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This thesis consist of two partss The first five
chapters comprising the first part are devoted to the study
of one of the very intercoting problems in the theory of approxie
mationy namely the Bernstein problem of ‘weighted approximation?,
The remaining three chapters deal with multiplier transformae
tions assocloted with ‘velghted spaces' and eonstitute the
socond part.

Let Y2 1 be a continuous function defined on the set

n
of real numbarsy Ry satisfying the condition 'ly‘{;) =l A

|%| — @ for all ne Lot %Ytﬂ) denote the Sanach space of

continuous functions £, defined on R, with the property that
ﬂ% —> 0 as |x)|-— o and normed by ||t|[..,-#&"ﬂﬁl-.

In’thn problen formulated by Dernstein in 1904, it was cxamined
vhether 1t 1s possible to associate polynomials P(x) with
every such f(x), fulfilling the criterion that

£{x) =P{x2)|
< fq4vhere £ 1 reassi sitive
2 xs a;l""*'GT‘ : 6 Bt

mmber, 1,0,y vhether the class of all polynomials, denoted by
Py is donse in the space Yy(R) and Y 4s called the weight
function,

: In Chapter 1, we have stated the probles of Bernstein
and its generalizationse The Yanach spaces (%) and Lsu}
are defined, along with the linear subspaces P , B'.nolxh
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By,al0s Byolx) and B (x), Chapter 2 conteins a nusber of
lemuag which we need in the proofs of the results given in
Chapters 3y 4 and S, In Chapter 3, we have used the method of
Morgelyan to obtaln various sets of necessary and sufficlent condie

tions for the different lincar subspaces to be dense in § (I) and
L.r{'x)- In Chapter 4, we discuss the Bernstein problem m the

welght function Y 1s continuous and deduce the results analogous
to those of Pollards Chapter 5 doals with the case vhen % 1s
not dense and the natural extension of the result of Hadatryan to
Ly(R) is proved, thus providing a necessary and suffieient condition
for $ to be dense in By ((R)e Further, ve have added a remark
on best approximaticn,

The second part is concerned with the multiplier problem,
This problem has been treated by various authors for different
nm'u (seoc for cxample De Leouw [19] , Guy [22] , Hirschman [23-26]
and Igarl [27] ). Hirechman [P4] considered the space of comploxe
valusd functions f(n) defined on the additive group of integers,

@© P
Zy with finite nomm \H‘Hp- (_:% |ﬂn&\’) 9 vhere 1<p < o

and observed that for p = 2, it is possible to find conditions that
_are sufficient to ensure that tha_ corrcsponding multiplier trang=
formation is a bounded ones e also analysed the space of complexe
valued functions f£(0) dofined on the set of real nunbers modulo

p \Vp
oney T, such that || = ( f | 2¢@)] aa) is finite and established
z

tho sufficiont conditions for the assoclated multiplier transfor-
mation to be bounded, Devinits and Hirsehman [20] looked into the
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Banach space f,a'k(ﬂ and studied the Banach algebra of those
bounded linear transformations of {9™Z) into itself which
commute with convolutions

‘ Introducing the requisite torainology in Chapter 6, we
have set forth some sets of sufficient conditions on the multinlier
function such that the corresponding multiplier transformation is
a bounded transformation of L P7(T) into itself,vith velght ¢ .
and the results analogous to those of Hirschman [26] are given in
Chapter 7, Chapter 8 deals with the problem for the space f,p'"'(z)
and results similar to those given by Hirschman [24] for the case
A = 0 have been obtained,

Host of the results in the first part appeared in the

Journal of Mathematical Analysis and Applications (GHATHA PeKe,

'On Dernstein Approximation Problem'y, 28, No.2 (1969), »p.450-469)
and’'the work presented in the second part is contained in a paper
entitled 'On Multiplier Transfomations' by URNI KeRe ond GLETHA
PyKey MATSCIBHCE preprint (revised versiom, July 1970),

Througheut the numbers in square brackets indicate the

papers and some standard books, which foram the basic referencess
Bach part has been endowed with an independent list of references
’ and these are found at the end,
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Let TR and [K demote the gset of veal mumbers and the

gsuech that 0‘(‘{*. ¥ve set

v
Rs '#“[I*l.nta].

Lot X obtond for cither R or Mg and let Y be a function
(in general, complexevalued) defined on X, Let ¢ denote the
elass of all polynonials,

Wo constder the following Banach spaces of functicns,

T. Suppese Y21 amd 2®A(x) — 0 as (x-> 00,
XC Xy n=1y2eee o Yo donote by

6y(X) = Banach space of eontimuous fumetions £ on

X ouch that fNx)/v(z) — Cas 2] > @
and normed by

4

K"o{n- Glass of all entire functions of
type zero, whese restrictions to X beleng:
to £, (0,
By,ol®® class of all entive functions of expomential
type not greater than a, vhose restrictions
| to X belang to § (Ns




2
Iie Suppose 1< p<o0 and let Y satisfy

S|-7&-|l:|I iz < o N2 0gli%ees o
X

Ve define
L:.(ﬂlnmwmntm £ such that

xﬂ%ph < ®

and noramed by

el = ( '( &) a.)

n:'otm-mlnmmmfmﬁmdmm-
nential type, vhose Psstrictions to X bee
long: to Lylx),
n:.am-m-otmum-mmwmm
type not execeoding a and vhich are Pourier
transforms of measures supported by intervael
(=ay a), ond vhose rostrictions to £ belong
to Ly(X.
Here a 1s a comnegative roal nusber,
The Dernstein prodlem consists in asking for necessary
and suffielont conditions in order that P 1s dense in @?tm.
This prodlem was treated by various authors, A camplete solu-

tion to this problen was given by Akiisger and Berastein [2.), |
Mergelyan [15] ond Pollard [17] .'M[’Jql’] obtained |




the conditions vhon IR was replaced by X or 32, the set
of integerss For p = 2, the analogous problen was treated
by Levingon and MeXean [14] ond 1t was shown that Mergelyan's
Wmmm-mummm of R 1s
to be dense r.,em. dkutowiez [744] further proved that the
mmumsmmm.m Ey,al®) 13 to be dense
in LR,

Lot U dencte any one of the lincar subspaces &P ,
Bryot®s By o(X) and lot V cencte any ome of P 4 &) o(0)

B,o(0e b0 oxploit the method of Mergolyan to investisate the
conditions under whioh U (rospectively V) is dense in &':Y(n

(respectively l‘(ﬂ Je Ve shall also obtain rosults corresponds
ing to Pollard's theorem, HoSateyan [10] obtained s mecessary
and suffictent condition for & o be dense tn By o®e This
rosult of Hadatryan is sles extendod in ouwr case.
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Ye shall establish a few lemzas which we noed in order
to prove the main theorems lotor,.

Lot D denote any one of the limear subspaces o ,
Bpyo(De Pyl By o(Dy Py g(De Vo vill denote by |- |
otther |- |, uH'Il,..,;mnﬁumem
consideration,

Let M (D) denote the class of fumctions £ € D such
that (2]l < 1 mn'tn) donote the clags of functions g€ D
which have no geros in tho upper half plane and for whieh
|et=} 2 2 end|g|l < 3+ ||3] o Bot

H'{“B’ = |“l’l. sCK

£ ﬁ'ﬂﬁ

A (YyD) = dx

!t'm tn) _5- 11-

Blyge) = fﬂ’l.rﬂ*} 51’1
LEDA 20le Lo% %, CK guchihat T s, % 0s JL £ €D,
dhen 8 © Dy NhoRg
wo s Bt
PROOF This lemna has been proved by Akutowies [4] for

Dm £ (04 Tho proofs for the other cases are teivials



LEOIA 2% Lot 2,y 8, K guch thot Tn s, # 0,
It ¢ €D, xith A=) = 0, then ¢ € D, yhers

glz) = !_‘.Ea 2(2)e (21)

PROOF, mnurorm-lmrun-g (0 is
due to Akutowles (3] snm«-n.ﬂmwmnmm

LiBSA 2,3 ihen X =R e Ry 9 (YyD) < o implies
fﬁl'l’.ﬂ( o .

PROOF, By definition
BEYyD) < AL+ [121) ¥40) = A(¥,0) + log (1 + 2] )e
The lema i3 now obvious,

LEGIA 240 lhen X =Ror R, I2 B(Y,P)< o, fhen
ﬁf(t'g)) < e

PHOO¥y Let P € P, Then there exists Q ¢ whieh has
no zeros in the wpper half plane such that

1+ 20 %e o2,
from whieh it follows that
1< |q{ﬂ| < 1+ lﬂl” .

laly = su_ -'ﬁﬂi-
ol = § o |° ,,)vp .

In either case, when Pcmr(?),nhu
Q= 2+ [I2] »



ALYy P ) < BUvyP)

and the conclusicn of lemma follows,

LIMNA 2.5 han X =R o then BUlY.D) < cojmnlies
? (YyD)< coy whore D = By o(X), #'utn. By al®e

PROOP, Suppose B(YyD)< @. Lot £ Do an entire funce
tion of oxpenentisl type T , which bolongs to Dy Without loass
of generality, ve con assume thet f 1s reals Then 1 + £2(3)
15 an entire function of exponential type 2%, Oy the given hye
pothesis, we have ;
log (1 + £%(x)]

o dz < @ »
R 1+

By a theoron of Akhieser [1] , there exlsts an entire function
& of ezponential type T , with no seros in the upper half plane
suoh that

ota)| ¥ =1 %),
Cloarly g€ D and
gl < 3¢ {51

80 that 1f ¢ ¢7L (D), then ¢ €74(D)e Therefore A (Y,D)<

B(YyD)e Thus, B(¥yD) < w Lepliss A(V,0)< @

LEMA 206, Znafuaghlon M, {2,0) lasthe following
azenertios:
(2) log i,(2,0) Jla posenegative and subhapmonis
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| (v [H.,(l.ﬂ].l ds_cootinuona dn the half olanagy
Isg 70y Iz < O gnd Mylzy0) = nAE,D),
(e) IZ Myl eD) = oo atscma.ooloh 8, HASH o 3, # 0,
shen thera exista s ccntinuum. . 3, © By dlaleiot
Leom the peal pxis auch thof Hy(s,0) = o gu B
PROOF, (a) First, ve motlice that the constant funetion
1 €M (5)e Stnce 1 €Dy Hylsyd) > 1s The subharmenie -
| property of log M (2y0) follows frem the fact that logifla)l
is subharnonic for egch f € D
(0) I £emLD), then Fe M (D) and it casily
. follows that
Hy(:,!!}-ﬂ.‘ﬁ.n).
It is enough therefare %o consider the wpper half plans. Lot
83y 8, ¢ X with Ingyeb >0 for J= 12, IfFED,
tn-mnammmm

}
l

£(2) » £(2,)
{

it follows that g € D, by Lemza 2,9
On the real axls, we have

- e —— e

EX) ¢ Ix-Zal |£@)| 1 |Zy =2, 4
T Ix-z5l |4zl v&) 0 [X=2z,] ¥
: < ( 1Z,-2 __1|)_'|_ff2ﬂ| 1 e s
: by |5l v6O by  ¥X)
Hentey
< |Z¢=2 ’““ 3 A2 =25 g
161 < (R oonly

=2 Lo e zzl T S if £€m,_(D),
¢ (s +‘L'T_) sl by | ’

1

-&AL E&Y Hro




8 .
Thus, f ¢ M.(D) and Myl2gyD)2 .M_‘.:H"_ 2 }. Therefore,

1 - —
< A = DUV 1 |Zs~Z2)
™., (%3, D) ( by ) Hzo) St -———-1 [§1]]
§ vhich faplies that
1 < 12 -2 1 |5y — s
i My Ga:)  ~ (1 5 by )H.r{zu.hj 1) B flal
351 which in turn gives,
ki ___J'_____" Z 1 llz —2,] i
M (Z2.0) e (L + W)
ll'y(l'm &

B mmmm:lmans.uuim.mmmwnw
. *t-ﬁ which together with the preceding one ylelds

Tt 1 l = 1%y —2,1 (2 + N4l)
1M56,,0) HT.{zuf = min (b, b2)

. The continuity of Wiyta,0) 18 nov immediates
' (¢) The method of proof is that of Mergelyan [15] .
Y,(x) = v(2) TR e

| oln) =vx) 1+ 2D VE
| Por csch 3, € Ky with Im 5, % Oy

= We set

& I%{ﬂi{:il.).l 2€ X
.j.‘;. ’
2 It is clear that 1'. 3 iﬁ\,tn and Ly(X)e

LOUiA 2076 22 M. (2,0} = o Lor some paing -,..im
| ™ g, #0, Shen for avapy € Oy thepe axicta £ € D guch Shat

"I‘.-qlu < € 2 t&‘,




" where D= 33' ]"9{3. l,"ln-

Pi0OF, Lot N > 04 By hypothesis, there exigts
£, ©"My(D) ouch that [£,(z)| > We Let
t!tn) - I'Itlli
=
t."'", tltl‘,
Then £ €D by Lemma 21,
Further, on the real axis,

2(s)

3 _ |Iz (x) — ;ﬁ‘i‘]l = Sup [Izn‘cx] i .F@"-}l
"Izu 4 "w P::[;{ { T-} xeX { 'h‘fx}{.'1+-=€1J""'1}
1 _ FiE) -4
= Sup { B (2o -2) £y (5,)
LXK 7 (x) (1+Xx%) 2

= 5“—? {-———1 . ‘Elcx}l E
xeX L 1¥-zZed 200 (44 x3) 24,020

Sinco I,ll.-“"!“'uﬂlll =y

Ill..-ﬂlm.{ﬁl
LiMHA 280 JL Dz, # 0 and L fop gvery £ > O Share

sxlata. £ satlafving (7ed), Zhem M(s ,0) = @, ihere

PA0OF, Let £~> O be given and sot




% - 2|
e e :ez(ﬂ‘
Let
l=(z- 2(z2)
tlt" = ﬁ.

tl e ' i = (= Zn)ffm,

|51l = *ﬁﬁ‘fﬁi] . supJ"‘e*E?z:?**
"

TCXT! JCE.X fo:'l 'ij_‘__xz X:
-ovp e s 1 Jxeal
26X e G Vzays
L

Therefore fli'fﬂ (D) eand

l'tl EK{.‘)
which ghows that

Ml.:n) = e
A 209, I2 . (37) = @ fop sguenelad see MASH

Ia 8, # Oy Shen fop overy £ > Oy ihepe oxists £ € D uch that
“I'&a-ﬂf < £ (2:5)
. wheze D =Py (D), n#.,m.

PiOOFs Let W > 0, By hypothesis, mm-rlc?ﬂ(n)
sueh that | £3(8g)| > We With She same choiee of f(z) as fo
Lemma 2,7y we got



1

oo
e P P
& [max HL4X Sﬁﬁ“" 1 dx.
= \xEX |x-z.| Y& |5 @)P

since £, ¢ M (D), ]I&U.,.’ < ¢ Hence

- » < g '.
Ity e 17« (552
As N 1 arditrery, (2.85) follews,

LESA 210 L Tz #0 gnd AL Cop evepy ¢> 0 Shers
sxiats f aablafving (%6)y fhem Hy(ss0) = @, ghape D= P,

AN l{,“tn.

PROCF, The proof i gimilar to that of Lemma 28,
3 P o s (x) | P
o £,60 . 41— (x=z) 500 |
I, = § |2 fax - §| o

EREZ)Y(X) |
' 1 P P
3 X7, — &) 1
- Sl = (%) l ‘msr (EK{ZJ) L
C! (X =17\ 1 gl Ly (x) — 500 JF’d’
1+ x2 E"(mzu})f-' J o (X) [F=2 2

viich implies that £, € T,(D)s The Pest of the proof is the
same as that of Leama 2,8,

LEUA 21ls Lot my Zo eee Dhosnv infinite sacuenon
.o somolex mmbera tending £0 o Linite comolox mummber = ¢ ¥ALD

E:l.*lh Pat
S = _qh-‘: 2 3 h=:112!"'}_

A=Zy X—Zh
D the finite linsar conbinations of tho alementa of 5 are
dense Jo the gnacg € (R)e
For a proof see Puchs [By ppedBed,|.




We shall now present a complete solution to the
Bernstein problem, using the teechnique employed by Hergelyan,
THEOREM 8.1 lot X =R az By e Zhen anv ong of

P s0

hedepsodn %0 .
(a) ""lt-.@)-u. Ing%o0
(b) dﬂ"(‘ip@)'ﬂ.

PROOF, The case X =TR has been proved by Mergelyan [15].
We consider the case X = IR..

(2) As the class 'K, of all continuous functions with
eompact support 3 umm‘@,m and as the polynomials
¢an be uniformly approximated by iinecar combinations of sueh

functions, the proof is completed by using Lama 2,7 and Le=ma
Colle

Lot P be dense in ' (X)s Since !"LE belongs to

©y 0 for every g, I 5, ¥ 0y Lomma 2,8 gives
, (29%) = @, I 3, % O
How suppose that for every gz, o with Inm g, # 0,
lrltl,:@)-n-




m.nl.'..l—f' (2 € B) can be uniformly approximated by
polynomials according to Lemma 2,7, and tho system of linecar
combinations of the functions ﬁ..htumumm
By(®) by Lemma 2,11, Thus P 1s dense In %,(X),

(b) If P be a real polynomial, thore exists s constent
C(8) which depends only on 8 such that

[abie can (mbona .
=00

This has been proved by Eoosis [11, pe281] o
suppose ot (Y3P) < me Let ram.rltfphnumm
to consider real polynomials Py Let
Dl Zee im0 %,
Then, [Pl < 1 dmplies
I&el <2

g log & |a(=)|

—-i-:-l'r—-— ax <H (\'1193)-

and

R
(-
This in turn implles that

S’ ﬁuﬁluggmq.@n'mﬁ
Ry

AP X »

. Then

a0
log (W)l < ® S w«:
=00

< 8 (dr, M *riog2) .
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Hence l\.ltt.@}d ® and P 1s not dense in % .(Rg).

Conversely, _
@
log|o(=)! ﬂf‘:f log |o(=) | -~
1+ 1+
Ry -
= wlog |Q(i)] ,

80 that 1€ s(Y;yP) = @ 4 then My (1,P) = © alsos Heace

(c) This is proved by the arguments of Mergelyan,
e r am,.lteh, then |P(x)| < My (8yF) so that

@
,:ﬁ('r‘@}é mn‘ftl'@)u
g _i 1+h

log My (x,P)

R 14 x°

This ostablishes the nece:sity of the condition,
Wo shall mow prove that 4f P 1g not demse in sg‘,m,).

S _—11_1“‘7‘:‘33’“{..
R

then

Lex

A8 P 15 not dense in © 4 (R;), there exists g ¢ LY such that

oY) & _
g Hlﬂ:} dx = © (2.1)
-®




and

[« <]

S | et Y ax < oo, (3e7)
. a0

o) = — e (343)

-0
The function F 1is analytic in the half planes Mz > 0,
Im 8 <0 ond is not identically zeros From (3,3) we obtain

ﬂaua-siﬂﬂ%u

for any polyncaial v xt P 6Ty ()y ve Dave

FEe)P&)| < g |__£t3__ .J_mtz
| I YEANTFE | |6-7 I at
n-:--n:tctc- = |F‘H E”q
2{( sup  E=E Y g
= \-dactste | T—Z ”@
< (t+ l21) M for |Tmz| > 1
vhere M 13 a constant,
Thus, 2
P& < —TF% for |[Tnz] >4

liowy F 4s analytic end bounded for Im z > 1. By Cerlemsn's
theoren,




log | Fl=el)| i S v
1+
14 |2d

mlx)
PGaeny) e

o0
 dog ey 4. o
Sl#xa“:.{'

end
log |P(=+1)| < log m (n), ram,ﬁt@).
Since log |P(2)| umwa.nm&mm
log Pa)l < =% ..m.lm_ ms < 1
{M'Hm
=l0
so that
@
log |P(m)| < & 02U apa ¢ (2)y save
1o (uet)?
alD

M-. we obtalin
log N, {I'EP} = ﬁb‘ﬂ-
1 .

We shall now show that the integral

-



i7

fo bommded as § — ®.

N
660 . o §° S" dx
JSNEFM ) [ Sy (14x7) (1+ r:xut:r“)] fogmetyiat

0o
< CS Clogm@in . wiiz
] -~ 30}

1+t2

This, together with the inequality of Koosis, proves the result.

THEORIN, 3, 2 Anv.one.af the following copditions ia
docoasary.ond outflodont.for & (%) tobedepse fu foy(D),
¥gEe. X= 1R Az MRy«

(a) Iy (2y By ,0(X) = @ Ta 3§ Oy
- S log" |£(x) |

sup dx
4 :’m.,.l ta..l,a(:)) X 1 S

log ( ()
te) § e o A B

PAQUF, As in the case of Theoram 3,1, the proef of (o)
is deduced from the corrosponding Leumas 2,7 and 2,8 of Chapter 2,

We shall prove the neeessity of (b) and (¢). It 19
enough to show that 1€ |

- Sm’ | 2z |
-t B"”l,llﬁyl ol X Tex®
thnlnu(!l is not demse in €. (X o It i3 enough to assume

(3+4) even for the smaller set consisting of those functions
which are real on the real axis, for any other can be written as the

dxs K < , (3,9)




aplit 1t into an even part £, and an odd part foe First, ve
assert that there exists a comstant C(8), whieh depends only on 8,

puch that
)
log 1+ 2%n] log 1+ £%(x)]
-S; —m——h_ﬂﬁjg'ﬁ-—h (3.5)

vhere (3.6) is obvious with C(8) = 1, wvhen X =R, We shall prove
(2.5) only for even functions, The proof for odd fumctions is
sinilar, The Hadamard factorization gives

0 2
£2(z) = g™ ;1:[(1- ;:E) ’

vhere O0< N S Ny <... ¢ 49 in [14] ve can ignore the zero
of £ at the crigin, by considering the function

£ = 2™ (1. 5)‘ A

g
f‘.\ hmmul_hafmﬁmufwulwlmm

I%l —> 1 as |[8]| - @, 80 that fhﬁl*'n(ﬂ and
Ny =2|— 0 as A — 0 ~

Following Levingon and Meean [14] , wo consider the
function

1 e 2 1 e 22
&lz) = ‘N:II—{Y‘( R );.[}—L.( z"n.z. )




depending upon a small positive nmuber A and a large integral
nmber de It vas asserted there that given N> 0y ¢ > 0 and
A < @y there oxists d) =4, (M £ 4 &) and a universal cone
stand B such that for 42 4,

() [0 « eln)]| < ¢ = < A
(1)  |et=)| < BI#(D)| A<im <@
(111 lgtm) < 8 x> &
(1m g e t’wmh,

Since the entire function g(z) daiffors from sin vhs
by a rational faetor, it is of exponential type +) and bounded
on the real axis., Now the funetion

oz) = 14 g¥a)
is of expomential type 24\, , : %eal and bounded on the real axis
and satisfies the inequality O(x) > 1, There then exists an
entire function N(sz) of exponential type oA 4, having no geros
in the wper half plane and satisfying

)| %=1 e %), DX W o
m,.pplmmwwdm [12] to h we obtain

A + —S;h( S— [x_t}q_ )‘lag [he)) dx <

K
< B S log |k ()] |08 Sivi 305
5(1- 8%) e R A{ "E?'_'_E"Jl

hﬂﬂ“mmﬁ

o¢ k)| :
E—f?x— dx s COf [ leelhal e




(see Ecosis (1%),pe®4 ) with C(8), a constant, depending
ealy ch &8 In terms of g, this gives

?Iaé[i +‘§’1@"}] dx < () E‘! 1+§-EL’XJ]G;_ 2 i TS/
1+ x2 = 2 X ~27A Log si i} (3.6)
-00

1+x2
&

The application of (1), (11) and (1i1) yields
SI.LF M < SH'P |f(x]'-‘§’|'.’x}1

p + | sip 1£¢0 — genl
s 1K) Ixl<A HED) A =
+ sup &) - g6l
x| 2d/f2 Y
JXI<FA Y () s Sap (B+ 1) £

A<|xl<d/z ¥ ()
+ Sup -_‘E‘.'_Lf_@f__,
112 dfz Y &)
— 0 a8 4 - @y A — @ and £ - 0 4n that order
80 that

sup 120 w 150
%P 76 —> sup

Theny since (344) 13 satisfied, lotting d >0y A — @
end t— 0 end applying Lebesgie dominated convergence theorem,

(3.6) gives
 leg [1.+ %69 6]
+ .
:é; 1+ %% XS C(ﬁ{ {ﬂe[uxz U dy —-29r:).1ug5mﬁ5}9}

LR 5



=z

Since the left hand side is indopendent of 1\, we
let A — 0 to obtain {3.8)s Then, under the hypothesis (D.4),
as in the proof of Theorem 3.1, we get

o0
m‘lﬂﬂl
e
=00

nrovided Hflr < 1ls How it follows that

dx < 2¢(8) (E+ ¢ log )

|‘-'-’E+ [flde Z=x+iy ,Yro G°7)

log | £(2)| < —f = t}ﬂ

nnlmm'um-.mm R — oand using
1n_ oup 81 log | 286’ )| < ©
8->

so that

to

leg |$()] < 4. log |5 (1))
e RN arj T L2 e 529—%(K+3rlng2)

=00

which fmplies that
!Yl(!' E’l’ﬁ) < @
and By o(%) is not dense ia  § (0,

This establishen the mecessity of conditioms (D) and (e).

To complete the proof, it 1s Sufficient if ve show that
when ‘ru“’ is not dense 1nw @ (X),

los | 5
S 1+E2 ] j- s 7 (€ By, 0 X))

X 1+E2 ot (2:8)

for cach fﬁm ( (X)),
1"1*“




Since By o(X) 1s not dense in ©\(X), there exists a
function ¢ of bounded varlation over X such that

Sﬂﬂ- ar(t) = 0 for all £ € By (%)

(laste) = 2,

Suppose £ € Erl,ﬂtn‘ Define
elt) = 2 = 2a) .

t-g
Then, clearly ‘EB‘( (D,
Hmmmmummu% AN

ve obtain

£(t) 1
t-2)
2 ( (k)

for £ € n,.,l'otn. In 3 # 0

M(b)_ﬂﬂj (£-2) _%:3 A

Setting
SO g
ve find that %
F@ 5@ = “’ 20 Lde®
<J l Eth l Lt | ooy
|t~z

‘x YO 1,3

:i_!.".fﬂ? © M J1et2
i

< HJth,




M being a constant,

Thus
tﬂz)l Z H_._.__-‘“"f"tz
|F@l

I;@“u‘ < H—’[@
| F (x+1)]

M, X+1) SR ___]l*tz
1 [P+

X £ o .

T 1ogmr1'[1+i}

i+x9“

do
log My, (E+1)
< tdb 4 dt, '
eglical < L L€ bt §eEy o)
—00

oo
fog M, (8 I gt (e se (e o

=2

|og M'r_t (E+i) AE
tgﬁ—q.




(2) ﬂyltl.ﬂ’)-n. ma#o
(v) ﬁ‘r{'\'l‘?P ) = oo,

—#——“-“.
1+ 8

(c) ? log ¥y (%,9)
-0

PROGF, Since K o the class of comtinucus functions
with compact support, is dense in IP(R) and sinece every funce

tion in K cen be epproximated by finits linear combinations of

functions of the form oou g I5 3 # 0y In Ly(R)y (a) 1s Lwmodiates

{b) follows by verbatis proof of Theoream S.1 (b).
Since

a0
k) ¢ 108 vy (6% e,

1+t
=D

necessity of (e) followse
Hamnmpmmttf@hmtﬂmmﬂm.m

“—h—-“é‘u'

)

hl!y (e, )
S 14 ¢2
=00

There exists ge:ﬂmum%«%-txmm

S % g(t) at = 0, N 01,000



If vo set

i
= e 10 1 SO T
F.ee) o, 6z 7® e

then P umnmmwmmn Ing >0, Img< 0
and it is not identically zerc,
Fer ocach polynomial Py we have

oo

@ = ( P& _4
P F (@) :L N S(t) dt -
Let re'm {‘EP). Then [Pl <1 and
00 W
|z szﬂ PO 146% o) dt’
_g{x}Y{t} -z ]_—Pt-':‘
F ;'_—'
g fn l 40 || "e&’l ot
oD
< max | €-1
cem Jt=a | IPIL, il
< max i:- l
te R

by the application of Holder's inequality and the facts that
1pll,,1" <2y lgl, = L

Therefore
P < M+1";c:‘;li .

vhere M 1s a constant, The rest of the proof is the same as
that of Theorem J.1s .

The following theorems can be proved analogously (see
 Akutowies (3441 )e

THEORE 3.4¢ Anv.ana. of the following conditions ia
Resssanry and suSCietent for &) (M) o be donse in IP(R).




(@ ¥ (BE (@) = o, Izho

(b) um:lﬁ;&dtun
£ Bm?ﬁﬂoﬂn)}.i 1+ ¢t

PAGOF, (o) 1s trivial since Lommas 2,6, 2,7 and 2,8
hold in this case also.

‘ P
How suppese that !:'o(m is dense in L (R)s Let
f:#liuml m

4]

belfw)| ¢ = § ——1 —or—le" I5®lde,  z=xiiy v,
-0

Applying (a)y as in the case of Theorem 5,1, we get the necessity
of the conditions (b) and (o).
To establish the sufficiency of those conditions, 1t is

enough to prove that vhen ivom; is not dense in r.$m.

XD @0
log My, (t ®))
S hs’lﬂt;] 0 ¥ '3];’;'” P
1+ ¢ 10 ¢°
w0
‘rw rt’n‘l‘,zt 1900R))e e also notice that
b A e -
log My, (2. E, (R)) < Ef-&: S log H;lfz Yoo ®) ]

=

where s=x+ iy, vy O




As in Theorem 3,3, there exists a funetion g ¢ 19
such that

?ﬂﬁ- 6t) b 0 for all £ € &) (B
-0

a
Sm»ﬁu.h
00

1 ) -
vits Rezen, 1 £osy o®, ¢t s HBHD 4 e

sun of our membars of #inﬂm.nm

-E &-Qﬁ-n-(-i .!.L.#-s.dt) £(s)e

() --S: oy 88 o

The proof 1s now completed as in Theoren 3.2




o8

TEROREM 3.5, Anz one of the follawing sonditions ia

aacassary sod muficlont. fon By (R) o.be dense dn I (R)e
() ty (o By 00 ) = 00y B30

() vy 5 (®) = w

® P
(o) S ﬂ‘}t:'_t’llﬁnfg.

-0
PR00OF, The necossity is establighed using earlier argu-

mentse (a) is trivial and can be proved as before, using Louuas
246y 268 and 2,10,

Suppose Ty (R) 15 demse in LY(R)s Theny by (a)
ty {1y By, ) = @,

It ¢ €T (5 qGR)y then

a0
ﬂlﬁ?ﬁ(t)l
log| ¢ (avig)| < o & at, v >
oy 1.5‘39_* 5 » ¥70

so that

@
o (¢ (D] <asd ([ louidtolg
O

<ash ? —-—-1-—-1-‘-—“‘“7“'.’? LI
-0 11'"
and the necessity of (b) and (c¢) is immediato,.
To prove the sufficiency we use the following loama [2] .




»
Litiine ml’, (R) lanot demsedn Ly(R)e
Then for oaen L€ () )" there sxists o Supction B, haloe
serabie in She moser half olane sush thet
#(a) Bt2) = U1y, 0, fex
¥e complete the proof as follows. Suppose :ﬂ () s
not dense in LYGR) mmmnm,t{lm).u:m-

|#t2) B(2)| = \S Fas 2l ar

o

S BT
Sotting

ﬁ‘ﬂ--ﬁmr' <t <o ,
using a theoren of Paley end Wienar, we have
log | By(ted)| o
1+ ¢

which {mplies
@
-0

Now log |f(z)| 4s subharmonie ond log |f(xely)| < log ={z)
for real =X .

R,

o
A=y log n(t) :
log |flxei)| < o sare’y ;gn( T ¢ o 4t




in the half plame y < 1, g, boing a certain comstant, mIn
particular, for y = 0,

s o
-1 dt g E(x).
log |#MD)| < ay ;L_(m.ﬁll_ 8 K(x)

As in Theorem 2,1

.E o Lol o EE 10g lyy (8 5y, ,alR)

1+ ¢

sfﬁﬂ“

<
thus completing the nroof,



So fery, we have imposed no continuity condition on Y o
It was therefore necessary to introduce the function Y, and
the conditions were obtained in terms of Yy Ve ghall now sece
that vhen Y 13 a comtinucus function, the same conditlons,
with 1"1 replaced by Y, will provide the solution to our nroblem,
In this chapter, we shall investigate the necessary
and sufficient conditions for D to be dense in ¥ tm.@ oqh
dense in ©(R) ond § (Ry) and for & to be dense in r.,um.
asouaing that %) 4s contimuous, Ie shall also treat the nome
dense case and ask for the closure of the set of polynomials in
G R e in W@,
THSOREN 441 Lat Y 21 ha continuouse . Then D i3
dmse dn %R} if and oply A
#A(Yy D) = @ (4.1)

PROOFe Since
Y (=) < Y(n)

it fellovs that
A (YyD) < & (YD),
so that the sufficlieney of (4del1) is clear,
umnmmm.mnh suppose that
K (YD) < e
Wo shall then show that the clogure of D in ©(R)
conpigts of at most entire functions of expomentlal type, It
s encugn to show that the set " (D) constitutes a normal



e
fanilye It suffices to show this oven for tho smeller set
consisting of these eleents vhich are real on the real axis,
for any other can be written as the swm of two clomants, one

real and one purely imaginary on the real axis,
et £E€D guch that |f| < 1. Set

‘l‘lﬂ 8. 1+ f’tﬁj
vhere g has no seros in the upper helf plane and g € D, In
facty this 1s trivial vhen D= P end in the case . D = By,
or B . 1% follovs that

o0
S‘ 1og 1902)| 40 < ACYyD) < 00
1e

by (4e2)
By Blsson formula, we have, sinee log |glz)| 18 sube

m.' ®
tog |62)| < aaly) + gt—:_ﬂﬂ% dty 2 = :iy, ¥ # 0,
L 24+

viere a= 0 when Da? op ‘Yn'
)
Jetting

teo o REHDL

¥ have

@
=~ [ ot ae < Atvyd) 2052
-0
=5Loe
The rest of the proof is sindlar to that of Akhleszer



aa
[2yp0e111012] o Thus we get

hmﬂmmmwgﬂm

Ca
Y E t2 et
bgle@| <alyl + j' cjéiﬂi gl _m‘gg%z);;,—r &

<a L [HI hﬂi{i____
Iyl 4 L T + f 617532 dt .

mmuu by parts yields
1) S'\M‘it = %{ftbmdtaf[fcpiﬂﬂ]

(x-8)* ¢+ y* —po —00 ((’.x tl‘+§‘) dt}

2o '
=S L R i A j‘ |%(&Et)2+yz)’d‘t :
—00

(274]

Y AR
_gﬁ -H7ryz) | 4*

2 (E+y?)

legle@] < alyl + L {%l_ + 19l 16?275"}}
_ y

1S C A+2x?4 397

Ve thus find that
log |glx & 1) g-niﬂlth’)-
tiow the function
B(s) =
is regular in ths ; strdp |In 3| < 1 and bounded on the sides
of tals strip, that 1o

-lla.h,
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\ﬂ:a.i)]ﬂ-m'. -0 <X <® o

Horeover 1t converges uniformly to 0 for x|+ 00 o

Therefore, by the maximum prineiple it follows that in the whole
strip |Im 3| € 1y

|#C8) | < i
g0 thet ve get
leta)] < .l!n-l -ﬂxa .
In particular,
|eted < .m.

in the square |x| < 1, |¥| < 1
From (443), it follows that for |x| 2 1,

|g (= & 1=)| < Lol el

Therefore, on the bigectors ¥y = & Xy = < X < 00,
lata)] < .ﬂﬁl .tﬁlﬁﬂl'lll

By the Phragaen-Lindelof prineiple, for every z € K
ve have
\".}\.( .ﬂ#l .tmﬂ)l.i‘

We are now in a position to complete the proof of cur theorem,

Agsume that
tﬁr(?.ﬂ) S 0D e

Suppose that it is possible to approximate o fumction :eié‘.rtlﬁ}
with any desired degree of scouracy by means of elements of D,
that i3 ve assune that there oxists a sequence of functions (£,



in D for whiech

ALt el el
since
€l < gl * li€, = el

there oxists a constant C gsuch that
|20z | < € (=), “W<E< W
m,wmmmmmmmuim'-
b = 5L + ay ve have
FXTIRY ae '8
and thus (f ] forms a morsal family,
Therefore, it is possible to select a subsoguence from
{f,] vhich converges to an entire function G of emponential
type less than or oqual ¢o B uniformly in any finite part of
the nlane.
At the same tine,
Mz = 2(x)
for all n, vhenever Y ig finite. By the comtimuity of Y,
it follows that g 13 tho restriction to the real azis (¢ of
an ontire function G of exponemtial type not cusceding B and
heace cannct be an arbitrary functiocn of the class 8‘.@- Thug,
D 1s not dense in €,(R)s This completes the proof.

R= 1,2 see y




FrBet s e (ke el
Pe My, (P) R 14 (2.4)

PROOF, Ve meod to prove only the necessity of (4.4).

leg | PGY)
Sup S el b o e i oo s
pem, () Re 14x®

Then, for all polynomials P which are real on the real axis and

ﬂht\?llﬂl.“ﬂﬂnnw%ﬂﬂwmn L]
such that

]

S 'iii_"fi”atx < L{5 (K+ % leg2) .

1+Xx2

—ed
Using the foroula

g 1P@| < 191 ( log® IP®I 4¢ |
5 Tt J‘ 3 t2
the srgunent of Theore:m 0.6 will show that the set of polynomials

P satisfying
el <

foras a normal family, The closure of this set can only consist

of analytic functionss Thus $ is not demse in £ (Ry,
THEOREM 4¢3 Suanoas Y > 1 Jocontimaguse. B P i3

denge ip 0. (R)y Shas

" PROOP, mmmw



A+B glﬂg lf{x} ] A { f:-rB_f "rr:x}l rle?

vhere rn’mT(D) and A and B are arbitrary constants, it follows

that
B
{ve [ 5) ax < o
~A
or
B B
E log | £ dx < J-iog YR)dx .
A —A
Mo
% mt1
j' —ﬂfL_ ax ¢ [ g |66 dx
14+x? 1+m?* 4
i+l
< 4
- 1+u1_'[n. CERE
T+
< A+ (m+y)? ipgﬂxl o
14t d T ¥px®
Titd
_‘E‘.'ZI le Y (X) ax .

14+x
H-l“' as B — 00y

J' Elﬂx e fﬂ

Iog Y (x)
14 x? o T 3.2 ax .
!hu. gem tﬂ) implies that
I:!E E:-F{:{‘J IO '}
-[ A S f frixz : (4e5)

M;Qm&l,“ D llmug.'m,

lﬁ‘t?.n) = 9
and thms, using (445), the preof is complotod,




a8
THEOREM 4,4 (Analogue of Pollard's theorem)s. lat

(b) W{h}m
hat fox _oach aal =x,

-+ul" (D) = ¥=2)

and.
LXESTRS ¥ )
iz ¥ la o conatons

PROOF, HNECESSITY,

The necoseity of (a) has been proved by Theorem 4,3, To
prove that of (b), choose a contimmous funstion F guech that
ﬁi} 1s equal to one on [Rg N [enyn] 4 3080 outside (enedynss)
lincar on [=neByen] and [nymeb|

since P s demse in £, (R;), there exists a polynomial
P, Sucth that

IF—pnll < Ei?
waieh {oplies that

vhere (Pl =M, and M i3 the resultant constant, vo that
' Pal®) | < 2 (=), 28 0>

| .
|Ef < Yl < WUy +IF = pall, < My 4 Lo Mytd =M

[1—-]’_32‘} <

i
- Bm

¥ (%) 2




vhieh gives
iis iputﬂl = Y{x)e
— @

The proof 1s thus complotod is in Alhieser [S,p.118] o

SUFFICIENCY, Lot us suppose thet the comditions (o) and
(b) bolds It 1s enough o prove that there exists a seguence
of polynomials (P,| cuch that

IPglly < e (4e0)
vhore C 13 a constant and
Sip f ~—é\——-___1if:£xj dx = oo . (9.7

m:w&m‘ﬂﬂl AlY, P )= and the density
will be sn imnodlate comsequence,
Lot uo consider the polynonial
14 [pta®,
It can be reprosented in tho form
1o ()" e |pta)|®

vhore the polynoniels "n and Pn are of the came degree.
Fupther s

< o] = 2018 (0| ® < [anPveen T <( 10 e
90 that for the polyncelals Pjy (446) 1s satlsfied with
¢ Jiu® o It rematns to prove (4.7).

Suprése
Sujgﬂl@_d-x:-éw. (4.8)

1+x




Since the condition (b) is satisfied,

lim  |Pa®] = J14Gm)?

"y e

and aince
\I'nlﬂ\ 2 1y
by Patou's hﬂh'ﬁhﬂﬁf{ﬁm“ﬂﬂmmhm

_S 1og[i+ff{x}}1] o

14 x%

mmmmm As This 1xplies that

S-—E,,Trd“
does not ozceed &,mﬂuﬂull}- This comples the proof,
TIBOREM 408, lat_ ¥ Dho continuougs . Ihen ¢ is denas
P

da Ly ASsndonly 12 tha follewing sonditions holds
(a) j‘ it.irx%x? dx = o »

I ’I N < My n® 1;%eep

lim |pp(x)| = X&)
where ¥ laocmetents %

PROOP, (NECESSITY)e W Rave to prove cmly the necessity
of (b), since that of (2) has alroady beon established, A3 °K
‘the clags of comtinuous functions with compact support, i3 dense
in lagt_m_. we choose l'nbztln} such that



S ﬂ-x—}-- 3 x € Eﬂ,"l"l-]
W EESE
Fx) =

‘L o 5 x¢ [—'T'.l.,'l"l.:[ -

A 1
IIFH?Ps(J md‘")” -«

- X3

since P i3 demse in IJ(R), there extsts p, sueh that
= 418
IF F““np S o
It then follows that
lllP"l"l.-IlT,:P < "F‘“*r,r +1IF'-F+.1I17'F S+ 1 < o+

2“
w.

(LI

5m| = e
n.“..-i-xz Y(x) i gmp
S

I‘m ..i—— — F‘I‘\-{x} — a o - -
B r--—-—~1+x,z T[_X}

By contimuity, ve have
lim ba(¥) = Y&

n—r 04
' JTax®
(SUFPICIENGY, To prove She sufficiency, it 1s enough to

srove that 1f the cenditions (o) and (b) are satisflod, then there
exists a sequence of polynemlals {P,] such that

I Pull vl‘" <€




vhere C unmtantull

log 1P GOl 4 _ oo,
-y S

ll’ntﬂl =14+ |p, (0| °

Then we have
WPl € el e lenlly € 2, g

< llally, ,p

Iumpouuut

_l_H: c

S g [P ux < A <2 o BTN LS BN
14 x%2
—c0

Sinee the conditions of the theorem are satisfied, we have

IJ"I'ﬂ |Fﬁfx‘)|. - I|'-|-n __J 1 9 lP'I'L Dﬂiz = ‘jl + g;gx}22
=y 0o

e :L_l_xz

Alsoy as |P(x)| 2 1, by Fatou's lemma we have

7] 2
}_g ‘°?r1+urifx 1
2

14x7

- 0
exists and does not excecd A, This ssx implies that

log¥(X) 4. _ Iogr[1+x’) i
14+%  L4xZ

ulltaulm:aotmmn,m.hhmnm
: S'ﬁvcx} dyx

14+
mmmummmmmumm and establishes
the sufficiencys This cozmpletes the proof of the theores,



%e shall now consider the nonedense case and £ind the
closure of the class ® 1in LY(R),

It was observed by Mergelyan [18] that for any Y(x) Z 1,
Zhore ora two nossibilificst Lithar

Ml‘@).ﬂ’ lmlﬁﬂ.
ar.there la o function €(r) — 0 a3 » —en (121 = ») gugh
Shat

H.riu.P} < Aerﬂﬂ

ihace A Jaa conatont independent of = From this, it follovs
that either ® 1p dense in '8.‘(3) or the clogure of ® ig
contained in Er'gtﬁ}.

Analogously, we can prove that

THEOREM S.1s [ither ¢ 4a dopso in I-ffm: ar_ihe closura
o P i LR is contalngd in By G(R).

PR00F, The proof is the same as that of Mergelyan [18] .

Ha¥atryan has proved thet the following theorem 1s truc.

TiEoR@e Suonoso that ¥ ia pot densedn £.(R). Inen
f dadansedn By o(R) AL ond oplv Af

HYI.{!.@’ = nvli-lj 3“1'0{3’1' In g # 0,

A natural oxtension to LY(R) 1o therefore ismediates



e

TUSOUEM 6,2 Supoose P lanot donse in L:(m-
oo ¥ ladensedn B (R) 42 and only af
Hy (8 P) = Hy (2 By olR))y Wmz#o0 (6.2)

PA0OF, Suprose (Bel) holds, Let 5L ¢ P . Ten there
exists ¢ ¢ LY guch that

Ut =0 = _F f&' P (2) at, B = 0y1y% 00y

L =g, = 1
Therefore, for P € P,

L\:F’(t) —PCz)"J . _ (5.2)
Vo extend L to LP(R)s Then (5.2) L=plies
L e ] = r@L[L5] - (6e3)
The funetion

vith

Fea) = L [ 5]
L3 holozorphic for In 3 ¢ O Further

P(t] ’ =TT = o(1) , a"f"i:r-""""-'i’-'-lﬁ“'"'_"""".',1
‘L ]| <ol [|F‘I1T‘F| ] -
for P M t@).
Mtl.‘nn
F@E)| < o) [ 54p lP(z}I) 0 (1) "
I I ( E'mn[éi),\ _;__EZT:@ P

lot £¢ g5 R o

fet) — f) o E.i’ (R)
& -z Va0




for every ge
Then, we can show thal

@Cz} = _—__——Hﬂt:-;{zj]

§(0)

is an entire function of exponential type sero, It follows that
£(8)
e
Therefore, from (S.4) and (8,5) we get
| Gl ¢ s + IFEW||rGy)

< o(a) 3 24 M. (Y, BF _(®)
My, G5 4z ) (56)
Consequently, sinee by hypothesisy (8e1) holds, using

(5+6) we have

| d | = ot a8 |7,
whileh gives
@ltj g De
Thue
L[J}{t} —$(2) o
vhieh fmplies that
L[EE-

vhete 3, 13 o zeo of £{z)e-
Let r:ﬁom. Conslder the function

e = el (eet) 2te),
Then '(‘1 L 0. [ 4 tm?j.‘#l'um, and so
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il [%%] oy [llﬂl’";{ﬂ] = 0517 L [£0] .

Thusy the functienal L venishes for all £ € &} ,0R) and the
closure of ¥ ig therefore ¢ (R)e
ASMARK Se3, GSupnose 1' has the representation

¥{=) = v(0) m(_( 291- n) . (87
§ e
- w « -
S fmgegmicd,
fmplies =2 K
R ase
b -0

S e Timagme) g,

o0 that 1¢ P s dense tn ©_, then P 1s dense in Ly also,

Thus, the condition (5,7) l:plies that the polyneaials are dunse
in l.:.m 1< p< oo,



a7

Setting plx) = log Y(x), ql{x), the function inverse
to plz)y © any nusber satisfying 0< 6< 1, E = 6°2/ (109

ani 8 = log [100(0)] / oh(l), 1% 13 ecasy to prove from the
thoorem of Mergelyan [18] that case

PROPOSIVION S.4s Iharg oxiats an abaolnute comgtant © >0
W
E, (v, —) < ¢ "ff) 1- K exp | | I al
@ |Im a TGt 1ar)
e @ g (n-0)
[ e
bolds fop all_ » gatlalving She conditions K <1 gud n> &,
shaze B, [Vpl/(xec)] dscgbea.inf T2l o for all zolepesiala

af decros nob.oxgending » and & 4a.a.nen recd comolex number.
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CAALIEA 6

WELEIPLIERS OF WEICHTED SPACES
Let ) be a real number sueh that -}fu«}. Let

T demote tho set of real nmunbers modulo one and 2 the additive
group of integers, For 1 < p < @y wo denoto by E«p"'(ﬂ.m
vector space of complexevalued functions £ defined on 2 such

that g Vs
' LI 2] = (Ez\ttu)\'tm + 1) )

is finite, while h"‘(ﬂ denotes the space of those couploxe
valued functions £ defined on T forwhieh

» \Mp
Iel, ',-( glnm ..)
is finite,

It ¢ 11"'{2.). its Fourier trensfora
£60) = 3 o) o7INO0 eeT,
néz

exists as @ lisit in the mean, of order 2, of the partial sums
of the series on the right, snd the inversion foraula

ftn) = ( £'t0) "™ 4
T

is valid, Let h" Do a boundod moasurable function defined on T,
e set
netm) = [ £7¢0) w'ce) ¢~2WN0 g
o



for meZ, ¢ L™%2), such a trensformation H, deternined
by b"y is called a multipliesr transformation, If

By a0 = Louebs { By alEE/8, 2]y 2 12% 0 PN, 24 n}

is finitey then H has & wnique extension as a bounded linear

tranafornation of [PWM(2) into 1teelf, wita nowm W, \[0],

stnce L2 0 L™N2) 10 dense 1n ("2,
Stmilarly for £ € L29%(7), we set

£'(a) = 5’ £(0) o TR0 g0
°
et h" be a bounded function dofined on 2Ze Then the multiplier
transformation i, assoclated with h'y is defined by

a0) = 3 Wim) £(m) o
. BEZ

2
85,0 = 2emen {Nugl o/ 1£1 o0 £ € 1% 0 PN, £ 4 0]

is finite, then H has a unigue extension as a bounded linear
transforsation of L™V(T) inte 1tself,

An izportant proble:= in this connection is to find suffie
édent conditions on the multipiier function h" , whieh will
 guarantee that the multiplier transformation H assoelated with
h" i3 a bounded transformetion, In [04] , Hirsehman has investi-
gated this problem when A = 0 ond obtained gome conditions
different from the most familiar result that 4f h" 13 of bounded




‘voristion on Ty then 5 s bounded for 1< p<oe In [96],
he considered the problem for £ 2(2) and obtained the followe
ing result in terms of bounded peveristion of a function, which
tepninology wo shall explain later in chapter 7.

THEOREM Ay Lot b Do defingd on T snd et @ bo the
sacressonding mitioler transfornctions X V,[n"] ia finita,
@ > o) shen.

Foa [H] < @ 10 <y
dhaza Vylh'] demafos the Sevaplationof h” .
We extend the results of Hirschman to L ' (2) in éhapter

8s In c¢hapter 7, tho rosult amalogous to Theorem A is proved for
1,



- SAARITER 7
WUASIPLIERE 0F LN
In this chapter, ve discuss multiplier transfermations
dofined on LPN(1, Let h” be a bounded funeticn defimed on 2

and let H be the corresponding multisliecr transformation doe
fined on l.g"(ﬂ- If I(2) 4s the set of all indices )\ for

which 'd!llln'; is finite, then 1t 1s casy to verify that

() 1f 24 2, € X(R) nlti;-tm Mo+ M,y 0<R<Y,
: 0
then Y € I{H) and “'“a,'r < l'.lu% . E\Hlé'l;

(b) 12 A€ U, then < € I(H) and IR,y - 8l e

The first of these rosults is a conseguence of the Rigsge
Thorin convexity theores [20] , while the second follews from
the fact that the conjugate space of LBN9) g5 12"Nm,

We shall give two lemnasy which will be needed later,

LENA 741s J£ 2(e)~ Ex £'tn) ™99, enon fos 0<< &,

(a) Ez H‘”{Ml‘ Gnl e DB < AN tll'.l I 4 J‘.

2
(o) > \r"(ml'tmun“z AN (m -m['“
nez %
Zorall =€ %, xhare A'(M) and A'tN  aze sositive gonstants
dopending only on N :

PiOOF, This can be casily deduced from Hirsehman [£9,p.81] .



LEHA 7,2 IL £ ¢ LDMD) and AL e = Sftﬁ) o~ vimd 4o |
T ;
then gor 0 <2< & ,

[43]

2 _g3-24
fﬂ“m—&ml " g

Mg

< A"J‘If{msﬂz{ia
T
vhere A" and A" are vositive constants, depending only om M
PROOF, See Hirschman [23, p.52] .
Let M, denote the set of all bounded multiplier trans-
fornations defined on L2,

THEOREM 743¢ Sumoosn. 0< M<4 aud He™Mm, Inen fhere

axlats o constiont AN, depending only on N o gugh thot fop any
e 19N,

A'giﬂaﬁ o*|“de <
I

Ti=1l wi=-0

o0 o0
YRS el — eIt < AGYINIE 141,

=l = -0
PROOF, It 12 casy to verify that
1‘-\“{“3)] < “H"g.; .
Now using this and the relation
) [ n'(men) - B (m)] =
= [£(men) W (en) « 27(m) W(m)] + [2'(m)et"(nem)] B (uen)
ve obtain
2" | * 0 (men) = 0'(@)|" < 202 (ovn) K (em) - £(2) W ()]
A 2
s2uly, £ -

Hultipling by m.""l"'m and gpumning over m and n, ve get



e0 =5 o
n T TN 80| R =R <

T=1 =00
- A 2 A 2
< 2) mt 2 S bt nen) — £k +
mi=1 m=—%0

20 -4-2) Sl 2
+ 2 HH“LZ E'ﬂ Z | £26min) — §2(0)

T=1 TL=—103

S2"0) [usterer*de + 28 A UKIE, (156103 %s
=] 18
by virtue of Lemma 742 Tho result is now obvious,

THROREM 74e Lok O < A< &+ Zhare exista o gonatant
(N depending oply on A suoh that A€ h" is dafined on 2
datiafying
|n*(m)| < ¢, mEZ

and.

= _1-2\ o 2
DT Y 1Ml B enam =R < et )

¥
e 2,4

T.=4
for evary £ ¢ L*N®), then He™ gna g q < Co AN
PROOF, We have

§ G b ) — €8EDRNm) = £26m [ B ) — h*@0] + [£ " Gnsm) —§Nm)) Kt
80 that

[§°CmerOlmtnd — £ I <2 176l onsed =601+ 267 £ 5 )5
Multiplying by n°'*™ and gumning over = and n, wve get the ‘
desired result using Lemna 7,2, since




. a 2
i“‘h!’_n Z | £ "G 4m) W Gntm) e l

izl =00
—~1-2) a* 00 ) A
<2 Z X 1$8Gm)| ¥ R ) —h )| 4 2 Zn 2 168t 5200
=1 L= =00 Bt

<oe® 5N +207 A" (| 4mrer*de
T

$ 2 (A +1)e* g7,

z =2 1] 2
lusll, , ¢ 20 (r+a"@) N8,

vhich yields
I, , < c-AM
vhere AN = JHI+A"(N)
Hotice thot Theoreuws 7,2 and 7.4 correspond to the result
of Devinatz and Hirschman [20, Lemmas 2d, 3¢ ]
Before we ccme to the maln result, we nced the following
definition,

DEPINITION 7.8, e”" la.a function dafined on 7,
o i/e
Vg,[%‘ ] = fub. ‘[Lié (i) — & Cn}]@f

By < By < ees < By lagallod the Bevardotion of g
We shall first obtain a result snalogous to the lemma of
uum{ﬂ]-




THEOREM 7,6, Suoonas thati ucué. Let k" be of
bounded ld-varistion on 2. ZIhan, Af H Jla_the copresponding
multiplier tranaformations we have

s < ch{nh*ufﬂ 1l VLW
vhere B(N

N and

k"Il = su£ | K ()| .
PROOF, .By Mtln of Theorem 7.4y we need to estimate
only the quantity

o0 o0 5
= PN )P R = |
M=zt =0
Now

og o0 Ly
M <2 ih"il, Eﬁ‘i-z"‘ z |£% 6] Z (K2 Em+R) — k" (m thR-1) |
ot M R=4

=2l i'ﬂ“ A3 S ey W e~ 9]

k=t m=—00

=2 0hll, 3 [ — kom0 Y 145 Gnehf Shnitee s

m:-m k=1 m=k

< AWy Y (R = b e thIf’“f"m ST

m=-0J

< ¢ 1Ml V,Th] “5:“; '

using Lessna 7ele As in the proof of Theorem 7.4, we have
|5 Gman) b (mam) — E“f‘rﬁ)h“f'"ﬂ < 2 [£%)? |h i) — hAem)* +

+2 [hA )| | £ min) — Ay | =
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and therefore
S AR S ki b Gk —EA BRG] S

Ly | iz -pb

o0 0o
27 Yonw % D 26| F | R G 4m) ~ W) | +2Zn = ”Zlh’“{ +f* H"{m*“) '
m=4 S ™= -£ ﬁﬂJJi

$260) Ikl VLT U$1,  + 2 11l A" () [EL

by virtue of Lomma 7.2 .
Thus

41,5 < 8O0 JinaE +v, Tkl I § 16,
and this gives
M, € B0 JIWIG, +ViTHT IR, 0
vhere B(N = 2mex [C(N, MN] o
LEMA 77 Lek h” he s real valued function dafined on
Ze Eor.oogh P > 1y Lhers sxita o conatont C(P) denending only
en P ansh that fop oaeh h" s forwhich V,(h'] ia finite and for
€> 0 ghere oxiats b uAth the opoperties:
(o) (KKl < ¢
(M V,[He] < e vrnle' "
ghere |- I\ is dofined as in Theorem 7.8
PAQOFe This lesua corrcbponds to Lemma 2 of Hirschman [86]
and 1s proved by the arguients used in [84] o
., We now come to the main rogult in this section and it is

the analogue of Theorem A stated in cdhapter 6.
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THEOREM 7,8, Lat h" ha dofined on Z and let T ke
LN, Ig

flE

ap < ® ir |A|<}.

PR0OFs First we obtain a sequence of functions {g'] sueh

that
h'= 1im lﬁ
m— o D
pointwise on Z, This construction is given by Hirsehman [924] and
by Bdwards (21, Voluwme 2, pe270 | 4 Ve shall not give the details
heres Assuming without loss of generality that h"(0) = 0, a ronle
velued function h* dofined on the entire real line is obtained by
interpolating linearly betweon successive values of h'(n) so that
B2 / pop = 1'(n). Them, for eaeh nomemegative intewerm, o funce
tion g', 1s constructed satisfying
v, [ew] < 2 €y, TP (72)
and
=&, S 27" | (72)
lioreover
Val€m] < v, I .
The proof of our fheoren is completed following the argu-
ments of Hirschman [26] + Dofine a sequence of functions {h_] ;1
;n Z as followss
hy () = &3

A

b O =& (W —g° 4 ()
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00
o) = > " (n)
m=]l

V, [hm] ¢ C-zfﬁ'i}mvﬁ LRt F,
Wmll, €€ °27™
If H, 1is the multiplier transformation associated with h'y,then
=]
hwil, s;m; Il ,
Choose <y A <<t <& . By Theorens 7,6,
i
Mall, o = O[C™% 27 o™ (-9 e &G .
On the other hand, by Parseval's equality
Myl | = Wk, = OG@™).

Putting 2 = (1«0) 0 + 0efy, 0< © < 1, ve obtain by virtue of the
Riesz=-Thorin convexity theorem the relation

“Hm“ﬂ ; = 0 (E'M.C'-i +l{|9:a}2ﬂﬂ)) i
The series ;llunlla'k is convepgent if pA< & or A ‘f-'F-

Stnce « 1is arbitrary subject to the condition A< o< &, 1t 1s
alvays possidle to choose « so that A< B, sro<a<d,
Thus we have proved the theoren for 0 < A<& . Tho cuse vhen
M= 0 being trivial, the theoren follovs by the duality argument
given at the beginning of this chapters



uLzIPLIsas on LN

We shall comsider the problem for LP(z)  and obtain
somo results analogous to those obtained by Hirschman [24] , for the
case A = 0,

Lot f£e L%, Iz

nti) = ( n'(e) ¢" 7" 49, k ez,

T

atm) = {£'(0) (o) 7 4

g 2. flnek) h(k),
kez

the serles on the right converges absolutely for each n, by
Parseval’s relation, since k € £7%(2) and £ € 2™%2) by our
assumption,

Let ¢ I‘.E"?‘tz‘.‘ and g lE’“"‘[z}, where 'i"' %- 1,
Define '
- {fhgi = 2 f(n) glen),

nez

et < |3 seuee]| ¢ N FINg (6]

mez,
and every bounded 1inesr fmottnnall-u 1Py 18 of the fora

-{f98} with Il= m o (8] e

Let H bo a multiplier transformation defimed on £7N(2).
We elain that H 1s elso a multiplier on (9"Nz), asscelsted

with the same funetion k" and l"h ] = lq. .L[Il]'




suppose g € L 1°(2) n1P%2), Then

{h i TE HECYESS 5 1 2 sephitedn

neZ JeZ
- S eCw .E §-PhG) = S e e S £6 hn-m)
MmeEZ 1E7Z. nEZ mEZ,

= ) £6m) Y SEmhn—) =

ool 2] > SEIY Semph)]

mEZ yEZ
= D St Helm = [ ).
mez, { : g?

It Wy o8] < 1y ve have

NgaH] = Z.w.bo |{,Hg}
Npa o] <4

Shub.  Ng 2N, ,[He]
NF,A[EJ'S.!.

< N BTN L TH]
This implies that
Ng-x[H] < Ny (TH].
Sinilerly interchanging the roles of p and g, the reverse ine
@quality can be esteblisheds Thus we have
Hpgali] = N L] o
THEORRH .10 JL )
(a) In'(e)l < a, ecT,
(1) |n'e) ~n'toetd| < altl®, d<a<a,

then. 5 i3 a bounded linsar teonaformation of (Pe™M2) into itself,

yhere I{pe:u,'l‘&'-{-t-b.
PROOFe Lot



6l

o &
”ﬂs-anu 112
W

$(0) s 2 . hin)e®vind

ml < aF

be the partial sum of order Ek,atthl?m'iﬂnm h' e

Given € > 0y it ig ecasily seen that
| I, $ACE.® 77 @=8)
(see Hirschman [94, ps223] ) so that if

A » A
Rpy®s,=8a

Ikl < Ac @.8) 7 (2.1)

where |-ll, 1s defined on T, Let H  be the multiplier trans-
formation assoclated with n""k. Then

HSE = (5 m e ek T FGph)
T IEZ)
vhere 2, ® {nnz,a"lf\:lmi 8‘}- It is also easy to verify

that

4

< R,
4€Z,

Using the relation

Elhml AC (2,8)2 :

(2Zygmund [29] ) mﬂ‘vm-mwta.ﬁ 1t follows that

. walth ]l < Ac Gue)2” hizsetie8) ! (8.2)

Prom (2-2) we have i
N, T € § 5 el G

k(L -o+8)

éézk ?\m
A ;‘:.‘* PR
< > |h) (1 +141) . 51“ L\rnrﬁf |
‘GZ ,:\L “* -“_, .:':'. :

1€ 2% \ G2 =2

* } I o




Thus
-t +IA+E)
N, D] < Ace G

suppose 1< p <% Putting B= AR + F,0<0 <1y we
obtain from (2,3) and (8.4), by virtue of the Riesz-Thorin convexity

theoren

(2+4)

-

Npald < Ac@e)2
\M{-:-&.wmelmn £ eo sall that

k (& -+l +E)

Z 1‘,‘1 (] < 00 »
k=0

Furthery since =
n' o {
(0 = > n,l0),
the convergonce being uniform in 04 it 1s ecasy to show that
if{n) = % &, £(n)
k=0

an
By U] < ; LN [8, ] <o,

The theorem 1s therefore true for 1< p < 2, Tho regular con=
judacy argument gives the result for 2 <p < .
liow wo state two results of Devinagtz and lirochman [20] as

lem=as,

LA 8,2 XL O < M < # o Shen thers axist  sositive
umn.a,m and AN denending gnlv.on X guchthak
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= i < 2 ~1-2)
(Nax H]) —lEO <A, [?*)E I{H“{Eﬁ)—f“@ll (simap-dl) | dBod

and_
(N, BI) = 51 2 A, H{H o) — 5| Gm e 1901) }dﬁi?-
LERA 8e3s Lot nf:.w:'b Ihere xista a conatant A"(N
aueh thot 42 h" ia.a meagurable function dofined on T aatlafving
|| w5l
with h(0) = O, and 1f

( l&“{e:iid,sj'[ ()~ @] et lo-a) gy < o? (NE A I:JEJ)2
T t

Lor guery £ € Eg'iu) shen
Hoa (8] < €-a"Ns

We now prove

THEOARM 8e4s Supnose h” gatiafies the conditiona.
() (o) < a o€ T,
(5 |n'(e) = W' (oet) < BI&I%, 0< o< 1

Ihen there axists o conagtant C guch that

= A 7 -1-24
(5@ (1w~ En o)™ doap < cas(w, 7]
i =1

shere 0 <2< §.
PROOF, We consider the guantity




b= f\f’“{a}\iflh"cea —R@I Gon mlo-al) " do do
T T

<20k [18°@)° (14 0) — W@ ] i nia~¢:)““ﬂd§a¢ :
i T

Since h’ satisfies (b)y we have

A A < -41-22
(ln'e —H@)| Gnnle-d) " d¢ < I,+ 1,
)

I'-'J[--

8+
< Bf lo-g%@nxle—4) P 4y
B

g E:j‘ le =1 (sin rlo-pl) "

g__l

Considering I, and mm mifmutum us g= 0y
2

IL = B‘r Dd(sl'.n‘}:-u,) =22
L+
whichy by virtue of the inequality
sin mu > eu, C<u<é

du ,

gives
J < E:I'M.“' du =B _[-'u-iﬂiﬂﬂdu < 00,
if -r-m‘pu. Ei.milnl'lf'“ﬂndthatlfﬂ-a}?*ﬂi
I < 00e

4 Me.mmm.mmcmwmmm-x
such that

§ W@ —H@l Eorlo-l) " “dp <cB.
)




s
Thus,
M < BRIy [ 1) e
T

1
= Céh SIF“E&JIEE"Z*M by @),
]

2

vhen A > O, Nov aprlying Lemma 7,1, we obtain

H<CAB 2" (N (yy [£1)%C 4B (N, (81 )2,
vhere A'(\) ecan be included in C.
TUOREM 8,8, Suppose h” satdafics the conditions (o) and
(b) of Theorem 8,4, Then if 0< A< %, ghere exists o conatant
C ubieh depondaan .« and ™ auch that Af # 1a the asage
siated multiplior trapafarmation with ©(0) = 0, then
. 2
(“a,'a[“]) < CaB,
PROOF, As the conditions (a) and (b) of Theorem 8.4 are
satisfied by the function h" , we have

(15" [In'e) k@) Ennle-p)™" " dodg < cas (N, BI)°
T T
viiere 0 < A< e Apslying Lemmas 8,2 and 8,2 and moking use

of the faet that h(0) = 0, we have the desired result,

THEOREM 8,6, Suopess h' gatiafics the conditionas

(2) ('(0)| < &y eeT,

() [n'() = W'toet) < maltl¥, Aca <,
Then # ia.a hounded Mpose teansCormation of (P'™2) into itacht,
shers F> 10 > < od and

Alecte2|N) = 2lease2|M)
1+ 2 P 1+ 2\ - o
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PROOFs Suppose s'), 1s defined as in the proof of
Theorem 8.1 and let &, Do the associated multiplier transformae
tion given theres Then, since

1) o S8 e gy &0
and, as can be caslly verified,
\hL[a) —h (e+8)| < A ¢ {a:,s)zEk |6
ve havey by virtus of Theorem B,5,
2 == -
(Nz,)..[HkD XL k (-8
vhich implics that

Nax H I < A 1:%;" 50 (8°5)
®{L = + 2I20) &
AT tetny - @ Bl 8,
ve have o > L= 2L BN o the Rless-Thorin convexity
1=+ 2|A

thoorem (this is possible since 0 < @ < 1 under the condition that

Il > & =d ) wve obtatn from (8.7) end G6)

(2 —ct+IN+EYL-0) — @ (-E)2]
N, D < A K EE (2:6)

Under the above condition on @ 4 it is possible to choose £ small

encugh gueh that tho quantity in the exponent of (8,6) 1s negatives
¥ith such a cholce of £ > 0, it follows that

o

k=0

21 «of + 21N) 21wt + 2|N )
!r -—T:-a-r < p <8 MHMtMEE’{-m__I‘FB}M-H

follows Ly the conjugacy arguments This comples the proof,
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In Theorens 8s1 and 846 we have asoumed that < > & 4 Ve
have not asserted that these theoorems are the best possible, There
are multiplier trensforactions for some p end A even if < &
as can be seen from the following rosult,

TUEOREM 847 JL h" gatiofies tho conditiona (o) and (b)
of _Jheoren Beds than © 13 a bounded Jingar transformation of
z"’“tzimm.u i'e'tg-?u{’ <2 apd M la 4 nonsnacativa
aumber guch that « > M >« =% o

P00Fe With the same notation as in Theorem 8,1, we have

N, [ < aceee ™9 i

Let v=22 , men fudfl +§. acsume that A= (110 + W,

Applying the RieszeThorin convexity theorez to (8.7) and

k(L —o¢+7+E)
Ny LH] < AdGl)2 iy (8+8)

L o+ +E)Y + (ot- £) D (2-7)]
N, A < Ac Lo LG  (29)

The exponent on the »ight hand gide of (8,9) is negative if

Y < gia= o or equivalently, & < E— , since Y 1is positive,
This in turn gives Y < a(-t-i}'uhuhlmmu ﬁ-%i)- < pe Thus,
for nonenogative Y satisfying the gbove condition, the thooren is
tiues Hence H 15 a bounded linear transformation of ( P¥N2)



into 1%50lf yo—amrmr <2 <9 where N i3 nonenegative and
putisfies the condition « > A > & s

It is observed that if -t.-c%, thml.'?-l-i is satise
fled by any nonenegative 2, In particular,when A = 0, the range
for p reduces to Fgrc_uemmu is oxactly the result
given by Hirgchman [24, Thoorem 2a ],

DEFINITION 8,8, A function ¢ gdefined on an interval
Isa<x<b lasald tobe of boundad peyapdotion (1 <p <o) 4if

L i/g
Ve [€] = Luwb. k}: [ekaﬂj;g{xkﬂp)
=0

asta lixo‘:'ll ses {ln < be
THEORDY 8,9 sunness b satlafiea the conditions

() [n™0) < Ay - eem,
(b) D‘a[h"‘] =7, <o, B >8
(@) |n’(ost) = 0O < Lig)®, -L- < 6 <1

Then § is a bownded lineor teonaformation of ¢°'2) inte
itaglf, Jhera ﬁa‘-‘l -::ILI{E-_% apnd l1<p<wm,
PROOF, It is possible to comstruet a sequence of funce

tions {g",(0)] satiofying the following conditions

(Bel)k

() v [e,]<e ?afn"l’ :



(8) |g' (o) = :“k(tt*}! < o9,
(c) u'ﬁk”m < Ay

gee Hirschman (24, Theorems 2oy 2f ]
Setting ]
h"a(n} =g 0(!} .
a7, (0) = g, (0) = @' ,(0)y ' k= 138000y
ve obtain
@ A
o) = 2w, (0)

pointwvlise on Ts Then
: : 0
<
LR BT Eo N [l
Furthery it follows that h", satlisfies the conditions

(@) < o gt

vni] < con Pk
and

k

0,00 » Wl a)] < €42 o-ai°.

ows, h", sstisfies the hypotheses of Theorem 8,1 with A = Co2™
and therefore o
m
- | £
iy o (8] < ces™ aa (F-t+ Mac)

If (M<8 =%, vo can choose £ so small that

W (B ] < cot™ , @-10)



()

*

fow suppose that #f.'.\c&-&. Choose Y such that
ALY<Ba, Then by what 18 proved in Hissiman [6,p.855] ,

A kel + B
Ha,h[nk] <Ce2 (8.11)

o< w<d
setting §= 4R + & uo obtatn by RleszeThorin convexity theorem
that

k(o1 + Po « k(lea)
2

ﬂp'hl'.ﬂk] % Gy (2,12)

The exponent on the right hand side is negative if %nczl or
Hm
méﬁ‘: af_.ﬁh = 1 Thus np..*[n]a:u it '%Mfa-f-&-i-

The rest of the arguments can be casily completed,
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