough injective
objects, we get following right derived bi-functor

RHom : D+(Mod(X))×D+(Mod(X))→ D+(Mod(X)).

As above this functor will also induce the derived bi-functor on the full sub-
categories D+

qc(X) and D+
c (X).

3it is always Noetherian unless explicitly stated otherwise.
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Recall, the global section functor is defined as

Γ :Mod(R)→ Ab;F 7→ Γ(F).

Here Γ(F) represents the set of all global sections of the sheaf of modules
F . It is a left exact functor. The right derived functor of Γ is denoted as
H i(X,F) := RΓi(F). If we consider schemes over some field k, then the
functor Γ takes values in the category of vector spaces.

More generally, we can define the push forward functor which gives the
global section functor as particular case. Suppose f : X → Y is a morphism
of schemes. There is a left exact functor

f∗ :Mod(X)→Mod(Y );F 7→ f∗F .

Recall that f∗F is the sheaf associated to the presheaf that associates
f∗F(V ) := F(f−1(V )) to each open set V in Y . This will give a right derived
functor

Rf∗ : D+(Mod(X))→ D+(Mod(Y )).

We have two full thick subcategoriesQcoh(X) and Coh(X) of the abelian cat-
egoryMod(X). Note that there are examples of injective objects inQcoh(X)
which are not injective when considered as an object ofMod(X) in general,
see [Appendix B, [40]] for more details.

We shall always work with Noetherian schemes unless explicitly stated
otherwise. In this case the derived functor defined on D+

qc(X) and the re-
striction of the derived functor Rf∗ on D+(Mod(X)) coincide. Further if
we consider a proper map of schemes then we get a restriction of the above
derived functor to the derived category of coherent sheaves,

Rf∗ : D+
c (X)→ D+

c (Y ).

Now using the result of Grothendieck,[Theorem 3.6.5, [19]], we get a restric-
tion of push forward functor to the bounded derived subcategory of schemes.
We have following functors for a proper morphism f : X → Y

Dbqc(X)
Rf∗ // Dbqc(Y )

Dbc(X)
Rf∗ //

?�

OO

Dbc(Y )
?�

OO

If we consider the scheme over some field then the map f : X → spec(k)
will give Rif∗(F) = H i(X,F) for each i ∈ Z. Also, if we consider a map
f : X → Y of two k-schemes then Γ ◦ f∗ = Γ. Now using Grothendieck
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spectral sequence for these functors we get the Leray spectral sequence as
follows,

Ep,q
2 = Hp(X,Rqf∗(F))⇒ Hn(X,F).

There are other spectral sequences which come from the Grothendieck spec-
tral sequence, see [Page 74,[22]] for some more cases of Leray spectral se-
quence. Next we shall recall the right adjoint of the push forward functor.

Let f : X → Y be a morphism between two schemes. Recall, the inverse
image functor is defined as,

f−1 :Mod(Y )→Mod(X, f−1(OY );G 7→ f−1G.

Here the f−1(OY ) module f−1G is defined as a sheaf associated to the presheaf
that associates f−1G(U) := lim−→f(U)⊆V G(V ) to each open set U in X. This is

an exact functor. Now using the tensor functor ⊗f−1OY OX : Mod(Y ) →
Mod(X), we can define the functor f ∗ := ( ⊗f−1OY OX) ◦ f−1. Since tensor
is a right exact functor therefore the functor f ∗ is right exact. Since there
are enough flat objects, we get the left derived functor

Lf ∗ : D−(Mod(Y ))→ D−(Mod(X))

which is same as composition of functors ( ⊗Lf−1Y OX) ◦ f−1. If f is a
flat morphism then this functor is exact and it will extend to the derived
category. It is denoted as f ∗ for a flat map f . It restricts to the thick
subcategories D−qc(Y ) and D−c (Y ). We use the same notation for these re-
strictions. Moreover Lf ∗ : D−c (Y ) → D−c (X) is a left adjoint of the functor
Rf∗ : D+(Mod(X))→ D+(Mod(Y )) for a morphism f between two schemes
of finite Krull dimension, see [ Cor 5.11,[20]]. These functors have many com-
patible identities. We now recall two very useful formulas.

Proposition 2.4.1. Let f : X → Y be a morphism between two schemes of
finite Krull dimension.

1. (Projection formula)[Prop. 5.6, [20]] If f is a quasi-compact morphism
then there exist functorial isomorphisms

Rf∗(F .)⊗L G .
∼−→ Rf∗(F . ⊗L Lf ∗(G .))

for each F . ∈ D−(X) and G . ∈ D−qc(Y ).

2. (Flat base change)[Prop. 5.12, [20]] Let u : Y ′ → Y be a flat map and
X ′ := X ×Y Y ′ be a fiber product with the following Cartesian diagram

X ′
v //

g

��

X

f

��
Y ′

u // Y.
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If f is a morphism of finite type then there exist functorial isomor-
phisms

u∗ ◦Rf∗(F .)
∼−→ Rg∗ ◦ v∗(F .) for each F . ∈ Dqc(X).

2.4.3 Derived category of G-scheme

Throughout this section, let k be a field and G be a finite group whose order
is coprime to the characteristic of k. Let X be a smooth quasi-projective
variety over k, with an action of the finite group G i.e. there is a group
homomorphism from G to the automorphism group of algebraic variety X.
We say G acts freely on X if gx 6= x for any x ∈ X and any g ∈ G with
g 6= e. Recall following general result proved in Mumford’s book [page 66,
[30]] on the existence of a group quotient,

Theorem 2.4.2. Let X be an algebraic variety and G a finite group of auto-
morphisms of X. Suppose that for any x ∈ X, the orbit Gx of x is contained
in an affine open subset of X. Then there is a pair (Y, π) where Y is a variety
and π : X → Y a morphism, satisfying:

1. as a topological space, (Y, π) is the quotient of X for the G-action; and

2. if π∗(OX)G denotes the subsheaf of G-invariants of π∗(OX) for the
action of G on π∗(OX) deduced from 1, the natural homomorphism
OY → π∗(OX)G is an isomorphism.

The pair (Y, π) is determined up to an isomorphism by these conditions. The
morphism π is finite, surjective and separable. Y is affine if X is affine.

If further G acts freely on X, π is an étale morphism.

In the remark after the proof [page 69, [30]], Mumford further showed
that quasi projective varieties always satisfy the hypothesis of the theorem.
We denote this quotient space (if it exists) by X/G.

Definition 2.4.3. 1. For a variety X with a G action, and H ⊂ G a
subgroup, let XH be the subvariety of fixed points of H.

2. A G-invariant component is defined to be a minimal G-invariant sub-
variety of X with reduced structure such that its dimension is equal to
dimX.

Proposition 2.4.4. With the notation in the above paragraph,

1. XH is a closed subvariety.
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2. If H1 ⊆ H2 are subgroups then we have a reverse inclusion XH2 ⊆ XH1

3. If Z is any G-invariant component of X then there exists an open subset
of Z with free action of G/H for unique subgroup H.

4. If Z is any G-invariant subvariety of X then there exists the set of
subgroups Hi for i = 1, . . . , r and open subsets Wi, i = 1, . . . , r of Z
such that G/Hi acts freely on Wi for i = 1, . . . , r. Here r is the number
of G-invariant components of Z. Also note that the open subsets Wi

are pairwise disjoint, and dim(Z \ ∪iWi) < dimZ.

Proof of 1. Since XH = ∩h∈HXh where Xh is the fixed points of the auto-
morphism corresponding to h under the action. It is enough to prove that
the invariant set Xh of any automorphism h of a variety is a closed subset. X
is a quasi-projective Noetherian variety and hence separated. Therefore, the
diagonal and the graph of any automorphism will be a closed subset of X×X.
The intersection of the graph of an automorphism with the diagonal will be
a closed subset of the diagonal. Hence the invariant of the automorphism h
will be closed in X.
Proof of 2. It clearly follows from the formulae XHi = ∩h∈HiXh.
Proof of 3. For any algebraic subset there exists the subgroup H such that
G/H acts faithfully(or effectively) onto it. Without loss of generality we
assume that G acts faithfully on Y . For a faithful action Y H is a proper
subset of Y for any nontrivial normal subgroup H of G. Define the open
subset of Y as

U = Y − (∪HEGY H)

where the union on the right side is over all nontrivial normal subgroups. It
is now easy to see that G acts freely on open set U .
Proof of 4. Using 3., it is enough to prove that any algebraic subset can be
uniquely written as union of G-invariant components of Y , and an algebraic
subset of dimension strictly less than dimY . Since Y is Noetherian, it will
be finite union of irreducible closed subsets. Take the finite set S of generic
points of irreducible subsets of Y , which have the same dimension as Y .
Now the action of G on Y induces an action on the finite set S; since an
automorphism of Y will take any irreducible subset to another irreducible
subset of the same dimension. Thus S can be uniquely written as a disjoint
union of G-invariant subsets. By taking union of closure of the generic points
in each invariant subset, we get the G-invariant components of Y . Clearly,
any nonempty intersection of Ui and Uj for i 6= j will give a proper G-
invariant component, and this will contradict the minimality.
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Since the scheme is quasi projective there exists an orbit space, see [30],
which we denoted as X/G. As G is a finite group we get a finite map
π : X → X/G which is a perfect morphism (see [Def. 2.5.2, [40]]. Recall that
a G equivariant or G linearized sheaf is defined as follows

Definition 2.4.5. A G-sheaf (or G-equivariant sheaf or an equivariant sheaf
with respect to the group G) on X is a sheaf F together with isomorphisms
ρg : F → g∗F for all g ∈ G such that following diagram

F
ρh //

ρgh ))RRRRRRRRRRRRRRRRR h∗F
h∗ρg // h∗g∗F

(gh)∗F

is commutative for any pair g, h ∈ G. A G-sheaf is a pair (F , ρ).

We shall now look at some properties of G-sheaves (definition 2.4.5). The
G-sheaves form a category QcohG(X) as follows. Given two G-sheaves (F , ρ)
and (G, ψ), the group of morphisms of OX-modules HomX(F ,G) gets a G ac-
tion, where g ∈ G acts on θ to give ψ−1

g ◦g∗θ◦ρg. HomQcohG(X)((F , ρ), (G, ψ))
is defined to be the group of G-invariant morphisms in HomX(F ,G).
QcohG(X) is an abelian category. Define CohG(X) to be the abelian

subcategory of QcohG(X) consisting of objects (F , ρ), for which F is coher-
ent. In Tohoku paper of Grothendieck [19] it was proved that QcohG(X)
has enough injectives. Also, for finite G and quasi-projective X, there is an
ample invertible G-sheaf, allowing G-equivariant locally free resolutions (see
[19], [10]). Therefore derived functors of various functors like π∗, π

∗ and ⊗
will always exist, in a similar fashion as in the non-equivariant case, and for
simplicity we shall write π∗, π

∗ and ⊗ for Rπ∗, Rπ∗ and ⊗L respectively.

Definition 2.4.6. Let DG(X) be the bounded derived category of CohG(X).

Remark 2.4.7. 1. As in the case of Db(X), we have a symmetric monoidal
structure on DG(X) given by the (left) derived functor of the tensor
structure on CohG(X). AlsoDG(X) has a natural structure of a k-linear
category. We shall use this fact later.

2. Note that here and elsewhere (for example theorem 1.0.1 and its spe-
cial cases mentioned later), we assume X to be smooth to make the
definition of DG(X) meaningful. It might be possible to remove the
assumption that X is smooth. But we will not consider that question
here.
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Given an algebraic variety X with an action of a finite group G we
have a natural morphism π : X → X/G which further gives a functor
π∗ : CohG(X) → CohG(X/G) and by taking G-invariant part of image we
can define a functor πG∗ : CohG(X)→ Coh(X/G) i.e. πG∗ (F , ρ) = (π∗(F , ρ))G

for all (F , ρ) ∈ CohG(X). We have following result when G acts freely on X
(see Mumford’s book [30] for the proof).

Proposition 2.4.8. Let π : X → X/G be a natural morphism given by free
action of the finite group G on X. The map π∗ : Coh(X/G) → CohG(X) is
an equivalence of abelian categories with the quasi-inverse πG∗ . Further locally
free sheaves corresponds to locally free sheaves of the same rank.

Now we can extend above equivalence to get a tensor equivalence π∗

between tensor triangulated categories Db(X/G) and DG(X). In general
these two categories are not equivalent. Next we prove that there exists a
canonical decomposition, similar to the canonical decomposition of a finite
dimensional representation of G.

Suppose X is a smooth quasi projective variety over a field k, with the
structure morphism η : X → Spec(k). The category of all coherent sheaves
on affine variety Spec(k) can be identified with category of all finite dimen-
sional vector spaces and the category of all G-equivariant sheaves can be
identified with finite dimensional k-linear G representations. By using prop-
erties of the pullback functor η∗, which is exact, we can prove the following
basic results; see [10] for details and some similar results.

Lemma 2.4.9. 1. η∗(k) = OX .

2. η∗(V1 ⊗ V2) = η∗(V1)⊗ η∗(V2) .

3. η∗(V ∗) = (η∗(V ))∗.

4. If X = Spec(R) is an affine variety then we have following relation
between functors:

(a) η∗(V )⊗ M̃ = Ṽ ⊗M .

(b) πλ(M̃) = π̃λ(M)

Let (G, λ) be an object in CohG(X). We shall denote η∗(V )⊗G by V ⊗G
for simplicity. For the trivial action of G on X, the association of a G-sheaf
G on X to its G-invariant subsheaf is functorial. More precisely, the exact
functor

( )G : CohGX → CohGX
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induces an exact functor

( )G : DG(X)→ DG(X).

Note that the action of G on an object in the image of this functor is triv-
ial. Thus the image of ( )G lies in Db(X), where Db(X) is considered as a
subcategory of DG(X) consisting of objects with trivial G-action (see [first
paragraph of section 4.4, [10]]). For a vector space V over k with an action
of G, define the exact functor

HomG(V, ) = (η∗V ⊗ )G : DG(X)→ DG(X).

Notice that each object contained in the image of the functor HomG(V, )
are trivial G-sheaves. Thus the image of HomG(V, ) lies in Db(X). Let
Vλ be an irreducible representation of the group G. We have the evaluation
map from Vλ⊗ V ∗λ to k. We can pullback the usual evaluation map from the
representation category to the bounded derived category of G-equivariant
sheaves. Thus we have the following morphism,

η∗(evVλ)⊗ id : Vλ ⊗ V ∗λ ⊗F → F .

Now by using the fact that the G-invariant part of a G-module V is a direct
summand of V ∗ ⊗ V , and the map η∗(ev) ⊗ id we get the following map,
which we denote by evF ,

evF : ⊕λVλ ⊗ HomG(Vλ,F .)→ F ..

We have following lemma which is used later to prove canonical decomposi-
tion.

Lemma 2.4.10. The association sending F . to ⊕λVλ ⊗HomG(Vλ,F .) gives
an exact functor from DG(X) to itself. Further, the objectwise morphism
evF induces a natural transformation between this functor and the identity
functor.

Proof. Since the association HomG(V, ) is a functor, it is easy to see thet
the association taking F . to ⊕λVλ ⊗ HomG(Vλ,F .) is functorial. Consider
a morphism f : F .1 → F .2 in DG(X). Now the naturality of morphism ev
follows from the commutativity of following diagrams,

⊕
λ
Vλ ⊗ HomG(Vλ,F .1) //

��

⊕
λ
Vλ ⊗ V ∗λ ⊗F .1 //

��

F .1

f

��
⊕
λ
Vλ ⊗ HomG(Vλ,F .2) // ⊕

λ
Vλ ⊗ V ∗λ ⊗F .2 // F .2

Here f : F1 → F2 is a morphism compatible with the action of the finite
group G and therefore gives commutativity of the left square.

33



We recall a general result about G actions.

Lemma 2.4.11. Suppose M is a k-linear G-representation (need not be finite
dimensional) for finite group G. The following canonical evaluation map is
an isomorphism

ev : ⊕λVλ ⊗ HomG(Vλ,M)→M.

Proof. See [Proposition 4.1.15, [18]]

Definition 2.4.12. We define amplitude length to be the integral function

ampl : DG(X)→ Z;F . 7→ |{i ∈ Z/Hi(F .) 6= 0}|

that is, it is the number of non-zero hypercohomologies Hi of a bounded
complex.

We prove the canonical decomposition of any object using pullback and
reduction to affine case.

Proposition 2.4.13. Suppose X is an algebraic set (need not be a smooth
variety) over a field K with trivial action of a finite group G whose order is
coprime to char(K). Let F . be a bounded complex of G-equivariant coherent
sheaves i.e. ampl(F .) < ∞. There exists a direct sum decomposition of F .
as follows,

F . = ⊕λVλ ⊗Fλ
where Vλ are finite dimensional irreducible representations of G and Fλ =
(V ∗λ⊗F .)G =: HomG(Vλ,F .). Here the complexes Fλ are trivial G-equivariant
sheaves or usual sheaves.

Proof. We shall divide proof into two steps. In the first step we prove the
case of coherent sheaf concentrated in degree zero (which we refer as a pure
sheaf). In the second step we prove isomorphism of the map ev using the
first step.
Step 1. Let F . be a complex with a coherent sheaf concentrated at zero,
say F . We can assume that the variety X is affine as it is enough to prove
isomorphism on any affine cover. Hence we can assume that F = M̃ . Thus
we reduce the problem to proving that the following map is a bijection.

ev : ⊕λVλ ⊗ HomG(Vλ,M)→M.

This map is an equivariant morphism, see [Page 184, [18]] for more discussions
on this. It is enough to prove that the map ev is bijection as a k-linear
morphism but this follows from the lemma 2.4.11.
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Step 2. Since ev is a natural transformation, the full subcategory of DG(X),
on which ev is a natural isomorphism, is thick. By Step 1., it contains shifts
of sheaves and hence must be the whole of DG(X).

Hence using these two steps we have the canonical decomposition as
stated and further it is easy to observe that F .λ are trivial as G-sheaves
i.e. all ρg are identity, see definition 2.4.5.

We shall use proposition 2.4.13 in the following form.

Corollary 2.4.14. Let X be a smooth algebraic variety defined over k with
a G action. Let U ⊂ X be a (possibly singular) G-invariant, locally closed
subset, with iU : U → X being the inclusion. Suppose H is a subgroup of
G with the property that it acts trivially on U . Then for any object (G, ρ) ∈
DG(X) we have the canonical decomposition,

(F , ρ) = ⊕λWλ ⊗ (F , ρ)λ

where F = i∗UG and (F , ρ)λ = (W ∗
λ⊗(F , ρ))H and Wλ is a finite dimensional

irreducible representation of the subgroup H, and sum is over all finite di-
mensional irreducible representation of H. The subgroup H acts trivially on
(F , ρ)λ and this will induce the natural action of the group G/H on (F , ρ)λ.

Proof. Note that G has finite amplitude length, and hence so does F . Thus
the above proposition applies to U .

Note that if G acts trivially on X then we can take H = G and as a
particular case we shall get the canonical decomposition,

(F , ρ) = ⊕λVλ ⊗ (F , ρ)λ

where (F , ρ)λ = (V ∗λ ⊗ (F , ρ))G and Vλ is a finite dimensional irreducible
representation of the group G.

2.4.4 Derived category of a superscheme

In this section first we shall recall the basic definition of superscheme and
some properties of it. We shall relate various notion for some superschemes
with the usual scheme with certain diagram.

Superalgebra

An associative Z/2Z-grading ring is an associative ring R with direct sum
decomposition R = R0 ⊕ R1 as an additive group so that multiplication
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preserves the grading i.e. RiRj ⊆ Ri+j for i, j ∈ Z/2Z. There exists a parity
function which takes values in ring Z/2Z = {0, 1} for every homogeneous
element of R i.e. if r ∈ Ri then parity denoted r̄ = i. Now we restrict to
following important class of rings,

Definition 2.4.15. An associative Z/2Z graded ring with unity, R = R0⊕R1

is called supercommutative if the supercommutator of a ring R is zero i.e.
[r1, r2] := r1r2 − (−1)r̃1r̃2r2r1 = 0 for all r1, r2 ∈ R. Further ring is called
k-superalgebra if R is supercommutative k-algebra with k ⊆ R0.We shall
assume that 2 ∈ R is invertible. This will ensure that the elements with
parity 1 are nilpotents.

As usual we can define an abelian category of left modules over any k-
superalgebra R, say Mod(R). An object of this category is a Z/2Z- graded
abelian group with a left R-module structure which is compatible with the
grading i.e. RiM j ⊆ M i+j for all i, j = 0, 1. Morphism between these
objects is a graded morphism compatible with the action of R. Similarly
there exists a parity function defined for each homogeneous element of a
module M denoted as above. We can define the parity change functor Π :
Mod(R) → Mod(R);M 7→ ΠM with Z/2Z grading given by (ΠM)0 =
M1 and (ΠM)1 = M0. There exist an exact faithful functor from Mod(R)
as follows,

ff :Mod(R)→Mod(R0)×Mod(R0).

A canonical right module structure on left R modules is given by mr :=
(−1)m̄r̄rm. Now using this structure we can define tensor product of two left
R- modules M1 and M2 as quotient of M1⊗R0 M2 with submodule generated
by homogeneous elements

{r1m1 ⊗m2 − (−1)m̄1m1 ⊗ r1m2|r1 ∈ R1,mi ∈M i}
Here M1⊗R0 M2 is defined as a tensor product of two Z/2Z graded modules
over a commutative ring R0. The tensor product M1 ⊗RM2 is then a Z/2Z
graded module with m⊗ n = m̄+n̄. A commutativity constraint is similar to
the case of tensor product of supervector spaces. Another important notion
in commutative algebra is localization. It is easy to define localization of
rings and modules if multiplicative set is contained in the center of a ring. For
super commutative ring we can define localization at any homogeneous prime
ideal. It is easy to observe that given a R module M and a prime ideal p, the
localization Mp = 0 iff (R0M)p = 0 (or ((R/J)M)p = 0 where J := R·R1. We
can also prove the following version of Nakayama’s lemma for superrings.

Proposition 2.4.16 (Nakayama’s lemma). Suppose a finitely generated R
module M satisfies IM = M for the homogeneous ideal I given by the inter-
section of all maximal homogeneous ideals then M = 0.
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Proof. The proof is similar to the case of rings. Firstly observe that R1 has
all nilpotent elements. Hence for any element a := a0 + a1 with ai ∈ Ri the
element 1− a is unit iff 1− a0 is unit in R0 ∩ I. But R0 ∩ I is the Jacobson
radical of R0 and therefore 1− a0 is unit. Rest of the proof is similar to the
commutative case, [see Prop. 2.6, [1]].

Now using Nakayama’s lemma we get following result whose proof is
similar to the commutative case.

Corollary 2.4.17. Suppose (R,m) is a local superring. Let M,M1 and M2

be finitely generated R modules.

1. A finitely generated module M = 0 if and only if M ⊗R/m = 0.

2. M1 ⊗M2 = 0 if and only if M1 = 0 or M2 = 0 .

Split Superscheme

Given any topological space X we can define a super ringed space by at-
taching a sheaf of superrings on X. We shall denote a sheaf of superrings
with Z/2Z grading as OX = OX,0 ⊕ OX,1. Similarly we can define sheaf of
modules and parity change functor Π over such a ringed space as before. We
have following definition,

Definition 2.4.18. A ringed space (X,OX) is called a superspace if the ring
OX(U) associated to any open subset U is supercommutative and each stalk
is local ring. A superspace is called superscheme if in addition, the ringed
space (X,OX,0) is a scheme and OX,1 is a coherent sheaf over OX,0.

A superscheme X is called quasi compact and quasi separated if (X,OX,0)
is quasi compact and quasi separated. Similarly a superscheme is (topolog-
ically) Noetherian if (X,OX,0) is (topologically) Noetherian. We shall use
these notion in later chapters to borrow results developed by Grothendieck.
We say that a superscheme is affine if the even part of structure sheaf
(X,OX,0) is affine. It is easy to see that any affine superscheme gives a
super commutative ring. Equivalently an affine superscheme associated to
any super commutative ring can be defined in a manner similar to usual
affine schemes. Note that in the definition of superscheme the odd part is a
coherent sheaf of modules over the even part. Therefore if the even part of a
superscheme is Noetherian then we shall get a left (or two sided) Noetherian
superscheme. Given a superscheme (X,OX) we can define sheaf of ideal[page
83, [26]] JX := OX · OX,1. Define GrX := ⊕i≥0J

i
X/J

i+1
X where J0

X := OX and
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we denote the first term of GrX as Gr0X = OX/JX . Now using these no-
tations we can define structure sheaves of even scheme and reduced scheme
associated to the superscheme X as follows,

OXrd := Gr0X and OXred := OX/
√
JX .

Here JX/J
2
X is a locally free sheaf of finite rank 0|d for some d over OXrd . And

GrX is a Grassmann algebra overOXrd of locally free sheaf JX/J
2
X . Following

particular class of superschemes are defined in [page 85, Manin[26]].

Definition 2.4.19. A superscheme (X,OX) is called split if the graded sheaf
GrX with mod 2 grading is isomorphic as a locally superringed sheaf to the
structure sheaf OX .

Manin has also given a way to construct such a split superscheme. If we
take purely even scheme (X,OX) and a locally free sheaf V over OX then we
can define symmetric algebra of odd locally free sheaf ΠV , which is denoted
S(ΠV) , then (X,S(ΠV)) is a split superscheme. An important example
is given by projective superscheme P

m|n where the locally free sheaf V is
O(−1)n. An example of a nonsplit superscheme given in [page 86, Manin
[26]] is Grassmann superscheme G(1|1,C2|2) which is also an example of a
superprojective scheme.

We can define an abelian category of sheaf of left modules over OX ,
denoted Mods(X) or Mod(OX). As above we have a natural right module
structure given by the Koszul sign rule. When (X,OX) is affine superscheme
given by super ring R then we can define the sheaf of module associated to
any R-module M as in the commutative case. Hence we can define quasi-
coherent and coherent sheaves over any superscheme. Therefore we shall get
two abelian subcategories namely category of all quasi-coherent sheaves and
coherent sheaves. We denote them by Qcoh(OX) and Coh(OX) respectively.
Now similar to affine case we have a forgetful functor as follows,

ff :Mod(OX)→Mod(OX,0)×Mod(OX,0).

It is an exact faithful functor. we can easily see that

Qcoh(OX) = ff−1(Qcoh(OX,0)×Qcoh(OX,0))

Coh(OX) = ff−1(Coh(OX,0)× Coh(OX,0)).

One can also define locally free sheaves on superscheme.

Definition 2.4.20. A sheaf F on a superscheme X is said to be locally free
of rank m|n if it is locally isomorphic to (OX)⊕m ⊕ (ΠOX)⊕n.
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We can define the tensor product of two sheaves of modules over super-
scheme similar to usual scheme. We shall use the canonical identification of
sheaf of left and right modules by Koszul sign rule. Define tensor product of
two sheaves of modules F1 and F2 as the sheaf associated to pre sheaf given
by

U 7→ (F1 ⊗F2)(U) := F1(U)⊗OX(U) F2(U).

Note that with this definition of tensor structure the commutative constraint
is given by sign rule i.e.

F ⊗ G ∼= G ⊗ F where the isomorphism is given by,

f ⊗ g 7→ −g ⊗ f if both F and G are odd,

f ⊗ g 7→ g ⊗ f otherwise,

where f and g are sections on some open set U .
Now we can prove some easy properties of this tensor product by just

reducing to affine case,

Lemma 2.4.21. Suppose (X,OX) is a split superscheme and F and G are
OX-modules. Then we have

1. (ΠF)⊗ G = F ⊗ (ΠG) = Π(F ⊗ G)

2. F ⊗OXrd has trivial action of JX and hence it is a OXrd-module.

Given a split superscheme (X,OX = S.(ΠV) = ΠΛ.(V)) there is one more
forgetful functor as follows,

ff :Mod(OX)→Mod(OXrd)×Mod(OXrd).

This functor is defined using the obvious inclusion of OXrd inside OX which
comes from the definition of split superscheme. Note also that the Grassmann
algebra constructed from locally free sheaf V gives a locally free sheaf of OXrd
module. Therefore structure sheaf OX is locally free sheaf as a OXrd module.

Similar to usual scheme we can take D(X) := D(Mod(X)) the derived
category of abelian category Mod(X). There are various triangulated sub-
categories like D](qc/X) := D](Qcoh(X)) and D](coh/X) := D](Coh(X))
where ] = +,−, b or ∅. For convenience we shall denote by D](X0) :=
D](Mod(O0

X)) (resp. D](Xrd) := D](Mod(OXrd)) ) the derived category
of modules over purely even scheme (X,O0

X) (resp. Xrd = (X,Gr0X)).
Dqc(X) (resp. Dcoh(X)) will denote the full subcategory of D(X) containing
all complexes of OX-moudles with quasi-coherent (resp. coherent) cohomol-
ogy sheaves.
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We need definitions of derived functors and various relations between
them for unbounded complexes of modules over superschemes. superschemes.
To extend various functors to unbounded complexes we need notion of K-
injective (K-projective) resolutions, see [38]. Following definition was given
in [38].

Definition 2.4.22. An unbounded complex A. of an abelian category is
called K-injective (resp. K-projective) if for every acyclic complex S., the
complex Hom.(S., A.) (resp. Hom.(A., S.)) is acyclic.

It is proved in the same paper, that an abelian category for which inverse
(resp. direct) limit exists, and which has enough injectives (resp. projectives)
admits a K-injective (resp. K-projective) resolution for any unbounded com-
plex , see [cor 3.9 (resp. cor. 3.5), [38]]. Similar to the scheme case the
abelian category Qcoh(X) of all quasi coherent shaves over superscheme has
arbitrary small coproducts. Therefore we can extnd various functors to un-
bounded derived category as demonstrated by Spaltenstein, [see sec. 6, [38]].
Moreover the abelian category Qcoh(X) will have K-flat resolution for every
unbounded complex and hence derived functor of tensor product functor can
be extended to unbounded derived category and various relation among these
functors can be extended from bounded derived category case to unbounded
derived category, see [38] for more details.

The following criterion based on Nakayama’s lemma will be used later.

Proposition 2.4.23. Suppose (R,m) is a local superring. Suppose M .,M .
1

and M .
2 are bounded complexes of finitely generated R-modules.

1. M . is acyclic iff M . ⊗R/m is acyclic.

2. M .
1 ⊗M .

2 is acyclic iff M .
1 or M .

2 is acyclic.

Proof. The proof of (i) is similar to the proof of Thomason [ lemma 3.3 (a),
[39]]. Indeed, using spectral sequence mentioned in the proof of Thomason [
lemma 3.3 (a), [39]] the proof reduces to the case of finitely generated mod-
ules which follows from the above result 2.4.17.
The proof of (ii) follows from the proof of (i) using following natural isomor-
phism

(M .
1 ⊗M .

2)⊗R/m ' (M .
1 ⊗R/m)⊗R/m (M .

2 ⊗R/m).
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2.4.5 Perfect complexes over schemes & superschemes

We now define another important triangulated subcategory of Dqc(X) for
schemes and superschemes. We refer to the notes of Thomason[40] for details.
Throughout this section our schemes and superschemes are assumed to be
quasi compact and quasi separated. We first recall some basic definitions and
results for the case of schemes. We shall later try to extend some of these
definitions and results for superschemes.

Definition 2.4.24. 1. A complex F . is strictly pseudo coherent if it is
quasi isomorphic to a bounded above complex of locally free coherent
sheaves (or algebraic vector bundle).

2. A pseudo coherent complex is a complex of OX modules which is locally
quasi isomorphic to strict pseudo coherent complexes.

3. A complex F . of sheaves of modules over scheme (X,OX) is called
strictly perfect if it is bounded below complex of strict pseudo coherent
complex i.e. F . is quasi isomorphic to bounded complex of locally free
coherent sheaf of OX module.

4. A complex F . is called perfect if it is locally quasi isomorphic to strict
perfect complex.

There are some other equivalent ways to characterize the pseudo coher-
ence, see [lemma 2.2.5, [40]]. Following result gives an interesting equivalent
way of defining the pseudo coherence on Noetherian schemes.

Proposition 2.4.25 (example 2.2.8, [40]). A complex of OX modules, F .,
on a Noetherian scheme X is pseudo coherent iff F . is bounded above and
the cohomologies Hi(F .) are coherent OX modules.

Now we need following definition of Tor-amplitude for characterization of
perfectness.

Definition 2.4.26 (Def. 2.2.11,[40]). A complex of OX modules F . has
finite Tor-amplitude if there exist integers a ≤ b s.t. for each OX module G
the cohomologies Hk(F . ⊗LOX G) are zero unless a ≤ k ≤ b. we say that F .
is locally of finite Tor-amplitude if above condition holds for restriction of
complex F . on each open subset of X.

We have perfectness in terms of Tor-amplitude as follows.

Proposition 2.4.27 (Prop. 2.2.12, [40]). A complex F . of OX modules is
perfect iff it is pseudo coherent and has locally finite Tor-amplitude.
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Since perfect complexes have quasi coherent cohomologies we can realize
the category of all perfect complexes inside the derived category of quasi
coherent sheaves. We shall denote the triangulated subcategory of all per-
fect complexes as Dper(X) ⊆ Dqc(X). Now we recall an important class of
schemes where some global characterizations are possible for perfect com-
plexes.

Definition 2.4.28. A scheme with ample family of line bundles, is a scheme
which is quasi compact and quasi separated, and which has family of line
bundles {Lα} s.t. for any quasi coherent sheaf F , the evaluation map

ev : ⊕α,n≥1Γ(X,F ⊗ L⊗nα )⊗ L⊗(−n)
α → F

is an epimorphism.

Example 2.4.29 (Example 2.1.2,[40]). 1. Affine schemes.

2. Quasi projective scheme over affine scheme.

3. Separated regular Noetherian scheme.

4. Any affine or quasi projective map of schemes, f : X → Y , with an
ample family of line bundles on Y gives an ample family of line bundles
on X.

There is a global characterization of perfect complexes on such schemes.

Theorem 2.4.30 (Theorem 2.4.3, [40]). Suppose X is a schemes with ample
family of line bundles and F . is a complex with quasi coherent cohomologies.
Then following are equivalent

1. F . is a perfect complex.

2. F . is quasi isomorphic to a strict perfect complex. with direct sums

Next we shall recall the existence of various functors which restrict to per-
fect complexes and some compatibilities of these functor similar to schemes.
Suppose f : X → Y is a morphism of schemes. There exists an exact functor,

Lf ∗ : D−(Mod(Y ))→ D−(Mod(X)),

which preserves pseudo coherent and perfect complexes. Hence it induces
the functor

Lf ∗ : Dper(Y )→ Dper(X).

If the morphism f is of finite Tor-dimension, i.e. OX is of finite Tor-dimension
as a sheaf of modules over sheaf of ring f−1(OY ) over X, then it induces a
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functor Lf ∗ : Db(Mod(Y )) → Db(Mod(X)) which preserves pseudo coher-
ence and hence perfectness.

If F . and G . are pseudo coherent then F . ⊗L G . is also pseudo coherent.
Now if F . is perfect complex and G . is cohomologically bounded and pseudo
coherent then F . ⊗ G . is cohomologically bounded and pseudo coherent. If
scheme X is quasi compact then we have induced functor

⊗L : Dper(X)×Dper(X)→ Dper(X); (F .,G .) 7→ F . ⊗ G ..

Now we shall describe the induced derived inverse image functor for per-
fect complexes. We first recall some definitions.

Definition 2.4.31. Suppose f : X → Y is a morphism of locally finite type
between two schemes. The morphism f is said to be pseudo coherent iff for
each point x ∈ X there exists a open set x ∈ U ⊆ X and an open set V ⊆ Y
s.t. the restriction f : U → V factors as f = g◦i, where i : U → Z is a closed
immersion with sheaf i∗OU a pseudo coherent sheaf over Z and g : Z → V is
a smooth map. The morphism f is said to be perfect iff f is pseudo coherent
and locally of finite Tor-dimension.

Example 2.4.32 (2.5.3 , [40]). 1. If Y is Noetherian then f : X → Y is a
pseudo coherent morphism. If Y is not Noetherian then f need not be
perfect morphism.

2. Any smooth morphism is a perfect morphism.

3. Any regular closed immersion is a perfect morphism.

4. Any locally complete intersection morphism is a perfect morphism.

Now following result gives the conditions for the existence of the derived
functor of the push forward.

Theorem 2.4.33 (2.5.4, [40]). Suppose f : X → Y is a proper morphism.
Suppose either f is a projective morphism or Y is a locally Noetherian
scheme. Suppose F . is a pseudo coherent (resp. perfect) complex. Then
if f is pseudo coherent (resp. perfect), Rf∗F . is a pseudo coherent (resp.
perfect) complex.

In particular if f : X → Y is a proper morphism between two Noetherian
schemes then there is a induced functor

Rf∗ : Dper(X)→ Dper(Y ).

We shall recall some induced compatibilities between these functors for
category of perfect complexes like projection formula and base change for-
mula.
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Theorem 2.4.34 (2.5.5, [40]). Suppose f : X → Y is a quasi compact and
quasi separated morphism with Y a quasi compact scheme. Suppose F . and
G . are cohomologically bounded complex with quasi coherent cohomologies.
Either F . or G . has finite Tor amplitude then the canonical map is a quasi
isomorphism in D(Mod(Y ))

Rf∗(F .)⊗LOY G
. ∼−→ Rf∗(F , ⊗LOX Lf

∗G .).

In particular for perfect complexes the above projection formula is valid.

Theorem 2.4.35 (2.5.6, [40]). Suppose f : X → Y is a quasi compact
and quasi separated morphism with Y a quasi compact scheme. Consider
following Cartesian square

X ′
g′ //

f ′

��

X

f

��
Y ′

g // Y.

Suppose f and g are Tor independent over Y , i.e. for each x ∈ X and
y′ ∈ Y ′ with f(x) = y = g(y′) we have TorpOY,y(OX,x,Oy′,Y ′) = 0 for each
p ≥ 1. Let F . be a cohomologically bounded complex over X, with quasi
coherent cohomology. Either F . has finite Tor amplitude over the sheaf of
ring f−1(OY ) on the space X, or the map g has finite Tor dimension. Then
there exists a canonical base change quasi isomorphism

Lg∗Rf∗F .
∼−→ Rf ′∗Lg

′∗F ..

In particular if we take f a proper morphism, and g a flat morphism, then
base change quasi isomorphism will be in Dper(X) for perfect complexes.

Now we shall extend some of these results for the case of superschemes
or split superschemes. Recall a quasi coherent sheaf of modules over super-
scheme is defined similar to scheme case as sheaf of module which is locally
isomorphic to sheaf coming from module over super ring. We shall denote
the derived category of all quasi coherent sheaves over X as Dqc(X). Now we
define the full subcategory of Dqc(X) containing all perfect complexes. Here
perfect complex over superscheme comes from the following definition.

Definition 2.4.36 (Perfect complexes). Given a complex F . of quasi coher-
ent sheaves of modules over superscheme (X,OX) is called strictly perfect if
F . is quasi isomorphic to a bounded complex of locally free coherent sheaf of
OX modules. A complex F . is called perfect if it is locally quasi isomorphic
to a bounded complex of locally free coherent sheaves.
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We shall denote the triangulated subcategory of all perfect complexes as
Dper(X) ⊆ Dqc(X). Similar to scheme case we can extend various functors
at the level of these triangulated categories. Hence we can prove Dper(X) is
a tensor triangulated category with tensor given by derived functor of usual
tensor product defined as above. We need to recall a few more results which
might be proved in a way similar to the commutative case. First we need a
definition.

Definition 2.4.37. An object t in a triangulated category T , which is closed
under the formation of arbitrary small coproducts, is said to be compact if
Hom(t, ) respects coproducts. In a triangulated category T , the full sub-
category of all compact objects is denoted as T c.

Now we shall use the following results.

1. The category of perfect complexes over affine schemes is equivalent to
the category of projective modules over the respective superalgebras.

2. (Compare [corollary 3.3.5, [8]].) If X is an affine superscheme, Then
the obvious functor D(qc/X)→ Dqc(X) has a quasi-inverse RΓ(X, ).

3. (Compare [equation 3.4, page 12, [8]].) Suppose X is a superscheme
and suppose X = U1 ∪ U2 where U1 and U2 are open and suppose
U12 := U1 ∩ U2. Let j1, j2 and j12 be the inclusions of U1, U2 and U12

in X respectively. Suppose A is a K-injective complex on X and E be
another object in D(X). Then we have a distinguished triangle

RHom(E,A)→ RHom(j∗1E, j
∗
1A)⊕RHom(j∗2E, j

∗
2A)→ RHom(j∗12E, j

∗
12A)

+−→

4. (Compare [proposition 3.3.1, [8]].) (Reduction principle) If P is a prop-
erty satified by superschemes, and if

(a) P is true of affine schemes; and

(b) If P holds for U1, U2 and U12, then it is true for X,

then P holds for all quasi-compact and quasi-separated superschemes.

5. (Compare Lemma 3.3.6, [8].) If X is an affine superscheme, then the
category of compact objects in D(X) is the category of perfect com-
plexes.

Later we shall prove using the results of Neeman that the above defined
category of perfect complexes is same as all compact objects in cocomplete
category Dqc(X).
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The following forgetful functors relate the category of perfect complex
over superscheme with schemes. Here we can extend the forgetful functor
defined earlier using exactness,

ff : D](X)→ D](X0)×D](X0) and ff : D]qc(X)→ D]qc(X0)×D]qc(X0).

Here ] ∈ {+,−, b, ∅}. We have similar forgetful functors for the case of co-
herent sheaves. If we restrict to split superscheme then we also have forgetful
functor for the case of locally free sheaves (or vector bundles). Hence for a
split superschemes we have following forgetful functor for the triangulated
subcategory of perfect complexes,

ff : Dper(X)→ Dper(Xrd)×Dper(Xrd)

Note that this functor need not be a tensor functor.
If we have morphism f : X → Y between two superschemes then we

have pull back and push forward functors Lf ∗ and respectively Rf∗. Various
relations between these functors also hold for superschemes. We had also
defined the symmetric tensor structure for sheaves of modules over super-
schemes. It is easy to see from that definition that it will induce a functor
for quasi coherent and coherent sheaves.
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Chapter 3

Generalities on Balmer
spectrum

In this chapter, we shall recall some basic constructions and properties of
spectrum. In the first section we briefly recall the definition of symmetric
monoidal structures. We also give some definitions of tensor functors which
Balmer uses for functoriality. In the second section we give the definition of
the prime spectrum and its topological properties. Then we give a variant
of the functoriality result of Balmer. We also briefly recall the proof of re-
construction using classifying support data and the localisation theorem of
Thomason and Troubagh. There is a generalization of Balmer’s reconstruc-
tion theorem for non-Noetherian case, see[11], but we shall not give a proof
here and refer to original paper for details. We shall state the result for the
non-Noetherian case.

3.1 Tensor triangulated category

We shall recall the definition of tensor compatible symmetric monoidal struc-
ture on a triangulated category. A symmetric monoidal structure on an ad-
ditive category D is a bifunctor

⊗ : D ×D → D

with compatible associative and commutative constraints and a unit object
which satisfies pentagon and hexagon axioms, see [Chap. XI,[25]] (or [Part II
1.1 ,[24]]) for details. A symmetric monoidal structure (D,⊗, 1, α, τ, µl, µr)
on D is denoted as (D,⊗, 1) for simplicity, following Balmer[3], or simply D
if there is no danger of confusion.
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Definition 3.1.1. A tensor triangulated category is a triple (D,⊗, 1) con-
sisting of a triangulated category with symmetric monoidal structure which
preserves translation, i.e. A[1] ⊗ B = (A ⊗ B)[1], and it is exact in each
variable. The unit is denoted by 1 (or Id).

Now we shall recall the definition of some functors which are used later
to prove the functoriality of the spectrum.

Definition 3.1.2. (a) An additive functor, F : D1 → D2, is called exact (or
triangulated) if it commutes with translation and takes a distinguished
triangle to a distinguished triangle.

(b) An exact functor, F : D1 → D2, is called a tensor functor if there exists
a natural isomorphism η(a, b) : F (a) ⊗ F (b) → F (a ⊗ b) for objects a
and b of D1.

(c) A tensor functor, F : D1 → D2, is called dominant if 〈F (D1)〉 = D2 i.e.
the smallest thick tensor ideal generated by the image of the functor F
is D2.

Note that every unital tensor functor is a dominant tensor functor.

3.2 Triangular spectrum

In this section we shall recall some definitions and results from Balmer’s
papers [2] [3]. Suppose (D,⊗, 1) is an essentially small tensor triangulated
category, which we shall denote by D for simplicity.

3.2.1 Basic set up

We shall first recall some basic definitions needed to define triangular spec-
trum. We shall also give some properties of the underlying topological space
of a triangular spectrum.

Definition 3.2.1. A thick tensor ideal A of D is a full sub category contain-
ing zero object and satisfying the following conditions:

(a) A is triangulated : if any two terms of a distinguished triangle are in
A then third term is also in A. In particular direct sum of any two
objects of A is again in A and this we refer as an additivity. This
property applied to the distinguished triangles A[−1]→ 0→ A

=−→
+1

A

and A→ 0→ A[1]
=−→
+1

A[1] shows that A is closed under translations.
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(b) A is thick : If A⊕B ∈ A then A ∈ A.

(c) A is tensor ideal : if A or B ∈ A then A⊗B ∈ A.

If E is any collection of objects of D then we shall denote by 〈E〉 the
smallest thick tensor ideal generated by this collection in D.

Now we shall give an explicit description of a thick tensor ideal generated
by some collection E in a tensor triangulated category. We first use some
definitions from Bondal[8] here. Recall add(E) was defined as an additive
category generated by E and closed under taking shifts inside D. Similarly
define ideal(E) as a full sub category generated by objects of the form ⊕iAi⊗
Xi for each Ai ∈ D and Xi ∈ E . Since 1[k] ⊗X is contained in ideal(E), it
is closed under taking finite direct sum, shifts and tensoring with any object
of D. Recall that there is an operation on subcategories i.e. A ? B, and
defined as the the full sub category generated by objects X which fit in a
distinguished triangle of the form

A→ X → B → A[1] with A ∈ A and B ∈ B.

As observed in [section 2.2, Bondal et. al. [8]], if A and B are closed under
shifts and direct sums then A ?B is also closed under shifts and direct sums.
Similarly we can see that if A and B are tensor ideal then A ? B is also a
tensor ideal. Take smd(A) to be the full subcategory generated by all direct
summands of objects of A. Now combining these two operations we can
define a new operation on subcategories as follows,

A � B := smd(A ? B).

Using this operation we can define the full subcategories 〈E〉n for each non-
negative integer as

〈E〉n := 〈E〉n−1 � 〈E〉0 where 〈E〉0 := smd(ideal(E)).

Now we can see following description of ideal generated by a collection E ,

Lemma 3.2.2. 〈E〉 = ∪n≥0〈E〉n.

Proof of the above lemma follows from the fact that right hand side
subcategory is a thick tensor ideal and contains every thick tensor ideal
containing the collection E .

Definition 3.2.3. A prime ideal of D is a proper thick tensor ideal P ( D
such that A ⊗ B ∈ P implies that either A ∈ P or B ∈ P . The triangular
spectrum of D is defined as set of all prime ideals, i.e.

Spc(D) = {P | P is a prime ideal of D}.
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The Zariski topology on this set is defined as follows: closed sets are of
the form

Z(S) := {P ∈ Spc(D) | S ∩ P = ∅},
where S is a family of objects of D; or equivalently we can define the open
subsets to be of the form

U(S) := Spc(D)\Z(S).

In particular, we shall denote by

supp(A) := Z({A}) = {P ∈ Spc(D) | A /∈ P},

the basic closed sets and similarly U({A}) denotes the basic open sets.
A collection of objects S ⊂ D is called a tensor multiplicative family of

objects if 1 ∈ S and if A,B ∈ S then A⊗B ∈ S.
We shall recall here the following lemma [Lemma 2.2 in Balmer’s paper[3]]

which we need later,

Lemma 3.2.4. Let D be a non-zero tensor triangulated category and I ⊂ D
be a thick tensor ideal. Suppose S ⊂ D is a tensor multiplicative family of
objects s.t. S ∩ I = ∅ Then there exists a prime ideal P ∈ Spc(D) such that
I ⊂ P and P ∩ S = ∅.

Now we shall collect some topological properties of spectrum proved in
Balmer[3].

Proposition 3.2.5 (section 2, [3]). (a) The collection of open subsets

{U(A)| for each A ∈ D}

is a basis of the topology on the Spc(D). Hence the topological space
Spc(D) is a quasi separated.

(b) The closure of any point P ∈ Spc(D) is given by

{P} = {Q ∈ Spc(D)|Q ⊆ P}.

Hence {P1} = {P2} ⇒ P1 = P2.

(c) There exists a minimal prime ideal if D is nonzero. Moreover if P ∈
Spc(D) then there exists a minimal element P ′ ⊆ P. Hence every
nonempty closed subset has a closed point.

(d) An open set U is quasi compact if and only if there exists an object
A ∈ D s.t. U = U(A). In particular, Spc(D) is quasi compact.
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(e) The topological space Spc(D) is Noetherian if and only if every closed
subset is a support of some object of D.

(f) Every nonempty irreducible closed subset of Spc(D) has a unique generic
point.

Proof. See Balmer[3]

3.2.2 Functoriality

We shall now recall the functoriality of Spc on all essentially small tensor
triangulated category with a morphism given by an unital tensor functors,
see [3] for details. Since it is not difficult to see that it is also true for
an essentially small tensor triangulated categories with morphism given by
a dominant tensor functor therefore we state this slight variant. We have
following result.

Proposition 3.2.6. Given a dominant tensor functor F : D1 → D2, the map
Spc(F ) : Spc(D2)→ Spc(D1) defined as P 7→ F−1(P) is well defined, contin-
uous and for all objects a ∈ D1, we have Spc(F )−1(supp(a)) = supp(F (a))
in Spc(D2).

This defines a contravariant functor Spc(−) from the category of essen-
tially small tensor triangulated categories with dominant tensor functors as
morphisms to the category of topological spaces. So if F , G are two dominant
tensor functors then Spc(G ◦ F ) = Spc(F ) ◦ Spc(G).

Proof. (Similar to [proposition 3.6, Balmer [3]])

Corollary 3.2.7. (i) If a unital tensor functor F : D1 → D2 is essentially
surjective then Spc(F ) : Spc(D2)→ Spc(D1) is injective.

(ii) If a tensor functor F : D1 → D2 is an equivalence then every quasi-
inverse functor of F is a dominant tensor functor. And also Spc(F ) is
a homeomorphism.

Proof. (i) [Cor 3.8, [3]]
(ii) First observe that the continuous map Spc(F ) given by a dominant
tensor functor is independent of natural isomorphism defining the tensor
functor (recall definition 3.1.2). Now using functoriality of above proposition
we have an homeomorphism whenever a quasi-inverse of F is an dominant
tensor functor. Suppose G is a quasi-inverse of F . Since G ◦ F ' Id, the
exact functor G is dominant. Suppose η : F ◦ G → Id and µ : G ◦ F → Id
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are natural isomorphisms. Now we get a required natural isomorphism by
composing as follows,

G(a)⊗G(b)
µ−1

−−→ GF (G(a)⊗G(b)) = G(FG(a)⊗FG(b))
G(ηa⊗ηb)−−−−−→ G(a⊗ b).

Here we used a fact that G(ηa ⊗ ηb) gives a natural transformation.

We shall recall the results which describe the image of Spc(F ) for a given
unital tensor functor F : D1 → D2.

Proposition 3.2.8. (i) Suppose S := {A ∈ D1|〈F (A)〉 = D2} is a col-
lection of objects whose image is dense. The closure of the image of
Spc(F ) is

Im(Spc(F )) = Z(S).

(ii) Let Q : D → D/I be a quotient functor. The map Spc(Q) induces a
homeomorphism between Spc(D/I) and the subspace {P ∈ Spc(D)|I ⊆
P} of those primes containing I.

Proof. (i) [Prop. 3.9, [3]]
(ii) [Prop. 3.11, [3]]

One has the notion of the idempotent completion of an additive category.
If we have a triangulated category D then there is the triangulated category
structure on idempotent completion D̃ s.t. the canonical functor i : D → D̃ is
an exact functor, see [Theorem 1.5 ,[6]]. Following result relates the spectrum
of tensor triangulated category with its idempotent completion.

Proposition 3.2.9 (Prop. 3.13 and Cor. 3.14, [3]). Let D be a full tensor
triangulated subcategory of tensor triangulated category D′ with same unit.
Suppose D is cofinal in D′, i.e. for each object A′ of D′ there exists an object
A in D′ s.t. A⊕A′ ∈ D. Then the map Q 7→ Q∩D defines a homeomorphism
Spc(D′) ∼−→ Spc(D). In particular if i : D → D̃ is an idempotent completion
then Spc(i) : Spc(D̃)

∼−→ Spc(D) is a homeomorphism.

3.2.3 Support data

The association of topological space to a tensor triangulated category de-
scribed above is a good space to see the support of each object in a sense
of Grothendieckian philosophy. As Balmer proves that this association is
universal w.r.t. some properties. Now we shall recall these properties which
are known as support data.
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Definition 3.2.10. Support data on a tensor triangulated category D is a
pair (X, σ) where X is a topological space and σ is an assignment of closed
subset of X to each object A ∈ D s.t. following conditions are satisfied:

(SD 1) σ(0) = ∅ and σ(1) = Spc(D).

(SD 2) σ(A⊕B) = σ(A) ∪ σ(B).

(SD 3) σ(A[1]) = σ(A).

(SD 4) σ(A) ⊆ σ(B)∪σ(C) for each distinguished triangle A→ B → C →
A[1].

(SD 5) σ(A⊗B) = σ(A) ∩ σ(B).

The morphism f : (X, σ)→ (Y, τ) between two support data on a tensor
triangulated category D is defined as a continuous map f : X → Y such
that σ(A) = f−1(τ(A)) for each object A ∈ D. The morphism f is called an
isomorphism if and only if f : X → Y is a homeomorphism.

Example 3.2.11. Let X be a Noetherian scheme and F . is any bounded com-
plex of quasi coherent sheaves on X. We can define the homological support
of F . as follows,

supph(F .) := ∪i∈Z supp(Hi(F .)).
We shall generalize this example of a support data to the case of superscheme
in later chapter.

The pair (Spc(D), supp) has following universal property:

Theorem 3.2.12 (Theorem 3.2, [3]). The pair (Spc(D), supp) is the final
support data on a tensor triangulated category D. In other words, If (X, σ)
is a support data on a tensor triangulated category D satisfying conditions
(SD1 − 5) then there exists a unique morphism of support data f : X →
Spc(D). Explicitly, the map f is defined as f(x) = {A ∈ D|x /∈ σ(A)} ∈
Spc(D) for each x ∈ X.

Remark 3.2.13. The collection {a ∈ D|x /∈ σ(A)} is a prime ideal for each
x ∈ X.

Recall that a subset Y ⊆ X of a topological space X is specialization
closed if it is a union of closed subsets or equivalently if y ∈ Y then {y} ⊆ Y .
Now we shall define the classifying support data on a tensor triangulated
category.

Definition 3.2.14. Support data (X, σ) on tensor triangulated category D
is called classifying support data if following two conditions are satisfied:
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(a) The topological space X is Noetherian and any non empty irreducible
closed subset Z ⊆ X has a unique generic point i.e. there exists an
element x s.t. {x} = Z.

(b) We have a bijection

θ : {Y ⊆ X|Y specialization closed} ∼−→ {I ⊆ D|I radical thick ⊗-ideal}

defined by Y 7→ {A ∈ D|σ(A) ⊆ Y }, with inverse I 7→ σ(I) :=
∪A∈Iσ(A).

The following result gives an identification of any classifying support data
with the spectrum.

Theorem 3.2.15 (Theorem 5.2 , [3]). Suppose (X, σ) is a classifying support
data on D. Then the canonical map f : X → Spc(D) ,defined above, is a
homeomorphism.

The pair (X, supph) for a Noetherian scheme X gives an example of
classifying support data. We’ll give another example of classifying support
data in the chapter on superschemes.

3.2.4 Balmer reconstruction

Now we shall recall the definition of a structure sheaf defined on Spc(D) as
in [section 6, Balmer [3]].

Definition 3.2.16. For any open set U ⊂ Spc(D), let Z := Spc(D) \ U be
a closed complement and let DZ be the thick tensor ideal of D supported on
Z. We denote by OD the sheafification of following presheaf of rings: U 7→
End(1U) where 1U ∈ D

DZ
is the image of the unit 1 of D via the localization

map. The restriction maps are defined using localization maps in the obvious
way. The sheaf of commutative ring OD makes the topological space Spc(D)
a ringed space, which we shall denote by Spec(D) := (Spc(D),OD).

Remark 3.2.17. Using the functoriality of Spc and the definition of structure
sheaf OD we get the functoriality of Spec.

Now functoriality and computation of spectrum gives the Balmer recon-
struction. The following theorem was proved in Balmer[3] which computes
the spectrum for certain tensor triangulated categories.

Theorem 3.2.18 (Theorem 6.3, Balmer[3]). For X a topologically Noethe-
rian scheme,

Spec(Dper(X)) ' X.
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Since the homological support data on a quasi compact and quasi sepa-
rated scheme gives a classifying support data therefore we get a homeomor-
phism defined as in Theorem 3.2.15. This homeomorphism gives an isomor-
phism of structure sheaves using Thomason localization theorem [Theorem
2.13, Balmer[2]]. The construction of spectrum given in [theorem 6.3, Balmer
[3]] was extended by Buan, Krause and Solberg [theorem 8.5 [11]] from topo-
logically noetherian schemes to more general quasi-compact, quasi-separated
schemes.

Theorem 3.2.19 (theorem 54, Balmer [4]). Let X be a quasi-compact and
quasi-separated scheme. Suppose Dper(X) dentoes the tensor triangulated
category of perfect complexes. Then

Spec(Dper(X)) ' X

as ringed spaces.
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Chapter 4

Balmer spectrum for smooth
G-schemes

This chapter contains our[13] computation of Balmer spectrum for smooth
G-schemes. The G-scheme here just means the scheme with an action of
a finite group G. We define the category of G-equivariant sheaves and its
derived category which we refer here the derived category of a G-scheme.
We use here results of Mumford[30] for the existence of Orbit space and
restrict to smooth quasi projective schemes. Such schemes are special as
they have ample family of line bundles, so perfectness of complexes behave
well under this assumption. We do not follow Balmer’s proof for scheme case
here. Rather we prove the isomorphism of spectrum for derived category of
G-scheme X with derived category of orbit scheme X/G. The results of this
chapter also shows the strong restriction coming from keeping extra data of
tensor as the Mackay correspondence can’t arise as tensor exact functors.
This follows from our result and Balmer reconstruction.

Throughout this chapter, G is a finite group and k is a field whose char-
acteristic is coprime to the order of G. The varieties we consider will be
defined over this field k.

4.1 Some special cases

We shall first do some particular cases before going to the general case. The
general case will be done in the next section 4.2. Note that the next section
4.2 does not depend on this one. This section is only there to provide a
motivation for the result and to demonstrate some easy proofs in simple
cases.
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4.1.1 Case 1: G-scheme with trivial action

In this example we shall compute Balmer’s triangular spectrum for equiv-
ariant sheaves over some quasi-projective varieties with G-action. We first
give two proofs for the case of a finite group action on a single point Spec(k)
where k is a field with characteristic coprime to the order of group G.

Let G and k be as above. As usual Rep(G) is the category of all finite
dimensional k linear representation of a group G. We can define a strict
symmetric monoidal structure on this category using the usual tensor product
of representations i.e. if V1 and V2 are two representations of G then V1⊗V2 is
the tensor product as k vector spaces with diagonal action. We shall denote
the bounded derived category of abelian category Rep(G) (resp. Rep({0}),
for the trivial group {0}) asDk[G] (resp. Dk ). We can extend the above tensor
product of representations to get a symmetric tensor triangulated structure
on Dk[G].

Proposition 4.1.1. Spec(Dk[G]) ∼= Spec(Dk) ∼= Spec(k).

We give two proofs of this proposition. The second proof generalizes to
the final general case. The reason for including the first proof is purely to
demonstrate another method of seeing the above statement, and has no other
implication.

First proof. Since Rep({0}) is a semisimple abelian category with k as its
unit it is easy to see that Spec(Dk) ∼= Spec(k) as a variety. Therefore it is
enough to prove the first isomorphism. The unit object of Dk[G] is k with
endomorphism ring isomorphic to k so it remains to say that the trivial ideal,
i.e. ideal with only zero object, is the only prime ideal. To prove this observe
that for any nonzero finite dimensional representation of G, say W, we have
the representation W ∗ ⊗W ' Endk(W,W ) , see Proposition 10.30 of [12],
containing G invariant element given by identity endomorphism. Now this G
invariant element will give trivial representation as an summand of W ∗⊗W .
So if any prime ideal contains any any non-zero representation then using
thickness we will get unit object inside prime ideal which is absurd.

As mentioned earlier, for the sake of generalisation we shall give another
proof of proposition 4.1.1.

Second proof of Proposition 4.1.1. Consider the two exact tensor functors
F : Dk[G] → Dk and G : Dk → Dk[G] where F is the forgetful functor and
G comes from the augmentation map of the group algebra k[G] i.e. sending
each complex of vector space to a complex of k[G] module with the trivial
action of a group G. Note that F ◦G = Id and hence Spec(G)◦Spec(F ) = Id.
Hence the following lemma will complete the proof of the proposition.
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Lemma 4.1.2. Spec(F ) ◦ Spec(G) = Id.

Proof. Let P ∈ Spec(Dk[G]) be a prime ideal. We want to prove that (G ◦
F )−1(P) = P . If V ∈ Mod(k[G]) is any k[G]-module, then we have the
canonical decomposition,

V = ⊕
λ
Vλ ⊗ (V ∗λ ⊗ V )G

where Vλ is an irreducible representation of a group G. Further (V ∗λ ⊗V )G is a
direct summand of (V ∗λ ⊗V ) as is seen using the projector 1

|G|
∑

g∈G ρg where

ρg comes from the action of a group G on (V ∗λ ⊗ V ). Since any complex in
Dk[G] is isomorphic to the direct sum of translates of the cohomology of that
complex, to prove above assertion its enough to prove that (G ◦ F )−1(P ∩
Mod(k[G])) = P ∩Mod(k[G]). Observe that,

V ∈ (P ∩Mod(k[G])) ⇔ (Vλ ⊗ V )G ∈ (P ∩Mod(k[G])

using thickness and additivity

⇔ (Vλ ⊗ V )G ∈ (G ◦ F )−1(P ∩Mod(k[G]))

As (G ◦ F )(W ) = W if G acts trivially on W

⇔ V ∈ (G ◦ F )−1(P ∩Mod(k[G]))

using thickness and additivity.

The above observation completes the proof of the lemma, and hence of propo-
sition 4.1.1.

Now, we shall extend the above example. Let X be a smooth variety
considered as a space with the trivial action of a finite group G. Recall the
definitions and some properties of a G-sheaves from the preliminary section
2.4.3. Let Coh(X) (resp. CohG(X)) be the abelian category of all coherent
sheaves (resp. coherent G-sheaves) over X. We have two functors F and G
similar to the previous example defined as follows,

F : CohG(X)→ Coh(X) & G : Coh(X)→ CohG(X)

(F , ρ) 7→ F F 7→ (F , id)

Note that the functor F (respectively G) is a faithful (respectively fully
faithful) exact functor. Thus we get two exact derived functors of the above
two functors, F : DG(X) → Db(X) and G : Db(X) → DG(X) which by
abuse of notation are denoted by the same symbols.

Recall that DG(X) and Db(X) are a tensor triangulated categories which
makes the functors F and G unital tensor functors and hence using the
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functorial property of “Spec” we shall get two morphisms

Spec(F ) : Spec(Db(X))→ Spec(DG(X)) and

Spec(G) : Spec(DG(X))→ Spec(Db(X)).

Proposition 4.1.3. Spec(DG(X)) ∼= Spec(Db(X)) ∼= X.

Proof. Here, the second isomorphism was proved by Balmer [3] which en-
ables him to reconstruct the variety from its associated tensor triangulated
category of coherent sheaves. We shall use the idea of previous example to
prove the first isomorphism.

Since F ◦G = Id, functoriality of the “Spec” will give Spec(G)◦Spec(F ) =
Id. Now it remains to prove that Spec(F ) ◦ Spec(G) = Id. Note that every
object (F , ρ) ∈ DG(X) has the canonical decomposition as follows,

(F , ρ) = ⊕
λ
Vλ ⊗ (F , ρ)λ

where (F , ρ)λ = (V ∗λ ⊗ (F , ρ))G and Vλ is a finite dimensional irreducible
representation of the group G, see section 2.4.3 for proof. Also note that
(F , ρ)λ is an ordinary sheaf with the trivial action of a group G and also
using similar projector as above, i.e. 1

|G|
∑
g∈G

ρg, we can prove that (F , ρ)λ is

an direct summand of the sheaf (V ∗λ ⊗ (F , ρ)). Now we use the following
lemma.

Lemma 4.1.4. Spec(F ) ◦ Spec(G) = Id.

Proof. Let P ∈ Spec(DG(X)) be a prime ideal. We want to prove that
(G ◦ F )−1(P) = P . Now using the canonical decomposition of each objects
of the triangulated category DG(X). we have,

(F , ρ) ∈ P ⇔ (F , ρ)λ ∈ P using thickness, additivity and projector

⇔ (F , ρ)λ ∈ (G ◦ F )−1(P)

Since (G ◦ F )(F , id) = (F , id) if G acts trivially i.e. ρ = id

⇔ (F , ρ) ∈ (G ◦ F )−1(P)

using thickness, additivity and projector.

Hence the above observation completes the proof of lemma.

Now, using the above lemma, it follows that Spec(F ) is an isomorphism
between Spec(DG(X)) and Spec(Db(X)).

Remark 4.1.5. The proof for the case of trivial action on smooth varieties does
not need the assumption of quasi-projectivity on the variety X. However,
the condition of quasi-projectivity is necessary for the general case, to ensure
the existence of the quotient variety.
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4.1.2 Case 2: G-scheme with free action

Now we shall consider the case where a finite group G acts freely on X. We
refer to section 2.4.3 for the definitions. Recall that, we have a canonical
map π : X → Y := X/G which is a G-equivariant map with the trivial
action of G on Y . Now we can also define two functors associated with
π: π∗ : Coh(Y ) → CohG(X) and πG∗ : CohG(X) → Coh(Y ) where πG∗ =
G-equivariant part of π∗. We had also seen in 2.4.3 that π∗ is a tensor functor
in general; and when G acts freely it is also an equivalence of categories with
πG∗ as its quasi-inverse. Hence we shall get an equivalence of the tensor
triangulated categories Db(Y ) and DG(X). Since an equivalence gives an
isomorphism of “Spec”, (cf. section 2.4.3), therefore we get an isomorphism
Spec(π∗) : Spec(DG(X))→ Spec(Db(Y )) with its inverse given by Spec(πG∗ ).
In fact using case 2 and this argument, we can give slightly more general
statement as follows.

Corollary 4.1.6. Suppose finite group G acts freely on a quasi-projective
variety X modulo some normal subgroup H. In other words, the subgroup
H acts trivially, and the induced action of the quotient group G/H is free.
Then

Spec(DG(X)) ∼= Spec(Db(Y )) ∼= Y

where Y := X/G as before.

Proof. As mentioned above, the proof goes in similar lines as in case 2, using
a more general canonical decomposition of objects of DG(X):

(F , ρ) = ⊕
λ
Wλ ⊗ (F , ρ)λ

where (F , ρ)λ = (W ∗
λ ⊗ (F , ρ))H , Wλ is a finite dimensional irreducible rep-

resentation of the group H, and the group G/H acts naturally on (F , ρ)λ.
See corollary 2.4.14 for the proof.

4.2 The general case

In this section we shall consider the more general situation of a finite group
G acting on a smooth quasi-projective variety X and we further assume that
the group G acts faithfully. As is assumed throughout the section, the order
of G and the characteristic of the base field k are coprime to each other.
Define π : X → Y := X/G as above an G-equivariant map. Here the action
of G on Y is trivial. Note that for a finite group, the quotient space always
exists 2.4.3.
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We shall first prove some basic results which we need later for the proof.
We give a distinguished triangle for any complex of G-equivariant coherent
sheaf F over X in following result.

Proposition 4.2.1. Let G, k, X and Y be as above.

1. Suppose V is a G-invariant open subset of Y with the induced action
of G on V , which is trivial. Then for G in DG(Y ),

i∗V (GG) = (i∗V G)G

2. Suppose G acts faithfully on X. If F ∈ DG(X) with supph(F) = X
then we have a distinguished triangle

π∗πG∗ (F)→ F → F1

with supph(F1) ( supph(F). Same is true if we have faithful action of
G on supph(F) ( X.

Proof of 1. It follows from the definition of G-equivariant functions.
Proof of 2. Since G acts faithfully on X we can use proposition 2.4.4 to
get an open subset U ⊆ X with free action of the group G . We shall
use induction on amplitude length, ampl(F). When ampl(F) = 1 then F
is a shift of a coherent sheaf so enough to prove for coherent sheaf. Now
using the fact that supph(F) = X we have i∗U(F) 6= 0. There is a natural
morphism coming from adjunction and inclusion of G-invariant part, say
η : π∗πG∗ (F) → F . Using flat base change and part 1 of 4.2.1 we get an
isomorphism i∗Uπ

∗πG∗ (F) ' π∗πG∗ (i∗UF). Now this will give an isomorphism,
as G act freely on U , i.e. i∗U(η) : i∗Uπ

∗πG∗ (F) → i∗UF is an isomorphism.
Hence cone of the map η will have support outside an open set U . This
completes the first step of induction.

Now assume that for all F with ampl(G) ≤ (n − 1) we have such a
distinguished triangle. Now consider F with ampl(F) = n with highest
cohomology in degree n. We have usual truncation distinguished triangle
τ≤(n−1)(F)→ F → Hn(F)[−n]. Using exactness of i∗U and argument similar
to first step of induction we have a following commutative diagram (we have
used same notation η for different sheaves),

i∗Uπ
∗πG∗ τ

≤(n−1)(F) //

i∗U (η)

��

i∗Uπ
∗πG∗ F //

i∗U (η)

��

i∗Uπ
∗πG∗ Hn(F)[−n]

i∗U (η)

��
i∗Uτ

≤(n−1)(F) // i∗UF // i∗UHn(F)[−n]
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Since both the extreme vertical arrows are isomorphism using induction hy-
pothesis, we have isomorphism of the middle i∗U(η). Therefore cone of the
map η will have proper support.

Following crucial lemma is used later to show injectivity of the map in-
duced by spectrum.

Lemma 4.2.2. Let π : X → Y be the quotient map as before.

1. Given F ∈ DG(X) we have supph(π∗F) = π(supphF).

2. There exists a tower of distinguished triangles for each object F in
DG(X),

F = F0
//F1

��	
	

	
	

· · · Fm−1
//Fm

���
�

�
�

8888888

8888888

G1

__@@@@@@@@

· · · Gm−1

``AAAAAAA

Gm

where Gi =
⊕
λi

Wλi ⊗ π∗π
G/Hi
∗ (Fλi) with the sum being over the irre-

ducible representations of the corresponding Hi’s, supph(Fm) ( . . . (
supph(F).

Furthermore

supph(π
G/Hj
∗ (Fλj)) ⊆ supph(π∗(Fλj)) = π(supph(Fλj)).

Proof of 1. Consider F ∈ DG(X) a complex of G-sheaves. We have the
special case of the Grothendieck-Leray spectral sequence [Pg. 74 (3.4) [22]]
as follows,

Ep,q
2 = Rpπ∗(Hq(F))⇒ Rp+qπ∗(F).

Since Rpπ∗ = 0 for each p > 0 the above spectral sequence will degenerate
and we get that π∗(Hi(F)) = Hi(π∗(F)). Here as before Hi(F) represents
the i-th cohomology sheaf of the complex F . Now this will give the equality,

supph(π∗(F)) = ∪i supp(Hi(π∗F)) = ∪i supp(π∗Hi(F)).

Suppose we prove the assertion for pure sheaves, i.e. complexes of sheaves
concentrated on degree 0, then following observation will complete the proof.

supph(π∗F) = ∪i supp(π∗Hi(F)) = ∪iπ(supp(Hi(F))) = π(supph(F)).

Now it remains to prove the assertion for pure sheaves. We shall denote by
FU the restriction of the sheaf F on the open set U of X. Suppose Vj is an
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open affine cover of Y and Uj := π−1(Vj) is the affine open cover of X. We
shall denote the restriction of the map π on Uj with same notation π. Now
using the flat base change we have π∗(FUj) = (π∗F)Vj for any sheaf F on X.
Suppose the above assertion is true for affine case then following observations
will complete the proof.

π(supp(F)) = π(∪j(supp(F) ∩ Uj)) = ∪jπ(suppFUj) = ∪j supp(π∗FUj)

= ∪j supp((π∗F)Vj) = ∪j supp(π∗F) ∩ Vj = supp(π∗F).

It remains to prove the assertion for pure sheaves on affine varieties. Suppose
π : SpecB → SpecA is a quotient map for the action of G on SpecB, and
Ñ is a pure G-equivariant sheaf on Spec(B), corresponding to the B-module
N . Since A and B are noetherian rings, this reduces to following fact.

V (ann(AN)) = π(V (ann(N)).

Here ann(N) denotes the annihilator ideal and V (ann(N)) denotes the closed
set given by all prime ideal containing the ideal ann(N). Let π̄ : A → B be
the algebra map corresponding to π.

Now to show V (ann(AN)) = π(V (ann(N)) it is enough to prove that

π̄−1(ann(N)) = ann(AN).

This follows as x ∈ π̄−1(ann(N)) iff π̄(x)N = 0. This is equivalent to
x(AN) = 0 which in turn holds iff x ∈ ann(AN). This concludes the proof of
1.
Proof of 2. To prove the first part we use induction on the dimension of the
homological support of F . Note that the homological support is invariant
under the action of G. If dimension is zero then it will be set of G-invariant
points and we shall get the direct sums of skyscrapers on these points. If we
have free action of G/H for some subgroup H then we have the canonical
decomposition by 2.4.14. This proves that the induction starts.

For the induction step, assume that for all G with dim supph(G) ≤ n− 1,
we have a tower as in the statement of the lemma. Now consider F with
dim supph(F) = n. Here supph(F) is a union of G-invariant components
and using the proposition 2.4.4 we get subsets Ui, open in supph(F) for
i = 1, . . . , r and subgroups Hi for i = 1, . . . , r. As observed before, these
Ui are mutually disjoint and there is a free action of group G/Hi on Ui for
i = 1, . . . , r. Consider the open subset U1 ⊂ supph(F). Let iU1 be the
inclusion of U1 in X. By 2.4.14, we can decompose i∗U1

(F) as

i∗U1
(F) = ⊕

λ
Wλ ⊗Fλ
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where each Wλ is an irreducible representation of subgroup H1, and the Fλ’s
are G/H1-sheaves over the open subset U1. Using adjunction and 2.4.8, we

get a canonical isomorphism, ηλ : π∗π
G/H1
∗ (Fλ) → Fλ in DG(U1). Putting

these together, we get an isomorphism

⊕
λ
Wλ ⊗ π∗πG/H1

∗ (Fλ)
∼−→ i∗U1

(F) = ⊕
λ
Wλ ⊗Fλ. (4.1)

Let Fλ1 = (iU1)∗Fλ. Then, Fλ ∼= i∗U1
Fλ1 , since the adjunction i∗U1

iU1∗Fλ1 →
Fλ1 induces an isomorphism on stalks, as U1 is open in supph(Fλ1). Also,
since U1 is open in supph(F), there exists an open subset Ũ1 ⊂ X such that
Ũ1∩ supph(F) = U1. Let Ū1 = Ũ1∪ (X \ supph(F). Now we shall prove that

π∗πG/H1
∗ i∗Ū1

(Fλ1) ∼= i∗Ū1
π∗πG/H1

∗ (Fλ1).

This follows from flat base change and some functorial properties, by
considering the diagram,

Ū1
� �
iŪ1 //

π

��

X

π

��
V1

� � iV1 // Y

and from the following sequence of canonical isomorphisms,

i∗Ū1
(π∗πG/H1

∗ (Fλ1)) ∼= π∗i∗V1
(π∗(Fλ1))G/H1 ∼= π∗(i∗V1

π∗(Fλ1))G/H1

∼= π∗(π∗i
∗
Ū1

(Fλ1))G/H1 = π∗πG/H1
∗ i∗Ū1

(Fλ1).

The isomorphism, proved in the previous paragraph, and equation (4.1)
implies that the map i∗U1

(η̃) is an isomorphism by looking at stalks, where η̃ is

the map ⊕λWλ⊗π∗πG/H1
∗ (Fλ1)→ F coming from the appropriate adjunction

maps. We shall denote ⊕λWλ ⊗ π∗πG/H1
∗ (Fλ1) by G1. Now using 1. of 4.2.2

we get that supph(π
G/H1
∗ (Fλ1)) ⊆ supph(π∗(Fλ1)) = π(supph(Fλ1)).

From the above discussion, the cone of the map η̃, say F1, will have
the property that i∗U1

(F1) = 0 and hence supph(F1) ⊆ (supph(F) \ U1) (
supph(F). Now we can proceed similarly with F1 whose support has less
number of G-invariant components than F and hence in finitely many steps
(in less than r steps) the dimension of homological support will drop. Hence
we shall get Fi and Gi for i = 1, . . . , s with the stated restrictions on supports.
The dimension of supph(Fs) ≤ n− 1 and that concludes the induction step.

We shall now prove the main result of this section in several steps for
simplicity.
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Proposition 4.2.3. The morphism of locally ringed spaces

Spec π∗ : SpecDG(X)→ SpecDper(Y )

is an isomorphism. Since by Balmer [theorem 54, [4]] SpecDper(Y ) ∼= Y as
schemes,

SpecDG(X) ∼= Y

as schemes.

Here again as before the second isomorphism is a particular case of the
more general reconstruction result of Balmer [2] [3]. Hence we shall just
prove the first isomorphism. We know there are two exact functors π∗ :
Dper(Y ) → DG(X) and π∗ : DG(X) → Dper(Y ). We also know that the
map π∗ is an unital tensor functor and hence it will give the map Spec(π∗) :
Spec(DG(X))→ Spec(Dper(Y )). Note that π∗ need not be a tensor functor.
We shall prove that Spec(π∗) is a closed bijection and induces an isomorphism
for the structure sheaves.

To simplify the proof we will break it in several steps. The first two
steps will prove that Spec(π∗) gives a bijection of sets on the underlying
topological spaces of the two Specs in question. The next step will show
that the underlying topological spaces are homeomorphic. Then finally in
step 4 we prove that the Specs of the tensor triangulated categories under
consideration, are isomorphic as ringed spaces.

Step 1: Spec(π∗) is onto.

Suppose q ∈ Spec(Dper(Y )) is a prime ideal then we want to construct an
prime ideal p in Spec(DG(X)) such that q = (π∗)−1(p). Recall that 〈π∗(q)〉
denotes the thick tensor ideal generated by the image of q via functor π∗ in a
tensor triangulated category DG(X). We have a following lemma which uses
the explicit description of thick tensor ideal 〈π∗(q)〉.

Lemma 4.2.4. π∗(〈π∗(q)〉) ⊆ q.

Proof. To prove this lemma, we use lemma 3.2.2 i.e.

〈π∗(q)〉 = ∪n≥0〈π∗(q)〉n

where 〈π∗(q)〉n constructed inductively by taking 〈π∗(q)〉0 as the summands
of tensor ideal generated by π∗(q) and 〈π∗(q)〉n to be the thick tensor ideal
containing cone of morphism between any two objects of 〈π∗(q)〉(n−1) and
〈π∗(q)〉0 . Here cone of a morphism refers to the third object of any distin-
guished triangle having this morphism as a base or equivalently we can use �
operation. The above equality follows from the lemma 3.2.2 proved earlier.
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We shall use induction on n in the above explicit description. For n = 0,
given F ∈ q,

π∗(π
∗(F)⊗ G) = F ⊗ π∗(G) ∈ q,

and hence π∗(〈π∗(q)〉0) ⊆ q using thickness of q.
Using induction suppose we know that π∗(〈π∗(q)〉(n−1)) ⊆ q. Since π∗

is an exact functor, it follows that the image under π∗ of a cone of any
morphism is a cone of π∗ of the morphism. Hence using the triangulated
ideal property and thickness of q it follows that π∗(〈π∗(q)〉n) ⊆ q. Therefore
we have π∗(〈π∗(q)〉) = π∗(∪n≥0〈π∗(q)〉n) ⊆ q.

Lemma 4.2.5. π∗(Dper(Y ) \ q) ∩ 〈π∗(q)〉 = ∅.

Proof. To prove this by contradiction, suppose that there exists an object
G ∈ (Dper(Y ) \ q) such that π∗(G) ∈ 〈π∗(q)〉. Then using the above lemma
π∗(π

∗G) ∈ q. On the other hand, the projection formula implies π∗(π
∗G) =

G ⊗ π∗(OX), which we saw is in q.
Using the primality of q it follows that π∗(OX) ∈ q. Now (π∗(OX))G = OY

is a direct summand of π∗(OX) by the canonical decomposition of a G-sheaves
on Y . Hence OY is an object of q; which is absurd.

To complete Step 1, we apply Balmer’s result 3.2.4 to get an prime ideal
p, such that π∗(Dper(Y ) \ q) ∩ p = ∅ and 〈π∗(q)〉 ⊆ p. Hence we shall get
q = (π∗)−1(p) which proves the surjectivity of the map Spec(π∗).

Step 2: Injectivity of Spec(π∗)

First we shall give proof of injectivity for the case of a smooth projective
curve as it is simpler and shows the key idea for the general case. First, we
have following basic result for the case of a smooth projective curve which
simplifies the proof in this case. First we recall some basic definitions.

Definition 4.2.6 (Def. 13.1.18, [23]). An abelian category A is called hered-
itary abelian category if

HomDb(A)(A,B[i]) = 0 for each i ≥ 2.

In other words, an abelian category A is called hereditary if the homological
dimension of A is 0 or 1

Proposition 4.2.7. 1. Any object of Db(A),for a hereditary abelian cat-
egory A, is non-canonically isomorphic to the direct sum of its coho-
mologies with shifts. In particular, this is true for A = Coh(X) where
X is a smooth projective curve.
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2. Every coherent sheaf over smooth projective curve X is a direct sum of
a coherent skyscraper sheaves and a locally free coherent sheaves.

Proof. We shall briefly indicate the proof of these well known results.
Proof of (i) See [cor. 13.1.20, [23]] or [cor. 3.15, [22]] for the proof of first
part. See [prop. 3.13, [22]] for the proof that the homological dimension
of Coh(X) is same as dimension of X for smooth projective scheme X. In
particular, Coh(X) is hereditary abelian category for smooth projective curve
X.
Proof of (ii) Since torsion free sheaves on smooth curve are locally free we get
that F/Ftor is locally free. The sheaf Ftor is supported on finite points and
hence sum of finite coherent sheaves supported on point which is coherent
skyscraper sheaf. Now it is enough to prove that F = Ftor ⊕ F/Ftor. But
this follows from the vanishing of the following torsion sheaf,

H1(X, ˇ(F/Ftor)⊗Ftor) = 0.

Using above result we prove the following proposition.

Proposition 4.2.8. The map Spec(π∗) : Spec(DG(X)) → Spec(Db(Y )) is
an injective map between smooth projective curves X and Y .

Proof. Suppose not, let p1, p2 be two distinct points of Spec(DG(X)) mapping
to the same point qy where y is given by the identification of Spec(Db(Y ))
with Y . Let F be an element of p1 and using the above proposition (4.2.7)
we can assume that it is a pure sheaf. We have the following lemma which
gives a restriction on the homological support of such elements.

Lemma 4.2.9. supp(F) ⊆ (X \ π−1(y)).

First let us complete the proof of the proposition assuming this lemma.
From the lemma it follows that supp(F) is a proper subset of X with a G-
action. Therefore supp(F) is a finite set of points and using thickness further
we can assume that it is a single orbit. Suppose H is a stabiliser of this orbit.
Then G/H will act freely on supp(F). Now we have the decomposition,

F = ⊕λWλ ⊗Fλ ' ⊕λWλ ⊗ π∗πG/H∗ (Fλ)

where Wλ is an irreducible representation of H. Therefore F ∈ p1 ∩ p2,
since using a projector Fλ = (W ∗

λ ⊗ F)G ' π∗π
G/H
∗ (Fλ) ∈ p1 ∩ p2, and

hence p1 ⊆ p2. Using similar arguments we can prove p2 ⊆ p1. This is a
contradiction as p1 and p2 are distinct points.

This proves the proposition assuming the lemma. Next we prove the
lemma.
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Proof of lemma. We prove it by contradiction. Assume supp(F) ∩ π−1(y) 6=
∅. If y is a closed point then we can assume that supp(F) = π−1(y) since
we can always tensor with the object Oπ−1(y) which will give an object of
p1. And if H is a stabiliser of this finite G set then we shall have the usual
decomposition F = ⊕λWλ ⊗ π∗πG/H∗ (Fλ). Since p1 is prime ideal and Wλ ⊗
OX /∈ p1, see first proof of 4.1.1. This will prove that π∗π

G/H
∗ (Fλ) ∈ p1.

Using our assumption that Spec(π∗)(p1) = qy we get an object, π
G/H
∗ (Fλ) ,

of qy supported on y which is a contradiction.
Similarly, if y is a generic point of X then using the above proposition

4.2.7 we can assume that F is a G-equivariant vector bundle. In the paper
[36] the hyperelliptic curve was considered as Z/2Z-space and any vector
bundle with lift of this involution was embedded in a short exact sequence
with an equivariant vector bundle lifted from projective line and skyscrapers
on Weierstrass points. Therefore the short exact sequence (4.7) from paper
[36] gives approximation of equivariant vector bundles with vector bundle
lifted from below and suggests the approach for general varieties. Now using
a short exact sequence, similar to short exact sequence (4.7) from paper[36],

0→ π∗πG∗ (F)→ F → F ′ → 0

with F ′ supported on a points we can prove F ′ ∈ p1. Hence π∗πG∗ (F) ∈ p1.
Now using our assumption πG∗ (F) ∈ qy which is a contradiction as πG∗ (F) is
a vector bundle.

This finishes the case of curves.
Now we shall start with the proof of more general situation. First we

prove a technical lemma.

Lemma 4.2.10. Let π : X → Y be the quotient map as before. Let p be a
prime ideal in DG(X) and suppose that (π∗)−1(p) = qy. Here, y is the point
in Y corresponding to qy in Spec(Dper(Y )) ∼= Y .

1. Let F ∈ DG(X) be such that its homological support is contained in
(X \ π−1(y)). Then, it is an object of p.

2. Let F be an object of p. Then supph(F) ⊆ (X \ π−1(y)).

Proof of 1. Using 2. of 4.2.2, there is a tower whose lower terms Gi :=
⊕
λi
Wλi⊗π∗π

G/Hi
∗ (Fλi) have support contained in the subset X−π−1(y). Since

supph(Wλi⊗OX) = X, we have supph(π∗π
G/Hi
∗ (Fλi)) ⊆ X−π−1(y). Using 1.

of 4.2.2, the support of π
G/Hi
∗ (Fλi) will be in Y −y and hence π

G/Hi
∗ (Fλi) ∈ qy.

We know π∗(qy) ⊆ p where Spec(π∗)(p) = qy is given. This will prove
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π∗π
G/Hi
∗ (Fλi) ∈ p and hence Gi ∈ p. Now using the tower and the definition

of a triangulated ideal, F is contained in p.
Proof of 2. Suppose supph(F) ∩ π−1(y) 6= ∅ and hence we get F ′ = F ⊗
Oπ−1(ȳ) ∈ p. Observe that supph(F ′) = π−1(ȳ) = π−1(y). Now applying the
same procedure as in 2. of 4.2.2, we shall get a distinguished triangle

⊕
λ
Wλ ⊗ π∗πG/H∗ (F ′λ)→ F ′ → F ′′ →

with supph(F ′′) ( supph(F ′). Since the G-invariant subset supph(F ′′) is a
proper subset of π−1(y) therefore supph(F ′′) ∩ π−1(y) = ∅. Using 1. above,
we get that F ′′ ∈ p. Hence using triangulated ideal property the third object
of distinguished triangle will be in p i.e. ⊕

λ
Wλ ⊗ π∗πG/H∗ (F ′λ) ∈ p . But this

gives π∗π
G/H
∗ (F ′λ) ∈ p with supph(π

G/H
∗ (F ′λ)) ⊆ ȳ as Wλ⊗OX is not in any p

because W ∗
λ ⊗Wλ⊗OX contains the OX as direct summand, see Proposition

10.30 of [12]. And, at least for one λ, say λ0, we have supph(π
G/H
∗ (F ′λ)) = ȳ

which gives π
G/H
∗ (F ′λ0

) /∈ qy. This is a contradiction as π∗(Dper(Y )) ∩ p =
π∗(qy).

We are now ready to give a proof of the main result which gives the
injectivity of the map Spec(π∗).

Proposition 4.2.11. Suppose X is a smooth quasi-projective varieties of
dimension n.Then the map Spec(π∗) : Spec(DG(X)) → Spec(Dper(Y )) is
injective.

Proof. We prove this proposition by contradiction. Let p1, p2 be two distinct
points of Spec(DG(X)) which maps to the same point qy i.e. (π∗)−1(p1) =
(π∗)−1(p2) = qy. Let F ∈ p1 be an complex of G-equivariant sheaves. Now
we use the above lemma.

Using 2., we have supph(F) ⊆ (X − π−1(y)). Therefore using 1., and the
fact that (π∗)−1(p2) = qy, we get that F ∈ p1 ∩ p2. Hence p1 ⊆ p2. Similarly,
p2 ⊆ p1 implying that p1 = p2. This contradicts the assumption that p1 6= p2,
and hence proves the proposition.

Step 3: Spec(π∗) is closed and hence is a homeomorphism.

Here we need bijection of the above step to prove closedness of the map
Spec(π∗). We shall use the fact that W ⊗OX /∈ p for any finite dimensional
representation and any prime ideal p. This follows from the fact that the
representation on W ∗ ⊗ W ⊗ OX , coming from W ⊗ OX , has the trivial
representation as a direct summand, see Proposition 10.30 of [12]. Since
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supp(F), F ∈ DG(X), are the basic closed sets therefore it is enough to
prove that their image under the map Spec(π∗) are closed. Now to prove this
we shall use the description given in lemma 4.2.2 for any object of DG(X).

Writing Gλj = π
G/Hj
∗ (Fλj) for simplicity, we have the following lemma.

Lemma 4.2.12. Spec(π∗)(supp(F)) =
⋃
j

⋃
λj

supp(Gλj).

Proof. Given F ∈ p we have Gλj ’s as in lemma 4.2.2. Now,

F ∈ p ⇔ Wλj ⊗ π∗(Gλj) ∈ p ∀j, λj
⇔ π∗(Gλj) ∈ p, since Wλj ⊗OX /∈ p.

Therefore F /∈ p ⇔ ∃ λj such that π∗(Gλj) /∈ p.

Let p ∈ supp(F) and hence by the definition F /∈ p. Now using the above
observation there exists a λj such that π∗(Gλj) /∈ p i.e. Gλj /∈ (π∗)−1(p) =
Spec(π∗)(p) and hence Spec(π∗)(p) ∈ supp(Gλj). Therefore

Spec(π∗)(supp(F)) ⊆ ∪j ∪λj supp(Gλj).

Conversely suppose q ∈ ∪j ∪λj supp(Gλj) and hence q ∈ supp(Gλj) for
some λj. Therefore by definition Gλj /∈ q but using the bijection of the
map Spec(π∗) we have Gλj /∈ (π∗)−1(p) = q for some p. Now it follows that
π∗(Gλj) /∈ p and once again using the above observation we have F /∈ p i.e.
p ∈ supp(F). Hence we have ∪j ∪λj supp(Gλj) ⊆ Spec(π∗)(supp(F)).

Since union in right hand side of above lemma is finite it follows that
the image of supp(F) under the map Spec(π∗) is closed for all F ∈ DG(X).
Hence the map Spec(π∗) is a closed map and therefore it is a homeomorphism.

Remark 4.2.13. 1. The classification of thick tensor ideals in DG(X) is
given by Thomason subsets of X/G. More precisely, the thick tensor
ideals in DG(X) are generated by objects, whose images have as their
support a Thomason subset of Y . Thus the bijection can be restated
as a bijection between thick tensor ideals of DG(X) and G-invariant
Thomason subsets of X.

2. In a fashion, similar to [theorem 4.1, [39]], one can use the classification
of thick tensor ideals of DG(X) to give a classification of strictly full
tensor ideals of DG(X).

Remark 4.2.14. Given an unital tensor functor F : D1 → D2 one can ask the
conditions on F which gives the homeomorphism of the map Spc(F ). We
can give slightly abstract conditions using the above proofs. If F satisfies
the following two conditions,
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(i) For each object A of D2 there exists a following tower

A // A1

~~}
}

}
}

· · · An−1
// An

~~|
|

|
|

EEEEEEEE

EEEEEEEE

B1

__????????

· · · Bn

bbEEEEEEEE

Bn+1

s.t. the lower level objects Bj ∈ add(Im(F )⊗ gen(D2)). Here gen(D2)
represents the collection of objects which generates D2 as thick tensor
ideal and add of some collection of objects represents the full additive
category generated by the collection. Further, for each prime ideal
p ∈ Spc(D2) following condition is satisfied,

A ∈ p⇔ Bj ∈ p.

(ii) F (D1− q)∩ 〈F (q)〉 = ∅. ( Or there exists a prime ideal containing F (q)
and not containing object F (A) for each objects A of D1 − q.)

then the continuous map Spc(F ) is an homeomorphism.

Step 4: Spec(π∗) is an isomorphism.

In this step we shall prove that the above homeomorphism spec(π∗) is, in
fact, an isomorphism. We begin by proving the following lemma which we
shall use later.

Lemma 4.2.15. There exist a natural transformation η : π∗πG∗ → Id (resp.
µ : Id→ πG∗ π

∗) such that η(OX) = id (resp. µ(OY ) = id) where π∗πG∗ (OX) =
OX (resp. πG∗ π

∗(OY ) = OY ).

Proof. We shall prove the existence of η, as µ can be found using similar
arguments. Since the functor π∗ is a left adjoint of the functor π∗ we have
a natural transformation η′ : π∗π∗ → Id given by the adjunction property.
We also have a natural transformation given by inclusion of G-invariant part
of sheaves on Y , say I. Now composing with the functors π∗ and π∗ we
get another natural transformation which composed with η′ gives the η i.e.
η := η′ ◦ (π∗ · I · π∗). Now to prove η(OX) = Id we can assume that X is
an affine variety. Suppose Ã is a structure sheaf of X and B̃ is the structure
sheaf of Y . Since π∗ is a unital tensor functor, π∗(OY ) = OX . This implies
Riπ∗ = 0 for i > 0. Similarly, using the Leray spectral sequence one can
deduce Riπ∗ = 0 for i > 0. Thus we get a morphism π∗πG∗ (Ã)→ Ã, in place
of its derived functors. Now clearly the multiplication map A⊗B (BA)G → A
is just inverse of the natural identification map of A with A⊗B (BA)G. Hence
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the map η(OX) : Ã → Ã is an identity map. Similarly we can prove that
µ(OY ) = Id.

Recall the definitions of structure sheaves and associated map of the
sheaves given by the unital tensor functor of underlying tensor triangulated
categories 3.2 i.e. given an unital functor π∗ : Dper(Y ) → DG(X) the mor-
phism Spec(π∗) induces a map of the structure sheaves, Spec(π∗)# : OY →
OX . We shall prove that this map is an isomorphism by observing that
Spec(π∗)#(V ) is an isomorphism for every open set V ⊆ Spec(Dper(Y )). If
we take U = π−1(V ), Z = Y \ V and Z ′ = X \ U then we have a func-

tor π∗V : D
per(Y )
DperZ (Y )

→ DG(X)

DG
Z′ (X)

which will induce a map Spec(π∗)#(V ) := π∗V :

EndDper(Y )

Dper
Z

(Y )

(OY )→ End DG(X)

DG
Z′

(X)

(OX).

Lemma 4.2.16. The map π∗V : EndDper(Y )

Dper
Z

(Y )

(OY )→ End DG(X)

DG
Z′

(X)

(OX) is surjec-

tive.

Proof. Suppose [OY
s←− G a−→ OY ] is an element of EndDper(Y )

Dper
Z

(Y )

(OY ) then the

map π∗ will send it to an element

[OX
π∗(s)←−−− π∗(G)

π∗(a)−−−→ OX ] ∈ End DG(X)

DG
Z′

(X)

(OX).

It is now enough to prove that this map is a bijection.

Let [OX
t←− F b−→ OX ] ∈ End DG(X)

DG
Z′

(X)

(OX) be a given element then us-

ing the functor πG∗ we shall get an element [OY
πG∗ (t)←−−− πG∗ (F)

πG∗ (b)−−−→ OY ] ∈
EndDper(Y )

Dper
Z

(Y )

(OY ) as supph(C(πG∗ (t))) ⊆ Z using the flat base change and the

canonical isomorphism,

i∗V π
G
∗ (F) ' (i∗V π∗(F))G ' πG∗ (i∗UF)

i∗U (t)
−−−→ πG∗ (i∗UOX) ' OV .

Now we want to prove that

[OX
t←− F b−→ OX ] = [OX

π∗πG∗ (t)←−−−− π∗πG∗ (F)
π∗πG∗ (b)−−−−→ OX ].

Using the lemma 4.2.15, we have a natural map η(F) : π∗πG∗ (F) → F , so
to prove the assertion it is now enough to check that t ◦ η(F) = π∗πG∗ (t),
b◦η(F) = π∗πG∗ (b) and the cone of η(F) is supported on Z ′ that is C(η(F)) ∈
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DGZ′(X). Here the first two assertions follows from the following commutative
diagrams which are a consequence of lemma 4.2.15.

π∗πG∗ (F)
η(F) //

π∗πG∗ (t)
��

F
t

��

π∗πG∗ (F)
η(F) //

π∗πG∗ (b)
��

F
b

��
OX

η(OX)
OX OX

η(OX)
OX

Now the last assertion C(η(F)) ∈ DGZ′(X) is equivalent to i∗UC(η(F)) ' 0 in
DG(U) but as the functor i∗U is exact this assertion is same as C(i∗Uη(F)) ' 0.
Since a cone of an isomorphism is zero it is enough to check that the map
i∗Uη(F) is an isomorphism. And this follows from the following commutative
diagram.

i∗Uπ
∗πG∗ (F)

o
��

i∗Uη(F)
// i∗UF

π∗πG∗ (i∗UF)

oπ∗πG∗ i
∗
U (t)
��

η(i∗UF)
// i∗UF

oi∗U (t)

��
π∗πG∗ (OU)

η(OU )
OU

In above diagram we had used the same notations π and η for its restriction
on open subsets. Here the top left vertical isomorphism comes from the flat
base change formula and using the following canonical isomorphism.

i∗Uπ
∗πG∗ (F) ' π∗i∗V (π∗(F))G ' π∗(i∗V π∗(F))G ' π∗(π∗i

∗
U(F))G = π∗πG∗ (i∗UF).

This proves that π∗V is surjective.

Lemma 4.2.17. π∗V is injective.

Proof. Let [OY
s←− G a−→ OY ] ∈ EndDper(Y )

Dper
Z

(Y )

(OY ) maps to zero in

End DG(X)

DG
Z′

(X)

(OX) i.e. [OX
π∗(s)←−−− π∗(G)

π∗(a)−−−→ OX ] = 0 which is equivalent to

the existence of F and a map t : F → π∗G with supph(C(t)) ⊆ Z ′ such
that π∗(a) ◦ t = 0. Now the map πG∗ (t) : πG∗ (F) → πG∗ π

∗(G) gives πG∗ π
∗(a) ◦

πG∗ (t) = 0 and as proved earlier we know that supph(C(πG∗ (t))) ⊆ Z whenever

supph(C(t)) ⊆ Z ′. Hence the element [OY
πG∗ π

∗(s)←−−−− πG∗ π
∗(G)

πG∗ π
∗(a)−−−−→ OY ] = 0

in EndDper(Y )

Dper
Z

(Y )

(OY ). We shall prove that [OY
s←− G a−→ OY ] = [OY

πG∗ π
∗(s)←−−−−

πG∗ π
∗(G)

πG∗ π
∗(a)−−−−→ OY ] as an elements of EndDper(Y )

Dper
Z

(Y )

(OY ). Now using lemma
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4.2.15 we have a map µ(G) : G → πG∗ π
∗(G) which gives the following com-

mutative diagrams as before using lemma 4.2.15,

G
µ(G) //

s

��

πG∗ π
∗(G)

πG∗ π
∗(s)

��

G
µ(G) //

a

��

πG∗ π
∗(G)

πG∗ π
∗(a)

��
OY

µ(OY )
OY OY

µ(OY )
OY

Therefore it remains to prove that i∗VC(µ(G)) = 0 but as before this is equiv-
alent to proving C(i∗V µ(G)) = 0 since the functor i∗V is an exact functor.
Again using the fact that a cone of an isomorphism is zero it is enough to
prove that i∗V µ(G) is an isomorphism. This clearly follows from the following
commutative diagrams,

i∗V G
i∗V µ(G)

// i∗V π
G
∗ π
∗(G)

o
��

i∗V G

oi∗V (s)

��

µ(i∗V G)
// πG∗ π

∗(i∗V G)

o πG∗ π∗i∗V (s)
��

OV
µ(OV )

πG∗ π
∗(OV ).

Here again as earlier the top right vertical isomorphism comes from the flat
base change and the following sequence of natural isomorphisms.

i∗V π
G
∗ π
∗(G) ' i∗V (π∗π

∗G)G ' (i∗V π∗π
∗G)G ' πG∗ i

∗
Uπ
∗G ' πG∗ π

∗(i∗V G).

This proves injectivity of the map π∗V .

From the above two lemmas it follows that π∗V is an isomorphism and
hence Spec(π∗) is an isomorphism of the varieties Spec(Dper(Y )) and
Spec(DG(X)) .
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Chapter 5

Balmer spectrum for split
superschemes

This chapter gives computation of the Balmer spectrum similar to the proof
of Balmer. We first recall some facts in the case of schemes as given by
Neeman[33]. We then define support data for the case of superschemes
and prove that this support data is classifying support data. Then we use
Balmer’s result to conclude the result. Finally we prove various assumptions
which we need to apply Neeman’s version of the localization theorem. (We
need a split superscheme to prove cocompleteness.)

5.1 Support data

We refer to an earlier chapter for the definition and some properties of su-
perschemes. As in the case of schemes we can define the support of a quasi-
coherent sheaf as a subset of X containing all super prime ideals where the
stalk of the sheaf is nonzero. Since non-triviality of the stalk at any point p
is a local property we can check it in an affine open set containing p. Now
from the earlier observation Fp = 0 iff F0

p = 0 = F1
p as stalks of a sheaves of

OXrd modules F0 and F1. Therefore for a quasi coherent sheaf F we have
supp(F) = supp(ff(F)) = supp(F0) ∪ supp(F1). Now the assignment of
support can be extended to the derived category as follows,

supph(F .) := ∪i∈Z supp(Hi(F .)).

This association can be restricted to the thick subcategory Dper(X) for quasi
compact and quasi separated scheme X. As the forgetful functor is an exact
functor we have the following relation between supports as in the case of
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sheaves,

supph(F .) = supph(ff(F .)) = supph(F0) ∪ supph(F1)

Above observation gives following result similar to the result of Thomason
[lemma 3.3(c), [39]].

Lemma 5.1.1. Suppose X is a quasi-compact and quasi-separated super-
scheme and F . ∈ Dper(X). Then the subset supph(F .) is closed and X \
supph(F .) is a quasi-compact subset of X.

Using this property of supports we can prove the following result,

Lemma 5.1.2. The pair (X, supph) defined as above gives a support data
on the triangulated category Dper(X).

Proof. Since the forgetful functor is an exact functor and we have the equality
(F .) = supph(ff(F .)) therefore the support data properties (SD 1)-(SD 4)
of [definition 3.1, [3]] are easy to prove. We shall just prove (SD 5) here,
which states that U(F1⊗F2) = U(F1)∪U(F2), where F1 and F2 are perfect
complexes and U(Fi) = X \ supphFi. This is equivalent to the statement
that for every x ∈ X, (F1⊗F2)x is acyclic if and only if either (F1)x or (F2)x
is acyclic. Since checking nontriviality of the stalk is a local question, we can
assume that X is an affine superscheme. First we observe that any perfect
complex F . is a strict perfect complex and hence a bounded complex of fintely
generated projective modules. Hence by taking local superring R = OX,x,
and observing that (F1 ⊗ F2)x ∼= (F1)x ⊗ (F2)x, the proof follows from the
result 2.4.23(2).

Definition 5.1.3. A subset Z ⊂ X is said to be Thomason if Z = ∪αZα
where each Zα is closed and X \ Zα is quasi-compact.

Note that if X is noetherian, the Thomason subsets match with special-
ization closed subsets.

Consider a split superscheme (X,OX). Note that, the inclusion i : Xrd →
X given by the surjection i# : OX → OXrd . i# splits to give a projection
p : X → Xrd with p ◦ i = idXrd . Let i∗, p

∗ : Dqc(Xrd) → Dqc(X) and
i∗ : Dqc(X)→ Dqc(Xrd) be the induced derived functors.

Proposition 5.1.4. For an ideal E in Dqc(Xrd), and for an OXrd module, G

1. i∗(i
∗G) = G ⊗OX OXrd. Further supph i∗G = supphG ⊂ X.

2. i∗(〈i∗E〉) ⊂ E.
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3. i∗ is dominant, that is the thick tensor ideal generated by the image of
i∗ is Dqc(X).

Proof. The proof of 1 is clear from the definition. Proof of 2. We shall use
the definition of 〈E〉 given in lemma 3.2.2. Since i∗ is an exact functor, it is
enough to prove that i∗(ideal(i

∗E)) ⊂ E . Thus, it is enough to see that for
A ∈ Dqc(Xrd) and J ∈ E ,

i∗(A⊗OXrd i
∗J ) = i∗(i

∗p∗A⊗OXrd i
∗J ) = i∗i

∗(p∗A⊗OX J )

= (p∗A⊗OX J )⊗OX OXrd = J ⊗OX (p∗A⊗OX OXrd)
∈ 〈E〉.

Proof of 3. Since (X,OX) is a split superscheme, we have identification of
OX with GrX. The sheaf GrX is an exterior algebra over purely odd locally
free sheaf ΠV := JX/J

2
X and each subquotient J iX/J

i+1
X can be identified

with ΠiΛiV . Hence each subquotient is purely odd or purely even locally
free sheaves. The Z-grading on sheaf GrX gives a filtration for structure
sheaf OX and hence we have following tower for structure sheaf OX ,

OX

��6666666 JXoo · · · Jn−1
X

""FFFFFFFFF JnXoo

;;;;;;;;

;;;;;;;;

OXrd

DD	
	

	
	

· · · Πn−1Λn−1V

=={
{

{
{

ΠnΛnV .

In above tower, each of the terms in the lower row is complex of either purely
odd or purely even sheaves. And using property of tensor proved in 2.4.21,
we have ΠiΛiV = (ΠiOXrd) ⊗ ΛiV . Therefore the ideal generated by the
image of the functor i∗ contains the all the terms in the lower row of the
above tower and hence i∗ is a dominant functor.

We shall denote the functor i∗ by ird from now on. We shall now prove
that above support data is in fact classifying support data as defined in
Balmer[3]. We need following classification (see [3]) of thick tensor subcate-
gories of Dper(X) which we prove by relating it with the case of schemes.

Proposition 5.1.5. Given a quasi-compact and quasi-separated split super-
scheme (X,OX) we have a bijection,

θ : {Y ⊂ X|Y Thomason subset } ∼−→ {I ⊂ Dper(X)|I radical thick ⊗-ideal}

defined by Y 7→ {F . ∈ Dper(X)| supph(F .) ⊂ Y }, with inverse, say η, I 7→
supph(I) := ∪F .∈I supph(F .).
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Proof. Using support data properties (SD 1) - (SD 5) [definition 3.1, Balmer
[3]] we can prove that θ(Y ) is a radical thick tensor ideal and hence the map
θ is well defined. To prove that η(I) is a Thomason subset, it is enough to
prove that for any y ∈ η(I) there is a closed set containing this point. By
definition y is in the homological support of some object F . ∈ I. Hence
y ∈ supph(ff(F .)) which is a closed subset.

It is easy to check that η ◦ θ(Y ) ⊆ Y and I ⊆ θ ◦ η(I). To prove that
Y ⊆ η◦θ(Y ) it is enough to show that for any closed subset Z there exists an
object with support Z. But there exists an OXrd perfect sheaf with support
Z and hence via the natural map OX → OXrd we get a perfect sheaf with
support Z.

Finally to prove that θ ◦ η(I) ⊆ I it is enough to prove that for any
F . ∈ θ ◦ η(I) the object F . ∈ I. Now following the proof of theorem 3.15
of Thomason [39] we reduce to proving that if supph(F .) ⊆ supph(G .) for
some object G . ∈ I, then F . ∈ I. By 5.1.4(1) we have that supph i∗F . ⊆
supph i∗G .. Now by [Thomason [39]] i∗F . ∈ 〈i∗G .〉. Therefore by 5.1.4(2)
irdi

∗F . ∈ 〈G.〉. Again using 5.1.4(1), F .⊗OX OXrd ∈ 〈G.〉 ⊂ I. OXrd does not
belong to any prime ideal since ird is dominant. Thus, using the fact that I
is intersection of all primes containing it, F . ∈ I.

With this result it follows that (X, supph) is a classifying support data
on the tensor triangulated category Dper(X) for a quasi-compact and quasi-
separated split superscheme X, see [definition 6.9, [?]] (and also [def. 5.1,
Balmer [3]] for the simpler noetherian case) for definitions. The following
corollary is a restatement of the first part of Theorem 8.5 of [?].

Corollary 5.1.6. The canonical map f : X → Spc(Dper(X)) given by x 7→
{F . ∈ Dper(X)|x /∈ supph(F .)} is a homeomorphism.

Remark 5.1.7. One can use the classification of thick tensor ideals of the cat-
egory of perfect complexes over quasi-compact and quasi-separated schemes
to give a classification of strictly full tensor ideals, in the same way as in
[theorem 4.1, [39]].

5.2 Localization theorem and spectrum for a

split superscheme

We shall prove a localization theorem (similar to that proved by Thoma-
son) for split superschemes by using the generalisation of Thomason’s result
proved by Neeman[32]. First we recall some notation. Given a closed subset
Z of X we can define the full triangulated subcategory Dqc,Z(X) ⊆ Dqc(X)
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consisting of all objects with homological support contained in Z. Suppose
U is the open complement of closed subset Z. There is a canonical restriction
functor j∗ : Dqc(X)→ Dqc(U) and clearly it will be the trivial functor on the
thick subategory Dqc,Z(X).

We have following result whose proof is similar to the case of schemes,

Proposition 5.2.1. The canonical functor induced from the functor j∗,
which by abuse of notation we call j∗ : Dqc(X)/Dqc,Z(X)

∼−→ Dqc(U) is an
equivalence.

Proof. Using K-injective resolution we can derive j∗ to unbounded derived
category and we can prove, in a way similar to the scheme case, that it gives
the inverse to the functor j∗.

Definition 5.2.2. Suppose T is a triangulated category which is closed under
formation of arbitrary small coproducts. T is said to be compactly generated
if there exists a set T of compact objects (definition 2.4.37) such that T is
a smallest triangulated subcategory containing T which is closed under co-
products and distinguished triangles. Equivalently, T is compactly generated
iff T⊥ := {x ∈ T |HomT (t, x) = 0 for all t ∈ T} = 0. The set of compact
objects T is called generating set if further T is closed under suspension or
translation.

An example of such triangulated category can be given using derived
category of left R-modules and category of quasi-coherent sheaves over su-
perschemes. A result [remark 1.2.2, [34]] of Neeman says that distinguished
triangles are preserved under coproducts i.e. in a cocomplete triangulated
category coproduct of distinguished triangle is distinguished. Now we shall
recall the theorem 2.1 of Neeman[33] which is proved in great generality and
is a slight strengthening of theorem 2.1 of Neeman[32].

Theorem 5.2.3 (Neeman[32][33]). Let S be a compactly generated triangu-
lated category. Let R be a set of compact objects of S closed under suspension.
Let R be the smallest full subcategory of S containing R and closed with re-
spect to coproducts and triangles. Let T be the Verdier quotient S/R. Then
we know :

1. The category R is compactly generated, with R as a generating set.

2. If R happens to be a generating set for all of S, then R = S.

3. If R ⊂ R is closed under the formation of triangles and direct sum-
mands, then it is all of Rc. In any case Rc = R∩ Sc.
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4. The induced functor F : Sc/Rc → T c is fully faithful and every object
of T c is isomorphic to direct summand of image of the functor F . In
particular, if T c is an idempotent complete then we get an equivalence

from idempotent completion S̃c/Rc to the triangulated category T c.

In our particular situation we take S := Dqc(X),R := Dqc,Z(X) and as we
proved above in 5.2.1 the quotient will be T := Dqc(U). We shall now prove
following result which will provide all hypothesis required for the application
of Neeman’s theorem.

Proposition 5.2.4. The following statements are true for any split super-
scheme (X,OX)

1. The triangulated category Dqc(X) is closed under the formation of ar-
bitrary small coproducts.

2. The triangulated category Dqc(X) is a compactly generated category.

3. Dqc,Z(X)c ' DperZ (X) for any closed subset Z of X.

Proof. Proof of 1. This is similar to the scheme case, as in example 1.3
of Neeman[33]. Proof of 2. Suppose T ⊂ Dqc(X) denotes the set of ob-
jects obtained by taking the image of all perfect complexes of OXrd under
the functors ird and Π applied in that order. Let F ∈ Dqc(X). Since every
unbounded complex of OX-modules over a superscheme X has K-flat reso-
lution, we can assume that F is a K-flat. Now using the tower in the proof
of 5.1.4 of structure sheaf OX we have following tower for F ∈ Dqc(X),

F

��@@@@@@@@ G1oo · · · Gn−1

##GGGGGGGG
Gnoo

AAAAAAAA

AAAAAAAA

F1

>>}
}

}
}

· · · Fn−1

<<z
z

z
z

Fn

.

The base of above tower,Fi := F ⊗OX ΠiΛi(V) ∈ Im(ird), is generated by
objects of the set T . Hence every object F ∈ Dqc(X) is generated by the
set T . It is now enough to prove that all objects of the set T are compact
in Dqc(X). Since Π commutes with coproducts it is enough to prove com-
pactness of the image of the functor ird restricted to compact objects. Let
S be image of a OXrd perfect complex. We want to prove that Hom(S, )
commutes with small coproducts, that is,

Hom(S,
⊕
α∈Λ

Fα) '
⊕
α∈Λ

Hom(S,Fα).
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Considering above tower for each Fα we get coproduct of tower as above.
Using remark that small coproducts preserve distinguished triangles, [remark
1.2.2, [34]], we get tower of distinguished triangles for

⊕
α∈Λ

Fα. If we denote

by Fα,i the lower terms of the corresponding towers then we have following
isomorphism using functor ird

Hom(S,
⊕
α∈Λ

Fα,i) '
⊕
α∈Λ

Hom(S,Fα,i).

Using dévissage the proof follows from long exact sequence associated to
Hom(S, ) and five lemma. Proof of 3. It is enough to prove that all per-
fect complexes are compact objects. Indeed, the full subcategory of perfect
complexes is closed under triangles and direct summands as in the case of
schemes. Hence by taking R to be all perfect complexes the above result of
Neeman proves that all compact objects are perfect complexes. Now to prove
that every perfect complex is a compact object we have to first observe the
following,

(H0(RHom(F ,G)))0 = HomOX (F ,G).

Here RHom(F ,G) is the (internal) homomorphism between F and G. Rest
of the proof is similar to the proof given in example 1.13 of Neeman[33].

Using the above result it is easy to deduce following corollary,

Corollary 5.2.5. Given a split superscheme (X,OX) we have an equivalence

of tensor triangulated categories, j̃∗ : ˜Dper(X)/DperZ (X)
∼−→ Dper(U).

Proof. In the set up of theorem 5.2.3, suppose R = Dqc,Z(X), S = Dqc(X)
and T = Dqc(U). Then the propositions 5.2.1 and 5.2.4 imply that the

conditions for theorem 5.2.3 are satisfied. Therefore, by 5.2.3(4), j̃∗ is an
equivalence. This proves the result as j̃∗ is a tensor functor.

As in Balmer[3] we shall use this localization result to give a relation be-
tween structure sheaves. Balmer[3] has defined structure sheaf of Spc(K) for
any tensor triangulated category K as a sheaf associated to the presheaf given
by U 7→ EndK/KZ (1U) where U is an open set and 1U ∈ (K/KZ) is the image
of tensor unit 1 ∈ K. Define Spec(Dper(X)) := (Spc(Dper(X)),ODper(X)) the
locally ringed space associated to the tensor triangulated category Dper(X).
Now the homeomorphism f defined in 5.1.6 above for a split superscheme
gives a map of locally ringed spaces, f : (X ' X0,OX0) → Spec(Dper(X)).
Here the map of structure sheaves comes from the identification given in
corollary 5.2.5. We have the following result similar to Theorem 6.3 of
Balmer[3].
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Theorem 5.2.6. Suppose X is a quasi-compact and quasi-separated split
superscheme. The map f : X0 ' Spec(Dper(X)) defined as above is an
isomorphism of locally ringed spaces.

Proof. Using the homeomorphism f it is enough to prove isomorphism of
structure sheaves. Hence we can assume that the superscheme is affine. Now
using the remark 8.2 of Balmer[2] and localization theorem 5.2.5 we can prove
that the induced map of sheaves is an isomorphism.
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Chapter 6

Generalized spaces

This chapter contains our proposal for a broader notion of geometric spaces
associated with a tensor triangulated category. Since the Balmer construc-
tion of spectrum does not always admit categorical reconstruction therefore
we propose these enriched geometric spaces in order to get finer geometric
invariants associated to a tensor triangulated categories. In the first section
we give some definitions of these enriched geometric spaces. We also compute
these for some classes of examples which are studied in earlier chapters of this
thesis. We define a categorical reconstruction similar to Balmer’s geomet-
ric reconstruction. Using our geometric spaces we can prove the categorical
reconstruction for some classes of examples which includes the category of
perfect complexes over quasi compact and quasi separated schemes. In the
second section we give a functor of points approach to the Balmer spectrum.
We define a functor from the category of rings to the category of sets for
small tensor triangulated category. We also give a definition of a category
fibered in groupoids which gives a possible fibered category approach to the
Balmer spectrum.

6.1 Definitions of generalized spaces

We shall first define the notion of geometric reconstruction and then we
give the definition of categorical reconstruction. Let us denote by T T the
category of all essentially small unital tensor triangulated categories with
morphisms given by a unital tensor functors. Also denote the category of all
locally ringed spaces by LRS. Balmer constructed a functor between these
two categories as follows

Spec : T T → LRS which takes D 7→ Spec(D).
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There is a functor in other direction defined on the full subcategory of all
schemes.

Perf : Sch→ T T ;X 7→ Dper(X).

Now Balmer’s result can be restated as Spec ◦Perf = Id when restricted to
the full subcategory of quasi compact and quasi separated schemes. The exis-
tence of such functors with equality on a full subcategory of geometric origin
is an example of geometric reconstruction. Balmer’s geometric reconstruction
is a generalization of the geometric reconstruction result of Bondal-Orlov [9].
We can ask a similar question of geometric reconstruction for other objects
of LRS which come from geometry like G-schemes and superschemes. Let
us denote by C the category with objects given by pairs consist of a topolog-
ical space X and a tensor additive category A with a faithful functor to the
category of diagrams of sheaves over X. We propose following definition of
geometric reconstruction.

Definition 6.1.1 (Geometric reconstruction). A geometric reconstruction
is defined as a quadruple (T T ′, C ′, F,G) consist of a subcategory C ′ of the
category C, a subcategory T T ′ of the category T T and functors F : T T ′ →
C ′, G : C ′ → T T ′ with the relation F ◦ G = Id when restricted to some full
subcategory of C ′ coming from geometry.

Similarly, we propose a definition of categorical reconstruction.

Definition 6.1.2 (Categorical reconstruction). A categorical reconstruction
is defined as a quadruple (T T ′, C ′, F,G) consist of a subcategory C ′ of the
category C, a subcategory T T ′ of the category T T and two functors F :
T T ′ → C ′, G : C ′ → T T ′ with the relation G ◦ F = Id when restricted to
some full subcategory of T T ′.

These definitions are used here to understand the various constructions of
geometric association which originates from tensor triangulated categories.
We would like to understand the strength of functors like Spec in terms of
these general definitions. We also give some more examples which fit into
these formulations and strengthens the Spec construction. Note that, the
category LRS can be realized in many ways as a full subcategory of the
category C. One way is to take the underlying topological space and the
tensor abelian category of sheaves of modules. If we take full subcategory of
all schemes then we can take the tensor abelian category to be the category
of coherent sheaves. Hence the construction of Bondal-Orlov and Balmer
can be realized as a particular example of geometric reconstruction. Observe
that if we take the full subcategory of C generated by all smooth projective
schemes with canonical (or anti-canonical) sheaf ample then the geometric
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reconstruction of Bondal-Orlov will become particular case of Balmer geo-
metric reconstruction.

Let X be a smooth quasi projective scheme with an action of a finite
group G. The quotient of X by G exists and is denoted as Y . There is
a finite map π : X → Y mapping each orbit to a point in the orbit space
Y . Consider the additive category A := π∗(V b

G(X)) where the category
V bG(X) denotes the category of all G-equivariant vector bundles on X. We
can push the tensor structure from the additive category V bG(X) as follows,

π∗(F)� π∗(G) := π∗(F ⊗ G).

In particular, if we take the trivial action of the group G then the additive
category A can be realized as a diagram (or quiver) of vector bundles on X.
Here the diagram associated with group G is given by one vertex and loops
parametrize by elements of the group G which satisfies some relations coming
from group operations. We had seen before that the Balmer reconstruction
applied to the category DG(X) with trivial action of group G on X gives back
only X. To generalize it slightly define the functor, say F , from the category
DG(X) to be a pair (Spec(DG(X), CohG(X)) i.e. Balmer’s construction with
the standard t-structure. We can take Db to be the functor sending pair
(X,A) to tensor triangulated category Db(A) in other direction. Take the
subcategory T T ′ to be all tensor triangulated categories DG(X) associated
to smooth variety X and finite group G with trivial action on X. And
take subcategory C ′ to be category of all pairs containing smooth variety X
and abelian category CohG(X). With these notations its clear we have both
geometric as well as categorical reconstruction. In this particular example
the pair (X, CohG(X)) can be seen as the generalized space associated with
the triangulated category DG(X). Hence as a first attempt to define the
finer geometric object associated with a tensor triangulated category D , we
have following definition of generalized space,

Definition 6.1.3 (Generalized space). A generalized space associated to an
essentially small tensor triangulated category D is a pair consist of the topo-
logical space Spc(D) and a tensor abelian category A realized as a tensor
abelian category of sheaves of diagrams over Spc(D) which generates the cat-
egory D i.e. D ' Db(A) as a tensor triangulated category.

So if we have categorical reconstruction in a sense of definition above
then we get a generalized space associated to a tensor triangulated category.
Therefore we have found at least one class of examples containing category of
schemes where such generalized space do exist. One way to get the categor-
ical reconstruction in some cases is to take a tensor compatible t-structure
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which is realized as sheaves of diagram over Spc(D). Here a tensor compat-
ible t-structure is defined as a t-structure (D≤0,D≥0) on D with following
properties,

D≤n ⊗D≤m ⊆ D≤(n+m).

Now as an second attempt to get the finer geometric invariant of tensor
triangulated category, we have following definition,

Definition 6.1.4 (Generalized space). A generalized space associated to an
essentially small tensor triangulated categoryD is a pair consist of topological
space Spc(D) and a tensor additive category A adapted to tensor structure,
realized as a category of sheaves of diagram over Spc(D) and an equivalence
D ' Kb(A) as a tensor triangulated category.

In example where tensor triangulated category is DG(X) with trivial ac-
tion of group G on smooth variety X, we have (Spc(DG(X)), V bG(X)) as a
generalized space associated to the category DG(X). Also it is immediate
from the definition that using functor Kb in place of Db gives the categorical
reconstruction.

6.2 Functor of points approach to spectrum

In this section we shall give functor of points approach to the Balmer spec-
trum for small categories. We shall first define the set valued contra-variant
functor from the category of all finitely generated commutative rings, Ring.
We shall give some known examples coming from our earlier works.

6.2.1 Categorical spectrum functor

We first give the definition of Balmer spectrum functor. Balmer defined a
locally ringed space associated to an essentially small tensor triangulated
categories. We can associate a functor

hSpec(D) : Ring→ Set

which associates to a ring R the set HomLRS(Spec(R), Spec(D)). This gives
a presheaf on the fpqc site Ring. We shall call this functor the Balmer
spectrum functor. We can now define the other set valued functor which will
be like a categorical representable functor of a tensor triangulated category
D. We’ll call it the categorical spectrum functor. To get a set valued functor
we shall restrict to small tensor triangulated categories.
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Definition 6.2.1. The categorical spectrum functor hD : Ring → Set as-
sociated to a small tensor triangulated category D is defined as hD(R) :=
Hom⊗(D,DR)/ ∼. Here Hom⊗(D,DR) represents the collection of all covari-
ant tensor exact functors. We say two functors F1 and F2 are equivalent,
denoted as F1 ∼ F2, if there exists a natural isomorphism between them.

We prove following lemma which gives well-definedness of the above as-
sociation.

Lemma 6.2.2. The functor hD is well-defined and hence gives a presheaf on
the category of all schemes.

Proof. It is enough to prove that the functor hD is well defined as it will give
set valued presheaf on the category Ring◦. This will give presheaf on the
category of all affine schemes. As usual this will determine the presheaf on the
category of all schemes, see [14] for more details. Any ring homomorphism
f : R → S will induce the tensor exact functor f ∗ : DR → DS given by
M . 7→M . ⊗R S. This will induce the following map between morphisms,

hD(R, S) : Hom(R, S)→ Hom(hD(R), hD(S)); f 7→ (f ∗ ◦ ).

Here the set map f ∗ ◦ : hD(R)→ hD(S) is defined as F 7→ f ∗ ◦ F . Observe
that a natural isomorphism η : F1 → F2 will induce the natural isomorphism
f ∗(η) : f ∗ ◦F1 → f ∗ ◦F2. Hence this map is well defined and functorial. This
completes the proof.

Recall, for every scheme X there is a presheaf associated to it defined
by R 7→ χ(R) := Hom(SpecR,X), here χ(R) is the R valued points of the
scheme X, see [14]. Grothendieck proved following result,

Theorem 6.2.3 (Grothendieck). The presheaf χ associated to any scheme
X is a sheaf on the fpqc Grothendieck site Ring.

If the Balmer spectrum functor is represented by a scheme then it will be
an fpqc sheaf on Grothendieck siteRing. Our results show that for the case of
G-scheme and superscheme the Balmer spectrum functor is represented by a
scheme. Similarly we can ask for the fpqc sheaf property for the categorical
spectrum functor. We shall prove in the case of DR that the categorical
spectrum functor is isomorphic to the Balmer spectrum functor and hence it
will be an fpqc sheaf. Since the Balmer construction is functorial we can get
a morphism between both pre-sheaves. Define a set map for each ring R as
follows,

ηR : hD → hSpec(D);F 7→ Spec(F ).
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Proposition 6.2.4. The association ηR defines a well defined natural trans-
formation between these two functors.

Proof. Using the result [Corollary 3.7, Balmer[3]] we get that two equivalent
functors gives the same image and hence η is well defined. If f : R → S is
any morphism then we can get a functor f ∗ : DR → DS. Now to prove that
η is natural transformation, it is enough to prove that following diagram is
commutative,

hD(R)
ηR //

hD(f)

��

hSpec(D)(R)

hSpec(D)(f)

��
hD(S)

ηS // hSpec(D)(S)

.

But this follows from the functoriality and the fact that for any ring morphism
f : R→ S we have Spec(f) = Spec(f ∗) which will be proved in next lemma.

Lemma 6.2.5. If f : R→ S is any ring morphism then Spec(f) = Spec(f ∗).
Here the Spec on left is usual spectrum map of affine schemes and the Spec
on right is spectrum of Balmer. Moreover there is a isomorphism between
Hom(R, S) and hDR(S) = Hom(DR,DS)/ ∼.

Proof. Since for affine schemes any morphism is completely determined by
induced map between global sections of structure sheaves. Therefore it is
enough to prove that the map induced by Spec(f ∗) on global sections is the
same as the ring homomorphism f . But by definition the global sections
of the structure sheaf are the same as the endomorphism ring of the tensor
unit. Hence it is enough to prove that the ring homomorphism induced by
the functor f ∗ is f . But this is clear as f ∗ is nothing but functor given by
tensoring with the R module S via the ring map f .

We shall prove the bijection between ring morphisms and unital tensor
functors upto isomorphisms. First observe that any tensor functor F : DR →
DS gives a ring homomorphism between endomorphisms of units R and S as
follows,

F (R,R) : R ' Hom(R,R)→ Hom(S, S) ' S;α 7→ α⊗R idS.

We’ll prove that given any functor F is completely determined by the ring
map F (R,R). This will give the required bijection. If we can define the
additive functor from the category of all projective R-modules to projective
S-modules then it will uniquely determine the additive functor from DR :=
Kb(Proj − R) to DS. Since the functor F is unital and additive therefore
it will send any Rn to Sn for each positive integer n. We know the map
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f : R ' Hom(R,R) → Hom(S, S). This will give the map F (Rn, Rm) for
each m and n using additivity. Now we can realize every projective module
via a projector π : Rn → Rn i.e. π2 = π. A morphism between any two
projector is same as following commutative diagram,

Rn π //

α

��

Rn

α

��
Rm π′ // Rm

.

Hence it gives the uniquely defined additive functor up to isomorphism for
each ring morphism f .

It follows from above lemma that the categorical spectrum functor and
the Balmer spectrum functor coincide for every DR where R is a commuta-
tive Noetherian ring. In case of DX for quasi compact and quasi separated
schemes it will be interesting to know more information about natural trans-
formation η. Since for the case of smooth quasi-projective G-schemes and
split superschemes we know that Balmer spectrum functor is an fpqc sheaf.
Therefore η will induce a map from the fpqc sheafification of the categorical
spectrum functor and the Balmer spectrum functor. So, it will be interesting
to know the relation between Balmer spectrum functor and this sheafified
categorical spectrum functor which we hope to pursue in future.

Now we can associate a functor with values in groupoids. Define the
category Hom(D,D′) for small tensor triangulated categories D and D′ to
be a groupoid with objects given by collection of all unital tensor exact
functors from D to D′ and morphisms given by natural isomorphisms. Using
this category we can form a subcategory, for a fixed D, of the category
of groupoids. An object of this category is the collection of all functors
from D to D′ for every tensor triangulated category D′ and 1-morphisms are
given by functors from D′ to D′′ which will give map from Hom(D,D′) to
Hom(D,D′′). The 2-morphisms are given by natural isomorphisms between
any two functors from D′ to D′′. Define the functor hD(R) := Hom(D,DR)
from the category Ring to the category of all groupoids. We can think the
category Ring as 2-category by taking identity as a 2-morphism, in a sense
of [Appendix B, Gomez[17]]. Hence we get following result.

Proposition 6.2.6. The functor hD : Ring→ Groupoid between 2-categories
is a 2-functor. Hence hD is a presheaf of groupoids.

Proof. As defined above any object R goes to the category Hom(D,DR). Any
ring morphism f (or 1-morphism) in 2-category Ring goes to functor

f ∗ : Hom(D,DR)→ Hom(D,DS);F 7→ f ∗ ◦ F.
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Any 2-morphism in Ring is just the identity and hence it goes to the identity
natural isomorphism. If f : R → S and g : S → T are any two ring mor-
phisms then there is a canonical isomorphism between two functors (g ◦ f)∗

and (g∗ ◦f ∗) defined fromMod(R) toMod(S). This canonical isomorphism
will extend to an isomorphism of (g ◦f)∗1 and g∗ ◦f ∗ defined from DR to DS.
Now with this notation it is easy to see that the functor hD satisfies other
properties of 2-functors, see [Appendix B, Gomez[17]] for the definitions.

Hence using the above presheaf we shall get a category fibered in groupoids
over Ring. It is interesting to know whether hD is pre-stack (or stack) on the
fpqc site Ring. We would like to pursue the relation between the 2-functor
hD and Balmer spectrum functor in future.

1Here we used the same notation for the left derived functor of the pullback functor as
before.
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[7] A. A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In
Analysis and topology on singular spaces, I (Luminy, 1981), volume 100
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[17] Tomás L. Gómez. Algebraic stacks. Proc. Indian Acad. Sci. Math. Sci.,
111(1):1–31, 2001.

[18] Roe Goodman and Nolan R. Wallach. Symmetry, representations, and
invariants, volume 255 of Graduate Texts in Mathematics. Springer,
Dordrecht, 2009.

[19] Alexander Grothendieck. Sur quelques points d’algèbre homologique.
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