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Abstract

Let L̄i −→ Xi be a holomorphic line bundle over a compact complex manifold
for i = 1, 2. Let Si denote the associated principal circle-bundle with respect
to some hermitian inner product on L̄i. We construct complex structures on
S = S1 × S2 which we refer to as scalar, diagonal, and linear types. While
scalar type structures always exist, diagonal type structures are constructed
assuming that L̄i are equivariant (C∗)ni-bundles satisfying some additional
conditions. The linear type complex structures are constructed assuming
Xi are (generalized) flag varieties and L̄i negative ample line bundles over
Xi. When H1(X1;R) = 0 and c1(L̄1) ∈ H2(X1;R) is non-zero, the compact
manifold S does not admit any symplectic structure and hence it is non-
Kähler with respect to any complex structure.

In the case of diagonal type complex structures on S, we determine their
Picard groups and the field of meromorphic function when Xi = Gi/Pi where
Gi are simple and Pi maximal parabolic subgroups.
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Chapter 1

Introduction

The main aim of the thesis is to construct and study the complex structures
on the product of circle bundles, where these circle bundles are associated
to holomorphic line bundle over compact complex manifold Xi, i = 1, 2. In
the special case when the Xi are projective spaces and the circle bundles
are associated to the tautological line bundle over Xi, we get complex struc-
tures on the product of odd dimensional spheres. The complex structures on
S2m−1 × S2n−1, for positive integer n and m, were first studied by Riemann
for the case m = n = 1, H. Hopf for the case m = 1 and for the rest of
the case by Calabi-Eckmann [5]. Later, Loeb-Nicolau [19] constructed and
studied a more general family of complex structures on S2m−1 × S2n−1, for
positive integer m,n . The class of manifolds we consider here is obtained
by generalizing the construction of Loeb-Nicolau [19].

The general case of construction of complex structures on the product
of sphere bundles over compact complex manifolds can be reduced to the
case of line bundle. This is obtained by identifying the sphere bundles to
circle bundles associated to canonical line bundles over the projective space
bundles associated to the vector bundles. See the Section 3.4. Thus complex
structures on product of sphere bundles are obtained as that of complex
structures of product of circle bundles.

1.1 Hopf and Calabi-Eckmann Manifolds and

their Generalizations

Compact Riemann surfaces are Kähler manifolds and are in fact projective
varieties. H. Hopf [13] gave the first examples of compact complex manifolds
which are non-Kähler by showing that S1×S2n−1 admits a complex structure
for any positive integer n. Complex structures on S1 × S2n−1 are obtained
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by identifying it with the quotient of Cn \ {0} under a free and properly
discontinuous holomorphic action of Z. Here the Z-action on Cn \ {0} is
generated by the automorphism

(z1, z2, . . . , zn)→ (exp(2π
√
−1τ1)z1, exp(2π

√
−1τ2)z2, . . . , exp(2π

√
−1τn)zn)

for some fixed constants τ1, τ2, . . . , τn such that Im(τi) > 0, for i = 1, 2, . . . , n.
As their second Betti number vanishes, these manifolds are non-Kähler.
Complex manifolds thus obtained are called Hopf manifolds. In the case
when τ := τ1 = τ2 = · · · = τn, the corresponding Hopf manifold is the total
space of a holomorphic principal bundle over a projective space Pn−1 with
fibre the elliptic curve C∗/Z, where the Z-action on C∗ is generated by

z → exp(2π
√
−1τ)z ; for z ∈ C∗.

Haefliger [10] generalized Hopf’s construction by considering a free and
properly discontinuous Z-action on Cn \ {0}, now generated by a more gen-
eral holomorphic automorphism f of Cn fixing 0 and such that eigenvalues
λ1, λ2, . . . , λn of the derivative f ′(0) at 0 are inside the unit circle. See also
[8].

Calabi and Eckmann [5] showed that the product of any two odd dimen-
sional spheres admit complex structures and thus obtained a new class of
simply connected non-Kähler compact complex manifolds. To obtain com-
plex structures on S2n+1 × S2m+1, for n,m > 0, they explicitly constructed
complex analytic charts such that the following differential fibre bundle

S1 × S1 ↪→ S2n+1 × S2m+1 → CPn × CPm

becomes a holomorphic bundle with fibre an elliptic curve.
Loeb and Nicolau [19], inspired by Haefliger’s paper [10], constructed

a much larger class of complex structures on the product of odd dimen-
sional spheres. To achieve this they considered certain proper holomorphic
C-actions on CN . These actions arise as a one-parameter family of biholo-
morphism associated to a vector field ξ on CN . The vector field considered
here is of the form ξ = ξ0 + ξ1 + ξ2. The diagonal part ξ0 =

∑N
1=1 λizi∂/∂zi

is required to satisfy the so called weak hyperbolicity condition of type (m,n)
for N = m + n. The linear part ξ0 + ξ1 =

∑
i,j aijzi∂/∂zj is such that the

matrix (aij) is in an upper triangular form. The non-linear part ξ2 is a sum
of resonant monomial vector fields. This C-action induces a one dimensional
foliation on (Cm \{0})×(Cn \{0}). They showed that there is an embedding
of S2m−1×S2n−1 in (Cm \ {0})× (Cn \ {0}) transverse to each leaf and hence
inducing a complex structure on this manifolds. This new class of mani-
folds contains as special cases the elliptic curves, the Hopf manifolds and the
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Calabi-Eckmann manifolds. They studied the Dolbeault cohomology groups
and the Picard group of these manifolds, and, moreover, they were also able
to obtain a versal deformation of these of manifolds.

Recently, there have been many generalizations of Calabi-Eckmann man-
ifolds leading to new classes of compact complex non-Kähler manifolds by
López de Medrano and Verjovsky [20], Meersseman [21], Meersseman and
Verjovsky [22] and Bosio [4]. See also Ramani-Sankaran [27] and Sankaran
[29].

López de Medrano and Verjovsky [20] considered the one dimensional
foliation on CN associated to a diagonal vector field ξ0 =

∑N
1=1 λizi∂/∂zi,

where the sequence of complex numbers (λ1, λ2, . . . , λN) satisfy following
condition: For no pair of indices i, j does the segment [λi, λj] contains 0. Let
S be the union of Siegel leaves, that is, leaves which do not contain the origin
in their closures. Then S is either empty or is an open dense subset of CN .
Then the action of C given by the diagonal vector field ξ0 commutes with
the scalar multiplication of C∗ on CN . The quotient space N := S/(C×C∗)
is a compact complex manifold and is non-symplectic. As a special case,
they obtained the complex manifolds considered by Loeb and Nicolau [19]
corresponding to diagonal vector field.

Meersseman [21] generalized the construction of López de Medrano and
Verjovsky [20] to obtained a large class of compact complex manifolds. In
this case Meersseman considered the foliation obtained by an action of the
Cm on Cn such that n > 2m. This Cm action is given by a system of m
diagonal vector fields satisfying certain condition. In the case m = 1 this
condition is similar to that of López de Medrano and Verjovsky [20]. The
quotient N := S/(Cm ×C∗) of the union S of Siegel leaves under the action
of Cm ×C∗ is a compact complex manifolds. Here the C∗-action is by scalar
multiplication. In particular, it gives many examples of complex structures
on connected sums of products of spheres. If n = 2m+1 then N is a complex
torus. In other cases, N in non-symplectic and non-Kähler.

Ramani-Sankaran [27] introduced the notion of generalized Hopf man-
ifolds which are connected compact complex homogeneous manifolds and
which fibres over a projective variety G/P , where G is a simple complex Lie
group and P is a maximal parabolic subgroup of G, with fibre and structure
group a one dimensional complex torus. For this they consider a free and
properly discontinuous Z-action on total space E of the principal C∗-bundle
associated to the negative ample line bundle over the projective variety G/P ,
which generates the Picard group of G/P . The Z-action, via the structure
group action of C∗, on E is generated by the bundle isomorphism

e 7→ exp(2π
√
−1τ).e
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for e ∈ E and τ is a fixed complex number with Im(τ) > 0. The resulting
space W := E/Z is a non-Kähler homogeneous compact complex manifold
which is diffeomorphic to S1 × S(E) where S(E) is a total space of the
circle bundle associated to a U(1)-invariant hermitian metric on the line
bundle E. For example, when G = SL(n,C) and Pn−1 = SL(n,C)/P for a
maximal parabolic subgroup P of SL(n,C), the total space of the principal
C∗-bundle associated to the tautological line bundle over the projective space
Pn−1 = SL(n,C)/P is Cn\{0} and the quotient Cn\{0}/Z is a Hopf manifold.
They showed that the algebraic dimension of W ( i.e. transcendental degree
for the field of meromorphic functions on W ) is equal to dimC(W )− 1. Now
suppose that we have two such pair Pi ⊂ Gi where Gi,Pi for i = 1, 2 are as
above and that Li is the total space of the principal C∗-bundle associated to
the negative ample line bundle on Gi/Pi, which generates the Picard group of
Gi/Pi. The bundle L1×L2 is a principal C∗×C∗ bundle over G1/P1×G2/P2.
For τ ∈ C, Im(τ) > 0 take a C-action, via the structure group action of
C∗ × C∗, on L1 × L2 as follow

(e1, e2) 7→ (exp(2π
√
−1τz).e1, exp(2π

√
−1z).e2)

for z ∈ C, e1 ∈ L1 and e2 ∈ L2. The quotient space L1 × L2/C is the total
space of a principal bundle over G1/P1×G2/P2 with an elliptic curve as the
fibre and the structure group. Identifying S(L1) × S(L2) with the quotient
space L1 × L2/C, we obtain a class of homogeneous, non-Kähler, compact
complex manifold. Sankaran [29] called them generalized Calabi-Eckmann
manifolds.

1.2 Standard Action of a Torus

We extend the above construction in a more general setting. Let X1, X2 be
connected compact complex manifolds and let Li be a principal C∗-bundle
on Xi, for i = 1, 2. The bundle L := L1 × L2 is a principal C∗ × C∗ bundle
over X := X1 × X2. For τ ∈ C, Im(τ) > 0, we get a C-action on L as
in the construction of generalized Calabi-Eckmann manifolds and we have a
diffeomorphism of S(L) := S(L1) × S(L2) with the quotient manifold L/C.
The complex structure thus obtained on S(L), will be called scalar type.
Following Loeb-Nicolau [19], we consider more general C-actions on L to
obtain a larger class of complex structures on S(L). In this case the basic
construction involves the notion of standard action by the torus (C∗)ni on
the total space L̄i of the line bundle associated to the principal C∗-bundle
Li over a complex manifold Xi, for i = 1, 2. Fixing a hermitian metric on

4



the line bundle L̄i which is invariant under the maximal compact subgroup
(∼= (S1)ni), we denote the corresponding circle bundle again by S(Li).

Let E −→ B be a T = (C∗)n-equivariant principal C∗-bundle over a
complex manifold B. The associated line bundle Ē −→ B is again T -
equivariant. Identifying B with the zero cross section of the line bundle
Ē, we have E = Ē \B. Fix a hermitian metric on the line bundle Ē which is
invariant under the maximal compact subgroup (∼= (S1)n). We shall denote
by εj : C∗ ⊂ (C∗)n the inclusion of the jth factor and write tεj to denote
εj(t) for 1 ≤ j ≤ n. Thus any (t1, · · · , tn) ∈ T equals

∏
1≤j≤n tjεj. Let d be

a positive integer.

Definition 1.2.1. We say that the T -action on E is d-standard (or more
briefly standard) if the following conditions hold:
(i) the restricted action of the diagonal subgroup ∆ ⊂ T on E is via the
d-fold covering projection ∆ −→ C∗ onto the structure group C∗ of E −→ B.
(Thus if d = 1, the action of ∆ coincides with that of the structure group of
E. )
(ii) For any 0 6= v ∈ E and 1 ≤ j ≤ n let νv,j : R+ −→ R+ be defined
as t 7→ ||tεj.v||. Then ν ′v,j(t) > 0 for all t unless R+εj is contained in the
isotropy at v.

When Li −→ Xi, i = 1, 2, admit standard actions of torus (C∗)ni , any
choice of a sequence of complex numbers λ = (λ1, . . . , λN), N = n1 + n2,
gives a C-action on L, via the embedding αλ : C→ (C∗)n1 × (C∗)n2 which is
defined as follow:

z → (exp(λ1z), exp(λ2z), . . . , exp(λNz)).

Definition 1.2.2. We say the above C-action on L := L1×L2 is admissible,
if λk 6= 0 for 1 ≤ k ≤ N and λ satisfies the weak hyperbolicity condition of
type (n1, n2) (in the sense of Loeb-Nicolau [19, p. 788]), i.e.,

0 ≤ arg(λi) < arg(λj) < π, 1 ≤ i ≤ n1 < j ≤ N.

It can be shown that any admissible C-action on L is free and each orbit
is closed and properly embedded in L.

1.3 The Main Results

We shall continue with the notations of the previous section.
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Theorem 1.3.1 (Theorem 3.3.3). Let Li be a principal C∗-bundle over a
compact complex manifold Xi with a standard action of torus Ti, for i = 1, 2.
Suppose that αλ : C −→ T = T1 × T2 defines an admissible action of C on
L = L1 × L2. Then L/C is a (Hausdorff) complex analytic manifold and
the quotient map L −→ L/C is the projection of a holomorphic principal
C-bundle. Furthermore, L/C is diffeomorphic to S(L).

The complex structure thus obtained on S(L) is called diagonal type.
The scalar type structure arises as a special case of the diagonal type where
(C∗)ni = C∗ is the structure group of Li, i = 1, 2. In the case of scalar type
complex structure the differentiable S1×S1-bundle with projection S(L) −→
X is a holomorphic principal bundle with fibre and structure group an elliptic
curve.

By the above construction a new class of non-symplectic, non-Kähler
compact complex manifolds are obtained:

Theorem 1.3.2 (Theorem 3.3.9 ). Suppose that H1(X1;R) = 0 and that the
Chern class c1(L̄1) ∈ H2(X1;R) is non-zero. Then S(L) is not symplectic
and hence non-Kähler with respect to any complex structure.

Remark 1.3.3. The above construction of complex manifold S(L) is even
valid in the more general setting when the complex manifolds Xi, i = 1, 2,
are non-compact. In this thesis, the computation of the Picard group and
the algebraic dimension of S(L) are done in the case when Xi are certain
compact manifolds. And hence we shall restrict ourselves to the case where
Xi, i = 1, 2, are compact complex manifolds.

The action of the structure group (∼= C∗) of a principal C∗-bundle is
a standard action in a natural way. We construct a standard action of a
complex torus T̃ ' Cl+1 on a line bundle over a class of homogeneous complex
manifolds, namely the generalized flag variety which are of the form G/P ,
where G is a simply connected semi simple linear algebraic group over C of
rank l and P a parabolic subgroup of G.

The construction of a linear type complex structure is carried out under
the assumption that Xi is a generalized flag variety Gi/Pi, i = 1, 2, where
Gi is a simply connected semi simple linear algebraic group over C and Pi a
parabolic subgroup and Li is a principal C∗-bundle associated to a negative
ample line bundle L̄i over Xi. In this case Li is acted on by the reductive
group G̃i = Gi × C∗ in such a manner that the action of a maximal torus
T̃i ⊂ G̃i on Li is standard. Fix a Borel subgroup B̃i ⊃ T̃i and choose an
element λ ∈ Lie(B̃) where B̃ = B̃1 × B̃2 ⊂ G̃1 × G̃2 =: G̃. Writing the
Jordan decomposition λ = λs+λu where λs belongs to the the Lie algebra of
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T̃ := T̃1 × T̃2, we assume that λs satisfies the weak hyperbolicity condition.
For each such λ we have a C-action on L = L1×L2, induced by the embedding
C→ G̃ defined as follow,

z → exp(λz) ; for z ∈ C.

We say that this C-action is admissible if λs satisfies the weak hyperbolicity
condition. As in the diagonal case we show that for an admissible C-action,
S(L) is diffeomorphic to the quotient space L/C. Thus we obtain a complex
structure on S(L) of linear type and we denote it by Sλ(L). When λ = λs,
we get back the diagonal type complex structure.

This description of complex structures on S(L) helps to compute the
cohomology Hq(Sλ(L);O). In the case when the Xi are generalized flag
manifolds, using the Künneth formula due to A. Cassa [7] we show that
Hq(Sλ(L);O) vanishes for most values of q. Namely, we prove:

Theorem 1.3.4 (Theorem 5.0.7). Suppose that L = L1 × L2 where the
Li is principal C∗-bundle associated to a negative ample line bundle over
generalized flag variety Xi = Gi/Pi, for i = 1, 2. Suppose that 1 ≤ r1 ≤ r2

where ri = dimXi. Let Sλ(L) be the complex manifold associated to λ such
that the semi-simple part λs of λ satisfies the weak hyperbolicity condition.
Then Hq(Sλ(L);O) = 0 provided q /∈ {0, 1, r1, r1 + 1, r2, r2 + 1, r1 + r2, r1 +
r2 + 1}.

Theorem 1.3.5 (Theorem 5.1.2). If Pi are maximal and Li are negative
ample generators of Pic(Xi) ∼= Z, then Pic(Sλ(L)) ∼= Pic0(Sλ(L)) ∼= C.

We have the following result concerning the field of meromorphic func-
tions on Sλ(L) with diagonal type complex structure.

Theorem 1.3.6 (Theorem 5.2.1). Let Li be the negative ample generator of
Pic(Gi/Pi) ∼= Z where Pi is a maximal parabolic subgroup of Gi, i = 1, 2.
Assume that Sλ(L) is of diagonal type. Then the field κ(Sλ(L)) of meromor-
phic functions of Sλ(L) is purely transcendental over C. The transcendence
degree of κ(Sλ(L)) is less than dimSλ(L).

Construction of linear type complex structure, applications to Picard
groups and the field of meromorphic functions when Xi = Gi/Pi involve
some elementary concepts from representation theory of complex Lie groups.
We shall describe these preliminaries in Chapter 2.
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Chapter 2

Preliminaries

In this chapter, we recall certain well known definition and results which will
be used in the thesis. As described in the introduction, the aim of the thesis
is to construct a family of complex structure on the product of circle bundles
over compact complex manifolds Xi, i = 1, 2. In the case when complex
manifolds Xi are (generalized) flag manifolds, we shall study the cohomology
groups and the field of meromorphic functions of the constructed manifolds.

In first section of this chapter we state the definition and describe some
basic properties of flag manifolds. To study the cohomology groups we shall
require the Künneth formula for analytic sheaves. The second section of this
chapter deals with the Künneth formula. The third section deals with the
description of Loeb and Nicolau’s construction of complex structures on the
product of odd dimensional spheres Sm × Sn for m,n > 0 [19].

2.1 Flag Manifolds

Let G be a connected complex Lie group. A homogeneous complex manifold
X = G/P is called a flag manifold if P is a parabolic subgroup of G. Since a
parabolic subgroup contains radical of the group G, we can assume, without
loss of generality that a flag manifold is of the form G/P , where G is a
semisimple complex Lie group and P is a parabolic subgroup of G. For
detailed expositions on complex homogeneous varieties we refer to [3] and
[14].

We now fix some basic notations about complex Lie group.

Fix a maximal torus T and a Borel subgroup B, containing T , of a complex
semisimple Lie group G. Let P be a parabolic subgroup containing B. Let

8



χ(T ) := Hom(T,C∗) be the group of character of T . Let R ⊂ χ(T ) denote
the root system of the pair (G, T ) with gµ the root space corresponding to
a root µ ∈ R. Let R+ be the set of positive roots corresponding to the
Borel subgroup B. Let Φ = {µ1, µ2, . . . , µl} be the set of simple roots.
Corresponding to Φ, let S = {$1, $2, . . . , $l} be the set of fundamental
weights. Let Λ be the weight lattice. When G is simply connected we have
Λ = χ(T ). Let Λ+ ⊂ Λ denote the set of dominant weights.

The set of parabolic subgroups are in one to one correspondence with the
power set of Φ. For a weight $ =

∑
ci$i, consider the subset J := {µi | ci 6=

0} of Φ. We denote P$ for the parabolic subgroup which corresponds to
‘omitting’ the subset Φ \J of the simple roots. Thus P$ = B if $ is regular.

For a dominant weight $, we denote the corresponding finite dimensional
irreducible G-module with the highest weight $ by V ($). Furthermore, for
a dominant weight $, the dual G-module V ($)∗ is again an irreducible G-
module with the highest weight −w0($), where w0 is the element of largest
length in the Wely group W of G with respect to T .

Example 2.1.1. For the semisimple complex Lie group SL(n,C), the sub-
group of upper triangular matrices is a Borel subgroup B. All maximal
parabolic subgroups of SL(n,C) containing B are of the form:

Pi := {g = (glm) ∈ SL(n,C) | gl,m = 0 for i+ 1 ≤ l ≤ n, 1 ≤ m ≤ i}

where 1 ≤ i ≤ n− 1.

Example 2.1.2. For a parabolic subgroup P of the semisimple complex
Lie group SL(n,C), containing the Borel subgroup B of upper triangular
matrices, there exist a subset {k1, k2, . . . , kr} of {1, 2, . . . , n− 1} such that:

P = Pk1 ∩ Pk2 ∩ . . . ∩ Pkr

where Pk1 , Pk2 , . . . , Pkr are as defined in the Example 2.1.1.

Example 2.1.3. Let V be a complex vector space of dimension n. A flag F
in V is :

F : 0 ⊂ Vk1 ⊂ Vk2 ⊂ · · · ⊂ Vkr ⊂ V

where Vki is of the dimension ki. Let F be the set of all such flags in V . The
group SL(n,C) acts transitively on F . Let {e1, e2, . . . , en} be a basis for the
vector space V and let Wki be the subspace generated by {e1, e2, . . . , eki}.
Then the isotropy subgroup of the flag F : 0 ⊂ Wk1 ⊂ Wk2 ⊂ · · · ⊂ Wkr ⊂ V
is a parabolic subgroup P. Thus F acquires the structure of a flag manifold
SL(n, k)/P . In particular, when r = 1 , we get the Grassmann manifold
Gn.k.
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2.1.1 Line Bundles over a Flag Manifold

Let G be a simply connected semisimple complex Lie group. Let T be a
maximal torus in G and let B be a Borel subgroup containing T . Any char-
acter $ ∈ χ(T ) extends to a character $ : B → C∗ obtained by composing
the natural map B → T (as B = T.Bu, Bu is unipotent part of B) with
$ : T → C∗.

The character $ : B → C∗ can be further extended to give a character
$ : P$ −→ C∗. For the character $ : P$ −→ C∗, one has a G-equivalent
line bundle, whose total space is

G×P$ C := G× C/ ∼, where (gb, x) ∼ (g,$(b)x)

for g ∈ G, x ∈ C, b ∈ P$. We denote this line bundle on G/P$ by L̄−$.
These are all the line bundles over G/P$.

Theorem 2.1.4. For a dominant weight $,

H0(G/P$, L̄$)∗ ∼= V ($) and H0(G/P$, L̄$) ∼= V (−w0($)).

For a dominant weight $, let v$ be “the” highest weight vector in V ($).
Let P be the subgroup of G which stabilizes one dimensional vector space
Cv$. The subgroup P is a parabolic subgroup as the Borel subgroup B is
contained in P and moreover P = P$. Every parabolic subgroup arises in
this manner. This gives an algebraic embedding of G/P$ ↪→ P(V ($)). The
line bundle L̄∗$ = L̄−$ over G/P$ is the pull back of the tautological bundle
over P(V ($)).

2.1.2 Cone over a Flag Manifold

Let Y ⊂ Pn be a closed holomorphic submanifold. By the Theorem of Chow,
Y is an algebraic projective variety. Let I(Y ) be the ideal consisting of all
homogeneous polynomials in n+1 variables which vanishes on Y . Forgetting
the homogeneous structure of I(Y ), let Ŷ ⊂ Cn+1 be the affine subvariety
corresponding to the ideal I(Y ). We call the affine variety Ŷ as the cone over
Y . We call 0 ∈ Ŷ the vertex of the cone Ŷ .

Let G be a semisimple complex Lie group. Fix a maximal torus T and a
Borel subgroup B of G containing T . Let $ ∈ χ(T ) be a dominant weight.
Let P$ be the parabolic subgroup associate to $. Let L̄$ be the line bundle
associated to the weight $. We have an embedding of the flag manifold G/P$
into projective space P(V ($)) determined by the line bundle L̄$. For this
embedding the line bundle L̄−$ over G/P$ is the pullback of the tautological
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bundle over P(V ($)). We shall denote the cone over G/P$ by L̂−$. Then
L̂−$ is the affine subvariety of the affine space V ($).

The homogeneous coordinate ring of the projective variety G/P$ for the
projective embedding G/P$ ↪→ P(V ($)) is given by:

R = ⊕r≥0H
0(G/P$, L̄r$) = ⊕r≥0V (r$)∗.

Moreover, the cone L̂−$ over G/P$ is an affine variety with the coordinate
ring R.

Let X be an analytic variety. We say X is Cohen-Macaulay (resp. nor-
mal) at a point p ∈ X, if the local ring OX,p at the point p is Cohen-Macaulay
i.e., depth OX,p = dimOX,p (resp. OX,p is normal i.e., it is integrally closed
domain). The analytic variety X is called Cohen-Macaulay (resp. normal) if
it is Cohen-Macaulay (resp. normal) at all its points. Similarly, an algebraic
variety is Cohen-Macaulay (resp. normal), if the local ring at all its point is
Cohen-Macaulay (resp. normal).

An algebraic variety Y has a unique structure of an analytic variety.
We shall show that the cone L̂−$ over G/P$ for the projective embedding
G/P$ ↪→ P(V ($)) is Cohen-Macaulay and normal as an analytic variety.

For a point p ∈ Y we denote the algebraic local ring by OalgY,p and analytic

local ring by OhY,p.

Lemma 2.1.5. (1) OalgY,p is Cohen-Macaulay if and only if OhY,p is Cohen-
Macaulay.

(2) OalgY,p is normal if and only if OhY,p normal.

Proof. Since the completion of the local rings OalgY,p and OhY,p are the same, the
first statement follows because of the fact that a local ring (A,m) is Cohen-
Macaulay if and only if its completion (Â, m̂) is Cohen-Macaulay. Second
statement is a theorem by Zariski [33, p.320,Theorem 32].

The Lemma 2.1.5 implies that an algebraic variety Y is Cohen-Macaulay
(resp. normal) if and only if it is Cohen-Macaulay (resp. normal) as an
analytic variety.

Theorem 2.1.6. [26] Let L̄$ be an ample line bundle over G/P$. The
projective variety G/P$ is arithmetically Cohen-Macaulay with respect to
L̄$ i.e., the cone L̂−$, is a Cohen-Macaulay affine algebraic variety.

Theorem 2.1.7. [25] Let L̄$ be an ample line bundle over G/P$. The
projective variety G/P$ is arithmetically normal with respect to L̄$ i.e., the
cone L̂−$ is a normal affine algebraic variety.
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The above results hold also for Schubert varieties in flag manifolds and
also over any algebraically closed field of arbitrary characteristics.

From the Theorems 2.1.6, 2.1.7 and Lemma 2.1.5 it follows that the affine
analytic variety L̂−$ is Cohen-Macaulay and normal.

Let X be a smooth connected projective variety of dimension q and let L̄
be a negative ample line bundle over X. Let X be arithmetically Cohen-
Macaulay for the projective embedding determined by the ample line bundle
L̄∗. This means that the cone L̂ is a Cohen-Macaulay affine analytic space.
We denote the vertex of the cone L̂ by a. We identify the space X with the
image of the zero cross section of the line bundle L̄ −→ X . Let L be the
total space of the holomorphic principal C∗-bundle over X corresponding to
line bundle L̄. We have the following identification:

L = L̄ \ {X} = L̂ \ {a}.

We have the following computation of the cohomology groups H i(L,OL).

Proposition 2.1.8. Let L̄ be a negative ample line bundle over a smooth
connected projective variety X of dimension q. Suppose X is arithmetically
Cohen-Macaulay for the projective embedding determined by the ample line
bundle L̄∗. Then,

H i(L,OL) = 0 for all i 6= 0, q, where q = dimX.

Moreover, H0(L,OL) ∼= H0(L̂,OL̂).

Proof. The local ring at the vertex a ∈ L̂ is Cohen-Macaulay ring. This
means that the depth of the local ring OL̂,a at the vertex a is q + 1, i.e.,
depth OL̂,a = q + 1. In this case, by [2, Corollary 3.9], the restriction maps

H i(L̂,OL̂) −→ H i(L,OL)

is isomorphism for i < q. Now since L̂ is an affine analytic space and hence
a Stein space, Cartan’s Theorem B [6] implies that the cohomology groups
H i(L̂,OL̂) vanish for i 6= 0. This implies that H i(L,OL) = 0, 0 < i < q.

Vanishing of the cohomology group Hq+1(L,OL) follows by [9, Theorem
3.4] because L is non-compact and connected. All other higher cohomology
groups H i(L,OL), i > q+1, vanishes as L is a complex manifold of dimension
q + 1.
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2.2 Künneth Formula for Analytic Sheaves

The main aim of this section is to state the Künneth formula for the analytic
coherent sheaves over complex manifolds. The Künneth formula will enable
us to compute the cohomology groups of the complex manifolds that will be
constructed in the later part of the thesis.

In the case of algebraic category we have the following Künneth formula
due to J. H.Sampson and G.Washnitzer [28]. Let X and Y be algebraic
varieties over C. Let F and G be algebraic coherent sheaf on X and Y
respectively. Then:

Hk(X × Y, p∗XF ⊗O p∗Y G) ∼=
⊕
i+j=k

H i(X,F)⊗C H
j(Y,G)

where pX : X×Y −→ X and pY : X×Y −→ Y are the canonical projections
and O is the structure sheaf on X × Y . A similar kind of formula holds in
the analytic case in the situation that we are in.

Before we state the formula in the analytic case we shall describe the
basic ingredients involved in it, which includes the notion of completed tensor
product of analytic Fréchet-nuclear coherent sheaves. For more details and
examples we refer to [24].

A subset A of a linear space E over C is absolutely convex if αx+βy ∈ A,
whenever x, y ∈ A and α, β ∈ C with |α|+ |β| ≤ 1. If for each element x ∈ E
there is a positive number % with x ∈ %A then A is called absorbing. Finally
we shall call an absorbing absolutely convex subset A central if x ∈ A
whenever αx ∈ A for all α ∈ C with |α| < 1.

A semi-norm on a linear space E is a real valued function p with the
following properties

(1) p(x+ y) ≤ p(x) + p(y) for x, y ∈ E
(2) p(αx) = |α|p(x) for α ∈ K and x ∈ E.

In each linear space E there is a one to one relation between semi-norms and
central subsets. For each central subset A, the equation

pA(x) = inf{% > 0 | x ∈ %A} for x ∈ E

determines a semi-norm pA for which

A = {x ∈ E | pA(x) ≤ A}.

Conversely each semi-norm p can be obtained in this way from the central
subset

A = {x ∈ E | p(x) ≤ 1}.
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Let ℘(E) be a system of semi-norms p on a linear space E with the
following properties:

(1) For any finitely many semi-norms p1, p2, . . . , pn ∈ ℘(E) there is a
semi-norm p ∈ ℘(E) with pr(x) ≤ p(x) for x ∈ E and r = 1, 2, . . . , n.

(2) For each element x0 6= 0 of E there is a semi-norm p0 ∈ ℘(E) with
p0(x) > 0.
The system ℘(E) determine a topology by demanding that the all semi-norms
p ∈ ℘(E) be continuous. The linear space E which is made into a topological
Hausdorff space in this way is called a locally convex topological space. The
sets

Uε = {x ∈ E | p(x) ≤ ε} for p ∈ ℘(E) and ε > 0

then form a fundamental system UF(E) of central zero neighborhoods. The
set U(E) is the collection of all central subsets U for which there is a set
U0 ∈ UF(E) with U0 ⊂ U .

For a central subset U of a linear space E, if the semi-norm pU ,

pU(x) = inf{% > 0 | x ∈ %U} for x ∈ E

is such that pU(x) > 0 for x 6= 0, then the linear space E is a normed linear
space with the norm pU . Given a central subset U ∈ U(E) in a locally convex
space E, the quotient space E(U) := E/p−1

U (0) is a normed space and the
norm is given by:

x 7→ ||x|| := pU(x).

Moreover, any normed linear space E with the norm p, is obtained in this
way with p = pU , where

U = {x ∈ E | p(x) ≤ 1}

is a central closed subset. In this case U is the closed unit ball in the normed
space E.

The topological dual of a locally convex space E is the linear subspace
E ′ of the algebraic dual E∗ which consists of all continuous linear forms. For
every subset A of a locally convex space E we denote by A0 the polar

A0 = {a ∈ E ′ : |〈x, a〉| ≤ 1 for x ∈ A}.

Definition 2.2.1. Let E and F be locally convex normed spaces, with closed
unit balls U ⊂ E and V ⊂ F . A linear operator T : E −→ F is called nuclear
if there are continuous linear forms an ∈ E ′ and elements yn ∈ F with∑

pU0(an)pV (yn) < +∞
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such that the T has the form

Tx =
∞∑
i=1

〈x, an〉yn, for x ∈ E

Definition 2.2.2.

1. A locally convex space E is called a nuclear space if for each U ∈ U(E)
there exists V ∈ U(E) with V ⊂ %U for some positive number %, such
that the canonical mapping from E(V ) onto E(U) of normed spaces is
nuclear.

2. A Fréchet space is a locally convex topological space which is metrizable
and complete.

A closed subspace of a Fréchet space (resp. nuclear space) is a Fréchet
space (resp. nuclear space). A Hausdorff quotient, i.e. quotient of a topo-
logical vector space by its closed subspace, for a Fréchet space (resp. nuclear
space) is again a Fréchet space (resp. nuclear space) with the usual quotient
topology.

For a separable complex analytic space X and a coherent analytic sheaf
F on X, the vector space Γ(X,F), of global analytic sections of F , has a
natural structure of topological vector space with respect to which Γ(X,F) is
a Fréchet-nuclear space. For F = O, this topology on Γ(X,F) is the same as
the topology of uniform convergence of analytic functions on compact subsets
of X.

2.2.1 Analytic Tensor Product

Let E and F be two linear locally convex topological space. On the algebraic
tensor product E ⊗F we shall construct two locally convex topologies using
two system of semi-norms on E ⊗ F . In the case when E and F are nuclear
spaces, these two topologies turns out to be identical. In this case, the
completion of this topology on E⊗F will be called the completed analytical
tensor product of E and F .

For arbitrary central subsets U ∈ U(E) and V ∈ U(F ) we associate a
semi-norm π(U,V ) by:

π(U,V )(z) = inf

{
n∑
r=1

pU(xr)pV (yr)

}
.

Here the infimum is taken over all possible representations of the element z
in the form, z =

∑n
r=1 xr ⊗ yr, with xr ∈ E and yr ∈ F.
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Similarly for U ∈ U(E) and V ∈ U(F ) we associate a semi-norm ε(U,V ) as
follow:

ε(U,V )(z) = sup

{∣∣∣∣∣
n∑
r=1

〈xr, a〉〈yr, b〉

∣∣∣∣∣ : a ∈ U0, b ∈ V 0

}
.

The above expression of ε(U,V )(z) is independent of the representation of the
element z =

∑n
r=1 xr ⊗ yr.

Using these two system of semi-norms we obtain two locally convex
topologies on the algebraic tensor product E ⊗ F , called π-topology, de-
noted by E⊗πF , and ε-topology, denoted by E⊗εF . The π-topology is finer
than ε-topology. We denote the respective completion by E⊗̂πF and E⊗̂εF .

Theorem 2.2.3. If E and F are nuclear space, then E ⊗π F = E ⊗ε F .
Moreover, E ⊗π F = E ⊗ε F is nuclear space.

Under the hypothesis of the Theorem 2.2.3, we shall denote the completed
analytic tensor product E⊗̂πF = E⊗̂εF by E⊗̂F .

Example 2.2.4. If U is an open subset of Cn and V is an open subset of Cm,
then the set of holomorphic functions, Γ(U×V,OU×V ) ∼= Γ(U,OU)⊗̂Γ(V.OV ).

2.2.2 The Künneth Formula

Definition 2.2.5.

1. A coherent analytic sheaf F on a complex analytic space X is a Fréchet
sheaf if F(U) is a Fréchet space for any open set U ⊂ X and if the
restriction homomorphism F(U) −→ F(V ) is continuous for any open
set V ⊂ U .

2. A Fréchet sheaf F is said to be nuclear if F(U) is a nuclear space for
any open set U in X.

3. A Fréchet sheaf F is called normal if there exists an open cover for X
which is a Leray cover for F i.e there X can be covered with open sets
Ui such that Hk(Ui,F) = 0, for k > 0.

Lemma 2.2.6. [7, p. 927]. For a complex manifold X, any coherent analytic
sheaf is Fréchet-nuclear and normal.

On a complex space X with countable topology, one has the notion of
completed tensor product F⊗̂G of coherent analytic Fréchet nuclear sheaves
F and G. By definition F⊗̂G(U) := F(U)⊗̂G(U), for U open in X.
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Example 2.2.7. The structure sheaf of complex manifold is Fréchet nuclear
and from the Example 2.2.4, it follows that OX×Y = pr∗XOX⊗̂pr∗YOY , where
prX denotes the projection X × Y −→ X.

Let now X be a complex space with countable topology. Let F be a
Fréchet-nuclear coherent sheaf on X. Let U be a countable Stein open cov-
ering of X. We have a canonical isomorphism H∗(U ,F) ∼= H∗(X,F). If we
put on Γ(U,F), for an arbitrary open set U of X, the usual Fréchet-nuclear
topology, then C∗(U ,F) becomes a Fréchet nuclear space and so by passing
to cohomology, we get the quotient topology on H∗(X,F), which is generally
not separated. The cohomology group H∗(X,F) is Fréchet-nuclear locally
convex space if the quotient topology obtained on H∗(X,F) is separated.

We now state the Künneth formula in case when the cohomology groups
H∗(X,F) and H∗(Y,G) are separated. For more general treatment see [7].

Theorem 2.2.8. [7, Teorema 3] Let F and G be Fréchet-nuclear and nor-
mal coherent analytic sheaves on complex space X and Y . Assume that X
and Y are second countable and that the cohomology groups H i(X,F) and
H i(Y,G),∀ i ≥ 0, are separated. Then for every non-negative integer k there
exists a topological isomorphism

Hk(X × Y,F⊗̂G) ∼=
⊕
i+j=k

H i(X,F)⊗̂Hj(Y,G)

of topological vector space.

2.3 Complex Structures on S2n1−1 × S2n2−1

Let S(Li) be the S1-bundle over a complex manifold Xi associated to a holo-
morphic principal C∗- bundle Li −→ Xi for i = 1, 2. We shall be con-
cerned with complex structures on S(L1) × S(L2). We first consider case
where Xi := Pni−1, the projective spaces, for positive integer ni, i = 1, 2,
and Li := Cni \ {0} the holomorphic tautological principal C∗-bundle over
Xi, i = 1, 2. For a fixed hermitian inner product on the vector space Cni , the
unit sphere S2ni−1 ⊂ Cni \ {0} is the total space of the S1-bundle S(Li).

Complex structures on the product of odd dimensional spheres S2n1−1 ×
S2n2−1 were first studied by Riemann for the case n1 = n2 = 1, by H. Hopf for
the case n1 = 1, n2 ≥ 1 and for the case ni > 1, i = 1, 2 by Calabi-Eckmann
[5]. Later, Loeb-Nicolau [19] constructed and studied a more general family
of complex structure on S2n1−1 × S2n2−1, for positive integers n1 and n2. In
this thesis we shall generalize the construction of Loeb and Nicolau to obtain
a family of complex structures on the more general space S(L1)× S(L2).
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2.3.1 Classical Examples

Elliptic Curves:

Complex structures on the compact torus S1×S1 are obtained by identifying
it with the quotient space C∗/Z, where the Z-action on C∗ is generated by the
automorphism: z 7→ exp(2π

√
−1τ)z, for τ ∈ C∗ such that Im(τ) > 0. The

Z-action on C∗ is properly discontinuous and free. Thus we obtain a complex
structure on C∗/Z and hence complex structure on S1 × S1. The compact
torus S1 × S1, endowed with the above complex structure, and denoted by
Eτ , is the elliptic curve. Moreover, elliptic curves are algebraic manifolds.

Hopf Manifolds

Hopf manifold is a compact complex manifolds which is the quotient Cn \
{0}/Z, for n ≥ 2, where the Z action is generated by an automorphism g,
obtained as follow: Fix complex numbers τj ∈ C, 1 ≤ j ≤ n, where Im(τj) > 0
for all j. Then for z = (z1, z2, . . . , zn) ∈ Cn \ {0},

g(z) = (exp(2π
√
−1τ1)z1, exp(2π

√
−1τ2)z2, . . . , exp(2π

√
−1τn)zn).

As a differential manifold, the Hopf manifold is diffeomorphic to S1 × S2n−1.
See [16, p.49]. Complex manifolds considered by Hopf [13] are those when
τj = τ for all j, where τ is a fixed complex number with Im(τ) > 0.

Calabi-Eckmann Manifolds

Calabi and Eckmann [5] constructed complex structures on the product of
odd dimensional spheres, S2n1−1×S2n2−1, n1, n2 ≥ 2. The complex structures
were obtained by explicitly constructing holomorphic chart. The complex
manifolds thus obtained are first examples of compact, simply connected,
non-Kähler manifolds. The Calabi-Eckmann manifolds are total spaces of a
holomorphic principal bundles over Pn1−1×Pn2−1 with fibre an elliptic curve.

2.3.2 Loeb and Nicolau’s Construction

A larger class of complex structures were obtained by Loeb and Nicolau
[19] on the product of odd spheres S2n1−1 × S2n2−1 than those considered by
Calabi-Eckmann [5]. Their construction was greatly inspired by Haefliger’s
paper [10]. We start this section by discussing the results of the Haefliger’s
paper [10] and then we shall describe Loeb and Nicola’s construction.

A.Haefliger, in [10], described the versal deformation of transversely holo-
morphic foliations on the sphere S2N−1 induced by the holomorphic flows
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associated to certain vector fields on CN . Let ξ be a vector field such that
ξ(0) = 0. Then

ξ(z) =
∑

aijzi
∂

∂zj
+
∑

zizjfijk(z)
∂

∂zk
,

where z = (z1, z2, . . . , zN) and fijk(z), 1 ≤ i, j, k ≤ N , are holomorphic
functions on CN . We say ξ is in the Poincaré domain if the convex hull
in C of the set of eigenvalues of the matrix (aij), associated to the linear
part

∑
aijzi

∂
∂zj

of ξ, does not contain 0. The orbit of the holomorphic flow

associated with a vector field ξ, which is in the Poincaré domain, will induce
a one dimensional holomorphic foliation Fξ on U \ {0}, where U is a small
enough neighborhood of the origin. Haefliger showed that there exists an
embedding S2N−1 → U \{0} transverse to leaves of the foliation Fξ. Thus the
restriction of the foliation Fξ induces a transversely holomorphic foliation
F0
ξ on the sphere S2N−1. Recall that a foliation F of codimension k on a

differentiable manifolds M is defined by a family (Ui, φi) where {Ui} is an
open covering of M and φi : Ui −→ Rk are smooth submersions such that
there exist cocycle {gij} of local transformation of Rk such that φi = gij ◦φj.
The foliation F on M is said to be transversely holomorphic foliation of
(complex) codimension q if submersions φi takes value in Cq = Rk and the
cocycle {gij} are local holomorphic transformation of Cq.

Let λ = {λ1, λ2, . . . , λN} be a sequence of non-zero complex numbers. A
λ-resonant monomial vector field in CN is a vector field of the form

a.zm
∂

∂zk
= a.zm1

1 zm2
2 · · · z

mN
N

∂

∂zk
, a ∈ C,

such that
λk = (m, λ) := m1λ1 +m2λ2 + · · ·+mNλN .

Let gλ be the set of vector fields commuting with the diagonal vector field
ξ0 =

∑N
i=1 λizi

∂
∂zi

. The set gλ is a Lie subalgebra of the Lie algebra of

holomorphic vector fields on CN . If the convex hull of λ1, λ2, . . . , λN does
not contain 0 ∈ C, then gλ is of finite dimension. The set of λ-resonant
monomial vector fields forms a basis for the subalgebra gλ. Elements of gλ
are called λ-resonant vector fields.

Given a vector field η in the Poincaré domain, let λ = {λ1, λ2, . . . , λN} be
the set of eigenvalues of linear part of η. The theorem of Poincaré-Dulac [1,
p.190] states that there is a biholomorphic map h defined in a neighborhood
of the origin such that h∗(η) := ξ is a λ-resonant vector field in normal form,
i.e, ξ can be written as a sum

ξ = ξ0 + ξ1 + ξ2 = ξ0 +
∑

(m,λ)=λk

asmz
m ∂

∂zk
(1)
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where ξ0 is the diagonal vector field
∑N

i=1 λizi
∂
∂zi

, ξ0 +ξ1 is the linear part of ξ
in lower Jordan form and ξ2 is the sum of λ-resonant monomial vector fields.
By a further diagonal coordinate change by a diagonal matrix with diagonal
entries ε−1, ε−2, . . . , ε−N for small enough ε, one can make the coefficients asm
of the non-diagonal part ξ1 + ξ2 as close to the zero as possible. In this case
we shall say that non-diagonal part of ξ is close to the zero vector field.

Lemma 2.3.1. Let ξ0 =
∑N

i=1 λizi
∂
∂zi

be a diagonal vector field on CN such
that convex hull of λ1, λ2, . . . , λN does not contain 0. Then the leaves of the
foliation Fξ0 on C0 \ {0} are transverse to the unit sphere S2N−1.

Proof. Let v =
∑N

i=1 pi
∂
∂zi

. The real vector v is tangent to S2N−1 at a point
z = (z1, z2, . . . , zN) if and only if

N∑
i=1

Re(z̄ipi) = 0.

Hence Fξ0 is not transversal to S2N−1 at a point z = (z1, z2, . . . , zN) if and
only if for all non-zero a ∈ C∗

N∑
i=1

Re(aλi)|zi|2 = 0.

This is possible only if |z1|2λ1 + |z2|2λ2 + · · ·+ |zN |2λN = 0. Since
∑
|zi|2 = 1

as z ∈ S2N−1, this implies that 0 belongs to the convex hull of λ1, λ2, . . . , λN .
Hence we get a contradiction.

Now let ξ be a vector field on CN , which is in the Poincaré domain.
In the view of the Poincaré -Dulac theorem, without lost of generality, we
assume that ξ is a λ-resonant vector field in normal form (1) and that the
non-diagonal part if ξ is sufficiently close to the zero vector field. The orbit
of the flow associated to the vector field ξ induces a foliation Fξ on CN \{0}.
Using the Lemma 2.3.1 it can be shown that the leaves of the foliation Fξ
are transverse to the unit sphere S2N−1 and hence induces a transversely
holomorphic foliation F0

ξ of dimension one on S2N−1. Haefliger obtained a
versal deformation of the transversely holomorphic foliation F0

ξ on S2N−1.

Theorem 2.3.2. [10, p.243] Let ξ be a vector field in the Poincaré domain.
Assume that ξ is λ-resonant vector field in normal form (1) and the non-
diagonal part of ξ is close to zero vector field. Let S be a small enough
neighborhood of 0 in a vector subspace of gλ complementary to the vector
subspace generated by [ξ, gλ] and ξ.

20



The family F0
ξ+s of the transversely holomorphic foliations on S2N−1 ob-

tained by intersecting the orbits of the flows generated by ξ + s is a versal
deformation of F0

ξ parametrized by s ∈ S.

The above theorem is proved by showing that the Kodaira-Spencer map
ρ : T0S −→ H1(S2N−1, θtrF0

ξ
) is an isomorphism. Here θtrF0

ξ
is the sheaf of germs

of transversely holomorphic vector fields for the foliation F0
ξ on S2N−1.

Loeb and Nicolau obtained a transversely holomorphic foliation on S2n1−1×
S2n2−1 as in the same way by a mean of a vector field on CN , N = n1 + n2,
satisfying certain hypotheses. The transversely holomorphic foliations on
Sn1,n2 := S2n1−1 × S2n2−1 turns out to be of zero dimensional and hence
endows a complex structure on it. We now describe the construction.

A vector field ξ on CN in Poincaré domain is called weakly hyperbolic of
type (n1, n2) if the the set of eigenvalues, λ = {λ1, λ2, . . . , λN} of the linear
part of ξ fulfills the following condition:

0 ≤ arg λi < arg λj < π for 1 ≤ i ≤ n1 and n1 < j ≤ n1 + n2 = N.

Upto to a change in the coordinate order and multiplication by a non-zero
constant we can assume that the eigenvalues λ1, λ2, . . . , λN fulfill the follow-
ing normalization conditions

0 ≤ arg λ1 ≤ arg λ2 ≤ · · · ≤ arg λN < π

and
|λk| ≤ |λk+1| if arg λk = arg λk+1.

Theorem 2.3.3. [19, Theorem 1] Let ξ be a holomorphic vector field, which
in the Poincaré domain, defined in a neighborhood of origin in CN . Assume
that ξ is weakly hyperbolic of type (n1, n2) and fulfilling the normalization
conditions. Then there are two complex submanifolds Y1 and Y2 of dimension
n1, n2 respectively, contained in a neighborhood U of the origin and which are
saturated by the foliation Fξ|U . Moreover there is an embedding τ of Sn1×Sn2

in CN transverse to Fξ|U and meets each leaf of Fξ|U \ (Y1 ∪ Y2) at exactly
one point.

Using the Poincaré-Dulac theorem we can assume that the vector field ξ
is λ-resonant in the normal form (1) and furthermore, the non-diagonal part
of ξ is sufficiently close to zero vector field. Under these assumptions on ξ,
in the above theorem one can take U = CN , Y1 = Cn1 ×{0}, Y2 = {0}×Cn2

and τ to be the canonical embedding of Sn1,n2 in CN .
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Corollary 2.3.4. [19, Corollary 2] Let ξ be a vector field on CN in Poincaré
domain satisfying the weak hyperbolicity condition and normalization con-
ditions. Assume that ξ is a λ-resonant vector field in the normal form
(1) and the non-diagonal part of ξ is sufficiently close to the zero vector
field. Then the canonical embedding i : Sn1,n2 −→ CN induces a complex
structure on Sn1,n2. This complex manifold, denoted by Sn1,n2

ξ , is naturally
identified with the leaf space of Fξ. Moreover the vector field ξ defines on
(Cn1 \ {0})× (Cn2 \ {0}) a structure of holomorphic principal C- bundle over
Sn1,n2

ξ .

The above corollary provides a general method of constructing complex
structures on a product of odd dimensional spheres. By this method, the clas-
sical examples, namely elliptic curves, Hopf manifolds and Calabi-Eckmann
manifolds, can also be obtained as particular cases. We describe this as
follow.

Elliptic curve: Let n1 = n2 = 1 and take τ such that Im(τ) > 0. Consider
the diagonal vector field ξ = z1

∂
∂z1

+ z2τ
∂
∂z2

on C2. The C-action on C∗×C∗
induced by ξ is given by:

(t, z1, z2) 7→ (exp(t)z1, exp(τt)z2).

Each orbit of this C-action intersect {1} × C∗ and in this case, for (1, z)
and (1, w) of {1} × C∗, t.(1, z) = (1, w) only if t = 2π

√
−1k, for some

k ∈ Z. Hence the orbit space (C∗ × C∗)/C is then identified to the quotient
of {1}×C∗ ∼= C∗ by the discrete subgroup of C∗ generated by exp(2π

√
−1τ).

Any elliptic curve is obtained in this way.

Hopf manifolds: Hopf obtained a family of complex structures on S1 ×
S2n−1, n > 1. These complex manifolds can again be obtained by the method
of Loeb and Nicolau. For this case we take n1 = 1 and n2 = n. Let
τ1, τ2, . . . , τn be non-zero complex numbers such that Im(τi) > 0, for 1 ≤
i ≤ n. Consider the diagonal vector field

ξ = z
∂

∂z
+ w1τ1

∂

∂w1

+ w2τ2
∂

∂w2

+ · · ·+ wnτn
∂

∂wn

on Cn+1. The C-action induced by ξ on C∗ × Cn \ {0} is given by

(t, z1, w1, w2, . . . , wn) 7→ (exp(t)z1, exp(τ1t)w1, exp(τ2t)w2, . . . , exp(τnt)wn)

Each orbit of the C-action on C∗ × Cn \ {0} intersect {1} × Cn \ {0}. And
as in the case of elliptic curve, the orbit space (C∗ × Cn \ {0})/C can be
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identified to quotient of {1} ×Cn \ {0} ∼= Cn \ {0} by the action of group Z
generated by the automorphism

(w1, w2, . . . , wn) 7→ (exp(2π
√
−1τ1)w1, . . . , exp(2π

√
−1τn)wn).

Thus we obtain a Hopf manifold.

Calabi-Eckmann manifolds: Calabi-Eckmann [5] constructed a family
complex structures on S2n1−1 × S2n2−1, n1, n2 > 1. These manifolds are the
total spaces of a principal bundles over Pn1−1 × Pn2−1 with fibre an elliptic
curve. They can be viewed as the orbit space of the C-action on (Cn1 \{0})×
(Cn2 \ {0}), induced by the vector field

ξ =

n1∑
i=1

zi
∂

∂zi
+ τ(

n2∑
j=1

wj
∂

∂wj
)

for non-zero τ such that Im(τ) > 0.

Loeb and Nicolau studied the Dolbeault’s cohomology and deformation of
the complex manifolds Sn1,n2

ξ , where the vector field ξ is as in the Theorem
2.3.3. A versal deformation were obtained much the same way as by Haefliger
[10]. Using the cohomology computation, they gave the description of the
holomorphic principal C-bundle and the holomorphic line bundles over Sn1,n2

ξ .

The open subset Cni \ {0} of Cni , for i = 1, 2, is the total space of
the tautological principal C∗-bundle over the projective space Pn1−1. For
a fixed hermitian inner product on Cni , the unit sphere S2ni−1 is the total
space of the corresponding circle bundle over Pni−1. Now, by the assertion
of the Corollary 2.3.4, complex structures on S2n1−1×S2n2−1 are obtained by
identifying it to the quotient of (Cn1 \ {0})× (Cn2 \ {0}) by a C-action. This
C-action is a flow associated to a vector field in the Poincaré domain, on the
product (Cn1 \ {0})× (Cn2 \ {0}).

We extend this idea of Loeb and Nicolau to obtain a family of complex
structures on the product S(L1) × S(L2), where S(Li) is the circle bundle
associated to a holomorphic principal C∗-bundle Li −→ Xi over complex
manifold Xi for i = 1, 2. For this we consider an admissible C-action ( see
Definition 1.2.2) on the product L1 × L2. We show that each orbit of an
admissible C-action intersects S(L1)×S(L2) transversely and at exactly one
point. Thus by identifying S(L1)×S(L2) with the quotient space (L1×L2)/C,
we get a complex structure on S(L1)×S(L2) in a natural way. Moreover, L1×
L2 is viewed as holomorphic principal C-bundle over the obtained complex
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manifold S(L1)×S(L2). The complex structures obtained on S(L1)×S(L2)
will correspond to complex structures on Sn1,n2 obtained by Loeb and Nicolau
[19] by considering only linear vector fields.
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Chapter 3

Basic Construction

Let X1, X2 be any two compact complex manifolds and let p1 : L1 −→ X1

and p2 : L2 −→ X2 be holomorphic principal C∗-bundles over X1 and X2

respectively. Denote by p : L1 × L2 =: L −→ X := X1 × X2 the product
C∗ ×C∗-bundle. We shall denote by L̄i the line bundle associated to Li and
identify Xi with the zero cross-section in Li so that Li = L̄i \ Xi. We put
a hermitian metric on Li and denote by S(Li) ⊂ Li the unit sphere bundle
with fibre and structure group S1. We shall denote by S(L) the compact
torus S1 × S1-bundle S(L1) × S(L2) −→ X. Our aim is to study complex
structures on S(L) := S(L1)× S(L2).

Inspired by Loeb and Nicolau’s construction [19], we shall obtain complex
structures on S(L) by identifying it with the orbit space L/C, where the C-
action on L is the flow associated to certain holomorphic vector fields.

In this section we consider holomorphic C-actions on L1 ×L2 which lead
to a complex structure on S(L) of scalar and diagonal types. The scalar
type complex structures always exist. The construction of diagonal type
complex structures involves the notion of standard action by a torus (C∗)ni ,
ni > 0, i = 1, 2, on a principal C∗-bundle Li over a complex manifold Xi.
See Definition 1.2.1. Such standard actions always exists in the case when
Xi, i = 1, 2 are flag manifolds. In the case when Xi are flag manifolds, we
shall use the setup to construct linear type complex structures on S(L) (see
Chapter 4).

3.1 Examples of Standard Action of a Torus

Let E −→ B be a holomorphic principal C∗-bundle over a complex manifold
B. To the principal bundle we associate a line bundle Ē −→ B, where the
total space Ē := E ×C∗ C is constructed from E × C by the identification :
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(e, z) ∼ (et−1, tz) for (e, z) ∈ E × C and t ∈ C∗.

Identifying B with the image of the zero cross section of the line bundle Ē,
we have E = Ē \B.

Let T be a complex torus group. We identify T with (C∗)n by choosing an
isomorphism T ∼= (C∗)n for some n. We shall denote by εj : C∗ ⊂ (C∗)n the
inclusion of the jth factor and write tεj to denote εj(t) for 1 ≤ j ≤ n. Thus
any (t1, · · · , tn) ∈ T equals

∏
1≤j≤n tjεj. One has the polar decomposition

T = (S1)n × Rn
+.

Suppose that the total space Ē and the base space B of the associated
line bundle are acted upon holomorphically by the torus T (∼= (C∗)n) such
the line bundle Ē −→ B is T equivariant. Fix a hermitian metric on the line
bundle Ē which is invariant under the maximal compact subgroup (∼= (S1)n)
of T . Let d be a positive integer. Recall the definition of standard d-action
of T on E from Definition 1.2.1. In this section we give examples of such
actions.

Note that condition (i) in the Definition 1.2.1 implies that the ∆-orbit of
any e ∈ E is just the fibre of the bundle E −→ B containing e. The exact
value of d will not be of much significance for us. However, it will be too
restrictive to assume d = 1. See Chapter 4.

We shall see below some examples of a standard action of a torus on
a holomorphic principal C∗-bundle. For a line bundle γ over a complex
manifold B, we shall denote the total space of γ by Ē(γ). The total space of
the corresponding holomorphic principal C∗-bundle is denoted by E(γ).

Example 3.1.1. For any principal C∗-bundle E −→ B, the corresponding
line bundle Ē −→ B is C∗-equivariant, where the C∗-action on Ē is that of
the structure group. For a hermitian metric on the line bundle Ē −→ B, we
have : ||(t.e)|| = |t|||e||, for t ∈ C∗, e ∈ Ē. It readily follows that this action
gives a d-standard action on the principal C∗-bundle E −→ B, where d = 1
in this case.

Example 3.1.2. Consider a complex projective space Pn−1. Let γn,1 be the
tautological line bundle over Pn−1. The total space Ē of the bundle γn,1 is
the subset of Pn−1 × Cn define by:

Ē := {(V, v) | v ∈ V }.

The natural action of the torus T:= (C∗)n on Cn given by

t.(z1, z2, . . . , zn) = (t1z1, t2z2, . . . , tnzn), for t = (t1, t2, . . . , tn) ∈ (C∗)n
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can be extended to give an action of (C∗)n on Pn−1 × Cn given by

(t1, t2, . . . , t2).([z1 : z2 : . . . : zn], (z1, z2, . . . , zn)) =

([t1z1 : t2z2 : . . . : tnzn], (t1z1, t2z2, . . . , tnzn)).

This action can be restricted on Ē to give an action of T on the line bundle
Ē −→ Pn−1. The corresponding holomorphic principal C∗-bundle is Cn \
{0} := E −→ Pn−1. The standard hermitian metric on Cn,

||(z1, z2, . . . , zn)|| =
√∑

i

|zi|2,

yields a hermitian metric on the line bundle Ē. The induced T action on
the holomorphic principal C∗-bundle, Cn \ {0} −→ Pn−1, is d-standard with
d = 1.

Example 3.1.3. Consider a collection of n monomials P1, P2, . . . , PN , all
of fixed degree d > 0, in variable t1, t2, . . . , tn for some positive integer n.
Suppose that for each variable ti, there exists j such that Pj is dependent on
ti, i.e, positive exponent of ti occurs in the monomial Pj. As in the Example
3.1.2 we consider a more general action of a torus group T := (C∗)n on CN

define as :

t.(z1, z2, . . . , zN) = (P1(t)z1, P2(t)z2, . . . , PN(t)zN), for t := (t1, t2, . . . , tn).

This torus T action on CN can be extended to give a T action on the
line bundle Ē(γN,1) −→ PN−1. Under our hypothesis on the polynomials
P1, P2, . . . , PN , it is clear that the induced torus T action on the principal
C∗-bundle CN \ {0} is d-standard. Here we take the hermitian metric on the
line bundle γN,1 as that in the previous Example 3.1.2.

Next we shall give some examples of standard action of a torus group on
certain holomorphic principal C∗-bundle E over a flag manifold SL(n,C)/P
for a parabolic subgroup P . The bundle E over SL(n,C)/P is assumed to be
such that there is a T -equivariant embedding of SL(n,C)/P into a projective
space PN−1, for some large positive number N , such that the tautological
principal C∗-bundle CN \ {0} −→ PN−1 restricts to E on SL(n,C)/P . Here
T = (C∗)n. The T action on the principal C∗-bundle CN \ {0} −→ PN−1

turns out to be d-standard and thus we shall obtain a d-standard action on
the principal C∗-bundle E −→ SL(n,C)/P , for some d.
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Example 3.1.4. Let γn,k be the k-plane bundle over the Grassmannian Gn,k

of k-dimensional subspace of Cn. The total space of γn,k is the subset of
Gn,k × Cn define as :

{(V, v) | v ∈ V }.

The kth-exterior bundle ∧kγn,k, is the “tautological” line bundle over Gn,k

with the total space:

Ē(∧kγn,k) := {(V, v1∧v2∧ . . .∧vk) | V ⊂ Cnof dim k and vi ∈ V, 1 ≤ i ≤ k}.

The natural action of the torus (C∗)n on Cn given by

t.(z1, z2, . . . , zn) = (t1z1, t2z2, . . . , tnzn), for t = (t1, t2, . . . , tn) ∈ (C∗)n

can be extended to give an action of (C∗)n on Ē(∧kγn,k),

t.(V, v1 ∧ v2 ∧ . . . ∧ vk) 7→ (t.V, t.v1 ∧ t.v2 ∧ . . . ∧ t.vk),

where t.V is the image of V under the action of t on Cn. We have the
following embedding of the line bundles for N =

(
n
k

)
:

Ē(∧kγn,k) ↪→ Ē(γN,1)
↓ ↓

Gn,k ↪→ P(∧kCn)

The embedding Gn,k ↪→ P(∧kCn) is the Plücker embedding given by:

V 7→ C.v1 ∧ v2 ∧ . . . ∧ vk, the line spanned by v1 ∧ v2 ∧ . . . ∧ vk,

where {v1, v2, . . . , vk} is a set of basis for the subspace V and the embedding
is independent of the choice of the basis. The corresponding embedding of
the principal C∗-bundle E(∧kγn,k) ↪→ E(γN,1) = ∧kCn \ {0} is given by:

(V, v1 ∧ v2 ∧ . . . ∧ vk) 7→ v1 ∧ v2 ∧ . . . ∧ vk

where {v1, v2, . . . , vk} is a set of basis for the subspace V .
We denote by I(n, k) the collection

{(i1, i2, . . . , ik) | 1 ≤ i1 < i2 < . . . < ik ≤ n}.

For the standard basis {e1, e2, . . . , en} of Cn , the set

{eI = ei1 ∧ ei2 ∧ · · · ∧ eik | I = (i1, i2, . . . ik) ∈ I(n, k)}
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is a basis for the vector space ∧kCn. The action of (C∗)n on Cn induces an
action of (C∗)n on CN ∼= ∧kCn, N =

(
n
k

)
, in a natural way. Namely, on a

basis vector eI ,

t.eI = t.(ei1 ∧ ei2 ∧ · · · ∧ eik) = t.ei1 ∧ t.ei2 ∧ · · · ∧ t.eik = PI(t).eI

where PI := ti1ti2 . . . tik , for (i1, i2, . . . , ik) ∈ I, is monomials in t1, t2, · · · , tn.
More generally,

t.(
∑

I∈I(n,k)

zIeI) =
∑

I∈I(n,k)

PI(t)zIeI , for t = (t1, t2, . . . , tn) ∈ Cn.

It is clear that the embedding E(∧kγn,k) ↪→ E(γN,1) = ∧kCn \ {0} is T -
equivariant. Using the monomials P1, P2, . . . , PN , as in the Example 3.1.3,
the k-standard action of (C∗)n obtained on the principal C∗-bundle E(γN,1) =
∧kCn \ {0} −→ P(∧kCn) restricts to give a k-standard action of the torus
(C∗)n on the principal C∗-bundle E(∧kγn,k) −→ Gn,k.

Remark 3.1.5. In the above example, the vector space ∧k(Cn) can be de-
composed into sum of one dimensional weight spaces corresponding to the
action of torus (C∗)n on CN . Each basis element eI , I ∈ I(n, k), generates
the weight space of with character PI : (C∗)n −→ C∗.
Example 3.1.6. Any negative ample line bundle over a projective space
Pn−1 is of the form γ⊗dn,1 for some positive d. Let P1, P2, . . . , PN be all the

monomials of degree d in n variables, where N :=
(
d+n−1

d

)
. For the line

bundle γ⊗dn,1 we have the d-tuple embedding Pn−1 ↪→ PN−1 := P(symd(Cn))
given as

[z1 : z2 : . . . : zn] 7→ [P1 : P2 : · · · : PN ].

For the d-tuple embedding, the line bundle γ⊗dn,1 over Pn−1 is the pullback of
the tautological bundle γN,1 over PN−1 and we have the following diagram
for the holomorphic principal C∗-bundles,

E(γ⊗dn,1) ↪→ E(γN,1)
↓ ↓

Pn−1 ↪→ P(symdCn)

The natural action of the torus T := (C∗)n on Cn extends to give an action
of T on E(γ⊗dn,1) and E(γN,1) = symd(Cn) \ {0}. Moreover the embedding

E(γ⊗dn,1) ↪→ E(γN,1) is T -equivariant. Using the monomials P1, P2, . . . , PN ,
as in the Example 3.1.3, we can construct a d-standard action of the torus
(C∗)n on the holomorphic principal C∗-bundle E(γN,1) −→ PN−1. This (C∗)n-
action on E(γN,1) restricts to give a d-standard action on the principal C∗-
bundle E(γ⊗dn,1) −→ Pn−1.
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Remark 3.1.7. For any sequence J := {i1 ≤ i2 ≤ . . . ≤ id}, 1 ≤ ir ≤ n the
standard basis element eJ = ei1ei2 · · · eid of symd(Cn) generates the weight
space with character PJ : T −→ C∗; (t1, t2, . . . tn) 7→ ti1ti2 . . . tid . The set of
all monomials {PJ} of degree d in n variables t1, t2, . . . , tn are T -weights of
symd(Cn). (cf. 3.1.5).

Example 3.1.8. More generally, let F be the set of flags, in a vector space
V, of the form

F : 0 ⊂ Vk1 ⊂ Vk2 ⊂ · · · ⊂ Vkr = V,

where Vki is of the dimension ki (see Example 2.1.3). The set F acquires
the structure of a flag manifold SL(n,C)/P for a parabolic subgroup P .
Conversely, for any parabolic subgroup P of SL(n,C), the flag manifold
SL(n,C)/P can be identified to a set of flags. We have a projection map of
the flag manifold SL(n,C)/P onto the Grassmannian Gn,ki

σi : SL(n,C)/P → Gn,ki

F 7→ Vki

Any negative ample line bundle over a Grassmannian Gn,ki is of the form
(∧kiγn,ki)⊗di , for some positive integer di. A negative ample line bundle γ
over SL(n,C)/P is of the form ⊗i(σ∗i ((∧kiγn,ki)⊗di)). For this line bundle we
have an embedding of the flag manifold SL(n,C)/P into a projective space
PN−1 := P(⊗i(symdi(∧kiCn))) such that the line bundle γ over SL(n,C)/P
is the pullback of the tautological bundle over PN−1. We have,

E(γ) ↪→ E(γN,1)
↓ ↓

SL(n,C)/P ↪→ P(⊗i(symdi(∧kiCn)))

Let {e1, e2, . . . , en} be a basis for the vector space Cn. Let {f1, f2, . . . , fN}
be the corresponding basis for the vector space W := ⊗isymdi(∧kiCn)). Now
the natural action of T := (C∗)n on Cn yields an action of torus (C∗)n on W .
Under this action, each basis element fi of W generates a weight space with
character Pi : T −→ C∗, 1 ≤ i ≤ N . The set of characters P1, P2, . . . , PN
are monomials of degree d =

∑
i kidi in n variables t1, t2, . . . tn. As in the

Example 3.1.3, we obtain a d-standard action of the torus (C∗)n on the
principal C∗-bundle E(γN,1) := CN \ {0} −→ P(W ). This action restricts
to give a d-standard action of the torus (C∗)n on the principal C∗-bundle
E(γ) −→ SL(n,C)/P .

In Chapter 4, we shall construct a d-standard action of a torus on a
negative ample line bundle over a more general flag manifold G/P where G
is a semi-simple algebraic group and P is a parabolic subgroup of G. We use
the similar argument as in above examples to obtain the standard action.
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Lemma 3.1.9. Suppose that E −→ B be a principal C∗-bundle with a d-
standard action of T (∼= (C∗)n). Then:

(i) One has ||tεj.v|| ≤ ||v|| for 0 < |t| < 1 where equality holds if and only
if R+εj is contained in the isotropy at v.

(ii) For any t = (t1, . . . , tn) ∈ T , one has

|tk0|d.||v|| ≤ ||t.v|| ≤ |tj0 |d.||v||, ∀t ∈ T,∀ v ∈ E,

where j0 ≤ n (resp. k0) is such that |tj0| ≥ |tj| (resp. |tk0| ≤ |tj|) for all
1 ≤ j ≤ n. Also ||t.v|| = |tj0|d.||v|| if and only if |tj| = |tj0| for all j such
that (tj/tj0)εj.v 6= v and ||t.v|| = |tk0|d.||v|| if and only if |tj| = |tk0 | for all j
such that (tj/tk0)εj.v 6= v.

Proof. (i) Suppose that R+εj is not contained in the isotropy at v. Since
the compact subgroup (S1)n ⊂ T preserves the norm, we may assume that
t ∈ R+. In view of 1.2.1(ii), νv,j is strictly increasing. Hence ||tεj.v|| < ||v||
for 0 < t < 1.

(ii) Write s = (s1, . . . , sn1) where sj = tj/tj0 ∀j. Denoting the diagonal
imbedding C∗ −→ T by δ, we have t = δ(tj0)s. Now δ(tj0).v = tdj0v in view
of 1.2.1 (i).

By repeated application of (i) above, we see that ||t.v|| = ||s(δ(tj0)v)|| =
||s.tdj0v|| ≤ |tj0 |

d.||v|| where the inequality is strict unless |tj| = |tj0| for all
j such that sjεj.v 6= v. A similar proof establishes the inequality ||t.v|| ≥
|tk0 |d.||v|| as well as the condition for equality to hold.

3.2 Admissible C-action

Let Li −→ Xi, i = 1, 2, be a holomorphic principal C∗-bundle such that the
corresponding line bundle L̄i −→ Xi, i = 1, 2, is a (C∗)ni =: Ti-equivariant
line bundle. Let the action of Ti on Li −→ Xi be di-standard. We denote
the torus T1×T2 by T . We get a principal C∗×C∗-bundle L := L1×L2 −→
X1 × X2 =: X, with the torus T := T1 × T2 action on L = L1 × L2. In
this section we consider holomorphic C-actions on L which lead to complex
structure on S(L) := S(L1) × S(L2) of scalar and diagonal types. Whereas
scalar type complex structures always exist, in order to obtain diagonal type
complex structure we need additional hypotheses.

Let λ ∈ Lie(T ) = CN , N := n1 + n2. There exists a unique Lie group
homomorphism αλ : C −→ T defined as

z 7→ exp(zλ).
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When λ is clear from the context, we write α to mean αλ. We denote by αλ,i
(or more briefly αi) the composition C −→ T

pri−→ Ti, i = 1, 2.
We recall the definition of weak hyperbolicity [19]. Let λ = (λ1, . . . , λN),

N = n1 + n2. One says that λ satisfies the weak hyperbolicity condition of
type (n1, n2)(in the sense of Loeb-Nicolau [19, p. 788]) if

0 ≤ arg(λi) < arg(λj) < π, 1 ≤ i ≤ n1 < j ≤ N. (2)

If λj = λ1 ∀j ≤ n1, λj = λN ∀j > n1, we say that λ is of scalar type.
We denote by Ci the cone {

∑
rjλj ∈ C | rj ≥ 0, ni−1 +1 ≤ j ≤ ni} where

n0 = 0. We shall denote Ci \ {0} by C◦i and referred to it as the deleted
cone. Weak hyperbolicity is equivalent to the requirement that the cones are
disjoint and are contained in the half-space {z ∈ C | Im(z) > 0} ∪ R≥0.

The weak hyperbolicity condition implies that (λ1, . . . , λN) ∈ CN belongs
to the Poincaré domain [1], (that is, 0 is not in the convex hull of λ1, . . . , λN ∈
C) and that αλ is a proper holomorphic imbedding. Thus Cλ

∼= C. When
there is no risk of confusion, we merely write C to mean Cλ.

We get a C-action on L, via the embedding αλ : C→ T1× T2. Recall the
notions of an admissible C-action from Definition 1.2.2.

Example 3.2.1. Let Ti = C∗ be the structure group of Li −→ Xi so that
the Ti-action on Li is standard (refer eg.3.1.1). If τ ∈ C∗ is such that
0 < arg(τ) < π, then the imbedding α(z) = (exp(z), exp(τz)) ∈ C∗ × C∗ is
admissible.

Proposition 3.2.2. Any admissible C-action of diagonal type on L1×L2 is
free.

Proof. . Suppose that z ∈ C, z 6= 0, (p1, p2) ∈ L. Let z.(p1, p2) = (q1, q2).
It is readily seen that one of the deleted cones zC◦1 , zC

◦
2 lies entirely in the

left-half space R− := {z ∈ C | Re(z) < 0} or the right-half space R+ :=
{z ∈ C | Re(z) > 0}. Consider the case zC◦1 ⊂ R−. Then | exp(zλj)| < 1 for
all j ≤ n1. We claim that there is some j such that exp(zλj)εj.p1 6= p1, for,
otherwise, the action of T1-action, restricted to the orbit through p1 factors
through the compact group T1/〈exp(zλj)εj, 1 ≤ j ≤ n1〉 ∼= (S1)2n1 . This
implies that the T1-orbit of p1 is compact, contradicting 1.2.1 (i), since by
the definition of standard action of the T1, orbit through p1 contains the fibre
C∗ of the principal C∗-bundle L1 −→ X1. Now it follows from Lemma 3.1.9
that ||q1|| = ||(

∏
1≤j≤n1

exp(zλj)εj).p1|| < ||p1||. Thus q1 6= p1 in this case.
Similarly, we see that (p1, p2) 6= (q1, q2) in the other cases also, showing that
the C-action on L is free.

Lemma 3.2.3. The orbits of an admissible C-action on L are closed and
properly imbedded in L.
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Proof. Let p = (p1, p2) ∈ L. Let (zn) be any sequence of complex numbers
such that |zn| → ∞. We shall show that zn.p has no limit points in L.
Without loss of generality, we may assume that the zn are such that zn/|zn|
have a limit point z0 ∈ S1. By the weak hyperbolicity condition (2), one of
the deleted cones z0C

◦
i is contained in one of the sectors S+(θ) := {w ∈ C |

−θ < arg(w) < θ} ⊂ R+ or S−(θ) = −S+(θ) ⊂ R− for some θ, 0 < θ < π/2.
Say z0C

0
i ⊂ S−(θ). Then znC

◦
i ⊂ S−(θ) for all n sufficiently large. It follows

that | exp(znλj)| → 0 as n → ∞ for ni−1 < j ≤ ni−1 + ni (where n0 = 0).
By Lemma 3.1.9 we conclude that the sequence (αi(zn)(pi)) does not have a
limit in Li.

3.3 Complex Structures on S(L1)× S(L2)

We continue with the notation from previous section.

Definition 3.3.1. Given standard Ti = (C∗)ni-actions on the Li, i = 1, 2,
we obtain holomorphic vector fields v1, . . . , vN on L = L1 × L2 as follows.
Let p = (p1, p2) ∈ L. Suppose that 1 ≤ j ≤ n1. The holomorphic map
µp1 : T1 −→ L1, s 7→ s.p1, induces dµp1 : Lie(T1) = Cn1 −→ Tp1L1. Set
vj(p) := (dµp(ej), 0) ∈ Tp1L1×Tp2L2 = TpL. The vector fields vj, n1 < j ≤ N,
are defined similarly. We refer to vj, 1 ≤ j ≤ N as the standard vector fields
on L.

Remark 3.3.2. Let 1 ≤ j ≤ n1. Consider the differential dν1 : TpL −→ R
of the norm map ν1 : L −→ R+ defined as q = (q1, q2) 7→ ||q1||. It is
readily verified that, if R+εj is not contained in the isotropy at p1, then
by standardness of the action, dν1(vj(p)) = vj(p)(ν1) = ν ′j,p1(1) > 0. (Here
νj,p1 is as in the Definition 1.2.1(ii) of standard action.) On the other hand,
since ν1(s.p) = ν1(p) for all s ∈ (S1)n1 = exp(

√
−1Rn1) ⊂ T1 we obtain that

dν1(
√
−1vj(p)) = 0. Thus, for any z ∈ C, we obtain that dν1(zvj(p)) =

Re(z)ν ′j,p1(1). An entirely analogous statement holds when n1 < j ≤ N .

Assume that λ ∈ CN yields an admissible imbedding α :C −→ T , α(z) =
exp(zλ). We obtain a holomorphic vector field vλ on L where

vλ(p) =
∑

1≤j≤N

λjvj(p) ∈ TpL.

The flow of the vector field vλ yields a holomorphic action of C which is just
the restriction of the T -action to Cλ. This C-action on L is free and the
C-orbits are the same as the leaves of the holomorphic foliation defined by
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the integral curves of the vector field vλ. By Lemma 3.2.3 each leaf is biholo-
morphic to C. It turns out that the leaf space L/C is a Hausdorff complex
analytic manifold and the projection L −→ L/Cλ is the projection of a holo-
morphic principal bundle with fibre and structure group the additive group
C. The underlying differentiable manifold of the leaf space is diffeomorphic
to S(L) = S(L1)×S(L2). These statements will be proved in Theorem 3.3.3
below. We shall denote the complex manifold L/Cλ by Sλ(L). The complex
structure so obtained on S(L) by scalar type λ is referred as scalar type and
those by diagonal type λ is referred as diagonal type.

We shall denote by D(L̄) ⊂ L̄ = L̄1 × L̄2 the product of the unit disk
bundles D(L̄i) = {p ∈ L̄i | ||p|| ≤ 1} ⊂ L̄i, i = 1, 2. Also we denote by
Σ(L̄) ⊂ L̄ the boundary of D(L̄). Thus Σ(L̄) = D(L̄1) × S(L2) ∪ S(L1) ×
D(L̄2). Observe that S(L) = D(L̄1)× S(L2) ∩ S(L1)×D(L̄2) ⊂ Σ(L̄).

Theorem 3.3.3. With the above notations, suppose that αλ : C −→ T
defines an admissible action of C of diagonal type on L. Then L/C is a
(Hausdorff) complex analytic manifold and the quotient map L −→ L/C is
the projection of a holomorphic principal C-bundle. Furthermore, each C-
orbit meets S(L) transversely at a unique point so that L/C is diffeomorphic
to S(L).

Proof of the above theorem, which is along the same lines as the proof
of [19, Theorem 1] with suitable modifications to take care the more general
setting we are in, will be based on the following two lemma.

Lemma 3.3.4. Each C-orbit in L meets S(L) at exactly one point.

Proof. We first show that each orbit meets S(L) at not more than one point.
Let p = (p1, p2) ∈ S(L). Suppose that 0 6= z ∈ C is such that q := z.p =
α(z).p ∈ S(L). This means that, writing q = (q1, q2), we have

qi = αi(z)(pi) = (
∏

ni−1<j≤ni−1+ni

exp(λjz)εj)pi, i = 1, 2,

(where n0 = 0). Now ||qi|| = ||pi|| = 1, i = 1, 2, and p 6= q. Since the
hermitian metric on L1 is invariant under (S1)n1 , we see that ||p1|| = ||q1|| =
||(
∏

1≤j≤n1
(exp(tj)εj))p1|| where tj = Re(λjz). Standardness of the T1-action

implies that either Re(λiz) = 0 for all i ≤ n1 or there exist indices 1 ≤
i1 < i2 ≤ n1 such that Re(zλi1).Re(zλi2) < 0. In the latter case there
exists positive reals a1, a2 such that a1Re(zλi1) + a2Re(zλi2) = 0. Similarly,
either Re(zλj) = 0 for all n1 < j ≤ N or there exist indices n1 < j1 <
j2 ≤ N and positive reals b1, b2 such that b1Re(zλj1) + b2Re(zλj2) = 0.
Suppose Re(a1λi1z + a2λi2z) = 0 = Re(b1λj1z + b2λj2z). This implies that
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a1λi1 + a2λi2 = r(b1λj1 + b2λj2) for some positive number r. This contradicts
the weak hyperbolicity condition (2). Similarly we obtain a contradiction in
the remaining cases as well.

Next we show that Cp ∩Σ(L̄) is path-connected. We shall write D− and
D+ to denote the bounded and unbounded components of L \ Σ(L̄).

Without loss of generality, suppose that p = (p1, p2) ∈ Σ(L̄) and let
q = (q1, q2) ∈ Σ(L̄) ∩ Cp be arbitrary. Say, q = z1.p with z1 6= 0. Then
r 7→ rz1.p defines a path σ : I −→ Cp with end points in Σ(L̄). We modify
the path σ to obtain a new path which lies in Σ(L̄). For this purpose choose
z0 ∈ C, arg(z0) > π

2
such that z0C

◦
1 ∪ z0C

◦
2 is contained in the left-half space

R− = {z ∈ C | Re(z) < 0} and (−z0)C◦1 ∪ (−z0)C◦2 is contained in the right-
half spaceR+ = {z ∈ C | Re(z) > 0}. In particular, limr→∞ | exp(rz0λj)| = 0
and limr→∞ | exp(−rz0λj)| = ∞,∀j ≤ N, where r varies in R+. By the
second statement of Lemma 3.1.9, we see that for i = 1, 2, and any xi ∈ Li,
||αi(rz0).xi|| → 0 and ||αi(−rz0).xi|| → ∞ as r → +∞ in R.

For any r ∈ I, let γ(r) ∈ R be least (resp. largest) such that γ(r)z0.σ(r) ∈
Σ(L̄) when σ(r) ∈ D+ (resp. σ(r) ∈ D−). Then γ is a well-defined continuous
function of r. Now r 7→ α(γ(r)z0 + rz1).p is a path in Cp∩Σ(L̄) joining p to
q.

To complete the proof, we shall show that there exist points q′ = (q′1, q
′
2),

q′′ = (q′′1 , q
′′
2) ∈ Cp∩Σ(L̄) such that ||q′1|| ≤ 1, ||q′2|| = 1 and ||q′′1 || = 1, ||q′′2 || ≤

1. Then any path in Cp ∩ Σ(L̄) joining q′ and q′′ must contain a point of
S(L).

Choose wk ∈ C∗, 1 ≤ k ≤ 4, such that the deleted cones w1C
◦
i ⊂

R+, w2C
◦
i ⊂ R−, for i = 1, 2, and, w3C

◦
1 , w4C

◦
2 ⊂ R−, w3C

◦
2 , w4C

◦
1 ⊂ R+.

Then | exp(rwkλj)| → 0 (resp. ∞) as r → +∞ (r ∈ R+) if λj ∈ C◦i and
wkC

◦
i ⊂ R− (resp. R+). Now ||αi(rw1)pi|| < 1, ||αi(rw2)pi|| > 1, i =

1, 2 for r ∈ R+ sufficiently large. It follows that any path in Cp joining
α(rwk)(p), k = 1, 2, must meet Σ(L̄) for some r = r0. Thus we may as
well assume that p ∈ Σ(L̄). Suppose that ||p1|| = 1, ||p2|| < 1. For r > 0
sufficiently large, ||α1(rw3).p1|| < 1 and ||α2(rw3).p2|| > 1. Therefore there
must exist an r1 such that setting q′i := αi(r1w3).pi, we have ||q′1|| ≤ 1 and
||q′2|| = 1. Then q′ = (q′1, q

′
2) ∈ Cp∩Σ(L̄) and q′′ := p meet our requirements.

If ||p1|| < 1, ||p2|| = 1, we set q′ := p and find a q′′ ∈ Cp ∩ Σ(L̄) by the
same argument using w4 in the place of w3.

Lemma 3.3.5. Every Cλ-orbit Cp, p ∈ S(L), meets S(L) transversely.

Proof. Denote by π : L −→ S(L) the projection of the principal (C∗/S1)2 ∼=
R2

+-bundle. Evidently, the inclusion j : S(L) ↪→ L is a cross-section and
so L ∼= S(L) × R2

+. The second projection ν : L −→ R2
+ is just the map

L 3 p = (p1, p2) 7→ (ν1(p), ν2(p)) where νi(p) = ||pi|| ∈ R+. One has
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therefore an isomorphism TpL|S(L)
∼= TpS(L) ⊕ R2, and the corresponding

second projection map TpL −→ R2 is the differential of ν. Therefore Cp
is not transverse to S(L) if and only if avλ(p) ∈ TpS(L) for some complex
number a 6= 0; equivalently, if and only if dνi(avλ(p)) = 0, i = 1, 2, for some
a 6= 0.

By Remark 3.3.2 we have:

dνi(avλ(p)) =
∑

1≤j≤n1

dνi(aλjvj(p)) =
∑

1≤j≤n1

Re(aλj)ν
′
j,p1

(1).

Similarly, avλ(p)(ν2) =
∑

n1<j≤N Re(aλj)ν
′
j,p2

(1). Therefore, Cp is not trans-
verse to S(L) if and only if

∑
1≤j≤n1

Re(aλj)rj = 0 =
∑

n1<j≤N Re(aλj)sj for
some complex number a 6= 0 and reals rj, sk ≥ 0 (not all zero). This means
that

√
−1R ⊂ aC◦1 ∩ aC◦2 and hence C◦1 ∩ C◦2 6= ∅, contradicting the weak

hyperbolicity condition.

Proof of Theorem 3.3.3 : We shall first show that L/C is Hausdorff by
showing that πλ : L −→ S(L) which sends p ∈ L to the unique point in
Cp ∩ S(L) is continuous.

Let (pn) be a sequence in L that converges to a point p0 ∈ L. Let qn :=
πλ(pn) ∈ S(L) and choose zn ∈ C such that zn.pn = qn. Since ||pn||, ||qn||, n ≥
1, are bounded, it follows by an argument similar to the proof of Lemma 3.2.3
that (zn) is bounded, and, passing to a subsequence if necessary, we may
assume that it converges to a z0 ∈ C. By the continuity of C-action, zm.pn →
z0.p0 as m,n → ∞. Therefore zn.pn = qn → z0.p0 and πλ(p0) = q0 and so
πλ is continuous and that the restriction of πλ to S(L) is a homeomorphism
whose inverse is the composition S(L) ↪→ L −→ L/C.

By what has just been shown, L/C is in fact a Hausdorff manifold and
that πλ is a diffeomorphism. The orbit space L/C has a natural structure of
a complex analytic space with respect to which the projection L −→ L/C
is analytic. Using Lemma 3.3.5 we see that L −→ L/C is a submersion. It
follows that L is the total space of a complex analytic principal bundle with
fibre and structure group C. The last statement of the theorem follows from
Lemmata 3.3.4 and 3.3.5. �

We get the classical examples of elliptic curve, Hopf manifolds and Calabi-
Eckmann manifolds by the above construction and more precisely complex
structures on these manifolds are that of scalar type (cf. Section 2.3.1 ).
We generalize the Loeb and Nicolau [19] construction only in the case corre-
sponding to diagonal vector fields.
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Example 3.3.6. The action of the structure group Ti = C∗ is a standard
action on the holomorphic principal C∗-bundle Li −→ Xi, i = 1, 2. Given
any complex number τ such that Imτ > 0, one obtains a proper holomorphic
imbedding C −→ C∗ × C∗ defined as z 7→ (exp(2πiz), exp(2πiτz)). We
shall denote the image by Cτ . The action of the structure group C∗ × C∗
on L := L1 × L2 can be restricted to C via the above imbedding to obtain
a holomorphic principal C-bundle with total space L and base space the
quotient space L/Cτ . The projection L −→ X factors through Sτ (L) to
yield a principal bundle Sτ (L) −→ X with fibre and structure group E :=
(C∗×C∗)/Cτ . Since E is a compact Riemann surface with fundamental group
isomorphic to Z2, it is an elliptic curve. It can be seen that E ∼= C/Γ where
Γ is the lattice Z + τZ ⊂ C. The quotient space L/C is diffeomorphic to
S(L) = S(L1)× S(L2). The resulting complex structure on S(L) is of scalar
type and denoted by Sτ (L).

Example 3.3.7. When X1 is a point, one has X ∼= X2, L ∼= C∗ × L2. In
this case, the orbit space L/C is readily identified with L2/Z where the Z
action is generated by v 7→

∏
2≤j≤N exp(2π

√
−1λj/λ1)εj.v where v ∈ L2. The

projection L2 −→ Sλ(L) is a covering projection with deck transformation
group Z.

Remark 3.3.8. (i) When λ is of scalar type, the projection L −→ X factors
through Sλ(L) and yields a complex analytic bundle Sλ(L) −→ X with fibre
and structure group the elliptic curve (C∗ × C∗)/C. When endowed with
diagonal type complex structure the projection Sλ(L) −→ X of the principal
S1 × S1-bundle, which is smooth, is not complex analytic in general. (Cf.
Theorem 5.2.1.)

(ii) When the Xi do not admit any non-trivial Ti- action, we obtain only
scalar type complex structures on S(L). For example, this happens when the
Xi are compact Riemann surfaces of genus at least 2, as Aut(Xi) is finite.

We conclude this section with the following observation.

Theorem 3.3.9. Suppose that H1(X1;R) = 0 and that c1(L̄1) ∈ H2(X1;R)
is non-zero. Then S(L) is not symplectic and hence non-Kähler with respect
to any complex structure.

Proof. In the Leray-Serre spectral sequence over R for the S1-bundle with
projection q : S(L1) −→ X1 the differential d : E0,1

2
∼= H1(S1;R) ∼= R −→

E2,0
2 = H2(X1;R) is non-zero. It follows that E0,1

3 = E0,1
∞ = 0. Since

H1(X1;R) = 0, we see that H1(S(L1);R) = 0. Hence, by the Künneth
formula, H2(S(L);R) = H2(S(L1);R)⊕H2(S(L2);R).
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Let ui ∈ H2(S(Li);R), i = 1, 2, be arbitrary. Since dimS(Li) is odd for
i = 1, 2, ur1u

s
2 = 0 for any r, s ≥ 0 such that r+s = n, where 2n := dimR S(L).

Hence ωn = 0 for any ω ∈ H2(S(L);R).

3.4 Complex Structures on Product of Sphere

Bundles

Let π : Ē −→ X be a vector bundle over a compact complex manifold
X. Let P(Ē) be the compact complex manifolds obtain by identifying one
dimensional subspace of each fibre Ēx := π−1(x) for x ∈ X. Let L̄ ⊂ Ē×P(Ē)
be defined as

L̄ = {(e, V ) | e ∈ V ∈ P(Ē)}. (3)

The projection map L̄ −→ P(Ē); (e, V ) 7→ V , is the projection of a holomor-
phic line bundle. We have the following identification:

Ē \X = L̄ \ P(Ē), where Ē 3 e←→ (e,Ce). (4)

A hermitian metric on the vector bundle Ē −→ X yields a hermitian metric
on the line bundle L̄ −→ P(Ē). The total space S(L̄) of the circle bundle
associated to the line bundle L̄ −→ P(Ē) is same as the total space S(Ē)
of the sphere bundle associated to the vector bundle Ē −→ X under the
identification (4).

Let Ēi −→ Xi be holomorphic vector bundle of rank ki over compact
complex manifolds Xi, i = 1, 2. Fix a hermitian metric on the bundle Ēi −→
Xi. Let S(Ēi) be the associated unit sphere bundle over Xi, i = 1, 2. In the
previous section we showed that in the case when ki = 1 complex structures
on S(Ē1)×S(Ē2) always exist such as complex structures of scalar type. See
the Example 3.3.6. For arbitrary ki the existence of complex structures on
S(Ē1)×S(Ē2) follow readily as S(Ēi) is same as S(L̄i), where L̄i is as defined
as in (3). Thus we obtained a family of complex structures on the product
of sphere bundles associated to holomorphic vector bundles over compact
complex manifolds. We call the complex structures thus obtained as scalar
type. We have the projection S(Ē1) × S(Ē2) −→ X1 × X2 of holomorphic
fibre bundle with fibres a Calabi-Eckmann manifolds. This implies that in
the case ki > 1, the complex manifolds S(Ē1) × S(Ē2) thus obtained are
non-Kähler and hence non-algebraic.

The analogue of the diagonal type complex structures on S(Ē1)× S(Ē2)
are obtained by considering an action of a torus Ti := (C∗)ni on the fibre
bundle Ei := Ēi \Xi −→ Xi which satisfies the condition similar to that in
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the Definition 1.2.1. We call this action again ‘standard’ actions. See the
Definition 3.4.1 below.

The matrix group GL(n,C) is the structure group for any vector bundle
Ē −→ X. The torus subgroup C∗, the subgroup (∼= C∗) of scalar matrices,
is the centre of GL(n,C). The scalar action of C∗ on the vector space Cn

extends to give the scalar action of C∗ on the vector bundle Ē −→ X.

Definition 3.4.1. Let Ē −→ X be a hermitian vector bundle over X. We
say that the T -action on E is d-standard (or more briefly standard) if the
following conditions hold:
(i) the restricted action of the diagonal subgroup ∆ ⊂ T on E is via the d-fold
covering projection ∆ −→ C∗, where C∗ action is that of scalar multiplication
on the bundle E −→ X.
(ii) For any e ∈ E and 1 ≤ j ≤ n, let νe,j : R+ −→ R+ be defined as
t 7→ ||tεj.e||. Then ν ′e,j(t) > 0 for all t unless R+εj is contained in the
isotropy at e.

Example 3.4.2. Let Ē −→ X be a holomorphic hermitian vector bundle
over compact complex manifold X. The scalar action of the torus C∗ on the
fibre bundle E −→ X is a standard action with d = 1.

Example 3.4.3. Let γn,k be the k-plane bundle over the Grassmannian Gn,k

of k-dimensional subspace of Cn. The total space Ē(γn,k) of γn,k is the subset
of Gn,k × Cn define as :

Ē(γn,k) = {(V, v) | v ∈ V }.

The natural action of the torus T = (C∗)n on the vector space Cn given by

t.(z1, z2, . . . , zn) = (t1z1, t2z2, . . . , tnzn), for t = (t1, t2, . . . , tn).

In the case when k = 1 we have seen in the Example 3.1.2 that this action
of T = (C∗)n extends to give a d-standard action of T of the fibre bundle
E(γn,1) −→ Gn,k = Pn−1 with d = 1. The general case of arbitrary k is
similar.

Let Ēi −→ Xi be a hermitian vector bundle. Let Ti := (C∗)ni be a di-
standard action on the fibre bundle Ei := Ēi \ {0} −→ Xi, i = 1, 2. Such
Ti action gives a di-standard action of Ti (in the sense of the Definition
1.2.1) on the principal C∗-bundle Li := L̄i \ P(Ēi) −→ P(Ei). For any
λ ∈ Cn1 × Cn2 satisfying weak hyperbolic condition of type (n1, n2), let
αλ be the admissible C-action on the principal (C∗ × C∗)-bundle E1 × E2 =
L1×L2 −→ P(Ē1)×P(Ē2). We obtain a complex structures of a diagonal type
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on S(Ē1)×S(Ē2) by identifying it with the orbit space (E1×E2)/C. See the
Theorem 3.3.3. Furthermore, the quotient map E1 × E2 −→ S(Ē1)× S(Ē2)
is the projection of a principal C-bundle.

Remark 3.4.4. The above construction of complex manifolds S(L) is valid
even in the more general setting when the complex manifolds Xi, i = 1, 2 are
non-compact.
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Chapter 4

Complex Structures of Linear
Type

In the previous chapter, we constructed a family of complex structures on
S(L1)× S(L2) where S(Li) is the circle bundle associated to a principal C∗-
bundle Li over an arbitrary compact complex manifoldsXi, i = 1, 2. Complex
manifolds thus obtained are of diagonal type. The basic construction involves
the notion of standard action of a torus Ti on Li. In this chapter we shall
construct the complex structure of linear type on S(L1) × S(L2) in the
case when the complex manifolds Xi are flag manifolds and the C∗-bundle
Li −→ Xi, i = 1, 2 are associated to a negative ample line bundle over Xi.
These linear type complex structures will correspond to complex structures
on S2m−1×S2n−1,m, n ≥ 1 obtained by Loeb and Nicolau [19] by using linear
resonant vector fields. (refer Section 2.3). We first start with constructing
some non-trivial standard action of a torus on the principal C∗-bundle over
a flag manifold and then we shall use this set up to construct linear type
complex structures on S(L1)× S(L2).

For notations and basic fact of Lie groups and flag manifolds we shall
refer to the Section 2.1 of Chapter 2.

4.1 Standard Action of a Torus on Principal

C∗-Bundles over Flag Manifolds

Let G be a simply connected complex simple Lie group. Let P be a parabolic
subgroup of G. Let L̄ be a G-equivariant non-trivial line bundle over the flag
manifold G/P . Let L −→ G/P be the associated principal C∗-bundle over
G/P . Note that G acts almost effectively on G/P and hence on L. (Almost
effective means that the subgroup of G which fixes every element of L is
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finite, and since G simple, is contained in Z(G), the centre of G). Let T be
any maximal torus of G. We claim that the T -action is not d-standard (with
respect to any isomorphism T ∼= (C∗)l) for any d ≥ 1. For, if the T -action
were d-standard, then T would contain a subgroup ∆ ∼= C∗ whose restricted
action is as described in the Definition 1.2.1(i). Since the G-action commutes
with that of the structure group C∗ of L̄, it follows that z.g(v) = g.z(v) for
all v ∈ L̄, z ∈ ∆, g ∈ G. Since the G-action on L is almost effective, we see
g−1zg = ζz where ζ ∈ Z(G), the centre of G, which is a finite group. This
implies that ∆/Z(G) is in the centre of G/Z(G) contradicting our hypothesis
that G is simple. However, in the case when L̄ is a negative ample line bundle
over G/P , we shall show that there is a d-standard action of the torus T ×T0

on the principal C∗-bundle L −→ G/P , where the T0
∼= C∗ acts via a d0 fold

covering projection T0 −→ C∗ on the structure group of L −→ G/P . Here
d = (l + 1)d0, where l being rank of G.

In the Section 3.1, we constructed some examples of standard action of the
torus (C∗)n on certain principal C∗-bundle over flag manifolds SL(n,C)/P .
We shall extend the same idea to obtain a standard action of a torus on
principal C∗-bundle over more general flag manifolds G/P .

Fix a maximal torus T in a simply connected simple complex Lie group
G. Let B be a Borel subgroup containing T . For a dominant weight $,
let V ($) be the corresponding finite dimensional irreducible G-module with
the highest weight $. Let P$ be the parabolic subgroup of G obtained by
‘omitting’ $. Let L̄$ −→ G/P$ be the G-equivariant ample line bundle. In
this case we have an embedding of G/P$ into the projective space P(V ($))
such that the G-equivariant line bundle L̄−$, dual to L̄$, is the pullback of
the tautological line bundle.

Let Λ($) ⊂ Λ denote the set of all weights of V ($). For µ ∈ Λ($)) we
denote the multiplicity of µ in V ($) by mµ i.e. mµ = dim Vµ($), where
Vµ($) := {v ∈ V ($) | t(v) = µ(t)v,∀ t ∈ T}, is the µ-weight space in
V ($). We put a hermitian inner product on V ($) with respect to which the
decomposition V ($) =

⊕
µ∈Λ($)) Vµ($) is an orthogonal. Such an hermitian

product is invariant under the compact torus K ⊂ T . Indeed, without loss
of generality we may assume that the inner product is invariant under a
maximal compact subgroup of G that contains K.

Let $1, $2, . . . , $l be the fundamental weights. Consider the homomor-
phism ψ : T −→ (C∗)l of algebraic groups defined as t 7→ ($1(t), . . . , $l(t)).
It is an isomorphism since $1, . . . , $l is Z-basis for χ(T ). We shall iden-
tify T with (C∗)l via ψ. Let $ ∈ Λ+ be a dominant weight. Write µ =
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∑
1≤j≤l aµ,j$j for µ ∈ Λ($) so that

µ(t) =
∏

1≤j≤l

t
aµ,j
j where t = (t1, t2, · · · , tl) ∈ T.

If v ∈ Vµ($), then t.v =
∏
t
aµ,j
j .v. It is not difficult to see that the T -action

on V ($) \ 0 −→ P (V ($)) is not standard since w0($) ∈ Λ($) is negative
dominant, i.e., −w0($) ∈ Λ+, as in this case all aw0($),j, 1 ≤ j ≤ l will be
negative. Set d′ := 1 +

∑
|aµ,j| where the sum is over µ ∈ Λ($), 1 ≤ j ≤ l.

The group T ′ := T × C∗ acts on V ($) where the last factor acts via the
covering projection C∗ −→ C∗, z 7→ z−d

′
, where the target C∗ acts as scalar

multiplication. Thus (t, z).v = µ(t)z−d
′
v where v ∈ Vµ($), (t, z) ∈ T ′. Now

consider the (l + 1)-fold covering projection T̃ := (C∗)l+1 −→ T ′, defined

as (t1, . . . , tl+1) 7→ (t−1
l+1t1, . . . , t

−1
l+1tl,

∏
1≤j≤l+1 t

−1
j ). The torus T̃ acts on the

principal C∗-bundle V ($) \ {0} −→ P(V ($)) via the above surjection.

Denote by ε̃j : C∗ −→ T̃ the jth coordinate imbedding. For any µ ∈
Λ($), and any v ∈ Vµ($), we have zε̃l+1.v = zd

′∏
1≤j≤l z

−aµ,jv = zd
′−

∑
aµ,jv,

and, when j ≤ l, we have zε̃j.v = zd
′+aµ,jv. Also, if z = (z0, . . . , z0) ∈ T̃ ,

then z.v = z
(l+1)d′

0 v = zd0v, where d = (l+ 1)d′. Observe that the exponent of
z that occurs in the above formula for zε̃j.v is positive for 1 ≤ j ≤ l + 1 by
our choice of d′. We shall denote this exponent by dµ,j, that is,

dµ,j =

{
d′ + aµ,j, 1 ≤ j ≤ l,

d′ −
∑

1≤i≤l aµ,i, j = l + 1,
(5)

where µ =
∑

1≤j≤l aµ,j$j ∈ Λ($).

Next note that the compact torus K̃ := K × S1 ⊂ T × C∗ preserves the
hermitian product on V ($) and hence the (induced) hermitian metric on the
tautological line bundle over P(V ($)). From the explicit description of the
action just given, it is clear that conditions (i) and (ii) of Definition 1.2.1

hold. Thus we have extended the T -action to an action of T̃ -action which is
standard. We are ready to prove

Proposition 4.1.1. We keep the above notations. Let $ ∈ Λ+ be any dom-
inant weight of G. Then the T -action can be extended to a d-standard action
of T̃ := T × C∗ on L−$ −→ G/P$ where d = d′(l + 1).

Proof. Since L̄$ is a very ample line bundle over G/P$, one has a G -
equivariant embedding G/P$ −→ P(V ($)) where V ($) = H0(G/P$, L̄$)∗.
By our discussion above, the T -action on the tautological bundle over the
projective space P(V ($)) has been extended to a d-standard action of T̃ for
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an appropriate d > 1. The tautological bundle over P(V ($)) restricts to L−$
on G/P$. Clearly the L−$ is T̃ -invariant. Put any K̃-invariant hermitian

metric on V ($) where K̃ denotes the maximal compact subgroup of T̃ . As
observed above, zε̃j.v = zdµ,jv where dµ,j > 0 for v ∈ Vµ($), it follows that

condition (ii) of Definition 1.2.1 holds. Therefore the T̃ -action on L−$ is
d-standard.

Let G̃ = G × C∗. Let π : G̃ = G × C∗ −→ G × C∗ be the (l + 1)-
fold covering obtained from the (l + 1)-fold covering of the last factor and

identity on the first. The maximal torus π−1(T ×C∗) of G̃ can be identified

with T̃ . With respect to an appropriate choice of identification T̃ ∼= (C∗)l+1,

we see that the action of G on L−$ extends to G̃ in such a manner that the
T̃ -action is d-standard where d = (l + 1)d′ as above. Since G/P$ = G̃/P̃ ,

where P̃ = π−1(P$ × C∗), the C∗-bundle L−$ −→ X is G̃-equivariant. The

parabolic subgroup P̃ contains the Borel subgroup B̃ := π−1(B × C∗). We

shall refer to L̄−$ −→ X as a d-standard G̃-homogeneous line bundle.

4.2 Linear Type Complex Structures on S(L1)

× S(L2)

Let L̄i −→ Xi, i = 1, 2, be di-standard G̃i-homogeneous line bundles over
Xi = G̃i/P̃i which are negatively ample. Let G̃ = G̃1 × G̃2, (C∗)N ∼= T̃ =

T̃1×T̃2 where N = rank(G̃) = n1+n2 with ni := li+1 and B̃ = B̃1×B̃2. The

torus T̃ is a maximal torus contained in the Borel subgroup B̃ of G̃. Denote
by Φ̃+ the set of simple positive roots determined by T̃ ⊂ B̃ ⊂ G̃. It is clear
that Φ̃+ = Φ̃+

1 ∪ Φ̃+
2 where Φ̃+

i is the set of simple positive roots determined

by T̃i ⊂ B̃i ⊂ G̃i, i = 1, 2. Here we considered an element γ ∈ χ(T̃i) as an

element of χ(T̃1 × T̃2) by composing it with the projection T̃1 × T̃2 −→ T̃i.

Let λ ∈ Lie(B̃) and let λ = λs + λu be its Jordan decomposition, where

λs = (λ1, . . . , λN) ∈ CN = Lie(T̃ ) satisfies the weak hyperbolicity condition

(2) of type (n1, n2) and λu ∈ Lie(B̃u), the Lie algebra of the unipotent radical

B̃u of B̃. Thus [λu, λs] = 0 in Lie(B̃). The analytic imbedding αλ : C −→
B̃ where αλ(z) = exp(zλ) = exp(zλs). exp(zλu) defines an action, again
denoted αλ, of C on L := L1×L2 and an action α̃λ on V ($1)×V ($2). Denote

by Cλ the image αλ(C) ⊂ B̃. We shall now give an explicit description of
these actions. Let vi ∈ V ($i) and write vi =

∑
µ∈Λ($i)

vµ where vµ ∈ Vµ($i).
Set

λµ :=
∑

λjdµ,j (6)
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where the sum ranges over ni−1 < j ≤ ni−1 + ni with n0 = 0. Then

α̃λs(z)(v1, v2) = (u1, u2), where

ui =
∑

µ∈Λ($i)

∏
j

exp(zλj)ε̃j.vµ =
∑
µ

∏
j

(exp(zλjdµ,j)vµ =
∑
µ

exp(zλµ)vµ,

(7)
where the product is over j such that ni−1 < j ≤ ni−1 + ni.

The C-action αλs on L is just the restriction to L ⊂ V ($1) × V ($2) of
the C-action α̃λs . Since the λµ are all positive linear combination of the λj,
the action of C on V ($1, $2) := (V ($1) \ {0}) × (V ($2) \ {0}), the total
space of the product of tautological bundles, is admissible.

Fix a basis for V ($i) consisting of weight vectors so that GL(V ($i)) is
identified with invertible ri × ri-matrices, where ri := dimV ($i). Note that
action of the diagonal subgroup of GL(V ($i)) on V ($i)\{0} is standard and

that T̃i is mapped into D, the diagonal subgroup of GL(V ($1))×GL(V ($2)).
We put a hermitian metric on V ($1) × V ($2) which is invariant under the
compact torus (S1)r1+r2 ⊂ D. Considered as a subgroup of GL(V ($1)) ×
GL(V ($2)), the C-action α̃λs on V ($1, $2) is the same as that considered
by Loeb-Nicolau corresponding to λs($1, $2) := (λµ, λν)µ∈Λ($1),ν∈Λ($2) ∈
Lie(D) = Cr1 × Cr2 , where it is understood that each λµ occurs as many
times as dimVµ($1), µ ∈ Λ($1), and similarly for λν , ν ∈ Λ($2).
Observation: The λs($1, $2) satisfy the weak hyperbolicity condition of
type (r1, r2) since the λµ are positive integral linear combinations of the λj.

The differential of the Lie group homomorphism G̃1×G̃2 → GL(V ($1))×
GL(V ($2)) maps λs to the diagonal matrix diag(λs($1, $2)) and λu to
a nilpotent matrix λu($1, $2) which commutes with λs($1, $2). Indeed
λ($1, $2) := λs($1, $2) + λu($1, $2) has a block decomposition compat-
ible with weight-decomposition of V ($1) × V ($2) where the µ-th block is
λµIm(µ) + Aµ, where Aµ is nilpotent and Im(µ) is the identity matrix of size
m(µ), the multiplicity of µ ∈ Λ($i), i = 1, 2.

Recall that, for the C-action α̃λ on V ($1, $2), the orbit space Sλ($1, $2)
:= V ($1, $2)/C is a complex manifold diffeomorphic to the product of
spheres S2r1−1 × S2r2−1 by [19, Theorem 1]. Indeed, the canonical projec-
tion V ($1, $2) −→ Sλ($1, $2) is the projection of a holomorphic principal
bundle with fibre and structure group C. When λu = 0, these statements
also follow from Theorem 3.3.3.

Since rank(G̃) > |Φ̃+|, for any ε > 0 we can find tε ∈ T̃ such that

γ(tε) = ε for all γ ∈ Φ̃+.

Theorem 4.2.1. We keep the above notations.
(i) The orbit space, denoted L/Cλ, of the C-action on L = L1 × L2 defined
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by λ = λs +λu is a Hausdorff complex manifold and the canonical projection
L −→ L/Cλ is the projection of a principal C-bundle. Furthermore, L/Cλ is

analytically isomorphic to L/Cλε where λε := Ad(tε)(λ) and tε ∈ T̃ is such

that γ(tε) = ε for all γ ∈ Φ̃+.
(ii) If |ε| is sufficiently small, then each orbit of Cλε on L meets S(L) trans-
versely at a unique point. In particular, the restriction of the projection
L −→ L/Cλε to S(L) ⊂ L is a diffeomorphism.

Proof. When λu = 0, the theorem is a special case of Theorem 3.3.3. So
assume λu 6= 0.

Since the C-action αλε is conjugate by the analytic automorphism tε :
L −→ L to αλ, we see that L/Cλ

∼= L/Cλε as a complex analytic space.
Thus, it is enough to prove the theorem for |ε| > 0 sufficiently small.

Consider the projective embedding φ′i : Xi = Gi/Pi ↪→ P(V ($i)) defined
by the ample line bundle L̄∗i . The circle-bundle S(Li) −→ Xi is just the
restriction to Xi of the circle-bundle associated to the tautological bundle
over P(V ($i)). Thus φ′i yields an imbedding φi : S(Li) −→ S2ri−1. Let
φ : S(L) −→ S(V ($1, $2)) = S2r1−1 × S2r2−1 be the product φ1 × φ2.

Set λu,ε = Ad(tε)λu so that λε = λs + λu,ε. Let β ∈ R+ be a positive
root. Let Xβ ∈ Lie(Bu) denotes a weight vector of weight β. Note that, if
β =

∏
γ∈Φ+ γkβ,γ ( i.e. in additive notation β =

∑
γ∈Φ+ kβ,γγ ), then

Ad(tε)Xβ = β(tε)Xβ =
∏
γ∈Φ+

γkβ,γ (tε)Xβ = ε|β|Xβ

where |β| =
∑
kβ,γ ≥ 1. This implies that λε → λs as ε → 0, and, fur-

thermore, λε($1, $2) → λs($1, $2) as ε → 0. By [19, Theorem 1], for |ε|
sufficiently small, each C-orbit for the α̃λε-action on V ($1, $2) is closed and
properly imbedded in L($1, $2) and intersects S2r1−1 × S2r2−1 at a unique
point. In particular, each orbit of the C-action corresponding to λε meets
S(L) ⊂ S2r1−1 × S2r2−1 at a unique point when |ε| > 0 is sufficiently small.

Consider the map πλε : L −→ S(L) which maps each αλε orbit to the
unique point where it meets S(L). This is just the restriction of the map
V ($1, $2) −→ S2r1−1×S2r2−1 and hence continuous. It follows that the orbit
space L/Cλε is Hausdorff and that the map π̄λε : L/C −→ S(L) induced by
πλε is a homeomorphism, whose inverse is just the composition S(L) ↪→
L −→ L/C. Since each C-orbit for αλs-action meets S(L) transversely by
Lemma 3.3.5, and since S(L) is compact, the same is true for the αλε-action
provided |ε| is sufficiently small. For such an ε, the πλε is a submersion and
π̄λε is a diffeomorphism. The orbit space L/Cλε has a natural structure of a
complex analytic space with respect to which πλε is analytic. We have shown
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above that L/Cλε is a Hausdorff manifold and that πλε is a submersion. It
follows that πλε is the projection of a principal complex analytic bundle with
fibre and structure group C.

Definition 4.2.2. The manifold S(L), with the complex structure induced
from L/Cλ will be said to be of linear type, and will be denoted Sλ(L).

Remark 4.2.3. (i) Loeb and Nicolau [19] consider more general C-actions
on Cm×Cn in which the corresponding vector field is allowed to have higher
order resonant terms. In our setup we have only to consider linear actions—
the corresponding vector fields can at most have terms corresponding to
resonant relations of the form “λi = λj”.

(ii) When the Pi are maximal parabolics and Li the negative generators
of the Picard group of Gi/Pi, the smooth manifold S(Li) is simply-connected
and is a homogeneous space Hi/Qi where Hi ⊂ Gi is simply-connected com-
pact and Qi is the centralizer of a circle-subgroup contained in Hi. Thus
S(L) = S(L1) × S(L2) are among the manifolds classified by Wang [32]
which admit homogeneous complex structures. In fact S(L) admits complex
structures invariant under the action of H1×H2. The homogeneous complex
structures on S(L) correspond to the scalar type. The more general linear
type should be thought of as a deformation of the homogeneous complex
structure constructed by Wang.

(iii) One has a commuting diagram

L ↪→ V ($1, $2)
πλ ↓ ↓ πλ($1,$2)

Sλ(L) ↪→ S2r1−1 × S2r2−1

in which the horizontal maps are holomorphic and the vertical maps, projec-
tions of holomorphic principal C-bundles.
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Chapter 5

Cohomology of Sλ(L)

In this Chapter we shall compute the cohomology groups of the complex man-
ifold Sλ(L) with values in the structure sheaf. Using this we shall compute
the Picard group and the algebraic dimension of Sλ(L).

Let Li −→ Xi, i = 1, 2 be holomorphic principal C∗-bundle over complex
projective manifolds Xi, with dimXi ≥ 1. We assume that the principal
C∗-bundle Li −→ Xi is associated to a negative ample line bundle L̄i −→
Xi. Further we assume that Xi is arithmetically Cohen-Macaulay for the
projective embedding determined by the ample line bundle L̄∗i . This means
that the cone L̂i over Xi is a Cohen-Macaulay affine analytic space.

We apply the Künneth formula established by A. Cassa [7, Teorema 3]
to obtain the following lemma. We refer to Theorem 2.2.8 for the Künneth
formula. Let L = L1 × L2. Then OL1×L2 = pr∗1OL1⊗̂pr∗2OL2 , where pr∗i
denotes the projection L1×L2 −→ Li, i = 1, 2. Here we denote the structure
sheaf of an analytic variety Y by OY .

Lemma 5.0.4. Let L̄i −→ Xi be negative ample holomorphic line bundle
over a smooth projective variety Xi, i = 1, 2. Assume that Xi is arithmetically
Cohen-Macaulay for the projective embedding determined by the ample line
bundle L̄∗i . Then, H i(L;OL) = 0 for i 6= 0, dimX1, dimX2, dimX1 +dimX2.
Also, H0(L;OL) ∼= H0(L1;OL1)⊗̂H0(L2;OL2).

Proof. By Corollary 2.1.8 we have H i(Li,OLi) = 0 for i 6= 0, dimXi. Rest of
the proof now follow readily by the Künneth formula 2.2.8.

Remark 5.0.5. We remark that the vanishing of the cohomology groups
Hq(L;OL) for 0 < q < min{dimX1, dimX2} in the Lemma 5.0.4 (ii) fol-
lows from [2, Ch. I, Theorem 3.6]. To see this, set L̂ := L̂1 × L̂2 \ A
where A is the closed analytic space A = L̂1 × {a2} ∪ {a1} × L̂2. The ideal
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I ⊂ OL̂ of A equals I1.I2 where I1, I2 are the ideals of the components

A1 := L̂1 × {a2}, A2 := {a1} × L̂2 of A. Then depthAOL = depthIOL̂ =
minj{depthIjOL̂} = minj{depthajOL̂j} = min{dimX1 + 1, dimX2 + 1}.
Thus we see that depthAOL̂ = min{dimX1 + 1, dimX2 + 1}. Therefore

Hq(L̂1 × L̂2;OL̂1×L̂2
) ∼= Hq(L;OL) if q < min{dimX1, dimX2} by [2, Ch.

I, Theorem 3.6] where the isomorphism is induced by the inclusion. Since
L̂1 × L̂2 is Stein, the cohomology groups Hq(L;OL) vanish for 1 ≤ q <
min{dimX1, dimX2}.

Note that the hypothesis of the above lemma are satisfied in the case
when Xi, i = 1, 2 are flag manifolds Gi/Pi where Gi is a semi-simple com-
plex Lie group over C, Pi is a parabolic subgroup and L̄i any negative ample
line bundle, over Gi/Pi. This follows because the flag manifold Xi are arith-
metically Cohen-Macaulay for the projective embedding determined by any
ample line bundles. For this fact refer to the Section 2.1.2. If we assume that
L itself is very ample, then it is not possible to blow-down X. However, in
this case, the following lemma allows one to compute the cohomology groups
of L.

Lemma 5.0.6. Let E be any holomorphic principal C∗-bundle over a complex
manifold X. Let E∗ be the dual to E. Then E ∼= E∗ as complex manifolds.
In particular, Hp,q

∂̄
(E) ∼= Hp,q

∂̄
(E∗).

Proof. Let ψ : E −→ E∗ be the map v 7→ v∗ where v∗(λv) = λ ∈ C. Then ψ
is a biholomorphism.

Suppose that αλ is an admissible C-action on L −→ X of scalar type, or
diagonal type, or linear type. It is understood that in the case of diagonal
type, there is a standard Ti-action on Xi, i = 1, 2, and that Xi = Gi/Pi and
Li negative ample in the case of linear type action. Denote by vλ (or more
briefly v) the holomorphic vector field on L associated to the C-action. Thus
the C-action is just the flow associated to v. We shall denote by Otr

v the
sheaf of germs of local holomorphic functions which are constant along the
C-orbits. Thus Otr

v is isomorphic to π∗λ(OSλ(L)). One has an exact sequence
of sheaves

0→ Otr
v → OL

v→ OL → 0. (8)

Since the fibre of πλ : L −→ Sλ(L) is Stein, we see that Hq(L;Otr
v ) ∼=

Hq(Sλ(L);OSλ(L)) for all q. Thus, the exact sequence (8) leads to the follow-
ing long exact sequence:

0→ H0(Sλ(L);OSλ(L))→ H0(L;OL)→ H0(L;OL)→ H1(Sλ(L);OSλ(L))→

49



· · · → Hq−1(L;OL)→ Hq(Sλ(L);OSλ(L))→ Hq(L;OL)→ Hq(L;OL)

→ Hq+1(Sλ(L);OSλ(L))→ Hq+1(L;OL)→ Hq+1(L;OL)→ · · · (9)

Theorem 5.0.7. Suppose that L = L1×L2 where the Li satisfy the hypothe-
ses of Lemma 5.0.4. Suppose that 1 ≤ dimX1 ≤ dimX2. Then Hq(Sλ(L);O)
= 0 provided q /∈ {0, 1, dimXi, dimXi+1, dimX1+dimX2, dimX1+dimX2+
1; i = 1, 2}. Moreover one has C ⊂ H1(Sλ(L);O), given by the constant func-
tions in H0(L;O).

Proof. The only assertion which remains to be explained is that the constant
function 1 is not in the image of v∗ : H0(L;O) −→ H0(L;O). All other
assertions follow trivially from the long exact sequence (9) and the Lemma
5.0.4.

Suppose that f : L −→ C is such that v(f) = 1. This means that
d
dz
|z=0(f ◦ µp)(z) = 1 for all p ∈ L, z ∈ C, where µp : C −→ L is the map

z 7→ αλ(z).p = z.p. Since µw.p(z) = z.(w.p) = (z + w).p = µp(z + w), it
follows that d

dz
|z=w(f ◦ µp) = 1 ∀w ∈ C. Hence f ◦ µp(z) = z + f(p). This

means that the complex hypersurface Z(f) := f−1(0) ⊂ L meets each fibre
at exactly one point. It follows that the projection L −→ Sλ(L) restricts to
a bijection Z(f) −→ Sλ(L).

In fact, since v(f) 6= 0 we see that Z(f) is smooth and since vp is tangent
to the fibres of the projection L −→ Sλ(L) for all p ∈ Z(f), we see that
the bijective morphism of complex analytic manifolds Z(f) −→ Sλ(L) is an
immersion. It follows that Z(f) −→ Sλ(L) is a biholomorphism. Thus Z(f)
is a compact complex analytic sub manifold of L ⊂ L̂. Since L̂ is Stein, this
is a contradiction.

5.1 Picard Group

For a complex manifold Y , the group of isomorphism class of line bundle on
Y is isomorphic to the cohomology group H1(Y,O∗) =: Pic(Y ). We denote
the kernel of the natural map H1(Y,O) −→ H1(Y,O∗) by Pic0(Y ). The
vector space Pic0(Y ) is isomorphic to the class of line bundles with trivial
Chern class. Our next result concerns the Picard group Pic(Sλ(L)).

Proposition 5.1.1. Let Li −→ Xi be as in the Theorem 5.0.4 . Suppose
that Xi is simply connected. Then Pic0(Sλ(L)) ∼= Cl for some l ≥ 1.

Proof. Since L̄ is negative ample, c1(Li) ∈ H2(Xi;Z) is a non-torsion ele-
ment. Clearly H1(Sλ(L);Z) = 0 by a straightforward argument involving the
Serre spectral sequence associated to the principal S1 × S1-bundle with pro-
jection S(L) −→ X1×X2. Using the exact sequence 0→ Z→ O → O∗ → 1

50



we see that Pic0(Sλ(L)) ∼= H1(Sλ(L);O) ∼= Cl. Now l ≥ 1 by the Theorem
5.0.7.

The above proposition is applicable when Xi = Gi/Pi and L̄i are negative
ample. However, in this case we have the following stronger result.

Theorem 5.1.2. Let Xi = Gi/Pi where Pi is any parabolic subgroup and
let L̄i −→ Xi be a negative line bundle, i = 1, 2. We assume that, when
Xi = P1, the bundle L̄i is a generator of Pic(Xi). Then Pic0(Sλ(L)) ∼= C.
If the Pi are maximal parabolics and the Li are generators of Pic(Xi) ∼= Z,
then Pic(Sλ(L)) ∼= Pic0(Sλ(L)) ∼= C.

Proof. It is easy to see that H1(S(L);Z) = 0 and that, when Pi are maxi-
mal parabolics and Li generators of Pic(Xi) ∼= Z, S(L) is 2-connected. If
dimXi > 1 for i = 1, 2, then H1(L;O) = 0 by Theorem 5.0.4 and so we
need only show that coker(H0(L;O)

v∗−→ H0(L;O)) is isomorphic to C. In
case dimXi = 1—equivalently Xi = P1—L̄i is the tautological bundle by
our hypothesis. Thus Li = C2 \ {0}. In this case we need to also show that
ker(H1(L;O)

v∗−→ H1(L;O)) is zero. Note that the theorem is known due to
Loeb and Nicolau [19, Theorem 2] when both the Xi are projective spaces
and the L̄i are negative ample generators—in particular when both Xi = P1.

The validity of the theorem for the case when λ is of diagonal type implies
its validity in the linear case as well. This is because one has a family
{L/Cλε} of complex manifolds parametrized by ε ∈ C defined by λε = λs +
λu,ε, where Sλε(L) = L/Cλε

∼= L/Cλ if ε 6= 0 and λ0 := λs is of diagonal
type. (See §3.) The semi-continuity property ([15, Theorem 6, §4]) for
dimH1(Sλε(L);O) implies that dimH1(Sλ(L);O) ≤ dimH1(Sλs(L);O). But
Theorem 5.0.7 says that dimH1(Sλ(L);O) ≥ 1 and so equality must hold,
if H1(Sλs(L);O) ∼= C. Therefore we may (and do) assume that the complex
structure is of diagonal type.

First we show that coker(v∗ : H0(L;O) −→ H0(L;O)) is 1-dimensional,
generated by the constant functions. Consider the commuting diagram where
ṽ is the holomorphic vector field defined by the action of C given by λ($1, $2)
on V ($1, $2). Note that ṽx = vx if x ∈ L.

H0(V ($1, $2);O)
ṽ∗−→ H0(V ($1, $2);O)

↓ ↓
H0(L;O)

v∗−→ H0(L;O)

By Hartog’s theorem, H0(V ($1, $2);O) ∼= H0(V ($1) × V ($2);O). Also,
since L̂i is normal at its vertex [25], again by Hartog’s theorem, H0(L;O) ∼=
H0(L̂1× L̂2;O). Since L̂i ⊂ V ($i) are closed sub varieties, it follows that the
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both vertical arrows, which are induced by the inclusion of L in V ($1, $2),
are surjective. From what has been shown in the proof of Theorem 5.0.7,
we know that the constant functions are not in the cokernel of v∗. So it
suffices to show that coker(ṽ∗) is 1-dimensional. This was established in
the course of proof of Theorem 2 of [19]. For the sake of completeness we
sketch the proof. We identify V ($i) with Cri where ri := dimV ($i), by
choosing a basis for V ($i) consisting of weight vectors. Let r = r1 + r2 so
that Cr ∼= V ($1)× V ($2). The problem is reduced to the following: Given
a holomorphic function f : Cr −→ C with f(0) = 0, solve for a holomorphic
function φ satisfying the equation∑

i

bizj
∂φ

∂zi
= f, (10)

where we may (and do) assume that φ(0) = 0. In view of the Observation
made preceding the statement of Theorem 4.2.1, we need only to consider the
case where (bi) = (λµ, λν)µ∈Λ($1),ν∈Λ($2) ∈ Cr satisfies the weak hyperbolicity
condition of type (r1, r2). Denote by zm the monomial zm1

1 . . . zmrn where m =
(m1, . . . ,mr) and by |m| its degree

∑
1≤j≤rmj. Let f(z) =

∑
|m|>0 amz

m ∈
H0(Cr;O). Then φ(z) =

∑
am/(b.m)zm where b.m =

∑
bjmj is the unique

solution of Equation (10). Note that weak hyperbolicity and the fact that
|m| > 0 imply that b.m 6= 0, and, b.m → ∞ as m → ∞. Therefore φ is a
convergent power series and so φ ∈ H0(Cr;O).

It remains to show that, when X1 = P1, L1 = C2 \ {0}, and dimX2 > 1,
the homomorphism v∗ : H1(L;O) −→ H1(L;O) is injective. Let zj, 1 ≤
j ≤ r, denote the coordinates of C2 × V ($2) with respect to a basis con-

sisting of T̃ -weight vectors. Since dimX2 > 1, we have H1(L2,O) = 0.
Also H1(L1;O) = H1(C2 \ {0};O) is the space A of convergent power series∑

m1,m2<0 am1,m2z
m1
1 zm2

2 in z−1
1 , z−1

2 without constant terms.

By Lemma 5.0.4 and Künneth formula 2.2.8, H1(L;O) = A⊗̂H0(L2;O)
∼= A⊗̂H0(L̂2;O). Let I ⊂ H0(V ($2);O) denote the ideal of functions van-
ishing on L̂2 so that H0(L̂2;O) = H0(V ($2);O)/I. One has the commuting
diagram

0 → A⊗̂I → A⊗̂H0(V ($2);O) → A⊗̂H0(L2;O) → 0
ṽ∗ ↓ ṽ∗ ↓ v∗ ↓

0 → A⊗̂I → A⊗̂H0(V ($2);O) → A⊗̂H0(L2;O) → 0

where the rows are exact. Theorem 2 of [19] implies that

ṽ∗ : A⊗̂H0(V ($2);O) −→ A⊗̂H0(V ($2);O)
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is an isomorphism. As before, this is equivalent to showing that Equation
(10) has a (unique) solution φ without constant term when f =

∑
m cmz

m ∈
A⊗̂H0(V ($2);O), is any convergent power series in z−1

1 , z−1
2 , zj, 3 ≤ zj ≤ r,

where the sum ranges over m = (m1,m2, . . . ,mr) ∈ Zr,m1,m2 < 0,mj ≥
0, ∀j ≥ 3. It is clear that φ(z) =

∑
cm/(b.m)zm is the unique formal so-

lution. Note that weak hyperbolicity condition implies that b.m 6= 0 and
b.m → ∞ as

∑
j≥1 |mj| → ∞. So φ(z) is a well-defined convergent power

series in the variables z−1
1 , z−1

2 , zj, j ≥ 3 and is divisible by z−1
1 z−1

2 . Hence
φ ∈ A⊗̂H0(V ($2);O) and so ṽ∗ : A⊗̂H0(V ($2);O) −→ A⊗̂H0(V ($2);O)

is an isomorphism. The ideal I is stable under the action of T̃2, and so
is generated as an ideal by (finitely many) polynomials in z3, . . . , zn which

are T̃2-weight vectors. In particular, the generators are certain homogeneous
polynomials h(z3, . . . , zn) such that ṽ∗(z

m1
1 zm2

2 h) = b.mzm1
1 zm2

2 h ∀m1,m2 ∈ Z
where zm is any monomial that occurs in zm1

1 zm2
2 h. It follows easily that ṽ∗

maps A⊗̂I isomorphically onto itself. A straightforward argument involving
diagram chase now shows that v∗ : A⊗̂H0(L2;O) −→ A⊗̂H0(L2;O) is an
isomorphism. This completes the proof.

Remark 5.1.3. In the case when X1 is any projective space Pr1 and L1 is the
tautological bundle over X1, then the map v∗ : Hr1(L,O) −→ Hr1(L,O) is a
isomorphism. This can be showed as similar to the case r1 = 1 which is done
in the last part of the previous theorem. Using this, as in the Theorem 5.0.7,
we can deduce that Hr1(Sλ(L),O) = 0, r1 > 1. Moreover if |r1−r2| > 2 then
we can further deduce that Hr1+1(Sλ(L),O) = 0. This is slight improvement
of the Theorem 5.0.7 .

Assume that Pi ⊂ Gi are maximal parabolics and the L̄i are the negative
ample generators of the Pic(Gi/Pi) ∼= Z. We have the following description
of the principal C-bundles over Sλ(L). Let z 6= 0. Let {gij} be a 1-cocyle
defining the principal C-bundle L −→ Sλ(L). Then the C-bundle Lz repre-
senting the element z[L] ∈ H1(Sλ(L);O) is defined by the cocylce {zgi,j} for
any z ∈ C. We denote the corresponding C-bundle by Lz. Note that the
total space and the projection are the same as that of L. The C-action on
Lz is related to that on L where w.v ∈ Lz equals (w/z).v = αλ(w/z)(v) ∈ L
for w ∈ C, v ∈ L. The vector field corresponding to the C-action on Lz is
given by (1/z)vλ. Of course, when z = 0, Lz is just the product bundle.

We shall denote the line bundle (i.e. rank 1 vector bundle) corresponding
to Lz by Ez. Observe that if z 6= 0

Ez = Lz ×C C, where (w.v, t) ∼ (v, exp(2π
√
−1w)t), w, t ∈ C, v ∈ Lz.

If z 6= 0, any cross-section σ : Sλ(L) −→ Ez = Lz ×C C corresponds to a
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holomorphic function hσ : L −→ C which satisfies the following:

hσ(w.v) = exp(−2π
√
−1w)hσ(v) (11)

for all v ∈ Lz, w ∈ C. Equivalently, this means that

hσ(αλ(w)v) = exp(−2π
√
−1wz)hσ(v) for w ∈ C and v ∈ L.

This implies that
vλ(hσ) = −2π

√
−1zhσ. (12)

Conversely, if h satisfies (11), then it determines a unique cross-section of Ez
over Sλ(L).

5.2 Algebraic Dimension

For a complex manifolds Y , we shall denote the field of meromorphic func-
tions on Y byM(Y ). The algebraic dimension of a complex manifold Y is the
transcendence degree tr.degC(M(Y ). We have the following result concern-
ing the field of meromorphic functions on Sλ(L) with diagonal type complex
structure. The proof will be given after some preliminary observations. In
the end of the section we shall give explicitly the algebraic dimension of
Sλ(L).

Theorem 5.2.1. Let Li be the negative ample generator of Pic(Gi/Pi) ∼= Z
where Pi is a maximal parabolic subgroup of Gi, i=1,2. Assume that Sλ(L) is
of diagonal type. Then the field κ(Sλ(L)) of meromorphic functions of Sλ(L)
is purely transcendental over C. The transcendence degree of κ(Sλ(L)) is less
than dimSλ(L).

Let Ui denote the opposite big cell, namely the B−i -orbit of Xi = Gi/Pi
the identity coset where B−i is the Borel subgroup of Gi opposed to Bi. One
knows that Ui is a Zariski dense open subset of Xi and is isomorphic to Cri

where ri is the number of positive roots in the unipotent part Pi,u of Pi. The

bundle πi : Li −→ Xi is trivial over Ui and so Ũi := π−1
i (Ui) is isomorphic to

Cri × C∗. We shall now describe a specific isomorphism which will be used
in the proof of the above theorem.

Consider the projective imbedding Xi ⊂ P(V ($i)). Let v0 ∈ V ($i) be
a highest weight vector so that Pi stabilizes Cv0; equivalently, πi(v0) is the
identity coset in Xi. Let Qi ⊂ Pi be the isotropy at v0 ∈ V ($i) for the
Gi so that Gi/Qi = Li. The Levi part of Pi is equal to centralizer of a
one-dimensional torus Z contained in T and projects onto Pi/Qi

∼= C∗, the
structure group of Li −→ Xi.
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Let Fi ∈ H0(Xi; L̄
∗
i ) = V ($i)

∗ be the lowest weight vector such that
Fi(v0) = 1. Then Ui ⊂ Xi is precisely the locus Fi 6= 0 and Fi|π−1

i ([v]) :

Cv −→ C is an isomorphism of vector spaces for v ∈ Ũi. We denote also by
Fi the restriction of Fi to Ũi.

Let Yβ be the Chevalley basis element of Lie(Gi) of weight −β, β ∈
R+(Gi). We shall denote by Xβ ∈ Lie(Gi) the Chevalley basis element of
weight β ∈ R+(Gi). Recall that Hβ := [Xβ, Yβ] ∈ Lie(T ) is non-zero whereas
[Xβ, Yβ′ ] = 0 if β 6= β′.

Let RPi ⊂ R+(Gi) denote the set of positive roots of Gi complementary
to positive roots of Levi part of Pi and fix an ordering on it. (Thus β ∈ RPi

if and only if −β is a not a root of Pi.) Let ri = |RPi | = dimXi. Then
Lie(P−i,u)

∼= Cri where P−i,u denotes the unipotent radical of the parabolic
opposed to Pi. Observe that Pi ∩ P−i,u = {1}. The exponential map defines
an algebraic isomorphism θ : Cri ∼= Lie(Pi,u)

− −→ Ui where θ((yβ)β∈RPi ) =
(
∏

β∈RPi
exp(yβYβ)).Pi ∈ Gi/Pi. It is understood that, here and in the sequel,

the product is carried out according to the ordering on RPi .

If v ∈ Cv0, then θ factors through the map θv : Cri ∼= Lie(P−i,u) −→ Ũi
defined by (yβ)β∈RPi 7→

∏
exp(yβYβ).v. Moreover, Fi is constant —equal to

Fi(v)—on the image of θv.

We define θ̃ : Cri × C∗ ∼= Lie(P−i,u) × C∗ ∼= P−i,u × C∗ −→ Ũi to be

θ̃((yβ), z) = (
∏

exp(yβYβ)).zv0 = θz.v0((yβ)). This is an isomorphism. We

obtain coordinate functions z, yβ, β ∈ RPi by composing θ̃−1 with projections

Cri ×C∗ −→ C. Note that Fi(θ̃((yβ), z))) = z. Thus the coordinate function
z is identified with Fi.

Since Fi is the lowest weight vector (of weight −$i), YβFi = 0 for all
β ∈ R+(Gi). Define Fi,β := Xβ(Fi), β ∈ RPi . Then Yβ(Fi,β) = −[Xβ, Yβ]Fi =
−Hβ(Fi) = $i(Hβ)Fi for all β ∈ RPi . Note that $i(Hβ) 6= 0 as Hβ ∈ RPi .
If β′, β ∈ RPi are unequal, then Yβ′Fi,β = 0. It follows that Y m

β′ (Fi,β) = 0
unless β′ = β and m = 1.

The following result is well-known to experts in standard monomial the-
ory. (See [18].)

Lemma 5.2.2. With the above notations, the map Ũi −→ Cri×C∗ defined as
v 7→ ((Fi,β(v))β∈R+

Pi

;Fi(v)), v ∈ Ũi, is an algebraic isomorphism for i = 1, 2.

Proof. It is easily verified that ∂f/∂yβ|v0 = Yβ(f)(v0) for any local holomor-
phic function defined in a neighborhood of v0. (Cf. [18].)

Let y = θ̃((yγ), z) =
∏

γ∈RPi
(exp(yγYγ) ∈ P−i . Denote by ly : Ũi −→ Ũi

the left multiplication by y. If v = y.v0 ∈ Ũi, then (∂/∂yβ|v)(f) equals
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(∂/∂yβ)|v0(f◦ly). Taking f = Fi,β, β ∈ RPi a straightforward computation us-
ing the observation made preceding the lemma, we see that (∂/∂yβ|v)(Fi,γ) =
Yβ|v0(Fi,γ ◦ ly) = Fi(v)$i(Hβ)δβ,γ (Kronecker δ). We also have

(∂/∂yβ|v)(Fi) = 0 for all v ∈ Ũi.

Hence (∂/∂yβ)|v(Fi,γ/Fi) = $i(Hβ)δβ,γ. Thus the Jacobian matrix relating
the Fi,β/Fi and the yβ, β ∈ RPi , is a diagonal matrix of constant functions.
The diagonal entries are non-zero as $i(Hβ) 6= 0 for β ∈ RPi and since Fi is
nowhere vanishing, the lemma follows.

We shall use the coordinate functions Fi, Fi,β, β ∈ RPi , to write Taylor

expansion for analytic functions on Ũi. In particular, the coordinate ring
of the affine variety Ũi is just the algebra C[Fi,β, β ∈ RPi ][Fi, F

−1
i ]. The

projective normality [25] of Gi/Pi implies that C[L̂i] = ⊕r≥0H
0(Xi;L

−r
i ) =

⊕r≥0V (r$i)
∗. Since Ũi is defined by the non-vanishing of Fi, we see that

C[Ũi] = C[L̂i][1/Fi].

Example 5.2.3. In the particular case of Grassmannian, we shall describe
the lemma explicitly as follow.

Let X be the Grassmannian G4,2, the space of all vector subspace of dim
2 in C4. Let M4,2 be the space of 4× 2 matrices of rank 2. Let σ : M4,2 −→
G4,2 be the projection map, where π(A) is the subspace of C4 generated by
the column vectors of A. The flag manifold X can be identified with the
quotient M4,2/ ∼, where ∼ is the relation in which A ∼ B if and only if there
exit C ∈ GL(2,C) such that A = BC. We have the Plücker embedding
θ : G4,2 ↪→ P(∧2C4) ; θ(A) = v1 ∧ v2 where v1 and v2 are column vectors of
A. Let I(4, 2) = {I = (i1.i2) | 1 ≤ i1 < i2 ≤ 4}. We denote the homogeneous
coordinates of points in P(∧2C4) by (pI , I ∈ I(4, 2)). Then for A ∈ G4,2, pI
is 2-minor of A with row indices I = (i1, i2). Fix I0 = (1, 2). We denote by
the open subset UI0 ⊂ G4,2 the locus pI0 6= 0. Every element A ∈ UI0 has
unique representation of the form

1 0
0 1
x1 x2

x3 x4

 ; xi ∈ C for 1 ≤ i ≤ 4.

This gives a structure of affine space to UI0 with coordinate function x1,x2,x3,
and x4. The functions pI/pI0 , I ∈ I(4, 2), gives a well defined functions on
UI0
∼= C4. These functions can be expressed in terms of coordinate x1,x2,x3

and x4 as follows: p13/p12 = x2, p14/p12 = x4, p23/p12 = −x1, p24/p12 =
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−x3, p34/p12 = x1x4−x2x3. This give a new coordinate system on UI0 with co-
ordinate functions p13/p12, p14/p12, p23/p12 and p24/p12. Let π : E(∧2γ4,2) −→
G4,2 be the holomorphic principal C∗-bundle over G4,2, corresponding to the
tautological bundle ∧2γ4,2. The Plücker embedding θ : G4,2 ↪→ P(∧2C4) can

be “lifted” to an embedding E(∧2γ4,2) ↪→ ∧2C4 \ {0}. Let ŨI0 := π−1(UI0)

be the open subset of E(∧2γ4,2). Then ŨI0
∼= C∗ × UI0 . The functions

p12, p13/p12, p14/p12, p23/p12 and p24/p12 gives a coordinate functions on ŨI0 .

Since p12 6= 0 on ŨI0 , the functions p12, p13, p14, p23 and p24 gives a new coor-

dinate system on ŨI0 .

Now let X = X1 × X2 and T̃ = T̃1 × T̃2
∼= (C∗)N , N = n1 + n2, where

the isomorphism is as chosen in §3. Let di > 0, i = 1, 2, be chosen as in
Proposition 4.1.1 so that the T̃i-action on Li −→ Gi/Pi is di-standard. Let

λ = λs ∈ Lie(T̃ ). Suppose that λ satisfies the weak hyperbolicity condition
of type (n1, n2).

Recall from (6) and (7) that for any weight µi ∈ Λ($i), there exist el-
ements λµ1 , λµ2 ∈ C such that for any v = (v1, v2) ∈ Vµ1($1) × Vµ2($2),
the αλ-action of C is given by αλ(z)v = (exp(zλµ1)v1, exp(zλµ2)v2). In fact
λµi =

∑
ni−1<j≤ni−1+ni

dµi,jλj where dµi,j are certain non-negative integers. It
follows that, as observed in the discussion preceding the statement of Theo-
rem 4.2.1, the complex numbers λµi ∈ C, µi ∈ Λ($i), i = 1, 2 satisfy weak
hyperbolicity condition:

0 ≤ arg(λµ1) < arg(λµ2) < π, ∀µi ∈ Λ($i), i = 1, 2. (13)

We observe that if µ = µ1 + · · ·+µr = ν1 + · · ·+νr, where µj, νj ∈ Λ($i),
then λµ,r :=

∑
λµj =

∑
λνj . (This is a straightforward verification using (5)

and (6).) Therefore, if v ∈ V ($i)
⊗r is any weight vector of weight µ, we get,

for the diagonal action of C, z.v = exp(λµ,rz)v.

Any finite dimensional G̃i-representation space V is naturally G̃1 × G̃2-
representation space and is a direct sum of its T̃ -weight spaces Vµ. If V arises

from a representation of Gi via G̃i −→ Gi, then the T̃ -weights of V are the
same as T -weights.

Definition 5.2.4. Let Zi(λ) ⊂ C, i = 1, 2, be the abelian subgroup generated
by λµ, µ ∈ Λ($i) and let Z(λ) := Z1(λ) + Z2(λ) ⊂ C.

The λ-weight of an element 0 6= f ∈ Hom(Vµ($i);C) is defined to be
wtλ(f) := λµ. If h ∈ Hom(V ($i)

⊗r,C) is weight vector of weight −µ, (so
that h ∈ Hom(Vµ($i)

⊗r;C)) we define the λ-weight of of h to be λµ,r.
If f ∈ Hom(Vµ(r$i),C) is a weight vector (of weight −µ), then it is the

image of a unique weight vector f̃ ∈ Hom(V ($i)
⊗r,C) under the surjection
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induced by the G̃i-inclusion V (r$i) ↪→ V ($i)
⊗r = V (r$i)⊕V ′ where f̃ |V ′ =

0. We define the λ-weight of f to be wtλ(f) := wtλ(f̃).

If hi ∈ V (ri$i)
∗ ⊂ C[L̂i], i = 1, 2, are weight vectors, then h1h2 is a

weight vector of V (r1$1)∗⊗V (r2$2)∗ ⊂ C[L̂1×L̂2] and we have wtλ(h1h2) =
wtλ(h1)+wtλ(h2) ∈ Z(λ). Note that wtλ(f1 . . . fk) =

∑
1≤j≤k wtλ(fj) ∈ Z(λ)

where fj ∈ C[L̂1 × L̂2] = ⊕r1,r2≥0V (r1$1)∗ ⊗ V (r2$2)∗ are weight vectors.
Also wtλ(f) ∈ Z(λ) is a non-negative linear combination of λj, 1 ≤ j ≤ N

for any T̃ -weight vector f ∈ C[L̂1 × L̂2].
If f ∈ V ($i)

∗, it defines a holomorphic function on V ($1) × V ($2)
and hence on L, and denoted by the same symbol f ; explicitly f(u1, u2) =
f(ui), ∀(u1, u2) ∈ L.

Lemma 5.2.5. We keep the above notations. Assume that λ = λs ∈ Lie(T̃ )

= CN . Fix C-bases Bi for V ($i)
∗, consisting of T̃ -weight vectors. Let z0 ∈

Z(λ). There are only finitely many monomials f := f1 . . . fk, fj ∈ B1 ∪ B2

having λ-weight z0. Furthermore, vλ(f) = wtλ(f)f .

Proof. The first statement is a consequence of weak hyperbolicity (see (13)).
Indeed, since 0 ≤ arg(λµ) < π for all µ ∈ Λ($i), i = 1, 2, given any complex
number z0, there are only finitely many non-negative integers cj such that∑
cjλµj = z0.
As for the second statement, we need only verify this for f ∈ Bi, i = 1, 2.

Suppose that f ∈ B1 and that f is of weight −µ, µ ∈ Λ($1), say. Then, for
any (u1, u2) ∈ L, writing u1 =

∑
ν∈Λ($1) uν , using linearity and the fact that

f(u1, u
′
2) = f(uµ) we have

vλ(f)(u1, u2) = limw→0(f(αλ(w)(u1, u2))− f(u1, u2))/w
= limw→0(f(exp(λµw)uµ)− f(u1))/w

= limw→0( exp(λµw)−1

w
)f(u1)

= λµf(u1)
= λµf(u1, u2).

This completes the proof.

We assume that Fi, Fi,β, β ∈ RPi , are in Bi, i = 1, 2.

Let M ⊂ C(Ũ1 × Ũ2) denote the multiplicative group of all Laurent
monomials in Fi, Fi,β, β ∈ RPi , i = 1, 2. One has a homomorphism wtλ :
M−→ Z(λ). Denote by K the kernel of wtλ. Evidently,M is a free abelian
group of rank dimL.

Lemma 5.2.6. With the above notations, wtλ : M −→ Z(λ) is surjective.
Any Z-basis h1, . . . , hk of K is algebraically independent over C.
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Proof. Suppose that ν ∈ Zi(λ). Write ν =
∑
aµλµ and choose bµ ∈ Bi to be

of weight µ. Then wtλ(
∏

µ b
aµ
µ ) = ν. On the other hand, wtλ(bµ) equals the

λ-weight of any monomial in the F−1
i , Fi, Fi,β, β ∈ RPi that occurs in bµ|Ũi.

The first assertion follows from this.
Let, if possible, P (z1, . . . , zk) = 0 be a polynomial equation satisfied by

h1, . . . , hk. Note that the hj are certain Laurent monomials in a transcen-

dence basis of the field C(Ũ1× Ũ2) of rational functions on the affine variety

Ũ1 × Ũ2. Therefore there must exist monomials zm and zm
′
, m 6= m′, oc-

curring in P (z1, . . . , zk) with non-zero coefficients such that hm = hm
′ ∈

C(Ũ1 × Ũ2). Hence hm−m
′

= 1. This contradicts the hypothesis that the hj
are linearly independent in the multiplicative group K.

We now turn to the proof of Theorem 5.2.1.
Proof of Theorem 5.2.1: By definition, any meromorphic function on Sλ(L) is
a quotient f/g where f and g are holomorphic sections of a holomorphic line
bundle Ez. Any holomorphic section f : S(L) −→ Ez defines a holomorphic
function on L, denoted by f , which satisfies Equation (11). By the normality
of L̂1 × L̂2, the function f then extends uniquely to a function on L̂1 × L̂2

which is again denoted f . Thus we may write f =
∑

r,s≥0 fr,s where fr,s ∈
V (r$1)∗⊗V (s$2)∗. Now vλf = af and vλfr,s ∈ V (r$1)∗⊗V (s$2)∗ implies
that vλ(fr,s) = afr,s for all r, s ≥ 0 where a = −2π

√
−1z. This implies that

wtλ(fr,s) = a for all r, s ≥ 0. This implies, by Lemma 5.2.5, that fr,s = 0 for
sufficiently large r, s and so f is algebraic.

Now writing f and g restricted to Ũ1 × Ũ2 as a polynomial in the the
coordinate functions F±i , Fi,β, i = 1, 2, introduced above, it follows easily
that f/g belongs to the field C(K) generated by K. Evidently K—and hence
the field C(K)—is contained in κ(Sλ(L)). Therefore κ(Sλ(L)) equals C(K).
By Lemma 5.2.6 the field C(K) is purely transcendental over C.

Finally, since Z(λ) is of rank at least 2 and since wtλ : M −→ Z(λ)
is surjective, tr.deg(κ(Sλ(L)) = rank(K) ≤ rank(K) − 2 = dim(L) − 2 =
dim(Sλ(L))− 1. �

Remark 5.2.7. (i) We have actually shown that the transcendence degree
of κ(Sλ(L)) equals the rank of K. In the case when Xi are projective spaces,
this was observed by [19]. When λ is of scalar type, tr.deg(κ(Sλ(L)) =
dim(Sλ(L))− 1.
(ii) Theorem 5.2.1 implies that any algebraic reduction of Sλ(L) is a ra-
tional variety. In the case of scalar type, one has an elliptic curve bundle
Sλ(L) −→ X1 × X2. (Cf. [29].) Therefore this bundle projection yields an
algebraic reduction. In the general case however, it is an interesting problem
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to construct explicit algebraic reductions of these compact complex mani-
folds. (We refer the reader to [23] and references therein to basic facts about
algebraic reductions.)
(iii) We conjecture that κ(Sλ(L)) is purely transcendental for Xi = Gi/Pi
where Pi is any parabolic and L̄i is any negative ample line bundle over Xi,
where Sλ(L) has any linear type complex structure.
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la construction de Meersseman et López de Medrano-Verjovsky. Ann.
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