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This thesis comnrises weork done by the author during

the pericd 10964.1068 under the supervision of Professor Alladil

Ramakrishnan, Director, MATSCIENCE, The Institute of Mathematical

Selences, Madras.

The thesgls consists of the work done by the author
in the fleld of group theory asnd spplicaticns $o particle physics.
It is divided into four parts, Part I dealing with the Clebsch=
Gordan progrence of arbitrary simple groups, Part IT with the
origin of unitary symmstry in strong interactions, Part III with
= the applications of symmetry principles to psrtiecle intaractions
to get sum rules which can be tested agalnst expariments and

Part IV with the genaralized Clifford algebra of Yamazaki and its 1

irreducible reprasentations.
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CHAPTER ]

INTRODUCT Tow

The study of symmetry groups has become important and
almost indispensable in Elementary Particle Physics since the
discovery of strange particles. While the importance of the study
of symmetry groups in Nuclear Physics has been realised since
the pioneering work of Wigner, Racah and others, the application
of symwetry groups to Elementary Particle Physlcs is of recent
origzin.

The main progress in modern physics after 1960 consists
in the introduction of internal quantum nmumbers which have no dy-
namical interpretation like spin, momentum and energy, but was
found necessary to explain certain conservation laws observed in
the interactions between slementary particles. Though there has
besn no mhu!'ull dynamiecal theory so Tar in explaining the
complexities of Interactlons, certain general principles known as
~ 'symmetry prineiples® have been known to govern the interactions.
This assumed a pre-eminent role with Gell-Mann's Termulation of
S7(2) symmetry and its spectacular successes in the classification
of elementary particles.

The proliferation of unatsble and semi-stable systems
celled 'resonances'® almost amounting to two hundréd in number _111

*§1dth of 100 MeV would fmply a 1life time Tmﬁp o lﬂ;ﬁ_ Sec.




reeent years has necessitated in grouning them on some ‘common
gromds' of similar physical properties like spin, parity, baryen
number ete. and almost similar properties like that of mass. ™n
ofther words, the particles may be classified intc smaller grouns with
very similar properties snd so the task is reduced to the diseunssion
of fewer entities, Of course, there could be 'suall' deviations
from this natfi‘act structure which cen be treated as perturbations.

A major step in this direction 1s the applicatiom of
group theory particulsrly SU(?) and 1ts generalizations to elementary
particle 1ntaractims1). It is therefore desirable that the facsh
alegebra of symmetry grouns of v-rious types is developed as extensively
as the Raeah algébra of the group S7(2) (angular momentum). Tut
“h‘ll been stressed by Wigner, Racah and others, several problems

have to be sclved before starting with such a programme.

£
This thesis is prima‘.l;‘y concerned with these problems.

. Tt is devided into four parts. Part I consisting of four chapters
. (Chapter IT to Chapter ¥) deals with the Clebsch-Gordan programme

of arbitrary simple groups, In particular the problem of internal
and maltiplicities. Part II comprising of two chanters
pter YT snd Chapter VII) deals with the origin of unitary sym-
metry in strong interactions. Part TIT compmising of seven

chapters (Chapter VITT to Chapter XIV) deals with several applica-

tions of symmetry groups to particle Interactions. “Part W

"ffiﬂ for instance 'The Eightfold way', Eds.M.Gell-Mann and Y.¥eeman,
Mm Pﬂbliﬁhﬂl‘ﬂ, Iﬂﬂ-, H- I--' 1983

X Esm Groups in Nuclear and Particle Physies'y Ed. F.J.Dyson,
m Publ 13&3"5- N.Y .y 1968,




comprising of two chanters (Chapnter XV and XVI) deals with the

irreducible representations of the generallsed ‘clifford algebra
of Temazaki, '

PAAT J:=

y The first problem In this programme, which is closely

connected with the labelling of the irreducible representations
(IR) of fha symmetry group (&), is the construction of invariants
or casimir operators of G « This problem has already been
nlvedﬂ. The second problem concerns with the determination of a
conplete set of operators whose eigenvalues uniquely characterize
an T.Re A given (IR) 1s specified by the elgenvalues of the ecasimir
-operators or eguivalently by the comnonent of the highest weight.
from the highest weight, the other weights can be commuted using
shiff: or ladder operators. The main difficulty here is that the
weights other than the highest one are not simple, but of multi-

plieity greater than one. @5is =ultisliolte of yolght fn' on 7.0 o
suitiplicity ereaterthan—one: This multiplicity of weight in

an I.,R. of G 1s called the 'internal' or 'inner multiplieity'

strue tﬂl‘la] -

#) O,Racah, Group Theory and Spectroscopy, CERN, Repnrint 61-8 (1961)45.
L.C.Biledenharn, J.Math,Phys. £, 476 (1963), Lectures on Theore-

tical Physles, W.E.Brittin,B.W.Downs and J.Down Fds. Tnterscience
Publishers, Ine.‘ Hew York (1267), Vol.5, p.346-352,

BaGruber and L.0 'Raifesrtaigh, J.lath,Phys. 5, 1796 (1964).
Le0'Ralfeariaigh, Lectures on 'Local Lie Croups and their re-

presentations', Matsclenece Report 25, (The Institute of Mathe-
matical Sclences, Madras, Tndia).

H,UEezava, 'uel,Phys. &111 (1963) A%’ 54 (1964) 65 (1984).
M. Umezawa, MONIEKL, N LAZADEMIE $AN NETENS CHAPPEN, Amsterdam
iﬂ' H' 'ﬂ.s. Im-
fcu, Suecl.Phys. 253 (1964). .
AM.Perelomov and V.S.Popov, Soviet Phys JETP Letts, 1,6 (1968Y.
) T;E-Emthm, J.Hath.ﬁ‘lﬂ. . 1886 ‘1“6}. 5
3) The terminology is due to A.J.Macfarlane, L.0'Raifeartaigh and = °
rzﬁginlﬂ, T Math, Phys. E‘ 536 (1967). i



; The third nroblem is that of the Clebsgeh-Cordan
wtu and coefficients of G, Here again there is a problem in
.m direet product of two I.R's of Gy which is in general reduci-

o
&
1

s a glven TeHs may occur more than once and this we call the

ey
B,

ih

Wot much work has been carried out
1n the problem of Clebsch-Gordan coefficlents of G excent in
some very special cases.

.

i ‘ In Chapter IT, some remarks are made on the construction
_ of invariants of compact, local seml-simple Lie m:ﬂ. Por

roe dimensional orthogonal gromo O(F), casimir considered the

- 2 2
I = J§+Jr + 3,

e Iy g are the gemerators of 0(3), This operator
eo '. __'.j' utth Ixs7y and J, and 1ts eigenvalues characteristic
8 LR, of 0{?), The gemeralization of € for any semisimple
grouvps was given by easimir, who introduced the operator

b
T = %‘ }(F_ Xy, ‘
05 v o3
%-F” C‘.H. f =5
% T2 oy




en,

o
k‘lhﬂ C's are the structure congtants and the X's are the
L

~ generators of the group. A possible generalization of I% was

| 'm:ﬁllcahgj vho considered the operator

i
N

L 3 " o 3 g
C. . =¢C B c 1 ses C n=1 x‘ IB ess X
. R X LR 4

and 1t is easy to verify that each of these operators commutes
':-."‘fi_-'-a_-- every X. But, these are again not all the invariants of the
gPoup as Racah himself has recognized sinee 1t 1s found, for ex-

&

a@ple, that for I.R's contragradient to each other and inegquivalent,
Jog :
they have the same sigenvalues. Han:rz) have suggested that if we

replace the adjoint revresentation by the self-representation in
n we can get all the Invariants. In chapter I, it is

sted that one can still deal with adjoint representations,

Some remarks.have been made on the geametrical
fcance of the casimir operators in the adjoint space.

gy In Chapter II, new algebraic tnchniqunﬁ} based on the

o

Antoine and Bpnisn'm have been presented on the computation

r sultiplicity structure of the group 5U(2). The formula

1y simple improvement over the well known Kostant's
. The only thing is that the techniques developed in the

e and D.Speiser, J.¥ath.Phys. 5, 1226 %1955), =

_ » 1560 (1965).
s Trans. Amer, Math. Sog. 93, 52 (1959). Tk




Simplification 1s achieved by limiting to only the dominant

Welghts, in which case, only few Weyl reflections contribute.

_ In Chapter IV, the same method 1s applied”) to the most
eomplicated second rank group G(2) and explieit analytical for-
mulae are given for the multiplieity of wighttgj.

In Chapter V, the method of generating functions has been

Hi“lupndm] to evaluate recursion relations for the partition func-

fions of the classiexl groups. The recursion relation i{s parti-

eularly slegurt for the graan S0{ L +1).
|
In dvpendilx 1, weny dalinitions of roo%s, zimple roots,

welghts, dominant welghts, highest wuight whieh have beea used in
the text have basn gm:wizeéu}

In Apcondix 2, many theorems on simple rocots which form
bhe maln cove in the evluation of ‘ianer' multinlicxties have been
simmarized and the material 1s collected from 'Lie algebra',
H.Jacobson, Tnterscience Publishers, New York,

In Apvendizx 2, 2 simple derivation of Kostsnt's formula
due to Stelnberg is given.

In Appendix 4, a complete discussion on the evaluation

D.Radhgirishnan and T.S.Santhanam, J.Math,Phys, 8, 2206 (1267).

®) Dr.J.0.B6linfante informs me that he has programsed Kostant's

foriiala for a computer (nrivate comaunleation). Our aim, howe
ever, is to zot explicit analytical expressions.
Santhanam, preprint, suimifted o the J. Math. Payse (in press).

ae for instance, T.S.8anthanam 'Group Theory and Unitary sym-

's Matscience Report 61, The Tnstitute of Mathematical
fei Mean, lin-dran, Indin.
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Amomg the strongly interacting partieles, we find multi-
rt: of particles having the same spin and parity, but with
y mcqual masses. It is conventional to identity sueh a

.’1“_ ip, the multiplets constituting the variouns I.R's of the group.
- It 1s now well established that there are regularities in the

particle (resonance) snectrum which go beyond charge independence

in the sense that the multinlets can be further grouped into super-
‘multinlets with the same spin,

e

parity, baryon number and comparable
,:f. ses wnich constitute T.R's of the group SU(AP, 1m this case
| 5’ irture from complete symmetry are not yet well understood. A1l
§ aen y the synmotry group vas given to start with and particles and
eson: necas were accommodated with varlous T.R's of the symmetry
The calculations have been carried out assuming the

- ‘hﬂ‘.m to be small and therefore neglected. But as to which

ts should occur, thn theory is silent. The Sakata model
bed the particles py,n and <\ to beleng to the Pundamental

sentation of T(?), However, it 414 not yield the correct

plicity structure to the other varticles. The Gell-Mann-Feeman

ion of 57(2) started with the eight dimensional representation

‘-_I_‘i_liuctlr. There are at least two shorteomings to this

_m. '"The Eightfold way'

HEds. M.Cell-lann and
ﬂ.l,ﬁlﬂjlﬂn Iﬂﬂ-, Ei?l (1 éﬁ



point of view, First, it does not tell which of the smaller re=

Presentations setually oceur. Sacondly, one has to coin reasons

vhy certain representations do nct make their presence. Tn the

i
- literature such questions have been raised and tn‘ﬁaxtant nxph!nndm)

There 1s a different line of apnroach which makes the
eonnection more perspieuon 14)

8 "« In a dynamical scheme, when the
particles and resonances appear in the direct channel of a two
.mtiﬂu’p’ seattering process as a result of the exchange of these
and other perticles in the cross-channels, there are certain gelf
Songlgtency eorditions 1mmosed on the number of particles and thelr
'&uplmg strengths and the mmultiplets that ecan be exchanged to

give an attractive force are not then arbitrary. There 1s then the

possibility of locking for the dynamieal origin of symmetries,
Iﬂurting from the existence of (mass-spin-parity degenerate) mwitisle
multiplets of interacting particles and requiring self consisteney.
Suopose, we do not assume the existence of a symmetry groun,

a2 priori, but we assert that not only are the masses and spins of

m various members of the multiplet equal, but alse the total

.....

multiplet are the same. Does this imply that there exists sn

symwetry group and 1f so is it unique ?

»GeSudarshan, Syracuse preprint 1206-Sl=07=KY0=-"290<07
. 'Symmetry in Particle Physics', 1964,

ReE,Cutkosky, Brandeis Lectures (1965). ‘



In Part IT of the this thesis, consisting of two

eha ters VT and VII, wo address ourselves to this oroblem and we
".-’.'h: Chapter VI, that within a suitable dynamical framework,

y answer is tyes '15). The principle of the equality of propa-

8y we call it the 'Smushkevich principle'. We show that under
ir dynamical assunptions the special unitary grouns are

ed out,

~ In Chapter VIT, we show that the symmetry breaking ean
@hhlr ineornorated in this schmam}.

In Appendix 5, we give certain identities of the recoun~

‘coefficients. In the Aopendix 6, we give Sakural's demonstra-

7 that the equality of masses does imply some symmetry group.

~ Symmetry is broken in ruifiiutie situations. Many methods
assed in the literature on the syumetry breaking

. The synmetry breaking we introduce 1s different from
methods known. Ve believe that symmetry breaking mani-
the various I.R's of the symmetry group, a fact

shan, L.0'Raifeartalgh and T.S.Santhanar, Phys. Zev.

md TeSeSanthanam, Fuovo Cimento (in press).
nm. Aev, Lett. 10, 446 (1962),
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Vvery anslogous to the d-state admixture to the otherwlse smme-

. Betric s-state ground state wave function of the deuteron. This

has beecome particularly useful in the problem of identifying the
IR
‘Roper resonance (1400 MeV) which has all the quantum mmbers same

‘as the nucleon. Tn Chapter VIII, we study the consequences of

| representation mixing'®! in SU(?) and several sum rules are presented

and gome of them can be tested against oxperiments. Tn Chapter TX,

‘the problem of representation mixing is studied in the Pramework
qr static SU(€) theory especially to the p-wave non-leptonic decays
;ﬁ.’ h'rpardum). In Chapter X, the same theory is arnlied to the

g —
o

onie decays and partiecularly an interesting relation between
"?GA ot (P/)a. e dertved™),

- In Chapter XI, the predictions of the higher symmetry
groups like =5 EI-’{“} @ H{‘?}j collinéar and SU(6), on
t!.vt decays of mesons are nramtudﬂ)

on the radla-

In Chapter XIT, the algebras formed by the integrated
constructed out of unrenormalized Helsenberg fields of
interancting particles are :‘Iimamﬂzm. In particular,
pight divensional baryonle flelds are used in constructing the

m_mnmmmm and therefore could

: Mishnm, TeS.8anthanar and A.Sundaran (Preprintl,
gnLnanagmn, Miﬂ‘l htt“'. _ﬂ, on4 (M}-

fanthanam, T.C.T.P. preprint IC/66/27 (umpublished). i
g2y WeRuhl and T.8.8anthanam, Helv.Act.Physica, 40, 9(126%9).

. TePradhan and T.H.Snnth!nnll, ICaToPs praprint
) unpublished.

. 5 [



11 .

ﬁiii been postulated directly, nevertheless, it is equally
Anteresting to see the models which reproduce the algebra. In

XITT, the implications of the ecurrent algebra SU(2) x SW2)

; -T the alaﬂtruugnatl‘j forn factors are stﬁ&luﬂm). In Chapter XIV,
s
Stneckelborg fnr:iation of vector meson fields is used to study

the Al-v mixing and to reproduce some current algebra sum rultsm)

In Part IV of this thesis consisting of the last two
m‘tﬁrs, %0 and XVI which ha¥ been included for reasons of complet-

88y 15 described a completely new development in the stwdy of unitary
*Ms smnasriging a programme of work at Matscience.

T ALS

It 1::*5111'-
Suance of establishing the hitherto unobserved conneetion between

R Y

e unitary groups and the generalized clifford algebra initiated
by Ramakrishnan®®)

The representations of this generslized clifford
~algebra have been recently obtalned by A.0.Morris> "), However, it

*Ill found soon that there exists a distinet method due to ‘Inﬂsktiga}
to get the irreducible representations of clifford algebra. In

.0.Morris, Quart.J.Math., Oxford (2) 18 (1967 7-12.
aKeRagevskil, im. Math. Soc. Transl. Series 2, Vol.§, (1957) 1.
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-
-

eonnected with the generalized clifford algebra and in pastieular in
lapter XV, ve use the method of Rasevskil to obtain the Irreducie

ble representations of the generalized clifford alzebraZ®. In

‘ er XVI, an application of the theory of spinors in n-dimensicns
£0 the study of the relativistic wave esuations of massless

articles is givan“
S

AT TeB.5anthanam and P.8.Chandrasekharan, to
d in J, Math, and Physical Sn!..-, I-I-T-’ Madras,

AN, 1. !mtmm F-ﬂ-ﬂm&!mm and 4.
ha’; lpplienﬁms (in print),
n, T,8.5anthanam and P,3.Chandrasekharan, Proc.,
} Symposia in Theoretical Physics and Hntﬁmtie:,
2 Press, New York, (to be published).
iy PeS.Chandrssekharan, H.R.Ranganathan zmd
;IH Hi?m“m‘ J-Hﬂth-‘n‘li and .-“Flicﬂtiﬂﬂ 5

hed) .

_}?.E,‘Uhmdrmm, Prog.Theor. Physs 5
3)e * -




PART 31

| CLEBSCH.GORDAN PROGRAMME OF ARBITRARY SIMPLE

e



A general form of the L-i:uri:mtn of
- compact semisimple local Lie Groups of rank L
&s the spurs of the powers of the " Velocity
~ Potential " operator is suggested. The possi-
L tﬂt gemeralization of these invariants beyond
 those of the adjoint group has been diseussed.

23



CHAPTER _II,
i ONSTROCTION OF INVARIANTS O =51 HP
LOCAL LTE groupg®
I troductiont- The Pirst problem that one faces in the

mh-ﬂwam“ programue of arbitrary compact groups
”“ get a2 comnlete set of operators whose eigenvalues
characterise an irreducible representation (1.R ).
operators are the casimir npai-aturs which are functions

of the generators of the group comwuting with all the generators.

three dimensional orthogonal grouo 0(2), Casimir con-
red the operator

2.

e - T
G = ‘3-:.; =+ :r‘ﬁ- + -‘Tz. 5 sese t].]

-

= and -‘III are the generators of 0(3). This

, v
1
i itor is known to eommute with J_, 3'! o LR

N

representation is irreducible, then Schur's lemma esserts that

G = H'I sane (2)

= J (§*1), (3§ = intesral or half integral). We also

g '\

o .-..:.I L

my J. Math. Phys. 2, 1836 (1966).



in
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of the Casimir operators for an I.5. The generalization of G
oF any semi-simple group was given by Casimir, who introduced the

r.t.‘.hl
= X
G g XKy
a - Pl
i 4 :
de e o oy o

(2)
the ¢'s are the structure constants and x's are the genera-
of the group.

4 A possible generalization of G was gliven by Racnht D who
ed the operator

T o, [+ s
o S tankCo 8. 'xE KP........ X
1

B [~ il
(=% a 1
"_“tmxm"._r—&

(4)

d 1t is ‘easy to verify that each of these operators commtes with
X$ '« PEut these are again not all the invariants of the group
ah himself has recognized, since it is found, for example, that
s contragradient to each other and unequivalent, they have
ame eigenvalues. 3So a pﬁluihilitf of generalizing (4) presents

Ny Oroun Thoory and Spectroscopy, CEAN, Reprint =i
* 61 - 8 (1961) p.45. - .
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. A
tself This is seen by moting that 1f we denote by X, the
gdljoint representation of the groun, we have
( A D A
&/ I (5)
Ay # are regarded as matrix indices so that
{!n = Sk meﬁ"“'xr R . D (8)

The gquestion then ariges whether one can use in (€) an arbi-

~
gentation KX instead of the adjoint representation. The
m of generalizing l::n

e has been solved recently in References
.-:.'I“‘..'.'.J'" and 5) -

¥e shall follow the notation used in Ref, 4 .

'___numhgm. J.Hath.Phys. 4, 436 (1963),
Phys.Lett. 3, 69 (1962)

* also L,C.fiedenharn, 'Lectures in Theoretical Physies,
Brittin, B.V.Dowvns and J.Downs, Fds,.

,I"nhrns.mea Publishers, Inec., Mew York, 1963) Vol.5, p.246-252,

| M.mezava, Fucl. Phys. 111 (1963),
54 (1964),
65 (1964).

IJ.“. M. mezava, KONINKL, NEDERL, AEADEMIE VAN WETENSCIAPPEN -
- AMSTREADAM,
ieprint fro= Proceedings Series B,

I.
.J!
P
1

N. No. :" 196,
sber and L.0'alfeartalgh, J.Math.Phys. S, 1796 (1964).
also L.O'Reifeartaigh, 'LECTURES ON LOCAL LIE GROUPS AND TIRIR

JENTATIORS 'y Matscience R t 28 {Tha Institute of Mathe-
T Sﬁ.ncu, Madras, India).

feartaigh, 5m¢sh on Thmeticul Physies, Fdited by,

. Ramakerishnan (Plenum Press, New York, 1966), Vol.2, »np 15,

MI. th"s. as2 (1964
Pere ﬂw Ewilt Physies JETP Letters 1, & ﬂ.ﬂ'ﬁﬁ}
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1

Suppose in Eq. (6), we replace the adjoint representation
X by an arbitpary representation X « Let

(7

()

: completeness of these invariants has been established.
ticular, the invariants for the classical groups A, 3, C,
‘have been obtained using the self representation. These

ire summarized in Table T,

TABLE I
INDEPENDENT INVARIAKTS
|.|" ] — :
__ Deseription Order of Representation
Linear Realization) Invariants used to form it

Ef” i El + 1} matrices 9,3,." 1+1 - mr
1z (20+1) matrices 2,4,6,i) 2L  se1r -

254565000 2L Self

E,“'E'iil- EE--‘ E, 3'.1r md one"-
= of the two s
fundsmental
3 spinor representa-
tions.
= SH




e

5

Biedenhsrn 2, on the other hand, has used the fact that
ase of unitary groups, there exists mét only the group
p of the con~utators

”
[% K )i= Cp 27 A ~ (9)

randent of the representationj but also the algebra of
putstor for the special case of the self representation

5 5 EL’?’ S
X, \":;3 = Mi’l, X,

L *mu. one knows, that the anticommutator depends on the

(10)

o
..... ' the representation. The symmetric coefficients d_ P
| been used by Eiudmharnm to construct all the invariants of the
: 7({n)s Subsequently, the method has been extended to

‘er o2f + 1) and Sp,, by Micu® , where 1% has also

d out that for the orthogonal group in even dimensions, an
ariant cannot be constructed in a similar way.
Yechor Potential Oneratorsi- The question naturally arises

s invariants have any geometriecal meaning. Do they speecify
lar property of the parametric space ? In the case of the
group 0(2), the invariant T +TT; L can be in-
| as the square of the rorm under rotations in the three dimen-
te spanned by T, J‘? and J . If so, how can one intersret
igher order invariants geometrically ? In literaturs,

-

B - *
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‘sueh ouestions have been puseﬂm. We now give a method of construct-
the invariants using the " Veloeity Potential Operators" .,
The " Veloecity potential is defined to be 3=

~ P, x.4)
a"j-’“ = -

(11)
*a the qb 's are the transformation functions of the Lie Eroup.

as is well lmmﬂ, the whole analysis and the classifica=
OF eontinuous groups are accomplished by the study of UU. The

9‘6& (209) = X vy Yoy Zpty, + £ Ty
+ -

1 ese = 1,7 ... n = Tumber of parameters (12)

3 f".!h infinitesimal gemerators of the groun X are defined bys-

X UL & 2
s E e s

(12)

for instance, L.D.Fisenhart, contimmous grouns of Transformae

" tions (Dover Publications, Inc., New York, 1961) pp. 155 -
’ﬂih)sq Topologieal Groups, Princeton 1846, (Princeton .
Hath, €5) e .




7

-

nd they obey the commutation relation
PL
BT

It 1s the famous nroof of Lie that showed that these structure
lu.

constants C o Bre nothing but the antisymmetrie part of the seccnd

yrder coefficient -:.'1..';_ oceurring in the expansion Fn.(12) for the
' 's , Tn other words

(14)

4 ol ol
&l By = L — G
(15)
concepts are indeed well known and are introduced Just for eon-

nuity and notation. The U @éperator for the group 0(?), for

o z -4
2T (Ij = —F (] 2C
¥ =< 9

:I:L — ('xJ%"_;zj

(16)
~ However, in this case, the adjoint and self representations
ars both three dimensional. In t rms of the natural basis of matrices,
matrix U (x) ean be written asl-

fo}:'E * @ s A0
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were the xi's are the natursl basis of 2 x 2 antigymmetric

ees and the product is the direct rroduct, The dimension of the
ie sp&cel is always egual to the number of generators, so that
0ef17) 1s always Aefined,

Invarisnts of the idioint Gromp:-

The adjoint group P of a group 0 1is defined through the
s= of G on the group of matrices. So, to every element

* 9 there corresponds a matrix b € P . The adjoint of the

test group is ealled the infinitesimal adjoint group.

let us start with the Casimir Operators-

(18)

I 1
F o n
b 4

F\}
®

x X
LS

S

T (18)

Il

‘U
U
e
22

)

X

-
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8o th:t the n'" - order invariant siay just be written asi-

e

¥ st () = s (Rie )

1

Il

(21)
Thase arey, of course, known as the invariants of the ad Joint munsl'_

The invariants are defined as the coefficients ¥ in the exnansion
of the characteristic equation

A =,0) = | VL"; (= g 5% “ '
’ (o)

A(x,P) is ealled the characteristic matrix. The paraveter [ is
sunposed to define the invariant directions. Since the rank of

of
“ "L_ﬁ f’-ﬂ“ is less than r (the mmber of parsmeters of the

' group which is the ssme as the dimension of the parametric :mu}ﬂ),
we ean oxpand the characteristie matrix asie

I

e =l I ey Wl
(=0 AlxP) =" § = Wil S Wielp T

-1

S e e (=) §

(23)

e N N R R Y N
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~ The . ’1__( x ) 4s the sum of the prineipal minors of

Ir, _I T | i i

1I*Eﬁ‘“ %1“ of order + o Hence, if the rank of the matrix is
the functions %, for 4 >% are zero and the characteristic
) admits zero as o root of order (r - q) at least. In fact,

-

asy to see that

¥ = sp(m),
. 2
B - ]

(24)
nd 0 om. The theorem of Killing states that the @'s are the
wariants of the adjoint mﬁ' Also, it has been shown that
there are only 4 indevendent %'s where { 1s the rank of the
group. The matrix M is just the operator ( Qﬂ®f¢} defined in
ie paper of Gruber and Haifeartaigh®), These are the veloelty
potential operators for the grop of infinitesizal generstors X of

MQ For the case of 0(2), the operator M {is obtained by
replacing, in the velocity potential U(x ) of the group, the come
one: its X of the parametric space by the infinitesimal generators X.
| Ve get,

1 (%) = Z Q,_@ XL_

L

= )
O _Ka _Xl

5 "‘.x;:; € *, !
X2 — Xy G (25)
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One importiant caution 1s that though in the ease of 0(2), W(x)
the seme for both self and adjoint reoresentations (as they are
ntical in this ease), in general En.(25) 1s defined through
F adjoint representation. The invariants of the group are

4 San e R (26)

 essy to shou that for 0(2),

uﬂ) and odd order invariants are automatieally zero,

Therefore, the method consi<ts in first replacing the x's

the U matrix by the infinitesimsl generators of the groun.

hen toke the spurs of the powers of this new matrix, It is clear
hat the mumber of x's 1is indeed equal to the order of the groun.
t 15 also easy to check that Sp(M® 1s the same even if one
ermutes the x's in U. OF course, the choice of U(x) stromgly

____ ﬂl&t the corresponding groun function is

, ot
cﬁ)n{ (e e) = CB?’ xE, Gk
(26"
U',;mc (x) = & #)"‘ e
2 Y
=0 =
- . Cl&f %
X B P
“ L3
= NGO



H
I
£
o
IR
&
X
pie

(28)
o i
The form of U (x) and henee that of P (X,Y)

Ammodiately tells us that we are in fact dealing with the in-

The next euestion is how to generalize these invariants
i the adjolnt group. One way suggested in the work of Ceuber
and mrmum‘” is to muuu:_- N as

< (29)

X
'@ X 1s an arbitrary representation. In particulsr, they

Ve used the self representation in constructing the invarisnés
the elassical zroups AL, Ho 9 Cp and D, except that in

case, one needs in addition to the self representation,’
. one of Tundamental spinor representations. Tt is tempte

& _.‘..i---. P e e & - S e - e o

29 .
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eperstor"™ and conseguently the group function when one replaces
the operator ( Q',; ® KL\ by (;\CL =) Ki\ « It is very hard
to answer these guestions directly. liowever, the following things
could be remarked, Tt is clear from the work of Bledenharn®) that
. we need eertain sysmetric coefficients to ret the invariants of the
group Utn). If ve want to ceneralize the invariants beyond the
ﬂlnl.nt group, we can still retain the form.

— cr
il = S ik o
_ But now, the U(x)'s are defined tharough the relation
Ul = o el K

£ ; oL ]’51_ ]3 b ] (31}

which implies that the group function qf:pc (<,%) 18

P ) = Xow %, +a"ﬂ{-f e ¥y
v = (32)

' ~ In Eq.(31), the a's are not the structure constants, they are the

‘secordl order coofficients in the expamsion of the group function.
Jsually, in the normal parameter systen, we make the symsetric part
of O. vanish so that the a's aecurring in the expansion can be
replaced by the strueture constants. Suppose we retain both the
muetric and antisymmetric parts in Eg.(22), we have,

== - A 4
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o | (d.u( Cn{ j
Ub-]?.‘_f ="' 3 EafShi = )
i ol
el Sl
(33)

) ol
while CP'?’ s by Lie's theorem is the sanl as the structure
constants, one can only speculate that the F;".r’ may be the .

mﬂﬂc structure constants oceurring in the anti-comrutator of

(24)
here we have used X  to demote the self-representation. We

i emphasize that Eq.(24) i3 very sensitive to the choice of
the representation. In many cases, the anti-commutator may not
ven close and ve have not cstablished that the d's in Bq.(24)

are alvays the same d's occurring in Eq.(32). In the case of .

(n) , one does know that Eq.(24) is certainly true and this

et hao been used by Bledenharn® to write the invariants of
he group U(n). !'._,h.p.,. the study pf the symmetric spaces may
Fov more light on Fq.(34),

-



ABRSTRACT

4 simple formula for the multinlieity
™' (n*") of an arbitrary veizht =" be-
m to the irreducible renresentation
with m' as its highest weight is derived,
It is then used to derive a compact and
simple formula for the decomposition
Dm*) @ dr).

28



$U(3): COPACT PORMULA FOR_D(pm" D o
e

MULTIPLICITY @' (nv) OF n* g p(mv)

Introduction:
- A diffieculty th:t one.confronts in the Clebzch-Gordan
programme of the group SU(3) is the multiple occurrence of a
_ glven weight in an T.R. (This problem is often called the pro-
blem of ''internal multiplicity'' structure). In the 1iterature,
Of course, there exists the Kostants formulal) to compute the
Mght multiplicities. However, it is too complicated for the
practieal caleulation of multiplicities, because it invslves,
along with the susmatlon over the Weyl group, the function P(u)
BIRISE 13" oqual to the muiber 'af asopiattions of ‘s Eivia vestie
1 into the sum of positive roots of the algebra, There is alss
the Freudenthal's recursion formula®) for the welght multipli-
eities, which is egually complicated,
Recently, Antoine and Speciser ) 14) ,5) have given a

" B.Gruber and T.S.Santhanam, Nuovo Cimento 45, 1046 (1966)
1) S.fostant, Trans Amer.Math.Soe. 93, 53 (1950).
See also N.Jacobson, Lie Algebras, Interseience
: Publishers (1961) p.261.
Jéﬂ’ NeJacobson, 1bid, p.247.
8) TePuintonine snd D.Speiser,t.Hath,Phys.5,1226 (1965),5,1560 {1965).

DeSpelger, Helv,Physica Acta 72 (1965)« Volume dedieated 4o
Prof,. E.C‘.&-S’tuﬂ hatl"; on this 60th bhthﬂ“-

D.3pelser, Orous Theoretical Concepts and Methods in Elementary
~ Particle Physies, Gordan and Breach (¥ew York, 1962) p,201,

ll-



geometrieal method for computing the internal multiplicities

in a very simple way. They have proved that if the Weyl's
character fmu].aﬁj is re-expressed as a product, instead of

- as nquotient, certain simplifications eccur as well as that the

_ method offers a very neat geametrical picture. In the first
‘section, a brief discussion of their method is included, However,
" their gecmetrical method 1s again cumbersome for higher rank
 groups, while an principle the weisht mmltiplicity is caleulable.
Ve hnﬂ developed an algebraie procedure of computing
the welght multinlicities alonz the same lines of Antoine and

speiger. The generalization to higher rank groups then becomes
straightforward, We derlve an explicit expression for the in-
multinlielity for the case of A, algebra (the correspond-
ing group being SU(3) ). Using this algebrale formula, we derive
. aet formula for the decomposition of the direct vroducts of

Lt's into irreducible components, The case of SU(3) 1is partie
'.

mlarly simple although mot trivial like SU(2) (where the inter-
bal multislieity is unity throughout). Tn the mext chapter, we
shall discuss the more difficult case of G(2).

tatlons and Definitionss
We shall summarize the necessary and relevant definitions
ton used in the Bext of this and the next Chapters.

The elassical Groups, Chapter VIT 5
Princeton University Press (1946). '
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A vector V 13 pnositive ilf its first non-vanlishing

component is rositive.
The vector V 1s greater than W, if the vector

(V =« W) 13 positive.

The vectors connected by Weyl reflections are gguivalent.
A veetor greater than all 1ts equivalents is eczlled
dominant.

7

For a semi-simple group, it is known'’ that if « 1s a
root, then (=) 1s also a root. Then the roots fall into two
- clamses, positive and negative. We denote the nositive roots by «

and negative roots by B8 (= «d). A guantity of great interest is

the vector Ry = _‘;—,Z Be {half the sum of positive roots).

— = '
For o group of rank f., there exists 1 positive roots, called the

rositive primitive roots (some people call them as elementary or
sluple) such that any positive root P, 1s gilven by

 i—
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‘1

shall see later, the role played by these primitive roots.
. Suppose we have a coordinate system with basis vectors
_":_1-?_ see Py o Tt defines an affine coordinate system, if all

- L
Vectors belong to ge (lattice generated by 1 vasts vectors)
if every V € g° takes the form

g N — SR
N 3= Z h L with integers Dy »

he funiamental demain D. 1s defined by

b b,; = for any Vi gD

o
.. a system, Ha:ﬂ.n has proved that
B = = (P'+ +P1;3

B0 that R, 1les inside D_ .

L

et el sigit{i B

] ¥eyl® has shown that the character of an IR of a
gemiesimple groun may be written in the form s=

X = =l
Y i (3.1)

the group is semi-simple, its centre is a discrete group.
arefore, its iuasf na Euclidem space E, 1is a point lattlce
generated by basis vectors.
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the characteristie K = X(k)= Z 85 exy ic (5K, ,‘{’:] :
x Se
=y c
Zra= PR e s e e S

A= X (R, = characteristie of the Identity Representation

[
0
ik
i
o=
-
—
0
A

0
-
N

(2.2)

gre W denotes the Weyl groun. :3{:: are the group parasmeters

O = +1 gccording as the Weyl reflection is even or odd
pectively. There exists another, but equivalent expression for
eharacter of an IR with =® as its highest weight.

€ D Gy

(2.7)

e the summation is over all the weights =" of I.R. Dim).

denotes the multiplieity of m". Antolne and apnimrm



e Z i eer (Sg—ﬁo,qb) |

5 €

1 then interpret Eg. (2.4) for & in the same way as one

3 A
| for the character ¢ (Eg.(2.7)).
¢ (P.gp)
In a torm '?’P e i s the multiplieity 7. at

pooint P is the value of the funtion % at the point P.

&
ergence of the sum ) 2 only means that the multiplicity

._jj."_‘-i.--- incressing. However, 1t has been shmn that only
= 1 _ c
0 A FipE t pounaed Jdomgii O ' 3R L E To
ind % we have yet another formula’)
o0 o
== - EI}J {“ Rq ,‘#“) Z s Z
& . =0 -E“ﬁ:o
.Ex||:. i [Z E‘i P-t: A c{jl
(2.5)

pre, the f,'s are the negative roots.

]

Then guantity Z ke Bo  #iz0 4 elearly represents

=

1 arb! trlr;r point of the lattice constructed on Bl.ﬂg..u,ﬂ..
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- with none-negative, intezer coefficients. The sum over k's re-
presents all points of one of the 7° ¥ getants ' of this
lattlee in F,. * 1s the same shifted by the Vector (—R_).

¥e have then

fe.a] oo 5,
I
Fom e 2 Qe esbi | Y kipi =R 4

(2.6)
dnd hawe ¥hen so the character formula becomes

W = Z ' Z Z ES exb ¢ i &L-F,;.,,skﬂ_,;ap

h‘--.:ﬂ ) 'E.H..-".-Cl' SEL\J . L= cﬁ} } v

. (2.7
The main r esult of Antoine and Speiser’’ 1s that 1t is

quite enough to imow the part X, of X contained in D_j
the other parts then will be obtained using the group "H

2 =

o 2

(4.8)




(3.Ra)
Since we are restricting any point to belong toe D ,
: folluu from our analysis that the multiplieity ™M (7) of &

ector 7 in 1 1s just the number of ways of expressing

Vs b iy _Z&'; - ol (3.9)

e Z‘?"'PL

(2.10)

™ (7) 1s the mumber of mn-ﬁagntiva intesral solutions

- 2
. ZELPL & Z{ A

(2.11)
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It should be remarked that this is exaetly the partition function
P(u) that enters the Xostant's rumulaa). Once M( 7) is known
the multiplicity i (") is mallsd calculated from the

Kostant 's formula

f“"lwl (m") = Z SE. ™ [”""”-— S f*ﬂi+ﬁm“,l] ‘
S € Ly
(2.12)
We exploit in our derivation that since the Weyl group W 1s known,
it is sufficient to know I when m" 1is dominant. Tn this
chapter we shall demonstrate this procedure for the case of 5STU(2).
A, alzebra.
The roots can be well described in g three dimensional
space as the vectors €r—€y 9 143 = 1,23, vhere the e's
are the three unit vectors €, = (1,0,0), e, =(0,1,0) and
€3 = (0,0,1) and the positive roots are =« = (¢, —e;)
= (e —e,;) ond o =(f ), « and o, are the positive
R
prinitive roots. We also have o = -Ldy + e, + o)

= {.(1 + 12) =d, = (2,0,=1).

It is equally convenient to describe the weights also as
vectors In a throe dimensional space, with a condition ss the

8) See Jan. Tarski, J. ¥.th. Phys. 4, 569 (1963) for more :
details on the Partition funerion.

-
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2

L=

fhis i3 then a nlame in the same space as roots.

2 (™, )

The condition that (x,<) = Iinteger where m

s a welght and « 1is a root becomes in this case

N e

ec—es I

(my =y ) = integer

 the dirrcrtm:u of the components of the m's are integers.

This along with Z ™M, =0 ylelds that

L=y

—a integer 1
i 3

s the conditions on the compnents of the weight aras

.- -
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Under a reflection in the plane perpendicular to

'.‘1 = (:EL X Eg:) ve haﬂ".

o (=2 g) (& —2y)
b v ey | =

I

= v~ (myg—my) (ec—ey)

i L ( 'rr'n.,_;- _—— "’""'—3,.\'1

Thus the VWeyl group W 1in this case econsists of 211 permutations

2 5- the components of m and it therefore of order 2 ! . The

nant weights (highest among equivalents) have to satisfy the

(2.14)

Let M (7) = ™ (& k) denote the miltinlicity

’?’: —Er:' +*E’.t{5F+‘E;|@Z

L

PI. BE are the two negative primitive roots. Then ™ ()
s given by the number of times 7 can be written as
" b A +E‘r|5.+‘£?1 Be “‘5-3.[33 i
8 . .
: with different coefficients, <. >0, ' y
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the internal multinlicity ¥° (m"™) of a welght =" he=
ng toan IR with m?

: as its highest weight is gliven by
Ege(3.12). The problem of obtaining

— * [4
M (R, %2) for A, then
es to finding the mumber of ways of expressing the vector

'Fl‘tF’p +ﬁ1?F’1
ﬁ-fﬁ.“'%zr:’z +E3P3 .

[7’3 = {%'+F1

(2.185)
}'ﬂ given ( by, F"'zrj « The above equatlons may be rewritten as

£, = &, %
'%3_ = %;: = Rn
(P1%53)
The condition that R >0 & > O igmediately yields

6 = *\@23 = e (R, ki) (2.16)

MOk R = vum (Bied, £ 61) (30268
-Boa HcMahon Combinatory Analysisg Vol., I, Seec. VIII . >

1 Chelsea Publishing Company N.Y. (1960),
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Onece the expression for i {‘5,‘)&1’3 is known, Tl (n") is
immediately knoun,

In the particular case of Ay 9 aD alternate method for
getting ™ (&, ,%.) hes been vorked out’®’. This essentially
consists in using certain boundary conditions on- I!"'l (m™) ¢o
get an expression for ™M -

If we introduce the vectors

e — 'r"""'-J Ea-\}_'- g E“""‘"‘f"En‘j
S eI * (2.17)

it 13 easy to check that out of the vectors ©<: (or eguivalently,
out of the elements of the Weyl group W) at most three can con-
tribute to the mulitiplicity of the weight m" € D(m'), namely the
system of vectors

= = .r_'c:_,c’c:“}
Z ES — [{G_, ""f"l"'l_ll-—"'m:"l-"" — I:-ﬁqgi—-m_aﬂ-f}]
= i Fl
S e e
(3.18)

The other three vectors (corresponding to the other three elements
of W) 1lead necessarily to negative integer coefficients. Then

10) BE.Gruber and T.S. Bnnthmnf,\-lﬁ, 1046 (1966).

Muwesveo. coments .




== -[;1_- ( Wr"m‘: i m-?:—w‘;)
e R S
T (P EE

| (2.18)
This 1s just the Kostant's formula that can at most contribute
lﬂ.ﬁpllﬂty of weights, Now we use the following boundary
ns on i to get an expression for W

(1) Multiplicity of Equivalent weights 1s the same 1.e.
™ () = @m

‘ng The highest welight of a representation is non-

: degenerate

hhd ' (m*) =1,



lso from the definition of M (%,,%;) follows

M o,k = ™ (%£],0)

4

Il
=

M &R Y= M (Rl B
e M (& B) =0  f
%, < 5 G /o‘f‘
£ <0

(2. 20)
g these boundary conditions in the Kostant's formula, one gets

R ) - R )L,
(3.71)
B o+ EL)
By 8.
(o -4y R +R2)
(3.29)

]



To get the extrenal multinlicity we then oroceed as rullmlm -
L]
knowing e (m'") and the formula

% (') X (meRD) = X ("R,
2, D

the decomposition of the direct sroduct

| DY@ Dewmd> = 2 I D)
ﬁ'ﬂ.‘l:

I

(3.24)

be written as

|
ey
iy
5
g:
o
o
o
31
il
h]ﬂ
.t-
i
L)

! 2

(1) all (m + R, * m') have to be made dominant (1f not
already so). ﬁp =1 if this can be achieved by an

even permutation of the components, S.’ = =l n_tha;r-
vise




(2) All terms of the sum are omitted for which two

comnonents (or all three) of (m + no + m*) are

mlc
quation (22) can be written down more explicitly asge

HeGm') X (Cmp R .=

t 4 / J

PO A, o e :m'lrmﬁ
2. ey (f)

] L
T = -I-F”

e oy
(=2832) Mwa’m”“} é‘P D fmeam”i*ﬁ
}'3“ == {_’;.l f ﬂﬂ)
r'_'?w_.,_ = ( el J)
(3.26)

that have been used can be reneralized to any

8 since they are algebraie in nature. For G(2)
tonstrate this in the mext Chapter. .



CHAPTER IV

Mu ] -

An expliecit slgebraic erﬁu:sim is obtained
for the multiplicity ™M (7) of a veetor 7 be-
longing to the fundamental domain of the group
6(2). Using this, the internal multiplieity
M® (m') of a welght m' belonging to the Irre-

dueible Representztion DMm) with the highest
weight m is caleunlated through Kostant's formula
for the dominant weights, The ClebscheGordan
decomposition of the direet product of the two
Irreducible Representations is then obtained.



Introduetion

It is well known that the group G(2), whiech is a sub-
group of O(7) has been extensively used in Muclear Physican and
in Elementary Particle PhrslcaE) for classifying levels and for
studying interactions among particles. It is desirabls, therefore,
that the Raecah algebra of G(2) be developed as in the familiar

_ theory of angular momentum. The problem of finding the inveriants
has bsen mlﬂﬂm. Any irreducibdle representation (TR) 1is hus
specified by the eigenvalues of the Casimir operators, or, egui-

- valently, by the components of the highest weight.

The next problem is the determination of the internal
and exteynal mmltiplieity structures of the I.R's of the groun.

By Biedenharn's thanﬂnﬁ}, the external multiplicity of an IR DV,

occurring in the direct product of two R's D and D%, a is

'Inse‘.ly connected to the internal multinlieity of the weights in D

“D.3adhakeishnan and T.S.Santhanam, J.Math.Phys. 8, 2206 (1967).
i) G.Raesh, Phys. Rev, 76, 1352 (1949).

2) R.E.Behrends et al, Rev, Mod. Phys. 24, 1 (1962).

S8ee Chapter IT, for detalls.

: ,-'Ha use the tminnlﬂﬁﬂ introduéed by A.T.Macfarlane, L.O'laifear-
.ilh and P. S.Haﬂ, . lt-h-ph:fﬂ. 5’ 536 {1m

5) L.C,”1edenharn, Phys. Lett. 3, 254 (1963),
GeEealrd and LQC-HtHﬂﬂﬂhm‘ J‘Hﬂth-m!n- _ﬁ' 1730 (m,-




Dty Tho]:gh the internal multiplicity structure is known

thro

hrough Tostant's formula®), practical computations with it
are very tedious. It rurns out that it is sufficient to know

| e multiplieity structure of j:-?) « Knowing this, the multi-
eity M" (m?) of a welght m' contained in an TR with highest

weight m can be ealeulated®,

~ Recently, an algebréic method of getting ™ (n') has
n worked out>) for the case of SU(2). Tn the present chapter we
srive an expression for the internal multiplieity M® (m'), for
the gronp G(?). The problem is more complicated in view of the
act that there are six negative roots and two (negative) primi-

ive roots.

The root diagram can be conveniently rezarded as eonsist-

g 6f all vectors of the form €. - @ and e 2o, +ey |

": = 1,2,2), vhieh all belong to the hyperplane

acobson, Lie Algebras (Interscience, Wew Vork 1!62. P.261) .
 Antoine and D.Speiser, J.Math.Phys. 5, 1226 (1964

and T.5.8anthanam, Nuovo Cimento, 451, 1046 (1955).




(a) ﬁl - {ﬂ‘ “"1‘ 1) = EE‘, o e'i.’..

32' (-'1, 2' "1) = = %f"':"—eluaa

‘The welght space is three dimensional with a subsidiary condition

3
Z"“’Lf_ :Dp

t=1

e the '1'5 are the components of the weight m. Using the
‘theorem that 2(m,d)/(«,e) = integer, vhere m 1is a welght and «

18 a root, it is clear that the components of m are intagers.

Let us now discuss the Weyl zroup. Reflecting the weight

(myy my5 ®,) 1in the plane perpendicular to €. — ©4 9 we see

‘that my >y i.e., the components of m are permuted, Mext,
congider the reflection in *he plane nerpendicular to =28t 0p
rIt can be seen that the effedt of this is to permute the components

m with a fotal change of sign. Thus, we have considered all

_"n’.th!.u reflections perpendicular to the roots and seen that they

ite the components of m or permute the comnonents of =m

‘With an over all change in sign. The Weyl gromp isy therefore, of

r 12, From these results, it follows that if m = (myy Moy W)
is to be a dominant weight, then

(2)

(1)




Proof, Assume (1) is not true, le€ey m, < LY

P =1,%2). Avolying such a YWeyl reflection to m which ex-

changes m, and m, ., we get a weight m' such that the first

non-vanishing eomponent 13 positive, thus leading to m* being
M than m, ﬂmﬂ nr > mr+1 which »roves (a).

To prove (b), we note that condition (a) aleng with

3
ZML =l

L=1

BENds 1umeniately to m > 0 and m, = 0. We need to prove only

mponenty so that m' - m has as its first component m,, vhich

positive, we are led to a contradiction. Hence, m, < O,
TIT, yltiplielty structure M ( £, %, )

In order to find the multiplicity of the dominant weights,
lot us first caleulate the multiplicities M of the veetors in
using the expression’)

a3
i

=

I
M
M

(]

X
R%E

%

<05

|

&
2

(2)




o1

where . 5 are non-negative integers, the 33‘3 are all the

negative roots and Hu ig half the sum of all positive roots.
The multislielity M of a particular vector 7 of % (which be-

longs to the fundamental domain of a group of rank A ).

e Sapppe o ke pE S

¥

(2)

where (ByyesesB; ) are the negative prinmitive roots (L< n)

and { &,, ..., ;) are non-negative intezers, is then given by

the nunber of ways ) can be written as a sum ofer all the

necative roots

o (4)

The multiplicit¥es of the dominant weights m', M (m'), can then
be obtained from Kostant's formula’’

M (mr) = Z 5\5 i"”l [’I’ﬂ- — Sfm-rﬁ.mﬂ

Seld
— ) 5
= Z 85 jit (‘h‘a%"-‘-j,
Seid

(5)




 Where the summation extends over the elements of the Weyl group
¥ and 5, =41 according ss § is an even or odd reflection,

respectivel ¥

The problem of obtaining M({ *, » %2 ) for 4(2) then

 reduces to finding the mmber of ways ( &, By + %,.By) can be
wﬂlm as ( GJ* ﬂl ¥ sssssrsesansan ¥ G’E 'BE; )’ for zlm '&q
and &, 1.e.

'Ez.{ﬂlq- &2 ﬂa = G.-fﬁ.l-l- ‘1152"* &-3{51+ﬂ2)

4+ 0u(2, +8) ¢ X (28, +B)

+ % (36) + 2B (8
80 that
= o +% + 20, +30,+3%;
-0
%.1:0“1"‘&3‘*0*4—*_9'5*‘ “'{7)
» have to find all possible values allowed for fﬂfi, =Flsaie; '15‘3

for given ( %'4 v "31-‘__ )e These equation are known as Diophantine




S8,

Wﬂntiaﬂsﬂ and we have solved them using the theory of parti-

tions,. Ve shall now go to the detzils of Tinding the number of

solutions of the Diophantine amtianam]

« The cruelal noint in

Othervise, the number of solutions of the diophantine ecguations (7)

~ 1s trivially infinite, The nunmber of solutions of Eqs.(7) 1z just

the number of distinct values allowed for the set (o, ..., G%g)
for given (%, B.). To find this we proceed as follows:

First set O, =G5 =A.=0 , then Eq.(7) reduces to
‘Ea‘l ==t 0_3 J
’EZ-Q = 04 + a’.‘f‘, ;

9) P.A.Macmahon, Combinastory Analysis, Vol.IT, Sec.VIII, Chelsea
Publishing Company, W.Y.(1960). The number of solutions of
the Diophantine eguations (7) can be given by the methed of
generating series. Now fq.(7) ean be written as a matriz equation

(kb )i= €© (o, .o 00)
vhere € 1is a (6 x 2) matrix., The number of solutions of Eg.
(7) is then obtained as the cosfficient :x:,_%'* xf‘" of the

generating function

-1
_6 Cﬂl CI:J.
£ (=, %) = W = e Ey

L=

where the C.i are the elements of the matrix C.
S8ee Chanter V for sreater details.

10) See ref. (4) for all detalls about the conditions for D' to

dominste D. Tn thls paper a comnplete list of references to
earlier literature may be found.
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‘Which we rewrite as
s e

G"i
O Vi e el

Siasl

3 .

It may be recalled that these are just the enuations one gets in
the inner multiplicity problem for the group :W(:!)*l e For fixed
(2, %) @ ean have the range

2nd so the mumber of values allowed for & 1g given by

i [“&‘4—3*’1, %—3+{)

(»)
As the next step we set A3 ,04 F0, X5=0,=0,and so Eg.(7?)
reduces to
E’-{ = Gy +03 204
%"2, = gt e iR
which we rewvrite as :
Oy = ky-a3 —2ay
A, = E’:H @3 - %4

The alloveds non=gero values for (G, are given by (for fixed %)

s { [’g’_ﬂ“’;} , (%s.—'lﬂ} (9)

‘_'Eaa Chapter III,




where we have denoted by the square bracket the integral part of
the expression. Of course, &3 ecan have its range such that
oy, :}-_ ) « Two cases of mm inequality arises.when R, = kg
whieh implies F‘-—;X '{f k, 4 then the number of values of 4

BEIET '
= (93)
El3=g ;

and in order that @, ,+ 0 , we insist that 3 = 1 and there-

are

-

fore the second equation implies

W £ 4 = Ry
(eb)

t.l'l..u_E'.

Of course, if . < k,  then it is time that the maximum

value allewed for @ from (2a) [ﬂri’:}é kE.~2 and hence the
__m:@tarr condition (2b) is automatically satisfied by the matural
‘boundary of 4g.(9a).

If on the other hand

then the following

‘czgse arises

[’g“' < &, <%,

z

In this case the allowed range of values for G, is

k =




the allowed values for . +0 4s given by

>[4

but nov the subsidlary condition (making %, +0 ) O, i <b, ;

has to be carefully taken since the sun imolies

(Bp-t) < &-264 b & bk, <k,

values, flence 1t should be imposed. We can do this by Tirst

] ng @3 to range through all values allowed by the sum
‘this facilitates the evaluation of the sum and then subtract

f.2. values of 23 beyond 22— 1 upto £,-2 ,
Ais the next st'-pumuudtusﬂ o R o)
and @, -0 Eq.(7) reduces to




ona has to consider the following inegualities

Rosta i [Bhe b wn S TE S <)

nd depending on these limits we have to determine whether the
st or second equation has a say. Number of solutions for “s5

(
> e ] e

Gy ot

43 then

(10)

e
or instance when *, <k, implying [-—3-1 < %2 then the mumber
of values sllowed for C.- is then

% [‘E_._G..E_'LQH_

>
Qo O

0 ensure that d -+ 0 o we put this condition on the other equa-

'



B o (% __of
- On the other hand when 3 | then the number, values
allowed Tor ‘- becomes

Z (A = Ay - ay,)

3,94
but now the condition that G5+ 0 beeomes

ey + 294 +3 <= £,

The next step is then to set o e B :i:@ 80

the number of zllowed non-zero valuss of ¢ is then
>
‘ 5 ,E,_‘__ Bu'lﬂ-_q, 30 i 3_ Qg QA l)
% A L EEmas s ]T

]:,%- < L%X » then the first ters is minioum and &=

. L e .
0 ensure that Le = © 5 we insist Qs + g 4+ &5 + = kg,

t [’%L.X > [%\ s then the mecond term 1s decisive and Im

his case to ensure that Le 0 we set

L3 4294 + 345 +3 < Ky

ius the number of solution of the Diophantine equation (7) is
yen by the allowed distinet values of the set (S, St )

=



and 1s thus giwen by

- —

il e,

e
p—

(for given

A,

N T S S
it ; L 3\ lj ! ‘L}_ ;q‘" q:J J:ffl
W L}

o

il

g

3 Ga

T

YL

':L3 ‘Qq“ﬂ_s

(%, %2) )

"'Y'r’l.l.-_.l":'l., ('Etl-l‘fJ 'E‘-g_-l—{)

]

=
ky— %3 —zay
3

{f
b

{Lz -G‘Ej }

29

(R, —ay-a)¢

..-l:l.l_r —

':_-g“‘:
¥
Z

(11)

The evaluation of the sums of integral parts is straightforward

e

2

and we summarize them as follows

2

il

1

‘E:{ odd
J

%

4

Baresy!

(12)

-

|

Wy,
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If we denote by

CORD = E; [k~¢=1;}
£ 4 3

can be easily verified b$ actual computation that T (%)
eysthe difference enmmation

F(e) - § (R-G) = é‘. Efmtﬂ '-’.'hu:")a-ﬂ_g'

= 105 ik

s difference equation has the solution

g = L (B2 362 3k 4a)

d 13 as yet not known, to be fixed by boundary eondition
 each mod 6 of & , We find that

=

{ 9 SuTTL
d = kc:f-l-l.'_i’) ==l :—.)

% = (0,1,2,3,4,5) mod 6 resnectively. Thus

' -
Z [&_g_zf} sred) (iank%_&a.‘ﬁj%)

| ¥ 36 (12)
L .




[%—t-c—w-ﬂ S (R, )
. |

(14)

(15)

The impomant point is that the subsidiary conditions have to be
l=posed wherever they are annlicable, In these @ses, ve Tirst
# all values In the sum and subtract those which are forbldden
)y the subsidiary conditions. _
We find the following expressions for M({ %,, k,) in
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Ome Tinds
= - bi—%
i (%, ko) (1+%) + E_ z ]
2y = ko
Z [a.,,;_lﬁ,]
.-f-.-
Lra_',_ 3
oy k-2t -3k
i i<t
4,.',}"1;, 3
b =
= (h+ k) 4+ Ri=d g0 BRicad =3
-q.
(=
'E'-]l J{l.::!lr J'?ql cfuen "_".-;?-
=70
—+ 3*_.G RSN RS o ) (16)
-+ _r_vl_" ‘:E?~:-3 ﬂ'z) i
™ (&, R 2 () o) + 2B =L)
2, = 3k, A\
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> e e
-L-;-a_,"’& 2

5 3 P
e s (%'11-'9—:.' (R ig'ﬁz#Ec:.Fel-y'z.L})

3 LF% ey ‘gi;.-
) e il B ety ('B.z'i‘ll%ll"r‘ 29 Ry +l+5j
Lt
Lo odd &,
(17)
™M (kR
i ) - Cr+ ke ) + Z(E"—_L)
_F'E'h_a.'_i;.'
S [T—l
‘-"'i"}l"i"" EE‘-Q
Zaliy s
. |
2
4-:'*13;1"3%_4'5 Eﬁll
= A R, CRye2)
=
gy -Q(EL;‘) o Ch, -2k, +1)
3 R '
b A Y e ks e
L% ¥

+1L1-§

-gl:] T SUE VL 'E 2 ?’ 2_
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3
+ (R sy {(E’_r_ﬂ_) + il [51—1)1.,. 37 (B,-2)
42
+ 4-5 %

Lo od 4 En,?;'}:ﬂ
3 o=
- I S {(quj + lo CK-2) 4+ 30(k=-2)

—\-11-|-%

Lorv eden K =2

| [ke=a1D i(li-l')3+ I (e-2) iL+_ = L A SR

i + 45 §
-pmr od. d. K S :
(18)
k= Ra-1 — Ft'_a]
3 )
Fq_ (&11%'}.‘)

e F‘:’]

L4y = Et.;_

- e

3

2 g Bol —k =4 =P

Lv2q+ 3k +3 <k,



d o
= Gk o REY el csaikg s
P
. Er {for evem e, =2
= ¥
z
— {{\’&1"&2\)-1% JI‘.E,-. amld.'[‘%l—‘ez:_-} 33
> ; 5
=1 [;_&,— ll&-:_)l -f—nf E-'IJETH.':;'%I" f?lj = >
= -

S Ry = PR 2k )

S b
Al g {(ﬁz—lj + lo (ky-2) & 30(k;-2)
48

+ E..L|- E -’.:-:'w 2ueT ﬁ’-_-._ .2

-

3
+ L (R )&@1_1) S l151""‘31+ 39 (Ra-2)
TR

+-—+5} fov cad B, =3

I 7 S
— = K U‘:—-l) + to (k-2) ¢+ 30 (k-2)
4%

-+ 11+§ -f:cw Blty K =9

= L (ke § (e e 0 Cemai® s a9 060

rasl .
& 1oy odd k=3

(1)




G TS

! = "*%1 &.ql
2k, < 2k, < 3%, : oot Z ‘}—H]

=z
L4+ = an

[ = _lé'
++3+1E
t—-t.-_'l -3k
L+&+§+1 "-E?

2=
%-‘: Loy sl d R 23

I
¥
1

xe
P
u
.i..

2
+ R fe
4

L B, k)
%( ) __% fov eda(Ri-hy) 23
.-4_

z
— ﬁf:i:_j {:5.. ELer (_E‘I--EL) = 2
=N

=t Ci ks Ll;ﬁl__lflz-a-i)

EvUey ‘EH =

)
_

=, i

R s R e el S Rl s e
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Bge (16) is a difference equation and ean be solved
for each modulus 6 of ‘E?q « However, Eg.(16) itself is

isuffietent to determine M (&, %)

(&< %2) stralghtavay.
N .

» Yultipiiclty Structure !‘-Im!m'l.

Kostant's formula Eq.(5) can now be used to find the

mnltiplieity strueture ¥Nm Y, since M can be wa}uataﬁ using
our formulae 16-~20 , The naxt probles is then of the eyl group
Which is of order twelve. Great simplielty is achieoved by first

getting =m' to be dowinant as the multiplicity of the other weizhts

gan be esslily known from this,

This makes only a Tew refleetions
B0 contribute to Tq.(5),

as the other elements of the Weyl sroun
gke the argument of " necative,

This we shall see as follows.
s A g o ——
fonsider the argument of H’ @ H' - 2(;n + ﬁu) « Bince M is the

Bater of ways of welight m' ( =m+ %, By * §2 8, can be
Xpreased as

=
vl == o R > a, Ge & S (m+Rg)
L= (m)
EE} o {-‘?'r_-r.l‘_':'j
=
st SSaGonmmgyl b SR 2 S
L=
s
— — Eﬂ — ‘E"“-.; P-t -+ %-1 1?'}1 .
S &
= (&'f 3 &ﬂ..

(22)
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5
('TV'LI+E:.-.) — S8 (iRt = ’GR{ '[3-',_,.?12_5(31

= e
M
R

7 S g5
@ can there ore exnress 7  in the (f?t. ,Ea_,; ) notation for

Il the twelve clements of the Weyl groun. We have sarlier seen
;"_ the Weyl group consists of all six permsutations of the compo=
of a wolght gnd all six permutstions of the components of

e welght with a totsl change in sign. Ve denote these elements

"192® “130 Sp1at Sajor Somyr Sagy AN Fpoas Fiage B0
':: 3312; 3.321 respectively and 55 in Fge.(5) 1s +1 de-

g on ke whether the permutation is even or odd., In the

liieS 5
Ry ,ﬁ',«_) notation, Bg. (5) becomes

WWny = -ﬁ(m:;-n'+m1-lg| nl-m;)

DR M -1
-¥ (sg-njempomy -4, m,mnf-a)
+ M (m:;-ml'+mg-u1-9,lg-m£-4)

i mat e s Y -

N (mﬂ'-m;.-l-na-lltlﬂ,nq-n;-E)

L=
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I T R
-E(m:;-ll{-!r!g-ﬂi"i Jt"nliheﬂ

-i(m:;_.l-hm_q-ng-ﬁ -(n;.-l-n‘i-gﬂ

v E(m.;-m£+u2-ns-4 -(n;+n53*-1))

* F(na'-n;«t-ul-na-l ,-(m;_l-ugi-ﬂ})

—_ﬁ(m::.niq*ml-nﬂ,-(ﬂ:{ua*l]). (22)

_ Sunpose now m' 1is dominant. Then both m and m*
jatisfy conditions (a) and (b) of See. TT, 1i.e.,

= m m,;, m1+n;+n:;=n,

-
i

] L]
fhzly 28 3 | +ta, ¢m, = 0,
Z
W4 0, m, <q0, m, < 0O,

: 13 then essy to see that

ﬂanm{-G{u
la-l;-ﬁdfﬂ
E::‘ﬂ;ltms-lziﬂc’:ﬂ (24)
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and since M (%.,R.)=0c when &k or %k <9 _ 1t follows

that only five terms from Eq.(27?) are non-vanishing when m' 1is
‘dominant . Thus Eq.(?2) becomes

W@y = W (mg -y my -

"1"‘“’1')
SH (mpemtmom,, m o)
VR (myemy e myemg ety (o syt D)
+¥ (mgem'jem omy=1,=(af+ms+2)

- M (ms'-ml-rml-n?_.-(m;_i-mafn) (25)

Equation (25) along with Egs. (16)=(20) give M'(m') -for any
dominant welght m'. The multiplicity of any other weight can be.
found using the Weyl refleetions. Tn Zas. (16)-(10), the inter=
Wals for {11 and &, depend sensitively on the coefficients of
the a's 1in the diophentine emmations (7). These coefficients

ire entries of the Cartan mgtr:l::- and thus are characteristiec

pf the group in guestion.

Externel Fultivlleity Structure.

It i3 well-known from the work of Bindenharnm that, if
MA) and DWA') aretwo IR's of a group L with A and A
s their highest welghts respectively, amd 1f D' dominates'®’ b,

fee nn_uan;llx Se




the nroduet D' x D contains TR's for which ( r'\.,f + m)
are highest welghts, vhere m stands for all welghts contained
'_ Pe The multiplicity of the renresentation {;"f + m) in the

Peduetion of D' x D 1s the same a3 the internal multiplicity of
the welght m 1in the representation D, The conditions for oY

o dominate D for G(9) arel) 'hi? 2N + 3, 7‘p N2
re (31,7\2) s (31,).2) are the components of A and A in

i@ Tamiliar twe componant notation. More explietly, Biedenharn's

orem can be stated in terms of characters:?®

DxD (A )
e ($) = Z’Ym paa R

(26)

assumption that D' dominates D 1s needed to make (A +1)
8atisfy the conditions for it to be dominant sc that it can be
@ highest weight of some representation in the reduction.

The important point is that the representation with

-

(/A + m) as highest weight eccurs Y g times vhere 7 . 18

¢ internal multiplieity of m In D(A ). @ ©an be frmedis-
computed for any m in D(/\ ) using our results in See, IV,
hms knowing ¥™(m') and equation (5) the Clebsch-Gordan reduetion

1 rroduct of two (IR'3) can be immediately written down,

Appendix 4,

7




Ve give a few examples of multiplicities of some

eights using the resultq obtained by us,
| Consider tha n7k1,ﬂ], dafined in tha convantional
:..1,).2) notation, vhere the highest welght (N,A) 1is given

!1 times cne fundamental welght and hp times the nthar. The

gonnection with the three component form is given by

x Pl g
=%
e il
“e calculate the internal multiplicity of the dominant
eight (0,0). From Eq.(25), we find that
w19 (0,00 = ¥ (2,1) «F (0,1) - F (2,0

fow using Fgs. (16-20), wo find that

w (E,I) = 3‘ (0’1) = 1' F ( 'n} = 1-

i 39 (5.0) = 1.

Similarly, for the internal mmnltiplicity of the dominant
(0,0) 1r the representation D %(D,1), we get

w91 (0.0) =W (2,9 =T (2,2 - F (2,0

= Pejul = 2,




- Let us now consider the direct product Dl‘;(n,l} X
#5%. It can be sesn that DI™7(2,7) dominates 01%(90,1).

ous Mlma of DH{G,D are

oy 3, | _“'_n‘ {1’01 ’ {-1'1} » ( ﬁ'l""lj

: : ("Ell}l {11"1)! {-l,ﬂ)
TR

n's Theorem, Eq.(m), we szo that

» P

6,0) <+ D (1,3)

)+ 02P0,m  + %8a g

D].ﬁf!?

‘noted that the occurance of (2,2)

etion 1s orecisely due to the anpeance
e In Blf(n,l).



CHAPTER V.

QENERAT [HC FUNCTIONS OF CLASSICAL GROUPS AND EVALUATION

1 PARTYITION FUNCTIONS

ABSTRACT

The generating functions of classieal grouprs
are used to set up recursion relations for their

\ partition functions. These are then used to find
[ the internal mmltiplicity structure of the velghts
- using Fostant's formula.
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ORNE3 \TING FUNCTIOES OF CLASSICAL GROUPS ARND EVALUATION OF

PARTITIOR FUNCTIONS®

The Clebsch-Gordan (C.G.) programme of classical groups

suffers from two major difficulties. Unlike the rotation group

~ three dimensions for which the C,G. programme is well known,

1
¥ i !

other classical groups do not possesz the properties of
simple reducibility and the equivalence of an irreducible repre-
" ation (T.R.) and its conjugate. Here, we mean by the lack

of simple reducibility, the multiple occurrance of an I.R. in the
product of two T.R's,

This multipliecity 1s called the external
multiplicity’)

» However, many relations have been worked uutm ’3),
iich relate this external multiplieity to the multiple occurrance
of a given weight in an T.R., a feature not shared by the T.R's

of 0(3), is called the internal multiplieity structure.

7

' T.5.Santhanam, communicated to J.Math. Phys.

) The terminology is due to - A.J.Maecfarlane, L.0'Raifeartaigh
* and P,S5.Reoy J.Math.Phys. 8, 526 (1967).

?) L.C.Biedenharn, Phys. Letts. 2, 25¢ (1963).

) C E.Bai:ldm ;:16.4L.C.Budanharn, J.Math.Phys. §, 1730 (1964).
‘Bee Arp x 4.

leRacah, Lectures on group theoretical concepts and methods
in Elementary Particle Physics, ed.F.Gursey (Corden and
Breach Science Publishers, Few York, 1964)
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.

, the internal multiplicity ntmctura can be
for instance, the reeursion method of
X !ll wﬂﬂu, EKostant's formulz is the
m'ua the partition funetion
te _11 linear combinaticn of posi-
"ﬁru integral linear combination
The: mnim functions have been known so

g
nl three mﬂ}.

m:, we nt up recursion relations for the
5y which are then used in cenjunction with
a to compute the internal multiplicities. OF
caloulztion gets more and more involved as one goes
£ :. However, the method is precise.

this chapter, we work out the gemerating functions

£ s Cy 3D, and G,. %w We also obtaln recursion re-
for the internal multiplicity.

jon, Lie Algebras, p.261 (Interscierce Publishars 1962).
Iy Lie ﬂgﬂb’ﬂﬂ, loe cit. p.ﬁ'!?'-
J.Math.Phys, 4, 569 (1963), "




i

In section 2, the general discussion of Hostant's

formula is given. We discuss the cases of A, ~SU( L + 1),

B, ~ o2l +1), ¢, ~ (5pg g )9 Dp~ O(2L) ama g,
in sections (2)-(7). The discussion ineludes the Weyl group,

‘the structure of positive and primitive (simple) roots and the

Diophantine equations. FExplicit formulae are obtained and possi-

‘ble recursion relations for the partition functions are given.

In Sec.(B), the connection between internal and external multipli-

_!tr structures is discussed. In Sec.(®), the conclusions are

‘glven. Many of the nroperties of the classical groups {nt;{‘uctnrl
of positive and prmitive roots and so on) are centained inm many
*Se We have taken them from the papers of E:mkin?).

The inner multipliecity M" (z') of a welght m' belong-

ing to the irreducible representation D(m) of highest welght m
-.f.- given by Kestant's formul '“_ which 1ig

["1 {m} = Z (5 P [S{*ﬂ-ﬁ-rﬂﬂ) {-'m-i-FZﬂ

0 , (2.1)
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Where W 1s the Weyl group and

R, 18 half the s:m of posi~
tive roots

55 =+ 1 neccording as whether the reflsction is

even or odd respectively. P(M) 1s the partition function for

This is the number of ways the weight M ecan
be written as a sum over all the noszitive roots

T
M= 2 esan
t=4

the welght M,

(2.2)

with different non-negative integers . e On the other hand,

Antoine and Epeiserﬂj have shown that the vector

5 |:"n-|+ E,_.,-) - {""‘*I-P En.)

€an be expressed for 2 fixed 5 € W uniquely in terms of the
primitive roots as

L
S (m+Ro) —(m +R.) = Ez_ *ep,

LI-'=|

(2.2)
£ baing the rank of the group. From (2.2) and (2.7), it 1s
€lear that P(M) 13 the number of ways we can write

L T
z 1?-"‘-{[54, = Z a}« ch.._

i g

T
(2.4)
2 20 , % Z0O

? J.P.Antoine and D.3peiser, J.Hutﬁ.Phr:.,ﬂ,.lEEﬁ and 15680 (1864). ..




7

_E_Eor-llven ’EH e It can be shown that [ [4’-4,--“-, {”-1&) is the
_ 8) :
multiplicity M( 7 ) of a2 vector v of % ‘where the '&

is relsted to the character by Wevl's formula

e ¥ (m+ Ra)
2% GEN = =
= (2.5)
A= T (RE)
74 (o Ry)
- Z8/= 1s the alternating elementary sum
)_({_m-t-ﬁ-m) = Z SS e;;f; [SEW+RD)' El .
: SeEly - (2.86)

where ¥ are the coordinates of the toroid (the group parameters).
(%1) can be written as

S 5
. ] S & = £
M (' ) = Z 5‘5 B4 ( el 4 E)
Sel
: —_ S %.5)
If we can caleulate the partition function R R g

hen #'(m') can be computed in i prineiple. In the following
ow sections, we shall exnlieitly ecalculata ™ f'fl‘ Sl 'E-.%)

or various classical grouns.
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A, ( ~ sl +21))

£
The roots of this alpebra are given by €. — Eé{» ]

i3] = 1,000y (€ +1). The €. form an orthogonal “asis in
‘L ¢+ 1) dimensional space in which the roots and welghts are
ned, There are £ ( £ + 1) roots. The L L (L +1) posi-

m‘.ﬁ) roots in this case are gi = 2. E'L'q.-; 5 i= 1'11-- En -

e (3.1)

= e )
pr 3

f Ol | 1Br. O]l @ o o

o o |11 ot ©

D 0 olo 1 oy R o

1, 0 o0 o|e o o|o 1 o

'C 5 0 0 ©/0 O 6|0 O a
"U}L: I - . . E ] o # .
‘i—; & 1.-

i 0 0 olo o ol ekE 1

Q0 10& 1 o o {




i
It can easily be sesn that only for the ease of L= 2y the

matrix € 1is a non-singular square matrix so that there is a

unique solution i.a, M( %,) = 1. However, in general C 1s a
rectangnler matrix and so given the vector K and the materix C,

tha nunber of a's 1s trivially Infinite and it 1s only because
¥e have the restriction that the elements of the matrix C are

b alel

i-negative integers the very nguestion of the mmber of solutions
nmber of a's, the compnents of the vector a are again non-
"ntivu integers) makes a meaning after an') « We recognise,
that the number of solutionsof Eq.(2.4) 1s given by the coefficient
y Ry Ry '
- g e Xy of the generating funections. To solve
the Bioshantine equations (2.1), (actually we mean finding the

number of solutions for given * amnd C) we now use the method

of generating functions, Let F (=(,... - ,%xz) be the generat-

ir g funetlon defined by

4 fkey)
. - =
|
J §-E- {1'.!“_' :L'E\) = G Sop Cp g
L= A )

(2.7)

‘T am grateful to Professor Ramakrishnan for fopussing my attention
to this genersl oroblem. There is a discussion about sueh a matrix
équation in the book on 'Linear Differential Operators' by Cornelus,
Lanczas, D.Van Nostrand Company Limited (London) (1261), p.l15.

' Ty the general problem of finding the number of solutions

3 to remain o although the generating fanction method we
developed in prlr._mipln gives a solution to this problem,



‘are chosen arbitrary parameters with modulus less

== . %) is now given by the coefficient of

e (,-----,=2), ‘This ean be checked by

£_-E_QI'I_, -, %g) in pover series. G5ince the
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go that

'D E ﬁr‘l""r:l_‘i'"' 4 T{_I E’ m'-?"‘[ t} ‘E"“)

. Define a new set of variables

e e U e e

i J AR 2 S e S,
(3.6)
then
™M Ok Ry
min (R, Re) By a oy

M
{2
e

(2.7

9.(%.7) 15 exactly the recursion relation we want since it faci-
tates the computation of the partition function for any
{ £ arbitrary) in terms of the simple partition function
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- s ST i (%u%‘i‘.j {3.9}

which has been obtalned oar].hrg}. The welght spsece is agzaln

X1
E T —== 7,
4:.::‘}

ng Weyl's theorems, it can be proved that the components are
Integer)/ ( L+ 1). The Weyl group in this ease persute the com=-
oments of m and is of order ( L + 1) ! The dominant welghts

£
2 Ty e 4 L {E-‘)




These properties of the du_ninant. welght will be used in picking
up the nom-vanishing contribution to M(m ).

4. Bo(~0 )e

W

The roots of this algebra are :t(e{-_ -_EE.};)'J—'[:-_E.L et

2 4% of them. The £~ positive roots may be cbtained

s €. 24 4 €.+ €5 amd €L (<4)e The simple roots in

this case ghyse are given dy P, = e. (e  Po= %2 o
Equation (24) then takes the form

', = CL.)“ a_.ﬁ ,
Pl (U H .E,
,-‘-:*J E'ﬂ.
= (4.1)
: where C 1s the (1 xﬁ) dimensional rectangular matrix
H‘ —_— 4, =raa .E-L
AR jlo O - (&l e e @]
I ot ld 4 1 @)
1 g |- -4 3 o
] “{_ Af_,
: @
e 5
=) 1 L(241)
i w
= 1 1 2 1 i < 0
{ = 2 |1 2 2 i
g 2 |2 Z 2 2

(4.2)




The generating function in this case is

B8

o
£ < |
1 :i: (A e, B e i N = Gz esp CE:.')
£ (‘ — Xy Xy e T
: L=

(4.9)

It can be easily checked that unlike the case of A ¢ s there

B Bp_y
is no simple recursior relation between ?FE < and :‘Fﬂu{

veTy the tollowing very intereating relation csn be obtained,

Ao
£ :E:E - x'_}“":ii}
Gy auia, Sep = == T 7
| ( S
=g dz0o LS Y=Li-1 (4.4)

It is therefore clear that for large vslues of A  the
eursion relation Eq.(4.4) i3 not aimpla. For L = 2, Eg.(4.4)

L AS

A
. - (e 20))

Bl

(f- x13t:_‘)

(4.85)
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» that the recursion relation for ? is

2 . i I
_l"’\_ (‘h; ,Jgt:_j = E M l(_fﬂ.l_!_:‘l 511_11.) ;

(4.8)

Which is the relation obtained by Gruber and Zaccaria earliepri’’

a1,
The weight space 1s { dimensional and the ecomponents

ay be integers or half integers. The Weyl zroup in thls case

asists of all possible permutation of the components of m to-

ther with all possible changes of sign and i3 therefore of order
fﬁ.k L! « The dominant weights satisfy

M, Z My 2z ... o, 20

(4.7
The roots of this algebrs are X Lﬁgﬂ:&};)) + ae, 34;:5...1
11d be stressed that the factor 2 I1n the sscond elass of
pts is very important and mekes this algebra different from B 2 .

ere sre -/~ roots, The 2 positive roots are given by

! s £ < 4 = The simple roots in this
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Nt el SR g S L. Equ(2.9) 1s
then
.S a
£ = CJ# )
& = el (5.1)
=4 L%

S
where C 15 the L7 x L Qimensional rectangular matrix

B, (5.2)
i_!'ha generating function is of the same type of 5'& (=, ... x,)

tut the elements of C we different in view of Fq.(5.2)s Again




c
. £
in this ease, there 1s no simple recursion relation between ‘_‘{‘_JL

C-E.-I.
and §E4 « However, the following relation ecan be easily
verified,
A
L
Cy Tp (=, =)
:FF. (o, g} = y P & A
I 10 [ T A (R ¢
oy i ke v=tof

For the speclal case of £ = 2y the above relaticn reads as

s Az
TF- ) (=, 9"—1\} == 5'1 {111:&1‘)

b 2

—_—

Cy —:‘:;‘sz-\) (5.4)

180 that the relation (4.6) 1is derived with &, <— %k,

T by T Ok

_1 § 13 not surprising because of the known isomorphism between

!_'-:_ ~and B,

The weight space is again £ ~dimensional and the compo=
tents of the weight one integers. The Weyl group is the same as
#hat for B, and is of order 2 L' . This consists of all
he permutations of the components of the weight and all changes
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in sign. The dominant weight satisfies

™, 2= M Z . . My T0 (5.6)
6. D ( ~ 'D‘t"?-ﬂ) -
s )

The roots are glven by + feo=+ E.};\) e

and there sre 2 (L — 2) of them, The £ (L-1) positive roots

are then 8. + E:}; and ey —ey c<4y The simpie roots are
(51:_" - E.'___ql -_— EL JJ.:Z:J---E- &nﬂ P_E = E'E__I bt EE, Fq‘{gﬁqj
is then

L= s y £

Poim ne RGRTEY (6.1)

where C 1is the AlL-13 » L dimensional rectangulsr matrix

r—s 4, oo ELE-O)
s G114 R (=S
1 1 L=, = q |
1 1 o S I 1 2,
it g o 2 |2 2
it 1]1 1 1 lf f




QLN -

Ae Ap
vhere C denotes the matrix C with the eolumn

(04044 .. 041,1) missing. Tn this case also, there is the follow-
" ing recursion relstion :

Ag

'I:IE. '»{'E |EE JSSh 3—_&‘) E' = xf'_-lxﬁ'j

IE‘ [:_":h "".1ﬁ) = PR T =5 L-a H-r-n
¢ ; { (- TT_ J=‘1;)-§%l
b= r=lak

( | — _FY _TK‘ xL

A=y = Loy
(6.2)
Tor L= 2, the above relation gives
16, A
< 2
§ (zuxa= § ) Di-yea] = '
iz = 13
L1 . ol :{5 Ip_‘)

(6.4)

and so H(® ,%R.) =1 forall &, k. . This of course is a
result, For L = 2, this yields

& Ay

SATORORNERIN
(I — IIIE}> (E-E}




30 that
oo L 3 vy &33

— Z 5N : s B
M [;-%-'J %21&3> 2 [ M 2 l:,?l._,,l_'! gl:z_) ]‘313 ‘L}
L:D

(6.6)
The weight space is A dimensional. The components of the welight

mast be Integers of half-integers. The Weyl group in this case eon-
sists of all permutations of the components of the velght (corres-
ponding to the reflection permendicular to the roots es—es 3
and all changes of sign in vairs (corresponding to the roflection
perpendlieunlar to the roots €L + €4 4 and is of order 134 el

The condition for a weight to be dominant is

™ g T iw"lli

-1

The roots for this exceptional group are + (E’-d F-a}?),

sy 1,1 =1,2,7%% ©; = - (e,+22) o The gix positive roots

LEf_ el) ) (&’- 33},(152 _-E:‘J-) 5 <y g }-?'3 = ['E’+E1-}




The simple roots =are 3, = e, —€3 and 8= €, . Eqge(24)

then becomes

g (7.1)

where the (6 x 2) rectangular matrix € 1s

.-'u'-:'r.‘ i lb
S N el N B 13
) tleo 4y 233 (7.9)
.

= %cwt;nt}
The pessval function is then

and so one immediately sees the following relations
A,

(5, ¢ ] :
:g‘ ‘-':11 xXy) = T 1,7
¥ = i
= el
(R=FaCTeEE S -5, 2 Yewioe Toe 3)

E‘::.
= g f. A, , g {?.4)

= b B

r - . = 5
\.I—x,:';._-j_b_:l'n'—“‘i x:}
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It follows thurafuralm »11)
(= =
™ f_&u'&l}: ;» ™ ‘t‘_b_?_lh:‘ P
‘;!}:};L ﬁ.l_lhwih}—":ﬁ) {?.!}
The above sum has been exnlieitly ecarried out in ref.n) for
various inequalities of "Plu and %_. ., From (7.4) it also
follows that
__ G By , . _ :
R RS L DT Ohidoag; hussie 2)
<3
(7.6)

The welght space in this case 1s again three dimensional like
Ay with the comnonent of a weipght satisfying

The components of the welghts are integers. The Weyl group is of
order 12 and consists of the six permutations of () ym9m.,)
corresnonding to the reflection perpendicular to the roots
(€,-€2) , Cey-e3) (2,-¢3) and six permutations with a totsl

change in sign corresponding to the roots €, ., The dovinant
velght satisfies

10) B.Gruber and F.Zaccaria, to appear in Suppl. 11 Nuove Cimento.
11) D.Radhakrishnan and T.S.Santhanam, J.Math,Phys. 8, 2206 (1967).
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(7.7

B, Exte Multi it

In the ease of rotation grouns in three dimensions, an
T.R's 1s characterised by the eigenvalue }§ of the single
Casimir operator J° » which is intesral or half intezral, One
is then familiar with the C.0. series

l'&.—!r-a.llx

* D

5

N

/’
e —

e (8.1)
¥= kit

vhere DY demotes an TI.R. with the highest weight §. Ir ,>%.
(in vhieh case we shall say that the representation :D?‘ domi-
nates D% )y the right hand side of (B.1) ean be Interpreted

as those I.R's whose highest weights are obtalned by adding to the
highest weight of the dominat I.R. f.e. D' , all the weights

of the T.R, Dh (fron %, to -%,). This s the main con-
gtent of Biedenharn's thmmq) + The conditions for one I.R., to
dominate another I.R. have been worked nutn. The general 1dea

follows from the two equivalent formulae for the character




S YL g
X (&) = » M ew) exp LOE)
™' € Dm)

(B.2)

WL
vhere the G (E) 1s the character of an I.R. with the highest

welght = and E are the group parameters. The other is Veyl's

formula
e K (m+ FE:-..]
KA = — (2.7)
X (Ro)
where

ap——

SE

Supnose, we are interested in the product of I.R's n{AI} and

D(A) with /A, and /A, as their highest weights respectively.

% GNDCAE= Z dg  exp < [5 f_h.«Rﬂg:,]

[5 Emrg].

(8.4)




where ve have used Eg.(R.?) for (/[ .-’\1} and (8,2) for 76{-'"“)

Eq.(R.4) ean now be regrouped to be written as

% ﬁl- 1 i ] . E—';'. (Asm + Rs)
"X-‘L"'-x} o A 1.) — a S P Cm } £xp L .

s
e

—_—

:::-L‘P < [5 Ro, %__\.

(2.5)

vhere wve have used the n»roperty

S(P) + s(Q) = s(P+0) (R.8)

Eq.(2.5) can now be interpreted as follows. In the product
D Ay ) x D A, ) where D( A, ) dominates R{ A, )y only
these I.R'%s with the highest welight N, +m' occeur m' € D( N)

in the reduction. These I.R's occur with the multiplicity
A

M T (=) t.e. multiplicity of the weight m® in the T.R. with
highest weight /Ao ., The condition of dominance of one I.A.
over the other is needed to the make ( N, + m') dominant. These
have been more general formulae of C.,7acah and n.suuer“:‘ which
do not irvolve the condition that one T.R. dominates the other.

For our purnose, Eq.(8,5) 1s quite sufficlent. Thus, we realize

that the external sultinlieity is very closely related to the in=-

ternal multiplieity structure,
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9. Conclusion,

We have constructed generating function for the various

classical groups. Ag 98y 9C; 3D0; and G, . These are

then used to set u» recursion rel-tiocns for the partition function
which enter ¥ostant's formula for the Ximmer multipliecity struce
ture. The essential idea of the whole analysis 1s the realization
that the number of solutions of the matrix emuation “<=Ca (for
given « amd (O ) where the matrix C 1is in general a
rectansular matrix with non-negative integer coefficients and the
components of the vectors &« and CL nru_ggnin non=negative

® 2
Integers 1s given by the coefficient of =, . . =, of the

o

generating function, In many cases the explieit x evalunation of
the number of solutions is not pessible and so we have set up re-
cursion relations. While in the case of A, , the recursion

relation 1s between the partition functions of A; , and Ao ;o

in the cases of B ¢

for thelr partition functions are among these and of i p e

» C, 9nd D, the recursion relations

For G6(2), there are two recursion relations one with A, and the

other with Bé. We have also discussed the connection between the

internal and external mulfiplinitr structures,



A, ~ suC L +1) 2

System of roots i (ei=ep) 3 i =T sie Lok
System of positive rootss (<. _c.), 1< §, 4,] = 1,... L+1
System of simple roots: (e *et-,,,"‘] 1 l,0ae L

F.LM o(e L+ 1):

= -1 )
System of roots : . 1'.1' = 1'.-- -E_.A
+ uhtfﬂS
System of positive roots: + e Ry & Lacnl
+ (€L + € J—I‘]
System of simple rootss By — B24g i1y = 14eee L1
and EE

ciw sp(2L) &

SN Sy
System of roots: 158 ® 1sies L
+ Cect ey)
System of positive rootss 2e.  { T sl
Ces+ ey))

System of simple roots: Cr—e ‘% 1) & 2sens.l=




B | X
¢ o(24 )1

- £ - 1
System of roots: + f.E-_’-‘-E}\) s Ky

System of positive rnuts;(eL:=E§7

System of simple roots:y <. — 2.,
eE.n -+ ‘Et
<xceptional Gpoup G(2):

+: 2
System of rootss: ¥

System of positive rootss .

System of simple roots: (e,-e1)

1’3 = 1'.--‘2’

4 1,: = 1..'.";]"

g 1 = 1‘1--- 2=l

e -2y 1y 3 = 1,722

The €.~ are unit veetors in £ or L4+ 1 dimensional

vector space. We shall not bother to write the table for the

Other exceptional groups as we have not worked the inner malti-

plicity structure of these groups. The system of roots of those
groups can be found in Dynkin's articls.
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APPERDIX 3

CONCEPTS OF & SIMPLE ROOT WEIGHTS, DOMINANT WEIGHTS

ARD HIGHEST WRIGHT

The Standard Fopm of a Semi-simnle Lie Alpebra.

Let 3 be a Lie algebra of 4= ension Y « Consider
the eigen value problem of the operator Al X ) defined by
Al X ) = [-A, X—J = fX o« If the secular equation of the overator
has Y distinet roots, then we have Y linearly indenendent
eigen vectors which can be used as é&asil for the vector snace

underlying G . If, however, the secular squation has degenerate

rootsy, Y 1linearly independent vectors mav not exist. lencey a
coordinate system for G cannot be arrived at by the above rentioned,

method. Put for semi-simnle Lie zlgebras we have the following.

ZUCOREM (Cartan): For a semi-simple Lie algebra 3 1If we
choose A so that the secular equation of A(X ) has the maximum
number of distinect roots (which we can), the only legenerate root
1s £ =0 andir L 13 the mltivlicity of the root, there
exist corresnonding to this root, £ linearly independent eigen-
vectors any two of which commute.

The mmber L 1s called rank of % .,

4 Te%sSanthanam, 'Groun Theory and Unitary Symmetry®, MATSCISNCE
HEPOAT 61, The Institute of Mathematical Selences, Madras and
references guoted there,




We shall choose as basis the L linearly independent
eigenvectors (say) H, -- -, Hg ecorresnonding to the de-
generate root F =0 togather with the (v — L) linearly inde-

pendent eoigenvectors Fy9B3 esee.e.. corresnonding to the distinct

roots *'l 3' sscnengy

The commutational rel=tions for H,, Hp s
.'",EB' cans can be obtalined to be
e
| Hyy HJ =0 (1)
&"i' !-(] "o Esi ()

[Ed'ﬂﬂih = Vs Eﬂ+3 if («+8) 1s not a vanishing root, (2)

i
[E‘, B_, i = o Hye . (4)
The structure constants are then,

T T T ol+H

T
Cog =0 1If I O N

| [ﬁ, H[_l = 0 {.5)

[l. K..(] = o E. (8)

“urther,
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As A 1is an eigenvector of Et, xj m
“rom (8), (7) and (2), it follows that
i
o = A dti {H)

~he Concent of oot

The rorﬁ () is called a poot of the semi-gimple Lie
algebra 3 o+ Tt can be thought of as a vector in a L-dimmslr‘rnal
vector snace.

A root is said to be nositive if its first non-vanishing
component 1s positive (in an arbitrary basis). A root is called
gimple (sometimes the termi‘nolopy primitive or elementary is also
used in the literature) i1f 1t is a positive root and in addition
cannot be decomposed into the sum of two positive roots.

1200 (1): For a simple group of rank £ there exist

b slmple roots and they are all linesrly !ndenendent (we shall
call the set of simple roots the wesystem).

(2) Any non-simple root can be exnressed as a linear combi-

nation of the simple roots z i

1 ‘1 vhere H'l‘. are gll
of £ w

nositive or gll negative integers.
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() If « 1s a root, then -« 1is also a root for any
simple groun,

(4) 17 o and 3 are two roots then

=
;{:E_:BT)' = {integer

and f = a%ju--t is also a root. Here («B) denotes thelr sealar
product, If < 1s the angle betwser o and 8 , then from
Theorem (4) above follows that
a
cos § = - m n,

and

flere m and %= n are ‘ntegers., This would mean that the angle

¥ ecan assure only certain values (imnlying thereby some ltind
of a quantization of the angle). In partienlar, this 1is true for
the simple roots. The allowed angles are 90°, 120°, 138° and
180° and the ratio between their lengths become

o 1 if @ = 120°
2 o i1f P = 138°
3 1If 9= 18°.

I* 9= 90° x then the ratio of lengths is undebermined.




Classical Groups:=
The realization of A ) is the grou» of unitary, uni-

modular mastrices in the cownlex svace of ( £ + 1) dimensiong

sul £ +1). The realization of BJE. and D; are the real ortho-
gonzl grouns in (2{ #1) and 2¢ dimensions respectively,

The realiza*ion of Cp is the groun of unitary matrices in
complex 2 L dizensions satisfying the condition U. J U = J
vhere J 13 a non-singular antisyrmetric matrix. In other vrisg,
the realization of C; 1s the sympletic groun in complex =20
dimensions,.

It should be kent in mind that not all the roots are
simple. If the order of the group is ¥ (denoting the total num-
ber of elements) L of the elements commute among themselves
( L fola degeneracy). Out of the rost (Nef) elements, each

glves rise to a root vector. However, since both « and =« are

roots, the distinet roots are only B L in number, Out of

2
N -3l
these L 9 ¥e have seen, are simple. Therefore, ther are >

non-simple roots. The entire root diagram could be constructed

(the root disgram is two dimensional when Lzo for example),

The root disgrams for fo HP' C2 and ug are shown in the fig.




- Bo
¥ =10 N =14

In general the entire root dlagram is obtained in the following

VAY.

Classical Orouns.

the collection of e(e+1) diffeorences

{ (ee —"E&}qﬁ' ‘op=, £+ 4 of (E+1)
The dizension of the algebra

unit vectors ylelds all the roots,

is LE-#Jj-— 1 3
* ey + (e, +e,)

$= The roots are obtained Trom

. st

i}
E. L
L, % i

1
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The dimension of the algebra is Z(28+1)
C; 3= The collection +£2€., =+ (ecrey) ylelds the roots of
C'E‘. L;}:IJ..._.E_
D 3= The colleetion + (20 4 e ) £ =

¥lelds all the roots. There are 22¢2-1) of them and the dimen-
sicn of the algebra is £Car_1)

Lxceptional Groungi~ G, 3~ The collection + (e;—ey)

and £ (€. _aeyep) 4,5,k = 1,2,2 yields all the roots.

The order of the groun is 14.

Fq 3= The dlagram of B

4 vith 16 more vectors

1
2 (‘tE 1k €ty 54\) (Total 48 vectors and dimensaion

is B592).

Fg 3= The dlagram A_y the vectors & EE' and

Lo le % ti’;‘-"_i-':"rfa

Constitute the root diagram of Fge lere we take four
positive and four negative in the f#rst fraction. The totsal

nmber of vectors sre 72 and the dimension is 78,

g 8= The dlagram A, and the vectors + (TS: .. teg)
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“here thw we take four nositive and four nmegative signs.
“This constitutes the root diasram of Eoe The number of
vVectors is 196 and the dimension is 122,

Fg 3= The diagram D, and the vectors L (%€ .. +¢g)

with each sign occurring an even mmber of times forms the root
diagram of !:8. There are 740 vectors and the dimension of the
algebra is 248,

deprezentation of Lie Croun and Lie Alzebras

Let G be a Lie group