STUDIES IN
ELEMENTARY PARTICLE THEORY
INVOLVING
THE PION-NUCLEON INTERACTION

K. VENKATESAN M.A., M.Sc.,
Institute of Mathematical Sciences, Madras.

Thesis submitted to the University of Madras
for the Degree of Doctor of Philosophy (January, 1963)
CONTENTS

PREFACE

PART I

CHAPTER II: PHOTO PRODUCTION OF PION PAIRS FROM NUCLEONS

1. Introduction
 - Page 14
2. Derivation of the matrix element
 - Page 18
3. The process \(\gamma + p \rightarrow p + \pi^+ + \pi^- \)
 - Page 26
4. The processes (a) \(\gamma + p \rightarrow n + \pi^+ + \pi^0 \)
 and (b) \(\gamma + p \rightarrow p + \pi^0 + \pi^0 \)
 - Page 38
5. Angular momentum and isotopic spin analysis of the matrix element for double pion photoproduction.
 - Page 43
6. Solution of the integral equation for the process and the rescattering correction.
 - Page 55
7. The effect of the photon-three pion direct interaction on the photoproduction of pion pairs.
 - Page 64
8. Conclusion.
 - Page 66

PART II

CHAPTER III: THE PION-PION INTERACTION AND MULTIPLE PION PRODUCTION IN THE SUB-GEV REGION

1. Introduction
 - Page 68
2. Photoproduction of pion pairs from a nucleon.
 - Page 71
3. Photoproduction of triple pions 79
4. Pion production in pion-nucleon collisions. 80
5. Production of pion pairs in pion-nucleon collisions. 83
6. Conclusion. 86

CHAPTER IV: POLARIZATION EFFECTS IN SOME PION PRODUCTION PROCESSES

1. Introduction 88
2. Photoproduction of single mesons from polarized nucleons 89
 a) Photoproduction of charged pions 111
 b) Photoproduction of neutral pions. 117
3. Photoproduction of pions pairs. 111
4. Electro-pion production from nucleons. 117

CHAPTER V: SCATTERING OF PIONS BY DEUTERONS AND LIGHT NUCLEI

1. Introduction 128
2. The impulse series and the impulse approximation 132
3. Elastic scattering of a \(\pi^+ \) from a deuteron 134
4. Inelastic scattering. 140
5. Charge exchange scattering 144
CHAPTER VI: DISINTEGRATION PROCESSES IN DEUTERIUM
1.
2.
3.

CHAPTER VII: THE EQUAL TIME COMMUTATOR IN QUANTUM ELECTRODYNAMICS
1.
2.

CHAPTER VIII: PHOTOPRODUCTION OF SINGLE PIONS FROM NUCLEONS IN THE STRIP APPROXIMATION
1.
2.
3.
4.
5.
6. Equations for the absorptive parts
7. Conclusion

CHAPTER IX: THE STRIP-APPROXIMATION AND THE PHOTOPRODUCTION OF PIONS ON PIONS
1. Introduction
2. Kinematics
3. The strip approximation
4. Conclusion

CHAPTER X: THE PIONIC DECAY OF THE π^{-}-PARTICLE
1. Introduction
2. Calculations

PART III

CHAPTER XI: SOME NEW STOCHASTIC ASPECTS IN CASCADE THEORY
1. Introduction
2. An interesting relationship between the 'old' and the 'new' approaches to cascade theory.
3. Multiple production of particles in cascade theory.
4. Ambiguous stochastic processes and cascade showers with lateral spread.
CHAPTER XII: ON THE EQUIVALENCE OF THE FIELD-THEORETIC AND FERMIAN FORMALISMS.

1. Introduction

2. Some remarks on the use of Wick's theorem
This thesis is the work done by the author during the period August 1953 to January 1953 under the guidance of Professor Alladi Ramakrishnan, formerly Professor of Physics at the University of Madras and now Director of the Institute of Mathematical Sciences, Madras, in the field of elementary particle theory.

The problems dealt with are divided into three parts. Part I is devoted to the application of the Chew-Low formalism to some processes involving the production, scattering and absorption of pions. Part II is devoted to the method of dispersion relations and Part III concerns some stochastic aspects in cascade theory and the proof of the equivalence of the field-theoretic and Feynman formalisms.

Seven papers which cover part of the subject-matter of this thesis have been published by the author in scientific journals, the available reprints being enclosed in the form of a booklet. The nature of the problems dealt with in these papers has necessitated collaboration either with my guide Professor Alladi Ramakrishnan or with my colleagues, Drs. S.K. Srinivasan and S.R. Ranganathan and Messrs. A. P. Balachandran and V. Devanathan. Due acknowledgment of this collaboration has been made in each chapter.
My grateful thanks are due to Professor Alladi Ramakrishnan for his constant guidance and encouragement through the course of this work. I am indebted to the University of Madras and the Institute of Mathematical Sciences, Madras for providing me with excellent facilities for research work and to the Atomic Energy Commission for the award of a Senior Research Fellowship during the period of study.

Madras,
January 1963

(K. Venkatesan)
CHAPTER I.

Introduction

This thesis presents studies in some elementary particle interactions involving mainly the scattering, production and absorption of pions. While it has become almost conventional to speak of the inadequacy of the perturbation approach to the theory of strong interactions involving pions and nucleons, it is an undisputed fact that, no matter how long and how hard theoretical physicists have tried, the approximations even in intrinsically non-perturbative theories are still based on analogies and concepts derived from Feynman graphs representing the processes. Within the domain of field theory itself the main advance over the elementary form of perturbation theory has been to consider only 'physical' (and not 'bare') particle from the beginning. One such method which has had a good measure of success in explaining the low energy features of the pion-nucleon interaction is the Chew-Low formalism. The major part of the thesis is devoted to the application of this method to certain pion production processes, and the results obtained on this basis have been used to suggest that the concept of a specific interaction as given by a Lagrangian or Hamiltonian is useful at least in the sub-Bev region. Using, in addition, the impulse approximation, the scattering of pions from deuterons and the light nuclei have been studied.
The other main approach to the problem of strong interactions is the use of dispersion theory. Recently, with the advent of the double variable (or Mandelstam) representation, the possibility of a complete theory of strong interactions based on the analytically continued S-matrix has been envisaged and thus the application of these methods to all possible problems is desirable even with drastic approximations. We have employed the 'strip approximation' to the Mandelstam representation in order to study some pion production processes. The pole approximation in single variable dispersion theory has also been used to study a decay process.

Parenthetically, we also deal with the mathematical problem of multiple production of particles within the framework of cascade theory not with a view to computing cross sections; but assuming a knowledge of them to determine the mean number of particles at a certain thickness of matter. This is cited as an example where the study of a process 'in the gross' using classical stochastic methods can throw light on the cross-sections. Other new aspect. This is perhaps reasonable as there exists no reliable theory of

these processes based on the methods applicable to elementary particle interactions. Indeed it looks as if modern methods end when multiple production begins. Other new aspects of cascade theory are included.

The theory of the pion and its interaction with the nucleons is co-extensive with the theory of strong interactions which has undergone many vicissitudes and the difficulties associated with it have become part of the 'tradition' of strong interaction physics. The early application of weak coupling theory failed to give correct results as expected, and other methods like the Tamm-Dancoff approximation were found unsuitable for one reason or other. As mentioned earlier, the Chew-Low method was able to explain many of the features of low-energy pion physics. Low showed how one could write down the matrix element for a process in terms of physical quantities (and not bare ones as in the Tamm-Dancoff method) the transition from the interaction to the Heisenberg representation being effected by using the relation between the physical and bare vacua derived earlier by Gell-Mann and Low. The canonical

4) F.E. Low, Phys. Rev., 97, 1392 (1955)
Commutation relations were used to convert the particles in the state vector into current operators, before the Gell-Mann Low theorem mentioned above, was applied. It is interesting to note that the result that the matrix element for a process can be successively reduced to matrix elements (or vacuum expectation values) of products of Heisenberg current operators can also be arrived at from an entirely different approach — viz., the method of Lehmann, Symanzik and Zimmermann, in which there is no concept of a specific interaction and which is based on certain postulates which are of quite general validity like Lorentz invariance, microscopic causality and the asymptotic condition.

The matrix element derived by Low's method is exact, in principle, but unworkable in practice. One has to make the approximation of cutting off the intermediate states containing more than a few particles and use a static form of the interaction Hamiltonian. With these approximations, Chew and Low showed that the crossing symmetry exhibited by Low's equation and the unitarity of the S-matrix are sufficient to establish the most striking feature of pion-nucleon scattering, namely, that there is a resonance in the \(T = 3/2, J = 3/2 \) state. Their theory also gave a satisfactory explanation of the low energy features of the photoproduction of a pion from a nucleon.

2) G.F. Chew and F.E. Low, Loc. cit.
Part I of this thesis is in the main, an application of Loy's method and the Chew-Low formalism to certain pion production, scattering and absorption processes. Extension of the Chew-Low method to energies higher than the first resonance in the pion-nucleon system (at about 200 Mev) where production of extra particles becomes feasible have given results in quantitative and in some cases qualitative agreement with experiment. The details of this part are as follows:

In Chapter II, the photoproduction of pion pairs from nucleons is studied using Loy's method. An integral equation for the process is set up. The inhomogeneous term arrived at on the assumption that the pion-pion interaction is not important for the process, for the photon energies considered (400-600 Mev) yields total cross sections in agreement with the experimental results of the Cocconi group. This result taken in conjunction with that for pion production in pion-nucleon collisions where the pion-pion interaction is important even at low energies seems to imply that at these energies the pion-pion interaction acts essentially as an initial state interaction for capturing the incident pion and would therefore be naturally absent for the photoproduction processes. By making an angular momentum and isospin decomposition of the matrix element, the integral equation is solved using the Muskelishvilli-Oomes method and the rescattering correction is shown

1) S.K. Grinivasan and K. Venkatesan, Nuclear Physics, 12, 418 (1969); 22, 355 (1968)
to be small. Finally the effect of a direct photon three pion interaction on the process is considered and it is shown that the same value of the coupling constant for the interaction cannot explain both this process and the electromagnetic structure of the nucleon.

Chapter III deals with the effect of pion-pion interaction on various pion production processes initiated by the photon and pion. A qualitative argument is given to show that the interaction may not be important for the photoproduction of pion pairs. This is followed by a consideration of graphs in which two final pions resonate or one of the pions resonates with a pion in the virtual cloud which leads to the result that the contributions from them is small. Next the contribution of the pion-pion interaction to (i) the photoproduction of triple pions and (ii) production of single and double pions in pion-nucleon collisions are estimated by reducing the matrix elements for these processes, by Low's method to what correspond to one-pion exchange graphs. The values for the pion-pion coupling constant thus arrived at lie in the range given by Chew and Mandelstam in their dispersion theoretic study of pion-pion scattering.

In Chapter IV, the effect of polarizing both the incident particle (if it has spin) and the target, on the angular distributions and degree of polarization of the target

1) S.K. Srinivasan and K. Venkatesan, Nuclear Physics, 29, 335 (1962)
in the final state is studied for the processes of (1) single pion photoproduction from a nucleon, (2) photoproduction of pion pairs, and (iii) electroproduction of pions. The necessity to polarize both the target and incident particle in order to obtain interesting results regarding angular distributions and polarizations is brought out.

The scattering of pions from light nuclei like the deuteron is the subject-matter of Chapter V. The impulse approximation is used in conjunction with the Chew-Low matrix element for pion scattering from a nucleon to derive the cross-sections. Agreement with experiment is found up to a kinetic energy of 300 Mev. of the pion up to which only experimental data exist. The calculation at 300 Mev contradicts an earlier work which in which it is reported that the impulse approximation does not give correct results at this energy. The theory for scattering from light nuclei is also given.

In Chapter VI, the processes other than scattering which are possible when a pion is incident on the deuteron, namely, pure and radiative absorption are considered in a unified way along with the other disintegration processes initiated by a photon and an electron. Low's method is employed

3) Alladi Ramakrishnan, V. Devanathan and K. Venkatesan, Nuclear Physics, 2, 630 (1958)
for deriving the matrix elements for these processes which brings out the similarity and interconnection of these processes. The angular distributions are studied by setting up the \(x \) 'angular operators' for the processes.

In the last chapter of this part (Chapter VII), which is mainly expository in character, Low's method is employed to study the role in electrodynamics of the 'equal time commutator' term which always arises when the field variable of the particle which is being converted into a 'current' appears in the interaction Hamiltonian in a bilinear or multilinear combination. The trouble such terms bring in their wake both by way of unrenormalized quantities and erroneous results (if proper care is not exercised in interpreting the matrix elements) is emphasized by considering the standard electrodynamical processes. Questions regarding symmetrization of the matrix element have been studied.

Part II deals with some applications of the dispersion relations, where the concept of an interaction as given by a Hamiltonian or a Lagrangian is given up and the analytic properties of the transition amplitudes are made use of for studying elementary particle interactions. In the single variable dispersion relations, (the variable being the energy or momentum transfer) the principle of microscopic causality used in conjunction with the Cauchy integral formula gives the dispersion relations which express the real part of the amplitude for real values

1) V.I. Ritus, Soviet Physics - JETP, 5, 1249 (1957)
of the variable as an integral over the imaginary part and vice versa. Though proof for the existence of such relations could not be given in many cases (notably for nucleon-nucleon scattering) still these relations have found considerable application in determining coupling constants and relative parities and also in the choice of phase shifts. An approximation which has been used in this connection is the pole approximation which corresponds to the renormalized Born approximation of the Lagrangian theory. The renormalized propagator has a pole unit residue at a value of the square of the total centre of mass energy equal to the square of the mass of a single particle intermediate state which has the same quantum numbers as the initial or final state. Further, the vertex functions (which appear in the numerator of the Born approximation) are analytic in the neighbourhood of this point. Thus for discussion of experiments close to a pole, the lowest order perturbation graphs may be reliable if renormalized quantities are used.

The single variable dispersion relations do not describe all the physical singularities and hence are insufficient to determine the S-matrix. Mandelstam's conjecture that the matrix element is simultaneously an analytic function of the

1) See e.g., the article of M.J.Moravcsik, in 'Dispersion Relations', Edited by G.R.Scireton, Oliver and Boyd (1960).
2) A.O.G. Kallen in 'Relations de dispersion et particules elementaires', Hermann et Paris (1960)
3) A. Omnès, ibid.
energy and momentum transfer tries to remedy this situation. The conjecture enabled him to generalize the substitution law (familiar in electrodynamics where the matrix element for a pair annihilation, for instance, is obtained from that for Compton scattering by suitable substitution) into the statement that there is a single analytic function of three variable only two of which are independent which describes all three channels corresponding to a given diagram representing two particles going over to two particles. The singularities (pole and branch points) of this function are those allowed by unitarity in each of the three channels. This principle of maximum smoothness replaces, in a way, the causality condition here. A double application of Cauchy’s theorem then gives the Mandelstam representation in which the comprehensive function (representing the matrix element for each of the three channels if the variables are properly chosen) is written as a sum of pole terms and of integrals over the double spectral functions which in turn are the discontinuities across the cuts in two of the three variables taken at a time. The representation cannot be derived from a general principle like causality, but has been verified to all orders in perturbation theory.

A generalization of Mandelstam’s ideas to interactions involving more than two particles has been given by Landau and Cutkosky.

In the earlier applications of the Mandelstam representation the double variable nature was not exploited through Mandelstam himself had indicated how the double spectral functions could be computed in the 'elastic' region and the matrix element built up by a series of iterations. But the 'strip' approximation recently suggested by Chew and Frautschi (and independently by others) which states that the strips of the double spectral functions lying in the elastic strip between the thresholds for elastic and the first inelastic process involving production of an extra particle are all that we need to know to obtain a matrix element which will be satisfactory not only in the low energy region but for arbitrary energies with restricted momentum transfer.

We have applied these ideas for certain pion production processes in Part II. Chapter VIII which is the first chapter of this part deals with the evaluation of the double spectral functions for the problem of photoproduction of pions on the nucleons. Using the strip approximation in the sense mentioned above, integral equations have been set up, which can be the starting point for calculation involving energies higher than that of the first pion-nucleon resonance.

In Chapter IX, the photoproduction of pions on pions which is the simplest process one can think of as it involves

Recently, however, they have given a re-definition of the 'strip' region in terms of the Regge Poles (G.F. Chew, S.C. Frautschi and S. Mandelstam, Phys. Rev., 128, 1202 (1962))
only one amplitude is studied in the strip approximation. Using the one dimensional solution for the problem, the inelastic contribution to the absorptive part is evaluated. In the limit of very high energy, the inelastic cross section is shown to fall off rapidly.

In Chapter X, the pole approximation is applied to the pion decay mode of the Σ particle and a possible explanation for the curious pattern of the Σ decay asymmetries is given based on the idea of a parity clash.

In Part III of this thesis, certain new stochastic aspects of cascade theory are studied in Chapter XI. An interesting relationship between the old and the new approach to cascade theory is established during the regeneration point method. An error in the usual formulation of the cascade theory of multiple particle production is pointed out. Application of the ambiguous stochastic process which enables us to consider problems involving back-scattering also, to the problem of lateral spread in extensive air showers is indicated.

Finally in Chapter XII, a comparative study of the well-known method of Wick for proving the equivalence of the field theoretic and Feynman formalisms and the method

of Ramakrishnan et al. is made. The use of the stochastic concept of realization (or sample) is shown to lead to a proof of the equivalence which is straightforward and transparent.

1) A. Ramakrishnan et al., Journal of Mathematical Analysis and Applications,

CHAPTER II

PHOTO PRODUCTION OF PION PAIRS FROM NUCLEONS. 1)

1. Introduction

There is a satisfactory theoretical description of the
photo production of a single pion from a nucleon up to about
300 or 400 Mev which is the region where the first pion-
nucleon resonance in the \((3/2, 3/2)\) state is dominant. Using
a cut-off and a value \(f^2 = 0.08\) for the parameter \(f\)
which is the pseudovector renormalised unrationa\(lised\) pion-nucleon
coupling constant, Chew and Low 2) were able to reproduce
many of the broad features of photo pion production in this
energy region. In addition, the Chew-Low theory led to the
Kroll-Rudermann theorem vis., that the \(s\)-wave amplitude for
charged photo pion production at threshold is simply related to \(f^2\)
and the value of \(f^2\) thus obtained was found to be in close
agreement with the value obtained from measurement of pion
nucleon scattering. Further refinements to theory of photo
production have been made by the application of dispersion
relations. 3)

1) S.K. Srinivasan and K. Venkatesan, Nuclear Physics,
12, 418 (1959); ibid, 29, 355, (1962).
3) See Chapter VIII.
At energies above 400 Mev the photo production of pion pairs and higher multiplets becomes energetically possible. The process of pair production was first noted in experiments with a 500 Mev bremsstrahlung beam of the Caltech synchrotron\(1\) by observing the negative pions emitted from a hydrogen target. The negative pions are presumed to arise from the reaction

\[
\gamma + p \rightarrow \pi^- + \pi^+ + p
\]

(a)

More extensive measurements were carried out by Friedman and Crowe\(2\), Bloch and Sands\(3\), Sellen et al\(4\) and Chas\(5\). The last named authors investigated more than two hundred events of double-pion photo production and concluded that the total cross-section for this process is nearly a third of the cross-section for the photo production of a single pion at resonance.

In view of these data for the process, it is necessary to examine how far the observed cross-sections can be explained within the present framework of elementary particle theory. Cutkosky and Zachariasen\(6\) used the Chew-Low theory to study the process (a) assuming that the bombarding energy of the photon is low enough so that two \(p\)-wave mesons are not produced. Further assuming the pion-nucleon interaction to be predominantly

\begin{itemize}
\end{itemize}
They argue that the cross-section for producing two π-wave mesons will depend only on recoil effects and hence is expected to be small. Thus they assume that only one p-wave and one σ-wave pions are produced. The experimental fact that the energy spectrum of negative pions is peaked at low energy supports their view.

We have used Low's method for deriving an integral equation for the relativistic matrix element for process (a). Retaining in the first instance only the inhomogeneous terms and using the static approximation the total cross-sections have been evaluated for various values of the incident photon energy and these are found to be in agreement with the experimental values of Sellen et al and Chasan et al. In a later section the integral equation is solved by making an angular momentum and isotopic spin analysis and utilizing the experimental fact mentioned above, that the negative pion tends to come out with low energies for considerable energies of the incident photon.

In addition to its utility in deciding the validity of the static approximation at energies higher than the ones originally intended which would at the same time confirm certain characteristic features of the static such as the linearity of the interaction and the viewpoint that only low energy intermediate states are important for low energy processes, a study of process (a) can be useful for other reasons. The suggestion has been made by Chew that the role of the pion-pion interaction in

1) Refs. 5 and 6, P.15
pion-nucleon collisions is to capture the incident pion in the pion cloud surrounding the nucleon. The effect of the Yukawa interaction and especially the resonance in the \((3/2, 3/2)\) state of the pion-nucleon system would enter essentially as a final state interaction. Now the absence of such an interaction in the photo production of pions, (if we ignore a possible direct photon-three pion interaction for the present) would mean that the Yukawa interaction between the pion and the nucleon along with the electromagnetic interaction by itself should be able to explain the experimental features of pion pair production up to a considerably energy. Bell's results on single pion photo production seem to lend support to the view that the pion-pion interaction is not of much consequence in low-energy photo production of pions. A study of process (a) should throw further light on this matter.

It has also been suggested\(^2\) that the application of the Chew-Low\(^3\) extrapolation procedure to the process would enable us to determine the coupling constant for the direct photon-three pion interaction. If the differential cross-section for the process is extrapolated to the pion pole in the momentum transfer variable, it is related to the product of the pion-nucleon and photon-three pion vertices from which

the coupling constant for the latter should be determinable (fig. 1). We have examined the effect of the photon–three pion interaction and the double–pion photo production employing a phenomenological interaction Hamiltonian.

2. Derivation of the matrix element

We use Low’s method for deriving the matrix element for the process. The matrix element for the production of a pair of mesons of momenta \(q_1, q_2 \) and isobaric spin indices \(\lambda, \beta \) from a nucleon due to a photon of momentum \(k \) and polarisation \(\varepsilon \) is given by\(^2\)

\[
\langle p', q_1 \alpha, q_2 \beta | S | k \varepsilon ; p \rangle \\
= \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int d\xi_1 \int d\xi_2 \cdots \int d\xi_n \\
\cdot (\bar{\phi}_{p'}(q_1 \alpha \lambda)(q_2 \beta \lambda), P (H(\xi_1) H(\xi_2) \cdots H(\xi_n) b(\varepsilon)^+ (k) \phi_p)
\]

where \(p \) and \(p' \) are the initial and final momentum states of the nucleon. \(P \) is the chronological operators of Dyson and \(H(\xi) \) the interaction Hamiltonian density given by

\[
H(\xi) = i g \bar{\psi}(\xi) \gamma_\mu \gamma_5 \psi(\xi) \psi(\xi) - \mu m \bar{\psi}(\xi) \psi(\xi) - \frac{1}{2} \mu^2 \bar{\psi}(\xi) \psi(\xi) + \frac{i}{2} e \bar{\psi}(\xi) \gamma_\mu A_\mu(\xi) \frac{1}{2} (1 + \gamma_3) \psi(\xi)
\]

\[
+ \frac{1}{2} e \bar{\psi}(\xi) \sigma_{\mu \nu} F_{\mu \nu}(\xi) \left[\frac{1}{2} (1 + \gamma_3) \mu_\nu + \frac{1}{2} (1 - \gamma_3) \mu_\nu \right] \psi(\xi)
\]

2) Throughout this thesis, we shall write a four-vector \(x \) and a three-dimensional vector by an arrow placed above it. The scalar product of two four-vectors \(x \) and \(y \) will be denoted by \(x \cdot y = x^2 - \frac{1}{2} x_0 y_0 \).
\[+ \frac{i e (\Phi^* (x) \frac{\partial \Phi (x)}{\partial x_\mu} - \frac{\partial \Phi^* (x)}{\partial x_\mu} \Phi (x)) A_\mu (x)}{2} \]

\[+ e^2 A_\mu (x) A_{\mu} (x) \Phi^* (x) \Phi (x) \]

\[+ \frac{\lambda}{4 \pi} \left[\Phi_i (x) \Phi_i (x) \right]^2 \]

(2)

Here the various terms on the right hand side in order, are:

1. the pion-nucleon interaction term,
2. the nucleon mass renormalization,
3. the meson mass renormalization,
4. the photon-nucleon interaction through the charge,
5. the magnetic moment interaction of the nucleon with the photon;
6. and (7) the meson-photon interaction terms, and
7. the direct pion-pion interaction if any.

The \(\gamma_i \)'s are the usual iso-spin matrices of the nucleon and \(\mu_p \) and \(\mu_n \) are the magnetic moments of the proton and the neutron respectively; \(a \) is the annihilation operator of meson and \(b(e)^+ \) is the creation operator for a photon of polarization type \(\epsilon \).

We ignore for the time being the last term in (2) which represents direct pion-pion interaction. We shall take the interaction into consideration in the next chapter. Commuting \(\alpha_2(q_1) \) and \(\alpha_2(q_2^*) \) through to the right using the commutation relation.
\[\left[a_j(q_j), \phi_k(x) \right] = \delta_{kj} \frac{e^{-i q_j x}}{(2\omega(q_j))^2} \]

(3)

and taking into consideration only the first five terms in \(\left\{ q \right\} \), we obtain

\[\langle p'; q_1 \alpha, q_2 \beta | S | k \in ; p \rangle = (-i) \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int dx dy \left(\frac{1}{\omega(q_1) \omega(q_2)} \right) \]

\[\cdot \sum_{i} \int dx_1 \int dx_2 \cdots \int dx_n \]

\[\cdot \left(\Phi_{p'}, \mathcal{P} \left[H(x_1) H(x_2) \cdots H(x_n) \right] b^\dagger (x) \Phi_{p} \right) \]

(4)

where \(j \) is the meson current operator defined by the equation of motion

\[(\Box - m^2) \phi_i(x) = i \gamma \psi(x) \gamma_5 \rho_i \psi(x) - \delta_{\mu}^5 \phi_i(x) \]

where \(\mu \) on the left is the renormalized pion mass. 1)

We now convert this matrix element which is defined in terms of quantities in the interaction representation into one in the Heisenberg representation by using the relation

\[\langle p' | \Phi_{p}, \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int dx_1 \int dx_2 \cdots \int dx_n \]

\[\cdot \mathcal{P} \left[H(x_1) \cdots H(x_n) A_1(x) A_2(y) \cdots \right] \Phi_p \]

\[= \langle p' | \mathcal{P} \left[A_1(x) A_2(y) \cdots \right] | p \rangle \]

(5)

1) In the following the pion mass will be set equal to unity.
where A^\pm's are interaction and A^H_{λ} Heisenberg operators and $|p\rangle$ represents the exact single physical nucleon eigenstate of the total Hamiltonian. This relation can be easily derived on making use of the Gell-Mann Low Theorem which gives the relationship between the "bare" and the "physical" vacuum.

$$c\psi_0 = \frac{U(0, +\infty)\Phi_0}{(\Phi_0, U(0, +\infty)\Phi_0)}$$ \hspace{1cm} (6)$$

where U is the usual unitary operator. Thus the matrix element can be written as

$$\langle p'; q_1, q_2 |s| k\in; p \rangle = -\int dx \int dy \frac{e^{-iq_1x-iq_2y}}{(4\omega_1\omega_2)^{1/2}} \langle p' | P(J_\lambda(x)J_\beta(y)) | k\in; p \rangle$$ \hspace{1cm} (7')$$

where for brevity we have written ω_1 and ω_2 for $\omega(q_1)$ and $\omega(q_2)$ respectively and the J'_λ are the pion current operators in the Heisenberg representation.

If we had taken the operators $a_\lambda(q_1)$ and $a_\beta(q_2)$ through the sixth term of (2) and followed the above procedure, then upto first order in the electromagnetic coupling constant e, we should have obtained a matrix element which apart from factors would be

$$\langle p' | A_\mu(x) | k\in; p \rangle$$ \hspace{1cm} (8)$$

Using the equation of motion for the photon-nucleon interaction

$$\Box A_\mu(x) = i e \bar{\psi}(x) \gamma_\mu \psi(x) = j_\gamma(x)$$ \hspace{1cm} (9)$$

This result can also be arrived at following the procedure of Lehmann et al., using the asymptotic condition to convert the particles(pions) in the state vector into currents.

H. Lehmann et al., Nuovo Cimento, 1, 205, (1955)
and using the translational invariance for any Heisenberg operator
\[F(x) = e^{-iPx} F(0) e^{iPx} \]
where \(P \) is the energy-momentum operator, we could write (8) as
\[\frac{\langle p' | J_\gamma(x) | k \epsilon; p \rangle}{(k + p - p')^2} \]

The matrix element in the numerator represents Compton scattering from a nucleon. Since the cross-section for this is small above the threshold for pion production, we shall not consider this term any further. Similarly we can ignore the seventh term (2) since it is already of second degree in \(\epsilon \).

Using translational invariance, we obtain, on performing the \(x \) integration in (7),
\[\langle p'; q_{1\alpha}, q_{2\beta} | s | k \epsilon; p \rangle = -\delta(p + k - p' - q_{1\alpha} - q_{2\beta}) \]
\[\frac{1}{(4\omega_1\omega_2)^{1/2}} \int dy e^{-iq_{2\beta}y} \langle p' | P(J_{\alpha}(y) J_{\beta}(x)) | k \epsilon; p \rangle \]

Introducing a complete set of intermediate states and performing the \(y \) integration we obtain
\[\langle p'; q_{1\alpha}, q_{2\beta} | T | k \epsilon; p \rangle = \frac{1}{(4\omega_1\omega_2)^{1/2}} \]
\[x \left[\sum n \langle p' | J_{\alpha}(y) \rangle n; \vec{p} = \vec{k} + \vec{p} - \vec{q}_{2\beta} \rangle \right. \]
\[\langle n; \vec{p}_n = \vec{k} + \vec{p} - \vec{q}_{2\beta} | J_{\beta}(x) | k \epsilon; p \rangle \]
\[(\omega_2 + E_n - p_0 - k - i\epsilon)^{-1} \]
\[- \sum_n \langle p' | t^{(0)}_\beta | n \rangle \frac{1}{\varepsilon} \langle p_n = p' + q_2 | J_\omega^{(0)} | k \varepsilon ; p \rangle (\omega_2 + p_0 - E_n + i\varepsilon) \]

where the T-matrix is defined by

\[\langle p' ; q_1 \alpha, q_2 \beta | S | k \varepsilon ; p \rangle = i \delta(p + k - p' - q_1 - q_2) \times \langle p' ; q_1 \alpha, q_2 \beta | T | k \varepsilon ; p \rangle \]

Next we make the usual "Tamm-Dancoff" approximation, restricting the \(n \) states to one nucleon, (ii) one nucleon + one photon and (iii) one nucleon + one pion states. This procedure yields an integral equation for the double pion photoproduction amplitude. The inhomogeneous part consists of two terms. The term arising from the single nucleon intermediate state contains the product of the pion nucleon vertex and the single pion photoproduction amplitude. The term arising from the single nucleon + single photon intermediate state includes the product of the amplitude for the photoproduction of a single pion and the amplitude for the photon-emission of a single pion and the amplitude for the photoproduction of a pion and photon from a nucleon. The third term arising from the single nucleon + single pion intermediate state is the integral equation term the kernel being related to the matrix element for pion-nucleon scattering.

1) It will be noticed that we are consistently ignoring all factors of \(\pi \). These will be taken into account correctly when the cross-section is evaluated, by putting in the proper factors in the density of states.
Instead of \(i \) "contracting" on both the mesons in the state vector we could have converted the incident photon and one of the final pair of pions into current operators. Then the numerators of the two terms of the double-pion photoproduction matrix element would be, in the single nucleon approximation,

\[
\langle p' ; q_a \beta | J_x(\omega) | N \rangle \langle N | J_y(\omega) | p \rangle
\]

and

\[
\langle p' ; q_a \beta | J_y(\omega) | N \rangle \langle N | J_x(\omega) | p \rangle
\]

respectively where \(| N \rangle \) denotes the single nucleon state and \(J_x(\omega) \) is the complete "photon" current operator consisting of a part due to the nucleon current and a part due to the pion current. These two terms represent respectively,

(i) the product of pion-nucleon scattering amplitude and the electromagnetic vertex of the nucleon, and

(ii) the photo production of a single pion \(X \) the pion-nucleon vertex.

The kernel of the integral equation term which arises from the single-nucleon + single photon intermediate state contains the matrix element for Compton scattering from the nucleon.

We have preferred to work with the first form (equation (13)) for the double pion photoproduction matrix element. We shall study the following processes with its help:

(a) \(\gamma + p \rightarrow p + \pi^+ + \pi^- \)

(b) \(\gamma + p \rightarrow n + \pi^+ + \pi^0 \)

(c) \(\gamma + p \rightarrow p + \pi^0 + \pi^0 \)
3. \(\gamma + p \rightarrow p + \pi^+ + \pi^- \)

In this case we note that a non-vanishing contribution to the amplitude comes from only one of the two terms in (13) since a proton cannot emit a \(\pi^- \). The complete matrix element for the process in the approximation of retaining the intermediate states mentioned in the previous section will be

\[
\langle p'; q_{\pi^+}, q_{\pi^-} | \pi^- | p \rangle \propto (4 \omega_1 \omega_2)^{1/2}
\]

\[
= \langle p'| J_+(0) | p + \vec{q} - \vec{q}_2 \rangle \langle p + \vec{q} - \vec{q}_2 | J_+(0) | p \rangle \times \frac{\omega_2 + E (p + \vec{q} - \vec{q}_2) - p_0 - \mathbf{k}_0 - i\epsilon \omega_2 + E (p + \vec{q} - \vec{q}_2 - \mathbf{k}) - p_0 - \mathbf{k}_0 - i\epsilon}{\left(\omega_2 + \mathbf{k} + E (p + \vec{q} - \vec{q}_2 - \mathbf{k}) - p_0 - \mathbf{k}_0 - i\epsilon \right)^{-1}}
\]

\[
+ \sum d^3 k' \langle p'| J_+(0) | p \rangle \langle \vec{q} - \vec{q}_2 - \mathbf{k}' | J_+(0) | p \rangle \times \frac{\omega_2 - \mathbf{k} + E (p + \vec{q} - \vec{q}_2 - \mathbf{k}') - p_0 - \mathbf{k}_0 - i\epsilon}{\left(\omega_2 + \mathbf{k} - E (p + \vec{q} - \vec{q}_2 - \mathbf{k}') - p_0 - \mathbf{k}_0 - i\epsilon \right)^{-1}}
\]

\[
+ \sum d p'' \int d q' \langle p'| J_+(0) | q' \rangle \delta (\mathbf{p} + \mathbf{q} - \mathbf{p}' - \mathbf{q}) \times \frac{p'' - \omega + \omega_2 + p_0 - \mathbf{k}_0 - i\epsilon}{\left(p'' + \omega - \omega_2 + p_0 - \mathbf{k}_0 - i\epsilon \right)^{-1}}
\]

\[
+ \sum \int d p'' \int d q' \langle p'| J_+(0) | q' \rangle \delta (\mathbf{q} + \mathbf{p}' - \mathbf{p}'' - \mathbf{q}) \times \frac{p'' + \omega + \omega_2 - p_0 - \mathbf{k}_0 - i\epsilon}{\left(p'' + \omega + \omega_2 - p_0 - \mathbf{k}_0 - i\epsilon \right)^{-1}}
\]

\[
\times \omega_2 + p_0 - p'' - \omega + i\epsilon\]

(15)
The summation sign in the second, third terms on the right hand side indicates a summation over the spin, isotopic spin and polarization of the particles in the intermediate state. We observe that in a consistent single nucleon approximation, it is necessary to include a part of the second term on the right hand side of (15) (which arises from the intermediate state containing a single nucleon and a photon) since this part contributes a term which is of the same order of magnitude as the 'n' state containing a single nucleon. This is because the second half of the matrix element of this term represents the matrix element for scattering of a photon with emission of a pion. In the lowest order the photon remains unscattered while a pion is emitted by a nucleon. In this case, there is no integration over \(\mathbf{k}' \) since \(\mathbf{k}' = \mathbf{k} \). The unscattered photon now interacts with the nucleon in the intermediate state giving rise to the production of a pion. Thus the matrix element from this term is the same as the one arising from the first term on the right hand side of (15) except that the particles \(\pi^+ \) and \(\bar{\pi}^- \) have switched ends, the pion-nucleon vertex involving the \(\pi^+ \) occurring earlier than the photo-production of \(\pi^- \). The first term of (15) on the other hand involves the photo-production of a \(\pi^- \) which appears earlier than the pion-nucleon vertex involving the \(\pi^- \). In the further calculation in this section, we shall be taking into account only these two terms deferring the solution of the integral equation to a subsequent section.
We have to use some approximate forms for the single photo production matrix element and the pion-nucleon vertex. It is generally believed\(^1\) that many of the phenomena in the sub GeV region can be studied successfully on the basis of a cut-off theory suitably modified by the pion-pion interaction. We shall use the form for the pion-nucleon vertex in the static approximation given by Low\(^2\) and the single photo-production matrix element (as given by Chew et al.)\(^3\) in which we retain only the significant terms, namely, the magnetic dipole (or phase shift) term, the electric dipole term and the pion current term containing all multipoles. The matrix element for double-pion photo-production can then be written as

\[
\langle p'; q_{1-}, q_{2+} \mid T \mid k e ; p \rangle = \frac{(\Lambda T)^{\gamma_2} e_f^2}{(8\omega_1 \omega_2 k)^{\gamma_2}} \left| M \right|^2
\]

where \(M\) is given by

\[
M = \frac{i(\mu_p - \mu_n)}{6\omega_2 m f^2} e^{i\delta(q_1)} \sin \delta(q_1) q_{1-} \cdot \left(\vec{q}_2 \times [\vec{q}_1 \times (k \times e)] \right) - i \vec{q}_2 \cdot (\vec{q}_1 \times (k \times e))
\]

1) M. Cini and G. Fubini, Nuclear Physics, \textbf{13}, 352 (1960)
2) P. E. Low, loc cit
3) G. F. Chew et al., loc cit. Here and in the rest of the thesis we shall be using a square cut off in the static expressions for vertices and matrix elements so that factors like \(\nu(q_1)\) or \(\nu(q_2)\) representing the cut off factors will not be explicitly written.
\[+ \frac{2}{\omega_q^2 (1 + \frac{\omega_q}{m})} \left[\epsilon \hat{v}_1 \cdot e + i \sigma \times (\epsilon \times \hat{v}_2) \right] \]
\[+ \frac{2q_1 \cdot e}{(\vec{k} - \vec{q}_1)^2 + 1} \left[(\vec{k} - \vec{q}_1) \cdot \hat{v}_1 + i \sigma \cdot (\vec{k} - \vec{q}_1) \times \hat{v}_1 \right] \]
\[- \frac{i (\mu_b - \mu_m)}{6 \omega_q m^2} \frac{e^{-i \delta(q)}}{q_3^2} \sin \delta(q) \]
\[\times \left\{ 2 \vec{q}_2 \cdot (\vec{k} \times e) \cdot \hat{v}_1 + \hat{v}_1 \times \left[\vec{q}_1 \times (\vec{q}_2 \times (\vec{k} \times e)) \right] \right\} \]
\[- i \vec{q}_1 \cdot (\vec{q}_2 \times (\vec{k} \times e)) \right\} \]
\[- \frac{2}{\omega_q^2 (1 + \frac{\omega_q}{m})} \left[\vec{q}_1 \cdot e + i \sigma \cdot \vec{q}_1 \times e \right] \]
\[+ \frac{2q_1 \cdot e}{(\vec{k} - \vec{q}_2)^2 + 1} \left[\vec{q}_1 \cdot (\vec{k} - \vec{q}_2) + i \sigma \cdot \vec{q}_1 \times (\vec{k} - \vec{q}_2) \right] \]

Here \(\delta(q) \) represents the phase shift for the \(33 \) state corresponding to the momentum \(q \) and \(\f^2 \) is the renormalised un-normalised pseudovector coupling constant which has a value \(0.08 \).

Squaring (17), averaging over the initial spin and polarisation directions and summing over the final spin states, we obtain for the differential cross-section for the process, the expression
\[
\frac{d^3 \sigma}{d \omega_1 d \epsilon_+ d \epsilon_-} = (4\pi)^5 \left(\frac{4\pi}{8\omega_1 \omega_2 k} \right)^{1/2} (4\pi)^3 e^{2f_4 \omega_1 \omega_2 q_1 q_2} \left| M_a + M_b \right|^2
\]
where \(M_a \) and \(M_b \) are the sums of the first two and the last two terms of (17) respectively.
\[
|\mathbf{M}_a|^2 = \frac{(\mu_p - \mu_n)^2 k^2 q_2^2 \sin^2 \delta(q_1) \sin^2(\Theta_1)}{12 m^2 f^4 \omega^2 q_1^4} (2 + 3 \sin^2 \Theta_1)
\]
\[
+ \frac{4 q_1^2}{(1 + \frac{\omega_1}{\omega})^2 \omega_1^2} \left[1 - \frac{2 q_1^2 \sin^2 \Theta_1}{(k^2 + q_2^2 + 2 k q_1 \cos \Theta_1 + 1)^2} \right]
\]
\[
+ \frac{2}{3} \frac{(\mu_p - \mu_n) k q_1^2 \sin \delta(q_1) \cos \delta(q_1)}{q_1^2 \omega_1 \omega_2 f^2} \left[\frac{R q_1^2 \sin^2 \Theta_2}{(k^2 + q_2^2 + 2 q_1 q_2 \cos \Theta_2 + 1)^2} - \frac{\cos \Theta_2}{\cos \Theta_1} \right]
\]
\[
(19)
\]

\[
|\mathbf{M}_b|^2 = \frac{(\mu_p - \mu_n)^2 k^2 q_1^2 \sin^2 \delta(q_2) \sin^2(\Theta_2)}{12 m^2 f^4 \omega^2 q_2^4} (2 + 3 \sin^2 \Theta_2)
\]
\[
+ \frac{4 q_2^2}{(1 + \frac{\omega_2}{\omega})^2 \omega_2^2} \left[1 - \frac{2 q_2^2 \sin^2 \Theta_2}{(k^2 + q_2^2 + 2 k q_1 \cos \Theta_1 + 1)^2} \right]
\]
\[
+ \frac{2}{3} \frac{(\mu_p - \mu_n) k q_2^2 \sin \delta(q_2) \cos \delta(q_2)}{q_2^2 \omega_1 \omega_2 f^2} \left[\frac{R q_2^2 \sin^2 \Theta_2}{(k^2 + q_2^2 + 2 q_1 q_2 \cos \Theta_2 + 1)^2} - \frac{\cos \Theta_2}{\cos \Theta_1} \right]
\]
\[
(20)
\]
\[a \Re M_a^* M_b = \frac{1}{18} \frac{(\mu_p - \mu_n)^2 k^2}{\omega_1 \omega_2 m^2 f q_1 q_2} \sin \delta(q_1) \sin \delta(q_2) \]

\[\cdot \cos(\delta(q_1) - \delta(q_2)) \left[-\frac{3}{2} \sin \Theta_1 \sin \Theta_2 \cos \Phi \right. \]

\[\times \left(\cos \Theta_1 \cos \Theta_2 + \sin \Theta_1 \sin \Theta_2 \cos \Phi \right) + \sin^2 \Theta_2 - 2 \cos \Theta_1 \cos \Theta_2 \sin \Theta_1 \sin \Theta_2 \cos \Phi \]

\[+ \frac{(\mu_p - \mu_n) \sin 2 \delta(q_1) k q_2}{3 \omega_1 \omega_2 m^2 f q_1} \left[\frac{1}{2} \cos^2 \left(\cos \Theta_1 \cos \Theta_2 + \sin \Theta_1 \sin \Theta_2 \cos \Phi \right) \right. \]

\[- \sin \Theta_1 \sin \Phi \left(\cos \Theta_2 \sin \Theta_1 \sin \Phi - \sin \Theta_1 \cos \Phi \right) \]

\[\times \left(\cos \Theta_1 \sin \Theta_2 + \cos \Theta_2 \sin \Theta_1 \cos \Phi \right) \]

\[+ \frac{1}{2} \left(\sin^2 \Theta_2 \cos \Theta_2 - \sin \Theta_1 \cos \Theta_1 \sin \Theta_2 \cos \Phi \right) \]

\[+ \frac{q_1 \sin \Theta_2}{(k - q_2)^2 + 1} \left(2 k \sin^2 \Theta_2 \sin \Theta_1 \sin \Phi \right. \]

\[\left. + (\cos \Theta_1 \cos \Theta_2 - \sin \Theta_1 \sin \Theta_2 \cos \Phi) \right) \]

\[\times \left\{ k \sin \Theta_1 \cos \Phi + q_2 \left(\cos \Theta_1 \sin \Theta_2 - \sin \Theta_1 \cos \Theta_2 \cos \Phi \right) \right\} \]

\[+ \frac{q_2 \sin \Theta_2}{(k - q_2)^2 + 1} \left(k \cos \Theta_1 \cos \Phi \right. \]

\[\left. - q_1 \left(\cos \Theta_1 \cos \Theta_2 - \sin \Theta_1 \sin \Theta_2 \cos \Phi \right) \right) \]

\[+ \frac{(\mu_p - \mu_n) \sin 2 \delta(q_1) k q_2}{3 \omega_1 \omega_2 m^2 f q_1} \left[\frac{1}{2} \cos \Theta_1 \sin \Theta_1 \sin \Phi - \sin \Theta_1 \cos \Phi \right] \]

\[+ \sin \Theta_2 \left(\cos \Theta_1 \sin \Theta_2 - \sin \Theta_1 \cos \Theta_2 \cos \Phi \right) \]
\[
+ \frac{k}{(k - q_2)^2 + 1} \left[q_1 (\cos \phi - \sin \phi) \left(\sin \theta_1 \cos \theta_2 \sin^2 \theta_2 \cos \phi \right) \right.
\times \left(\sin \theta_2 \cos \theta_1 + \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \cos \phi \right) \left. \right] \\
- 2 \sin^2 \theta_1 \sin^2 \theta_2 \sin^2 \phi \\
- q_1 \sin^2 \theta_1 \left(\cos^2 \theta_2 + \sin^2 \theta_2 \cos \phi \sin \phi \right) \right]
\]

\[
- \frac{8q_1q_2 \cos \theta_1 \cos \theta_2}{c_1c_2} \\
+ \frac{16q_1^2q_2^2 \sin \theta_1 \sin \theta_2 \cos \phi}{c_1c_2 \left[(k - q_1)^2 + 1 \right] \left[(k - q_2)^2 + 1 \right]} \\
\times \left\{ k (\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \cos \phi) (q_1 \cos \theta_1 + q_2 \cos \theta_2) \\
+ 2k^2 \cos \theta_1 \cos \theta_2 - k (q_1 \cos \theta_2 + q_2 \cos \theta_1) + q_1 \omega_2 \right\} \\
+ \frac{4q_1^2q_2 \sin \theta_2}{(k - q_1)^2 + 1} \left\{ (k \cos \theta_2 - q_1) \sin \theta_2 \cos \phi \\
+ q_2 \sin \theta_1 (\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \cos \phi) \right\} \\
+ \frac{4q_2^2q_1 \sin \theta_2}{(k - q_2)^2 + 1} \left\{ (k \cos \theta_2 - q_2) \sin \theta_2 \cos \phi \\
+ q_2 \sin \theta_1 \left(\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \cos \phi \right) \right\}
\]
In the above θ_ϕ is the angle that the positive pion makes with the direction of the photon while θ_λ and φ are the spherical polar angles of the direction in which the negative pion with momentum \vec{q}_p is emitted.

On performing the integration over the angles of both Π^+ and Π^- and also over the energy c_0, we obtain the total cross-section as

$$
\sigma_{(\pi^+\pi^-)}(\beta) = \int (F_D + F_I) \, d\omega_1
$$

where

$$
F_D = \frac{e^2 f_{q_1 q_2}}{k} \left\{ \frac{2 (m_p - m_n)^2 \beta q_1 q_2}{q_1 q_2} \frac{\sin^2 S(q_1)}{\omega_1^2 q_1^6} + \frac{\sin^2 S(q_2)}{\omega_2^2 q_2^6} \right\}
$$

$$
+ 16 \left(\frac{q_2^2}{\omega_2^2} + \frac{q_1^2}{\omega_1^2} \right) - 16 q_1 q_2 \left[\frac{J(q_1) - I(q_1)}{\omega_1^2} \right] + \frac{J(q_2) - I(q_2)}{\omega_2^2}
$$

$$
F_I = \frac{e^2 f_{q_1 q_2}}{k} \left\{ \frac{2 (m_p - m_n)^2 \sin S(q_1) \sin S(q_2) \cos [\Delta(q_1) - \Delta(q_2)]}{\omega_1 \omega_2 m_{q_1 q_2}^2 \beta q_1 q_2} \right\}
$$
\[-\frac{8}{\omega_1 \omega_2} k^2 q_1 q_2 I(q_1) I(q_2)\]
\[-\frac{8 (\mu_p - \mu_n) k^2}{q \omega_1 \omega_2 m_f^2} \left(\frac{q_1^2}{q_2} I(q_1) \sin^2 \delta(q_2) \right)\]
\[-\frac{q_2^2}{q_1} I(q_2) \sin^2 \delta(q_1)\]
\[+ \frac{2}{3} \frac{(\mu_p - \mu_n) k^2}{m_f^2} \left(\frac{q_2^2 \sin^2 \delta(q_2)}{q_1 \omega_1^2} \right) I(q_2)\]
\[+ \frac{q_2^2 \sin^2 \delta(q_1)}{q_1 \omega_1^2} I(q_1)\]
\[-16 \frac{q_1 q_2}{q_1 \omega_1^2} \left(\frac{I(q_1)}{\omega_1^2} + \frac{I(q_2)}{\omega_2^2} \right)\] \((24) \)

Here
\[I(x) = \frac{k^2 + x^2 + 1}{2 k^2 x^2} + \frac{(k^2 + x^2 + 1)^2 + 4 k^2 x^2}{8 k^3 x^3} x\]
\[x \log \frac{k^2 + x^2 - 2k x + 1}{k^2 + x^2 + 2k x + 1}\] \((25) \)

\[J(x) = \frac{1}{k^2 x^2} - \frac{k^2 + x^2 + 1}{4 k^3 x^3} \log \frac{k^2 + x^2 + 1 - 2k x}{k^2 + x^2 + 1 + 2k x}\] \((26) \)

The integration over \(\omega_1 \) was done numerically using desk calculating machines for three values of the incident photon energy \(k \). The results are summarised in Table I.
TABLE I (a)

Total cross-sections σ_{tot}^{+-} for various values of the incident photon energy K

<table>
<thead>
<tr>
<th>K in Mev.</th>
<th>σ_D in μb</th>
<th>σ_L in μb</th>
<th>σ_{tot}^{+-} in μb</th>
<th>σ_{tot}^{+-} (Experimental) of the Coconul group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td>∞ 10</td>
</tr>
<tr>
<td>490</td>
<td>37</td>
<td>15</td>
<td>52</td>
<td>∞ 50</td>
</tr>
<tr>
<td>560</td>
<td>51</td>
<td>26</td>
<td>77</td>
<td>∞ 77</td>
</tr>
</tbody>
</table>

1) R.M. Chassan et al, loc. cit;
 J.M. Sallen et al, loc. cit.
TABLE I (h)

Differential cross-sections in μb/sr for a π^- kinetic energy of 72 Mev.

<table>
<thead>
<tr>
<th>K. in Mev.</th>
<th>π^+ Scattering angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°</td>
</tr>
<tr>
<td>420</td>
<td>0.07</td>
</tr>
<tr>
<td>4500</td>
<td>0.209</td>
</tr>
<tr>
<td>5500</td>
<td>0.33</td>
</tr>
<tr>
<td>6000</td>
<td>0.451</td>
</tr>
<tr>
<td>7000</td>
<td>0.542</td>
</tr>
<tr>
<td>7500</td>
<td>0.692</td>
</tr>
</tbody>
</table>
The results are plotted along with the experimental data (in the form of a histogram) of Cisowski et al. The theoretical curve matches well between 400 and 700 Mev and reaches a minimum value at about 500 Mev. The theoretical results compare favorably with the experimental data except at low energies indicating that the neglect of the pion-nucleon interaction may not be justified at higher energies.

TABLE I (a)

Differential cross-sections in mb/sr for a π^- kinetic energy of 120 Mev.

<table>
<thead>
<tr>
<th>K, in Mev</th>
<th>π^+ Scattering angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°</td>
</tr>
<tr>
<td>420</td>
<td>0.133</td>
</tr>
<tr>
<td>500</td>
<td>0.056</td>
</tr>
<tr>
<td>550</td>
<td>0.204</td>
</tr>
<tr>
<td>600</td>
<td>0.639</td>
</tr>
<tr>
<td>700</td>
<td>0.693</td>
</tr>
</tbody>
</table>
and σ_I represent the contributions to the total cross-section σ_{tot} from F_D and F_I respectively, on integration over ω_1. The results are plotted along with the experimental data (in the form of a histogram) of Chason et al. 1) (Fig. 2). As can be seen, the experimental cross section rises rapidly between 400 and 500 Mev and reaches a maximum value of about 80 microbarns at about 600 Mev. Our theoretical results compare favourably with these data. However the agreement ceases to be good at higher energies indicating that the neglect of the pion-pion interaction may not be justified at higher energies.

4. The processes (a) \[\gamma + p \rightarrow n + \pi^+ + \pi^0 \]

and (b) \[\gamma + p \rightarrow p + \pi^0 + \pi^0 \]

Using the same procedure as in the last section we can write down the matrix elements for these processes in the one-nucleon approximation. The main difference is that for these cases both terms of (13) contribute. The complete matrix element for process (a) is given by

1) B.M. Chason et al., Phys. Rev., 119, 811 (1960). The total cross sections are presented in Table I(a). Tables I(b) and I(c) give the differential cross sections for the π^+ for fixed energies of the π^-. These differential cross sections were obtained on retaining only the third and fourth terms on the right-hand side of equation (17) in which case the π^- is emitted isotropically.
FIG. 2

O Represents Theoretical value
\[M_c = \frac{-i(\mu_p - \mu_n)}{3\sqrt{2} \omega_1 m f^2} e^{i \delta(q_2)} \sin S(q_2) \left\{ 2q_2 \cdot \left(\vec{r} \times \vec{z} \right) \vec{\sigma} \cdot \vec{q}_1 \right\} \]

\[-i \frac{q_2^2}{m} \left(q_2 \times \left(\vec{r} \times \vec{z} \right) \right) \right\} \right) \left(\frac{4}{\omega_1 (1 + \frac{\omega_2}{m})} \right) \left\{ \vec{q}_1 \cdot \vec{z} \right\} \]

\[+ \frac{2q_2 \cdot q_1}{(\vec{r} - \vec{q}_2)^2 + 1} \]

\[- \frac{i\sqrt{2}}{3} \frac{(\mu_p - \mu_n)}{\omega_2 m f^2} e^{i \delta(q_1)} \sin S(q_1) \frac{q_3^2}{q_1^3} \left[q_2 \times (q_1 \times (\vec{r} \times \vec{z})) \right] \]

and \(q_2 \) and \(q_1 \) being the momentum of the positive and neutral pions respectively.

The angular distribution for the process is given by

\[\frac{d^3\sigma + 0}{d\omega_1 d\varphi + d\omega_2} = \frac{e^2 f^4 q_1 q_2}{4\pi^2 k} \left| M_c \right|^2 \]

where

\[\left| M_c \right|^2 = \frac{(\mu_p - \mu_n)^2}{3b m^2 f^4} \left[\frac{\sin^2 \delta(q_2)}{\omega_1^2 q_1^4} k^2 \right] \]

\[\times \left\{ 4 \sin^2 \theta_1 + \left[\cos \theta_1 \sin \theta_2 - \sin \theta_1 \cos \theta_2 (\sin \varphi + \cos \varphi) \right] \right\} \]

\[+ \frac{8 \sin^2 \delta(q_1) k^2 q_2^2}{\omega_1^2 q_1^4} \left(\cos^2 \theta_1 \cos^2 \theta_2 \right) \]

\[\times \left\{ \frac{1}{4} \sin 2\theta_1 \sin 2\theta_2 \cos \varphi \right\} \]
\[+ \frac{16}{\omega_1^2 (1 + \frac{\omega_2}{m})^2} \left\{ \frac{q_1^2 \sin^2 \theta_1}{2} + \frac{4q_2^2 \sin^2 \theta_2}{(k^2 - q_2^2)^2 + 1} \right\} \times \]
\[\times (kq_1 \cos \theta_1 - \vec{q}_1 \cdot \vec{q}_2) \right\} \]
\[- \frac{\sqrt{2}}{3} \left(\frac{(\mu_p - \mu_n)}{\omega_1^2 (1 + \frac{\omega_2}{m})} \right) \frac{\sin^2 \delta(q_2)}{m_f^2 q_2^2} \left[(q_1 \sin \theta_1 \cos \theta_2 \right. \]
\[- \cos \theta_1 \sin \theta_2 \cos \phi) + q_2 \sin \theta_2 (\sin \theta_1 \cos \theta_2 \cos \phi \]
\[- \cos \theta_1 \sin \theta_2 \right) \times \frac{(kq_1 \cos \theta_1 - \vec{q}_1 \cdot \vec{q}_2)}{(k^2 - q_2^2)^2 + 1} \]
\[+ \frac{2k^2 (\mu_p - \mu_n)^2}{q_1 q_2 m_f^2} \cos \delta(q_2) \sin \delta(q_2) \sin \delta(q_2) \]
\[\times \sin \theta_2 \left[\sin \theta_2 - \sin \theta_1 \cos \phi (\cos \theta_1 \cos \theta_2 \right. \]
\[+ \sin \theta_1 \sin \theta_2 \cos \phi) \right\} \]

The matrix element for process (b) is

\[M_d = \frac{i (\mu_p - \mu_n)}{3 \omega_1 m_f^2} \frac{e^{i \delta(q_2)}}{q_1^3} \sin \delta(q_2) \]
\[\times \left\{ \vec{\sigma} \cdot [\vec{q}_2 \times (\vec{q}_1 \times (\vec{k} \times \vec{e}))] \right\} \]
\[- \frac{i (\mu_p - \mu_n)}{3 \omega_1 m_f^2} \frac{e^{i \delta(q_2)}}{q_2^3} \sin \delta(q_2) \]
\[\times \left\{ \vec{\sigma} \cdot [\vec{q}_1 \times (\vec{q}_2 \times (\vec{k} \times \vec{e}))] \right\} \]

(30)
The differential cross-section for the process is given by

\[
\frac{d^3 \sigma}{d\omega_1 d\omega_2 d\Omega_2} = \frac{e^2}{4 \pi^2} q_1 q_2 \left| M_d \right|^2
\]

where

\[
\left| M_d \right|^2 = \frac{(\mu_p - \mu_n)^2}{q_m^2 f^4} \left[\frac{\sin^2 \delta(q_1) q_1^2}{\omega_1^2 q_1^4} \right] x \left\{ \sin^2 \theta_1 + \cos^2 \theta_1 \cos^2 \theta_2 + \frac{\sin 2 \theta_1 \sin 2 \theta_2 \cos \Phi}{4} \right\}
\]

\[+ \frac{\sin^2 \delta(q_2) q_2^2}{\omega_2^2 q_2^4} \left\{ \sin^2 \theta_1 + \cos^2 \theta_1 \cos^2 \theta_2 \right. \]

\[+ \left. \frac{\sin 2 \theta_1 \sin 2 \theta_2 \cos \Phi}{4} \right\}
\]

\[= \frac{2}{q_1 q_2} \cos \left[\delta(q_1) - \delta(q_2) \right] \sin \delta(q_1) \sin \delta(q_2)
\]

\[\times \left\{ \sin^2 \theta_1 \sin^2 \theta_2 \cos \Phi + 2 \cos^2 \theta_1 \cos^2 \theta_2 \right. \]

\[+ \frac{3}{4} \sin 2 \theta_1 \sin 2 \theta_2 \cos \Phi \right\}. \quad (32)
\]
There is no experimental data for these reactions at the energies we are considering. So we content ourselves with giving in Table II the angular distribution of the π^+ if it is emitted with an energy required for forming a resonant state with the proton. A point to be noted regarding the matrix element of process (b) is that it is obtained already symmetrized with respect to the exchange of the two identical neutral pions. This is apparent from equation (13) which gives the matrix element before the static approximation is made. Remembering the conservation laws for energy and momentum, the expression (13) is seen to be symmetric under the exchange

$$\omega_1 \longleftrightarrow \omega_2 \quad \text{and} \quad \vec{\alpha}_1 \longleftrightarrow \vec{\alpha}_2$$

as is required for bosons. This feature will persist even if we restrict the intermediate states arbitrarily. The fact that the matrix elements obtained by Low’s method are already symmetrized according to the nature of the particles involved is further substantiated in a later chapter (see Chapter VII).

5. Angular Momentum and Isotopic spin analyses of the matrix element for double pion photoproduction\(^1\)

As a preliminary to solving the integral equation (15) for the matrix element for the double pion photoproduction, we have to expand the production matrix in terms of submatrices corresponding to the relevant angular momentum and isospin states.

\(^1\) The angular momentum analysis for the problem has been done by Pázsirti, (R.P. Pázsirti, Phys. Rev. 111, 1373 (1958)) and the isotopic spin analysis by Carruthers (P. Carruthers, Phys. Rev. 122, 1949 (1961)), but both these were done without reference to any dynamical theory.
Table II.

\[\frac{d^2 \sigma}{d\Omega + d\omega_1} \text{ in } \mu b / \text{sterad} / \text{MeV} \]

\[\langle \mathbf{q}_1, \mathbf{q}_2 | \mathbf{M} | \mathbf{r} \rangle \]

<table>
<thead>
<tr>
<th>(k) in MeV</th>
<th>(\theta_2)</th>
<th>0°</th>
<th>30°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>490</td>
<td>0.153</td>
<td>0.418</td>
<td>0.762</td>
<td>0.553</td>
<td>0.516</td>
<td>0.264</td>
<td>0.153</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>0.774</td>
<td>1.935</td>
<td>2.894</td>
<td>2.737</td>
<td>1.956</td>
<td>1.126</td>
<td>0.774</td>
<td></td>
</tr>
</tbody>
</table>
Let us consider the angular momentum decomposition first. If \(J \) and \(M \) denote respectively the total angular momentum and its \(Z \)-component for the initial \((i \) \) or final \((f \) \) state, we can write the \(T \)-matrix as

\[
< q_1 q_2; \mu | T | k e; \mu' > = \sum_{J'M'} \sum_{\Pi^+} a_{J'M'}^{fi} \times | J'M' \Pi' f, i \rangle < J M \Pi i >
\]

Here \(\mu \) and \(\mu' \) denote the spins of the initial and final nucleons and \(\Pi \) the parity of the state. \(a_{J'M'}^{fi} \) are functions of the energy of the system and of its isotopic spin. \(\Pi^+ \) represents collectively the vector addition of the orbital angular momentum and the spin of the photon and its \(Z \)-component. The prime indicates the corresponding quantities in the final state. Since there are three particles in the final state the angular momentum addition to arrive at the total angular momentum \(J' \) can be done in two ways, (i) by adding the orbital angular momentum of one of the pions \((l_1 \text{ or } l_2)\) with the spin of the nucleon and adding the orbital angular momentum of the other pion to the resultant or (ii) by adding the orbital angular momenta of the two pions first and then adding the spin of the nucleon. The coupling scheme is to be dictated by the expected dynamical behavior of the system. In view of the well-known resonance in the \(p \Pi^+ \) system, the natural choice is to add the system relative orbital angular momentum \(l_2 \text{ (\(Z \)-component } m_2 \)) of the \(\Pi^+ \) to the spin \(\mu' \) of the proton and add the relative
orbital angular momentum \(l \) (z-component \(m_l \)) of the \(\pi^- \) to be \(m_l \) the resultant \(\mathbf{\tau} \) (z-component \(m_\tau \)).

In view of the invariance of \(\mathbf{\tau} \) under rotations and reflections, the matrix element of \(\mathbf{\tau} \) is diagonal in \(\mathbf{J} \), \(\mathbf{M} \) and \(\mathbf{P} \) and does not depend on \(\mathbf{M} \). Therefore

\[
\langle q'_i, q'_q ; \mu' | \mathbf{T} | k e ; \mu \rangle = \sum_{J M M' M''} \mathbf{a}^{J M M' M''}_{\tau} \langle J M M' ; \mu' | k e ; \mu \rangle
\]

\[
\times \sum_{\mathbf{M}} \langle J M M' \mathbf{v} ; \mathbf{f} | \mathbf{J M P} \mathbf{v} ; \mathbf{i} \rangle
\]

(34)

The quantities \(\sum_{\mathbf{M}} \langle J M M' \mathbf{v} ; \mathbf{f} | \mathbf{J M P} \mathbf{v} ; \mathbf{i} \rangle \)

which are functions of the angular variables and are matrices with respect to the spin variables have been called angular operators or polynomials of the reaction by Ritus \(^1\). They correspond to transitions with definite total angular momentum and parity and of other quantum numbers in the initial and final states and they completely determine the angular distributions and polarizations of particles in these transitions.

Returning to our matrix element, we see that the initial state consists of the nucleon represented by its spin wave function and the photon, the angular part of which \(\mathbf{M} \) is given by a spherical vector \(\mathbf{D}_{J M M - \mathbf{m}} (\hat{k}) \) where \(\hat{k} \) is a unit vector in the direction \(\hat{k} \). The latter is a linear combination of three spherical vectors.

\(\mathbf{D}_{J l m} (\hat{k}) \) (where \(l = j, j \pm 1 \)) defined by

1) V.I. Ritus, Soviet Physics, JETP, 5, 1249 (1957);
\[D_{j}^{l}m^{(k)} = \sum_{m''} C(l\,|\,j; m' m'') \gamma_{l m'}^{(k)} \chi_{\lambda m''} \]

(35)

where \(\gamma_{l m'} \) and the \(\chi_{\lambda m''} \) are the usual spherical harmonics and the spin wave function of the photon respectively. The spherical vector \(D_{j}^{l}m-\mu^{(k)} \) must satisfy the transversality condition

\[D_{j}^{l}m-\mu^{(k)} \cdot \hat{r} = 0 \]

(36)

Therefore in the expansion of \(D_{j}^{l}m-\mu^{(k)} \) as a sum of three spherical vectors only two of the coefficients of expansion are linearly independent and thus there are only two states of the photon with given quantum numbers \(j \) and \(M-\mu \) which we can denote by \(\lambda = 0, 1 \). Thus among the three mutually perpendicular spherical vectors, \(D_{j}^{l}(\lambda = 0, \pm 1)^{(k)} \), we can choose \(D_{j}^{l}m-\mu^{(k)} \) to be longitudinal (i.e. along the direction of \(\hat{r} \)) and \(D_{j}^{l}m-\mu^{(k)} \) and \(D_{j}^{l}(\lambda = 1, \pm 1)^{(k)} \) as the transverse vectors with

\[D_{j}^{l}(\lambda = 1, \pm 1)^{(k)} = \hat{r} \times [D_{j}^{l}m-\mu^{(k)} \times \hat{r}] \]

(37)

If \(D_{j}^{l}(\lambda = 1, -1)^{(k)} \) is obviously perpendicular to \(D_{j}^{l}(\lambda = 1, +1)^{(k)} \) and \(\hat{r} \). The states with \(\lambda = 1 \) and 0 are called respectively the electric and magnetic states since the emission of a photon in the corresponding state is determined by the electric or magnetic moment of the system. The parities of these states are \((-1)^{j}\) and \((-1)^{j+1}\) respectively as can be seen from the equation (35).

In terms of the spherical tensors \(D_{j}^{l}m-\mu^{(k)} \), the function \(D_{j}^{l}(\lambda = 1, +1)^{(k)} \) can be written as
\[D_{j \mu}^{(\mu)}(r) = \sqrt{\frac{j}{2j+1}} D_{j, j+1, \mu}(r) + \sqrt{\frac{j+1}{2j+1}} D_{j, j-1, \mu}(r) \]

(38)

Finally, it can be shown that

\[D_{j \mu}^{(\mu)}(r) = \frac{i}{\sqrt{j(j+1)}} \left[\hat{r} \times \frac{\partial}{\partial \hat{r}} \right] Y_{j \mu}(r) \]

(39)

This can be seen as follows. If \(\hat{r} \) is the angular momentum operator, \(\hat{r} = -i \left[\hat{r} \times \frac{\partial}{\partial \hat{r}} \right] \). Now using the angular momentum addition rules

\[\hat{r} Y_{j \mu} = \sum_{\nu} (-1)^{\nu} L_{j \mu} Y_{j \nu} \varepsilon_{-\nu}^{\nu} \]

\[= \sum_{\nu} (-1)^{\nu} C_{j \nu}^{(j+1)} [j(j+1)]^{\frac{1}{2}} Y_{j, M-\mu+\nu} \varepsilon_{-\nu}^{\nu} \]

\[= \sum_{\nu} (-1)^{\nu} C_{j \nu}^{(j+1), -(M-\mu+\nu), \nu} (-1)^{j+\nu} \]

\[\times [j(j+1)]^{\frac{1}{2}} Y_{j, M-\mu+\nu} \varepsilon_{-\nu}^{\nu} \]

\[= \sum_{\nu} C_{j \nu}^{(j+1), -(M-\mu+\nu), -\nu} Y_{j, M-\mu+\nu} \varepsilon_{-\nu}^{\nu} [j(j+1)]^{\frac{1}{2}} \]

\[= [j(j+1)]^{\frac{1}{2}} D_{j j \mu} \]

(40)

In the above \(\varepsilon \) represents the unit vector in the spherical basis, i.e.
\[\vec{e}_0 = \vec{e}_a, \quad \vec{e}_1 = -\frac{i}{\sqrt{2}} (\vec{e}_x + i\vec{e}_y); \]
\[\vec{e}_2 = \frac{1}{\sqrt{2}} (\vec{e}_x - i\vec{e}_y) \]

(41)

The last step of (40) follows from the definition of \(\hat{D}_{j\mu}^{(a)} \), equation (35). In the intermediate steps of (40), the properties of the Clebsch-Gordan coefficients have been made use of. It follows from (39) that

\[\hat{D}_{j\mu}^{(a)}(\hat{r}) = \frac{1}{\sqrt{j(j+1)}} \left(\frac{\partial}{\partial \hat{r}} - \hat{r} \left(\hat{\alpha} \cdot \frac{\partial}{\partial \hat{r}} \right) \right) Y_{j\mu}(\hat{r}) \]

(42)

It also follows that

\[(\vec{e} \cdot \hat{D}_{j\mu}^{(a)}(\hat{r})) = \frac{1}{\sqrt{j(j+1)}} (\vec{e} \cdot \frac{\partial}{\partial \hat{r}}) Y_{j\mu}(\hat{r}) \]

(43a)

\[(\vec{e} \cdot \hat{D}_{j\mu}^{(a)}(\hat{r})) = \frac{i}{\sqrt{j(j+1)}} \left[(\hat{r} \times \vec{e}) \cdot \frac{\partial}{\partial \hat{r}} \right] Y_{j\mu}(\hat{r}) \]

(43b)

We see from (43) that the effect of changing over from a particle with spin zero represented by an angular momentum function \(Y_{j\mu}(\hat{r}) \) to one with spin 1 (as in the case of the photon) is to operate on the wave function by the operators

\[\frac{1}{\sqrt{j(j+1)}} (\vec{e} \cdot \frac{\partial}{\partial \hat{r}}) \quad \text{and} \quad \frac{i}{\sqrt{j(j+1)}} \left[(\hat{r} \times \vec{e}) \cdot \frac{\partial}{\partial \hat{r}} \right] \]

for the electric and magnetic states respectively. We shall denote these modified wave functions by \(Y_{j\mu}^{(1)}(\hat{r}) \).

The initial state of the reaction can thus be written as
The isospin spin analysis of the matrix element for the double pion photoproduction can be performed in a similar manner. Since
\[|k \in \mu \rangle = \sum_{J^M} \frac{1}{\sqrt{4\pi}} Y^*_J^M(k) |J^M \rangle \]
and
\[\Delta I = 0, \pm 1 \] we have to consider only the final states with \(\Delta I = 0, \pm 1 \). The final state is given by
\[
|q'_1, q'_2, \mu' \rangle = \sum_{l_1, l_2, m_1, m_2} \frac{1}{\sqrt{4\pi}} C(l_1; m_1, m) \times \frac{1}{\sqrt{4\pi}} Y^{*}_{l_1 m_1} (q'_1) \times \frac{1}{\sqrt{4\pi}} Y^{*}_{l_2 m_2} (q'_2) \times \frac{1}{\sqrt{4\pi}} Y_{J L l_1 l_2 M} (q_1, q_2)
\]
Thus the \(T \)-matrix for our process is given by
\[
\langle q'_1, q'_2, \mu' | T | k \in \mu \rangle = \sum_{J^M} \frac{1}{\sqrt{4\pi}} C(l_1, l; M; m_1, m) \times \frac{1}{\sqrt{4\pi}} C(l_2, l; M, \mu, \mu') \times \frac{1}{\sqrt{4\pi}} Y^{*}_{l_1 m_1} (q'_1) \times \frac{1}{\sqrt{4\pi}} Y^{*}_{l_2 m_2} (q'_2) \times \frac{1}{\sqrt{4\pi}} Y_{J L l_1 l_2 M} (q_1, q_2)
\]
where \(\{ J \} \) are the initial and intermediate isospin sets and \(\{ \mu \} \) are the final isospin sets. Combining the coefficients, we can finally write the matrix element on
\[
\langle q'_1, q'_2, \mu' | T | k \in \mu \rangle = \sum_{\{ J \}} b_{\{ J \}} |a_{q'_1}, a_{q'_2}, \{ J \}, (q_1, q_2, k) \rangle \langle T_{\{ J \}} (\omega_1, \omega_2, k) \]
where \(\{ J \} \) stands for the set of quantum numbers \((J, L, l_1, l_2) \) and the \(b_{\{ J \}} \) are precisely the matrix elements between nucleon spin states of the angular operators mentioned above.
The isotopic spin analysis of the matrix element for the double pion photoproduction can be performed in a similar manner. Since we are dealing with an electromagnetic interaction isotopic spin is good only in parts, the allowed change in the total isotopic spin being given by \(\Delta I = 0, \pm 1 \). Thus we have to specify the \(I^P \) values of the states. In the final state we again use the combination \((\pi^+ \pi^-) \), in the addition of the isotopic spins. The result is

\[
\frac{\langle e^\sigma m \rangle}{T_{[j]}} (\omega_1, \omega_2, k) = \sum \frac{C(\epsilon|T; \beta + \gamma', \alpha)}{T + \beta + \gamma', \frac{T_3}{2}} \times C(1_{\alpha} | \frac{1}{2} \epsilon; \beta, \gamma) \delta_{\alpha + \beta + \gamma' + \frac{T_3}{2}}
\]

\[
\times T_{[j]}^{(e^\sigma m)} (\omega_1, \omega_2, k) = \sum_{TT} a_{TT}^{(e^\sigma m)} \frac{T_{[j]}^{(e^\sigma m)} (\omega_1, \omega_2, k)}{TT}
\]

where \(T \) and \(t \) are the initial and intermediate isotopic spin. The coefficients \(a_{TT} \) for various possible photoproduced pion pairs from an initial nucleon (proton or neutron) are given in Tables III and IV.

Combining the angular momentum and isotopic spin decompositions, we can finally write our matrix element as

\[
\langle \hat{q}_{1}, \hat{q}_{2}'; \mu | T | k \epsilon; \mu' \rangle = \sum_{\{J\}_{m}} \sum_{TT} b_{\mu \mu'}^{(e^\sigma m)} (\hat{q}_{1}, \hat{q}_{2}, k) \times a_{TT}^{(e^\sigma m)} \frac{T_{[j]}^{(e^\sigma m)} (\omega_1, \omega_2, k)}{TT}
\]

We shall also be interested in the angular momentum and
Table III

Initial state = (γ, p)

<table>
<thead>
<tr>
<th>α_3/2, 3/2</th>
<th>p + π⁺π⁻</th>
<th>p + π⁺π⁰</th>
<th>π⁺π⁺π⁻π⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2, 3/2</td>
<td>√2/5</td>
<td>√2/45</td>
<td>√1/45</td>
</tr>
<tr>
<td>3/2, 1/2</td>
<td>0</td>
<td>-√2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>5/2, 3/2</td>
<td>√1/10</td>
<td>√2/5</td>
<td>√1/5</td>
</tr>
<tr>
<td>1/2, 1/2</td>
<td>0</td>
<td>-1/3</td>
<td>√2/3</td>
</tr>
<tr>
<td>1/2, 3/2</td>
<td>√1/2</td>
<td>-2/3</td>
<td>-1/3</td>
</tr>
</tbody>
</table>
Table IV

Initial state: \((\gamma, n)\)

<table>
<thead>
<tr>
<th>(a_{\pi})</th>
<th>(n + \pi^+ + \pi^-)</th>
<th>(n + \pi^0 + \pi^0)</th>
<th>(p + \pi^+ + \pi^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3/2, 3/2)</td>
<td>(2\sqrt{2/3})</td>
<td>(-\sqrt{2/45})</td>
<td>(-\sqrt{1/45})</td>
</tr>
<tr>
<td>(3/2, 1/2)</td>
<td>(\sqrt{2/3})</td>
<td>(\sqrt{2/3})</td>
<td>(-2/3)</td>
</tr>
<tr>
<td>(5/2, 3/2)</td>
<td>(\sqrt{1/15})</td>
<td>(\sqrt{2/5})</td>
<td>(\sqrt{1/5})</td>
</tr>
<tr>
<td>(1/2, 1/2)</td>
<td>(2/3)</td>
<td>(-1/3)</td>
<td>(\sqrt{2/3})</td>
</tr>
<tr>
<td>(1/2, 3/2)</td>
<td>(1/3)</td>
<td>(-\sqrt{2/3})</td>
<td>(-1/3)</td>
</tr>
</tbody>
</table>

For the electric transitions and for the magnetic transitions.
isotopic spin decompositions of the pion-nucleon scattering and single pion photoproduction matrix elements. For the former we have

\[\langle l_2' \mu' | R | l_n \mu'' \rangle = \sum C(l_2, l_2', \mu', \mu'') \times C(l_n, l_n', \mu'', \mu'') Y_{l_2 m_2} (\hat{\nu}_2) \times \mathcal{Y}_{l_n m_n}^{*} (\hat{\omega}_n) R_{j_2' l_n} (\omega_n' \omega_n) \times S_{l_2 l_n} \times C(l_2' T', \alpha' T') \times C(l_n T, \alpha T) \]

(49)

The Kronecker delta \(S_{l_2 l_n} \) represents parity conservation in the process. The \(b \) labels \(l_2 \) and \(l_n \) for the angular momenta will become clear in the next section.

The angular momentum analysis of the single photo-production of the \(\pi^- \) which we shall be requiring later gives

\[\langle \hat{\phi}_1, \nu' | T | k e^{-} \mu' \rangle = \sum C(l_1, l_1', \mu', \mu'') \times C(l, l', \mu'' \mu') Y_{l m} (\hat{\nu}_1) \times \mathcal{Y}_{l m}^{*} (\hat{\omega}_m) T_{[j]}^{(e \omega m)} (R, \omega) \]

(50)

\(l_1 = j \pm 1 \) for the electric transitions and \(l_1 = j \) for the magnetic transitions.
6. Solution of the integral equation for the process and the rescattering correction

We are now in a position to introduce the above decomposition in angular momentum and isotopic spin into the integral equation for the matrix element for the \((\pi^+ + \pi^-)\) pair production equation (15). The numerator of the second term on the right hand side of (15) represents the product of matrix elements for \(\pi^- - p\) scattering and pion pair production by a photon. The denominator of this term in the static approximation is \(\omega' - \omega_4\). Similarly, the numerator of the third term is the product of \(\pi^+ + p\) scattering and double pion photoproduction matrix elements and the denominator is \(\omega' - \omega_2\) in the static approximation. Now we introduce the expansions (48), (49) and (50) into equation (15). Using the orthogonality of the spherical harmonics the numerator of the second term on the right hand side of (15) gives on integrating over the solid angle \(d\Omega_n\) corresponding to the direction of the pion \(\omega_n\):

\[
\sum c(l_n L J ; m_n m) c(l_2 \frac{1}{2} L j_m m' m''') \times c(j \frac{1}{2} J ; M' - \mu, \mu) c(l_1 \frac{1}{2} J ; M - \mu', \mu').
\]
\[x \sum C(\ell_1, \frac{J}{2}; M - \mu', \mu') \alpha' \gamma_{\ell_2 m_2}^*(\varphi) \]
\[x Y_{\ell_1 m_1}^*(\varphi) \gamma_{\ell M - \mu}^* (\kappa) \]
\[x R^+(\omega_1, \omega_n) T^{(e\sigma m)}_{\{\mathcal{J}\}; \mathcal{T}_T} (\omega_n, \omega_2, k) \]

Because of parity conservation in the scattering process, \(\ell_n = \ell_1 \).

Also the orthogonality property of the Clebsch-Gordan coefficients gives

\[\sum C(\ell_1, \frac{J}{2}; M - \mu', \mu') C(\ell_1, \frac{J}{2}; M - \mu'', \mu'') = \delta_{\mu' \mu''} \]

Thus the result of the angle integration is to reduce the co-efficient of \(R^+(\omega_1, \omega_n) T^{(e\sigma m)}_{\{\mathcal{J}\}; \mathcal{T}_T} (\omega_n, \omega_2, k) \) in the expression (51) to the same product of Clebsch-Gordan coefficients, spherical harmonics and spherical vectors as is found in

\[b^{(e\sigma m)}_{\{\mathcal{J}\}; \mathcal{T}_T} \]

In the above \(\alpha' \) represents the product of the Clebsch-Gordans arising from the isotopic spin channels.

Considering the second term also in a similar way we finally arrive at the integral equation for the matrix element of the process in a definite angular momentum and isotopic spin channel

\[\rho (\omega) = \ldots \]
\[
T^\uparrow (e_{\sigma_m}, k) = \Phi^\uparrow (e_{\sigma_m}, k) - \int_0^\infty \frac{n^2 d_n}{(2\pi)^3} x \left[\frac{R^+_{l_1 l_2} (\omega_1, \omega_n) \Phi^\uparrow (e_{\sigma_m}, k)}{\omega_1 - \omega_n - i\epsilon} \right. \\
+ \left. \frac{R^+_{l_2 l_1} (\omega_2, \omega_n) \Phi^\uparrow (e_{\sigma_m}, k)}{\omega_n - \omega_2 - i\epsilon} \right]
\]

where \(n \) is the magnitude of the momentum of the intermediate pion and \(\lambda \) is an abbreviation for \(\{J\} T^\uparrow \Phi^\uparrow (e_{\sigma_m}) \). It includes in addition to contributions from all genuine one-nucleon intermediate states also the effect of the pion-pion interaction. But since the considerations presented in the next chapter seem to indicate that the pion-pion interaction may not be important for the energies of the photon we are considering, we shall omit it and take \(\Phi \) to represent only the one nucleon terms used in section 3. Finally writing

\[
R^+_{J^T} (\omega, \omega_n) = R^+_{\frac{3}{2}, \frac{3}{2}} (\omega, \omega_n) = -\frac{g^2}{4\pi} \frac{q^2}{\omega} R^*_T (\omega)
\]

(54)

where

\[
h (\omega) = \frac{e \delta (\omega) \sin \delta (\omega)}{q^3}
\]

(55)

and the equations can be solved by the Ansatz

\[\Phi^\uparrow = N \phi^\uparrow \]

(53)
\[T^{(e \otimes m)}_{\alpha}(\omega_1, \omega_2, k) = \frac{(4\pi^3 i q_1 q_2 k}{8 \omega_1 \omega_2 k} \Phi^{(e \otimes m)}_{\alpha}(\omega_1, \omega_2, k) \] (59)

\[\Phi^{(e \otimes m)}_{\alpha}(\omega_1, \omega_2, k) = \frac{(4\pi^3 i q_1 q_2 k}{8 \omega_1 \omega_2 k} \Phi^{(e \otimes m)}_{\alpha}(\omega_1, \omega_2, k) \] (57)

we obtain the integral equation

\[\Phi^{(e \otimes m)}_{\alpha}(\omega_1, \omega_2, k) = \Phi^{(e \otimes m)}_{\alpha}(\omega_1, \omega_2, k) \]

\[+ \frac{1}{\pi} \int_0^\infty d\omega' \frac{f^*(\omega') \Phi^{(e \otimes m)}_{\alpha}(\omega', \omega_2, k)}{\omega' - \omega_1 - i\epsilon} \]

\[+ \frac{1}{\pi} \int_0^\infty d\omega' \frac{f^*(\omega') \Phi^{(e \otimes m)}_{\alpha}(\omega', \omega, k)}{\omega' - \omega_2 - i\epsilon} \] (58)

Now we make use of the experimental information that up to 600-700 MeV the \(\Pi^- \) -meson is emitted essentially in an \(\rho^- \) -state.\(^1\) This means that we can neglect the second term which involves the scattering of the \(\Pi^- \) (predominantly in the \(\rho^- \) -state) compared to the third term which involves the scattering of the \(\Pi^+ \) meson which can be emitted in the \(\rho^- \) -state. Thus the problem reduces to solving the equation

\[\Phi^{(e \otimes m)}_{\alpha}(\omega_1, \omega_2, k) = \Phi^{(e \otimes m)}_{\alpha}(\omega_1, \omega_2, k) \]

\[+ \frac{1}{\pi} \int_0^\infty d\omega' \frac{f^*(\omega') \Phi^{(e \otimes m)}_{\alpha}(\omega', \omega_1, k)}{\omega' - \omega_2 - i\epsilon} \] (59)

Such equations can be solved by the Mushelishvili - Omnes \(^2\) method. Denoting the solution corresponding to taking the

1) H. Bloch and M. Sands, loc. cit.
2) R. Omnes, Nuovo Cimento, 8, 316 (1959)
(3/2, 3/2) enhanced state in all the amplitudes by Φ_ω^-, we have

$$
\Phi_\omega^- (\omega, \omega, k) = e^{i\delta(\omega)} \cos \delta(\omega) \frac{1}{e^{orm}} (\omega, \omega, k)
$$

$$
+ \exp \left[\frac{P(\omega)}{\pi} \int_0^\infty \frac{d\omega'}{\omega' - \omega} \sin \delta(\omega') \exp \left[-P(\omega') \right] \right]
$$

where

$$
P(\omega) = \frac{\omega}{\pi} \int_1^\infty \frac{\delta(\omega')}{\omega' - \omega} d\omega'
$$

P denotes the principal value of the integral. A subtraction has been performed in the expression (b1). This is in order to take care of the fact that the integral $\int_1^\infty \frac{\delta(\omega')}{\omega' - \omega} d\omega'$ does not converge for $\delta(\infty) = \frac{\pi}{2}$. Thus a subtraction has to be made at $\omega = 0$.

We can consider the difference $\Phi_\omega^- - \Phi_\omega^-$ as the effect of rescattering.

$$
\Phi_\omega^- (\omega, \omega, k) - \Phi_\omega^-(\omega, \omega, k)
$$

$$
= i e^{i\delta(\omega)} \cos \delta(\omega) \frac{1}{e^{orm}} (\omega, \omega, k)
$$

$$
+ \exp \left[i\delta(\omega) \right] \frac{P}{\pi} \int_0^\infty \frac{d\omega'}{\omega' - \omega} \sin \delta(\omega') \exp \left[-P(\omega') \right]
$$

$$
\cdot \sin \delta(\omega) \exp \left[P(\omega) - P(\omega') \right]
$$

(62)
Now, following Carruthers1), we can derive an expression for \(p(\omega) \). The starting point is the reciprocal function of Chew and Low2) defined by
\[
q(\omega) = \lambda / \omega h(\omega) \quad ; \quad \lambda = \frac{4}{3} \int^2
\]
where \(h(\omega) \) is related to the \(T \)-matrix for pion-nucleon scattering in the \(33 \) state by the relation (3)). \(q(\omega) \) is connected with the phase shift by the relations
\[
\text{Re} q = \lambda q^3 \cot \frac{\delta}{\omega} \quad ; \quad \text{Im} q = -\lambda \frac{q^3}{\omega}
\]
\[
\tan \delta = -\frac{\text{Im} q}{\text{Re} q}
\]

Considering \(q(\omega) \) as function of a complex variable which in the limit \(\omega + i \varepsilon \to \omega \) becomes the actual matrix element, and using the property \(q(\omega) = q^*(\omega) \) we can write (64) in the equivalent form
\[
\delta(\omega) = \frac{1}{2i} \text{log} \left[\frac{q(\omega)}{q^*(\omega)} \right]
\]
From the defining equation (61), we see that \(p(\omega) \) is the real part of the integral
\[
I = -\frac{\omega}{2\pi i} \int^\infty_1 \frac{\log[q(\omega')/q^*(\omega')]}{\omega'[\omega'-\omega-i\varepsilon]} d\omega'
\]
\[
= p(\omega) + i \delta(\omega)
\]
Represented as a contour integral, \(I \) can be written as
\[
I = -\frac{\omega}{2\pi i} \int^\infty_1 \frac{\log g(\omega')}{\omega'[\omega'-\omega]} d\omega'
\]

1) P. Carruthers, Annals of Physics, \textbf{14}, 229 (1961)
the contour C_1 being indicated in Fig. 3. The contour consists of the paths C_1 and C_3 around the right-and-left hand branch cuts and the two semicircles C_2. Since we are interested only in the right-hand cut, we can omit C_3 from consideration since the 35 phase shift which dominates the integral is small on the negative real axis. The integral over the finite semicircle also turns out to be small. Thus the integral we are interested namely the one over the contour C_1 is identical with the integral over the whole contour C which is given by

$$\int_C = 2\pi i \left[\frac{\log g(\omega)}{\omega} + \frac{\log g(-\omega)}{-\omega} \right] = \frac{2\pi i}{\omega} \log g(\omega)$$ \hspace{1cm} (68)

since $g(\omega) = 1$ (by definition).

Thus

$$I = -\log g(\omega) = -\log |g(\omega)| + i\delta(\omega) \hspace{1cm} (69)$$

$$\rho(\omega) = \log \left| \frac{\omega h(\omega)}{\lambda} \right| = \log \left[\frac{\omega \sin \delta}{\lambda q^3} \right] \hspace{1cm} (70)$$

$$\exp [\rho + i\delta] = e^{i\delta} \sin \delta \left[\frac{\omega}{\lambda q^3} \right] \hspace{1cm} (71)$$

Substituting this in the expression for the rescattering correction we have

$$\phi'_x - \phi^x = e^{i\delta(\omega_2)} \sin \delta(\omega_2) \left\{ i \phi^x \right\}$$

$$+ \frac{\omega_2}{q_2} \frac{P}{\pi} \int_0^\infty \frac{q^3 \phi'_x (\omega', \omega, k)}{\omega' (\omega' - \omega_2)} \, dq^3 \hspace{1cm} (72)$$

Now the genuine one-nucleon terms in the matrix element for double pion photo production are given by the first two terms on the right-hand side of equation (15). We see that...
the requirement that the $\Pi^- \text{-meson}$ appear only in an Δ state with the $\Pi^+ \text{-meson}$ being emitted in a p-wave state can be met only by retaining the second of these terms which involves the product of the Π^+-nucleon vertex and the matrix element for the photoproduction of the Π^- meson. The p-wave projection of the Π^+-nucleon vertex, gives $\frac{1}{3}q_2$ while the s-wave projection of the Π^- photoproduction matrix element gives

$$1 - \frac{1}{2} \left(1 + \frac{1}{2kq_1} \log \frac{\omega_1 - q_1}{\omega_1 + q_1} \right)$$

The value of Q'_{Π^-} thus obtained is fed into the integral in (72) and the integration can be performed. Multiplying the expression on the right-hand side of (72) by the proper combination of Clebsch-Gordan's contained in the b and a coefficients (representing the matrix elements of the angular momentum and isospin operators respectively), squaring the resulting matrix element, averaging over the initial spin and polarisation and summing over the final spin and evaluating the total cross-section from the resulting differential cross-section, we obtain the contribution to the total cross-section arising from the rescattering correction. These are found to have the value 1.617×10^{-31} cm2 for the photon energy $k = 3.5$ and the value 1.976×10^{-30} cm2 for $k = 4.0$. Remembering that at the latter value for k, the total cross-section for the process is about 70 microbarns, the rescattering correction is seen to be negligible. But this result is dependent on the assumption made on the basis of experimental facts that the $\Pi^- \text{-meson}$ is produced essentially in an Δ-wave state.
7. The effect of the photon-three pion direct interaction on the photoproduction of pion pairs

It is conceivable that if there is a direct photon-three pion interaction as seems to be required by ax to explain the large isoscalar form factor for the nucleon, then the double pion photoproduction omgo through such an interaction as shown in Fig. 4. There is no field theoretic basis for such an interaction\(^1\) for, while the four-pion vertex with four internal nucleon lines diverge, so that it becomes necessary to introduce into the Lagrangian a corresponding counter-term which introduces the pion-pion coupling constant, a similar vertex with one photon and three pion external lines converges so that there is no need for new new counter terms and a new coupling constant. But following Bosco and De Alfaro\(^2\), we could assume a phenomenological interaction Hamiltonian involving three pion fields.

The current density operator then is

\[
\jmath_{\text{int}}(x) = i e \lambda' \varepsilon^{\alpha \beta \gamma \delta}_{\omega} \frac{\partial \phi_1(x)}{\partial x_\beta} \frac{\partial \phi_2(x)}{\partial x_\gamma} \frac{\partial \phi_3(x)}{\partial x_\delta}
\]

where \(\phi_i(x)\) are real pion fields and \(\varepsilon^{\alpha \beta \gamma \delta}_{\omega}\) is a completely antisymmetric tensor of rank 4. The contribution from such a term to the double pion photoproduction process can be estimated in the lowest order of the photon-three pion-coupling constant as follows.

1) L.D. Solovev, Soviet Physics - JETP 12, 418 (1961)
Writing

\[\Phi_1 = \frac{\Phi + \Phi^*}{\sqrt{2}} ; \Phi_2 = \frac{i(\Phi^* - \Phi)}{\sqrt{2}} ; \Phi_3 = \Phi_3 \]

where \(\Phi \) and \(\Phi^* \) represent the creation operators for the positive and negative pions respectively. We can obtain the matrix element for double pion photo production by the same final pion operators through the same current density operator with the space-time label (for only then will the matrix element be of the lowest order in \(\lambda' \)). It is given by

\[\langle p' ; q_1, q_2 | T | k e ; p \rangle = -\frac{ie\lambda'}{4(2\omega_1\omega_2k)^{1/2}} \varepsilon_{\lambda\beta\gamma\delta} \left[q_{1\lambda} q_{2\beta} - q_{1\beta} q_{2\lambda} \right] \]

\[\times \frac{\left(k - q_{1\underline{v}} - q_{2\underline{v}}\right)_{\underline{a}}}{\left(k^2 - q_{1\underline{v}}^2 - q_{2\underline{v}}^2\right) + 1} \langle p' | J_0(0) | p \rangle \]

where the neutral pion-nucleon vertex is given in the static approximation by

\[\langle p' | J_0(0) | p \rangle = -(4\pi)^{1/2} \sigma \cdot \left(q_{1\underline{v}} + q_{2\underline{v}} - k \right) \]

On averaging over the initial spin and polarizations and summing over the final spin of the nucleon, the differential cross-section is given by

\[\frac{d^3 \sigma}{dn_+dn_-d\omega_1} = \frac{e^2 \lambda^2 f^2 q_1 q_2}{128 \pi^4 k} \times \frac{\left(k - q_{1\underline{v}} - q_{2\underline{v}}\right)}{\left(\left(k - q_{1\underline{v}} - q_{2\underline{v}}\right)^2 + 1\right)} \]
\[
\chi \left[(q_{1z} \omega_2 - q_{2z} \omega_1)^2 \left\{ (k - q_1 - q_2)_x \right\}^2 + (k - q_1 - q_2)_y \right] \times \left(k - q_1 - q_2 \right)_z^2 \right)
\]

An approximate calculation of the total cross-section after performing the angle integration in (76) at a value \(k = \frac{1}{4} \) gives a cross-section of \(\sim 35 \chi'^2 \) microbarns which would give a value of \(\chi' \approx 1.4 \). Bosco and de Alfaro conclude on the basis of the observed mean squared radius of the nucleon that \(\chi' \) should lie between 5.4 and 130. Thus it appears that the same value of \(\chi' \) is not able to fit the photoproduction data and the electromagnetic structure of the nucleon.

3. Conclusion

In this chapter we have evaluated the total cross-section for the photoproduction of a charged pair of pions from a nucleon and find that the experimental values can be fitted for energies of the photon up to 600 MeV by assuming a pure Yukawa interaction and retaining all the genuine "one-nucleon" terms in the matrix element. The effect of the pion-pion interaction seems to be negligible at these energies. The fact that this is so whereas the pion-pion interaction is dominant at much lower energies for pion production in pion nucleon collisions (see next chapter).
seems to show that its role is essentially that of an initial state interaction which will, of course, be absent for the photoproduction problem. Our considerations also show that if there is a direct photon-three pion interaction which is not necessitated by field theory, then it is not possible to explain both the electromagnetic form factors of the nucleon and pion pair production cross sections with the same value for the photon-three pion coupling constant λ^\prime.
CHAPTER III

THE PION-PION INTERACTION AND MULTIPLE PION PRODUCTION
IN THE SUB-GEV REGION

1. Introduction

With the advent of the double variable dispersion relations (see Chapter), it has become clear that a knowledge of the pion-pion interaction is a prerequisite for a complete understanding of all reactions involving the pion and the nucleon. If we consider pion-nucleon scattering for instance, one of the crossed channel will be

\[\pi + \pi \rightarrow N + \bar{N} \] \hspace{1cm} (1)

In the unphysical region this process is dominated by pion-pion scattering. Similarly for photo pion production from a pion or a nucleon or for nucleon-nucleon scattering the pion-pion interaction plays an important role in the crossed channel (for the first process in the main channel also) and hence affects the reaction in the main channel also. So a good deal of interest has been evinced in its study. Since pion targets are not available for experiment, the process of pion-pion scattering has to be studied only indirectly. One way suggested for obtaining the cross-sections for the process by Chew and Low is to extrapolate the differential cross-section

for the process

\[\pi^+ + N \rightarrow N + \pi^+ + \pi^- \] \hspace{1cm} (2)

to a value of the square of the momentum transfer equal to the square of the mass of the pion, there being a pole in the matrix element for process (2) at this value. At the extrapolated point, the residue of the pole will involve the product of the pion-nucleon vertex and the total cross-section for pion-pion scattering. The analyses of Bonsignori and Selleri and Derado have indicated evidence for the pion-pion interaction. The experiments of Perkins et al. on process (2) showed that the relevant cross-sections are too large in comparison with what one should expect on the basis of a pure Yukawa type of pion-nucleon interaction and this has been construed to mean firm evidence for a pion-pion interaction. Further, the work of Fraser and Fulco on the isovector part of the nucleon magnetic moment has indicated that the experimental data for this quantity could be fitted only by assuming a pion-pion scattering resonance in the \(I = 1, J = 1 \) state. Recent experiments have indeed given clear evidence for such a resonance.

On the theoretical side the pion-pion problem has been considered by Chew and Mandelstam using an effective range

approach in which they have derived a possible range of values for the pion-pion coupling constant λ.

In the conventional Lagrangian description of elementary particle interactions the pion-pion interaction enters naturally if one considers the fourth order diagram involving external pion lines. Unlike in the case of fourth order photon-photon scattering where due to gauge invariance, the contribution from the square diagram is convergent, the square diagram yields a divergent result both in scalar and pseudoscalar meson theory. This divergence has to be removed by a suitable renormalization and for this it is necessary to introduce a term of the type

$$\lambda \left(\vec{\phi} \cdot \vec{\phi} \right)^2$$

into the original Lagrangian with a suitably chosen coefficient λ which must contain an infinite part which will compensate for the infinity introduced by the fourth-order pion-pion scattering and may also contain a finite part. Indeed the considerations of Chew and Mandelstam lend support to this view though in their case the coupling constant enters through a subtraction term in the matrix element (the pole term which usually yields the coupling constant being absent in this case as there is no single stable particle apart from the photon which has all the quantum numbers the same as the two pion system).
In this chapter we have examined the role of the pion-pion interaction defined through (3) in various pion-production processes in the sub-GeV region and made estimates of the contribution of the interaction to these processes.

2. Photoproduction of pion pairs from a nucleon.

(a) We assume to begin with that the reaction proceeds completely through interaction (3) which we can rewrite as

\[\lambda \left(2 \Phi \Phi^* + \Phi_b^2 \right)^2 \]

(4)

Let us consider the reaction

\[\gamma + p \rightarrow p + \pi^+ + \pi^- \]

(5)

On "contracting" on the final pair of pions of momenta \(q_1 \) and \(q_2 \), but taking the operator corresponding to one of them through the current operator arising from the other, we obtain, using the usual procedure of Low, the matrix element for the process as

\[\langle p' q_1 q_2 | S | p k \rangle = - \frac{16 \pi \lambda}{\left(\mu q_1 q_2 \right)^{1/2}} - S(p + k - p' - q_1 - q_2) \]

\[\cdot \left[\langle p' \left[T(\Phi(\sigma)\Phi^*(\sigma)) + T(\Phi_b(\sigma)\Phi_b(\sigma)) \right] | p k \rangle \right] \]

(6)

Now using translational invariance and the equation of motion, we can write, on introducing a complete set of "incoming" states and retaining only the single nucleon intermediate state,
\[\langle p' | \Phi(0) | N \rangle = \frac{\langle p' | j_\mu(0) | N \rangle}{[(p-p_N)^2 + 1]} \]

Thus the numerator of each of the terms on the right hand side of (6) will be a product of a pion-nucleon vertex and the single pion photo production matrix element, the whole multiplied by the pion-pion coupling constant \(\lambda \). From the range of values for \(\lambda \) given by Chew and Mandelstam and also from the considerations of the next sections, the value of \(\lambda \) could be taken as of the order of \(10^{-1} \) so that the term on the right hand side would be a factor 10 smaller than the corresponding matrix elements for double pion photoproduction using the Yukawa interaction only. This fact coupled with the pion propagators in the denominators shows that the contribution of the pion-pion interaction to the double pion photoproduction is small compared to that of the Yukawa interaction \(\Phi \) if we retain only terms of the lowest order in \(\lambda \). This lends again support to the view of Chew mentioned in the last chapter, that the role of the pion-pion interaction, at least in the low energy region is to set as an initial state interaction which will not be present in the case of photo-production. Of course at higher energies (\(\geq 750 \text{ MeV} \)) the final pair of pions may resonate in the \(I = 1, J = 1 \)
state and thus the pion-pion interaction may make itself felt as a final state interaction. We shall study the effect of the pion-pion resonance more closely in the next sub-section.

(b) We shall study the effect of the pion-pion resonance in the (1, 1) state on the photoproduction of pion pairs from nucleons by considering the situation when both the final pions produced resonate as well as the case when one of the pions produced resonates with a pion in the virtual cloud. To derive the matrix element for the former case, we start from the S-matrix element

$$<p_1; q_{V_1}, q_{V_2} | S | p_2, \epsilon>$$

Taking the photon creation operator through the part of the interaction Hamiltonian corresponding to the photon-meson interaction viz.,

$$\left(\Phi(x) \frac{\partial \Phi^*(x)}{\partial x^\mu} - \Phi^*(x) \frac{\partial \Phi(x)}{\partial x^\mu} \right) A_\mu(x)$$

and the operators corresponding to one of the final pions with four momentum q_{V_2} through the part of the interaction Hamiltonian corresponding to pion-pion interaction viz.,

$$\Pi \Pi \lambda (\vec{\Phi} \cdot \vec{\Phi})^2$$

we obtain on going through the usual Low's procedure the T-matrix element
\[
\langle p'; q_1, q_2 | T | p; k \epsilon \rangle = -\frac{e_m}{\sqrt{4\omega_2}} \left[\frac{\langle q_1, p' | J_{\pi \pi}(0) | n \rangle < n | j_\gamma(0) | p \rangle}{\omega' + p'_0 - k - E_n + i\epsilon} - \frac{\langle q_1, p' | j_\gamma(0) | n \rangle < n | J_{\pi \pi}(0) | p \rangle}{E_n - k - p'_0 - i\epsilon} \right]
\]

We shall consider the first term only and take the \(n \) state to be the one corresponding to a nucleon with momentum \(p' \) (the same as that of the final nucleon) plus two pions with four-momenta \(q_1 \) and \(q_2 \). Taking the operator corresponding to the pions of momentum \(q_2 \) through the photon current operator \(j_\gamma(0) \), we obtain finally

\[
\langle p'; q_1, q_2 | T | p; k \epsilon \rangle = -\int \frac{d^3q_2'}{\sqrt{(4\pi)^3 \omega_{q_2'}}} \int \frac{d^3q_1'}{\sqrt{(4\pi)^3 \omega_{q_1'}}} \langle p'q_1' | T_{\pi \pi}(0) | p; q_2' \rangle \times \langle p'q_1' | j_\gamma(0) | p \rangle \left[(\omega_{q_1'} - \omega_{q_2'} - k)^2 - k^2 \right]^{-1}
\]

where \(j_{\pi \pi}(0) = ig\bar{\psi}(0)\gamma_5 \psi(0) \) is the mean current operator. The right-hand side contains the product of the pion-pion scattering matrix element, \(\langle q_1 | J_{\pi \pi}(0) | q_1', q_2' \rangle \) and the pion nucleon scattering matrix element \(\langle p'q_1' | j_\gamma(0) | p \rangle \). For the former we assume the interaction to proceed through a resonance in the \((1,1)\) state.
\[\left(1 + \frac{e^2}{e^2 - m^2}\right)^{\frac{1}{2}} \langle p^{i} | \pi^{+} | \pi^{0} \rangle \]

To the new operator

\[(0) \psi_{\pi^{+}} (0) \bar{\psi}_{\pi^{0}} = (0) \pi_{\pi^{+}} \]

and the rest of the context.
This is simulated by taking a p particle intermediate state, the $^p\pi\pi$ interaction being given by

$$\frac{1}{i^2} \int \frac{d^3 p \pi}{\alpha^2} \sum_{\alpha, \beta, \gamma} \partial_{\mu} \phi^\alpha(x) \phi^\beta(x) B^\gamma_{\mu}(x) \epsilon_{\alpha \beta \gamma}$$

where $B^\mu_{\mu}(x)$ is the p-meson field. The resulting matrix element for the process of photoproduction of pion pairs will then correspond to the diagram (1). For the $^p\pi\pi$ coupling constant $\int \frac{d^3 p \pi}{\mu^2}$ we use the experimental value\(^1\)

$$\frac{\int \frac{d^3 p \pi}{\mu^2}}{\mu^2} \sim 4$$

The differential cross-section $d\sigma/d\omega_\pi$ for various values of k, the photon energy and ω_π, the energy of the negative pion is given in Table I. As can be seen the cross-section increases with increasing k as well as increasing ω_π, but the contribution tends to be small for values of the photon energy below the value corresponding to the pion-pion resonance viz., ~ 750 Mev.

The diagram corresponding to the situation where one of the final pions with four-momentum q, resonates with a pion in the virtual state is given by Fig. 2. A numerical estimate of the contribution from this graph again indicates that the effect of the pion-pion resonance on the photoproduction of pion pairs tends to be small for values of the photon energy $\lesssim 750$ Mev.

Thus we get the result which was used in the previous chapter viz., that the effect of the pion-pion interaction on the photoproduction of pion pairs from nucleons is negligible for moderate energies of the incident photon.

Fig. 2.
Table I (a)

Results corresponding to Fig. 1.

<table>
<thead>
<tr>
<th>ω_1</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.281</td>
<td>0.479</td>
<td>--</td>
</tr>
<tr>
<td>1.6</td>
<td>1.108</td>
<td>3.781</td>
</tr>
<tr>
<td>1.887</td>
<td>1.84</td>
<td>12.54</td>
</tr>
<tr>
<td>2.4</td>
<td>--</td>
<td>28.06</td>
</tr>
</tbody>
</table>

Table II (b)

Result corresponding to Fig. 2

<table>
<thead>
<tr>
<th>ω_1</th>
<th>$R = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.281</td>
<td>0.072</td>
</tr>
<tr>
<td>1.6</td>
<td>27</td>
</tr>
<tr>
<td>1.887</td>
<td>52.4</td>
</tr>
</tbody>
</table>

UNIT OF ENERGY = PROTON MASS = 1
3. Photo-production of triple pions

We shall estimate the contribution arising from the pion-pion interaction to this process. To be more precise let us consider the reaction

$$\gamma + p \rightarrow p + \pi^+ + \pi^- + \pi^0$$

(10)

Then using Lew's procedure and the interaction (4) the relevant matrix element for the production of one positive pion of momentum \(q_1\), one negative pion of momentum \(q_2\), and one neutral pion of momentum \(q_3\) is given by

$$\langle p', q_{1+}, q_{2-}, q_{30} | S | k E; p \rangle$$

$$= -\frac{i}{(2\sqrt{\omega})^2} \int dx e^{-iq_{1+}x} \langle p', q_{2-}, q_{30} | J_{\pi\pi}^+(\infty) | k E; p \rangle$$

(11)

where \(J_{\pi\pi}^+\) is the current density operator due to the pion-pion coupling interaction.

The matrix element (9) can be evaluated in the lowest order of the pion-pion coupling constants \(\lambda\) by taking both the operators corresponding to the pions of momenta \(q_2\) and \(q_3\) through \(J_{\pi\pi}^+(\infty)\) itself when the matrix element reduces to

$$\langle p', q_{1+}, q_{2-}, q_{30} | S | k E; p \rangle = -\frac{32 i \pi \lambda}{(8\sqrt{\omega_1 \omega_2 \omega_3})^2} \times S(p+k-p'-q_1-q_2-q_3) \langle p' | \phi_{\pi}(0) | k E; p \rangle$$

(12)

The matrix element on the right is connected with that for the photo-production for a single neutral pion by the equation.
\[\langle p' | q_0(0) | k \rangle \langle k | p \rangle = -\frac{\langle p' | d_0(0) | k \rangle \langle k | p \rangle}{[(q_1 + q_2 + q_3)^2 + 1]} \] (13)

Using the complete amplitude for the photoproduction of neutral pion given by Chew and Low\(^1\) we obtain the differential cross section for the process as

\[\frac{d^5 \sigma_{\pi^0}^{\gamma^* \gamma}}{d\omega_1 d\omega_2 d\omega_3 d\omega} = |M|^2 (2\pi)^{-8} q_1 q_2 q_3 a_1 a_2 a_3 \] (14)

where

\[|M|^2 = \frac{25b}{\omega_1 \omega_2 \omega_3 k} \cdot \left(\frac{1}{[(q_1 + q_2 + q_3)^2 + k^2 + 1]} \right)^2 \]

\[\cdot \left\{ \frac{m_1^2 + m_2^2}{m_1^2 m_2^2} \left((q_1 + q_2 + q_3) \times (k \times \epsilon) \right)^2 \right\} \]

\[\cdot \left\{ \frac{m_1^2 - m_n^2}{3 b m_2 (k - \lambda)} \left((q_1 + q_2 + q_3) \times (k \times \epsilon) \right)^2 \right\} \]

\[\cdot \left\{ [\varphi_1 + \varphi_2 + \varphi_3] \times (k \times \epsilon) \right\} \left((1 + 4 a_1 + 2 a_2 + 4 a_3) \right)^2 \]

\[+ \left\{ [\varphi_1 + \varphi_2 + \varphi_3] \times (k \times \epsilon) \right\} \left((1 + 4 a_1 + 2 a_2 + 4 a_3) \right)^2 \]

Here

\[a_i = \frac{e^{i \delta_i(q)}}{q^3} \sin \delta_i(q) \] (16)

the subscripts 1, 2 and 3 referring to the 11, 13 (or 31) and 33 states of the pion-nucleon respectively. The phase

\[1) \ \text{G.W. Chew and F.E. Low, Phys. Rev., 101, 1579 (1956)} \]
shifts for these states given by Salzman and Salzman1) were used and the angular and energy integrations were done numerically to obtain the total cross section for the process.

Table (III) gives the total cross sections for two values of λ^2 and for two values of the incident photon energy $h\nu$.

The experimental values of Chasan et al.2) (which are the only ones that seem to be available at the energies considered here) for the combined cross section $\sigma(\pi^+\pi^-\pi^0) + \sigma(\pi^+\pi^+\pi^-)$ at energies 700 and 840 Mev of the incident photon are about 70 and 14 microbarns respectively. In our method of derivation, the matrix element for the process

$$\gamma + p \rightarrow p + \pi^+ + \pi^+ + \pi^-$$

will be

$$\frac{64 i \lambda}{(8 \omega_3 \omega_2 \omega_3)^{1/2}} S (p + k - p' - q_1 - q_2 - q_3)$$

$$< p' | \Phi (s) | p E; h\nu >$$

where q_i is four-momentum of the incident pion and q_i

We notice that externally there is a factor 2 more than in the case of $\pi^+ \pi^- \pi^0$ production. Further if we retain only the contribution of the isovector part of the current for the

charged pion photoproduction the matrix element for which occurs on the right hand side of (17) \(\sigma(\pi^+\pi^+\pi^-) \) will be roughly twice the contribution of \(\sigma(\pi^+\pi^-\pi^0) \). From Table III, we notice that a value of \(\lambda \sim 0.1 \) will fit these data.

4. Pion production in pion-nucleon collisions

As mentioned in the introduction, this is the process which has shed much light on the pion-pion interaction. To be specific, we confine ourselves to the process

\[\pi^- + p \rightarrow \pi^+ + \pi^- + n \]

The matrix element for this process can be evaluated in the lowest order in \(\lambda \) in exactly the same way as in the previous sections. It is given by

\[\langle p', q_{1+} + q_{2-} | S | p, \bar{q} \rangle = -\frac{8}{\sqrt{\omega_1 \omega_2 \omega}} \frac{b_4 i \pi \lambda}{(8 \omega_1 \omega_2 \omega)^{1/2}} \langle p' | \phi^{+}(\pi) | p \rangle \]

where \(q_1 \) is four-momentum of the incident pion and \(q_{1+} \) and \(q_{2-} \) those of the final pions. In the non-relativistic limit

\[\langle p' | \phi(\pi) | p \rangle = \frac{i(4\pi)^{1/2} \sqrt{2} f_{\pi}^{\pi} \cdot (p' - p)}{(p' - p)^2 + i} \]

Using (18) and (19), we obtain the differential cross-section as
We shall choose \(\vec{q} \) along the \(z \)-axis and \(\vec{q}' \) to lie in the \(xy \) plane. Let \(\theta \) be the angle between \(\vec{q} \) and \(\vec{q}' \), and let \((\tilde{q}, \varphi) \) be the angular co-ordinates of \(\vec{q}' \).

Table III

Calculated values of \(\sigma^{+- \to 0}(k) \) in \(\mu b \)

<table>
<thead>
<tr>
<th>(k = E_\gamma \text{(MeV)})</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{F-2q_1 q_2 \sin \theta \sin \varphi}{F+2q_1 q_2 \sin \theta \sin \varphi})</td>
<td>0.1 0.15</td>
</tr>
<tr>
<td>700</td>
<td>2.5 5.6</td>
</tr>
<tr>
<td>840</td>
<td>4.3 9.7</td>
</tr>
</tbody>
</table>

\(F = q_1^2 + q_2^2 + q_3^2 - 2 q_1 q_2 \cos \theta - 2 q_2 q_3 \cos \theta' + 2 q_1 q_3 \cos \theta') \)
\[\frac{d^3 \sigma}{d\omega_1 d\omega_2} = \frac{\pi^2 \lambda^2 \int q_1 q_2}{(2\pi)^2 q_{\gamma}} \]
\[\left(\frac{q_2 - q_1 - q_{\gamma}}{(q_2 - q_1 - q_{\gamma})^2 + 1} \right)^2 \]

We shall choose \(\vec{\alpha}_1 \) along the \(z \)-axis and \(\vec{\alpha}_2 \) to lie in the \(z \omega \) plane. Let \(\theta_1 \) be the angle between \(\vec{\alpha}_1 \) and \(\vec{\omega}_1 \), and \((\theta_2, \varphi) \) be the angular co-ordinates of \(\vec{\omega}_2 \). Then the total cross section can be written as

\[\sigma^+(q_{\gamma}) = 128 \lambda^2 \int J \]

where

\[J = \frac{1}{q_{\gamma}} \sum \sum \left[\frac{1}{F + 2 q_{\gamma} q_{\gamma} \sin \theta_1 \sin \theta_2} \right. \]

\[+ \frac{1}{F - 2 q_{\gamma} q_{\gamma} \sin \theta_1 \sin \theta_2} \]

\[- \frac{1}{(F - 2 q_{\gamma} q_{\gamma} \sin \theta_1 \sin \theta_2)^2} \]

\[- \frac{1}{(F + 2 q_{\gamma} q_{\gamma} \sin \theta_1 \sin \theta_2)^2} \]

\[\times q_{\gamma} q_{\gamma} \sin \theta_1 \sin \theta_2 \cos \theta_1 \cos \theta_2 d\theta_1 d\theta_2 d\omega_1 \]

\[F = q_1^2 + q_2^2 - 2 q_1 q_2 \cos \theta - 2 q_1 q_2 \cos \theta_2 \]

\[+ 2 q_1 q_2 \cos \theta_1 \cos \theta_2 + 1 \]
The integration over θ_1, θ_2 and φ as in other cases considered in this chapter can be performed numerically. We have performed the integration for $q_Y = 3.0$, 3.5 and 6.0 pion masses using desk calculating machines. The theoretical cross-sections for two values of λ and the experimental values reported by Perkins et al. from Berkeley are given in Table IV.

From the Table, it is seen that λ^2 lies between 0.01 and 0.005 which is consistent with the reported results of Rodberg. However, we wish to remark that our fit for λ^2 is made on the basis of pion-pion interaction alone, the contribution from the Yukawa interaction being negligible.

5. Production of pion pairs in pion nucleon collisions.

The matrix elements for the processes

\[\pi^- + p \rightarrow \pi^+ + \pi^- + \pi^- + p \]
\[\rightarrow \pi^+ + \pi^0 + \pi^- + p \]
\[\rightarrow \pi^+ + \pi^+ + \pi^- + n \]

can be evaluated, assuming the interaction (4). For process (i) the matrix element is given by

\[\langle p', q_{3-}, q_{2+}, q_{1+} | S | p, q_Y \rangle = \]

1) W. L. Perkins et al., loc. cit.

TABLE IV

Total cross section for pion production in mb.

<table>
<thead>
<tr>
<th>$\lambda=0.005$</th>
<th>$\lambda=0.005$</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1, ϕ_1, θ_2, ϕ_2</td>
<td>θ_3, ϕ_3, θ_4, ϕ_4</td>
</tr>
</tbody>
</table>

Theoretical cross section

<table>
<thead>
<tr>
<th>W_{MeV}</th>
<th>$\lambda=0.01$</th>
<th>$\lambda=0.005$</th>
<th>$\lambda=0.005$</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>1.13</td>
<td>0.66</td>
<td>0.75 - 0.2</td>
</tr>
<tr>
<td>370</td>
<td>3.10</td>
<td>1.55</td>
<td>2.0 - 0.5</td>
</tr>
<tr>
<td>700</td>
<td>3.78</td>
<td>1.89</td>
<td></td>
</tr>
</tbody>
</table>

1) W. T. Perkin's et al, loc. cit.

$A = \frac{l_3}{l_4} \lambda^2 \sin^2 \theta_3 \sin^2 \theta_4$

1) G. F. Chew and F. E. Low, loc. cit.
\[
\begin{align*}
\frac{d^5\sigma}{d\cos\theta_1 d\cos\theta_2 d\cos\theta_3 d\omega_1 d\omega_2} &= \frac{A}{(a^2-b^2)^{1/2}} \left[\frac{1}{8} \frac{g_0^2}{q_0^2} \left(a^2-b^2+aq_3^2 \right) \
&\quad + 2ac+ad+ae-bs \right] \quad (25)
\end{align*}
\]

where
\[
A = \frac{192\lambda^2}{\pi} \frac{q_1 q_2 \sin^2 \theta_3}{q_1 q_3^5}
\]
\[
a = q_2^2 + q_3^2 - q_1^2 - 2q_2 q_3 \cos \theta_1 - 2q_1 q_2 \cos \theta_2 \
&\quad + 2q_1 q_3 \cos \theta_1 \cos \theta_2
\]
\[
b = 2q_1 q_2 \sin \theta_1 \sin \theta_2
\]
\[
c = q_3^2 q_2^2 \cos^2 \theta_3 + q_3^2 q_1^2 \cos^2 \theta_1 \cos^2 \theta_2 \
&\quad + q_3^2 q_2^2 \cos^2 \theta_2 \cos^2 \theta_3 - 2q_3 q_1 q_2 \cos \theta_1 \cos \theta_3 \cos \theta_2 \
&\quad - 2q_3 q_1 q_2 \cos \theta_1 \cos \theta_3 \cos \theta_2 + 2q_3 q_1 q_2 \cos \theta_1 \cos \theta_3 \cos \theta_2
\]

where \(< p'q_3 | j^{(0)} | p > \) represents the matrix element for the scattering of a negative pion. We use the static approximation of this matrix element given by Chew and Low\footnote{G. F. Chew and F. E. Low, loc. cit.}. If \((\theta_1, \varphi_1) \) and \((\theta_2, \varphi_2) \) are the spherical angles of the directions \(\vec{q}_1 \), \(\vec{q}_2 \), and \(\vec{q}_3 \) respectively with \(\vec{q}_1 \) along the \(z \)-axis, integration over \(\varphi_1 \), \(\varphi_2 \), and \(\varphi_3 \) yields the differential cross section.
may not be important for double pion photo-production, it is otherwise as for the other processes considered. From the previous section, it will be seen that a value of
\[d = q_3^2 q_1^2 \sin^2 \theta_3 \sin^2 \theta_1 \]
\[e = q_3^2 q_2^2 \sin^2 \theta_3 \sin^2 \theta_2 \]
\[f = 2 q_3^2 q_1 q_2 \sin^2 \theta_3 \sin \theta_1 \sin \theta_2 \]
\[\lambda^2 = 0.01 \]

Experimental data on double pion production in pion-nucleon collisions in the low energy region is scanty. Willis\(^1\) gives on the basis of a single event a value of 30 \(\mu b\) for the total cross section for process (i) at an incident pion energy of 500 KeV. A rough calculation using the fact that the values of the momenta \(q_1\), \(q_2\), and \(q_3\) are small compared to \(q\) yields a cross-section of about 8 \(40 \mu b\) for a value of \(\lambda^2 = 0.01\).

6. Conclusion

In this chapter we have made estimates of the value of the pion-pion coupling constant assuming that the processes of double and triple pion production in pion-nucleon and photo-nucleon collisions proceed almost only through the pion-pion interaction. It has been found that whereas the interaction

may not be important for double pion photo-production, it is otherwise as for the other processes considered. From the previous section, it will be seen that a value of \(\lambda^2 \approx 0.01 \) seems able to give the cross-sections for the various processes considered. Further, the variations in the value of \(\lambda \) fall within the limits given by Chew and Mandelstam\(^1\) in their effective range approach involving a single real parameter which we can identify with \(\lambda \). Assuming that there is no pion-pion bound state, they obtain the range of variation of \(\lambda \) as

\[-0.36 \leq \lambda \leq 0.3\]

It may also be mentioned that a value of \(\lambda^2 \approx 0.15 \) has been obtained by Khuri and Treiman\(^2\) in their study of the effect of pion-pion interaction on \(\gamma \)-decay.

1) G.F. Chew and S. Mandelstam, loc. cit.
CHAPTER IV

2. POLARIZATION EFFECTS IN SOME PION PRODUCTION PROCESSES

1. Introduction

It is customary in the evaluation of the differential cross-section for a process to average over the initial states and sum over the final spin states and polarizations as it was experimentally difficult to produce spin-aligned targets or polarized beams of projectiles till recently. The summing over the final spins and polarizations is in case one is not interested in the spins and polarizations of the final particles. Fermi\(^1\) had pointed out in an interesting paper in which he considered the scattering of a pion by a nucleon that even if the initial nucleon is unpolarized the final state nucleon is polarized in a direction perpendicular to the scattering plane. This shows that in averaging and summing over the spins and polarizations we are losing many interesting aspects of a process. The calculation of angular distributions for polarized targets and projectiles is of interest now.\(^2\) It is, for instance possible, as shown by the experiments by Goldhaber et al.\(^2\), to produce high energy bremsstrahlung which is almost completely circularly polarized using polarized electrons originating in \(\beta\)-decay.

1) E. Fermi, Phys. Rev., 91, 947 (1953)
In this chapter we have examined the question of whether the angular distributions of pions produced through various agencies from a nucleon are sensitive to the state of polarization of the nucleon as well as that of the incident projectile (if it has spin). We have studied this problem with reference to (1) the photo-production of a single pion from a nucleon, (2) photoproduction of pion pairs from a nucleon and (3) electropion production from a nucleon.

2. **Photoproduction of single mesons from polarized nucleons**

Several features concerning photoproduction of pions by nucleons have been well understood on the basis of the single variable dispersion theory of Chew, Goldberger, Low and Nambu (CGLN) for the process. As referred to earlier in Chapter [2], the calculations of Ball show that the CGLN matrix elements for single pion photoproduction give a good account of the process up to about 400 Mev incident energy of the photon. We wish to suggest that the study of polarization phenomena (i.e. the angular distribution of the pion when the incident photon is polarized and target nucleon has its spin aligned with respect to the degree of polarization of the final nucleon) can also be used to check the validity of the CGLN formula.

3) J.B. Ball, loc. cit.
a) Photo-production of charged pions

The complete matrix element for photo-production of a positively charged pion as given by CGLN is

\[M(p+\gamma \rightarrow \pi^+ + n) = \frac{2\sqrt{2} \pi e^2}{\sqrt{\omega k}} \left[\frac{1}{1 + \frac{\omega}{m}} \left\{ i\epsilon \cdot \pi + \frac{2i\epsilon \cdot (k-x\pi)(k-y\pi)}{[k-x\pi]^2 + 1} \right\} \right. \]

\[\left. \quad \quad \quad \quad \quad \quad + i\frac{\pi \cdot \lambda}{n} \cdot (k \times \pi) \lambda h^{(-)} \right) \]

\[\left. \quad \quad \quad \quad \quad \quad + i\frac{\pi \cdot \lambda}{n} \cdot (k \times \pi) \lambda h^{(-)} \right) \]

\[+ i\frac{\pi \cdot \lambda}{n} \left[i \left(\frac{2}{3} S_1 + \frac{1}{3} S_3 \right) F_8 + \omega N \right] \]

\[\left. \quad \quad \quad \quad \quad \quad + \frac{1}{3} i\epsilon \cdot S_3 \sin S_3 \left[(F_9 - \frac{1}{3} F_M) \epsilon \cdot \pi \right. \right) \]

\[\left. \quad \quad \quad \quad \quad \quad + (F_9 + \frac{1}{3} F_M) i\epsilon \cdot \pi \cdot \lambda h^{(-)} \right) \]

\[\left. \quad \quad \quad \quad \quad \quad - \frac{2}{9} \epsilon \cdot \lambda \cdot (k \times \pi) \epsilon \cdot S_3 \sin S_3 F_M \right) \]

\[\left. \quad \quad \quad \quad \quad \quad - i\frac{\pi \cdot \lambda}{n} \frac{\mu_p + \mu_n}{2m} \omega \right) \]

\[- i\frac{\pi \cdot \lambda}{n} \times (k \times \pi) \frac{\mu_p + \mu_n}{2m} \omega \]
Here μ_p and μ_n are the magnetic moments of the proton and the neutron respectively; m the mass of the nucleon, \overrightarrow{p} and \overrightarrow{q} are the momenta of the photon and pion respectively; ω is the pion energy, ξ the polarization vector of the photon and σ the spin operator for the nucleon and

$$\chi = \frac{\mu_p - \mu_n}{4m}, \quad \theta = \frac{\xi \cdot \overrightarrow{q}}{\omega}$$

$$h = \frac{\omega}{\sqrt{2}} \left(h_1 - h_2 - h_3 + h_4 \right)$$

$$h^{(-)} = \frac{1}{3} \left(h_1 + 2h_2 - h_3 - 2h_4 \right)$$

$$h^{(+)} = \frac{1}{3} \left(h_1 + 2h_2 - h_3 - 2h_4 \right)$$

the subscripts of h referring to the isotopic spin and angular momentum states for which h is the amplitude

$$F_S = \frac{1}{2} \left(1 + \frac{1 - \nu^2}{2 \nu} \log \frac{1 - \nu}{1 + \nu} \right)$$

$$F_Q = \frac{1}{\sqrt{2}} \left[1 - \frac{3}{4
\nu^2} \left(1 + \frac{1 - \nu^2}{2 \nu} \log \frac{1 - \nu}{1 + \nu} \right) \right]$$

$$F_M = \frac{3}{4\sqrt{2}} \left(1 + \frac{1 - \nu^2}{2 \nu} \log \frac{1 - \nu}{1 + \nu} \right),$$

ν being the velocity of the pion.

To simplify the kinematics, let us choose the direction of propagation of the photon as the z-axis and the $x-z$ plane is defined as the plane which contains \overrightarrow{p} and \overrightarrow{q}. Let Θ denote the angle between \overrightarrow{p} and \overrightarrow{q}. It is to be noted that the above matrix element is a matrix in the spin space.
of the nucleon. We shall now work out the polarization effects from (1) by prescribing that the target nucleon be polarized along the direction of the propagation of the photon. Here as well as in the next sections we shall use the superscripts 1 and 2 to denote the no-spin flip and spin flip cross sections respectively. We note that with our choice of the co-ordinate system, the right circular and left circular polarization of the photons are \(\frac{\varepsilon_x + i\varepsilon_y}{\sqrt{2}} \) and \(\frac{\varepsilon_x - i\varepsilon_y}{\sqrt{2}} \). Making use of these expressions for \(\varepsilon \), we can obtain the relevant matrix elements when positively charged pions are produced by right circularly polarized and left circularly polarized photons. Since we require the spin of the nucleon to be oriented along the \(z \) -axis, i.e. in the direction of propagation of the photon, the operator \(\sigma_- = \frac{\sigma_x - i\sigma_y}{2} \) causes the spin-flip of the nucleon while \(\sigma_+ = (\sigma_x + i\sigma_y)/2 \) acting on this spin state of the nucleon yields zero eigenvalue. From the amplitudes thus obtained for the various cases of right and left circularly polarized photons and spin-flip and no-spin flip for the nucleon, we can calculate the angular distributions and they are given by
$$\frac{d\sigma^{(\pi^+)}_{\text{n.c.}}}{d\Omega} = \frac{2e^2 f^2 a_Y}{k} \left\{ \frac{2q^4 \sin^4 \theta}{(1+\frac{q^2}{m^2})^2 \left[(k-q)^2 + 1 \right]^2} \right\}$$

$$+ \frac{q^2 \lambda (k-q \cos \theta) k \sin^2 \theta \cos \delta_{33} \sin \delta_{33}}{q (1+\frac{q^2}{m^2}) \left[(k-q)^2 + 1 \right]}$$

$$+ \frac{1}{18} \sin^2 \delta_{33} (F_q + F_M) k^2 q^2 \sin^2 \theta$$

$$+ \frac{\left(\mu_p + \mu_n \right)^2}{8 m^2 c^2} k^2 q^2 \sin^2 \theta$$

$$- \frac{2}{3} \frac{1}{(1+\frac{q^2}{m^2}) \sin \delta_{33} k q \sin \theta} (F_q + F_M) \sin \delta_{33} \cos \delta_{33}$$

$$+ \frac{\left(\mu_p + \mu_n \right)}{m \omega (1+\frac{q^2}{m^2})} k q \sin \theta (k-q \cos \theta)$$

$$- \frac{\lambda \left(\mu_p + \mu_n \right)}{2 m \omega} k^2 \sin^2 \theta \cos \delta_{33} \sin \delta_{33}$$

$$+ \frac{M_p + M_n}{6 m \omega} k^2 q^2 \sin^2 \theta \sin^2 \delta_{33} (F_q + F_M)$$

$$\frac{d\sigma^{(\pi^+)}_{\text{n.c.}}}{d\Omega} = \frac{2e^2 f^2 a_Y}{k} \left\{ \frac{2q^4 \sin^4 \theta}{(1+\frac{q^2}{m^2})^2 \left[(k-q)^2 + 1 \right]^2} \right\}$$

$$= \frac{2e^2 f^2 a_Y}{k} J^{(2)}(\pi^+)$$

\(J^{(2)}(\pi^+)\)
Here the suffix \(l.c. \) denotes that the photon beam is right circularly polarized. In a similar way, the angular distributions when the photon beam is left circularly polarized are given below. In the above as well as in what follows all the phase shifts other than the dominant 33 phase shift are omitted.

\[
\frac{d\sigma_{l.c.}^{(n)}(\pi^+)}{d\Omega} = \frac{2e^2 f^2}{k} \left\{ \frac{2(k-q\cos\theta)^2q^2\sin^2\theta}{(1+\frac{q^2}{m^2})[k^2-q^2+1]} \right\} \\
+ \frac{\lambda^2 k^2 \sin^2\theta \sin^2\delta_{33}}{18q^4} \\
- \frac{2(k-q\cos\theta)k \sin^2\theta \cos S_{33} \sin S_{33}}{3q(1+\frac{q^2}{m^2})[k^2-q^2+1]} \\
+ \frac{1}{18} R^2 q^2 \sin^2\theta(F_q - \frac{1}{3} F_m) \sin^2\delta_{33} \\
+ \frac{(m_p+m_n)^2}{8m^2\omega^2} k^2 q^2 \sin^2\theta \\
- \frac{2(k-q\cos\theta)k q^2 \sin^2\theta(F_q - \frac{1}{3} F_m)}{3(1+\frac{q^2}{m^2})[k^2-q^2+1]} \\
- \frac{(m_p+m_n)}{\omega(\omega+m)} \frac{k^2-q^2 \sin^2\theta}{(k^2-q^2+1)}
\]
\[
\begin{align*}
\lambda \frac{1}{6m_0} \left(\mu_p + \mu_n \right) \cos \delta_{33} \sin \delta_{33} k^2 \sin^2 \theta & \quad \text{qy} \\
+ \frac{1}{6m_0} \left(\mu_p + \mu_n \right) \sin \delta_{33} k^2 \frac{q_y^2 \sin^2 \theta}{2} \left(F_q - \frac{1}{3} F_M \right) & \quad (4) \\
\frac{d\sigma^{(\Pi^\uparrow)}}{d\Omega} & = \frac{2e^2 f_q^2 q_y}{\hbar} \left[\frac{2}{1 + (2q_y^2)^2} \left\{ 1 - \frac{q_y^2 \sin^2 \theta}{(R - q_y^2 + 1)} \right\} \right]^2 \\
+ \frac{2 \lambda^2 k^4}{q_y^4} \cos^2 \theta \sin^2 \delta_{33} & \\
- \frac{4 \lambda k R \sin \delta_{33} \cos \delta_{33} \cos \theta}{3 q_y^2 (1 + \frac{q_y^2}{m})} \cdot \left\{ - \frac{q_y^2 \sin^2 \theta}{(R - q_y^2 + 1)} \right\} \\
+ \left(\frac{2}{3} \delta_{1} + \frac{1}{3} \delta_{3} \right)^2 F_q^2 + \left(\frac{\mu_p + \mu_n}{2m} \right)^2 & \\
+ \frac{2}{q_y^2} \sin^2 \delta_{33} \left(F_q - \frac{1}{3} F_M \right)^2 k^2 q_y^2 \cos^2 \theta & \\
+ \left(\mu_p + \mu_n \right) \frac{k^2 q_y^2 \cos^2 \theta}{2m^2 \omega^2} & \\
- \frac{4 \sin^2 \delta_{33} \left(F_q - \frac{1}{3} F_M \right) k \omega \cos \theta}{3 (1 + \frac{\omega}{m})} \cdot \left\{ 1 - \frac{q_y^2 \sin^2 \theta}{(R - q_y^2 + 1)} \right\} & \\
\end{align*}
\]
\[- \frac{4 \lambda}{3} \sin^2 \delta_{33} R \cos \Theta \cdot \left(\frac{2}{3} \delta_{1} + \frac{1}{3} \delta_{2} \right) F_{3} \]

\[+ \frac{1}{3} \lambda \cos \delta_{33} \sin \delta_{33} \left(F_{q} - \frac{1}{3} F_{m} \right) \left(\frac{2}{3} \delta_{1} + \frac{1}{3} \delta_{2} \right) F_{5} k q \cos \Theta \]

\[+ \frac{q \left(\mu_{p} + \mu_{n} \right) R q \cos \Theta}{\omega \left(\omega + m \right)} \cdot \left\{ 1 - \frac{q^{2} \sin^{2} \Theta}{\left(R^{2} - q^{2} \right)^{1/2}} \right\} \]

\[+ \frac{2 \left(\mu_{p} + \mu_{n} \right) \omega}{\left(\omega + m \right)} \cdot \left\{ 1 - \frac{q^{2} \sin^{2} \Theta}{\left(R^{2} - q^{2} \right)^{1/2}} \right\} \]

\[- \frac{\lambda}{3} \frac{\left(\mu_{p} + \mu_{n} \right) \hbar^{2} \cos^{2} \Theta \cos \delta_{33} \sin \delta_{33}}{m \omega} \cdot \frac{d \sigma}{d \omega} \cdot \frac{d \Gamma}{d \omega} \]

\[+ \frac{2}{3} \lambda \frac{\left(\mu_{p} + \mu_{n} \right) \hbar^{2} \cos^{2} \Theta \sin \delta_{33} \cos \delta_{33}}{m \omega} \cdot \frac{d \sigma}{d \omega} \cdot \frac{d \Gamma}{d \omega} \]

\[- \frac{2}{3} \frac{\left(\mu_{p} + \mu_{n} \right) \hbar^{2} q \sin \delta_{33} \cos \Theta}{m \omega} \cdot \frac{d \sigma}{d \omega} \cdot \frac{d \Gamma}{d \omega} \]

\[+ \frac{2}{3} \frac{\left(\mu_{p} + \mu_{n} \right) \hbar \omega q \cos \Theta \sin \delta_{33}}{m \omega} \cdot \frac{d \sigma}{d \omega} \cdot \frac{d \Gamma}{d \omega} \]

\[- \frac{\left(\mu_{p} + \mu_{n} \right)^{2} \hbar \omega q \cos \Theta}{m \omega} \cdot \frac{d \sigma}{d \omega} \cdot \frac{d \Gamma}{d \omega} \]

As can be seen even from the expressions (2), (3), (4), (5) the angular distributions are entirely different for the four cases considered.

1) C. F. Chew and F. L. Low, Phys. Rev. 131, 1177 (1963)
We notice that except for the case of right circularly polarized photon with spin-flip of the nucleon, the expressions for the angular distributions are cumbersome. But if we take only the first four terms of (1) into consideration we will be retaining the dominant terms. The first term which is the "interaction current" term in the static theory of Chew and Low is due to the electric dipole interaction of the photon. The second term is the "pion current" term which includes all multipole moments. The third and fourth terms arising from magnetic dipole interaction of the photon with the static nucleon introduces the pion-nucleon phase shift into the photo-production problem. Retaining only these terms of the matrix element (1), we will have, for

\[
\frac{d\sigma_{n.c.}}{d\Omega} = \frac{2e^2f^2\alpha}{k} J^{\mu}_{n.c.}(\pi^+);
\]

only the first three terms of (2) which we shall write as

\[
\frac{d\sigma_{n.c.}}{d\Omega} (\pi^+) = \frac{2e^2f^2\alpha}{k} J_{n.c.}^{(3)}(\pi^+);
\]

as it is; for

\[
\frac{d\sigma_{l.c.}}{d\Omega} (\pi^+) = \frac{2e^2f^2\alpha}{k} J_{l.c.}^{(5)}(\pi^+);
\]

only the first three terms of (4) which we shall write as

\[
\frac{d\sigma_{l.c.}}{d\Omega} (\pi^+) = \frac{2e^2f^2\alpha}{k} J_{l.c.}^{(3)}(\pi^+);
\]

and for

\[
\frac{d\sigma_{l.c.}}{d\Omega} (\pi^+) = \frac{2e^2f^2\alpha}{k} J_{l.c.}^{(5)}(\pi^+);
\]

only the first three terms in (5) which we shall write as

\[
\frac{d\sigma_{l.c.}}{d\Omega} (\pi^+), \frac{d\sigma_{l.c.}^{(3)}}{d\Omega} (\pi^+), \frac{d\sigma_{l.c.}^{(5)}}{d\Omega} (\pi^+), \text{and } \frac{d\sigma_{l.c.}^{(5)}}{d\Omega} (\pi^+);
\]

The angular distributions

\[
\frac{d\sigma_{n.c.}}{d\Omega}, \frac{d\sigma_{l.c.}^{(3)}}{d\Omega}, \frac{d\sigma_{l.c.}^{(5)}}{d\Omega}, \text{and } \frac{d\sigma_{l.c.}^{(5)}}{d\Omega};
\]

have been calculated for the simplified case for various values of the photon energy. The results are given in Tables (I to IV) respectively and also drawn as curves in Figures (1-4)

As can be seen even from the expressions (2), (3), (4), (5), the angular distributions are entirely different for the four cases considered.

Table I

\[
\frac{d\sigma_{\text{n.c.}}^{(\omega)} (\pi^+)}{d\Omega}
\]

in microbarns/sterad

<table>
<thead>
<tr>
<th>(\theta) (c.m.)</th>
<th>0°</th>
<th>30°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>2.25</td>
<td>6.75</td>
<td>9.0</td>
<td>6.75</td>
<td>2.25</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>0</td>
<td>9.48</td>
<td>28.43</td>
<td>37.9</td>
<td>28.43</td>
<td>9.48</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>12.36</td>
<td>37.1</td>
<td>49.43</td>
<td>37.1</td>
<td>12.36</td>
<td>0</td>
</tr>
</tbody>
</table>

Table II

\[
\frac{d\sigma_{\text{n.c.}}^{(\omega)} (\pi^0)}{d\Omega}
\]

in microbarns/sterad

<table>
<thead>
<tr>
<th>(\theta) (c.m.)</th>
<th>0°</th>
<th>30°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>0.16</td>
<td>0.68</td>
<td>0.60</td>
<td>0.20</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>0</td>
<td>0.35</td>
<td>3.21</td>
<td>2.14</td>
<td>0.63</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>0.70</td>
<td>5.34</td>
<td>3.14</td>
<td>0.87</td>
<td>0.07</td>
<td>0</td>
</tr>
</tbody>
</table>
Table III

\[
\frac{d\sigma}{d\Omega}\bigg|_{l.c.} \quad \text{in microbarns/sterad}
\]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(0^\circ)</th>
<th>(30^\circ)</th>
<th>(60^\circ)</th>
<th>(90^\circ)</th>
<th>(120^\circ)</th>
<th>(150^\circ)</th>
<th>(180^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0</td>
<td>0.07</td>
<td>0.20</td>
<td>0.26</td>
<td>0.20</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.50</td>
<td>1.49</td>
<td>1.98</td>
<td>1.49</td>
<td>0.50</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>1.47</td>
<td>4.42</td>
<td>5.90</td>
<td>4.42</td>
<td>1.47</td>
<td>0</td>
</tr>
</tbody>
</table>

Table IV

\[
\frac{d\sigma}{d\Omega}\bigg|_{l.c.} \quad \text{in microbarns/sterad}
\]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(0^\circ)</th>
<th>(30^\circ)</th>
<th>(60^\circ)</th>
<th>(90^\circ)</th>
<th>(120^\circ)</th>
<th>(150^\circ)</th>
<th>(180^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>7.42</td>
<td>7.75</td>
<td>7.21</td>
<td>12.57</td>
<td>21.98</td>
<td>31.37</td>
<td>35.8</td>
</tr>
<tr>
<td>2</td>
<td>11.19</td>
<td>6.56</td>
<td>4.86</td>
<td>11.61</td>
<td>29.09</td>
<td>46.95</td>
<td>56.59</td>
</tr>
<tr>
<td>2.5</td>
<td>29.45</td>
<td>15.47</td>
<td>8.02</td>
<td>9.87</td>
<td>22.31</td>
<td>33.97</td>
<td>40.77</td>
</tr>
</tbody>
</table>
For the simplified case we can also calculate the degree of polarization of the nucleon in the final state since we are in possession of both the spin-flip and no spin-flip amplitudes. If A and (iB) are respectively the spin-flip and no spin-flip amplitude, then the degree of polarization P is given by

$$P = \frac{2 \mathfrak{F}_m (AB^*)}{|A|^2 + |B|^2}$$

(6)

This polarization can only be in a direction perpendicular to the plane defined by the incoming photon and the outgoing pion (see, Fermi 1953). We obtain the following expressions for the degree of polarization when a positive pion is produced for the two polarizations of the incident photon beams

$$P_{n.c} (k, \theta) = \frac{-2}{J_{n.c}^{(1)} + J_{n.c}^{(2)}} \left[\frac{k \lambda \sin^3 \theta \cos S_{33} \sin S_{33}}{(1 + \frac{m}{\omega})^2 [(\vec{k} - \vec{q})^2 + 1]} \right]$$

$$+ \frac{2 \lambda \sin^3 \theta (k - q \cos \theta)}{(1 + \frac{m}{\omega})^2 [(\vec{k} - \vec{q})^2 + 1]^2}$$

$$P_{l.c} (k, \theta) = \frac{2}{J_{l.c}^{(1)} + J_{l.c}^{(2)}} \left[\frac{1}{q} \frac{\lambda^2 k^2 \sin^2 S_{33}}{q^4} \cos \theta \sin \theta \right]$$

$$+ \frac{2(k - q \cos \theta) q \sin \theta}{(1 + \frac{m}{\omega})^2 [(\vec{k} - \vec{q})^2 + 1]} \left\{ 1 - \frac{q^2 \sin^2 \theta}{(\vec{k} - \vec{q})^2 + 1} \right\}$$

$$- \frac{2 \lambda k \cos S_{33} \sin S_{33} (k - q \cos \theta) \cos \theta \sin \theta}{3 q (1 + \frac{m}{\omega}) [(\vec{k} - \vec{q})^2 + 1]}$$
$P(k,\theta)$ denotes the degree of polarization of the final nucleon when the pion is emitted at an angle θ to the direction of the photon momentum \vec{k}. Here again we notice a noticeable difference in the degrees of polarization when right circularly polarized and left circularly polarized photons are used, a difference which can be confronted with experimental data when they become available.

b) Photoproduction of neutral pions

The complete matrix element for this case as given by Chew et al. is

$$M(\gamma + p \rightarrow p + \pi^0) = \frac{2\pi e}{\sqrt{\omega k}} \left[\tilde{\sigma} \cdot (\vec{k} \times \vec{e}) \lambda \lambda^{(+)} + \tilde{\sigma} \cdot (\vec{k} \times \vec{e}) \lambda \lambda^{(+)} \right]$$

$$+ \frac{i \tilde{\sigma} \cdot \vec{e}}{\omega + \frac{2}{3} e} \left\{ \frac{2}{3} \left(\frac{\lambda_1 - \lambda_3}{2} \right) \frac{\lambda_1 + \lambda_3}{2} + \omega N^{(+)} \right\}$$

$$- \frac{i \tilde{\sigma} \cdot \vec{e}}{\omega + \frac{2}{3} e} \left(\frac{\lambda_1 + \lambda_3}{2} \right) \frac{\lambda_1 - \lambda_3}{2} \omega \delta_{33}$$

$$X \left\{ \left(F_q - \frac{1}{3} F_M \right) \sigma \cdot \vec{e} \tilde{\sigma} \cdot \vec{k} + \left(F_q + \frac{1}{3} F_M \right) \sigma \cdot \vec{k} \tilde{\sigma} \cdot \vec{e} \right\}$$

$$+ \frac{1}{q} \tilde{\sigma} \cdot \vec{e} \left(\vec{k} \times \vec{e} \right) \omega \delta_{33} \omega \delta_{33} \frac{\lambda_1 + \lambda_3}{2} \omega$$

$$- i \tilde{\sigma} \cdot \vec{q} \times (\vec{k} \times \vec{e}) \frac{\lambda_1 + \lambda_3}{2} \omega + \frac{\tilde{\sigma} \cdot \vec{q} \tilde{\sigma} \cdot \vec{e}}{m_\omega} \right]$$

(9)
Here
\[h^{(++)} = \frac{1}{3} (h_{11} + 2h_{13} + 2h_{31} + 4h_{33}) \]
\[h^{(-+)} = \frac{1}{3} (h_{11} - h_{13} + 2h_{31} - 2h_{33}) \]

and the other quantities have the same significance as in (1).

The angular distributions for the various cases are given by

\[\frac{d\sigma_{n\pi^0}}{d\omega} = \frac{e^2 f^2 \alpha_y}{k} \left[\frac{2\lambda k^2 \sin^2 \Theta \sin^2 \delta_{33}}{q^4} \right. \]
\[+ \frac{2}{q} k^2 \sin^2 \delta_{33} (F_q + F_m) \sin^2 \Theta \]
\[+ \frac{(\mu_p + \mu_n)}{8m_c^2} k^2 \sin^2 \Theta \sin^2 \delta_{33} \cos \delta_{33} \sin \delta_{33} \frac{k^3}{\alpha_y} \sin^2 \Theta \]
\[- \frac{3\lambda k}{3m_c} \cos \delta_{33} \sin \delta_{33} \cos \Theta \sin^2 \Theta \]
\[- \frac{1}{5} \frac{(\mu_p + \mu_n)}{m_c} k^2 q^2 \sin^2 \delta_{33} \sin^2 \Theta (F_q + F_m) \]
\[- \frac{1}{2} \frac{(\mu_p + \mu_n)}{m_c} k^3 q^3 \cos \Theta \sin^2 \Theta \]
\[+ \frac{2kq^3}{3m_c} \sin^2 \delta_{33} \cos \Theta \sin^2 \Theta (F_q + F_m) \left. \right] \] (10)
\[
\frac{d\sigma_{s.c.}^{\text{10}}}{d\Omega} = \frac{e^2 f^2 q^{5}}{akm^2c^2} \sin^4 \Theta \sin^2 \Theta (F_q - \frac{1}{3} F_m)^2
\]

\[
\frac{d\sigma_{l.c.}^{\text{00}}}{d\Omega} = \frac{e^2 f^2 q^{4}}{k} \left[\frac{2}{q} \lambda q^2 \sin^2 \Theta \sin^2 \delta_{33} \\
+ \frac{2}{q} \lambda q^2 \sin^2 \delta_{33} \sin^2 \Theta (F_q - \frac{1}{3} F_m)^2 \\
+ \frac{1}{2} \frac{(\mu_p + \mu_n)^2}{2m^2c^2} \frac{q^2}{2} \sin^2 \Theta \\
+ \frac{1}{2} \frac{q q^4}{2m^2c^2} \sin^2 \Theta \\
+ \frac{1}{2} \frac{q q^4}{2m^2c^2} \cos^2 \Theta \sin^2 \Theta \\
+ \frac{1}{2} \frac{1}{2} \frac{(\mu_p + \mu_n)^2}{2m^2c^2} \frac{q^2}{2} \cos^2 \delta_{33} \sin^2 \delta_{33} \sin^2 \Theta \\
- \frac{2}{3} \frac{\lambda}{m} k \cos^2 \delta_{33} \sin \delta_{33} \cos \Theta \sin^2 \Theta \\
+ \frac{(\mu_p + \mu_n)^2}{3m^2c^2} \frac{q^2}{2} \sin^2 \delta_{33} \sin^2 \Theta (F_q - \frac{1}{3} F_m) \\
- \frac{4}{21} \frac{q^2}{2} \sin^2 \delta_{33} \cos \delta_{33} \sin^2 \Theta F_q F_m
\]
\[
\frac{\partial \sigma^{\text{L.c.}}(\pi^0)}{\partial \Omega} = \frac{e^2 \alpha^2 q^4}{k} \left[8 \frac{\lambda^2 k^2 \cos^2 \theta \sin^2 \delta_{33}}{q^4} + \frac{3}{q} \frac{R^2 q^2 \sin^2 \theta \cos \theta}{q^4} \left(F_q - \frac{1}{3} F_m \right)^2 \right]
\]

\[
- \frac{m_p + m_n}{2m^2 c^2} \kappa^2 q^2 \cos \theta \sin^2 \theta \left(F_q - \frac{1}{3} F_m \right)
\]

\[
\frac{1}{3 m^2 c^2} \left(m_p + m_n \right) c^2 + \frac{3}{4q} \left(6 - \delta_3^2 \right) F_3^2
\]

\[
\frac{4 \lambda}{3 m c^2} \cos \delta_{33} \sin \delta_{33} \frac{R \cos^2 \theta}{q^2}
\]

\[
\frac{4 \lambda}{3 m c^2} \cos \delta_{33} \sin \delta_{33} \frac{R \cos \theta \sin^2 \theta}{q^2}
\]

\[
- \frac{4 \lambda}{3 m} \frac{c_0}{q^2} \cos \delta_{33} \sin \delta_{33} \cos \theta
\]
There is an expression for the cross-sections of the scattering process only for the scattering angle of the proton. The cross-sections are given by:

\[\sigma = \frac{8}{9} (\xi_1 - \xi_3) F_3 \cos^2 \delta_{33} \sin \delta_{33} \frac{k \cos \theta}{q^2} \]

\[+ \frac{8}{9} (\xi_1 - \xi_3) F_5 \sin^2 \delta_{33} \frac{k \cos \theta}{q^2} \]

\[- \frac{4}{3} (\xi_1 - \xi_3) F_3 \cos \delta_{33} \sin \delta_{33} k q \cos \theta \left(F_q - \frac{1}{3} F_M \right) \]

\[- \frac{4}{3} (\xi_1 - \xi_3) F_5 \sin^2 \delta_{33} k q \cos \theta \left(F_q - \frac{1}{3} F_M \right) \]

\[- \frac{4}{3} (\xi_1 - \xi_3) F_5 \frac{m \omega}{\omega} k q \cos \theta \]

\[+ \frac{4}{3} (\xi_1 - \xi_3) F_3 \left(\frac{m \omega}{\omega} \right) \frac{q^2 \cos \theta}{q^2} \sin^2 \delta_{33} \]

\[+ \frac{8}{3} (F_q - \frac{1}{3} F_M) k q \sin^2 \theta \cos \theta \sin^2 \delta_{33} \]

\[+ \frac{8}{3 m \omega} (F_q - \frac{1}{3} F_M) k q \sin^2 \theta \cos \theta \sin^2 \delta_{33} \]

\[- \frac{4}{3} \frac{m \omega}{m} \cos \left(F_q - \frac{1}{3} F_M \right) k q \cos \theta \sin^2 \delta_{33} \]

(13)
There is an enormous simplification if we retain only the dominant magnetic dipole $\langle r \cdot r \rangle$ (phase shift) term in the matrix element (the first two terms of \(\frac{q}{q} \)). The various cross-sections then look as follows:

\[
\frac{d\sigma_{1\text{c.c.}}^{(\pi^0)}}{d\Omega} = \frac{2\lambda e^2 f^2 k^2 \sin^2 \theta \sin^2 S_{33}}{q^5} \tag{14}
\]

\[
\frac{d\sigma_{1\text{c.c.}}^{(\pi^0)}}{d\Omega} = 0 \tag{15}
\]

\[
\frac{d\sigma_{1\text{c.c.}}^{(\pi^0)}}{d\Omega} = \frac{2\lambda e^2 f^2 k^2 \sin^2 \theta \sin^2 S_{33}}{q^5} \tag{16}
\]

Thus the angle dependence of the differential cross-sections is particularly simple. The differential cross-section for a right circular photon is proportional to $\sin^2 \theta$ while that for a left circular photon is proportional to $\sin^2 \theta$ for the no-spin-flip case and $\cos^2 \theta$ for spin-flip. Further in this approximation there is no spin-flip for the nucleon if the incident photon is right circularly polarized. These features in the angular distribution can perhaps be checked with experiment. Also due to the vanishing of the spin flip
amplitude in the case of a right circular photon, the final nucleon cannot be polarised for this case, i.e.

\[P_{\text{n.c.}}^{(k, \theta)} = 0 \]

We also note that if we have the nucleon polarised opposite to the direction of propagation of the photon it is the right circular photon that will yield a non-zero spin flip amplitude while the spinflip amplitude arising from a left-circular photon is zero which means that \(P_{\text{l.c.}}^{(k, \theta)} = 0 \) in this case. This remark also brings out the need for polarising the target nucleon. Finally we wish to remark that recently considerable interest on the polarization of the recoil nucleon in \(\pi^0 \) production at higher energies has been evinced with a view to determining the parity of higher resonances other than the \(3/2, 3/2 \) resonance\(^1\).

3. Photo production of pion pairs\(^2\)

a) We shall next consider the polarization effects in process

\[\gamma + p \rightarrow p + \pi^+ + \pi^- \]

Again fixing the spin of the nucleon along the direction of propagation of the photon, we can derive the angular distribution for the various cases. The angular distributions of the \(\pi^+ \) for the various cases obtained by integrating over the angles of \(\pi^- \) are given by

\[
\frac{d^2 \sigma_{\text{n.c.}}}{d\omega + d\omega_1} = \frac{q_1 q_2 e^{2f_4}}{2 \pi f R} \left\{ \frac{(\mu_p - \mu_n)^2 R^2}{3m^2 f_4^2} \left[\frac{\sin^2 \theta}{1 - \frac{1}{18} \sin^2 \theta} \right] \right. \\
+ \frac{\sin^2 \theta (\sin^2 \theta_1 - \sin^2 \theta)}{4 + \frac{q_1^2}{q_2^2}} \left[\frac{\sin^2 \theta}{1 - \frac{1}{18} \sin^2 \theta} \right] \right. \\
+ \frac{8 q_2^2}{\omega^2 (1 + \frac{\omega_1}{m})} \\
\times \left[(2 + \frac{q_1^4}{q_2^4} A_3 - 2q_1^2 A_2) \sin^2 \theta + (k^2 \frac{q_1^2}{q_2^2} A_1 + q_1^4 A_2 - 2k \frac{q_1^3}{q_2^2} A_3) \cos^2 \theta \right] \\
- \frac{(\mu_p - \mu_n)^2 R^2}{q_1 q_2 m f_4^2} \sin \theta \sin \theta_1 \sin \theta_2 \cos \theta \cos \theta_2 \\
+ \frac{(\mu_p - \mu_n) q_1^2}{6 q_2^2} \omega_1 \omega_2 (1 + \frac{\omega_1}{m}) \\
- \frac{(\mu_p - \mu_n) q_1^2}{2 q_2^2 \omega_1 \omega_2 (1 + \frac{\omega_1}{m}) m f_4^2} \sin^2 \theta_2 \\
+ \frac{4 (\mu_p - \mu_n) k}{3q m f_4^2} (1 + \frac{\omega_1}{m}) (a + b \cos \theta_2) \\
\times \frac{q_1^2 \sin^2 \theta \sin \theta_2 (k - q_1 \cos \theta_2) \sin^2 \theta_2}{2q_1^2 \omega_1} \\
+ \frac{q_1^2 \sin^2 \theta \sin \theta_2 (k - q_1 \cos \theta_2) \sin^2 \theta_2}{2q_1^2 \omega_1} \\
- \frac{1}{a + b \cos \theta_2} \cdot \frac{16 q_2^3 A_3 \sin \theta_2 (k \sin \theta_2 + \cos \theta_2)}{\omega_1 \omega_2 (1 + \frac{\omega_1}{m}) (1 + \frac{\omega_1}{m})}
\]
\[\frac{16q_1^2 \sin^2 \Theta_z}{(a+b \cos \Theta_z)^2} \left[k^2 + q_2^2 \left(1 + \sin^2 \Theta_z\right) - 2k q_2 \cos \Theta_z \right] \]
\[+ \frac{q_1^2 q_2^2 \sin^2 \Theta_z}{(a+b \cos \Theta_z)^2} \left[\frac{(\mu_p - \mu_n)^2 k^2}{b m^2 f^4} \sum \left(\frac{\sin^2 8(q_i) q_i^2}{\omega_1^2 q_i^2} + \frac{\sin^2 8(q_2) q_2^2}{\omega_2^2 q_2^2}\right) \sin^2 \Theta_z \right] \]
\[+ \frac{q_1^2 q_2^2 \sin^2 \Theta_z}{\omega_1^2 (1 + \frac{m q_1^2}{m})} \left[q_1^2 A_3 \cos^2 \Theta_z + \left(2q_1 A_3 - 2k q_1 A_5\right) \sin^2 \Theta_z \right] \]
\[+ \frac{(\mu_p - \mu_n)^2 k q_1 \sin 8(q_1) \sin 8(q_1) \cos 8(q_2) \cos 8(q_2)}{q_1 \omega_1^2 q_2 \omega_2^2 q_1 q_2 m^2 f^4} \sin^2 \Theta_z \]
\[+ \frac{(\mu_p - \mu_n)^2 k q_1 \sin 8(q_1) \sin 8(q_1) \cos 8(q_2) \cos 8(q_2)}{q_1 \omega_1^2 q_2 \omega_2^2 q_1 q_2 m^2 f^4} \sin^2 \Theta_z \]
\[+ \frac{(\mu_p - \mu_n)^2 k q_1 \sin 8(q_1) \sin 8(q_1) \cos 8(q_2) \cos 8(q_2)}{q_1 \omega_1^2 q_2 \omega_2^2 q_1 q_2 m^2 f^4} \sin^2 \Theta_z \]
\[+ \frac{16q_1^2 q_2^2}{3q_1^2 \omega_1^2 (1 + \frac{m q_1^2}{m}) m^2 f^2 (a+b \cos \Theta_z)} \left[\frac{q_2^2 \sin^2 8(q_1)}{3 \omega_2 q_1} + \frac{q_2^2 \sin^2 8(q_2)}{q_1 \omega_2} \right] \]
\[+ \frac{16q_1^2 q_2^2}{3q_1^2 \omega_1^2 (1 + \frac{m q_1^2}{m}) (a+b \cos \Theta_z)^2} \left[2k + q_2^2 (1 + \cos \Theta_z) - 4k q_2 \cos \Theta_z \right] \sin^2 \Theta_z \]
\[
\begin{align*}
\frac{d^2 \sigma_{2 \to 0}}{da_1 da_2} &= \frac{q_1 q_2 e^2 f^4}{2 \pi \hbar} \left\{ \frac{(\mu_p - \mu_n)^2 \hbar^2}{108 m^2 f^4} \right. \\
&\quad \times \left[\frac{2 \sin^2 \delta(q_1) q_2 \cos^2 \theta_2}{\omega_2 q_1^4} + \frac{\sin^2 \delta(q_1) q_1^2}{\omega_1 q_2^4} (1 + \tan^2 \theta_2) \right] \\
&\quad + \frac{16 q_1^2 q_2^2}{\omega_1 \omega_2 (1 + \frac{\omega_1}{m})^2} \left[(R^2 A + q_1 A - 2k q_1 A_5) \cos^2 \theta_2 + q_1^2 A_5 \sin^2 \theta_2 \right] \\
&\quad + \frac{32 q_1^2}{3 \omega_1 (1 + \frac{\omega_1}{m})^2} \frac{1}{q_2 \sin 2 \delta(q_1) \cos \theta_2} \\
&\quad + \frac{16 q_1^2 q_2^2}{\omega_1 \omega_2 (1 + \frac{\omega_1}{m})^2} \left[(RA_5 - q_1 A_5) \cos \theta_2 \right] \\
&\quad + \frac{2 (\mu_p - \mu_n) \hbar^2 \sin \delta(q_1) \sin \delta(q_2) \cos [\delta(q_1) - \delta(q_2)] \cos^2 \theta_2}{27 \omega_1 \omega_2 m^2 f^4 q_1 q_2} \\
&\quad - \frac{(\mu_p - \mu_n) \hbar^2 \sin \delta(q_1) \cos \theta_2}{3 \omega_2 q_1 (1 + \frac{\omega_1}{m}) m f^2} \\
&\quad - \frac{2 (\mu_p - \mu_n) \hbar^2 \sin 2 \delta(q_1) \sin \delta(q_2) \cos \theta_2}{3 \omega_1 \omega_2 (1 + \frac{\omega_1}{m}) m f^2} \\
&\quad - \frac{8 (\mu_p - \mu_n) \hbar^2 \sin 2 \delta(q_1) \sin \delta(q_2) \cos \theta_2}{9 \omega_1 \omega_2 (1 + \frac{\omega_1}{m}) m f^2} \\
&\quad \left. + \frac{2 (\mu_p - \mu_n) \hbar^2}{q_2^2 \cos \theta_2 \sin \theta_2 \cos \delta(q_1) \sin \delta(q_1) \sin \delta(q_2)} \right]
\end{align*}
\]
\[
\frac{d^2 \sigma_{\text{el}}^{(2)}}{d \Omega \cdot d \omega_1} = \frac{g_{\nu_1} q_v e_f^4}{2\pi \cdot R^4} \left\{ \frac{(\mu_p - \mu_n)^2}{54 m_f^4} \frac{k^2}{\omega_1^2 q_{\nu_1}^4} \right\} \\
\times \left[2 \sin^2 \theta_A^2 \frac{g_{\nu_1} q_v^2}{\omega_1^2 q_{\nu_1}^2} \left(1 + 14 \sin^2 \theta_2 \right) \right] \\
+ \frac{8 g_{\nu_2}^2}{\omega_2^2 (1 + \omega_2/m)^4} \left[(2 - q_{\nu_1}^2 A_3 - 2 q_{\nu_1}^2 A_5 \cos \theta_2 + (q_{\nu_1}^2 A_3 + k^2 A_2 - 2 k q_{\nu_2}) \sin \theta_1^2) \right] \\
- \frac{(\mu_p - \mu_n)^2}{27 \omega_1 \omega_2 q_{\nu_1} q_{\nu_2} m_f^2} \frac{k^2}{\omega_1^2 q_{\nu_1}^4} \sin S(q_{\nu_1}) \sin S(q_{\nu_2}) \cos \left[S(q_{\nu_1}) - S(q_{\nu_2}) \right] (1 + \cos^2 \theta_2) \\
+ \frac{4 (\mu_p - \mu_n)^2}{q_{\nu_1} q_{\nu_2}} \frac{k^2}{\omega_1 \omega_2 (1 + \omega_2/m)^4} \frac{q_{\nu_2}^2 \sin \theta_2}{m_f^2} \cos \theta_2 \\
+ \frac{2 (\mu_p - \mu_n)^2}{q_{\nu_2}^2} \frac{k^2}{\omega_1 \omega_2 (1 + \omega_2/m)^4} \frac{m_f^2}{m_f^2} \cos \theta_2 \\
+ \frac{g}{q_{\nu_2}^2} \left(\frac{\mu_p - \mu_n}{\omega_1 (1 + \omega_2/m)} \right) \frac{k^2}{m_f^2} \cos \theta_2 \\
\times \left[\frac{q_{\nu_1}^2 (2 q_{\nu_1} \cos \theta_2 - k) \sin 2 \delta(q_{\nu_2}) - q_{\nu_2}^2 (k - q_{\nu_2} \cos \theta_2) \sin 2 \delta(q_{\nu_1})}{2 q_{\nu_1} \omega_1} \right] \\
- \frac{16 g_{\nu_1}^2 q_{\nu_2} \cos \theta_2}{\omega_1 \omega_2 (1 + \omega_1/m)(1 + \omega_2/m)} \left[A_5 q_{\nu_1} q_{\nu_2} \sin^2 \theta_2 - q_{\nu_1} A_5 \sin \theta_2 \right] \\
(a + b \cos \theta_2)
\]
- \frac{16 q_1 q_2 \cos \theta_2}{w_1 w_2 (1 + \frac{w_1}{m}) (1 + \frac{w_2}{m})} \left[A_5 \frac{q_1 q_2 \sin^2 \theta_2}{(a + b \cos \theta_2)} \right]

\frac{16 q_1 q_2 \sin \theta_2}{3 \omega_1^2 (1 + \frac{w_2}{m})^2 (a + b \cos \theta_2)^2}

\left[2 q_1 (k + 2) - 2 q_1 + 2 q_2 (q_2 - 4 k) \cos^2 \theta_2 + q_2 \sin^2 \theta_2 \right]

- 2 q_1, (a + b \cos \theta_2) \right]

Here

\begin{align*}
A_1 &= -4 b^2 + \frac{2a}{b^3} \log \frac{a+b}{a-b} \\
A_2 &= -\frac{16 q_1 q_2 \cos \theta_2}{w_1 w_2 (1 + \frac{w_1}{m}) (1 + \frac{w_2}{m})} \left[A_5 \frac{q_1 q_2 \sin^2 \theta_2}{(a + b \cos \theta_2)} \right] \\
A_3 &= -\frac{16 q_1 q_2 \sin \theta_2}{3 \omega_1^2 (1 + \frac{w_2}{m})^2 (a + b \cos \theta_2)^2} \\
A_4 &= \frac{b a}{b^3} + \log \frac{a+b}{a-b} \cdot \frac{b^2 - 3a^2}{b^4} \\
A_5 &= -\frac{16 q_1 q_2 \cos \theta_2}{w_1 w_2 (1 + \frac{w_1}{m}) (1 + \frac{w_2}{m})} \left[A_5 \frac{q_1 q_2 \sin^2 \theta_2}{(a + b \cos \theta_2)} \right] \\
A_6 &= \frac{b a}{b^3} + \log \frac{a+b}{a-b} \cdot \frac{b^2 - a^2}{b^4} \\
\end{align*}

a = k^2 + w_1^2 ; \quad b = -\frac{2}{3} k q_1

3. Electra-pion production from nucleons

We shall calculate the matrix elements for the emission of pions when polarized electrons collide with polarized nucleons. We can again investigate (1) whether the type of polarization of the projectile electron affects the angular distribution of pion emission even if the initial nucleon is unpolarized and (2) the degree of polarization of the final nucleon of initially it was \(\lambda \)-polarized in a given direction.

1) Fubini et al and recently Dénney have analysed the process by the method of dispersion relations, the former using the single variable dispersion relations and the latter, the Mandelstam representation. In both cases the matrix element for electro-pion production is reduced to that for the photo-production of a pion by a virtual photon. This can be seen as follows. The matrix element for the electron of four-momentum \(\lambda_1 \) impinging on a nucleon of momentum \(p_1 \) by which it goes over into an electron of momentum \(\lambda_2 \), the producing a pion of momentum \(q \), the final nucleon having the momentum \(p_2 \) is given by

\[
\langle p_2, \lambda_2, q | S | p_1, \lambda_1 \rangle = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int \int \ldots d\lambda_1 d\lambda_2 \ldots (\Phi_{\lambda_1} a(\lambda_2) c(q)) T(H_{\text{int}}(x_1), \ldots H_{\text{int}}(x_n), \alpha^+(\lambda_2) \bar{\Phi}_{p_1})
\]

(23)

The interaction Hamiltonian density is given by

\[
H_{\text{int}}(x) = \text{i} e \bar{\Psi}_e(x) \gamma_\mu \Psi_e(x) A_\mu(x) + \text{i} e \bar{\Psi}_N(x) \gamma_\mu \Psi_N(x) A_\mu(x) + \text{renormalisation terms}
\]

where \(\Psi_N \) and \(\Psi_e \) are the field operators of the nucleon and electron respectively. Commuting \(\alpha(x_2) \) to the right and \(\alpha^+(x_1) \) to the left but taking one of them through the current operator arising from the other (only in which case we will have a matrix element which is of the lowest order in the electromagnetic coupling constant \(e \)), we obtain, on going over to the Heisenberg representation,

\[
\langle p_2, \lambda_2, q | S | p_1, \lambda_1 \rangle = e \left(\frac{m^2}{E_1 E_2} \right)^{1/2} \bar{u}(\lambda_2) \gamma_\mu u(\lambda_1) \int d^4x \ e^{i(p_1 - p_2)x} u\left(\lambda_2, x\right) \gamma_\mu A_\mu(x) u\left(\lambda_1, x\right)
\]

\[
M = \frac{g}{\sqrt{2}} \left[\frac{1}{1 + \frac{E_1}{m}} \right] \langle p_2 q | A_\mu(x) | p_1 \rangle
\]

Performing the \(x \) integration, using translational invariance for \(A_\mu(x) \) we can remove out a delta function \(\delta(p_1 + \lambda_1 - p_2 - \lambda_2 - q) \) corresponding to over-all energy momentum conservation. The matrix element \(\langle p_2 q | A_\mu(0) | p_1 \rangle \) can be connected with \(\langle p_2 q | j_\mu(0) | p_1 \rangle \) where \(j_\mu(0) \) is the photon current operator on differentiating by \(\lambda_2 \).

Finally we get

\[\left< p_{\lambda_1}, \lambda_2, \eta | T | p_{\lambda_1}, \lambda_1 \right> = -ie \left(\frac{m^2}{E_1, \nu_2} \right)^{\frac{1}{2}} \epsilon_{\mu} \left< p_{\lambda_2} \eta | j_{\mu}^{(0)} | p \right> \]

(26)

The matrix element on the right corresponds to photo-pion production by a virtual photon of polarization, \(\frac{\vec{\epsilon}}{\lambda} = \frac{u(\lambda_2) \bar{u}(\lambda_1)}{(\lambda_1 - \lambda_2)^2} \).

The importance of a study of the process can be said to stem from the virtual nature of the photon since in the inhomogeneous terms of the dispersion relations, nuclear form factors which depend on the invariant momentum transfer \(\lambda^2 = (\lambda_1 - \lambda_2)^2 \) enter. These form factors are exactly the same as the ones obtained by Hofstadter in elastic electron-nucleon scattering. Since the electro-pion production involves both the proton and neutron form factor effects it can offer an independent method, different from the electron-deuteron scattering or electro-distintegration of the deuteron, for determining the neutron form factors.

Let us now consider the electro-production of a neutral charged pion from a nucleon, the matrix element of which is given in the static approximations and on retaining, only the dominant magnetic moment term by

\[M = \frac{f}{\sqrt{2}} \left\{ \frac{1}{1 + \left(\frac{\lambda^2}{2M^2} \right)} \left[e (\lambda^2) i \vec{\sigma} \cdot \vec{\epsilon} + i \frac{(k \cdot \eta)(\eta \cdot \vec{r})(\bar{\eta} \cdot \vec{r})}{\lambda^2 + 2k \cdot \eta} \right] \right\} \]

\[+ \frac{1}{3} \left\{ 2\eta \cdot (k \times \vec{\epsilon}) - i \vec{\sigma} \cdot \eta \times (k \times \vec{\epsilon}) \right\} \frac{\mu (\lambda^2) \epsilon_3 33 \sin \theta_3}{2f^2 q^3} \]

(27)

where \(f \) is the pseudovector renormalized rationalized pion-nucleon coupling constant, \(\eta \) and \(\vec{k} \) the momenta of the pion and virtual photon respectively, \(\theta_{33} \) is the pion-nucleon phase shift for the 33 resonant state and \(\mu (\lambda^2) \)

the isovector magnetic moment form factor which is given in
terms of the magnetic moment form factors of the protons \(F_{2}^{p} \)
and neutron \(F_{2}^{n} \), by

\[
\mu^V(\lambda^2) = \mu^{p}_{p} F_{2}^{p}(\lambda^2) - \mu^{n}_{n} F_{2}^{n}(\lambda^2)
\]

where \(\mu^{p} \) and \(\mu^{n} \) are the magnetic moments of the proton
and neutron. \(\vec{\epsilon} \) is the polarization vector of the virtual
photon and is equal to

\[
\frac{i e \vec{u} \gamma \mu}{(\lambda_1 - \lambda_2)^2} = \frac{i e \vec{u} \gamma \mu}{k^2}
\]

Equation (27) contains only the matrix elements
for the case where the polarization vector \(\vec{\epsilon} \) has only space
components; the matrix element for the time component of the
four-current can be obtained by using the continuity equation

\[
k \cdot j o - k \cdot j f = 0 \quad (28)
\]

From (27) we can now find the matrix elements for
different polarization states of the nucleon and electron. We
designate the various combinations of the polarization of the
particles by \(\vec{m} \) and \(\vec{n} \) where \(\vec{i} \) represents the polarization
of the incident electron and that of the outgoing electron,
\(\vec{k} \) that of the initial nucleon and \(\vec{l} \) that of the final nucleon.
Each of these indices can take two values designated by \(F \) and
\(B \). In the case of the electron (which we take to be com-
pletely relativistic since at the energies considered, namely
\(\approx 600 \text{ MeV} \), the rest energy of the electron is negligible
compared to its kinetic energy) \(F \) and \(B \) refers respectively
to spin in the direction of and opposite to the electron momentum. In the case of the nucleon which is static, \(F \) and \(\bar{F} \) refer to spin along the \(\mathbf{z} \)-axis, which we take to be the direction of the incident electron and the negative \(\mathbf{z} \)-axis respectively. The spinors corresponding to spin parallel and antiparallel to the directions of the incident and final electrons of momenta \(\lambda_1 \) and \(\lambda_2 \) respectively are required in order to compute \(\vec{\epsilon} \). Since we are interested in production matrix elements when the initial and final electron are with their spins in either 'forward' or 'backward' direction with respect to their momenta it is clear that we should use spinors which also satisfy the equation

\[
\frac{\vec{\sigma} \cdot \lambda}{|\lambda|} \ u(\lambda) = \pm u(\lambda)
\]

The two eigen functions will then describe respectively the electron whose spin is parallel or antiparallel to its direction of motion. We give below the spinors we shall be using in our calculations in which we have made the approximation that \(\lambda_z \) equals \(|\lambda| \) whenever they occur together and the spinors are normalized as

\[
\overline{u}(\lambda) \ u(\lambda) = 2 \, m_e
\]

1. Electron spin parallel to its momentum
\[u(\lambda) = \sqrt{E + m_e} \]

\[\begin{pmatrix}
1 \\
\lambda + (\lambda | \lambda \rangle) \\
|\lambda \rangle | (E + m_e) \\
\lambda + (\lambda | \lambda \rangle / 2 \left(E + m_e \right)
\end{pmatrix} \]

(31)

2. Electron spin antiparallel to its momentum

\[u(\lambda) = \sqrt{E + m_e} \]

\[\begin{pmatrix}
-\lambda - (\lambda | \lambda \rangle) \\
\lambda - 1 \\
(\lambda - 1) / 2 \left(E + m_e \right) \\
-|\lambda \rangle | (E + m_e)
\end{pmatrix} \]

(32)

Using the above we can calculate \(\vec{E} \) for the four different cases of polarization states of the two electrons.

Similarly there will be four different types of matrix elements corresponding to the various nucleon states. Hence we arrive at the following sixteen different matrix elements for the electroproduction of neutral pions from nucleons.

1. \(M_{FFFF} \)

\[M_{FFFF} = i A \varepsilon_z + i B (k_z - q_z) \alpha_1 \\
+ c [i (k_z \varepsilon_z - \beta \varepsilon_z) + 2 \delta_1] \]

2. \(M_{FFFF} \)

\[M_{FFFF} = -i A \varepsilon_z - i B (k_z - q_z) \alpha_1 \\
- c [i (k_z \varepsilon_z - \beta \varepsilon_z) - 2 \delta_1] \]

3. \(M_{FFFF} \)

\[M_{FFFF} = i A \varepsilon_+ + i B (k \varepsilon_+ - q \varepsilon_+) \alpha_1 \\
+ i c [k \varepsilon_+ - \beta \varepsilon_+] \]

4. \(M_{FFFF} \)

\[M_{FFFF} = i A \varepsilon_- + i B (k \varepsilon_- + q \varepsilon_-) \alpha_1 \\
+ i c [k \varepsilon_- - \beta \varepsilon_-] \]

5. \(M_{BBFF} \)

\[M_{BBFF} = i A \varepsilon_z^* + i B (k_z - q_z) \alpha_2 \\
+ c [i (k_z \varepsilon_z^* - \beta \varepsilon_z^*) + 2 \delta_2] \]

6. \(M_{BBFF} \)

\[M_{BBFF} = -i A \varepsilon_z^* - i B (k_z - q_z) \alpha_2 \\
- c [i (k_z \varepsilon_z^* - \beta \varepsilon_z^*) - 2 \delta_2] \]
\[M_{BBFB} = iA_e + iB (\vec{r} - \vec{q}) + C \left[r + \eta - \beta e_+ \right] \]

\[M_{BBBF} = iA_e - iB (\vec{r} - \vec{q}) - C \left[r - \gamma - \beta e_+ \right] \]

9 to 16.

\[M_{FBFF} = M_{FBFF} = M_{FBFB} = M_{FBFB} = M_{BBFF} = M_{BBFF} = 0 \]

In the above

\[A = \frac{f}{\sqrt{\omega}} \cdot \frac{1}{1 + \omega \frac{m}{E}} \cdot e^\nu(\lambda^2); \]

\[e^\nu(\lambda^2) = e^{\nu(\lambda^2)} = \left[F_p(\lambda^2) - F_n(\lambda^2) \right] \]

\[B = \frac{f}{\sqrt{\omega}} \cdot \frac{1}{1 + \omega \frac{m}{E}} \cdot \frac{1}{\lambda^2 - 2 \lambda \eta} \]

\[C = \frac{f}{\sqrt{\omega}} \cdot \frac{\mu^{(\lambda^2)}}{6 f^2 q^3} \cdot e^{i \delta_3 \delta_3 \sin \delta_3} \]

\[E_x = \sqrt{E_1 E_2} \left[\frac{\delta_1 + \delta_2}{E_1} + \frac{\delta_2 - \delta_1}{E_2} \right] \]

\[E_y = -i \sqrt{E_1 E_2} \left[\frac{\delta_1 + \delta_2}{E_1} - \frac{\delta_2 - \delta_1}{E_2} \right] \]

\[E_z = 2 \sqrt{E_1 E_2} \left[1 - \frac{\delta_1 + \delta_2}{4 E_1 E_2} \right] \]
\[\lambda_+ = \lambda_x + i \lambda_y \quad \text{and} \quad \lambda_- = \frac{\lambda_x - i \lambda_y}{\sqrt{2}} \]

\[\kappa_+ = \frac{\kappa_x + i \kappa_y}{\sqrt{2}} \quad \text{and} \quad \kappa_- = \frac{\kappa_x - i \kappa_y}{\sqrt{2}} \]

\[\lambda_1 = 2 \sqrt{E_x E_2} \left[\frac{\lambda_2 - (2 \eta_+ - \kappa_+)}{2 E_2} \right. \]
\[+ \frac{\lambda_1 + \kappa_-}{2 E_1} + (2 \eta_2 - \kappa_2) \left(1 - \frac{\lambda_1}{4 E_1 E_2} \right) \]

\[\eta_1 = 2 \sqrt{E_1 E_2} \left[\frac{\lambda_2 - \eta_+}{2 E_2} + \frac{\lambda_1 + \eta_-}{2 E_1} + \eta_2 \left(1 - \frac{\lambda_1 + \lambda_2}{4 E_1 E_2} \right) \right] \]

\[\delta = 4 \sqrt{E_1 E_2} \left[-i (\lambda_1 - \lambda_2) \left(\frac{\lambda_1 + \lambda_2}{2 E_2} - \frac{\lambda_1 + \lambda_2}{2 E_1} \right) \right. \]
\[+ (\lambda_x - \lambda_y) \left\{ i \eta_2 \left(\frac{\lambda_2 - \eta_+}{2 E_2} - \frac{\lambda_1 + \eta_-}{2 E_1} \right) \right\} \]
\[+ (\eta_x - \eta_y) \left\{ \eta_2 \left(1 - \frac{\lambda_1 + \lambda_2}{4 E_1 E_2} \right) - \eta_2 \left(\frac{\lambda_2 - \lambda_1}{2 E_2} + \frac{\lambda_1 + \lambda_2}{2 E_1} \right) \right\} \]

\[\alpha_2 = \alpha_1^* \quad \text{and} \quad \gamma_2 = \gamma_1^* \quad \text{and} \quad \delta_2 = \delta_1^* \quad (3\text{a}) \]

To investigate whether the state of polarisation of the incident electron affects the pion emission cross-sections without regard to the polarizations of the other particles we find the total matrix element for electropion production with the incident electronpolarised in the forward direction.
\[
M_i = M_{FFFF} + M_{FFFF} + M_{FBFF} + M_{FFBF} \\
\quad + M_{FBFF} + M_{FBFB} + M_{BFBF} + M_{BFBB} + M_{BFBB} + M_{BFBF} \\
= i\sqrt{2} \left[A\epsilon_x + B(k_x - q_x)\alpha_1 + C(k_x\eta_1 - \frac{p\epsilon_x}{2} - i2\sqrt{2} s_i) \right]
\]

Similarly the matrix element for pion production by an electron polarised with its spin antiparallel to its direction of motion is

\[
M_i = M_{BBFF} + M_{BBFB} + M_{BBBB} + M_{BBBF} + M_{BBFB} + M_{BBBF} + M_{BBBF} + M_{BBBF} + M_{BBBF} + M_{BBBF} \\
= i\sqrt{2} \left[A\epsilon_x + B(k_x - q_x)\alpha_1^* \\
+ C(k_x\eta_1^* - \frac{p\epsilon_x}{2} - i2\sqrt{2} s_i^*) \right] \tag{35}
\]

We see therefore that \(M_i M_i^* \) is identically equal to \(M_i M_i^* \), which implies that the cross-section for electro-pion production does not depend on the state of polarization of the incident electron if the nucleon is unpolarized. But if both the electron and the nucleon are polarized, we see from the expression (33) themselves that the cross-sections will be different for the different cases.

We also compute the degree of polarization of the final nucleon if the initial nucleon is polarized with its spin up and the incident electron is polarized with its spin along the direction of motion. Using (33), this is given by
\[P = 2 \mathcal{F} \lim \left[A e_z + B (k_z - q_z) \chi_z \right. \\
+ C (k_z \eta_1 - e_z \beta - 2 i \delta_1) \left. \right] \\
\times \left[A e_+ + B (e - q) \chi_1 \right. \\
+ C (k + \eta_1 - \beta e) \left. \right] \\
\times \left[|M^{FFF}|^2 + |M^{FFB}|^2 \right] \]

From (34) we see that this will in general be different from zero and can take in any value between 0 and 1.

Conclusion

We see from a study of the three processes considered in this chapter that the angular distributions are quite sensitive to the state of polarisation of the incoming particles. A measurement of the degree of polarisation of the final nucleon when the particle incident on the initial nucleon is also polarised may throw further light on the correctness of any particular theory.

Recently Chamberlain et al.\(^1\) have produced a target containing polarized protons. Only one proton in thirty was polarized but with coincidence methods (e.g., for proton-proton scattering) even this was found to be useful. A much larger

\(^1\) E. Segre, Lectured delivered at the Institute of Mathematical Sciences, Madras. (November, 1962)
degree of polarization is expected to be achieved with improvements. With polarized targets, it would be possible in addition to testing specific theories of interactions as we have shown above, to carry out other experiments in which, for instance, a polarized proton beam is scattered off a polarized target of protons, which would directly give the spin dependence of phase shifts. Also relative parities could be established by observing the polarization of the particles produced. For instance, by observing the polarization of Σ's produced by pions incident on polarized nucleons, the $(K\Sigma)$ relative parity could be established.

For the scattering of a positive pion from deuterons the following processes are possible:

1. $\pi^+ + d \rightarrow \pi^+ + d$ (Kinetic Scattering)
2. $\pi^+ + d \rightarrow \pi^+ + d$ (Inelastic Scattering)

(1) Aliachi, Boursinblum, Y. Deurac, and K. Venkataram, Nuclear Physics, 22, 600 (1962).
SCATTERING OF PIONS BY DEUTERONS AND LIGHT NUCLEI (1)

1. Introduction

A study of the interaction of pions with targets containing more than a single nucleon would be extremely complicated if we did not use some scheme of approximation in the calculations. An approximation which has been frequently used in the case of scattering and photoproduction from deuterons is the impulse approximation which assumes that the matrix element for each of these processes is the sum of the matrix elements for interaction with each of the two nucleons in the deuteron assuming that during this interaction the other nucleon plays the role of a spectator. We have used this approximation and the Chao-Low matrix element for pion scattering from nucleons to study the scattering of pions from deuterons at various energies. In an appendix, we discuss the scattering of pions from light nuclei.

For the scattering of a positive pion from deuterium the following processes are possible:

\[(1) \quad \pi^+ + D \rightarrow \pi^+ + D \quad \text{(Elastic Scattering)} \]

\[(2) \quad \pi^+ + D \rightarrow p + n + \pi^+ \quad \text{(Inelastic Scattering)} \]

3) \(\pi^+ + d \rightarrow p + p + \pi^0 \) (Charge Exchange Scattering)

4) \(\pi^+ + d \rightarrow p + p \) (Pure Absorption)

5) \(\pi^+ + d \rightarrow p + p + \gamma \) (Radiative Capture)

The absorption processes (4) and (5) will be considered in the next chapter. The early experiments of Ashkin et al have shown that there is no great difference between the scattering of \(\pi^+ \) and \(\pi^- \) indicating that charge symmetry holds.

Fernbach, Green and Watson and Rockmore have studied earlier scattering of pions by deuterons using the impulse approximation which involves the neglect of the internucleon potential, maximum multiple scattering and off-energy shell scattering of the pion by a nucleon. The correction due to the internucleon potential was investigated by Rockmore who found it to be less than \(10\% \). But there are discrepant views regarding the effect of multiple scattering. This effect was studied initially by Brueckner who found a considerable reduction in the cross-section of about \(50\% \) at \(30^\circ \) and at an incident energy of \(135 \text{ Mev} \). However Rockmore points out that the neglect of off-energy shell matrix elements in multiple scattering is not valid. He has carried out the calculations at only one energy (85 Mev) using the impulse approximation and finds an

4) K. A. Brueckner, Phys. Rev., 89, 824 (1953);
 Ibid, 90, 716 (1953).
excellent agreement with the experimental results of Rogers and Lederman. The elastic scattering of pions by deuterons has also been studied by Braneden and Moorhouse employing the variational method and they give numerical results for various incident energies from 85 to 370 Mev. In the expression they have derived they are able to identify the terms corresponding to multiple scattering and show that the inclusion of these terms alters the cross-section by less than 5% even at the most favourable angles and energies for the range of energies considered.

In contrast to the above, Green reported earlier an impulse approximation calculation for elastic scattering at 135 Mev where he found too large values for the cross-sections as compared with experimental results then available. As a result he has made some sceptical remarks about the validity of the impulse approximation at the energy 135 Mev. Further, in presenting their experimental data for elastic scattering of positive and negative pions from deuterons at 300 Mev, Dul'kova et al. give for comparison a set theoretical values supposed to have been derived on the basis of the impulse approximation which are in violent disagreement with the

2) B. H. Braneden and R. J. Moorhouse, Nuclear Physics, 6, 310 (1958)
3) T. A. Green, Phys. Rev., 90, 161 (1953)
4) L. S. Dul'kova et al., Soviet Physics, JETP, 9, 217 (1959)
experimental values, a disturbing feature since by the very nature of the approximation one might expect the impulse approximation to give good results at higher energies.

In view of the above it was considered worthwhile to test the validity of the approximation by making use of the Chew-Low1) amplitude for pion-nucleon scattering in order to study the elastic, inelastic and charge-exchange scattering of pions by deuterons at various incident pion energies. The numerical results that we have obtained for elastic and inelastic scattering of positive pions by deuterons at 95 Mev agree well with the experimental values of Rogers and Lederman2). The agreement in the case of charge exchange scattering at this energy (which is the only one which seems to be available) is not good as is also the case for elastic scattering at 140 Mev when compared with the experimental values of Pewitt et al3). But the value of Duk'ova et al4) for elastic scattering at 300 Mev is fitted excellently by our computed values at this energy, which indicates that theoretical calculations reported in their paper is incorrect. The fact that there is a disagreement at 140 Mev may possibly be due to the fact that we are approaching the resonance region of the pion-nucleon system. Unfortunately there are no experimental data at near the resonance energy (≈ 190 Mev).

4) L.S.Duk'ova et al, loc. cit.
2. **The impulse series and the impulse approximation**

In this section, we shall summarize the theory of the impulse approximation which was first introduced by Chew\(^1\) and developed by Chew and Wick\(^2\) and Chew and Goldberger\(^3\). We consider a particle incident on a nucleus, its interaction with the individual nucleons of the nucleus being represented by the potential \(V_k\) (for interaction with the \(k^{th}\) nucleon). If \(K\) is the total kinetic energy of the system and \(V\) the inter-nucleon potential then the total Hamiltonian for the system can be written as

\[
H = K + U + V = H_0 + V
\]
(a)

where

\[
V = \sum_k V_k
\]

The \(T\)-matrix for the process is given by the equation

\[
T = \frac{1}{E_a + i\eta - H_0} \cdot V T
\]

\[
= V + V \frac{1}{E_a + i\eta - H_0 - V}
\]
(b)

The first form for \(T \) in (b) is obtained from the \(S \)-matrix expansion of Dyson by doing the space and (time-ordered) time integrations separately. The term \(+i\eta \) in the denominator represents the outgoing wave boundary condition. A limit of \(\eta \to 0 \) is implied in (b).

We define the two-particle scattering matrix

\[
T_R = V_R \omega_R \tag{c}
\]

where

\[
\omega_R = 1 + \frac{1}{E_l + i\eta - K - V_K} V_K \tag{d}
\]

Now if \(B \) and \(b \) are two operators defined by

\[
B = \frac{1}{E_a + i\eta - H_0 - V} A \]

\[
b_R = \frac{1}{E_l + i\eta - K - V_R} A
\]

where \(A \) is any operator, then

\[
B = b_K + \frac{1}{E_a + i\eta - H_0 - V} \left\{ \left[V_K b_R \right] + \left(V - V_R \right) b_R \right\} \tag{e}
\]

This result follows on using the operator identity

\[
\frac{1}{x} = \frac{1}{x - \gamma} \gamma \frac{1}{x}
\]

We use (e) in (b) which we rewrite as

\[
T = \sum_{R=1}^{N} \left\{ V_K + V \frac{1}{E_a + i\eta - H_0 - V_R} V_R \right\} \tag{b'}
\]
From (e) and (d) we have
\[V_k = \frac{1}{E_{\alpha} + i\eta - H_0 - V} (\omega_k - i) + \frac{1}{E_{\alpha} + i\eta - H_0 - V} \times \left\{ [V_j, \omega_k] + (V - V_k)(\omega_k - i) \right\} \] (f)

Substituting (f) in (b') we finally obtain
\[T = \sum_{k=1}^{N} \left\{ \frac{T_k}{E_{\alpha} + i\eta - H_0 - V} \frac{1}{[V, \omega_k]} \right\} \]
\[+ \left\{ 1 + \frac{1}{E_{\alpha} + i\eta - H_0 - V} \right\} (V - V_k)(\omega_k - i) \] (g)

which may be called the impulse series. The impulse approximation consists in retaining only the first term in (g) which represents a sum of two-body matrix elements. The second term will be negligible if the inter-nucleon potential \(U \) is negligible. The third term of (g) gives the effect of multiple scattering.

3. Elastic scattering of a \(\pi^+ \) from a deuteron

The impulse approximation requires that we should know the matrix elements for the scattering of a \(\pi^+ \) from a proton and a neutron. The Chew-Low amplitude\(^1\) for pion

1) G.F. Chew and F.E. Low, loc. cit.
nucleon scattering in the static approximation is given by
\[t(2, 1) = \frac{2\pi}{\omega} \sum_{\alpha = 1}^{4} \mathcal{P}_{\alpha} (2, 1) f_{\alpha} \]
(1)

where
\[f_{\alpha} = \frac{e^{iE_{\alpha}(q)}}{q^3} \sin \delta_{\alpha}(q) \]
(2)

is the \(p \) -wave scattering amplitude and \(\mathcal{P}_{\alpha} (2, 1) \) are the projection operator for the state \(\alpha \). \(\alpha \) stands for any one of the four \(p \) -wave states 33, 31, 13, 11, where following Fermi notation the first number in each case stands for twice the total isotopic spin and the second, twice the total angular momentum of the pion nucleon system. In a static theory the amplitudes 13 and 31 are identical so that we need consider only three states. Explicitly the \(\mathcal{P}_{\alpha} \) 's are given by
\[\mathcal{P}_{1} (2, 1) = \mathcal{P}_{1} (q_2, q_1) = \frac{1}{3} T_{q_2} T_{q_1} (\vec{\sigma}_{\alpha} \cdot \vec{q}_2) (\vec{\sigma}_{\alpha} \cdot \vec{q}_1) \]
\[\mathcal{P}_{2} (2, 1) = \mathcal{P}_{2} (q_2, q_1) = \delta_{\alpha_2, \alpha_1} (\vec{\sigma}_{\alpha_2} \cdot \vec{q}_2) (\vec{\sigma}_{\alpha_2} \cdot \vec{q}_1) + \frac{1}{3} T_{q_2} T_{q_1} [3 (\vec{\sigma}_{\alpha_2} \cdot \vec{q}_2) - 2 (\vec{\sigma}_{\alpha_2} \cdot \vec{q}_1)] \]
\[\mathcal{P}_{3} (2, 1) = \mathcal{P}_{3} (q_2, q_1) = [\delta_{\alpha_2, \alpha_1} - \frac{1}{3} T_{q_2} T_{q_1}] \]
\[\left[3 (\vec{\sigma}_{\alpha_2} \cdot \vec{q}_2) - (\vec{\sigma}_{\alpha_2} \cdot \vec{q}_1) (\vec{\sigma}_{\alpha_2} \cdot \vec{q}_1) \right] \]
(3)

The \(T \) 's are the isotopic spin matrices for the nucleon.

In the matrix element (1), we have assumed that the cut-off factor \(\mathcal{U}(q) = 1 \).
We apply the above amplitude to the case of the deuteron and follow essentially the approach of Chew and Lewis1). In the impulse approximation, the matrix element for the process can be written as

\[
Q = \left< f \left| T^{(1)} \exp \left(i \overrightarrow{D} \cdot \overrightarrow{r}_1 \right) + T^{(2)} \exp \left(i \overrightarrow{D} \cdot n_2 \right) \right| i \right>
\]

The subscripts 1 and 2 refer to the nucleons in the deuteron and they may represent a proton or a neutron, \overrightarrow{D} represents the transfer of momentum to the nucleon. \overrightarrow{r}_1 and \overrightarrow{n}_2 are the position co-ordinates of the nucleons 1 and 2. The initial and final state wave functions of the deuteron are isotopic spin singlets and spin triplets and are given by

\[
| i \rangle = (2)^{-\frac{1}{2}} \left[\begin{array}{c} p \omega \ n(2) - p(2) \ n(1) \\ \end{array} \right] 3 \chi_m u_d (f)
\]

\[
| f \rangle = (2)^{-\frac{1}{2}} \left[\begin{array}{c} p \omega \ n(2) - p(2) \ n(1) \\ \end{array} \right] 3 \chi_m u_d (p) \exp \left(i \overrightarrow{D} \cdot \overrightarrow{r} \right)
\]

where χ and u_d are the spin and space wave functions respectively. $\overrightarrow{R} = \overrightarrow{r}_1 + \overrightarrow{n}_1$. The transition operator $T^{(j)}$ in (4) can be written as

\[
1) \text{G.F. Chew and H.W. Lewis, Phys. Rev., B4, 779 (1951)}
\]
\[T^{(j)} = t_p^{(j)} \cdot \frac{1 + T_3^{(j)}}{2} + t_n^{(j)} \cdot \frac{1 - T_3^{(j)}}{2} \]

\[= \frac{t_p^{(j)} + t_n^{(j)}}{2} \cdot T_3^{(j)} \]

where \(T_3^{(j)} \) is the third component of the isotopic spin vector of the nucleon and \(t_p \) and \(t_n \) are the matrix elements for pion scattering from proton and neutron respectively and are given by

\[t_p = t(p \Pi^+ \rightarrow p \Pi^+) \]

\[= -\frac{2\pi}{\omega} \left[2 \vec{q}_2 \cdot \vec{q}_1 - i \vec{q}^2 \cdot (\vec{q}_2 \times \vec{q}_1) \right] \]

\[\cdot e^{i\delta_{33}} \sin \delta_{33} \]

\[t_n = t(n \Pi^+ \rightarrow n \Pi^+) \]

\[= -\frac{2\pi}{\omega q^3} \left[\frac{1}{3} \left(2 \vec{q}_2 \cdot \vec{q}_1 - i \vec{q}^2 \cdot (\vec{q}_2 \times \vec{q}_1) \right) \right] \]

\[+ \frac{1}{3} \left(5 \vec{q}_2 \cdot \vec{q}_1 - i \vec{q}^2 \cdot (\vec{q}_2 \times \vec{q}_1) \right) \]

\[\cdot e^{i\delta_{31}} \sin \delta_{31} \]

\[+ \frac{2}{3} \left(\vec{q}_2 \cdot \vec{q}_1 + i \vec{q}^2 \cdot (\vec{q}_2 \times \vec{q}_1) \right) \]

\[\cdot e^{i\delta_{11}} \sin \delta_{11}. \]
where \(q_1 \) and \(q_2 \) are the momenta of the initial and their final pions and \(\omega_1(=\omega) \) and \(\omega_2(=\omega) \) are their energies. The term containing \(T^q_3 \) in (5) does not connect the charge singlet initial and final states. Using the centre of mass and relative co-ordinates given by

\[
\begin{align*}
\tau_1 &= R + \frac{p}{2}, \\
\tau_2 &= R - \frac{p}{2}
\end{align*}
\]

the matrix element (4) finally reduces to

\[
Q(r) = \langle 3\chi_m \mid \frac{1}{2} \left[T^{(0)}_p + T^{(2)}_p + T^{(0)}_n + T^{(2)}_n \right] \mid 3\chi_m \rangle > E
\]

where \(E \) is given by

\[
E = \int u^*_d(e) \exp \left(i \vec{k}_0 \cdot \vec{e} \right) u_d(e) \, d^2 \vec{e}
\]

\[
\vec{k}_0 = \frac{1}{2} \vec{p} = \frac{1}{2} \left(\vec{q}_1 - \vec{q}_2 \right).
\]

Squaring the matrix element (8), summing over the final spin states of the deuteron and averaging over the initial spin state, we obtain the differential cross-section for elastic pion-deuteron scattering as

\[
\frac{d^2 \sigma}{d\Omega} = \frac{4\pi}{(2\pi)^2} \frac{\omega^2}{(a+c)^2 \left[(b+d)^2 \right] E^2}
\]

Here

\[
|a+c|^2 = \frac{4\pi}{q_1 \omega^2 q_2} \cos^2 \Theta \left[(8 \cos \delta_{33} \sin \delta_{33}
+ 8 \cos \delta_{31} \sin \delta_{31} + 2 \cos \delta_{11} \sin \delta_{11}) \right]^2
\]
\begin{align}
\frac{1}{(b+d)} &= \frac{16\pi^2 \sin^2 \theta}{9\omega^2 q^2} \left\{ (2 \cos \delta_{33} \sin \delta_{33} \right. \\
& \quad - \cos \delta_{31} \sin \delta_{31} - \cos \delta_{31} \sin \delta_{11}) \\
& \quad + (2 \sin^2 \delta_{33} - \sin^2 \delta_{01} - \sin^2 \delta_{11}) \right\} \\
\left. \right\} \\
\text{(11)}
\end{align}

Here θ is the angle of scattering of the pion. The integral in equation \((9)\) turns out to be:

\begin{align}
E &= \frac{1}{1-\lambda \beta} \frac{2\lambda}{K_0} \left[\tan^{-1} \left(\frac{k_0}{2\lambda} \right) + \tan^{-1} \left(\frac{k_0}{2\beta} \right) \\
& \quad - 2 \tan^{-1} \left(\frac{k_0}{\alpha + \beta} \right) \right] \\
\left. \right\} \\
\text{(13)}
\end{align}

if we use the Hulthen wave function for the deuteron.

Here λ, β, and β are constants, the last being the triplet effective range.

Using \((10)\), the differential cross-sections for elastic pion-deuteron scattering have been calculated numerically and at incident pion energies of 85, 140, 195 and 250 MeV.

It may be noted that the expression \((10)\) has to be evaluated in the centre of mass system of the pion-nucleon system (and not the pion-deuteron system), since in the impulse approximation the incident pion "sees" only the individual
nucleon and the interaction is described as the sum of individual scattering amplitudes. The results are tabulated in Table I and have also been drawn for the case of 85, 140 and 300 Mev. The effect of including the \(p \)-wave phase-shifts other than the dominant \(\delta_{33} \) phase shifts have been studied and as shown in figures (1) and (3), the effect is to reduce the cross-sections slightly.

At 85 Mev, there is a good agreement between the numerical results that we have obtained and the experimental data of Rogers and Lederman, (fig. 1) and those of Pewitt et al\(^1\) (fig. 3) and Dul'kova et al (fig. 4)\(^2\). At small angles the theoretical cross-sections have to be corrected for Coulomb scattering, the effect of which is, as shown by Rockmore, to depress the cross-sections at small angles. The dotted lines in figs. (1) and (3) are obtained after including the small \(p \)-wave phase shift shifts.

3. Inelastic scattering

In this case the final proton-neutron system can be a charge singlet or a charge triplet state and corresponding to each of these possibilities the spin wave functions can be symmetric (triplet) or antisymmetric (singlet). The corresponding space wave functions will be symmetric or antisymmetric as the

2) L.S. Dul'kova et al., loc. cit.
Table I

The differential cross-section \(\frac{d\sigma}{d\Omega} \) for the elastic scattering of \(\pi^+ \) by deuteron in units of m.b./steraad

<table>
<thead>
<tr>
<th>Pion kinetic energy in lab. (MeV)</th>
<th>Lab angle</th>
<th>0°</th>
<th>30°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table V

The differential cross section \(\frac{d\sigma}{d\Omega} \) in laboratory system for the elastic scattering of charged pions from deuterons at 300 Mev in units of mb/sterad

<table>
<thead>
<tr>
<th>Laboratory angle</th>
<th>0°</th>
<th>30°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.M.</td>
<td>10.44</td>
<td>2.72</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>D.S.S. (Theoretical)</td>
<td>--</td>
<td>18.00</td>
<td>4.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D.S.S. (Experimental)</td>
<td>--</td>
<td>7.5 ± 3 l ± 0.5</td>
<td>1 ± 0.5</td>
<td>0.5 ± 0.25</td>
<td>0.25 ± 0.1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>P.G.</td>
<td>22.79</td>
<td>7.954</td>
<td>0.8543</td>
<td>0.2007</td>
<td>0.2428</td>
<td>0.2785</td>
<td>--</td>
</tr>
</tbody>
</table>

B.M. = The theoretical values of Bransden and Moorhouse given in ref. 2 at energy 298 Mev.

D.S.S. (Theoretical) = The theoretical values at 300 Mev obtained on the impulse approximation as reported in ref. 35. The values are taken from the curve given for the purpose of comparison with their experimental results.

D.S.S. (Experimental) = The experimental values at 300 Mev taken from the experimental curve given in ref. 35.4, p.130

P.G. = The present calculation at 300 Mev based on the impulse approximation using the Chew-Low amplitude for the scattering of pions from free nucleons.
case may be so as to make the total wave function antisymmetric.
We list the transition operators for the various possibilities for the final state, multiplied by the appropriate space-wave functions:

\[
\begin{align*}
3\chi_m &\rightarrow 3\chi_m ; \frac{1}{2}(t^{(0)}_p + t^{(0)}_n + t^{(2)}_n) \xi \\
3\chi_m &\rightarrow 1\chi_0 ; \frac{1}{2}(t^{(0)}_p - t^{(2)}_p + t^{(2)}_n) \xi \\
\text{Charge triplet} &
\end{align*}
\]

\[
\begin{align*}
3\chi_m &\rightarrow 3\chi_m ; \frac{1}{2}(t^{(0)}_p + t^{(2)}_n - t^{(2)}_n) \xi \\
3\chi_m &\rightarrow 1\chi_0 ; \frac{1}{2}(t^{(0)}_p - t^{(2)}_p + t^{(2)}_n) \xi \\
\end{align*}
\]

In (14) and \(\xi \) and \(\xi \) represent the integrals

\[
\begin{align*}
\xi &= \int u^*_e(\vec{k}, \vec{p}) \exp(i\vec{k}_o \cdot \vec{p}) u_d(\vec{p}) \, d\vec{p} \\
\xi &= \int u^*_o(\vec{k}, \vec{p}) \exp(i\vec{k}_o \cdot \vec{p}) u_d(\vec{p}) \, d\vec{p}
\end{align*}
\]

Here \(\vec{k} \) is the relative momentum of the outgoing nucleons and the suffices \(e \) and \(o \) refer to the even and odd part of their wave functions. In the evaluation of the integrals in (14) plane waves have been used for the final states and the integration over the final relative momentum of the nucleons has been carried.
out using the closure approximation. This approximation implies the neglect of the energy of relative motion of the nucleons in the final state on the over-all energy conservation. The meson is assumed to have the characteristics of a free particle collision. Since in the complete set of final states the deuteron is also included, we obtain, on squaring and averaging, the sum of the differential cross-sections for elastic and inelastic scattering

\[
\frac{d\sigma}{d\Omega}_{\text{el+inel}} = (2\pi)^2 \omega^2 \frac{2}{3} \left[|a|^2 + |b|^2 + |c|^2 + |d|^2 \right] + 2F\left\{ \text{Re } a \text{ Re } c + \text{Im } a \text{ Im } c \right\}
\]

\[
+ \frac{1}{3} \left(\text{Re } b \text{ Re } d + \text{Im } b \text{ Im } d \right) \right]\]

(1b)

where

\[
a = \frac{2\pi}{\omega q} \cos \theta \left(2e^{i\delta_{33}} \sin \delta_{33} + e^{i\delta_{31}} \sin \delta_{31} \right)
\]

\[
b = \frac{2\pi}{\omega q} \sin \theta \left(e^{i\delta_{33}} \sin \delta_{33} - e^{i\delta_{31}} \sin \delta_{31} \right)
\]

\[
c = \frac{2\pi}{\omega q} \cos \theta \left(2e^{i\delta_{33}} \sin \delta_{33} + 5e^{i\delta_{31}} \sin \delta_{31} - 2e^{i\delta_{11}} \sin \delta_{11} \right)
\]

\[
d = \frac{2\pi}{3\omega q} \sin \theta \left(e^{i\delta_{33}} \sin \delta_{33} + e^{i\delta_{31}} \sin \delta_{31} - 2e^{i\delta_{11}} \sin \delta_{11} \right)
\]
\[F = \frac{1}{1 - \lambda \rho_1} \left\{ \tan^{-1} \left(\frac{k_0}{\lambda} \right) \right\} \]

\[+ \tan^{-1} \left(\frac{k_0}{\rho} \right) - 2 \tan^{-1} \left(\frac{2k_0}{\lambda + \rho} \right) \]

(18)

The differential cross-sections were calculated numerically for the same values of the incident energy as in the case of elastic scattering. The results are given in Table II and Figure (2). Only the dominant phase shifts have been taken into account. The experimental points in Fig. (2) are those of Rogers and Lederman. As can be seen the agreement between theory and experiment is good at 35 Mev. No experimental data are available for other values of the incident energy.

4. **Charge Exchange Scattering**

For this process we require the matrix element for the process

\[\Xi^+ + n \rightarrow \Xi^0 + p \]

which is given by

\[t(\Xi^+ + n \rightarrow \Xi^0 + p) = \frac{-2\pi}{\omega q^2} \left[\frac{-\sqrt{2}}{3} \left\{ 2 \vec{q}_2 \cdot \vec{q}_1 \right\} e^{i \delta_{23} \sin \delta_{31}} + \frac{\sqrt{2}}{3} \left\{ \vec{q}_2 \cdot \vec{q}_1 - 2i \vec{q}_2 \cdot (\vec{q}_2 \times \vec{q}_1) \right\} e^{i \delta_{23} \sin \delta_{31}} \right] \]
Table II

\[
\frac{d\sigma}{d\Omega}
\]

for the sum of elastic and inelastic scattering

of \(\pi^+ \) by deuterons in units of \(\text{mb/sr} \)

<table>
<thead>
<tr>
<th>Pion energy (MeV)</th>
<th>0°</th>
<th>30°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>12.62</td>
<td>8.104</td>
<td>2.844</td>
<td>1.674</td>
<td>2.933</td>
<td>4.263</td>
<td>4.751</td>
</tr>
<tr>
<td>140</td>
<td>45.19</td>
<td>27.54</td>
<td>9.754</td>
<td>5.353</td>
<td>10.08</td>
<td>14.63</td>
<td>16.31</td>
</tr>
<tr>
<td>195</td>
<td>68.71</td>
<td>40.18</td>
<td>14.48</td>
<td>8.794</td>
<td>14.99</td>
<td>21.82</td>
<td>24.34</td>
</tr>
</tbody>
</table>
In this case there are two possible final states. States (charge triplet states) and the square of the matrix element can be written as

\[|Q|^2 = |Q_e|^2 + |Q_o|^2 \] (20)

where

\[Q_e = 2^{-1/2} \left< 3X_0 \right| \frac{1}{\sqrt{2}} \left(t^{(s)} - t^{(p)} \right) \left| 3X_m \right> \left| E \right> \]

\[Q_o = 2^{-1/2} \left< 3X_m \right| \frac{1}{\sqrt{2}} \left(t^{(s)} + t^{(p)} \right) \left| 3X_m \right> \left| 0 \right> \]

The differential cross-section is given by

\[\left(\frac{d\sigma}{d\omega} \right)_{c.e.} = (2\pi)^{-2} \omega^{-1} \left[\left| \left< 3X_0 \right| t^{(s)} - \frac{1}{3} \left(|E|^2 + |f|^2 \right) F \right|^2 \right] \] (21)

where

\[e = \frac{2 \sqrt{2} \pi}{3 \omega^2} \cos \theta \left(2e \left< 3X_0 \right| \sin S_{33} - e \left< 3X_1 \right| \sin S_{31} - e \left< 3X_1 \right| \sin S_{31} \right) \]

\[f = \frac{2 \sqrt{2} \pi}{3 \omega^2} \sin \theta \left(e \left< 3X_0 \right| \sin S_{33} - 2e \left< 3X_1 \right| \sin S_{31} + e \left< 3X_1 \right| \sin S_{31} \right) \] (22)

For numerical evaluation of the cross-sections the small \(p \) -wave phase shifts were dropped and the closure approximation was used to evaluate the space integrals. The results are given in Table III. The values we have obtained are much lower than those of Rogers and Lederman at large angles and this may be due to the neglect of \(S \) and the small \(p \) -wave phase shifts.
As pion energies increase, there exists good agreement between theoretical and the experimental data of Hager and Lebedev. This may be seen in the close correspondence of the theoretical and experimental data at large angles and this may be due to the large cross-sections at backward angles and the lack of experimental data at forward angles. The table below gives the values of the experimental data of Hager and Lebedev at large angles and this may be seen in the close correspondence of the theoretical and experimental data at large angles and this may be due to the large cross-sections at backward angles and the lack of experimental data at forward angles.

<table>
<thead>
<tr>
<th>Pion energy (Mev)</th>
<th>0°</th>
<th>30°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>0</td>
<td>.3065</td>
<td>.3708</td>
<td>.2826</td>
<td>.4489</td>
<td>.6488</td>
<td>.7252</td>
</tr>
<tr>
<td>140</td>
<td>0</td>
<td>1.578</td>
<td>1.471</td>
<td>1.058</td>
<td>1.740</td>
<td>2.530</td>
<td>2.829</td>
</tr>
<tr>
<td>195</td>
<td>0</td>
<td>3.417</td>
<td>2.371</td>
<td>1.644</td>
<td>2.760</td>
<td>3.990</td>
<td>4.460</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>2.153</td>
<td>1.397</td>
<td>.9315</td>
<td>1.863</td>
<td>2.277</td>
<td>2.544</td>
</tr>
</tbody>
</table>

The agreement in excellent which seems to show that the complete disagreement between the theoretical values obtained and using the impulse approximation and the experimental values of Hager and Lebedev.

Footnotes:
1) Pending private communication.
5. Conclusion

At pion energies 85 and 300 Mev, there exists good agreement between the numerical results that we have obtained and the experimental data of Rogers and Lederman and Dul’kova et al. For charge exchange scattering however the values that we have obtained are much lower than those of Rogers and Lederman at large angles and this may be seen due to the neglect of Λ and other ρ-wave phase shifts. The agreement at 140 Mev between theory and experiment seems to be poor and the large cross-sections at backward angles cannot be explained away by the on-the-energy shell multiple scattering effects and the inclusion of the Λ-wave phase shifts and the D-state wave function. An exhaustive study of the elastic scattering at 142 Mev which includes the effect of various corrections has been made by Pendleton using what he calls the form factor approximation; but his final result does not seem to differ much from the numerical values we have obtained.

In Fig. 4, the calculated cross-section for the elastic scattering at 300 Mev is presented together with the experimental results of Dul’kova et al. The agreement is excellent which seems to show that the complete disagreement between the theoretical values obtained on using the impulse approximation and the experimental values of Dul’kova et al.

1) Pendleton, private communication
reported in them is incorrect. It may be observed that the values of Bransden and Moorhouse are also in disagreement with the experimental results at 300 Mev and also with those of ours. We present in Table IV, the three sets of values for the purpose of comparison.

It is instructive to compare the cross-sections for the deuteron with the free nucleon cross-sections

\[
\left(\frac{d\sigma}{d\Omega} \right)_{\pi^+ p \rightarrow \pi^+ p} = (2\pi)^{-2} \omega^2 \left(|a|^2 + |b|^2 \right) \tag{23}
\]

\[
\left(\frac{d\sigma}{d\Omega} \right)_{\pi^+ n \rightarrow \pi^+ n} = (2\pi)^{-2} \omega^2 \left(|c|^2 + |d|^2 \right) \tag{24}
\]

\[
\left(\frac{d\sigma}{d\Omega} \right)_{\pi^+ n \rightarrow \pi^0 p} = (2\pi)^{-2} \omega^2 \left(|e|^2 + |f|^2 \right) \tag{25}
\]

We find that in the case of the sum of elastic and inelastic scattering by deuteron, the cross-section is larger than the sum of the free-proton and the free-neutron cross-sections. In the case of charge exchange scattering to which only the neutron contributes, we find that the cross-section is reduced by the presence of the other particle (proton). This effect is to be attributed to the Pauli exclusion principle. In the former case (elastic and inelastic scattering by deuteron) this effect is shrouded by the presence of the interference terms. \(E\) and \(F\) are decreasing functions of both energy and angle. Hence at high energies and at large angles, the differential cross-section for the process (2) approaches the sum of the free-proton and the free-neutron cross-sections and for the process (3) the cross-section approaches that of the charge-exchange scattering of \(\pi^\mp\) by free neutrons.
In this appendix, we examine the scattering of pions from light nuclei like lithium, carbon, and aluminium for which experiments have been done \(^1\). Previous theoretical work on this subject mainly uses the optical model according to which one replaces the interaction between the incident pion and the nucleus by a complex potential well having the form

\[V_c(x) = V(\omega) P(x) \]

where \(P(x) \) is the nuclear density and \(V(\omega) \) is a complex quantity called the "well-depth" and is a function of \(\omega \), the energy of the pion. The procedure then is to obtain \(V(\omega) \) for some \(P(x) \) which best fits the scattering data at the energy \(\omega \). Alternatively the value of \(V(\omega) \) is deduced from a knowledge of the elementary two-particle interactions. This has been done by Frank et al.\(^2\) who have evaluated both the real and imaginary parts of the potential from the knowledge of pion-nucleon scattering.

The usual optical model approach does not make use of the complete matrix element for the elementary pion-nucleon scattering process but only the forward scattering amplitude \(f(0) \). Thus the predicted angular distribution of the scattering is determined by the nuclear density and the forward scattering amplitude \(f(0) \).

for neutrons and protons. But recently Kisslinger \(^1\) has deve-
loped a theory which takes some account of \(\int (\theta)\) for \(\theta = 0\)
also. The experimental data of Baker et al \(^2\) seem to require a
Kisslinger-type model which takes into account the \(p\)-wave nature
of the basic pion-nucleon scattering process.

We shall develop in this appendix an alternative point of
view based on the impulse approximation which uses the complete
angular dependence of the pion-nucleon scattering modified by a
form factor of the nucleus. In fact such an attempt was already
made by Williams et al \(^3\), who tried to fit their theoretical cross-
sections obtained by combining coherently the scattering amplitude
for pion-nucleon interactions weighted by a form factor with their
experimental results for lithium at 78 MeV. But we wish to
point out that \(\text{Li}^7\) has a spin 3/2 and hence the spin-dependent
terms of the pion-nucleon scattering amplitude will contribute
along with the spin-independent term even for elastic scattering
but Williams et al \(^3\) neglect the spin-dependent part without
justification. We outline below a rigorous method of evaluating
the cross section

The pion-nucleon matrix element can be symbolically written

\(^1\) L.S.Kisslinger, Phys.Rev. 92, 761 (1953)
\(^2\) W.F.Baker et al, loc. cit.
\(^3\) Williams, Rainwater and Reeson, Phys.Rev. 101, 442 (1956)
as \(\mathbf{\sigma} \cdot \mathbf{k} + l \) of which the first term is the spin-dependent and the second the spin-independent parts. The coefficients \(\mathbf{k} \) and \(l \) are functions of the pion energy and momentum and the pion-nucleon phase shifts. The matrix element for the "elastic" scattering of pions by a nucleus of mass number can be written as

\[
Q_{M_i \rightarrow M_f} = \langle \psi^A \, (J M_i \, T M_T) \rangle
\]

\[
\sum_{i=1}^{A} \left(\frac{t_p^{(i)} + t_n^{(i)}}{2} + \frac{t_p^{(i)} - t_n^{(i)}}{2} \right) \mathbf{\gamma} \cdot \mathbf{n} \psi^A \, (J M_i \, T M_T) \rangle
\]

where \(\mathbf{\gamma} \) is the isotopic spin operator \(\gamma_3 \). The quantities \(t_p \) and \(t_n \) are the direct scattering amplitudes of the pion by the proton and neutron respectively \(J \) and \(M \) represent the total angular momentum of the nucleus and \(\{t\} \). \(T \) and \(M_T \) refer to similar quantities for isospin, \(i \) and \(z \)-component and \(f \) refer to the initial and final states respectively.

writing

\[
t_p = \mathbf{\sigma} \cdot \mathbf{k}_p + L_p
\]

and

\[
t_n = \mathbf{\sigma} \cdot \mathbf{k}_n + L_n
\]
where the symbol \textbf{A} indicates a unit vector. Thus we obtain

\[\frac{\mathbf{t}_p + \mathbf{t}_N}{2} = \frac{\mathbf{r}}{2}. \frac{\mathbf{k}_p + \mathbf{k}_N}{2} + \frac{\mathbf{l}_p + \mathbf{l}_N}{2} \]

\[= \sum_{n=0,1} \sigma^n \cdot \mathbf{k}_{nm}, \quad m = 0 \]

and

\[\frac{\mathbf{t}_p - \mathbf{t}_N}{2} = \frac{\mathbf{r}}{2}. \frac{\mathbf{k}_p - \mathbf{k}_N}{2} + \frac{\mathbf{l}_p - \mathbf{l}_N}{2} \]

\[= \sum_{n=0,1} \sigma^n \cdot \mathbf{k}_{nm}, \quad m = 1 \]

where

\[K_{00} = \frac{\mathbf{l}_p + \mathbf{l}_N}{2}, \quad K_{01} = \frac{\mathbf{l}_p - \mathbf{l}_N}{2} \]

\[K_{10} = \frac{\mathbf{k}_p + \mathbf{k}_N}{2}, \quad K_{11} = \frac{\mathbf{k}_p - \mathbf{k}_N}{2} \]

In (A2) we are able to write $\sigma^n \cdot \mathbf{r} + \mathbf{L}$ as

\[\sum_{n=0,1} \sigma^n \cdot \mathbf{k}_n \]

by defining the operator $\sigma_{0,1} \mathbf{k}_0$ in spin space. Expanding $e^{i \mathbf{r} \cdot \mathbf{r}}$ into spherical harmonics, we can write

\[(\sigma \cdot \mathbf{r} + \mathbf{L}) e^{i \mathbf{r} \cdot \mathbf{r}} = 4\pi \sum_{n=0} \sum_{l,m} (i)^l \mathbf{k}^m (k) \]

\[\times (-1)^m \mathbf{y}_l^m (\hat{r}) \mathbf{y}_l^{-m} (\hat{k}) \sum (-1)^m \sigma_m \cdot \mathbf{k}_m \]

(A3)
where the symbol Λ indicates a unit vector. Thus we can write the matrix element as

$$\langle M_i \rightarrow M_f | \sum_{i=1}^{A} \sum_{j,m,n} (i) (j-l) \left(\frac{1}{\hat{x}^{l} \hat{y}^{m} \hat{z}^{n}} \right) \Lambda \cdot \left(\frac{1}{-\hat{x}^{m} \hat{y}^{n} \hat{z}^{l}} \right) \rangle$$

On using the orthogonality property of the Clebsch-Gordan coefficients and forming the tensor products. Using the Wigner-Eckart theorem that the independence on the magnetic quantum numbers is contained in a Clebsch-Gordan coefficient we can write

$$\langle \hat{T} \hat{M}_f | \hat{Y}_e (A) \times \hat{Y}_m (A) \rangle = C \langle \hat{T}_f \hat{M}_f | \hat{M}_f \hat{M}_f \rangle$$

$$\times \langle \hat{T}_g \hat{M}_g | \hat{Y}_e (A) \times \hat{Y}_m (A) \rangle$$

$$= C \langle \hat{T}_f \hat{M}_f | \hat{M}_f \hat{M}_f \rangle$$

$$\times \langle \hat{T}_g \hat{M}_g | \hat{Y}_e (A) \times \hat{Y}_m (A) \rangle$$
where the double bars in the matrix element of the right hand side represent the reduced matrix element (i.e., the part of the matrix element which does not depend on the magnetic quantum numbers) does not depend on the magnetic quantum numbers.

Squaring the matrix element and averaging and summing over the initial and final spin states, we obtain the differential cross-section

$$\frac{d\sigma}{d\Omega} = (2\pi)^2 \mu^2 |Q|^2$$

where \(\mu \) and \(\mu_0 \) are the momentum and energy respectively of the pion (in the centre of mass of the pion-nucleon system) and \(|Q|^2 \) is given by

$$|Q|^2 = \frac{1}{4} \left[\sum_{l,l'} \sum_{\eta,\eta'} \sum_{m,m'} \sum_{\lambda,\lambda'} 16 \pi^2 \right] \left(\frac{[\mathbf{J}]^2}{[\mathbf{\lambda}]^2} \right)$$

$$\times (\lambda)_{l-l'}^{(-1)} \sum_{\eta,\eta'} \sum_{m,m'} \sum_{\lambda,\lambda'}$$

$$\times \left(\mathbf{Y}_l^*(\mathbf{R}) \times \mathbf{R}_{n,m}^* \right)^{-m_\lambda^*} \left(\mathbf{Y}_{l'}^*(\mathbf{R}) \times \mathbf{R}_{n',m'} \right)^{-m_{\lambda'}^*}$$

$$\times \left\langle \mathbf{J} \mathbf{T} \parallel \sum_{i=1}^A \left(\mathbf{Y}_l^*(\mathbf{R}_i) \times \mathbf{a}_{n}^* \right)_\lambda \mathbf{\tau}_m^{(i)} \right\rangle \left\langle \mathbf{J}_T \parallel \mathbf{J} \mathbf{T} \right\rangle$$

$$(A.17)$$
In the above \[[J] = (2J+1)^{1/2} \] and \[[\lambda] = (2\lambda+1)^{1/2} \] and the symmetry properties of the reduced Clebsch-Gordan coefficients have been used, the redundant summation over \(M_f \) omitted and the summation over \(M_i \) performed to arrive at the expression (A7).

The reduced matrix elements in (A8) can be evaluated as follows. If the nucleus contains certain closed shells plus \(N \) nucleons in the outer shell,

\[
\langle J\, T \parallel \sum_{i=1}^{A} \left(Y_{\ell} \left(\hat{S}_{i} \right) \times \hat{\sigma}_{-} \right) \lambda \; j_{\ell} \left(k_{m_i} \right) \tau_{m_i}^{(i)} \parallel J\, T \rangle
\]

\[
= \langle 00 \parallel \sum_{i=1}^{A} \left(Y_{\ell} \left(\hat{d}_{i} \right) \times \hat{\sigma}_{-} \right) \lambda \; j_{\ell} \left(k_{m_i} \right) \tau_{m_i}^{(i)} \parallel 00 \rangle
\]

\[
+ \langle J\, T \parallel \sum_{i=1}^{A} \left(Y_{\ell} \left(\hat{S}_{i} \right) \times \hat{\sigma}_{-} \right) \lambda \; j_{\ell} \left(k_{m_i} \right) \tau_{m_i}^{(i)} \parallel J\, T \rangle
\]

The first term will contribute only for \(\lambda = m = 0 \) since the matrix element is taken between states of zero angular momentum and zero isotopic spin. Besides the value of \(\ell \) is restricted to zero by the parity of Clebsch-Gordan coefficients. Then the first term in (A9) reduces to.
if there is only one closed shell or two sums of similar terms
if there are more shells, is the expectation
value of \(\beta \) and it is different for different shells.
The second term in ()
can be evaluated as shown by Devanathan and Ramachandran\(^1\) by
using the concept of fractional parentage coefficients. The
calculation of this term is of course a little tedious.

If we consider the elastic scattering of pions from nuclei
for which both the proton and neutron shells are closed e.g.
carbon, then the problem becomes enormously simple. The square
of the matrix element in the case of carbon is

The suffixes \(\text{and} \) denote that the expectation value
of \(\beta \) is taken between the corresponding states.
is the spin-independent term and thus we see that only the spin
independent part contributes for the elastic scattering of pions
by carbon. Using harmonic oscillator wave functions, exp. ()
can be evaluated.

\(^{1}\) V. Devanathan and G. Ramachandran, Nuclear Physics, (In press).
\[Q^2 = 6 |K_{\infty}|^2 e^{-k^2/3\beta} \left\{ 3 - \frac{k^2}{3\beta} \right\}^2 \] (A12)

where \(\beta \) is a parameter which depends on the oscillation potential well depth, the value of which can be determined by finding the expectation value \(\langle n^2 \rangle \) and equating it with the experimentally determined value. Alternately, the experimentally data of the scattering of pions from nuclei can be used to determine the value of \(\beta \) which gives the best fit. Thus the scattering of pions from nuclei can be used as a tool to probe the structure of nuclei.

Preliminary calculations have been carried out in the case of carbon and the agreement is good at low angles but the theoretical values obtained are much smaller at large angles. In this connection, attention may be drawn to the experimental findings of Baker, Rainwater and Williams. The differential cross-sections they have obtained agree well with the previously reported results at small angles but smaller at large angles by a factor varying between two and ten. It may be pointed out that at large angles, the inelastic events predominate due to large momentum transfers; and it is very likely that some of these events with low loss of energy maybe counted as elastic since in almost all experiments, the elastic and inelastic events are distinguished only by measuring the energy of the scattered pions and the reliability of the experimental result thus largely depends on the energy resolution of the apparatus.
With the improvement in the experimental technique, the experiments register a lower cross section at large angles and with further improvement, it may be expected that the large angle cross-sections may further decrease giving an agreement with our preliminary findings. On the other hand, in order to obtain a fit with the existing experimental results for the elastic scattering at large angles, we have to take into account some of the inelastic events with low energy losses.

\[(\text{photo-disintegration}) \quad (11)\]

\[(\text{electro-disintegration}) \quad (12)\]

These processes are studied in a unified way using Lee's method which brings out the similarity and inter-connection between the three reactions for these processes. The general features of the angular distributions have been studied.

Chew et al. considered processes under the impulse approximation. They made the calculation that to explain the observed angular distribution, it is necessary to include the quark wave function of the free electron in the treatment. They calculated the contribution of the pion absorption process to the total scattering cross-section of the pion-nucleon scattering. We used the model for pion absorption due to Fermi and de Wicke which treats the absorption.

CHAPTER VII

DISINTEGRATION PROCESS IN DEUTERIUM

In the previous chapter we studied the various scattering processes that a pion can undergo on the deuteron. In the present chapter we study the absorption process.

\[\pi^+ + D \rightarrow p + p \] \hspace{1cm} (Pure absorption) I

\[\pi^+ + D \rightarrow p + p + \gamma \] \hspace{1cm} (Radiative capture) II

and also the disintegration process initiated by a photon and an electron, namely

\[\gamma + D \rightarrow p + n \] \hspace{1cm} (Photo-disintegration) (III)

\[e + D \rightarrow e' + p + n \] \hspace{1cm} (Electro-disintegration) (IV)

These processes are studied in a unified way using low's method which brings out the similarity and inter-connection between the matrix elements for these processes. The general features of the angular distributions have been studied.

Chew et al.\(^1\) considered process I under the impulse approximation. They made the observation that to explain the observed angular distribution, it is necessary to include the D-state wave function of the deuteron. Later Rockmore\(^2\) calculated the contribution of the pion absorption process to the total scattering cross-section of the pion on deuterium. He used the model for pion absorption due to Breueckner and Watson which treats the absorption

2) R.M. Rockmore, Phys. Rev. 105, 256 (1957)
as a co-operative process between two nucleons. He obtained an order of magnitude accuracy for the cross-section which, according to the experiment of Rogers and Lederman 1) are about 7 millibarns at a pion kinetic energy of 85 Mev. The differential cross-section is of the form

$$\frac{d\sigma}{d\Omega} \propto \frac{A + \cos^2 \theta}{A + \frac{1}{3}}$$

so that if one observes the outgoing nucleon at an angle \(\theta \) for which \(\cos \theta = \frac{1}{\sqrt{3}} \), the differential and total cross-sections will be independent of \(A \) and differ only by a factor \(\frac{4}{\pi} \). The total cross-section for the radiative capture at 85 Mev as given by Rogers and Lederman is 1 millibarn which is not inconsiderable.

The photo- and electro-disintegration of the deuteron have been studied by different approaches by various workers. Pearlestein and Klein 2) have suggested that it is convenient to divide the analysis of the photo-disintegration problem into two parts corresponding to two energy regions. In one, the region below 100 Mev, the experimental results can be completely understood within the framework of conventional quantum mechanics which gives the result that the process essentially proceeds through a dipole transition in this energy region. In the region above 100 Mev, however, there is evidence for the presence of virtual meson currents which make themselves felt with increasing photon energy. Mixing a covariant formalism for deriving a formally exact expression for the matrix element for the process with a phenomenological procedure they

References to earlier literature is given in this paper.
show that such a division has a theoretical basis and that contributions from the virtual mesons are negligible below 100 Mev. Retaining only the on-meson exchange effect they connect the matrix element for dipole transition with the p-wave meson-nucleon coupling constant and the amplitude for photo-production off the energy shell.

As regards the electro-disintegration process it has been most useful in studying the form factors of the nucleon. The basic non-relativistic theory of the process was given by Jankus 1) who calculated the differential cross-section using a Bulten wave function of the outgoing nucleons. The final state interaction between the outgoing nucleons was treated approximately using a central force model for the interaction. Durand 2) made a more complete formulation of the problem of calculating final state effects and studying the influence of the D-state component of the deuteron wave function on the process. He has also discussed the relativistic corrections using the methods of dispersion relations and has pointed out that the calculation of the final state interactions would require an examination of the double spectral function in the Mandelstam representation 3) for the transition matrix element. The importance of the final state interaction and mesonic corrections near the threshold for deuteron break-up was also pointed out.

We have studied the above processes in a unified way using technique. The deuteron which is of composite structure is always kept in the state vector and only the other particles are converted

1) V.Z. Jankus, Physics Review 102, 1586 (1956)
2) Durand III, Physics Review 115, 1020 (1959); ibid, 123, 1393 (1961)
3) S.Mandelstam, Physics Review— JETP 5, 1249 (1957) 112, 1344 (1958)
into current operators when necessary \[\text{and to the matrix element}\] in each case will include a term involving the D-\(p \)-n vertex which has a pole the residue of which is the normalization factor of the deuteron wave function. Integral equations are derived for the matrix elements for the various processes which are interrelated. An angular momentum analysis of these processes which would be helpful in the solution of these equations is made using the angular operators of Ritus \(^1\). The angular distributions are discussed on this basis and relations between the energy dependent coefficients are given.

2. THE MATRIX ELEMENTS

Using Low's method the matrix element for process I when a pion of four-momentum \(q \) is absorbed by the deuteron of momentum \(d \), the outgoing protons having momenta \(p_1 \) and \(p_2 \) can be written as

\[
\langle p_1, p_2 | T | q, d \rangle = -\frac{1}{\sqrt{4E_{p_2} \omega_q}} \bar{u} (p_2)
\]

\[
x \left\{ \sum_{n' = p_1 + p_2} \frac{\langle p_1 | J_\pi (0) | n' \rangle \langle n' | J_T (0) | d \rangle}{E_{p_2} + E_{p_1} - E_{p_n} + i\varepsilon} \right. \\
- \sum_{n' = d - p_2} \frac{\langle p_1 | J_\pi (0) | n' \rangle \langle n' | J_N (0) | d \rangle}{E_{p_2} + E_{p_n} - E_d - i\varepsilon} \\
+ i g \gamma_5 \gamma_i \frac{\langle p_1 | J_N (0) | d \rangle}{i \gamma_\mu (d - p_i)_\mu - m} \right\}
\]

(1)

\(^1\) V.I. Ritus, Soviet Physics - JETP, 5, 1249 (1957)
where J_N and J_{Π} are the nucleon and meson currents respectively.

$$J_N = \int \gamma_\alpha - \gamma_\beta (x) \psi(x) + \delta \gamma_\beta \psi(x)$$

$$J_{\Pi} = \int \tilde{\gamma} \gamma_\alpha \tilde{\psi} \psi(x)$$

The lowest intermediate state that contributes to the first term is the two nucleon state so that this term will give rise to an integral equation for the matrix element for the process, the kernel being the matrix element for nucleon-nucleon scattering, which in our procedure, represents the final state interaction. Diagrammatically this term is given by Fig. (2). The second term gives the "pole" or Born approximation term if we take the single nucleon intermediate state only. The numerator is then the product of the pion-nucleon vertex and the deuteron-proton-neutron (D-p-n) vertex. The latter on the energy shell of the intermediate nucleon is just the normalization of the deuteron wave function, which is equal to $\left(\alpha \frac{2 \alpha}{1 - \alpha \epsilon}\right)^{-\frac{1}{2}}$ where $\alpha = \frac{m^2}{\epsilon^2}$, m being the mass of the nucleon, and ϵ the binding energy of the deuteron. ϵ is the triplet effective range. In terms of the dispersion graphs, this term would, if we assume it to be written in terms of the propagator (instead of the energy denominator) by addition of a term containing a suitable higher particle intermediate state (see next chapter), correspond to Fig. (1a). Fig. (1b) corresponds to the third term of (1) if we rewrite it such that the denominator becomes $\left(\frac{2}{\alpha} + \frac{2}{\alpha}\right)$.

However, by this procedure, the first factor in the numerator, namely the pion-nucleon vertex, would then be written in terms of bare quantities whereas the second factor which is the D-p-n vertex is given in the Heisenberg representation. A suitable renormalization procedure has to be gone through before identification with the dispersion graphs (1) is made.
Fig. (6) which corresponds to Fig. (3) for process I involves a matrix element connected with that for photo-production of a pion from a nucleon and represents the mesonic contribution to the process. However, by this procedure, the first factor in the numerator, namely, the pion-nucleon vertex, would then be written in terms of bare quantities whereas the second factor which is the $\pi\ell\pi$ vertex is given in the Heisenberg representation. A suitable renormalization procedure has to be gone through before identification with the dispersion graphs (1) is made.

The lowest two particle intermediate in the second term of (1) corresponds to a one pion plus one nucleon state, thus giving rise to the product of matrix elements for those for pion-nucleon scattering and process I itself. This term is represented by Fig. 3.

The matrix element for the photo-disintegration of the deuteron (process III) is similar to (1) if we replace the pion-current operator J_{Π} by the photon current operator, γ, the only difference being an additional pole term.

$$\langle b_{\bar{p}} | J_{N}(0) | d' \rangle \langle d' | J_{\gamma}(0) | d \rangle$$

$$E_{\bar{p}} + E_{\bar{p}} - E_d + i\varepsilon$$

(3)

obtained by taking the deuteron intermediate state. This term is absent for meso-disintegration because of the requirement of conservation of isotopic spin. The pole terms are represented by Fig. (4) and the term representing final state interaction by Fig. (5). The square of the norm of the virtual photon need not be zero but will depend on γ. In (3) ε is a complex vector representing the polarization vector of the deuteron.
Fig. (6) which corresponds to Fig. (3) for process I involves a matrix element connected with that for photoproduction of a pion from a nucleon and represents the mesonic contribution to the process, referred to in the introduction.

Using the procedure adopted for deriving the matrix element for electro-photoproduction (chapter IV, Sec. 4), the matrix element for electro-disintegration of the deuteron by a virtual photon with polarization vector \(\vec{u}(s_1) \gamma_\mu \vec{u}(s_1) \), where \(s_1 \) and \(s_2 \) are the four-momenta of the initial and final electrons respectively. An important difference is in the fact that the electromagnetic form factors for the nucleon charge \((F_1) \) and magnetic moment \((F_2) \) appear in the expression for the electromagnetic vertex of the nucleon

\[
\langle p | J^\gamma(0) | n \rangle = \frac{i e}{(4\pi \hbar c)^2} \gamma_\mu \left[F_1(q^2) + \frac{\mu}{2m} \right] \gamma_\nu \left[H \right]_{\mu \nu} \psi(n)
\]

(4)

and the electromagnetic form factors of the deuteron charge \((F_{1d}) \), magnetic moment \((F_{2d}) \) and the electric quadrupole moment \((F_{3d}) \) appearing in the expression for the electromagnetic vertex of the deuteron.

\[
\langle d' | J^\gamma(0) | d \rangle = \frac{i e}{(4\pi \hbar c)^2} \gamma_\mu \left[F_{1d}(q^2) \frac{5}{2} \cdot \frac{5}{2} (d'd'_\mu) + F_{2d}(q^2) \left(\frac{5}{2} \cdot \frac{5}{2} - \frac{5}{2} \cdot \frac{5}{2} \right) \right] + F_{3d}(q^2) \left(\frac{5}{2} \cdot \frac{5}{2} \cdot \frac{5}{2} \cdot \frac{5}{2} \right) \left(d'd'_\mu \right)
\]

(5)

are \(\hbar \) no longer constants (since the square of the momentum transfer \(q^2 \) which is the square of the momentum of the virtual photon need not be zero) but will depend on \(q^2 \). In (5) \(\frac{5}{2} \) is a complex vector representing the polarization vector of the deuteron. As
in the case of photodisintegration, the mesonic contribution arising from Fig. (6) is likely to become important for energies corresponding to and above the threshold for pion production.

Finally the matrix element for the radiative capture of the pion of momentum \(q \) by a deuteron of momentum, \(d \), (process II), with emission of a photon of momentum \(k \) is given by

\[
\langle p_1 p_2 k | T | q d \rangle = \frac{1}{\sqrt{4 \omega_q k}} \left[\frac{\langle p_1 p_2 | J^{\pi} (q) | d \rangle \langle d | J^y (0) | d \rangle}{\omega_q + E_{p_1} + E_{p_2} - E_d + i\varepsilon} \right.
\]

\[
+ \int \int \frac{\langle p_1 p_2 | J^{\pi} (q) | p' n' \rangle \langle p' n' | J^y (0) | d \rangle}{\omega_q + E_{p_1} + E_{p_2} - E_{p'} - E_{n'} + i\varepsilon} \times S (p' + n' - p_1 - p_2 - q) d p' d n' \]

\[
+ \int \int \frac{\langle p_1 p_2 | J^y (0) | p'' \rangle \langle p'' | J^{\pi} (0) | d \rangle}{\omega_q + E_{p'} + E_{p''} - E_d - i\varepsilon} \times S (p' + n' - p_1 - p_2 - q) d p' d p''
\]

(6)

if we retain only one and two-particle intermediate state. In the above, the incoming pion and the outgoing photon are converted into current operators. The first term on the right hand side of (6) is represented in Fig. (7a). The numerator represents the product of the matrix element for pure absorption in deuterium (process I) and the electromagnetic vertex of the deuteron. If instead of "contracting" on the pion and photon we had converted the initial pion and the final nucleon into currents we would have obtained the term represented by Fig. (7b) which involves the product of the matrix element for radiative capture of the pion by a nucleon and the \(\beta \)-\(p \)-\(n \) vertex. It is interesting to note that this is precisely the term we should expect on the basis of the
impulse approximation. The second term (Fig. 8a) involves the matrix element for photo-disintegration and that for pion production in nucleon-nucleon collision. The third term (Fig. 8b) represents the meso-disintegration of the deuteron followed by radiative scattering of nucleons. The three particle intermediate state containing two-nucleon and a photon gives a contribution to the two particle intermediate states if we consider the intermediate photon to go off as the final photon without interaction. Then this term will represent the final state interaction (between the nucleons) for the process (Fig. 9).

3. ANGULAR DISTRIBUTIONS

In chapter II we saw how the matrix element for any process can be decomposed into angular operators which are matrices in the spin space of the nucleons and which give the angular distributions completely and an energy dependent part. More specifically, the angular operators for pion absorption in deuterium can be written as

\[L_{J^s l^s l' s l} (\hat{R}', \beta'; \hat{R}, \beta) = \sum_{\mu', \mu} L_{J^s l^s l' s l}^{\mu', \mu} (\hat{R}', \hat{R}) Q_{\mu', \mu}^{\beta'}(\beta) Q^\ast_{\mu, \mu}(\beta) \]

\[L_{J^s l^s l' s l}^{\mu', \mu} (\hat{R}, \hat{R}) = \sum_{M} C_{l^s l^s, l^s l'}^{l^s l^s, l} C_{l^s l^s, s^s \mu}^{l^s l^s, l} C_{l^s l^s, s^s \mu}^{l^s l^s, l} \times Y^\ast_{l' M - \mu, \mu} (\hat{R}) Y_{l M - \mu, \mu} (\hat{R}) \]

In (7) \(J S \) represent respectively the total angular momentum, the total spin \(S \) (= 1 for triplet-triplet and 0 for singlet-triplet transitions) and the relative orbital angular momentum of the pion. The prime denotes similar quantities in the final state.
k and k' are unit vectors denoting the directions of the initial and final set of particles in the centre of mass. M and μ are the z-components of the total angular momentum and spin. The summation over the z-components of the initial and final spins s and s' respectively can be conveniently represented by the insertion of the spin projection operators $\sigma_{1z} \pm \sigma_{1z}'$ and $\sigma_{2z} \pm \sigma_{2z}'$. Substituting the values for the Gleich-Jordans and spherical harmonics, the angular operators for various partial transitions for a given total angular momentum J can be derived and have been given by Ritus.\(^1\)

The angular operators for photo-(and electro) disintegration of the deuteron can be derived from those for pion absorption (process I) and nucleon-nucleon scattering by operating by \(\frac{1}{i\hbar(q^+)}(\vec{e} \cdot \frac{\partial}{\partial \vec{p}})\) for the electric and by \(\frac{i}{\hbar(q^+)}[\hat{k} \times \vec{e}) \cdot \frac{\partial}{\partial \hat{k}}]\) for the magnetic multipole transitions (as explained in chapter II). These are given in Tables I and II respectively. In the case of electro-disintegration we have a further contribution from the longitudinal multipole transitions and these are obtained by multiplying by $\hat{k} \cdot \vec{e}$ the angular operators for these transitions and which have the same parity as in the case of electric multipole transitions. A further point to be noted is that here $J = 0 \rightarrow J = 0$ transitions are allowed unlike the other cases. The angular operators for this case are given in Table III. In these tables, we use the following notation.

\[
\begin{align*}
\vec{s}' &= \frac{1}{2} (\vec{s}_1' + \vec{s}_2') \quad \vec{s}'' &= \frac{1}{2} (\vec{s}_1' - \vec{s}_2') \\
\vec{m}' &= (\hat{k}' \times \hat{k}) \quad \vec{m}'' &= (\hat{k} \times \vec{e})
\end{align*}
\] (8)

\vec{s}_1' and \vec{s}_2' are the spin operators (matrices) for nucleons 1 and 2 respectively.
Now we consider the angular distribution for the various processes, using the notation a_{1lI} and a_{I} for the energy dependent parts of the matrix elements for pion absorption and photon-(or electro-) disintegration respectively.

(a) Pion absorption: If we assume that the pion is absorbed only in an s or p state which will be the case for low energies, the angular distribution for process I is given by

$$
\frac{d\sigma}{d\Omega} = \frac{1}{4} \left[\frac{3}{5} |a_{101}|^2 + 2(1+3\cos^2\theta) |a_{212}|^2 + 2 |a_{101}|^2 + 2\sqrt{10} (1-3\cos^2\theta) \Re (a_{212}^* a_{010}) \right] \tag{9}
$$

Now, as mentioned in the introduction, the experimental differential cross-section can be represented by

$$
\frac{4\pi}{\sigma} \frac{d\sigma}{d\Omega} = \frac{A + \cos^2\theta}{A + \frac{1}{3}} \tag{10}
$$

where the quantity has been observed to increase with increasing pion energies. We notice that for $\cos \theta = \frac{1}{\sqrt{3}}$, the differential (and hence the total) cross-section is independent of A. Using this fact we get the following relation between the energy dependent coefficients

$$
3 |a_{101}|^2 + \Theta (1+3A) |a_{212}|^2 + |a_{010}|^2 = \frac{\sigma}{4\pi} \tag{11}
$$

Further by equating the angle dependent and independent parts in (9) with the corresponding quantities in (10), we obtain

$$
3 |a_{101}|^2 + 5 (1-3A) |a_{212}|^2 + 2 |a_{010}|^2 + 2\sqrt{10} (1+3A) \Re (a_{212}^* a_{010}) = 0 \tag{12}
$$
From the expression (11) and (12), the various energy dependent coefficients can be evaluated.

(b) Photo-disintegration:

At low energies only an electric dipole transition is likely to occur. The corresponding differential cross-section is given by

\[
\frac{d\sigma_{e.d}}{d\Omega} = \frac{1}{64} \left[49 |a_{211}|^2 - 30 |a_{111}|^2 \right. \\
+ 36 \Re (a_{111}^* a_{211}) \int \sin^2 \theta + \frac{1}{16} \\
\left. \times \left(|a_{211}|^2 - \frac{3}{2} \Re (a_{111}^* a_{211}) \right) \cos \theta \\
+ \frac{3}{32} \left[3 |a_{211}|^2 + 13 |a_{111}|^2 - \Re (a_{111}^* a_{211}) \right] \right]
\]

(13)

The experimental cross-section is of the form

\[b + c \sin^2 \theta \]

which gives us on comparison with (13) the relations,

\[
|a_{211}|^2 = \frac{3}{2} \Re (a_{111}^* a_{211}) \\
7 |a_{211}|^2 + 30 |a_{111}|^2 = 32b \\
13 |a_{211}|^2 - 30 |a_{111}|^2 = 64c
\]

(14)

from which we obtain

\[
|a_{111}|^2 = \frac{32}{30} \left(73b - 14c \right) \\
|a_{211}|^2 = \frac{64}{30} \left(15b + 39c \right)
\]

(15)

Retaining only the square terms, the contribution from \(a_{211} \)
magnetic dipole transition to the differential cross-section is given by

\[
\frac{d\sigma_{m.d}}{d\omega} = \frac{1}{32} \left[8 \cos^2 \theta - 11 \cos^2 \theta \sin^2 \theta \\
+ 36 \sin \theta \cos \theta (1 + \cos^2 \theta + \sin^2 \theta) + 15 \right] a_{212}^2 \\
+ 12 |a_{110}|^2 + \frac{3}{2} (13 - 9 \sin^2 \theta \cos^2 \theta) |a_{12}|^2 \\
\right]
\tag{16}
\]

(c) **Electro-disintegration:** In this case we have in addition to the electric and magnetic transitions the longitudinal multipole contributions also. Retaining the electric dipole and longitudinal dipole only we have

\[
\frac{d\sigma}{d\omega} = A + B
\tag{17}
\]

where

\[
A = \frac{1}{128} \left[8 \left(\bar{r}^2 \cdot \bar{e}^2 \right)^2 + 9 \left(\bar{r}^2 \times \bar{e}^2 \right)^2 + \bar{e}^2 \right] \left| a_{211} \right|^2 \\
+ 9 \left[3 \left(\bar{r}^2 \cdot \bar{e}^2 \right)^2 + 17 \left(\bar{r}^2 \times \bar{e}^2 \right)^2 + \bar{e}^2 \right] \left| a_{111} \right|^2 \\
+ 6 \left[14 \left(\bar{r}^2 \cdot \bar{e}^2 \right)^2 - \left(\bar{r}^2 \times \bar{e}^2 \right)^2 - \bar{e}^2 \right] + 4 \left(\bar{r}^2 \cdot \bar{e}^2 \right) \cdot \left(\bar{r}^2 \times \bar{e}^2 \right) \text{Re} (a_{111}^* a_{211}) \right]
\tag{18}
\]
In the above \vec{R} represents the direction of $(\vec{r}_1 - \vec{r}_2)$ and

$$\vec{E} = \frac{ie \langle \lambda_2 | \vec{r} \cdot \vec{u}(\lambda_2) \rangle \cdot \vec{u}(\lambda_1)}{(\lambda_1 - \lambda_2)^2}$$

is the angle of one of the outgoing nucleons in the centre of mass system of the virtual photon and the initial nucleon. A and B correspond respectively to the contributions from the electric dipole and the longitudinal dipole transitions. The energy dependent coefficients can again be determined by comparison with experimental angular distributions.
Table I
Angular operators for electric multipole transitions

Triplet → Triplet

\[J = j + 1 = l' + 1 \]

\[
\frac{1}{(j+1)(j+1)^{1/2}} \left\{ \left(j+3 \right) (l' \cdot \epsilon) - \hat{s} \cdot \hat{R}' \right\} P_j' + \left(j+1 \right) \hat{s} \cdot \left(\hat{R}' \times \epsilon \right) \right\} P_j
\]

\[
+ \left\{ \left[2 \hat{R}' \cdot \hat{R} - \hat{s} \cdot \hat{R}' \right] \hat{s} \cdot \hat{R} - i \left(j+1 \right) \hat{s} \cdot \hat{n} \right\} \hat{R}' \cdot \epsilon
\]

\[-2 \left(\hat{s} \cdot \hat{n} \right) \left(\hat{s} \cdot (\hat{R}' \times \epsilon) \right) \right\} P_j'' - \left(\hat{s} \cdot \hat{n} \right)^2 \left(\hat{R}' \cdot \epsilon \right) P_j'''
\]

\[J = j + 1 = l' - 1 \]

\[
\frac{1}{(j+1)(j+2)^{1/2}} \left\{ \left(2j+3 \right) \left(j+2 \right) \left(\hat{s} \cdot \hat{R}' \right)^2 \left(\hat{R}' \cdot \epsilon \right)
\]

\[-2 \left(j+2 \right) \left(\hat{s} \cdot \hat{R}' \right) \left(\hat{s} \cdot \epsilon \right) + i \left(j+2 \right) \left(\hat{s} \cdot (\hat{R}' \times \epsilon) \right) \right\}
\]

\[-2 j \left(j+2 \right) \left(\hat{R}' \cdot \epsilon \right) \right\} P_j + \left\{ -2 \left(j+2 \right) \left(\hat{s} \cdot \hat{R}' \right) \left(\hat{s} \cdot \hat{R} \right)
\]

\[+ \left(2j+3 \right) \left(\hat{s} \cdot \hat{R}' \right)^2 \left(\hat{R}' \cdot \hat{R} \right) + i \left(j+2 \right) \left(\hat{s} \cdot \hat{n} \right)^2
\]

\[+ 2 \left(\hat{R}' \cdot \hat{R} \right) \left(\hat{R}' \cdot \epsilon \right) - 2 \left(\hat{s} \cdot \hat{n} \right) \left(\hat{s} \cdot (\hat{R}' \times \epsilon) \right) P_j''
\]

\[-\left(\hat{s} \cdot \hat{n} \right)^2 \left(\hat{R}' \cdot \epsilon \right) P_j'''
\]
Table II

Angular operator for exchange multiplet transitions.

\[
J = j - 1 = l' + 1
\]

\[
\frac{1}{j(j-1)^{\frac{3}{2}}} \left[\left\{ (2j-1)(j-1)(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 + 2(j-1)(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}) \right\} P_j' + \left\{ (2j-1)(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 - (j-1)(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 \right\} P_j'^{\prime \prime} - (\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}) P_j'' \right]
\]

\[
J = j - 1 = l' - 1
\]

\[
\frac{1}{j(j+1)^{\frac{3}{2}}} \left[\left\{ (2j)(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 - (\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 + j(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}) \right\} P_j' + \left\{ (2j)(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 - (\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 \right\} P_j'^{\prime \prime} - j(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}) P_j'' \right]
\]

\[
J = j = l'
\]

\[
\frac{2j+1}{[j(j+1)]^{\frac{3}{2}}} \left[\left\{ (j)(j+1)(\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 + (\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 \right\} P_j' + \left\{ (\hat{\mathbf{r}} \cdot \hat{\mathbf{e}})^2 \right\} P_j'^{\prime \prime} - (\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}) P_j'' \right]
\]

\[\text{Triplet} \rightarrow \text{Singlet}\]

\[
J = j = l'
\]

\[
\frac{2j+1}{[j(j+1)]^{\frac{3}{2}}} \left[\hat{T} \cdot (\hat{\mathbf{e}} \times \hat{\mathbf{r}}') P_j' + \hat{T} \cdot (\hat{\mathbf{r}} \times \hat{\mathbf{r}}') (\hat{\mathbf{r}}' \cdot \hat{\mathbf{e}}) P_j'' \right]
\]
Table II

Angular operators for magnetic multipole transitions

Triplet → Triplet

\[
J = j + 1 = \ell'
\]

\[
\frac{-i(2j+3)^{\frac{1}{2}}}{(j+1)[j(j+1)^{\frac{1}{2}}]} \left[\frac{\{ -(j+2)(\vec{s}.\vec{k})(\vec{k}'.\vec{w}) + i(j+2)(\vec{s}.\vec{k}') (\vec{s}.(\vec{k}' \times \vec{w})) \}}{P_j} \right. \\
\left. - \left(\{ \vec{s}.\vec{k}' \} (\vec{k}'.\vec{k}) - i(j+2)(\vec{s}.\vec{k}') (\vec{s}.\vec{n}) \} \times (\vec{k}'.\vec{w}) - i \{ \vec{s}.\vec{n} - \vec{s}.\vec{k}' \} (\vec{k}'.\vec{w}) \right) \right. \\
\left. \times (\vec{s}.\vec{n}) + (\vec{s}.(\vec{n} \times \vec{k}')) (\vec{s}.(\vec{k}' \times \vec{w})) \right] P_j + \frac{i(\vec{s}.\vec{n}) (\vec{s}.(\vec{n} \times \vec{k}')) (\vec{k}'.\vec{w}) P_j}{P_j}
\]

\[
J = j = \ell' + 1
\]

\[
\frac{-i(2j+1)^{\frac{1}{2}}}{(j+1)^{\frac{1}{2}}} \left[\frac{\{ -(\vec{s}.\vec{n}) + i(j-1)(\vec{s}.\vec{k}') \times (\vec{s}.(\vec{k}' \times \vec{w})) \}}{P_j} + \{ -(\vec{s}.\vec{k}) \\
+ i(j-1)(\vec{s}.\vec{k}')(\vec{s}.\vec{n}) \} \vec{k}'.\vec{w} + i \{ \vec{s}.\vec{n} - (\vec{s}.\vec{k}') (\vec{k}'.\vec{w}) \} \vec{s}.\vec{n} \right. \\
\left. + (\vec{s}.(\vec{n} \times \vec{k}')(\vec{s}.(\vec{k}' \times \vec{w})) \} P_j + \frac{i(\vec{s}.\vec{n}) (\vec{s}.(\vec{n} \times \vec{k}')) (\vec{k}'.\vec{w}) P_j}{P_j}
\]

\[
J = j = \ell' - 1
\]

\[
\frac{-i(2j+1)^{\frac{1}{2}}}{j(j+1)^{\frac{1}{2}}} \left[\frac{\{ -(\vec{s}.\vec{n}) - i(j+2)(\vec{s}.(\vec{k}' \times \vec{w})) (\vec{s}.\vec{k}) \} \vec{k}'.\vec{w} - i \{ (\vec{s}.\vec{k}) + i(j+2) \\
(\vec{s}.\vec{n})(\vec{s}.\vec{k}') \} \vec{k}'.\vec{w} - i \{ (\vec{s}.\vec{n}) - (\vec{s}.\vec{k}') (\vec{k}'.\vec{w}) \} \vec{s}.\vec{n} \right. \\
\left. + (\vec{s}.(\vec{n} \times \vec{k}')(\vec{s}.(\vec{k}' \times \vec{w})) \} P_j + \frac{i(\vec{s}.\vec{n}) (\vec{s}.(\vec{n} \times \vec{k}')) (\vec{k}'.\vec{w}) P_j}{P_j}
\]
Angular operators for longitudinal multiplets

\[J = j - 1 = l' \]

\[-\frac{i(2j-1)^{\frac{1}{2}}}{j^{\frac{1}{2}}[\hat{j} - 1]^{\frac{1}{2}}} \left[\left\{ (j-1)(\hat{S} \cdot \hat{R})(\hat{R} \cdot \hat{W}) - i(j-1)(\hat{S} \cdot \hat{R})(\hat{S} \cdot (\hat{R} \times \hat{W})) \right\} P_j' \right. \]

\[-\left(\left\{ (\hat{S} \cdot \hat{R})(\hat{R} \cdot \hat{R}) + i(j-1)(\hat{S} \cdot \hat{R})(\hat{S} \cdot \hat{R}) \right\} \hat{R} \cdot \hat{W} + i \left\{ (\hat{S} \cdot \hat{n})(\hat{S} \cdot \hat{W}) - (\hat{S} \cdot \hat{R})(\hat{R} \cdot \hat{W}) \right\} \right. \]

\[+ \left(\hat{S} \cdot (\hat{n} \times \hat{R'}) \right) \left(\hat{S} \cdot (\hat{k} \times \hat{W}) \right) \right\} P_j'' - i \left(\hat{S} \cdot (\hat{n} \times \hat{R})(\hat{S} \cdot \hat{n})(\hat{R} \cdot \hat{W}) P_j'' \right. \]

Triplet \rightarrow Singlet

\[J = j + 1 = l' \]

\[-\frac{i(2j+3)^{\frac{1}{2}}}{[j(j+1)]^{\frac{1}{2}}} \left[\left\{ j(\hat{T} \cdot \hat{R})(\hat{R} \cdot \hat{W}) + (\hat{T} \cdot \hat{R}) \right\} P_{j+1} \right. \]

\[-\left(\hat{T} \cdot \hat{W}(\hat{R} \cdot \hat{R}) \right\} P_{j+1} + (j+1)(\hat{T} \cdot \hat{W}) P_{j+1} \right. \]

\[+ \left\{ (\hat{T} \cdot \hat{R}) - (\hat{T} \cdot \hat{R})(\hat{R} \cdot \hat{R}) \right\} (\hat{R} \cdot \hat{W}) P_{j+1} \]

\[J = j - 1 = l' \]

\[-\frac{i(2j-1)^{\frac{1}{2}}}{[j(j-1)]^{\frac{1}{2}}} \left[\left\{ (\hat{T} \cdot \hat{R}) - (j+1)(\hat{T} \cdot \hat{R})(\hat{R} \cdot \hat{W}) - (\hat{T} \cdot \hat{W})(\hat{R} \cdot \hat{R}) \right\} P_{j-1} \right. \]

\[-j(\hat{T} \cdot \hat{R}) P_{j-1} + \left\{ (\hat{T} \cdot \hat{R}) - (\hat{T} \cdot \hat{R})(\hat{R} \cdot \hat{R}) \right\} P_{j-1} \]
Table III

Angular operators for longitudinal multipole transitions

\(\text{Triplet} \rightarrow \text{Triplet} \)

\[
J = j + 1 = l' + 1
\]

\[
\frac{1}{j+1} \left[(j+1) P_j + \{ 2 (k' \cdot k) - (s \cdot k') (s \cdot k) \} \
- i (j+1) (s \cdot n)^2 P'_j - (s \cdot n)^2 P''_j \right] (k \cdot \varepsilon)
\]

\[
J = j + 1 = l' - 1
\]

\[
\frac{1}{(j+1)(j+2)^{1/2}} \left[\left\{ -2(j+1)^2 + (2j+3)(j+1)(s \cdot k')^2 \right\} P'_j \
+ \left\{ -2(j+2)(s \cdot k')(s \cdot k) + (2j+3)(s \cdot k)^2 \right\} (k' \cdot k) \
+ i(j+2)(s \cdot n)^2 + 2(k' \cdot k) \right\} P'_j - (s \cdot n)^2 P''_j \right] (k \cdot \varepsilon)
\]

\[
J = j - 1 = l' + 1
\]

\[
\frac{1}{j(j-1)^{1/2}} \left[\left\{ -2j^2 + (2j-1)j (s \cdot k')^2 \right\} P'_j \
+ \left\{ 2(j-1)(s \cdot k')(s \cdot k) - (2j-1)(s \cdot k')^2 \right\} (k' \cdot k) \right]
\]
\[-i(l-1)(\vec{s} \cdot \vec{n}) + 2(k' \cdot k') \frac{J}{\frac{d}{f}} \left(\vec{p}' - (\vec{s} \cdot \vec{n}) \frac{\vec{p}'}{f} \right) \right] (k \cdot \vec{e})

\[J = j - 1 = l - 1\]

\[\frac{1}{J} \left[-i \left(\vec{p}' \right) + \left\{ 2(k' \cdot \vec{k}') - (\vec{s} \cdot \vec{k}) (\vec{s} \cdot \vec{k}) \right\} \right] (k \cdot \vec{e}) + iJ \left(\vec{s} \cdot \vec{n} \right) \left(\vec{p}' - (\vec{s} \cdot \vec{n}) \frac{\vec{p}'}{f} \right) (k \cdot \vec{e})\]

\[J = j = l'\]

\[\frac{2j+1}{J(j+1)} \left[J \left(j+1 \right) \frac{\vec{p}'}{f} + \left\{ (\vec{s} \cdot \vec{k}') (\vec{s} \cdot \vec{k}) \right\} - 2(k' \cdot \vec{k}) \frac{\vec{p}'}{f} + (\vec{s} \cdot \vec{n}) \frac{\vec{p}'}{f} \right] (k \cdot \vec{e})\]

Triplet → **Singlet**

\[J = j = l'\]

\[\frac{i(2j+1)}{\left[J(j+1) \right]^{\frac{1}{2}}} \left(T \cdot (\vec{k} \times \vec{k}') \right) (k \cdot \vec{e}) \frac{\vec{p}'}{f}\]
CHAPTER VII

THE EQUAL TIME COMMUTATOR IN ELECTRODYNAMICS

1. Introduction

In this chapter, we shall apply Low's procedure to some electromagnetic problems with a view to understanding the role of the equal time commutator in electrodynamics. The equal time commutator occurs both in Low's theory and in the dispersion theory, the latter being model independent and hence more general. The difference between the two approaches is that we are interested in the time-ordered product in the former case and the retarded product involving a commutator in the latter. Although the name "equal time commutator" has come into vogue
in dispersion theory, we shall use the same nomenclature for the corresponding term in Low's approach.

We can see how the equal time commutator arises in dispersion theory by considering for simplicity the scattering of two identical neutral scalar bosons interacting through their self-field. If \mathbf{p} and \mathbf{k} represent the momenta of the two incoming particles and $\mathbf{p'}$ and $\mathbf{k'}$ the momenta of the two outgoing particles, the S-matrix element for the process can be written down using the "asymptotic condition" to reduce the particles in the state vector into current operators. Thus

$$\langle p'k'|s|pk \rangle = \frac{i}{\sqrt{2\omega_k}} \int_{-\infty}^{\infty} d^4x \ e^{i\mathbf{k} \cdot \mathbf{x}} K_x \langle p'k'|A(\infty)|p \rangle + \langle p'k'|I|p_k \rangle$$

$$= i \int_{-\infty}^{\infty} d^4x \ e^{i\mathbf{k} \cdot \mathbf{x}} \langle p'k'|A(\infty)|p \rangle + \langle p'k'|I|p_k \rangle$$

Here K_x is the operator $(\Box - m^2)$ which operating on the field variable $A(x)$ gives the current operator $j(\infty)$. The second term indicates propagation without scattering of the particles. Using translational invariance this could be written as

$$\langle p'k'|s|pk \rangle = \frac{i(2\pi)^n}{\sqrt{2\omega_k}} \delta^n(p+k-p-k) \langle p'k'|j(0)|p \rangle$$

Now

\[\langle p' b' | \hat{g}(x) | p \rangle = -\frac{ie^{-i k' x}}{\sqrt{\omega_k \omega_{k'}}} \int d^4 x' e^{-i k' x} \delta(x_0') \hat{g}(x') \langle p' | A(x') \hat{f}(0) | p \rangle \]

(3)

\[T(A(x') \hat{f}(0)) = \Theta(x)[A(x), \hat{f}(0)] + \hat{f}(0) A(x) \]

(4)

\[K_x T(A(x) \hat{f}(0)) = \Theta(x)[\hat{f}(x'), \hat{f}(0)] - \hat{f}(0) \hat{f}(x) \]

\[-\delta(x_0) [A(x), \hat{f}(0)] - \frac{d}{dt} \delta(x)[A(x), \hat{f}(0)] \]

(5)

Here \(\Theta(x) \) is the step function which is equal to 1 when \(x_0 > 0 \) and 0 if \(x_0 < 0 \). If we assume that \(\hat{f}(x) \) contains no time derivatives of \(A(x) \), the fourth term on the right hand side is zero. The third term is the equal time commutator term for an obvious reason and its contribution to the matrix element is given by

\[\frac{i}{\sqrt{\omega_k \omega_{k'}}} \int e^{-i k' x} \delta(x_0') \langle p' \rangle [A(x), \hat{f}(0)] | p \rangle d^4 x \]

\[= -\frac{i}{\sqrt{\omega_k \omega_{k'}}} \int e^{-i k' x + i (p-p')^2/2} \delta(x_0') \langle p' \rangle [A(x), \hat{f}(0)] | p \rangle d^4 x \]

\[= -i \int e^{-i (k+k') x} G(p, p', x) d^4 x \]

(6)

where causality implies that \(G(p, p', x) = 0 \) unless \(x = 0 \). Hence in we can express \(G \) as a sum of finite derivation of \(\delta(x) \) i.e.

\[G(p, p', x) = \sum_{n=1}^{N} g_n(p, p') \delta^n(x) \]

(7)
so that the matrix element will have the contribution
\[\sum_{n=1}^{N} q^n (p,p') (k+k')^n \]
which is a polynomial.

The term corresponding to the equal time commutator in the Lagrangian theory always arises when we are converting into current operator a particle in the state vector, the field variable of which occurs either in bilinear or multilinear combination in the interaction Hamiltonian. This term brings, as we shall see, unrenormalised quantities in its wake.

Now as already mentioned the equal time commutator which term contributes a polynomial to the matrix element in the dispersion theoretic approach. But for its explicit evaluation one has to assume an interaction and the canonical commutation relations. For example in the pseudoscalar meson theory with pseudoscalar coupling we find with unrenormalised operators
\[
\left[\phi (x), j(y) \right] \delta (x_o - y_o) = 0
\]
\[
\left[\frac{\partial \phi (x)}{\partial x_o}, j(y) \right] \delta (x_o - y_o) = 3 i \lambda \phi^2 (x) \delta (x - y)
\]

Now the statement is usually made that these equal time commutator terms need not be evaluated explicitly\(^1\) as they can be subtracted out since they do not depend on energy\(^2\). It is therefore interesting to study the role of the equal time commutator in the conventional Lagrangian approach for as we shall show in section 3, by examples

1) E. Czerskiowicz, Fortschritte der Physik, 2, 665 (1960)
2) M.L. Goldberger, Phys. Rev., 20, 979 (1955); Also "Lectures on Dispersion Relations" by J.C. Taylor, Rochester University.
involving the electromagnetic interaction, this term in fact forms part and in some cases even the whole of the matrix element which would mean that it is dependent both on energy and momentum transfer.

We should expect that any method such as Low's procedure which enables one to write the matrix element of a process in the Heisenberg representation and which is non-perturbative in the sense mentioned earlier should when applied to problems in electrodynamics reproduce the well-established results of perturbation theory under suitable approximations. In the course of the above investigation, we show that this is the case in the various problems in quantum electrodynamics viz., the Compton effect, electron-electron scattering, electron-positron scattering and the bremsstrahlung. Explicit expressions for the lowest order matrix elements are derived and they have been shown to be identical with those obtained by the Feynman method. All the Feynman graphs have been obtained as a consequence without the need of separate enumeration. The relative signs of the various terms in the matrix elements are also obtained without recourse to ad hoc principles; i.e., the matrix elements obtained are properly symmetrized if the final state involves identical particles.
3. The role of the equal time commutator in

(a) The Compton effect:

First we shall consider the Compton effect, viz., the scattering of a photon by an electron. Using Lorentz's procedure, as described in Chapter II and 'contracting' on the photons the matrix element for the process can be written as

\[
\begin{align*}
\langle p'q'|s|pq \rangle &= (-i)^2 \int \frac{dx dy}{\sqrt{q_0 q'}} e^{iq'x} e^{-iq'y} \\
&\cdot \langle p'| p(\hat{j}_\mu(y) \hat{j}_\nu(x)) |p \rangle
\end{align*}
\]

where \(p\) and \(p'\) represent the initial and final four momenta of the electron and \(q\) and \(q'\) the initial and final four momenta of the photon. \(\hat{j}_\mu(x)\) and \(\hat{j}_\nu(y)\) are the Heisenberg photon current operators which satisfy the equation of motion

\[
\Box \hat{A}_\mu(x) = -\hat{j}_\mu(x) = -ie \overline{\psi}(x) \gamma_\mu \psi(x)
\]

and similarly for \(\hat{j}_\nu(y)\). Using the translational invariance of the Heisenberg operators, the \(x\) and \(y\) dependence of the operators can be removed. The integration of the four-moment \(q\) yields the energy-momentum conservation and we have...
\[< p' q' | s | p q > = -i \int \frac{dx'}{\sqrt{4 q' \cdot q_0}} \ e^{i q' \cdot x'} \delta \left(p' + q' - p - q \right) < p' | P (j_\mu^{(a)} | j_\nu^{(a')}) | p > \]

where \(x' = x - y \). To remove the \(x' \) dependence a complete set of intermediate states have to be interposed and the integration of the variable \(x' \) gives the momentum of the intermediate state and the energy denominators. Finally, we obtain

\[< p' q' | s | p q > = - \frac{i}{\sqrt{4 q' \cdot q_0}} \delta \left(p' + q' - p - q \right) \]

\[\cdot \left[\sum_{n' = 1}^{\infty} \frac{< p' | j_\mu^{(a')} | n' > < n | j_\nu^{(a)} | p >}{p_0 + q_0 - n_0 + i \varepsilon} \right. \]

\[+ \left. \sum_{n' = 1}^{\infty} \frac{< p' | j_\nu^{(a')} | n' > < n | j_\mu^{(a)} | p >}{p_0' - q_0 - n_0 + i \varepsilon} \right] \]

The above expression is exact and if we switch over to the interaction representation, we will get the perturbation expansion. We shall deduce the lowest order matrix element combining the energy denominators suitably to obtain the usual Feynman matrix elements for the process.

First we shall evaluate the first term in the square bracket in (112) in the lowest order. For the one-electron intermediate state, a replacement of the state vectors and current operators in the matrix elements in the numerator by the corresponding quantities in the interaction representation and use of the usual commutation relations between creation and annihilation operators enables us to simplify
this term to

\[
\frac{-e^2}{\sqrt{\frac{1}{b_p} p_0' n^2}} \frac{\overline{u}_p E_\mu Y_\mu u_n \overline{u}_n E_\nu Y_\nu u_p}{p_0 + q_0 - n_0}
\]

(13)

where \(E_\mu \) is the polarization vector of the photon. Similarly for the three particle intermediate state (one electron plus an electron-positron pair), the contribution is

\[
-\frac{e^2}{\sqrt{\frac{1}{b_p} p_0' n^2}} \frac{\overline{u}_p E_\mu Y_\mu u_n \overline{u}_n E_\nu Y_\nu u_p}{p_0 + q_0 + n_0}
\]

(14)

\[
\rho_n
\]

where \(\rho_n \) is the positron spinor. It can be easily seen that the higher particle intermediate states will not contribute in the lowest order. Hence adding (13) and (14) and simplifying we obtain

\[
\frac{\langle p | \tilde{J}_\mu (0) | n \rangle}{p_0 + q_0 - n_0}
\]

\[
= -\frac{e^2}{\sqrt{\frac{1}{b_p} p_0' n^2}} \left[\frac{1}{E_\mu Y_\mu \tilde{E}_\nu Y_\nu \tilde{u}_p} \right]
\]

(29)

Expression (29) is precisely the matrix element corresponding to one of the Feynman diagrams \(11 \) corresponding to one of the Feynman diagrams (Diagram \(R \) in fig. 1). Ramakrishnan et al.\(^2 \) have shown from different considerations that the Feynman diagrams 1

1) R.P. Feynman, Quantum Electrodynamics Lecture Notes, Caltech, (1953).

propagator in momentum representation can be conveniently split up into two parts — one arising from the positive energy part of the intermediate state and the other from the negative energy part. They show that

$$\frac{1}{i(p+q)+m} = \frac{1}{2} \left[\frac{i\vec{p}_n - m}{\eta_0(p_0 + q_0 - \eta_0)} - \frac{i\vec{p}_n - m}{\eta_0(p_0 + q_0 + \eta_0)} \right]$$

where \(\vec{p}_n \) is a four-vector with energy component \(\eta_0 = +\sqrt{(\vec{p}_n + \vec{q})_0 + m^2} \) and \(\vec{p}_n \) the four-vector with energy component \(-\eta_0 \). We obtain the same result, but we use a different language — the one and three particle intermediate states. The three particle intermediate state here corresponds to Feynman's negative energy propagation.

In a similar way, the second term in (12) can be evaluated. As shown earlier, the one-particle and three-particle intermediate states alone contribute and adding them we obtain

$$\langle p' | \jmath_0(e) | n \rangle = \langle n | \bar{j}_\mu e_\nu | p \rangle$$

$$\frac{-e^2}{\sqrt{4p_0 p_0'}} \left[\frac{\epsilon_\mu \epsilon_\nu}{i(k - q_0') + m} \frac{1}{\eta_0} \right]$$

Expression (17) is identical with the Feynman matrix element corresponding to the other diagram.

(Diagram 5 is in ref. 1, p. 195.)
Adding (1915) and (2017) we obtain the complete matrix element for the Compton effect in the lowest non-vanishing order.

Now one of the principal features of Low's method or that of Lehmann, Symanzik and Zimmermann is the transcription of some or all of the particles in the initial or final state into current operators and there is a variety of choice in doing this. In the above, we have converted the initial and final photons into current operators. If, instead, we convert one of the photons and one of the electrons into current operators, we will obtain the equal time commutator term, as shown below.

\[
\langle p'q' | s | pq \rangle = -\frac{i}{\sqrt{4p'q'}} \cdot \overline{\psi}_p \\
\iint dx dy e^{-iqx} e^{-ip'y} \langle q' | \left[P(J(y)j(y)) + \delta(x-y) e^{\gamma_\mu \gamma_\nu} \Psi(x) \right] | p \rangle
\]

Here we have converted the initial photon and final electron into current operators. \(J(y) \) is the electron current operator given by

\[
J(y) = (\gamma \frac{\partial}{\partial y} + m) \psi(y) = i e A(y) \psi(y) + \delta m \psi(y)
\]

Removing the \(\gamma \) and \(y \) dependence of the operators and integrating them out, we obtain
\[
\langle \pi', \eta' | S | \pi, \eta \rangle = -i \frac{\delta \left(p' + q' - p - q \right)}{\sqrt{4 \, p' \cdot q' \cdot p \cdot q}} \bar{u}(p')
\]

\[
\sum_{n=3}^{\infty} \left[-\sum_{n=3}^{\infty} \frac{\varepsilon}{p_n} \cdot \frac{\langle \eta' | J(0) | \pi \rangle \langle \pi | \bar{J}(0) | p \rangle}{p_n + q_0 - p_0 - \varepsilon} \right.
\]

\[
+ i e \gamma_n \frac{\langle \eta' | J(0) | \pi \rangle \langle \pi | \bar{J}(0) | p \rangle}{i \left(p - q \right) \cdot m + m} \]

\]

The equation (20) is exact and the operators and state vectors are in the Heisenberg representation. The third term in (20) arises from the equal time commutator and when we rewrite it as

\[
- i \frac{\delta \left(p' + q' - p - q \right)}{\sqrt{4 \, p' \cdot q' \cdot p \cdot q}} \bar{u}(p')
\]

\[
\sum_{n=3}^{\infty} \frac{\varepsilon}{p_n} \cdot \frac{\langle \eta' | J(0) | \pi \rangle \langle \pi | \bar{J}(0) | p \rangle}{p_n + q_0 - p_0 - \varepsilon}
\]

\[
+ i e \gamma_n \frac{\langle \eta' | J(0) | \pi \rangle \langle \pi | \bar{J}(0) | p \rangle}{i \left(p - q \right) \cdot m + m}
\]

We find that the first half of the matrix element represents the bare electron photon vertex and the second half, the physical electron-photon vertex. Thus when we write the former in terms of renormalized quantities, we will be having the renormalization constants as factors\(^1\) and they have to be

\(^1\) This point has been noticed by Goldberger, Gehrke and Nambu while studying the single variable dispersion relations for nucleon-nucleon scattering. \(n.m.\) Goldberger et. al. (Ann. Phys., 2, 226, (1957)).
evaluated suitably. In the lowest order of course the matrix element is well-defined.

Reverting to the interaction representation and thereby to the perturbation expansion, the first term in (274) can be evaluated in the lowest order. The contribution from the one-particle intermediate state is the same as (13). However for the three-particle intermediate state, this term vanishes in the second order if we make a direct evaluation. This is apparent if we rewrite the numerator of the first term in terms of creation and annihilation operators. The first factor in the numerator viz., \[<q_1' | J^{(0)} | \lambda> \] would be

\[= \sum \frac{d}{d_q'} | i e \gamma \lambda A_\mu (0) \psi (0) | a_{p_1}^+ a_{p_2}^+ b^+ (p_3) \rangle \]

\[= \sum \frac{d}{d_q'} | i e \gamma \lambda [\hat{a}_p + \hat{a}_p^+] (\hat{a}_p + \hat{b}_p^+) | a_{p_1}^+ a_{p_2}^+ b_{p_3}^+ \rangle \]

\[= 0 \]

since we cannot match all the creation and annihilation operators in the state vectors and the current operator.

This result, of course, is not correct and the three-particle intermediate state does contribute as we have seen earlier. But no ambiguity arises if we interpret the numerator of the first term in (274) in which all the quantities and in the Heisenberg representation as the product of the matrix elements for three-particles going to two particles and two

1) a, b and d represent the annihilation operators for the electron, positron and photon respectively and the symbol, \(\Lambda \), above the operators indicates that they carry the wave function associated with the operators.
particles going to three particles and then replace it by the product of similar matrix elements in the interaction representation. The result is that we obtain the complementary term (12). Thus we see that we have to exercise some caution when we are pulling out a fermion as a current operator.

The second term in (24) vanishes identically. The third term directly gives the propagator for the other Feynman diagram and in the lowest order corresponds to the diagram of reference 1, page 25.

As a third alternative, we can pull out both the electrons from the state vector and convert them into current operators. But as pointed out, one has to be careful in such cases and it is convenient to keep the fermions in the state vector and convert only the bosons into current operators.

(b) Electron-electron and electron-positron scattering.

The matrix element for Møller scattering can be written as products of the known electron-photon vertices by converting two of the electrons, one from the initial and the other from the final state into current operators. In this case, the equal time commutator is unavoidable and in fact it represents the matrix element corresponding to one of the Feynman diagrams (Diagram E in ref. 1, page 25).

The complete matrix element can be written as
\[
\langle p_3, p_1 | S | p_1, p_2 \rangle = -\frac{i}{\sqrt{4E_1E_2}} \left(\sum_{n=0}^{\infty} \frac{\langle p_4|J^+(o)|n\rangle\langle n|J^+(o)|p_2\rangle}{p_{40} - p_{10} - n_0 + i\epsilon} \right)\]

+ \frac{i e \bar{u}_{p_3} \gamma_{\mu} u_{p_1}}{(p_4 - p_2)^2} \] (23)

Equation (23) is an integral equation, the first term being the homogeneous term involving the electron-electron scattering matrix element itself. The second term is the product of electron-photon vertices. The one photon intermediate state in the lowest order gives the following contribution

\[
\frac{1}{2\omega_n} \left(\bar{u}_{p_3} \gamma_{\mu} u_{p_1} \right) \left(\bar{u}_{p_4} \gamma_{\mu} u_{p_1} \right) \] (24)

where \(\omega_n\) represents the energy of the photon. The above corresponds to the emission of a photon by the electron of momentum \(p_2\) and its absorption by the electron of momentum \(p_1\). We must add to this the complementary term representing the emission of the photon by the electron of momentum \(p_1\) and its subsequent absorption by the electron of momentum \(p_2\). This yields the complete matrix element corresponding to one of the Feynman diagrams, (Diagram S in ref. 1, p. 202)
that for every intermediate state, if a one-photon plus electron-positron pair gives rise to disconnected Feynman diagrams in the second order.

The third term in (24) is the equal time commutator term and in the lowest order it represents the matrix element corresponding to the diagram \(R \) of ref. 1, p. vis.,

\[
\frac{1}{2 \omega n} \left[\frac{1}{(E_2 - E_1) - \omega_n} - \frac{1}{(E_2 - E_1) + \omega_n} \right] = \frac{1}{(p_1 - p_2)^2}
\]

The first we notice that the 'relative sign' between this "compounded" second term of (25) and the third term of the same, which is usually attributed to the Pauli exclusion principle, is obtained naturally in this method. This means that we need not symmetrize the matrix element with respect to the interchange of the two final electrons. This confirms the point made in Chapter II. We also notice that the relative sign of the two terms in Compton scattering has come out correctly and even with energy denominators (equation (23)) we notice that "crossing symmetry", which in this context would mean
that for every diagram with the initial photon absorbed first and the final photon emitted later there is also another dia-
gram with the final photon emitted first and the initial photon absorbed later, is satisfied.

A similar consideration shows that in the case of electron positron scattering also the equal time commutator term forms part of the matrix element. The complete matrix element for this case is given below

\[
\langle p_0, p'_p | S | p_e p_p \rangle = -i S(p_e + p_p - p'_e - p'_p)
\]

\[
\sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \frac{\langle p_p' | J_{\omega}^{+} | n\rangle \langle n | J_{\omega}^{-} | p_p \rangle}{p_{p_0} + p_{p_0} - n_0 + i \varepsilon} u_{pe}
\]

\[
- \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \frac{\langle p_p' | J_{\omega}^{+} | n\rangle \langle n | J_{\omega}^{-} | p_p \rangle}{p_{p_0} + n_0 - p_{p_0} - i \varepsilon} u_{pe}
\]

\[
-ie p_{pe} \gamma_{\mu} u_{pe} \frac{\langle p_p' | J_{\omega}^{+} | p_p \rangle}{(p_{p_0} - p_{p_0})^2}
\]

The first term represents the Feynman diagram corresponding to electron-positron annihilation and their subsequent creation (Shahba scattering). As shown earlier, the complementary term has to be included to get the complete propagator for the virtual photon. The second term vanishes identically. The third term is the equal time commutator and it represents the matrix element corresponding to electron-positron scattering with exchange of a single photon.

(c) **Other processes.**

Some further examples where the equal time commutator term gives the whole or a matrix element or part thereof are the following:

(i) Electron-proton scattering where in the lowest order of the electromagnetic coupling constant, the complete matrix element which is the product of the electro-magnetic vertices of the proton and electron is given by the equal time commutator.

(ii) Bremsstrahlung which may be considered to be the limiting case of the radiative scattering of an electron by a proton as the proton mass is made infinite.

(iii) Electro-pion production wherein the lowest order, the equal time commutator term gives the completed matrix element for the process, making it equivalent to pion production by a virtual photon, — a result which was derived in Chapter Sec.

(iv) Electro-disintegration of the deuteron which again can be equated to disintegration by a virtual photon, as mentioned in Chapter. The contribution to the matrix element for the photo-production of pions from nucleons arising from the photon-pion interaction term

i.e.,

\[ie \left(\frac{\partial \varphi^*}{\partial x_\mu} - \frac{\partial \varphi}{\partial x_\mu} \right) A_\mu(x) \]

which is bilinear in the pion field variable \(\varphi \) and hence can give rise to an equal time commutator term which is the "pion current" term.

In all these cases, we see that the equal time commutator term forms the complete matrix element (processes i, ii, iii and iv of C) or a part thereof in the other cases considered. Thus we are forced to the conclusion that in the conventional approach using an interaction Hamiltonian we have to include the contribution from the equal time commutator in the calculation. Another notable feature that emerges from our considerations is that there is no need for separate symmetrization or antisymmetrization of the matrix element as the matrix elements exhibit crossing symmetry and the effect of Pauli principle in the derivation itself.
PHOTO PRODUCTION OF SINGLE PIONS FROM NUCLEONS IN THE STRIP APPROXIMATION TO THE MANDELSTAM REPRESENTATION.1)

1. Introduction

The Mandelstam representation2) is a prescription for the location of the singularities of the S-matrix elements of a process involving two incoming and two outgoing particles. Hence in the beginning there appeared to be no way of including the contributions to the unitarity condition from intermediate states with more than two particles in a consistent way within the framework of the representation. Thus in the earlier applications of the representation there was a feeling that the representation might be valid in a restricted domain, namely, the low energy region3). The approach of Chew and Mandelstam4) to the problem of pion-pion scattering using the representation, which might be regarded as a generalisation of the effective range analysis familiar in the low energy nucleon-nucleon problem rested on the plausible assumption that the behaviour of an analytic function in a small region of the complex plane is

dominated by nearby singularities. The domain where most of the experiments are done and where the singularity spectrum is simplest is the low-energy region or more specifically the region below the threshold for the production of an additional particle. High mass singularities were neglected or approximately represented by empirical constants. These assumptions and restrictions led to the reduction of the double-variable dispersion relations to a single variable one, the resulting relations being the partial wave amplitudes for the lowest angular momenta.

Cini and Fubini\(^1\) also made an equivalent approach to low energy problems. They showed that a consistent procedure based on the neglect of inelastic processes in the unitarity condition leads also to the reduction of the two-dimensional representation to a one-dimensional one which has the correct analyticity properties in all variables fulfills the crossing relations and is approximately unitary.

This reduction is enabled by the fact that for some processes, the lower limits of integration of the two variables in each of the terms of the Mandelstam representation are never reached at the same time; that is, while the lower limit of one starts from the normal threshold value, the lower limit of the other variable may start at the value of the inelastic threshold and since for the lowenergies considered the contribution from this region

will be in any case so small we can expand the denominator containing the corresponding variable in a powerseries retaining only the first few terms. But this procedure may not always work. Consider the process

\[\gamma + \pi \rightarrow n + \bar{n} \]

which forms the third channel for the process of photoproduction of a pion from a nucleon. Now depending on whether we are considering the isoscalar or isovector part of the photon interaction, we have two or three pion intermediate states respectively as given by the left hand members of figures (1a) and (1b). Expanding the vertices in these graphs, we obtain the graphs on the right hand side. We easily see that while for the isoscalar part both the variables \(s \) and \(t \) do not touch their respective thresholds viz., \((m+1)^2 \) and \(4 \) at the same time so that the Ginzburg-Fubini approximation holds; the same is not true for the isovector part with three pions in the intermediate states since both the variables \(s \) and \(t \) touch their threshold values viz., \((m+1)^2 \) and \(4 \) simultaneously.

These approximations have, as mentioned, only a limited range of validity and are therefore reliable only for those values of the kinematic variables for which the singularities coming from the inelastic processes are sufficiently far off. But the "strip" approximation recently suggested by Chew and Frautschi\(^1\) and also independently

by Ter-Martirosyan1), Gribov2) and others indicates a way out of this difficulty. We shall follow the procedure of Chew and Frautschi who treat the dynamics of strong high and low energy scattering interactions in a unified way. This was necessitated by their attempts to understand low energy scattering consistently within the Mandelstam framework. The difficulties they encountered in trying to incorporate the p -wave resonances into the pion-pion and pion-nucleon systems made them believe that they could be resolved only by explicit consideration of higher energies and inelastic effects.

One of the consequences of the Mandelstam representation is that it is possible to give a formal definition of a "generalized potential" for relativistic scattering which leads to suggestive analogies with ordinary potential scattering. An amplitude \(A(\lambda, t, u) \) which is an analytic function of the variables \(\lambda \), \(t \), and \(u \) (defined for the photoproduction problem in the next section) except for possible single particle poles and branch points for intermediate states containing two particles or more, obeys the Mandelstam representation which, ignoring the poles and spin and isotopic spin complications, can be written as

\[
A(\lambda, t, u) = \frac{1}{\pi^2} \iint d\lambda' dt' \frac{\mathcal{A}_b(\lambda', t')}{(\lambda' - \lambda)(t' - t)} + \]

\textbf{References:}
1) X.A. Ter-Martirosyan, Soviet Physics-JETP, \textbf{12}, 575 (1961)
2) V.N. Gribov, Nucl. Phys., \textbf{22}, 249 (1961)
\[+ \frac{1}{\pi^2} \int \int d\omega' d\omega'' \frac{A_{\omega}(\omega', \omega'')}{(\omega'-\omega)(\omega''-\omega)} \]

\[+ \frac{1}{\pi^2} \int \int dt' dt'' \frac{A_{\omega}(t', t'')}{(t'-t)(t''-t)} \]

Fixing the energy variable, \(\omega \), this could be written as

\[A(\omega, t, u) = \frac{1}{\pi} \int dt' \frac{A_3(t', \omega)}{t' - t} + \frac{1}{\pi} \int dt'' \frac{A_3(u', \omega)}{u' - u} \quad (2) \]

\(A_3 \), the discontinuity in channel III can be split up into

\[A_3(t, \omega) = V_3(t, \omega) + \frac{1}{\pi} \int d\omega' \frac{A_{13}(\omega', \omega)}{\omega' - \omega} \]

where \(A_{13}^{I-} \) contains the scattering into elastic (two-particle) intermediate states in channel I and \(V_3 \), which serves as a generalized direct potential for channel I, contains everything else. The generalized exchange potential can be defined in terms of Channel II with \(u \) used in place of \(\omega \). If the generalized potentials are given the elastic double spectral functions for channel I can be computed from the expressions for the double spectral functions in terms of the absorptive parts

\[A_{13}^{I-}(\omega, t) = \frac{1}{\pi} \frac{1}{\sqrt{\omega}} \left[\int \int dt_2 dt_3 A_3^*(t_2, \omega) A_3(t_3, \omega) \frac{1}{K_1^L(q, \omega, E, t_2, t_3)} \right] \]

\[+ \int \int du_2 du_3 A_3^*(u_2, \omega) A_3(u_3, \omega) \frac{1}{K_1^L(q, \omega, \omega)} \quad (3) \]
\[
A_{12}(\alpha, u) = \frac{1}{n_{\pi}^{2} \alpha^{3}} \left[\int d\zeta_{2} d\zeta_{3} \right. \\
\left. \left(A^*_3(\alpha, \zeta_{2}) A_2(\alpha, \zeta_{3}) + A^*_2(\alpha, \zeta_{3}) A_3(\alpha, \zeta_{2}) \right) \kappa_{L}^{2} (q_{\pi}^{2}; \alpha, \zeta_{2}, \zeta_{3}) \right]
\]

Equations (2) and (3) along with the expression for the double spectral functions bear a close resemblance to the set of equations determining non-relativistic potential scattering (of the type which obeys a Mandelstam representation) the difference being that the generalized potential is energy dependent, becomes complex above the inelastic threshold and has relativistic kinematic factors.

From equations (2), (3) and (4), the complete matrix element for the process for fixed energy, \(A(\alpha, t, \zeta_{2}, \zeta_{3}) \) can be evaluated as follows. For convenience let us take the case of pion-pion scattering. Let us assume that \(A_{2} = 0 \) which means \(A_{12} \) is also zero. From the inequalities (5) we see that \(A_{13}(\alpha, t) = 0 \) if \(\zeta_{2}^{\frac{1}{2}} \leq t^{\frac{1}{2}} + t^{\frac{1}{2}} \).
But we know that \(A_3(\lambda, t, u) = 0 \) if \(t \leq l_b \) (i.e. below the threshold for the scattering). Hence \(A_{13}(\lambda, t) = 0 \) if \(t \leq l_b \). Thus

\[
A_3(\lambda, t) = V_3(\lambda, t) \quad \text{for} \quad t \leq l_b \tag{b}
\]

Now if \(V_3 \) (the direct potential) is given, then \(A_3(\lambda, t) \) is known for \(t \leq l_b \). Again applying the inequality in \(t \) we find that \(A_{13}(\lambda, t) \) can be calculated for \(t \leq 3l_b \) since \(A_3(\lambda, t) \) is known for \(t \leq l_b \). From this again we can calculate \(A_3(\lambda, t) \) for \(t \leq 3l_b \) from equation (3).

The above procedure assumes that the potential \(V_3 \) is known which is not the case for the relativistic case. This is where the strip approximation comes to our aid.

1) The statement implied in the above that the matrix element \(A(\lambda, t, u) \) can be determined completely once we know the single \(A_3 \) and the double \(A_{13} \) spectral functions is true only if there is no subtractions in the matrix element, i.e. if all the functions are well-behaved at infinity. If however there are subtractions, the subtraction constants are not determined by the spectral functions and thus the matrix element \(A(\lambda, t, u) \) is not determined by the spectral functions alone. The introduction of Regge poles however removes this difficulty. (See, G.F. Chew, S.C. Frautschi and S. Mandelstam, Phys. Rev. 126, 1202 (1962)).
In terms of the double spectral functions the strip approximation can be stated as follows. The scattering amplitudes in the physical regions are dominated by the strips of the double spectral functions lying between each of the thresholds for the three reactions involved in a Mandelstam graph (see Fig. 2) and the corresponding thresholds for inelastic processes (i.e., production of one more particle). Therefore the double spectral (or strip) functions can be calculated using the elastic unitarity conditions. More specifically, the strip approximation is the assumption that

$$A_{13}^{\text{inel}}(s) = A_{13}^{\text{el}}(t)$$

$$A_{13}^{\text{el}}(s) = A_{13}^{\text{inel}}(t)$$

and similar relations for the other double spectral functions, "elastic" and "inelastic" refer to the elastic and inelastic parts. The above approximation is based on the following experimental facts:

(i) The elastic scattering cross-sections tend to be large at low energies, with resonances in the low-angular momentum states.

(ii) At high energies all elastic cross-sections show a characteristic diffraction pattern consisting of a peak in the forward direction. In the case of pion-nucleon and nucleon-nucleon collisions, the scattering takes place mainly in the range $-20 \leq t \leq 0$ for t the square of the four-momentum transfer. In order that (i) may be
feasible for fixed energy, the "range" of the corresponding potential must be short which means, in the s-channel, that the momentum transfer variable should be large. The complementarity nature of the elastic and inelastic region in the energy s and momentum transfer t variables thus indicated by experiments is expressed in terms of the double-spectral functions in the strip approximation.

Now we define $V_3(s, t)$ as

$$V_3(s, t) = \int d\lambda' \frac{A_{13}^{inel}(s', t)}{\lambda' - \lambda}.$$ \hspace{1cm} (8)

Since according to the strip approximation

$$A_{13}^{inel}(s, t) = A_{13}^{el}(t, s)$$

this quantity can be calculated using the elastic unitarity condition in the third channel and $V_3(s, t)$ can be formally determined.

The approximation can also be understood in terms of the Cernyko diagrams for a process. Fig. (3a) corresponds to a two-particle intermediate state in the s-channel while (3b) corresponds to a two-particle intermediate state in the t-channel but has also the significance of a two-particle exchange potential in the s-channel representing the effect of a sum over inelastic intermediate states containing definite numbers of particles in the s-channel.

We shall study in this chapter the problem of the photo-production of a single pion by a nucleon in the above
approximation. This problem was studied using the single variable dispersion relations by Chew et al\(^1\) hereafter referred to as \((G \& LN)\). Recently the Mandelstam representation has been applied to this process by Gourdin et al\(^2\) and Solovev et al\(^3\) who however use the one-dimensional form of the relations when it is applicable. In a detailed study of the process using a similar approximation, Ball\(^4\) has come to the conclusion that apart from a small additive term to the isoscalar amplitude and a possible contribution to the isotopic symmetric part of the photo-production matrix element from the three-pion resonance the \(G \& LN\) matrix elements are in agreement with experiment up to at least the region of the \(33\) resonance. For energies beyond this where the threshold for extra particle productions sets in, we have to use an approximation such as the strip approximation.

In the next section, we give the kinematics and invariant amplitudes for the process and in section 3, we study the question of subtraction and kinematic singularities. In section 4, we derive the double spectral functions for the photo-production channel using the "inelastic" unitarity condition. In Section 5, a similar evaluation is made for the third channel. Finally in section 6, we set up the equations for the absorptive parts

2) M. Gourdin, D. Lurie\(^2\) and A. Martin, Nuovo Cim., 18, 933 (1960)
in terms of the double spectral functions. The solution of these equations should yield us a matrix element valid for arbitrary energies (with the momentum transfer restricted).

2. Kinematics and the invariant amplitudes

We define the variables

\[s = -(p_1 + k)^2 = -(p_2 + q)^2 \]

\[u = -(p_1 - q)^2 = -(p_2 - k)^2 \]

\[t = -(p_2 - p_1)^2 = -(k - q)^2 \] \((a) \)

with

\[s + u + t = Q^2 m^2 + 1 \] \((b) \)

Here \(p_1 \) and \(p_2 \) are the four-momenta of the initial and final nucleons, \(q \) and \(k \) those of the pion and photon respectively and \(m \) is the mass of the nucleon. The three variables \(s \), \(t \) and \(u \) are respectively the squares of the total energy in their respective centres of mass systems, for the three connected processes represented by the same diagram (fig. 4) viz.,

\[\gamma + N \rightarrow N + \pi^+ \quad (I) \]

\[\gamma + \overline{N} \rightarrow \overline{N} + \pi^- \quad (II) \]

and

\[\gamma + \pi^+ \rightarrow N + \overline{N} \quad (III) \]
For channel I (photoproduction of a pion from a nucleon), the variables are given in the centre of mass of the photon–nucleon (or the pion nucleon) system by

\[s = (E_1 + k)^2 = (E_2 + \omega)^2 \]

\[t = 1 - 2k\omega + 2kq\cos \Theta \]

\[u = m^2 - 2E_2k - 2kq\cos \Theta \] \hspace{1cm} (12)

where \(k \) and \(q \) are the magnitudes of the centre of mass momenta of the initial and final pair of particles respectively and \(\Theta \) is the angle between their directions. \(E_1 \) and \(E_2 \) are the energies of the initial and final nucleon — and \(m \), their mass.

For channel III (a photon plus a pion going into a nucleon–antinucleon pair) these variables represent

\[t = 4E^2 = 4(p^2 + m^2) = (k + \omega q)^2 \]

\[u = m^2 + 1 - 2pq\cos \varphi - 2\omega qE \]

\[= m^2 - 2pq\cos \varphi - 2qE \]

\[s = m^2 + 2pq\cos \varphi - 2qE \]

\[= m^2 + 1 + 2pq\cos \varphi - 2\omega qE \] \hspace{1cm} (13)

Here \(q \) is the magnitude of the centre of mass momentum of the pion (or photon) and \(q \) that of the final nucleon.
(or antinucleon) \(\varphi \) is the angle between the directions of the initial and final system of particles and \(E \) is the energy of the nucleon (antinucleon).

We shall now write down the invariant amplitudes for the photo production of a pion from a nucleon as given by C E L N. The relation between the \(S \) and the \(T \) matrix elements is

\[
S_{fi} = i(2\pi)^n \frac{\delta(k+p_1+p_2-q)}{(2\pi)^6} \frac{m}{2(k q_{p1} p_{20})^2} T_{fi} \tag{13a}
\]

Because of the energy-momentum conservation, only three of the four vectors \(p_1, p_2, k \) and \(q \) are independent and we can choose the independent vectors to be \(k, q \) and \(p = \frac{p_1 + p_2}{2} \). Forming all possible independent scalars from the three vectors above, the \(\gamma \)-matrices and the polarization vector \(\varepsilon \), of the photon, we obtain the following four independent forms, on using the Dirac equation and gauge-invariance which is imposed by requiring that the matrix element vanishes if we replace it \(\varepsilon \) by \(k \) in

\[
M_A = i\gamma_5 (\gamma \varepsilon)(\gamma k)
\]

\[
M_B = 2i\gamma_5 \left[(\varepsilon \cdot p)(q \cdot k) - (\varepsilon \cdot q)(p \cdot k) \right]
\]

\[
M_C = \gamma_5 \left[(\gamma \varepsilon)(q \cdot k) - (\gamma k)(q \cdot \varepsilon) \right]
\]

\[
M_D = 2\gamma_5 \left[(\gamma \varepsilon)(p \cdot k) - (\gamma k)(\varepsilon \cdot p) \right] - i\gamma_5 (\gamma \varepsilon)(\gamma k) \tag{14}
\]
Here the γ_5 matrix appears in each of the fundamental forms because of the pseudoscalar nature of the pion.

In terms of these invariant forms, the photoproduction matrix element can be written as

$$T = M_A A + M_B B + M_C C + M_D D$$ \hspace{1cm} (15)

Because of the fact in an electromagnetic interaction isotopic spin can be conserved or can change by ± 1, we must introduce three (in contrast to two for the case of pion nucleon scattering) invariant quantities, namely, an isotopic symmetric, an isotopic antisymmetric and an isoscalar part. In terms of these and each one of the invariant coefficients A, B, C, D can be written in the form

$$A_\alpha = \frac{1}{2} \left[\tau_x, \tau_\alpha \right] A^{(+)} + \frac{1}{2} \left[\tau_x, \tau_3 \right] A^{(-)} + \tau_x A^{(0)}$$ \hspace{1cm} (16)

Here α refers to the isotopic spin index of the pion.

We thus have twelve invariant amplitudes for the problem, viz., $A^{(\pm, 0)}$, $B^{(\pm, 0)}$, $C^{(\pm, 0)}$ and $D^{(\pm, 0)}$.

The amplitudes for channel II are obtained from (14) and (15) by noticing the crossing symmetry of the amplitudes A, B, C and D under the interchange of s and u.

From fig. (4) we see that going over from process I to Process II amounts to changing \mathbf{p}_1 to $-\mathbf{p}_2$ and $\mathbf{p}_2 \rightarrow -\mathbf{p}_1$, i.e. $\mathbf{P} \rightarrow -\mathbf{P}$, leaving the pion and photon variables unaffected.

From (9) it follows that this is equivalent to the exchange $s \rightarrow u$, $t \leftrightarrow t$. Under the exchange of the π matrices in (13) only the antisymmetric combination will change sign. The crossing relations are given by
\[A^{(+, o)}(\lambda, u, t) \rightarrow A^{(+, o)}(u, \lambda, t) \]
\[B^{(+, o)}(\lambda, u, t) \rightarrow B^{(+, o)}(u, \lambda, t) \]
\[C^{(-)}(\lambda, u, t) \rightarrow C^{(-)}(u, \lambda, t) \]
\[D^{(+, o)}(\lambda, u, t) \rightarrow D^{(+, o)}(u, \lambda, t) \]
\[A^{(-)}(\lambda, u, t) \rightarrow -A^{(-)}(u, \lambda, t) \]
\[B^{(-)}(\lambda, u, t) \rightarrow -B^{(-)}(u, \lambda, t) \]
\[C^{(+, o)}(\lambda, u, t) \rightarrow -C^{(+, o)}(u, \lambda, t) \]
\[D^{(-)}(\lambda, u, t) \rightarrow -D^{(-)}(u, \lambda, t) \] \hspace{0.5cm} \text{(17)}

The amplitudes for process II are thus obtained from those for process I in a very simple way with utmost a change of sign.

3. Kinematic singularities and subtractions

We have next to examine whether the C G L H amplitudes defined by (14) and (15) are free from kinematic singularities, i.e., singularities other than those postulated by Mandelstam. Ball\(^1\) has examined this question and we will present his arguments here. By taking appropriate traces

\(^1\) J.S. Ball, loc. cit.
over the nucleon and photon indices, we can form scalars which are analytic functions of the momenta and hence by the Hall-Wightman theorem \(^1\) are analytic functions of the scalar products of the momenta which will be assumed to satisfy the Mandelstam representation. Now the scalars \(A, B, C, D\) can be written as linear combinations of these analytic scalars. If the transformation between these two do not introduce kinematic singularities, both sets will satisfy the Mandelstam representation. As the basic set, Hall chooses the non-gauge invariant set of amplitudes

\[
B_i(\lambda =1,2, \ldots, 8) \quad \text{by writing the } T \text{-matrix as}
\]

\[
T = \sum_{i=1}^{8} B_i(\lambda, \tau, \mu) \frac{N_1(p_1, p_2, k, \epsilon, \gamma)}{	ext{(18)}}
\]

where the \(N_{\lambda}^{\mu}\)'s are independent Lorentz-invariant matrices that can be formed out of \(\gamma, \epsilon\) and the independent momentum four-vectors and are given by

\[
N_1 = i \gamma_5 \gamma \cdot \epsilon \cdot \gamma \cdot k \quad N_2 = i \gamma_5 (p_1 \cdot p_2) \epsilon
\]

\[
N_3 = \frac{1}{2} \gamma_5 \sigma \cdot q \cdot \epsilon \quad N_4 = \frac{1}{2} \gamma_5 k \cdot \epsilon
\]

\[
N_5 = \gamma_5 \gamma \cdot \epsilon \quad N_6 = \frac{1}{4} \gamma_5 \gamma \cdot k \cdot (p_1 \cdot p_2) \cdot \epsilon
\]

\[
N_7 = \gamma_5 \gamma \cdot k \cdot \epsilon \quad N_8 = \gamma_5 \gamma \cdot q \cdot \epsilon \quad \text{(19)}
\]

We now obtain constraints on the B_3 by imposing gauge invariance in the form mentioned earlier on $\lambda(\Lambda)$. The result is

\[(s-u)B_3 = 2(t-1)B_3\]

\[B_5 + \frac{1}{4}(u-\Lambda)B_6 + \frac{1}{4}(t-1)B_8 = 0\] \hspace{1cm} (20)

Imposing these conditions on (17), we obtain the relations between the set A, B, C, D and the B_i's

\[A = B_1 - mB_6, \quad B = \frac{2B_1}{t-1}\]

\[C = -B_8, \quad D = -\frac{1}{2}B_6\] \hspace{1cm} (21)

Ball has shown that the amplitudes B_1 are free from kinematic singularities so that the amplitude B will have an extra pole in the t variable.

The fixed momentum transfer relations for photo production given by CGLN were written without subtractions.\(^1\) Solovev et al.\(^2\) argue that if we can assume that the photo-production for differential cross-section behaves at infinity like that of the forward scattering of pions on nucleons, then there is no need for subtraction in the photo production problem since there is an energy dependent factor in the relation between the invariant amplitudes and the physical

2) L. D. Solovev et al., Soviet Physics - JETP, loc. cit.
photo production, matrix element due to gauge invariance whereas no such factor appears in the scattering problem. However Ball argues that the C C I N formula are probably valid without subtraction for the (-) amplitudes while a three-pion resonance would require a subtraction in the (+) amplitudes. The two-pion resonance will necessitate a subtraction in the isoscalar (0) amplitude. Writing the representation for the B^{-1}_{π} in the most general form (including single spectral functions,) we observe that since the amplitudes A, C and D have no poles in the t variable, they do not also have a one-dimensional spectral function in that variable so that they could be written as

$$A = R_1^R(s, u) \left(\frac{1}{m_{-\omega}^2} \pm \frac{1}{m_{-\omega}^2 - u} \right)$$

$$+ \frac{1}{\pi^2} \left\{ \int_{(m_{+\omega})^2}^{\infty} \int_{s'}^{\infty} \frac{d s'}{(s' - \lambda)} \left(\frac{\ell_\lambda}{\ell_\lambda} + \frac{\ell_\mu}{\ell_\mu(u')} \right) \right. + \left. \int_d^{+\infty} \int_{(m_{+\omega})^2}^{\infty} \frac{d t'}{(t' - s)} \frac{A_{12}(s', t')}{(t' - s)(t' - t)} \right\}$$

$$+ \frac{1}{\pi^2} \int_{(m_{+\omega})^2}^{\infty} \int_{s'}^{\infty} \frac{d s'}{(s' - \lambda)} \frac{A_{12}(s', u')}{(s' - \lambda)(u' - u)(u' - u')$$

$$+ \frac{1}{\pi^2} \int_{(m_{+\omega})^2}^{\infty} \frac{d u'}{(u' - u)} \int_d^{+\infty} \int_{(m_{+\omega})^2}^{\infty} \frac{d t'}{(u' - u)(t' - t)} \frac{A_{12}(u', t')}{(u' - u)(t' - t)}$$
and similarly for C and D. $R_t(\lambda; u)$ is the residue.

Because of the relation $B = \frac{2R_t}{t-1}$, the Mandelstam representation for the B amplitude is

$$B = \frac{R_t(\lambda; u)}{t-1} \left(\frac{1}{\lambda - m^2} \pm \frac{1}{u - m^2} \right) + \frac{R_t(t)}{t-1}$$

$$+ \frac{1}{(t-1)} \left\{ \int_{(m+i)^2}^{\infty} \frac{\rho_t(\lambda') d\lambda'}{\lambda' - \lambda} \right\}$$

$$+ \frac{1}{(m+i)^2} \int\int_{(m+i)^2} \frac{A_{13}(\lambda', t')}{(t'-t)(\lambda - \lambda)}$$

$$+ \frac{1}{(m+i)^2} \int\int_{(m+i)^2} \frac{A_{11}(\lambda', u')}{(\lambda - \lambda)(u' - u)}$$

$$+ \frac{1}{(m+i)^2} \int\int_{(m+i)^2} \frac{A_{23}(u', t')}{(u' - u)(t'-t)}$$ \hspace{1cm} (2.3)

4. The strip functions for channel I.

In this section we shall evaluate the strip (or double spectral) functions for the photo production problem. The procedure is as given by Mandelstam\(^1\). To start with, we go over from the invariant set of amplitudes (14) and (15) to the corresponding centre of mass amplitudes (as calculations will be easier in terms of the Pauli spin matrix σ appearing there than in terms of the γ^* matrices appearing in the.

1) H. Mandelstam, loc. cit.
invariant amplitudes. Denoting by F_Ξ the centre of mass amplitude we have

$$F_\Xi = \left(\frac{\sigma \cdot \epsilon}{q \cdot k}\right) f_1 + \frac{\sigma \cdot q \cdot \sigma \cdot (k \times \epsilon)}{q \cdot k} f_2$$

$$+ \frac{i \sigma \cdot k \cdot \sigma \cdot \epsilon}{k \cdot q} f_3 + \frac{i \sigma \cdot q \cdot \sigma \cdot \epsilon}{q \cdot q} f_4$$

(24)

f_1, f_2, f_3 and f_4 are functions of the three variables s, u and t. The f_i's are related to the invariant amplitudes by the relations

$$\lambda = e^{(W-m)\frac{1}{q^2} f_1} = (W-m)A + (W-m)^2D - \frac{(t-1)}{2} (c-D)$$

$$\beta = e^{(W+m)(m+E_x)/q^2} f_2 = - (W+m)A + (W+m)^2D - \frac{(t-1)}{2} (c-D)$$

$$\gamma = \frac{e f_3}{q^2} = (W-m)B + (c-D)$$

$$\delta = \frac{e (m+E_x)}{q^2} f_4 = - (W+m)B + (c-D)$$

(25)

We shall now proceed to evaluate the double spectral function by the photon ϵ as the direction and ϵ define the z-ϵ plane. The x-axis and y-axis in the x-y plane are the z-ϵ plane. We shall use the "elastic" unitarity condition written as the forms of the absorptive parts of the amplitudes λ, β, γ and δ.

Here

$$e = \frac{9 \pi W(E_1+m)^{-\frac{1}{2}} (E_2+m)^{-\frac{1}{2}}}{(W-m)}$$

(26)

$W = \frac{1}{2}$ is the total energy in the centre of mass frame. Our amplitudes λ, β, γ and δ are connected with the amplitudes F_1, F_2, F_3, F_4 of $GGLH$ by the relations
\[\alpha = (W - m) F_x \]
\[\beta = (W + m) F_z \]
\[\gamma = F_3 \]
\[\delta = F_4 \]
(27)

The differential cross section in the centre of mass frame is given in terms of the amplitude \(F_x \) by
\[
\frac{d\sigma}{d\Omega} = \frac{q^2}{r} |F_x|^2
\]
(28)

We have chosen the set of functions \(\alpha , \beta , \gamma , \delta \) as basis in view of the fact that the transformation from \(A, B, C, D \) to \(\alpha , \beta , \gamma , \delta \) do not introduce any further singularities.

We shall now proceed to evaluate the double spectral functions. Define the direction of the photon \(\vec{k} \) as the \(z \) direction. \(\vec{r} \) and \(\vec{y} \) define the \(z-x \) plane. The polarization vector \(\vec{z} \) of the photon lies in the \(x-y \) plane and we shall assume it to form an angle \(\psi \) with the \(x \)-axis.

We shall now use the "elastic" unitarity condition written in terms of the absorptive part, \(F_x^1 \) of the amplitude \(F_x \).

1) Actually the differential cross-section in the centre-of-mass, on restoring the normalisation factors and using the two-particle density of states, is
\[
\frac{1}{64\pi^2} \cdot \frac{1}{2} \cdot \frac{q^2}{r} | \mathbf{F}_x |^2
\]
but a factor \(\frac{9\pi^2}{\hbar^2} \) has been included in \(F_x \) so that the differential cross section is as given by (26).
i.e. we shall retain in the complete set of intermediate states in F_π^I, only the state containing the pion and the nucleon so that the absorptive part can be written as the product of the pion-nucleon scattering amplitude and the photo-production matrix element itself. Writing the pion-nucleon scattering matrix element in the centre of mass frame as

$$\mathcal{M} = a + \frac{\vec{q}_1 \cdot \vec{q}_2 \cdot \vec{q}_n}{q_1 q_2 q_n} b$$

(29)

where q_1 and q_2 are the momenta of the initial and final pions, respectively, we can write the unitarity condition as

$$F_\pi^I(\lambda, z_1) = \gamma \int^\infty_{-1} d\lambda_2 \int^\infty_{0} d\varphi \cdot \gamma \cdot \mathcal{M}^*(\lambda, z_3) F_\pi^I(\lambda, z_2)$$

(30)

where γ is a normalization factor, $z_1 = \cos \Theta_1$, $z_2 = \cos \Theta_2$, and (Θ_2, φ) represents the angle between the initial photon-nucleon direction and the intermediate pion-nucleon direction, and z_3 the cosine of the angle between the intermediate pion-nucleon direction and that of the final pion or nucleon. Now the unitarity condition only says that equation (30) is valid in the physical region. F_π^I must then be obtained in the unphysical region by analytical continuation. \mathcal{M} and F_π^I can be expressed as analytic functions of t or ω.

1) We shall introduce the isotopic spin labels of the amplitudes later.

2) We assume the pole terms to be included under the integral sign by using a projection factor and suitably modifying the lower limit of integration.
equivalently of \(Z \) by means of the fixed energy variable dispersion relations similar to equation (2)

\[
\begin{align*}
I^*(\lambda, z_3) &= \frac{1}{\pi} \int dz'_3 \frac{I^*_2(\lambda, z'_3) + I^*_3(\lambda, z'_3)}{z'_3 - z_3} \\
F^*_1(\lambda, z'_3) &= \frac{1}{\pi} \int dz'_a \frac{F^*_2(\lambda, z'_3) + F^*_3(\lambda, z'_3)}{z'_3 - z'_a}
\end{align*}
\]

(31) 1)

In (31) \(I^*_2 \) and \(I^*_3 \) refer to the absorptive parts of the second (pion-nucleon scattering) and third \((\Pi + \Pi \rightarrow N + N)\) channels in the scattering problem and \(F^*_2 \) and \(F^*_3 \) are the absorptive parts of the second/third channels in the photo production problem. For simplicity the absorptive parts \(I^*_2 \) and \(I^*_3 \) (as also \(F^*_2 \) and \(F^*_3 \)) have been written under the same integral though they contribute to different regions of the variables of integration. Thus \(I^*_2(\lambda, z) \) will be non-zero only if \(z < 1 - \frac{2q^2}{k^2 - (m - \lambda)^2} \) apart from a \(\delta \) -function at \(z = 1 - \frac{2q^2}{k^2} \) and \(I^*_3(\lambda, z) \) will be non-zero only if \(z > 1 + \frac{2q^2}{k^2} \). Similarly \(F^*_2 \) will be non-zero only if \(z < \frac{k^2 - (m - \lambda)^2}{2q^2} \) again apart from a \(\delta \) -function corresponding to the nucleon pole and \(F^*_3 \) will be non-zero only if \(z > \frac{k^2 + \frac{3\lambda}{2}}{2q^2} \).

Substituting the expressions (24) and (27) for \(F \) and \(I \) respectively, we can finally write the unitarity condition in terms of the absorptive parts of the amplitudes \(\alpha, \beta, \gamma \) and \(\delta \) as

1) We assume the pole terms to be included under the integral sign by using \(\delta \) -function factors and suitably redefining the lower limit of integration.
\[F_{1}^{I}(\lambda, Z_{1}) = \frac{i \lambda}{e(\lambda - m)} \left(\sigma_{x} \cos \psi + \sigma_{z} \sin \psi \right) \]

\[- \frac{P_{1}^{I}(\lambda, Z_{1}) \cdot q}{e(\lambda + m)(\lambda + E_{2})} \left(1 - z_{1}^{2} \right)^{\frac{1}{2}} \sin \psi \]

\[+ \frac{i P_{1}^{I}(\lambda, Z_{1}) \cdot q}{e(\lambda + m)(\lambda + E_{2})} \left(- \sigma_{x} z_{1} \cos \psi - \sigma_{y} z_{1} \sin \psi + \sigma_{z} \left(1 - z_{1}^{2} \right)^{\frac{1}{2}} \cos \psi \right) \]

\[+ i Y_{1}^{I}(\lambda, Z_{1}) \cdot \frac{q \sigma_{z}}{e} \left(1 - z_{1}^{2} \right)^{\frac{1}{2}} \cos \psi \]

\[+ i S_{1}^{I}(\lambda, Z_{1}) \cdot \frac{q^{2}}{e(\lambda + E_{2})} \left(1 - z_{1}^{2} \right)^{\frac{1}{2}} \cos \psi \left(\sigma_{z} z_{1} + \sigma_{x} \left(1 - z_{1}^{2} \right)^{\frac{1}{2}} \right) \]

\[= \gamma \int \frac{dz_{1}^{I} \cdot dz_{2}^{I} \cdot dz_{3}^{I} \cdot d\varphi}{(z_{1}^{I} - z_{2}^{I})(z_{2}^{I} - z_{3}^{I})} \left[a_{2}^{I}(\lambda, Z_{1})^{I} + a_{3}^{I}(\lambda, Z_{1})^{I} \right] \]

\[+ \left\{ b_{2}^{I}(\lambda, Z_{1})^{I} + b_{3}^{I}(\lambda, Z_{1})^{I} \right\} \left[z_{3}^{I} - i \left(-\sigma_{x} z_{1} \left(1 - z_{1}^{2} \right)^{\frac{1}{2}} \sin \varphi \right. \right. \]

\[+ \sigma_{y} \left(1 - z_{1}^{2} \right)^{\frac{1}{2}} \cos \varphi - (1 - z_{1}^{2})^{\frac{1}{2}} \right\] \]

\[\times \left\{ \left(\cos \varphi \cos \psi + \sin \psi \cdot \sin \varphi \right) \left(1 - z_{2}^{2} \right)^{\frac{1}{2}} \right\} \]

\[\left. \left(\cos \varphi \cos \psi + \sin \psi \cdot \sin \varphi \right) \left(1 - z_{2}^{2} \right)^{\frac{1}{2}} \right\} \]

In the above, the absorptive parts of the photo-nuclear amplitudes are indicated by superscripts and those for the photo-nuclear scattering amplitudes by subscripts. The symbol \(\gamma \) in each case represents the channel concerned.
\[x \left[i \left(\mathcal{F}_1^a(\lambda, z') + \mathcal{F}_1^b(\lambda, z'_2) \right) (\sigma_z \cos \psi + \sigma_y \sin \psi) \right. \\
+ \left(\mathcal{F}_2^a(\lambda, z'_2) + \mathcal{F}_2^b(\lambda, z'_3) \right) \left\{ (1-z'_2)^{1/2} \left[\cos \varphi \sin \psi - \sin \varphi \cos \psi \right. \\
+ i \left. \left(-z'_2 \cos \psi \sigma_x - z'_2 \sin \psi \sigma_y + (1-z'_2)^{1/2} \left[\cos \varphi \cos \psi + \sin \varphi \sin \psi \right] \sigma_x \right) \right\} \right] \\
+ i \left(\mathcal{F}_2^2(\lambda, z'_2) + \mathcal{F}_2^3(\lambda, z'_3) \right) \left(1-z'_2 \right)^{1/2} \left[\cos \varphi \cos \psi + \sin \varphi \sin \psi \right] \sigma_x \\
\times \left(\cos \varphi \cos \psi + \sin \varphi \sin \psi \right) \left\{ (1-z'_2)^{1/2} \cos \varphi \sigma_x \\
+ (1-z'_2)^{1/2} \sin \varphi \sigma_y + z'_2 \sigma_z \right\} \right] \] (32)

In the above, the absorptive parts of the photoproduction amplitudes are indicated by superscripts and those for the pion-nucleon scattering amplitudes by subscripts. The number in each case represents the channel concerned.
We now perform the Φ and z_a integrations. The main point to be noted here is that the integration, term by term, gives the same type of functions viz.,

$$\frac{1}{\sqrt{k}} \log \frac{z_i - z_{i'}^2 z_3^+ + \sqrt{k}}{z_i - z_{i'}^2 z_3^- - \sqrt{k}}$$

where

$$k = z_i^2 + z_{i'}^2 + z_3^2 - 1 - 2 z_i z_{i'} z_3$$

(33)

It is as in the case of pion-nucleon scattering has both right and left-hand cuts in the z_i variables (see Mandelstaem\(^1\)). This is a feature of all two-particle interactions involving two-particle intermediate states.

The next step is to write dispersion relations for the absorptive parts $\xi', \beta', \gamma', \delta'$,

$$\xi_{13}'(s,t) = \frac{1}{\pi} \int \frac{dt'}{t' - t} \xi_{13}(s,t')$$

(34)

and similar relations for β', γ', and δ' with the right and left-hand cuts displayed. Such relations are simple consequences of writing a double variable dispersion relation like (1) in the single variable form (2).

Now the other expression for F_{1T}, viz., (32) on integration over Φ and z_a must also be an analytic function of t and hence of z_i with discontinuities of magnitude $2P_{13}$ and $2P_{12}$ as z_i crosses the positive and

1) S. Mandelstaem, loc. cit.
negative real axes. Here ρ represents any one of
the quantities $\lambda, \beta, \gamma, \delta$. A comparison
of the left and right hand sides of the equation (32)
with equations (34) for $\lambda^1, \beta^1, \gamma^1, \delta^1$
substituted in it should therefore give expressions for the double
spectral functions on identifying the cuts. For this, it is
necessary to disentangle the spin-dependent and spin inde-
dependent terms in (32). A point to be noted here is that
once such an identification is made the factors containing
the direction of polarization of the photon (such as $\cos \psi$
or $\sin \psi$) happen to be the same on both sides so that
they drop out and our choice of the polarization vector
in an arbitrary direction in the $x-y$ plane has been
justified.

Comparison of the spin independent terms in (32)
gives rise to the following equations involving $\beta_{13}(\lambda, z_1)\,$
and $\beta_{12}(\lambda, z_2)\,$ only.

$$\beta_{13}(\lambda, z_1) = \frac{\alpha(n+m)(m+E)}{q_1} \int \int d_2 d_3 K_1(z_1, z_2, z_3)$$

$$\cdot \left\{ (\alpha_2^* (\lambda, z_3) \bar{F}_2(\lambda, z_2) + \alpha_3^* (\lambda, z_3) \bar{F}_3(\lambda, z_2) (z_3 - z_1 z_2) \right\}$$

$$- (b_2^* (\lambda, z_3) \bar{F}_2(\lambda, z_2) + b_3^* (\lambda, z_3) \bar{F}_3(\lambda, z_2) (z_3 - z_2 z_3)$$

$$+ (b_2^* (\lambda, z_3) \bar{F}_1(\lambda, z_2) + b_3^* (\lambda, z_3) \bar{F}_1(\lambda, z_2) (z_2 - z_1 z_3) \right\} \quad (35)$$
\[
\beta_{(\lambda)}(\lambda, z_1) = \frac{e(n+m)(m+E_x)}{q^4} \int \frac{dz_1^2 dz_3^2 dz_3}{1-z_1^2} \frac{K_2(z_1, z_2, z_3)}{1-z_3^2} \left\{ \begin{array}{c}
\left(a_2^*(\lambda, z_3) f_2^2(\lambda, z_2) + a_3^*(\lambda, z_2) f_2(\lambda, z_2) \right) \\
\times (z_3 - z_1 z_2) \\
- \left(b_2^*(\lambda, z_3) f_2^2(\lambda, z_2) + b_3^*(\lambda, z_2) f_2(\lambda, z_2) \right) \\
\times (z_3^2 - z_1^2) \\
+ \left(b_2^*(\lambda, z_3) f_1^2(\lambda, z_2) + b_3^*(\lambda, z_2) f_1(\lambda, z_2) \right) \\
\times (z_2 - z_1 z_3) \end{array} \right\}
\] (36)

The primes over \(z_2 \) and \(z_3 \) have been dropped. It will be noticed that the combinations of absorptive parts appearing in (35) and (36) are similar to those in pion-nucleon scattering. This is because of the restrictions on the functions \(K_1 \) and \(K_2 \), which are defined by

\[
K_1(z_1, z_2, z_3) = \left[k(z_1, z_2, z_3) \right]^{-1/2}
\]

\[
\text{for } z_1 > z_2 z_3 + (z_3^2 - 1)^{1/2} (z_2^2 - 1)^{1/2}
\]

\[
= 0 \text{ for } z_1 < z_2 z_3 + (z_3^2 - 1)^{1/2} (z_2^2 - 1)^{1/2}
\]

\[
K_2(z_1, z_2, z_3) = \left[k(z_1, z_2, z_3) \right]^{-1/2}
\]

\[
\text{for } z_1 > z_2 z_3 + (z_3^2 - 1)^{1/2} (z_2^2 - 1)^{1/2}
\]

\[
= 0 \text{ for } z_1 < z_2 z_3 + (z_3^2 - 1)^{1/2} (z_2^2 - 1)^{1/2}
\]
\[k_i \text{ survives only if both } z_2 \text{ and } z_3 \text{ are positive or negative and } k_2 \text{ survives only if one of them is positive and the other negative. The points} \]
\[z_1 = z_2 z_3 \pm (z_2^2 - 1)^{1/2} (z_3^2 - 1)^{1/2} \]
\[\text{are the points at which } k \text{ changes sign.} \]

Similarly, the comparison of the coefficients of \(i\sigma_y \), \(i\sigma_x \), and \(i\sigma_z \) in (32) gives rise to the following equations for the double spectral functions

\[\lambda_{\alpha\beta}(\lambda, z_i) = z_1 \beta_{\alpha\beta}(\lambda, z_i) \]
\[= \sum_i \int \int d z_2 d z_3 \ K_{i}(z_i, z_2, z_3) \]
\[\times \left[a_i^* (\lambda, z_2) f_i^* (\lambda, z_3) - z_2 a_i^* (\lambda, z_2) f_i^* (\lambda, z_2) \right. \]
\[+ \left. z_3 b_i^* (\lambda, z_3) f_i^* (\lambda, z_2) \right] \]
\[+ \left\{ z_2 (z_3 - z_1 z_2) - z_2 z_3 + z_1 (z_2 - z_1 z_3)^2 \right\} \]
\[\times b_i^* (\lambda, z_3) f_i^* (\lambda, z_2) \]
(38)

\[\lambda_{\alpha\beta}(\lambda, z_i) = z_1 \beta_{\alpha\beta}(\lambda, z_i) + (1 - z_1^2) \delta_{\alpha\beta}(\lambda, z_i) \]
\[= \sum_i \int \int d z_2 d z_3 \ \frac{K_{i}(z_i, z_2, z_3)}{1 - z_1^2} \]
\[
\begin{align*}
&\times \left[\sum_i \alpha_i^* (\lambda, z_3) \mathcal{F}_i^i (\lambda, z_2) - z_2^2 \alpha_i^* (\lambda, z_3) \mathcal{F}_2^i (\lambda, z_2) \\
&+ z_3^2 b_i^* (\lambda, z_3) \mathcal{F}_3^i (\lambda, z_2) \right] (1 - z_2^2) \\
&+ (z_3 - z_1 z_2)^2 \sum_i \alpha_i^* (\lambda, z_3) \mathcal{F}_4^i (\lambda, z_2) \\
&- \left\{ \frac{z_2 (z_3 - z_1 z_2) + z_3 (z_2 - z_1 z_3)}{z_2^2 (z_3 - z_1 z_2) + z_3 (z_2 - z_1 z_3)} \right\} b_i^* (\lambda, z_3) \mathcal{F}_3^i (\lambda, z_2) \\
&- (z_3 - z_1 z_2) (z_2 - z_1 z_3) b_i^* (\lambda, z_3) \mathcal{F}_2^i (\lambda, z_2) \\
&+ (z_3 - z_1 z_2) (z_2^2 - z_1^2) b_i^* (\lambda, z_3) \mathcal{F}_1^i (\lambda, z_2) \right]
\end{align*}
\]

\[(39) \]

\[
\gamma_{b(12)} (\lambda, z_1) + \beta_{b(12)} (\lambda, z_1) + z_1 \delta_{b(12)} (\lambda, z_1) \\
= \sum_i \int \int d\tau_2 d\tau_3 \frac{K_i(q) (\tau_1, \tau_2, \tau_3)}{1 - z_2^2} \\
\times \left[\sum_i \alpha_i^* (\lambda, z_3) \mathcal{F}_2^i (\lambda, z_2) + \alpha_i^* (\lambda, z_3) \mathcal{F}_3^i (\lambda, z_2) \\
+ z_2^2 \alpha_i^* (\lambda, z_3) \mathcal{F}_4^i (\lambda, z_2) \right] (z_3 - z_1 z_2) \\
+ (z_2 - z_1 z_3) b_i^* (\lambda, z_3) \mathcal{F}_2^i (\lambda, z_2) \\
+ (z_3^2 - z_2^2) b_i^* (\lambda, z_3) \mathcal{F}_3^i (\lambda, z_2) \\
+ z_3 (z_3 - z_1 z_2) b_i^* (\lambda, z_3) \mathcal{F}_4^i (\lambda, z_2) \\
+ z_1 (z_3 - z_1 z_2) b_i^* (\lambda, z_3) \mathcal{F}_1^i (\lambda, z_2) \right]
\]

\[(40) \]
In the above, the summation over i indicates that terms like $\alpha_i^*(\lambda, z_1) \ell_i^j(\lambda, z_2)$ should be replaced by $\alpha_i^*(\lambda, z_3) \ell_i^j(\lambda, z_2)$ in the double spectral functions ℓ^{12}_{13} and they should be replaced by $\alpha_i^*(\lambda, z_3) \ell_i^j(\lambda, z_2) + \alpha_i^*(\lambda, z_2) \ell_i^j(\lambda, z_2)$ in ℓ^{12}_{13} and similarly for products containing b.

Before solving the above equations for the double spectral functions we shall introduce the isotopic spin labels of the amplitudes. The complete matrix element for photo production including isotopic spin is

$$F_1 = \frac{1}{2} \left\{ \tau_\lambda, \tau_\beta \right\} F_1^{(+)} + \frac{1}{2} \left[\tau_\lambda, \tau_3 \right] F_1^{(-)} + \tau_\beta F_1^{(0)} \quad (41)$$

On the right hand side of the unitarity condition (30) we have the product of the pion-nucleon scattering amplitude the complete matrix element of which is

$$\frac{1}{2} \left\{ \tau_\lambda, \tau_\beta \right\} I_1^{(+)} + \frac{1}{2} \left[\tau_\lambda, \tau_3 \right] I_1^{(-)}$$

and the photo production amplitude

$$\frac{1}{2} \left[\tau_\beta, \tau_3 \right] F_1^{(+)} + \frac{1}{2} \left[\tau_\beta, \tau_3 \right] F_1^{(-)} + \tau_\beta F_1^{(0)}$$

We observe that a $\left\{ \tau_\lambda, \tau_3 \right\}$ can be generated both by multiplying $\left\{ \tau_\lambda, \tau_\beta \right\}$ by $\left\{ \tau_3, \tau_3 \right\}$ and $\left[\tau_\beta, \tau_3 \right]$ by $\left[\tau_\lambda, \tau_\beta \right]$. Similarly the antisymmetric part $\left[\tau_\lambda, \tau_3 \right]$ is obtained by multiplying the symmetric part as well as the antisymmetric part in the other and the isoscalar part τ_λ is obtained part in each of the matrix elements by multiplying both the symmetric and antisymmetric part of I_1 with the isoscalar part of F_1. Incorporating these in the equations for
the double spectral functions viz., equations (35), (36) and (38) to (40) and solving we obtain finally

\[\chi_{13(12)}^{(\pm,0)}(\lambda, z_1) = e^{(m-m_0)} \sum_i \sum_r \int \frac{d\bar{z}_2}{1-z_1^2} \frac{K_{1(2)}(z_1, z_2, z_3)}{1-z_2^2} \left\{ \begin{array}{c} a^*_i \gamma(\lambda, z_3) \frac{z_3}{z_1} \left(\lambda, z_2 \right) (z_2 - z_1 z_3) \\ - b^*_i \gamma(\lambda, z_3) \frac{z_3}{z_1} \left(\lambda, z_2 \right) (z_2 - z_1 z_3) \\ + b^*_i \gamma(\lambda, z_3) \frac{z_3}{z_1} \left(\lambda, z_2 \right) (z_2 - z_1 z_3) \end{array} \right\} \] (41)

\[\beta_{13(12)}^{(\pm,0)}(\lambda, z_1) = e^{(m-m_0)} \sum_i \sum_r \int \frac{d\bar{z}_2}{1-z_1^2} \frac{K_{1(2)}(z_1, z_2, z_3)}{1-z_2^2} \left\{ \begin{array}{c} a^*_i \gamma(\lambda, z_3) \frac{z_3}{z_1} \left(\lambda, z_2 \right) (z_2 - z_1 z_3) \\ - b^*_i \gamma(\lambda, z_3) \frac{z_3}{z_1} \left(\lambda, z_2 \right) (z_2 - z_1 z_3) \\ + b^*_i \gamma(\lambda, z_3) \frac{z_3}{z_1} \left(\lambda, z_2 \right) (z_2 - z_1 z_3) \end{array} \right\} \] (43)
\[\gamma^{(\pm,0)}_{13(12)} (\lambda, z_1) = \frac{e}{a^{\prime}} \sum_i \sum \int d^2 z_1 d^2 z_2 \frac{K_i(z_2, z_3, z_3)}{1 - z_1^2} \]

\[\cdot (z_3 - z_2 z_3) \left\{ \alpha_{i \tau}^* (\lambda, z_3) \frac{i \gamma^\tau}{2} (\lambda, z_2) \right. \\
\left. + (\alpha_{i \tau}^* (\lambda, z_3) \frac{i \gamma^\tau}{2} \right) (\lambda, z_2) \\
+ b_{i \tau}^* (\lambda, z_3) \frac{i \gamma^\tau}{2} (\lambda, z_2) (z_3 + \frac{z_2 (z_3 - z_2 z_3)}{1 - z_1^2}) \right\} \] (44)

\[\delta_{13(12)}^{(\pm,0)} (\lambda, z_1) = \frac{e (m + E_2)}{a^{\prime} \sum} \sum \int d^2 z_2 d^2 z_3 \]

\[\cdot \frac{K_i(z_2, z_3, z_3)}{(1 - z_1^2)^2} \left\{ \alpha_{i \tau}^* (\lambda, z_3) \frac{i \gamma^\tau}{2} (\lambda, z_2) (z_3 - z_1 z_3) \\
- b_{i \tau}^* (\lambda, z_3) \frac{i \gamma^\tau}{2} (\lambda, z_2) (z_3 - z_2 z_3) \\
+ b_{i \tau}^* (\lambda, z_3) \frac{i \gamma^\tau}{2} (\lambda, z_2) (z_3 - z_2 z_3) \right\} \] (45)

\[z = 1 + \frac{A_2 - (m + 1)^2}{A_2 - (m - 1)^2} \] (47)
In the above, we have used the notation \sum_i to indicate that

(i) for the isotopic spin symmetric part, Φ (the $^+$ amplitude) we have to replace each $\alpha_i^* \Phi^i$ by

$$\alpha_i^* (\Phi^i)^+ - 2 \alpha_i^* (\Phi^i)^-$$

(ii) for the isotopic spin antisymmetric part replace each $\alpha_i^* \Phi^i$ by

$$\alpha_i^* (\Phi^i)^- - \alpha_i^* (\Phi^i)^+ [\Phi^i (\Phi^i)^+ + \Phi^i (\Phi^i)^-]$$

and (iii) the isoscalar amplitude replace $\alpha_i^* \Phi^i$ by

$$[\alpha_i^* (\Phi^i)^+ - 2 \alpha_i^* (\Phi^i)^-] \Phi^i$$

Equations (42) through (45) have to be re-expressed in terms of the variables with the help of the relations

$$Z = \frac{k \omega + 1}{2}(t+1)$$

$$= \frac{(\omega-m^2)(\omega-m^2+1) + 2\omega(t-1)}{(\omega-m^2)\left\{(\omega-m^2+1)^2 - 4\Delta\right\}^{1/2}}$$

for the photoproduction amplitude and

$$Z = 1 + \frac{t}{2\omega}$$

$$= 1 + \frac{2\Delta t}{\left\{\omega-(m+1)^2\right\}\left\{\omega-(m-1)^2\right\}}$$
for the pion-nucleon scattering amplitude. But as the resulting expressions are rather cumbersome, we have preferred to give the strip functions in terms of the \(z \) variables.

5. The strip functions for channel III.

The invariant matrix element for the process \(\gamma + \pi \to N + \bar{N} \) is obtained from the corresponding matrix element (15) for channel I (photo production) by observing that in going over from channel I to III, the following transformations take place:

\[
p_1 \to -p_1 \quad \text{and} \quad q_1 \to -q_1
\]

(48)

and the positive energy spinor for the antinucleon has to be used; more specifically,

\[
M_A \to \gamma_5 \gamma \cdot E \cdot \eta \cdot \kappa
\]

\[
M_B \to 2i \gamma_5 \left[-\left(p_2 - p_1 \right) \cdot \varepsilon q_1 \cdot \kappa
+ \left(p_2 - p_1 \right) \cdot \kappa q_1 \cdot \varepsilon \right]
\]

\[
M_C \to -\gamma_5 \left(\gamma \cdot \varepsilon q_1 \cdot \kappa - \gamma \cdot \kappa q_1 \cdot \varepsilon \right)
\]

\[
M_D \to 2 \gamma_5 \left[\gamma \cdot \varepsilon \left(p_2 - p_1 \right) \cdot \kappa - \gamma \cdot \kappa \left(p_2 - p_1 \right) \cdot \varepsilon
- i m \gamma \cdot \varepsilon \gamma \cdot \kappa \right]
\]

(49)
These have to be sandwiched between the initial antinucleon spinor ψ and the adjoint of the final nucleon spinor \bar{u}, where

$$u(p_1) = \frac{1}{\sqrt{2m(E+m)}} \begin{pmatrix} \sigma \cdot p_1 \\ E+m \end{pmatrix} ; \quad u(p_2) = \frac{1}{\sqrt{2m(E+m)}} \begin{pmatrix} E+m \\ \sigma \cdot p_2 \end{pmatrix}$$

(50)

Here E is the energy of the nucleon (or the antinucleon) in its centre of mass. Using the explicit representations,

$$\gamma_5 = \begin{pmatrix} 0 & -I \\ -I & 0 \end{pmatrix} ; \quad \gamma_i = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

$$\gamma_j = \begin{pmatrix} 0 & -i\sigma_j \cr i\sigma_j & 0 \end{pmatrix} ; \quad j = 1, 2, 3$$

(51)

For the γ-matrices, the matrix element in the centre of mass frame can be evaluated and is given by

$$F_{\Pi} = iL \frac{\vec{p} \cdot \vec{E}}{p} + M \frac{\vec{p} \cdot (\vec{p} \times \vec{E})}{p}$$

$$+ N' \frac{\vec{p} \cdot \vec{p} \cdot (\vec{E} \times \vec{L})}{p^2 L} + P \frac{\vec{L} \cdot (\vec{E} \times \vec{L})}{L}$$

(52)

where

$$L = \frac{lp}{m} (A + 4 E^2 B)$$

$$M = -\frac{2le p L}{m}$$

$$N = (E+m)N' = \frac{p^2 L}{m} (A + 2 E D)$$

$$P = l (A - \frac{2E^2 D}{m})$$

(53)
In the above A, B, C, D are functions of $E = \mu E^2$ and of $\cos \varphi = \frac{\hat{\sigma} \cdot \hat{p}}{\hat{p} \cdot \hat{n}}$ where φ, \hat{e} and \hat{p} are quantities defined in Sec. 2.

Starting from the centre-of-mass matrix elements and retaining in the unitarity condition the lowest mass two particle intermediate state, i.e. the two pion state, we can evaluate the double spectral functions for the III channel in the same manner as in the previous section. In this case, we require the matrix elements for the process $\pi + \pi \rightarrow N + \overline{N}$ and $\gamma + \pi \rightarrow \pi + \pi + \pi \ldots$. The centre of mass matrix element for the first of these can be obtained from the invariant matrix element for pion-nucleon scattering in the same manner as we derived the matrix element for $\gamma + \pi \rightarrow N + \overline{N}$ from the photoproduction matrix element and has been given by Fraser and Fulco1). It is given by

$$F = G \frac{\hat{\sigma} \cdot \hat{p}}{\hat{p} \cdot \hat{n}} + H \frac{\hat{\pi} \cdot \hat{n}}{\hat{n} \cdot \hat{n}}$$

(54)

where \hat{p} and \hat{n} are the centre of mass momenta of the intermediate $p_{\text{intermediate}}$ (pions) and final (nucleon or antinucleon) particles respectively. The amplitudes G and H are given in terms of the invariant amplitudes A and B for pion nucleon scattering by the notation of ref. p. by

$$G = -\frac{1}{m} \left\{ A + \frac{B}{E + m} \hat{p} \cdot \hat{n} \right\}$$

$$H = E \frac{B}{m}$$

(55)

1 W.R. Fraser and J.R. Fulco, 117, 1603 (1960).
There is only one amplitude for the process \(\gamma + \pi^+ \rightarrow \pi^- + \pi^- \) which we shall denote by \(Q \). Then proceeding as in the last section, we obtain the double spectral functions as

\[
M_{B(23)}^{(0)} (t, \xi_1) = \sum_j \int \frac{d\xi_2}{x_2} \int \frac{d\xi_3}{x_3}
\left[K_{(2)} \left(\xi_1, \xi_2, \xi_3 \right) \frac{1}{(1-x_1^2)^2} \left(\frac{\xi_2 - \xi_1}{x_2} \frac{\xi_3}{x_3} \right) \left(\frac{1}{x_2} - \frac{1}{x_3} \right) \right]
\left[H^*_j \left(\xi_1, \xi_3 \right) - 2H^*_j \left(\xi_2, \xi_3 \right) \right]
Q^{(0)}_j \left(t, \xi_2 \right)
\]

\[
N_{B(23)}^{(0)} (t, \xi_1) = \sum_j \int \frac{d\xi_2}{x_2} \int \frac{d\xi_3}{x_3}
\left[K_{(2)} \left(\xi_1, \xi_2, \xi_3 \right) \frac{1}{1-x_1^2} \left(\frac{\xi_3}{x_3} - \frac{\xi_1}{x_1} \frac{1}{x_2} \right) \right]
\left[G^*_j \left(\xi_1, \xi_3 \right) - 2G^*_j \left(\xi_2, \xi_3 \right) \right]
x Q^{(0)}_j \left(t, \xi_2 \right)
\left[H^*_j \left(\xi_2, \xi_3 \right) - 2H^*_j \left(\xi_3, \xi_3 \right) \right]
Q^{(0)}_j \left(t, \xi_3 \right)
\]

(56)

(57)

\[P_{13(3)}^{(c)}(t, \xi_1) = \gamma \int \int d^2 \xi_2 \ d^2 \xi_3 \]

\[\cdot \frac{K_{13(3)}(\xi_1, \xi_2, \xi_3)}{(t - \xi_1^2)^2} \cdot \xi_1 (\xi_2^2 - \xi_1^2 \xi_1^2) (\xi_2^2 - \xi_1^2 \xi_3^2) \]

\[\cdot [H^*_j(\xi_1, \xi_2) - 2 H^*_j(\xi_2, \xi_3)] \]

\[\cdot \frac{Q_{13(3)}^{(c)}(t, \xi_2)}{2} \]

\[(58) \]

We observe that only the isotopic scalar part of the strip functions survive since for the reaction \(\gamma + \pi \rightarrow \pi \pi + \pi \) only the isoscalar part of the photon contributes to the matrix element. Also there is no spectral function \(L_{13(3)} \). The \(\xi_i \)'s which are the cosines of the angles in this case are given in terms of the \(\lambda \), \(\eta \) and \(\eta' \) variables by the relations

\[\xi_1 = \cos \varphi = \frac{\lambda - m^2 + 2 \lambda E}{2 \lambda E} \]

\[= \frac{\eta - m^2 + 2 \lambda E}{2 \lambda E} \] \[(59) \]

\[\xi_2 = \frac{\eta \left(\frac{t + 2 \lambda - 3}{(t - \lambda)^2 (t - 1)} \right)}{(t - 4)^2} \]

\[(60) \]

for the reaction \(\gamma + \pi \rightarrow \pi \pi + \pi \) and

\[\xi = \frac{2(\lambda - 1 - m^2) + E}{(t - \lambda)^2 (t - 2m^2)^2} \]

\[(61) \]

for the reaction \(\gamma + \pi \rightarrow N + N \). \(\xi \) is a normalisation factor.
6. Equations for the absorptive parts.

We can now obtain equation connecting the absorptive parts of the photo production amplitudes and the double spectral functions by using the dispersion relations for absorptive parts. The "elastic" part of each of the absorptive parts of \(\Lambda^{(\pm,0)} \), \(\beta^{(\pm,0)} \), \(\gamma^{(\pm,0)} \) and \(\delta^{(\pm,0)} \) obeys in dispersion relations, given by equation (34) in which the double spectral functions are the ones calculated in sec. 4, namely, the ones for the photo-production channel. We recall that in the evaluation of these spectral functions we fixed the energy in the "elastic" region for the process. To obtain the "inelastic" parts of the absorptive parts \(\Lambda^{(\pm,0)} \), etc. we use the strip approximation

\[
\rho_{\text{inel}}^{st}(s) = \rho_{\text{el}}^{st}(t)
\]

\[
\rho_{\text{inel}}^{su}(s) = \rho_{\text{el}}^{su}(u)
\]

Now \(\rho_{\text{el}}^{st}(t) \) is given by the double spectral functions for the third channel if we make use of the equations (25) and (33) to express the amplitudes \(\Lambda, \beta, \gamma, \delta \) in terms of the amplitudes \(L, M, N \) and \(P \). Explicitly these are given by
\[\lambda = \frac{m}{(W+m)(W+m+2E)} \left\{ \frac{mW(t-1)}{E^2} + \frac{m(t-1)(W-m-2E)(W-m)}{4E(E+m)} + 2 \frac{(W^2-m^2)}{4E(E+m)} \right\} N + 2 \frac{(W^2-m^2)}{4E(E+m)} \]

\[\beta = m \left\{ \frac{m(t-1)}{4E(E+m)} + \frac{(W+m)(Wm+m^2-2E^2)}{2E(E+m)} \right\} N - \frac{(t-1)}{4E} \frac{1}{4E(E+m)} \left\{ \frac{(t-1)+2(W+m)(Wm+m+2E)}{E(E+m)} \right\} P \]

\[\gamma = \frac{m}{4E^2(E+m)} \left\{ \frac{(E+m)}{l} \left[2M-(W-m)\lambda \right] \right\} N + (2-W+m)P \]

\[\delta = \frac{m}{4E^2(E+m)} \left\{ \frac{(E+m)}{l} \left[2M+(W+m)\lambda \right] \right\} \]

\[(W+m)(E-2m)N + (W+m+2)P \] (63)

\[\rho_{\text{el}}^{u,v}(u,s) \text{is obtained on using the crossing relations (17) along with the equation (25).} \]

Thus the final equation for the absorptive part, valid for all energies is given by
\[
\rho^{(\pm,0)}_1(s,u,t) = \frac{1}{\pi} \int_0^\infty \frac{dt'}{t'-t} \left[\rho^{(\pm,0)}_{13}(s,t') + \rho^{(\pm,0)}_{13}(t',s) \right] \\
+ \frac{1}{\pi} \int_{(m_H)^2}^\infty \frac{du'}{u'-u} \left[\rho^{(\pm,0)}_{12}(s,u') + \rho^{(\pm,0)}_{12}(u',s) \right]
\]

The corresponding equation for the absorptive part of the III channel \((\gamma + \pi \to N + \bar{N})\) is

\[
\rho^{(0)}_3(t,u,s) = \frac{1}{\pi} \int_{(m_H)^2}^\infty \frac{ds'}{s'-s} \left[\rho^{(0)}_{13}(t,s') + \rho^{(0)}_{13}(s',t) \right] \\
+ \frac{1}{\pi} \int_{(m_H)^2}^\infty \frac{du'}{u'-u} \left[\rho^{(0)}_{12}(t,u') + \rho^{(0)}_{12}(u',t) \right]
\]

In (64) and (65) we have not displayed the pole terms and possible subtraction terms. As we have already mentioned, a two pion-resonance will necessitate a subtraction in the photo-isoscalar amplitude for production and a three pion resonance would require a subtraction in the iso-symmetric part of the amplitude. Recently there has been evidence for both these resonances. The pole as well as the subtraction terms can be easily incorporated in the equations.

7. Conclusion

Equations ex (64) taken in conjunction with the crossing relations (17) and the expressions for the double spectral functions viz., equations (42-45) and (56-58) form the basis for a study of the photoproduction of pions from nucleons in the strip approximation. As is apparent, a knowledge of the absorptive parts of the matrix elements for the processes:

\[\pi \pi + N \rightarrow \pi \pi + N \]
\[\pi \pi + N \rightarrow N + N \]

and

\[\gamma + \pi \rightarrow \pi + \pi \]

is necessary for this purpose. When these are available with sufficient reliability, they can be fed into the above equations and the resulting expression for the absorptive parts for the photoproduction matrix element can be expected to be correct for arbitrary energies. But as the number of amplitudes involved in the problem makes a numerical evaluation a formidable task, we have made a study in the next chapter, of the meaning of the strip approximation in the case of a much simpler problem, namely, the photoproduction of pions on pions.

The process

\[\gamma + \pi \rightarrow \pi + \pi \]

has been studied in the Cini-Fubini approximation to the

Mandelstam
CHAPTER XV

THE STRIP APPROXIMATION AND PHOTO PRODUCTION OF PIONS ON PIONS

1. INTRODUCTION

We apply, in this chapter the strip approximation to the photo production of pion on pions.

A study of the process of photo production of pions on pions has a special role in the present framework of the theory of elementary particles. A knowledge of this process leads to a better understanding of the phenomenon of photo production of pions from nucleon and in this respect the role of the process is similar to that of pion-pion scattering in pion-nucleon interactions. The process is the simplest that could be thought of for studying the consequences of any particular theory since the matrix element does not have in its structure complications due to spin or isospin. Thus the algebra involved in the evaluation of the matrix element is not much compared to more complicated processes like pion nucleon scattering or nucleon-nucleon scattering.

The process

\[\gamma + \pi \rightarrow \pi + \pi \]

(1)

has been studied in the Cini Fabini approximation to the Mandelstam
representation by Gourdin and Martin, Solovev and Wong. However, as mentioned in the previous chapter, the very nature of the one-dimensional approximation restricts our considerations to only low energies. The strip approximation enables us to include both high and low-energy phenomena in a single scheme. Boll and Frazer applied this approximation to calculate the inelastic effects on pion-nucleon scattering for partial waves of angular momentum \(l \gg 2 \) (for which only the approximation is likely to work) in the energy range of agreement with the observed position of the peaks, but the higher resonances and also for \(K^- p \) scattering. They found qualitative agreement in the assignment of quantum numbers and rough agreement with the observed position of the peaks, but the elastic effects thus calculated were found to exceed the unitarity limit. On the other hand Casandri who has made a similar calculation finds that the "strip" integrals reproduce only about 30% of the inelastic in the intermediate state in the effect. Chew et al argue that the inclusion of more than two particles in the intermediate in the unitarity condition might remove the difficulty regarding violation of

3) M. Casandri, Nuovo Cimento 26, 196 (1962)
4) G.F. Chew, S. Frautschi and S. Mandelstam, Phys. Rev. 126, 1202 (1962)
unitarity mentioned above. We show in this chapter that
for the simple case of process (1), the use of the strip
approximation along with the one-dimensional solution
for the elastic absorptive part leads to the result that the
contribution from the inelastic part is of order $1/s$ for
large s where s is the square of the total centre of mass
energy for the process. This would mean that the inelas-
astic cross-section goes down like $1/s^2$.

2. Kinematics.

As usual we introduce the Mandelstam variable\(^s\), \(u\), and \(t\) defined by

\[
\begin{align*}
\sigma &= - (k + q_1)^2 = - (q_{12} + q_{13})^2 \\
u &= - (k - q_2)^2 = - (q_{23} - q_{13})^2 \\
t &= - (k - q_3)^2 = - (q_{23} - q_{12})^2
\end{align*}
\]

where \(\sigma\) is the angle between the directions of the initial
and final particles.
where

\[s + t + u = 3 \] \tag{3}

and \(q_1 \) are the momenta of the initial photon and pion and \(q_2 \) and \(q_3 \) are those of the final pions. By the symmetry of the process all the three variables represent the square of the centre of mass energies of the same process, different regions of the variables contributing to the matrix element.

In the centre of mass of the corresponding processes, the variables are given by

\[
\begin{align*}
\lambda &= (\omega_k + k)^2 = 4 \omega q^2 \\
u &= 1 - 2k \omega q + 2k q \cos \theta \\
t &= 1 - 2k \omega q - 2k q \cos \theta
\end{align*}
\] \tag{4}

where \(\theta \) is the angle between the directions of the initial and final pairs of particles.

In the present problem, there is only one Lorentz and gauge-invariant combination of the available vectors for the process. The invariant matrix element can be written as

\[
\langle \Pi \Pi | T | \gamma \Pi \rangle = \frac{E^m_{\alpha \beta \gamma} q_1^n q_2^m q_3 q_{\gamma} e^s F(s, u, t)}{(16 k \omega_k \omega q \omega q^3)^{1/2}}
\] \tag{5}

Here \(E^m_{\alpha \beta \gamma} \) and \(e^s_{\alpha \beta \gamma} \) are the completely antisymmetric tensors of ranks four and three respectively; \(\lambda \), \(\beta \) and \(\gamma \) refer to the isotopic spin labels of the pion.

In the centre of mass system, the matrix element (5) can be written as
The differential cross-section when the initial photon is unpolarized is given in terms of the amplitude $F(\lambda, u, t)$ by

$$\frac{d\sigma}{d\omega} = \frac{1}{128\pi^2} \left| F(\lambda, u, t) \right|^2$$

(7)

3. The strip approximation

To study the process (4) under the strip approximation, we have to evaluate the double-spectral functions. Since we have only one amplitude to deal with, the evaluation is particularly simple and in fact has been given by Mandelstam.1)\textdagger Taking only the lowest two particle intermediate state as the two pion state in the unitarity condition, the double spectral functions in the elastic region of the λ -variables are given by

$$F_{13}(\lambda, t) = 4 \int \int dz_2 \, d\lambda_3 \, K_1(z_1, z_2, z_3) \chi \left[I_{3}^{*}(\lambda, z_3) F_3(\lambda, z_2) + I_{2}^{*}(\lambda, z_3) F_2(\lambda, z_2) \right]$$

(8)

$$F_{12}(\lambda, u) = 4 \int \int dz_2 \, d\lambda_3 \, K_2(z_1, z_2, z_3) \chi \left[I_{3}^{*}(\lambda, z_3) F_2(\lambda, z_2) + I_{2}^{*}(\lambda, z_3) F_3(\lambda, z_2) \right]$$

where $z_1 = \cos \theta \cdot z_2$ and z_3 are respectively the cosines of the angles between the initial and intermediate set of particles and the intermediate and final set of particles. I represents the amplitude for pion-pion scattering through $I = 1$ state.

k_1 and k_2 are given by the same expressions as in Chapter

We can introduce the isotopic spin labels now. The unitarity condition, if we retain only the two-pion intermediate state, gives the absorptive part of the photo pion production amplitude as a product of the matrix element for pion-pion scattering and photo-production of pions on pions (process $\gamma \pi \pi$). The complete matrix element for the former as given by Chew and Mandelstam is

$$A \delta_{\beta \gamma} \delta_{5 \eta} + B \delta_{\beta \gamma} \delta_{1 \eta} + C \delta_{\beta \eta} \delta_{7 \gamma}$$

where 5 and γ are the isotopic spin labels of the intermediate state pions and β and those of the final pions. When this is combined with the photopion production matrix element which contains the isotopic spin operator $I = 2 \gamma$ we find that only the combination $B - C$ of the amplitudes for pion-pion interaction survives. But $B - C = A^{(0)}$ where $A^{(1)}$ is the pion-pion scattering matrix element in the isotopic state, $T = 1$ which is precisely the state in which there is a resonance

1) G. F. Chew and S. Mandelstam, 119, 467 (1960).
Since we will be making use of the dominant of the resonance later, it is a fortunate circumstance that only the amplitude corresponding to the isotopic spin state with $T=1$ is non-vanishing.

The quantities in (8) have to be re-expressed in terms of the t variable using the relations

$$
Z_1 = \frac{\sqrt{2} (2t + \Delta - 3)}{(\Delta - 4)^{1/2} (\Delta - 1)}
$$

$$
Z_2 = \frac{2t_3 + \Delta - 4}{\Delta - 4}
$$

$$
Z_3 = \frac{\sqrt{2} (\Delta + 2t_2 - 3)}{(\Delta - 4)^{1/2} (\Delta - 1)}
$$

Further we need to require the absorptive parts I_2, I_3, F_2, and F_3 of the pion-pion scattering, we can use the resonance model with a finite width and write the absorptive part of the matrix element as

$$
I_{2,3} (\Delta, z) = \frac{3 \Gamma (2t + \Delta - 4)}{\Delta - 4 - i \Gamma (\Delta - 4 - 1)^{1/2}}
$$

where Δ_n denotes the position of the resonance in the $(\Pi \bar{\Pi})$ state.

The amplitude for process (11) has been given in the one-dimensional approximation by Solov'ev1). He points out at that while the four-pion vertex with four internal nucleon lines diverges so that it becomes necessary to introduce (in the field-theoretic approach) a corresponding counter-term.

1 L.D. Solov'ev; loc. cit.
which introduces the pion–pion coupling constant, a similar vertex with one photon and three pion external lines converges so that there is no need for new counter-terms and anew coupling constant as used; for instance, by Gourdin and Martín. He gives two solutions of which we take the one given below. The complete matrix element neglecting F and higher partial waves is given by

$$\left| f(\lambda) \right| = \left| f(\nu) \right| e^{i\delta(\nu)}$$

(11)

where $\delta(\nu) = \delta_1$ the pion–pion scattering phase shift in the resonant state and

$$\left| f(\nu) \right| = \frac{\Lambda \Phi(\nu)}{\delta - 1}$$

(12)

Here $\nu = \frac{q^2}{2}$, Λ is the pole contribution from the process $Y + \pi \pi \rightarrow N + \bar{N}$ and Φ is given by

$$\Phi = \left| \frac{(\nu - \nu_R)^2}{(\nu + b - \nu)(\nu_R + b - \nu)} \right| \frac{(\nu - \nu_R)}{2b}$$

$$\times \left| \frac{(\nu_R + b - \nu)}{\nu + b - \nu_R} \right|^{\nu/2} \left\{ \nu \rightarrow \nu - q/\sqrt{3} \right\}$$

(13)

1) M. Gourdin and A. Martín; loc. cit.
The solution is valid for the region where

\[S = \begin{cases} & 0 \quad \text{if } v < v_k - b, \quad v > v_k + b \\ & \frac{(\pi/2b)}{(v+b-v_k)} \quad \text{if } v_k - b < v < v_k \\ & \frac{(\pi/2b)}{(v_k+b-v)} \quad \text{if } v_k < v < v_k + b \end{cases} \]

Here \(v_k = 1.5 \) and \(b = 0.4 \).

Thus the absorptive part for the photo-pion product channel is given by

\[F_3 = \frac{\Lambda}{\Delta_i - 1} \Phi(v_i) \sin S(v_i) \]

Using relations (10) and (15) for the absorptive parts of the pion-pion scattering and photopion production matrix elements respectively and changing from the angle to the \(t \) variables using relations (9) we can rewrite the double spectral functions (8) as

\[F_{13}(s, t) = -b \int \int \frac{d \tau_2 d \tau_3 K_1(s, t, \tau_2, \tau_3) \Delta^{1/2}}{(s-4)^{2/2} (s-1)} \left\{ \begin{array}{c} \frac{(\tau_3-4)^{1/2}}{\tau_2} \frac{(\Delta s + \tau_3 - 4) \sin S(\frac{\tau_3}{4} - 1)}{(\Delta s - \tau_3)^2 + \tau_3^2 (\frac{\tau_3}{4} - 1)^3} \\ \frac{(\tau_3-4)^{1/2}}{\tau_2} \frac{(\Delta s + \tau_3 - 4) \sin S(\frac{\tau_3}{4} - 1)}{(\Delta s - \tau_3)^2 + \tau_3^2 (\frac{\tau_3}{4} - 1)^3} \end{array} \right\} \]

\[F_{24}(s, u) = -b \int \int \frac{d u_2 d u_3 K_1(s, t, u_2, u_3) \Delta^{1/2}}{(s-4)^{3/2} (s-1)} \left\{ \begin{array}{c} \frac{(u_3-4)^{1/2}}{u_2} \frac{(4 - \Delta s - u_3) \sin S(\frac{u_3}{4} - 1)}{(\Delta s - u_3)^2 + \tau_3^2 (\frac{u_3}{4} - 1)^3} \\ \frac{(u_3-4)^{1/2}}{u_2} \frac{(4 - \Delta s - u_3) \sin S(\frac{u_3}{4} - 1)}{(\Delta s - u_3)^2 + \tau_3^2 (\frac{u_3}{4} - 1)^3} \end{array} \right\} \]

where
\[K_1 (s, t, t_2, t_3) = -\frac{s}{(s-1)^2 (s-u)} \left\{ (s+2t-3)^2 + (s+2t_2-3)^2 \right\} \]
\[+ \frac{(2t_3+s-4)^2}{(s-4)^2} \left[\frac{\Phi \left(\frac{t_3}{s-4} \right)}{\Phi \left(\frac{t_3}{s-4} \right)} - 1 \right] \]
\[- \frac{2s (s+2t-3) (s+2t_2-4) (s+2t_3-3)}{(s-4)^2 (s-1)^2} \]
\[K_1' (s, t, u_2, u_3) = -\frac{s}{(s-1)^2 (s-u)} \left\{ (s+2t-3)^2 \right\} \]
\[+ \frac{(3s-2u_2)^2}{(s-4)^2} \left[\frac{\Phi \left(\frac{u_2}{s-4} \right)}{\Phi \left(\frac{u_2}{s-4} \right)} - 1 \right] \]
\[- \frac{2s (s+2t-3) (3s-2u_2) (4s-2u_3)}{(s-4)^2 (s-1)^2} \]
\[K_2 (s, u, t_3, u_3) = -\frac{s}{(s-1)^2 (s-u)} \left\{ (s+2t-3)^2 \right\} \]
\[+ \frac{(4s-2u_3)^2}{(s-4)^2} \left[\frac{\Phi \left(\frac{u_3}{s-4} \right)}{\Phi \left(\frac{u_3}{s-4} \right)} - 1 \right] \]
\[F_{12} (s, u) = +b \int \int dt_2 dt_3 \frac{K_2 (s, u, t_3, u_3) s^{1/2}}{(s-4)^{3/2} (s-1)} \]

To obtain the inelastic part of the double spectral functions, we use the auxiliary organization which prescribes that

\[F_{13}^{\text{Incl}} (s, t) = F_{15}^{\text{Incl}} (s, t) \]
\[F_{16}^{\text{Incl}} (s, u) = F_{12}^{\text{Incl}} (s, u) \]

In view of the symmetry of the problem, we need not calculate the double spectral functions for the third channel but can obtain them...
\[x \Gamma^2 \Delta \left[\frac{(t_2-\lambda_1)^{1/2}}{(u_2-1)} \right] \left(2s^2 + t_3 - 4 \right) \sin \delta \left(\frac{u_2}{4} - \frac{1}{4} \right) \Phi \left(\frac{u_2}{4} - \frac{1}{4} \right) \]

\[-6 \int dt \frac{du_3}{2} \frac{k'_2(s, u_3, t_3, u_2) \mu^2}{(s-4)^{3/2}} \Gamma^2 \Delta \]

\[\left[\frac{(u_3-4)^{1/2}}{(t_2-1)} \right] \frac{(4-2s-u_2)^{1/2}}{(s-u_3)^2 + \Gamma^2 (u_3^2 - 4)^3} \]

with

\[k_2(s, u_3, t_3, u_2) = \frac{\lambda}{(s-1)(s-4)} \left\{ \frac{(3-s-2u)^2}{(s-1)^2(s-4)} \right\} + \frac{(3-s-2u_3^2)}{(s-4)^2} - 1 \]

\[-2s(s-t_3+s-4)(3-s-2u)(3-s-2u_3) \]

\[\frac{(s-4)^2(s-1)}{(s-1)^2(s-1)} \]

\[k'_2(s, u_3, t_3, u_3) = \frac{\lambda}{(s-1)^2(s-4)} \left\{ \frac{(3-s-2u)^2}{(s-1)^2(s-4)} \right\} + \frac{(s+2t_2-3)^2}{(s-4)^2} - 1 \]

\[-2s(s-3-s-2u)(s+2t_2-3) \frac{(4-s-2u_3)}{(s-4)^2(s-1)} \]

\[(s-4)^2(s-1) \]

To obtain the inelastic parts of the double spectrum functions, we use the strip approximation which prescribes that

\[F_{13}^{\text{ind}} (s, t) = F_{13}^{\text{el}} (t, s) \]

\[F_{12}^{\text{ind}} (s, u) = F_{12}^{\text{el}} (u, s) \]

In view of the symmetry of the problem, we need not calculate the double spectral functions for the third channel but can obtain them.
immediately from (16) and (19) by the change of variables indicated in (22).

The dispersion relation for the absorptive part of channel I is

\[F_1 (\lambda, t) = \frac{1}{\pi} \int_0^\infty dt' \frac{F_{12} (\lambda, \lambda')}{t' - t} \]

\[+ \frac{1}{\pi} \int_0^\infty du' \frac{F_{12} (\lambda, u')}{u' - \lambda} \]

\[+ \frac{1}{\pi} \int_0^{16} dt' \frac{F_{13} (t', \lambda)}{t' - t} + \frac{1}{\pi} \int_0^{16} du' \frac{F_{13} (u', \lambda)}{u' - \lambda} \]

(23)

We should expect that if the one-dimensional solution (15) is good, the solution of equation (23) retaining only the first two terms on the right-hand side should not differ appreciably from (15). We shall therefore be content with estimating the contribution from the inelastic part given by the last two terms, \(H \) for large values of \(\lambda \).

For very large, \(\lambda \), \(K_1 (t, \lambda, \lambda_2, \lambda_3) \) can be approximated by

\[\frac{(t-1)(t-4)}{t^{1/2}} \left\{ \lambda^2 (t-4) + 4 \lambda (t-3) (t-4) \right.

\[- \frac{1}{4} \lambda^2 (t+3t_2 - 4)(t+3t_2 - 3) \left. \right\}^{-1/2} \]

\[= \frac{(t-1)(t-4)}{t^{1/2}} \left\{ \lambda^2 (t-4) - 16 \lambda t_2 t_3 - 8 \lambda t_3 (t-3) \right.

\[- 8 \lambda t_2 (t-4) \left. \right\}^{-1/2} \]
Substituting this and similar expressions for K_1', K_2', and K_2'', we find on majorising the integrals over t' that the contribution from the first term of $\frac{F_{i3}(t, \lambda)}{1/\lambda}$ is a convergent integral and is of the order of $1/\lambda$ as is also the case for the contribution from the second term of $\frac{F_{i3}(t, \lambda)}{1/\lambda}$. We can neglect the last term of (23) since for large positive values of λ and fixed values of t, u will be large and negative so that the denominator of the integral occurring in it will never vanish and will be large for large values of u.

Conclusion

That the inelastic contributions are of the same order $1/\lambda$ for every large λ seems to be a significant feature. It is interesting to note that a similar result follows for the process of pion-pion scattering which is a little more complicated in that the matrix element here involves three amplitudes corresponding to the three values, 0, 1 and 2 for the total isotopic spin of the two pions. But if we assume a resonance in the $\Gamma = 1$ state we need deal with only one amplitude. Both the absorptive parts appearing in the double spectral functions \overline{I}_{13} and \overline{I}_{12} (where \overline{I} represents the pion-pion scattering amplitude in the $\Gamma = 1$, $J = 1$ state) will correspond to those of pion-pion scattering in the second and third channels. Using the expression (10) for the absorptive parts, we have
\[I_{13} (s, t_1) = -\frac{g}{4} \int \frac{dt_2 \, dt_3}{(s - \mu)} \Gamma^4 K_1 (s, t_1, t_2, t_3) \]
\[\times \frac{(2t_3 + s - \mu)(2t_2 + s - \mu)}{[(\lambda, \lambda')^2 + \Gamma^2 (\frac{s}{\lambda'} - 1)^3]^2} \]
\[-\frac{g}{4} \int \frac{du_2 \, du_3}{(s - \mu)} \Gamma^4 K_1' (s, t_1, u_2, u_3) \]
\[\times \frac{(1 - s - 2u_3)(1 - s - 2u_2)}{[(\lambda, \lambda')^2 + \Gamma^2 (\frac{s}{\lambda'} - 1)^3]^2} \]

where all the variables correspond to those for pion-pion scattering. As in the case of photoproduction of pions on pions we can write the expression for \(I_{13} (t_1, s) \) which represents the inelastic contribution by the simple change of variables \(t_1 \leftrightarrow s \) and introducing a numerical factor given by the crossing matrix.

In this case again the only factor which contains the variable \(s \) is the function \(K_1 \) (and \(K_1' \)). In the limit of large \(s \) this behaves like \(1/s \) again. Of course this result as well as the similar one for the photoproduction of pions on pions depends on the form of the absorptive parts assumed. Still the result gives us hope that the strip approximation may yield results in agreement with experiment at high energies.
CHAPTER X

THE PHONIC DECAY OF THE Σ PARITICLES

Introduction

In this chapter we use the "pole" approximation to study the phononic decay mode of the cascade particle. The "pole" term in the matrix element for a process in dispersion theory corresponds to the renormalized Born approximation of the conventional Lagrangian theory. Recently the "pole" approximation has been used in various problems in weak interactions of elementary particles. Bernstein et al\(^2\) utilized the dominance of the pion pole, in the matrix element \(\langle p\bar{n} | \alpha \rho | o \rangle\) (where \(\alpha \rho\) behaves like a pseudoscalar and \(| p\bar{n} \rangle\) is the proton-antineutron state) in order to explain the rather involved calculation of Goldberger and Treiman\(^3\) for the rate of decay of the charged pion. Feldman et al\(^4\) applied the pole approximation to a study of the non-leptonic decay modes of Σ and Λ which possess a number of curious features. The decay modes \(\Sigma^+ \rightarrow n + \pi^+\)

and $\Sigma^+ \rightarrow n + \pi^+$ show no up-down asymmetry while the mode $\Sigma^- \rightarrow n + \pi^-$ seems to have an asymmetry parameter very near unity. Assuming global symmetry, Feldman et al were able to show that the Σ decay asymmetries could be explained and assuming essentially one more parameter the Λ and Σ decay times and asymmetries could be correlated.

The success of the pole approximation in the problem of pion decay has encouraged us to use it to study the pionic decay modes of the Ξ^- particle. Recently Fowler et al. have presented data on the magnitude of the asymmetry parameter λ_{Ξ^-} and the lifetime of the decay of $\Xi^- \rightarrow$ into a $\Lambda^0 + \pi^-$. We have utilised these values to obtain the possible values for the re-normalized $\Xi^- \Xi^- \pi^+$ coupling constant G_1. Fowler et al. have also noted that the decay asymmetry λ_{Ξ^-} and the asymmetry parameter in $\Lambda^0 \rightarrow p + \pi^-$ or $n + \pi^-$ have opposite signs. We have used this result to suggest a possible mechanism for the Σ decay which can explain the curious pattern of the asymmetries. Finally we again suggest a pole approximation calculation for determining the mass difference of K_1^0 and K_2^0 and the self-mass of Σ^0.

Calculations

(1) Let us first consider the decay of $\Xi^- \rightarrow$ into a Λ^0 and a π^-. The results for the mode $\Xi^- \rightarrow \Lambda^0 + \pi^-$ will follow from this if we use the $|\Delta m^2| = \frac{1}{2}$ rule. The diagram of interest

for the $\Xi^{-}\to\Lambda K$ decay is the pole diagram shown in Fig. 1 a. The diagram with the $K^{-}\Lambda$ meson pole (Figure 1 b) makes a comparatively small contribution as we shall see. G_1 denotes the renormalized $\Xi^{-}\Xi^{-}\pi^+$ coupling constant; G_2, the coupling constant for $\Xi^{-}\Lambda K^-$ vertex; $a + b \gamma_5$, the $\Xi^{-}\Lambda$ vertex and c is the coupling for the $K^{-}\pi^+$ weak vertex.

The matrix element corresponding to Fig. 1 (a) is given by

$$M_1 = \frac{i G_1}{\sqrt{2} E_\pi} \cdot \frac{1}{p_\pi^2 - 2 p_\Xi - m_k^2} \bar{u} \gamma_5 \left[A + B \gamma_5 \right] u_{\Lambda}$$

where p denotes the four-momentum of the particle represented by the suffix and A and B are given by

$$A = -(m_\Xi + m_\Lambda) a; \quad B = (m_\Lambda - m_\Xi) b,$$

m denoting the mass of a particle. The matrix element corresponding to Fig. 1 (b) is

$$M_2 = \frac{i G_2}{\sqrt{2} E_\pi} \cdot \frac{1}{p_\pi^2 + m_k^2} \bar{c} \gamma_5 u_{\Xi} u_{\Lambda}$$

where E_π is the energy of the pion. Therefore the total matrix element M is given by

$$M = M_1 + M_2 = \frac{i G_1}{\sqrt{2} E_\pi} \cdot \frac{1}{p_\pi^2 - 2 p_\Xi - m_k^2} \cdot \left\{ \bar{u} \gamma_5 \left[B + c \gamma_5 \right] u_{\Lambda} \right\}$$

where

$$\beta = A + \lambda$$

$$\lambda = \frac{c G_2}{G_1} \cdot \frac{p_\pi^2 - 2 p_\Xi - m_k^2}{p_\pi^2 + m_k^2}$$
FIG. 1(a)

FIG. 1(b)

FIG. 2

FIG. 3

□ Denotes the strong and
○ The weak vertex figure
Squaring M and fixing the initial spin of the B^- in the z-direction, we find that

$$|M|^2 = 4m_B^2 \left[E_\Lambda (|B|^2 + |\beta|^2 + m_\Lambda (B^2 - \beta^2) - 2 |\vec{p}| \Re (B \beta^*) \cos \theta \right]$$

(6)

E_Λ is the energy of Λ^0. (6) can be written as

$$A' + B' \cos \theta$$

where

$$A' = 4m_B^2 \left[E_\Lambda (|B|^2 + |\beta|^2 + m_\Lambda (B^2 - \beta^2)) \right]$$

$$B' = -8m_B |\vec{p}| \Re (B \beta^*)$$

(7)

In the above, θ is the angle between the z-direction and the direction of the decay particles (Λ or Ξ).

Now the asymmetry parameter ε which can be measured experimentally is defined by

$$\varepsilon = \frac{N_{up} - N_{down}}{\frac{1}{2} (N_{up} + N_{down})}$$

(8)

where N denotes the number of particles. Now

$$N_{up} = K \int_0^{T/2} (A' + B' \cos \theta) \sin \theta \, d\theta$$

$$N_{down} = K \int_{T/2}^T (A' + B' \cos \theta) \sin \theta \, d\theta$$

(9)

where K is a constant.
Hence
\[\lambda = \frac{\beta}{A} = -\frac{2|\beta^*| Re(B \beta^*)}{B^*(E_\Lambda + m_\Lambda) + \beta^*(E_\Lambda - m_\Lambda)} \] \hspace{1cm} (10)

If the \(\Xi \) particle is not completely polarized and its degree of polarization is \(P \) then \(\lambda = \frac{B'}{A'} \cdot P \)

Using (6), we can calculate the life-time \(\tau \) of the particle. Assuming it to be unpolarized, \(\tau \) is given by
\[\frac{1}{\tau} = \frac{G^2 \sum E_{\Lambda} |\beta^*|^2}{2\pi m_{\Xi} m_{\Lambda}} \left[\frac{1}{2m_{\Xi} - 1} \right]^2 \cdot \left[B^*(E_\Lambda + m_\Lambda) + \beta^*(E_\Lambda - m_\Lambda) \right] \] \hspace{1cm} (11)

From kinematics, we have \(|\beta^*| = 12 \pm 5 \text{ MeV/c} \);
\[E_\Lambda = 1121 \text{ MeV} \]; \[E_\Pi = 196 \text{ MeV} \]

From (5) we then find that
\[\beta = \left\{ -2.432 a + 2.213 \frac{G_1 c}{G_1} \right\} \] \hspace{1cm} (12)

If we assume that \(\frac{G_2}{G_1} \sim \frac{1}{10} \) and \(c \sim a \sim b \), then the second term on the right hand side of (12) is negligible, which is small (in absolute value) compared to the first term. Therefore we shall omit it from our consideration which means that we shall be setting \(\beta = a \). Fowler et al give a value \(\lambda = \pm 0.69 \) for the asymmetry parameter, the sign being unspecified. Using this \(\pm \) in (10) we obtain a quadratic equation for \((a/b) \) with the solutions...
\[(a/b) = \pm 0.58 \text{ or } \pm 4.42\]. Using these values in (11) we arrive at the following values for the dimensionless parameter:

\[
\frac{G_1^2 b^2}{4\pi} = 0.3296 \times 10^{-11} \quad \left| \frac{a}{b} \right| = 0.58
\]

and

\[
\frac{G_1^2 b^2}{4\pi} = 0.4298 \times 10^{-12} \quad \left| \frac{a}{b} \right| = 4.42
\] (13)

\(T\) is independent of the sign of \((a/b)\) as can be seen from (11). If we assume \(b \sim c\) and take the value of \(0.3 \times 10^{-11}\) for \(c^2\) as calculated in the next subsection we get for the first of these possibilities \((G_1^2/4\pi) \sim 1\).

(ii) The experiments of Fowler et al indicate that the asymmetry parameters \(\lambda_{\Sigma^-}\) and \(\lambda_{\Lambda}^\Lambda\) have opposite signs, the absolute sign of each being undetermined. This suggests that the observed pattern of the \(\Sigma^-\)-decay asymmetries might be ascribed to a parity clash between diagrams involving \(\Lambda\) and those involving \(\Xi^-\). Figs. 2 (a), 2 (b) and 2 (c) are the relevant diagrams. Fig. 2 (a) with the \(\Lambda\) pole is assumed to be dominant. For \(\Xi^-\) intermediate states pole diagrams do not exist and those in next in order of simplicity are taken into account. The \(\Xi^- - \Sigma^-\) vertex can arise from \(\Xi^- \rightarrow \Lambda^0 + \pi^- \rightarrow \Sigma^-\). It is clear that for suitable values of the parameters involved these three diagrams can yield parity-conserving \(\Sigma^+ \rightarrow n^+ + \pi^+\) and \(\Sigma^- \rightarrow n^- + \pi^-\) decay modes and parity-violating \(\Sigma^+ \rightarrow p^+ + \pi^0\) decay mode. The proton from \(\Sigma^+\) decay and the \(\Lambda\) from
\(\Xi \) decay will have helicities of the same sign. Such a procedure would however imply that relations like

\[R(\Sigma^+ \rightarrow p + \Pi^0) \approx 2R(\Lambda^0 \rightarrow p + \Pi^-) \]

are in the nature of dynamical accidents.

(iii) Finally we wish to remark that the pole approximation can be employed to calculate the coupling constant for the weak \(K-\pi \) vertex, \(C \). The fact that the \(K_0 \) to \(\overline{K}_0 \) matrix element is connected with the \(K_1^0 - K_2^0 \) mass difference can be seen as follows: The mass matrix is diagonal in the \(K_1^0 - K_2^0 \) representation, i.e.

\[
\begin{pmatrix}
K_1^0 & K_2^0 \\
0 & m_z
\end{pmatrix}
= \frac{m_1 + m_2}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
+ \frac{m_1 - m_2}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

In the \(K_0 \), \(\overline{K}_0 \) representation this matrix becomes

\[
\begin{pmatrix}
K_0 & \overline{K}_0 \\
K_0 & \overline{K}_0
\end{pmatrix}
= \frac{m_1 + m_2}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
+ \frac{m_1 - m_2}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

From (15) we see that the transition \(K_0 \) to \(\overline{K}_0 \) involves the mass-difference \(\delta m \) between \(K_1^0 \) and \(K_2^0 \); the exact relation being

\[\delta m = 2 \langle K_0 | \overline{K}_0 \rangle \]

From Fig. 3 we find that
\[\frac{\delta m}{a} = \frac{\langle K_0 | K_0 \rangle}{2m_K} = \frac{c^2}{2m_K} \cdot \frac{1}{1-m_K^2} \]

Taking the mass difference \(\delta m \) to be \(\approx 10^{-5} \)
we obtain \(c^2 \approx 0.3 \times 10^{-11} \). A precise value for \(\delta m \) would allow us to determine \(c \) more accurately. Similarly, the pole approximation could be used to find the self energy of \(\Sigma^0 \) or \(\Lambda^0 \) due to transitions of the type \(\Sigma^0 \rightarrow \Lambda \rightarrow \Sigma^0 \).

CHAPTER XI

SOME NEW STOCHASTIC ASPECTS IN CASCADE THEORY

1. Introduction

In the earlier chapters of this thesis we have used some of the methods which are available for computing the cross-sections for various processes which involve a production of only a few additional particles in the final state and at low energies. At higher energies encountered in cosmic radiation (10^5 to 10^{18} ev), multiple-production of particles, particularly pions, is quite frequent and for such energies and processes no reliable method based on field theory exists. Statistical theories, such as that of Fermi\(^2\), hydrodynamic theories of Heisenberg\(^3\) and Landau\(^4\), models like the isobar and fireball\(^5\) models and many other theories\(^6\) have been suggested to explain the various aspects of multiple-pion production, but each of them has had only a partial success.

2) E. Fermi, Progress of Theoretical Physics, 5, 570 (1950); Phys. Rev., 81, 683 (1951); 92, 452 (1953); 93, 1434 (1954).

3) W. Heisenberg, Z. Phys. 112, 61 (1939); 126, 569 (1949); 132, 65 (1952).

There is another aspect to cosmic ray phenomena where a direct application of field-theoretic techniques would again not be possible, but where however use can be made of cross-sections for various processes evaluated using such methods, and this is cascade phenomena, i.e. the cumulative effect of fundamental particle interactions when a single particle enters a finite thickness of matter. This particle collides with air nuclei in the atmosphere and in each collision a number of other particles are produced. These secondary particles in their passage through matter collide with other nuclei and produce further particles. Thus a cascade is generated and one of the main problems in cosmic rays is to study the nature of this multiplication. In any typical collision particles of different types at various energies and angles of emergence are produced and the probabilities of the individual collisions are determined by the corresponding quantum mechanical cross-sections. The successive collisions are considered independent and cascade multiplication then becomes a stochastic process which can be studied by methods of classical probability.

But further restrictions have to be imposed to make calculations tractable. Thus, for instance, one can consider the cascades to develop only longitudinally and ignore the lateral spread of particles in which case one can deal not only with the mean values of the various quantities involved but also their probability distributions or at least the fluctuations about
the mean. One can also include lateral spread but then one has to be satisfied with the mean values of the various quantities.

If it is however generally felt that the literature on the cascade theory has grown out of proportion to its utility in the understanding of cosmic ray phenomena or in the application of probabilistic methods. This is essentially due to the fact that in any discussion, only 'conventional' questions are formulated. New ways of looking at the problem may however reveal hitherto unnoticed aspects of the theory. In the subsequent sections, we present some attempts at such a departure from conventional methods.

2. An interesting relationship between the 'old' and the 'new' approaches to cascade theory

The "old" approach to cascade theory was concerned with the number of particles of a given type at a depth which is the thickness of matter traversed assuming the shower to be initiated by a particle at \(t = 0 \). We confine ourselves to the longitudinal development of the cascades and neglect their lateral spread. The main object is to obtain the probability distribution for the number of particles with specified energies at a given depth \(t \) defined by

\[
\Pi_i (n_1, n_2, \ldots, n_m; E_1, E_2, \ldots, E_m | E_0; t)
\]

which denotes the probability that there exist \(n_j \) particles of type \(j \) each of which has an energy greater than \(E_j \) \((j = 1, 2, \ldots, m) \) at \(t \) if the cascade is initiated at \(t = 0 \) by a particle of type \(i \) with an energy \(E_0 \).
This definition of the distribution function for the number of particles at a given depth was natural in the early days since cascades were experimentally observed in cloud chambers in which the number of particles at a given depth can be easily recorded.

The use of emulsion techniques in the study of cascades suggested however that it would be more convenient to estimate the energies of the particles at the point of their production rather than of all the particles at any particular thickness. Based on this, Ramakrishnan and Srinivasan1) suggested a new approach to cascade theory. Instead of the function \(\Pi \) defined earlier, they define a new function
\[
\Pi (n_0, n_1, m; E_1, E_2, E_m | E_o, t)
\]
which is the probability that \(n_j \) particles of type \(j \), each with energy greater than \(E_j \) at the point of its production are produced between \(0 \) and \(t \) if the cascade is initiated at \(t = 0 \), by a particle of type \(i \) with energy \(E_o \). They used the method of product densities, introduced earlier by Ramakrishnan2). In \(E \)-space which is a continuum, the product density of degree \(n \),
\[
(E_1, E_2, \ldots, E_n) \text{ d}E_1 \text{ d}E_2 \ldots \text{ d}E_n
\]
is defined such that
\[
(E_1, E_2, \ldots, E_n) \text{ d}E_1 \text{ d}E_2 \ldots \text{ d}E_n
\]
represents the probability that there is a particle in \(E_1 \), a particle in \(E_2 \), and a particle in \(E_n \) irrespective of the number elsewhere. The product density functions in the new approach which are over \(E \) space as well as \(t \) space are defined as follows:

\[F_R(E_1, E_2, \ldots, E_k; t_1, t_2, \ldots, t_k) \, dt_1 \, dt_2 \cdots \, dt_k \]

is the joint probability that a particle of energy between \(E_1 \) and \(E_1 + dE_1 \) is produced between \(t_1 \) and \(t_1 + dt_1 \), a particle of energy between \(E_2 \) and \(E_2 + dE_2 \) is produced between \(t_2 \) and \(t_2 + dt_2 \), and a particle of energy between \(E_R \) and \(E_R + dE_R \) is produced between \(t_R \) and \(t_R + dt_R \).

Using the equation for product densities of degree 1, the first moment of \(\Pi_I \) has been calculated numerically by this method. 1)

The essential difference between the old and new approaches to cascade theory, while apparent from the definition of the two types of product density functions given above, is strikingly brought out by the integral equations for the functions \(\Pi_I \) and \(\Pi_{II} \) derived by using the method of regenerative point which is quite useful in studying a class of non-Markovian stochastic processes which however have a simple dependence on previous history. Consider a stochastic process describing the occupation states of a system as a parameter \(t \) varies and let the occupation states be denoted by \(S_1, S_2, \ldots \).

We shall call the process non-Markovian if given that the system is in a state \(S_j \) at \(t \), we are not able to predict what happens between \(t \) and \(t + dt \). But let us assume that there exists a

set $s_1', s_2', \ldots \ldots$ among the occupation states of the system such that if the system is found in any one of these states at t, it is possible to predict what happens between t and $t + dt$. Such processes are called regenerative with respect to these states; i.e. when the system reaches the regenerative state, it 'loses' all memory and starts afresh.

For simplicity we shall consider a simple cascade consisting of only one type of particle and the development of the cascade is characterized by the cross-section $R(E' | E) \, dE' \, dt$ representing the probability that a particle of energy E drops to an energy interval lying between E' and $E' + dE'$, producing another particle of energy $E - E'$ in traversing a matter of thickness dt.

As defined earlier, let $\Pi_{\mathcal{T}}(n, E | E_0 ; t)$ represent the probability that n particles are at t with the energy of each particle greater than E and $\Pi_{\mathcal{P}}(n, E | E_0 ; t)$, the probability that there are produced n particles between 0 and t, each having energy greater than E at the point of production, the energy of the primary in both cases being E_0. This difference in reckoning the energies of the particles gives rise to a corresponding difference in the summation in the equations satisfied by them as shown below.

Consider the first regeneration point T' where the primary particle of energy E_0 is replaced by two particles of energy E' and $E_0 - E'$ which become in turn independent.
primaries for the subsequent development of cascades in the interval \(t - \gamma \). For \(\Pi_I(n, E | E_0; t) \), these two primaries together produce \(n \) particles with energy greater than \(E \) in a distance \(t - \gamma \), i.e., there exist at \(t \), \(n \) particles with energy greater than \(E \). However in the new approach, the counting of particles is different as it depends on the energy of the particle at the point of production. Since even the primary particle with an energy \(E_0 \) at \(t = 0 \) forms part of the system of \(n \) particles with primitive energy greater than \(E \) that are produced between \(0 \) and \(t \), it is clear that the two independent primaries at the first regeneration point \(\gamma \) need produce together only \(n - 1 \) particles, the two primaries being included in the counting. It is to be noted that in the new approach it is quite possible that the same particle will be counted many times at various "production" points provided at each such point, the particle has an energy greater than the specified value.

We can now write down the integral equation satisfied by \(\Pi_I \) and \(\Pi_{II} \) using elementary arguments.

\[
\Pi_I(n, E | E_0; t) = \int_0^t d\tau e^{-2(E_0) \tau} \int_{E_0}^{E_0'} R(E' | E_0) dE'
\]

\[
\times \sum_{m + m' = n} \Pi_I(m, E | E'; t - \gamma)
\]

\[
\times \Pi_{II}(m') E | E_0 - E' ; t - \gamma
\]
\[+ e^{-R(E_0)t} \delta(n-1) \Pi_\lambda(n, E|E_0; t) \cdot (1) \]

\[\Pi_\lambda(n, E|E_0; t) = \sum_{m} d \gamma e^{-R(E_0)\gamma} \int_{E_0}^{E} R(E'|E_0) dE' \]

\[x \sum_{m+m'=n-1} \Pi_\lambda(m, E|E'; t - \gamma) \]

\[x \Pi_\lambda(m', E|E_0 - E'; t - \gamma) \]

\[+ e^{-R(E_0)t} \delta(n-1) \Pi_\Pi(n, E|E_0; t) \cdot (2) \]

where

\[R(E_0) = \int_{E_0}^{E} R(E'|E_0) dE' \]

and \(\delta(n-1) = 1 \) when \(n=1 \) and is zero otherwise.

We observe that the integral equations (1) and (2) satisfied by \(\Pi_\lambda \) and \(\Pi_\Pi \) are exactly the same except for the condition on summations over \(m \) and \(m' \). It is remarkable that the change of the condition from \(m+m'=n \) to \(m+m'=n-1 \) should give such entirely different information as are contained in the functions \(\Pi_\lambda \) and \(\Pi_\Pi \). It may look surprising that such a trivial looking difference should give rise to two quite different approaches to cascade theory, but one has to remember that one is dealing with an integral equation for the functions \(\Pi_\lambda \) and \(\Pi_\Pi \).

Let us define the moment generating function

\[G_{\lambda, \Pi}(\nu, E|E_0; t) \]

corresponding to \(\Pi_\lambda(\nu, E|E_0; t) \).
and $\Pi_H(n, E | E_0; t)$ as

$$G_{I, \Pi}(u, E | E_0; t) = \sum_{n=0}^{\infty} u^n \Pi_{I, \Pi}(n, E | E_0; t) \tag{3}$$

On differentiating the integral equations with respect to t, we can obtain the following differential equations for G_I and G_{Π} with respect to t:

$$\frac{d G_I(u, E | E_0; t)}{dt} = \int_{E_0}^{E} \left\{ G_I(u, E | E'; t) \times G_{I}(u, E_0 - E'; t)
- G_I(u, E | E_0; t) \right\} R(E' | E_0) dE' \tag{4}$$

$$\frac{d G_{\Pi}(n, E | E_0; t)}{dt} = \int_{E_0}^{E} \left\{ u G_{\Pi}(n, E | E'; t) \times G_{\Pi}(n, E_0 - E'; t)
- G_{\Pi}(n, E | E_0; t) \right\} R(E' | E_0) dE' \tag{5}$$

In the more realistic models of cascade theory it will not be possible to determine the functions Π_I and Π_{Π} and only the first few moments of these distribution functions can be calculated.
2. **Multiple production of particles in a cascade.**

Our next observation is regarding an error in the usual formulation of the problem of the multiple production of particles in a cascade. The type of theories mentioned in the introduction for multiple-pion production assume that even in a single nucleon-nucleon collision multiple production is possible. Par contra, another type of theory assumes 'plural' production, i.e., it is assumed that only one meson is produced in single nucleon-nucleon collisions but a nucleon when passing through a nucleus produces an internucleon cascade by successive collisions with nucleons in the nucleus. For simplicity the collisions inside the nucleus are considered independent and the methods of cascade theory are used, the total thickness of matter it traversed being the diameter of the nucleus. Unlike the case of a cascade in finite thicknesses of matter in the gross, it is not possible to analyse the development of the intra-nuclear cascade at various 'thicknesses' but we can only make calculations on the basis that the nucleon has passed through the entire nucleus; i.e., the cascade hypothesis is used to compute the cross-sections for the production of particles in the various energy ranges in a single encounter between a nucleon and a nucleus.
We can define a cross-section

\[J_n(E_1, E_2, \ldots, E_n | E_0) \, dE_1 \ldots \ldots \ldots \ldots \, dE_n \, dt \]

that particles are produced in the energy intervals

\((E_i, E_i + dE_i), (E_2, E_2 + dE_2), \ldots, (E_n, E_n + dE_n)\)

and none elsewhere by a particle of energy \(E_0\) in passing through a matter of thickness \(dt\). The total cross-section is given by

\[J = \sum_{n} \frac{1}{n} \int_{E_1} \ldots \ldots \int_{E_n} J_n(E_1, E_2, \ldots, E_n | E_0) \, (dE_1 \ldots \ldots dE_n) \]

The mean number of particles produced in \(dt\) in the energy interval \(dE_i\) is given by

\[\rho(E_i | E_0) \, dE_i \, dt = \sum_{n} \frac{dE_i dt}{(n-1)} \int_{E_1} \ldots \ldots \int_{E_n} J_n(E_1, E_2, \ldots, E_n | E_0) \, dE_2 \ldots \ldots \]

and mean number of particles in \(dt\) is

\[\rho(E_0) = \int_{E_1} \rho(E_i | E_0) \, dE_i \]

\[= \sum_{n} \frac{1}{n} \int_{E_1} \ldots \ldots \int_{E_n} (nJ_n(E_1, E_2, \ldots, E_n | E_0) \]

We observe that the expression for the cross-section is different from that for the mean density \(\rho(E_0)\) except for the case \(n = 1\) when the function representing the mean density is also the cross-section for the replacement of a particle of energy \(E_0\) by one of energy \(E_1\) . (However, if we write the equations obeyed by the product densities including degree one, they will be different since the total cross-section \(J\) is different.
in both cases and this occurs in the equations for product densities). Thus even for writing the equations for mean number it is not enough to know the for the process, as is generally assumed, but it is also necessary to know the detailed cross-sections J_n. This fact may prove helpful in cleaning the multiplicative nature of the cross-section even from the mean number.

4. Ambiguous stochastic processes and cascade showers with lateral spread

An ultra-high energy ($>10^{15}$ eV) primary cosmic ray particle incident on the atmosphere produces an enormous number of particles in successive interactions and these particles are scattered over a large area. Such showers developed in the atmosphere in which the lateral spread of the particles may extend as far as one kilometer are called extensive air showers. In a study of these showers we are interested in the average number of particles in the energy range E, $(E + dE)$ at the thickness t. Let t be along the z-axis and r the radial distance from the z-axis in the x-y plane. Let the particle move at an angle lying between θ and $\theta + d\theta$ with the z-axis. θ_x and θ_y are the angles which the projection of the particle direction in the x-z and y-z planes make with the z-x axis. Thus the number of particles can be denoted by $\Pi(E, r, \theta, t) dE d\theta$. All
We include the distribution in \(r \) and \(\theta \) by defining the cross-section \(\sigma(\varphi) \, d\varphi \) to be the probability that the incident particle is deflected at an angle \(\varphi \) and \(\varphi + d\varphi \) with its original direction in travelling a thickness.

\(\sigma(\varphi) \) is an even function as the scattering should be symmetrical about the original direction.

Using the usual probability arguments, we can write the variation in the number of particles within an interval \(\theta \) and \(\theta + d\theta \) caused by scattering as given by

\[
- \Pi(E, r, \theta; t) \int_{\varphi} \sigma(\varphi) \, d\varphi + \int_{\varphi} \sigma(\varphi - \theta) \Pi(E, r, \varphi; t) \, d\varphi
\]

There is also a deterministic lateral displacement \(\theta \, dt \) due to the fact that the particles with co-ordinates \(r - \theta \, dt \) at \(t \) move to \(r \) at \(t + dt \); i.e.,

\[\Pi(r, \theta, t + dt) = \Pi(r - \theta \, dt, \theta; t)\]

The change in the number density at \(r \) due to variation \(dt \) in \(t \), assuming only this process is

\[\Pi(r, \theta, t + dt) = \Pi(r - \theta \, dt, \theta; t) = \Pi(r, \theta, t) - \theta \, dt \cdot \frac{\partial \Pi(r, \theta, t)}{\partial \theta}\]

Expanding \(\Pi(E, r, \theta + \varphi; t) \) as a Taylor series in \(\theta \), we have
\[-\Pi(E, n, \theta \cdot \ell) \int \sigma(\varphi) \, d\varphi + \left[\int \nabla \Pi(E, n, \theta \cdot \ell) + \frac{\varphi^2}{a} \nabla^2 \Pi(E, n, \theta \cdot \ell) + \cdots \right] \sigma(\varphi) \, d\varphi \]

The second term within the square brackets vanishes as \(\sigma \) is an even function. Here usually the Landau-approximation\(^1\) is made that all moments of \(\varphi \) higher than \(\varphi^2 \) are negligible which implies that the probability for deflection \(\sigma(\varphi) \) rapidly tends to zero as \(\varphi \) differs from zero; i.e. the scattering is confined to extremely small angles. This approximation is considered necessary since even the cumulative angular deviation \(\theta \) is treated to be small enough so that \(\sin \theta = 0 \) i.e. the path length \(\ell \) traversed is identical with \(z \)-axis. If the Landau approximation is not made finite values of \(\varphi \) will be allowed and hence \(\theta \) can take values greater than \(\pi/2 \). This means that the particle can be back-scattered which will disturb the Markovian nature of the process with respect to \(z \) and such a situation is supposed to lead to considerable mathematical difficulties.\(^2\)

1) L. Landau, J. Phys., 2, 237 (1940)
2) Kamata and Nishimura who believe that the Landau approximation can be improved by replacing \(\theta \) by \(\sin \theta \) do not seem to have realized this point. J. Kamata and K. Nishimura, Progr. Theor. Phys., Suppl. 5, \#135, 1950.
Recently, however, a new type of stochastic process called "ambigious" has been studied\(^1\) which involves back-scattering. To illustrate the process, let us consider the simple case of a particle characterised by its velocity which can take positive or negative values as the one-dimensional parameter \(x \) representing the distance travelled by the particle is varied. If the particle is assumed to move in the direction \(+x\) when the velocity is positive, it is necessarily implied that it moves in the direction of \(-x\) when the velocity is negative. If we choose time as the one-dimensional parameter with respect to which the process is supposed to be developing, then transition probabilities can be defined per unit time for the velocity to change sign and Markovian properties can be ascribed to be stochastic process unfolding with \(t \). But if \(x \) is chosen as the parameter of the process, the concept of development with \(x \) breaks down since the velocity can take positive and negative values.

A consequence of the above difficulty is that a differential equation cannot be written down for its motion. A way out for this problem, suggested by Bellmann\(^1\)) is to switch off the back-scattering probabilities outside a finite interval of space \((0, L)\) considering only the probabilities, that the particle emerges at 0 or L over all time. We are not concerned with what happens between 0 and L and beyond this interval. This is precisely the idea of "Switching off". We wish to suggest that this method can be applied to multiple particle production in cascades in which \(m\) of the particles go down (into the earth) and \(n - m\) are back-scattered, the thickness of the atmosphere providing the finite interval referred to above. Further the possibility of including back-scattering may lead to a formulation of the problem of lateral spread without making the Landau approximation.

CHAPTER XXII.

ON THE EQUIVALENCE OF THE FIELD THEORETIC AND FEYNMAN FORMALISMS

1. Introduction

The chronological operator \(P \) which orders the relative time co-ordinates of the interaction Hamiltonian, products of which appear in the Dyson expansion of the \(S \) matrix

\[
S = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int \cdots \int dx_1 \; dx_2 \; dx_3 \; \ldots \; dx_n \cdot (\Phi_i, P(H_I(x_1)H_I(x_2) \cdots H_I(x_n)), \Phi_i)
\]

(1)
does not prescribe the ordering of the operators within any single interaction Hamiltonian \(H_I(x) \) which represents the vertex containing operators corresponding to the same space-time point, \(x \). Other considerations have to be employed to re-order the creation and annihilation operators occurring in \(H_I(x) \) and one such was the introduction of the normal product operator, \(N \), which rearranges the operators such that the creation operators stand always to the left of the annihilation operators so that the vacuum expectation of any product of operators in normal product form is zero. The necessity for the introduction of such an operator which stems from its property just mentioned arose out of the following difficulty pointed out by Heisenberg. In electrodynamics the "matter" current \(j_\mu(x) \)

\[1\] W. Heisenberg, Zeits. fur Phys. 90, 209 (1934), 92, 692 (1934).

is \(e \bar{\psi}(x) \gamma_\mu \psi(x) \) where \(\psi(x) \) is the field operator for the electron and \(e \) the electromagnetic coupling constant.

If one computes the vacuum expectation value of this operator assuming the space-time label of \(\bar{\psi} \); which is \(x \) is slightly different from the corresponding label of \(\psi \) which is \(x' \) and then takes the limit as \(x \to x' \), then one gets an infinite result. Heisenberg attributed this infinity to the contribution from the sea of all the occupied negative energy states. He also suggested that by redefining the current density four-vector as the commutator

\[
\frac{\partial}{\partial x^\mu} \left[\bar{\psi}(x) \gamma_\mu , \psi(x) \right]
\]

we would find that its vacuum expectation value is zero. Since the normal product possesses exactly this property we can use, instead of the above form which is obtained by symmetrizing the theory in particle/antiparticle variables, the normal product form of the current operator and since the boson and fermion operators commute, all the vertices represented by \(\mathcal{H}_I \)'s can be supposed to be in normal product form.

We may also argue for the necessity of a normal product in the \(S \) -matrix in another way. Since the vacuum (as also the one-particle state) is an eigen-state of \(S \), if the latter could be written in the form \(1 + T \) we see immediately that the vacuum expectation of the operator \(T \) should be zero which would mean that it is in a normal product form. Of course this does not
ensure that the individual H_{x} model be in normal product form.

However, Ramakrishnan and collaborators demonstrated that the notion of a normal product is really not necessary if one is interested only in physical processes with prescribed initial and final states for which the reduction of the S-matrix to the Feynman form can be achieved much more simply and transparently than is the case with the complicated algebraic procedure of Wick. They use some concepts of stochastic theory for this purpose and give two methods for reducing the S-matrix to the Feynman form. In the first method they build up an interaction Hamiltonian in which the fermion creation and annihilation operators are not all in the same order as in the product but such that the creation operator b^{+} for a positron always occurs to the left of either an a^{+} which is the creation operator for an electron or b which is the positron annihilation operator. The interaction Hamiltonian then is

$$H_{x} \supset \sum_{p_{p}p} \left(a^{+}_{p} a_{p} + b^{+}_{p} b_{p} + a^{+}_{p} a_{p} + b^{+}_{p} b_{p} + c_{p} c_{p} \right)$$

where the symbol \supset indicates that all non-essential factors

have been omitted and the symbol \wedge is to indicate that each creation or annihilation operator is accompanied by the corresponding wave function. A unique prescription for this choice of H_T is based on the following stochastic arguments. The interaction at a vertex takes place not at a single space-time point but in a small interval of time, Δ. (This may obviate the difficulty regarding the vacuum expectation of the current operator mentioned above.) The process of pair annihilation at t represents the transition of a positive energy electron at t to a negative energy state at $t+\Delta$, the interaction taking place in the interval Δ so that the electron destruction operators should be placed to the right of the positron destruction operator. In the case of pair creation in the interval $t-\Delta$ and t, the negative energy state of the electron at t has to be traced back to a positive energy state at t, so that in this case b^+_p should be placed to the left of a^+_p. For electron and positron scattering the creation operators will be to the left of the annihilation operators thus justifying the interaction Hamiltonian (ω).

* Recently Cianiello has suggested that the limiting operation of $x \to x'$ need not necessarily make the vacuum expectation value of the current operator infinite but the latter may be merely undefined under such an operation. B.R. Cianiello, Nuovo Cimento, 14, 185 (1959)
With the Hamiltonian (2), Ramakrishnan reduce the S-matrix element to Feynman form in a simple way in which the commutation relations of operators corresponding to different time points are ignored and the process is viewed ab initio in the Feynman sequence.

In the second method Ramakrishnan et al\(^1\) use the conventional interaction Hamiltonian which however is not in normal product form. In the next section we will make a comparative study of this method and that of Wick which brings out the fact that if the stochastic concept of realization of a typical sequence of events is used to write out the integrand of the S-matrix, the reduction to the Feynman form of the matrix element becomes very simple.

2. Some remarks on the use of Wick's theorem

As mentioned in the introduction, Ramakrishnan and his collaborators\(^2\) have re-examined the connection between the field-theoretic and Feynman description of quantum mechanical collision processes and have arrived at a new and simpler

2) A. Ramakrishnan et al, loc. cit. Ibid.
proof of the equivalence of these two formalisms using stochastic arguments. In the second of these methods they1) use the conventional interaction Hamiltonian which is not in normal product form and the stochastic concept of a realisation of a "typical sequence of events" in the integrand of the S-matrix. We shall show in this section that if this concept of realisation is applied in to Wick's procedure, we obtain a simplification which is similar to that of the method of Ramakrishnan and Ranganathan2).

We shall first briefly recall Wick's procedure of reducing the S-matrix which contains the chronological product of operators into a sum of normal products. The first step is to replace the Dyson chronological operator \mathcal{P} which occurs in the S-matrix expansion (1) by the time-ordered product T of Wick, the two being the same in the conventional theories, since the fermion operators which alone may cause a relative sign between \mathcal{P} and T products occur in bilinear combination. The time-ordering fixes the relative positions of the interaction Hamiltonian density $H_I(x)$ in the integrand of the S-matrix, but $H_I(x)$ which

\begin{itemize}
 \item[1)] A. Ramakrishnan et al., loc cit
\end{itemize}
itself is a product of annihilation and creation operators has to be arranged in the normal product form i.e., with the creation operators to the left of destruction operators, for reasons mentioned in the introduction. We shall now show that \(H_{\ell}(x) \) should be put in normal product form does not in any way enter the scattering process where the reduction will concern operators belonging to different times (except for potential scattering in the lowest order, which actually turns out to be a trivial \(\mathbb{K} \) case) and in such a case the procedure suggested by Ramakrishnan et al. using the conventional Hamiltonian is identical with that using \(H_{\ell}(x) \) defined in normal product form.

The fundamental definition used by Wick is

\[
\mathbb{T}(U\mathbb{N}V) = \mathbb{N}(U\mathbb{V}) + U\mathbb{V} \quad (\mathbb{N})
\]

which defines the 'contraction' of two operators \(U \) and \(V \) indicated by dots placed over them. \(\mathbb{N} \) is the normal product operator. Writing \(H_{\ell}(x) \) in the normal product form, we find the integrand of the \(S \)-matrix to involve mixed \(\mathbb{T} \) products which can be expressed by means of Wick's theorem as a sum of normal products with all possible contractions (omitting, of course contractions between factors already in normal product form). For instance in quantum electrodynamics the integrand of the second order term in the \(S \)-matrix expansion can be written as
\[T(N)(\bar{\psi}(x_1)A(x_1)\psi(x_1)N(\bar{\psi}(x_2)A(x_2)\psi(x_2)) \]

\[= N(\bar{\psi}(x_1)A(x_1)\psi(x_1)\bar{\psi}(x_2)A(x_2)\psi(x_2)) \]

\[+ N(\bar{\psi}(x_1)A(x_1)\psi(x_1)\bar{\psi}(x_2)\dot{A}(x_2)\dot{\psi}(x_2)) \]

\[+ N(\bar{\psi}(x_1)\dot{A}(x_1)\psi(x_1)\bar{\psi}(x_2)\dot{A}(x_2)\dot{\psi}(x_2)) \]

\[+ N(\bar{\psi}(x_1)\dot{A}(x_1)\psi(x_1)\ddot{\psi}(x_2)\ddot{A}(x_2)\ddot{\psi}(x_2)) \]

\[+ N(\bar{\psi}(x_1)\ddot{A}(x_1)\psi(x_1)\ddot{\psi}(x_2)\ddot{A}(x_2)\ddot{\psi}(x_2)) \]

\[+ N(\bar{\psi}(x_1)\dddot{A}(x_1)\psi(x_1)\dddot{\psi}(x_2)\dddot{A}(x_2)\dddot{\psi}(x_2)) \]

where \(\dot{A} = eA_\mu Y_\mu \) and the contracted pairs are the Feynman propagators in configuration space. Each normal product on the right hand side of (10) corresponds to a Feynman diagram in configuration space. As is evident, for a given initial and final state, there is one and only one type of normal product which has a nonvanishing matrix element between given states and this normal product reduces to a product of propagators and the normal product of operators to be matched with the initial and final state wave functions.
It is to be noted that Wick's method is quite general and the reduction into normal products is made without reference to any specific process with given initial and final states. Ramakrishnan et. al. have emphasized that all the algebraic techniques involved in the method of Wick can be avoided and the procedure much simplified by specifying the initial and final states from the beginning itself. They do not work with the field operators but with their components, i.e. the annihilation and creation operators with their wave functions and consider a 'typical sequence' of events which contributes a non-vanishing term to the matrix element and then sum over all momenta to get the respective propagators corresponding to the intermediate states. Of course, the integral over space and time of the non-vanishing term corresponding to a typical sequence will vanish if energy and momenta are not conserved for the process. The procedure therefore consists in building up the propagator from the non-vanishing constituents of the integrand of the S-matrix rather than picking out the non-vanishing matrix element from a general reduction of an nth order product of field operators. No use, however, is made of the normal product form of $H_2(x)$.

We shall now give a brief description of the method of making matching prescribed by Ramakrishnan et. al. and then show that it is identical with the procedure of Wick provided we take only the non-vanishing term in the latter. The integrand of the nth order term of the S-matrix
taken between the initial and final states, \(|i\rangle \) and \(|f\rangle \) can be written as

\[
<f | [n] \ldots [l] \ldots [k] \ldots [j] \ldots [i] | i\rangle
\]

for a typical realisation of the time-ordered sequence of operators with definite momentum labels. For simplicity we shall consider the one-particle initial and final states defined by

\[
|i\rangle = \alpha^+(p_i)|\rangle_0 \quad ; \quad |f\rangle = \alpha^+(p_f)|\rangle_0
\]

In (4.5), a typical bracket contains

\[
\hat{\alpha}^+_{p} \hat{\alpha}^+_{p'} + \hat{\alpha}^+_{p'} \hat{b}^+_p + \hat{b}_p \hat{\alpha}^+_p + \hat{b}^+_p \hat{b}^+_p
\]

which, leaving aside the interaction potential which is not relevant for the discussion, is the integrand of \(H_I \) with definite momentum labels. Explicitly

\[
\alpha^+_p = \frac{1}{\sqrt{2E_p}} \alpha_p \nu_p e^{iF(x)}
\]

and similarly each creation and annihilation operator is accompanied by the corresponding wave function. The creation operator \(\alpha^+_p \), which operating on the vacuum gives the initial state has to be matched with the corresponding annihilation operator \(\alpha^-_p \) having the same momentum label which for the particular realisation may occur in the \(k \) th bracket.
Looking at the structure of the interaction (6) we find that this annihilation operator $\hat{\alpha}_{p'}$ may be accompanied either by an $\hat{\alpha}_{p}$, or a $\hat{\beta}_{p'}$ which in turn has to be matched with the corresponding annihilation or creation operator.

Case (i): If it is $\hat{\alpha}_{p'}$ then it has to be matched with the corresponding annihilation operator $\hat{\alpha}_{p}$ in the lth bracket with $t_l > t_k$. t denotes time.

Case (ii): If in the kth bracket $\hat{\alpha}_{p'}$ is accompanied by a $\hat{b}_{p'}$ which is the annihilation operator for a positron (in electrodynamics) we observe that the corresponding creation operator $\hat{b}^+_{p'}$ should occur in an earlier bracket $[j]$ with $t_j < t_k$. Since the positron which is destroyed should have been created earlier. From (6) we see that \hat{b}^+ occurs always to the right of an $\hat{\alpha}^+ \text{ or } \hat{\beta}^+$ so that in bringing $\hat{b}_{p'}$ to the left of $\hat{b}^+_{p'}$, it is has necessarily to cross over the left-hand member of the bracket containing $\hat{b}^+_{p'}$ which yields the negative sign, usually attributed to the positron propagator. In Wick's procedure the negative sign is already fed in by writing $H_T(\alpha)$ in normal product form, i.e., in a typical term of $H_T(\alpha)$, $\hat{b}^+_{p'}$ occurs to the left but has a negative sign.

This process of matching is continued until all the annihilation and creation operators in the integrand of the S-matrix are exhausted except the creation operator...
which for the particular realisation may occur in the \(m \) th bracket. This has to be matched with the annihilation operator \(a_{p_i}^+ \) in the final state. The matching of all intermediate operators (leaving aside the operators \(a_{p_i}^+ \) and \(a_{p_k}^- \)) corresponds in Wick's procedure to contracted pairs and the matching of \(a_{p_i}^+ \) and \(a_{p_k}^- \) actually yields the initial and final state wave functions which, in Wick's method, are obtained from the uncontracted field operators in the non-vanishing normal product when taken between the initial and final states. This can be seen as follows. In moving the creation and annihilation operators in the various brackets of (5) we have left the wave functions attached to them undisturbed in their respective brackets. Thus for case (1), the \(k \)th bracket after removing the creation and annihilation operators would be

\[
\left[\overline{u}_{p_i}, u_{p_k}^+ \right][e^{i(p_i - p')x_k}]
\]

and the \(l \)th bracket would be

\[
\left[\overline{u}_{p_i}, u_{p_l}^+ \right][e^{i(p' - p'')x_l}]
\]

Thus in juxta position, with \(t_r > t_k \), we would have

\[
\left[\overline{u}_{p_i}, u_{p_k}^+ \right][\overline{u}_{p_l}, u_{p_i}^+] e^{i(p_i - p')x_k} e^{i(p' - p'')x_l}
\]

Now \(\overline{u}_{p_i}, u_{p_k}^+ \) can be identified easily to be a single element of the positive energy part of the Feynman propagator in momentum space. The sum of all such terms for all possible realisations of momenta and spin will give the positive part of the Feynman propagator.
For case (ii) on the other hand, we found that there should be a $b_{p'}^+ \rho$, in a bracket ξ_j, with $t_j < t_k$. If we now use the prescription that the brackets, bereft of their creation and annihilation operators should be juxtaposed, starting from the right, in the same sequence in which the matching of the operators has been done, then since each of the brackets is a scalar we should have for the spinor part of the wave functions

$$\left[\overline{\psi}_p \gamma_\mu \psi_p' \right]_j \left[\overline{\psi}_{p'} \gamma^\nu \psi_p' \right]_k$$

the negative sign arising for the reason mentioned above.

Summing over all possible momenta and spins, $\overline{\psi}_p, \overline{\psi}_{p'}$ can be recognized to be the Feynman propagator for negative energies. This process of obtaining the propagators can be continued until we are left with just one spinor at the extreme right and one at the extreme left which correspond to the wave functions for the initial and final states.

Thus we see that the method of Ramakrishnan is equivalent to taking the non-vanishing terms of the normal product sum, xxxxxx between the initial and final states in Wick's procedure. All we need to employ in this simplified method is the commutation relations between annihilation and creation operators without having to evaluate the commutation relations of the field variables in which case one is forced to consider not the spinors themselves but their elements.