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Abstract

The focus of this thesis is on the complexity analysis of some computational problems in re-
stricted graph-classes. The problems considered include graph isomorphism, various path prob-

lems like reachability, shortest path, and longest path computations. We investigate the space
complexity of the graph isomorphism problem for planar graphs. The space complexity of path

problems is considered for planar graphs, and k-trees. Another problem studied in the thesis is
the clustering problem.

One of the main results on graph isomorphism included in the thesis is a log-space algorithm
for isomorphism of planar graphs. This settles the complexity of planar graph isomorphism,

since hardness for log-space is already known. A log-space algorithm is first described for
isomorphism of 3-connected planar graphs, which is then used in the algorithm for planar graph

isomorphism.
The results on path problems include an improved upper bound for computing the length

of a longest path between two designated nodes in a planar DAG. We also present new upper
bounds for counting the number of paths between two designated nodes in a planar DAG and in a

single-sink DAG, under the promise that these numbers are bounded by a polynomial in the size
of the graph. Reachability problem is also studied for directed k-trees and a log-space algorithm

is given. Complexity of the shortest and longest path problems for directed acyclic k-trees has
been analysed and log-space algorithms are described for these problems. We also give matching

log-space hardness results, thereby settling the complexity of these problems for directed k-trees
and directed acyclic k-trees respectively. These algorithms are applicable for partial k-trees,

which are also known as graphs of tree-width at most k, provided a tree-decomposition for
partial k-trees is given as input. The tree-decomposition for k-trees is known to be computable

in log-space, but is not known for partial k-trees.
Another problem studied in this thesis is the k-means problem. It is a variant of the clustering

problem. We prove that the k-means problem is NP-hard when the input is a set of points in
two dimensions, and k is part of input. Earlier the hardness was known only for those instances

where the number of dimensions is a part of input.
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1
Introduction

The main goal of complexity theory is to prove non-trivial upper and lower bounds on the time
and space requirements of various computational problems. The most widely used computa-

tional model is the Turing machine model. The computational power of a Turing machine de-
pends on the time and space it is allowed to use, and also on whether it is deterministic or non-

deterministic. Various complexity classes have been defined by imposing various time and space
constraints on deterministic and non-deterministic Turing machines. Thus one way of proving a

better upper bound for a problem is to show that the problem lies in a smaller complexity class.
To show a lower bound for a problem, one can show that the problem is hard for a complexity

class C. A problem is hard for a class C if and only if each problem in C can be reduced to it
under some acceptable notion of reduction. The complexity of a problem is said to be settled if

it has the same upper and lower bound.
The emphasis of this thesis is mainly on the upper and lower bounds on the computational

requirements of a Turing machine for solving certain fundamental computational problems on
some restricted sets of inputs.

One of the main restrictions considered in the thesis is graph planarity. A natural problem
that has been studied under this restriction is the problem of determining whether two given pla-

nar graphs are isomorphic. Another problem that has been considered on directed planar graphs,
along with the additional restriction of acyclicity, is to compute the longest path length between

two given nodes in the graph. We show that planarity significantly reduces the complexity of

these problems under current complexity theoretic assumptions. Apart from this, the planarity
restriction has been considered for a clustering problem called the k-means problem. Unlike the

previous case, the planar (i.e. two-dimensional) k-means problem is shown to be computationally
hard.

Another parameter is graph tree-width. We consider the reachability problem on graphs
of bounded tree-width. With an additional restriction of acyclicity, we study the shortest and

longest path problems on these graphs. In both of these problems, bounded tree-width is shown

1



Chapter 1. Introduction

to bring down the complexity of these problems under known complexity theoretic assumptions.
The thesis has been divided into three main parts, based on the problems considered. The

graph isomorphism part contains results on planar graph isomorphism, the part on path problems

includes results on reachability, and shortest and longest path problems in the graph classes men-

tioned above. These two problems are described in Section 1.2.1 and Section 1.2.2 respectively.
The third part includes complexity analysis of the clustering problem known as the k-means

problem, described in Section 1.2.3.

1.1 Preliminaries

We give some basic graph theoretic and complexity theoretic background here. This includes

definitions of the graph classes and complexity classes considered in the thesis.

Graph Theory We first describe the notions related to connectivity in graphs, that are used in
this thesis. Two main graph classes that are dealt with are that of planar graphs, and k-trees. We

define these two classes and list some of their important properties here.
A graph G = (V,E) is said to be connected if there is a path between every pair of vertices.

G is called biconnected if it remains connected even after the removal of any one vertex and its
incident edges. If G is not biconnected, then there are some vertices such that removing any

one of them disconnects G into two or more components. Such vertices are called articulation

points. G is said to be 3-connected if it remains connected even after the removal of any pair of

vertices and their incident edges. If G is not 3-connected, then there is a pair of vertices whose
removal disconnects G into multiple components. Such a pair is called a separating pair.

A graph is said to be planar if it can be drawn in a plane (or equivalently, on the surface of
a sphere) without any two edges crossing each other. A combinatorial embedding or rotation

scheme for a graph is a cyclic ordering of edges around each vertex. Let v be a vertex in a graph
G and let Ev be the set of edges incident on v. Then a rotation ρv for v is a permutation on Ev.

Rotation scheme or combinatorial embedding for G is defined as ρ = {ρv|v ∈ V }. For a planar
graph G, a combinatorial embedding ρ is called a planar combinatorial embedding if there is a

plane drawing of G that has the combinatorial embedding ρ.
Another graph class considered in this thesis is the class of k-trees.

Definition 1.1 The class of k-trees is inductively defined as follows (see e.g. [42]):

• A clique with k vertices (k-clique for short) is a k-tree.

• Given a k-tree G′ with n vertices, a k-tree G with n + 1 vertices can be constructed by

introducing a new vertex v and picking a k-clique X (called the support) in G′ and joining

v to each vertex u in X . Thus, V (G) = V (G′)∪{v}, E(G) = E(G′)∪{{u, v} | u ∈ X}.

2



Chapter 1. Introduction

A partial k-tree is a subgraph of a k-tree. The class of partial k-trees coincides with the class
of graphs which have tree-width at most k.

Complexity Theory Now we define the complexity classes that appear in this thesis, and Fig-

ure 1.1 shows the relations among them.
We assume that a Turing machine has a read-only input-tape and a read-write work-tape. The

complexity class deterministic log-space (L) is the class of languages accepted by a deterministic
Turing machine that has a log-space work-tape. A complete problem for L is reachability in

undirected graphs [77]. Non-deterministic log-space (NL) is the class of languages accepted by a
non-deterministic Turing machine with a log-space work-tape. Directed reachability is a problem

that is complete for this class. Unambiguous log-space (UL) is the class of languages accepted
by a non-deterministic log-space machine that has at most one accepting path on any input. L
and NL are closed under complement, but UL is not known to be closed under complement. The
complement class of UL is coUL. The functional analogue of L is the class FL. Thus FL consists

of functions that are computable by a deterministic log-space machine that also has a write-only
one-way output-tape.

Now we consider the complexity classes where the Turing machine is allowed to have a
stack, in addition to a log-space work-tape. An AuxPDA is an auxiliary pushdown automaton

augmented with a log-space work-tape and running in time polynomial in the length of input.
Alternatively, it can also be viewed as a log-space machine augmented with a stack and running

in polynomial-time. It is called DAuxPDA, or UAuxPDA depending on whether the machine
is deterministic, or unambiguous respectively. The class of languages accepted by a DAuxPDA
is exactly the class LogDCFL, which is the class of languages that are log-space many-one
reducible to some (deterministic) context-free language [82]. Similarly, the class of languages

accepted by a non-deterministic AuxPDA is same as the class LogCFL, which is the class of lan-
guages that are log-space many-one reducible to a context-free language. However, UAuxPDA
is not known to be equivalent to the class LogUCFL - the class of languages that are many-one
reducible to an unambiguous context-free language. Only one-way containment LogUCFL⊆
UAuxPDA is known [58].

Additionally, we also consider complexity classes based on some circuit classes. NC is the

class of languages recognized by poly-logarithmic depth bounded fan-in boolean circuits. AC is

the class of languages recognized by poly-logarithmic depth unbounded fan-in boolean circuits.
It is easy to see that NC=AC. In particular, NC1 and AC1 are the classes of languages recognized

by log-depth boolean circuits of bounded and unbounded fan-in respectively.
Besides the language classes described so far, we describe here two function classes GapL

and #L. #L is the class of functions f with the property that there is an NL machine M such that
f(x) is the number of accepting paths of M on input x. Thus the canonical complete problem

3



Chapter 1. Introduction

for #L is computing the number of paths of an NL machine. GapL is the class of functions f

such that f(x) is the number of accepting paths minus the number of rejecting paths of an NL
machine on input x. Computing the determinant of an integer matrix is a complete problem for
GapL under log-space reductions, and hence GapL can also be defined as the class of functions

that are log-space reducible to the determinant computation problem for integer matrices.
The relations among these complexity classes are shown in Figure 1.1.

NC1 L

LogDCFL UAuxPDA[poly]

L#LNL LGapL

LogCFL

NC2 P NP

AC1

coUL

UL

Figure 1.1: Relation among complexity classes

1.2 Problem Definitions and Related Results

The contributions of this thesis are in three main problems: graph isomorphism and canonization,
path problems, and clustering problems. We define these problems here and give a brief overview

of the previous work on these problems.

1.2.1 Graph Isomorphism and Canonization

Graph isomorphism (GI) is a fundamental computational problem, and its complexity is not yet

settled. This problem has been extensively studied for a long time. Given two graphs G and

H , GI involves determining if there is an edge-preserving bijection ϕ between the vertices of G
and the vertices of H . Thus ϕ : V (G) → V (H) is an isomorphism between G and H if it is a

bijection such that (ϕ(u), ϕ(v)) ∈ E(H) ⇔ (u, v) ∈ E(G). If such a bijection exists, then the
two graphs are said to be isomorphic, denoted as G ∼= H . The decision, counting, and search

versions of GI are known to be polynomial-time equivalent (see e.g.[1, 68]).
GI is defined for directed as well as undirected graphs. However, GI for directed graphs is

log-space many-one reducible to GI for undirected graphs [54]. If G and H are colored graphs,
then an isomorphism ϕ between them must preserve the colors. Thus, if G and H have colors on

their vertices, an isomorphism ϕ must have the additional property that u and ϕ(u) have the same
color for all the vertices u ∈ V (G). GI for colored graphs can be reduced to GI for uncolored

graphs by AC0-reductions (see e.g.[54]).
The problem can also be posed when G and H are in fact two copies of the same graph.

In this case, the problem is called the graph automorphism problem and involves determining

4



Chapter 1. Introduction

whether there is an edge-preserving bijection from the vertex set of G to itself, which is different
from the identity mapping. The graph automorphism problem is polynomial-time equivalent to

the graph isomorphism problem. It can be seen that the set of automorphisms of a graph forms a
group under composition.

Graph canonization is another problem of similar flavour. Given a graph class G, a function
f defined on G is said to compute canonical forms of G if it satisfies the following:

∀G,H ∈ G : G ∼= H ⇔ f(G) = f(H)

∀G ∈ G : f(G) ∼= G

Given a function f that computes canonical forms, an isomorphism from G to f(G) is called a

canonical labelling of G. For a graph G, f(G) is called the canon of G. The graph canonization
problem involves computing such a function f . It is easy to see that the graph canonization

problem is at least as hard as GI. Whether the two problems are equivalent is a long-standing
open question. However, it is interesting to note that many polynomial-time algorithms, and par-

allel algorithms for GI on restricted graph classes mentioned above, in fact, provide a canonical
labelling for the graphs.

The best known upper bound for the graph canonization problem is FPNP (see e.g. [14]),
whereas it is easy to see that GI is in NP. This is because, given a bijection ϕ between the

vertices of two graphs G and H , it is easy to verify whether ϕ is an isomorphism between G

and H . GI is also known to be in the complexity class SPP [16]. However, no polynomial-time

algorithm is known for GI. On the other hand, it is unlikely to be NP-complete. It is known that
if GI is NP-complete, then the polynomial hierarchy collapses to its second level [24, 80]. The

seminal paper by Babai and Luks takes a group-theoretic approach to graph canonization [22].
A subexponential-time algorithm for GI is known [18]. From complexity theory perspective, the

best known lower bound for GI is GapL [86].
There are polynomial-time algorithms for GI on various graph classes like graphs of bounded

degree [65], bounded genus [71], bounded tree-width [39], bounded color classes [66], planar
graphs [45, 46], some fixed minor-free families of graphs [75], etc. For GI on 3-connected

planar graphs, an O(n2) algorithm is known due to [92], which was extended to general planar
graphs by [44]. An O(n2) algorithm for GI on planar graphs is also given by [56], whereas a

linear-time algorithm is known due to [46]. For random graphs, the Weisfeiler-Lehman method

[21, 20] produces a canonical form with high probability.
The parallel complexity of GI in various graph classes has been studied. An NC algorithm

for trees was given by [29]. For planar graphs, an AC1 algorithm is known due to [72], [76] and
[89]. For graphs with colored vertices and bounded color classes, an NC algorithm was given by

[66]. Additionally, GI for graphs with bounded color classes is known to be in the #L hierarchy

5
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[17]. For GI in bounded tree-width graphs, a TC1 upper bound is known due to [39], which has
been improved recently to LogCFL [31].

Recent research has been focussed on finding out the space-complexity of GI on these graph
classes, and matching hardness results. The goal has been to show GI for various graph classes

to be complete for some natural complexity class. For instance, a log-space algorithm for GI on
trees is known due to [62]. GI on trees is known to be L-hard when the input trees are given in

pointer representation [50, 69], whereas it is NC1-complete when they are represented as strings.
L-completeness is also known for GI on partial 2-trees (also known as series-parallel graphs)

[14], and k-trees [53]. For tournaments, the GapL lower bound of GI in general graphs is known
to hold [90].

1.2.2 Path Problems

Path problems form another class of fundamental computational problems. We consider the

following problems:

Reach = { (G, s, t) | G contains a path from s to t }
Distance = { (G, s, t, k) | G contains a path of length ≤ k from s to t }

Long-Path = { (G, s, t, k) | G has a simple path of length ≥ k from s to t }
#Path = { (G, s, t, 1k) | G has exactly k simple paths from s to t}

These problems have varying complexities. Clearly, Distance and Long-Path are at least as

hard as Reach, since (G, s, t) ∈Reach if and only if (G, s, t, n) ∈Distance if and only if
(G, s, t, 0) ∈Long-Path. Reach is L-complete for undirected graphs [77], and NL-complete
for directed graphs. Distance is NL-complete for directed as well as undirected graphs, and
even for directed acyclic graphs [83]. Long-Path is NP-complete as the Hamiltonian cycle

problem reduces to Long-Path. However, it is NL-complete for acyclic graphs. #Path is
#P-hard, whereas for the class of directed acyclic graphs, #Path is #L-complete. A better

upper bound of NL is known for #Path in directed acyclic graphs, when there is a promise that

the number of s to t paths in the graph is bounded by a polynomial in the size of the graph [6].
The complexities of these problems have been analyzed for various graph classes. For di-

rected planar graphs, Reach is known to be in UL ∩ coUL due to [25], whereas Distance is
known to be in UL ∩ coUL due to [84]. For series-parallel graphs, which are also known as

partial 2-trees, all the above problems are L-complete [49].

1.2.3 Clustering

Clustering is another interesting and important problem. Given a set of objects, the clustering
problem involves partitioning the objects into different chunks based on their pairwise similar-

ities and differences. The notion of similarity can be defined in various ways. In the geometric
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setting, the objects are points in a Euclidean space, and the notions of similarity and difference

are in fact some function of pairwise distances of the objects. Several variants of the clustering

problem have been defined in the geometric setting e.g. k-median, k-center, k-means. Given a
set S of n points in Rm, the goal in the k-means problem is to find k points, called centers, in

Rm so as to minimize the sum of the squares of the Euclidean distance of each point in S to its
nearest center. In the k-median problem, the objective is to minimize the sum of the Euclidean

distance of each point in S to its nearest center. In the k-center problem, the objective is to cover
the points using k disks of minimum radius. Note that, in the geometric setting, instead of the

Euclidean distance, the problems can be defined using Lp distance for any p. The k-median and
k-center problems defined above are known to be NP-hard (see e.g. [70]).

We focus on the k-means problem here. The problem has been extensively studied. Lloyd
[63] proposed a very simple and elegant local search algorithm that computes a certain local

(and not necessarily global) optimum for this problem. Har-Peled and Sadri [41] and Arthur and
Vassilvitskii [10, 9] examine the question of how quickly this algorithm and its variants converge

to a local optimum. Lloyd’s algorithm also does not provide any significant guarantee about how
well the solution that it computes approximates the optimal solution. Ostrovsky et al. [74] and

Arthur and Vassilvitskii [11] show that randomized variants of Lloyd’s algorithm can provide
reasonable approximation guarantees.

The k-means problem has also been studied directly from the point of view of approximation
algorithms. There are polynomial-time algorithms that compute a constant-factor approximation

to the optimal solution; see, for instance, the local search algorithm analyzed by Kanungo et al.
[51]. If k, the number of centers, is a fixed constant, then the problem admits polynomial-time

approximation schemes [34, 57]. If both k and the dimension m of the input are fixed, the
problem can be solved exactly in polynomial time [47].

Drineas et al. [35], Aloise et al. [7], and Dasgupta [32] show that the k-means problem is
NP-hard when the dimension m is part of the input even for k = 2. However, there has been no

known NP-hardness result when the dimension m is fixed and k, the number of clusters, is part
of the input.

While clustering problems generally tend to be NP-hard even in the plane, there are surpris-

ing exceptions – the problem of covering a set of points by k balls so as to minimize the sum
of the radii of the balls admits a polynomial time algorithm if we use L1 balls, and a (1 + ε)-

approximation algorithm that runs in time polynomial in the input size and log 1
ε for the usual

Euclidean balls [37].
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1.3 Results and Organization of the Thesis

The contributions of this thesis and the organization of subsequent chapters is given here. As

stated earlier, the contributions can be broadly divided into three parts: graph isomorphism, path
problems, and clustering. The contributions in graph isomorphism include a log-space algo-

rithm for GI on 3-connected planar graphs (Chapter 2), and a log-space algorithm for GI on
planar graphs (Chapter 3). Both of these results also give a canonical labelling of the graphs.

In path problems, we show that the Long-Path problem in a planar directed acyclic graph is in
UL ∩ coUL. The result and some of its extensions are described in Chapter 4. Another result is

a log-space algorithm for Reach in directed k-trees, and for Distance and Long-Path compu-
tation in directed acyclic k-trees. These results appear in Chapter 5. Our log-space algorithms on

GI and on path problems crucially use the seminal result by [77], which proves that undirected
reachability is computable in L. In the clustering problem, we prove that the k-means problem

is NP-hard even in two dimensions. The result is described in Chapter 6. Following is a brief
overview of the contributions mentioned above:

Log-space Algorithm for Isomorphism and Canonization of 3-connected Planar Graphs
We give a log-space algorithm for isomorphism and canonization problem in 3-connected planar
graphs. The previously known upper bound was UL ∩ coUL due to [84]. A lower bound of L
has also been given by [84]. Thus our result settles the complexity of this problem.

A crucial fact used in our algorithm is a result due to [93], which states that 3-connected

planar graphs have a unique combinatorial embedding on the sphere, up to reflection. Moreover,
a combinatorial embedding of a planar graph is known to be computable in L [5, 77].

The main steps in our canonical labelling algorithm are to get a combinatorial embedding of
the given 3-connected planar graph, traverse the graph using a universal exploration sequence

and output the list of edges traversed, then relabel the vertices of the graph in the order of their

first occurrence in this list. This forms a labelling of the vertices, which is a function of the
combinatorial embedding, and the choice of the edge and the vertex from which the traversal

of the graph is started. This gives only O(n) possible ways of labelling the vertices. A log-
space transducer cycles through all these choices and chooses that labelling which leads to the

lexicographically smallest list of edges. This list of edges forms the canon of the graph.
The notion of universal exploration sequence (UXS) used here was introduced in [55]. For

a d-regular graph on n vertices, a UXS is a sequence of offsets which guides the traversal of a
graph. A UXS has the property that, if a graph is connected, then its traversal according to the

UXS visits all the vertices of the graph. Such a sequence is known to be computable in L [77].
We give the details in Chapter 2.
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Log-space Algorithm for Planar Graph Isomorphism and Canonization We give a log-
space algorithm for planar graph isomorphism and canonization. This improves the previously

known upper bound AC1 due to [72]. As GI is L-hard for trees [69], it also implies the same
lower bound for planar graphs. Thus our result settles the complexity of the planar graph iso-

morphism problem. Recently, this result has been extended to graphs that exclude either a K3,3

or a K5 as minor [33].

The algorithm has the following main steps: Decomposition of a planar graph into bicon-
nected components and construction of the biconnected component tree, decomposition of the bi-

connected components into triconnected components and construction of the triconnected com-

ponent tree, canonization of the triconnected components using the canonization algorithm for

3-connected planar graphs, and canonization of the entire graph through canonization of the bi-
connected components. Each of the steps can be implemented in FL. Biconnected component

tree is a tree-structure on biconnected components and articulation points. Triconnected compo-
nent tree is a tree-structure on triconnected components and separating pairs in the graph. While

dealing with these tree-structures, we crucially use the log-space algorithm given in [62] for GI
on trees. The details of the algorithm and its complexity analysis are given in Chapter 3.

Longest Paths in Planar DAGs in UL ∩ coUL We investigate the complexity of the Long-Path
problem for planar directed acyclic graphs and show that the NL upper bound can be improved
to UL ∩ coUL. This algorithm is based on the technique developed in [49]. From the tech-

nique in [49], it follows that Distance and Long-Path are equivalent for series-parallel graphs,
given oracle access to Reach. We show that this result also holds for planar DAGs. Moreover,

we give a double inductive counting algorithm similar to that of [6] for Long-Path problem on
max-unique graphs, which are graphs with a unique longest path between each pair of connected

vertices. These algorithms are described in Chapter 4.
Another problem addressed in Chapter 4 is the #Path problem. We consider the problem

when there is a promise that the number of s to t paths is bounded by a polynomial, and give
new upper bounds for various graph classes. For planar DAGs with this promise, #Path can be

computed by a UAuxPDA running in polynomial time. The same bound holds for computing
the number of shortest or longest s to t paths in a planar DAG, when this number is bounded by

a polynomial. For DAGs with a unique sink, #Path can be computed in LogDCFL, when the

target node is the unique sink. These algorithms are based on a depth-first search technique.

Log-space Algorithms for Path Problems in k-trees In [49], Reach, Distance, and Long-Path
problems have been proved to be L-complete for directed series-parallel graphs (also known as

partial 2-trees). We extend this result to directed k-trees, where k is a constant, and thus show
that Reach in directed k-trees, and Distance and Long-Path in directed acyclic k-trees are
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L-complete.
k-trees are known to have a tree-decomposition, which has been used in our algorithms. The

tree-decomposition is known to be computable in L due to [53]. The ideas used in our algorithms
are different from those in [49]. The technique central to these results is a careful implementation

of divide-and-conquer in L. For Distance and Long-Path, we also use a technique from [61]
(also [26]), where it has been used in the context of parsing languages recognized by visibly

pushdown automata. The results also hold for partial k-trees (also known as graphs of tree-
width k), however, a tree-decomposition for partial k-trees is not known to be computable in L.

The best known upper bound for computing this tree-decomposition is LogCFL due to [91]. Our
results are applicable if a decomposition is given as the part of input. The details are given in

Chapter 5.

NP-hardness of the Planar k-means Problem Dasgupta [32] raised the question of whether
k-means is hard in the plane. We answer this question in affirmative. We give a polynomial-

time reduction from planar 3-SAT to the planar k-means problem. The planar 3-SAT problem
is a variant of 3-SAT, where a graph drawn on the clauses and variables in a 3-SAT formula

is restricted to be planar. This problem is proved to be NP-hard in [60]. Given a planar 3-
SAT formula, our reduction involves embedding its clause-variable graph in a two-dimensional

integer grid (see e.g. [4]), and then constructing the planar k-means instance from this grid
embedding. The details of the reduction are described in Chapter 6.
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Graph Isomorphism and Canonization
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2
Isomorphism and Canonization of 3-connected

Planar Graphs

The graph isomorphism problem GI involves determining whether there is an edge-preserving
bijection between the vertex-sets of two given graphs. That is, given two graphs G = (V,E) and

H = (W,F ), determine whether there exists a bijection ϕ : V → W such that (u, v) ∈ E ⇔
(ϕ(u), ϕ(v)) ∈ F . It is an important and well-studied problem with as yet unsettled complexity.

In this chapter, we consider this problem for 3-connected planar graphs.
We give a log-space algorithm for GI on 3-connected planar graphs. This improves the

previously known upper bound of UL ∩ coUL by [84]. We also provide a way to give canonical

labels to the vertices of a graph in log-space. Thus the main result of this chapter is the following:

Theorem 2.1 Given two 3-connected planar graphs G and H , deciding whether G is isomor-

phic to H is complete for L. Given a 3-connected planar graph G, constructing a canon for G

is complete for FL.

In fact, the isomorphism algorithm proceeds by constructing canons of the two given graphs,

and then compares the canons to check whether the graphs are isomorphic. We recall the fol-
lowing definition of a canon and canonical labelling:

Definition 2.2 Given a graph class G, a function f defined on G is said to compute canonical
forms of G if it satisfies the following:

∀G,H ∈ G : G ∼= H ⇔ f(G) = f(H)

∀G ∈ G : f(G) ∼= G

Given a function f that computes canonical forms, an isomorphism from G to f(G) is called a

canonical labelling of G, and f(G) is called a canon of G.
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We generalize this definition to canonical code of a graph, which is a function f not only of the
given graph G but also of one or more parameters like an edge or a vertex of G or a combinatorial

embedding of G. The canonical code has the following property: Given two graphs G and H

along with the parameters on which the canonical code is defined, the canonical codes are equal

if and only if there is an isomorphism ϕ between G and H such that ϕ also maps the given
parameters of G to the corresponding given parameters of H .

2.1 Comparison with the Previous Approach

The UL ∩ coUL algorithm of [84] for canonization of 3-connected planar graphs first obtains a

combinatorial embedding of the given graph and then proceeds by constructing a spanning tree
of the graph, which depends on the combinatorial embedding and a fixed starting edge of the

graph. For a fixed choice of combinatorial embedding and a starting edge, the spanning tree is
unique and hence it is said to be canonical when the graph, its combinatorial embedding, and a

starting edge are given. The UL ∩ coUL algorithm of [84] then traverses this tree and outputs
a canonical list of edges, which depends only on the spanning tree. The vertices of the graph

are relabelled according to their first occurrence in this list to get a canonical labelling. The
canonical spanning tree construction needs shortest path computations, which can be done in

UL ∩ coUL [84].
The list of edges is a canonical code of the graph, which is a function of the graph, the

combinatorial embedding and the starting edge chosen for the spanning tree construction. A log-
space transducer cycles through all the choices of the combinatorial embedding and the starting

edge, and selects the choice which leads to the lexicographically smallest canonical code. This
serves as the canon of the graph.

Our approach bypasses the spanning tree construction and thereby eliminates the need of
distance computation. Instead, to construct a list of edges, our algorithm first makes the graph 3-

regular and then traverses it using a universal exploration sequence. The rest of the steps remain
the same as in [84]. The details are given in the next section.

Both the approaches crucially use the result by [93] that a 3-connected planar graph has pre-
cisely two combinatorial embeddings, and hence there are only O(n) ways to obtain a canonical

code. Moreover, a combinatorial embedding of a planar graph is known to be computable in FL
[5, 77].

2.2 Our Algorithm

As described in the previous section, our algorithm uses a universal exploration sequence (UXS).

The definition and properties of a UXS are given below.
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2.2.1 Universal Exploration Sequence

The notion of a universal exploration sequence was first introduced in [55]. Let G = (V,E)

be a d-regular graph, with given combinatorial embedding ρ. The edges around any vertex
u can be numbered {0, 1, . . . , d − 1} according to ρ arbitrarily in clockwise order. A se-

quence τ1τ2 . . . τk ∈ {0, 1, . . . , d − 1}k and a starting edge e0 = (v−1, v0) ∈ E define a
walk v−1, v0, . . . , vk on G as follows: For 0 ≤ i ≤ k, if (vi−1, vi) is the sth edge of vi, let

ei = (vi, vi+1) be the ℓth edge of vi, where ℓ = (s+ τi) mod d.

Definition 2.3 (Universal Exploration sequences (UXS) [55]: ) A sequence ⟨τ1, τ2, . . . , τℓ⟩ ∈
{0, 1, . . . d − 1}ℓ is a universal exploration sequence for d-regular graphs of size at most n if

for every connected d-regular graph on at most n vertices, any numbering of its edges, and any

starting edge, the walk obtained visits all the vertices of the graph. Such a sequence is called an

(n, d)-universal exploration sequence.

The following lemma suggests that UXS can be constructed in L [77]:

Lemma 2.4 There exists a log-space algorithm that takes as input (1n, 1d) and produces an

(n, d)-universal exploration sequence.

2.2.2 Outline of Our Approach

The main steps involved in the algorithm can be outlined as follows:

1. Given a 3-connected planar graph G = (V,E), find a planar embedding ρ of G.

2. Make the graph 3-regular canonically for this embedding ρ to obtain an edge-coloured
graph G′ as described in Algorithm 1.

3. Find the canon of G′ using Algorithm 2. To do this, an (n, 3)-UXS is constructed and
the graph is traversed according to it. During the traversal, the edges traversed are output.

This gives a list of edges. The vertices of the graph are then relabelled in the order of their

occurrence in this list. The list of edges in lexicographic order with these new labels on
vertices is a canonical code that depends on the graph and the choice of its combinatorial

embedding, and an edge and one of its end-points where the traversal is started.

Step 1 is known to be in FL [5, 77]. We prove that steps 2 and 3 can also be done in log-space.

Step 3 uses a UXS to traverse the graph. Step 2 essentially does the preprocessing in order to
make step 3 applicable.

To get a canon of G, the minimum canonical code is obtained by cycling through all the
choices of starting edge and starting vertex, and both the combinatorial embeddings. As there

are only linearly many choices, a log-space transducer can cycle through all of them.
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2.2.3 Making the Graph 3-regular

In this section, we describe the preprocessing step to make the graph 3-regular. In Section 2.2.4,

we use Reingold’s construction for UXS [77] to come up with a canonical code. This preprocess-
ing step is essential, as Reingold’s construction [77] for UXS requires the graph to have constant

degree. In Lemma 2.5, we prove that the preprocessing step preserves isomorphism of graphs.
That is, two graphs are isomorphic if and only if they are isomorphic after the preprocessing

step. As the embedding of the new graph is inherited from the given graph, even the new graph
has only two possible embeddings.

Algorithm 1 Procedure to get a 3-regular planar graph G′ from 3-connected planar graph G.
Input: A 3-connected planar graph G with planar combinatorial embedding ρ.
Output: A 3-regular planar graph G′ on 2m vertices, with edges coloured 1 and 2 and

planar combinatorial embedding ρ′.
1: for all vi ∈ V do
2: Replace vi by a cycle {vi1, . . . , vidi} on di vertices, where di is the degree of vi.
3: The di edges ei1, . . . , eidi incident to vi in G are now incident to vi1, . . . , vidi respec-

tively.
4: Colour the cycle edges with colour 1.
5: Colour ei1, . . . , eidi with colour 2.
6: end for

We describe the preprocessing steps in Algorithm 1. Note that the new graph thus obtained
has 2|E| vertices.

Lemma 2.5 Given two 3-connected planar graphs G1 and G2 with combinatorial embeddings

ρ1 and ρ2, there is an isomorphism between G1 and G2 that preserves the combinatorial embed-

dings, if and only if there is an isomorphism between G′
1 and G′

2 that respects the colors on the

edges.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2) be two 3-connected planar graphs with planar
combinatorial embeddings ρ1 and ρ2 respectively. Let ϕ : V1 → V2 be an isomorphism between

the oriented graphs (G1, ρ1) and (G2, ρ2). By isomorphism of oriented graphs we mean that
the graphs are isomorphic for the fixed embeddings, in our case ρ1 and ρ2. That is, if ρ1u =

u1 . . . ud, ρ2ϕ(u) = v1 . . . vd and ϕ(u1) = v1, then ϕ(ui) = vi for 1 ≤ i ≤ d.
Construct G′

1 and G′
2 as described in Algorithm 1, replacing each vertex v of degree d by

a cycle of length d, and colouring the new cycle edges with colour 1 and original edges with
colour 2. The algorithm preserves the orientation of original edges from G1 and G2 and outputs

the coloured oriented graphs (G′
1, ρ

′
1) and (G′

2, ρ
′
2).

Given an isomorphism ϕ between (G1, ρ1) and (G2, ρ2), we show how to derive an isomor-

phism ϕ′ between (G′
1, ρ

′
1) and (G′

2, ρ
′
2). Let u ∈ V1 with degree d and ϕ(u) = v. Then we want
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to derive an isomorphism between G′
1 and G′

2 which maps the d vertices in G′
1 corresponding to

u to the d vertices in G′
2 corresponding to v. To fix the map between the cycles corresponding to

u and v, we look at the edges incident on u and v.
Consider an edge {u,w} in E1. Let ϕ(w) = x. Then {x, v} ∈ E2. Let the corresponding

edge in G′
1 be {ui, wj} and that in G′

2 be {vk, xℓ}. Then we define a map ϕ′ : V ′
1 → V ′

2 which
is inherited from ϕ such that ϕ′(ui) = vk and ϕ′(wj) = xℓ. It is easy to see that ϕ′ is an

isomorphism for edge-coloured oriented graphs (G′
1, ρ

′
1) and (G′

2, ρ
′
2).

Now we show how to obtain an isomorphism ϕ between (G1, ρ1) and (G2, ρ2), given an

isomorphism ϕ′ between (G′
1, ρ

′
1) and (G′

2, ρ
′
2). Let e = {vip , viq} ∈ E′

1 and the corresponding
edge e′ = {ϕ′(vip), ϕ

′(viq)} ∈ E′
2. Let vip and viq correspond to the same vertex vi in G1. Then

colour of e and e′ is 1. Thus ϕ′ maps copies of the same vertex of G1 to copies of a single vertex
of G2. Hence a map ϕ can be derived from ϕ′ in a natural way. It is easy to see that ϕ is an

isomorphism between oriented graphs (G1, ρ1) and (G2, ρ2).

2.2.4 Obtaining the Canonical Code

Lemma 2.5 from the previous section suggests that for given embeddings ρ1, ρ2 of G1 and
G2, it suffices to check the 3-regular oriented graphs (G′

1, ρ
′
1) and (G′

2, ρ
′
2) for isomorphism.

Thus, a canonical code of a graph G can be constructed using the graph G′. The Procedure
canon(G, ρ, v, e = (u, v)) described in Algorithm 2 does this using a universal exploration

sequence.

Algorithm 2 Procedure canon(G, ρ, v, e = (u, v))

Input: 3-connected planar graph G = (V,E) and its combinatorial embedding ρ, starting
vertex v, starting edge e = (u, v).

Output: Canon of (G, ρ, v, e).
Construct a degree 3, edge-colored graph G′ = (V ′, E′) using Algorithm 1.
Construct an (n, 3)-universal exploration sequence U .
With starting vertex v′i ∈ V ′ and edge e = (v′i, u

′
j) incident on it, traverse G′ according to

U and ρ′, outputting the labels of the vertices.
Relabel the vertices of G according to the first occurrence of any of their copies in this output
sequence.
Output the list of edges of G in lexicographically increasing order.

To prove the correctness of Algorithm 2, we show that two graphs have the same canon if and
only if they are isomorphic, with the given choice of combinatorial embedding, starting edge,

and starting vertex.
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Lemma 2.6 Let G1, G2 be 3-connected planar graphs on n vertices. Let ρ1 be a combinatorial

embedding of G1. Let v ∈ V1 and e1 = (u1, v1) ∈ E1. Then

1. If G1
∼= G2, then there is a choice ρ2, v2, e2 such that

canon(G1, ρ1, v1, e1) = canon(G2, ρ2, v2, e2).

2. Let ρ2 be a combinatorial embedding of G2 and let v2 ∈ V2, e2 = (u2, v2) ∈ E2. If

canon(G1, ρ1, v1, e1) = canon(G2, ρ2, v2, e2) then G1
∼= G2.

Proof. If G1
∼= G2 then there is a bijection ϕ : V1 → V2. We first show that the corresponding

embedding of G2 can be obtained from ρ1 and ϕ. Let ρ1v = (v1, . . . , vd) be the permutation

of edges incident on v in ρ1. Then the corresponding permutation of edges incident on ϕ(v)

is (ϕ(v1), . . . , ϕ(vd)). This gives a permutation of edges for each vertex in V2, which form the

corresponding combinatorial embedding ρ2 for G2.
Also, there is an isomorphism ϕ′ between the 3-regular graphs G′

1 and G′
2. Let e1 = (u, v) ∈

E1. Then e2 = (ϕ(u), ϕ(v)) ∈ E2. Let e1 and e2 be chosen as starting edges and v and
ϕ(v) as starting vertices. Let their corresponding edges in G′

1 and G′
2 be (uj , vi) ∈ E′

1 and

(ϕ′(uj), ϕ
′(vi)) ∈ E′

2 respectively. Let T1 and T2 be the output sequences in Step 3 of Algorithm
2. If a copy of a vertex w ∈ V1 occurs at a position l in T1 then a copy of ϕ(w) ∈ V2 occurs

at position l in T2 as the oriented graphs (G′
1, ρ

′
1) and (G′

2, ρ
′
2) are isomorphic, and the same

UXS is used for their traversal from corresponding starting edges and starting vertices. Thus

the labellings obtained from the sequences have the property that u ∈ V1 and ϕ(u) ∈ V2 get
identical labels for all the vertices u ∈ V1. This gives the same lexicographically increasing

sequence of edges for G1 and G2, and hence σ1 = σ2.

Now we prove the converse. Let σ1 = σ2 = σ. The labels of the vertices in σ are a
relabelling of vertices of V1 and V2, with the property that ∀(i, j) ∈ σ : (i, j) ∈ E1 ⇔ (i, j) ∈
E2. These relabellings are permutations, say π1 and π2 of V1 and V2. Then π1 · π−1

2 : V1 → V2

is an edge-preserving bijection i.e. an isomorphism between G1 and G2.

Clearly, each of the above steps can be performed in FL. This proves Theorem 2.1.

2.3 Discussion

We have shown that 3-connected planar graphs can be canonized in log-space which, along

with the known log-space hardness, implies that 3-connected planar graph isomorphism and
canonization are L-complete.

In Chapter 3, we describe a log-space algorithm for isomorphism and canonization of planar
graphs, which uses the algorithm described in this chapter.
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Planar Graph Isomorphism and Canonization

Planar graphs form an important class of graphs. We study the complexity of graph isomorphism
and canonization on this class of graphs. The problem definitions and a brief overview of known

results is given in Section 1.2.1.
In Chapter 2, a log-space algorithm for isomorphism and canonization of 3-connected planar

graphs is described. In this chapter, we give a log-space algorithm for planar graph isomorphism
and canonization. This improves the previously known upper bound of AC1 of [72]. Also, as

isomorphism and canonization of trees is L-complete [62, 50, 69], our algorithm implies that
planar graph isomorphism and canonization are L-complete thereby settling the complexity of

these two problems on planar graphs. This result is interesting as the known lower bound for
isomorphism of general graphs is GapL [86].

3.1 A Brief Overview

We give an overview of the canonization algorithm here. In fact, we describe an ordering al-

gorithm that provides a total order on the input graphs. Thus, if two graphs are isomorphic, it
returns equality; otherwise it provides an order between them. We call this order as isomorphism

order. Once it is clear how to get a total order on the graphs, constructing the canon for a graph
is quite straight forward.

It suffices to consider simple, undirected graphs i.e. undirected graphs without parallel edges
or loops. For isomorphism of planar graphs that are not simple, there are log-space many-one

reductions to isomorphism of simple planar graphs (cf. [54]). Also, if the given graphs are not
connected, the connected components can be identified in L using the algorithm for undirected

reachability by [77]. Then the connected components of the two graphs are pairwise compared
for isomorphism. Keeping track of the pairwise comparisons using counters suffices to find the

isomorphism order of the two graphs, and can be done in L. Henceforth, we assume that the

input to the algorithm consists of two simple, undirected, connected planar graphs.
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Chapter 3. Planar Graph Isomorphism and Canonization

The canonization algorithm consists of the following steps:

1. Decompose the given planar graph into its biconnected components and construct a bicon-

nected component tree. This step is known to be in log-space and is described in Section
3.2.

2. Decompose biconnected planar components into their triconnected components to obtain

a triconnected component tree in log-space. This is essentially a parallel implementation
of the sequential algorithm of [45] (Section 3.3).

3. Invoke the canonization algorithm for 3-connected planar graphs described in Chapter 2

to canonize the triconnected components of the graph.

4. Canonize biconnected planar graphs using their triconnected component trees. This step
crucially uses Lindell’s algorithm [62] for tree-canonization. Section 3.5 contains the

details of this step. A brief overview of Lindell’s algorithm is given in Section 3.4.

5. Canonize the planar graph using its biconnected component tree, by substituting the bi-

connected components with their triconnected component trees (Section 3.6).

We show that each of the above steps can be done in FL. It is necessary that the decompositions
in Steps 1 and 2 be canonical, i.e. dependent only on the graph and not on its representation.

Remark 3.1 Our procedures for Steps 1 and 2 do not use the properties of a planar graph, and

hence are applicable to general graphs.

3.2 Construction of Biconnected Component Tree

To construct a biconnected component tree of the given connected planar graph G, it is first

decomposed into its biconnected components as follows:

Decomposition into Biconnected Components: The input is a connected planar graph. Re-

call that an articulation point in a connected graph is a vertex whose removal splits the graph
into two or more connected components. The decomposition procedure along with its com-

plexity analysis is given in the following lemma. As stated earlier, the procedure does not use
planarity and is hence applicable to all graphs.

Lemma 3.2 The decomposition of a connected graph into its biconnected components can be

done in FL.

Proof. We first describe the decomposition procedure and then the complexity analysis.
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The Procedure: The decomposition of a connected graph G = (V,E) into its biconnected
components is done in the following steps:

1. Identify and output all the articulation points in the graph.

2. Identify the connected components formed by the removal of all the articulation points.

Put a copy of each of the articulation points into the components formed by its removal.
Put the corresponding edges as well.

Correctness and Complexity analysis: We show that each of the above steps can be imple-

mented in FL, and it correctly lists the biconnected components of G.

1. To check whether a vertex v ∈ V is an articulation point, remove v from the graph and

for each pair of vertices {a, b}, check whether a is reachable from b. This can be done in
L by making oracle queries to the undirected reachability algorithm of [77]. If the answer

is negative for any pair of vertices, then v is an articulation point. In this case, output v.
Cycle through all the vertices v ∈ V and output their labels if they are articulation points.

Although this procedure has a recursive nature, it can be implemented in parallel due to

the fact that the biconnected components formed are the same irrespective of the order
of removal of articulation points. Moreover, an articulation point remains an articulation

point even after the removal of other articulation points.

2. Identification of the biconnected components is actually done in two steps. Now, the input
is the graph G and a list of articulation points of G. Identification of the biconnected

components is based on the fact that two biconnected components never share an edge, as
they can share at most one vertex. Therefore, a log-space transducer cycles through every

pair of edges e = {u, v} and e′ = {u′, v′} and checks whether every two vertices from
{u, v, u′, v′} remain reachable even after the removal of all of the articulation points from

the list. This can be checked in L by oracle access to undirected reachability.

Note that some or all of the end-points of e and e′ may be articulation points. Further, if
say v or v′ is an articulation point, then it is also removed while checking whether say u

and u′ remain reachable after the removal of all of the articulation points. If every two
vertices from {u, v, u′, v′} remain reachable after the removal of all of the articulation

points, then e and e′ are called inseparable edges. Such inseparable pairs of edges are
output.

Another log-space transducer identifies the components from this list. Note that the bicon-

nected components are indeed the equivalence classes of edges under the inseparability

relation described above. The input to the transducer is the list of inseparable pairs of
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Figure 3.1: Decomposition into Biconnected Components

edges. To list the components, the log-space transducer cycles through all the edges in

lexicographically increasing order (according to the given labels of vertices of G). For
an edge e, it checks whether e forms an inseparable pair with an edge e′ which is lexi-

cographically smaller than e. If so, the component containing e must have been output
earlier. Otherwise it lists all the edges that form inseparable pairs with e. These edges

together form one biconnected component.

Construction of Biconnected Component Tree: Once the biconnected components of a con-
nected planar graph are identified, it is straight forward to construct the biconnected component

tree. The biconnected component tree is defined as follows:

Definition 3.3 Given a connected graph G with its set of articulation points A = {a1, . . . , ar}
and set of biconnected components B = {B1, . . . , Bs}, define a graph G′ = (V ′, E′) where

V ′ = A ∪ B and E′ = {{ai, Bj}|ai has a copy in Bj}. We call A as articulation point nodes
(or a-nodes) and B as biconnected component nodes (or b-nodes) in G′. It can be seen that

the graph G′ defined above is a tree, with all the leaves of G′ as b-nodes. This is called the

biconnected component tree of G. Moreover, G′ can be constructed in FL.

Figure 3.1 shows an example of the decomposition.

3.3 Construction of Triconnected Component Tree

For each biconnected component in the biconnected component tree constructed by the proce-

dure described in Section 3.2, we construct a triconnected component tree. For constructing
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triconnected component tree, a biconnected component has to be decomposed into triconnected

components by removing separating pairs. A pair of vertices is a separating pair if its removal

breaks the biconnected graph into two or more components.

Decomposition into Triconnected Components A triconnected component of a biconnected
graph is a 3-connected graph, or a simple cycle, or a 3-bond. A 3-bond is a graph on two vertices

joined by three edges. A biconnected component can be decomposed by removing separating
pairs. A sequential algorithm for recursive removal of separating pairs is given by [45]. When-

ever a separating pair {a, b} is removed from a graph, its copy appears in all the components
formed. Further, each of the components formed contain the edge {a, b}, irrespective of whether

it is an edge in the original graph. Such edges are called virtual edges. To distinguish virtual
edges which are edges in the original graph from those which are not, 3-bonds are introduced.

Thus there is a 3-bond corresponding to a separating pair {a, b}, if {a, b} is an edge in the
original graph.

After removing the separating pairs, the sequential algorithm of [45] combines simple cycles,
if they are split at an intermediate step. This ensures uniqueness of the decomposition [67]. To

get this decomposition in log-space, we do not remove separating pairs from a simple cycle.
Thus simple cycles are also considered as triconnected components.

It is immediate that a procedure similar to that in Section 3.2 needs to be designed, where
separating pairs are removed and triconnected components are identified. However, there is the

following difficulty: Unlike in the case of articulation points, two or more separating pairs may
conflict with each other. Two separating pairs {u, v} and {x, y} are said to be conflicting if, on

removal of {u, v}, {x, y} no longer remains a separating pair. Figure 3.2 shows an example of
such conflicting separating pairs: e.g. {a, c} and {b, d} are conflicting separating pairs. If two

a b

c

de

f

Figure 3.2: Conflicting Separating Pairs

separating pairs conflict, they can not be removed simultaneously. To overcome this difficulty,
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we characterize a set of non-conflicting separating pairs and remove only this set. The following
lemma gives this characterization, and shows that the decomposition obtained by removing such

separating pairs is unique. The basic idea is that, if the vertices of a separating pair are connected
by three or more vertex-disjoint paths, then such a separating pair cannot be separated by removal

of any one of the other separating pairs. Such a separating pair is called a 3-connected separating

pair.

Lemma 3.4 In a simple undirected biconnected graph G, the removal of 3-connected separating

pairs gives a unique decomposition, irrespective of the order in which they are removed.

Proof. Let G be a biconnected graph with 3-connected separating pairs {s1, . . . , sk}.
Consider a sequential removal of these separating pairs from G in an arbitrary order, say

σ = (s1, . . . , sk). Let H1, . . . , Hl be the biconnected components formed after removal of
s1, . . . , si−1 where i < k − 1, and let Hj be the component containing si. Let si = {u, v}
and si+1 = {w, x} (not necessarily all distinct). If si+1 is not contained in Hj , then we get
the same components by interchanging their positions in σ. So consider the case when they are

contained in the same biconnected component, say Hj . Assume that si and si+1 are 3-connected
separating pairs in Hj as well, and hence there are at least three vertex-disjoint paths between

u, v and between w, x. We prove that interchanging the positions of si and si+1 in σ gives the
same decomposition.

As {u, v} are 3-connected, there are three vertex-disjoint paths between them, say ρ1, ρ2, ρ3,
such that vertices on at least one of them, say those on ρ1, are separated from the vertices on the

other two on removing si. We refer to this as ρ1 being separated from ρ2 and ρ3 on removal of
si. Let X = ρ1 ∪ ρ2 ∪ ρ3, where X does not contain the vertices u and v. Consider the case

when si+1 is removed before si. We first prove that si remains a 3-connected separating pair
even after removal of si+1:

1. Case 1: |{w, x} ∩X| ≤ 1. Thus none or only one of w and x, say w, lies in X . Then the
paths ρ1, ρ2, ρ3 remain intact even after the removal of si+1, since a copy of w is retained

on ρ1 after removing si+1. Thus si continues to be a 3-connected separating pair.

2. Case 2: w ∈ ρ1, x ∈ ρ2 ∪ ρ3. In this case, removal of si can not separate ρ1 and ρ2 ∪ ρ3,

since w and x are 3-connected. This contradicts the assumption that ρ1 is separated from
ρ2 by removal of si.

3. Case 3: w, x ∈ ρ2 ∪ ρ3. In this case, even after removal of si+1, ρ1 can be separated from
ρ2 and ρ3 by removal of si, and thus si continues to be a 3-connected separating pair.

4. Case 4: w, x ∈ ρ1. In this case, the part of ρ1 between w and x is replaced by a virtual
edge on removal of si+1, but it still remains separable from ρ2 and ρ3. Thus si is still a

3-connected separating pair.
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We also need to prove that, two vertices y, z lie in the same component on removing si followed
by si+1 if and only if they lie in the same component after removing si+1 before si. This

clearly holds if y, z form a 3-connected separating pair. So consider the case when they do not
form a 3-connected separating pair. Further, assume that they are in the same component till

s1, . . . , si−1 are removed, but are separated by the removal of si. In this case, y and z are in
different components, say Hj+1 and Hj+2 respectively, when si is removed and si+1 is not yet

removed. However, at this stage, the vertices of si+1 are in the same component, say Hj+1.
Thus all the paths from z to w and x pass through u or v, and hence y and z are in different

components even if si+1 is removed before si.
This shows that in a sequence of removal of 3-connected separating pairs, two adjacent

pairs can be interchanged. But a permutation on 3-connected separating pairs can be obtained
from another one by interchanging adjacent separating pairs several times. This shows that 3-

connected separating pairs uniquely partition the graph into triconnected components. Thus they
can be removed in parallel.

It is clear that a simple cycle does not have a 3-connected separating pair. Therefore it is

included in the set of triconnected components, without decomposing it.
Now it remains to show that the decomposition can be computed in FL.

Lemma 3.5 The decomposition of a biconnected graph into its triconnected components can be

computed in FL.

Proof. We first describe the procedure and then the correctness and complexity analysis.

The Procedure: Given a biconnected graph G = (V,E), the decomposition into triconnected

components is similar to that in Section 3.2. The procedure has the following steps:

1. Identify and output all the 3-connected separating pairs in G.

2. Identify the connected components formed by the removal of all the 3-connected sepa-

rating pairs. Put a copy of a separating pair into each of the components formed by its
removal. Join the vertices in a copy of a separating pair by edges. We refer to these edges

as virtual edges.

3. Output a 3-bond for each of the separating pairs listed in Step 1, if the vertices in that
separating pair have an edge between them in G. All the copies of each separating pair are

joined by virtual edges in Step 2. 3-bonds are included so as to keep track of which of the
virtual edges are indeed present in the original graph.
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Correctness and Complexity Analysis We show that each of the above steps can be imple-
mented in FL, and the procedure correctly lists all the triconnected components of G.

1. To check whether a pair of vertices {u, v} is a separating pair, remove it from G, cycle

through every pair {a, b} of the remaining vertices and check whether a and b are un-
reachable in G \ {u, v}. If this happens for any two vertices a and b, then {u, v} is a

separating pair. To check whether it is a 3-connected separating pair, cycle through all the
pairs of vertices a, b ∈ V \ {u, v}, and check whether u and v remain reachable even after

the removal of {a, b}. If there is no pair {a, b} that disconnects u and v, then {u, v} is a
3-connected separating pair. Output {u, v}.

2. Identification of triconnected components is done in two steps. Now the input is the bi-
connected graph G and a list of 3-connected separating pairs. We use the fact that two

triconnected components never share three or more vertices. Thus a triple of vertices
uniquely identifies a triconnected component. Therefore a log-space transducer cycles

through each triple {a, b, c} of vertices, and checks whether every two of them remain
connected even after the removal of all the 3-connected separating pairs. If so, the triple

is called an inseparable triple. Such triples are output.

To identify triconnected components, a log-space transducer first outputs the lexicographi-

cally smallest inseparable triple, say {a, b, c} and cycles through all the vertices v to check
whether v forms inseparable triples with each pair of vertices in {a, b, c}. Thus v lies in the

same component as that of {a, b, c} if and only if {v, a, b}, {v, b, c}, and {v, a, c} are all
inseparable triples. This gives the first triconnected component. Then it considers lexico-

graphically next smallest triple which has a vertex u that is not inseparable from {a, b, c}.
This continues until all the triples are considered. The output is a list of triconnected
components.

Construction of Triconnected Component Tree: Once the triconnected components of a bi-
connected graph are identified, it is straight forward to construct the triconnected component

tree. The triconnected component tree is defined as follows:

Definition 3.6 Given a biconnected graph G with its set of 3-connected separating pairs X =

{x1, . . . , xr} and set of triconnected components Y = {Y1, . . . , Ys}, define a graph G′ =

(V ′, E′) where V ′ = X ∪ Y and E′ = {{xi, Yj}|xi has a copy in Yj}. We call X as sepa-
rating pair nodes (or s-nodes) and Y as triconnected component nodes (or t-nodes) in G′.

It is easy to see that G′ is a tree. This is called the triconnected component tree of G.
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Figure 3.3: Decomposition into Triconnected Components

All the leaves of G′ are t-nodes. Moreover, G′ can be constructed in FL. Figure 3.3 shows an

example.

3.4 Overview of Lindell’s Algorithm

For isomorphism ordering of two graphs, we define an isomorphism ordering algorithm on their
biconnected and triconnected component trees. This crucially uses Lindell’s log-space algorithm

for isomorphism ordering on trees. This algorithm is briefly described in this section.
The algorithm is based on an order relation ≤ on trees defined below. The order relation

has the property that two trees S and T are isomorphic if and only if S = T . Because of this
property it is called a canonical order. Clearly, an algorithm that decides the order can be used as

an isomorphism test. Lindell also showed how to extend such an algorithm to compute a canon
for a tree in log-space.

3.4.1 Isomorphism-ordering of two trees

Let S and T be two trees with roots s and t, respectively. The canonical order is defined as
follows. S < T if

1. |S| < |T |, or

2. |S| = |T | but #s < #t, where #s and #t are the number of children of s and t, respec-
tively, or

3. |S| = |T | and #s = #t = k, but (S1, . . . , Sk) < (T1, . . . , Tk) lexicographically, where

it is inductively assumed that S1 ≤ . . . ≤ Sk and T1 ≤ . . . ≤ Tk are the ordered subtrees
of S and T rooted at the k children of s and t, respectively.
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The comparisons in steps 1 and 2 can be made in log-space. Lindell proved that even the third
step can be performed in log-space using two-pronged depth-first search, and cross-comparing

only a child of S with a child of T . This is briefly described below:

• Find the number of minimal sized children of s and t. If these numbers are different then

the tree with a larger number of minimal children is declared to be smaller. If equality is
found then remember the minimal size and check for the next size. This process is contin-

ued till an inequality in the sizes is detected or all the children of s and t are exhausted.

• If s and t have the same number of children of each size then assume that the children of s

and t are partitioned into size-classes (referred to as blocks in [62]) in the increasing order
of the sizes of the subtrees rooted at them. That is, the k children of s and t are partitioned

into groups, such that the i-th group is of cardinality ki and the subtrees in the i-th group
all have size Ni, where N1 < N2 < · · · . It follows that

∑
i ki = k and

∑
i kiNi = n− 1.

Consider the partition of the children of s and t into different classes, depending on

their isomorphism relation. We refer to these classes as isomorphism-classes. Clearly,
isomorphism-classes are a refinement of size-classes. After Steps 1 and 2, the children are

partitioned into size-classes, and Step 3 gives the refinement into isomorphism-classes.
For this, the children in each size-class are recursively compared as follows: Let k be the

number of children in the size-class currently being considered.

Case 1, k = 0. Hence s and t have no children. They are isomorphic as all one-node trees

are isomorphic. We conclude that S = T .

Case 2, k = 1. Recursively consider the grand-children of s and t. No space is needed

for making the recursive call. Once the recursive call is finished, the execution can be
resumed by just looking at the node for which the recursive call had been made.

Case 3, k ≥ 2. For each of the subtrees Sj , compute its order profile. The order profile
consists of three counters, c<, c> and c=. These counters indicate the number of subtrees

of T in the size-class of Sj that are respectively smaller than, greater than, and equal
to Sj . The counters are computed by comparing Sj with each of the Ti’s, one at a time.

Whenever an Sj with c< = 0 is found, its c= counter gives the number of children of
T that are isomorphic to Sj . They form the first isomorphism-class. This c= counter is

remembered, and the same procedure is repeated for subtrees rooted at the children of t.
If the c= counters are equal in these two cases, then S and T have the same number of

isomorphic subtrees in this isomorphism-class, and we proceed to the next isomorphism-
class. Otherwise the tree with a larger number of subtrees in this isomorphism-class is

considered to be smaller.
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To proceed to the next isomorphism-class, the above c= is remembered as threshold h, and
the next isomorphism-class is formed by those children of s and t which have c< counter

exactly equal to h. While going to the next isomorphism-class, h is updated by adding the
current c= counter to it. The size-class is processed completely when h = k, and we go to

the next size-class.

If all the size-classes are processed this way, without discovering an inequality, then we
can conclude S = T .

3.4.2 Space-complexity Analysis

Let |S| = |T | = n, and the size-classes have subtrees of sizes N1 < N2 < . . .Nr, where r be

the number of size-classes. If the ith size-class has k children of s and t each, then Ni ≤ n
k .

The current order-profile and threshold need to be stored while making recursive comparison of

two subtrees, which take O(log k) space. Since
∑

i kiNi ≤ n, the following recursion equation
for the space complexity holds. For each new size-class, the work-tape allocated for the former

computations can be reused.

S(n) = max
i
{S(Ni) +O(log ki)} ≤ max

i
{ S
(
n

ki

)
+O(log ki)},

where ki ≥ 2 for all i. It is not hard to see that S(n) = O(log n). Note that if Ni >
n
2 , then it is

the only subtree in its size-class, and no space is used while making the recursive call.

3.4.3 Canonization of trees

Once it is clear how to get tree isomorphism order, it is straight forward to construct the canon
of a tree. For this, Lindell’s algorithm traverses the tree in depth-first order, where the subtrees

rooted at the children of a node are traversed according to their isomorphism order. A ‘[′ is
printed while going down a subtree, ◦ while going over a subtree, and ‘]′ while going up from a

subtree.

3.5 Isomorphism and Canonization of Biconnected Planar Graphs

For isomorphism ordering of biconnected planar graphs, we define an isomorphism order on their
triconnected component trees. Let T and T ′ be the triconnected component trees corresponding

to two biconnected planar graphs G and H , respectively. We root T and T ′ at s-nodes p = {a, b}
and p′ = {a′, b′}, respectively, which are chosen arbitrarily. As there are only O(n) s-nodes, an

isomorphism test can cycle through all the possibilities of rooting these trees. The rooted trees
are denoted as T{a,b} and T{a′,b′}′ . They have s-nodes at odd levels and t-nodes at even levels.
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Recall that s-nodes and t-nodes are separating pair nodes and triconnected component nodes
respectively. Figure 3.4 shows two trees to be compared.
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Figure 3.4: Triconnected component trees.

In Chapter 2, a log-space canonization algorithm for 3-connected planar graphs is described.
Note that, an obvious way to canonize a triconnected component tree would be to invoke Algo-

rithm 2 from Chapter 2 along with Lindell’s algorithm.
However, this is not sufficient, since two non-isomorphic graphs may have the same tricon-

nected component trees. See for example, Figure 3.5. The trees are the same, with corresponding
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Figure 3.5: Non-isomorphic graphs with the same triconnected component trees

nodes being isomorphic. If a distinct color is given to the virtual edge {a, b} in G1, G2 and to

{a′, b′} in H1,H2, then any isomorphism between them maps {a, b} to {a′, b′}. Let ϕ1 be such
an isomorphism from G1 to H1. Then ϕ1(a) = a′ and ϕ1(b) = b′. Let ϕ2 be an isomorphism

from G2 to H2. Then ϕ2(a) = b′ and ϕ2(b) = a′. Due to this inconsistency between ϕ1 and ϕ2,
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they can not be combined to get an isomorphism between G and H .

Remark 3.7 The above example shows that, although non-isomorphic graphs can have same

triconnected component trees, the vertex-labels have enough information to detect the non-

isomorphism. This is a crucial fact in our algorithm.

Remark 3.8 As stated above, to ensure that the parent virtual edges of two components are

mapped to each other by all the isomorphisms between the two components, the parent virtual

edge can be given a distinct color. As only one distinct color is required, this coloring can be

achieved by defining the parent virtual edge to be larger than any other edge in the component.

As described next, while constructing a canonical code for a triconnected component, we get

the parent virtual edge as the first edge in its canonical list of edges. This also ensures that the

parent virtual edges of two components are always mapped to each other, and thus an explicit

coloring is not required.

Therefore, we introduce an additional step in the isomorphism order defined in Lindell’s

algorithm. The details of all the steps in the isomorphism ordering are given below. Steps 1 and
2 are exactly same as in Lindell’s algorithm. Step 3 needs some modifications, as the individual

nodes of the tree are s-nodes or t-nodes, and the t-nodes have to be compared using the algorithm
for isomorphism of 3-connected planar graphs.

3.5.1 Comparison of two triconnected component trees

Denote the isomorphism ordering of triconnected component trees by <T. In the isomorphism

ordering, T{a,b} <T T ′
{a′,b′} if, in any of the steps below, T{a,b} is found to be smaller than

T ′
{a′,b′}:

1. Comparison of sizes: In the first step of Lindell’s algorithm, the sizes of the two trees are

compared, and the tree with a smaller size is considered to be smaller. We define the size
of a triconnected component tree as follows:

Definition 3.9 For a triconnected component tree T , the size of a t-node C of T is the

number nC of vertices in C. Note that the vertices in an s-node are counted in every

t-node adjacent to it. The size of an s-node is 2.

The size of the tree T , denoted by |T |, is the sum of the sizes of its t-nodes and s-nodes.

Note that the size of a triconnected component tree is polynomial in the size of the graph.

2. Comparison of the number of children: If the sizes of the two trees are equal, then the

number of children of the roots of the two trees are compared. The tree whose root has
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a smaller number of children is considered to be smaller. We denote the roots of the two
trees as t = {a, b} and t′ = {a′, b′}.

3. Recursive comparison of subtrees: If equality is found in the above two steps, then we

make recursive comparisons of the subtrees of T{a,b} and T ′
{a′,b′}. For convenience, we

denote T{a,b} and T ′
{a′,b′} as T and T ′ respectively.

After steps 1 and 2 above, we can assume that the children of p and p′ are partitioned into

size-classes i.e. partitioned according to their sizes. The size-classes are arranged in the
increasing order of the size of the subtrees in them. As in Lindell’s algorithm, the first

step here is to compare the number of children of p and p′ in each of the size-classes. If an
inequality is found, then the tree with more children in a smaller size-class is considered

to be smaller. Here onwards, we assume that p and p′ have the same number of children
in each of the size-classes.

The recursive comparison is carried out by storing order profiles, and an inequality is

returned exactly as in Lindell’s algorithm. However, the comparison of two subtrees is
more complex. We describe the details of one comparison here.

Let Ti and T ′
j be the subtrees rooted at a child C of p and a child C ′ of p′, respectively.

Note that C and C ′ are t-nodes, and have a virtual edge corresponding to their parents p =

{a, b} and p′ = {a′, b′} respectively. C and C ′ are triconnected components i.e. they can
be either 3-connected planar graphs or cycles or 3-bonds. We define 3-bond<T cycle<T 3-

connected planar graph, and report an inequality accordingly, if C and C ′ are of two
different types. Otherwise we have the following possibilities:

(a) C, C ′ are 3-bonds: In this case, they are leaves and are always equal.

(b) C, C ′ are cycles or 3-connected planar graphs: If |C| < |C ′|, we return C <T C ′.
Otherwise, we start constructing and comparing the canonical codes for C and C ′ in

all the possible ways. The details are given below.

Construction and comparison of canonical codes of C and C ′:

• If C, C ′ are cycles then canonical codes of C and C ′ are constructed by traversing

them in both clockwise and counter-clockwise directions, starting from the virtual
edges {a, b} and {a′, b′} respectively. Thus there are two possible ways of con-

structing canonical codes of each of C and C ′.

• If C, C ′ are 3-connected planar graphs then their canonical codes are obtained by
calling the procedure 2 described in Chapter 2 for canonization of 3-connected pla-
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nar graphs. The canonical codes for C are obtained by making the following calls:
canon(C, ρ, a, {a, b}), canon(C, ρ, b, {a, b}), canon(C, ρ′, a, {a, b}),
canon(C, ρ′, b, {a, b}). Here ρ and ρ′ are the two possible combinatorial embed-
dings of C (and similarly for C ′). Recall that {a, b} is the parent of C in the tree T .

Thus the canonization of C is done with only the virtual edge corresponding to its
parent as the starting edge, for both of its end-points as starting vertices, and for both

the combinatorial embeddings.

Remark 3.10 The canon procedure needs to be modified such that it takes an ad-

ditional parameter i and returns the ith edge of the canonical code, along with the

canonical as well as original labels of the end-points of that edge. It can be seen that

the modified procedure also works in FL.

Thus there are two possible canonical codes for a cycle and four for a 3-connected planar
graph. A counter cnt is maintained, and the ith edge of all the possible codes of C and C ′

is obtained when cnt = i. The ith edges in all the codes are compared.

At any step i, if a code is found to be larger than another code, then the larger code is
eliminated. In the end, if all the codes of C (respectively C ′) are eliminated then we return

C ′ <T C (C <T C ′).

At a step i of the construction of the codes, a code c is considered to be larger than a code

c′ of C ′, if they are equal upto step i− 1, and one of the following holds at step i:

• the ith edge of c has a lexicographically larger canonical label than the ith edge of c′

or

• the ith edges of c and c′ have the same canonical labels but the ith edge of c is a
virtual edge corresponding to a child of C, whereas the ith edge of c′ is not a virtual

edge of C ′, or

• ith edges of c and c′ are virtual edges e = (u, v) and e′ = (u′, v′) corresponding to a
child of C and C ′ each, with the same canonical labels to u, u′ and to v, v′ with the

condition that the canonical label of u (respectively u′) is smaller than that of v (v′),
and either of the two holds: (i) the recursive comparison of the subtrees Te and T ′

e′

rooted at e and e′ results in Te >T T ′
e′ , or (ii) the recursive comparison of Te and

T ′
e′ results in equality, but the orientation of e in Te is v → u, whereas that of e′ is

u′ → v′ in Te′ . The notion of orientation is defined as follows:

Definition 3.11 (Orientation of a separating pair: ) Consider a triconnected component

tree T rooted at a separating pair p = {a, b}. The orientation of p is said to be a → b in
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T if, in all the possible canonical labelings of vertices which lead to the lexicographically

smallest canonical code of T , the canonical label of a is smaller than that of b.

The root p is said to have no orientation in T , if the smallest canonical code (i.e. canon) of

T can be obtained with multiple ways of giving canonical labels to the vertices, and some

of them have a smaller label for a than that of b, and some of them have a smaller label

for b than that of a.

Note that this is not a constructive definition. How to obtain the orientation of a separating
pair in the subtree rooted at it is described in the next step.

4. Comparison of Orientations: If equality is returned in all the three steps above, then

we can assume that the children of p and p′ are partitioned into isomorphism-classes. Two
children are in the same isomorphism-class if and only if they are isomorphic. We can also

assume that an isomorphism-class of children of p and that of p′ have the same number of
children, otherwise an inequality is returned in Step 3 itself.

As shown by the example in Figure 3.5, an additional step is needed at this stage. Intu-
itively, this step is required to check that pairwise isomorphisms of the children of p and

p′ can be consistently extended to an isomorphism of the entire graphs. To ensure this, we
obtain and compare the orientations of p and p′ in T and T ′ respectively. This is described

below:

Arrange the isomorphism-classes of children of p and p′ in the increasing order, where the

order is the isomorphism order of the subtrees in them obtained in the above three steps,
and consider one isomorphism-class at a time starting from the smallest one. Let these

classes be (I1, . . . , Ip) and (I ′1, . . . , I
′
p) respectively for T and T ′. Let Ii and I ′i be the

isomorphism classes currently being compared.

A child C of p = {a, b} is said to give an orientation a → b to p, if all the uneliminated
canonical codes of C are those where a is taken as the starting vertex. This corresponds

to canon(C, ∗, a, {a, b}) if C is a 3-connected planar graph, and ∗ denotes any of the

two embeddings of C. If C is a cycle, then this corresponds to the traversal of the form
(a, b, . . . , a).

For an isomorphism-class Ii, count the number Oi1 of children that give a→ b orientation
to p and the number Oi2 of the children that give b → a orientation to p. Obtain the

counters for I ′i as well. Ii is said to give a → b (respectively b → a) orientation to p

if Oi1 > Oi2 (Oi2 > Oi1). Note that either each of the children in Ii and I ′i gives an

orientation to its parent, or none of them gives an orientation, as they are all isomorphic.
If none of the children gives an orientation to its parent or if Oi1 = Oi2 , then Ii is said to

be symmetric about p, and does not give any orientation to p.

33



Chapter 3. Planar Graph Isomorphism and Canonization

Find the smallest isomorphism-class Ii that is not symmetric about p. The orientation
given by Ii to p is considered to be the reference orientaion. For isomorphism-classes

Ij , j > i, Oj1 is the number of children that give the reference orientation to p and Oj2

that give the opposite orientation to p. The orientation counter for Ij is Oj = (Oj1 , Oj2).

The orientation counter O′
j for I ′j is obtained in a similar way.

The comparison in this step is a lexicographic comparison of the orientation counters. That
is, T <T T ′ if equality holds in Steps 1 to 3 above, and (O1, . . . , Op) < (O′

1, . . . , O
′
p)

lexicographically. If an isomorphism-class is symmetric about the root, then its orientation
counter is considered to be (0, 0).

The steps involved in the isomorphism ordering are summarized below:

Summary of the steps in the isomorphism order. The isomorphism order of two triconnected

component trees T and T ′ rooted at separating pairs p = {a, b} and p′ = {a′, b′} is defined to
be T{a,b} <T T{a′,b′}′ if:

1. |T{a,b}| < |T{a′,b′}| or

2. |T{a,b}| = |T{a′,b′}′ | but #p < #p′ or

3. |T{a,b}| = |T ′
{a′,b′}|, #p = #p′ = k, but (TG1 , . . . , TGk

) <T (T ′
H1

, . . . , T ′
Hk

) lexico-
graphically, where we assume that TG1 ≤T . . . ≤T TGk

and T ′
H1
≤T . . . ≤T T ′

Hk
are the

ordered subtrees of T{a,b} and T ′
{a′,b′}, respectively.

4. |T(a,b)| = |T ′
(a′,b′)|, #p = #p′ = k, (TG1 ≤T . . . ≤T TGk

) =T (T ′
H1
≤T . . . ≤T T ′

Hk
),

but (O1, . . . , Op) < (O′
1, . . . , O

′
p) lexicographically, where Oj and O′

j are the orientation

counters of the jth isomorphism-classes Ij and I ′j .

We say that two triconnected component trees Te and T ′
e′ are equal according to the isomor-

phism order, denoted by Te =T T ′
e′ , if neither Te <T T ′

e′ nor T ′
e′ <T Te holds. The following

theorem states that two trees are equal according to the isomorphism ordering defined above,
precisely when the underlying graphs are isomorphic.

Theorem 3.12 The biconnected planar graphs G and H are isomorphic if and only if there is

a choice of separating pairs e, e′ in G and H such that Te =T T ′
e′ when rooted at e and e′,

respectively.

Proof. Assume that Te =T T ′
e′ . The argument is an induction on the depth of the trees that

follows the definition of the isomorphism order.
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Base case: d = 2. In this case, all the children of e and e′ are leaves. As Te =T T ′
e′ , e

and e′ have equal number of isomorphic children. Since the orientation counters match for each

isomorphism-class, the isomorphism of the individual t-nodes can be extended to the isomor-
phism of the entire graphs.

Induction step: Let d be the depth of Te and T ′
e′ . As the s-nodes and t-nodes appear at

alternate levels, the subtrees rooted at the separating pairs at the next level have depth at most

d− 2. Assume the result holds for subtrees upto depth d− 2. Let G1, . . . , Gk be the children of
e and H1, . . . ,Hk be the children of H such that ∀i : TGi =T THi . Therefore we have Gi

∼= Hi,

with the corresponding virtual edges having isomorphic subtrees rooted at them with the same
orientations. Thus the pairwise isomorphism of the children of Gi and Hi can be extended to the

graphs corresponding to the subtrees rooted at Gi and Hi, for each i. Now, since e and e′ have
matching orientation counters, it is easy to see that an isomorphism between their corresponding

children can be extended consistently to the entire graph.
The reverse direction holds obviously as well. If G and H are isomorphic and an isomor-

phism maps the separating pair {a, b} of G to the separating pair {a′, b′} of H , then this also
gives a pairwise isomorphism between a child of {a, b} and a child of {a′, b′}. Therefore an

induction on the depth of the tree immediately leads to T{a,b} =T T{a′,b′}.

3.5.2 Implementation of the Isomorphism Ordering in FL

We analyse the space-complexity of the isomorphism ordering. The first two steps of the iso-
morphism ordering can be computed in log-space as in Lindell’s algorithm [62]. We show that

steps 3 and 4 can also be performed in log-space.

• Case 1: Comparison of two subtrees rooted at s-nodes While comparing two subtrees
rooted at s-nodes p and p′, the order-profiles, and the orientation-counters need to be stored

while making cross-comparisons of their children. This needs O(log k) space, where k is
the number of children of p and p′ in a particular size-class. Moreover, the reference

orientation needs to be stored, once an isomorphism-class that is not symmetric about p
and p′ is found. This takes 1 bit. The 1 bit can be stored whenever two subtrees being

compared are of size at most n
2 , where n is the size of the subtrees rooted at p and p′.

However, it can not be stored while comparing a child of p of size larger than n
2 , with the

corresponding child of p′. Note that such a child is unique, and is referred to as the large

child of p and p′.

To get around this problem, we compare the large child of p with that of p′ before com-

paring any other size-classes, and store the result of this comparison. This takes O(1) bits.
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As all the other children of p and p′ are of size at most n
2 , these O(1) bits can be stored

until the comparison of the subtrees rooted at p and p′ is completed.

• Case 2: Comparison of two subtrees rooted at t-nodes Consider the comparison of two

subtrees rooted at t-nodes C and C ′ in T and T ′ respectively. If C and C ′ are of different
types or they are 3-bonds, the result can be returned immediately. Consider the case when

both C and C ′ are cycles or 3-connected planar graphs of the same size.

In this case, we need to construct all the possible canonical codes for them, with the virtual
edge corresponding to their parent as the starting edge. Recall that there are two possible

canonical codes each when C and C ′ are both cycles, and four possible canonical codes
each when they are 3-connected planar graphs. Therefore O(log |C|) space is needed

for the construction of the canonical codes. A recursive call is made for comparing a
child q of C with a child q′ of C ′ when the corresponding virtual edges are encountered

simultaneously in a canonical code of C and of C ′. The entire work-tape contents can
not be stored while making the call, and we still need to ensure that we store enough

information so as to resume execution after completing the call. This is done as follows:

We store the following on the work-tape while making a recursive call:

1. A bit-vector indicating which canonical codes are already eliminated (as they were
larger than the rest). This needs 8 bits.

2. A bit-vector indicating the two canonical codes for which the current recursive call

is being made.

3. One bit each indicating the direction which e and e′ get in the respective canonical
codes. Recall that the direction indicates which end-point of e (and of e′) gets a

smaller canonical label in the canonical code.

Each edge occurs exactly once in the canonical list of edges of C and C ′. Therefore, after
completing the call for e and e′, we update the bit-vector of eliminated canons depending

on the result of the recursive call, remember the virtual edges e and e′ for which the call

was made, and reconstruct the uneliminated canonical codes till e and e′ are encountered
in the respective canonical codes. This is precisely the point at which the recursive call

was made. Thus, O(1) space is needed while making the recursive call. O(1) space can
be used, unless e and e′ are large children of C and C ′.

To get around this difficulty, we use the same method as in the previous case. Before
starting the comparison of the subtrees rooted at C and C ′, check if they have a large

child, and if so, compare the large children a priori and store the result of the comparison
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in O(1) space. This result is stored till the comparison of the subtrees rooted at C and C ′

is completed.

As seen above, while comparing two trees of size N , the algorithm uses no space for making a

recursive call for a subtree of size larger than N/2. If a size-class has k > 2 children, then it
uses O(log k) space while making a recursive call. In this case, each of the subtrees are of size

at most N
k . If a size-class has only one child, and it is not a large child, then the algorithm uses

O(1) space. Hence we get the same recurrence for the space S(N) as that in Lindell’s algorithm:

S(N) ≤ max
j
S
(
N

kj

)
+O(log kj),

where kj ≥ 2 for all j. Thus S(N) = O(logN).
As the size N of each of the triconnected component trees T and T ′ is bounded by a poly-

nomial in the number of vertices n in the graphs G and H , the space used is O(log n).

Theorem 3.13 The isomorphism order between two triconnected component trees of bicon-

nected planar graphs can be computed in FL.

3.5.3 Canonization of Biconnected Planar Graphs

Once it is clear how to get the isomorphism order on triconnected component trees in log-space,
it is straight forward to construct the canon similar to that in Lindell’s algorithm described in

3.4.3. The details are given below.

Theorem 3.14 A biconnected planar graph can be canonized in log-space.

Proof. We assume that the canonization algorithm has oracle access to the isomorphism or-
dering algorithm (Section 3.5.1) and to the 3-connected planar graph canonization algorithm

(Chapter 2). The root of the triconnected component tree T is chosen from all the s-nodes in T

by cycling through all of them and choosing the one which gives the smallest tree according to

the isomorphism order. Here onwards we assume that T is rooted at such a t-node, say {a, b}.
The canonization algorithm traverses T in the tree-isomorphism order as in Lindell’s algo-

rithm [62], outputting the canonical code of each of the nodes in pre-order, which is a list of
edges including the virtual edges. In the second step, the final canon is computed from the

canonical list, by relabelling the vertices according to the order of their first occurrence in this
list. The details are given below.
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Canonical list of a subtree rooted at an s-node: Consider a subtree T(a,b) rooted at the s-
node {a, b}. The canonization algorithm computes the reference orientation of {a, b} and out-

puts the edge in this direction. Then it recursively outputs the canonical lists of the subtrees
of {a, b} according to the increasing isomorphism order. Among isomorphic siblings, those

which give the reference orientation to the parent are considered before those which give the
reverse orientation. We denote this canonical list of edges l(T, a, b). If the subtree rooted at

{a, b} does not give any orientation to {a, b}, and if it is not the root of T , then it appears in
some t-node C. In this case, that orientation for {a, b} is taken to be the order of the canonical

labels of a and b in the canonical code of C.

Canonical list of a subtree rooted at a t-node: Consider the subtree TC rooted at the t-
node C. Let {a, b} be the parent separating pair of C with reference orientation a → b. If C

is a 3-bond then output its canonical list l(C, a, b) as (a, b). If C is a cycle then it has a unique
canonical list with respect to the orientation (a, b), that is l(C, a, b). Now we consider the case

when C is a 3-connected component. Then C has two canonical codes with respect to the
orientation (a, b), one for each of the two embeddings. Query the oracle for the embedding

that leads to the lexicographically smaller canonical list and output it as l(C, a, b). Recursively
output the canonical lists of edges for each of the subtrees rooted at the children of C, in the

order in which the corresponding virtual edges are present in l(C, a, b).
The list of edges computed as described above still has the vertex-labels from the graph

G. The vertices are relabelled according to the order of their first occurrence in this list, and a
list of edges is output in the lexicographically increasing order. This is the canon of the given

biconnected planar graph G. It is easy to see that the canon can be computed in FL.

3.6 Isomorphism and Canonization of Connected Planar Graphs

This section contains the description of the isomorphism order for connected planar graphs. To

determine the isomorphism order of two connected planar graphs, we define an isomorphism
order on their biconnected component trees. The construction of the biconnected component

trees is given in Section 3.2. Recall that the biconnected component tree of a connected planar
graph G has articulation point nodes called a-nodes and biconnected component nodes called

b-nodes. These b-nodes are replaced with their respective triconnected component trees, and a
new tree-like structure is constructed. An isomorphism order on this structure is then defined.
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3.6.1 The Tree-Structure

In the isomorphism order of triconnected component trees, the canonization algorithm for 3-

connected planar graphs was used as an oracle. However, in case of biconnected component
trees, the canonization algorithm for biconnected planar graphs can not be used this way due to

the following reasons:

1. In a triconnected component tree, once the parent of a t-node is fixed, it has only four

possible canonical codes. In the case of a biconnected component tree, a b-node can have
as many canonical codes as the number of separating pairs in it. Therefore they can not be

constructed and compared simultaneously.

2. While comparing two t-nodes in a triconnected component tree, whenever a recursive call

for their children resulted in an inequality, a canonical code is eliminated. This fact is
used crucially to resume the execution after the recursive call. However, this is not the

case in the canonization of b-nodes, since the subtrees of a triconnected component tree
are compared several times.

To get around this problem, we give a tree-like structure that combines the biconnected compo-
nent tree with the triconnected component trees of its b-nodes. We list below some simple facts

about a biconnected component tree S:

1. S has a unique center. Recall that the center of a tree is the node in the tree, from which,
the maximum distance to any node in the tree is minimized. It is easy to see that the center

of a tree is the center of a longest path in it. As all the longest paths in S are of odd length,
the center is unique.

2. An articulation point a has a copy in each biconnected component formed by its removal.
However, it can have many copies in the triconnected component tree of a biconnected

component B. This happens precisely when the copy of a in B is a part of a 3-connected
separating pair.

3. Let a be the copy of an articulation point that appears in a biconnected component B. Let

T (B) be the triconnected component tree of B. Let C and D be two t-nodes in T (B). If
a copy of a appears in both C and D, then it appears in each node that is on the C to D

path in T (B). In other words, the nodes in T (B) that contain a copy of a form a subtree
of T (B).

When an articulation point has several copies in the triconnected component tree of a bicon-

nected component, we designate one of the copies as the reference copy. This copy is the one
which occurs in the node closest to the root of the triconnected component tree, and thus depends

on the choice of root of the tree.
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3.6.2 Isomorphism Order of Biconnected Component Trees

Unlike in the case of triconnected component trees, there is no notion of orientation in case of

biconnected component trees. Therefore the steps in the isomorphism order are exactly same as
in Lindell’s algorithm. However, the recursive comparison step is fairly complex in this case.

The isomorphism order relation between two biconnected component trees is denoted by <B.
The size |S| of a biconnected component tree S is defined as follows:

Definition 3.15 (Size of a biconnected component tree: ) Size of an a-node in S is 1. The size

of a b-node is the size of its triconnected component tree. The size of a biconnected component

tree is the sum of sizes of its nodes.

Given two connected planar graphs G and H , let S and S′ be their biconnected component
trees. S and S′ are rooted at a-nodes. As there are O(n) a-nodes, a log-space transducer can

cycle through all the choices of roots for S and S′, to check whether G ∼= H . Let the biconnected
component trees S and S′ be rooted at a-nodes a and a′ respectively. The rooted trees are denoted

by Sa and S′
a′ . Define Sa <B S

′
a′ if

1. |S| < |S′|, or

2. |S| = |S′| but #a < #a′, or

3. |S| = |S′|, #a = #a′ = k, but (SB1 , . . . , SBk
) <B (S′

B′
1
, . . . , S′

B′
k
) lexicographically,

where we assume that SB1 ≤B · · · ≤B SBk
and S′

B′
1
≤B · · · ≤B S′

B′
k

are the ordered

subtrees of Sa and S′
a′ , respectively.

Sa =B S′
a′ if and only if neither Sa <B S′

a′ nor S′
a′ <B Sa holds.

Details of the isomorphism ordering Steps 1 and 2 are straight forward. The details of Step
3 are given below:

Consider the comparison of two subtrees rooted at a-nodes a, and a′. If equality is found in
steps 1 and 2, the children of each of a and a′ can be assumed to be partitioned into size-classes.

Then the isomorphism order on the subtrees rooted at a and a′ is obtained exactly as in Lindell’s
algorithm, i.e. by making cross-comparisons and storing order profiles.

Consider the comparison of two subtrees SB and S′
B′ rooted at b-nodes B and B′. Let the

parents of B and B′ be a-nodes a and a′ respectively, and the triconnected component trees of B

and B′ be T and T ′ respectively. We define the copies of a and a′ in T and T ′ to be larger than
any other vertex, which ensures that they are always mapped to each other. This is equivalent to

giving them a distinct color.
The comparison of SB and S′

B′ is started by invoking the isomorphism order procedure for

T and T ′. It calls the isomorphism order procedure for biconnected component trees whenever
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the reference copies of articulation points are encountered. However, to make this recursive call,
the current order profiles computed so far during the comparison of T and T ′ need to be stored.

Moreover, as T and T ′ need to be rooted at an s-node and we need to cycle through the choices
of the root, the current root also needs to be stored. Thus, to ensure that the algorithm works in

log-space, a key task is to suitably limit the number of choices of roots of T and T ′. We defer
the description of this task to a later point, and describe the rest of the details assuming that the

number of choices of roots is suitably limited to a number k:

1. Cycle through the k choices of roots for T and T ′. This is done by comparing T with a
fixed choice of root with all the choices for T ′, one at a time. Order profile is used to keep

track of the results of the comparisons. The aim is to compare the minimum canonical
codes of T and T ′ and return the result. The choice of root of T that leads to the minimum

canonical code is the one that gives T <T T
′ for the maximum number of choices of roots

for T ′.

2. Now consider the comparison of T and T ′ for some choices of roots. This comparison

is carried out using the isomorphism order procedure for triconnected component trees.
During the comparison of T and T ′, if a copy of an articulation point is encountered in a

canonical code of a t-node C of T but not in that of the corresponding t-node C ′ of T ′,
then that canonical code for C is considered to be larger and eliminated.

If copies of articulation points u and u′ are encountered simultaneously in nodes C and C ′,
check whether these are their reference copies. If so, make a recursive call to isomorphism

order procedure for biconnected component trees, to compare the subtrees of SB and S′
B′

rooted at u and u′. If the copies encountered are not the reference copies, then assume

equality and proceed. While making the recursive call, the current order profile of C or
C ′ is stored along with the bit-vector for already eliminated canonical codes.

Limiting the number of choices of root for a triconnected component tree Let S be a
biconnected component tree, and B be a b-node in it. Let the parent of B in S be a-node a, and

the children of B be a1, . . . , aℓ. The triconnected component tree of B be T (B). Let the children
of B be divided into p size-classes, and let kj be the number of children in the jth size-class.

We refer to the size-classes which contain only one child of B as singleton size-classes, and the

children in the singleton size-classes as the singleton a-nodes. Parent of B is also considered as
a singleton a-node. We have the following cases:

1. The center of T (B) is an s-node: This s-node serves as the unique choice of root for

T (B). In the rest of the cases, we assume that the center of T (B) is a t-node C. Also,
assume T (B) be rooted at C, and the reference copies of a and a1, . . . , aℓ are decided

accordingly.
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2. There is a singleton a-node ai that does not have a reference copy in C: In this case,
the reference copy of ai in T (B) appears in some t-node C ′ which is different from C.

There is a unique path between C and C ′ in T (B). The neighbor of C on this path is an
s-node and serves as the unique choice of the root of T (B).

For the remaining cases, we assume that all the singleton a-nodes have reference copies in

C.

3. C is a cycle: In this case, C has two possible canonical codes, with the parent a-node
as the starting vertex, and its two incident edges as the starting edges. The children of C

corresponding to the virtual edges that appear first in the two canonical codes form the
choices for root of T (B). There are two such choices.

Here onwards, assume that C is a 3-connected planar graph.

4. There are 3 or more singleton a-nodes: The singleton a-nodes in C can be colored
distinctly. Thus C has 3 vertices, each of which is colored with a different color. C is a

3-connected planar graph. From Corollary 3.20 below, when three vertices are fixed, C
has at most one non-trivial automorphism, and hence it can have at most two minimum

canonical codes. As in the previous case, the children of C corresponding to the virtual
edges that appear first in these two canonical codes serve as the two choices for root of

T (B).

5. There are at most two singleton a-nodes: In this case, consider a non-singleton size-
class of the children of B, that contains the minimum number of children of B, say k. If

any one or more of these children do not have their reference copies in C, the number of
choices for root of T (B) can be limited to at most k, as in the Case 2 above.

If all the k a-nodes have their reference copies in C, then from Lemma 3.16, C has at

most O(k) canonical codes. The number of choices for root of T (B) can thus be limited
to O(k) as in Case 4 above.

The following lemma gives a relation between the number of automorphisms of the center C of
the triconnected component tree T (B), and the number of a-nodes that have their reference copy

in C, when C is a 3-connected planar graph.
The lemma is stated in a more general form where some vertices of the graph are colored.

Thus, we can assume that the reference copies of a-nodes in ith size-class are colored with color
i. Moreover, the reference copy of the parent a-node is colored distinctly.

Lemma 3.16 Let G be a 3-connected planar graph with colors on its vertices such that one

vertex a is colored distinctly, and let k ≥ 2 be the size of the smallest color class apart from the

one which contains a. Then G has at most 4k automorphisms.
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To prove Lemma 3.16, we refer to the following results.

Lemma 3.17 (P. Mani)(See e.g. [19])Every triconnected planar graph G can be embedded on

the 2-sphere as a convex polytope P such that the automorphism group of G coincides with the

automorphism group of the convex polytope P formed by the embedding.

Lemma 3.18 [15, 19, 12] For any convex polytope other than tetrahedron, octahedron, cube,

icosahedron, dodecahedron, the automorphism group is the product of its rotation group and

(1, τ), where τ is a reflection. The rotation group is either Ck or Dk, where Ck is the cyclic

group of order k and Dk is the dihedral group of order 2k.

Proof of Lemma 3.16. Let H be the subgroup of the rotation group, which permutes the vertices

of the smallest color class among themselves. Then H is cyclic since the rotation group is cyclic.
Let H be generated by a permutation π.

Notice that a non-trivial rotation of the sphere fixes exactly two points of the sphere viz. the
end-points of the axis of rotation. Then, the following claim holds.

Claim 3.19 In the cycle decomposition of π each non-trivial cycle has the same length.

Proof of Claim 3.19. Suppose π1, π2 are two non-trivial cycles of lengths p1 < p2 respectively
in the cycle decomposition of π. Then πp1 fixes all elements of π1 but not all elements of π2.

Thus πp1 ∈ H cannot be a rotation of the sphere which contradicts the definition of H .

As a consequence, the order of H is bounded by k, since the length of any cycle containing

one of the k colored points is at most k.

This leads to the following corollary:

Corollary 3.20 Let G be a 3-connected planar graph with at least 3 colored vertices, each

having a distinct color. Then G has at most one non-trivial automorphism.

Proof. An automorphism of G has to fix all the colored vertices. Consider the embedding of G
on a 2-sphere. The only possible symmetry is a reflection about the plane containing the colored

vertices, which leads to exactly one non-trivial automorphism.

Note that if the triconnected component C is one of the exceptions stated in Lemma 3.18,
then it has O(1) size. Then it has O(1) minimum canonical codes, and a set of O(1) separating

pairs can be chosen as the possible choices for root of T (B) as in Case 4 above.

Theorem 3.21 Given two connected planar graphs G and H , and their biconnected component

trees S and S′, G ∼= H if and only if there is a choice of articulation points a in G and a′ in H

such that Sa =B S
′
a′ .
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Proof. Assume Sa =B S′
a′ . The argument is an induction on the depth of the trees that follows

the definition of the isomorphism order.

Base case: d = 2 In this case, all the children of a and a′ are leaves. As Sa =B S′
a′ , a and

a′ have equal number of isomorphic children, the isomorphism of the individual b-nodes can be

extended to the isomorphism of the entire graphs.
Induction step: Let d be the depth of Sa and S′

a′ . As the a-nodes and b-nodes appear at

alternate levels, the subtrees rooted at the a-nodes at the next level have depth at most d − 2.
Assume the result holds for subtrees up to depth d − 2. Let G1, . . . , Gk be the children of a

and H1, . . . ,Hk be the children of a′ such that ∀i : SGi =B SHi . Therefore we have Gi
∼= Hi,

with the corresponding copies of articulation points having isomorphic subtrees rooted at them.

Thus the pairwise isomorphism of the children of Gi and Hi can be extended to the graphs
corresponding to the subtrees rooted at Gi and Hi, for each i. By coloring the copies of a in

each of the Gis and that of a′ in each of the His distinctly, it is easy to ensure that the pairwise
isomorphism between the children of a and a′ can be extended to an isomorphism between G

and H .
The reverse direction holds obviously as well. If G and H are isomorphic and there is

an isomorphism that maps an articulation point a of G to an articulation point a′ of H . This
also gives a pairwise isomorphism between children of a and the corresponding children of a′.

Therefore an induction on the depth of the tree immediately leads to Sa =B Sa′ .

3.6.3 Implementation of the Isomorphism Ordering in FL

We analyse the space-complexity of the isomorphism ordering. The first two steps can be imple-
mented in FL as in Lindell’s algorithm. We show that the third step can also be implemented in

FL. The following two cases arise:

1. Comparison of the subtrees rooted at two a-nodes: This is a simple case and the storage
requirement is exactly same as that of Step 3 in Lindell’s algorithm. While comparing the

children of two a-nodes from the same size-class, the order-profile of one child needs to

be stored at a time. This takes O(log k) space where k is the number of children in that
size-class. If the size-class has only one child of each a-node, nothing needs to be stored

while comparing them recursively.

2. Comparison of the subtrees rooted at two b-nodes: Consider the comparison of the
subtrees SB and S′

B′ rooted at b-nodes B and B′ respectively. Let a and a′ be their

parent a-nodes and T (B) and T (B′) be their respective triconnected component trees.
The comparison of the sizes of the subtrees and the number of children of B and B′ can
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clearly be done in log-space. So assume the children of B and B′ be divided into size-
classes. If each of B and B′ have a large child, compare the large children and store the

result. Recall that a child of B is considered to be a large child if the size of the subtree
rooted at it is more than half of the size of the subtree rooted at B. If B and B′ each have

only one singleton child, compare them recursively and store the result. Thus no space is
used while making this recursive call.

Now cycle through the k possible choices for roots of T (B) and T (B′), where k is as

described above. Thus k is either O(1), or it is O(k′) where k′ is the minimum cardinality
of a non-singleton size-class of the children of B and B′. O(log k) space is used for

storing the current roots of T (B) and T (B′).

While comparing T (B) and T (B′) for a fixed choice of roots, the recursive calls are made

in two cases: to compare s-nodes and t-nodes in T (B) and T (B′), and to compare a-
nodes which are children of B and B′ in SB and S′

B′ . Two a-nodes are compared when

their reference copies are encountered while comparing the s-nodes or t-nodes in T (B)

and T (B′). We consider an a-node in SB to be a child of that s-node or t-node of T (B),

which contains its reference copy. The sizes of the subtrees rooted at the s-nodes and
t-nodes of T (B) are computed accordingly. A large child of B is an exception as the

result of the comparison of large children is computed and stored a priori. Therefore the
storage used while making recursive comparisons is same as in the case of triconnected

component trees (Section 3.5.2).

The recurrence for the space required is given by

S(N) ≤ max
j
S
(
N

kj

)
+O(log kj),

where kj ≥ 2 for all j. Thus S(N) = O(logN).

3.6.4 Canonization of Planar Graphs

Once it is clear how to get the isomorphism order on biconnected component trees in log-space,
obtaining the canon of a connected planar graph is straight forward. It is similar to the canoniza-

tion of biconnected planar graphs described in Section 3.5.3. The details are given in the proof
of the following theorem:

Theorem 3.22 A connected planar graph can be canonized in log-space.

Proof. Assume that the canonization algorithm has oracle access to the isomorphism ordering

algorithm. Given a connected planar graph G with biconnected component tree S, a log-space
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transducer cycles through all the a-nodes to choose a root for the tree that leads to the lexico-
graphically smallest canonical code.

For a particular choice a of root, the canonization algorithm traverses the tree S according to
the isomorphism order and outputs the canonical codes of the subtrees in pre-order. Canonical

code of a b-node is the canonical code of the biconnected planar graph obtained by traversing
its triconnected component tree in isomorphism order. As the canonical code of a triconnected

component is a list of edges, this first pass gives a canonical list of edges of G.
In the second pass, another log-space transducer relabels the vertices of G according to their

first occurrence in the list. These labels lead to a canonical labelling of the vertices of G. A
list of edges of G in lexicographically increasing order according to the canonical labels of their

end-points is the canon of G. It is easy to see that both of these steps can be implemented in FL.

3.7 Discussion

This chapter gives a log-space algorithm for canonization of planar graphs, which settles the
complexity of planar graph canonization. An interesting question is to use this technique for

other graph classes. There has been some progress in this direction due to [33], which de-
scribes log-space algorithms for canonization of graphs that exclude either a K3,3 or a K5 minor.

These algorithms crucially use the fact that 3-connected components of a K3,3-free graph and
4-connected components of a K5-free graph are planar, and thus they can be canonized using

a UXS. It is interesting to find other minor-closed families where similar properties hold and
hence the same techniques apply.

Another question is to extend this result to bounded-genus graphs. The difficulty here is that
even highly connected genus k graphs do not have a unique embedding on a genus k surface,

and hence the idea of UXS can not be applied for their canonization.
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4
Longest Paths in Planar DAGs

We now turn towards the complexity analysis of path problems in some restricted graph classes.
This chapter consists of some results on path problems in directed graphs, and in planar directed

acyclic graphs. The main problem considered here is computation of the longest path length
between two designated nodes in a planar DAG. It is shown that this computation can be done

in UL ∩ coUL. Moreover, it can be generalised to some other classes of DAGs. The problem of
counting the number of paths in DAGs is considered next, and a promise version of this problem

is shown to be in LogDCFL.

4.1 Summary of the Main Results

We recall the following problem definitions from Section 1.2.2:

Reach = { (G, s, t) | G contains a path from s to t }

Distance = { (G, s, t, k) | G contains a path of length ≤ k from s to t }
Long-Path = { (G, s, t, k) | G has a simple path of length ≥ k from s to t }

#Path = { (G, s, t, 1k) | G has exactly k simple paths from s to t}

We consider the combination of planarity and acyclicity for the Long-Path problem in di-
rected graphs, and show that the NL upper bound can be improved to UL ∩ coUL in this case

(Section 4.2). This is done by showing that the Long-Path problem in planar DAGs can be
reduced to the Distance problem in planar DAGs, with oracle access to Reach. This improves

the previously known bound of NL that is known for longest paths in DAGs. We also show that
the same bound holds for Distance and Long-Path problems in toroidal DAGs. Toroidal DAGs

are those which can be drawn on a torus without any two edges crossing each other. These are
precisely the graphs of genus 1.

Section 4.3 describes a UL ∩ coUL algorithm for computing the length of a longest path
in max-unique DAGs with a single sink. Max-unique DAGs are the DAGs with the property

that the longest path between each pair of vertices is unique. In [78], min-unique graphs are
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considered and a UL ∩ coUL algorithm for shortest path computation in min-unique graphs is
described. Thus, it is shown that the min-uniqueness property helps in getting a UL ∩ coUL
algorithm for shortest path computation. The algorithm is based on double inductive counting
technique. We show that the max-uniqueness property can be used in a similar way to get a

UL ∩ coUL algorithm for longest path computation in DAGs, with an extension of the double
inductive counting technique.

Some versions of the #Path problem in DAGs are considered in Section 4.4. In particular,
we consider the #Path problem on planar DAGs, and on single sink DAGs, when there is a

promise that the number of s to t paths is bounded by a polynomial in the size of the graph.
We show that under this promise, the number of s to t paths in planar DAGs can be computed

by a UAuxPDA running in polynomial-time, whereas the number of s to t paths in a DAG that
has t as the only sink, can be computed in LogDCFL. Further, we show that the number of

longest or shortest s to t paths in a planar DAG can be computed by a UAuxPDA running in
polynomial-time, given the promise that this number is bounded by a polynomial in the size of

the graph.
For related graph-theoretic and complexity-theoretic background, and previously known re-

sults, we refer to Section 1.1 and Section 1.2.2, respectively.

4.2 Reducing Longest Paths to Shortest Paths in DAGs

For any subclass C of graphs, let Reach(C), Distance(C), and Long-Path(C) denote the re-
striction of these problems to instances from C.

The main result of this section is as follows:

Theorem 4.1 Long-Path(Planar DAG) ∈ UL ∩ coUL.

We show that the Long-Path and the Distance problems in planar DAGs are equivalent via

log-space reductions, given oracle access to Reach. This is an extension of the following result
of [49]:

Lemma 4.2 ([49]) Distance(Series-parallel) and Long-Path(Series-parallel) are equivalent.

The Reach and Distance problems on planar DAGs are known to be in UL ∩ coUL due to
the following results:

Lemma 4.3 ([25]) Reach(Planar) is in UL ∩ coUL.

Lemma 4.4 ([84]) Distance(Planar) is in UL ∩ coUL.

Thus Theorem 4.1 follows from Lemmas 4.3 and 4.4, which use the fact that

LUL ∩ coUL=UL ∩ coUL, and from Lemma 4.5 below:
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Lemma 4.5 Distance(Planar DAG) and Long-Path(Planar DAG) are equivalent via log-space

reductions that have access to the oracle Reach(Planar DAG).

The proof of Lemma 4.5 is a generalization of the proof given in [49] for series-parallel

graphs. The generalization in fact works for any class of acyclic graphs that is closed under
subdivision and vertex deletion. In particular, it works for planar DAGs. We present below, in

Theorem 4.6, the result of [49] simplified by specialising to unweighted graphs, and stated for
such (more general) classes of graphs. Lemma 4.5 is an obvious corollary.

Theorem 4.6 Let C be any subclass of directed acyclic graphs closed under subdivisions and

vertex deletions. There is a function f , computable in log-space with oracle access to Reach(C),
that reduces Distance(C) to Long-Path(C) and Long-Path(C) to Distance(C).

Proof. Let G = (V,E) be the given directed acyclic graph, in which we want to find the longest,

or the shortest, path between given vertices s and t. Construct a new graph G′ = (V ′, E′) as
follows:

For each u ∈ V , define Pu = {x ∈ V | there is a path from x to u in G}. Note that u is in
Pu for all u. Next define Eu = {(x, y) ∈ E | x ∈ Pu, y ̸∈ Pu}. Since G is acyclic, all outgoing

edges of u are in Eu.
Let ρ be any s to t path. For every vertex u, ρ has at most one edge from Eu. This can be

seen as follows: If there is a path from t to u (t ∈ Pu), then there is a path from every vertex on

ρ to u via t, so no edge of ρ is in Eu. If there is no path from s to u, then there is no path from
any vertex on ρ to u, so again no edge of ρ is in Eu. Now if s ∈ Pu but t ̸∈ Pu, then along the

path ρ, we transit from being in Pu to being outside Pu exactly once. Let this transition occur on
edge (x, y). Then (x, y) is in Eu, and no other edge of ρ can be in Eu. Thus

|ρ ∩Eu| =

{
1, if s ∈ Pu and t ̸∈ Pu,

0, otherwise.

To obtain G′, we replace each edge e = (u, v) by a path of length luv determined as follows:

luv = 2

 ∑
x∈V :(u,v)∈Ex

out-degree(x)

− 1

= 2

 ∑
x∈V :u∈Px,v ̸∈Px

out-degree(x)

− 1

Since G is acyclic, the vertex u itself always qualifies in the above sum, and so luv is positive.
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For any pair of vertices s, t we define the quantity Kst as follows:

Kst =
∑

x∈V :s∈Px,t̸∈Px

out-degree(x)

Now the crucial claim: for each pair of vertices s, t, each s to t path ρ in G of length |ρ|
(in terms of number of edges) is transformed by the above construction to a path in G′ of length

exactly 2Kst − |ρ|. This is because the length of the transformed path is

∑
(u,v)∈E
(u,v)∈ρ

luv =
∑

(u,v)∈E
(u,v)∈ρ

2
 ∑

x∈V :u∈Px,v ̸∈Px

out-degree(x)

− 1



= 2

 ∑
(u,v)∈E
(u,v)∈ρ

∑
x∈V :u∈Px,v ̸∈Px

out-degree(x)

− |ρ|

= 2
∑
x∈V

out-degree(x)
∑

e∈ρ∩Ex

1

− |ρ|

= 2

(∑
x∈V

out-degree(x) · |ρ ∩ Ex|

)
− |ρ|

= 2
∑

x∈V :|ρ∩Ex|=1

out-degree(x)− |ρ| = 2Kst − |ρ|

It thus follows that the longest (shortest) path in G is mapped to the shortest (longest, respec-
tively) path in G′. In fact, if the s to t paths are ordered monotonically with respect to length,

then the above transformation precisely reverses this ordering. Hence the reduction function f

maps (G, s, t, k) to (G′, s, t, 2|Kst| − k).

The reduction can be computed in log-space with oracle access to Reach(C), where all
queries involve only the graph G. This is because obtaining G′ as well as computing Kst merely

involve finding the sets Pu and Eu and adding up out-degrees.

Longest Path in Toroidal DAGs In [4], Reach in toroidal graphs has been shown to be

reducible to Reach in planar graphs by log-space truth-table reductions. From Theorem 4.1
and the construction of [4], we get the following corollary, which states that Distance and
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Long-Path problems on toroidal DAGs can be reduced to the corresponding problems on planar
DAGs by log-space truth-table reductions.

Corollary 4.7

Distance(Torus) ≤log
m Distance(Planar)

Long-Path(Toroidal DAG) ≤log
m Long-Path(Planar DAG)

We give a brief overview of the reduction given in [4]:

Consider a directed graph G embedded on a torus. Let C be a cycle in the underlying
undirected graph. A side of C is the set of vertices of G that are connected to some vertex on the

cycle by paths, such that the paths do not cross the cycle. This notion of side suffices for toroidal
graphs. Thus a cycle has two sides, called the left side and the right side. A cycle C is said to be

surface non-separating if the two sides have a non-empty intersection. Note that a planar graph
does not have such a cycle. If G is non-planar but is toroidal, it has at least one such cycle.

The reduction in [4] proceeds by finding such a cycle C, which can be found by computing
a spanning tree of G. A spanning tree of a graph is known to be computable in L [73, 77]. Once

a spanning tree is computed, one of the fundamental cycles with respect to the spanning tree is
known to be surface non-separating. Whether a given cycle C is surface non-separating can be

checked in L [4].
The next step of the reduction is to cut the torus along C to get a cylinder. Then make two

copies of C - one on each side of this cylinder. To preserve connectivity properties, 2n+1 copies
of this cylinder are pasted together such that the original copy is in the middle and has n copies

on each side, and all the copies together form a long cylinder. This new graph G′ is cylindrical
and hence planar. It can be shown that there is a directed s to t path in G if and only if there is a

directed path in G′ from s in the original copy of G to any of the copies of t. This completes the
reduction.

4.3 Longest Paths in DAGs via Double Inductive Counting

The main result of this section is that in max-unique DAGs where t is the unique sink, the length

of the unique longest s to t path can be computed in UL ∩ coUL. Recall that max-unique DAGs
are those which have a unique longest path between every pair of vertices (u, v), whenever v is

reachable from u. Formally, we give a proof of the following theorem:

Theorem 4.8 There is a nondeterministic log-space machine M that, given as input a directed

acyclic max-unique graph G with a unique sink t, and any other vertex s, finds the length of the

longest s to t path unambiguously.
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In [78], double inductive counting is used to unambiguously test reachability in min-unique
graphs. In [84], the same technique is used, in combination with the weighting technique from

[25], to compute shortest paths in planar graphs. For computing longest paths, however, the
technique cannot be used as it is, but needs a further small, but crucial, modification.

The modified technique is described in detail in Algorithms 3, 4 and 5. The algorithms use
two counters ck and Σk. The counter ck stores the number of vertices having a path of length

at least k to t. The counter Σk is the sum of the lengths of longest paths to t for those vertices
whose longest path to t is of length less than k. Thus we define the following:

D(v) = Length of the longest path from v to t.

Sk = {v | D(v) ≥ k}, ck = |Sk|

Σk =
∑

v∈V \Sk

D(v), T =
∑
v∈V

D(v)

While we describe and analyze the procedure in detail below, here is a quick overview for those

familiar with the method from [78]. The crucial new parameter we need is T , the total length of
all longest paths. At the outset, we nondeterministically guess a value M which is our estimate

of T . At the end, when we have reached a value of k for which ck = 0, we check whether M

equals Σk. This allows us to make the procedure unambiguous. The additional condition that t is
the unique sink allows us to initialise the counters: every vertex has a path, and hence a longest

path, to t, and so c0 = n.
The algorithms described here compute the longest path length when additionally s is the

only source. After showing that these algorithms are correct, we discuss how to remove this
restriction.

Algorithm 3 Main
Input: G, s, t
guess nondeterministically M =

∑
v∈V D(v) with n− 1 ≤M ≤ n2

c0 ← n,Σ0 ← 0, k ← 0
while ck ̸= 0 do

k ← k + 1
Update (compute ck and Σk)

end while
if Σk ̸= M then

halt and reject
else

output D(s) = k − 1, accept and halt
end if
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Algorithm 4 Update: Compute ck and Σk, given ck−1 and Σk−1

Input: G, s, t, k, ck−1,Σk−1

ck ← ck−1,Σk ← Σk−1

for all v ∈ V do
if Test(G, k − 1, ck−1,Σk−1, v)=true then

if for all out-neighbours x of v,
Test(G, k − 1, ck−1,Σk−1, x)=false then

ck ← ck − 1,Σk ← Σk + k − 1
end if

end if
end for

Algorithm 5 Test: An unambiguous procedure to test if D(v) ≥ k

Input: G, s, t, k, ck,Σk, v
count = n, sum = 0, path.to.v=true, sum′ = 0
for all x ∈ V do

guess nondeterministically if D(x) ≥ k
if guess is no then

guess a path of length l < k from x to t.
if this fails then

reject and halt
end if
count← count− 1
sum← sum + l
if x = v then

path.to.v =false
end if

else
guess a path of length l′ ≥ k from x to t
if this fails then

reject and halt
end if
sum′ ← sum′ + l′

end if
end for
if count = ck and sum = Σk and sum′ + sum = M then

return path.to.v
else

reject and halt
end if
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It is clear that these procedures can be implemented in nondeterministic log-space. Claims 4.9,
4.10, 4.11 and 4.12, stated and proved below, show that these procedures unambiguously find

the length of the longest path from s to t in a max-unique acyclic graph G where t is the only
sink.

Claim 4.9 If the guessed value of M is correct (i.e. M = T ), then algorithm Test, given the

correct values of ck and Σk as input, reports a decision on exactly one run.

Proof. The procedure Test, on each run R, guesses an x to t path Rx for each vertex x.
Depending on its guess for D(x) ≥ k, it adds the length of Rx to either sum or sum′. Finally

these have to add up to M for Test to report a decision.
When M = T , M is indeed the sum of all D(x). This can match sum+ sum′ exactly when

all the guessed paths Rx are longest. Since G is max-unique, this happens on exactly one run.

Claim 4.10 For any guessed value of M , given the correct values of ck and Σk as input, all the

runs of algorithm Test that do not lead to rejection always return the correct decision.

Proof. As described in the preceding proof, each run of Test guesses a path Rx for each x. It
may guess a path of length shorter than D(x), but not longer. Since count is decremented only

when it guesses that D(x) < k, and for other guesses some witnessing path of length at least k
is found, at the end the value of count is at most as large as ck.

Suppose on some run Test returns a decision. Then on this run count = ck. Suppose further
that the decision is wrong.

Case 1: D(v) < k, but Test reports that it is larger. This cannot happen, since Test has to find a
witnessing path of length at least k.

Case 2: D(v) ≥ k, but Test reports that it is smaller. Then this run of Test does not account for
v in count. So at the end of the run, count < ck, a contradiction.

Claim 4.11 If the queries (D(v) ≥ k) are answered correctly by Test, then given ck−1 and

Σk−1, the values of ck and Σk are updated correctly by algorithm Update.

Proof. Update starts by assuming that Sk = Sk−1 and so ck = ck−1. Note that Sk ⊆ Sk−1, so
Update only has to detect when to remove vertices from its current Sk.

For each v, Update checks whether D(v) ≥ k− 1 and D(u) < k− 1 for all out-neighbours
u of v. If this holds, then the longest path from v to t is of length exactly k−1 and v /∈ Sk. Thus

the procedure decrements ck by 1 and increments Σk by k − 1.
So if all the queries are answered correctly by Test, then what Update does is correct.
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Claim 4.12 The algorithm Main is correct and unambiguous.

Proof. Main starts with the correct values of c0 and Σ0. From Claims 4.10 and 4.11, the

correctness of Main is immediate. In particular, the final value of Σk is always correct.
If M = T , then by Claim 4.9, procedure Test always returns a decision, unambiguously.

Thus exactly one run of Main (amongst those where M = T was guessed) leads to a decision,
and this decision is correct.

If M > T , then no run of Test, at any stage k, can trace paths adding up to M . So Test, and
hence Update, and Main have no accepting run.

If M < T , consider the runs on which Test and Update proceed to finally compute Σk.
Since Main is correct, we know that Σk = T . Now the check M = Σk fails and Main rejects

and halts.

A straightforward modification will handle the case when s is not the unique source. Just

keep one additional special counter for the vertex s. Initialise this counter to 0. At each stage k,
after ck and Σk are computed, run Test to check if D(s) ≥ k and if so, set this counter to k. At

the end of Main, report the value of this counter.

Alternate Proof of Theorem 4.1

The above algorithm can be used to give an alternate proof of Theorem 4.1. The idea is to
(1) trim the graph using oracle queries to Reach(Planar) so that t is the only sink, (2) embed

it in a grid with suitable edge weights using the embedding algorithm of [4], and (3) use the
weighting scheme of [25] so that the resulting planar DAG, say H , is min-unique. As further

noted in [84], the shortest path in H corresponds to a shortest path in G. It is straightforward to
see that H is also max-unique, with the longest path in H corresponding to some longest path in

G. Thus Theorem 4.8 is applicable. Computing the longest path length in G from that in H is
also straightforward.

4.4 Extensions of the Longest Paths Algorithm: Search, Counting

In this section we consider variations of our planar Long-Path algorithm: finding a longest path,

finding multiple longest paths, and counting the number of paths under some promise.

4.4.1 Finding a Longest Path

We show that for planar DAGs, the search version of Long-Path is also in UL ∩ coUL.

Theorem 4.13 A longest path between two designated nodes s and t in a planar DAG can be

found in LUL ∩ coUL and hence in UL ∩ coUL.
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Proof. The log-space machine computes the length of the longest path from s to t by ask-
ing queries to the Long-Path oracle, with the values of k starting from n, till a ‘yes’ an-

swer is obtained. Recall that Long-Path = {(G, s, t, k) | G has a simple path of length ≥
k from s to t}. Let this length of the longest s to t path be l. Then find the neighbor v of s that

has length l − 1 path to t. Output v and continue, till finally t is output.

4.4.2 Finding Multiple Longest Paths

We consider another variation of Long-Path. Given a planar DAG G, the algorithm in Sec-
tion 4.4.1 produces a longest path ρ. Can we find the (length of the) longest path other than ρ?

Note that this may well have the same length as ρ, because G itself need not be max-unique.
We proceed as follows: Let l be the length of ρ, a longest path from s to t. For each edge e

in ρ, let le denote the length of the longest path in G\{e}. Then the length of the second longest
path is the maximum of le over e in ρ, and such a path can be found by using the Algorithm of

Section 4.4.1 on G \ {e} for the appropriate edge e.
This can be generalised to finding the (length of the) kth longest path, as long as k is a

constant. Thus we have:

Theorem 4.14 For each constant k, given a planar DAG G and vertices s, t in it, a list of k

paths from s to t in G can be found in UL ∩ coUL such that every s to t path not listed is no

longer than any listed s to t path.

Remark 4.15 The k longest paths may not be unique due to ties. The algorithm guarantees that

any s to t path not listed by it is no longer than the shortest s to t path listed by it. But the k

paths output by the algorithm are all distinct.

4.4.3 Computing the Number of Paths: A Promise Version

The problem of counting the number of paths between two designated nodes in a DAG is known

to be complete for #L. Consider a restriction of this problem when the number of such paths is
bounded by a polynomial. With this restriction it is natural to believe that the counting problem

is easier, because even Reach, which is otherwise NL-complete, is in LogDCFL for such graphs
[27].

In [6], an NL upper bound for the counting problem under this promise was obtained, further
substantiating this belief. We consider an additional (easily checkable) restriction where the

DAG not only has polynomially bounded number of s to t paths but also t is the unique sink
in the graph. In such graphs, we show that the counting problem can be solved in LogDCFL,

proving Theorem 4.16 below:
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t′s

t

Figure 4.1: Example: DFS exploration when t is not the unique sink

Theorem 4.16 Let c > 0 be a fixed constant. There is a DAuxPDA that, given a DAG G with n

nodes and a unique sink t, and given a node s in G such that the number of paths from s to t in

G is bounded by nc, computes this number in polynomial time.

Proof. Our procedure is a depth-first-search exploration of the graph. The algorithm explores

the DAG starting from s. The number of s to t paths explored is stored in a variable count. It
assumes an ordering on the labels of the vertices (lexicographical ordering will suffice) and an

additional label 0 which is assumed to be the smallest in the ordering. It traverses the graph in
a depth-first manner, putting visited vertices on the stack. The label of the vertex being visited

in the current step is stored in the variable current. The traversal is started from s, taking the
out-neighbour with the smallest label at each step. Whenever t is reached, count is incremented.

On reaching t, the algorithm backtracks by popping the stack, retrieving the vertex v visited
just before t. The label of t is stored in a variable previous and the label of v is stored in current.
If v has an out-neighbour u with a label larger than previous, the traversal is continued along
the (v, u) edge, and the label of this out-neighbour is stored in the variable next. Otherwise, the

backtracking process is continued by popping the stack again, storing the label of v in previous,
and setting current to the newly popped label.

Thus, at any point of time, the stack contains nodes on the path from s to current (excluding

current), and the vertex current is being explored in the forward or backward direction.
Note that for the algorithm to work in polynomial-time, it is essential that t is the unique

sink in the graph. If there is another sink t′, the algorithm will explore all s to t′ paths as well,
and this number may not be polynomially bounded. See e.g. Figure 4.1. The number of s to t

path is 2, but the number of paths from s to t′ is 2O(n).
Clearly, the algorithm correctly computes the number of s to t paths. Furthermore, for

each s to t path ρ, each edge on ρ is traversed exactly once in the forward direction. During
the backtracking phase, after reaching t along ρ, an edge on ρ is traversed at most once in the

backward direction.
Consequently, the algorithm can be implemented on a DAuxPDA running in polynomial

time, if the number of s to t paths is bounded by a polynomial.
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This completes the proof of Theorem 4.16.

4.4.4 Counting Paths in Planar DAGs: A Promise Version

We now consider applying Theorem 4.16 to planar DAGs and prove the following theorem:

Theorem 4.17 Let c > 0 be a fixed constant.

1. There is a nondeterministic AuxPDA that, given a planar directed acyclic graph G with

n nodes, and given nodes s and t in G such that the number of paths from s to t in G

is bounded by nc, proceeds unambiguously (rejects on all except one path) and computes

this number in polynomial time.

2. There is a nondeterministic AuxPDA that, given a planar directed acyclic graph G with

n nodes, and given nodes s and t in G such that the number of longest paths from s to t

in G is bounded by nc, proceeds unambiguously and computes this number in polynomial

time. The same is true for shortest paths.

The depth-first-search algorithm described in the proof of Theorem 4.16 may not be di-

rectly applicable, since the given DAG may have multiple sinks. These sinks can be removed in
UL ∩ coUL by queries to Reach, to get a planar DAG with t as the only sink. Then the depth-

first-search from the proof of Theorem 4.16 can be used. Overall, the combined algorithm uses
log-space in a nondeterministic but unambiguous manner, and a stack in a deterministic manner,

giving an algorithm that can be implemented on a UAuxPDA in polynomial time. Thus we get
the first part of Theorem 4.17.

Our algorithm is similar to that given in [27] for testing reachability in the computation tree

of an NL machine when each configuration of the machine is reachable by polynomially many
paths.

Now consider the problem of computing the number of longest s to t paths when this number
is bounded by a polynomial. Note that the total number of s to t paths need not be polynomially

bounded, hence just removing the sinks other than t as above does not suffice.
Algorithm 6 describes a procedure that removes all the edges which do not appear on any

longest path from s to t. It finds out the length of the longest s to t path in the planar DAG G

in UL ∩ coUL using Theorem 4.1. Then G is layered and edges that are not a part of any s to t

longest paths are removed. These are exactly the edges that go across more than one layer. Thus,
in the resulting DAG, all s to t paths are the longest s to t paths. Moreover, t is the only sink in

this new DAG.
Now we can use the depth-first-search from the proof of Theorem 4.16 for counting s to t

paths in this graph.
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Algorithm 6 Procedure to delete all s to t paths shorter than the longest path.
Input: Planar DAG G = (V,E), two designated vertices s, t
Output: Graph G′ that has no paths other than s to t longest paths
for all v ∈ V do

layer(v)← length of s to v longest path
end for
for all edges (u, v) do

if layer(v)− layer(u) = 1 then
output (u, v)

end if
end for

If instead of longest paths, we wish to count shortest paths, and this number is bounded by

a polynomial, a similar approach can be used. The distance of a node v from s should be used
as its layer number in Algorithm 6 instead of the length of the longest path from s to v. From

Lemma 4.4 we know that distance can be computed in UL ∩ coUL.
Combining the UL ∩ coUL layering procedure of Algorithm 6 with the DAuxPDA proce-

dure of depth-first-search described in the proof of Theorem 4.16, we get the second part of
Theorem 4.17. This number can also be determined in NL [6], and Theorem 4.17 gives a bound

which is incomparable to this.

4.5 Discussion

We show that in planar and toroidal DAGs, detecting the presence or absence of long paths can
be done in unambiguous log-space. In particular, detecting long paths and detecting short paths

are equivalent, modulo reachability in these graphs. This result has recently been generalised in
[85], where the same upper bound for the longest path problem is obtained for directed acyclic

graphs which exclude either K3,3 or K5 as minors. For all these graph classes, the best known
lower bound for all three problems — reachability, shortest path, and longest path — is log-space

hardness. There is thus a gap between the lower and upper bounds. It is open whether the upper
bound of UL ∩ coUL can actually be improved to log-space.

If the number of paths from s to t in a DAG is bounded by a polynomial in the graph size,
then a result from [6] shows that this number can be computed in NL. We have given a different

bound for two restrictions:

1. If t is the unique sink in the DAG, then this number can be computed by a polynomial
time DAuxPDA and hence in LogDCFL.

2. If the DAG is planar, then this number can be computed by a polynomial time UAuxPDA.
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This is the first (natural, we believe) instance we know of a problem that is not known to
be in log-space, but is accepted by both UAuxPDA[poly] and NL machines. It suggests that UL
should be an upper bound for this problem; establishing this is an interesting question.
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5
Path Problems in k-trees

This chapter continues the complexity analysis of path problems in restricted graph classes. Path
problems are defined in Chapter 4. In this chapter, we analyze the complexity of these path

problems in a graph class known as k-trees. The main results include a log-space algorithm and
a matching log-space hardness result for reachability in directed k-trees described in Section 5.2,

and a log-space algorithm for shortest and longest path computations in directed acyclic k-trees
described in Section 5.3. Here it is assumed that k is a fixed constant. We also describe a simple

log-space algorithm for shortest path computation in undirected k-trees in Section 5.4.
The class of k-paths forms a subclass of k-trees. The algorithms for k-trees use the corre-

sponding algorithms for k-paths as a subroutine. Hence an algorithm for reachability in directed
k-paths is given in Section 5.2.1, and an algorithm to find the length of the shortest and longest

path in a directed acyclic k-path is given in Section 5.3.1. The corresponding algorithms for
k-trees appear in Section 5.2.2 and Section 5.3.2 respectively.

5.1 Tree-Decomposition of k-trees

The definition and a tree-decomposition of k-trees are described here. The definition and de-

composition are applicable to both directed and undirected k-trees. For directed graphs, the

directions on the edges are ignored while defining k-trees and while computing their decom-
position. Thus a directed graph is said to be a k-tree if its underlying undirected graph is a

k-tree.
The graph class k-trees is defined in [42] and the definition is given below:

Definition 5.1 The class of k-trees is inductively defined as follows.

• A clique with k vertices (k-clique for short) is a k-tree.

• Given a k-tree G′ with n vertices, a k-tree G with n + 1 vertices can be constructed by

introducing a new vertex v and picking a k-clique X (called the support of v) in G′ and

62



Chapter 5. Path Problems in k-trees

then joining v to each vertex u in X . Thus, V (G) = V (G′) ∪ {v}, E(G) = E(G′) ∪
{{u, v} | u ∈ X}.

A partial k-tree is a subgraph of a k-tree. The class of partial k-trees coincides with the class

of graphs which have tree-width at most k. The notion of tree-width is defined in [79]. Whether
the given graph is a k-tree can be determined in log-space [13] but partial k-trees are not known

to be recognizable in log-space.
In literature, several representations of k-trees have been considered [38, 13, 53]. We use the

following representation given by Köbler and Kuhnert [53]:

Definition 5.2 Let G = (G,E) be a k-tree. The tree-representation T (G) of G is defined by

V (T (G)) = {M ⊆ V |M is a k-clique or a (k + 1)-clique}

E(T (G)) = {{M1,M2} ⊆ V |M1 ( M2}

In [53], it is proved that T (G) is a tree and can be computed in log-space. In the rest of the

chapter, we use G in place of T (G). Thus, by a k-tree G, we always mean that G is in fact
represented as T (G). The term vertices in G refers to the vertices in the original graph, whereas

a node in G and a clique in G refer to the nodes of T (G). Partial k-trees also have a tree-
decomposition similar to that of k-trees, but it is not known to be log-space computable. The

best known upper bound for a tree-decomposition of partial k-trees is LogCFL due to [91].
The class k-paths is a sub-class of k-trees (e.g. see [40]). The recursive definition of k-paths

is similar to that of k-trees. However, the restriction is that a new vertex can be added only to
a particular clique called the current clique. After addition of a vertex, the current clique may

remain the same, or may change by dropping a vertex and adding the new vertex in the current
clique.

We consider the following representation of k-paths, referred to as path-representation here,
which is based on the recursive definition of k-paths, and is known to be computable in log-space

[13]:

Proposition 5.3 Given a k-path G = (V,E), for i = 1, · · · ,m, let Xi be the current clique at

the ith stage of the recursive construction of the k-path. Let V1 = ∪iXi and V2 = V \ V1. We

call the vertices in V2 as spikes. The following facts are easy to see:

1. No two spikes have an edge between them.

2. Each spike is connected to all the vertices of exactly one of the Xi’s.

3. Xi and Xi+1 share exactly k − 1 vertices

The path-representation of G consists of a graph G′ = (V ′, E′) where V ′ = {X1, . . . , Xm}∪V2

and E′ = {(Xi, Xi+1) | 1 ≤ i < m}∪{(X, v)|X is a clique in ∈ V ′, v ∈ V2 has a neighbour in X}.
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5.2 Reachability

We give log-space algorithms to compute reachability in k-paths and in k-trees. Although the

graphs considered in this section are directed, when we refer to any of the definitions or decom-
positions in the preliminary section we consider the underlying undirected graph.

5.2.1 Reachability in k-paths

Without loss of generality, we can assume that s and t are vertices in some k-cliques Xi and Xj ,

and not spikes. If s (respectively t) is a spike, then it has at most k out-neighbors (in-neighbors)
and we can take one of the out-neighbors (in-neighbors) as the new source s′ and new sink t′

and check reachability. As there are only k2 such pairs, we can cycle through all of them in
log-space.

So now onwards we assume that s and t are not spikes. The algorithm is based on the
observation that a simple s to t path ρ can pass through any clique at most k times. We use

a divide- and-conquer approach similar to that used in Savitch’s algorithm (which shows that
directed reachability can be computed in DSPACE(log2 n)). The main steps involved in the

algorithm are as follows:

1. Preprocessing step: Make the cliques disjoint by labelling different copies of each vertex

with distinct labels and introducing appropriate edges. Compute reachabilities within each
clique, even through its spikes, and then remove the spikes. (See e.g. Figure 5.1.) Number

the cliques X1, . . . , Xm from left to right.

2. Now assume that s and t are in cliques Xi and Xj respectively. Without loss of generality,
we can assume i ̸= j. This is because, if i = j, we can make another copy X ′

i of Xi

between Xi and Xi+1, join the copies of each vertex in Xi and X ′
i by bidirectional edges

to preserve reachabilities, remove the set of edges between Xi to Xi+1 and introduce the

same set of edges between X ′
i and Xi+1. Choose the copy of s from Xi and that of t from

X ′
i. We also assume that i < j, as the case i > j is analogous.

3. Divide the k-path into three parts P1, P2 and P3 where P1 consists of cliques X1, . . . , Xi,

P2 consists of cliques Xi, . . . , Xj , and P3 consists of cliques Xj , . . . , Xm. (See e.g. Figure
5.2. The edges are not shown, but are assumed to be present between pairs of consecutive

cliques.) Note that Xi (Xj) appears in both P1 and P2 (P2 and P3 respectively). Now we
compute reachabilities of all pairs of vertices in Xi (Xj) when the graph is restricted to

P1 (respectively P3). Then the reachability of t from s within P2 is computed, using the
previously computed reachabilities within P1 and P3.

The details are given below.

64



Chapter 5. Path Problems in k-trees

d

a b a b

c c d

e
Xi

(i) (ii)

Figure 5.1: Removing spikes from a k-path preserving reachabilities
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Figure 5.2: Division of the k-path into three parts

Preprocessing: Although adjacent k-cliques in a k-path decomposition share k − 1 vertices,

we perform a preprocessing step, where we give distinct labels to each copy of a vertex. Note
that, once the k-path representation for G is computed, each vertex has its copy in several cliques

which are consecutive in the path representation. Further, u and v have an edge in G if and only
if they both belong to one or more common cliques. Thus, in the path representation, it suffices

to keep the edge (u, v) between their copies within each of the common cliques. On the other
hand, we join copies of the same vertex in two adjacent cliques by bidirectional edges. Thus the

only inter-clique edges are the edges between two copies of the same vertex.

We perform another preprocessing step where we remove the spikes maintaining reachabil-
ities between all pairs of vertices in each clique, and also compute reachabilities within each

k-clique. (See e.g. Figure 5.1. The spike e is removed and (c, a) edge is added to the clique Xi

as there is a path from c to a through e.) The following lemma proves that this can be done in

log-space:

Lemma 5.4 The spikes attached to each clique can be removed in log-space, maintaining reach-

ability between every pair of vertices in the rest of the k-path.

Proof. A simple path within a clique can be of length at most k. Further, as no two spikes have

an edge between them, they can only introduce new reachabilities between pairs of vertices from
the clique. Thus, even in the presence of spikes, length of a path between two vertices in a clique
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can not exceed 2k. There are at most O(n2k) possible paths, which can be checked in log-space
for constant k.

Remark 5.5 There is another way to see this. A spike has edges to all the k vertices in the

clique. There are 2k ways to direct these edges. This partitions the spikes into 2k equivalence

classes. Two spikes which are in the same equivalence class can introduce exactly the same

connectivity between any two vertices in the cliques. Thus it suffices to keep only one spike from

each equivalence class. Hence the clique and the spikes together form a graph on at most k+2k

vertices, and as k = O(1), O(1) space suffices to remove the remaining spikes, maintaining the

reachabilities among all the pairs of vertices in the clique.

The Algorithm We describe an algorithm to compute pairwise reachabilities in Xi and Xj in

P1 and P3 respectively, and also s-t reachability in P2 using these previously computed pairwise
reachabilities.

Algorithm 7 describes this reachability routine. The routine gets as input two vertices u

and v, and two indices i and j. It determines whether v is reachable from u in the sub-path

P = (Xi, . . . , Xj). This input is given in such a way that u and v always lie in Xi ∪ Xj .
Consider the case when both u and v are in Xi (or both in Xj). Let l be the center of P . Then a

path from u to v either lies entirely in the sub-path P ′ = (Xi, . . . , Xℓ) or it crosses Xℓ at most k
times. Thus if Xℓ = {v1, . . . , vk} then for {vi1 , · · · , vir} ⊆ Xℓ we need to check reachabilities

between u and vi1 in P ′, then between vi1 and vi2 in P ′′ = (Xℓ, . . . , Xj) and so on, and finally

between vir and v. It suffices to check all the r-tuples in Xℓ, where 0 ≤ r ≤ k. The case when
u ∈ Xi and v ∈ Xj (and vice versa) is analogous. In Algorithm 7, we present only one case

where u, v ∈ Xi. Other three cases are analogous.
Thus at each recursive call, the length of the sub-path under consideration is halved, and

O(logm) iterations suffice. We later prove that each iteration stores O(1) data on stack and thus
the algorithm works in log-space.

The following lemma gives the complexity analysis of the algorithm:

Lemma 5.6 Algorithm 7 can be implemented in log-space.

Proof. We assume that the algorithm uses a stack to store information while making recursive
calls. We show that the total work-space and stack-space used is O(log n), which proves the

lemma.
First, we show that O(k log k) stack-space is used for each recursive call. As u and v are

either both in Xi or both in Xj or u in Xi and v in Xj or vice versa, this information can be
stored in 2 bits while making the recursive call. Each vertex can be given a label within its clique,

which needs O(log k) bits. Thus labels of u and v within their respective cliques can be stored
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Algorithm 7 Procedure IsReach(u, v, i, j)
1: Input: Pre-processed k-path decomposition of graph G, clique indices i, j, vertex labels

u, v ∈ Xi ∪Xj .
2: Output: Whether v is reachable from u in the sub-path P = (Xi, . . . , Xj).
3: if j − i = 1 then
4: Compute the reachability directly, as the sub-path has only 2k vertices.
5: Return the result.
6: end if
7: l = j+i

2
8: Case 1: u, v ∈ Xi

9: if IsReach(u, v, i, l) then
10: Return 1;
11: else
12: for q = 1 to k do
13: v0 ← u, vq+1 ← v
14: for all q-tuples (v1, . . . , vq) of vertices in Xℓ do
15: if

∧q
x=0
x even

IsReach(vx,vx+1,i,l) ∧
∧q

x=1
x odd

IsReach(vx,vx+1,l,j) then

16: Return 1;
17: end if
18: end for
19: end for
20: end if
21: Case 2: u, v ∈ Xj or u ∈ Xi, v ∈ Xj or u ∈ Xj , v ∈ Xi

22: Analogous to Case 1

on stack. Next two parameters for a recursive call are either i, l or l, j. One bit is needed to
distinguish between these cases. Knowing i and l (respectively l and j), j (i) can be recomputed

on returning from the recursive call, and hence need not be stored. There are O(kk) q-tuples
where 1 ≤ q ≤ k. The algorithm considers them in lexicographic order. Thus O(k log k) bits

are needed to store the id of the tuple currently under consideration. The position in the q-tuple
of the pair of vertices for which a recursive call is made can be stored in O(log k) bits. This

takes O(k log k) stack-space.
It can be seen that the calling routine can resume its execution by popping this information

from the stack. The stack contains only O(log n) entries at any point of time, one corresponding
to each possible value of j − i. As the value is halved after each recursive call, there are log n

possible values. If j− i = 1, the algorithm uses only O(k log k) space to compute reachabilities.

67



Chapter 5. Path Problems in k-trees

X1
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Figure 5.3: Example: A path in a k-tree and the subtrees attached to its nodes

5.2.2 Reachability in k-trees

Given a directed k-tree G in its tree decomposition and two vertices s and t in G, we describe a
log-space algorithm that checks whether t is reachable from s. This algorithm uses Algorithm 7

as a subroutine. The algorithm involves the following steps:

1. Preprocessing: As in the case of k-paths, assign distinct labels to the copies of each

vertex u in different cliques. Introduce a bidirectional edge between the copies of u in
all the adjacent pairs of cliques. As reachabilities are maintained during this process, any

copy of s and t can be taken as the new s and t. Let Xi and Xj be the nodes in G which
contain s and t respectively.

2. The Procedure: After this preprocessing, we have a tree T with its nodes as disjoint

k-cliques of vertices of G, and s and t are contained in cliques Xi and Xj . Compute the
unique undirected path ρ between Xi and Xj in T in log-space. Each node on ρ has two

of its neighbors on ρ, except Xi and Xj , which have one neighbor each. An s to t path has
to cross each clique Xℓ in ρ, and additionally, it can pass through the subtree attached to

Xℓ which is disjoint from ρ. (See e.g. Figure 5.3. X1, . . . , X6 form ρ, shown with dotted
circles. The subtree of X2 is shown and consists of the nodes X2, X7, X8.) We refer to

such a subtree as the subtree Tℓ of Xℓ. We always consider Tℓ to be rooted at Xℓ. Thus
Tℓ is the subtree consisting of Xℓ and those nodes in T which can be reached from Xℓ

without going through any other node on ρ.

For each node Xℓ on ρ, we pre-compute the pairwise reachabilities among the k vertices
of Xℓ in the tree Tℓ. Thus a vertex j in Xℓ is reachable from a vertex i in Xℓ if there is a
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directed path from i to j in G that passes through only those vertices which have a copy
in the nodes of Tℓ.

Note that once this is done for each node Xℓ on ρ, we are left with ρ. As ρ is a k-path, we
can use Algorithm 7 in Section 5.2.1 to compute reachabilities within ρ.

3. Computing reachabilities within Tℓ: We do this inductively. If Tℓ contains only one node
Xℓ, we have only k vertices, and their pairwise reachabilities within Xℓ can be computed

in O(k log k) space. We recursively find the reachabilities within the subtrees rooted at
each of the children of Xℓ in Tℓ. Let the size of Tℓ be N . At most one of the children of

Xℓ can have a subtree of size larger than N
2 . Let Xa be such a child. Recursively compute

the pairwise reachabilities for each pair of vertices in Xa within the subtree rooted at Xa.

The reachabilities are represented as a k× k boolean matrix referred to as the reachability

matrix M for the vertices in Xa, within the subtree rooted at Xa. We use M to compute

the pairwise reachabilities of vertices in Xℓ, within the subtree containing Xℓ and the
subtree rooted at Xa. This gives a new matrix M ′ of size k2, and is stored on stack while

computing the reachability matrix M ′′ for another child Xb of Xℓ. The matrix M ′ is
updated using M ′′, so that it represents reachabilities between each pair of vertices in Xℓ

within the subtree containing Xℓ and the subtrees rooted at Xa and Xb. This process is
continued till all the children of Xℓ are processed. The matrix M ′ at this stage reflects the

pairwise reachabilities between vertices of Xℓ within the subtree Tℓ.

Lemma 5.7 The procedure described above can be implemented in log-space.

Proof. Step 1 can be implemented in log-space in a straight forward way. While implementing
Step 2, a log-space transducer computes the reachability matrices for each node Xℓ on ρ when

the graph is restricted to the subtree rooted at Xℓ. Once these matrices are computed, the k-path
algorithm is invoked, which works in log-space.

We now show that the reachability matrix described above for a node Xℓ on ρ can be com-
puted in log-space. Note that, while making a recursive call for reachabilities in the child Xa

of Xℓ, we do not store anything on stack. On the other hand, while making a recursive call for
reachabilities in subsequent children of Xℓ, we store the matrix M ′ constructed so far. As k is

constant and the size of all the subtrees rooted at the children of Xℓ excluding Xa is at most N
2 ,

the stack depth is always O(log n) and thus the algorithm works in log-space.

5.2.3 Hardness for L

The L-hardness of reachability in k-trees follows from L-hardness of the problem of path order-

ing defined below [36]:
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Definition 5.8 (Path Ordering ORD(P, u, v)) Given a directed path P , specified by giving for

each vertex w (except the last) its successor s(w) along the path, and given vertices u, v, decide

if u precedes v in P .

Lemma 5.9 For any k ≥ 1 ORD is AC0 many-one reducible to k-path reachability.

Proof. As a directed path is a k-path for k = 1, the hardness of 1-path follows. Given an
instance of ORD, and for a fixed value of k ≥ 2, construct a k-path instance by introducing

k − 1 new vertices and joining them to all the vertices in the given instance of ORD with
outgoing edges.

Clearly, this is an instance of k-path reachability, and the reduction preserves reachability.
The k − 1 new vertices form a clique with each vertex w and its successor s(w) in the ORD

instance.

5.3 Shortest and Longest Paths

We show that the shortest and longest paths in weighted directed acyclic k-trees can be computed
in log-space, when the weights are positive and are given in unary. Throughout this section, the

terms k-path and k-tree always refer to directed acyclic k-paths and k-trees respectively, with
integer weights on edges and we here onwards omit the specification weighted directed acyclic.

We use the following (weighted) form of Theorem 4.6 from Chapter 4: The proof is exactly
similar to that of Theorem 4.6 and we omit it here.

Theorem 5.10 (See Theorem 4.6) Let C be any subclass of weighted directed acyclic graphs

closed under vertex deletions. There is a function f , computable in log-space with oracle access

to Reach(C), that reduces Distance(C) to Long-Path(C) and Long-Path(C) to Distance(C),
where Reach(C), Distance(C), and Long-Path(C) are the problems of deciding reachability,

computing distance and longest path respectively for graphs in C.

We use this theorem to reduce the shortest path problem in k-trees to the longest path prob-

lem, and then compute the longest (that is, maximum weight) s to t path. The reduction involves

changing the weights of the edges appropriately so that the shortest path becomes the longest
path and vice versa. This gives a directed acyclic k-tree with positive integer weights on edges

given in unary. Given a graph G in C, and two designated nodes s and t, the first step of the
shortest to longest path reduction involves removing useless vertices. A vertex v is considered

to be useless if v is unreachable from s, or t is unreachable from v. These are precisely those
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vertices which can not participate in any s to t path. This operation makes G a single-source
single-sink DAG. Note that the class of k-trees is not closed under vertex deletions, however, we

first find the tree-decomposition of the k-tree as in Section 5.1, and then find and delete useless
vertices from this tree-decomposition. This makes the size of some of the cliques smaller than

k, but the decomposition still has the property that adjacent cliques differ in at most one vertex,
and this is sufficient.

The next step of the reduction involves negating the weights of all the edges, so that the
shortest path becomes the longest path and vice versa. However, we need positive integer weights

on edges. This is achieved by adding a sufficiently large positive number to the weight of each
edge, such that the weight of each path increases by a fixed number. This increase in weights

is polynomial in the original weights and in n. At the end of the reduction, we have a directed
acyclic k-tree with positive integer weights on edges given in unary. We show that the maximum

weight of an s to t path can be computed in log-space with a technique which uses ideas from
[49]. The algorithm to compute maximum weight s to t path in k-trees uses the algorithm

for computing maximum weight path in k-paths as subroutine. Therefore we first describe the
algorithm for k-paths in Section 5.3.1

5.3.1 Shortest and Longest Paths in Directed Acyclic k-paths

Let G be a directed acyclic k-path and s and t be two designated vertices in G. The computation
of maximum weight of an s to t path is done in five stages, described below in detail. The main

idea is to obtain a log-depth circuit by a suitable modification of Algorithm 7, and to transform
this circuit to an arithmetic formula over integers, whose value is used to compute the maximum

weight of an s to t path in G. The log-space bound uses the following proposition:

Proposition 5.11 A Boolean formula and an arithmetic formula over integers can be evaluated

in log-space [28, 23, 30, 43]. See e.g. [2].

Computing the maximum weight s to t path in G involves the following steps:

1. Construct a log-depth Boolean formula from Algorithm 7: Modify Algorithm 7 so that
it outputs a circuit C that has nodes corresponding to the recursive calls made in Line 15

and the tuples considered in the for loop in Line 14.

More specifically, a node q in C that corresponds to a recursive call IsReach(u, v, i, j)

has children q1, · · · , qN , which correspond to the tuples considered in that recursive call
(for-loop on Line 12 of Algorithm 7). We refer to q as a call-node and q1, . . . , qN as tuple-

nodes. A tuple-node q′ corresponding to a tuple (v1, . . . , vN ) has call-nodes q′1, . . . , q
′
N

as its children, which correspond to the recursive calls made while considering the tuple
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(v1, . . . , vN ) (Line 15 of Algorithm 7). The leaves of C are those recursive calls which
satisfy the if condition on Line 3 of Algorithm 7, thus they are always call-nodes. These

are the recursive calls made for two adjacent cliques. As the depth of the recursion in
Algorithm 7 is O(log n), the circuit C also has O(log n) depth. Hence it can be converted

to a formula F by only a polynomial factor blow-up in its size. The maximum number of
children of a node is O(kk) and hence the size of F is bounded by O(kk logn), which is

polynomial in n for constant k.

2. Prune the Boolean formula: The next step is to remove those nodes and their subtress

from the formula which return a “no" answer in the recursion. These are the subtrees
which do not participate in any s to t path. Such subtrees are removed by a log-space

transducer as follows:

The internal call-nodes of F are replaced by ∨ gates and tuple-nodes are replaced by ∧
gates. The leaves of F are replaced by 0 or 1 depending on whether the corresponding

recursive call returned 0 or 1 in the if block on Line 3 of Algorithm 7. It can be seen that
a sub-formula of F rooted at a call-node evaluates to 1 if and only if the corresponding

recursive call returns 1 in Algorithm 7. Similarly, the sub-formula rooted at a tuple-node
evaluates to 1 if and only if the conjunction corresponding to it (on Line 15 of Algorithm

7) evaluates to 1.

Now, we evaluate in log-space the sub-formula rooted at each node of F . Note that a node

that evaluates to 0 does not contribute to any path from s to t, and hence its subtree can be
safely removed.

3. Transformation into a {+,max}-tree: The new, pruned formula obtained in Step 2 is
then relabelled: Each ∧ label is replaced with a + label and each ∨ label with a max label.

Each leaf corresponds to calls of the form IsReach(u, v, i, i + 1). It is labelled with the
length of the maximum weight u to v path confined within cliques i and i+ 1, which can

be computed in O(1) space. This weight is strictly positive, since the 0-weight leaves are
removed in Step 2. Further, all the weights are in unary. Thus we now have a {+,max}-
tree T with positive, unary weights on its leaves and + or max labels on internal nodes.
It is easy to see that the value of the {+,max}-tree T is the maximum weight of any s to

t path in G.

4. Transformation into a {+,×}-tree: The evaluation problem on the {+,max}-tree T

obtained in Step 3 is then reduced to the evaluation problem on a {+,×}-tree T ′ whose

leaves are labelled with positive integer weights coded in binary. This reduction works in
log-space and is similar to that of [49]. The reduction involves replacing a +-node of T

with a ×-node, and a max-node with a + node. The weight w of a leaf is replaced with
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2mw, where m is the sum of the weights of all the leaves of T plus one. The correctness of
the reduction follows from Lemma 5.12, which gives the relation between the value of the

{+,max}-tree and that of the {+,×}-tree. The proof closely follows to a similar lemma
in [49].

5. Evaluation of the {+,×} tree: The last step is to evaluate the {+,×}-tree, which can be

done in log-space by Proposition 5.11.

Lemma 5.12 Let the value of the {+,×}-tree T ′ obtained by the above reduction be v′, and

that of the {+,max}-tree T be v. Then v = ⌊ log 2v′

m ⌋.

Proof. Let u be the value of a node x in the T and u′ be its value in the T ′. Let s be the sum of
the weights of the leaves in the subtree of T rooted at x. We claim that 2um ≤ u′ ≤ 2um+s for all

nodes x in T ′. We proceed by simultaneous structural induction on T and T ′. Once this is proved
for the root i.e. 2vm ≤ v′ ≤ 2vm+s, where s = m − 1 for the root, we get v ≤ log 2v′

m < v + 1

which proves the lemma.
So we prove the claim for all the nodes x in T . When x is a leaf, clearly the claim holds as

we set u′ = 2um. So consider the case when x is an internal node. Let x have ℓ children. Let the
values of the subtrees of T rooted at the children of x be u1, . . . , uℓ and let their corresponding

values in T ′ be u′1, . . . , u
′
ℓ. Let the sum of the weights of the leaves in the subtrees of T rooted

at each of the children of x be s1, . . . , sℓ respectively. By induction hypothesis, the claim holds

for each of the children, so 2uim ≤ u′i ≤ 2uim+si for 1 ≤ i ≤ ℓ. Also s =
∑ℓ

i=1 si.
Consider the case when x is a +-node in T and hence a ×-node in T ′. Then u =

∑ℓ
i=1 ui

and u′ =
∏ℓ

i=1 u
′
i. We have the following:

2um = 2
∑ℓ

j=1 uj ≤
ℓ∏

j=1

u′j = u′ ≤
ℓ∏

j=1

2ujm+sj = 2um+s

Now consider the case when x is a max-node in T . Therefore it is a +-node in T ′. Also,

u = max{u1, . . . , uℓ} = u1, say, and u′ = u′1 + . . . + u′ℓ. Let si = max{s1, . . . , sℓ}.We have
the following:

2um = 2max{u1,...,uℓ}m ≤
ℓ∑

j=1

2ujm ≤
ℓ∑

j=1

u′j = u′

≤
ℓ∑

j=1

2ujm+sj ≤ ℓ · 2u1m+max{s1,...,sℓ} = 2u1m+si+log 2ℓ ≤ 2u1m+s

where the last inequality follows from the fact that each of the sis are positive and that log2 ℓ ≤
ℓ− 1. This completes the proof of the lemma.
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5.3.2 Shortest and Longest Paths in Directed Acyclic k-trees

Given a directed acyclic k-tree (in its tree-decomposition) G, two vertices s and t in G, and

weights on the edges of G, encoded in unary, we show how to compute the maximum weight
of an s to t path in G. Unlike the case of k-paths, the reachability algorithm for k-trees given

in Section 5.2.2 can not be used to get a log-depth circuit. This is because the recursion depth
of the algorithm is the same as the depth of the k-tree. Therefore we need to find another way

of recursively dividing the k-tree into smaller and smaller subtrees, as we did for k-paths in
Sections 5.2.1 and 5.3.1.

Our recursive splitting procedure for k-trees is based on the technique used in the following
result of [61]:

Lemma 5.13 (Lemma 6 of [61], also see [26]) Let M be a visibly pushdown automaton ac-

cepting well-matched strings over an alphabet ∆. Given an input string x, checking whether

x ∈ L(M) can be done in log-space.

Before describing the procedure, we give some background on the notation used in the above
lemma. A visibly pushdown automaton is a pushdown automaton with the additional restriction

that the push/pop actions depend only on the current input symbol. An example of a language
that can be recognized by such an automaton is the set of strings of well-matched parentheses. A

string of opening and closing parentheses is said to be well-matched if and only if every opening
parenthesis can be matched with a corresponding closing parenthesis on its right and vice versa.

The algorithm given in [61] works by recursively dividing the input string x into three dis-
joint, well-matched, smaller substrings such that, over two stages of this division, the length of

each of the smaller strings is at most a 3
4 fraction of the length of x. Thus the recursion terminates

in O(log n) steps.

To use this algorithm, we order the children of each of the nodes of the k-tree in a particular
way, then label the leaves with opening and closing parentheses in such a way that the concate-

nation of the labels of the leaves of the subtree rooted at each internal node forms a balanced
parentheses expression x. We add dummy leaves if necessary. The algorithm of [61] is given

x as input. The recursive splitting of x in the algorithm corresponds to splitting the k-tree into
smaller subtrees.

Thus, using the algorithm, we can compute a set of recursive separators for a tree, defined
below:

Definition 5.14 Given a rooted tree T , separators of T are two nodes a and b of T such that

1. The subtrees rooted at a and b respectively are disjoint,
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2. T is split into subtrees T1, T2, T3 where T1 consists of a, some of the children of a, and

subtrees rooted at them, T2 is defined similarly for b, and T3 consists of the rest of the tree

along with a copy of a and b each.

3. After two such stages of splitting, each of the subtrees consists of at most a 3
4 fraction of

the leaves of T .

This process is done recursively until the number of leaves in the subtrees is two. Such a subtree

is in fact a path.

A set of recursive separators of T consists of the separators of T and separators of all the

subtrees obtained in the recursive process.

The following lemma gives the procedure to compute a set of recursive separators of a tree

T :

Lemma 5.15 Given a tree T , the set of recursive separators of T can be computed in log-space.

Proof. The steps of the algorithm are as follows:

1. By adding dummy leaves, ensure that each internal node has an even number of children

which are leaves, and there are at least two such children.

2. Arrange the children of each node from left to right such that the non-leaves are consec-
utive, and there is an equal number of leaves to the left and to the right of this group of

non-leaves.

3. For each internal node, label the left half of its leaf-children with ‘(’ and the right ones by
‘)’. This ensures that the leaves of the subtree rooted at each internal node form a balanced

parentheses expression. Moreover, the converse also holds. That is, leaves which form a
balanced parentheses expression are consecutive leaves in the subtree rooted at an internal

node.

The leaves of T now form a balanced parentheses expression, and we run the algorithm of [61] on

this string. The recursive splitting of the string into smaller and smaller substrings corresponds
to the recursive splitting of T at some internal nodes, which satisfies Definition 5.14. This is

ensured by the way the leaves are labelled. Each balanced parentheses expression corresponds
to either a subtree rooted at an internal node or the subtrees rooted at some of the children of an

internal node.
The subtrees obtained after every two stages of splitting a tree have at most 3

4 th of the number

of leaves in the tree. Thus after every two stages of recursion, the number of leaves in the subtrees
is reduced by a constant fraction. When there are only two leaves in a subtree, the recursion stops.
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Moreover, the algorithm of [61] can output all the substrings formed at each stage of recursion
in log-space. As a substring completely specifies a subtree of T , our procedure outputs the set

of recursive separators for T in log-space.

Once an algorithm to compute the set of recursive separators for k-trees is known, a reacha-
bility routine similar to Algorithm 7 can be designed in a straight forward way. Obtain the set of

recursive separators corresponding to two stages of the algorithm of [61]. To see this, let s and t

be in cliques a and b of T , respectively. Let c and d be separators of T A simple s to t path can

pass through the subtrees rooted at c and d at most 2k times. Thus, as in the case of k-paths, a
reachability query for s to t is broken into O(kk) reachability queries on three smaller subtrees

at each step, the subtrees being those rooted at c and d, and the subtree obtained by removing
these two subtrees. The number of leaves in each of the subtrees obtained after two such stages

of splitting is at most 3/4 times that in the original tree. Thus the recursion terminates after
O(log n) iterations and we get subtrees with two leaves. Such subtrees are in fact k-paths and

we use the reachability algorithm for k-paths. This gives a log-space routine for reachability in
k-trees, which has O(log n) depth of recursion. From the reachability routine, the computation

of maximum weight path follows from the steps 1 to 5 described in Section 5.3.1. Therefore we
get the following theorem:

Theorem 5.16 Given a (weighted) directed acyclic k-tree G with unary weights on edges, and

two designated vertices s and t in G, the maximum weight of a simple path from s to t can be

computed in log-space.

5.4 Distance Computation in Undirected k-trees

We give a simple log-space algorithm for computing the shortest path between two given vertices
in an undirected k-tree. We use the decomposition of [52], where a k-tree is decomposed into

layers, such that the following properties are satisfied:

1. Layer 0 is a k-clique. Each vertex in layer i > 0 has exactly k neighbors in layers j < i.
Further, these neighbors of i which are in layers lower than that of i form a k-clique.

2. No two vertices in the same layer share an edge.

This decomposition is log-space computable [53]. Moreover, given two vertices s and t, it
is always possible to find a decomposition in which t lies in layer 0. This can also be done in

log-space. If both s and t are in layer 0, then there is an edge between s and t, which is the
shortest path from s to t. Therefore assume that s lies in a layer r > 0. The following claims

lead to a simple algorithm:

76



Chapter 5. Path Problems in k-trees

Claim 5.17 The shortest s to t path never passes through two vertices u and v such that layer(u) <

layer(v).

Proof. Assume the contrary i.e. let there be a shortest s to t path ρ which passes from a vertex in

a lower layer to a vertex in a higher layer. Since layer(s) > layer(t), there are three consecutive
vertices u, v, w on ρ such that layer(v) > layer(u) and also layer(v) > layer(w). Then by

the properties above, u and w are part of a k-clique and hence (u,w) is an edge in the graph.
But this gives a shorter path than ρ by removing v, which contradicts our assumption.

Claim 5.18 There is a shortest path from s to t passing through the neighbor of s in the lowest

layer.

Proof. Let {v1, . . . , vk} be the neighbors of s in layers lower than that of s. Thus they form a
k-clique. Let layer(v1) < . . . < layer(vk). Let there be no shortest path from s to t that passes

through v1. Consider a shortest s to t path ρ = (s, vi, u1, . . . , ur, t), i ̸= 1. As v1, . . . , vk form
a k-clique, (v1, vi) ∈ E. As layer(v1) < layer(vi), layer(u1) < layer(vi) and (u1, vi) ∈ E,

it must be the case that (v1, u1) ∈ E. Thus vi on ρ can be replaced by v1 which contradicts the
assumption that there is no shortest s to t path passing through v1.

These claims suggest the following simple algorithm which can be implemented in log-

space: Start from s and choose the next vertex from the lowest possible layer, at each step till we
reach layer 0.

5.5 Discussion

In [49], the path problems for series-parallel graphs, also known as partial 2-trees have been

completely characterized, and the corresponding problems for k-trees with k > 2 are mentioned
as open questions. We resolve these open questions and show a matching L lower bound to

complete the characterization of path problems in k-trees. All our log-space results hold directly
only for k-trees and not for partial k-trees which are also equivalent to tree-width k graphs. The

reason being that a tree decomposition for partial k-trees is apparently more difficult to construct
(best known upper bound is LogCFL[91]) as opposed to k-trees (for which it can be done in L
[53]).

However, we observe that, if the tree-decomposition of a partial k-tree is given as input, then

the algorithms described in this chapter can be used for path problems in partial k-trees as well.
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Clustering
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6
The Planar k-means Problem is NP-hard

In this chapter, we consider a variant of the clustering problem, known as the k-means problem,
and prove that the planar version of this problem is NP-hard. For a brief overview of the

clustering problem and known results, see Section 1.2.3.

6.1 Background and Preliminaries

The clustering problem involves partitioning a finite set of objects into different chunks so as to
minimize certain objective function. These chunks are called clusters. We consider the geomet-

ric version of this problem, where the objects are points in Rm. We recall the definition of the
k-means problem:

Definition 6.1 Given a set of n points P = {p1, . . . , pn} in Rm, find a set of k points B =

{b1, b2, . . . , bk} ⊂ Rm such that
n∑

i=1

[d(pi, B)]2

is minimized. This minimum value is denoted Opt(P, k).

Here d(pi, B) is the Euclidean distance from pi to the nearest point in B; d(pi, B) =

min1≤j≤k d(pi, bj).

We consider the problem for m = 2, and refer to it as planar k-means. In particular, we consider
the decision version: Is Opt(P, k) ≤ S? Here S is part of input.

Choosing the set B of k centers fixes a clustering C of the points in P , with each point going
to its nearest center (breaking ties arbitrarily). On the other hand, if a subset of points C ⊆ P

is known to form a cluster, then the center of the cluster is uniquely determined as the centroid
of the points in C. Thus we can talk of the cost of a cluster C = {p1, . . . , pℓ} and the cost of a
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clustering C = {C1, . . . , Ck}:

Opt(C, 1) = Cost(C) = min
b

m∑
i=1

[d(pi, b)]
2

Cost(C) =

k∑
j=1

Cost(Cj)

Thus Opt(P, k) is the minimum, over all clusterings C of P into k clusters, of Cost(C).
We show the NP-hardness of planar k-means by a reduction from planar 3-SAT [60].

Definition 6.2 ([60]) Let F be a 3-CNF formula with a set of variables {v1, . . . , vn} and clauses

{c1, . . . , cm}. We call G(F )=(V,E) the graph of F , where

V = {vi|1 ≤ i ≤ n} ∪ {cj |1 ≤ j ≤ m}

E = E1 ∪ E2 where

E1 = {(vi, cj)|vi ∈ cj or v̄i ∈ cj}

E2 = {(vj , vj+1)|1 ≤ j < n} ∪ {(vn, v1)}

If G(F ) is a planar graph, F is called a planar 3-CNF formula. The planar 3-SAT problem is

to determine whether a given planar 3-CNF formula F is satisfiable.

We note that our reduction, in fact, requires only the graph (V,E1) to be planar. (Some of

the literature in fact refers to this sub-graph as the graph of F , but we follow the convention from
[60].)

Henceforth throughout this note, we use the term distance to mean square of Euclidean dis-
tance. That is, dist(p, q) = [d(p, q)]2. We will be explicit when deviating from this convention.

We use the following well known or easily verifiable facts about the k-means problem [47,
35].

Proposition 6.3 1. The cost of a cluster of points is half the average sum of distances from

a point to the other points in the cluster:

Cost(C) =
1

2|C|
∑
p∈C

∑
q∈C;q ̸=p

dist(p, q)

In other words, if C = {p1, p2, . . . , pℓ}, then

Cost(C) =
1

ℓ

ℓ∑
i=1

ℓ∑
j=i+1

dist(pi, pj)
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In the following, we will use this form as the definition for the cost of a cluster. This makes

the problem discrete: though there are uncountably many choices for the cluster centers,

there are only finitely many partitions of P into k clusters.

2. If, in an instance of the k-means problem, the given points form a multiset, then we say

that a clustering is multiset-respecting if it puts all points at the same location into the

same cluster.

Every instance of the k-means problem has a multiset-respecting optimal clustering.

3. Let P be a multiset instance of the k-means problem, and let P ′ be the instance obtained

by adding a point p to P . Then ∀k, Opt(P, k) ≤ Opt(P ′, k).

4. In particular, adding a point to a cluster cannot decrease the cost of that cluster; Cost(C) ≤
Cost(C ∪ {p}).

5. If clustering C′ refines clustering C (that is, every cluster in C is the union of some clusters

in C′), then Cost(C′) ≤ Cost(C).

6.2 Reduction from Planar 3-SAT to Planar k-means

Let F be the given planar 3SAT instance with n variables and m clauses. We construct an in-
stance I of planar k-means corresponding to F . We list the required properties of this instance

in Section 6.2.1. The correctness of the reduction is proved in Section 6.2.2. In Section 6.2.3,
we describe a layout which indeed satisfies these properties. The reduction may introduce ir-

rational coordinates in the resulting k-means instance. Rounding these irrational coordinates to
sufficiently close rational points is described in Section 6.2.4.

6.2.1 Properties of the layout

The corresponding k-means instance I we construct will satisfy the following:

1. Corresponding to each variable xi, there is a simple circuit si in the plane, with an even
number of vertices marked on it. At each vertex on such a circuit, M copies of a point are

placed. The circuits for different variables do not intersect.

For each circuit, its vertices can be partitioned into pairs of adjacent vertices in two ways.
We associate one of them (chosen arbitrarily) with the assignment xi = 1 and the other

with xi = 0. We call the first pairing the ‘true matching’ and the other pairing the ‘false
matching’.
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2. Let u, v be any two distinct vertices taken from any of the circuits (not necessarily the
same circuit). If u and v are adjacent on some circuit, then the distance between them is

β. Otherwise, the distance between them is at least 2β.

3. There is a point pj corresponding to every clause Cj . If xi ∈ Cj (x̄i ∈ Cj) then there is a
unique nearest edge (u, v) on the true (respectively false) matching of the circuit si such

that pj is equi-distant from u and v. It is at distance α from the midpoint of uv, and hence
at a distance α + β

4 from u and v. All vertices other than the endpoints of these nearest

edges (two per literal in the clause, so at most six) are at a distance at least α + 5β
4 from

pj .

Clause points pj and pl, for l ̸= j, are at distance at least θ from each other.

4. The instance I consists of all the clause points, and M copies of a point at each vertex on
each circuit si. The parameters satisfy

M ≥ 6αm

β
θ ≥ 2(M + 1)αm

5. The value of k is given by

k =
n∑

i=1

|si|
2

We ensure that the optimal k-means clustering puts the points in each circuit si into |si|
2

clusters by dividing them into either true pairs or false pairs. (Thus these clusters contain 2M

points.) Every clause point pj has at most three pairs of point locations at distance α from itself.
It is clustered with one of these pairs if that pair forms a cluster in the circuit si. Otherwise,

the optimal clustering puts pj along with some pair of point locations that forms a cluster in the
circuit it appears in. In particular, if xi is assigned a value 1, then in the corresponding k-means

clustering, points of si are clustered according to the true matching, otherwise they are clustered
according to the false matching. Similarly, if the assignment to a variable xi satisfies a clause cj ,

then the clause point pj is at distance α+ β
4 from the vertices of a cluster in si, otherwise it is at

distance strictly greater than α+ β
4 from at least one vertex in every cluster in si.

We need to show that

1. A layout satisfying the above properties gives a correct reduction from planar 3-SAT to

planar k-means. This is done in Section 6.2.2 below.

2. The layout is indeed possible for some choice of α, β, θ,M , and can be obtained in poly-

nomial time. This is done in two stages: a layout with irrational coordinates is described in
Section 6.2.3, and in Section 6.2.4 we describe how to eliminate the irrational coordinates.
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6.2.2 Correctness of the Reduction

Consider clustering of only circuit points into k non-empty clusters.

Lemma 6.4 1. Clustering the circuit points into consecutive pairs (i.e. into the true or the

false matching for each variable) has cost kMβ
2 .

2. Any other multiset-respecting clustering of circuit points has cost at least kMβ
2 + Mβ

3 .

Proof. Let A be any matching-based k-means clustering of the circuit points. Then using

Proposition 6.3(1) we can see that Cost(A) = kMβ
2 , since the cost of each cluster is Mβ

2 .
Let B be some multiset-respecting clustering that does not correspond to a matching on the

circuits. By the size of a cluster, we mean the number of distinct vertices (and hence all M points
at that vertex) in it.

If the largest cluster in B has 2 vertices, then every cluster is a pair, and at least one pair is
not consecutive on any circuit. Hence

Cost(B) ≥ (k − 1)Mβ

2
+

M2(2β)

2M
=

kMβ

2
+

Mβ

2

satisfying the claimed bound.
So now assume that B has some larger clusters too. Let B contain p clusters of sizes l1, . . . , lp

more than 3 each, q clusters of size 3 each, r clusters of size 2 each, and s clusters of size 1 each.
Then we have the following:

p+ q + r + s = k (6.1)
p∑

i=1

li + 3q + 2r + s = 2k (6.2)

Subtracting twice the first equation from the second, and using p =
∑p

i=1 1, we get

s =

p∑
i=1

(li − 2) + q (6.3)

For a cluster C of size l ≥ 4, the best possible situation is that l pairs within the cluster are
edges on some circuit. Thus the cost of such a cluster is at least

Cost(C) ≥ 1

lM

[
lM2β +

((
l

2

)
− l

)
M22β

]
= (l − 2)Mβ

Similarly, in a cluster of size 3, at most two pairs can be edges on a circuit (the circuits are

of even length), so the cost is at least 4Mβ/3.
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The cost of the (p, q, r, s) clustering B thus satisfies:

Cost(B) ≥ Mβ

[
p∑

i=1

(li − 2) +
4q

3
+

r

2

]

=
Mβ

2

[
s+ r + q +

2q

3
+

p∑
i=1

(li − 2)
]

from (Equation 6.3)

≥ Mβ

2

[
s+ r + q + p+

2q

3
+ p
]

∵ li − 2 ≥ 2

=
Mβ

2

[
k + p+

2q

3

]
from (Equation 6.1)

≥ kMβ

2
+

(p+ q)Mβ

3

≥ kMβ

2
+

Mβ

3
∵ p+ q ≥ 1

Thus any multiset-respecting clustering of circuit points that is not a matching based clustering

has a cost larger than the matching based clusterings, and the difference is at least Mβ
3 .

Lemma 6.5 The formula is satisfiable if and only if there is a clustering of value at most kMβ
2 +

2M
2M+1αm.

Proof. (⇒:) Consider one of the satisfying assignments of the formula. A clustering can be
constructed from it as follows:

If xi = 1 (respectively xi = 0), cluster the points of si according to the true (false) matching.
As every clause Cj is satisfied, fix one of the variables xi that satisfies it. Put the clause point

pj with the nearest pair of si. If xi = 1, then points of si are clustered into true matching pairs.
Further, xi appears in Cj in non-negated form, and so, by our construction, pj is at a distance α

from the midpoint of one of the true matching pairs. Thus pj can be clustered with this pair. The
cost of this cluster is

Cost(cluster) =
1

2M + 1

(
M2β + 2M

(
α+

β

4

))
=

2M

2M + 1
α+

Mβ

2

The case xi = 0 is analogous. Clustering all clause points in this way gives a clustering where m

clusters contribute Mβ
2 + 2M

2M+1α each, and the remaining contribute Mβ
2 each, giving an overall

value of kMβ
2 + 2M

2M+1αm.

(⇐:) Suppose there is a clustering of value at most kMβ
2 + 2M

2M+1αm. By Proposition 6.3(2),
we can assume that there is a multiset-respecting clustering C with this value. Let C′ denote the
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restriction of C to circuit points. By Proposition 6.3(4), adding the clause points cannot decrease
the cost of the clustering; thus Cost(C′) ≤ Cost(C). Now we prove a series of claims:

1. The restriction of C to circuit points, C′, has exactly k non-empty clusters.

If C′ has fewer clusters, then there is a cluster with more than 2 points. Refine the clustering

by removing one point from such a cluster and putting it in a cluster by itself. Repeat until
there are exactly k clusters, to get clustering C′′ of circuit points. By Proposition 6.3(5),

Cost(C′′) ≤ Cost(C′). C′′ is not matching-based (since we created singleton clusters), so
by Lemma 6.4, it contributes a value of at least kMβ

2 + Mβ
3 . Since

kMβ

2
+

Mβ

3
≤ Cost(C′′) ≤ Cost(C′) ≤ Cost(C),

we have

Cost(C)−
(
kMβ

2
+

2M

2M + 1
αm

)
≥ Mβ

3
− 2M

2M + 1
αm ≥ Mβ

6
> 0,

where the second inequality follows by our choice of M . We have reached a contradiction

to our assumption about Cost(C).

2. C′ is a matching-based clustering. That is, in C, all circuit points are clustered into a
matching based clustering.

If not, then by the argument used above for C′′, we obtain a contradiction to our assumption

about Cost(C).

3. No cluster in C has more than one clause point.

If some cluster C has two or more clause points, then let u, v be the vertices of the match-
ing in C, and let p, q be two distinct clause points in it. By Proposition 6.3(4), the cost

of the cluster C is at least the cost of the cluster containing just u, v, p, q. Thus using
Proposition 6.3(1), we have

Cost(C) ≥ 1

2M + 2

[
M2β + 4M

(
α+

β

4

)
+ θ

]
=

Mβ

2
+

4Mα+ θ

2(M + 1)
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All other clusters have a cost of at least Mβ/2 each, so the overall cost is at least

Cost(C) ≥ (k − 1)
Mβ

2
+

Mβ

2
+

4Mα+ θ

2(M + 1)

≥ kMβ

2
+

4Mα+ 2(M + 1)αm

2(M + 1)
by our choice of θ

>
kMβ

2
+

2M

2M + 1
αm a contradiction.

4. Each clause point is clustered with the nearest pair of circuit points, which should also be
a matching pair in the matching based clustering.

Every cluster containing a clause point has cost Mβ
2 + 2Mα

2M+1 if the circuit edge in the
cluster is nearest the clause point, and has cost at least Mβ

2 + 2M
2M+1α+ Mβ

2M+1 otherwise.

Thus a satisfying assignment can be constructed from this clustering.

6.2.3 The Details of the Layout

We now describe the layout obtained from the planar 3SAT formula F that gives us the desired
instance I of the k-means problem. Let G = (V,E) be the associated planar clause-variable

incidence matrix. (From Definition 6.2, G = (V,E1). Since G(F ) is planar, so is G.) Note that

the vertex set V of G can be partitioned into two sets: X corresponding to variable vertices, and
Y corresponding to clause vertices, and G is bipartite with E ⊂ X × Y . All vertices in Y have

degree at most 3, and all vertices in X have degree at most m.

1. Let E be a planar combinatorial embedding of G; such an embedding can be obtained in

polynomial time, and even in log space. (See for instance [4].) E corresponds to some
plane drawing of G and specifies, for each vertex v, the cyclic ordering of the edges

incident on v in this drawing.

2. Construct a related bounded-degree planar graph H and an embedding E ′ as follows: re-

place each vertex v ∈ X by a cycle Cv on m vertices, v1, v2, . . . , vm. Reroute the d(v)

edges incident on v in G to the first d(v) of these vertices, in the same order as dictated by

E . It is straightforward to see that H is planar, and its embedding E ′ can be easily obtained
from E . The maximum degree of any vertex in H is 3. The vertex set of H is the disjoint

union of X ′ and Y , where X ′ = X × [m].

3. Consider a plane drawing of H where vertices are embedded at points on an integer grid,
and edges are embedded as rectilinear paths. Such a drawing can be obtained in polyno-

mial time [59, 87], and even in logarithmic space [4].
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4. Inflate the grid by a factor of b ≥ 14.

This ensures, in particular, that every vertex or bend point u is at the centre of a big box Bu

of size b× b, and a small box Su of size 6×6. The big boxes for different grid points have
disjoint interiors, and thus contain no other vertex or bend point even on their boundaries.

Consider an edge connecting vertex [x, k] ∈ X ′ with vertex y ∈ Y . Replace it by a pair
of parallel rectilinear paths separated by two grid squares. At the y end, join up these

paths along the boundary of Sy. At the [x, k] end, splice them along with the edges to
[x, k − 1] and [x, k + 1] to form a continuous path. See Figure 6.1. Note that some

additional rectilinear bends might be required at the [x, k] end, (see, for example, (x, 4) in
Figure 6.1).

y1 y2

(x,2)

y1 y2

(x,2)(x,4)

(x,1)

(x,4)(x,3)(x,3)

(x,1)

Figure 6.1: Creating circuits for variables

For each vertex x ∈ X (and hence for each variable in F ), this process distorts the cycle
Cx in H into a circuit t. Let ti denote the circuit corresponding to variable xi. Since ti is

a rectilinear circuit on a grid, it is of even length.

5. Each clause point yj is now moved to the center of one of the grid squares touching it, the

one that is to the North-West. Extend the three circuits “incident” to the clause point, if
necessary, so that all incident circuits are at a Euclidean distance of precisely 5

2 times the

grid length from the moved clause point. See the layout and the modification in Figure 6.2.

Figure 6.2: Repositioning clause points

6. For each circuit ti, arbitrarily fix one of its perfect matchings as the true matching, and the

other as the false matching.

Let clause cj contain variable xi positively (negatively, respectively). If in the layout so

far, yj is nearest a true (false, resp.) edge of ti, then nothing needs to be done. If, however,

87



Chapter 6. The Planar k-means Problem is NP-hard

the edge of ti nearest yj is a false (true, resp.) edge, further deform ti in the area within
Byj but outside Syj . Replace a sub-path of length two (on each parallel path) by a path

of length three, with the vertices laid out on a regular semi-hexagon and hence at distance
one from their neighbours on the circuit. Change the true/false matchings within Byj to be

consistent with the labelling outside. This makes the edge nearest yj a true edge if it was
false earlier, and vice versa. The overall length of the circuit remains even. See Figure 6.3.

F
T

T
TTF F
F

F
T

T

T FF

F

T

Figure 6.3: Adjusting the parity of circuits relative to clause points

Since the grid was inflated sufficiently, these distortions do not affect other vertices / bends.

After doing this distortion wherever needed, the resulting circuit for a variable is the re-
quired circuit si.

Figure 6.4 gives the complete layout for a small planar 3SAT instance.

a

b
C2C1

c

C2C1

a1 a2

b1 b2

c1 c2

The graph HThe graph G The embedding of H The final layout

Figure 6.4: The layout for F = (a ∨ b ∨ c) ∧ (b ∨ c)

Let the squared unit length of the grid be β. Then α = (52)
2β = 6.25β. Any two clause

points are separated either vertically or horizontally by b grid lengths, so the distance between

them is at least θ = b2β.
Figure 6.5 shows the box Bu for a clause point u, and within this box the smallest distances

are demonstrated. The nearest vertices are A3 and A4 (and the corresponding vertices on the
other two circuits as well). The distances satisfy the following:
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point pair distance point pair distance

u,A2 α+ 6β + β/4

Ai, Ai+1 β u,A3 α+ β/4

A1, A3 3β u,A α

A2, A4 2β u,A4 α+ β/4

A3, A5 4β u,A5 α+ 2β + β/4

A6

u

A1

A2

A3 A5A4

A

Figure 6.5: The distances α, β shown inside Bu for a clause point u.

It is straightforward to see that with M = 38m, b = 28m, all the required conditions on the

parameters are satisfied.

6.2.4 Dealing with the irrational coordinates

In the last step of the layout, where we replace certain sub-paths of length 2 by sub-paths of

length 3, the numerators of the point coordinates become irrational. Essentially, we introduce
multiples of

√
3 in the numerator. However, there is a gap in Lemma 6.5 between the k-means

clustering costs corresponding to satisfiable and unsatisfiable instances. So we may “round”
these irrational points to sufficiently close rational points, while still preserving a non-zero gap.

Lemma 6.5 shows that the optimal k-means clustering cost is at most µ = kMβ
2 + 2M

2M+1αm

in the case where the original planar 3-CNF formula is satisfiable; a quick glance at the proof

shows that if the original formula is not satisfiable, the optimal k-means clustering cost is at least
µ+ λ, where

λ = min

(
Mβ

6
,
2Mα

M + 1
,

Mβ

2M + 1

)
.
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Let ε = λ/2
µ+λ < λ/2

µ .

Let dmin denote the smallest Euclidean distance between two different locations in the lay-

out. We consider a simplistic rounding: for a location with coordinates (x, y) where, say, x
is irrational (only one coordinate is irrational in the construction so far), move the location to

(x′, y) so that x′ is rational, and |x′−x| < εdmin
8 . Observe that it is possible to find such an x′ in

polynomial time ([64], Theorem 1.4.7). Now if p and q denote two points in the original layout,

and p′ and q′ denote the corresponding points in the rounded layout, then

d(p′, q′) < d(p, q) +
εdmin

4
≤ d(p, q)

[
1 +

ε

4

]
(recall, d(u, v) is the Euclidean distance between u and v) and so

dist(p′, q′) < dist(p, q)
[
1 +

ε

2
+

ε2

8

]
≤ dist(p, q) [1 + ε]

Similarly, we can see that dist(p′, q′) > dist(p, q) [1− ε]. Thus,

(1− ε)dist(p, q) < dist(p′, q′) < (1 + ε)dist(p, q).

Now, Proposition 6.3 (1) implies that for any clustering of the points, the ratio of the cost in

the rounded layout to the cost in the original layout is strictly greater than (1 − ε) and strictly
less than (1 + ε).

Thus, the optimal k-means clustering cost in the rounded layout is strictly less than (1 +

ε)µ ≤ µ+λ/2 when the input formula is satisfiable, and is strictly greater than (1−ε)(µ+λ) ≥
µ+ λ/2 when the input formula is not satisfiable.

6.3 Discussion

We have shown that the k-means clustering problem remains NP-complete even in two dimen-
sions, when the number of centers k is part of the input. The NP-hardness of this problem has

been independently observed by Andreas Vattani, [88].
There are still some unsettled issues regarding this hardness. An obvious question is whether

there are natural parameters associated with planar k-means instances such that when these pa-
rameters are restricted in some way, the problem becomes tractable.

• One possible choice of the parameter is k, the number of centers itself. It is known that
for planar k-means with constant values of k, there is a polynomial-time algorithm due to

[47]. Our reduction places no bounds on the value of k; it is unrestricted (and in particular,
can be as large as θ(n)). A natural question to ask is where is the hardness threshold; at
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what values of k does the planar k-means problem become NP-hard. For instance, for
k ∈ O(log n), the algorithm by [47] runs in quasi-polynomial time, and thus is unlikely

to be NP-hard. Our reduction shows hardness for a particular choice of ϵ. Is it hard for
k = nϵ for every choice of ϵ ∈ (0, 1)? It has been pointed out by Vattani ([88]) that this is

indeed the case.

• Another possible parameter to examine is the ratio of the maximum distance between
points to the minimum distance. In an instance generated in our reduction, this ratio is

infinity, as there are points with distance 0. A small perturbation of the points will make
this ratio finite, but still unbounded. (On the other hand, it will be polynomial in n.) If the

ratio is known a priori to be, say, linear in n, does it make the problem easier?

However, if we consider only different locations, then the ratio even in our reduction is
bounded by a polynomial in n, as the grid itself is of size polynomial in n. It is not clear

if linear ratio is possible preserving hardness.

Regarding approximability also, the picture concerning planar k-means is far from clear. The
algorithm of [11] (a variant of Lloyd’s algorithm), while providing approximation guarantees

for general k-means, does not provide any better guarantees on planar instances. (Although the
lower bound example constructed in [11] is for high dimensions, analogous planar instances can

also be constructed.) However, its behaviour on planar instances is not fully understood. In
particular, it is entirely possible that for any planar instance of k-means, the algorithm of [11]

gives an O(1)-approximation with high probability. Even if this is not true, it may still hold for
most planar instances. Settling this either way would be of some interest.

The most important open question is to determine whether there is a PTAS for the planar

k-means problem. Note that for a very similar problem, the planar k-median problem, a PTAS is
known to exist ([8]). This is despite the fact that unlike the 1-mean, the 1-median does not have

a closed form solution.
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7
Conclusion

We summarize the results stated in the previous chapters and conclude with a brief discussion
on related open problems.

7.1 Summary of Results

The work presented in this thesis can be divided into three broad categories. In Chapters 2 and

3, we have considered the graph isomorphism and canonization problem on planar graphs. We
have described a log-space algorithm for isomorphism and canonization of 3-connected planar

graphs, which has been used to get a log-space algorithm for isomorphism and canonization of
planar graphs.

In Chapters 4 and 5, we have considered path problems which include reachability, longest
and shortest path computation, and counting paths. We have given a UL ∩ coUL algorithm

for computing a longest path in planar DAGs, and have also presented new upper bounds on
a promise version of counting paths. We have also described log-space algorithms for path

problems in k-trees, which include log-space algorithms for reachability in directed k-trees and
shortest and longest path computation in directed acyclic k-trees. and the k-means clustering

problem in two dimensions.
Besides these results on space-complexity of graph problems summarized above, we have

considered the complexity of the k-means problem. In Chapter 6, we prove that the k-means
problem is NP-hard even in two dimensions, when the number of clusters is not fixed.

7.2 Discussion

We mention some related open problems. In the isomorphism and canonization problem, a big

challenge is to improve the upper or lower bound for general graphs. It is also interesting to get
better upper bounds for bounded genus graphs and minor-closed families of graphs. As genus
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k graphs do not have a unique embedding on a genus k surface for k > 1, our technique is
not directly applicable. It would also be interesting to consider interval graphs and intersection

graphs of various objects e.g. axis-parallel rectangles in plane.
In the context of path problems, recently Reach and Distance problems in K3,3 minor-free

and K5 minor-free graphs and Long-Path in K3,3 minor-free and K5 minor-free DAGs have
been shown to be in UL ∩ coUL [85]. For planar directed graphs, improving the upper bound on

reachability from UL ∩ coUL to L is an open question. Some partial progress has been recently
made by [81], where a log-space algorithm for reachability in planar directed acyclic graphs

with at most O(log n) sources is described. Even for the class of layered grid graphs, no upper
bound better than UL ∩ coUL is known. (See e.g. [3].) It would be interesting to get a log-space

algorithm, or a weaker but orthogonal upper bound of LogDCFL for this class. For graphs of
bounded tree-width, better upper bound will be possible if the upper bound on constructing the

tree-decomposition can be improved from LogCFL to a smaller complexity class.
In the planar k-means problem, it is a challenging question to obtain a PTAS or to prove

APX-hardness.
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