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ABSTRACT

Excitable media is a generic term for a wide range of physical, chemical

and biological systems that exhibit spontaneous formation of spatial patterns.

Examples of such patterns include spiral waves in a two-dimensional medium

and their generalization in a three-dimensional system, scroll waves. Under

certain conditions, these waves may become unstable and break up, giving

rise to spatiotemporal chaos. Controlling these patterns using low-amplitude

external perturbations is of fundamental importance as these patterns are

known to have critical functional consequences for vital biological systems,

such as the heart. Specifically, spatial patterns of electrical excitation have

been implicated in many life-threatening disturbances to the natural rhythm

of the heart. Hence understanding the dynamics of these patterns is critical

for developing safe and efficient clinical treatment for these disturbances. In

this thesis we explore different aspects of the dynamics of spiral and scroll

waves using both simple and realistic models of excitable media. Specifically,

we study the dynamical evolution of these patterns upon their interaction

with different kinds of heterogeneities in the medium. We also propose several

low-amplitude control schemes to eliminate such patterns from an excitable

medium.

We begin the thesis with a brief overview of various features of excitable

systems in Chapter 1. In the first few sections, important concepts, terms

and models that are used throughout the thesis are defined. This is followed

by a brief discussion of the role of heterogeneities on spiral and scroll wave

dynamics. Following this is a section with a detailed review of various low-

amplitude chaos control schemes for spatially extended chaos in excitable
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media. In Chapter 2, we study the drift dynamics of spiral waves in the

presence of different gradients using simple models of excitable media. The

model parameters for which the spiral drifts to regions of lower and higher

excitability are determined. Drift of a spiral wave to a region where it rotates

faster is of special relevance as it suggests a possible mechanism for the onset

of “mother-rotor” fibrillation. We discuss the possible mechanism underly-

ing such anomalous drift. In Chapter 3, we discuss the conditions under

which a pinned spiral can be unpinned using a high frequency wave-train

in a simple model of excitable media. We then derive a relation between

pacing period and the size of the obstacle. We also show that unpinning

the spiral from an inexcitable obstacle becomes easier with the decrease of

medium excitability. In Chapter 4 we study the breakup of an otherwise

stable scroll wave in the presence of an inexcitable obstacle which does not

extend throughout the medium. The scroll wave breaks up at the edge of the

obstacle, where a transition from a quasi-two-dimensional propagation front

to a fully three-dimensional spherical wave front occurs. In Chapter 5 we

propose a non-global spatially extended low-amplitude chaos control scheme,

using an array of control points. A travelling wave of control is simulated as

the spatially separated array points are excited in a sequence. We find that,

depending on wave velocity and spacing of the control points, the chaotic

activity can be eliminated completely. Moreover our scheme is robust in the

presence of heterogeneities. In Chapter 6 we apply sub-threshold stimuli,

whose effect on a solitary wave propagating in an extended medium is negligi-

ble, on a system with spatiotemporally heterogeneous activity. Surprisingly,

the signal which is not sufficient to excite a resting medium, fundamentally
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alters the recovery dynamics and terminates all activity in the medium. We

determine model-independent generic conditions under which this effect can

be observed. Finally we conclude in Chapter 7 with a summary of our

results on the role of heterogeneities in the dynamics of excitable media, and

how control of spatiotemporal patterns in these systems need to take into

account the presence of such features.
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Chapter 1

Introducing excitable media

Living Nature, not dull Art

Shall plan my ways and rule my heart

− Cardinal John Henry Newman

1.1 Introduction

From the womb to the deathbed, our lives are determined by the properties

of excitable systems. Excitable media denote a class of systems that share

a set of features which make their dynamical behavior qualitatively simi-

lar. These features include (i) the existence of two characteristic dynamical

states, comprising a stable resting state and a metastable excited state, (ii) a

threshold value associated with one of the dynamical variables characterising

the system, on exceeding which, the system switches from the resting state

to the excited state, and (iii) a recovery period following an excitation, during

which the response of the system to a supra-threshold stimulus is diminished,

1
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if not completely absent [1]. Natural systems which exhibit such features in-

clude, in biology, cells such as neurons, cardiac myocytes and pancreatic beta

cells, all of which are vital to the function of a complex living organism [2].

Other examples of dynamical phenomena associated with excitable media

include cAMP waves observed during aggregation of slime mold [3], intra-

cellular calcium waves observed in Xenopus oocytes [4], muscle contractions

during childbirth in uterine tissue [5], intercellular calcium waves in brain

slices [6, 7], chemical waves observed in the Belusov-Zhabotinsky reaction [8]

and concentration patterns in CO-oxidation reaction on Pt(110) surface [9].

Excitation in such systems is observed as a characteristic action potential,

where a variable associated with the system (e.g., membrane potential, in the

case of biological cells) increases rapidly from its resting value to the peak

value corresponding to the excited state, followed by a slower process during

which it gradually returns to the resting state.

One of the simplest model systems capable of exhibiting all these features

is the generic Fitzhugh-Nagumo system of two coupled differential equa-

tions [10, 11]:

∂e

∂t
= e(1 − e)(e − b) − g,

∂g

∂t
= ǫ(ke − g), (1.1)

and its variants where the cubic nonlinear function is replaced by piece-

wise linear approximations [12, 13, 14]. Having only two variables, such

a system is obviously incapable of exhibiting chaos. However, when several

such excitable elements are coupled together to simulate a spatially extended

medium, e.g., a piece of biological tissue made up of a large number of cells,

the resulting high-dimensional dynamical system may display chaotic behav-
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ior under certain conditions 1. The genesis of this spatiotemporal chaos lies

in the distinct property of interacting waves in excitable media, which mutu-

ally annihilate on colliding. This is a consequence of the region immediately

behind the excitation wavefront exclusively consisting of cells that are all in

the recovery phase. Thus, these cells in the waveback cannot be stimulated

by another excitation wavefront when two such waves meet and attempt to

cross each other 2. As a result, the collision of two excitation fronts leads to

mutual annihilation.

Interaction between such waves results in the creation of spatial patterns,

referred to variously as reentrant excitations (in 1D), vortices or spiral waves

(in 2D) and scroll waves (in 3D). These patterns form when an excitation

wavefront is broken as the wave propagates across partially recovered tissue or

encounters an inexcitable obstacle [15]. The free ends of the broken wavefront

gradually curl around to form spiral waves. Once formed, these waves be-

come self-sustained sources of high-frequency excitation in the medium, and,

usually can only be terminated through external intervention. In general,

spiral waves are associated with periodic or quasiperiodic patterns of tempo-

ral activity. Thus, the existence of nonlinear properties of wave propagation

in several excitable media can lead to complex non-chaotic spatiotemporal

rhythms.

Under certain conditions these spiral or scroll waves become unstable,

eventually breaking up into multiple wavelets leading to a spatiotemporally

1Strictly speaking, it is the model systems with piecewise linear function approximating

the cubic nonlinearity that are capable of exhibiting chaos when coupled together.
2Note that, unlike waves in ordinary diffusive media which dissipate as they propagate

further, excitation waves are self-regenerating.
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chaotic state. Various mechanisms of such breakup have been identified, in-

cluding interaction of waves with inexcitable obstacles, meandering of the

spiral, negative filament tension, etc 3. For example, in a system where me-

andering is sufficiently high, part of the spiral wave can collide with another

part of itself and break up spontaneously, resulting in the creation of multi-

ple smaller spirals (Fig. 1.1). The process continues until the spatial extent

of the system is spanned by several coexisting spiral waves that activate

different regions without any degree of coherence. This state of spiral turbu-

lence marks the onset of spatiotemporal chaos, as indicated by the Lyapunov

spectrum and Kaplan-Yorke dimension [18].

1.2 Models of excitable media

Simple phenomenological models

The generic Fitzhugh-Nagumo model for excitable media (Eq. 1.1) exhibits

a structure that is common to most models used in the papers discussed

here. Typically, the dynamics is described by a fast or activation variable,

e(x, t), and a slow or recovery variable, g(x, t), the ratio of the two timescales

being denoted by ǫ. The resulting phase space behavior is shown in Fig. 1.2.

For biological cells, the fast variable is often associated with the transmem-

brane potential, while the slow variable stands for an effective time-evolving

membrane conductance that is a simplified representation of the actual com-

plexity of several different types of ion channels. For the spatially extended

3For a detailed discussion of the multiple scenarios of spiral wave breakup, see Refs.[16,

17].
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T = 3850 ms T = 5720 ms T = 8690 ms

0 0.4 0.8

Figure 1.1: Onset of spatiotemporal chaos in the Panfilov model in a 2D

simulation domain with linear dimension L = 256. The initial condition is

a broken plane wave that is allowed to curl around into a spiral wave (left).

Meandering of the spiral focus causes wavebreaks to occur (centre) that

eventually results in spiral turbulence, with multiple independent sources

of high-frequency excitation (right). The colorbar indicates the value of the

activation variable e at each spatial point.
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system, the fast variable of neighboring cells are coupled diffusively. There

are several models belonging to this general class of excitable media that

display breakup of spiral waves (in 2D) and scroll waves (in 3D), including

the one proposed by Panfilov [13, 14]

∂e

∂t
= ∇2e − f(e) − g,

∂g

∂t
= ǫ(e, g)(ke − g). (1.2)

The function f(e), which specifies the fast activation processes is piecewise

linear: f(e) = C1e, for e < e1, f(e) = C2e + a, for e1 ≤ e ≤ e2 and

f(e) = C3(e − 1), for e > e2. The parameters determining the shape of

the function f(e) are e1 = 0.0026, e2 = 0.837, C1 = 20, C2 = 3, C3 = 15,

a = 0.06. The recovery dynamics is determined by k (= 3) and the time-scale

ǫ(e, g), with ǫ(e, g) = ǫ1 for e < e2, ǫ(e, g) = ǫ2 for e > e2 and ǫ(e, g) = ǫ3 for

e < e1 and g < g1. The parameter ǫ−1
3 specifies the recovery time constant for

small values of e and g. Similarly, ǫ−1
1 specifies the recovery time constant

for relatively large values of g and intermediate values of e. We observe

spatiotemporal chaos for a range of values, e.g., g1 = 1.8, ǫ2 = 1.0, ǫ3 = 0.3.

and ǫ1 = 0.0133.

Variants that also display spiral wave breakup in 2D include (i) the

Barkley model [12]:

∂e

∂t
= ∇2e + ǫ−1e(1 − e)(e − g + b

a
),

∂g

∂t
= e − g, (1.3)

the appropriate parameter values being given in Ref. [19], and (ii) the Bär-

Eiswirth model [20], which differs from (1.3) only in having ∂g/∂t = f(e)−g,

the functional form of f(e) and parameter values being as in Ref. [21]. The

Aliev-Panfilov model [22] is a modified form of the Panfilov model, that takes

into account nonlinear effects such as the dependence of the action potential
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time
e

g

e

dg/dt = 0

de/dt = 0

0

0

Figure 1.2: Dynamics in the phase-space of the Fitzhugh-Nagumo model,

with the resulting time evolution of the action potential shown in the inset.

The resting state corresponds to e = 0, g = 0.
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duration on the distance of the wavefront to the preceding waveback. It has

been used for demonstrating control of spiral turbulence in Refs. [23, 24].

Ionic models

The preceding simple models tend to disregard several complex features of

actual biological cells, e.g., the existence of different types of ion channels.

A class of models, inspired by the Hodgkin-Huxley formulation of a model

describing action potential in the squid giant axon, explicitly takes such

details into account. While the simple phenomenological models described

above do reproduce generic features of several excitable media seen in nature,

the more realistic models describe many properties of specific systems, e.g.,

ventricular tissue. The general form of such models are described by a partial

differential equation for the transmembrane potential V ,

∂V

∂t
+

Iion

C
= D∇2V, (1.4)

where C is the membrane capacitance and D is the diffusion constant, which

is a scalar if the medium is isotropic, and a tensor matrix if it is anisotropic.

Iion is the instantaneous total ionic-current density, and different realistic

models essentially differ in its formulation. For example, in the Luo-Rudy I

model [25] of guinea pig ventricular cells, Iion is assumed to be composed of

six different ionic current densities, viz. Iion = INa +IK +IK1+IKp +ICa +Ib,

where INa is the sodium ion current, ICa is the slow inward calcium current,

IK , IK1 and IKp are the different potassium currents and Ib is the back-

ground current. These currents are determined by several time-dependent

ion-channel gating variables whose time-evolution is governed by ordinary
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differential equations of the form:

dξ

dt
=

ξ∞ − ξ

τξ

. (1.5)

Here, ξ∞ =
αξ

(αξ+βξ)
is the steady state value of ξ and τξ = 1

αξ+βξ
is the

corresponding time constant. The voltage-dependent rate constants, αξ and

βξ, are complicated functions of V obtained by fitting experimental data.

1.3 Interaction of excitation waves with het-

erogeneities

Naturally occurring excitable systems are generally not homogeneous. Het-

erogeneities in these systems can be of many types, e.g., spatial gradients in

the values of the system parameters, regions of varying conduction speed, oc-

currence of inexcitable obstacles, etc. These heterogeneities produce marked

changes in the nature and dynamics of spatial patterns of activity. Study-

ing the effect of these heterogeneities on the dynamics of excitable media is

important as they are known to have critical consequences for the regular

functioning of vital biological organs such as the heart. Various different

kinds of heterogeneities that occur in the heart have often been implicated in

several dangerous clinical conditions. Thus understanding the effect of such

features on the dynamics of spiral/scroll waves is necessary to develop bet-

ter treatment for heart disorders related to cardiac arrhythmias. We briefly

review below the various known effects of such heterogeneities on activity in

excitable systems.
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Twisting of scrolls in heterogeneous medium

Three dimensional scroll waves in inhomogeneous media can exhibit twist.

A twisted scroll can be pictured as several rotating spirals stacked on each

other, with the rotation phase gradually changing along the filament, which

is the line joining the singularities of the spiral wave on each plane. Twist

may arise as a result of differences in rotation periods around the filament

at different regions in the medium. However, a scroll does not keep getting

twisted indefinitely but instead attains an equilibrium configuration which

depends on the gradient of the varying rotation periods.

In a numerical study by Mikhailov et al [26] using a 3-dimensional sys-

tem (described by FHN equations) that was divided into two regions having

different rotation periods for the scroll wave, it was shown that the twisted

vortices were stable. Further, the twisted scroll wave rotated faster than the

untwisted ones, with the difference in rotation period increasing with ǫ, the

ratio of time scales of the fast and slow variables. Using gradients in tem-

perature, Pertsov et al later experimentally demonstrated the occurrence of

twisted scrolls in the Belusov-Zhabotinsky reaction [27]. But unlike the nu-

merical observations, the rotation period showed little dependence on twist.

An interesting finding of the experiment was the occurrence of wavebreak

on increasing the twist beyond a critical value. By using a heterogeneous

medium with a step-like discontinuity comprising two regions of different ro-

tation periods, as well as different recovery times, Panfilov et al showed that

the twisted scroll breaks at the boundary between the regions to form two

independently rotating vortices [28]. The breakup was seen to occur when

the refractory period in one region was longer than the period of rotation of
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the scroll in the other.

Inexcitable obstacles can have opposite dynamical ef-

fects

Inexcitable obstacles or defects in excitable media (such as scar tissue or

pectinate muscle in the heart) may have both stabilising and destabilising

influence on the dynamics of spatial patterns. It is well known that inex-

citable obstacles in 2D or 3D medium can pin or anchor vortices that would

have otherwise drifted through the system. In the heart, anchoring estab-

lishes a reentrant activity circuit, often termed as anatomical reentry. This

is considered to be one of the primary mechanisms for occurrence of car-

diac arrhythmias such as Ventricular Tachycardia(VT) [29]. The interaction

of high-frequency wave trains with obstacles can also result in wave breaks

leading to the occurrence of spiral waves [30], especially when the obstacle

is sufficiently large and has sharp edges. On the other hand, it has been

observed in both numerical and experimental studies that a sufficiently large

obstacle can stabilize a rotating wave, preventing a transition to spatiotem-

poral chaos [31, 32]. Based on numerical studies, Garfinkel et al showed that

for a given excitable system the size of the obstacle determines the stability

of reentrant wave propagation [31]. For simulations carried out on an annular

domain, it was shown that as the size of a central circular obstacle was grad-

ually increased, spatiotemporal chaos was replaced by periodic activity of a

pinned rotating wavefront. From the point of view of cardiology, this implies

that an inexcitable region in the heart can, depending on its size, stabilize

and convert a life-threatening arrhythmia like VF into a less dangerous one
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like VT. This surprising consequence of the presence of inexcitable regions

was experimentally confirmed by Valderrabano et al in experiments done

in isolated pig ventricles [32]. More generally it has been shown that spi-

ral wave dynamics is sensitively dependent on the location, size and type of

inhomogeneity [33]. This sensitive dependence can be understood as a conse-

quence of the complex, fractal-like structure of the boundary that separates

the basins of attraction associated with the spiral wave and spatiotemporal

chaos, respectively. Recently Jimenez et al [34] have experimentally observed

the pinning of scroll rings to inexcitable heterogeneities which prevent the

collapse of the rings.

Vinson et al have studied the role of both parameter gradients and tis-

sue defects in the dynamics of scroll waves in a system described by FHN

equations [35, 36]. They used an obstacle that did not extend along the

entire length of the filament. This caused one end of the scroll wave to be

anchored to the obstacle while the other end was free. The heterogeneity

of the excitation threshold induces a drift along the gradient. The scroll

wave twists because of differential rotation periods in different sections of

the wave. However, depending on the size of the obstacle, the attachment of

the wave to the obstacle may be only a transient phenomenon and the scroll

wave could eventually detach.

To summarise, investigating the role of different types of heterogeneities

in pattern formation through wave propagation dynamics in excitable media

is extremely important for developing a deeper understanding of the pro-

cesses that generate and maintain life-threatening cardiac arrhythmias. As,

depending on the context, inhomogeneities can either promote or suppress
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the transition to spatiotemporal chaos, it is vital to take them into account

when devising control methods for terminating fibrillation.

1.4 Chaos control in excitable medium

Controlling spatiotemporal chaos in excitable media has certain special fea-

tures. Unlike other chaotic systems, response to a control signal is not pro-

portional to the signal strength because of the existence of a threshold and a

characteristic action potential with a specific maximum amplitude. As a re-

sult, an excitable system shows discontinuous response to control as regions,

which have not yet recovered from a previous excitation or where the applied

signal is below the threshold, will not be affected by the control algorithm

at all. Also, the focus of control in excitable media is to eliminate all ac-

tivity rather than to stabilize unstable periodic behavior. This is because

the problem of chaos termination has tremendous practical importance in

the clinical context, as the spatiotemporally chaotic state has been associ-

ated with the cardiac problem of ventricular fibrillation (VF). VF involves

incoherent activation of the heart that stops it from pumping blood to the

rest of the body, and is fatal within minutes in the absence of external inter-

vention. At present, the only effective treatment is electrical defibrillation,

which involves applying very strong electrical shocks across the heart mus-

cles, either externally using a defibrillator or internally through implanted

devices. The principle of operation for such devices is to overwhelm the nat-

ural cardiac dynamics, so as to drive all the different regions of the heart

to rest simultaneously, at which time the cardiac pacemaker can take over
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once again. Although the exact mechanism by which this is achieved is still

not completely understood, the danger of using such large amplitude con-

trol (involving ∼ 1 A cm−2 externally and ∼ 20 mA cm−2 internally [37])

is that, not only is it excruciatingly painful to the patient, but by causing

damage to portions of cardiac tissue which subsequently result in scars, it

can potentially increase the likelihood of future dynamical disorders of the

heart. Therefore, devising a low-power control method for spatiotemporal

chaos in excitable media promises a safer treatment for people at risk from

potentially fatal cardiac arrhythmias.

1.5 Classifying chaos control schemes

In this section, we discuss most of the recent control methods that have been

proposed for terminating spatiotemporal chaos in excitable media 4. These

methods are also often applicable to the related class of systems known as os-

cillatory media, described by complex Landau-Ginzburg equation [39], which

also exhibit spiral waves and spatiotemporal chaos through spiral breakup.

We have broadly classified all control schemes into three types, depending on

the nature of application of the control signal. If every region of the media is

subjected to the signal (which, in general, can differ from region to region) it

is termed as global control; on the other hand, if the control signal is applied

only at a small, localised region from which its effects spread throughout the

media, this is referred to as local control.

Between these two extremes lie control schemes where perturbations are

4An earlier review, discussing methods proposed till 2002, can be found in Ref. [38].
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applied simultaneously to a number of spatially distant regions. We have

termed these methods as non-global, spatially extended control. While global

control may be the easiest to understand, involving as it does the principle

of synchronizing the activity of all regions, it is also the most difficult to

implement in any practical situation. On the other hand, local control (as

it can be implemented using a single control point) will be the easiest to

implement but hardest to achieve.

1.5.1 Global control

The first attempt at controlling chaotic activity in excitable media dates

back almost to the beginning of the field of chaos control itself, when pro-

portional perturbation feedback (PPF) control was used to stabilize cardiac

arrhythmias in a piece of tissue from rabbit heart [40]. In this method, small

electrical stimuli were applied at intervals calculated using a feedback proto-

col, to stabilize an unstable periodic rhythm. Unlike in the original proposal

for controlling chaos [41], where the location of the stable manifold of the

desired unstable periodic orbit (UPO) was moved using small perturbations,

in the PPF method it is the state of the system that is moved onto the stable

manifold. However, it has been later pointed out that PPF does not neces-

sarily require the existence of UPOs (and, by extension, deterministic chaos)

and can be used even in systems with stochastic dynamics [42]. Later, PPF

method was used to control atrial fibrillation in human heart [43]. How-

ever, the effectiveness of such control in suppressing spatiotemporal chaos,

when applied only at a local region, has been questioned, especially as other

experimental attempts in feedback control have not been able to terminate
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fibrillation by applying control stimuli at a single spatial location [38].

More successful, at least in numerical simulations, have been schemes

where control stimuli is applied throughout the system. Such global control

schemes either apply small perturbations to the dynamical variables (e.g.

the transmembrane potential) or one of the parameters (usually the excita-

tion threshold). The general scheme involves introducing an external control

signal A into the model equations, e.g., in the Panfilov model [Eq. (1.2)]:

∂e/∂t = ∇2e−f(e)−g+A, for a control duration τ . If A is a small, positive

perturbation, added to the fast variable, the result is an effective reduction of

the threshold (Fig. 1.3), thereby making simultaneous excitation of different

regions more likely.

In general, A can be periodic, consisting of a sequence of pulses. Fig. 1.4

shows the results of applying a pulse of fixed amplitude but varying durations.

While in general, increasing the amplitude, or the duration increases the

likelihood of suppressing spatiotemporal chaos, it is not a simple, monotonic

relationship. Depending on the initial state at which the control signal is

applied, even a high amplitude (or long duration) control signal may not

be able to uniformly excite all regions simultaneously. As a result, when

the control signal is withdrawn, the inhomogeneous activation results in a

few regions becoming active again and restarting the spatiotemporal chaotic

behavior.

Most global control schemes are variations or modifications of the above

scheme. Osipov and Collins [44] have shown that a low-amplitude signal used

to change the value of the slow variable at the front and back of an excitation

wave can result in different wavefront and waveback velocities which desta-
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Figure 1.3: The result of applying a positive (“+”) or negative (“−”) additive

perturbation of the same duration to the e variable in the Fitzhugh Nagumo

model: “+” control decreases the threshold and makes excitation more likely,

while “−” control decreases the duration of the action potential and allows

the system to recover faster. For the duration of the control signal, the e-

nullcline shifts upward (downward) for positive (negative) perturbation as

indicated by the dashed (dash-dotted) curve.
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T = 0 ms T = 27.5 ms T = 132 ms

T = 33 ms T = 132 ms T = 660 ms

0 0.5 1

Figure 1.4: Global control of the 2-dimensional Panfilov model with L = 256

starting from a spatiotemporally chaotic state (top left). Pseudo-gray-scale

plots of excitability e show the result of applying a pulse of amplitude A =

0.833 between t = 11 ms and 27.5 ms (top centre) that eventually leads to

elimination of all activity (top right). Applying the pulse between t = 11 ms

and 33 ms (bottom left) results in some regions becoming active again after

the control pulse ends (bottom centre) eventually re-initiating spiral waves

(bottom right).
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bilizes the traveling wave, eventually terminating all activity, and, hence,

spatiotemporal chaos. Gray [45] has investigated the termination of spiral

wave breakup by using both short and long-duration pulses applied on the

fast variable, in 2D and 3D systems. This study concluded that while short

duration pulses affected only the fast variable, long duration pulses affected

both fast and slow variables and that the latter is more efficient (using less

power) in terminating spatiotemporal chaos. The external control signal can

also be periodic [A = Fsin(ωt)], in which case the critical amplitude Fc re-

quired for terminating activity has been found to be a function of the signal

frequency ω [23].

Other schemes have proposed applying perturbations to the parameter

controlling the excitation threshold, b, in Eq. (1.3). Applying a control pulse

on this parameter (b = bf , during duration of control pulse; b = b0, oth-

erwise) has been shown to cause an excitation wave to split into a pair of

forward and backward moving waves [21]. Splitting of a spiral wave causes

the two newly created spirals to annihilate each other on collision. For a

spatiotemporally chaotic state, a sequence of such pulses may cause termi-

nation of all excitation, there being an optimal time interval between pulses

that results in fastest control. Another control scheme that also applies per-

turbation to the threshold parameter is the uniform periodic forcing method

suggested by Alonso et al [19, 46] for controlling scroll wave turbulence in

three-dimensional excitable media. Such turbulence results from negative

tension between scroll wave filaments, i.e., the line joining the phase sin-

gularities about which the scroll wave rotates. In this control method, the

threshold is varied in a periodic manner [b = b0 + bfcos(ωt)] and the result
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depends on the relation between the control frequency ω and the spiral ro-

tation frequency. If the former is higher than the latter, sufficiently strong

forcing is seen to eliminate turbulence; otherwise, turbulence suppression is

not achieved. The mechanism underlying termination has been suggested to

be the effective increase of filament tension due to rapid forcing, such that,

the originally negative tension between scroll wave filaments is changed to

positive tension. This results in expanding scroll wave filaments to instead

shrink and collapse, eliminating spatiotemporal chaotic activity. In a variant

method, the threshold parameter has been perturbed by spatially uncorre-

lated Gaussian noise, rather than a periodic signal, which also results in

suppression of scroll wave turbulence [47].

As already mentioned, global control, although easy to understand, is dif-

ficult to achieve in experimental systems. A few cases in which such control

could be implemented include the case of eliminating spiral wave patterns in

populations of the Dictyostelium amoebae by spraying a fine mist of cAMP

onto the agar surface over which the amoebae cells grow [48]. Another ex-

perimental system where global control has been implemented is the photo-

sensitive Belusov-Zhabotinsky reaction, where a light pulse shining over the

entire system is used as a control signal [49]. Indeed, conventional defibrilla-

tion can be thought of as a kind of global control, where a large amplitude

control signal is used to synchronize the phase of activity at all points by ei-

ther exciting a previously unexcited region (advancing the phase) or slowing

the recovery of an already excited region (delaying the phase) [50].
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1.5.2 Non-global spatially extended control

The control methods discussed so far apply control signal to all points in

the system. As the chaotic activity is spatially extended, one may naively

expect that any control scheme also has to be global. However, we will now

discuss some schemes that, while being spatially extended, does not require

the application of control to all points of the system.

The control method of Sinha et al [51] involving suprathreshold stimula-

tion along a grid of points, is based on the observation that spatiotemporal

chaos in excitable media is a long-lived transient that lasts long enough to

establish a non-equilibrium statistical steady state displaying spiral turbu-

lence. The lifetime of this transient, τL, increases rapidly with linear size of

the system, L, e.g., increasing from 850 ms to 3200 ms as L increases from

100 to 128 in the two-dimensional Panfilov model. This accords with the

well-known observation that small mammals do not get life-threatening VF

spontaneously whereas large mammals do [52] and has been experimentally

verified by trying to initiate VF in swine ventricular tissue while gradually re-

ducing its mass [53]. A related observation is that non-conducting boundaries

tend to absorb spiral excitations, which results in spiral waves not lasting for

appreciable periods in small systems.

The essential idea of the control scheme is that a domain can be divided

into electrically disconnected regions by creating boundaries composed of re-

covering cells between them. These boundaries can be created by triggering

excitation across a thin strip. For two-dimensional media, the simulation

domain (of size L × L) is divided into K2 smaller blocks by a network of

lines with the block size (L/K × L/K) small enough so that spiral waves
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cannot form. For control in a 3D system, the mesh is used only on one of the

faces of the simulation box. Control is achieved by applying a suprathresh-

old stimulation via the mesh for a duration τ . A network of excited and

subsequently recovering cells then divides the simulation domain into square

blocks whose length in each direction is fixed at a constant value L/K for

the duration of control. The network effectively simulates non-conducting

boundary conditions (for the block bounded by the mesh) for the duration

of its recovery period, in so far as it absorbs spirals formed inside this block.

Note that τ need not be large at all because the individual blocks into which

the mesh divides the system (of linear size L/K) are so small that they do

not sustain long spatiotemporally chaotic transients. Nor does K, which is

related to the mesh density, have to be very large since the transient life-

time, τL, decreases rapidly with decreasing L. The method has been applied

to multiple excitable models, including the Panfilov and Luo-Rudy models

(Fig. 1.5).

An alternative method [24] for controlling spiral turbulence that also uses

a grid of control points has been demonstrated for the Aliev-Panfilov model.

Two layers of excitable media are considered, where the first layer represents

the two-dimensional excitable media exhibiting spatiotemporal chaos that

is to be controlled, and the second layer is a grid structure also made up

of excitable media. The two layers are coupled using the fast variable but

with asymmetric coupling constants, with excitation pulses travelling
√

D

times faster in the second layer compared to the first. As the second layer

consists only of grid lines, it is incapable of exhibiting chaotic behavior in

the uncoupled state. If the coupling from the second layer to the first layer
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Figure 1.5: Spatiotemporal chaos (top row) and its control (bottom row)

in the 2-dimensional Luo-Rudy I model with L = 90 mm. Pseudo-gray-

scale plots of the transmembrane potential V show the evolution of spiral

turbulence at times T = 30 ms, 90 ms, 150 ms and 210 ms. Control is

achieved by applying an external current density I = 150µA/cm2 for τ =

2.5 ms over a square mesh with each block of linear dimension L/K = 1.35

cm. Within 210 ms of applying control, most of the simulation domain has

reached a transmembrane potential close to the resting state value; moreover,

the entire domain is much below the excitation threshold. The corresponding

uncontrolled case shows spatiotemporal chaos across the entire domain.
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is sufficiently stronger than the other way round, the stable dynamics of

the second layer (manifested as a single rotating spiral) overcomes the spiral

chaos in the first layer, and drives it to an ordered state characterized by

mutually synchronized spiral waves.

Another method of spatially extended control is to apply perturbations

at a series of points arranged in a regular array. Rappel et al [54] had pro-

posed using such an arrangement for applying a time-delayed feedback control

scheme. However, their scheme only prevented a spiral wave from breaking

up and did not suppress pre-existing spatiotemporal chaos.

1.5.3 Local control of spatiotemporal chaos

We now turn to the possibility of controlling spatiotemporal chaos by apply-

ing control at only a small localized region of the spatially extended system.

Virtually all the proposed local control methods use overdrive pacing, gener-

ating a series of waves with frequency higher than any of the existing excita-

tions in the spiral turbulent state. As low-frequency activity is progressively

invaded by faster excitation, the waves generated by the control stimulation

gradually sweep the chaotic activity to the system boundary where they are

absorbed. Although we cannot speak of a single frequency source in the case

of chaos, the relevant timescale is that of spiral waves which is limited by the

recovery period of the medium. Control is manifested as a gradually growing

region in which the waves generated by the control signal dominate, until the

region expands to encompass the entire system. The time required to achieve

termination depends on the frequency difference between the control stim-

ulation and that of the chaotic activity, with control being achieved faster,
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the greater the difference.

Stamp et al [55] have looked at the possibility of using low-amplitude,

high-frequency pacing using a series of pulses to terminate spiral turbulence.

However, using a train of pulses (having various waveform shapes) has met

with only limited success in suppressing spatiotemporal chaos. By contrast, a

periodic stimulation protocol [56] has successfully controlled chaos in the 2D

Panfilov model, as well as in other models 5. The key mechanism underlying

such control is the periodic alternation between positive and negative stim-

ulation. A more general control scheme proposed in Ref. [58] uses biphasic

pacing, i.e., applying a series of positive and negative pulses, that shortens

the recovery period around the region of control stimulation, and thus al-

lows the generation of higher frequency waves than would have been possible

using positive stimulation alone. A simple argument shows why a negative

rectangular pulse decreases the recovery period for an excitable system. The

stimulation vertically displaces the e-nullcline and therefore, the maximum

value of g that can be attained is reduced. Consequently, the system will

recover faster (Fig. 1.3).

To understand how negative stimulation affects the response behavior of

the spatially extended system, one can use pacing response diagrams indicat-

ing the relation between the control stimulation frequency f and the effective

frequency feff , measured by applying a series of pulses at one site and then

recording the number of pulses that reach another site located at a distance

without being blocked by a region in the recovery period. Depending on

5A related case of this control scheme is that proposed in Ref. [57], where the high-

frequency periodic signal is applied from the boundaries.



CHAPTER 1. INTRODUCING EXCITABLE MEDIA 26

0.05 0.1 0.15 0.2 0.25 0.3
0.01

0.02

0.03

0.04

0.05

Stimulation frequency

E
ffe

ct
iv

e 
fr

eq
ue

nc
y

f
c

Figure 1.6: (left) Pacing response diagram for 2D Panfilov model (L = 26)

showing relative performance of different waveforms. The dash-dotted line

represents a sinus wave and the solid curve represents a wave of biphasic

rectangular pulses, such that they have the same total energy. Successful

control occurs if the effective frequency lies above the broken line representing

the effective frequency of chaos (fc), as seen for a larger system (L = 500) at

times T = 1000 (center) and T = 3800 (right) time units, where the control

signal is applied only at the center of the simulation domain. The excitation

wavefronts are shown in white, black marks the recovered regions ready to

be excited, while the shaded regions indicate different stages of recovery.
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the relative value of f−1 and the recovery period, we observe instances of

n : m response, i.e., m responses evoked by n stimuli. If, for any range of f ,

the corresponding feff is significantly higher than the effective frequency of

spatiotemporal chaos, then termination of spiral turbulence is possible. As

shown in Ref. [58], there are indeed ranges of stimulation frequencies that

give rise to effective frequencies that dominate chaotic activity. As a result,

the periodic waves emerging from the stimulation region gradually impose

control over the regions exhibiting chaos. Note that there is a tradeoff in-

volved here. If feff is only slightly higher than the chaos frequency, control

takes too long; if it is too high the waves suffer conduction block at inhomo-

geneities produced by chaotic activity that reduces the effective frequency,

and control fails.

Recently, another local control scheme has been proposed [59] that peri-

odically perturbs the model parameter governing the threshold. In fact, it is

the local control analog of the global control scheme proposed by Alonso et

al [19] discussed earlier. As in the other methods discussed here, the local

stimulation generates high-frequency waves that propagate into the medium

and suppress spiral or scroll waves. Unlike in the global control scheme,

bf >> b0, so that the threshold can be negative for a part of the time. This

means that the regions in resting state can become spontaneously excited,

which allow very high-frequency waves to be generated.

1.5.4 Comparing chaos control schemes

Most of the methods proposed for controlling spatiotemporal chaos in ex-

citable media involve applying perturbations either globally or over a spa-
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tially extended system of control points covering a significant proportion of

the entire system. However, in most practical situations this may not be a

feasible option, either because of issues concerned with their implementation,

or because of the large values of power involved. Moreover, if one is using

such methods in the clinical context, e.g., terminating fibrillation, a local

control scheme has the advantage that it can be readily implemented with

existing hardware of the Implantable Cardioverter Defibrillator (ICD). This

is a device implanted into patients at high risk from fibrillation that monitors

the heart rhythm and applies electrical treatment when necessary through

electrodes placed on the heart wall. A low-energy control method involving

ICDs should therefore aim towards achieving control of spatiotemporal chaos

by applying small perturbations from a few local sources.

However, the problem with most local control schemes proposed so far

is that they use very high-frequency waves to overdrive chaos. Such waves

are themselves unstable and may breakup during propagation, resulting in

re-initiation of spiral waves after the original chaotic activity has been ter-

minated. The problem is compounded by the existence of inhomogeneities

in real excitable media. Recently, Shajahan et al [33] have found compli-

cated dependence of spatiotemporal chaos on the presence of non-conducting

regions and other types of inhomogeneities in an excitable system. Such

inhomogeneities make the proposed local control schemes more vulnerable

to failure, as it is known that high-frequency pacing interacting with, e.g.,

non-conducting obstacles, results in wave breaks and subsequent genesis of

spatiotemporal chaos [30].

The search is still on for a control algorithm for terminating spatiotem-
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poral chaos in excitable media that can be implemented using low power,

or, that need be applied in only a small, local region of the system, and

which will yet be robust, capable of terminating spiral turbulence without

the control stimulation itself breaking up subsequently. The payoffs for com-

ing up with such a method are enormous, as the potential benefits include

an efficient device for cardiac defibrillation.

1.6 Overview of the thesis

The aim of the present thesis is to explore several aspects of the dynamics

of spatial patterns in excitable media, in particular, their evolution upon in-

teraction with structural and functional heterogeneities in the medium. We

also propose multiple low-amplitude control schemes to eliminate spatiotem-

porally chaotic patterns from an excitable medium.

In Chapter 2, we study the drift dynamics of stable spirals in the pres-

ence of a heterogeneity gradient. Specifically, we consider a linear gradient in

either the expression of ionic channels or in the strength of inter-cellular cou-

pling. It has been observed both in experiments and in numerical simulations

that spirals typically drift towards regions of longer rotation period. Till date

there has been no satisfactory theoretical understanding of this phenomenon.

For the first time, we demonstrate spiral drift towards regions of shorter ro-

tation period or stronger coupling in a simple model of excitable media. This

corresponds to an anomalous drift of the spiral core (i.e., the phase singular-

ity point at the tip of the spiral) towards regions of higher excitability. This

is because increasing either ion-channel density or cellular coupling can be
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qualitatively regarded as increasing the excitability. We observe that such

anomalous drift occurs over a wide range of model parameters for gradients

in both ion-channel expression and inter-cellular coupling. Anomalous drift

may have clinical significance as it moves the spiral core to a section where

it rotates faster. This increases the likelihood of new wave-breaks in regions

away from the core where the wave has a relatively slower period of rotation.

Thus, it is a plausible generation mechanism for “mother rotor” fibrillation

which is characterised by a persistent source of high-frequency excitations

giving rise to turbulent activity in the heart. Further, we show that drift of

spiral waves to regions of stronger coupling in the presence of gradients in the

diffusion coefficient implies that the anomalous drift direction is a result of

long wavelength instabilities. These instabilities are also known to determine

the drift of scroll wave filaments. It suggests that the occurrence of scroll

expansion in a 3-dimensional medium implies the existence of anomalous

drift due to diffusion gradient in the corresponding 2-dimensional medium.

Conversely, observation of anomalous drift might suggest parameter regions

where scroll wave expansion is possible.

Conduction inhomogeneities or inexcitable obstacles commonly occur in

biological tissue. When these obstacles are sufficiently large, they anchor

freely rotating spiral waves. As mentioned earlier, spirals are often observed

to drift towards regions of longer rotation period. Thus in a medium without

significant inexcitable obstacles the spirals drift towards the boundaries and

eventually are removed from the system. This has consequences for clinical

treatment of certain types of arrhythmias such as tachycardia that have been

associated with existence of spiral waves. Such freely rotating vortices can
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be terminated by generating high frequency waves through external periodic

stimulation or “pacing”. However, spiral waves that are anchored to inex-

citable obstacles cannot be unpinned and removed easily. In fact, earlier

work based on cellular automata models had made the claim that it may not

be possible to unpin such vortices at all [60]. In Chapter 3 we use a simple

model of excitable media to show that under certain conditions unpinning of

a spiral wave is indeed possible by using a high frequency source of excita-

tion. This happens when the radius of the obstacle Robst is smaller than the

radius of the free spiral core Rcore, which is the trajectory traced by the tip

of an unpinned spiral wave. As the excitability is decreased, we observe that

spirals can unpin from larger obstacles as a result of increasing Rcore. The

maximum period of pacing which is successful in dislodging a pinned spiral

decreases with the increasing size of obstacle. Thus, unpinning fails when the

obstacle is larger than a specific size which is related to Rcore. While prior

work had shown that pinned waves can be removed in special cases, such as

in the presence of slow conduction regions [61] or by exploiting “alternans”

effects [62], this is the first time that such unpinning is shown to be possible

even in the absence of such special conditions. We have verified that our

results are model independent and apply to more realistic descriptions. Our

work is a positive step towards understanding why the existing clinical treat-

ment of cardiac arrhythmias involving rapid stimulation of cardiac tissue is

often successful, in spite of the presence of a large number of conduction

inhomogeneities in the heart.

In Chapter 4, we study the transition from a stable 3-dimensional scroll

wave to a spatiotemporally chaotic state in the presence of an inexcitable



CHAPTER 1. INTRODUCING EXCITABLE MEDIA 32

obstacle. The important point to note is that the parameter regime consid-

ered in this work is such that, in the absence of the inexcitable obstacle, the

scroll wave is stable. Hence, the observed scroll wave breakup resulting in

spatiotemporal chaos is purely obstacle induced and not dependent on other

dynamical parameters. The initial wave break typically occurs at the bound-

ary of the obstacle where the wave propagation exhibits a transition from

properties characteristic of a pinned wave to that of a freely rotating wave.

The key to the underlying mechanism is the difference in rotation periods

between the free and pinned regions of the scroll wave. The portion of the

scroll wave attached to a large obstacle has a longer rotation period than

the rest of the wave. This difference in rotation periods leads to a helical

winding of the wave around the obstacle, that causes the wave to slow down

as it approaches a bounding edge of the obstacle because of changes in the

curvature of the front. In certain circumstances, the resulting interaction be-

tween the waveback and a following wavefront can cause conduction block of

the latter along the obstacle surface. As a result, there is a detachment of the

following wave from the obstacle, the free end curling up and forming a new

phase singularity. Unlike previously reported mechanisms for scroll breakup,

this scenario does not involve the dynamics of the existing filament and the

tearing of the scroll wave which characterizes the breakup occurs far from the

line of phase singularities. Successive creation of multiple scroll filaments and

their interactions rapidly result in a spiral turbulent state. Our observation

has potential significance for the explanation of the origin of spatiotemporally

chaotic states observed during lethal disturbances to cardiac rhythm such as

fibrillation. Inexcitable obstacles are known to occur in normal hearts and



CHAPTER 1. INTRODUCING EXCITABLE MEDIA 33

increase in number with age. For example, scars resulting from after-effects

of myocardial infarction can create obstacles that often occur deep inside

the cardiac tissue. Although they may not be easily observed by epicar-

dial imaging, they can have a significant role in the evolution of reentrant

waves, as seen from our work. Our results, which are model independent,

suggest a new 3-dimensional mechanism for the transition from rapid but sta-

ble periodic activity (corresponding to tachycardia) to spatiotemporal chaos

(corresponding to fibrillation) in the presence of inexcitable obstacles.

As mentioned above, the breaking up of spirals or scroll waves in excitable

media is associated with the onset of spatiotemporal chaos. Typically such

states can be eliminated or controlled using external perturbations. Termi-

nating spatiotemporally chaotic states using low amplitude external stimula-

tion assumes added importance in light of their connection to life-threatening

disturbances in the cardiac rhythm. Hence there is a pressing need for de-

veloping low-amplitude control schemes that do not involve very large per-

turbations to the system. In Chapter 5 we propose a spatially extended

but non-global scheme using an array of control points for terminating spa-

tiotemporally chaotic excitations. A low-amplitude control signal applied

sequentially at each point on the array results in a travelling wave of exci-

tation in the underlying medium which drives away the turbulent activity.

Our method is robust even in the presence of significant heterogeneities in

the medium, which have often been an impediment to the success of other

control schemes. Energy required to eliminate all chaotic activity depends

on the number of points used to bring about control. As we use an array of

spatially separated control points and because all of them are not activated
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simultaneously, the energy applied to the medium at any instant of time is

much lower than the case where the current is applied globally. In addi-

tion, as our scheme does not involve high frequency excitations, we avoid the

potential problem of destabilising such waves in the presence of conduction

inhomogeneities, which could have resulted in further breakup of the existing

spiral waves.

The control method we have just described uses small-amplitude stimuli

which are nevertheless supra-threshold, i.e., stimulation that will excite a

homogeneous resting tissue. In Chapter 6 we investigate the effect of sub-

threshold stimulus on regular and chaotic patterns in detailed ionic models

of excitable media. A sub-threshold stimulus will not elicit an excitation

from a quiescent medium, but we find that when applied on a medium with

spatially heterogeneous activity, it can significantly alter the dynamics of

the recovering front of the wave. Such a stimulus typically slows down the

waveback velocity while the speed of the excitation front is unchanged. The

reduction of waveback velocity induced by globally applied sub-threshold

stimulation leads to spatial coherence that can terminate all activity in the

medium, including spatiotemporal chaos. We analytically derive a relation

between the stimulation parameters for which such behavior can be observed.

This result is not just significant as a low-amplitude chaos control scheme but

could be a possible explanation for why electrical signals that are strongly

attenuated while passing through biological tissue can still significantly affect

excitation dynamics.

We conclude with a general discussion of the role of heterogeneities in the

dynamics of excitable media, and how control of spatiotemporal patterns in
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these systems need to take into account the presence of such features.



Chapter 2

Anomalous drift of spiral waves

Had I been present at the Creation, I would have given

some useful hints for the better ordering of the universe.

− Alfonso the Wise

Nature does not proceed by leaps.

− Carolus Linnaeus

Spiral waves, as mentioned in Chapter 1, are high frequency sources of

excitation observed in a broad class of physical, biological and chemical ex-

citable systems [2]. The dynamics of spiral waves is primarily characterised

by the motion of its core (i.e., the trajectory of the spiral wave tip, defined to

be a phase singularity). These waves can display a range of dynamics includ-

ing steady stationary rotation, and non-stationary meander and drift [63].

Studying the phenomenon of spiral drift in biological excitable medium is

important because of their possible connection with various life-threatening

disturbances to the heart. In a heterogeneous excitable medium such as the

heart, spiral waves of excitation can have significant drift. In fact spiral drift

36
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is believed to be a possible underlying mechanism for arrhythmias like poly-

morphic ventricular tachycardia [64, 63]. This arrhythmia is characterised

by an aperiodic electrocardiogram, and can be a precursor to fully disor-

dered activity that characterizes potentially fatal ventricular fibrillation [65].

Therefore, understanding the mechanisms leading to spiral wave drift is not

only a problem of central interest for physics of excitable media, but also has

potential clinical significance [17].

In this chapter we study the drift dynamics of spiral waves in the pres-

ence of gradients in a simple model of heterogeneous excitable medium. Drift

motion is characterised by significant linear translational component. In our

study we consider linear gradients in the (a) distribution of ion-channel ex-

pression and (b) inter-cellular coupling. Spirals which generally have sta-

tionary non-meandering rotation, tend to drift in the presence of such linear

gradients. This drift motion has both longitudinal (along or against the di-

rection of the gradient) and transverse (perpendicular to the gradient) com-

ponents. We classify the drift as either normal or anomalous depending on

longitudinal direction of the drift. For the type of gradient considered here,

normal drift would take the spiral towards region of either longer period or

smaller inter-cellular coupling, while anomalous drift would move the spiral

to a region of faster period or stronger inter-cellular coupling. Here we report

for the first time the anomalous drift of spiral waves towards regions having

shorter period or stronger coupling, in reaction-diffusion models of excitable

media.

In section 2.1 we introduce briefly a few previously known results on the

problem of drift in excitable media. In section 2.2 we give details of the model
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of excitable media that is used in this study as well as the type of gradients

that are applied. In section 2.3 we discuss the results of our study detailing

the parameter ranges over which anomalous drift is observed. In section 2.4

we explain the physical mechanism of anomalous drift. We conclude with a

brief discussion on the potential relevance of our study and its limitations.

2.1 The drift so far

One of the most important causes of spiral drift is the heterogeneous na-

ture of the excitable medium. This was first predicted in cellular automata

models with step-like or discontinuous inhomogeneity [66], which was later

confirmed by experiments [27, 67]. Subsequently, drift has been shown to be

induced by a smooth gradient of excitability in both simple and biologically

realistic ionic models of cardiac tissue [68, 69, 70]. Theoretical arguments in-

dicate that the direction of the transverse component of the spiral drift (i.e.,

orthogonal to the gradient) depends on model parameters [71]. On the other

hand, the longitudinal component is always directed towards the region with

longer spiral rotation period [70]. This phenomenon has been seen in a vari-

ety of excitable media models of different complexity [68, 70]. However, till

date there is no satisfactory understanding of the reasons behind the spiral

wave drift towards regions with longer rotation period. Although earlier kine-

matic studies suggested the possibility of drift towards region with shorter

period [72], it has never actually been observed in a model of excitable tissue.

The occurrence of drift in the direction of shorter period may have clinical

significance, as it moves the spiral core to a section where it rotates faster.
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This increases the likelihood of additional wavebreaks in regions where the

wave has a relatively slower period of rotation. Thus, it is a possible gen-

eration mechanism for “mother rotor” fibrillation [73, 74, 75], characterised

by a stationary persistent source of high-frequency excitations giving rise to

turbulent activity in the heart.

Electro-physiological heterogeneities in cardiac tissue may arise, in gen-

eral, through spatial variation in the distribution of ion-channel expression

in excitable tissue [76]. There can also be gradients in the inter-cellular cou-

pling as a result of the inhomogeneous distribution of the conductances of

gap junctions connecting neighboring cells [77]. In this chapter, we use a

simple model of cardiac tissue to investigate the role of both these types of

heterogeneities in governing the direction of the spiral wave drift. We report

the existence of a regime where the spiral wave core moves towards the re-

gion having (a) shorter period (due to higher expression of ionic channels),

and/or (b) higher inter-cellular coupling. As reduction in either the ion-

channel density or the inter-cellular coupling can impede wave propagation,

it can be qualitatively regarded as decreasing the excitability of the medium.

Thus, both the cases mentioned above may be considered as a drift towards

region of higher excitability, a result that may increase our understanding of

how heterogeneities affect spiral wave dynamics in the heart.
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2.2 Model and methods

A generic model of excitable media that describes the dynamics of trans-

membrane potential V in cardiac tissue has the form

∂V/∂t = ∇γD∇V + αIion(V, gi), (2.1)

∂gi/∂t = F (V, gi). (2.2)

Here, Iion is the total ionic current traveling through the channels on the cel-

lular membrane, D accounts for the inter-cellular coupling and gi describes

the dynamics of gating variables for the various ion-channels. In this chapter,

we study the effects of a heterogeneous distribution of ion-channel expression

and intercellular coupling. For this purpose, we introduce the parameters α

and γ, which represent the spatial variation in ion-channel expression and

conduction properties (respectively) for an inhomogeneous medium. Param-

eter α directly scales the value of ion-channel expression in Eq. 2.1, while γ

scales the diffusion coefficient as D = D0 + γ(x) (D0 = 1 for the rest of the

chapter). In this study, we have used the Barkley model [12], where the sev-

eral gating variables are aggregated into a single variable g that controls the

slow recovery dynamics of the medium with F (V, g) = V − g. The nonlinear

dependence of the ionic current on the fast variable V is represented by the

cubic function Iion = [V (1−V )(V − ((g + b)/a)]/ǫ, where a and b are param-

eters governing the local kinetics and ǫ is the relative time scale between the

local dynamics of V and g. The spatial heterogeneity of ion-channel expres-

sion and cellular coupling are assumed to have linear functional form, viz.,

α(x) = α0 + ∆α x and γ(x) = γ0 + ∆γ x. The variable x (= −d/2, . . . , d/2)

represents the spatial position along the principal direction of the inhomo-
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geneity gradient, where d is the length of the domain measured along this

direction and the origin (i.e., x = 0) is at the midpoint of the simulation

domain. At this point, α = α0, γ = γ0, and ∆α, ∆γ measure their rate of

change along the gradient. For all the figures in this chapter, we have used

α0 = 1.15, γ0 = 1.3 and ǫ = 0.02.

The two dimensional system is discretized on a square spatial grid of

size L × L (L = 200 for the figures shown here). The values of space step

∆x and time step ∆t used are 0.5 and 0.005 respectively (in dimensionless

units). A sample of simulations have been repeated for ∆x = 0.25 to verify

numerical accuracy. The model equations are solved using forward Euler

scheme with a standard 5-point stencil for the spatial second derivatives

and central differences for the spatial first derivatives. No-flux boundary

conditions are implemented at the edges of the simulation domain. The

initial condition for all simulations is a stable spiral wave generated in a

homogeneous medium with α = α0 and γ = γ0.

2.3 Results

To investigate the role of heterogeneity in spiral drift, we have considered spa-

tial gradients in α or γ individually (keeping the other parameter constant).

After extensive numerical simulations that scan over the (a, b) parameter

space of the Barkley model, we have found that it is indeed possible to ob-

serve anomalous drift of the spiral, i.e., a drift towards regions with shorter

period or higher inter-cellular coupling. Examples of such anomalous drift

are shown in Fig. 2.1 (A,C). In both of these cases, anomalous drift is towards
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the region of higher excitability (in the qualitative sense) because increase in

either α or γ enhances wave propagation. For comparison, in Fig. 2.1 (B,D)

we show the normal drift of the spiral, i.e., towards regions of lower ex-

citability. This is seen for a set of (a, b) values which is farther from the

boundary with the sub-excitable region of the Barkley model [78] than the

(a, b) parameter set for which anomalous drift is observed in Fig. 2.1 (A,C).

To analyse the genesis of anomalous drift, we first look at how the pa-

rameters γ and α affect the spiral wave in an homogeneous medium. As γ

is only a scaling factor for the diffusion coefficient, the period of the spi-

ral wave does not depend on it. Thus, neither normal nor anomalous drift

is associated with a significant change in the period. However, due to the

discrete nature of wave propagation in real systems such as cardiac tissue,

there is a small decrease in the period when the spiral wave moves towards

regions having higher cellular coupling during anomalous drift. Fig. 2.2 (A)

shows the variation of the spiral period as a function of the parameter α,

which decreases as α increases 1. Thus, for normal drift in the presence of α

gradient, the period of the spiral increases as the core moves towards lower

α regions. On the other hand, we see a decrease in the period in the case of

anomalous drift towards regions having higher values of α. In contrast, the

wavelength does not appear to be a determinant of the drift. For anoma-

lous drift in presence of a gradient in γ, the wavelength increases (as
√

γ),

while it decreases for an α gradient, as it moves towards regions of higher α

1For a, b parameters where anomalous drift is observed, the period and wavelength of

spiral wave exhibits a more rapid divergence with decreasing α compared to the parameter

regime showing normal drift.
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Figure 2.1: Pseudocolor images of spiral wave at the instant when the gradi-

ent in ion-channel expression α (top row) and cellular coupling (bottom row)

is applied. (A, C) Anomalous drift towards increasing values of α (A) or γ

(C), the direction being shown by solid arrows. (B, D) Normal drift in α (B)

or γ (D) gradient. Parameter values are a = 0.82, b = 0.13 (for A, C) and

a = 1.02, b = 0.15 (for B, D). The gradients applied are (A, B) ∆α = 0.005,

∆γ = 0, and (C, D) ∆α = 0, ∆γ = 0.040. In all cases, the gradient is

along the vertical direction, with α or γ increasing from top to bottom. In

(B,D) the region around the core is magnified to make the wavelength of the

spiral comparable to that in (A,C). The trajectories shown correspond to 100

time units and are obtained using the algorithm given in Ref. [79]. The bar

indicates a scale of 25 space units.
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[Fig. 2.2 (B)].

Next, we study the effect of the magnitude of spatial gradient in α or γ on

the velocity of spiral drift. Fig. 2.3 shows the longitudinal component of the

drift velocity, vL, i.e., along the gradient, as a function of the spatial variation

in α or γ. Note that, positive vL corresponds to anomalous, while, negative

vL corresponds to normal drift of the spiral wave. Fig. 2.3 shows that, for

normal drift, increasing either of the gradients results in a monotonic increase

of vL (broken lines). However, in the case of anomalous drift as a result of

α gradient, we see a non-monotonic behavior in vL, which first increases but

then decreases and becomes negative [Fig. 2.3 (A)]. Thus, the anomalous

drift of the spiral towards shorter period in α gradient is seen only for small

∆α. For higher ∆α, there is a reversal of direction and the spiral exhibits

normal drift. On the other hand, Fig. 2.3 (B) shows that for a gradient in γ,

the anomalous drift is observed for the entire range of ∆γ that is investigated.

We have also studied the effect of the local kinetics on anomalous drift by

varying the Barkley model parameter a [Fig. 2.4 (A)]. Increasing a (keeping

b fixed) decreases the activation threshold of the medium, and thus makes

the system more excitable. We observe that for both α and γ gradients, the

variation of vL as a function of a is non-monotonic. For the cellular coupling

(γ) gradient, the presence of anomalous regime clearly correlates with ex-

citability. The drift is anomalous at lower excitability, but becomes normal

at higher excitability. However, for the gradient in α, the anomalous drift oc-

curs only over an intermediate range of a. For lower and higher excitability,

the drift becomes normal. Note that, arguments put forth in Ref. [80] sug-

gest that in the large core limit (corresponding to very low excitability), the
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Figure 2.2: The variation of spiral period (A) and wavelength (B) as a func-

tion of the parameter α. The symbols “1” and “2” correspond to the values

of α in the region around the initial and final positions (respectively) of the

spiral waves in Fig. 2.1, with the same sets of Barkley model parameters be-

ing used. The solid and broken arrows represent the directions of anomalous

and normal drift, respectively, in presence of a gradient in α. Results shown

are obtained by averaging over multiple values recorded from symmetrically

placed points in the simulation domain to smooth variations arising from spi-

ral wave meandering at high values of α. Error bars are indicated when the

standard deviation is larger than the symbol size used. The inset in (A) is a

pseudocolor image of a spiral wave showing its trajectory in a homogeneous

medium with parameters a = 0.82, b = 0.13 and α = 1.275.
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Figure 2.3: Drift velocity depends on the gradient in parameters α and γ. (A)

Non-monotonic variation (solid curve) of the longitudinal component of spiral

wave drift velocity vL as a function of the gradient in ion-channel expression,

∆α, for a model system with parameters a = 0.82, b = 0.13. Positive values of

vL indicate anomalous drift. For a different set of parameters (a = 1.02, b =

0.15), normal drift is seen for the entire range of gradients used (broken

curve). (B) Variation of vL with the gradient in cellular coupling, ∆γ. Solid

and broken curves represent the anomalous and normal drift seen for the two

parameter sets mentioned earlier (respectively), and are observed throughout

the range of gradients used.
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longitudinal component of drift velocity resulting from a parameter gradient

in α should disappear.

2.4 Mechanism

The mechanism of anomalous drift in α gradient remains unclear. However,

we can understand the anomalous drift for the cellular coupling (γ) gradient,

by relating it to other drift phenomena in excitable media. Note that the

Laplacian term in Eq. (2.1) can be expanded as,

∇γ(x)D∇V = (D0 + γ(x))∇2V + ∂γ/∂x ∂V/∂x. (2.3)

Therefore, the heterogeneous cellular coupling γ(x) contributes to both the

gradient (∂γ/∂x ∂V/∂x), as well as, second order (γ(x)∇2V ) terms. The

relative contributions of these terms to the longitudinal component of drift

velocity is shown in Fig. 2.4 (B). We observe that the principal effect on vL is

due to the ∂γ/∂x ∂V/∂x term, while γ(x)∇2V accounts only for about 10%

of the observed drift. This allows us to propose the following explanation

for anomalous drift in the presence of a gradient in γ. If we do not consider

the γ(x)∇2V term in the Laplacian, the spatial operators in Eq. (2.3) are

seen to be identical to those in equations describing drift of a spiral wave in

the presence of an electric field [81]. This latter, in turn, is similar to the

Laplacian describing the drift of radially symmetric filaments of a scroll ring

in three-dimensional excitable media [82, 83]. As shown in Refs. [84, 85],

the drifts observed in these two kinds of systems are induced by the same

instabilities. We see from Fig. 2.4 (B) that the gradient ∂γ/∂x ∂V/∂x, which

determines the drift in an electric field and that of scroll wave filaments, also
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Figure 2.4: (A) Non-monotonic variation of the longitudinal component of

drift velocity, vL, as a function of the model parameter a (b = 0.13). The

two curves correspond to media having a constant gradient in excitability

(circles: ∆α = 0.005, ∆γ = 0) and cellular coupling (squares: ∆α = 0,

∆γ = 0.040). (B) The contribution to vL from the different components in

the diffusion term as a function of the gradient in cellular coupling, ∆γ. The

circles and diamonds correspond to the linear and second-order contributions,

and, squares correspond to the complete Laplacian term, respectively. All

data points shown are for a = 0.82, b = 0.13.
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determines the drift as a result of γ gradient. Therefore, we infer that the

anomalous drift direction (towards stronger cellular coupling) observed by

us is also a result of the same long wavelength instabilities determining the

drift of scroll wave filaments. This suggests that the occurrence of scroll

expansion in 3-D implies the existence of anomalous drift in γ gradient in

2-D. Conversely, observation of anomalous drift might suggest parameter

regions where scroll wave expansion is possible.

2.5 Discussion

In this chapter, we have explicitly demonstrated in a simple model of smoothly

varying heterogeneous excitable medium that spiral waves can drift towards

regions with shorter rotation period (corresponding to larger expression of

ion-channels) and/or stronger cellular coupling. Both can be broadly consid-

ered to be drift towards a more excitable region.

Our analysis can be easily extended to biologically realistic models, such

as Luo-Rudy I or TNNP [25, 86], which have the same form as Eq. (2.1),

and to types of heterogeneity inferred from direct experimental measure-

ments [87], although gradients in ion channel expression may not affect all

ion channels and do not always affect excitability. It might be possible to

infer the parameter range in realistic models where anomalous drift may oc-

cur by using the relation between the cellular coupling gradient induced drift

and scroll ring expansion. Note that the latter phenomenon has recently

been seen in the Luo-Rudy I model [83].

Spiral waves are not only relevant for cardiac tissue, but are also ob-
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served in many different excitable media. Thus, it may be possible to relate

our observation with results of kinematic studies [72] and models of cyclic

catalysis in replicating entities [88], which predict drift towards region with

shorter periods. From a clinical perspective, anomalous drift is important as

it may result in fibrillation by promoting wavebreaks away from the spiral

core. Spiral drift in the presence of a cellular-coupling gradient maybe a key

factor giving rise to abnormal wave activity in regions of the heart where

conductivity changes, e.g., at Purkinje-muscle cell junctions or in an infarct

border zone [89]. It can also be studied experimentally and numerically in

many model systems, such as, heterogeneous mono-layers of neonatal rat

cardiomyocytes [90].

To conclude, we have observed that spiral waves in heterogeneous ex-

citable media, having linear gradient in ion-channel expression or cellular

coupling, can drift towards regions having shorter spiral rotation period or

stronger cellular coupling. It appears to be related to regimes where ex-

pansion of 3-dimensional scroll wave filaments is observed. Such anomalous

drift of spiral waves may increase the likelihood of complex spatio-temporal

patterns in excitable medium, e.g., turbulent electrical activity in the heart.



Chapter 3

Wave-train induced termination

of weakly anchored vortices

The only cure for grief is action.

− George Henry Lewes

Though you drive away Nature with

a pitchfork, She always returns.

− Horace

Spatial patterns of electrical excitation often take the form of rotating spi-

rals. When these spirals occur in biological excitable medium like the heart,

they are associated with the breakdown of its normal rhythmic pumping

action. Controlling these spiral waves using low-amplitude external pertur-

bation is not only a problem of fundamental interest in the study of dynamics

of excitations in active media [51, 91, 92, 93, 94, 95, 96], but also has signif-

icant implications for the clinical treatment of cardiac arrhythmias [97].

51
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Periodic high frequency stimulation (pacing) from a localised region in

the excitable medium can generate wave-trains that interact with the spiral

wave [98]. If the frequency of external stimulation is higher than the rotation

frequency of the spiral wave, the wave-train induces the vortex to drift. In a

finite medium, the vortex is eventually driven to the boundary and thereby

eliminated from the system [99, 100, 101]. However while the above argument

can account for the removal of spirals in a homogeneous medium, it may not

apply to the case of spirals in a medium with inexcitable obstacles. Spiral

waves tend to anchor or pin themselves to heterogeneities. The anchoring

can be considered as analogous to the pinning of vortices in disordered su-

perconductors [102, 103]. Attachment of the spiral to an obstacle prevents

its removal by the use of a rapid external wave-train [104, 35, 34, 105]. In

the heart, obstacles such as blood vessels or scar tissue, can play the role of

pinning centres [106], leading to anatomical reentry, the sustained periodic

excitation of the region around the obstacle.

In this chapter we use a simple model of excitable media to detail the

conditions for which unpinning of an anchored spiral wave by pacing can

happen. We also derive a relation between the size of the obstacle and the

pacing period which can successfully detach the pinned vortex. In section 3.1

we describe in brief the argument based on a classical result of Wiener and

Rosenblueth that a pinned spiral cannot be detached using a wave-train. In

section 3.2 we describe the model and the method used in our study. Section

3.3 reports the results of our simulations, while in section 3.4 we discuss the

relation between the size of the obstacle and the pacing period required for

unpinning a spiral wave attached to it. We conclude with suggestions about
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possible experiments that can be done to validate our predictions

3.1 Classical theory and its failure

In the immediate neighborhood of an inexcitable obstacle, pinned vortices

are qualitatively equivalent to waves circulating in a one-dimensional ring.

They can be removed by external stimulation provided the electrode is lo-

cated on the reentrant circuit, i.e., the closed path along which the vortex

propagates around the obstacle, and the stimulus is delivered within a nar-

row time interval [107]. However, for the more general situation of pacing

waves generated far away from the reentrant circuit, a classical result due

to Wiener and Rosenblueth (WR) states that, all waves circulating around

such obstacles are created or annihilated in pairs (see Ref. [60], in particular,

pp.216-224). This implies that it is impossible to unpin the spiral wave by a

stimulated wave train.

However, as we demonstrate later in this chapter, the WR mechanism for

the failure of pacing in unpinning spiral waves is valid only when the radius

of the free spiral core (i.e., the closed trajectory of the spiral tip defined

as a phase singularity [52]) is small compared to the size of the obstacle.

We elucidate below the transition between the case of a free vortex and one

attached to a large obstacle as a result of systematic reduction of the core

radius of the free spiral, RFS, relative to the obstacle size, Robst, by increasing

the excitability of the medium. Our main result is that an anchored rotating

wave can be removed by a stimulated wave train provided RFS > Robst.
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3.2 Models and methods

To illustrate our arguments, we use the Barkley model of excitable media

[12], described by an excitatory (u) and a recovery (v) variable:

∂tu =
1

ǫ
u(1 − u)[u − (v +

b

a
)] + ∇2u,

∂tv = (u − v), (3.1)

where, a and b are parameters describing the kinetics. The relative time-

scale ǫ between the local dynamics of u and v is set to 0.02. We discretize

the system on a square spatial grid of size L × L, with a lattice spacing

of ∆x = 0.25 and time step of ∆t = 0.01 in dimensionless units. For our

simulations reported here we have chosen L = 200. We solve Eq. 3.1 using

forward Euler scheme with a standard nine-point stencil for the Laplacian.

No-flux boundary conditions are implemented at the edges of the simulation

domain. An obstacle is implemented by introducing a circular region of

radius Robst in the center of simulation domain, inside which diffusion is

absent. Pacing is delivered by setting the value of u to up = 0.9 in a region

of 6×3 points at the center of the upper boundary of the simulation domain.

We have explicitly verified that minor variations in the pacing scheme does

not qualitatively alter the results. The maximum pacing frequency is limited

by the refractory period, Tref , the duration for which the stimulation of an

excited region does not induce a response.
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Figure 3.1: (a) Wave S0, pinned to an obstacle (shaded), rotates counter-

clockwise; wave 1 is the first pacing wave. (b) Wave 1 hits the obstacle,

and separates into a wave rotating counterclockwise (1a) and a wave rotat-

ing clockwise (1b). (c) Waves S0 and 1b collide and merge leaving only one

rotating wave 1a denoted S1 hereafter. (d) The wave resulting from the merg-

ing of S0 and 1b leaves the system. The interaction between the following

pacing wave, 2 and S1, is similar to that shown in (a-c). Thus, the pinned

vortex persists. Numerical simulation of the Barkley model with parameters:

a = 0.9, b = 0.17; the pacing period is Tp = 6.7 and the radius of the obstacle

is R = 6.5.
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3.3 Results

When the obstacle size is large relative to the core radius of the free spi-

ral, RFS, the failure of a wave train in unpinning the vortex is illustrated

in Fig. 3.1. Initially, the spiral wave S0 rotates counterclockwise around the

obstacle. During the interaction with pacing waves, the number of waves at-

tached to the obstacle can change due to two possible processes (see Ref. [60],

p.216 and 220). First, when the pacing wave reaches the obstacle, it splits

into two oppositely rotating waves: one clockwise and the other counterclock-

wise. Second, collision between two rotating waves, as seen in Fig. 3.1(c),

results in the annihilation of a pair of counterclockwise and clockwise waves.

In both cases, the number of waves rotating counterclockwise is always larger

than the number rotating clockwise by 1. Thus, in addition to conservation of

total topological charge (i.e., sum of the individual chiralities, +1 or −1) for

all spiral waves in a medium [108, 52], topological charge around the obstacle

also appears to be conserved. However, in the limiting case of infinitesimally

small obstacle corresponding to a free vortex, a stimulated wave-train with

frequency higher than that of the spiral wave will always succeed in displac-

ing the latter, eventually removing it from a finite medium. Thus, there is

a transition from failure to successful pacing as Robst is reduced relative to

RFS.

The primary fact responsible for this transition is that the spiral wave

is no longer in physical contact with an obstacle of size smaller than RFS

[106], contrary to the fundamental assumption of Ref. [60]. Fig. 3.2 shows an

explicit example of successful detachment of a pinned wave from the obstacle

boundary, where the core radius of a free spiral in the medium is made larger



CHAPTER 3. WAVE-TRAIN INDUCED TERMINATION OF WEAKLY ANCHORED VORTICES 57

( a )

S
0

1a 1b

2

( b )

S
0

1a 1b

2

3

( c )

S
0

1b1a

2b2a
3

( d )

S
0

1b1a
1c

2b2a
3

( e )

2a 2b

S
1

3

( f )

Figure 3.2: Lowering excitability results in successful detachment of pinned

vortex by pacing. S0 is a rotating wave whose core (dashed line) is larger

than the pinning center (shaded). (a-c) are topologically as in Fig. 3.1. (d) A

wavelet 1c is produced after collision of waves S0 and 1b, in contrast with

Fig. 3.1(d). (e) The wavelet 1c collides with 1a and the resulting wave S1 is

displaced away from the obstacle. (f) Subsequent pacing induces drift of the

spiral wave S1 to the boundary, eventually removing it from the medium.

The parameters are as in Fig. 3.1, except for a = 0.895 and b = 0.1725,

resulting in increasing the vortex core size.
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than Robst by diminishing the excitability of the system.

The possibility of unpinning the wave in Fig. 3.2 can be traced to the

following fact: the collision between S0 and the pacing wave-branch 1b occurs

a small distance away from the obstacle boundary and does not result in

complete annihilation of both waves. A small fragment 1c survives in the

spatial interval between the collision point and the obstacle [Fig. 3.2(d)]. If

the tip of S0 is close to the obstacle, the fragment 1c is small, and rapidly

shrinks and disappears. However, if the gap between the reentrant wave tip

and the obstacle is large at the collision point, such that the size of 1c is larger

than a critical value ln, the fragment can survive. As 1c propagates further

away, it collides with the pacing wave 1a and forms a new broken wave S1

that is completely detached from the obstacle. Interaction with successive

pacing waves progressively pushes the vortex further away from the obstacle,

and eventually from a finite medium. The difference between the number of

spirals rotating counterclockwise and clockwise around the obstacle changes

from 1 initially (Fig. 3.2, a), to 0 in Fig. 3.2(e), contrary to what happens for

a larger obstacle (Fig. 3.1). The absence of topological charge conservation

for waves rotating around a smaller obstacle underlines the breakdown of the

fundamental assumption behind the WR argument for why pacing cannot

detach pinned waves. The unpinned wave is subsequently driven outside the

system boundaries by pacing (Fig. 3.2, f), thus eventually also reducing the

total topological charge of the finite medium to 0.

The relative size of the obstacle, compared to the free spiral core, is the

key parameter that decides whether a pinned reentrant wave can be removed

or not. Indeed, the radius of the free spiral core in the successful case,
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Figure 3.3: (a) Parameter space of the Barkley model. Unpinning is possible

in the shaded portion of the SW region, which exhibits persistent spiral

waves. The thick line indicates the boundary with the SE region, where

spirals cannot form. The domain where unpinning is possible shrinks with

increasing size of the pinning center, the three dashed lines corresponding

to Robst = 0, i.e., no obstacle (square), Robst = 1.25 (plus) and Robst = 6.5

(diamond). (b) Radius RFS of the free spiral and the maximum obstacle

radius Rmax
obst from which wave trains can unpin vortices, as a function of the

distance d from the SE-SW boundary, along the dot-dashed line indicated in

(a). Note that RFS > Rmax
obst , and both increase with decreasing d. [In (a),

NW (BI) indicates the parameters for which steady waves are absent (the

medium is bistable).]
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RFS = 9.05 (Fig. 3.2) is significantly larger than in the unsuccessful one,

RFS = 5.80 (Fig. 3.1). It is further confirmed by a detailed numerical study

of the interaction between a pacing wave train and a pinned spiral over the

(a, b) parameter space of the Barkley model. As shown in Fig. 3.3(a), the

rotating wave anchored to the obstacle can be removed by pacing only in

the neighborhood of the sub-excitable (SE) region (using the terminology of

Ref. [19]), where RFS diverges [Fig. 3.3(b)]. This is explained by noting that

in the SE regime, the tangential velocity of a broken wavefront is negative,

thus causing the front to shrink and not form a spiral. As we approach

the regime where spiral waves are persistent (SW), the tangential velocity of

the wavebreak gradually increases to zero and becomes positive on crossing

the SE-SW boundary, so that the broken wave front can now evolve into a

spiral. As RFS increases with decreasing tangential velocity of the wave front,

the spiral core becomes large close to the SE region resulting in successful

pacing-induced termination of pinned reentry.

We observe that there is a maximum radius of the obstacle (Rmax
obst ) close

to RFS above which pacing is unsuccessful in detaching the anchored spiral

wave [Fig. 3.3(b)]. Fig. 3.4(a) shows that the pacing period for successful

unpinning from the obstacle is bounded by the refractory period (Tref ) and a

maximum value Tmax
p that is independent of Robst for small obstacles. As we

approach Rmax
obst , the upper bound sharply decreases, becoming equal to the

refractory time at Rmax
obst , which indicates that pacing will be unsuccessful in

unpinning waves attached to obstacles of radii larger than Rmax
obst . Thus, the

results shown in Figs. 3.3(b) and 3.4(a) demonstrate our earlier assertion

that pacing induced removal of anchored waves will be possible only when
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the obstacle is smaller than the core radius of the free spiral wave in the

medium.

Relation between spiral period and obstacle size

Our numerical results indicate that the maximum pacing period necessary

for detaching a pinned spiral wave is a decreasing function of the obstacle

size [Fig. 3.4(a)]. This can be explained semi-quantitatively by the following

geometric argument, valid when the size of the obstacle is small compared

to the core size of the spiral, and supported by the simulations shown in

Fig. 3.4(c-f). The tip of the spiral S moves along its circular trajectory,

shown by the broken line in Fig. 3.4(b), and interacts with the pacing wave

coming from the top, represented by a solid line. The part 1b of the pacing

wave collides with S at the point C characterized by an angle θ that the

spiral tip makes with the symmetry axis (i.e., the line joining the centers of

the obstacle and spiral core); the resulting wave eventually leaves the system

[Fig. 3.4(d)]. The remaining section of the pacing wave splits into two waves,

1a and 1c, propagating along either side of the obstacle. The wave tip moves

approximately in a straight line from C, so that the length of the wave 1c at

the symmetry axis is l = RFS(1 + cos θ) − 2Robst. When the fragment 1c is

larger than the nucleation size ln, it expands into a wavefront that reconnects

with wave 1a. This results in a displacement of the wave 1a away from the

obstacle, leading to unpinning (as in Fig. 3.2). For l < ln, 1c shrinks and

eventually disappears, resulting in unsuccessful pacing.

Thus, the condition for detachment is l ≥ ln. The length l is a decreas-

ing function of the angle θ, which in turn, is a decreasing function of the
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Figure 3.4: (a) The maximum pacing period Tmax
p at which unpinning is

possible as a function of the obstacle radius Robst. For the parameters

a = 1.1323, b = 0.2459 that we have used, the maximum radius of obsta-

cle from which unpinning can occur is Rmax
obst = 4. TFS is period of a free

spiral wave and Tref is the refractory period. The dashed line indicates the

prediction from Eq. 3.2. (b) The wavelet formation mechanism leading to

the detachment of the pinned vortex (schematic). (c-f) Numerical simula-

tion of the Barkley model. S collides with wave 1 at point C at an angle θ.

The part 1b of the pacing wave merges with S, moving out of the system.

The remaining part of the pacing wave collides with the obstacle (shaded)

separating into 1a and a small wavelet 1c. When the length l of wavelet 1c

is larger than the critical nucleation length, 1c survives and collides with S.

This results in unpinning of S.
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pacing period, Tp, as explained below. The relation between Tp and θ can

be established by estimating the time interval for two successive collisions of

the spiral with the pacing waves. From the point of collision C, the pacing

wave reaches the obstacle after time T1 = (RFS sin θ − Robst)/v, and the

symmetry axis after time T2 = T1 + (RobstTFS/4RFS). From the symmetry

axis, the new reentrant wave S moves by an angle (θ + π) to arrive at C at

time T3 = T2 + [TFS(θ + π)/2π], where it collides with the next pacing wave.

Noting that T3 = Tp allows us to implicitly express Tp as a function of θ, and

thereby, l. The maximum pacing period leading to detachment is obtained

when l = ln, as:

Tmax
p =

RFS

v
(sin θc − fR) +

fRTFS

4
+

TFS(θc + π)

2π
, (3.2)

where, θc = arccos(2fR − 1 + [ln/RFS]) and fR = Robst/RFS. When Robst >

Rmax
obst = RFS − (ln/2), Tmax

p has complex values, indicating that for larger

obstacles the fragment is too small to survive. The nucleation length ln can

thus be estimated from Rmax
obst , which allows us, in turn, to determine the

dependence of Tmax
p as a function of Robst from Eq. 3.2. Fig. 3.4(a) shows

this to be in fair agreement with our numerical simulations.

3.4 Discussion

We stress that the arguments used here are model independent, and are based

only on the property that waves in excitable media annihilate on collision. We

verified numerically [109] that wave-train induced unpinning is also observed

in a more detailed and realistic description of cardiac tissue, the Luo-Rudy

I model [25], under conditions of reduced excitability. Meandering, which
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occurs in the Barkley model at low a, b values (Fig. 3.3, a), does not affect the

physical effect discussed here. Note that the proposed unpinning mechanism

is for the case of an obstacle smaller than the vortex core. It is possible under

certain circumstances to unpin waves from obstacles larger than the core

because of other effects such as the presence of slow conduction regions [110,

61] and nonlinear wave propagation (alternans) [62].

Our results thus predict that in cardiac tissue, the removal of spiral waves

pinned to a small obstacle by high-frequency wave trains is facilitated by

decreasing the excitability of the medium. This is consistent with previ-

ous experimental results on cardiac preparations using Na+-channel block-

ers [106] and our prediction could be directly tested in a similar experimental

setup [106, 100].

In conclusion, we have shown that for a pinned vortex interacting with

a pacing wave train, unpinning is possible when the size of the obstacle is

smaller than that of the spiral core. The minimum wave train frequency

necessary for unpinning in the presence of an inexcitable obstacle is higher

than that for inducing drift in a free vortex towards the boundaries of a

finite domain, and it increases with the size of the pinning center. Our

results suggest that lowering the excitability of the medium makes it easier

to unpin vortices by pacing.



Chapter 4

Obstacle induced transition

from scroll waves to chaos

For the wise man looks into space

and he knows there is no limited dimensions.

− Lao Tzu

In Chapters 2 and 3 we have primarily focused on reentrant wave patterns

in two-dimensional media that are manifested as spiral waves. However, most

excitable systems that we encounter in reality are three-dimensional and we

have to consider the generalization of a spiral wave for such systems, namely,

the scroll wave [52]. The additional dimension opens up the possibility of

encountering new dynamical phenomena, a specific aspect of which we will

explore in this chapter. In particular, we shall focus on the transition to

spatiotemporal chaos from a scroll wave through a mechanism that is not

encountered in two-dimensional media.

Scroll waves have been experimentally observed in a broad range of nat-

65
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ural systems, including, chemical waves in the Belusov-Zhabotinsky reac-

tion [111, 112, 27], aggregation patterns observed during Dictyostelium mor-

phogenesis [113, 114] and electrical waves of excitation in cardiac muscles [2].

Scroll waves in the heart have been implicated in several types of arrhythmia

that are potentially fatal disturbances to the natural rhythm of the heart.

Under certain conditions, these three-dimensional reentrant waves can also

develop various instabilities resulting in their breakup into multiple scroll

wavelets. The ensuing spatiotemporally chaotic state of electrical activity

is associated, in the context of the heart, with life-threatening arrhythmias

such as ventricular fibrillation. Thus, apart from being a problem of theo-

retical interest in nonlinear dynamics, a deeper understanding of the various

mechanisms that lead to chaos through breakup of scroll waves is of great

practical significance.

In this chapter, we have considered an isotropic three-dimensional medium

with an inexcitable obstacle that does not span the entire thickness of the

system. A scroll wave adjacent to such an obstacle would have a part of the

wave attached and moving around it with a time period that increases with

the circumference of the obstacle boundary. The part that is away from the

obstacle rotates freely with a period that is governed by refractory proper-

ties of the medium. The differential rotation period in various sections of the

wave results in a helical structure wound around the obstacle that (in most

cases) attains a steady state after some initial transients. However, under

certain circumstances, the wave can breakup far from the scroll wave filament

(the line joining the phase singularities in the scroll) close to an edge of the

obstacle. This transition to spatiotemporal chaos from a scroll is obstacle
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induced as the wave is stable in the absence of the object. The breakup phe-

nomenon can only be observed in three dimensions, as the obstacle should

not span the entire thickness of the medium for the transition to chaos to

occur.

In section 4.1 we briefly describe the background and physiological mo-

tivation for our study. In section 4.2 we describe the models and methods

used in the work reported here. Section 4.3 reports the results of our simu-

lations, while in section 4.4 we outline the possible physical mechanism for

the generation of additional phase singularities that eventually lead to spa-

tiotemporal chaos. We conclude with a discussion of the potential relevance

of our results for the heart, where scar tissue that are embedded inside the

bulk of the myocardium (and hence unobservable by epicardial imaging) can

nevertheless critically affect the evolution of arrhythmia.

4.1 Inexcitable obstacles: Adding a new di-

mension

The interaction between conduction inhomogeneities and wave propagation

in excitable media is increasingly becoming an active area of research, partly

as a result of the improved understanding of the role played by inexcitable

obstacles and partially excitable regions in promoting arrhythmias in the

heart [30, 31, 110, 61]. Most such studies have focused on two-dimensional

systems, which in a few cases can be reduced to an one-dimensional problem

by considering only the reentrant circuit surrounding the obstacle. While

even this simplified situation can show unexpected complexity, such as fractal
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basins of attraction for different dynamical states corresponding to pinned

spiral, spatiotemporal chaos and complete termination of activity [115, 33,

116], these models are nevertheless only an approximation to real systems

which are three-dimensional. Adding an extra dimension is equivalent to

considering the thickness of biological tissue, so that one can in principle

distinguish between phenomena on the surface and in the bulk.

It is against this background that we choose to focus on the interac-

tion between rotating waves and inexcitable obstacles in a three-dimensional

medium. For simplicity we consider an obstacle with uniform cross-section.

However, the obstacle does not span the entire thickness of the medium, as

in that case each 2D section of the system would appear identical thereby

reducing the problem to an effectively two-dimensional one. Our model is

also motivated by physiological situations observed in the heart [117, 118].

The general setting is shown schematically in Fig. 4.1, where an inexcitable

obstacle is located deep in the bulk of the heart and cannot be detected by

imaging the outer surface (epicardium). Thus, observing from the top, one

may not be able to distinguish a freely rotating spiral from one that is actu-

ally anchored deep inside the bulk to an obstacle. However, it is obvious that

the dynamics of such a partially attached scroll wave can be distinct from

both a pinned spiral wave (similar to the two-dimensional situation that we

analyzed in Chapter 3) and a freely rotating scroll wave. In particular, one

can ask whether in such a situation novel dynamical transitions can occur

that will appear neither in the absence of the obstacle nor in the effectively

2D situation where the obstacle fully spans the medium.

The question of whether a three-dimensional obstacle can induce an other-
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Figure 4.1: Schematic diagram of an inexcitable obstacle surrounded by a

border zone comprising partially excitable cells embedded in tissue composed

of fully excitable cells. The obstacle extends only partly through the thickness

of the medium, and cannot be seen by observing the top surface alone. In

the context of the heart, such situations can arise after myocardial infarction,

when a region of scar tissue is formed inside the bulk of the myocardium and

cannot be detected by imaging the epicardial surface.
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wise stable rotating wave to break up into spatiotemporal chaos is extremely

pertinent from the point of view of the heart, which gradually accumulates

a number of inexcitable obstacles through increased instances of local tissue

necrosis with age [98]. While obstacles in three-dimensional media that do

not extend through the entire thickness of the system have been considered

earlier, these studies typically focused on whether scroll waves pinned by

such heterogeneities can be detached as a result of a parameter gradient that

induces a tendency to drift [35, 36]. However, even in the absence of drift,

complex dynamics can arise from the wave winding around the obstacle as a

result of the difference in rotation periods in different sections of the wave.

For example, while the rotation period of the free spiral wave is essen-

tially limited only by the refractory period of the medium, that of the pinned

wave is related to the circumference of the obstacle. Thus, by increasing the

cross-sectional area of the obstacle it is possible to enhance the difference

in the rotation periods between the pinned and freely rotating sections of

the scroll wave. As a result, when the wave winds around the obstacle, in

addition to the velocity components along the plane perpendicular to the

scroll wave filament, there will be propagation along the axis parallel to it.

In this chapter we show that at the interface where the additional velocity

components appear, the wave may suddenly slow down. Under appropriate

conditions, the succeeding wave may interact with the refractory tail of the

preceding wave resulting in a conduction block close to the edge of the obsta-

cle. This causes a “tearing” of the front of the succeeding wave which evolves

into a new scroll filament. This process can occur repeatedly, creating mul-

tiple filaments that can interact with each other leading to fully developed
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spatiotemporal chaos.

4.2 Models and methods

To simulate spatiotemporal activity in three-dimensional excitable tissue we

use two models with the same basic form,

∂V/∂t = ∇D∇V + Iion(V, gi), (4.1)

∂gi/∂t = F (V, gi), (4.2)

but incorporating different degree of detail in describing Iion. Here, V rep-

resents the activation variable (typically, the transmembrane potential), Iion

is the total ionic current crossing the membrane, D is the diffusion constant

(a scalar parameter, as we assume isotropic coupling between cells), and gi

describes the dynamics of gating variables for the various ion channels that

control each component comprising the total ionic current.

For the simple, phenomenological two-variable Panfilov model (PV), Iion

is described by a piecewise linear function of the transmembrane potential

f(V ) [14]. The single recovery variable g of this model, which represents an

effective membrane conductance, is governed by three rate constants, ǫ1, ǫ2

and ǫ3. In our study, we fix the values of ǫ2 (= 1) and ǫ3 (= 0.3) and consider

a range of different values for ǫ1 for which the scroll wave is stable in the

absence of an obstacle. Specifically, we choose ǫ−1
1 < 53, as above this value,

a scroll wave generated in the medium spontaneously breaks up to form a

spatiotemporally chaotic state even in a homogeneous system. The values of

other parameters are taken to be same as given in Ref. [14].



CHAPTER 4. OBSTACLE INDUCED TRANSITION FROM SCROLL WAVES TO CHAOS 72

To verify the model independence of our results, we also use the biolog-

ically realistic Luo-Rudy I (LRI) model for a cardiac myocyte [25]. In this

model where the ion channel details are incorporated, Iion is described as

being composed of six distinct types of ionic currents (for further details see

Chapter 1). For all our simulations reported in this chapter, the maximum

K+ channel conductance GK has been increased to 0.705 mS cm−2 in or-

der to reduce the duration of the action potential to make it comparable to

that in the human ventricle [70]. To avoid spontaneous scroll breakup in the

absence of any obstacle, the value of the channel conductance for the slow

inward Calcium current Gsi is chosen to be ≤ 0.04 mS cm−2.

Both models are solved using a forward-Euler scheme, the system being

discretized on a spatial grid with spacing δx (= 0.0225 cm for LR, = 0.05 cm

for PV). The three-dimensional simulation domain has L×L×L points with

L = 400 for the LR1 simulations and L = 128 for the PV model. To ensure

system size independence, we have repeated our simulation with L = 160 and

L = 200 for the PV model and have observed qualitatively similar results.

The Laplacian is calculated using the standard seven-point difference stencil.

The time step for integration is chosen to be δt = 0.01 ms (for LRI) and =

0.11 ms (for PV). No-flux boundary conditions are applied on the boundary

planes of the simulation domain as well as along the walls of the inexcitable

obstacle.

We have considered both cylinder and rectangular parallelepiped shaped

obstacles in our study. The diffusion constant is set to D = 0 in the region

corresponding to the interior of the inexcitable obstacle. The cylindrical

obstacle has radius R with a cross-sectional area = πR2 and height Lz, while



CHAPTER 4. OBSTACLE INDUCED TRANSITION FROM SCROLL WAVES TO CHAOS 73

the rectangular parallelepiped obstacle is of size L′ × L′ × Lz, with Lz being

the height of the obstacle and L′ × L′, the cross-sectional area. For the

PV model, we have used obstacles with heights ranging from Lz = 1 cm to

Lz = 5.5 cm and cross-sectional area 12.5 cm2 to 28.3 cm2 . For the LRI

model, we have used obstacles of height Lz = 2.7 cm to Lz = 5.4 cm and

cross-sectional area of 35.8 cm2.

Setting up the initial scroll

The initial scroll wave is obtained by breaking a 3-dimensional plane wave-

front when it arrives at the center of the simulation domain starting from one

of the boundary planes at T = 0. This is achieved by dividing the wavefront

into two parts along a line parallel to the Lz axis of the obstacle. We then set

one of the parts to the resting state values, resulting in a broken plane front

which then dynamically evolves into a rotating scroll wave whose filament is

parallel to the Lz axis. In the LR1 model simulations, an initial plane wave

is first allowed to travel through the medium to reduce the recovery period.

The next wave is then used to create the broken plane wavefront, so as to

generate a scroll with one full turn inside the simulation domain. The loca-

tion of the obstacle at the center of the domain, with its base touching the

boundary of the simulation domain, ensures that the generated scroll wave

is attached to it. We have also carried out simulations with the initial scroll

wave being generated by a broken cylindrical front (the axis of the cylin-

der being perpendicular to the Lz axis of the obstacle). While the resulting

scroll filament is curved compared to that seen in the previous method (bro-

ken plane wavefront), the subsequent breakup into multiple scroll waves is
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qualitatively similar in both cases.

4.3 Results

While an extremely small inexcitable obstacle does not affect the dynamics

of the scroll significantly, we observe that a sufficiently large one can pro-

mote wavebreaks in an otherwise stably rotating wave. For a medium with

LRI dynamics, Fig. 4.2 shows how a cylindrical obstacle can induce breaks

giving rise to new filaments whose interactions lead finally to spatiotemporal

chaos. After the creation of the scroll wave, we observe that the section of

wave adjacent to the obstacle is pinned by it. The large circumference of the

obstacle implies a long rotation period for the portion of the wave attached

to it. As the freely rotating part of the wave has a much shorter rotation

period, this leads to the wave winding around the obstacle. Note that, the

scroll wave filament which stretches from the top surface of the obstacle to

the upper boundary of the simulation domain is unchanged by the presence

of the obstacle. The wavefront traveling along the top or horizontal surface

of the obstacle has a quasi 2D nature (i.e., the two-dimensional cross sections

perpendicular to the filament appear almost identical). However, when the

wave crosses the boundary of the top surface of the obstacle, it develops a

fully three-dimensional nature as it not only has velocity components in the

plane perpendicular to the filament but it also travels down the vertical sur-

face of the obstacle (i.e., parallel to the filament). As seen from Fig. 4.2 (b),

one of the wavefronts eventually detaches partially from the surface of the

obstacle as it crosses the edge of the top surface and breaks, with the gen-
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Figure 4.2: Breakup of a scroll wave induced by a cylindrical obstacle of

radius R = 3.375 cm and height H = 2.7 cm where the activation dynamics

is described by the LRI model. The scroll wave is generated by creating a

broken wavefront at T = 400 ms. (a) By T = 675 ms, the scroll wave has

wound around the obstacle. We observe a quasi two-dimensional propagation

of the wave along the top surface of the obstacle that becomes fully three-

dimensional when the wave moves past the boundary of the top surface and

travels down the vertical surface of the obstacle. (b) By T = 700 ms, we

observe a broken wavefront that has detached from the edge of the obstacle

giving rise to two free ends, which eventually evolve into new scroll wave

filaments (c-d). Interaction between these waves produce multiple excitation

wave fragments that will eventually give rise to chaos.
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eration of two free ends. These ends propagate and grow in size, colliding

with the next wave (Fig. 4.2 c) to create new scroll wave filaments. Further

evolution of the system produces more complex wave fragments (Fig. 4.2 d)

that eventually results in spatiotemporal chaos.

To understand the mechanism behind the breakup of scroll waves partially

pinned by an obstacle, we have to look at the cross-section of the system

parallel to the filament (shown in Fig. 4.3). The bold arrows in Fig. 4.3 (a)

indicate the direction of wave propagation as it moves first along the top

surface and then along the vertical surface of the obstacle (shaded dark in

the figures). The wave W1 slows down as it travels past the boundary of

the top surface of the obstacle. This results from the change in the nature

of its wavefront, from plane to one with a convex curvature (Fig. 4.3 b).

The increased curvature of a wave results in a decrease in its conduction

speed [72]. The wave W2 which is closely following W1 therefore encounters

an incompletely recovered region at the edge of the obstacle and cannot

propagate into this section. This results in the dislodging of the wave from

the surface of the obstacle, generating the free end seen as a wavebreak in

Fig. 4.3 (d). This detached or free end subsequently interacts with later

waves to give rise to a spatiotemporally chaotic state.

To ensure that our results are not sensitively model dependent, we have

reproduced qualitatively identical scenarios in a medium whose dynamics is

described by the PV model (Fig. 4.4). As is the case for the LRI model, we

observe the initial wavebreak as the wave crosses the boundary of the top

surface of the cylindrical obstacle, eventually giving rise to multiple scroll

wave filaments. We also observe a similar evolution from a single scroll
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Figure 4.3: Cross-section parallel to the scroll wave filament (along the Lz

axis of the obstacle) for the system shown in Fig. 4.2. The boundary of the

obstacle (shaded dark) is marked by the broken lines. The solid arrows in

(a) indicate the direction of propagation for waves W1 and W2. (b) W1 slows

down at the boundary of the top surface of the obstacle as a result of change

in the nature of the front from a plane wave to one having convex curvature.

(c) Wave W2, that closely follows W1, encounters a region that has not fully

recovered from its prior excitation by W1, leading to the detachment of W2

from the surface of the obstacle (d).
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Figure 4.4: Breakup of scroll wave induced by a cylindrical obstacle of radius

R = 2 cm and height H = 2 cm in an excitable medium described by the

Panfilov model. The simulation domain is 6.4 cm ×6.4 cm ×6.4 cm. The

scroll wave is generated from a plane wavefront that is broken at T = 77

ms. (a)-(b) The scroll wave has attached to and winds around the obstacle

forming a helical structure. (c)-(e) A wave is seen to detach at the boundary

of the top surface of the obstacle, generating a new scroll wave filament. (f)

By T = 1100 ms, we observe multiple scroll waves that have been generated

through successive wavebreaks at the obstacle top surface boundary.
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wave to spatiotemporal chaos for obstacles having the shape of a rectangular

parallelepiped, indicating that the mechanism does not depend critically on

the exact shape of the inexcitable obstacle.

4.4 Discussion

The route to breakup of scroll waves into spatiotemporal chaos reported here

is distinct from established physical mechanisms of transition to broken scroll

states, most of which are associated with dynamics of the filament. The two

principal mechanisms of scroll wave breakup that have been reported in the

literature involve either (i) negative filament tension in a low excitability

regime, or, (ii) cardiac fiber rotation with filament twist instability [17]. In

addition, (iii) decreased cell coupling and discrete effects can also result in

breakup of scroll waves, as they do in two-dimensional media [17]. However,

the situation reported here does not correspond to any of these above scenar-

ios. As mentioned earlier, the wavebreak occurs far from the filament (the

line of phase singularities) in a medium which, apart from the existence of

an inexcitable obstacle, is isotropic and homogeneous. To ensure that the

breakup occurs exclusively in the presence of the obstacle, we have carried

out simulations of the scroll wave in the absence of the obstacle for extremely

long durations (e.g., up to T = 104 ms for LRI model and T = 2.2 × 104 ms

for PV model) without observing any wavebreaks in the scroll.

The primary role of the obstacle is to make the existing scroll wave wind

around it by creating differential rotation periods. This results in the wave

propagation having different directional components in different regions of
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the medium. In particular at the boundary of the top surface of the obsta-

cle, the nature of the front suddenly changes from being effectively quasi-2D

to fully 3D with convex curvature. As increased curvature implies decreased

propagation speed, there is an initial reduction in velocity of the wave com-

ponent that starts flowing down the vertical surface of the obstacle. If the

succeeding wavefront encounters a partially recovered region at the bound-

ary of the top surface of the obstacle, it can detach due to conduction block,

resulting in a wavebreak. However, this requires the interval between succes-

sive waves to be extremely small so that a small change in the propagation

speed of the preceding wave can block the following wavefront because of

restitution and dispersion effects of the medium. By periodically stimulating

a line-electrode, in the place of the filament, we have observed that the high-

est possible frequency of the stimulated waves thus generated is still smaller

than that of the scroll (for identical system parameters). Even with adaptive

pacing (where the pacing frequency is gradually increased by progressively

decreasing the time period between two successive stimulations), periodic

stimulation from the line electrode at the frequency of the scroll wave re-

sults in conduction block of every other stimuli. This suggests that the scroll

wave is exploiting the nonlinear adaptive property of the medium to gen-

erate waves at intervals very close to the minimum possible allowed by the

system parameters. Therefore, even a small change in the propagation speed

of a wave may result in the conduction block for the following wave as seen

in our simulations. This phenomenon can be further enhanced by Doppler

effect induced changes in the frequency of successive waves which are a con-

sequence of the meandering of the filament. Thus, a relatively long time
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interval between successive waves W0 and W1 traveling along the obstacle

surface may be followed by a short duration between W1 and W2. This may

cause interaction between waveback of W1 and the W2 wavefront, resulting

in conduction block for the latter along the surface of the obstacle. This will

lead to detachment of the wave from the obstacle surface giving rise to a new

phase singularity.

In conclusion, we have shown that the presence of an inexcitable obstacle

in three-dimensional excitable media can result in wavebreak leading to spa-

tiotemporal chaos involving a novel physical mechanism. Unlike previously

proposed mechanisms for scroll breakup, in our simulations the transition

occurs far from the filament, the line connecting phase singularities. We

suggest that the detachment of the wave from the obstacle that generates

new singularities (eventually resulting in spatiotemporal chaos) arises from

a mechanism involving the interaction of the wavebacks and fronts of succes-

sive waves generated by the scroll, at an edge of the obstacle. Our results

imply that obstacles embedded deep inside the bulk of a medium, e.g., inex-

citable scar tissue regions in the heart, may play a critical role in the genesis

of arrhythmia such as fibrillation, even when they cannot be observed from

the surface.



Chapter 5

Spatiotemporal chaos control

using an array of control points

Stranger, you too are my kin

You stopped my heart’s flutterin.

− Kannadasan

Dynamical spatial patterns in excitable media like spiral waves and scroll

waves may become unstable under certain conditions, giving rise to turbulent

states which correspond to spatiotemporal chaos. As mentioned in Chapter 1,

such spatiotemporally chaotic states have been implicated in clinically signif-

icant disturbances of the natural rhythm of the heart [119, 120], e.g., fibril-

lation. Ventricular fibrillation in particular is lethal as it results in complete

loss of coordination of activity between different regions in the heart [52]. The

resulting cessation of the mechanical pumping action necessary for blood cir-

culation, leads to a drastic fall in blood pressure. If not treated immediately

death follows within a few minutes. However the conventional methods of

82
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defibrillation require the application of large electrical shocks that are unde-

sirable for a variety of reasons. Developing low-amplitude control schemes

involving as few control electrodes as possible is an exciting challenge and has

potential clinical relevance [121, 38, 122]. As detailed in Chapter 1, devising

such control using low voltages or current, has to take into account the spe-

cial features of excitable medium like the existence of a refractory period and

excitation threshold. The amplitude and timing of the control signal needs

to be appropriately chosen so that it results in the desired response from the

medium. Note that the excited state is meta-stable, and the cell eventually

recovers to the resting state associated in different biological systems with a

characteristic resting transmembrane potential (≃ −84 mV for cardiac my-

ocytes). Thus, the control of spatiotemporal chaos in excitable media may

be viewed as essentially a problem of synchronizing the excitation phase of

every cell, so that the entire system returns to the resting state, resulting in

the termination of all activity.

In this chapter we describe a novel method of controlling spatiotempo-

ral chaos in excitable media, using an array of control points. The points

are stimulated in a sequence so as to generate a travelling wave of activity

across the medium, which interacts with the chaotic excitations and elimi-

nates them. The proposed method is robust even in the presence of significant

conduction heterogeneities in the medium which have often been an impedi-

ment to the success of other control schemes. In section 5.1 we give a brief

introduction to the necessity of using spatially extended but non-global con-

trol scheme. In section 5.2 we describe the two models of excitable media

that are used in our work. Section 5.3 contains details of the algorithm
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used in our control scheme. In section 5.4 we discuss the results of applying

this control scheme on 2-dimensional and 3-dimensional excitable media. We

conclude the chapter with a brief discussion of the merits and advantages of

the proposed scheme.

5.1 Low-amplitude chaos control

Chaos control schemes for excitable media may be broadly classified into [93]:

(i) global, where the control signal is applied to all points of the system, (ii)

local, where only a small localized region of the system is subject to control,

and (iii) spatially extended but non-global schemes. Non-global methods use

less power and also are relatively easier to implement practically, needing

fewer control points. However, strictly local control methods almost always

involve very high-frequency stimulation [59], that can by itself lead to reen-

trant waves in the presence of inhomogeneities [30, 33]. Moreover, the effect

of local stimulation at a point can affect the rest of the system only through

diffusion. As wavefronts annihilate on collision, control-induced waves are

restricted to the local neighborhood of the stimulation point during spiral

turbulence, with the existing excited fragments closer to the control point

shielding chaotic activity further away. By using a spatially extended but

non-global scheme [51] one can potentially avoid these drawbacks. In this

chapter, we terminate chaos in excitable media by applying spatiotemporally

varying stimulation along an array of control points. The control signal ap-

pears to propagate along the array, triggering an excitation wavefront in the

underlying medium, that is regenerated after each collision with chaotic frag-
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ments and in the process eliminating all existing activity. Stimulating each

point once (or at most, twice) is seen to successfully control chaos in almost

all instances. Although an array of control points have been used earlier to

prevent the breakup of a single spiral [54], to the best of our knowledge this is

the first instance showing control of fully developed spatiotemporal chaos in

excitable media using only a finite number of control points without repeated

stimulations at high frequency.

5.2 Models and methods

The spatiotemporal dynamics of excitation in several biological systems can

be described by partial differential equations of the form:

∂V/∂t =
−Iion + Iext(x, y, t)

Cm

+ D∇2V, (5.1)

where V (mV) is the transmembrane potential, Cm = 1 µF cm−2 is the trans-

membrane capacitance, D (cm2s−1) is the diffusion constant, Iion (µA cm−2)

is the transmembrane ionic current density and Iext(x, y, t) is the space- and

time-dependent external stimulus current density that is applied for the pur-

pose of control on a 2-dimensional surface. For the specific functional form

of Iion, we used the Luo-Rudy I (LR1) action potential model [25], where,

the total ionic current is considered to be composed of six distinct currents,

each of them being determined by several time-dependent ion-channel gat-

ing variables ξ whose time-evolution is described by differential equations

dξ

dt
= ξ∞−ξ

τξ
. The parameters in these equations are the steady-state values

of ξ, ξ∞ = αξ/(αξ + βξ), and the time constants, τξ = 1/(αξ + βξ), which

are governed by the voltage-dependent rate constants for the opening and
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closing of the channels, αξ and βξ, themselves complicated functions of V .

In order to verify the model independence of our results and to carry out

three-dimensional simulations, we have also used a simpler description of the

action potential, as given by Panfilov (PV) [13, 14]: Iion = f(V ) − g, where

f is a piecewise linear approximation of a cubic function and g is an effective

membrane conductance evolving with time as

dg

dt
= ǫ(V, g)(kV − g).

The time-constant ǫ is a function of both V and g and the parameters used

are same as that in Ref. [51]. The models are solved using a forward-

Euler scheme, the system being discretized on a spatial grid with spacing

δx (=0.0225 cm for LR1, = 0.05 cm for PV). The simulation domain is a

square lattice of L×L points in two dimensions or a cuboid with L×L×Lz

points in three dimensions. For the LR1 simulations, L = 400, while for PV,

L = 256 (for 2-D) and L = 128, Lz = 8 (for 3-D). The standard five-point

and seven-point difference stencils are used for the Laplacian in two and three

dimensions, respectively. The time step for integration is chosen to be δt =

0.01 ms (for LR1) and = 0.11 ms (for PV). No-flux boundary conditions

are implemented at the edges of the simulation domain. The initial spa-

tiotemporally chaotic state is obtained by creating a broken wavefront which

evolves into a spiral wave and is then allowed to become unstable, eventually

breaking up into multiple wavelets. For LR1 model, the broken wavefront

is preceded by an earlier intact wavefront in order to reduce the recovery

period (through the restitution property of the medium, by which recovery

is a function of the time interval between two successive propagating waves)

so as to enable a spiral wave with at least one complete turn to exist within



CHAPTER 5. SPATIOTEMPORAL CHAOS CONTROL USING AN ARRAY OF CONTROL
POINTS 87

T = 450 ms T = 700 ms

 

 

−80 −60 −40 −20 0 20

T = 600 ms

mV

Figure 5.1: Pseudo-gray-scale plot of the transmembrane potential V for the

two-dimensional LR1 model showing the time-evolution from single spiral

(left) through breakup (center) to fully developed chaos (right).

the simulation domain. For the model parameters used here, this spiral is

itself unstable, and after 200 ms (on average) breaks up, resulting in a state

displaying fully developed spatiotemporal chaos (Fig. 5.1).

5.3 Algorithm for the array control

We now focus on the control term Iext(x, y, t). For a 2-D domain of size L×L

we consider

Iext = I(x, y, t)δx,md δy,nd , (5.2)

where, the Kronecker delta function is defined as δi,j = 1 if i = j, and = 0,

otherwise, d is the spatial interval between points in an array where the

control signal is applied and m,n are integers in the interval [0, L/d]. The

current density I(x, y, t) = I0 for t ∈ [
√

x2 + y2/v, (
√

x2 + y2/v) + τ ], and
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= 0 otherwise, corresponds to a rectangular control pulse of amplitude I0 of

duration τ that is travelling with velocity v. At the onset of control (t = 0),

the point at (0, 0) is stimulated, followed a short duration later by the points

at (0, d) and (d, 0), and this process continues as the control pulse proceeds

like a traveling wave across the array. At each control point, the stimulation

may excite the underlying region depending on its recovery phase. An excited

region can in turn spread the effect of the stimulation to the surrounding

regions through diffusion. Fig. 5.2 shows this process of secondary wave

generation at the stimulated control points, creating a sustained excitation

wavefront. Note that, any portion of this stimulated wavefront in the medium

that is broken through collision with chaotic fragments, can be regenerated by

subsequent control points. Hence, there is effectively an unbroken wavefront

that travels through the medium, sweeping away the spatiotemporal chaos

and leaving the system in a recovering state. As each control point needs to

impose order over a region of size ∼ d2 to eliminate spatiotemporal chaos, this

highlights the critical role of d. Indeed, for large v, the method approaches

global control as d → 0, while for d ∼ L the activity resulting from the

control stimulation is confined to a single, localized region. This implies that

as d increases, terminating chaos becomes increasingly difficult. For example,

in LR1 model, we observe that chaos control fails for d ≥ 13.

5.4 Results

Before reporting the simulation results, we consider the role played by the

traveling wave nature of the control pulse. The success of the proposed
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Figure 5.2: (left) Schematic diagram and (right) pseudo-gray-scale plot of the

transmembrane potential V for the two-dimensional LR1 model, showing

the propagation of the control-induced excitation wavefront. The control

signal traveling with velocity v stimulates at time t1 a column of points

(spaced d apart) from which secondary excitations traveling with velocity

c are generated. At time t2 the control signal stimulates the next column

of points, which the induced excitation wave may or may not have reached

depending on the relative values of v and c [v/c = 4 in (right)].
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method depends on the control signal velocity, v, relative to the velocity of

the excitation wavefront propagating via diffusion, c (= 60.75 cm s−1 for

LR-1, = 50.9 cm s−1 for PV, for the parameters used here). When v → 0,

the control method reduces to a local scheme regardless of d, as the effect of

the external stimulation can only propagate in the system via diffusion. On

the other hand, when v is very large, all the control points are stimulated

almost simultaneously. While the traveling wave nature of the control pulse

allows propagation of stimulation independent of diffusion through the ex-

citable medium, for v ≃ c the excitation propagating by diffusion reinforces

the external stimulation at each control point. Further, for a control signal

propagating with a finite velocity (thus engaging only a few points at any

given time), the energy applied per unit time to the medium is much lower

than that for simultaneous stimulation of all the control points (i.e., v → ∞).

For a system undergoing chaotic activity, the medium will at any time

be at an extremely heterogeneous state, with certain regions excited and

other regions partially or fully recovered. The vital condition for successful

termination of chaos is that after the passage of the control-stimulated wave

there should not remain any unexcited region which is partially recovered and

which can be subsequently activated by diffusion from a decaying excitation

front. This places a lower bound on the control signal parameters, i.e., the

signal amplitude I0 and its duration τ . If either is decreased below this

bound, the external stimulation is unable to excite certain partially recovered

regions. If these regions have neighboring chaotic fragments, whose activity is

slowly decaying after collision with the control-induced wave, then, there will

be a diffusion current from the latter. Depending on the phase of recovery,
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this may be sufficient to stimulate activity in the partially recovered regions,

thereby re-initiating spatiotemporal chaos after the control signal has passed

through.

To understand in detail the lower bound on the external stimulation pa-

rameters I0 and τ , we first look at the condition for exciting a completely

homogeneous medium in the resting state. The stimulation at each point

must exceed the local threshold in order to generate an action potential.

This could be achieved either directly through an external current Iext or

indirectly through diffusion from a neighboring excited region. Fig. 5.3 (left)

shows the result of applying control signals with different I0 and τ at points

which are spaced a distance d apart. The resulting strength-duration curve

[123, 124] indicates that the response of the system is not sensitively depen-

dent on the propagation velocity v of the control signal along the grid. As

d decreases, excitation is possible at lower values of I0 and τ , the minimum

being for the case when all points are subject to direct external stimulation

(d → 0). This is because the entire applied current I0 at any point is used to

raise its state above the threshold, no part being lost to neighboring regions

through diffusion.

For systems with existing activity, such as self-sustaining spiral waves

or spatiotemporal chaos, the regions in the relative recovery period can be

excited by stimuli larger than that needed for a fully recovered medium.

Hence, the strength-duration curve for control of such a system will shift

towards higher values of I0 and τ (Fig. 5.3, right). We observe that the

minimum external stimulus required for control does not vary significantly if

the medium is undergoing fully developed spatiotemporal chaos as opposed
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Figure 5.3: Strength-duration curves for LR1 model (in a two-dimensional

domain with L = 400) when control stimulation is applied on (left) quiescent

homogeneous medium and (right) medium with existing excitation activity,

either a single spiral or spatiotemporal chaos. In both figures, control is

applied over a grid of points which are spaced apart by d = 10. Different

curves correspond to different control signal velocities v, relative to c, the

excitation wavefront velocity in the medium. For values of I0 and τ above

the curves, the external stimulation results in (left) excitation of the domain

or (right) control of existing activity.
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to having a single spiral wave. Further, the velocity of the control signal

along the array is not critical to the success in eliminating existing activity,

provided v is not significantly smaller than c. Note that, if v is sufficiently

small or d increases beyond a critical value, the control fails, as the effect

of the control signal is confined to the region immediately surrounding the

stimulated point.

Fig. 5.4 shows the successful termination of spatiotemporal chaos in the

LR1 model using a control signal that travels across the 2-dimensional do-

main while exciting points in the medium that are spaced apart by d = 10.

We verified that the control scheme is not model dependent by using it to

eliminate spatiotemporal chaotic activity in the PV model. As most systems

in reality have thickness, it is crucial to verify that the method is successful

in controlling chaos in a 3-dimensional domain, even when the external stim-

ulus is applied only on one surface. This latter restriction follows from the

fact that, in most practical situations it may not be possible (or desirable)

to penetrate the medium physically in order to apply control signals inside

the bulk. We confirmed that our method works in thin slices of excitable

media of size L × L × Lz (Lz ≪ L), when the array of control points is

placed on one of the L × L surfaces (Fig. 5.5). Even in cases where a single

control-stimulated wave across the medium is unable to terminate all activ-

ity, we notice that it results in driving the chaotic activity further towards

the boundaries and away from the origin of control stimulation. Thus, us-

ing multiple waves through application of control signals at intervals which

are larger than the recovery period of the medium, the chaos in the bulk of

3-dimensional systems is successfully terminated.
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Figure 5.4: Pseudo-gray-scale plots of the transmembrane potential V for the

two-dimensional LR1 model (L = 400) showing the elimination of all chaotic

activity within 300 ms after initiation of control. A single wave of control

stimulus (I0 = 75 µA/cm2, τ = 3 ms) begins at the top left corner (T = 0)

and travels across the domain with velocity v = c. This results in stimulating

the region around the control points (spaced apart by d = 10) in a sequential

manner, creating a stimulated wavefront seen as an arc consisting of excited

points in the panels above.
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Figure 5.5: The effect of applying control on a single surface of a 3-

dimensional domain using the PV model (L = 128 and Lz = 8). Two waves

of control signal (I0 = 10, τ = 16.5 ms, v = c) are applied 165 ms apart re-

sulting in termination of spatiotemporal chaos. The interval between control

points, d → 0. The panels show isosurface plots at T=178 ms (top left), 242

ms (top right), 308 ms (bottom left) and 341 ms (bottom right).
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Figure 5.6: Pseudo-gray-scale plots of the transmembrane potential V for

the two-dimensional PV model (L = 256) with a conduction inhomogeneity

(of size 110×110, indicated by the broken lines), showing the time evolution

of the system from a chaotic state at T = 0 ms in the absence (top) and

presence (bottom) of control. Inside this region, Dinhomogen = 0.01D, D

being the diffusion constant of the rest of the medium. A single pulse of

control stimulus (I0 = 8, τ = 17 ms, v = c) is applied at T = 0 ms over an

array of control points spaced apart by d = 8, resulting in termination of all

activity by T = 350 ms.
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We have checked that small distortions in the regular array of control

points does not result in the failure of our method. Similarly, starting the

control signal at different points of origin (and indeed, using a planar wave

rather than a curved wave) does not affect the efficacy of the scheme. Further,

our method is robust in the presence of conduction inhomogeneities (such as

inexcitable obstacles) that tend to destabilise local control schemes. Fig. 5.6

shows the occurrence of spatiotemporal chaos in a medium containing a large

region of slow conduction, i.e., an extremely small value of D compared to the

rest of the medium, which is successfully controlled by the proposed scheme.

5.5 Discussion

In this chapter, we have presented a novel control scheme involving external

stimulation applied over an array of points, that is successful in terminating

spatiotemporal chaos in both simplified as well as realistic models of biolog-

ical excitable media. The control signal amplitude is varied both spatially

and temporally, such that it appears as a propagating wave along the array

of control points. This results in a stimulated wavefront in the excitable

medium, that, depending on the propagation velocity of the control signal

and the space interval between control points, eliminates all existing activity.

Our method requires very low-amplitude control currents applied for short

durations at a finite number of points, each point being stimulated once (or

at most, twice) in most situations. Further, it is successful in terminating

chaos in the bulk of a three-dimensional medium even when applied only on

one surface. The use of significantly lower number of control points than
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that necessary for global control methods, makes the proposed scheme more

suitable for practical implementation.



Chapter 6

Activity enhanced response to

sub-threshold stimulus

What’s big or small

About the blazing fire

That burns all.

− Subramania Bharathi

The excitation threshold is the key parameter governing the dynamics of

spatial patterns in excitable systems. A stimulus that drives the system above

this excitation threshold leads to a transition from quiescent to an active

state, thereby generating an action potential (AP). Such a signal is called a

supra-threshold signal. On the other hand, if an external signal is not able to

initiate an action potential in a medium or cell at rest then the external signal

is called sub-threshold. The demonstration of stochastic resonance (SR) [125]

and coherence resonance (CR) [126] in excitable media suggest that weak

sub-threshold signals could have a significant effect on the dynamics of these

99
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media [127, 128]. Further, SR-like response resulting from chaotic dynamics

in simple systems [129, 130] raises the intriguing possibility that spatially

heterogeneous activity may enhance the response of an excitable medium to

sub-threshold signals.

In this chapter we show that these sub-threshold perturbations produce

surprising changes in the dynamics of spatiotemporally heterogeneous activ-

ity in the medium. Stimuli that cannot initiate action potentials in a resting

medium can significantly alter the time-evolution of spatially heterogeneous

activity by modifying the recovery dynamics of the medium. The applica-

tion of a sub-threshold stimulus leads to a significant increase of the action

potential duration and reduction in waveback velocity. This in turn causes

a differential slowing down of recovery of the cells in the medium, leading to

the development of spatial coherence, terminating all activity in the medium

including spatiotemporal chaos. The results described here not only suggest

alternate low-amplitude mechanism of chaos control in excitable medium,

but can also potentially explain how signals that are extremely attenuated

during passage through intervening biological medium, can still affect the

excitation dynamics of organs such as the heart.

In section 6.1 we describe the nature of sub-threshold stimuli and briefly

discuss their key effects on the dynamics of an excitable medium. In sec-

tion 6.2 we give details of the models and the methods used in our study, while

section 6.3 describes the results of applying sub-threshold stimulus on spa-

tially heterogeneous activity. We also outline here the theoretical background

of the control method and analytically derive model-independent conditions

for successful elimination of all activity using a sub-threshold stimulus. We



CHAPTER 6. ACTIVITY ENHANCED RESPONSE TO SUB-THRESHOLD STIMULUS 101

conclude with a brief discussion on the generality of our results and their

biological relevance.

6.1 Introducing sub-threshold stimulation

Prevailing methods of spatiotemporal chaos control in excitable systems are

almost exclusively dependent on using supra-threshold signals, either through

a local high-frequency source [59, 78] or using a spatially extended array [51,

94, 116]. Controlling spatial patterns with sub-threshold stimulation would

not only utilize new physical principles, but also avoid many of the drawbacks

in previously proposed schemes. Throughout this chapter sub-threshold refers

to stimuli that are insufficient to drive the resting tissue above the excitation

threshold. In the context of cardiac control, occasionally threshold may also

be used to refer to the minimum stimulus amplitude required for successful

defibrillation. However, if such a stimulus causes an AP in resting tissue (i.e.,

the medium crosses the excitation threshold), we refer to it as supra-threshold

in this chapter.

We show here that sub-threshold stimulation, while having no significant

effect on a quiescent medium, can induce a remarkable degree of coherence

when applied on a system with spatially heterogeneous activity. Synchro-

nizing the state of activation of all excited regions ensures that they return

to rest almost simultaneously, in the process completely terminating activity

in the medium. Thus, control of spatially extended chaos is achieved effi-

ciently using a very low-amplitude signal. We explain the mechanism of this

enhanced coherence in terms of the role played by sub-threshold stimulus in
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increasing the recovery period of the medium. It significantly reduces the

propagation velocity of the recovery front, thereby increasing the extent of

the inexcitable region in the medium. We present a semi-analytical deriva-

tion of the relation between strength and duration of the globally applied

sub-threshold signal necessary for complete elimination of spatially hetero-

geneous activity in excitable media.

6.2 Models and methods

A generic model for describing the spatiotemporal dynamics of several bio-

logical excitable systems has the form:

∂V

∂t
=

−Iion(V, gi) + I(t)

Cm

+ D∇2V, (6.1)

where V (mV) is the potential difference across a cellular membrane, Cm(=

1µFcm−2) is the transmembrane capacitance, D is the diffusion constant

( = 0.001cm2s−1 for the results reported in the chapter), Iion(µAcm−2) is

the total current density through ion channels on the cellular membrane,

and gi describes the dynamics of gating variables of different ion channels.

The spatially uniform external signal, applied at all points of the simulation

domain, is represented by the time-dependent current density, I(µAcm−2).

The specific functional form for Iion varies for different biological systems.

For the results reported here, we have used the Luo-Rudy I (LR1) model

that describes the ionic currents in a ventricular cell [25]. For all our sim-

ulations, the maximum K+ channel conductance GK has been increased to

0.705 mS cm−2 to reduce the duration of the action potential (APD) [70].
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To study the effect of sub-threshold stimulus on a stable spiral and on spa-

tiotemporal chaos, we have used the maximum Ca2+ channel conductance

Gsi = 0.04 and 0.05 mS cm−2, respectively. We have explicitly verified the

model-independence of our results by observing similar effects in other re-

alistic channel-based descriptions of the ionic current, such as the TNNP

model [86, 131].

We consider in turn the response of a single cell, a 1-dimensional cable

and a 2-dimensional sheet of excitable units to a sub-threshold current I. The

spatially extended systems are discretized on a grid of size L (for 1-D) and

L × L (for 2-D). For most results reported here L = 400, although we have

used L up to 1200. The space step used for all simulations is δx = 0.0225

cm, while the time-step δt = 0.05 ms (for 1-D) or 0.01 ms (for 2-D). The

equations are solved using a forward Euler scheme with a standard 3-point

(for 1-D) or 5-point (for 2-D) stencil for the Laplacian describing the spatial

coupling between the units. No-flux boundary conditions are implemented at

the edges. The external current is applied globally, i.e., I(t) = I in Eq. (6.1)

at all points in the system for the duration of stimulation, τ . A stimulus

{I, τ} is sub-threshold if it does not generate an action potential when ap-

plied on a quiescent medium. The initial spiral wave state is obtained by

generating a broken wavefront which then dynamically evolves into a curved

rotating wavefront. In the LR1 model simulations, an intact wavefront is

allowed to travel through the medium before creating the broken wavefront

in order to reduce the recovery period 1 so as to enable a spiral wave with at

1This is because of the restitution property of the medium, by which recovery is a

function of the time interval between two successive propagating waves
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least one complete turn to exist within the simulation domain. Over a large

range of parameter values, this spiral wave is a persistent dynamical state

of the excitable medium. Under certain conditions (e.g., for some parame-

ter values or external perturbations), the spiral wave can become unstable,

eventually breaking up into multiple wavelets leading to a spatiotemporally

chaotic state. An alternative method for obtaining the spatiotemporally

chaotic state is to randomly apply supra-threshold stimuli at different points

in the medium over a small duration. In biological systems, spiral waves

and chaos often appear spontaneously as a result of existing heterogeneities

or stochastic fluctuations. In the cardiac medium, such dynamical phenom-

ena can be initiated experimentally by applying cross-field stimulation [15].

The spatially extended chaotic state is a long-lived transient whose lifetime

increases exponentially with the system size [51]. For biologically realistic

simulation domain sizes, such as those used in this chapter, the chaotic state

persists longer than any reasonable duration of simulation.

6.3 Results

Fig. 6.1 shows that when sub-threshold stimulation is applied to an excitable

medium with spatially heterogeneous activity, viz., either a single spiral wave

(a-c) or spatiotemporal chaos (d-f), there is a striking change in the subse-

quent dynamics of the system. Within a short duration (comparable to the

APD) there is complete suppression of all activity in the medium, although

in absence of this intervention, the existing dynamical state would continue

to persist for an extremely long time. This result is surprising as the weak
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sub-threshold signal appears to be incapable of significantly altering the dy-

namics of an excitable system. For example, if we had applied sub-threshold

stimulation on a large domain with a single wave propagating across it, there

would have been no significant change in the time-evolution of the system

with the wave continuing to move across the medium. This differentiates sub-

threshold from other weak (i.e., low-amplitude) but supra-threshold stimuli

which, on being applied globally to the above system, would have excited

almost the entire medium resulting in eventual cessation of all activity.

To understand this apparent paradox, we first note that the sub-threshold

stimulation rapidly decreases the number of cells that can be excited by

existing activity in the medium (Fig. 6.2,a). Indeed, global suppression of

activity results when, by the end of the stimulation, the number of cells

susceptible to excitation is insufficient to sustain the activity. This decrease

in their number is because cells tend to remain in the recovering state for a

longer period in the presence of a sub-threshold stimulus. We can see this

clearly in the response of a single excited cell to a subsequent sub-threshold

current I applied for a fixed duration τ (Fig. 6.2,b).

Increasing I significantly alters the recovery period resulting in a change

in the APD. The time t′ (measured from the initiation of the AP) at which

the sub-threshold stimulation begins, also affects the response of the cell

to the signal. These results clearly indicate that the dominant effect of a

sub-threshold stimulus is to increase the time period that a cell spends in

recovering from prior excitation.

In a spatially extended system, this enhanced recovery period of the cells

results in altering the propagation characteristics of the traveling waves.
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T = 0 ms T = 60 ms T = 110 ms

T = 0 ms T = 60 ms T = 150 ms
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Figure 6.1: Pseudocolor plots of transmembrane potential V for the two-

dimensional LR1 model (L = 400) showing the elimination of all activity on

applying a sub-threshold current. The current I is switched on at T = 0

for a duration τ = 60 ms on (a-c) a single spiral, with I =1.6µA cm−2, and

(d-f) a spatiotemporally chaotic state, with I =1.8µA cm−2. By T = 150 ms,

excitation has been effectively terminated throughout the simulation domain.
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Figure 6.2: (a) The fraction of cells that can be potentially excited (i.e.,

with V ≤ −60mV ) decreases with time during stimulation by sub-threshold

current I in a two-dimensional system with spatiotemporal chaos. The total

duration of the external signal is τ = Ton−Toff = 38 ms. Results shown cor-

respond to failed (squares) and successful termination (diamonds) of activity

in the medium. (b) Effect of sub-threshold current on APD of a single cell.

The current I is varied keeping the duration τ fixed (= 38 ms). In all cases,

the APD is shown as a function of the time interval t′ between the initiation

of AP and Ton. The inset shows the corresponding effect on the AP profile.
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Fig. 6.3 (a) shows a spiral wave propagating in a two-dimensional medium,

where each turn of the wave is a region of excited cells, with the succes-

sive turns separated by recovering regions. As the state of the cells evolve

with time, it is manifested in space as movement of excitation and recovery

fronts. Their propagation speeds are referred to as wavefront (cf ) and wave-

back (cb) velocities, respectively. In the absence of any external stimulation,

cf ≃ cb, ensuring that the width of the excited region remains approximately

constant as the waves travel through the medium. However, on applying

a sub-threshold stimulus, the waveback velocity becomes significantly lower

than that of the wavefront which is almost unchanged. Fig. 6.3 (b) shows

that, once stimulation begins, cb quickly decreases to a minimum value de-

pendent on I. It then gradually rises to eventually become equal to cf again.

For a large sub-threshold stimulus I, the waveback velocity rapidly falls to

its lowest value and changes very slowly thereafter. Under these conditions,

we can ignore the time-variation of cb for small τ and use the time-averaged

value c̃b(I). Increasing I leads to an increased difference in the velocities of

the excitation and recovery fronts, cf − c̃b(I) (Fig. 6.3, c). For short stimulus

durations, this difference is almost independent of τ . A significantly lower

waveback velocity results in the inexcitable region between the excitation

and recovery fronts of a wave becoming extended through the course of the

stimulation (compare the profiles of APs in a 1-D cable shown in Fig. 6.4).

This increases the overall area of the medium that cannot be excited, thereby

making it progressively unlikely for the system to sustain recurrent activity.

This is explicitly shown for a 1-dimensional cable in Fig. 6.4. When
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Figure 6.3: (a) Pseudocolor plot of a spiral wave indicating the wavelength λ,

the wavefront velocity cf and the instantaneous waveback velocity cb(= cf ) in

the absence of external stimulation. (b) Time-evolution of cb during external

stimulation of duration τ = 100 ms using two different I corresponding to

failed (squares) and successful termination(circles) of activity in the medium.

During the course of stimulation, cf is unchanged. (c) The average waveback

velocity c̃b (broken lines) reduces with I in contrast to cf (solid lines)
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two successive waves propagate along the cable, globally applying the sub-

threshold stimulus reduces the excitable gap between the recovery front of

the leading wave (whose velocity cb has decreased) and the excitation front

of the following wave (whose velocity cf is unchanged). For a high sub-

threshold I applied for a long enough duration, the waveback of the first

wave slows down sufficiently to collide with the succeeding wavefront. This

collision results in termination of the excitation front for the second wave

which subsequently disappears from the medium. The above physical picture

is fundamentally unchanged for a rotating spiral wave with multiple turns as

shown in Fig. 6.3 (a). We now use this to propose a simple semi-analytical

theory for the mechanism by which the sub-threshold stimulus suppresses

spatially heterogeneous activity.

Theory of sub-threshold suppression

In the absence of any external stimulus, the width of the excited region of

a wave lying between its excitation and recovery fronts is l = cfτr, where

τr is the period for which the active cells remain excited. This time period

is operationally measured as the duration for which the transmembrane po-

tential of a cell (V ) remains above its excitation threshold. On applying

a sub-threshold external current I, cf is almost unchanged but the resul-

tant waveback velocity, cb(I, t), which varies with time over the duration of

the stimulus τ , is seen to decrease with increasing I. If I is large or τ is

small, the time-variation of cb can be neglected and it is reasonably well-

approximated by the time-independent average value c̃b(I) over the stimulus

duration. Thus, the width of the excited region of the wave increases to
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Figure 6.4: Spatiotemporal evolution of two successive waves propagating

along a 1-dimensional cable of excitable cells when a sub-threshold stimulus

is applied over the time interval [Ton, Toff ]. The propagation of the wave W2

is blocked by the recovery front of W1 due to reduction of its velocity, cb.

The wavefront velocities cf of both waves are almost unchanged. The spatial

interval between the two successive waves at a time instant is indicated by

λ.
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l(I) = l + [cf − c̃b(I)]τ . If λ is the distance between excitation fronts of two

successive waves in the medium, then collision between the recovery front of

the leading wave and the excitation front of the following wave takes place

when l(I) ≥ λ. Thus, for a sub-threshold stimulus I, the shortest stimulus

duration τmin necessary to eliminate a source of recurrent activity such as a

spiral wave is,

τmin =
λ − cfτr

cf − c̃b(I)
. (6.2)

Eq. (6.2) provides us with an analytical relation between the stimulus mag-

nitude and its minimum duration necessary for terminating activity in the

medium in terms of measurable dynamical characteristics of the system.

Fig. 6.5 shows that this theoretical strength-duration curve for the external

stimulation necessary to terminate activity matches very well with the em-

pirical data obtained from numerical simulations for both single spiral wave

as well as spatiotemporal chaos. In general, the weaker the sub-threshold

current, the longer it has to be applied in order to alter the dynamical be-

havior of the system. However, there is a lower bound for I below which

there is no discernible effect of the sub-threshold stimulation regardless of its

duration. Note that, for values of I just above this lower bound, the required

τmin is extremely long and the temporal variation of cb over the duration

of the stimulation can no longer be neglected. By explicitly considering the

time-dependence of cb in Eq. (6.2), one can theoretically estimate the value

of I where the strength-duration curve becomes independent of τ .
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6.4 Discussion

The mechanism of the sub-threshold response of excitable media proposed

here depends only on the recovery dynamics of the system. In detailed ionic

models of biological excitable cells, this dependence is manifested as a de-

crease in the ion channel conductance responsible for the slow, outward K+

current during the sub-threshold stimulation 2. Thus, simplistic models of

excitable media which do not incorporate the effect of external current stim-

ulation on the recovery dynamics are inadequate to reproduce this enhanced

sub-threshold response reported here. Our results provide a framework for

explaining earlier experimental observations that, in the human heart, sub-

threshold stimulation can prevent subsequent activation [133].

The results reported here may have potential significance for understand-

ing the spatiotemporal dynamics of excitable media in several practical situa-

tions such as, during clinical treatment of life-threatening arrhythmias. Cur-

rent methods are primarily aimed towards synchronizing the activity of all

regions by using supra-threshold stimuli having relatively larger amplitudes 3.

2The decrease in waveback velocity compared to the wavefront velocity under certain

conditions has been associated with the existence of a steep slope in the APD restitution

curve for the excitable medium, which relates the APD to the time-interval between the

recovery and subsequent re-excitation of a local region [132].
3Proposed methods for controlling spatiotemporal chaos in simple models of excitable

media have occasionally applied stimuli to an aggregated recovery variable [44] which

has no direct correspondence in biologically realistic models such as LRI. However, such

methods rely on driving the medium to a bistable regime which requires the application

of a supra-threshold external current in a realistic model of biological excitable media.

Hence, such control schemes are also supra-threshold as per the definition used here.
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Figure 6.5: Strength-duration curves for a two-dimensional medium with the

external current applied at all points of a quiescent medium (triangles) or a

medium with existing excitation activity, either a single spiral (circles) or spa-

tiotemporal chaos (diamond). The theoretical prediction given in Eq. (6.2) is

also shown (square). Each (τ ,I) point is averaged over 10 initial conditions.
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However, in such an approach, regions that have been rendered temporarily

inexcitable due to prior activity remain unaffected. Thus, these regions can

subsequently be re-activated by any remaining excitation after the stimulus

is removed, leading to failure of control. By contrast, a sub-threshold stim-

ulus slows the recovery of excited regions, thereby reducing the pool of cells

available for excitation by existing activity in the medium. This suggests

an alternative mechanism for the efficient termination of spatially extended

chaos in excitable systems. It may provide a key towards understanding how

spatially irregular activity in biological systems (e.g., fibrillation) are signifi-

cantly affected by signals that have been strongly attenuated during passage

through the intervening medium [134, 135].



Chapter 7

Conclusion

He that will not apply New Remedies must expect

New Evils, for Time is the greatest Innovator.

− Francis Bacon

While the mathematical study of pattern formation in excitable media

has tended to focus on homogeneous systems, we observe that many ex-

citable systems occurring in nature are inhomogeneous. Heterogeneities in

an excitable medium can be of several different types, such as, inexcitable

obstacles, regions of slow conduction comprising partially excitable units,

gradients in the coupling or in excitability, etc. Biological excitable organs

like the heart are especially likely to develop various kinds of heterogeneities

with time as a result of aging, often with serious implications for the normal

functioning of the entire system. In this thesis, we have performed compu-

tational and theoretical studies using a number of mathematical models for

excitation dynamics in order to investigate the effects of different kinds of

heterogeneities on wave propagation and pattern formation in active media.

116



CHAPTER 7. CONCLUSION 117

As discussed earlier in the thesis, heterogeneities can significantly affect the

spatiotemporal evolution of excitation patterns giving rise to a diverse range

of phenomena: from anomalous drift of spiral waves to the pinning of vor-

tices and obstacle-induced transitions from pinned reentry to spatiotemporal

chaos. The results of our study have a special relevance for the dynamics of

excitation in cardiac tissue, where the different types of patterns we observe

have been correlated with the occurrence of several forms of arrhythmia.

In view of this connection, we have also explored methods to control these

patterns in heterogeneous excitable media using low-amplitude stimuli. The

inhomogeneous nature of real excitable systems need to be especially taken

into account when designing such control methods, as heterogeneities can

have a significant impact on the success of these techniques. For instance,

while the generation of a series of waves by high-frequency periodic stimula-

tion of localized region has been previously proposed as an efficient method

for terminating chaos in homogeneous medium, it is not always likely to be

successful in the presence of inexcitable obstacles. Such heterogeneities can

result in wavebreaks on the excitation fronts generated by the control stimu-

lation, thereby creating new sources of incoherent activity in a medium. The

possibility of failure of control in the presence of heterogeneities underlines

the need to consider the effect of different types of inhomogeneities on wave

propagation dynamics when devising techniques for terminating chaos in real

excitable media.

In the following section, the important results and conclusions reported

in the thesis are summarized. We conclude with a brief discussion of the

possible future extensions and implications of our results.
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7.1 Summary of Main Results

Anomalous drift of spiral waves

In Chapter 2 of the thesis, we investigate the effect of different types of het-

erogeneity gradients on the drift dynamics of spiral waves. Drift in excitable

media has special relevance in connection with the heart, as it has been

suggested to be linked with the genesis of rapidly rotating “mother rotors”.

These high-frequency sources of excitation are considered to be the progen-

itors of chaotic activity during instances of ventricular fibrillation. In this

thesis we describe the phenomenon of drift that results in the translational

motion of spirals towards regions of faster rotation, increasing the likelihood

of breakup away from the spiral core. This is a novel and important obser-

vation, as all previous studies of excitable media had reported drift towards

regions where the spiral rotation is slower. The anomalous drift reported by

us occurs over a range of parameters for gradients in either intercellular cou-

pling or in excitability. The description of this kind of drift to regions with

faster spiral rotation periods or having higher excitability, hints at a possible

mechanism for the origin of mother rotors. Further, we have discussed the

possibility of a connection between the existence of anomalous drift in two-

dimensional media and scroll ring expansion in three-dimensional media. As

the observation of the former for a given parameter regime in 2-D appears

to suggest the existence of the latter in 3-D and vice versa, this provides

a method for identifying the appropriate conditions in different systems for

which anomalous drift may be possible.
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Removing pinned spiral waves by pacing

Spiral waves of excitation are often observed to attach themselves to in-

excitable obstacles in a heterogeneous active medium. In the heart, such

pinned rotating waves have been associated with tachycardia, a class of ar-

rhythmia characterized by abnormally rapid activity. While freely rotating

spiral waves can, in principle, be terminated by forcing them to drift towards

the inexcitable system boundaries (where such waves are absorbed) through

the application of higher frequency periodic stimuli (pacing), these methods

are unsuccessful when the spiral is pinned to an obstacle and cannot be dis-

lodged through pacing. Indeed, a classical result of Wiener and Rosenblueth

suggests that pacing will always fail in terminating such pinned reentrant

excitation sources. Given the high success rate of pacing in terminating

tachycardia in the heart, which often possess significant numbers of inex-

citable obstacles, this result appears to be paradoxical. In Chapter 3 of the

thesis, we show that there are specific conditions under which a spiral wave

pinned to an inexcitable obstacle can be removed by waves from a localised

source of high frequency excitation. In particular, unpinning by a pacing

source that uses a frequency higher than that of the spiral wave is possible

if the size of the obstacle is smaller than that of the spiral core. We also

report an analytically derived relation between the size of the obstacle and

the maximum pacing period that can result in successful unpinning. Our re-

sults suggest that lowering the excitability of the medium (possibly by using

pharmaceutical agents) can make it easier to remove pinned spirals through

pacing, a phenomenon that has been recently observed in experiments with

monolayers of cultured myocytes.
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Obstacle-induced breakup of scroll waves

Inexcitable obstacles, such as scar tissue resulting from myocardial infarc-

tion, can occur deep inside cardiac tissue and hence may not be observed

on imaging the epicardial surface. Nevertheless, they can play a significant

role in the evolution of reentrant waves. As such an obstacle does not span

the entire thickness of the heart wall, a scroll wave that is adjacent to the

obstacle will be only partially attached to it, causing the scroll to deform

as a result of the differential periods of rotation in different sections of the

wave. In Chapter 4 we explore the possible eventual consequences of the re-

sulting winding of the wave around the obstacle, as a function of the model

parameters determining excitability of the medium and the dimensions of the

obstacle. Previous studies of wave breakup resulting in spatiotemporal chaos

in three-dimensional systems have typically focused on the deformation dy-

namics of the scroll filament. Here we show an alternative mechanism of scroll

breakup where the filament does not directly take part, with the principal

events occurring far from the existing singularities. The geometry considered

prevents the original filament from breaking while at the same time promot-

ing a break on the wavefront at an edge of the obstacle where a transition

from a quasi 2-dimensional to fully 3-dimensional propagation occurs with

an associated change in the curvature of the front. As the increased convex

curvature of the wave, which develops as it crosses the obstacle edge, reduces

the propagation speed, the possibility of its waveback interacting with the

front of the following wave increases. This can result in partial conduction

block at the edge of the obstacle, which is further enhanced by fluctuations

in the time interval between successive waves as a result of dispersion and
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restitution properties of the medium as well as Doppler effects resulting from

meander of the scroll filament. The break subsequently evolves into fully

developed spatiotemporal chaos. We have explicitly verified that the scroll

wave is stable in the absence of the obstacle and also when the obstacle

spans the entire thickness of the medium (effectively approximating a two-

dimensional system). Therefore, the breakup mechanism described in this

chapter is an exclusively three-dimensional phenomenon that points out the

possibly critical role that heterogeneities play in the evolution of arrhythmia,

and specifically, the onset of fibrillation.

Terminating spatiotemporal chaos using an array of con-

trol points

In the preceding chapter, we have seen how spatiotemporal chaos in ex-

citable media arises through interaction between waves and heterogeneities.

In Chapter 5 of the thesis, we explore how such chaos can be eliminated

by using low-amplitude stimuli. In the context of the heart, the spatially

incoherent states that result from the chaotic dynamics have been impli-

cated in several life-threatening arrhythmia such as Ventricular Fibrillation.

Thus, controlling chaos using small external perturbations is a problem of

great practical interest and has been a challenge in view of the heterogeneous

nature of cardiac muscles. In this chapter we have proposed a spatially ex-

tended but non-global control method involving an array of control points.

The points are stimulated in a specific sequence so as to simulate a wave of

control moving across the medium with a pre-defined velocity. The applied

signal at each site stimulates all potentially excitable cells in the local region
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so that as the control wave travels through the medium there is no excitable

region left behind its wake. When a part of the induced wave collides with

a chaotic fragment, they mutually annihilate each other. However, the stim-

ulation of points further along the medium regenerates the complete control

wave once again, so that it can continue to successfully engage and elimi-

nate all chaotic activity until the boundary of the medium is reached. The

process results in complete elimination of all chaotic activity after a single

application of the control signal. The efficiency of the method is underlined

by the fact that the magnitude of applied current used is comparable to that

of the ionic currents in cardiac cells. We have explicitly verified that the

presence of large heterogeneities do not affect the efficacy of the proposed

technique, which is an important criterion for implementing control methods

in real biological systems.

Response of spatially extended incoherent activity to

sub-threshold stimuli

Almost all methods of controlling spatiotemporal chaos in excitable media

that are available in the literature requires using stimuli that are supra-

threshold, i.e., which can elicit action potentials in resting medium. In Chap-

ter 6 of the thesis, we describe a novel technique for suppressing incoherent

activity that involves the application of sub-threshold signals. The physical

principle involved in this control method differs from the usual paradigm

of chaos suppression in that, instead of trying to activate all potentially

excitable regions by applying a sufficiently strong stimulus, our method pre-

vents already excited regions from becoming excitable as long as the chaotic
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activity persists in the medium. Although the signals that we use are insuffi-

cient to excite resting medium, they do prolong the recovery period resulting

in a significant decrease in the waveback velocity (keeping the wavefront

velocity unchanged). In a medium undergoing spatiotemporal chaos, this re-

sults in enhanced interaction between the multiple wavefronts and wavebacks

existing in the different patches of activity leading to rapid termination of

all excitation. The sub-threshold nature of the stimulus is significant, as us-

ing a supra-threshold but otherwise low-amplitude signal may result in very

different outcome, for example, in an extended excitable medium with a sin-

gle propagating wave. Applying the sub-threshold signal leaves the situation

unchanged when the signal is withdrawn; however, applying a low-amplitude

but suprathreshold signal can result in cessation of the wave. Thus, the ef-

fect that these two types of signals can have on activity in a medium may be

quite different. Our proposed method, in addition to suggesting a different

physical mechanism for chaos control, may also provide a key to understand

how spatially irregular activity like fibrillation are significantly affected by

signals that are strongly attenuated during their passage through biological

tissue.

7.2 Outlook

In this thesis we have used both simple phenomenological models of generic

excitable media as well as realistic models for ventricular tissue involving

detailed descriptions of ionic currents for cardiac myocytes, to explore the role

of heterogeneities in dynamical pattern formation. We have also proposed
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multiple methods for controlling spatiotemporal activity in such systems.

While our studies have helped in establishing several new insights on the

excitation dynamics and its control in heterogeneous active media that are

model-independent, it is also possible to take these results further in several

directions. For example, from a clinical perspective it is important to consider

how some of our observations extend to the case where the complicated

geometry of the hearts of different animals are incorporated in the spatially

extended models. Conduction in heart tissue is anisotropic with the direction

of fast conduction along the principal direction of muscle fibre orientation;

in addition, the fibre orientation itself rotates along the thickness of the

heart wall as one progresses from the epi- to the endo-cardial surface. Such

complexity can result in effects such as twist in the filament of the scroll wave,

that can have significant repercussions on the propagation of excitation fronts

along the heart. Incorporating these features into our models may lead to

additional insights on the genesis and evolution of arrhythmias.

Our results may have immediate consequences for current methods of

treating several types of cardiac arrhythmias. For example, the observation

in Chapter 3 that removing reentrant excitation that is pinned to an obstacle

by rapid pacing is critically dependent on the size of the inexcitable obstacle

should be considered when efficient strategies for pacing termination of ven-

tricular tachycardia by implantable devices are being designed. The discovery

of anomalous drift in cardiac tissue models reported in Chapter 2 opens up

the possibility that in the future one can connect measurable characteristics

of a heart that governs its excitation properties to the likelihood that it will

be subjected to instances of mother-rotor fibrillation. The possibility of using
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these results as diagnostic tools for detecting patients at serious risk may be

worth exploring. In addition, the interaction between anomalous drift and

reentrant activity occurring around an obstacle may give rise to new phe-

nomena in both two and three-dimensional media. An intriguing possibility

is that obstacle-induced breakup of scroll waves reported in Chapter 4 may

be enhanced in the presence of anomalous drift. It will be also of interest to

explore the effect of rapid pacing on such partially pinned scroll waves.

The control methods proposed in Chapters 5 and 6 can, in principle, be

developed to serve as efficient and safer methods for treating cardiac fib-

rillation. At present, both methods require applying low-amplitude control

signals over a spatially extended region. Given that the current technol-

ogy of implantable devices for treating arrhythmia allows applying electrical

stimuli only at a few sites, the next step would be to explore the possibility

of reducing the number of control points in our proposed methods. Addi-

tional complexities of the real heart can also be incorporated, such as the

motion of the heart surface during its mechanical action, to observe how

the control methods function in such circumstances. In view of the gradu-

ally increasing instances of cardiac arrhythmia related fatalities around the

world, it is necessary to explore such physics-inspired methods for devising

improved therapies that can terminate life-threatening dynamical disorders

in the heart.
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