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AbstratLiquid rystalline states of matter provide a useful testing ground for statisti-al mehanial theories of ordered states, sine a variety of ordered phases an beaessed in experiments and omputer simulations. They also onstitute simplemodel systems for studying the interplay between internal struture and an exter-nally imposed �ow, thus illuminating rheologial studies of a large lass of omplex�uids.In this thesis, we study some problems in the statis and dynamis of nematiliquid rystals. Nematis, typially formed in solution by rod-like moleules withan aspet ratio whih deviates su�iently from unity, exhibit orientational order inthe absene of translational order. Suh orientational order is quanti�ed througha traeless, symmetri tensor Qαβ. The free energy whih quanti�es the ost ofdeformations is the Ginzburg-Landau-de Gennes (GLdG) free energy funtional,obtained via a gradient expansion in Q.This thesis studies two broad lasses of problems using the GLdG approah.The �rst lass deals with the stati properties of the isotropi-nemati interfae.The problem of interfae struture for the nemati is partiularly interesting sineit provides a simple illustration of how the struture of an interfae an di�ersubstantially from struture in the bulk.The seond lass of problems involves the study of the dynamis of Qαβ for anemati �uid in an external shear �ow. Our study of the dynamis of Qαβ impatsexperiments on the �ow behaviour of �uids with orientational order, a prototypi-al model for the understanding of omplex �uid rheology, in partiular of haosassoiated with unsteady rheologial response or �rheohaos�. Suh rheohaos is aonsequene of onstitutive and not onvetive non-linearities, originating in theoupling of the �ow to strutural or orientational variables desribing the loalstate of the �uidA powerful approah to understanding omplex spatio-temporal dynamis isbased on the study of oupled map latties, a numerial sheme in whih mapsplaed on the sites of a lattie evolve both via loal dynamis as well as throughouplings to neighbouring sites. However, the utility of this methodology in aspei� ontext is often severely limited by the availability of loal maps able toomprehensively desribe the spatially uniform ase. In this thesis, we disuss this6



requirement in the ontext of a model for rheohaos, proposing a loal map as wellas a oupled map desription of the regular and haoti states obtained in shearednematis.The thesis is organized as follows. In the �rst hapter, the Introdution, webrie�y review the GLdG order parameter theory of the isotropi-nemati transi-tion. We survey the literature whih deals with the isotropi-nemati interfaeand brie�y desribe methodologies for studying the rheology of omplex �uids, inpartiular nematogeni �uids. The results presented in the hapters whih followare summarized in more detail below, hapterwise. Finally, we end this thesis witha onlusion and point to further work.Isotropi-Nemati interfae with Planar AnhoringIn the seond hapter of this thesis we revisit the lassi problem of the struture ofthe isotropi-nemati interfae within Ginzburg-Landau-de Gennes theory, re�ningprevious analyti treatments of biaxiality at the interfae. We present resultsfor the uniaxial and biaxial pro�les, speialized to the ase of planar anhoring,showing how a term in the Euler-Lagrange equations negleted in previous workontributes substantially to determining the struture of the interfae. We useresults from a fast and highly aurate spetral olloation sheme for the solutionof the Landau-Ginzburg-de Gennes equations to test these analyti results. Inomparison to earlier work, we obtain improved agreement with numeris for boththe uniaxial and biaxial pro�les, with our results being inreasingly aurate as κis redued. We also provide aurate asymptoti results for the deay of the S and
T order parameters deep into the nemati and isotropi phases.Isotropi-Nemati Interfae with an Oblique Anhoring ConditionIn the third hapter of this thesis, we study the ase where a general anhoringondition is imposed on the nemati side of the interfae, reproduing results ofprevious work in the limit in whih this anhoring ondition redues to the planaror homoeotropi ase. Our approah uses variational methods, based on physi-ally motivated and omputationally �exible variational pro�les for uniaxial andbiaxial order, as well as for the variation of the angle between the nemati axis7



and the oordinate normal to the interfae. Results from our analysis are om-pared to numerial results obtained from a diret numerial minimization of theGinzburg-Landau-de Gennes free energy. While spatial variations of the uniaxialand biaxial order parameters are approximately on�ned to the neighbourhoodof the interfae, nemati elastiity requires that the diretor orientation interpo-late smoothly between planar anhoring at the loation of the interfae and theimposed boundary ondition at in�nity. Our variational results are in lose agree-ment with numerial results as well as results from moleular simulations. Ourmethods aess the nontrivial struture of the biaxiality at the interfae inludingthe large tail towards the isotropi side and the hange in the sign of the biaxialorder parameter aross the interfae. This approah also aptures the inversion ofthe pro�le of biaxiality as the elasti oe�ient L2 rosses zero.Loal Map Desription of Nemati Liquid CrystalsIn hapter four of this thesis, we propose and study a loal map apable of desrib-ing the full variety of dynamial states, ranging from regular to haoti, obtainedwhen a nemati liquid rystal is subjeted to a steady shear �ow. The map isformulated in terms of a quaternion parametrization of rotations of the loal framedesribed by the axes of the nemati diretor, subdiretor and the joint normal tothese, with two additional salars desribing the strength of ordering. Our modelyields kayaking, wagging, tumbling, aligned and oexistene states, in agreementwith previous formulations based on oupled ordinary di�erential equations. Thephase diagram we obtain using our methods ontains all non-trivial dynamialstates obtained in previous work. Moreover, it losely resembles, even at thequantitative level, phase diagrams obtained in previous work whih used ordinarydi�erential equations formulated in ontinuous time. Our approah makes an ex-tension to the ase in whih the shear rate is periodially modulated, possible.Our work thus supplies a ruial ingredient required for the onstrution of ou-pled map lattie approahes to the spatio-temporal aspets of rheologial haos,a problem urrently at the boundaries of our understanding of the dynamis ofomplex �uids.
8



A Coupled Map Lattie Model of Rheologial Chaos.In hapter �ve of this thesis we devise and study a oupled map lattie model for anematogeni �uid in a passive shear �ow. We begin with a loal map whih ontainsall the states predited using a ODE-based methodology. We then ouple thesemaps together spatially, using standard tehniques, in one and two dimensions.Our results provide evidene for spatially and temporally uniform states, as well asstates whih are spatially uniform but temporally periodi. In a restrited regime ofparameter spae, we �nd evidene for spatio-temporally haoti behaviour, whihwe haraterize in detail. We obtain a phase diagram in the spae of the ouplingonstant for the spatial oupling of sites as well as a paramter whih enters ourmap, illustrating how the di�erent spatio-temporal phases are onneted to eahother. Previous work on rheohaos has been based on methodologies whih usepartial di�erential equations, whih are then solved (typially in one dimension) inthe passive advetion approximation. Our results here obtain the same states foundin approahes whih use PDE's, but allow a numerially tratable extension to twoand higher dimensions. Our results for this model indiate that behaviour in theone dimensional and two dimensional ases are qualitatively similar, although thelarger number of neighbours in two dimensions suppresses spatial irregularity. Wehave heked that our results are qualitatively similar for di�erent hoies of spatialoupling shemes. Our results inlude the omplete haraterization of phases andthe phase diagram as well as the demonstration of spatio-temporal intermittenyin this system. More entrally, our work shows that oupled map lattie models ofrheologial haos an provide aurate yet omputationally tratable desriptionsof the steady state behaviour of driven omplex �uids.List of publiations/preprints1 Regular and Chaoti States in a Loal Map desription of NematiLiquid Crystals,S.M. Kamil, Sudeshna Sinha and Gautam I. Menon, Physial Review E 78,011706(2008).(arXiv:0801.3876v2)2 Biaxiality at the Isotropi-Nemati Interfae with Planar Anhor-ing. 9
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Part IBiaxiality at the Isotropi-NematiInterfae
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1Introdution
1.1 Soft Matter SystemsSoft ondensed matter physis deals with systems in whih harateristi energysales for some lasses of strutural deformations are omparable to kBT . Suhsystems inlude olloids, polymer solutions, emulsions, foams, surfatant solutions,powders and a several other examples. The following materials familiar from dailylife qualify as soft ondensed matter: polymer gels (Jello), emulsions (mayonnaise),visoelasti detergent solutions (shampoo), fat rystal networks (margarine), on-entrated olloids (paint), polymer solutions (multigrade engine oil) and lyotropiliquid rystals (suh as the slime reated when a bar of soap is left in a pool ofwater).Liquid rystals onstitute an extensively studied example of soft matter. Theliquid-rystalline state of matter is a state intermediate between a rystalline solidand a liquid. This state of matter has been the subjet of muh researh sine itsdisovery by the Austrian botanist Reinitzer at the end of 19th entury. Apart fromits tehnologial importane in devies and displays, the study of liquid rystalshas stimulated onsiderable progress in the understanding of subjets as diverseas the rheologial behaviour of omplex �uids, the existene of novel defet states,the presene of unusual orders and many others. Nemati liquid rystals, typiallyformed in suspensions of rod-like moleules whose aspet ratio deviates su�ientlyfrom unity, exhibit orientational order in the absene of translational order[39, 25,78℄. An example of a moleule whih exhibits a liquid rystalline phase is shownin Fig. 1.1, together with its phase diagram. Liquid rystals an be divided into2



Chapter 1. Introdution
(a) (b) ()Figure 1.1: (a) Moleular struture of 5CB, (b) Benzene-hexa-n-alkanoate deriva-tives, () Banana-shaped moleules. Figure adapted fromhttp://dept.kent.edu/spie/liquidrystals/maintypes.html

(a) (b)Figure 1.2: (a) Isotropi and (b) nemati phases of anisotropi moleuleslyotropi and thermotropi, depending on the parameter whose variation drives thephase transition. In lyotropi systems, suh as a hard rod mixture, the variableis the onentration, whereas in the thermotropi ase, illustrated in Fig. 1.2, thetunable variable is the temperature.Liquid rystals are omposed of long, rod-like moleules. In the isotropi �uidphase, the orientation and positions of moleules are random. In the nemati phase,the positions of moleules are still random, but their long axes are oriented, onaverage, along a spei� diretion spei�ed by a unit vetor n alled the diretor.Nematis are often onveniently idealized as being omposed of moleules whih areup-down symmetri. Thus, a vetor order parameter appropriate for desribing,say, a spin system, is inappropriate here, sine only an axis is piked out in the3



Chapter 1. Introdutionnematially ordered state and not a diretion i.e. the state has the symmetry
n ≡ −n. Sine the order parameter must be ovariant under hanges of oordinatesystem used to desribe it, it must transform as a salar, vetor or tensor quantity.In Fig. 1.4 the distribution of the long axis of the moleule ν is shown. Thelong axis is on�ned within the ones AOB and A′OB′. The average distributionof the long axis is along the z axis, de�ning the diretor n̂. Sine the moleulehas up-down symmetry −n̂ is an equivalent hoie. Thus the order parameterdesribing this phase should be invariant with respet to n̂ going to −n̂.The z omponent of the long axis of the moleules ν as shown in Fig. 1.4(a),is equal to cos ϑ, where ϑ is the angle between the Z axis and the vetor ν. If theprojetion of the moleule on the XY plane makes an angle φ from the X axis, theother two omponents νx and νy are given by sinϑ cos φ and sinϑ sin φ respetively.The state of the alignment of the rods an be desribed by a distribution funtion
f(ϑ, φ) dΩ giving the probability of �nding an orientation of the rod within a smallsolid angle dΩ = sin ϑ dϑ dφ around the diretion (ϑ, φ)).The distribution of the projetion of the long axis of moleules on th XY planemay be asymmetri about the Z axis, as shown in Fig. 1.4(). In this ase onean assoiate one more vetor m̂ along the maximum of the distribution of theprojetions, shown by the line MM' in Fig. 1.4(). This phase is alled a biaxialphase. For a rod-like moleule whih is symmetri about its long axis, this is notan allowable distribution in the absene of any symmetry breaking. However, suha distribution funtion obtains in the presene of suitable external �elds suh asthe magneti �eld or a �ow �eld whih introdues an additional diretion into theproblem, breaking orientational symmetry about the diretor axis. In the ase ofmoleules whih have an extra axis, suh as the blok-shaped moleules shown atthe bottom of Fig. 1.4, a biaxial phase an be obtained in the absene of suh�elds.If this distribution is symmetri, then the distribution funtion f(ϑ, φ) ≡ f(ϑ)does not depend on φ. From the up-down symmetry of the moleule, f(ϑ) =

f(π − ϑ).While the most omplete haraterization of the orientational order uses thefull funtion f(ϑ), it an also be spei�ed using one or a few of the moments of
4



Chapter 1. Introdution

(a) (b)Figure 1.3: Shemati of (a) Free energy as a funtion of the salar order parameterat di�erent temperatures above and below the isotropi-nemati transition and (b)Salar order parameter minimizing the free energy as a funtion of temperature.this distribution funtion. The �rst idea would be to use the average
〈cosϑ〉 = 〈ν.n̂〉 =

∫
f(ϑ) cosϑ dΩ, (1.1)However, sine f(ϑ) = f(π − ϑ) the integral vanishes identially and there isno dipole moment. The �rst multipole whih gives a non-trivial answer is thequadrupole, i.e.

S =
1

2
〈(3 cos2 ϑ− 1)〉 =

∫
f(ϑ)

1

2
(3 cos2 ϑ− 1) dΩ (1.2)If f(ϑ) is strongly peaked around ϑ = 0 and ϑ = π (all the moleules are parallel),

cos ϑ = ±1 and S = 1. If f(ϑ) is strongly peaked around ϑ = π/2 (all the moleulesare perpendiular to Z axis), S = −1
2
. In the isotropi ase the orientation israndom. Hene, f(ϑ) is independent of ϑ and the average value of cos2 ϑ = 1

3
⇒

S = 0. Thus S is a parameter whih an haraterize the nemati and isotropiphases separately.
5
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Chapter 1. Introdution1.2 Order Parameter Desription of NematisIn its most general form, the order parameter of a liquid rystal is given by
Qij =

V

N

N∑

α=1

(ναi ν
α
j − 1

3
δij)δ(x − xα), (1.3)where να is an unit vetor pointing along the long axis of the moleule α, loatedat the loation xα, V is the total volume and N is the total number of moleules.By de�nition the order parameter is symmetri and trae less. In a o-ordinatesystem with one axis along the diretor the matrix is diagonal

〈Q〉 =




2
3
s 0 0

0 −1
3
s+ η 0

0 0 −1
3
s− η


 (1.4)If η is nonzero, 〈Q〉 is biaxial and there are two preferred diretions.We an reparameterise the Q in the following way

〈Q〉 =




S 0 0

0 −1
2
(S − T ) 0

0 0 −1
2
(S + T )


 ≡ 3

2
S(nn− 1

3
I) +

1

2
T (mm− ll) (1.5)If T = 0 the system is uniaxial, with a prinipal axis of alignment n, and S =

2
3
〈P2(cos θ)〉. For T 6= 0 the system is biaxial, with m and l the major and minoraxes of alignment in the plane normal to n.1.3 Ginzburg-Landau Desription of the Isotropi-Nemati TransitionsThe desription of the early stages of phase-ordering upon quenhes from theisotropi phase, the properties of nemati droplets within the isotropi phase andthe struture of the isotropi-nemati interfae are all problems whih require thatnemati and isotropi phases be treated within the same framework. The inho-mogeneous order parameter on�gurations obtained in these ases are weighted by7



Chapter 1. Introdutionthe Ginzburg-Landau-de Gennes (GLdG) free energy, obtained via a gradient ex-pansion in Q in whih only low-order symmetry allowed terms are retained[39, 38℄.To onstrut the GLdG free energy, we enumerate the symmetries of the prob-lem.1.3.1 SymmetriesTwo relevent symmetries of the problem are1. (Lak of) Inversion symmetry. Consider a uniaxial state:
Q =




S 0 0

0 −1
2
S 0

0 0 −1
2
S


 (Prolate uniaxial) (1.6)Under hange of sign

−Q =




−S 0 0

0 1
2
S 0

0 0 1
2
S


 (oblate uniaxial) (1.7)Hene the degree of order is qualitatively di�erent under the transformation

Q → −Q, thus permitting odd invariants in the free energy.2. In a homogeneous and isolated system the diretion of nemati diretor isarbitrary. This implies that the free energy is rotationally invariant. Beause
Q is a dyad of unit vetors whih rotate as usual, it behaves like a tensorunder rotation.

Qαβ → RαλRβρQλρ (1.8)For this transformation the free energy should remain invariant. For a 3Dtensor Q, there are two non-trivial invariants, TrQ2 and TrQ3.1.3.2 Free EnergyWith the above symmetries and invariants, the free energy is
fL =

1

2
A(t− T ∗) TrQ2 +

1

3
B TrQ3 +

1

4
C (TrQ2)2 (1.9)8



Chapter 1. IntrodutionInserting the general form of Q, Eq. (1.22).
fL = F1 + F2 (1.10)with

F1 =
3

4
A(t− T ∗) S2 +

1

4
B S3 +

9

16
C S4 (1.11)

F2 =
1

4
T 2[A(t− T ∗) − 2B S +

1

6
C T 2] +

1

16
C T 4 (1.12)

fL =
3

4
A(t−T ∗) S2 +

1

4
B S3 +

9

16
C S4 +

1

4
T 2[A(t−T ∗)−2B S+

1

6
C T 2]+

1

16
C T 4(1.13)For equilibrium one has to �nd the minima of fL as a funtion of S and T . F1gives minima at t > T ∗, for B S negative and T = 0, due to the ubi term. Withthese onditions F2 is positive, so the system is stable for T 6= 0. It is, in fat, auniaxial state. Considering T = 0 and minimising with respet to S, we obtain

(
∂F1

∂S

)

T=0

= 0 → Sc =

{
0
1

3C
(−B +

√
B2 − 24A C)

(1.14)On lowering the temperature, the free energies of the isotropi and uniaxial statebeome equal at Sc. At this point the system makes a �rst order phase transitionto the nemati state. The values are
Sc = −2B

9C
, ∆t = TIN − T ∗ =

B2

27AC
(1.15)1.4 The Ginzburg-Landau-de Gennes Approah tothe Isotropi-Nemati TransitionTo reapitulate, nemati order is quanti�ed through a traeless, symmetri tensor

Qαβ de�ned at every point in spae[39, 53℄. In the (biaxial) nemati phase, theorder parameter is
Qαβ =

3S

2

(
nαnβ −

1

3
δαβ

)
+
T

2
(lαlβ −mαmβ) (1.16)

9



Chapter 1. Introdutionwhere the diretor n is de�ned as the normalized eigenvetor orresponding tothe largest eigenvalue of Q, the subdiretor l is assoiated with the sub-leadingeigenvalue, and their mutual normal m is obtained from n × l. The quantities Sand T represent the strength of uniaxial and biaxial ordering: |S| 6= 0, T = 0 isthe uniaxial nemati whereas S, T 6= 0 with T < 3S de�nes the biaxial ase[39℄.The biaxial nemati arises when the moleule has two distint axes of symmetry.Alternatively, it an also arise when an additional diretion, suh as that imposedby a shear �ow, is imposed on the system, even for moleules whih are uniaxiallysymmetri.The Ginzburg-Landau-de Gennes free energy funtional F = Fh + Fel [38℄ isobtained from a loal expansion in powers of rotationally invariant ombinationsof the order parameter Q(x, t),
Fh[Q] =

1

2
A TrQ2 +

1

3
B TrQ3 +

1

4
C (TrQ2)2 + E ′ (TrQ3)2 . . . , (1.17)The restrition to the terms shown above are su�ient to yield a �rst-order tran-sition between isotropi and nemati phases as well as a stable biaxial phase,obtained when E ′ 6= 0[53℄.To this loal free energy, non-loal terms arising from rotationally invariantombinations of gradients of the order parameter must be added. The hoie ofthe following two lowest-order gradient terms is ommon[38, 104, 105℄:

Fel[∂Q] =
1

2
L1(∂αQβγ)(∂αQβγ) +

1

2
L2(∂αQαβ)(∂γQβγ), (1.18)where α, β, γ denote the Cartesian diretions in the loal frame, and L1 and L2represent the elasti ost for distortions in Q[53℄. The fat that there are onlytwo terms whih appear to this order implies that only two of the three Frankonstants are independent. The limit in whih L2 = 0, or of zero elasti anisotropyorresponds to the ase in whih all Frank onstants are equal. The relationshipbetween L1 and L2 and the Frank onstants K1, K2 and K3 are the following:

K1 = K3 = 9/4(2L1 + L2)S
2 and K2 = 9/2L1S

2[39, 53℄. Note that κ = L2/L1negative is allowed, although κ < 1.5 must be satis�ed to ensure positivity of theelasti onstants. be satis�ed to ensure positivity of the elasti onstants. TheFrank onstants are the elasti onstants for a liquid rystal whih aount for the10



Chapter 1. Introdutionfree energy penalty for reating an inhomogeneous diretor on�guration. K1 isrelated to the twist of the nemati diretor, i.e. on�gurations in whih neighboringmoleules are fored to be angled with respet to one another, rather than aligned.
K2 is related to splay, where bending ours perpendiular to the diretor and
K3 is related to bend of the material. These onstants are named after FrederikCharles Frank , who pioneered the elasti ontinuum theory of liquid rystals.In the free energy density of Eq. 1.17, A = A0(1 − T/T ∗), where T ∗ denotesthe temperature that represents the limit of superooling in mean �eld theory.From the inequality 1

6
(TrQ2)3 ≥ (TrQ3)2, higher powers of TrQ3 an be exludedfor the desription of the uniaxial phase. Thus the uniaxial ase is desribed by

E ′ = 0 whereas E ′ 6= 0 for the biaxial phase. We will assume that E ′ = 0, thusensuring that the stable ordered phase is the uniaxial nemati. For nemati rod-like moleules B < 0 whereas for dis-like moleules, B > 0; for onreteness, wewill assume B < 0 here. The quantity C must be positive to ensure stability andboundedness of the free energy in both the isotropi and nemati phases.1.5 Properties of the Isotropi-Nemati TransitionThe �rst order isotropi to uniaxial nemati transition at the ritial value S = Scis thus obtained from,
A =

3

4
CS2

c (1.19)
B = −9

2
CSc. (1.20)We have hosen the values B = −0.5, C = 2.67 and A = B2/27C, thus enforingphase oexistene between an isotropi and uniaxial nemati phase [53℄, in ourdisussion for the isotropi-nemati interfae.1.6 Anhoring at Surfaes and InterfaesNemati ordering is strongly in�uened by on�ning walls and surfaes, whihimpose a preferred orientation or �anhoring ondition� on the nemati state. Suha preferred orientation yields an anhoring angle, de�ned as the angle made by the11



Chapter 1. Introdutiondiretor in the immediate neighbourhood of the surfae with the surfae normal.Anhoring normal to the surfae is termed as homoeotropi, whereas anhoring inthe plane of the surfae is termed as planar. The general ase is that of obliqueanhoring.As is the ase with surfaes, the interfae between a nemati and its isotropiphase an also favour a partiular anhoring. The problem of interfae struturefor the nemati is partiularly interesting sine it illustrates how the struturein the interfaial region an di�er substantially from struture in the bulk. It isknown, for example, that a region proximate to the interfae an exhibit biaxialitywithin the LGdG theory, even if the stable nemati phase is pure uniaxial[105℄,provided planar anhoring is enfored. Suh biaxiality is absent if the anhoring ishomoeotropi[38℄. These two limits, of homoeotropi and planar anhoring, leadto interfae pro�les of S and T whih vary only in the viinity of the interfae, aswell as orientations whih are uniform aross the interfae[38℄.Can oblique anhoring be stabilized, within GLdG theory, at the interfae be-tween a bulk uniaxial nemati and its isotropi phase? Suppose we introdueboundary onditions that impose a spei�ed oblique orientation deep into the ne-mati phase, where the magnitude of the order parameter is saturated. The ques-tion, then, is whether suh an imposed orientation is relaxed to a preferred valuein the viinity of the interfae. The di�ulties with this problem stem from thefat that hanges in the loal frame orientation on the nemati side of the interfaeome with an elasti ost arising out of nemati elastiity. This is an e�et sensi-tive, in priniple, to system dimensions, sine gradients an be smoothed out byallowing the hanges to our over the system size. While this ost an be reduedby suppressing the order parameter amplitudes in regions where order parameterphases vary strongly, the preise way in whih this might happen, if at all, is anopen question.1.7 The Isotropi-Nemati Interfae1.7.1 Previous WorkThe isotropi-nemati transition is weakly �rst order. Hene, it is reasonablethat its entral features an be adequately explained by Landau-de Gennes theory12



Chapter 1. Introdution[24℄. The study of the isotropi-nemati interfae was initiated in an insightfulpaper by de Gennes, who introdued a simple uniaxial ansatz for the tensor orderparameter Qαβ whih desribes nemati order [38℄. The de Gennes ansatz is exatin the absene of elasti anisotropy. However, the desription of the interfae in thepresene of suh anisotropy poses a formidable analyti and numerial problem,sine the partial di�erential equations for the �ve independent omponents of Qαβontain non-linear ouplings, while Qαβ is itself onstrained by symmetry and therequirement that its trae vanish.Popa-Nita, Slukin and Wheeler (PSW) [105℄ studied the I-N interfae inorpo-rating elasti anisotropy in the limit of planar anhoring, adapting a parametriza-tion introdued by Sen and Sullivan[119℄. In this parametrization, the prinipalaxes of Qαβ remain �xed in spae, and the problem redues to the solution of twooupled non-linear partial di�erential equations in the dimension perpendiular tothe interfae. These equations represent the variation of the amplitude of uniaxialand biaxial ordering aross the interfae. PSW showed that the solutions of theseequations exhibited biaxiality in a region about the interfae [105℄. The uniaxialorder parameter (S) was adequately represented by a tanh pro�le, as in the origi-nal alulation of de Gennes, while the biaxial order parameter (T) exhibited moreomplex behaviour, peaking towards the isotropi side and with a trough on thenemati side. The biaxial pro�le was also shown to have a long tail towards theisotropi side, a feature hard to antiipate on physial grounds.Popa-Nita, Slukin and Wheeler (PSW)[105℄ also ommented on the ase ofoblique anhoring, studying this problem numerially within a GLdG approah.They used a set of variables ηs and µs introdued in Ref. [119℄. Although thefous of their study was the emergene of biaxiality at the interfae with a planaranhoring ondition, PSW remarked, based on their numerial studies, that if theasymptoti orientation of the diretor in the nemati phase was set to any valueother than 90◦ (planar anhoring) or 0 (homoeotropi anhoring) for large z, then
ηs and µs approahed this value with non-zero slope. PSW thus onluded thatthere ould be no stable anhoring if the orientation of the diretor in the nematiphase was neither planar nor homoeotropi, but oblique. The preise nature ofthe resulting state obtained upon applying an oblique anhoring ondition was notaddressed by PSW[104, 105℄.Density funtional alulations on hard-rod systems using Onsager's theory ap-13



Chapter 1. Introdutionplied to the free isotropi-nemati interfae indiate that the minimum surfae freeenergy is obtained when the rods lie parallel to the isotropi-nemati interfae, thease of planar anhoring[91, 5℄. Moleular simulations of a system of hard ellip-soids, in whih an anhoring energy �xes the diretor orientation in the nematiphase at a variety of angles, indiate that the isotropi-nemati interfae favoursplanar anhoring. These simulations, and a mean-�eld alulation based on theOnsager funtional, �nd that the angle pro�le is approximately linear as one movesaway from the boundary ondition imposed by the wall at one end of the simula-tion box[134, 129℄. These results, in partiular onerning the stability of planaranhoring, are onsistent with those from other treatments[12, 32, 31, 4, 130℄.However, several other papers indiate spei� regimes in whih homoeotropi oroblique anhoring may be stable. Moore and MMullen[94℄ numerially evaluatethe inhomogeneous grand potential within a spei� approximation sheme �nd-ing that planar anhoring is preferred at the interfae for long spheroylinders, butoblique or homoeotropi anhoring may be an energetially favourable alternativefor smaller aspet ratios. Holyst and Poniewierski study suh hard spheroylindersin the Onsager limit, noting that oblique anhoring is favoured over a onsider-able range of aspet ratios[63℄. Finally, experiments provide evidene for bothoblique[46℄ and planar anhoring[86℄, with eletrostati e�ets possibly favouringoblique anhoring.1.7.2 Results of this thesis: Stati BehaviourIn Chapter 2 we extend the alulation of biaxiality in the ase of planar anhor-ing in several new ways. First, we show that terms dropped by PSW in theirsimpli�ation of the Ginzburg-Landau-de Gennes (GLdG) equations are, in fat,omparable in magnitude to the terms they retain, espeially for small values of
κ = L2/L1, the ratio of the oe�ients of the two lowest-order gradient terms inthe GLdG expansion. Thus, a more aurate treatment of the interfae requiresthat these terms be retained. The resulting equations have losed form solutionsin terms of hypergeometri funtions. We show that suh solutions provide a bet-ter desription of the numerial data than the original alulation of PSW. Webenhmark our analyti results through an aurate numerial proedure, basedon a Chebyshev polynomial expansion, for the study of these equations. 14



Chapter 1. IntrodutionIn the third hapter we present numerial and analyti results for uniaxialand biaxial orders at the isotropi-nemati interfae within Ginzburg-Landau-deGennes theory, in the situation where an oblique anhoring ondition is imposedasymptotially on the nemati side of the interfae, reproduing results of previ-ous work when this ondition redues to planar or homeotropi anhoring. Weonstrut physially motivated and omputationally �exible variational pro�lesfor uniaxial and biaxial orders, omparing our variational results to numerialresults obtained from a minimization of the Ginzburg-Landau-de Gennes free en-ergy. While spatial variations of the salar uniaxial and biaxial order parametersare on�ned to the neighborhood of the interfae, nemati elastiity requires thatthe diretor orientation interpolate linearly between either planar or homeotropianhoring at the loation of the interfae and the imposed boundary ondition atin�nity. The seletion of planar or homeotropi anhoring at the interfae is gov-erned by the sign of the Ginzburg-Landau-de Gennes elasti oe�ient L2. Ourvariational alulations are in lose agreement with our numeris and agree quali-tatively with results from density funtional theory and moleular simulation.1.7.3 A Note Conerning ConventionsAs mentioned earlier, we parameterise the Q order parameter in the following way
〈Q〉 =




S 0 0

0 −1
2
(S − T ) 0

0 0 −1
2
(S + T )


 ≡ 3

2
S(nn − 1

3
I) +

1

2
T (mm− ll) (1.21)The quantities S and T are related to the amounts of uniaxial and biaxial orderrespetively. We will follow this labeling onvention in Chapters 2 and 3 whihfollow.However, an alternative labeling onvention is often used, in terms of whih

〈Q〉 =




s1 0 0

0 −1
2
(s1 − s2) 0

0 0 −1
2
(s1 + s2)


 ≡ 3

2
s1(nn−1

3
I)+

1

2
s2(mm−ll) (1.22)Here s1 and s2 replae S and T notationally, while retaining the same physial15



Chapter 1. Introdutionmeaning. This onvention is used in Chapters 5 and 6, in onformity with the vastliterature on the dynamis of nemati liquid rystals. The use of eah onventionshould be lear from the ontext.

16



2Biaxiality at the Isotropi-NematiInterfae with Planar Anhoring
2.1 The de Gennes result for the Nemati-IsotropiinterfaeAssuming that biaxiality was absent and that the orientation of the diretor re-mained �xed aross the interfae, de Gennes provided a omparison of the freeenergy for the ases of planar and homeotropi anhoring. In both the ases onean write the free energy as follows.

FP,H =

∫ ∞

−∞
dz

[
Fb + ξ2

P,H

(
dS

dz

)2
]
, (2.1)where the subsripts P and H denote planar and homeotropi anhoring respe-tively, and Fb is the bulk free energy in both ases. We have ξ2

P = 3
4
(3L1 + 1

2
L2)and ξ2

H = 3
4
(3L1 + 2L2) For L2 > 0, ξP < ξH. Minimizing the above equation

2ξ2
P,H

d2S

dz2
=
∂Fb
∂S

. (2.2)This equation has a �rst integral given by
ξ2
P,H

(
dS

dz

)2

= Fb(S) (2.3)
17



Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar AnhoringThe integration onstant must vanish, sine both dS/dz and Fb are zero far fromthe transition layer. Inserting this result into Eq. 2.1, we get
FP,H = 2

∫ ∞

−∞
ξ2
P,H

dS

dz
dS = 2ξP,H

∫ Sc

0

[Fb(S)]1/2 dS (2.4)Thus, ξP < ξH ⇒ FP < FH . de Gennes was able thus to alulate whih anhoringwould prevail under the appropriate onditions.2.2 Equation for Isotropi-Nemati Interfae withPlanar anhoringWe begin with the GLdG expansion of the free energy for a general Qαβ

F =

∫
dzdx⊥[

1

2
ATrQ2 +

1

3
BTrQ3 +

1

4
C(TrQ2)2

+
1

2
L1(∂αQβγ)(∂αQβγ) +

1

2
L2(∂αQαγ)(∂βQβγ)]. (2.5)Here A,B and C are expansion parameters, while L1, L2 are elasti onstants.We hoose B = −0.5, C = 2.67 and A = B2/27C, thus enforing phase oex-istene between an isotropi and uniaxial nemati phase [53℄. The interfae istaken to be �at and in�nitely extended in the x − y plane. The spatial vari-ation of the order parameter only ours along the z diretion[119℄. We sale

Qαβ → Qαβ/Sc where Sc = −2B
9C
, F → 16

9CS4
c
F , and measure lengths in units of

lc =
√

54C(L1 + 2L2/3)/B2; we hoose L1 = 10−6 in our numeris and obtain L2from our hoie of κ. In the ase of planar anhoring, the ordering at in�nity ispurely uniaxial and taken to be along the x axis. In this ase, as shown by Senand Sullivan, uniaxial and biaxial order vary only with z and the prinipal axes ofthe Q tensor remain �xed in spae. The form of Q is then
Q =



S 0 0

0 1
2
(−S + T ) 0

0 0 −1
2
(S + T )


 . (2.6)Inserting this form of Q into the free energy and performing the minimization18



Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar Anhoring
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Figure 2.1: A omparison of the terms (2+κ)
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∂2
zT (dark line) and κ
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∂2
zS (lightline) obtained within the PSW solution to the GLdG equations, for a κ value of18.0. The PSW approximation onsists of ignoring the (2+κ)

(3+2κ)
∂2
zT term in ompar-ison to the κ

(3+2κ)
∂2
zS term. Both terms, however, are of omparable magnitude.
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Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar Anhoringyields [105℄
(6 + κ)

(3 + 2κ)
∂2
zS +

κ

(3 + 2κ)
∂2
zT = 4S − 12S2 + 8S3 + 4T 2 +

8ST 2

3
, (2.7)

κ

(3 + 2κ)
∂2
zS +

(2 + κ)

(3 + 2κ)
∂2
zT =

4

3
T + 8ST +

8T 3

9
+

8S2T

3
. (2.8)Popa-Nita, Slukin and Wheeler now make several approximations to Eqs. 2.7and 2.8 to solve them. First, in Eq. 2.7, all terms in T are dropped, sine S istypially muh larger than T . The resulting equation for S is solved by the tanhfuntion. In Eq. 2.8, PSW drop the (2+κ)

(3+2κ)
∂2
zT term while retaining κ

(3+2κ)
∂2
zS. Atest of self-onsisteny of this approximation is the omparison of the magnitude ofthese terms within the theory. Fig. 2.1 shows the terms (2+κ)

(3+2κ)
∂2
zT (dark line) and

κ
(3+2κ)

∂2
zS (light line) omputed through the PSW solution. As an be seen fromthe �gure these terms only di�er by a fator of order unity. Deep into the isotropiside, the term ignored by PSW exeeds the value of the term retained. Thus, whilethe PSW approah leads to a straightforward algebrai relation between T and S,a more aurate method would be to retain the partial derivative term as well,requiring that we solve a partial di�erential equation as opposed to an algebraione.Our approah to this problem uses the same approximations as PSW for Eq. 2.7.We thus take

S =
Sc
2

[
1 + tanh(

z√
2ξ

)

]
, (2.9)where ξ =

√
1+κ/6
1+2κ/3

. Inserting this in equation (2.8), saling z by √
2ξ, rede�ningthe resulting quantity as z again, and dropping the nonlinear term, we obtain,

∂2
zT = 2β[tanh2(z) + 8 tanh(z) + 9]T +

κ

2 + κ
tanh(z)[1 + tanh(z)][1 − tanh(z)].(2.10)with β = 6+κ

3(2+κ)
.The solution of the equation onsists of a homogeneous part Th and a partiular
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Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar Anhoring

Figure 2.2: Biaxial and uniaxial pro�les for κ = 0(a), 0.4(b), 4(c) and 18.0(d),omparing results from our numerial omputations (×), with our analyti formula(dashed line) and the formula of PSW (solid line). The main �gure shows thebiaxial pro�le whereas the inset shows the uniaxial pro�le. In (a), for κ = 0, thesolution has T = 0, with the S pro�le exatly given by the tanh form. In (b),for κ = 0.4, the omputed biaxial pro�le (T) (main panel) is �t remarkably wellby our analyti form, whereas the PSW approximation tends to overestimate thepeak value. The uniaxial (S) pro�le is shown in the inset of (a); here the resultsobtained by us and by PSW are idential and the �t to a tanh pro�le is aurateover the entire region. In () (main panel), for κ = 4.0, the numerial data are�t well by the analyti forms, partiularly away from the main peak, yieldingessentially exat agreement deep into the isotropi and nemati sides. The PSWapproximation is still an overestimate to the peak value, and also di�ers sharplyin relation to the numerial data deep into the isotropi side. The inset shows theuniaxial (S) pro�le for this ase. In (d) (main panel), for κ = 18.0, the PSW formappears to �t the peak better for larger κ, but again fails to apture the deaytowards the isotropi side. 21
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Figure 2.3: A omparison of the results of our analyti alulation to pro�les of Tobtained from a density funtional alulation for the isotropi-nemati interfae.Pro�les obtained for two values of κ, κ = 5.8 (for z < 0) and κ = 0.69 (for z > 0)are shown. The larger κ value essentially �ts the T pro�le exatly on the isotropiside, whereas the smaller κ value provides an aurate �t on the nemati side. Theinset shows the S pro�le obtained from the density funtional alulation, togetherwith an optimum �t varying the value of lcpart Tp where Th = C1y1(z) + C2y2(z) and
y1(z) =

(1 − tanh(z)

2

)3
√
β(1 + tanh(z)

2

)−√
β

2F1[a1, b1, c1,
1 − tanh(z)

2
]

y2(z) =
(1 − tanh(z)

2

)−3
√
β(1 + tanh(z)

2

)√β
2F1[a2, b2, c2,

1 + tanh(z)

2
].(2.11)Here a1 = 1

2
+ 2

√
β +

√
1+8β
2

; b1 = 1
2

+ 2
√
β −

√
1+8β
2

; c1 = 1 + 6
√
β; a2 =

1
2
− 2

√
β −

√
1+8β
2

; b2 = 1
2
− 2

√
β +

√
1+8β
2

and c2 = 1 + 2
√
β. The funtion 2F1 isa hypergeometri funtion and C1 and C2 are �xed by boundary onditions.The partiular solution takes the form

Tp(z) = [−y1(z)I2(z) + y2(z)I1(z)] /W (z), (2.12)22



Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar Anhoringwhere the Wronskian W (z) = W = y1(dy2/dz) − y2(dy1/dz), where
I1(z) =

2κ

2 + κ

∞∑

m=0

(a1)m(b1)m
(c1)mm!

t1+m+3
√
β(1 − t)1−

√
β
(
− 2

2 +m+ 2
√
β

+
m+ 4

√
β

(2 +m+ 2
√
β)(1 +m+ 3

√
β)

2F1[1, 2 +m+ 2
√
β, 2 +m+ 3

√
β, t]

)(2.13)
I2(z) =

2κ

2 + κ

∞∑

n=0

(a2)n(b2)n
(c2)nn!

t1+n+
√
β

1 (1 − t1)
1−3

√
β
(
− 2

2 + n− 2
√
β

+
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√
β

(2 + n− 2
√
β)(1 + n+

√
β)

2F1[1, 2 + n− 2
√
β, 2 + n+

√
β, t1]

)
.(2.14)The Pohhammer symbol (a)n whih enters above is de�ned via (a)n = a(a +

1)(a+ 2) . . . (a+n− 1). Here t = [1− tanh(z)]/2 and t1 = [1 + tanh(z)]/2 and theresult for I1(z) and I2(z) is obtained by expanding the hypergeometri funtionsin Eqns. 2.11 in a power series and integrating term-by-term[3℄. Note that thesolutions of the homogeneous part diverge asymptotially. Thus, for the boundaryondition T = 0 at z = ±∞ the only physial solution is the partiular one.Eq. 2.12 is thus the key analytial result of this hapter, desribing the variationof biaxiality aross the interfae. In our numerial evaluations, we sum the seriesfor I1(z) and I2(z), retaining as many terms as are required to ensure onvergene.The series in I2 onverges very fast (only 3 terms need be retained for good results)whereas the series in I1 onverges more slowly and around 9 terms must be retainedfor onvergene. To onvert these into physial units, we must undo the sequeneof length transformations, replaing z → z/(
√

2ξlc).An asymptoti analysis of these equations is possible: for z → −∞, S and Tare small. The tanh pro�le for S an be approximated as 1
2
(1+ tanh( z√

2ξ
)) → e

2z√
2ξwhile Eq. (2.8) takes the form 2ξ2∂2

zT = 4βT − ( 2κ
2+κ

)e
2 z√

2ξ with β = 6+κ
3(2+κ)

. Thus
∂2
zT = 4

3
(3+2κ)
(2+κ)

T − 2κ(3+2κ)
(2+κ)(6+κ)

e
2 z√

2ξ with asymptoti solution
T ∼ e

q

4(3+2κ)
3(2+κ)

z
, z → −∞, (2.15)23



Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar Anhoringa result in perfet aord with the omputed forms of T deep into the isotropiphase. Note that T > S and (S+T )/2 > S as one moves deeper into the isotropiside. This implies that the prinipal order parameter is negative as pointed out inRef. [105℄, where this result was obtained numerially.As z → ∞, an alternative asymptoti expansion an be derived by taking
S = 1 − 1

2
e−bz with b = 2

√
3+2κ
6+κ

. We then obtain
T ∼ e

−2
q

3+2κ
6+κ

z
, z → ∞, (2.16)in agreement with our numerial results. Popa-Nita, Slukin and Wheeler providean analysis of the asymptotis in the spei� limit that κ → ∞. However, ourresults annot be diretly translated to this limit, sine we assume a tanh pro�leof S; this approximation beomes inreasingly inaurate for larger κ (see below).Our numerial results are obtained using a spetral olloation method [128℄,applied to our knowledge for the �rst time to the GLdG equations. In the spetralolloation, the solution is expanded in an orthogonal basis of Chebyshev poly-nomials in a bounded interval. Di�erentiation operators onstruted from thisChebyshev interpolant are spetrally aurate, in the sense that the error van-ishes exponentially in the number of retained polynomials. The interpolant isonstruted so as to satisfy Dirihlet boundary onditions. Though the physialproblem is for an unbounded interval, our numerial approximation of a boundedinterval gives exellent results sine all variation in the order parameters is re-strited to the region proximate to the interfae.Spei�ally, we solve the equations of equilibrium

(A+ CTrQ2)Qαβ(x, t) +B Q2
αβ(x, t) = L1∇2Qαβ(x, t) + L2 ∇α(∇γQβγ(x, t))(2.17)by transforming to a basis {ai} whih enfores symmetry and traelessness, as

Qαβ =
∑5

i=1 aiT
i
αβ, where, T1 =

√
3
2
ẑẑ ,T2 =

√
1
2
(x̂ x̂− ŷ ŷ),T3 =

√
2 x̂ ŷ ,T4 =

√
2 x̂ ẑ , T5 =

√
2 ŷ ẑ . Overbars indiate traeless symmetri parts. We thusobtain �ve simultaneous partial di�erential equations for the ai, whih are steady-states of the time-dependent equations we have obtained earlier [17℄. Note speif-ially that we make no symmetry-based ansatz for the omponents of Qαβ . The24



Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar Anhoringambiguity of the sign of T in the uniaxial phase, or whenever the ordering of thesub-leading eigenvalues hanges, is resolved by requiring solutions to be smoothover the omputational domain.The spetral olloation redues these di�erential equations to non-linear al-gebrai equations. We solve them using a relaxation method from a well-hoseninitial ondition, relaxing till the di�erential hange in suessive iterations is lessthan 10−5. Spetral onvergene to mahine auray is obtained by retaining 128Chebyshev modes, as we have heked by an expliit alulation. To ompare withanalytial and density funtional results, the solution at the Chebyshev nodes isinterpolated using baryentri interpolation without ompromising spetral au-ray. The DMSUITE library is used for the numerial implementation [132℄.Our results are summarized in Fig. 2.2 and Fig. 2.3. The main panel of Fig. 2.2(a), obtained by solving Eq. 2.7 and 2.8 for a value of κ = 0.0, shows the biaxialitypro�le obtained using our numerial spetral sheme (rosses), as ompared to theanalyti result of T = 0. The uniaxiality pro�le shown in the inset is exatly thetanh pro�le obtained by de Gennes. This limit provides a simple test of our numer-ial methods, sine the solution to Eqs. 2.7 and 2.8 in this limit is exat. Fig. 2.2(b) shows the biaxiality pro�le obtained using our spetral sheme (rosses), asompared to the analyti results derived here (dashed line) and results obtainedby PSW (solid line) for a value of κ = 0.4. As an be seen, the numerial data are�t remarkably well by the analyti forms, whereas the PSW approximation tendsto overestimate the peak value. The inset to Fig. 2.2 (b) shows the uniaxial (S)pro�le, obtained numerially as well as in our analyti alulation; here the resultsobtained by us and by PSW are idential. The �t to a tanh pro�le is aurate overthe entire region.The main panel of Fig. 2.2 () shows the biaxiality pro�le obtained using ourspetral sheme (rosses), as ompared to the analyti results derived here (dashedline) and results obtained by PSW (solid line) for a value of κ = 4. Again thenumerial data are �t well by the analyti forms, partiularly away from the mainpeak, yielding essentially exat agreement deep into the isotropi and nematisides. The PSW approximation is still an overestimate to the peak value, and alsodi�ers sharply in relation to the numerial data deep into the isotropi side. Theinset to Fig. 2.2 () shows the uniaxial (S) pro�le for this ase. Fig. 2.2 (d) showsthe biaxiality pro�le obtained using our spetral sheme (rosses), as ompared to25



Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar Anhoringthe analyti results derived here (dashed line) and results obtained by PSW (solidline) for a value of κ = 18. For these - and larger - values of κ, our analyti �tsdi�er notieably from the numerial data. The PSW form appears to �t better forlarger κ, although we believe that this is fortuitous. It appears that the prinipalerror arises from our approximation of the S pro�le as a tanh form. For large κ,this approximation is less aurate.Fig. 2.3 ompares the results of our analyti alulation to pro�les of T ob-tained from a density funtional alulation for the isotropi-nemati interfae[31℄ a method whih provides an alternative, more moleular approah to thisproblem[134℄. We have taken numerial data for uniaxial and biaxial pro�les ob-tained in Ref. [31℄, varying the free parameters Sc, lc and κ in our solutions tillan optimal �t is obtained. The values of Sc and lc an be obtained from �ts to
S; thus only κ need be varied to represent the T pro�le. Fig. 2.3 shows pro�lesobtained for two values of κ: κ = 5.8 (for z < 0) and κ = 0.69 (for z > 0).The larger κ value �ts the pro�le very losely on the isotropi side, whereas thesmaller κ value provides an aurate �t on the nemati side. An alternative den-sity funtional approah (Ref. [122℄) yield pro�les whih an also be �t very wellon the nemati side by our methods, although the �t towards the isotropi sideis of redued quality. It does not seem possible to �t the omplete pro�le using asingle value of κ. This ould have been antiipated on physial grounds sine thedensity funtional theory yields a density di�erene between oexisting isotropiand nemati phases. The elasti oe�ients L1 and L2 whih enter our alulationdo in priniple ontain a density dependene whih we ignore here.2.3 Conlusion and ResultsIn onlusion, we have presented results for the uniaxial and biaxial pro�les, in thease of planar anhoring, for the lassi problem of the struture of the isotropi-nemati interfae within Ginzburg-Landau-de Gennes theory. Our work re�nesprevious analyti treatments of biaxiality at the interfae. We have implementeda highly aurate spetral olloation sheme for the solution of the Landau-Ginzburg-de Gennes equations and used this numerial sheme in our tests ofthe analyti results. 26



Chapter 2. Biaxiality at the Isotropi-Nemati Interfae with Planar AnhoringIn omparison to earlier work, we obtain improved agreement with numeris forboth the uniaxial and biaxial pro�les, with our results being inreasingly aurateas the anisotropy is redued. We also provide aurate asymptoti results for thedeay of the S and T order parameters deep into the nemati and isotropi phases.Our alulated pro�les show a pleasing onsisteny with pro�les obtained fromdensity funtional approahes. Further extensions of these numerial and analytimethods to the ase of an intermediate anhoring ondition far from the interfaeare urrently under way.

27



3The Isotropi-Nemati Interfae with anOblique Anhoring Condition
3.1 IntrodutionIn this hapter we study the isotropi-nemati interfae within GLdG theory inthe ase where an oblique anhoring ondition is imposed on the nemati state farfrom the loation of the interfae. For a �at interfae, the omponents of Q andepend only on the oordinate perpendiular to the interfae. We assume thatthis oordinate is aligned along the z axis, as shown in Fig. 3.1, whih de�nes thegeometry we work with in this hapter. We work at phase oexistene, imposingboundary onditions �xing the isotropi phase at z = −∞ and the nemati phaseat z =∞. The omponents of Q as z → ∞ are hosen so that S is �xed to its valueat oexistene Sc, while the axis of the nemati is aligned along a spei�ed (oblique)diretion. The oexisting states must be separated by an interfae in whih orderparameters rise from zero on the isotropi side of the interfae to saturated, non-zero values on the nemati side. Sine the two free energy minimum states aredegenerate in the bulk, the position of the interfae is arbitrary and an be �xed,for onreteness, at z = 0 in the in�nite system. However, there are subtleties.Provided all omponents of Q vary substantially only in the neighbourhood of theinterfae, the interfae an be loated through several, largely equivalent riteria.However, if variations of Q are not on�ned to a region proximate to the interfaebut depend on the system size L irrespetive of how large L is, the very isolationof an interfae from the bulk is ill-de�ned. As indiated earlier, it is this situation28



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringCondition
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Figure 3.1: The interfae geometry and the oordinate system used in this hapter.Note that the nemati diretor makes an angle θ with respet to the z− axisdiretion. This angle is �xed at in�nity to θ = θe . It an be hosen to vary between
θe = 0 (homoeotropi anhoring at in�nity) and θe = 90◦ (planar anhoring atin�nity). The isotropi phase is favoured, through boundary onditions, as z →
−∞, whereas the nemati phase is favoured for z → ∞. The plane of the interfaeis the x− y plane, shown by ABCD in the �gure, whereas the diretor is on�nedto the EFGH plane as shown. The origin is denoted by O.
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Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionwhih obtains in the ase of oblique anhoring and the L→ ∞ limit must be takenwith are.The entral results of this hapter are the following: A numerial minimizationof the GLdG free energy whih imposes a spei� oblique anhoring ondition onthe system deep into the nemati while �xing the interfae loation at the originshows that the elements of Q vary with spae even far away from the interfae, al-beit slowly. Only in the limit of homoeotropi or planar anhoring is the variationof Q on�ned to a �nite region. This variation in the ase of oblique anhoring an,however, be split into hydrodynami and non-hydrodynami omponents. Generi-ally, the variation of the non-hydrodynami omponents, suh as the magnitudesof S and T , are on�ned to a �nite region, independent of the system size L, if L islarge enough. However, the orientation of the nemati diretor varies in spae: ifthe asymptoti value of the nemati order parameter at L represents uniaxial or-dering along an oblique axis, the diretor orientation interpolates linearly betweeneither a 90◦ value preferred at the loation of the interfae (planar anhoring)or a 0◦ value (homoeotropi anhoring), and the value imposed by the boundaryondition at L. Whether planar or a homeoetropi anhoring is preferred at theinterfae depends on the sign of the seond of the elasti oe�ients in the GLdGexpansion, the L2 term, as initially shown by de Gennes[38℄.Our results are onsistent with the qualitative observations of PSW, but pro-vide a detailed quantitative analysis in the ase of oblique anhoring. We saleangle pro�les omputed for di�erent values of the system size L onto a universalurve, indiating a linear pro�le. In the limit that L → ∞, the slope with whihthe phase varies vanishes as 1/L, so that the total energy ost for elasti distortionsof the nemati �eld ∼
∫

(∇θ)2dz ∼ L(∆θ)2/L2 ∼ 1/L, thus vanishing in the ther-modynami limit. Thus, the isotropi-nemati interfae with an oblique anhoringonstraint imposed on the nemati side an be regarded as being marginally sta-ble, as opposed to unstable, provided the thermodynami limit is taken with are.We demonstrate that suitably hosen, �exible variational hoies for the uniaxialand biaxial pro�les an apture the variation of omponents of the Q tensor as afuntion of spae. These variational pro�les are obtained by generalizing resultsfrom a alulation of biaxial and uniaxial order parameter pro�les in the planarase. These pro�les are benhmarked against numerial alulations.The outline of the hater is the following. In Setion 1.4, we brie�y reviewed30



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionaspets of the Landau-Ginzburg-de Gennes transition whih will be required inour analysis. In Setion 3.2 we obtain the equations representing the variationalminimum of the GLdG free energy, in a basis adapted to the symmetry of theproblem. Setion 3.3 desribes solutions to these equations, as appropriate to theases of planar and homoeotropi anhoring. The lassi tanh pro�le obtained byde Gennes is an exat representation of the interfae in the limit of homoeotropianhoring as well as when the L2 elasti onstant vanishes, in whih ase theinterfae is stable for any anhoring ondition. In Setion 3.4 we present ournumerial approah to the problem of interfae struture, showing how numeriallyexat pro�les for the variation of S, T and θ an be obtained within the frameworkof a minimization of the full GLdG free energy, subjet only to the ondition thatan interfae is fored into the system.In Setion 3.5, we desribe our variational approah to this problem, motivatingthe hoie of a three-parameter variational ansatz inspired by the approximatesolution due to Popa-Nita, Slukin and Wheeler. We show that this variationalansatz aptures the features of the solution in both the extreme ases of planarand homoeotropi anhoring, and is �exible enough to desribe the intermediateregime as well. In Setion 3.6, we desribe our methods of minimization for thevariational problem and our results for L2 > 0 and L2 < 0. We desribe how ournumerial and variational alulations an be used to provide an aurate pitureof the interfae with an oblique anhoring ondition In Setion 3.7 we presentasymptoti results for the variation of S, T and θ lose to the bulk nemati state.Setion 3.8 ontains our onlusions.3.2 The Ginzburg-Landau-de Gennes EquationsThe diretor n, sub-diretor l and their joint normal m together de�ne a frame.We de�ne z as the diretion perpendiular to the interfae. The �xed orientationof the nemati axis at z → ∞ an be used to de�ne a plane, the xz plane. Fromsymmetry, and following the arguments of Sen and Sullivan, the nemati diretormust always remain in this plane[119℄. Thus, the spatial dependene of the frameorientation an only ome from the variation of a single tilt angle θ, whih ismeasured between the z axis and n, as shown in Fig. 3.1. 31



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionSine we assume a �at interfae, the omponents of Q are funtions only of z.The tensor Q n the loal frame de�ned by the prinipal axes, is diagonal and givenby
Q =




−(S + T )/2 0 0

0 −(S − T )/2 0

0 0 S


 (3.1)Transforming to the spae-�xed frame (the laboratory frame), by rotation throughthe appropriate angle θ yields

Qθ =




−1
2
(S + T ) cos2 θ + S sin2 θ 0 −1

4
(3S + T ) sin 2θ

0 −(S − T )/2 0

−1
4
(3S + T ) sin 2θ 0 −1

2
(S + T ) sin2 θ + S cos2 θ


 .(3.2)Inserting this tensor form into the elasti free energy Fel[Q] yields the elastiontribution to the free energy

Fgθ =
(12 + 5κ+ 3κ cos(2θ))(∂zS)2 + 4κ sin2(θ)∂zS∂zT + 2

(
2 + κ sin2(θ)

)
(∂zT )2

8(3 + 2κ)

−2κ sin(2θ)(3S + T ) (∂zS − ∂zT ) ∂zθ

8(3 + 2κ)
+

(2 + κ)(3S + T )2(∂zθ)
2

4(3 + 2κ)
, (3.3)Note that this ontribution must vanish if S, T and θ are uniform.The bulk free energy ontribution Fh[Q] is unhanged, as a onsequene of thefat that the Landau term is onstruted from rotationally invariant terms in theorder parameter. It then takes the form

Fh[Q] =
1

3
(3S2 + T 2) − 2(S3 − ST 2) +

1

9
(9S4 + 6S2T 2 + T 4). (3.4)The Euler-Lagrange equation for the angle �eld, with θ′ = dθ/dz, is

−κ sin(2θ)(3S + T )(S ′′ − T ′′) + (2(2 + κ)(3S + T )2θ′)′ = 0, (3.5)where the primes indiate derivatives with respet to z.First, note that for κ = 0 (i.e. no elasti anisotropy) the above equation hasonly the solution θ′ = 0, implying that θ is onstant. A similar situation holdsfor the speial θ values θ = 0, 90◦, for whih again the only solution has θ′ = 0.32



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionThus, in these speial limits, the angle θ remains �xed throughout the system.These results are, of ourse, onsistent with the result that planar (θ = 90◦) andhomoeotropi (θ = 0) anhoring onditions yield a well-de�ned interfae. Also,provided elasti anisotropy is absent, one an ontinue to de�ne a stable interfaefor an arbitrary θ, sine θ stiks to its asymptoti value throughout.Finally, we note that one S and T are saturated, S ′ = T ′ = S ′′ = T ′′ = 0, andthus θ′ = onstant, yielding a linear variation of θ with z.For ompleteness, the full set of Euler-Lagrange equations representing theminimization of the GLdG equations are, in addition to the θ equation above
−
(

(κ cos(2θ) + 6 + 3κ) (3S + T )

6 + 4κ

)
θ′2 +

(
κ(4 + 3κ+ κ cos(2θ)) sin(θ)2

4 (6 + 7κ + 2κ2)

)
T ′′

+

(
96 + 88κ+ 19κ2 + 12κ(2 + κ) cos(2θ) + κ2 cos(4θ)

16 (6 + 7κ+ 2κ2)

)
S ′′ = 2S − 6S2 + 4S3 + 2T 2 + 4S

T 2

3(3.6)
(

32 + 24κ+ 3κ2 − 4κ(2 + κ) cos(2θ) + κ2 cos(4θ)

16 (6 + 7κ+ 2κ2)

)
T ′′ +

κ(4 + 3κ+ κ cos(2θ)) sin(θ)2S ′′

4 (6 + 7κ+ 2κ2)

+
(κ cos(2θ) − 2 − κ)(3S + T )θ′2

6 + 4κ
=

2

3
T + 4ST +

4

9
T 3 +

4

3
S2T(3.7)3.3 Interfae struture for Planar and HomoeotropiAnhoringThis setion brie�y reviews the methodology for the solution of interfaial struturein the ases of homoeotropi and planar alignment[38℄. While the exat solutionin the ase of homoetropi alignment, as originally proposed by de Gennes, moti-vates the anonial tanh form for the uniaxial order parameter, the more omplexsituation of planar anhoring requires the simultaneous solution of equations ofmotion for both S and T , in addition to the equation for θ[105℄. We disuss howthe Popa-Nita, Slukin and Wheeler solution[105℄ of the planar ase an be gener-alized, in a variational sense, to the more general problem of an oblique anhoring33



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionondition.3.3.1 Homeotropi AlignmentThe equation of motion for homoeotropi boundary onditions is easily obtainedby setting θ = 0, in the de�ning equations above. This immediately yields,
1

2
∂2
zS = S − 3S2 + 2S3 + T 2 +

2ST 2

3
, (3.8)

1

2(3 + 2κ)
∂2
zT =

1

3
T + 2ST +

2T 3

9
+

2S2T

3
. (3.9)It is easy to see that these equations have the solutions

S =
1

2
(1 + tanh(

z√
2
)), T = 0; (3.10)Here the treatment of de Gennes is exat.3.3.2 Planar AlignmentThe ase of planar alignment follows from setting θ = 90◦ in the Euler-Lagrangeequations. This then yields the following set of oupled partial di�erential equa-tions for the S and T order parameters,

(6 + κ)

(3 + 2κ)
∂2
zS +

κ

(3 + 2κ)
∂2
zT = 4S − 12S2 + 8S3 + 4T 2 +

8ST 2

3
, (3.11)

κ

(3 + 2κ)
∂2
zS +

(2 + κ)

(3 + 2κ)
∂2
zT =

4

3
T + 8ST +

8T 3

9
+

8S2T

3
. (3.12)In the zeroth order aproximation we drop terms in T as in the solution of the�rst equation. This then yields S = Sc

2
(1+tanh( z√

2ξ
)) where ξ =

√
1+k/6
1+2k/3

. Puttingthis in equation (3.12), saling z again with √
2ξ and negleting the nonlinear term,

34



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionwe get the following equation.
∂2
zT = 2β(tanh2(z) + 8 tanh(z) + 9)T

+
κ

2 + κ
tanh(z)(1 + tanh(z))(1 − tanh(z)), (3.13)with β = 6+κ

3(2+κ)
.The PSW approximation now onsists of dropping the ∂2

zT term, yielding thealgebrai equation
2β(tanh2(z)+8 tanh(z)+9)T = − κ

2 + κ
tanh(z)(1+tanh(z))(1−tanh(z)), (3.14)whih then immediately yields

T = − κ

2β(2 + κ)

tanh(z)(1 + tanh(z))(1 − tanh(z))

(tanh2(z) + 8 tanh(z) + 9)
. (3.15)We have reently suggested an improvement to these results, motivated by our testsof the self-onsisteny of the PSW approximations[66℄. These tests indiate thatthe ∂2

zT term dropped by PWS should be retained for a more aurate desriptionof the interfae. Our analyti results for this ase, expressed as a sum over hyper-geometri funtions, agree well with numerial solutions of the GLdG equationsand represent a signi�ant improvement over the PSW solution, partiularly in thease of small κ.3.4 Numerial Minimization of the Ginzburg-Landau-de Gennes Free Energy for the Interfae Prob-lemOur numerial results for the isotropi-nemati interfae with an oblique anhor-ing ondition are obtained from a diret minimization of the Ginzburg-Landau-deGennes funtional, with boundary onditions whih ensure the presene of theinterfae as well as impose the required anhoring ondition on the θ �eld. Ournumerial methodology is the following: De�ning a system size L, we disretizethe one-dimensional (z) oordinate into N points, de�ning δ = L/N . We use,35



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringCondition

−10 −5 0 5 10
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

z

 

 

I N

κ = 4 θ
e
 = 90o

−5 0 5
0

0.2

0.4

0.6

0.8

1

z

 

 

I N

Minimization
Spectral

T

S
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Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringCondition(S = 1, T = 0, θ = θe).The loation of the interfae is �xed at the entre, by imposing S = 1/2 atthe entral site. In priniple, in a system of �nite size L, our methods yield aonstrained minimum for the following reason: The elasti energy on the nematiside is minimized by allowing the nemati region to expand as far as possible,e�etively foring the interfae to invade the isotropi side. However, as disussedabove, in the thermodynami limit L → ∞, this elasti energy ost redues as
1/L, vanishing in the thermodynami limit where a stable interfae is obtained.Alternatively, one an think of this in terms of adding a loalized pinning potentialwith strength vanishing as L → ∞, whih serves only to stabilize the loation ofthe interfae.This relatively simple approah yields results of very high quality, as we haveheked by a diret omparison to exat results for the planar anhoring ase aswell as to numerial alulations using spetral methods in the ase of planaranhoring. We have used the minimization routines (NMinimize) in Mathematiato �nd the stationary values of S,T and θ whih minimize the free energy subjetto the applied boundary onditions. This routine selets the most appropriatemethodology from a variety of minimization tehniques available, iterating till anauray between suessive iterations of 1 part in 108 is obtained.As a test of the quality of the minimization methodology whih will be usedin this hapter, we show in Fig. 3.2, pro�les of the biaxial (T ) (main �gure) anduniaxial (S) order (inset) parameter as a funtion of the oordinate z aross theinterfae, as omputed by the numerial spetral methodology of Ref. [66℄ and theminimization tehnique desribed above, for the ase of planar anhoring i.e. θe =

90◦, with κ = 4. Results obtained from the numerial minimization of the LGdGfuntional are shown as the solid line whereas results from the spetral olloationsheme of Ref. [66℄ are shown as points. These oinide to high auray.3.5 Variational MethodClearly, the solution of the full set of equations for S, T and θ given above is aformidable problem. Our approah to this problem therefore proeeds throughthe onstrution of simple, physially motivated variational hoies for θ(z), S(z)37



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionand T (z). This hoie is made keeping in mind that requirement that the resultsshould be onsistent with omputations in the simpler θ = 0, 90◦ limits, where theangular variation is absent and the de Gennes solution and the PSW solution areobtained, respetively.Our approah begins by assuming a pro�le of the form
S =

1

2
(1 + tanh(az)) and T = −b tanh(cz)

(1 + tanh(cz))(1 − tanh(cz))

tanh2(cz) + 8 tanh(cz) + 9
.(3.16)together with the assumption that the theta variation an be �tted to a simplyparametrizable funtion. We have examined a variety of suh funtions for thease of planar anhoring, inluding (a) θ = 90◦ − 2ψ

L
z for z > 0, 90◦ for z < 0,(b) θ = 90◦ − ψ

2
(1 + tanh(a1z)) whih implies that at z = ∞, θ = 90◦ − ψ and at

z = −∞, θ = 90◦, () θ = 90◦ − ψ
2
(1 + tanh(a1z)) whih implies that at z = ∞,

θ = 90◦ − ψ and at z = −∞, θ = 90◦, (d) θ = ψ
2
(1 + tanh(a1z)) (e) θ = ψ

2L
z + ψ/2and (f) θ = p + ψ

2
(1 + tanh(a1z)).Our best results are obtained with the variational form

θ = p+ ψ
z

L
(3.17)subjet to a onstraint p+ ψ = θL where θL is the value of angle at L, the systemsize. It will be our intention to take the L→ ∞ limit later.Note that the hoie p = 90◦, ψ = 0, a = 1, b = κ

2β(2+κ)
reovers the pro�leof PSW for the planar ase. The parameter values ψ = 0, b = 0 generate the deGennes solution. Thus, the two extreme limits of the variation of the anhoringangle an be obtained with the appropriate hoie of parameter values in thevariational form hosen above. These an be simply generalized to the ase ofhomoeotropi anhoring.3.6 Numerial Methodology for the Variational So-lutionThese variational ansätze for S and T are inserted into the form for the free energy,whih is then minimized with respet to the parameters a, b, c, and p. This min-38



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionimization is arried out using Mathematia. We use the "Nelder-Mead" methodfor the minimization of a funtion of n variables. This is a diret searh methodwhih uses an initial hoie of n+ 1 vetors whih form the verties of a polytopein n−dimensions and a methodology for hanging the verties of this polytopeiteratively. The proess is assumed to have onverged if the di�erene between thebest funtion values in the new and old polytope, as well as the distane betweenthe new best point and the old best point, are less than preset values, typially ofthe order of 10−10.To eliminate problems arising from an inorret hoie of initial values, wehave omputed the minima for about 100 separate initial onditions and hosen theparameter values orresponding to the least value of the free energy from these. Ourresults for the minimization have been rossheked using the di�erential evolutionmethod, a simple stohasti funtion minimizer.3.6.1 Results from the Numerial and Variational Minimiza-tion: κ > 0In Fig. 3.3, the main panel and inset of (a) and (b) shows pro�les of the biaxial(T ) and uniaxial (S) order parameter as a funtion of the oordinate z aross theinterfae. We show the T pro�le in the main panel for systems of size L = 50, 1290and parameter values (a) κ = 8, θe = 30, and (b) κ = 8, θe = 60. N and I in the�gure refer to nemati and isotropi respetively. The insets to (a) and (b) showthe orresponding pro�les for S. We note that for larger anhoring angles, the Tpro�le onverges faster as a funtion of system size than for smaller angles; ontrastthe behavior for θe = 30o and θe = 60o in the �gure. The pro�les are qualitativelysimilar to pro�les obtained for the θe = 90o degree, and asymptotially maththis pro�le as L → ∞. These are omputed by diret numerial minimization ofthe LGdG funtional, via the methodology desribed in the previous setion. Weallowed θ on the isotropi side to vary, �nding that the free energy minimum wasobtained when θ was stuk to the value it attained at the loation of the interfae.This value is somewhat smaller than 90◦ for small system sizes but asymptotes tothis value as L goes to in�nity.In Fig. 3.3, in the insets to () and (d), we show the unsaled pro�le of
θ, the angle desribing the orientation of the loal diretor �eld as a funtion of39
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Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringCondition
z aross the interfae, as obtained from our numerial minimization. We showdata for systems of size L = 125, 258, 516 and 1290, and for parameter values (a)
κ = 8, θe = 30, and (b) κ = 8, θe = 60. The main panel, in both ases, plotsthe same data as a funtion of the saled oordinate z/L on the x−axis and thequantity (θ − θe)/(θmax − θe) on the y−axis , thus normalizing the value to itsmaximum. This produes high quality ollapse of the data, indiating that theangle pro�le is linear on the nemati side, interpolating linearly between its valueat the interfae to the anhored value of θe at z = L. Also, as the system sizeis inreased, the value at the interfae (z = 0), approahes 90◦, indiating thatanhoring at the interfae is always planar in the asymptoti limit.In Fig. 3.4 we show the omparison between the omputed 3-parameter varia-tional pro�le for the angle θ as a funtion of the oordinate z aross the interfae,for a system of size L = 125, as obtained from a diret numerial minimization ofthe LGdG funtional (solid line) and the variational alulation desribed in thetext (point). These are shown for parameter values (a) κ = 8, θe = 30 and (b)
κ = 8, θe = 60. The inset labeled (i) in eah sub-�gure shows the orrespond-ing pro�le of S, whereas the inset labeled (ii) shows the pro�le of T . Note thatthe variational result oinides with the result obtained from a diret numerialminimization to high auray. As the system size is inreased, the value of θ atthe interfae approahes 90◦ within both the variational and the diret numerialminimization approahes, as indiated in Fig. 3.5.Fig. 3.6 shows the variational parameters a (a), b (b) and c () as a funtionof system size L, together with the variation of the variational angle p (d), plottedfor κ = 1. These parameters onverge to their L→ ∞ values orresponding to thease of planar anhoring. In all ases the parameter p onverges to the asymptotivalue of 90◦ as the system size is inreased, onsistent with planar anhoring.3.6.2 Results from the Numerial and Variational Minimiza-tion: κ < 0Stability imposes the requirement that 3+2κ > 0, but does not onstrain the signof κ (or, equivalently L2), apart from this requirement. In this setion we explorethe onsequenes of a negative value for L2.We �nd that, onsistent with de Gennes' predition, a negative L2 ( or κ) on-42
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Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionsistent with stability favours homoeotropi anhoring at the interfae, in ontrastto the ase of positive L2. Thus, the biaxiality T generially vanishes as L → ∞,whereas S assumes the anonial tanh form obtained by de Gennes. This an beseen from Fig. 3.7 whih shows the variation of S and T , for L = 125, plotted for
κ = −1. The anhoring at L is set to an oblique angle of 30◦. The S and T pro�lesare onsistent with T = 0 for homoeotropi anhoring.The preferene for homoeotropi anhoring an be seen from Fig. 3.8 whihshows the diretor tilt angle saled to its minimum value for eah system size(L = 125, 258 and 516, against z/L for κ = −1, where an asymptoti, obliqueanhoring angle of 30◦ is imposed on the system at L. The inset shows the bareangles as a funtion of z for these di�erent system sizes. The exellent data ollapseindiates that angle pro�les in the ase of L2 < 0 sale in the same way as the
L2 > 0 ase, exept that homoeotropi anhoring is favoured in this ase.Finally, in Fig. 3.9, we show, in the main �gure, the pro�le of T , the biaxialorder parameter, for κ = −1, in the two extreme ases of planar (0◦) and ho-moeotropi (90◦) anhoring, with L = 50. Importantly, the pro�le of T is invertedwith respet to pro�les obtained for κ > 0, with the minimum appearing on theisotropi side of the interfae rather than the nemati side, as earlier. The pro�leof S is onsistent with a tanh form. While the pro�le of T is non-zero for planaranhoring, biaxiality vanishes for the homoeotropi anhoring ase.These results are onsistent with the general trends observed in the ase of
κ > 0, with the di�erene that homoeotropi, rather than planar, anhoring ispreferred one κ turns negative.3.7 Asymptoti SolutionWe an use our ansatz for S and T to hek the self-onsisteny of our onjeturedbehaviour for θ. Our hosen forms imply S = 1 − e−2az and T = −be−2az deepinto the nemati phase, as z → ∞. Then S ′ = 2ae−2az , T ′ = 2abe−2az and
S ′′ = −4a2e−2az , T ′′ = −4a2be−2az . Inserting these into the equation for θ asbelow,

4(2 + κ) (3S ′ + T ′) θ′ − κ sin(2θ)(S ′′ − T ′′),+2(2 + κ)(3S + T )θ′′ = 0, (3.18)48



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionwe get
8(2 + κ) (3 + b) ae−2azθ′ + κ sin(2θ)(1 − b)a2e−2az + 6(2 + κ)θ′′ = 0. (3.19)As z → ∞, this equation redues to θ′′ = 0. Thus, θ should have a linear pro�lein this asymptoti limit, taking the form

θ = p+ ψ
z

L
. (3.20)We an also ompute orretions to this pro�le for z → ∞−. Let us now expandabout the z = ∞ limit, in whih ase θ′′ = 0. Thus,

θ′

sin(2θ)
=

−κa(1 − b)

2(2 + κ)(3 + b)
. (3.21)Integrating the left-hand side of this equation, we obtain

1

2
ln tan(θ) − lnC =

−κa(1 − b)z

2(2 + κ)(3 + b)
, (3.22)whih has a solution θ = tan−1[Ce

−κa(1−b)z
(2+κ)(3+b) ]. It an be seen that this will vanish asz goes to ∞ and is, in e�et, negligible apart from a region lose to the interfae,at z = 0.3.8 Summary and ConlusionsIn this hapter, we have presented our results for the problem of the isotropi-nemati interfae within Ginzburg-Landau-de Gennes theory, for the ase in whihan oblique anhoring ondition is imposed on the system asymptotially on thenemati side, keeping the interfae pinned at the origin. In this ase, we �ndthat nemati elastiity ditates that the nemati orientation interpolates smoothlybetween a value of 90◦ at the interfae (planar anhoring) to the anhored valueat the boundary on the nemati side when κ > 0. Thus, the preferred value of theanhoring angle at the interfae is 90◦ in this ase. The ase κ < 0 with κ satisfyingthe stability requirement κ > −1.5 leads to stable homoeotropi anhoring at theinterfae, as predited by de Gennes. 49



Chapter 3. The Isotropi-Nemati Interfae with an Oblique AnhoringConditionWe have used simple variationally based desriptions of the struture of theinterfae, with our methods apturing essential features of interfae struture, bothqualitatively and quantitatively, for the ase of oblique anhoring. Our methodsaess the non-trivial struture of biaxiality at the interfae, inluding the largetail towards the isotropi side and the hange in the sign of the biaxial orderparameter aross the interfae. Our approah also aptures the inversion of thepro�le of biaxiality as κ rosses zero.The results presented here are broadly onsistent with results from densityfuntional approahes, moleular simulations and approahes based on the Onsagerfuntional, but neessitate fewer approximations, trunations or assumptions aboutspei� model systems. Thus, oarse-grained approahes based on the Ginzburg-Landau-de Gennes funtional provide a powerful methodology for understandinggeneri features of the isotropi-nemati interfae.
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Part IILattie Models For RheologialChaos in Sheared Nematis
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4Introdution to Rheology of Nematis
4.1 IntrodutionComplex �uids are internally strutured, possesing a maromoleular arhite-ture whih leads to a oupling between suh struture and an imposed �ow. Therheologial properties of omplex �uids have been studied extensively for thisreason[60, 35, 106℄. The goal of theoretial rheology is to relate deformation historyto marosopi properties of the material by developing onstitutive equations thatrelate stress within the material to its deformation history. Constitutive equationstogether with mass and momentum onservation an be used to predit the �owof the material.4.1.1 StressA entral role in the study of rheology is played by a tensor �eld σij , de�ned at allpoints within the medium and alled the stress. The stress σij (Fig. 4.1) is de�nedin terms of the omponent in the j-th diretion of the fore per unit area exertedon an in�nitesimal surfae element with normal in the i-th diretion. Thus, thefore per unit area in the j-th diretion is given by

Fi = σijnj (4.1)where nj is a unit vetor normal to the surfae Suh fores ause deformations inelasti media and �ow in �uid media.
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Chapter 4. Introdution to Rheology of Nematis

Figure 4.1: Components of the stress tensor, ating on a small ube of material4.1.2 StrainThe deformation indued by σ is manifest in a strain (or strain history) of themedium. For an elasti medium, assuming a �xed referene state, the deviationsfrom that state are parametrized in terms of a displaement vetor at every point inspae. Sine a uniform translation of the material osts no energy, the only energyost must be assoiated with a gradient in the deformation �eld. This deformationde�nes a tensor �eld, alled the strain tensor. For solid media, the stress tensor isassumed to be a funtion of the deformation gradient tensor or strain tensor with(within linear elastiity), a fourth order tensor onneting stress and strain. Thisis just the ontinuum version of Hooke's law. For �uid media, no single referenestate exists and �uid stresses arise from the relative motion of adjaent parts ofthe �uid.
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Chapter 4. Introdution to Rheology of NematisDeformation gradient tensorConsider a material in whih a vetor r′ onnets two points in the medium attime t′. This displaement vetor is hanged to r in the time interval between t′and a later time t, as shown in Fig. 4.2. This leads to stresses in the medium.The vetor r' is rotated and strethed as a result of the deformation. Theinverse of the deformation tensor F , i.e. F−1, is de�ned through
t’ t

r’

r

A’
A

B’ B

Figure 4.2: Transformation of the displaement vetor upon a deformation
F−1
ij =

∂rj
∂r′i

(4.2)whih illustrates how omponents of the displaement tensor vary with the defor-mation. Fig. 4.3 shows how the omponents of F−1 are onstruted for simple
Figure 4.3: Shear deformations of a blok of materialshear, in whih elements retain their volume but hange in shape. This is given by54



Chapter 4. Introdution to Rheology of Nematisthe tensor omponents in matrix form,
F−1 =




1 0 0

γ 1 0

0 0 1


 (4.3)Fig. 4.4 shows the ase of extensional deformation, for whih the inverse ofdeformation tensor is given by

F−1 =



λ1 0 0

0 λ2 0

0 0 λ3


 (4.4)If the material is inompressible, so that the volume is unhanged by deforma-tion, then λ1λ2λ3 = 1. More generally, for any volume preserving deformation,

det F−1 = 1 (4.5)

Figure 4.4: Extensional deformations, illustrating the de�nitions of λ1, λ2 and λ3In general, the tensor F−1(t, t′) arries the time indies t and t′, sine it de-sribes the deformation that a material partile undergoes between the past time
t′, and the present time t. F−1(t, t′) is thus the umulative deformation that oursbetween time t′ and t.
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Chapter 4. Introdution to Rheology of NematisVeloity gradient tensorIf we take the time derivative of F−1, from Eq. 4.2
∂

∂t
F−1 =

∂ṙ

∂r′
=
∂r

∂r′
· ∂ṙ
∂r

= F−1 · ∇v. (4.6)where ∇v is the veloity gradient tensor. For simple shear as shown in Fig. 4.3 itis given by
∇v =




0 0 0

γ̇ 0 0

0 0 0


 (4.7)and for extensional �ow , as shown in Fig. 4.4 is given by

∇v =



λ̇1 0 0

0 λ̇2 0

0 0 λ̇3


 (4.8)For inompressible �ow ∇ · v = 0.Finger TensorIt might have been thought that σij = σij(F

−1) would uniquely speify the stressfor deformed elasti media. However, onstraints suh as frame invariane indiatethat the stress in elasti media must depend on the following ombination, alledthe Finger tensor,
C−1 ≡

(
F−1

)T · F−1 (4.9)or its time derivative, in the ase of �uid media. For visoelasti media, whihbehave like elasti solids at short times and like �uids at long times, the stressmust be a funtion of both the �nger tensor and its time derivative, in suh as wayas to yield the right behavior in these two extreme limits.For the ase of simple shear C is given by
C−1 =




1 + γ2 γ 0

γ 1 0

0 0 1


 (4.10)
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Chapter 4. Introdution to Rheology of NematisThe rate of hange of the Finger tensor is related to veloity gradient as follows
Ċ−1 = (∇v)T · C−1 + C−1 · ∇v (4.11)

Figure 4.5: Depition of �ow and shear stresses in the Couette geometry, when a�uid is plaed between two plates, with the upper plate being moves at a onstantveloity
4.1.3 The Stress-Strain-rate relation and VisosityThe relation between suh veloity gradients and the internal stress tensor is fun-damental to the theory of �uid mehanis and takes the form

σij = f(∇kvl) (4.12)In general the stress tensor and the veloity gradients are onneted through afourth order tensor i.e. σij = λijkl∇kvl. However, symmetries and physial argu-ments an be used to greatly redue the number of independent omponents of
λijkl. For an inompressible �uid system, only one suh omponent survives. It isalled the shear visosity.A Newtonian liquid satis�es the onstitutive equation

σij = 2ηΓij, (4.13)
57



Chapter 4. Introdution to Rheology of Nematiswhere Γij is the symmetri part of the veloity gradient tensor
Γij = (∂ivj + ∂jvi)/2. (4.14)and η is the shear visosity. The antisymmetri part of the veloity gradient tensoris alled the vortiity. The vortiity is related to the angular veloity of the �uid.The state-of-stress, or total stress, τ is the stress tensor plus a pressure ontri-bution:

τij = σij − pδij (4.15)Tensors that are proportional to δ are alled isotropi. For an inompressiblematerial, only gradients of p a�et �uid motion. Thus a onstant isotropi tensorof arbitrary magnitude an be added to τ without a�eting the physis. Thus, σijis determined only up to an additive isotropi term. Hene the stress free state isequivalent to the state of isptropi stress. This is why only the stress di�erene,
σ11 − σ22 , and not σ11 and σ22 separately, an be measured in simple shear.The onstitutive relation in a �uid onnets stress and strain rate. In generalsuh a relationship involves memory terms i.e the instantaneous stress is deter-mined by the time history of the strain rate. For a Newtonian �uid, it is assumedthat suh a history dependene is absent. Thus, in general, while

σij(t) =

∫ t

−∞
dt′G(t− t′)γ̇(t′) (4.16)for a Newtonian �uid, the kernel G(t−t′) = ηδ(t−t′). In addition, for a Newtonian�uid, it is also required that the two normal stress di�erenes N1 = σxx − σyy and

N2 = σyy − σzz vanish for pure shear �ow.The physial piture for the shear visosity η, is the following. Consider twoplates separated by a distane d when plaed parallel to eah other (Couette ge-ometry), and ontaining a �uid (Fig. 4.5). The upper plate is moved at a onstantveloity, induing a onstant veoity gradient between the top plate and the bot-tom plate, if the veloity gradient is not large enough to signi�antly perturb the�uid. Then, there is a fore per unit area on the upper plate ating to retard itsmotion. The shear visosity de�nes the proportionality of this stress to the veloitygradient. 58



Chapter 4. Introdution to Rheology of Nematis

Figure 4.6: Shear stress vs Shear Rate for two �uids, with the linearity indiatingregimes of onstant visoity. Figure from Rheology of Complex Fluids ,Abhijit P.;Krishnan, J. Murali; Kumar, P. B. Sunil (Eds.) Springer (2010).4.2 Non-Newtonian FluidsFor a Newtonian �uid, the shear visosity is a onstant independent of the veloitygradient, equivalently the shear rate. Thus a plot of shear stress vs. shear rateyields a straight line, whose slope is the shear visosity. The role of the bulkvisosity µ is usually ignored, sine the approximation of an inompressible �uidis valid in most ases of interest to the soft matter physiist. 59



Chapter 4. Introdution to Rheology of NematisA non-Newtonian �uid exhibits a deviation from this linear relationship be-tween stress and strain, with the visosity dereasing at large shear rates (shearthinning) or inreasing at large shear rates (shear thikening). Suh non-Newtonianbehaviour arises as a onsequene of the oupling of internal mirostruture to the�ow and an be haraterized in terms of two dimensionless quantities, the Weis-senberg and Deborah numbers.A rough ategorisation of non-Newtonian �uid behaviour for onveniene is asfollows1. The stress σ at a point only depends on the instantaneous value of the shearrate γ̇ at that point. One an give various name to these material like purelyvisous, inelasti, time-independent or generalized Newtonian �uids(GNF).2. The Stress σ depends on the duration of shearing as well as on the magnitudeof γ̇. Suh �uids are known as time-dependent �uids.3. The stress σ shows both visous and elasti behaviour. For instane, thislass of materials shows partial elasti reovery, reoil, reep et. They arealled viso-elasti or elastio-visous.The lassi�ation sheme is arbitrary and most real materials display a ombina-tion of two or even all these di�erent features under appropriate irumstanes.Figure 4.7 shows the �ow relation for some ommon non-Newtonian �uids.For �uids with a harateristi time sale λ, plaed in a �ow with a harater-isti shear rate γ̇ and a harateristi frequeny ω, or harateristi time T , twodimensionless groups an be formedDeborah number De = λω or λ/T,Weissenberg number Wi = λγ̇ (4.17)The Deborah number, the ratio between the �uid relaxation time and the �owharateristi time, represents the transient nature of the �ow relative to the �uidtime sale. If the observation time sale is large (small De number), the materialresponses like a �uid. If it is small (large De number), the response is solid-like.From this point of view, there is no fundamental di�erene between solids and60



Chapter 4. Introdution to Rheology of Nematis

Figure 4.7: Shemati of the �ow relation (stress vs shear rate) illustrating non-Newtonian behaviour Figure from Rheology of Complex Fluids, J. Murali Krishnanet al.liquids; it is only a matter of time sale. In the limit, when De = 0 one has aNewtonian liquid, and when De = ∞, an elasti solid.The Weissenberg number ompares the elasti fores to the visous e�ets.One an have a �ow with small Wi number and very large De number, and vieversa. One an �nd signi�ant non-Newtonian behaviour in a large Wi number�ow. Therefore, the onstitutive equation must ontain non-Newtonian physis.A guide for the right hoie of onstitutive equations an be �nd with the help ofPipkin's diagram (Pipkin and Tauner [103℄). 61
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Figure 4.8: Pipkin's diagram, with the y axis showing the Weissenberg numberand the x-axis showing the Deborah number. Regimes of non-linear and linearvisoelastiity as well as of regimes of visometri �ow and rubber elastiity areshown. Figure from Phan Thein N Understanding Visoelastiity, Springer (2002)
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Chapter 4. Introdution to Rheology of Nematis4.3 Constitutive ModellingIn isothermal �ow the onservation of energy is not relevant. Conservation ofmass and onservation of momentum form four balane equations. The number ofvariables in question are ten: three veloity, one pressure and six independent stressomponents due to onservation of angular momentum. Thus one need six extraequations to form a well posed mathematial problem. A rheologial equation ofstate provides the missing information by onneting the stress and the kinematis.There are two di�erent approahes for onstitutive modelling, the ontinuumapproah and the mirosopi approah. In the ontinuum approah the relevantvariables are identi�ed, and are related in a frame work that ensures invarianeunder a hange of frames. Di�erent restritions are then imposed to simplify theonstitutive equation.In the mirostruture approah, one postulates a physial model of the mi-rostruture representing the material. Solving the deformation at that level usingwell-tested physial priniples (Newton's laws, onservation laws, et.) allows theaverage stress and strain to be related, produing a onstitutive equation.In the ontinuum approah one is usually left with a general onstitutive equa-tions, whih may have some undetermined funtions or funtionals. The detailsof these funtions or funtionals may be furnished by a relevant experiment. Inthe mirostruture approah, the onstitutive equations beome more spei� andtherefore more relevant to the material in the question.4.3.1 A Simple Equation for a Visoelasti MaterialFor elasti materials, the simplest onstitutive equation is given by
σij = GC−1

ij (4.18)as is easily veri�ed using Eq. 4.10. The above equation an also be a onstitutiveequation for visoelasti simple �uids in rapid deformations.For slow deformations, the ontribution to the stress of strain inrements o-uring in the remote past must be weighted less than than those ouring in thereent past. Fig. 4.9 illustrates the dependene of the umulative deformation on63



Chapter 4. Introdution to Rheology of Nematistime. If one weights eah strain inrement by exp ((t′ − t)/λ), where t is the ur-rent time and t′ is the past time, and λ the relaxation time, the inrement in thestress is given by
dσ12 = Ge(t

′−t)/λγ̇(t′)dt′ (4.19)Hene the shear stress is given by integrating the expression
σ12 = G

∫ t

−∞
e(t−t

′)/λγ̇(t′)dt′ = G

∫ t

−∞

1

λ
e(t−t

′)/λγ(t′, t)dt′ (4.20)The last term of the Eq. 4.20 is due to integrating by part and γ(t, t′) is the shearstrain that aumulated between times, t′ and t.
γ(t, t′) =

∫ t

t′
γ̇(t

′′
) dt

′′ (4.21)In tensorial form Eq. 4.20 is given by
σ = G

∫ t

−∞

1

λ
e(t

′−t)/λC−1(t, t′) dt′. (4.22)Equation 4.22 is known as the Lodge equation. In a very fast deformation, thestrain is imposed just before the present time, t. Then, C−1 is independent of t′.Therefore C−1 is a onstant and Eq. 4.22 reovers the elasti limit.
σij = GC−1

ij (4.23)On the other hand, if the deformation is very slow then C−1 is a small perturbationfrom δij. From Eq. 4.10, one an write
C−1
ij = δij + 2(t− t′)Γij . (4.24)Then Eq. 4.22 gives,
σij = Gδij + 2GλΓij (4.25)Thus, apart from an isotropi term, the stress tensor is 2ηΓij, where the visosity

η = Gλ. This reovers the Newtonian limit.
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Figure 4.9: Dependene of the umulative deformation on timeThe di�erential version of the Lodge equation is given by
σ̇ −∇vT · σ − σ · ∇v +

1

λ
σ =

G

λ
δ (4.26)whih is alled the upper-onveted Maxwell equation (Eq. 4.26) The visosity insimple shear predited by the Lodge equation is given by

η =
σ12

γ̇
=
G

γ̇

∫ t

−∞

1

λ
e(t−t

′)/λ γ̇(t− t′) dt′ = Gλ (4.27)Thus there is no shear thinning and η is onstant.The �rst normal stress di�erene, N1 = σ11 − σ22 an be easily alulated. Forsimple shear C−1
11 − C−1

22 = γ2 = γ̇2(t − t′)2. Inserting this in the Lodge equationgives,
N1 = 2Gλ2γ̇2 (4.28)Thus Ψ1 = N1/γ̇

2 = 2ηλ. From this one an alulate the relaxation time. N2 =

σ22 − σ33 is zero sine C−1
22 − C−1

33 = 0.For the Newtonian �uid all normal stress di�erenes are zero. The Lodgeequation predits, qualitatively, the non-Newtonian phenomena of rod-limbing,extrudate swell and the presene of spinning �ows suh as the tubeless siphon.
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Chapter 4. Introdution to Rheology of NematisThe Upper Conveted Maxwell (UCM) equation an also be written as follows.
σ̇ − ΩT · σ − σ · Ω − ΓT · σ − σ · Γ +

1

λ
σ =

G

λ
δ (4.29)where Ω and Γ are the antisymmetri and symmetri part of ∇v the veloitygradient tensor.A related model equation for nona�ne motion is given by Johnson and Segal-man, as is known as the Johnson-Segalman model equation. This is

σ̇ − (ΩT · σ + σ · Ω) − a(ΓT · σ + σ · Γ) +
1

λ
σ =

G

λ
δ (4.30)where a is alled the slippage parameter. This parameter is set to unity in the aseof the upper onveted Maxwell model.4.3.2 Linear RheologyThe onept of linear visoelastiity originated with Maxwell, who proposed

dσ

dt
= G

dγ

dt
− σ

λ
, (4.31)where σ is the (one-dimensional) stress, γ is the (one-dimensional) strain, G isthe modulus of elastiity and λ is a time onstant. This is easily obtained fromEq. 4.26. Note that when the relaxation time is zero, keeping η = λG onstant,the Newtonian model is reovered. When the relaxation time is in�nitely large, afurther integration yields the Hookean model.Somer years later, Meyer introdued the equation

σ = Gγ + η
dγ

dt
, (4.32)Note that both the Maxwell and Meyer desriptions indiate that the stress de-pends only on the instantaneous strain rate and its time derivative. Boltzmannritiised the lak of generality in these models, proposing instead that the stressat the urrent time depends not only on the urrent strain but on the past strainsas well.It was assumed that a strain at a distant past ontributes less to the stress than66



Chapter 4. Introdution to Rheology of Nematisa more reent strain. This is the familiar onept of fading memory. Furthermore,linear superposition was assumed. Supposing that strain between times t′ and
t′ + dt′, say dγ(t′), ontributes G(t− t′)dγ(t′) to the stress, then the total stress attime t is

σ(t) =

∫ t

−∞
G(t− t′)dγ(t′) =

∫ t

∞
G(t− t′)γ̇(t′)dt′ (4.33)Here, G(t) is a dereasing funtion of time, the relaxation modulus, and γ̇ is theshear rate.The three-dimensional version of this relation is

σij(t) = 2

∫ t

∞
G(t− t′)Γij(t

′)dt′ (4.34)Linearity, ombined with time-translational invariane of material properties, re-quires that
σxy = σyx = G(t− t′)γ (4.35)all other deviatori omponents of σij vanish, at linear order in γ, by symmetry.Osillatory �owThe ase of an osillatory �ow is often studied. In this ase γ(t) = γ0e

iωt (takingthe real part whenever appropriate). Substituting this in the above equation givesafter trivial manipulation
σxy = γ0e

iωtG∗(ω) (4.36)where G∗(ω) = iω
∫∞
0
G(t)eiωtdt. The omplex modulus G∗(ω) = G′(ω) + iG′′(ω),where G′ and G′′ are the real and imaginary part of G∗(ω).The linear Maxwell model.The simplest imaginable G(t) takes the form, G(t) = G0exp(−t/τM ). When theomplex modulus is written as G = G′ + iG′′ it an be seen that G onsists of aomponent whih is in phase with the strain and one whih is out of phase. Thein phase part, G′ , is known as the storage or elasti modulus and the out of phasepart, G′′ , is the loss or dissipative modulus.A perfetly elasti solid of modulus G0 would have G′ = G0 and G′′ = 0. In thease of a visous liquid with visosity η then G′ = 0 and G′′ = ωη sine σxy is in67



Chapter 4. Introdution to Rheology of Nematisphase with the shear rate. For a visoelasti material both G′ and G′′ are funtionsof the applied frequeny,ω. In general, the loss modulus dominates at low frequen-ies, while the elasti modulus dominates at high frequenies. The material rossesover from visous behaviour to elasti behaviour at some intermediate frequenywhere G′ = G′′ .For the Maxwell model, where G(t) = G0exp(−t/τM ), haraterised by a re-laxation time, τM , the omplex modulus is
G′(ω) = G0

ω2τ 2
M

1 + ω2τ 2
M

G′′(ω) = G0
ωτM

1 + ω2τ 2
M

(4.37)4.3.3 Nonlinear rheologyNonlinear rheology addresses the response of a system to �nite or large stresses.In this ase the superposition priniple assumed in linear response, does not hold.The range of independent measurements is thus muh wider. Nonlinear versionsexist of the step-strain and step-stress response measurements. For osillatorymeasurements in whih either stress or strain osillate sinusoidally, the induedstrain or stress will have a more ompliated waveform in the non-linear regime.
σxy = G(t− t′; γ)γ (4.38)if G(t− t′; γ) = G(t− t′)h(γ), the system is alled `fatorable'.4.4 Wormlike MiellesAmphiphili moleules in water have a tendeny to self-assemble by aggregatingreversibly into larger objets. The simplest of these is a spherial aggregate alled a`mielle'. For geometrial reasons, a spherial mielle is self limiting in size, unlessthe solution ontains oil that an �ll any hole in the middle.At the ritial mielle onentration or CMC [64℄ mielles proliferate abruptly.By adding salt one an hange the shape of the mielles. The most stable lo-al paking of amphiphili moleules leads to an evolution from spherial miellestowards a ylindrial shape; see Fig. 4.10. The transition from spherial to ylin-drial shapes begins with mielles elongating into a short ylindrial body with68



Chapter 4. Introdution to Rheology of Nematishemispherial end aps. The body then inreases in size and eventually beomesvery long.The resulting giant mielles soon exeed the persistene length, of a few hundredmirons, at whih thermal motion overomes loal rigidity. Suh giant miellesresemble a �exible polymer hain. After rossing the overlap threshold, thesehainlike objets entangle but remain in an isotropi phase with no long-rangeorientational order. Suh giant mielles are often referred to as �worm-like mielles�or �living polymers�.At very high onentrations, orientational ordering an arise, as an positionalordering, giving for example a hexagonal array of in�nite straight ylinders[23℄.A phase diagram is given in Fig. 4.11. A number of reent review artiles areavailable on the rheology of worm like mielles. [8, 137, 44, 23, 136, 115, 89℄.
Figure 4.10: Cross-setion and side-view of a worm-like mielle. Figure taken fromhttp://eb.am.a.ukWithin a mean �eld theory [118, 95℄ the free energy in terms of c(N) the numberdensity of aggregates ontaining N amphiphiles or monomers is given by

βF =
∑

N

c(N)[ln c(N) + βE] + F0(φ) (4.39)where β = 1/kBT ; E is the energy of two end aps per hain and c ln c omes frommixing of mielles of di�erent length. F0(φ) ontains exluded volume interationsand solvent terms represented via the volume fration φ, with
φ = νC = ν0

∑

N

Nc(N), (4.40)where ν0 is the moleular volume of the amphiphiles and C their total onentra-tion. 69
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Figure 4.11: Shemati phase diagram for self assembly of ioni amphiphiles intogiant mielles and related strutures.The vertial axis represents volume fration
Φ of amphiphile; the horizontal is the ratio Cs/C of added salt. Figure taken fromRef. [23℄.Minimizing this free energy at �xed φ gives the distribution

c(N) ∝ exp

[
−N
N̂

]
; N̂ ≃ φ1/2 exp

[
βE

2

] (4.41)Experimental estimates of overlap volume fration indiate that they are in therange of 0.005 − 5% and E ∼ 10 − 20kBT . 70
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Figure 4.12: Elasti moduli G′/G0 and G”/G0 as funtion of the angular frequenyfor temperatures omprised between 20 and 45 degree Centigrade. G0 is the elastimodulus and the angular frequeny ω is normalized by the relaxation time of the�uid. Data are for the CPCl-NaSal wormlike mielles in water (0.5 M NaCl) at  =12 wt and are reprodued from Ref. [15℄. The solid lines orrespond to Maxwellianvisoelasti behavior.The observation whih attrated rheologial interest in wormlike mielle so-lutions was that their linear visoelasti response an often be quite auratelymodeled by a Maxwell model with just one or two relaxation times[16, 111, 110℄.Over two deades, Cates and others have developed onstitutive models whih pro-vide exellent agreement with the measured linear visoelasti response of wormlikemielles [19, 54, 22℄.In the model of Cates, it is assumed that there are two distint relaxation meh-anisms for wormlike mielles. These are: (i) a break up of the wormlike miellewith the hain breaking at any point along the length with equal probability and,(ii) the reptation of the mielle through the on�nement tube. These two meha-nism have harateristi time sales τbr and τrep for breaking and reptation. In thefast breaking limit, where the break-up time is muh shorter than the reptationtime, i.e. τbr ≪ τrep, the Cates model [125℄ predits Maxwellian behaviour of these71



Chapter 4. Introdution to Rheology of Nematisworm-like mielles with a Maxwell relaxation time τm = (τbrτrep)
1/2. A omparisonof the Maxwell model with experiment is given in the �gure (4.12).The Maxwell model �t is best for wormlike mielles in onentrated solution.For low onentration before overlaping regime, wormlike mielles show shear thik-ening behaviour and a Maxwell �t is poor, as indiated in referene [108℄.Cates and Candau [22℄ developed a saling for the relaxation time, elastimodulus(G0) and zero shear rate visosity (η0) with volume fration φ of surfatant.These predit

τm = (τbrτrep)
1/2 ∼ φ1.5, (4.42)as well as

G0 ∼ φ2, (4.43)and
η0 = G0τm ∼ φ3.5, (4.44)The predited saling behaviour is in very good agreement with experimental re-sults [13℄. In wormlike mielles whih exhibit some degree of branhing or in thepresene of strongly binding ounterions, the saling of visosity and relaxationtime break down but the modulus ontinues to follow the quadrati saling withvolume fration [120, 121, 109, 114℄The e�et of salt onentration on the rheology of wormlike mielles solutionsan be quite omplex. The visosity and relaxation time are often non-monotonifuntions of salt onentration [111, 120, 121, 34℄. Granek and Cates [54℄ showedthat the high frequeny deviations an be explained by Rouse-like relaxation modesand primitive path �utuations along the mielle hain.The linear behaviour agrees well with the Maxwell model at higher onen-trations of surfatant. The break up time τbr roughly orresponds to the angu-lar frequeny at whih the data deviates from the predition of the single modeMaxwell model[77℄ and has been found to lie between several tens of milliseondsto several hundred milliseonds [76℄. Kern et al. [77℄ show that the number ofentanglements per wormlike mielle an be approximated by the inverse of thehigh frequeny minimum in the normalised storage modulus.
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Chapter 4. Introdution to Rheology of Nematis4.4.1 A Constitutive equation for giant miellesCates has developed a onstitutive equation for giant mielles in referene [20℄,whih we reprodue here for ompleteness. This model is the extension of thereptation model of Doi and Edwards for polymers, with the dynamis of breakingand fusion of giant mielles inorporated and is alled a reptation-reation model.The onstitutive equation for this model is the following
σij =

15

4
G0

[
Wij −

δij
3

]

Wij =

∫ t

−∞
B(ν(t′)) exp

[
−
∫ t

t′
D(ν(t

′′
))dt

′′

]
S̃(F tt′

mn) dt
′

ν(t) = WijΓij

S̃ =

〈
FikukFjlul
|Fimum|

〉

0

(4.45)where Wij = 〈uiuj〉 is the seond moment of the distribution at time t of the unitorientation vetor ui for tube segments. This is the same as in the ase of polymers.The new features of Eq. 4.45 are B and D, whih are the birth rate and death ratesfor tube segment due to the reation model. They an be well approximated for
ν > 0 by D = 1/τ + ν , B = 1/τ and for ν < 0, D = 1/τ , B = 1/τ − ν. Fij isthe deformation. In the linear visoelasti limit Eq. 4.45 redues to the Maxwellmodel. The solution of Eq. 4.45 in terms of the predited �ow urves is given inFig. 4.13, taken from referene [23℄.In the nonlinear rheology of worm like mielles, one interesting phenomenon isthat of shear banding, reviewed in the following referenes: Refs. [47, 40, 96, 73℄.4.5 Shear bandingIn worm like mielles above a ertain strain rate γ̇p, the shear stress σ attains aplateau value σ = σp. This plateau value is maintained at this level for at least twodeades in γ̇ ≥ γ̇p. The normal stress di�erene N1 however, ontinues to inrease.This represents shear thinning of a quite drasti kind.For a shear thinning system suh as this, it is now understood that the systemforms shear bands. These bands omprise layers of �uid with unequal strain rates73



Chapter 4. Introdution to Rheology of Nematis

Figure 4.13: Flow urves for reptation-reation model:solid line, by solution ofEq.4.45. dashed line, with additional quasi-newtonian stress alulated,dotted-line, top-jumping shear-banded solution. Figure from M. E. Cates and S. Fielding,Advanes in Physis 55, 799-879 (2006)but equal stress. The bands an form in the vortiity diretion (vortiity banding)or in the gradient diretion (gradient banding), in whih the normals to the bandsare along the veloity gradient diretion. (Banding in the veloity diretion is alsoa possibility.)This is an instability with the following origin: the �ow urve σ(γ̇) is a nonmonotoni urve with inreasing and dereasing branhes. After attaining a max-imum stress σp in homogeneous �ow, the stress dereases, attaining a minima andthen starts to inrease linearly again. Flow is unstable on the dereasing branhand thus beomes inhomogeneous, separating into a high shear rate and a lowshear rate branh. This hydrodynamial instability an be avoided if we take agap in the Couette geometry whih is smaller than minimum wave length of the�utuations. It is then possible to trae the full non-monotoni urve.
74



Chapter 4. Introdution to Rheology of Nematis4.6 Rheologial ChaosNew experiments with enhaned spatial and temporal resolution inreasingly showthat shear banded systems an exhibit omplex dynamis. Unusual dynamialsteady states are generially obtained in the non-linear �ow behaviour of om-plex �uids driven out of equilibrium[87, 21, 116, 41, 59, 92℄. When suh �uids aresheared uniformly, the shear stress σ is typially regular at very small shear rates γ̇.However, at larger shear rates the response is often unsteady, exhibiting osillationsin spae and time as a prelude to intermitteny and haos [11, 108, 10, 52, 33℄.In this non-linear regime, omplex �uids under shear exhibit a variety of insta-bilities, inluding instabilities to �shear banded� states[124, 90, 125, 98, 96, 47℄.Suh banded states arise from an underlying multi-valued onstitutive relationonneting the stress and the shear rate, and are often obtained as a preursor tospatio-temporal intermitteny and haoti behaviour in �ow response[13, 83, 14,18, 133, 57, 45, 84, 117℄.Suh rheologial haos must be a onsequene of onstitutive non-linearities,sine Reynolds numbers assoiated with the �ow are too small for onvetive non-linearities to be important[96, 47℄. Suh onstitutive non-linearities originate inthe non-trivial internal struture of the �uid and its oupling to the �ow. Reentrheologial studies of living polymers obtain an osillatory stress response to steadyshear at shear rates above a threshold value[11, 108, 10, 52℄. Suh an osillatoryresponse turns haoti at still larger shear rates[11, 108, 10, 52℄.Although a very large number of experiments on instabilities and �rheologialhaos� exist, we will onentrate on desribing the work of Sood and ollaboratorsat the Indian Institute of Siene, Bangalore over the past deade. Sood andollaborators have pioneered studies of the rheologial behaviour in the worm-likemiellar system formed by the surfatant CTAT at low onentrations. In Fig. 4.14the graph between shear stress σxy and γ̇, the �ow relation, is shown (f. Ref. [108℄).The behaviour in the plateau region exhibits remarkable properties. On applyinga shear rate hosen in the plateau region of the �ow urve, the stress instead ofdeaying to a steady state, osillates in time, as shown in Fig. 4.15, with both aregular and irregular omponent. These osillations are not transient.Sood and ollaborators[11℄ provide a detailed analysis of the osillatory signalof stress, �nding that the signal shows attributes of low dimensional haos. To do75



Chapter 4. Introdution to Rheology of Nematisthis, a number N of m dimensional vetors ~Xi = (σi, σi+L, . . . , σi+(m−1)L), where Lis the delay time, are formed from the time series of the stress signal. A embeddingtheorem of Takens ensures that the dynamis of the original system is representedby F : ~Xi → ~Xi+1, provided that m, the embedding dimension, is hosen orretly.One alulates the orrelation integral C(R), de�ned in an m-dimensional phasespae, as C(R) = limN→∞
1
N2

∑N
1,j=1H(R−| ~Xi− ~Xj |), where H(x) is the Heavisidefuntion.For small R, C(R) is known to sale as C(R) ∼ Rν where ν, the orelationdimension, gives useful information about the loal struture of the attrator. Theexponent ν is obtained as a funtion of log(R) from the plot of log[C(R)] versus

log(R). A plateau in the plot of ν versus log(R) gives the orret ν for a hosendimension m. The minimum value of m for whih the ν saturates is the orretvalue of m to rpresent the system. Furthermore, if ν < m, then the signal is dueto deterministi haos rather than to random noise.Sood and ollaborators found ν = 2.8 and m = 4, showing that the signalexhibits low dimensional haos. Bandyopadhyay and Sood [10℄ also found that,with inreasing shear rate, the orrelation dimension ν, the embedding dimension
m and the Lyapunov exponent all inrease, showing inreased omplexity in thedynamis. In Ref. [52℄ the authors found that adding salt to wormlike miellesleads to a oupling of �ow and onentration. In this regime they observe thatthe plateau found in the shear thinning region of the �ow urve attains a slope, aspredited by theory [48℄.To on�rm this, Sood and ollaborators have performed small angle light sat-tering (SALS) measurements on the sample, in parallel with simultaneous stressrelaxation measurement. A butter�y pattern in the intensity of the sattered lightis found, on�rming the presene of onentration-�ow oupling. These authorsalso found that the signal of the stress in the shear thinning region of the �ow urveshows Type II intermitteny, leading to a haoti signal on inreasing the shearrate further. The SALS also gives a strong indiation that the system is at thethreshold of nemati ordering. The signal in orientation �utuations is orrelatedwith the stress relaxation signal, whih beome haoti on inreasing the shearrate further.In Ref. [51℄, the authors perform a "Granger ausality test" on the time seriesof stress and orientation, �nding that the orientation �utuations have a strong76



Chapter 4. Introdution to Rheology of Nematisin�uene on stress �utuations. It has been argued that a hydrodynami desrip-

Figure 4.14: The metastable branh of the �ow urve of 1.35wt.% CTAT. measuredunder onditions of ontroled stress. Figure from R. Bandyopadhyay and A. K.Sood, Europhys Lett 56 447-453 (2001)tion of this behaviour requires oupling the internal orientational state of suh apolymeri �uid to the �ow. This motivates the study of the problem addressedin the next two hapters. This is the model problem of the spatio-temporal de-sription of an orientable �uid, suh as a nemati liquid rystal, plaed in a simplesteady shear �ow[61, 42, 43℄.4.6.1 Models for Rheologial haosThere is a substantial body of previous work on the dynamial states of omplex�uids under shear. A model due to Fielding and Olmsted expresses the stressas a funtion of a mirostrutural parameter hosen, for illustrative purposes, tobe the miellar length, whih itself evolves in response to the shear rate. Themirostrutural parameter yields a visoelasti ontribution to the stress, over andabove the regular �uid ontribution[49℄. Fielding and Olmsted show that their77
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Figure 4.15: The time-dependent relaxation of stress in 1.35wt.% CTAT, on sub-jeting the sample to a onstant step-strain rate of 100s−1 Figure from R. Bandy-opadhyay and A. K. Sood, Europhys Lett 56 447-453 (2001)model exhibits spatio-temporal rheohaos. Aradian and Cates have proposed aone-dimensional model for the instabilities of a shear-banding �uid system, writingdown an equation for the time-variation of the shear stress whih depends both onthe instantaneous value of the strain rate as well as on the previous history of thestress[9℄. This single non-loal equation an be ast as two oupled loal equations,one for the stress as well as another for a �memory� term, arising out of the singleequation for the stress evolution. This simple model yields regimes of periodi aswell as haoti behaviour[9℄.Both these models assume simpli�ed salar desriptions of the internal mi-rostruture. A reent, omprehensive study of a shear-banding interfae by Field-ing and Olmsted, based on the di�usive Johnson-Segalman (DJS) model, showsthat the interation of multiple shear bands an yield a time-dependent stressresponse possessing attributes of low-dimensional haos[50℄. However, suh ap-proahes do not examine how suh a stress response might arise from an under-lying mirosopi equation of motion. Reent work by Chakraborty, Dasgupta78



Chapter 4. Introdution to Rheology of Nematisand Sood on a one-dimensional model for nemati rheohaos extends the model ofRefs. [26, 37℄ by inorporating hydrodynamis, �nding stable shear banding as wellas the oexistene of banded and spatio-temporally haoti states[27℄. Further, theDJS model is derivable as a spei� limit of their model, in whih the equation forthe order-parameter part of the stress is linearised about the isotropi limit.4.7 Hydrodynamis of Nemati FluidsThere are several methods to derive the hydrodynamis of nematis. These the-ories in general follow from the general frame work of lassial linear irreversiblethermodynamis as disussed, for example, by de Groot and Mazur[55℄.In general, the entropy prodution in the system is alulated from the lo-al onservation laws and the assumption of loal thermodynami equilibrium, interms of the relevant oarse-grained hydrodynami variables, inluding the orienta-tion tensor qαβ. in this derivation it is assumed that we an de�ne thermodynamisquantities as an average over a length sale large with respet to mirosopi lengthsand small with respet to the length sales of typial gradients harateristi ofthe non-equilibrium proesses[99, 100, 79℄.These quantities are then assumed to obey standard thermodynami relations.One identi�es the relevant thermodynami fores and �uxes in the system from theonjugate pairs that appear in the entropy prodution relation. Di�erent hoiesof �uxes and fores may be onvenient for di�erent appliations [39℄. The systemis assumed very lose to equilibrium so that we may expand the �uxes linearlyin the fores. Finally, from the resulting fore-�ux relation, one uses onservationlaws to obtain the equations of motion for Qαβ(r, t) and v(r,t).The equations for a nemati liquid rystal in terms of the order parameter Qhave been derived by Olmsted in his thesis. To zeroth order the equations are asfollows. We de�ne the free energy from
F =

∫
(Fb + Fg) dr. (4.46)and the moleular �eld

Φαβ = − δF
δQαβ

(4.47)79



Chapter 4. Introdution to Rheology of NematisWith these,
(∂t + v · ∇)Qαβ = (∇v)

αγ
Qγβ −Qαγ(∇v)

γβ
+ β1(̂∇v)αβ +

1

β2
Φ̂αβ (4.48)

(∂t + v · ∇)vα = ∂γσαγ , (4.49)where
σαβ = σ̂αβ + σαβ + σdαβ − pδαβ (4.50)
σ̂αβ = β3(̂∇v)αβ − β1Φ̂αβ (4.51)
σαβ = Φ̂αγQγβ −QαγΦ̂γβ (4.52)

σdαβ ≡ παρµ∂βQρµ, πγαβ ≡ − δF
δ∂γQαβ

(4.53)The underline implies the antisymmetri part of the tensor and thêsymbol requiresthat we onsider the symmetri trae less part of the tensor.There are other approahes to the same problem, inluding the Poisson braketmethod and moleular model approahes suh as the one of Doi and Edwards. Amoleular model, due to Hess and o-workers obtains the related equation of motion
dQ

dt
− 2Ω̂ · Q − 2σ′Γ̂ · Q + τ−1

Q Φ = −
√

2
τap
τa

Γ. (4.54)This equation is derived for partiles of spheroidal shape. These redue to rods ofnegligible diameter at σ′ = 0; we will use σ′ = 0 in all our numerial alulation.This hoie ensures that the two equations of motion above for the order parameteroinide.If the non linear part of the Φ is dropped, then σ̂αβ an be replaed in plae of
Q in the equation 4.48. This reovers the Johnson-Segalman model.4.8 Coupled Map LattiesCoupled map latties (CML) are basi models for the time evolution of nonlinearsystems whih are extended in spae or involve many individual units. A CML isa disrete time dynamial system generated by a mapping ating on real (vetor)sequenes. The harateristi features of oupled map latties are 80



Chapter 4. Introdution to Rheology of Nematis
• They obey disrete time dynamis
• They possess a disrete nature of the underlying spae (lattie or network)
• The loal variables onsist of real numbers or real vetorsThe typial and most studied example is the model introdued by Kaneko in 1983.It is given by the following iterations

ut+1
s = (1 − ǫ)f(uts) +

ǫ

2
{f(uts−1) + f(uts+1)} t ∈ N, ǫ ∈ [0, 1] (4.55)where uts ∈ R and f is a real map.The on�gurations {uts} may represent the spatial pro�le of a hemial on-entration, of a population density, of a veloity �eld et. In these ases, theon�gurations are bounded sequenes, sometimes �nite or periodi. Some sys-tems may require unbounded on�gurations, for example the Frenkel-Kontorovamodel [30℄. CMLs were independently introdued by K. Kaneko, R Kapral and S.Kuzentsov in 1983-84 [68, 69, 131, 75, 80, 81℄. A omprehensive set of results forCML's an be found in Refs. [36, 1, 2, 29℄.The dynamis of a CML is governed by two ompeting terms. One is an indi-vidual nonlinear reation represented by f , while the seond is a spatial interation(oupling) with variable intensity ǫ. In the basi model, the interation is a on-volution operator whih represents a di�usive oupling. This simple formulationmakes the oupled map lattid a paradigm of nonlinear spatially extended dynam-ial systems. In partiular, CMLs are speially designed to failitate omputersimulations over large spae-time domains. The simulations exhibit a extraordi-nary variety of behaviours upon hanges in the loal map and in the interation.This diverse phenomenology motivates the appliation of CML to the simulationof real systems. (For instane, a reent spetaular appliation an be found inloud simulations by CML's in Ref. [93℄).The dynamis of spatially extended systems is traditionally desribed by partialdi�erential equations (PDEs). CMLs provide simpler models where one an usu-ally safely assume that dynamis of loal omponents of the �eld (loal dynamissystems or loal maps) is well known, enabling the isolation of the e�ets of spatialinterations. CMLs are, in a sense, ideal models for omputer simulations sinethey are disrete in spae. Therefore, they allow a diret numerial simulation81



Chapter 4. Introdution to Rheology of Nematiswithout the requirement for the omplex disretization shemes required for thesolution of PDEs. This ruial feature of CML was used extensively by Kaneko,who produed a large variety of numerial studies of CML, providing visualiza-tions of a large number of spatio-temporal patterns exhibiting di�erent regimes ofdynamis [69, 72℄.4.9 Summary of Work on RheohaosIn the �fth hapter we propose and study a loal map apable of desribing thefull variety of dynamial states, ranging from regular to haoti, obtained when anemati liquid rystal is subjeted to a steady shear �ow. We have explored manyalternative formulation of the map and disussed there problems. In partiular wehave disuss the map in terms of a quaternion parametrization of rotations of theloal frame desribed by the axes of the nemati diretor, subdiretor, and the jointnormal to these, with two additional salars desribing the strength of ordering.Our model yields kayaking, wagging, tumbling, aligned, and oexistene states, a-ommodated in a phase diagram whih losely resembles phase diagrams obtainedusing representations of the dynamis whih are based on ordinary di�erentialequations. We also study the behaviour of the map under periodi perturbationsof the shear rate. Suh a map an serve as a building blok for the onstrution oflattie models of the omplex spatiotemporal states predited for sheared nematis.In the sixth hapter, we propose a oupled map lattie (CML) model for suhomplex spatio-temporal behaviour in a passively sheared nemati liquid rystal,using loal maps onstruted so as to aurately desribe the spatially homoge-neous ase. Suh loal maps are oupled di�usively to nearest and next nearestneighbours to mimi the e�ets of spatial gradients in the underlying equationsof motion. We investigate the dynamial steady states obtained as parameters inthe map and the strength of the spatial oupling are varied, studying loal tempo-ral properties at a single site as well as spatio-temporal features of the extendedsystem. Our methods reprodue the full range of spatio-temporal behaviour seenin earlier one-dimensional studies based on partial di�erential equations. We re-port results for both the one and two-dimensional ases, showing that spatial ou-pling favours uniform or periodially time-varying states, as intuitively expeted.82



Chapter 4. Introdution to Rheology of NematisWe demonstrate and haraterise regimes of spatio-temporal intermitteny out ofwhih haos develops. Our work suggests that suh simpli�ed lattie representa-tions of the spatio-temporal dynamis of omplex �uids under shear may provideuseful insights as well as fast and numerially tratable alternatives to ontinuumrepresentations.
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5Regular and Chaoti States in a LoalMap Desription of Sheared NematiLiquid Crystals
5.1 IntrodutionReent rheologial studies of �living polymers�, solutions of worm-like mielles inwhih the energies for sission and reombination are thermally aessible, obtainan osillatory response to steady shear at low shear rates whih turns haoti atlarger shear rates[11, 52℄. It has been argued that a hydrodynami desriptionof this behaviour requires a �eld desribing the loal orientation of the polymer,motivating a treatment of the problem of an orientable �uid, suh as a nemati, ina uniform shear �ow[61, 42, 43℄.Nonlinear relaxation equations for the symmetri, traeless seond rank ten-sor Q haraterising loal order in a sheared nemati have been derived [61, 42,43, 62, 102, 82, 97, 126℄. Assuming spatial uniformity, a system of 5 oupledordinary di�erential equations (ODEs) for the 5 independent omponents of Qin a suitable tensor basis is obtained. Solving this system of equations yieldsa omplex phase diagram admitting many states � aligned, tumbling, wagging,kayak-wagging, kayak-tumbling and haoti � as funtions of the shear rate γ̇and a phenomenologial relaxation time whih is a parameter in the equations ofmotion[112, 113, 56℄. Reent work adds spatial variations: numerial studies ofthe partial di�erential equations thus obtained yield a phase diagram ontaining84



Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystalsspatio-temporally regular, intermittent and haoti states[26, 37℄.The degrees of freedom whih enter a oarse-grained desription of an ori-entable �uid are mesosopi. Spatio-temporal struture arises from the oupling ofloally ordered regions, through proesses suh as moleular di�usion, �ow-indueddissipation and advetion. A powerful approah to understanding omplex spatio-temporal dynamis is based on the study of oupled map latties, a numerialsheme in whih maps plaed on the sites of a lattie evolve both via loal dynam-is as well as through ouplings to neighbouring sites[1℄. However, the utility ofthis methodology in a spei� ontext is often severely limited by the availabilityof loal maps able to desribe the spatially uniform ase. This hapter addressesthis requirement in the ontext of a model for rheohaos, proposing the �rst loalmap desription of the regular and haoti states obtained in sheared nematis.5.2 Equation of Motion for NematisThe hydrodynami equation of motion for nematis has been presented in theprevious hapter, in the form of Eqns. 4.48. Sine our results will be omparedwith the work of Hess and ollaborators in Ref. [113℄, we will use their notation.The equation of motion used by Hess and o-workers (Eq. 5.1) is losely relatedto the equation of motion of Eq. 4.48. The di�erene is that Eqn. 5.1 is derivedfor partiles of spheroidal shape. This shape redues to the shape of a rod withnegligible diameter at σ′ = 0. We will use σ′ = 0 in all our numerial alulations.We will also neglet spatial variation sine our interest is in the onstrution ofa loal map for nematodynamis. Extensions to models with spatial oupling willbe disussed in the following hapter.De�ning b̂ := 1
2
(b + bT ) − 1

3
(trb)δ to be the symmetri-traeless part of theseond-rank tensor b, the equation of motion for Q in a passive veloity �eld is,in the notations of Refs. [61, 113℄:

dQ

dt
− 2Ω̂ · Q − 2σ′Γ̂ ·Q + τ−1

Q Φ = −
√

2
τap
τa

Γ (5.1)where the tensor Ω = 1
2
((∇v)T −∇v), Γ = 1

2
((∇v)T +∇v) and ∇v is the veloitygradient tensor, with v = γ̇yex, where ex is a unit vetor in the x− diretion. The85



Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystalsveloity is along the x diretion, the veloity gradient is along the y diretion, while
z is the vortiity diretion. The quantities τa > 0 and τap are phenomenologialquantities related to relaxation times, σ′ desribes the hange of alignment ausedby Γ and Φ = ∂φ/∂Q, with φ(Q) = 1

2
AQ : Q − 1

3

√
6B(Q · Q) : Q + 1

4
C(Q : Q)2.The notation Q : Q represents QijQji, with repeated indies summed over. Here

A = A0(1 − T ∗/T ), and B and C are onstrained by the onditions A0 > 0,
B > 0, C > 0 and B2 > 9

2
A0C.Saling t = t∗τa/Ak, v = v∗Ak/τa and a = a∗ak, Eqn. (6.2) an be written indimensionless form,

dQ∗

dt∗
−2Ω̂∗.Q∗−2σ′Γ̂∗.Q∗+(θQ∗−3

√
6Q̂∗.Q∗+2(Q∗ : Q∗)Q∗) =

√
3

2
λkΓ

∗ (5.2)where Ak = A0(1 − T ∗/Tk) = 2B2/9C, ak = aeq(Tk) = 2B/3C is the (nonzero)equilibrium value of the salar order parameter a at the transition temperature Tk,
λk = −2

3

√
3 τap

τaak
and θ = (1 − T ∗

T
)/(1 − T ∗

Tk
) is the redued temperature.5.3 Nematodynamis and Quaternion AlgebrasThere is, in general, no systemati proedure for the onstrution of suh maps.However, it is reasonable to require that any suh map should aurately reproduethe full variety of states obtained through the study of the orresponding ODEs.It should also enable useful physial insights through a sensible hoie of physialvariables. One obvious possibility is simply the disretization of the governingODEs. Suh a hoie of variables, however, is not partiularly illuminating as theseequations are formulated in terms of the omponents of Q in a spei� spae-�xedtensor basis, rather than in terms of variables more natural to the problem.We have thus explored an alternative formulation of this problem, onstrutinga loal map in terms of quaternion variables. These variables enode the dynam-is of the orthogonal set of axes assoiated with the eigenvetors of Q, i.e. thediretor, sub-diretor and the joint normal to these. Our approah inorporatesbiaxiality, is formulated in terms of physially aessible variables and is ompu-tationally straightforward to implement. Our results, summarized in the phasediagram of Fig. 5.1, are in good agreement with previous work based on ODEs86



Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystals[113℄, but provide an e�ient alternative to suh methods. (As is ommon inhigh dimensional omplex systems, there is the possibility of oexistene of dif-ferent dynamial states; our phase diagram shows the dominant attrator of thedynamis.)5.3.1 Orthogonal Tensor BasisOne way to expand the alignment tensor way is as follows,
Q =

4∑

k=0

akT
k, (5.3)with

T0 =
√

3/2êzez, T1 =
√

1/2(exex − eyey),

T2 =
√

2êxey, T3 =
√

2êxez, T4 =
√

2êyez. (5.4)where Tk's are the orthogonal basis tensor
⇒ Ti : Tk = δik. (5.5)The dynamial equation for the alignment tensor in shear �ow is given by [113℄

ȧ0 = −(θ − 3a0 + 2a2)a0 − 3(a2
1 + a2

2) +
3

2
(a2

3 + a2
4) −

3

2

√
3σ′γ̇a2,

ȧ1 = −(θ + 6a0 + 2a2)a1 + γ̇a2 +
3

2

√
3(a2

3 − a2
4),

ȧ2 = −(θ + 6a0 + 2a2)a2 − γ̇a1 + 3
√

3a3a4 +

√
3

2
λkγ̇ −

1

3

√
3σ′γ̇a0,

ȧ3 = −(θ − 3a0 + 2a2)a3 +
1

2
γ̇(σ′ + 1)a4 + 3

√
3(a1a3 + a2a4),

ȧ4 = −(θ − 3a0 + 2a2)a4 +
1

2
γ̇(σ′ − 1)a3 + 3

√
3(a2a3 − a1a4), (5.6)where a2 = a0

2 + a1
2 + a2

2 + a3
2 + a4

2, This parameterization suits PDE-basednumerial approahes but the physial interpretation of the results diretly in thesevariables is more problemati. We thus address the problem of the dynamis of theorientation tensor by posing the problem in terms of a map involving quaternionvariables. 87



Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystals5.3.2 QuaternionDe�nitionQuaternions are members of an algebra with parameters (e0, e1, e2, e3) ∈ R, repre-sented as
q = {e0 + e1i+ e2j + e3k} (5.7)where addition is de�ned by

{e0+e1i+e2j+e3k}+{b0+b1i+b2j+b3k} = (e0+b0)+(e1+b1)i+(e2+b2)j+(e3+b3)k,(5.8)and multipliation with q1 = b0 + b1i+ b2j + b3k

q.q1 = (e0.b0 − e1.b1 − e2.b2 − e3.b3)

+(e2.b3 − e3.b2 + e0.b1 + e1.b0)i

+(e3.b1 − e1.b3 + e0.b2 + e2.b0)j

+(e3.b1 − e1.b3 + e0.b3 + e3.b0)k (5.9)Using the distributive law and then applying the law
i2 = j2 = k2 = ijk = −1, . (5.10)and

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j. (5.11)The unit quaternion is de�ned as e20 + e21 + e22 + e23 = 15.3.3 Relation to the RotationA Rotation matrix represented in terms of quaternion parameters is given by
A =



e20 + e21 − e22 − e23 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e20 − e21 − e22 + e23


 (5.12)
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Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid CrystalsOne an transform from spae oordinates to body �xed axes by the equation
x′ = Ax, with the onstraint e20 + e21 + e22 + e23 = 15.3.4 Relation to Euler angleIn the onvention we are using, the relation between the quaternion parameter andEuler angles are given by

e0 = cos
ψ + φ

2
cos

θ

2

e1 = cos
ψ − φ

2
sin

θ

2

e2 = cos
ψ − φ

2
sin

θ

2

e3 = cos
ψ + φ

2
cos

θ

2
(5.13)It is lear from these relations that there is no ambiguity in the value of quaternionparameter at θ = 0, orπ. Moreover it is very easy to hek numerial errors.5.3.5 Quaternions and the Alignment TensorAs disussed above, the Q tensor admits the following parametrization: Qij =

3s1
2

(
ninj − 1

3
δij
)

+ s2
2

(mimj − lilj), where s1 and s2 represent the magnitude ofthe ordering along n (the diretor) and m (the subdiretor), with n and m unitvetors and l = n × m. The dynamis of Q thus involves both the dynamis ofthe frame de�ned by n,m and l as well as the dynamis of s1 and s2.The frame dynamis an be represented in many equivalent ways, suh asthrough oordinate matries, axis-angle or Euler angle representations. However,the oordinate matrix representation requires a large number of parameters, theaxis-angle representation su�ers from redundany and the use of the Euler-anglerepresentation is marred by the �gimbal-lok� problem[6℄. Our parametrization ofthe frame dynamis uses quaternion variables, providing an elegant, ompat andnumerially stable alternative to these representations.Equations for ṅ, ṁ and l̇ as well as for the order parameter amplitudes ṡ1and ṡ2 an be derived by onsidering a referene frame in whih the diretor andsubdiretor are stationary (body frame). In the body frame, denoted by primed89



Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystalsvetors, the diretor an be hosen to be n′ = (1, 0, 0), the subdiretor to be
m′ = (0, 1, 0), with l′ = (0, 0, 1). The transformation matrix A whih mapsvetors from the lab frame to the body frame, an be de�ned in terms of quaternionparameters (e0, . . . , e3) onstrained by e20 + e21 + e22 + e23 = 1. This transformationmatrix has the form
A =




nx ny nz

mx my mz

lx ly lz


 =



e20 + e21 − e22 − e23 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e20 − e21 − e22 + e23


5.3.6 Dynamial Equation for the Alignment TensorWe now disuss the equation for the alignment tensor in terms of quaternions.Putting σ′ = 0 in the above equations we get,

ṡ1 =
1

6
(9

√
6 s2

1 − 18 s3
1 − 3

√
6 s2

2 + 2 s1 (−3 s2
2 − 3 θ) + 3

√
6 nx ny γ̇ λk)

ṡ2 = −3
√

6 s1 s2 − 3 s2
1 s2 − s2 (s2

2 + θ) −
√

3

2
(lx ly −mx my) γ̇ λk

ė0 =
1

4
γ̇ e3+

1

4

√
3

2
γ̇ (−(ly mx + lx my) e1

s2

+
2 (ly nx + lx ny) e2

3 s1 + s2

+
2 (my nx +mx ny) e3

−3 s1 + s2

) λk

ė1 =
1

4
γ̇ e2 +

1

4

√
3

2
γ̇ (

(ly mx + lx my) e0
s2

−2 (my nx +mx ny) e2
−3 s1 + s2

+
2 (ly nx + lx ny) e3

3 s1 + s2
) λk

ė2 = −1

4
γ̇ e1 +

1

4

√
3

2
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+
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ė3 = −1

4
γ̇ e0 +

1

4

√
3

2
γ̇ (−2 (my nx +mx ny) e0

−3 s1 + s2
−2 (ly nx + lx ny) e1

3 s1 + s2
−(ly mx + lx my) e2

s2
) λk(5.14)where nx , my , mx , my , lx and ly are omponents of the diretor and subdiretorand l = n ×m. These are given in terms of quaternion parameters as follows

nx = e20 + e21 − e22 − e23, ny = 2(e1e2 + e0e3), mx = 2(e1e2 − e0e3),

my = e20 − e21 + e22 − e23, and lx = 2(e1e3 + e0e2), ly = 2(e2e3 − e0e1)For illustration, a rigid body rotated with onstant angular veloity is representedby the equations
ė0 =

1

4
γ̇e3, ė1 =

1

4
γ̇e2, ė2 = −1

4
γ̇e1, ė3 = −1

4
γ̇e0. (5.15)5.4 Loal Map in terms of QuaternionsThe quantities n = (nx, ny, nz),m = (mx, my, mz) and l = (lx, ly, lz) are easilyobtained using this mapping, yielding ODE's for the parameters s1, s2, e0, e1, e2, e3.These are onverted into a map using a �rst-order Euler sheme. After eah disretetime step, we renormalise the quaternion variable. Choosing σ′ and θ equal to zerofor all the results reported here in ommon with earlier work, our map is then
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Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystalsde�ned through
s1
t+1 = s1

t+ ∆

(
1
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)t (5.16)5.5 Numerial Proedures and Results5.5.1 Numerial MethodsWe hoose ∆ = 0.01 for all our alulations. (The phase boundaries shown inFig. 5.1 exhibit a weak dependene on ∆t. However, provided ∆t is hosen smallenough, this dependene may be negleted.) The supersript `t' indiates that the92



Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystalsvalues of the variables are taken at the t'th disrete time step These equations areapparently singular in the three limits s2 → 0,3s1 + s2 → 0 and 3s1 − s2 → 0,when denominators ontaining these quantities approah zero. This happens atisolated points in the dynamial evolution of the map, when the system is renderede�etively uniaxial, as a onsequene of eigenvalues along two orthogonal axesbeoming degenerate. We deal with this in two ways. First, we an set theseterms the denominator to a small onstant whenever they reah a preset valuelose to zero, so that these terms never atually ross zero. Alternatively, we mayuse the freedom to hoose the degenerate eigenvetors in suh a way as to anel theterm whih vanishes in the denominator. In pratie, both shemes give equivalentresults. We also note that the systems is always e�etively biaxial due to the shear.The ontrol parameters are the dimensionless shear rate γ̇ and λk. In plaeof the 5 oupled ODE's used in the onventional parametrization of the dynamisof Q, we have 6 equations onstrained by the normalization requirement, therebyonserving the number of degrees of freedom.In our numerial analysis of the map, we start typially from random initialonditions, omitting su�ient transients (∼ 105 time steps) to ensure that theasymptoti attrator of the dynamis is reahed. Our analysis inludes inspetionof the (i) power spetrum, (ii) phase portraits, (iii) bifuration diagrams and (iv)time series of the di�erent relevant variables.5.5.2 ResultsFigs. 5.2 and 5.3 show the variety of states obtained in our numerial alulations.Eah sub-�gure, labelled as Figs. 5.2 (a) - () and Figs. 5.3 (a)-(), has thefollowing struture: The �rst inset, labelled (i) for all �gures, desribes the timedependene of nz, the z-omponent of the diretor, and the angle φ made by theprojetion of the diretor on the x − y plane with the x− axis. The seond inset,labelled (ii) for all �gures, plots the quantities measuring the amount of orderingalong diretor and sub-diretor against eah other, providing the attrator of thesystem in the s1 − s2 plane for a generi initial ondition. The main panel in eahof the sub-�gures shows the power spetrum of s1, ln(|A(f)|2) against frequeny fon a semi-log plot.The following states are easily identi�ed: (I) An Aligned state denoted as `A'93



Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystals

Figure 5.1: The phase diagram of steady states in our model, illustrating regimesin whih the following steady states are obtained for a generi initial ondition:an aligned state denoted as `A', a tumbling state labelled as `T', a wagging state`W', a kayak-tumbling state `KT', a kayak-wagging state denoted by `KW' and aomplex state denoted as `C'. This phase diagram losely resembles phase diagramsplotted in Refs. [113℄.
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Figure 5.2: The sequene of three main panels shows the power spetrum assoiatedwith states in the regimes labelled (a) T and (b) W in the phase diagram ofFig. 5.1. The topmost panel () shows a mixed state (M) (not shown separatelyin Fig. 5.1), assoiated with the boundary between W and T The inset labelled (i)in all these panels shows typial plots of the time-dependene of the z-omponentof the diretor nz and the angle φ made by the projetion of the diretor on the
x− y plane with the x− axis. The insets labelled (ii) in all these panels show thetrajetory in the s1 − s2 plane.
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Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystalsin the phase-diagram of Fig. 5.1, but omitted, for brevity, from the states shownin Fig. 5.2 and Fig. 5.3. In the aligned state, neither the frame orientation, nor s1and s2, vary in time. The diretor is aligned with the �ow at a �xed angle; (II)A Tumbling state, in whih the diretor lies in the shear plane (the xy plane)and rotates about the vortiity diretion (the z axis). Fig. 5.2(a)(i) indiates thatthis state is a stable in-plane state, sine the z-omponent of the diretor is zero.Also, the angle made by the projetion of the diretor on the x-y plane variessmoothly between π/2 and -π/2. Fig. 5.2(a)(ii) shows the periodi harater ofthis state. This state is labelled as `T' in the phase-diagram of Fig.5.1; (III) AWagging state, in whih the diretor lies in the shear plane, but osillates betweentwo values. Note that Fig. 5.2 (b)(i) indiates that this state is a stable in-planestate. Also, the diretor osillates bak and forth in-plane as indiated in Fig. 5.2(b)(ii). Fig. 5.2 (b) shows that this state is a periodi state with sharp delta-funtion peaks in the power spetrum. These states are denoted as `W' in thephase-diagram in Fig.5.1.In addition to the states desribed above, we obtain (IV) A Kayak-Tumblingstate, equivalent to the tumbling state, but in whih the diretor is out of theshear plane. Thus, as shown in Fig. 5.3(a) nz 6= 0 and the projetion of thediretor on the xy plane rotates through a full yle. Suh states are temporallyperiodi, as shown in Fig. 5.3(a); the regular yles evident in the map of s1 vs.
s2 (Fig. 5.3(a)(ii)) is a further indiation of periodi behaviour. These states arenoted as `KT' in the phase-diagram of Fig. 5.1; (V) A Kayak-Wagging statewhere, as in KT, the diretor is out of plane, but the projetion of the diretor onthe shear plane osillates between two values. The properties of suh states areillustrated in Fig. 5.3(b). Suh states are again temporally periodi. The ylitrajetory of the system in the s1 − s2 plane (Fig. 5.3(b)(ii)) further on�rms suhperiodi behaviour. These states are denoted by `KW' in the phase-diagram ofFig. 5.1; (VI) A Mixed state, typially found lose to the boundaries betweenwagging and tumbling states, whose properties are illustrated in Fig. 5.2(). Insuh states, the diretor exhibits both osillation and omplete rotations. Powerspetra obtained at the boundaries of this phase, for example near λk = 0.99 and
γ̇ = 4.0, have a broad range of frequenies, and, (VII) A Complex state, in whihthe diretor lies out of the shear plane but both osillates and rotates. The omplexphase exhibits haoti behaviour, as an be seen in Fig. 5.3(). Note that the delta97
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Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid CrystalsW and KW states and irregular (haoti) behavior for the C state.Finally, we investigate the behaviour of this dynamial system to a lass ofperiodi perturbations onstruted by taking γ̇ = γ̇0 + γ̇1 sin (ωat), with t taken indisrete time and ωa representing the angular frequeny of the applied foring. Thisorresponds to the experimental situation in whih the steady shear is modulatedby a small (γ̇1 ≪ 1) amplitude periodi perturbation. If γ̇0 were stritly zero, thiswould be the ase of purely osillatory shear. We hoose ωa to be small, so thatsteady state is easily ahieved. We have also investigated the e�ets of periodivariation of λk, �nding behaviour similar to that desribed below.Our results are summarized in Fig. 5.5 whih show the power spetrum of
s1, ln(|A(f)|2) against frequeny f on a semi-log plot. Data for the states labelled(a) T and (b) C in the phase diagram of Fig. 5.1 are shown. For omparison, weshow the unperturbed power spetrum in the lower panel of eah �gure. Note thatthe introdution of the time modulation adds an additional periodi omponentto the signal in the ase of the periodi states, suh as the T state. The powerspetrum shows several harmonis of the intrinsi and driving frequenies as well aslinear ombinations of these frequenies, onsistent with the inherent non-linearityof this system. The peaks in the power spetrum are indexed as shown in the�gure. For the state labelled (C) (omplex or haoti), the power spetrum showsbroad-band struture as before, indiating that the periodi driving does not serveto stabilize order. These statements remain roughly independent of the amplitudeof the periodi perturbation, provided it is not large enough that nearby states inthe phase diagram are aessed. The generi features desribed above ontinuesto hold in the other regions of the phase diagram.5.6 Disussion and ConlusionAradian and Cates have reently studied a minimal model for rheohaos in shear-thikening �uids, using equations whih desribe a shear-banding system oupledto a retarded stress response[9℄. These authors onnet their model system to amodi�ed Fitzhugh-Nagumo model, a dynamial system with a variety of interest-ing and omplex phases. Fielding and Olmsted study instabilities in shear-thinning�uids, where the instability originates in the multi-branhed harater of the on-99
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Chapter 5. Regular and Chaoti States in a Loal Map Desription of ShearedNemati Liquid Crystalsstitutive relation[49℄. Chakrabarty et al. report a study of the PDE's desribingthe dynamis of Q, haraterizing spatio-temporal routes to haoti behaviourin sheared nematis [26℄. All these studies allow for spatial variation - althoughrestrited so far to the one-dimensional ase - whereas our loal map desribesthe spatially uniform situation. However, the dynamial system we study is ob-tained diretly from the underlying dynamis, in ontrast to the approahes ofRefs. [9, 49℄. Whether oupling maps of the sort we onstrut permits a ompletedesription of the spatio-temporal struture obtained in Ref. [26℄ remains to beseen.In onlusion, we have proposed a loal map desribing the variety of dynami-al states obtained in a model for sheared nematis. Our phase diagram, Fig. 5.1,ontains all non-trivial dynamial states obtained in previous work. It also loselyresembles, even quantitatively, phase diagrams obtained in previous work whihused ordinary di�erential equations formulated in ontinuous time. We have alsostudied the behaviour of the map under parametri osillations of the shear rate,a physial situation not addressed earlier. Our work thus supplies a ruial ingre-dient in the onstrution of oupled map lattie approahes to the spatio-temporalaspets of rheologial haos, a problem urrently at the boundaries of our under-standing of the dynamis of omplex �uids.
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6A Coupled Map Lattie Model forRheologial Chaos in Sheared NematiLiquid Crystals
6.1 IntrodutionUnusual dynamial steady states are obtained in a large number of experiments onomplex �uids driven out of equilibrium[87, 21, 116, 41, 59, 92℄. When suh �uidsare sheared uniformly, the shear stress σ is typially regular at very small shearrates γ̇. However, at larger shear rates the response is often unsteady, exhibitingosillations in spae and time as a prelude to intermitteny and haos [11, 108, 10,52, 33℄. In this non-linear regime, omplex �uids under shear exhibit a variety ofinstabilities, inluding instabilities to �shear banded� states[124, 90, 125, 98, 96, 47℄.Suh banded states arise from an underlying multi-valued onstitutive relationonneting the stress and the shear rate, and are often obtained as a preursor tospatio-temporal intermitteny and haoti behaviour in �ow response[13, 83, 14,18, 133, 57, 45, 84, 117℄.Suh rheologial haos must be a onsequene of onstitutive non-linearities,sine Reynolds numbers assoiated with the �ow are too small for onvetive non-linearities to be important[96, 47℄. Suh onstitutive non-linearities originate inthe non-trivial internal struture of the �uid and its oupling to the �ow. Reentrheologial studies of �living polymers� obtain an osillatory stress response tosteady shear at shear rates above a threshold value[11, 108, 10, 52℄. Suh an102



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsosillatory response turns haoti at still larger shear rates[11, 108, 10, 52℄. It hasbeen argued that a hydrodynami desription of this behaviour requires ouplingthe internal orientational state of suh a polymeri �uid to the �ow, motivating thestudy of the problem addressed in this hapter[26, 37℄. This is the model problemof the spatio-temporal desription of an orientable �uid, suh as a nemati liquidrystal, plaed in a simple steady shear �ow[61, 42, 43℄.There is a substantial body of previous work on the dynamial states of omplex�uids under shear. A model due to Fielding and Olmsted expresses the stressas a funtion of a mirostrutural parameter hosen, for illustrative purposes, tobe the miellar length, whih itself evolves in response to the shear rate. Themirostrutural parameter yields a visoelasti ontribution to the stress, over andabove the regular �uid ontribution[49℄. Fielding and Olmsted show that theirmodel exhibits spatio-temporal rheohaos. Aradian and Cates have proposed aone-dimensional model for the instabilities of a shear-banding �uid system, writingdown an equation for the time-variation of the shear stress whih depends both onthe instantaneous value of the strain rate as well as on the previous history of thestress[9℄. This single non-loal equation an be ast as two oupled loal equations,one for the stress as well as another for a �memory� term, arising out of the singleequation for the stress evolution. This simple model yields regimes of periodi aswell as haoti behaviour[9℄.Both these models assume simpli�ed salar desriptions of the internal mi-rostruture. A reent, omprehensive study of a shear-banding interfae by Field-ing and Olmsted, based on the di�usive Johnson-Segalman (DJS) model, showsthat the interation of multiple shear bands an yield a time-dependent stressresponse possessing attributes of low-dimensional haos[50℄. However, suh ap-proahes do not examine how suh a stress response might arise from an under-lying mirosopi equation of motion. Reent work by Chakraborty, Dasguptaand Sood on a one-dimensional model for nemati rheohaos extends the model ofRefs. [26, 37℄ by inorporating hydrodynamis, �nding stable shear banding as wellas the oexistene of banded and spatio-temporally haoti states[27℄. Further, theDJS model is derivable as a spei� limit of their model, in whih the equation forthe order-parameter part of the stress is linearized about the isotropi limit.In this hapter, we present results from a omprehensive study of a simpleoupled map lattie model for rheologial haos, as appropriate to nemati systems103



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsunder steady shear. Our loal �mirostrutural� variable represents the orientationand degree of oarse-grained order of nemati moleules in the �ow, as in the workof Refs. [27, 26, 37℄. We ompute the ontribution to shear stresses arising fromthe evolution of this loal variable, showing how uniform, periodi and spatio-temporally haoti behaviour in this quantity an be aessed.The use of oupled map latties to represent, at a oarse-grained level, behav-ior of intrinsially non-linear dynamial systems oupled in spae is at least twodeades old[1℄. Coupled map latties provide relatively simple models wheneverit an be assumed that the dynamis an be naturally deoupled into a dominantloal dynamis representing behaviour at a single point in spae (or small oarse-grained region) and a spatial oupling term whih onnets this loal dynamisweakly aross spatial loations. The oupling term idealizes gradient terms in theunderlying ontinuum equation of motion. Coupled map latties are well-suited foromputer simulations, sine they are naturally disrete in spae and time. (Experi-mental data are, in fat, lose to the CML situation, sine any real-life measurementrequires disrete sampling of the underlying time evolution and every experimenthas some minimum threshold for spatial disrimination, providing a lattie sale.)Coupled map latties have been used with suess by several authors in the studyof phase-ordering problems as well as in a host of other appliations[101, 1℄.We begin by onstruting a loal map for nematis under shear, obtained bydisretizing a set of oupled ordinary di�erential equations (ODE's) desribingthe ontinuous time, spatially loal version of this dynamis. These loal equationshave been shown to exhibit periodi and regular regimes as well as haoti regimes.We benhmark this map through a detailed omparison to the results from thestudy of the ODE system, showing that the qualitative and quantitative aspetsof the phase diagram in this single site limit are rendered aurately. We thengeneralize this to the spatially oupled ase by onneting nearest neighbour mapsin a spei�ed manner. The shear enters at the level of the loal map, whereit is spei�ed in terms of a single parameter. We take the point of view thatthe omplexity of the spatio-temporal behavior in the physial problem an beaptured by the most elementary version of spatial oupling, whih, for simpliityand following virtually all work on oupled map latties, we take to be di�usive[1,135℄.This loal map is shown, in agreement with previous work, to exhibit a large104



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsnumber of omplex phases, inluding uniform (�ow aligning in the nemati), tum-bling, kayaking and haoti phases, in addition to phases whih ombine one orthe other of these attributes[112, 113℄. While the nemati responds to the �uidthrough �ow alignment as well as reative and dissipative terms in the equation ofmotion, we make the approximation of ignoring the bak-reation of hanges in ne-mati order on the �uid. Thus, our approah omits the hydrodynami interation,sine we assume that the �ow always remains passive. This is a major assumption.However, it does have the virtue that a variety of spatio-temporal phenomena withrelevane to both the experiments as well as to earlier modeling exerises an bedemonstrated to exist in this simple system and are amenable to analysis.Our seond approximation is that we study, for the most part, simple di�usiveouplings between sites, ignoring the advetive terms. Consistent with this, we usesimple periodi boundary onditions on the loal �eld. (We would otherwise havehad to implement a more omplex Lees-Edwards boundary ondition on the �eldsand ensure an appropriate anhoring ondition at the boundaries[88℄.) Thus, inour model, the shear enters the loal dynamis but its e�ets are ignored at largersales. We also thus neglet the several non-linear, anisotropi spatial ouplingterms whih are inluded in ontinuum formulations of nematodynamis whih gobeyond the simplest one-Frank-onstant approximation. We pursue this line ofinvestigation beause our interest is spei�ally in the e�ets of inluding spatialouplings into a model whih provides an aurate desription of the temporalbehavior of sheared nematis assuming spatial behavior to be uniform. We believe� and in some ases have tested this assumption � that inorporating the simplestform of spatial oupling should be su�ient for us to be able to explore the fullspatio-temporal omplexity of the sheared nemati problem.The outline of this hapter is the following: Setion II outlines our numerialmethods for the onstrution of the loal map. We begin by providing the loalequation of motion for a passively sheared �uid of nematogens, following the workof Refs. [112, 113℄. To enfore symmetry and traelessness, it is ustomary toprojet these (tensor) equations onto a suitable tensor basis. We then onstrut,through a simple Euler disretization, a map within this basis, showing that it anbe used to obtain all the states obtained by ODE-based methods for this problem.The following setion, Setion III, desribes the onstrution of the oupled maplattie, illustrating how the loal maps onstruted in Setion II an be oupled105



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsin spae, in both one and two dimensions. Setion IV desribes our results inthe one-dimensional ase, examining the e�ets of spatial oupling in both regularand omplex regions of the loal map. Setion V desribes our results for thetwo-dimensional ase, studying, as in the one-dimensional ase, the behaviour inboth regular and omplex regimes of the loal phase diagram. Setion VI ontainsa disussion of our results as they relate to a quanti�ation of spatio-temporalomplexity in our model, while Setion VII ontains the onlusions of this study.6.2 A Loal Map for NematodynamisWe begin with the ontinuum equations of motion for a nemati in a spei�ed �ow�eld. These equations use the tensor representation of the order parameter in anemati. In thermal equilibrium, suh order parameter on�gurations are weightedby a Landau-Ginzburg-de Gennes free energy. In a spei� Cartesian tensor basis,these equations, in the approximation that spatial �utuations in nemati order areabsent, an be ast in terms of equations of motion for �ve expansion oe�ients,orresponding to the �ve independent parameters haraterizing a real symmet-ri traeless tensor. These equations of motion, whih are ordinary di�erentialequations (ODE's), are reast as a map, as shown below.We have explored alternative onstrutions for suh a loal map in Ref. [67℄,where we studied a quaternion representation of the loal orientational degrees offreedom. We tried several methods for oupling suh �quaternion maps� in spae,to mimi the spatial oupling term in the CML formulation. However, beausethe loal frame an vary from site to site, there seems to be no straight-forwardway to generate suh terms without involving onsiderable analyti omplexity.Thus, we work with a simpler loal map, derived from the ODE's in a Cartesianrepresentation, in this hapter. Inorporating spatial oupling appear to be easiestin this version of the model.6.2.1 Equation of Motion for NematisThe derivation of the nonlinear relaxation equations for the symmetri, traelessseond rank tensor Q haraterizing loal order in a sheared nemati is availablein earlier work [61, 42, 43, 62, 102, 82, 97, 107, 123, 58, 126℄. The order parameter106



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsis often onveniently expressed as
Qαβ =

3s1

2

(
nαnβ −

1

3
δαβ

)
+
s2

2
(lαlβ −mαmβ) , (6.1)where the diretor n is de�ned as the normalized eigenvetor orresponding tothe largest eigenvalue of Q, the subdiretor l is assoiated with the sub-leadingeigenvalue, and their mutual normal m is obtained from n × l. The quantities s1and s2 represent the strength of uniaxial and biaxial ordering: |s1| 6= 0, s2 = 0 isthe uniaxial nemati whereas s1, s2 6= 0 with s2 < 3s1 de�nes the biaxial ase[39℄.De�ning b̂ := 1

2
(b + bT ) − 1

3
(trb)δ to be the symmetri-traeless part of theseond-rank tensor b, the equation of motion for Q in a veloity �eld is [61, 113℄:
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√

2
τap
τa

Γ, (6.2)where the tensor Ω = 1
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((∇v)T +∇v) and ∇v is the veloitygradient tensor, with v = γ̇yex, where ex is a unit vetor in the x− diretion. Theveloity is along the x diretion, the veloity gradient is along the y diretion, while

z is the vortiity diretion. The quantities τa > 0 and τap are phenomenologialrelaxation times, σ′ desribes the hange of alignment aused by Γ and Φ =

∂φ/∂Q, with the free energy φ(Q) given by
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C(Q : Q)2. (6.3)If the spatial variation is also taken into aount, ∇2Q and∇∇·Q, as well as higherorder terms, should also be inluded in the above expression. Suh gradient termsare weighted by oe�ients L1, L2 and L3, yielding the three Frank elasti onstantsof the nemati state. The notation Q : Q represents QijQji, with repeated indiessummed over. Here A = A0(1 − T ∗/T ), and B and C are onstrained by theonditions A0 > 0, B > 0, C > 0 and B2 > 9
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A0C.The symmetri traeless alignment tensor Q has �ve independent omponents.Assuming spatial uniformity, so that gradients of the Q tensor an be dropped, asystem of 5 oupled ordinary di�erential equations (ODEs) for the 5 independentomponents of Q an be obtained with the hoie of a suitable tensor basis. Choos-107



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsing the standard orthonormalized Cartesian tensor basis leads to the expansion
Q =

4∑

k=0

akT
k, (6.4)with
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√
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1/2(exex − eyey),
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√

2êyez. (6.5)6.2.2 Dynamis of Sheared Nematis from a Loal MapWe work in the tensor basis desribed above, representing the equations of motionof Eq. 6.2 in terms of the oupled equations of motion for the �ve oe�ients
a0 . . . a4. The problem of representing the time updates in terms of a loal map ismost easily approahed by onsidering the lowest order Euler disretization of theunderlying di�erential equations. (There are alternative methods of onstrutingmaps from loal dynamis governed by ODE's, inluding strobosopi methodsand methods whih use Poinare setions; however, the hoie we have made is thesimplest given the variety and omplexity of the dynamial states we would like todesribe.)Saling parameters as in Ref. [112, 113℄, and making the same hoie of numer-ial values as in Ref. [26, 37℄, we obtain the following map
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Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid CrystalsHere t indiates disrete time steps, and {.}t denotes the value of the quantity
{.} at time step t. All the funtions f denote the loally updated value of theirargument at a time step (t+ 1). For the purely loal map, fi(ati) ≡ at+1

i ; however,for the oupled map, the value of fi(ati) is omputed as an intermediate step,prior to the di�usive step whih yields the �nal quantity at+1
i . The quantity a2 =

a2
0 + a2

1 + a2
2 + a2

3 + a2
4.We hoose the time step to be small, ensuring the stability of the Euler dis-retization sheme; spei�ally, ∆ = 0.01 for all our alulations. Our approahthus ontrasts to approahes in whih the disrete spae-time update rules arehosen suh that they represent a regime in whih standard Euler disretizationof the governing equations breaks down, yielding a omplex bifuration struturewhih an be argued to resemble one or the other physial behaviour. Here, ourapproah is to render the loal physis, in partiular the topology of the omplexphase diagram with its many non-trivial phases, as aurately as possible. (Ouressential simpli�ations enter our representation of the non-loal terms, inorpo-rated so as to represent the physis of the spatially oupled ase.) We have hekedthat hanging ∆ by upto an order of magnitude does not a�et our results. Thus,the qualitative dynamis, whih is omplex in state spae and parameter spae, isompletely robust in the range of ∆ hosen for this study. Our hoie of parame-ters implies that the system in the absene of shear is at the limit of metastabilityof the isotropi phase. Our hoie of the value for ∆ aptures all the features ofthe full loal phase diagram obtained in Refs. [112, 113℄.The order parameter part of the stress is proportional to ontributions fromthe Landau-de Gennes free energy as well as from the gradient terms, whih werepresent through the spatial oupling term in the oupled map lattie. This isobtained as desribed in the following setions.6.2.3 Phase Behaviour of the Loal MapExamining the dynamial steady states of this map at a large number of pointsin the spae spanned by (γ̇, λk) yields a omplex phase diagram admitting manystates � aligned, tumbling, wagging, kayak-wagging, kayak-tumbling and haoti �as funtions of the shear rate γ̇ and a phenomenologial relaxation time λk whihis a parameter in the equations of motion[112, 113, 56℄. Fig. (6.1) exhibits the109



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsdynamial states found in the map for the unoupled ase, in terms of a phasediagram in the quantities λk and γ̇. Suh a phase diagram bears onsiderable sim-ilarities to phase diagrams obtained by other authors in the PDE representation;see, for example, Fig. 7 of Ref. [113℄.

Figure 6.1: Phase diagram for dynamial behaviour in the loal map de�nedthrough Eqns.6.6, with the parameter λk plotted on the x axis and γ̇ on the yaxis. Here T denotes the tumbling state, W the wagging state, KT the kayak-tumbling, KW the kayak-wagging state, A the aligned state and C the state inwhih omplex dynamis is seen. These states are disussed further in the text.The states in this phase diagram are labeled as follows: The �rst is the statelabeled A, whih is theAligned state, where all dynamis eases, and the diretoris aligned at an angle to the �ow. In the standard Couette geometry, the veloity�eld and the veloity gradient form a plane, alled the vortiity plane. In our ase,this is the x− y plane. If the diretor lies in the vortiity plane and rotates aboutan axis (the z−axis) perpendiular to this plane, the dynamial state is alleda Tumbling state. The tumbling state is denoted by T in the phase diagramof Fig. (6.1). If the diretor, while lying in the plane, exeutes osillations, thedynamial state is alled a Wagging state. The wagging state is represented inthe loal phase diagram by the symbol W .If the diretor rotates and osillates, moving out of the vortiity plane, thedynamial states are alledKayak-Tumbling andKayak-Wagging respetively.They are represented as KT and KW in the loal phase diagram. If the dynamisis a mixture of omplex intermittent behaviour and oexisting attrators, the state110



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsis alled Complex and is represented by C in the phase diagram. Clearly theinteresting region in the phase diagram lies in and near the region labeled C.Fig. 6.1 is obtained in the following way. The phase-spae of the γ̇ and λkvariables is gridded and an initial random initial ondition hosen at eah point.After the passage of an initial transient state, the system goes to dynamial at-trators, ranging from simple spatiotemporal �xed points to omplex intermittentbehaviour. These dynamial attrators are identi�ed with one of the states de-sribed above, i.e. A,K, T,KW,KT or C. In some regimes, one sees a oexisteneof states i.e. KT and T and KW and W i.e. di�erent initial onditions an giverise to di�erent asymptoti behaviour in the long time limit.Near the phase boundary of KW, one obtains isolated points whih show om-plex behavior for generi initial onditions. However, hoosing a point in the loseviinity of suh points generially produes KW states. Thus, suh C points areisolated. However, deep into the KW phase any suh omplex behavior is found tobe purely an initial transient, with the state settling down to KW in the long-timelimit.6.3 Coupled Maps for NematodynamisOur spatially oupled model is built up from the loal maps given in Eq. 6.6. Thesemaps are plaed on the sites of a regular lattie in one and two dimensions andan be oupled via several di�erent oupling shemes, as desribed below. Thegeneralization to arbitrary dimensions as well as di�erent oupling shemes is astraightforward one.For a one dimensional lattie, with sites indexed by the label i, the �ve variables(a0(i) . . . a4(i)) on eah lattie site evolve in disrete time t as:
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4)) .Hereǫis a oupling onstant whih is hosen to take values between 0 and 3/2.For the two dimensional ase we onsider a square lattie with site index (i, j)and with the set of �ve variables (a0(i, j), a1(i, j), a2(i, j), a3(i, j), a4(i, j)) on111



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalseah lattie point at time-step t evolving in time as :
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4)) ,and ǫ is a oupling onstant having value between 0 and 1. The hoie of thenumerial oe�ients 1/6 and 1/12 in the oe�ients of the nearest and next-nearest neighbour terms are standard hoies in the CML literature. They repre-sent hoies of lattie disretization whih are as lose as possible to the ontinuumlimit.The loal value of the shear stress (σxy)i,j at the (two-dimensional) site (i, j)is obtained from the following de�nition.Stritly speaking, the quantity de�ned isproportional to the stress. In partiular, it is multiplied by an overall multipliativefator involving λk; see Eqn. A.1 of Ref. [112℄:
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Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid CrystalsWe have also experimented with other hoies of the update rule. While theupdate rule of Eq. 6.7 an be termed as the pre-update rule, in whih the termson the right hand side are alulated using the variables at time t, one ouldalternatively use the post-update rule, in whih the di�usive terms on the righthand-side are alulated using the variables at time t + 1. We have heked thatvarying this hoie of update rule does not a�et our results. In the equationfor the two-dimensional update, (Eq. 6.8), we have heked that dropping thenext-nearest neighbour term also does not a�et our results signi�antly. Thus, avariety of possible update shemes appear to yield onsistent results for the spatio-temporal behaviour of our oupled map lattie, underlining the generi nature ofour results.Finally, we stress one important feature of our approah. We work with loalmaps whih are obtained by Euler disretization of the governing equations, in alimit in whih suh disretization is stable. Thus, we are assured that the loalphysis is rendered aurately, an important onsideration given the omplexityof the loal phase diagram. However, our ruial approximations are made at thelevel of the spatial oupling terms where we ignore the e�ets of the shear at salesbeyond that of the loal map, replaing the required onvetive term by a simpledi�usive term. In addition, while the derivative terms involving L2 and higherorder terms onventionally retained in the Landau-Ginzburg-de Gennes expansionare highly anisotropi and non-linear, we neglet all suh terms, proposing thatboth the regular and spatio-temporally omplex behaviour of interest to us an beobtained by inorporating the simplest form of (di�usive) spatial oupling in ouroupled map lattie.6.4 The One-dimensional Coupled Map LattieIn this setion, we desribe our results for the one-dimensional ase, onentratingon the e�ets of the inter-site oupling, both within and outside the regime labelledC in the phase diagram.
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Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystals

Figure 6.2: Phase diagram summarizing the loal dynamial behaviour of thespatially oupled one-dimensional system, with λk plotted on the x axis and γ̇on the y axis. As before, T denotes the tumbling state, W the wagging state,KT the kayak-tumbling, KW the kayak-wagging state, A the aligned state and Cthe state of omplex dynamis. The spatial oupling onstant ǫ = 0.1 (a) and0.5 (b), for a ring of 200 lattie points. The loation of the states in the phasediagram is largely similar to that of Fig. 6.1 with the exeption that, at isolatedpoints, mainly within the KT phase, one sees omplex behaviour. The regime inthe phase diagram oupied by the C phase shrinks as the oupling onstant ǫ isinreased.
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Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystals6.4.1 Loal dynamisFig. (6.2) shows the dynamial phases exhibited by a generi site randomly hosenfrom the one dimensional ring. The sites are oupled aording to the sheme givenin Eq. 6.8, with oupling onstant ǫ = 0.1 (a) and ǫ = 0.5 (b).It is evident from omparisons with Fig. (6.1) that the loal dynamis of ageneri site in the oupled system is similar to the unoupled ase. This indiatesthat spatial oupling does not alter the nature of the loal dynamis qualitatively.The most signi�ant in�uene of spatial oupling ours near the C region, whihappear to be somewhat broadened with spatial oupling, while the oexisteneregimes are redued in size. In addition, the fairly uniform KT state is now �stud-ded� with points displaying omplex behaviour. This indiates oexistene of om-plex and KT behaviour, with ertain initial states leading to omplex dynamis,while others lead to a uniform KT state. (It is di�ult to determine whether theomplex behaviour we see is a very long transient or true asymptoti behaviour.)The tumbling T and wagging W regions, however, are very stable.Loal behaviour of regular regionsFigs. (6.3)-(6.4) show the value of the salar order parameter s1, the biaxialityparameter s2 and the z omponent of the diretor n. Fig. (6.3) is obtained usingparameter values appropriate to the T and W regions of the loal phase diagram,with a oupling onstant ǫ = 0.1. This displays ompletely regular behaviour,with these quantities varying periodially keeping the diretor in the vortiityplane. Fig. (6.4) is obtained using parameter values appropriate to the KT andKW regions of the loal phase diagram and indiate that the diretor an now�utuate out of plane whereas all quantities vary smoothly and periodially. Theloal time period T (γ̇) with whih these quantities osillate is found to be inverselyproportional to shear rate, with T ∼ 1
γ̇
, as γ̇ is varied aross the T and KT regionsof the phase diagram.Loal Dynamis in the Complex RegionThe loal behaviour in the omplex region, denoted by C in the loal phase dia-gram, is exhibited in Fig. (6.5), whih shows s1 and s2 and nz. The results suggest115
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Figure 6.3: Loal dynamis in a ring of 200 lattie points, with oupling ǫ = 0.1,showing the temporal evolution of s1, s2 and nz. These are displayed for (a) s1 ,s2and nz with (a) λk = 0.9 and γ̇ = 5.0 (b) λk = 1.1 and γ̇ = 5.0, and () λk = 0.9and γ̇ = 4.0. These states are all drawn from the T and W parts of the loalphase diagram. Note that nz = 0 in all these states whereas s1 and s2 are periodifuntions of time.that the sites display intermittent behaviour. These results are obtained for param-eter values at the boundary of the omplex region and the kayak-wagging region,with paramters γ̇ = 4.0 and λk = 1.2. In part (a), the oupling onstant ǫ= 0.5,in part (b) ǫ = 0.15 and in part () ǫ = 0.1. All of these show qualitatively sim-ilar temporally intermittent behaviour. The fourier transform of the time seriesof stress alulated at a generi site and plotted on a doubly logarithmi sale isshown in Fig. (6.6). The spetrum in () of Fig. (6.6) �ts the relation P (f) ∼ 1/f 2.6.4.2 Spatio-temporal oherene and dynamisIn order to quantify the degree of spatial oherene, we alulate the followingquantity for the one-dimensional lattie:
d =

√√√√ 1

NT

T∑

t=1

N∑

i=1

(at0(i) − at)2, (6.13)116
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Figure 6.4: Loal dynamis in a ring of 200 lattie points, with oupling ǫ = 0.1,showing the temporal evolution of s1, s2 and nz. These are displayed for for (a)
λk = 0.9 and γ̇ = 2.0 (b) λk = 1.1 and γ̇ = 2.0, and () λk = 1.4 and γ̇ = 2.0.These points are drawn from the KT and KW part of the loal phase diagramand represent states in whih the diretor exhibits out-of-plane �utuations i.e.
nz 6= 0. However, s1 and s2 ontinue to exhibit regular, periodi osillations.where

at =
1

N

N∑

i=1

at0(i). (6.14)We have alulate suh a spatial oherene parameter for one spei� omponentof the vetor (a0, . . . , a4); however, qualitatively similar results are obtained forother omponents as well as for the full loal stress, in the C region. When dtends to zero the degree of synhronization of the loal variables is very high. Onthe other hand large d indiates low spatial synhronization, arising from a widedistribution of values of the loal variables in the lattie. This quantity thus servesas a global order parameter haraterizing the smoothness of the spatial patternsexhibited by the evolution of the map.Fig. (6.7) shows the time average of the deviation < d > of a0 from the averagevalue a0. To ompute this, we �rst alulate the instantaneous deviation d viaEqs. (6.14) and (6.13), and then �nd the long-time average of this quantity. Thespatial pro�le of the regular region with low < d > is haraterised either by117
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Figure 6.5: Loal dynamis of a ring of 200 lattie points, with λk = 1.2 and
γ̇ = 4.0, showing the time evolution of s1, s2 and nz. These are shown for (a)
ǫ = 0.5 (b) ǫ = 0.15 and () ǫ = 0.1, illustrating behaviour in the omplex or Cregime. Note that regular time-periodi behaviour is favoured at large values ofthe spatial oupling onstant ǫ, following an initial transient.spatiotemporal �xed behaviour with all sites aligned, or spatial uniformity andtemporal periodiity. There are also ases in the regular region where the sites,though not ompletely synhronized in spae, are nevertheless phase synhronized.Spatio-temporal dynamis in the regular regionFig. (6.8) displays the spae-time plot for γ̇ = 4, λk = 1.1 and oupling onstant
ǫ = 0.1 (a) and 0.5 (b). The x-axis displays the lattie index and time is shownon y-axis, inreasing from top to bottom. The pro�le is not spatially uniform andperiodi in time for very weak oupling. As the oupling is inreased, the systemaquires spatial oherene and temporal periodiity.Spatio-temporal dynamis in the omplex regionThe spatiotemporal behaviour of a representative ase in the C or omplex regionis displayed in Fig. (6.9), where γ̇ = 4, λk = 1.17 and oupling onstant ǫ = 0.1 (a)and 0.5 (b). It is evident that the spae-time pro�le splits into bands, i.e. lusters of118
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Figure 6.6: Log-Log plot of the Fourier transform vs. frequeny, for (a) λk = 1.17,(b) λk = 1.20 and () λk = 1.24. Here ǫ = 0.1 and γ̇ = 4.0. The lattie is a ringof 200 sites. Note that for λk = 1.17 (the wagging region), the regular osillationsshow up as a delta funtion in the fourier transform. In the C or omplex region,a smooth distribution of frequenies is seen, with a 1/f 2 fallo�.synhronized sites, where the loal dynamis is either �xed (blue) or time-periodi(stripes). As we inrease λk (with γ̇ = 4) in Figs. (6.9 - 6.11) the length sale ofthe spatio-temporally intermittent pattern inreases, �nally yielding to the alignedregion. This progression from frozen loalized kinks/domains of �xed points inthe spatial bakground of time-periodi behaviour, to infetive bursts bearing thesignature of spatiotemporal intermitteny, is seen in many systems [36, 70, 71℄,and often arises from a ompetition of �xed point patterns and time-periodi andquasi-periodi patterns.6.5 The Two-dimensional Coupled Map LattieIn this setion, we investigate the phenomenology of two-dimensional systems ex-hibiting nemati rheohaos, arguing that it is important to gain intuition aboutthe di�erenes and similarities in the spatiotemporal dynamis arising in higherdimensional models vis-a-vis one-dimensional models. While one-dimensional sys-tems have been investigated fairly extensively, very little work desribes the be-119
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Figure 6.7: Average deviation from the mean value for ǫ = 0.1 (a) and ǫ = 0.5 (b),with λk on the x-axis and γ̇ on the y axis. Note that large �utuations (roughness)are seen in the KW and C regions. These data are for the 1-d system wiith thenumber of sites N = 200 and parameters as indiated on the �gure.
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Figure 6.8: Density plot of order parameter part of shear stress. Here λk = 1.1, γ̇=4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the lattie site index (i = 1, 200) is on the x-axis. These �guresrepresent spae-uniform and time-periodi states, obtained using parameter valuesorresponding to the T region of the phase diagram.
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Figure 6.9: Density plot of order parameter part of shear stress. Here λk = 1.17,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the lattie site index (i = 1, 200) is on the x-axis. These �guresrepresent spae non-uniform and time-periodi states, obtained using parametervalues orresponding to the KW region of the phase diagram
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Figure 6.10: Density plot of order parameter part of shear stress. Here λk = 1.20,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the lattie site index (i = 1, 200) is on the x-axis. These �guresillustrate how time-periodi regions are interspersed with domains of �xed pointbehaviour, reminisent of spatiotemporal intermitteny. The parameter valuesorresponding to the C region of the phase diagram, in a regime where the haosis weak.

123



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystals

Figure 6.11: Density plot of order parameter part of shear stress. Here λk = 1.24,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the lattie site index (i = 1, 200) is on the x-axis. These �g-ures illustrate non-uniform, time-varying states harateristi of spatio-temporallyhaoti behaviour. The parameter values orrespond to the C region of the phasediagram, in a regime where the haos is strong. Note that larger values of ǫ leadto larger and more uniform spatial strutures.
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Figure 6.12: Density plot of order parameter part of shear stress. Here λk = 1.24,
γ̇ =3.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the lattie site index (i = 1, 200) is on the x-axis.
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Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalshaviour of two-dimensional systems due, largely, to the prohibitive omputationalosts involved in studying PDEs with two-dimensional spatial extent. Coupledmap lattie methods provide an alternative way of addressing higher-dimensionalsystems, at far less attendant omputational ost.6.5.1 Loal temporal behaviourIn the regular regions of the phase diagram, orresponding to the T,W, KT andKW states, the temporal behavior is very similar to that of the one dimensionalase and is thus not shown separately. We thus onentrate on behavior in theomplex or C region. Representative data showing the loal temporal dynamisof the omplex region is given in Fig (6.13). They show haoti behaviour, andthere appears to be no qualitative di�erene between the one dimensional and twodimensional lattie ases. As in the one-dimensional lattie, inreased ouplingstrengths suppress the haoti region. The log-log plot of the fourier transform isshown in Fig. (6.14); a similar �t to P (f) ∼ f−2 of the frequeny spetrum of thestress an be obtained, as in the one-dimensional ase.6.5.2 Spatio-temporal behaviourTo quantify the degree of spatial oherene in 2-dimensional latties we alu-late the quantity, generalizing from the one-dimensional ase studied in an earliersetion:
d =

√√√√ 1

N1N2T

T∑

t=1

N1,N2∑

i,j=1

(at0(i, j) − at)2, (6.15)with
a =

1

N1N2

N1,N2∑

i,j=1

a0(i, j). (6.16)Again, as in the 1-dimensional ase, when d tends to zero the degree of synhro-nization of the loal variables is very high. On the other hand large d indiates lowspatial synhronization, and arises from a wide distribution of values of the loalvariables in the lattie.Fig. (6.15) shows the spae-time average of the deviation de�ned in Eqn. (6.15).The panel (a) displays results for ǫ = 0.1 and the panel (b) for ǫ = 0.5. It is lear126
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Figure 6.13: Temporal evolution of s1, s2 and nz in a two dimensional lattie ofsize 102 × 102, with ǫ = 0.1, for (a) λk = 1.17 and γ̇ = 4.0 (b) λk = 1.20 and
γ̇ = 4.0 () λk = 1.24 and γ̇ = 4.0. All these state points are drawn from the Cregion of the loal phase diagram. Note the existene of temporally intermittentbehavior, analysed in terms of its frequeny spetrum in Fig. 6.14.
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Figure 6.14: Log-Log plot of the absolute value of the Fourier transform of thestress vs. frequeny ω, for (a) λk = 1.17, (b) λk = 1.20 and () λk = 1.24. Here
ǫ = 0.1 and γ̇ = 4.0. The lattie ontains 100 × 100 sites. Note the relativelysmooth bakground, indiating the presene of a ontinuous set of frequenies.The fall-o� is onsistent with a 1/ω2 behaviour.that higher oupling strengths make the system more uniform in spae. Also, itappears that the regions with kayak-tumbling, kayak-wagging and omplex loaldynamial behaviour show more deviation in the spatial pro�le, exhibiting morespatial inhomogeneity.Regular regimeIn this setion we disuss the spatial pro�le of our oupled map lattie in twodimensions. As in the one-dimensional ase, we start with random initial onditionsand analyze the spae pro�le after omitting a transient regime. We analyse thedensity plots of the shear stress ontribution to the order parameter, in di�erentdynamial regions. Considering the spae-time behaviour of the system in theregular region, with loal dynamis belonging to the aligned, wagging, tumblingand kayak-tumbling region, reveals spatially uniformity states whih are periodiityin time. These are losely related to the states obtained in the oine-dimensionalase and are not disussed further here, as we will onentrate on results obtained128



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsin the physially more interesting C regime.Complex regimeThe on�gurations in Figs. (6.16) is from the omplex region. When the ouplingbeomes very large, one obtains spatially uniform states. In Fig. 6.17, we havehosen points (a) and (b) from the KT region of the loal phase diagram and ()from the C dynamial region. After leaving 104 transient steps , we have plottedone row of a 100×100 lattie at a single time instant. On the x axis we plot ǫ andon the y axis we plot the stress at 100 points of the lattie at one time step. It isevident that for high oupling strength ǫ, the system goes to a spae-synhronizedstate. For low oupling onstants, on the other hand, there is a typially widedistribution of stress values at di�erent sites, indiating spatial inhomogeneity.6.6 Quantifying Spatio-Temporal ComplexityIn this setion, we report results quantifying spatio-temporal omplexity in the one-dimensional oupled map lattie spei�ed in Eq. 6.6. To understand the nature ofthe omplex behaviour represented in the phase diagram, we perform alulationsof the spetrum of Lyapunov exponents. These are shown in Fig. 6.18. We �rsthoose several values of the parameters λk and γ̇ within the omplex region andevolve the oupled map. After waiting for an initial number of time steps toeliminate transients, we alulate the Jaobian matrix at eah time step. Wethen onsider a small deviation from the attrator and iteratively multiply thisdeviation by the Jaobian, orthonormalizing this vetor at eah time step. Fromthis we alulate the Lyapunov exponent, using the method desribed in Ref. [85℄.These results are illustrated in Fig. 6.18, whih exhibits the values of the �rstfour Lyapunov exponents, omputed for parameter values λk and γ̇ for systemsizes L = 3, 10, 50 and 100, as a funtion of the oupling onstant ǫ. Our results,following the data shown in these �gures, are the following. Qualitatively, inthe omplex regime, the �rst Lyapunov exponent is always positive, even as thesystem size and the spatial oupling are inreased. The loal value of this exponentis also positive. This value dereases further with spatial oupling but remainspositive. Roughly speaking, larger lattie sizes show larger values for this exponent,129
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Figure 6.15: Average deviation d (see text) from the mean value of a0 for ǫ = 0.1(a)and ǫ = 0.5(b). The quantity λk is plotted on the x-axis and γ̇on the y-axis. Thelattie is a 100 × 100-site lattie. Note that this roughness is largest in the KT,KW and C regions, espeially for large values of γ̇. As ǫ is inreased, the roughnessdereases, as inreasing spatial homogeneity is promoted.
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Figure 6.16: (a) A olor plot of order parameter part of shear stress. The quantities
λk = 1.25, γ̇ =4.0 and ǫ = 0.1. The time t is plotted on the y-axis, whih depitsthe time evolution of the stress omputed on one row (x-axis) of the 100 × 100lattie. (b) shows a snap shot of the full lattie at an intermediate time step.

131



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystals

(a) λk = 0.9, γ = 4.0
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Figure 6.17: Value of stress of one row of the lattie at one instant of time on the
y axis as a funtion of the oupling strength ǫ on the x axis. Note that the broadspetrum of loal stress values seen at small values of the oupling ontrat to anessentially unique value at large ǫ.
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Figure 6.18: Plots of the Lyapunov exponents obtained from our alulation (seetext) for di�erent system sizes as a funtion of the oupling onstant. The �guresrepresent (a) the �rst Lyapunov exponent λ1 (b) the seond Lyapunov exponent λ2) the third Lyapunov exponent λ3 d) the fourth Lyapunov exponent λ4. Note thatall these exponents tend to zero from below in the limit of large system size. Hene,inreasing the oupling between sites has the e�et of reduing the magnitude ofthe negative Lyapunov exponent.
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Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsonsistent with results from the one-dimensional PDE alulation. These valuesappear to saturate for small oupling values but derease for larger values of thespatial oupling.The seond and higher order Lyapunov exponents, in our alulation, are smalland negative for the smallest lattie sizes, but move to values that are lose to zeroas the lattie size is inreased. At small ouplings, for the larger latties, this valueis positive but goes negative as the oupling strength is inreased. Thus, the datafor the Lyapunov exponents are onsistent with the general onlusion that goingto larger lattie sizes stabilizes haos, whereas inreasing the oupling betweensites suppresses omplex spatial behaviour. The lustering of Lyapunov exponentsaround zero in the large system size limit is onsistent with the emergene ofspatio-temporal intermitteny on large sales [28, 7, 65℄.Kaplan-Yorke Lyapunov Dimension: J. Kaplan and J. A. Yorke [74℄ haveonjetured that the dimension of a strange attrator an be approximated from thespetrum of Lyapunov exponents. Suh a dimension has been alled the Kaplan-Yorke (or Lyapunov) dimension, and it has been shown that this dimension islose to other dimensions suh as the box-ounting, information, and orrelationdimensions for typial strange attrators (Frederikson et al. 1983). We alu-lated the Kaplan-Yorke Lyapunov Dimension, de�ned in terms of the Lyapunovexponents λi, i = 1, 2, . . .N (where the subsript labeling the λ's is hosen so that
λ1 ≥ λ2, λ3, . . . λN) as:

DL = k +

∑k
i=1 λi

|λk+1|
. (6.17)Here, k is the maximum value of i, suh that λ1 + λ2 · · ·+ λk > 0.From Fig. 6.19, it appears that both the number of positive Lyapunov ex-ponents, as well as the Kaplan-Yorke (Lyapunov) dimension, sale linearly withinreasing system size, i.e. they are �extensive quantities�. We thus onlude thatup to the system sizes we explore, the haos is extensive [127℄. It is also evidentthat both the Kaplan-Yorke dimension and the number of positive Lyapunov ex-ponents derease with inreasing ǫ. This again undersores the regularizing e�etof oupling interations whih indue spatial orrelations, in e�et reduing thedimensionality of the system. We have also estimated the Kolmogorov-Sinai (KS)entropy, de�ned as the sum of positive exponents, and observed that this too showsa linear inrease with system size. 134
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Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsreproduing the physis of the spatially unoupled (equivalently, uniform) limit,inluding the large variety of phases and the omplex phase diagram obtainedfor that ase. Suh maps are plaed on a regular lattie and oupled di�usivelythrough a variety of oupling shemes, thus representing the e�ets of ouplingthese degrees of freedom in spae.Our general approah to the problem of spatio-temporal aspets of rheologialhaos in sheared nematis an be desribed in the following way: We �benhmark�our loal map against ODE solutions, requiring that our hoie of disretizationmaintain the basi phase behaviour and phase diagram found in the ODE ase.We then use this loal map as an ingredient in the onstrution of a oupled maplattie. Our prinipal approximations in this onstrution are our representation ofthe spatial oupling in simple terms, in that we ignore both the onvetive e�etsof the shear as well as anisotropies arising from allowed elasti ouplings in the freeenergy. Cruially, we stress that we are not solving a (disretized) version of thenon-linear oupled PDE's of the original ontinuum problem. We study, instead, afar simpler disrete-spae problem, one in whih only the simplest spatial ouplingsare retained. This approah is onsistent with our intuition that spatio-temporalomplexity in this problem should be understood as arising from spatially oupling,in a straightforward, minimal manner, a loal degree of freedom with the requisiteomplex dynamis.Our approximations, though severe, nevertheless onstitute a powerful enoughapproah to the original problem to yield, on their own, a rih spetrum of spa-tiotemporal patterns, going far beyond the temporal diversity obtained in earlierstudies of the loal behavior. A deeper understanding of pattern formation ispossible in our approah, as the emergent dynamis is naturally deomposed intoomponents in�uened by the loal behaviour and those arising from oupling in-terations. Thus, though our model is simple and onstrutive, it lari�es theemergene of a wide range of spatiotemporal patterns in this system.Our studies of the oupled map in both one and two dimensions indiatesthat regimes of regular behaviour largely exhibit spae-uniform and time-periodistates, with the oupled dynamis roughly following the unoupled ase. We haveanalysed the dynamial behaviour of the two quantities whih haraterize loalorder in the nemati, the uniaxial s1 and the biaxial s2 order parameters, examiningtheir time evolution in the di�erent states. 136



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid CrystalsIn ontrast, in the omplex or C region of the loal phase diagram, suh ou-pling leads to states that exhibit spatio-temporal intermitteny and haos. Wehave haraterized suh states by examining the Lyapunov spetra as well as thefrequeny dependene of the time series of physial quantities suh as the stress.We �nd evidene for a broad, power-law distribution of time-sales in the problem.Further, in the omplex region, one often sees a oexistene of regular (lamina)and haoti regimes as a prelude to fully developed haos in whih dynamial �u-tuations our independently from site to site. In some regimes, periodi bandsimmersed in a more omplex, �utuating bakground are obtained, suggestive ofthe possibility of transient shear bands stabilized by the dynamis, a feature alsopresent in ODE-based studies of this problem[26, 37, 27℄. The basi sale of theseomplex dynamial patterns is alterable by hanging the oupling onstant, in-diative of self-similarity in the spatio-temporally intermittent ase. At very largevalues of the oupling onstant, the spae pro�le is expeted to beome uniform;however, for small and intermediate values of this oupling onstant, the spetrumof Lyapunov exponents merges to zero, onsistent with our observation of generispatio-temporal intermitteny in the weak oupling ase.We have experimented with using spatial oupling terms whih represent theadvetive e�ets of the shear �ow, oupled to �xed boundary onditions wherethe orientation and magnitude of the order parameter are �xed at the boundary.Suh terms appear, at small amplitude, to mainly distort the sorts of dynamialstrutures obtained for the symmetri oupling state and seem to evolve smoothlyfrom them.The usefulness of oupled map lattie representations of the spatio-temporaldynamis of systems exhibiting haos in their loal dynamis is that suh represen-tations often provide both useful physial insights as well as are omputationallyeasier to simulate than their PDE versions. In that sense, the problem of rheohaosin sheared nematis o�ers an ideal setting for CML methods, sine the loal dynam-is of the sheared nemati is highly non-trivial, exhibiting a variety of temporallyperiodi as well as haoti states. As shown here, the variety of non-trivial spatio-temporal behaviour exhibited by sheared nematis is very largely a onsequene ofsimply oupling these dynamial degrees of freedom in spae. The physis appearssubstantially independent of how preisely this spatial oupling is done, with thesimple lattie model with parallel update exhibiting virtually all the behaviour of137



Chapter 6. A Coupled Map Lattie Model for Rheologial Chaos in ShearedNemati Liquid Crystalsthe more omplex and omputationally intensive studies of the appropriate PDE's.This, together with the spei� results presented in this hapter for our oupledmap approah to rheohaos in sheared nematis, is our entral onlusion.Further, order-parameter-based models, suh as the one desribed in this hap-ter and in the work of Refs. [27, 26, 37℄, ontain essential non-linear terms in thefree energy. It is these terms that are responsible for the non-trivial loal dy-namis aptured in our loal map as well as in the oupled map lattie. Ref. [27℄emphasizes the role of �additional omplex olletive dynamis� arising from suhnonlinearities whih is not aptured in the DJS model but is relevant to the qual-itative nature of the intermittent and haoti behaviour seen in this system. Suhnon-linearities are naturally aounted for in our approah.Our study of the spatio-temporal dynamis of sheared nematis using CMLmethods possibly represents the �rst extension of suh methods to the problemof rheohaos. In ontrast to previous work based on ODE's whih studied onlythe one-dimensional ase, it is relatively easy to extend our CML methodology tohigher dimensions, even to the experimentally relevant three-dimensional ase. Itwould be interesting to see how, if at all, hydrodynami e�ets an be inorporatedin models of this type. Whether other experimental systems of sheared omplex�uids whih exhibiting rheohaos an be fruitfully analysed using similar oupledmap approahes remains to be seen.
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7Conlusions
The work desribed in this thesis has dealt with some problems in the statis anddynamis of nemati liquid rystals. These problems fell into two broad lasses.The �rst lass dealt with the stati properties of the isotropi-nemati interfae.The seond lass of problems involved the study of the dynamis of the orderparameter for a nemati liquid rystal in an external shear �ow.In our study of the isotropi-nemati interfae, results were derived for theuniaxial and biaxial pro�les, speialized to the ase of planar anhoring. We showedhow a term in the Euler-Lagrange equations negleted in previous work ontributessubstantially to determining the struture of the interfae. Our approah yieldedlose agreement with numeris for both the uniaxial and biaxial pro�les. We alsostudied the ase where a general anhoring ondition is imposed on the nemati sideof the interfae. We used variational methods in our analysis, showing that whilespatial variations of the uniaxial and biaxial order parameters are approximatelyon�ned to the neighbourhood of the interfae, nemati elastiity requires that thediretor orientation interpolate smoothly between planar anhoring at the loationof the interfae and the imposed boundary ondition at in�nity. Our variationalresults were shown to agree well with numerial results as well as results frommoleular simulations.The auray of these results relied on the areful hoie of an appropriatevariational funtion, powerful enough to desribe the variation of the strength ofuniaxial and biaxial orders aross the interfae as well as the spatial variation of thediretor �eld. Similar variational methodologies should be useful in other ontextswhere both uniaxial and biaxial orders might be expeted to vary strongly in spae,139



Chapter 7. Conlusionsinluding lose to surfaes or in the presene of external �elds.In our study of the sheared nemati, we proposed and studied a loal mapapable of desribing the full variety of dynamial states, ranging from regular tohaoti, obtained when a nemati liquid rystal is subjeted to a steady shear �ow.The map was formulated in terms of a quaternion parametrization of rotations ofthe loal frame desribed by the axes of the nemati diretor, subdiretor and thejoint normal to these, with two additional salars desribing the strength of or-dering. Our model yielded kayaking, wagging, tumbling, aligned and oexistenestates, in agreement with previous formulations based on oupled ordinary di�eren-tial equations. We then went on to disuss and study a oupled map lattie modelfor a nematogeni �uid in a passive shear �ow. Our results provided evidene forspatially and temporally uniform states, as well as states whih are spatially uni-form but temporally periodi. We demonstrated the presene of spatio-temporallyhaoti behaviour in some regimes, and a detailed haraterization of suh behaviorwas provided.The work desribed in this thesis shows that oupled map lattie models ofrheologial haos an provide aurate yet omputationally tratable desriptionsof the steady states of a prototypial driven omplex �uids. This work provides the�rst example of oupled-map lattie methods applied to the problem of rheohaos.One might expet that CML models ould provide helpful insights into the dynam-ial behaviour of other driven omplex �uids known to exhibit haoti behaviourat low Reynolds number. This would be a fruitful diretion for future work.
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